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Kurzfassung

Die vorliegende Dissertation beschaftigt sich mit Network Alertness, einem neuartigen
Ansatz fiir anpassungsfihige, kooperative Intrusion Detection (Erkennen von Eindringlin-
gen in einem Netzwerk). Der eigentliche Erkennungsprozess wird von kooperierenden Rech-
nern durchgefiihrt, die aus den verstreuten Einzelteilen ein einziges, zusammenhangendes
Bild der gerade stattfindenden Angriffe ermitteln. Die Information tiber diese Angriffe
wird dann dazu beniitzt, den eigentlichen Erkennungsvorgang zu verbessern, indem Daten
von verdachtigen Quellen besonders genau analysiert werden.

Das Hauptaugenmerk des Designs liegt auf der Verteidigung von groflen Unterneh-
mensnetzen. Nachdem die Aktivitdt von Hackern und Kriminellen im Internet in den
letzten Jahren stark zugenommen hat, muss sich praktisch jedes Unternehmen der Bedro-
hung stellen, die diese auf eines der wichtigsten Unternehmensgiiter ausiiben, namlich der
Bedrohung des eigenen Netzwerks und der daran angeschlossenen Ressourcen.

Géngige Intrusion Detection Systeme sind dieser Aufgabe nicht gewachsen, da sie mit
dem enormen Datenaufkommen nicht fertig werden, das von den Sensoren in solchen Netzen
produziert wird. Spezielle Knoten, deren einzige Aufgabe die Analyse der ankommenden
Information ist (so wie zentrale Rechner), sind anfillig fiir Fehler und gezielte Angriffe.
Auflerdem begrenzen sie, weil sie leicht iiberlastet werden konnen, die Skalierbarkeit des
Systems.

Unser Ansatz basiert auf einem verteilten Design, wo gleichberechtigte Knoten mitein-
ander kooperieren, um auftretende Angriffe zu erkennen. Diese Angriffe werden als Muster
dargestellt, die in der von uns entwickelten Attack Specification Language beschrieben
werden konnen. Diese Beschreibungssprache hat den Vorteil, dass Intrusions von Experten
intuitiv und einfach spezifizierbar sind.

Um eine exponentielles Ansteigen von Nachrichten zwischen den Knoten zu vermei-
den, musste die Machtigkeit der Beschreibungssprache reduziert werden. Das erlaubte
uns die effiziente Entwicklung eines verteilten Suchalgorithmus, der gefahrlichen Muster
finden kann. Durch die Einschrankung des Identifikationsprozesses auf jene Knoten, wo
die eigentlichen Indizien gefunden werden, und jeglichen Verzicht auf zentrale Stellen, war
es moglich, eine Losung zu entwerfen, die den jetztigen Systemen in Bezug auf Skalier-
barkeit und Fehlertoleranz iiberlegen ist.

Der verteilte Algorithmus zusammen mit der Beschreibungssprache und Komponenten
zur Verwaltung und Inbetriebnahme des Systems wurden implementiert. Die Architektur
des gesamten Systems, das Quicksand getauft wurde, wird in der vorliegenden Arbeit
beschrieben. Quicksand verfiigt {iber ein flexibles Interface um zusatzliche Komponenten
(wie zum Beispiel Sensoren von Drittanbietern) einbinden zu kénnen.

Im Zuge der Arbeit wurde ein Sensor entwickelt und in Quicksand integriert, der An-
fragen an o6ffentlich zugéngliche Netzwerkdienste (wie das Web oder das Domain Name
Service) auf mogliche Anomalien untersucht. Dieser Sensor ist in der Lage, sich auf Daten
von unterschiedlichen Quellen einzustellen und sein Verhalten entsprechend zu verdndern.
Das erlaubt es den kooperierenden Knoten, die Sensoren so anzupassen, dass Anfragen von
verdachtigen Benutzern genauer kontrolliert werden.



Der Beitrag dieser Dissertation ist die Entwicklung eines Konzepts und dessen Real-
isierung, welches es verteilten Knoten in einem Netzwerk erlaubt, effizient Eindringlinge
zu entdecken. Der verwendete Algorithmus ist als peer-to-peer Prozess gestaltet, der es
ermoglicht, die riesigen Datenmengen zu untersuchen, welche in grofien Netzen entstehen.
Zusatzlich erlaubt es unser Ansatz auch, die gewonnene Erkenntnis nicht nur als Alarm an
einen Administrator zu schicken, sondern auch den Erkennungsprozess selbst (mittels der
vorher erwéhnten Sensoren) an sich entwickelnde Gefahrenszenarien anzupassen.



Abstract

This dissertation introduces the concept of Network Alertness, a novel approach to per-
form adaptive, collaborating intrusion detection. The detection process itself is realized by
collaborating nodes that correlate and assemble the pieces of evidence, which are scattered
over many hosts in the victim’s network, into a single and coherent picture of ongoing
attacks. The information of emerging threats is then fed back into the system and utilized
to selectively adapt to data from suspicious sources.

The main focus of the proposed design is the protection of huge enterprise networks
against coordinated attacks. As the activity of cyber-criminals has risen dramatically in
the past few years, virtually any organization faces an increasing threat to one of its most
valuable assets, namely its network and the attached resources.

Current systems fall short in dealing with the immense data volume that is produced
by the sensors that are deployed in these large network installations. Dedicated nodes such
as centralized processors become vulnerable to faults or targeted denial-of-service attempts
and often represent performance bottlenecks.

Our approach is based on a distributed framework that enables nodes to collaborate
in a point-to-point fashion to identify emerging hostile patterns. These patterns can be
described in a declarative manner in our proposed Attack Specification Language. This
helps domain experts to express intrusion scenarios in a more intuitive way.

In order to prevent an explosion in the number of messages that need to be trans-
mitted, the specification language had to be restricted. The consequential decentralized
algorithm to find events that satisfy such patterns was implemented and exhibits supe-
rior scalability and fault tolerant properties when compared to existing solutions. This
is achieved by restricting the detection to only those hosts that witness actual parts of
the attack. We abandon the idea of nodes with a dedicated task of correlating events as
used in traditional centralized or hierarchical approaches because they limit scalability and
are vulnerable to faults or attacks. The correlation framework, together with an interface
to allow deployment and management of our collaborating sensors, was implemented and
named Quicksand. We describe the system architecture and implementation of Quicksand
and introduce a mechanism to integrate components such as third-party sensors into our
design.

One component that we have developed for Quicksand is an anomaly based network
probe. It monitors requests to publicly available services such as the web or the domain
name service. The sensor is capable of adapting its inspection mechanism to closer examine
data from suspicious sources. This enables collaborating nodes to reconfigure the sensors
to tighten the analysis of information from users which are believed to act maliciously.

The contribution of this dissertation is the creation of a framework that enables nodes
to gain knowledge of intrusive behavior in large networks. This knowledge gaining process
is realized in a peer-to-peer fashion to solve the problem of managing the massive data
volume produced in such network installations. The information extracted by this process
is not only used to send alerts to a system administrator but also to modify the detection
process itself and adapt it to currently evolving scenarios.
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Chapter 1

Introduction

It is easy to run a secure computer system. You merely have to disconnect all
dial-up connections and permit only direct-wired terminals, put the machine and
its terminal in a shielded room, and post a guard at the door.

— F.T. Gramp and R.H. Morris

As a matter of fact, computer systems are not operated this way. In order to provide
useful services or to allow people to perform tasks more conveniently, computer systems are
attached to networks and get interconnected. This resulted in the world-wide collection of
local and wide-area networks known as the Internet. Although ease of use and convenience
are trade-offs with security, people often cannot or do not want to forfeit services provided
by remote machines. Therefore they have to deal with a loss of security. This dissertation
deals with an approach to mitigate their risks.

When a computer system is attached to a network, three areas of increased risk can be
identified [20].

First, the number of points that can potentially serve as the source of an attack against
your computer is increased. For a stand-alone system, physical access to the machine is a
prerequisite to an intrusion. In the networked case, each host that can send packets to the
victim can be potentially utilized by a hacker'. As certain services (such as web or name
servers) need to be publicly available, each machine on the Internet might be the originator
of malicious activity. This fact makes attacks very likely to happen on a regularly basis.

Second, the physical perimeter of the computer system is extended. For a single ma-
chine, everything is considered to be ‘inside a box’ (or at least in a close vicinity). The
processor fetches data from memory which is read from secondary storage. Such data is
(very well) protected from tampering and eavesdropping while transferred between the
different entities. The same assumption is not true for data transferred over the network.
Packets on the wire often pass areas and are forwarded by infrastructure devices that are
completely out of control of the receiver. Messages can be read, recorded and later replayed

!The term hacker is used to describe persons with the malicious intend to gain unauthorized access to
network resources. They are often referred to as crackers as well.



as well as modified on their journey. Especially in large networks such as the Internet, it
is not trivial to authenticate the source that claims to be the message’s origin.

Third, the number of services that networked machines typically offer is greater than
the single authentication service of a stand-alone system. Although such a service (usually
realized as login with password) may contain vulnerabilities, it is still only a single program
which is comparatively simple. The authentication service mediates the ability to access
files or to send e-mails through a single point. Networked computers, on the other hand,
often offer by default a variety of remote connection possibilities to log in, access data
or relay mail. All service processes (called daemons) implementing remote access may
contain exploitable programming bugs or configuration errors which can lead to system
compromise.

The classical solutions to reduce the risks introduced by connecting computer systems
to larger networks are firewalls and the use of cryptographic techniques.

Firewalls provide a parting line between the outside Internet (or untrusted third party
networks) and a trusted inside set of machines under the administrative control of the
firewall owner. A firewall acts as a central point that allows specification of an access
control mechanism which regulates the accessibility of services running behind it to hosts
on the outside. This minimizes the number of potential targets and leads back to the
situation where only a few controlled services (similar to the login service of a stand-alone
system) can be publicly utilized.

The use of cryptographic techniques prevents the data from being read or modified
when transferred over the network. The sender and the receiver agree upon a symmetric
key or an asymmetric key pair that allows transformation of the sender’s message (or clear
text) into the corresponding ciphertext and its reverse operation back into the clear text
at the receiver. This should prevent attacks against data in transit. Notice, however, that
the sender is not authenticated by simply encrypting the message. Additional mechanisms
such as digital signatures and a trusted third party (called certification authority) are
needed to provide this level of security.

The strategies described above are important ways to improve the security of a com-
puter system and to reach the level of a stand-alone system that is located in a shielded
and guarded room. Nevertheless, certain services (e.g. HTTP, DNS) have to be anony-
mously available by everyone connected to the Internet. They can neither be protected by
cryptography nor by firewalls.

1.1 Motivating Scenario

The following typical scenario describes the possible actions of an attacker and illustrates
that an additional security approach is necessary which supports and augments the strate-
gies sketched above. We assume that the intruder is targeting a network installation run
by a small company as depicted in Figure 1.1. In order to sell their articles, this company
has set up the small web site www.victim.com allowing on-line purchase of their articles.
Being security aware, the web server is located behind a firewall which only allows inbound



standard HTTP requests, secure HTTPS requests and DNS queries. The standard queries have
to be permitted to transfer the web page requests and replies between users and the server.
The secure HTTPS connection is used to cryptographically protect the customer’s credit
card information when it is transmitted to process the payments and DNS queries have to
be accepted to be able to resolve the victim.com domain names.

Web and Customer Data

. www.victim.com
Access Control List

Host Port Web
Pages
www 80, 443 Credit Card

dns 53 Data

Work-
station

Internet

Firewall Switch

node1.victim.com

border.victim.com

Work-
station

node2.victim.com

Host IP Address

dns.victim.com

WwWw 12.131.1.11
dns 12.131.1.12

Domain Name Database

Figure 1.1: Victim Network Installation

A successful intrusion into a computer system can be divided into three stages [7], called

e Surveillance Stage,
e Exploitation Stage and
e Masquerading Stage.

During the surveillance phase, the attacker attempts to learn as much information as
possible about its target to discover vulnerable services and configuration errors. The
exploitation step describes the activity of actually elevating the attackers privileges by
abusing an identified weakness and the masquerading stage covers all activity performed
by an intruder after the successful break-in (e.g. deleting log entries or patching the
vulnerability he used to get in).

The intruder starts his attack by obtaining the range of IP addresses owned (or con-
trolled) by victim.com. This is done by querying their DNS server. Next, he launches a
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port scan against each address he has found in the previous step. Such a scan attempts to
find running services on a machine by sending packets which pretend to establish a con-
nection to interesting ports at the target host and interpret the answers. When a server
that is actually listening on a tested port receives such a request, it confirms the setup of
the virtual connection with a reply packet. Otherwise an ICMP error message or no answer
at all is returned. As the firewall in our example is properly configured, most of the con-
nection request packets are discarded there. The attacker learns that only two machines
provide a potential entry into the system. One is the DNS server, the other the web server.

He chooses to attack the web server and tries to figure out the type and version of
the server software. It is very common that a weakness in a service is tightly bound to a
certain version of the program implementing it. In addition, it is important to know the
underlying operating system and hardware architecture because many exploits use short
machine code programs (called shell-code) and utilize memory addresses with constant
values. These values and the architecture specific programs obviously depend on both
factors mentioned above.

To get that information, the intruder retrieves the complete DNS entry for the web
server from the domain name database. The web master is a diligent person and has filled
out the hardware information field, identifying the server as running Windows 2000. This
allows the attacker to conclude that the web server is a Microsoft Internet Information
Service (IIS), an educated guess that can be verified by looking at the header of the
reply to a standard web page request. For this product, a number of vulnerabilities [18]
have been released recently that allow a hacker to send a carefully crafted packet to exploit
a buffer overflow weakness and obtaining administrator access. This weakness has also
been used by Code Red [19], a virus that targets Microsoft’s web server and has received
much attention recently.

The intruder downloads one of the exploit programs readily available on the Internet
and gives it a try. As the administrator has not applied the latest patches, he is successful.
The exploitation stage has been very short. Notice that the firewall accepted and forwarded
all relevant attack packets because everyone on the Internet is permitted to communicate
with the company’s web and name service. No violation against the access control policy
has occurred. Nevertheless, an important network resource has been compromised. Also
encryption cannot be used to prevent this kind of attack. As the data is not modified by a
third party during transmission, protecting the packet’s payload is futile. Even the authen-
tication of the sender would not be beneficial, as the origin of the attack is not disguised
in our example. Potential suspicious log entries at the server in case of authentication of
every communication partner could later be removed by the attacker in this case.

After the compromise, the intruder enters the masquerading stage and immediately
starts to remove the marks of his attack by cleaning entries from the web server and the
operating systems logs that relate to his machine. In addition, he installs a root kit -
a collection of programs that replace system binaries with trojaned ones. These trojan
versions usually open a back door access for the hacker to provide future login possibility.
They also modify administrative commands (e.g. file or process monitors, logging facilities)
to hide the activity of the back door itself.



Now, the hacker owns a new base for launching attacks against other machines of
victim.com. He can operate from a machine inside the network which is not subject to
the firewall’s access control. Alternatively, he could launch intrusions against other sites
from there, hiding his true origin.

The given example makes it obvious that firewalls and cryptography cannot defend com-
puter systems against certain classes of malicious behavior. When a machine is connected
to the Internet and has to provide publicly accessible services, it automatically becomes
a target in a hostile environment. Although the installation of updates and patches for
used software is beneficial and necessary, it is naive to assume that one is always faster in
installing bug fixes than the attacker who tries to exploit such a program error.

This makes it necessary to install an additional defense to cope with intrusions when the
first perimeter of defense has been penetrated. Systems that attempt to detect malicious
behavior that is targeted against a network and its resources are called intrusion detection
systems (IDSs). They are network security tools that process local audit data or monitor
network traffic and operating system activity. IDSs can either search for specific patterns,
called signatures, in their input stream (misuse based) or detect certain deviations from
expected behavior (anomaly based) which indicate hostile activities against the protected
network.

Intrusion detection systems constitute the third building block (together with firewalls
and cryptography) of a secure computer system installation and can discover intrusions in
all of the three stages listed above. Current state-of-the-art IDSs notice the huge amount
of packets from a single source that are dropped at the firewall and report reconnaissance
activity. It is also possible to check incoming packets for malicious (exploit) payload and
flag or drop suspicious messages. This would have potentially prevented the compromise
of the web server in the example above. In addition, an IDS can also monitor the integrity
of the host’s files. When the attacker installs trojaned binaries, the IDS reports these
modifications to the system administrator.

1.2 The Vision - Network Alertness

While intrusion detection systems are efficient supplements to more traditional security
mechanism, they are no panacea. A vile hacker may perform the scan over a long period
of time or gather information directly from the DNS database thus evading the detection
capability of the intrusion detection system. Or he can modify the exploit code obtained
from the Internet to craft a packet that looks innocent.

The problem is that although an attacker leaves many traces at different spots in the
target network during an intrusion attempt, most IDSs consider these pieces independent
of each other and classify all of them as benign. Evidence of attacks against a network and
its resources is often scattered over several hosts. IDSs have to collect and correlate infor-
mation from different sources to spot complete attack scenarios such as the one described
in the previous Section 1.1.

The aim of this dissertation is the creation of a framework where all hosts are aware



of activities that manifest themselves at different parts of the network and incidents that
result in a distortion of regular network traffic. The nodes should develop an understanding
of the complex connections inside the network and react selectively to intrusive behavior.

The main focus of our work is on a system that is scalable enough to operate in enterprise
networks and capable of detecting coordinated large-scale attacks. Such an approach is
needed as the number of cyber-crime incidents has been rising dramatically in the last few
years. Virtually all organizations have experienced attacks from the Internet and suffered
from malicious activity conducted by inside users. Many of them possess networks that
are larger than current IDSs can handle. This leads to a situation where only small,
important parts are thoroughly monitored while the rest is at most protected by a firewall.
Unfortunately, as we have seen in the previous section, this is often not sufficient.

The problem of current state-of-the-art designs is the fact that the process of event
correlation is only done in a rudimentary fashion by simply forwarding the distributed
data to dedicated hosts where it is further processed. It is not possible to specify complex
attack scenarios together with fine grain response that is evaluated on more than one host
in parallel.

As networks and traffic grow, the central correlators become performance bottlenecks.
While current approaches work reasonable well for mid-sized networks, large installations
with several thousand hosts push them to and above their limits. A scalable solution is
necessary which allows the correlation of events from different sources even for the largest
enterprise networks. This requires a design where the total amount of traffic between all
involved machines as well as the peak load at any single spot is manageable.

Because almost all systems rely on (a few) special hosts that are essential for the correct
operation of the detection process, it is obvious that they are vulnerable to malicious attacks
or faults. Fault tolerance is a property which specifies the percentage (fraction) of nodes
of the complete network which have their events correlated after a single machine running
parts of the IDS (sensor or correlator) fails or is taken out. This indicates the fraction
of distributed patterns that can still be detected and is a measure for the resilience of
the system. For systems with central entities, the loss of important hosts can significantly
reduce this percentage of covered nodes - a fact which indicates their limited fault tolerance.

Our solution is a completely decentralized approach that models an intrusion as a
pattern of events that occur at different hosts. Each of our protected nodes are equal
partners in the detection process and collaborate in a peer-to-peer fashion. This allows us
to perform the necessary cooperation in a scalable and fault tolerant way.

A scalable and fault tolerant schema to detect attack scenarios relies on detailed infor-
mation from the underlying sensors that deliver the single pieces of evidence. Such sensors
have to be integrated into the detection process by tuning them to analyze data in more
detail from machines that are suspected to participate in an emerging intrusion.

Most intrusion detection systems operate similar to virus scanners and simply compare
their input data to a database of known attacks. Only when the input matches such
a pre-defined attack signature, an intrusion can be detected. This approach lacks the
possibility to spot previously unknown intrusions or derivations thereof. For a system that
attempts to combat skilled intruders who are able to adapt given attacks and change



their signature, more sophisticated techniques are needed. Some heuristics based systems
follow the opposite approach where the input stream is matched against a profile of valid
behavior. Any deviation that exceeds a certain threshold is considered an intrusion. Such
systems are well suited to find previously unknown attack attempts but suffer from the
shortcoming that many times legal activity is reported as intrusive. This often results in
their deactivation by administrators after a short period of time.

We propose to introduce some a-priori knowledge into the detection process that allows
modification of the threshold level to adapt to the input data from possible malicious
sources. As all current systems base their network anomaly detection on connection flows
(i.e. multiple packets) instead of single ones, this desired adaptation is not feasible there.
That made the development of our own network based adaptive anomaly detectors necessary
which can operate on a per-packet basis.

The combination of scalable, decentralized correlation and adaptive anomaly detection
leads to our envisioned behavior of an intrusion detection system that we denote Network
Alertness. Such a design has the capability of protecting large enterprise networks by
assembling distributed pieces of evidence into a coherent picture of a coordinated attack
in a scalable and fault tolerant manner and can selectively adapt and react to emerging
threats (and their sources).

1.3 Contribution

The dissertation addresses the problems mentioned above and contributes to the following
domains in the field of intrusion detection.

e The definition (grammar) of a language that is capable of describing attack scenarios
as distributed patterns of events, which may occur at different places.

e The design and evaluation of a peer-to-peer algorithm which detects described sce-
narios without relying on dedicated correlation entities.

e The specification and evaluation of an IP based protocol that allows temporal order-
ing of events between communicating hosts with no bandwidth overhead.

e The implementation of the proposed distributed correlation framework in a prototype
called Quicksand.

e A design to distribute the load when performing centralized correlation of events in
high-bandwidth streams. The centralized probes are a complementary mechanism to
the peer-to-peer framework in order to cover scenarios that cannot be modeled by
the distributed patterns.

e The design and evaluation of an adaptive, anomaly based sensor that analyzes packet
content instead of connection patterns to detect potential malicious behavior. The
heuristical detection mechanism allows novel intrusions to be found, while the adap-
tive technique keeps the false positive rate acceptably low.

e The integration of all components into a coherent system that realizes our vision of
Network Alertness.



1.4 Organization

This dissertation is organized as follows. Chapter 2 introduces the basic concepts of com-
puter security and explains the key issues of the three main areas in network security,
namely access control, cryptography and intrusion detection. The generic architecture and
features of intrusion detection systems are evaluated in more detail.

Chapter 3 details previous work done in the areas of event correlation and adaptive
anomaly sensors.

The next part, consisting of Chapter 4 and Chapter 5, explains one of the two cor-
nerstones of Network Alertness and describes the concepts and implementation of the
distributed event correlation. In addition, the protocol to perform event synchronization
between communicating nodes in a network is introduced. Chapter 6 then explains a
complementary approach to deal with events from a centralized perspective.

Chapter 7 is centered around the second cornerstone of Network Alertness and deals
with the design and implementation of our adaptive anomaly sensors.

An evaluation of all system components is presented in Chapter 8. The last chapter
concludes and outlines further research possibilities.



Chapter 2

Computer Security and Intrusion
Detection

The superior man, when resting in safety, does not forget that danger may come.
When in a state of security he does not forget the possibility of ruin. Thus this
person is not endangered, and his states and all their clans are preserved.

— Confucius

The scenario in Section 1.1 described an exemplary threat to computer system security
in the form of a hacker attacking a company’s web server. This chapter attempts to give a
more systematic view of system security requirements and potential means to satisfy them.
We define properties of a secure computer system and provide a classification of potential
threats to them. We also introduce the mechanism to defend against attacks that attempt
to violate desired properties.

Before one can evaluate attacks against a system and decide on appropriate mechanisms
against them, it is necessary to specify a security policy [95]. A security policy defines the
desired properties for each part of a secure computer system. It is a decision that has to
take into account the value of the assets that should be protected, the expected threats
and the cost of proper protection mechanisms. A security policy that is sufficient for the
data of a normal user at home may not be sufficient for a bank, as a bank is obviously a
more likely target and has to protect more valuable resources.

2.1 Security Attacks, Properties and Mechanisms

For the following discussion, we assume that the function of a computer system is to provide
information. In general, there is a flow of data from a source (e.g. host, file, memory) to
a destination (e.g. remote host, other file, user) over a communication channel (e.g. wire,
data bus). The task of the security system is to restrict access to this information to only
those parties (persons or processes) that are authorized to have access according to the
security policy in use.
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Figure 2.1: Security Attacks

The normal information flow and several categories of attacks that target it are shown
in Figure 2.1 and explained below (according to [90]).

1.

Interruption: An asset of the system gets destroyed or becomes unavailable. This
attack targets the source or the communication channel and prevents information
from reaching its intended target (e.g. cut the wire, overload the link so that the
information gets dropped because of congestion). Attacks in this category attempt
to perform a kind of denial-of-service (DOS).

. Interception: An unauthorized party gets access to the information by eavesdrop-

ping into the communication channel (e.g. wiretapping).

Modification: The information is not only intercepted, but modified by an unau-
thorized party while in transit from the source to the destination. By tampering with
the information, it is actively altered (e.g. modifying message content).

Fabrication: An attacker inserts counterfeit objects into the system without having
the sender doing anything. When a previously intercepted object is inserted, this
processes is called replaying. When the attacker pretends to be the legitimate source
and inserts his desired information, the attack is called masquerading (e.g. replay an
authentication message, add records to a file).
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The four classes of attacks listed above violate different security properties of the com-
puter system. A security property describes a desired feature of a system with regards to
a certain type of attack. A common classification is listed below [23, 66].

Confidentiality: This property covers the protection of transmitted data against
its release to non-authorized parties. In addition to the protection of the content
itself, the information flow should also be resistant against traffic analysis. Traffic
analysis is used to gather other information than the transmitted values themselves
from the data flow (e.g. timing data, frequency of messages).

Authentication: Authentication is concerned with making sure that the informa-
tion is authentic. A system implementing the authentication property assures the
recipient that the data is from the source that it claims to be. The system must
make sure that no third party can masquerade successfully as another source.

Non-repudiation: This property describes the feature that prevents either sender or
receiver from denying a transmitted message. When a message has been transferred,
the sender can prove that it has been received. Similarly, the receiver can prove that
the message has actually been sent.

Availability: Availability characterizes a system whose resources are always ready to
be used. Whenever information needs to be transmitted the communication channel
is available and the receiver can cope with the incoming data. This property makes
sure that attacks cannot prevent resources from being used for their intended purpose.

Integrity: Integrity protects transmitted information against modifications. This
property assures that a single message reaches the receiver as it has left the sender
but integrity also extends to a stream of messages. It means that no messages are
lost, duplicated or reordered and it makes sure that messages cannot be replayed. As
destruction is also covered under this property, all data must arrive at the receiver.
Integrity is not only important as a security property, but also as a property for
network protocols. Message integrity must also be ensured in case of random faults,
not only in case of malicious modifications.

Different security mechanisms can be used to enforce the security properties defined in
a given security policy. Depending on the anticipated attacks, different means have to be
applied to satisfy the desired properties. Three main classes of measures against attacks
can be identified, namely attack prevention, attack avoidance and attack detection. They
are explained in detail in the following sections.

2.2 Attack Prevention

Attack prevention is a class of security mechanisms that contains ways of preventing or
defending against certain attacks before they can actually reach and affect the target. An
important element in this category is access control, a mechanism which can be applied at
different levels such as the operating system, the network or the application layer.
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2.2.1 Access Control

Access control [95] limits and regulates the access to critical resources. This is done by
identifying or authenticating the party that requests a resource and checking its permissions
against the rights specified for the demanded object. It is assumed that an attacker is
not legitimately permitted to use the target object and is therefore denied access to the
resource. As access is a prerequisite for an attack, any possible interference is prevented.

The most common form of access control used in multi-user computer systems are access
control lists for resources that are based on the user and group identity of the process that
attempts to use them. The identity of a user is determined by an initial authentication
process that usually requires a name and a password. The login process retrieves the
stored copy of the password corresponding to the user name and compares it with the
presented one. When both match, the system grants the user the appropriate user and
group credentials. When a resource should be accessed, the system looks up the user and
group in the access control list and grants or denies access as appropriate. An example
of this kind of access control can be found in the UNIX file system which provides read,
write and execute permissions based on the user and group membership. In this example,
attacks against files that a user is not authorized to use are prevented by the access control
part of the file system code in the operating system.

2.2.2 Firewall

An important access control system at the network layer is a firewall [20]. The idea of a
firewall is based on the separation of a trusted inside network of computers under single
administrative control from a potential hostile outside network. The firewall is a central
choke point that allows enforcement of access control for services that may run at the
inside or outside. The firewall prevents attacks from the outside against the machines
in the inside network by denying connection attempts from unauthorized parties located
outside. In addition, a firewall may also be utilized to prevent users behind the firewall
from using certain services that are outside (e.g. surfing web sites containing pornographic
material).

For certain installations, a single firewall is not suitable. Networks that consist of several
server machines which need to be publicly accessible and workstations that should be
completely protected against connections from the outside would benefit from a separation
between these two groups. When an attacker compromises a server machine behind a single
firewall, all other machines can be attacked from this new base without restrictions. To
prevent this, one can use two firewalls and the concept of a demilitarized zone (DMZ) [20]
in between as shown in Figure 2.2.

In this setup, one firewall separates the outside network from a segment (DMZ) with
the server machines and a second one this area from the rest of the network. The second
firewall can be configured in a way that denies all incoming connection attempts. Whenever
an intruder compromises a server, he is now unable to immediately attack a workstation.
Such a setup might have helped the company running the network in our sample scenario in
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Section 1.1. Although the attacker gained access to the web server the rest of the network
would still remain protected.
The following design goals for firewalls are identified in [20)].

1. All traffic from inside to outside, and vice versa, must pass through the firewall. This
is achieved by physically blocking all access to the internal network except via the
firewall.

2. Only authorized traffic, as defined by the local security policy, will be allowed to
pass.

3. The firewall itself should be immune to penetration. This implies the use of a trusted
system with a secure operating system. A trusted, secure operating system (e.g.
Trusted-Solaris [97]) is often purpose-built, has heightened security features and
only provides the minimal functionality necessary to run the desired applications.

These goals can be reached by using a number of general techniques for controlling
access. The most common is called service control and determines Internet services that
can be accessed. Traffic on the Internet is currently filtered on basis of IP addresses
and TCP/UDP port numbers. In addition, there may be proxy software that receives and
interprets each service request before passing it on. Direction control is a simple mechanism
to control the direction in which particular service requests may be initiated and permitted
to flow through. User control grants access to a service based on user credentials similar
to the technique used in a multi-user operating system. Controlling external users requires
secure authentication over the network (e.g. such as provided in IPSec [42]). A more
declarative approach in contrast to the operational variants mentioned above is behavior
control. This technique determines how particular services are used. It may be utilized
to filter e-mail to eliminate spam or to allow external access to only part of the local web
pages.

A summary of capabilities and limitations of firewalls is given in [90]. The following
benefits can be expected.

e A firewall defines a single choke point that keeps unauthorized users out of the pro-
tected network. The use of such a point also simplifies security management.

e [t provides a location for monitoring security related events. Audits, logs and alarms
can be implemented on the firewall directly. In addition, it forms a convenient plat-
form for some non-security related functions such as address translation and network
management.
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e A firewall may serve as a platform to implement a virtual private network (e.g. by
using IPSec).

The list below enumerates the limits of the firewall access control mechanism.

e A firewall cannot protect against attacks that bypass it, for example, via a direct
dialup link from the protected network to an ISP (Internet Service Provider). It
also does not protect against internal threats from an inside hacker or an insider
cooperating with an outside attacker.

e A firewall does not help when attacks are against targets whose access has to be
permitted.

e [t cannot protect against the transfer of virus-infected programs or files. It would
be impossible, in practice, for the firewall to scan all incoming files and e-mails for
viruses.

Firewalls are usually divided into three common categories (refer to Figure 2.3) which
are explained in more detail below.

Packet-Filtering Router

A packet-filtering router (or short packet filter) is an extended router that applies certain
rules to the packets which are forwarded. Usually, traffic in each direction (in- and out-
going) is checked against a rule set which determines whether a packet is permitted to
continue or should be dropped. The packet filter rules operate on the header fields used by
the underlying communication protocols, for the Internet mostly IP, TCP and UDP. Packet
filter rules are organized in a list with a certain default policy enabled. Every incoming
packet is compared to the rules starting at the head of the list until the first list entry
matches. In this case, the corresponding action is taken. When no matching rule can be
identified, the default policy is consulted. It can either be a default discard or default
forward decision. When a default discard policy is enabled, the packet is simply dropped,
otherwise it is forwarded. A default discard policy is more conservative as it demands the
system administrator to explicitly enable the needed services. The default forward policy
increases the ease of use but reduces security as it requires the administrator to actively
react on each threat and deny a certain connection. Packet filters have the advantage
that they are rather cheap as they can often be built on existing hardware. In addition,
they offer a good performance for high traffic loads. An example for a packet filter is the
iptables package which is implemented as part of the Linux 2.4 routing software.

Application-Level Gateway

An application-level gateway (also called proxy server) does not forward packets on the
network layer but acts as a relay on the application level. The user contacts the gateway
which in turn opens a connection to the intended target (on behalf of the user). A gateway
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Figure 2.3: Firewall Types

completely separates the inside and outside networks at the network level and only provides
a certain set of application services. This allows authentication of the user who requests
a connection and session-oriented scanning of the exchanged traffic up to the application
level data. This feature makes application gateways more secure than packet filters and
offers a broader range of log facilities. On the downside, the overhead of such a setup may
cause performance problems under heavy load.

Circuit-Level Gateway

A hybrid variant between the two firewall types mentioned above is a circuit-level gate-
way. Similar to the application-level gateway, the user first establishes a connection to
the firewall which then contacts the specified target machine. In contrast to proxy servers
however, a gateway in this category operates similar to a packet filter at the network level
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after the connections have been set up. It relays segments between the connections with-
out inspecting their contents. The security function of a circuit-level gateway consists of
determining which connections are allowed. Such gateways are often used for outbound
connections as they are faster than their application based cousins. In this case, connec-
tions can be restricted to certain users or times, but one is not really concerned with the
transferred content.

2.3 Attack Avoidance

Security mechanisms in this category assume that an intruder may access the desired re-
source but the information is modified in a way that makes it unusable for the attacker.
The information is pre-processed at the sender before it is transmitted over the commu-
nication channel and post-processed at the receiver. While the information is transported
over the communication channel, it resists attacks by being nearly useless for an intruder.
One notable exception are attacks against the availability of the information as an attacker
could still interrupt the message. During the processing step at the receiver, modifications
or errors that might have previously occurred can be detected (usually because the infor-
mation can not be correctly reconstructed). When no modification has taken place, the
information at the receiver is identical to the one at the sender before the pre-processing
step.

The most important member of this category is cryptography which is defined as the
science of keeping messages secure [82]. It allows the sender to transform information into
a random data stream from the point of view of an attacker but to have it recovered by
an authorized receiver (see Figure 2.4).

Key Key
Plain Text , Cipher Text , Original Plain Text
Encryption Decryption
Sender Receiver

Figure 2.4: Encryption and Decryption

The original message is called plain text (sometimes clear text). The process of con-
verting it through the application of some transformation rules into a format that hides its
substance is called encryption. The corresponding disguised message is denoted cipher text
and the operation of turning it back into clear text is called decryption. It is important to
notice that the conversion from plain to cipher text has to be loss-less in order to be able
to recover the original message at the receiver under all circumstances.

The transformation rules are described by a cryptographic algorithm. The function of
this algorithm is based on two main principles: substitution and transposition. In the case of
substitution, each element of the plain text (e.g. bit, block) is mapped into another element
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of the used alphabet. Transposition describes the process where elements of the plain text
are rearranged. Most systems involve multiple steps (called rounds) of transposition and
substitution to be more resistant against cryptanalysis. Cryptanalysis is the science of
breaking the cipher, i.e. discovering the substance of the message behind its disguise.

When the transformation rules process the input elements one at a time the mechanism
is called a stream cipher, in case of operating on fixed-sized input blocks it is called a block
cipher.

If the security of an algorithm is based on keeping the way how the algorithm works (i.e.
the transformation rules) secret, it is called a restricted algorithm. Those algorithms are
no longer of any interest today because they don’t allow standardization or public quality
control. In addition, when a large group of users is involved, such an approach cannot be
used. A single person leaving the group makes it necessary for everyone else to change the
algorithm.

Modern crypto systems solve this problem by basing the ability of the receiver to recover
encrypted information on the fact that he possesses a secret piece of information (usually
called the key). Both encryption and decryption functions have to use a key and they are
heavily dependent on it. When the security of the crypto system is completely based on
the security of the key, the algorithm itself may be revealed. Although the security does
not rely on the fact that the algorithm is unknown, the cryptographic function itself and
the used key together with its length must be chosen with care. A common assumption
is that the attacker has the fastest commercially available hardware at his disposal in his
attempt to break the cipher text.

The most common attack, called known-plain text attack, is executed by obtaining
cipher text together with its corresponding plain text. The encryption algorithm must be
so complex that even if the code breaker is equipped with plenty of such pairs and powerful
machines, it is infeasible for him to retrieve the key. An attack is infeasible when the cost
of breaking the cipher exceeds the value of the information or the time it takes to break it
exceeds the lifespan of the information itself.

Given pairs of corresponding cipher and plain text, it is obvious that a simple key
guessing algorithm will succeed after some time. The approach of successively trying
different key values until the correct one is found is called brute force attack because no
information about the algorithm is utilized whatsoever. In order to be useful, it is a
necessary condition for an encryption algorithm that brute force attacks are infeasible.

Depending on the keys that are used, one can distinguish two major cryptographic
approaches - public and secret key crypto systems.

2.3.1 Secret Key Cryptography

This is the kind of cryptography that has been used for the transmission of secret infor-
mation for centuries, long before the advent of computers. These algorithms require that
the sender and the receiver agree on a key before communication is started.

It is common for this variant (which is also called single key or symmetric encryption)
that a single secret key is shared between the sender and the receiver. It needs to be
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communicated in a secure way before the actual encrypted communication can start and
has to remain secret as long as the information is to remain secret. Encryption is achieved
by applying an agreed function to the plain text using the secret key. Decryption is
performed by applying the inverse function using the same key.

Secret Key Block Cipher

The most obvious way of using a block cipher is called electronic codebook (ECB). In
this setup, each block of plain text encrypts into a block of cipher text. This mode is
called codebook because the same block of plain text is always mapped onto the same
cipher text. Therefore it is (theoretically) possible to pre-calculate all mappings and store
them in a book. The main advantage of this approach is the fact that blocks can be
encrypted independently of each other. This allows parallelization of work or random access
of cipher text blocks in database applications. On the downside, the ECB mode helps the
cryptanalyst to mount statistical attacks against the underlying plain text. Especially when
communication protocols with well-defined headers and footers are used, analysis can be
much efficient. Also a block replay attack is possible. In this attack, the communication is
modified without knowing the key by simply exchanging blocks for which the cryptanalyst
knows the plain text.

Pi-1 Pi Pi+1
xor xor xor
Encrypt,, Encrypt,, Encrypt,,
Ci-1 Ci Ci+1

Figure 2.5: Cipher Block Chaining

A mechanism to prevent the simple mapping from plain text to cipher blocks is called
cipher block chaining (CBC). In this variant, feedback is added to the encryption by adding
the result of the previous block to the current block (see Figure 2.5). In other words, each
block is used to modify the encryption of the following one. A simple way is by using the
XOR operator to connect the current block with the one before. This usually maps identical
plain text blocks to different cipher blocks. Notice, however, that identical messages are
still encrypted into the same cipher texts. Moreover, the first difference in the cipher text
corresponds to the first difference in the plain text. As this behavior is not desirable as
well, most crypto systems utilize a random block called initialization vector (IV) in the
beginning to prevent this problem.
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The classic example of a secret key block cipher which is widely deployed today is
the Data Encryption Standard (DES) [26]. DES has been developed in 1977 by IBM and
adopted as a standard by the US government for administrative and business use. Recently,
it has been replaced by the Advanced Encryption Standard (AES - Rijndael) [1]. Tt is a
block cipher that operates on 64-bit plain text blocks and utilizes a key with 56-bits
length. The algorithm uses 16 rounds that are key dependent. During each round 48 key
bits are selected and combined with the block that is encrypted. Then, the resulting block
is piped through a substitution phase (implemented by the well-known S-Boxes) and a
permutation phase (implemented by P-Boxes). These S- and P-Boxes use known values
and are independent of the key. They are simply utilized to make cryptanalysis harder.

Although there are no known weakness of the DES algorithm itself, its security has
been much debated. The small key length makes brute force attacks possible and several
cases have occurred where DES protected information has been cracked. A suggested
improvement called 3DES uses three rounds of the simple DES with three different keys.
This extends the key length to 168 bits while still resting on the very secure DES base.

Secret Key Stream Cipher

Secret key stream ciphers operate in a mode where a key stream is combined (usually via
XOR) with the stream of plain text elements. In order to produce a key stream of arbitrary
length from a key with a fixed length, random number generators are utilized. The secret
key serves as an initialization vector for the random number generator whose output is
then used to encrypt plain text. Obviously, the quality of the random number generator is
important for the security of the crypto system. To improve the quality of the approach,
the output of the random number generator does not only depend on the initial key value
but is modified by the previous n cipher text elements as well. Such a feedback mechanism
improves the randomness of the key stream.

The most popular secret key ciphers are based on feedback shift registers. A feedback
shift register relies on a feedback function and a regular shift register which is a sequence
of bits. Whenever a new key stream bit is needed the least significant bit is taken from
the register and all other bits are shifted to the right. The new most significant bit is
then calculated from the contents of the register by the feedback function. These kind of
algorithms can be efficiently implemented in hardware but they are comparatively slow to
simulate in software.

A well known stream cipher that has been debated recently is RC/ [78] which has been
developed by RSA. It is used to secure the transmission in wireless networks that follow
the IEEE 802.11 standard and forms the core of the WEP (wired equivalent protection)
mechanism. Although the cipher itself has not been broken the implementations are flawed
and reduce the security of RC4 down to a level where the used key can be recovered by
statistical analysis within a few hours [94].
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2.3.2 Public Key Cryptography

Since the advent of public key cryptography, the knowledge of the key that is used to
encrypt a plain text also allowed the inverse process, the decryption of the cipher text. In
1976, this paradigm of cryptography was changed by Diffie and Hellman [30] when they
described their public key approach. Public key cryptography utilizes two different keys,
one called the public key, the other one called the private key. The public key is used to
encrypt a message while the corresponding private key is used to do the opposite. Their
innovation was the fact that it is infeasible to retrieve the private key given the public key.
This makes it possible to remove the weakness of secure key transmission from the sender
to the receiver. The receiver can simply generate his public/private key pair and announce
the public key without fear. Anyone can obtain this key and use it to encrypt messages
that only the receiver with his private key is able to decrypt.

Mathematically, the process is based on the trap door of one-way functions. A one-way
function is a function that is easy to compute but very hard to inverse. That means that
given z it is easy to determine f(z) but given f(x) it is hard to get z. Hard is defined as
computationally infeasible in the context of cryptographically strong one-way functions.
Although it is obvious that some functions are easier to compute than their inverse (e.g.
square of a value in contrast to its square root) there is no mathematical proof or definition
of one-way functions. There are a number of problems that are considered difficult enough
to act as one-way functions but it is more an agreement among crypto analysts than a
rigorously defined set (e.g. factorization of large numbers). A one-way function is not
directly usable for cryptography, but it becomes so when a trap door exists. A trap door is
a mechanism that allows one to easily calculate z from f(z) when an additional information
y is provided.

A common misunderstanding about public key cryptography is thinking that it makes
secret, key systems obsolete, either because it is more secure or because it does not have
the problem of secretly exchanging keys. As the security of a crypto system depends on
the length of the used key and the utilized transformation rules, there is no automatic
advantage of one approach over the other. Although the key exchange problem is elegantly
solved with a public key, the process itself is very slow and has its own problems. Secret
key systems are usually a factor of 1000 (see [82] for exact numbers) faster than their
public key counterparts. Therefore, most communication is stilled secured using secret key
systems and public key systems are only utilized for exchanging the secret key for later
communication. This hybrid approach is the common design to benefit from the high-speed
of conventional cryptography which is often implemented directly in hardware and from a
secure key exchange.

A problem in public key systems is the authenticity of the public key. An attacker may
offer the sender his own public key and pretend that it origins from the legitimate receiver.
The sender then uses the faked public key to perform his encryption and the attacker can
simply decrypt the message using his private key.

In order to thwart an attacker that attempts to substitute his public key for the victim’s
one, certificates are used. A certificate combines user information with the user’s public
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key and the digital signature of a trusted third party that guarantees that the key belongs
to the mentioned person. The trusted third party is usually called a certification authority
(CA). The certificate of a CA itself is usually verified by a higher level CA that confirms
that the CA’s certificate is genuine and contains its public key. The chain of third parties
that verify their respective lower level CAs has to end at a certain point which is called the
root, CA. A user that wants to verify the authenticity of a public key and all involved CAs
needs to obtain the self-signed certificate of the root CA via an external channel. Web
browsers (e.g. Netscape Navigator, Internet Explorer) usually ship with a number of
certificates of globally known root CAs. A framework that implements the distribution
of certificates is called a public key infrastructure (PKI). An important protocol for key
management is X.509 [106]. Another important issue is revocation, the invalidation of a
certificate when the key has been compromised.

Examples of Public Key Crypto Systems

As mentioned above, the first public key system has been presented by Diffie and Hellman
[30]. Its intended use is for exchanging a secret key between two communication partners.
The security of system is based on the difficulty to determine the discrete logarithm in a
finite field modulo a prime number ¢. The public information consists of the values for ¢
and o, a primitive root! of the field modulo ¢. The generation of key K is done as shown
below where X, and X, are secret random integers chosen by the sender and the receiver
respectively.

Y, = o™ mod q (2.1)
Y, = a’™" mod q (2.2)

Y, and Y, are then made public and each party can independently calculate the shared
secret key K as follows.

K = S/SXT — CYXS*XT — OéXT*XS — }/;XS (23)

The best known public key algorithm and textbook classic is RSA [79], named after its
inventors Rivest, Shamir and Adleman at MIT. It is a block cipher in which the message
text and the cipher text are integers between 0 and n — 1. The security is based on the
infeasibility of factorizing large integers, as the public and the private keys are functions
of large primes. The algorithm for encryption and decryption of a plain text M and the
corresponding cipher C' is as follows.

C = M°®modn (2.4)
M = C%modn = (M®)4 = M mod n (2.5)

' A primitive root is a number whose powers generate all the integers from 1 to g — 1.
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In the equations above, e and n are the public key while d is the private key used by
the receiver. For this algorithm to be satisfactory as a public key crypto system, equation
2.5 must be correct and it must be infeasible to determine d from e and n. When e, d and
n are chosen as follows, it can be shown that both requirements are met.

n = pq (where p and q are large primes) (2.6)
¢(n) = (p—1)(¢—1) (2.7)

Select e such that ged(p(n),e) =1 (2.8)

d = e~' mod ¢(n) (2.9)

Although RSA is still utilized for the majority of current systems, the key length has
been increased over recent years. This has put a heavier processing load on applications, a
burden that has ramifications especially for sites doing electronic commerce. A competitive
approach that promises similar security as RSA using far smaller key lengths is elliptic curve
cryptography. However, as these systems are new and have not been subject to sustained
crypto analysis, the confidence level in them in not yet as high as in RSA.

2.3.3 Authentication and Digital Signatures

An interesting and important feature of public key cryptography is its possible use for
authentication. In addition to making the information unusable for attackers, a sender
may utilize cryptography to prove his identity to the receiver. This feature is realized by
digital signatures. A digital signature must have similar properties as a normal handwritten
signature. It must be hard to forge and it has to be bound to a certain document. In
addition, one has to make sure that a valid signature cannot be used by an attacker to
replay the same (or different) messages at a later time.

A way to realize such a digital signature is by using the sender’s private key to encrypt
a message. When the receiver is capable of successfully decrypting the cipher text with the
sender’s public key, he can be sure that the message is authentic. This approach obviously
requires a crypto system that allows encryption with the private key, but many (e.g. RSA)
offer this option. It is easy for a receiver to verify that a message has been successfully
decrypted when the plain text is in a human readable format. For binary data, a checksum
or similar integrity checking footer can be added to verify a successful decryption. Replay
attacks are prevented by adding a timestamp to the message (e.g. Kerberos [93, 48] uses
timestamps to prevent that messages to the ticket granting service are replayed).

Usually, the storage and processing overhead for encrypting a whole document is too
high to be practical. This is solved by one-way hash functions. These are functions that
map the content of a message onto a short value (called message digest). Similar to one-way
functions it is difficult to create a message when given only the hash value itself. Instead
of encrypting the whole message, it is enough to simply encrypt the message digest and
send it together with the original message. The receiver can then apply the known hash
function (e.g. MD5 [77]) to the document and compare it to the decrypted digest. When
both values match, the messages is authentic.
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2.4 Attack and Intrusion Detection

Attack detection assumes that an attacker can obtain access to his desired targets and
is successful in violating a given security policy. Mechanisms in this class are based on
the optimistic assumption that most of the time the information is transferred without
interference. When undesired actions occur, attack detection has the task of reporting
that something went wrong and then to react in an appropriate way. In addition, it is
often desirable to identify the exact type of attack. An important facet of attack detection
is recovery. Often it is enough to just report that malicious activity has been found, but
some systems require that the effect of the attack has to be reverted or that an ongoing
and discovered attack is stopped. On the one hand, attack detection has the advantage
that it operates under the worst case assumption that the attacker gains access to the
communication channel and is able to use or modify the resource. On the other hand,
detection is not effective in providing confidentiality of information. When the security
policy specifies that interception of information has a serious security impact, then attack
detection is not an applicable mechanism. The most important members of the attack
detection class are intrusion detection systems.

This section introduces basic definitions used in the intrusion detection field to clarify
common terms and describes the key concepts. The definitions are given according to [3].

e Intrusion - An intrusion is a sequence of related actions by a malicious adversary
that results in the occurrence of unauthorized security threats to a target computing
or network domain. An intrusion consists of a number of related steps performed by
the intruder that violate a given security policy. The existence of a security policy
that states which actions are considered malicious and should be prevented is a key
requisite for an intrusion. Violations can only be detected, when actions can be
compared against given rules.

e Intrusion Detection (ID) - Intrusion Detection is the process of identifying and re-
sponding to malicious activities targeted at computing and network resources. This
definition introduces the notion of intrusion detection as a process, which involves
technology, people and tools. The way malicious activities are identified will be sub-
ject of the remainder of this section, as it forms the central part of the ID process.
A number of studies have attempted to provide taxonomies for intrusion detection,
with the research done by SRI [89] and by Lindquist and Jonsson [60] being the most
influential. These taxonomies identify key indicators associated with each intrusion
type and divide them into different classes (nine in case of the SRI model).

A computer system, which performs the task of intrusion detection is called an intrusion
detection system (IDS). According to [28], an intrusion detection system has to fulfill the
following requirements.

e Accuracy - An IDS must not identify a legitimate action in a system environment
as an anomaly or a misuse (a legitimate action which is identified as an intrusion is
called a false positive).
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e Performance - The IDS performance must be sufficient enough to carry out real-
time intrusion detection (real-time means that an intrusion has to be detected before
significant damage has occurred - according to [76] this should be under a minute).

e Completeness - An IDS should not fail to detect an intrusion (an undetected intrusion
is called a false negative). One has to admit that it is rather difficult to fulfill this
requirement because it is almost impossible to have a global knowledge about past,
present, and future attacks.

o Fault Tolerance - An IDS must itself be resistant to attacks.

e Scalability - An IDS must be able to process the worst-case number of events without
dropping information. This point is especially relevant for systems that correlate
events from different sources at a small number of dedicated hosts. As networks grow
bigger and get faster, such nodes become overwhelmed by the increasing number of
events.

2.4.1 System Architecture

In recent years, a large number of different intrusion detection systems have evolved which
pursue the common goal of identifying intrusions. These systems utilize different ap-
proaches to accomplish the goal, but a common architectural framework can be identified
(see Figure 2.6).
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Figure 2.6: Intrusion Detection System Architecture

Intrusion detection systems monitor and collect data from a target system that should
be protected, process and correlate the gathered information and initiate responses, when
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evidence for an intrusion is detected. All intrusion detection systems basically consist of
the following components.

e Data Gathering Component
e Data Processing Component
e Data Storage Component

e Response Component

2.4.2 Data Gathering

The data gathering component (often called sensor) is responsible for collecting data from
the system that is being monitored.

A possible way of classifying different intrusion detection systems is by the location,
where sensors are placed. In [8], three different approaches are listed. The first type is
called host based and monitors events at operating-system level (e.g. connection attempts
to a port or system calls). The second type describes sensors that collect data from
network traffic (e.g. IP packet headers by network interfaces in promiscuous mode) and is
called network based. The third type, called application based, receives input from running
applications (e.g. log files) and can be considered as a special case of a host based IDS.

[t is not a trivial problem to determine the points (called probe points) where event data
should be recorded. While application based systems often rely on well-defined debugging
or logging facilities provided by the program that is monitored, the situation is more
difficult for the other two variants.

When considering host based systems, the variety of different operating system flavors
and their different auditing facility poses a problem. In addition, it is often not clear
which parts of the huge amount of data an OS kernel produces is actually relevant for
the detection process. One suggestion for UNIX kernels provided by the US government is
called the Orange Book [15] and lists 23 points where interesting data should be collected
(e.g. IPC creation, fork). Another effort has been conducted by Sun Microsystems which
has developed and implemented a standard security model called Basic Security Model
(BSM) in its Solaris 0S versions.

For network based systems, switches pose a big challenge in choosing a correct spot
where the traffic should be gathered. The star-like network topology results in packets
that are only routed between the relevant communication partners. When the IDS is
just deployed on a single outgoing wire it would miss most of the traffic. An alternative
placement of a sensor at every link is not very cost effective. One solution is to locate the
ID probe at the uplink and monitor all traffic between the inside and outside networks
(similar to a firewall). This has the problem of missing all communication inside the
protected facility. Another variant is the tap port offered by many switch vendors in their
products. This is a special port that mirrors and outputs all packets that pass through the
device. Unfortunately, this port can be easily overloaded when the switch is forwarding
traffic between different hosts in parallel. The internal bandwidth of the switch is sufficient
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to handle many active ports at once but the traffic often exceeds the capacity of the tap
(resulting in lost packets).

In recent years, there has been much debate about the superiority of host or network
based approaches. Nowadays, most systems try to unify both variants and offer a hybrid
solution.

The advantage of network based systems is that they can be set up in a non-intrusive
manner with no effect on existing systems or infrastructure. As they do not reside on
hosts that may be targeted by attacks, they are more tamper resistant. Additionally, most
network based systems are OS independent and can derive information on a network level
(e.g. packet fragmentation) that cannot be provided by a host based approach. One could
think of these systems as intelligent switches that remain transparent to the rest of the
system. A disadvantage is the weak scalability of this approach. Network based systems
are infamous for dropping packets under heavy load and can hardly keep up with the speed
of Fast Ethernet (not to mention Gigabit Ethernet). They also have difficulties when
obsolete protocols are used (basically anything non IP). A major problem is the increasing
use of cryptography for common network operations such as surfing the web via SSL [68]
protected connections or working at remote machines with SSH [67]. This renders the
packet payload unreadable for a network based design, reducing its detection capabilities
tremendously.

Host based systems can collect high quality data, which can easily be configured (tuned)
and may contain accurate kernel information. The data also has a high density, as logs
often contain pre-processed information. On the other hand, host based systems often
seriously impact performance of the machine they are running on.

Data gathering components store their data as a sequence of tuples in special files
(called audit-files) to have them later examined by the data processing components. These
tuples contain at least the originator (subject) and type of the action as well as the object,
that is acted upon. An important aspect of data gathering components is the security and
integrity of the collected data. The information collected by sensors form the base for the
decisions made by the IDS. Therefore, they have to be secured against modifications.

2.4.3 Event Processing

The event data processing component forms the core of the IDS and has the responsibility
to operate on the data collected by sensors to infer possible intrusions. There are a number
of ways how intrusions might get detected and how intrusion detection systems can be
categorized. Two broad main classes (introduced in [64]) are called misuse based and
anomaly based.

Misuse Based ID

Misuse based intrusion detection relies on the a-priori knowledge of sequences and activities
that form an attack. Such systems scan for the exploitation of well-known vulnerabilities
or typical attack patterns. The sequences or patterns are called signatures of an attack and
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can be compared to virus signatures. A misuse based IDS compares monitored activities
with signatures that are stored in a database and raises an alarm when suspicious actions
are found.

The following list describes how misuse detection can be performed. The first four are
from [55].

e Fxpert Systems - Such systems code knowledge in databases as ‘if-then’ implication
rules [44, 62]. The left side of the rule (if) defines the preconditions requisite for an
attack. When all conditions are met, the rule triggers and the actions of the right
side of the rule (then) are executed. This might lead to the firing of more rules or the
inference of an intrusion. These system have the advantage of separating the control
logic from the problem domain, but suffer from the limitation that rules are basically
sequence-less. This makes it difficult to specify timing based steps of an intrusion.

e Model Based Reasoning System - This approach (proposed in [36]) is based upon a
database of attack scenarios (stored as sequence of behaviors or activities). At any
moment, the system considers a subset of these attacks as currently being carried out
and tries to verify its assumptions using given audit-trails. When evidence for certain
attacks are found, the likelihood of these attacks is increased, otherwise decreased.
When the probability reaches a certain threshold, an intrusion is assumed and an
alarm raised. This approach builds upon a sound mathematical theory of reasoning
in case of uncertainty, but the attack models are difficult to build.

e State Transition Analysis - State Transition Analysis [40, 72] demands the construc-
tion of a finite state machine. The states of this automaton represent different sys-
tem states with the transitions describing certain events that cause system states to
change. A system state could represent the state of the network protocol stack, the
validity and integrity of certain files or current running processes. When an intruder
performs activities which cause the automaton to reach a state that is flagged as
security threat, an intrusion is reported. The transitions between the states of the
automaton allow to specify time dependent steps (sequences) of an attack.

e Keystroke Monitoring - This technique records user’s keystrokes to determine possible
intrusions. It simply watches for certain keystroke sequences to detect an attack.
Unfortunately, the approach suffers from the possibility that an attacker can express
the same actions with different keystrokes or use aliases.

e Signature Detection - This variant (an example is Snort [81]) watches for the oc-
currence of special strings or string patterns (called ‘dirty words’) that might be
considered suspicious (e.g. watch for occurrences of /etc/passwd in a telnet ses-
sion).

The advantage of misuse based ID is a reliable detection of known attack patterns.
As with anti-virus software, malicious behavior can be identified with acceptable accuracy
and a low false positive rate. The disadvantage originates from the fact that the attack
pattern has to be known in advance so new intrusions will mostly remain undetected and
the system can be easily fooled with slight deviations of the attack signatures.
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Anomaly Based ID

Anomaly based intrusion detection attempts to identify malicious activities by comparing
actual user behavior to a profile (which acts as a representation for expected, normal
behavior). A profile serves as a metrics (a measurement of several variables) for regular,
normal user behavior. Anomaly detection depends on the assumption that users behave
regularly enough such that any significant deviation can be considered as evidence of an
intrusion. Anomaly based ID has to be initialized with a default profile that is gradually
adapted to users’ behavior. Heuristics and statistical mechanisms are used to accommodate
changes in users’ behavior as well as to detect sudden changes. Other approaches try to
incorporate artificial intelligence techniques such as neural networks to perform this task.
The foundations of anomaly based intrusion detection have been established in a well
known paper written by Dorothy Denning [29], who first suggested the use of profiles and
statistical means (mean, standard deviation) to compare them to actual behavior.

This method has the clear advantage of being able to identify a-priori unknown attacks.
Independent of the intruder’s way to access the system, as soon as his activities (e.g. chance
system files, try to obtain root access) are different enough from normal usage, the IDS
might detect him. The disadvantage of this process is the involved lack of clarity (fuzziness).
An intruder might act slowly and perform his actions carefully to modify the user’s profile
so that his activities are eventually accepted as legal when they should raise an alarm. The
main point of criticism of anomaly based systems is the fact that they create too many false
positives/negatives. Behavior that deviates from the expected profile does not necessarily
indicate an intrusion and current implementations cause up to a few hundreds false alarms
per day when used in a mid-size network. Especially network based systems face many
‘weird’ packets that populate the Internet nowadays [70, 10] caused by a massive number
of different implementations of protocol stacks and services. Network administrators tend
to ignore warnings occurring with such a high frequency or disable the system altogether.
Therefore most commercial systems follow a misuse based approach. Another problem
involves the classification and accurate description of the attack. Often, it is not sufficient
to simply report a misbehavior (i.e. just state that ‘something is abnormal’) without
possible origins.

2.4.4 Audit and Incident Data Storage

It has already been mentioned that data which is collected by sensors need to be stored. The
amount of information that has to be archived can quickly become very large (e.g. when
packets from a Fast Ethernet are captured and stored). Therefore, a storage hierarchy
has to be introduced that allows one to reduce the data volume, but still makes it possible
to relate events which are separated by days or even months. Usually, one can distinguish
between three different types of data - short, medium and long-term information. Short-
term data is stored in sensor buffers or data structures directly after it has been acquired.
When the data is pre-processed and stored in audit-files to be examined by processing
components, the data is considered medium-term information with a storage duration of a
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couple of days. Eventually, the data is filtered (which will likely cause lossy compression)
and stored into databases, where it can be queried and retrieved for identifying long-term
activities (with a storage duration of months to years). The possibilities of data storage
range from proprietary file formats to fully-fledged SQL database systems.

2.4.5 Response Component

The response component is the part of the IDS that has to initiate actions when an intru-
sion is detected. Responses can either be automated (active) or involve human interaction
(passive). An automated response can immediately act against the attacker when an
intrusion is detected and still in progress. This could be done by terminating network
connections or tracing back the attacker’s origin. A response that involves human interac-
tion (e.g. by raising alarms or notifying the system administrator) is considered passive,
because the system itself does not initiate response activities but relies on external inter-
vention. Current systems mainly offer log and report responses where an e-mail or an
SMS is sent to a responsible human. The problem with active counter-measures against
intruders is a possible self denial-of-service. It has already been stated that many alarms
are incorrectly raised. An IDS that immediately terminates connections or kills processes
in case of suspicious activities may impact innocent users whose work flow is interrupted.
E-commerce sites, for example, are especially afraid of losing customers in this way. In-
terestingly, large electronic warehouses (e.g. amazon.com) employ people that manually
monitor traffic on-line to detect and to react on malicious activity.

2.4.6 International Standardization Efforts

Many vendors and research centers have developed their own version of an intrusion de-
tection system. These systems apply different methods to perform their tasks and most
have a class of intrusions which they can detect best. As a result, it might be desirable
to combine several IDSs to protect a computing facility. Unfortunately, most of them are
built in a monolithic way and use proprietary formats to store and transmit data. To
circumvent these limitations, the Common Intrusion Detection Framework (CIDF) was
introduced [46]. The CIDF aims to allow IDSs to share information and to communicate
via well defined interfaces. It consists of the following three parts (the interested reader is
referred to [21] for more details).

e A CIDF architecture with generic components (modules) and their APIs that build
up the IDS. The components are called boxes and divide the IDS into the same
four components which have been described in Section 2.4.1. The data gathering
components are called event generators (E-bozes), the processing modules are event
analyzers (A-bozes), the storage modules event databases (D-bozes) and the response
component response units (R-bozes). These components communicate with each
other in the form of generalized intrusion detection objects (gidos) which encapsulate
the occurrence of a certain activity at a particular point of time.
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e A language (Common Intrusion Specification Language - CISL) that allows these
components to exchange data in semantically well-defined ways.

e A message and directory specification that defines the way in which components can
locate and authenticate each other.

30



Chapter 3
Related Work

Works of great intellect are great only by comparison with each other.
— Ralph Waldo Emerson

The following section surveys work which has been previously done in the areas of
intrusion detection that are related to our proposed vision of Network Alertness. As stated
earlier, Network Alertness is based on two main concepts. One deals with the correlation
of events that occur at different nodes to increase the overall understanding of malicious
activity inside the network. The other suggests adaptive sensors relying on the gathered
information to aim their detection processing especially at traffic from suspicious sources.

The first three sections examine how different system designs handle event correlation.
The approaches are introduced in increasing level of sophistication while shortcomings of
each variant are highlighted. It is underlined why a new approach as presented in the
following Chapters 4 and 5 of this dissertation is necessary and beneficial.

The last two sections deal with the work previously done to perform anomaly based
detection. After a brief introduction of host based variants, the features of network based
designs are analyzed. It turns out that all of them follow a network traffic model, an
approach where statistical properties of many packets are aggregated and processed. As
Network Alertness demands the capability to look at single packets, a new system had to
be developed. Our suggestion for an adaptive sensor that fulfills our demands is shown in
detail in Chapter 7.

3.1 Centralized Event Correlation

The first attempts to extend intrusion detection from a single node to a set of hosts only
addressed data gathering. The proposed designs included sensors deployed at each host of
a local network that forwarded their collected data to a central point where it was further
analyzed (see Figure 3.1).
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It has been noticed very early [86, 91] that the amount of data created at many hosts
could overload the central processing node. Therefore, data reduction schemes have been
introduced that select interesting parts of the audit stream and compress them.

3.1.1 DIDS

The earliest system that combined distributed monitoring and data reduction with cen-
tralized data analysis is called Distributed Intrusion Detection System (DIDS) [86]. The
components of DIDS are a single DIDS director, a host monitor on each host and a LAN
monitor for every broadcast segment in the monitored network.

The host and LAN monitors are responsible for the collection of evidence of unauthor-
ized or suspicious activity while the DIDS director is responsible for its evaluation. The
monitors can asynchronously send reports containing indication of malicious activity to the
director. While these messages make up for the majority of transferred data, the underly-
ing infrastructure provides for bidirectional communication. This enabled the director to
request more details from its monitors.

Monitors scan audit records for notable events. These are defined as transactions
that are of interest independent of any other records. Such events include failed user
authentications, changes to the security state of the system and any network access such
as rlogin and rsh. The LAN monitor uses and maintains profiles of expected network
behavior. These profiles consist of expected data paths (e.g. which systems are expected to
establish communication paths to which other systems and by which service) and service
profiles (e.g. what a typical telnet, mail or finger session is expected to look like).
LAN monitors utilize heuristics in an attempt to identify the likelihood that a particular
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connection represents intrusive behavior. The host monitor is based on C2-secured [15]
operating systems (e.g. Sun Solaris with security package) that produce audit records for
most transaction on the system. These records include file accesses, system calls, process
executions and logins. The director is realized as a rule-based (or production) expert
system written in Prolog. The system considers the events received from its sensors in a
spatial and temporal context to detect threat scenarios.

DIDS implements an interesting approach to track users as they move across the net-
work. As an intruder may use several different accounts on different machines during the
course of an attack, it is necessary to aggregate this data under a single identity. This
is solved by a unique network-user identification (NID) that is assigned the first time a
user enters the monitored environment. Whenever he accesses remote machines, his NID
is moved along with him.

The two main threat scenarios that DIDS has been designed to handle are so-called
doorknob attacks and network browsing. In a doorknob attack, the intruder’s goal is to
discover and gain access to insufficiently protected hosts. This is done by trying a few
common account and password combinations on each of a number of computers. These
simple attacks can be remarkably successful [58]. As the attacker only performs a few
logins on each machine (usually with different account names), the IDS on each host may
not flag the attack. Network browsing occurs when a user is looking through a number of
files on several different computers within a short period of time. The browsing activity
level on any single host may not be sufficiently high to raise any alarm by itself.

Because events that are generated by doorknob or network browsing attacks are inde-
pendent of each other and potentially suspicious for themselves, a large amount of low-level
filtering and some analysis can already be performed by each host monitor. This helps to
minimize the use of network bandwidth in passing evidence to the director. When the
notability (and suspicion level) of events depends on other events that occur somewhere
else, this simple data reduction scheme does not work anymore. In that case, all events
that might be relevant need to be transmitted to the director.

3.1.2 NSTAT

NSTAT [47] is part of the STAT (State Transition Analysis Technique) tool collection
[102, 40, 72] which is based on a common detection technique (namely state transition
analysis) and is still under active development. In state transition analysis, a penetration
is viewed as a sequence of actions performed by an attacker that leads from some initial
state on a system to a target compromised state, where a state is a snapshot of the system
representing the values of all volatile and permanent memory locations on the system.
The initial state corresponds to the state of the system just prior to the execution of the
penetration and the compromised state corresponds to the state of the system resulting
from the completion of the penetration. Between the initial and compromised states are one
or more intermediate state transitions that an attacker performs to achieve the compromise.

After the initial and compromised states of a penetration scenario have been identified,
the key actions (called signature actions) are identified. Signature actions refer to those
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actions that, if omitted from the execution of an attack scenario, would prevent the attack
from completing successfully. The information produced by the above steps are represented
graphically as a state transition diagram. The signature actions depend on the domain
where STAT is used. To date, host based extensions to handle UNIX, Windows and Apache
audit files as well as network based sensors have been developed.

Figure 3.2 shows a state diagram that models the exploit of a vulnerability in the
mail (1) utility of a 4.2 BSD systems to obtain root privileges. The weakness is that
mail (1) fails to reset the s(et)uid bit of the file to which it appends a message and
changes the owner. The attacker can create a link to the system shell, name it after root’s
mail file and enable the suid bit. When mail (1) is invoked to deliver a message to root,
it changes the owner of the mail file back root but fails to reset the suid bit. This results
in a link to a shell that is executable with root privileges.

Signature: create link set uid bit send mail
as mail file for mail file to root
Mail File: exists exists exists
Owner: n/a attacker attacker root
Set-UID: n/a false true true
Initial Compromised
State State

Figure 3.2: State Transition Diagram

A natural extension to the STAT effort is to run it on audit data collected by multiple
hosts. This is realized as a single STAT process with a single, chronological audit trail.
This trail is produced by distributed sensors that forward their data to a central entity
which merges them together. To make sure that all distributed data is inserted into the
global stream in a correct temporal order, the system relies on periodical synchronization
points between the analyzer and the sensors as well as on synchronized clocks on all nodes.
The advantage of a single audit file is the fact that actions of cooperating attackers can be
identified. When transitions between states fire, it is also possible to record the responsible
user (i.e. the one who has initiated the corresponding event). In addition, it is not possible
to miss important events because no pre-filtering is utilized. Unfortunately, moving all data
to a single node results in a scalability problem. When too many sensors are deployed, the
central host is simply overloaded as probes in a large network often produce more data
than the bandwidth of the single node can cope with. During the time the synchronization
is performed, the detection process is halted. This causes an additional delay before the
system can react to an intrusion. The use of a single node also induces a fault tolerance
problem. When it crashes or becomes the victim of a denial-of-service attack, the system
is completely blinded.

NSTAT is a straightforward extension of a single node intrusion detection setup. It
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exhibits the scalability limitation of a simple, centralized correlation approach. While
DIDS attempts to circumvent that problem by applying a simple pre-filtering technique
at the sensor level, it misses potential important events because they look innocent when
considered locally. Both, DIDS and NSTAT suffer from a vulnerable single central node.

3.2 Hierarchical Event Correlation

Early in the development of distributed intrusion detection systems, the single node bottle-
neck of a centralized approach became evident. In addition, it was noted that an efficient
data reduction scheme at the leaves that is capable of forwarding only the relevant data
for arbitrary threat scenarios was very difficult to realize. This lead to the development of
hierarchical variants [24, 91, 9, 73] were the computational and network load is distributed
over a number of intermediate analyzers. These analyzers attempt to perform detection
for a small domain of the whole network and send all reports that might indicate attacks
against the complete installation to a master (or root) node (as shown in Figure 3.3). This
master host correlates all cross-domain incidents to gain a complete picture of the network.

Domain

Sensor

Sensor

Domain
Analyzer

Domain
Analyzer

~— Sensor |/

Sensor

Sensor

Master
Analyzer

Enterprise Network
Figure 3.3: Hierarchical Correlation Schema

The following sections first introduce one of the earliest hierarchical systems and then
describe two current state-of-the-art designs that serve as a reference for novel approaches.

3.2.1 GrIDS

GrIDS [91] (GRaph-based Intrusion Detection System for large networks) is an IDS that
has been built to detect distributed attacks against large networks (distributed scans and
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worms). Its primary design goals are scalability and an easy integration into large enter-
prise networks. Instead of simply forwarding all audit data collected from the operating
system and the network, the main idea is the construction of activity graphs that only
represent hosts and the network activity between them. Each node of the graph represents
a single host or alternatively a set of aggregated machines. The edges represent network
traffic between nodes. GrIDS can utilize standard host based IDSs (and port surveillance
programs such as tcpwrapper [100]) as well as network sniffers as information source. The
information is fed into a graph engine module which is responsible to construct graphs.

These graph engines can be deployed in an hierarchical fashion, where a higher level
engine takes subgraphs from lower level modules and treats each subgraph as a single node
in its graph representation. An organization is broken down into a number of departments,
which each run their own graph engine. Every department passes its resulting graphs
upward to parent graph engines, which in turn build reduced graphs by aggregating the
information of the subgraph into a single node.

This mechanism increases the scalability of the system as no engine has to manage
the whole graph (which could get very large when an enterprise network with thousands
of computers should be monitored). An access control system controls the permissions of
users to view and manage parts of the hierarchy. A centralized organizational hierarchy
server (OHS) and software manager modules, which run on every host with a GrIDS
engine, enforce the access policy. Each user may only see a subset of the global hierarchy
and perform transactions (such as adding/deleting a new host) within his view. The OHS
maintains a global view of the whole system and has the potential to limit scalability as
a central point for the whole installation. Fortunately, this shortcoming does not really
present a burden, as it is only involved in updating the system view but does not participate
in regular operations.

An important aspect of the system is the way graphs are built. Each graph represents
a causally connected set of events on the network. It has already been stated that a node
represents a single machine or department (consisting of a set of hosts) while edges represent
traffic between them. Each node or edge can be annotated with additional attributes that
hold supplementary information. As GrIDS searches for different kinds of network abuse,
each graph engine has to build and maintain different graphs. Each kind of graph features
special attributes and is responsible for the detection of a certain class of attacks.

Every graph is constructed in a flexible way by specifying rule sets. A rule set defines
how a given graph is constructed from the input data provided by the data sources in
the form of reports. It also determines the actions that have to be taken as a result of a
detected attack (e.g. alert an administrator). Rule sets operate independently from each
other and prevent the graph engine from building one huge graph containing all activities.
Instead, a number of smaller graphs tailored to special kinds of attacks are created.

A rule set consists of preconditions, combining rules and actions. The precondition
determines whether certain input data (i.e. a report) should be considered for the graph
space. When the precondition is satisfied, the corresponding report is imported as a partial
graph in the appropriate rule set’s graph space. The combining rules define ways how new
subgraphs can be connected or inserted into existing graphs. When a new graph has been
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added, the result is evaluated and action rules determine activities which might be initiated
(e.g. raise alarm). All rule sets are present at every graph engine and each engine can
assemble graphs independently of others.

To prevent the graphs from growing indefinitely, edges are removed after a certain time
period. This poses the problem of missing attacks that deliberately take place very slowly.
One interesting application of rule sets is their potential use as security policies. One can
specify rules to enforce certain security constraints (e.g. disallow logins between different
departments) and GrIDS automatically monitors the network for violations.

GrIDS offers a scalable aggregation mechanism with the introduction of different lay-
ers that only monitor their relevant parts of the graph. By reducing the signatures of
threat scenarios to graph patterns, a simple and elegant aggregation mechanism can be
achieved. This allows processing of all data at the graph engines without overloading them.
Nevertheless, the system offers no protection against attacks (e.g. denial-of-service) and
redundancy in case of failures. Additionally, scenarios that do not manifest themselves as
connection graphs cannot be caught. This includes all local attacks and intrusions that
produce normal network traffic (i.e. buffer overflow exploit).

3.2.2 Emerald

The Emerald (Event Monitoring Enabling Responses to Anomalous Live Disturbances)
system [73] is an intrusion detection system developed by SRI [89]. It combines anomaly
based and misuse detection mechanisms and focuses on providing a system for large-scale
enterprise networks. These networks can be divided into independent domains that exhibit
different trust relationships and security policies. Emerald builds upon IDES [63] (Intrusion
Detection Expert System) and NIDES [4] (Next-Generation Intrusion Detection Expert
System) and extends their work by providing a higher degree of distribution to enhance
scalability and interoperability.

Emerald uses service monitors as the basic piece of its architecture. It introduces a
hierarchically layered approach to network surveillance consisting of three tiers. The lowest
level (called service analysis) covers the misuse of individual components and network
services within the boundary of a single domain. The medium layer (called domain-wide
analysis) covers misuse across multiple services and components and the highest layer
(called enterprise-wide analysis) coordinates activities across multiple domains.

The objective of the service analysis is to decentralize the surveillance of the domain’s
network interfaces for activity that may indicate misuse or significant anomalies in op-
eration with the use of service monitors. These monitors perform localized analysis of
the infrastructure (e.g. routers or gateways) and services. Information that is collected
by a service monitor can be disseminated to other monitors through a publish/subscribe
based communication scheme which allows messages to be sent via a push or pull data
exchange. A domain monitor (residing in the medium tier) is responsible for managing the
whole domain or parts of it. Domain monitors can establish a domain-wide perspective
of malicious activity (or patterns of activity) and are additionally responsible for recon-
figuring system parameters, interfacing with higher level monitors and reporting threats
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against the domain to administrators. Enterprise monitors enable a global abstraction of
the cooperative community of domains. They correlate actions reported by domain mon-
itors and focus on network-wide threats such as spreading worms or large scale network
scans. It is important that the enterprise itself needs not to be stable in its configuration
or centrally administered, but only has to consist of stable domains. The system’s ability
to perform inter-domain event analysis is necessary to address global attacks against the
entire enterprise or even multiple companies.

The generic Emerald monitor architecture allows components to perform signature anal-
ysis and statistical profiling to provide complementary forms of analysis of the operation
of network services and infrastructure. It is designed to enable the flexible introduction
and deletion of analysis engines from the monitor as necessary. The basis for the analysis
engine is provided by a target-specific event stream that can be derived from a variety of
sources (e.g. audit data, network data, SNMP). The analysis engine itself can implement
arbitrary intrusion detection algorithms and Emerald provides two packages that incorpo-
rate misuse based (signature) and anomaly based (profile based) variants. A resolver unit
that implements a response policy based on intrusion summaries produced by the local
analysis engines or other monitors may also be present. The resolver is an expert system
that receives the intrusion and suspicion reports produced by the profiler and signature
engines and invokes the various response handlers based on their results.

Emerald’s signature-analysis strategy departs from previous centralized rule-based ef-
forts by employing a highly distributed analysis strategy that, with respect to signature
analysis, effectively modularizes and distributes the rule-base and inference engine into
smaller and more focused signature engines. The scope is narrowed and focused on only a
small set of attacks, thereby reducing the noise and the generation of wrong detects (false
positives). Instead of keeping a global knowledge-base that contains a representations of
all known malicious activity, Emerald distributes a tailored set of signature activity with
each monitor’s resource object. The objectives of signature analysis depend on the layer
in Emerald’s hierarchical scheme where the detection is performed. At a low layer (service
tier), the engine scans for known exploits against single services, on higher tiers, coordi-
nated attempts are detected. The signature engine is based on the expert system shell
P-BEST (for an example application - see [61]). This approach suffers from the problem
that a complete description of the enterprise network together with all network services
must be available. This is necessary to move the correct signatures to the places where they
are needed. As this is usually not provided and changes are frequent, Emerald actually
needs all signatures present at each host.

According to [65], a significant amount of software engineering effort has been invested
into the system to keep it as modularized as possible. The layered, hierarchical approach
allows coordinated detection and communication between components. The creators claim
to have obtained very promising results with the system. Unfortunately, little details have
been provided about the implementation of the publish/subscribe infrastructure. This
approach usually requires a communication backbone that is responsible for managing
subscriptions and message routing. As both publishers and subscribers change very fre-
quently, this backbone might become a bottleneck and is vulnerable to direct attacks (for

38



example, denial-of-service which prevents the forwarding of messages). While the mis-
use and anomaly sensors are arguably one of the best currently available, the hierarchical
correlation framework is rather undocumented.

3.2.3 AAfID

In [9], the Architecture for Intrusion Detection using Autonomous Agents (AAfID) is pre-
sented. A hierarchical design has been chosen to combat the disadvantages of a central
and monolithic architecture. The goals of this design are the improvements of the system
configurability and of the resistance against denial-of-service attacks.

It consists of three layers each using the direct subsystem below. At the base level,
so called agents perform the security monitoring task. These are independently running
entities that scan for suspicious actions on each host by analyzing data which they directly
get from the network or from audit trails. Agents have the ability to communicate with
other agents that run on the same host and can evolve over time (using genetic program-
ming) to adapt to new situations. In an earlier paper [24] a method for training agents is
presented. This is realized by confronting agents with raw network packets and providing
the information whether they can be classified as malicious or not. The gained ‘experience’
is then saved in a kind of parse tree, which is later consulted during regular operation. If
agents detect a possible intrusion, they have the ability to inform other agents of their per-
ceptions. The information collected by agents is forwarded to an entity called transceiver,
which exists only once on each host.

Transceivers channel the information on every machine, control and configure agents
and may analyze and forward the collected information (possibly in a reduced represen-
tation) to entities called monitors. Monitors represent the highest level in the proposed
hierarchy and can collect and evaluate data from more than one transceiver. As a result,
they operate on data which is provided by multiple hosts. Monitors can be organized
in a hierarchical fashion by having a root monitor (which is used for human interaction)
controlling other monitors. The user interface, which is considered as a crucial part in
the AAfID architecture, provides the user with the ability to command and configure the
whole IDS.

A key point for the group working on the AAfID is the inter-host communication
which was designed to be performant, reliable and secure. It was evaluated whether it
is reasonable to use an existing protocol (e.g. TCP, UDP) or to design a new one which
has more of the desired properties. Unfortunately, no general solution could be given,
as it was concluded that the decision depends heavily on the application which uses the
communication system.

Although an advanced communication subsystem is introduced that operates even in
case of ongoing denial-of-service attacks, the basic system structure is rather simple. While
agents may communicate locally with each other and agree upon a common suspicion level
at every node, no special pre-filtering of information is performed. All possible relevant
data is simply forwarded to monitors (via transceivers) where human interaction is neces-
sary to detect highly distributed intrusions. The system created a high degree of interest
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in the research community when first introduced, but except the use of the term agent
for monitoring processes and the influence of machine learning techniques on the detection
process, no novelty can be identified. The system design not only suffers from the vul-
nerability of a central monitor, but it also requires human interaction at the highest level.
This might decisively delay the response to an attack and fail to prevent damage where an
automated system might have succeeded.

3.3 Alternative Correlation Approaches

The discussion in the previous sections underlines that the need for distributed event
correlation for intrusion detection has been early recognized. Nevertheless, the involved
problems have remained the same from the first suggested prototype to the currently most
advanced systems.

Distributed event collection creates a massive amount of data that must be searched
under stringent real-time constraints. Because the pieces of evidence of an attack may
be scattered over arbitrary locations, the processing cannot be easily parallelized. Two
possible solutions have been proposed and implemented that both have their shortcomings.

On one hand, massive pre-filtering at the sensors itself makes the data stream that
is transferred to a central analyzer manageable. This has the limitation that it is often
impossible to decide locally whether information is relevant for detection or not. Systems
following this approach can either forward all possible interesting data or take the risk of
dropping needed events. In the first case, the original problem is still unsolved, in the
latter, the system can miss attacks. This is clearly undesirable.

On the other hand, recent designs try to distribute the correlation to certain dedicated
intermediate nodes that see all relevant data for a small and manageable area. Only data
which is considered to be important for the whole protection domain is forwarded to a
central node which is responsible for the complete installation. Although this approach
moves the pre-filtering decisions to a higher level, the basic shortcoming is still present.
While each area is completely monitored by an intrusion detection system, the global
correlation is either overloaded or cut off from relevant data.

In addition, both approaches are vulnerable to faults or deliberate attacks against the
processing infrastructure. When a central or high-level node fails, the system is blinded.
This is also true for publish/subscribe variants as implemented in Emerald (see Section
3.2.2). The message routing hosts that manage subscriptions and set up the paths for
published messages can also be attacked.

In order to solve the inherent difficulties with centralized data gathering and dedicated
processing nodes, it is interesting to investigate the possibility of decentralized data analy-
sis. Although it is difficult to identify independent chunks and analyze them in parallel, a
distributed detection algorithm might still be feasible and beneficial. Two different variants
are discussed. One suggests that only the nodes where the intrusion is actually witnessed
cooperate on its detection. The other approach is based on mobile code where agents
roam the network and carry the relevant data with them. The next subsection describes
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an approach that realizes the first variant while the following two subsections deal with
mobile agent based designs.

3.3.1 Cooperating Security Managers

In contrast to hierarchical or centralized IDSs, the Cooperating Security Manager (CSM)
design [105] tries to eliminate the need for dedicated elements by introducing an inter-
esting new architecture. Instead of having a central monitor station to which all data
has to be forwarded there exist independent uniform working entities at each host (called
security managers) which all perform similar basic operations. In order to be able to de-
tect distributed attacks, the different monitors have to coordinate their intrusion detection
activities and cooperate (hence the name of the system) as described below.

Each local security manager consists of a CMDMON (command monitor) and a CSM
module. The CMDMON intercepts and records user commands and attempts to identify
single suspicious actions. The system performs misuse based detection and searches for
specific pre-defined user actions that are considered security sensitive (e.g. password file
changes using nonstandard means such as vi /etc/passwd).

When a malicious signature is found, it is communicated to the local CSM unit. The
distributed detection process is based on the tracking of users. A trail is a data structure
that stores the information on which host a user originally performed his login and how
he continued to connect to different machines from there. Along each trail, all suspicious
activities are aggregated and an alarm is raised when too many of those operations have
occurred (even when they happened on different hosts). The number of suspicious oper-
ations are tracked utilizing the notion of a suspicion level. Each detection of a sensitive
operation results in an increase of the current suspicion level. It is assumed that a user
with a longer trail will have done more sensitive actions so the length of the trail is con-
sidered when calculating the suspicion level. The design assumes that although a skilled
intruder will perform only a small amount of malicious activities on each host, in summary
there will be many. By using the trail data, an overall suspicion level for each user can be
determined.

Whenever an interesting action is noticed, it is communicated to others managers. It
is important to notice that data is not broadcasted but only sent to the CSMs along the
trail of the user. The CSM where the action is recognized sends the information only to
its upstream neighbor (previous host in the current trail) which then continues to forward
the data to its own upstream CSM. At the CSM where the user has initially logged in, the
final suspicion level can be calculated.

When a certain limit is exceeded an intrusion is assumed. In this case, an intruder han-
dling component decides how to proceed. The following two possibilities are implemented.

e Limit Damage - This passive action attempts to limit the damage when an intruder
has already taken over a host. CSM tries to backup critical files in order to minimize
the impact.
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e Active Defense - A more aggressive defense is invoked when network critical machines
are endangered. In this case, the active suspicious session is interrupted and the
corresponding account locked.

The presented fully distributed architecture has the advantage that no single point
of failure or bottlenecks are inherent in its design. CSM is intended to scale well and
can be used in larger environments. One problem of the implementation of the described
approach is its operating system dependency. The command monitor and the local IDS
differ significantly in the UNIX and Windows implementations. Nevertheless, such drawbacks
could be solved by an improved design of the components and are not a consequence of the
distributed approach. A more severe shortcoming of the presented system is the fact that
only activities of a single user are correlated. When a number of different accounts are
compromised, cooperating attackers might remain undetected. Additionally, only threat
scenarios that require a user to be logged in and attack the network from inside can be
covered. Intrusions from outside that target inside network services will remain unnoticed.

3.3.2 Micael

Micael [27] suggests an approach for intrusion detection with distributed and decision
making agents. Autonomous agents investigate possible intrusions and are capable of
initiating counter-measures against attackers.

The architecture defines different kinds of static and mobile agents. Sentinels are
static agents (i.e. sensors) that reside at every protected host. They collect data (using
SNMP) about host activity and have no specific knowledge about different classes of attacks,
although they are able to protect themselves against simple denial-of-service attacks. When
anomalies are detected, reports are sent to a headquarter agent.

Headquarters are centralized agents, which get data about possible intrusions from
sentinels. They relate the information of different sentinels and create statistics, but they
do not do any detection by themselves. In contrast to hierarchical systems, where such
central points are static, headquarters can dynamically move and thereby perform load
balancing and evade potential attacks. When anomalies reach a certain level of suspicion,
detachment agents are created and sent to interesting hosts.

Detachments are mobile agents that are used to face a possible intrusion. They move
to positions where a potential attack has been detected and start detailed analysis of log
files. Additionally, they can initiate counter-measures against the attacker (ranging from
a simple disconnect operation to an active counterattack).

Micael has been designed with possible attacks against the IDS itself in mind. So
called auditor agents are deployed to monitor the system’s integrity. They are occasionally
launched by the headquarter and check other agents by comparing pre-calculated hash
values to results of a special function that each agent has to support. When an agent has
been corrupted, it is forced to terminate. If the auditor cannot find the headquarter, it
assumes that it has been destroyed and creates a new one.

Micael uses the Aglet Mobile Agent System [2] and is written in Java to assure a
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high degree of portability. The communication between agents is realized using the Aglet
Transfer Protocol (ATP) where agent proxies (which act as forwarding references to the
actual agents) and relays allow inter-agent communication, independent of the machine
where the agents are currently executed.

The idea of distributing the detection procedure into different, mobile system parts has
the advantage of keeping the whole system’s load relatively modest. Mobile agents offer the
advantage of consuming the resources only at the place where they run. Additionally, they
are also able to react very quickly when an intrusion has been discovered. Unfortunately,
the authors have only presented a very high-level design without any details regarding
the implementation or any measurements. So it is difficult to evaluate how effective this
approach actually is.

3.3.3 Sparta

Sparta [52, 49] (which is an acronym for Security Policy Adaptation Reinforced Through
Agents) is the name of a project sponsored by the European Union. It is a system whose
primary aim is to detect security violations in a heterogenous, networked environment.
Nevertheless, the architecture which has been designed for Sparta allows a broader range
of application, ranging from network management to intrusion detection.

Sparta is an architectural framework which helps to identify and relate interesting
events that may occur at different hosts of a network. In addition to the detection of
interesting patterns, Sparta can also be utilized to collect statistical data (i.e. extreme
value or sum of attribute values) of certain events.

Each host has at least a local event generator, a storage component and the mobile
agent platform installed. The local event generation is done by sensors which monitor
interesting occurrences on the network or at the host itself. The exact types of events
and their attributes are determined by the application’s needs. Events are stored in the
local databases for later retrieval by agents. The mobile agent subsystem is responsible
for providing a communication system to move the state and the code of agents between
different hosts and for providing an execution environment for them. Additionally, the
system has to provide protection against security risks involved when utilizing mobile
code. Most of the components are written in Java and the agent platform itself rests on
Gypsy [45], a Java based system which has been developed at Technical University Vienna.

The goal of Sparta is the design of a mobile-agent based IDS that identifies and improves
potential shortcomings of other intrusion detection system designs. The following three
issues are addressed.

To support the detection algorithm and to address the problem of systems which only of-
fer an implicit way of specifying attack scenarios, an attack pattern language was designed.
This language allows the expression of offending event constellations in a declarative man-
ner where one can specify what to detect instead of how to detect. The primary language
design objective is the reduction of the needed amount of transferred data while still re-
taining enough expressiveness to be usable for most situations. When a system uses mobile
code (i.e. mobile agents), it should aim at performing flexible computation remotely at the
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location where the interesting data is stored. This resulted in the limitation of restricting
patterns to tree-like structures when events between nodes are involved but still allows
arbitrary correlations locally.

The correlation mechanism that identifies these tree-like patterns does not rely on (one
or more) central server locations where data is gathered and related. Instead, it follows
a fully distributed approach. Mobile agents roam the network to search for suspicious
events to start a more detailed investigation. When an agent spots the mark of a possible
intrusion, it decides which data to carry with it on its next hop and which place to visit
next. The basic idea is that agents work their way recursively up the tree from the root to
the leaves of the pattern. When evidence for all events specified in the leaves of the pattern
are found, an intrusion has been detected. The detection algorithm itself is performed by
multiple agents in parallel which improves scalability, fault tolerance and performance of
the system when compared to a client-server variant.

While many agent systems use some way of encryption and authentication when agents
are sent over the network, most of them lack a pubic key infrastructure (PKI). This issue
is addressed in Sparta by providing a PKI to manage the cryptographic framework with
user and agent permissions. Sparta utilizes an asymmetric (public key) crypto system to
secure agents when they are transferred over the network. To protect the platforms, agent
code is signed and authenticated before it is executed.

Sparta and its specification language has been developed at the Technical University
Vienna and therefore has clearly influenced the design of the distributed event correlation
presented in this dissertation. However, we identified the use of mobile code as unnecessary
and counterproductive in the given setup. The agents are solely used as data containers, a
task that can be fulfilled more efficiently by sending the information encapsulated in mes-
sages and deploy the processing modules at all nodes in advance. Mobile code introduces
additional security risks and causes a performance penalty without providing any clear
advantages. Although the approach used in Sparta heads in the right direction, message
based communication and minor modifications to the specification language improve the
robustness, scalability and performance of the whole system. The resulting design and its
implementation is described in detail in Chapter 4 and Chapter 5.

3.4 Host Anomaly Detection

The presented concept of Network Alertness is based on the analysis of network traffic
and transmitted packets. Although a number of network based anomaly sensors have been
suggested by the research community, most of the work has been done on host based
designs. As the first intrusion detection systems ever built used that approach, this section
presents a brief overview of host anomaly detectors. The following section then reviews
the (for our perspective more interesting) work on network anomaly analyzers.
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3.4.1 User Behavior

In the early stage of IDS design, most researchers attempted to build systems that com-
pared pre-recorded user profiles to the actual witnessed behavior. Anderson [5] and Den-
ning [29] used metrics such as the time of day when a user logged in and the length of
active sessions. They were later refined to take into account the sequence of commands a
user types or the frequency with which he accesses certain resources. NADIR [39] as well
as Emerald (Section 3.2.2) along with its predecessors IDES and NIDES [63, 4] incorporate
modules that do such analysis based on statistical tests. A variant using neural networks
is presented in [35].

More recent work [84] attempts to profile users based on keystroke characteristics.
This approach assumes that each user exhibits a distinguishable pattern when typing on a
keyboard. One can measure the time between certain keystrokes but also the time between
pressing a key and releasing it!.

Although analyzing user behavior seems to be a natural way of performing intrusion
detection, it is very inaccurate. Users are humans and usually tend to act without following
strict patterns. They may change their behavior simply because they install and use new
programs, get a new job assignment or switch their working hours due to private reasons.
In order to prevent a huge amount of false alarms, such systems have to constantly adapt
to the user behavior and use very high suspicion thresholds before an alarm is raised.
An attacker may easily exploit this by slowly training the system to consider his malicious
activity as normal. Additionally, such systems cannot react properly when network services
get compromised as no single user profile can be associated to a daemon program.

3.4.2 Program Behavior

Instead of profiling users, an alternative variant is to turn to program execution. Although
a program may be utilized by many different clients, it acts in a regular and predictive
manner. When a service daemon is compromised, one can expect that it is possible to
monitor changes in its behavior.

Two variants have been suggested to capture a program’s behavior. One concentrates
on the sequence of system calls that running processes issue during their execution while
the other checks the abnormality of the input and output data.

The analysis of system call sequences has been first proposed by Forrest [34]. Tt is
done by tracing the system calls of interesting processes and try to predict the next system
call with a certain probability. The idea is that after a good learning phase, it should be
possible to do ‘not too bad’ prediction of the next call given the past calling sequence. If
too many predictions fail to be correct, then an alarm is raised. The system cuts the audit
trail of system calls into fixed-length sequences by a sliding window mechanism. These
sequences are then stored in a database using a tree data structure where each path from
the root to a leaf represents a sequence that has been seen. In addition, a label at each
leaf is added which represents the probability of occurrence of this call given that the past

Keystroke analysis is also used in an attack against SSH to retrieve password information [88].
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calls have been monitored. A simple tree database for a sequence of 4 system calls with a
sliding window of length 2 is presented in Figure 3.4. An open source implementation of

this approach is provided as well [32].

Probability: 0.5 0.25 0.25

Sequence:

mmap, open, mmap, open, setuid

Figure 3.4: System Call Monitoring

The analysis of input data using artificial neural networks (ANNSs) has been suggested
by Ghosh [37]. Neural networks offer, similar to statistical tests, the capability to generalize
from incomplete data and to be able to classify on-line data as being normal or intrusive.

An artificial neural network is composed of simple processing units (nodes) and con-
nections between them. The connection between any two units has some weight which
is used to determine how much one unit will affect the other. A subset of the units of
the network acts as input nodes, and another subset acts as output nodes. By assigning
a value (called activation) to each input node and allowing the activations to propagate
through the network, a neural network performs a functional mapping from one set of
values (assigned to the input nodes) to another set of values (retrieved from the output
nodes). The mapping itself is stored in the weights of the network. For this system, a
back-propagation neural network has been utilized. During a training phase, the network
has been exposed to classified input data (data known to be normal or non-normal). It
gradually adjusts itself to be able to classify the given training set. The resulting network
is then used to check and classify new process input and output data and raise an alarm
when too many non-normal instances are witnessed.

3.5 Network Anomaly Detection

Network Alertness aims at protecting important network services by intensifying the anal-
ysis of (i.e. adapting to) input from certain suspicious sources. Although host based
anomaly detectors can monitor the behavior of known users and executing processes, they
are not suitable for this task. When services are attacked by unknown outsiders the anal-
ysis of inside users is rendered useless. The problem with process behavior is the fact that
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it is hard to account system call sequences (or similar properties) to network sessions. Our
approach demands that a sensor is capable of becoming more sensitive to data exchanged
in a certain network session. When a daemon serves many requests simultaneously, it is
possible to monitor the result of a successful attack but it is hard to tell the origin of the
intrusion attempt. In this case, a sensor has to evaluate the process properties without
being able to adapt its suspicion thresholds. Therefore, we use network anomalies for our
analysis, as individual sessions can be easily distinguished at this level.

Network anomaly detectors focus on the packets that are sent over the network. De-
pending on the type of information that is used for performing the detection, one can
distinguish between traffic and application models.

Systems that use traffic models monitor the flow of packets. The source and destination
IP addresses and TCP/UDP ports are used to determine parameters such as the number of
total connection arrivals in a certain period of time, the inter-arrival time between packets
or the number of packets to/from a certain machine. Such parameters can be used to detect
port scans or denial-of-service attempts. Most current network based systems rely on traffic
models to perform the bulk of their anomaly detection. The next sections introduce two
current, systems and their analysis algorithms.

Unfortunately, traffic models aggregate over packets from many sessions to build a
profile that describes quantitative properties of network connections. For our purpose, a
model that incorporates qualitative information (i.e. the content of a single packet) is
needed. The system must be able to detect intrusions targeted at a single process. Such
attacks usually exploit a vulnerability of a service at the victim machine. This is done by
sending invalid input which causes a buffer overflow or an input validation error in the code
running the service. The attacker sends one (or a few) carefully crafted packets including
shell-code which is executed at the remote machine on behalf of the intruder to elevate his
privileges. As the attacker only has to send very few packets (most of the time a single
one is sufficient) it is nearly impossible for systems that use traffic models to detect such
anomalies.

To circumvent this drawback, application models attempt to utilize application specific
knowledge and deepen their detection for single packets. Unfortunately, these designs are
currently very simple and include mainly additional TCP header information or count the
number of bytes that are exchanged in a session between client and server. The last section
surveys work done in this area and highlights the improvements necessary to implement a
network alert system. The details of our application model anomaly sensor are presented
in Chapter 7.

3.5.1 Adaptive Bayesian Model

This section describes a traffic model [74, 99] that is based on Bayesian inference in trees.
It has been implemented as part of the Emerald project (see Section 3.2.2) and extends
the systems capabilities from evaluating user session to network anomaly detection.

The analysis is based on sessions which are defined as temporally contiguous traffic
from a particular IP address. Whenever an interesting event is detected in the input
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stream, it is either accounted to an already existing session or a new one is instantiated.
Events themselves are created by a network monitor that analyzes TCP headers and extracts
connection state changes from all currently active TCP sessions. It is not very important
for the system to demarcate sessions exactly. The Bayesian inference analysis is done at
periodic intervals in a session (where the interval is measured in number of events) or when
the system believes that the session has ended.

The Bayesian inference is based on belief propagation in causal trees [71]. Knowledge is
represented as nodes in a tree, where each node is considered to be in one of several discrete
states. A node receives prior (or causal) support messages from its parent and likelihood (or
diagnostic) support messages from its children as events are observed. The prior messages
can be considered as propagating downward through the tree while the likelihood messages
are propagating upward. The prior message incorporates all information not observed
at the node and the likelihood at terminal (i.e. leaf) nodes corresponds to the directly
observable evidence. A conditional probability table (CPT) links a child to its parent.
According to the Bayesian theorem, the CPT lists the probability for each child by taking
into account the a-priori knowledge of the probability of the parent.

Figure 3.5 shows an example of a simple Bayesian tree. It represents the a-priori belief
that the probability of many open connections (0.8) and different unique ports (0.7) will
be high while the probability for different IP address will be low (0.3) when a port scan is
observed. This is due to the fact that a single attacker scans many ports of a single victim
machine in parallel. When the three evidence parameters are determined during system
run-time, the probability for the attack class (i.e. port scan) can be calculated.

Conditional Probability Table (CPT) - Port Scan Port Scan Attack Class
| true | false
Max. Open Conn. 08| 0.2
Unique IP Addr. 03| 0.7
Unique TCP Ports | 0.7 | 0.3 Causal Diagnostic
Support Support

Qbservabie Numoer o Numoer o
Open Connections IP Addresses TCP ports

Figure 3.5: Bayesian Inference Tree

The task of the inference process is to ‘quantify the support for each hypothesis class
given the observed events’. That means that the inference engine determines for a session
the a-posteriori probability that it belongs to a certain class given the a-priori knowledge
stored in the Bayesian tree and the actual observations. This is used to classify a session,
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for example, as being normal, a denial-of-service attack, a port scan or an event caused
by a non-malicious misconfiguration. The used model has the advantage that it does not
require classified training data, in fact, it automatically classifies traffic without a prior
learning phase. In addition, the probability tables evolve and the system improves its
accuracy when used.

The presented system uses a sophisticated statistical model to classify network sessions.
The only shortcoming, which unfortunately makes it unsuitable for our use, is the fact that
no payload is inspected.

3.5.2 Spice

Spice [92] is an acronym for Stealthy Portscan and Intrusion Correlation Engine which has
been developed by the creator of GrIDS (see Section 3.2.1). Spice is interesting mainly
because of one of its its components that assigns an anomaly score to every single packet
(called Spade - Statistical Packet Anomaly Detection Engine). This aims into a direction
where each packet can be rated individually in contrast to considering complete bursts of
traffic (or whole sessions).

The anomaly score that is assigned is based on the observed history of the network. The
fewer times a particular kind of packet has occurred in the past the higher its anomaly score
will be. Packets are classified by their joint occurrence of packet field values. To do this,
a probability table is maintained that reflects the occurrences of different kinds of packets
in history - with higher weight on more recent events. Unfortunately, Spade analyzes only
certain parts of the packet header, but completely neglects the packet contents.

All packets that receive a higher anomaly value than a certain defined threshold are
forwarded to Spice. Currently, Spice is designed to detect port scans. This is realized by
a correlation engine which attempts to cluster packets together that it assumes to be part
of the same scan. Combining suspicious packets helps to reduce the needed storage space
and allows keeping the data longer. This makes it possible to detect long lasting scans
that are performed very slowly by an attacker. When the available storage is used up,
all systems need a policy to decide which information should be discarded. A common
decision is to throw away the oldest data. By aggregating data of packets that belong
together and transform the information into a simpler cluster data structure, old samples
that would have been timed out when considered individually might survive and add up
to a suspicious scan pattern.

The clustering algorithm itself is explained by using a metaphor from physics?. Packets
behave like atoms in an empty space and are linked to each other by a certain bonding
energy. When the bonding energy between two packets is strong enough they get coalesced
into a single bonding graph that can attract other packet ‘atoms’. The bonding energy
itself is expressed (and calculated) via heuristics that compare certain packet features and
timing properties.

2The author holds a Ph.D. in physics.
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3.5.3 Application Based Analysis

The difference between traffic based and application models is introduced in [14]. Although
this work only focuses on traffic modeling it is the first work that notices the possibility to
extend network based intrusion detection to the application level.

This integration of application knowledge into a statistical detection approach is de-
scribed by [13]. The authors have chosen the telnet protocol as the basis for their analysis.
Unfortunately, the proposed evaluation of the application data itself is very simple. It turns
out that most of their statistical properties are affected by flags in the IP and TCP headers.
The system monitors the total number of TCP packets from a certain source and the ratio
of this sum to the number of packets with a set RST flag. This value determines the number
of times a connection is reset compared to the total amount of packets that are transferred.
Similar to traffic models, this helps to detect denial-of-service attacks. The only feature
that is monitored in the application payload is a string which indicates a denied login
attempt. When the number of wrong authentication attempts exceeds a certain thresh-
old an alarm is raised. This number is also combined with the total number of packets
to adapt the threshold to the actual number of connection attempts (obviously allowing
higher number of failed tries when the number of attempts is high). Although information
retrieved from the payload is combined with a stochastic approach, the detection process
itself is misuse based. The system performs simple pattern matching to determine failed
logins. This clearly does not allow adaptation of the sensor’s alert threshold with regard
to suspicious sources, a requirement needed for implementing Network Alertness. In order
to provide an application based anomaly sensor, we designed and implemented our own
variant which is currently focused on the analysis of DNS traffic. It is discussed in detail in
Chapter 7.

3.6 Summary

This chapter has introduced work in two areas which are relevant to the system that we
propose to perform intrusion detection.

The first one introduces different approaches to correlate event information which is
distributed over many sensors throughout a network. As we propose a novel mechanism
to increase the scalability and fault tolerance of this correlation process, an evaluation of
the current designs was necessary. Three concepts could be identified that followed either
a centralized, a hierarchical or a completely distributed paradigm.

Centralized systems are straightforward as they simply collect data at a central node
and perform the computation there. Such approaches have been the first which were
suggested by the research community and exhibit the poorest scalability and fault tolerance
properties. To mitigate their weaknesses, hierarchical approaches with several layers of
processing nodes have been introduced. Although they behave in a more desirable way,
they still rely on a few dedicated nodes for detection. This lead to the development of
alternative variants, where the processing load is completely distributed over all machines.
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While such a design has promising characteristics, current systems have been very simple
and suffered from several restrictions.

A central target of our system, that is presented in this dissertation, is its potential to
be utilized for large network installations. This requires a completely distributed design
where no predefined weak spots (such as central servers or hierarchy nodes) exist. The next
two chapters detail our proposed mechanisms that exploit the advantages of a completely
distributed design but overcome the limitations that are present in current systems.

But Network Alertness is not limited to the detection of attack scenarios alone. It also
requires the adaptation of sensors to potentially malicious sources when emerging patterns
are identified. This made it necessary to review the work in a second area, the domain
of intrusion detection systems with the potential to adjust their detection processing to
different input streams. Because the probes have to adapt to data from varying sources,
network based systems, that can easily distinguish between different connections at the
network layer, are most desirable. Unfortunately, current designs aggregate over network
sessions from many origins for their detection. Therefore, we had to design a network
based sensor that is capable of adjusting its detection threshold to data from only a single
source. Our design is presented in Chapter 7. This sensor is realized as a component that
can be plugged into our correlation framework and enables cooperating nodes to tune their
detection to potentially malicious senders.
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Chapter 4

Distributed Correlation Framework

Divide et Impera!
— Roman Proverb

We have already underlined the necessity for collecting and relating audit data that
occurs at different, distributed nodes in a network. In this chapter, we present a framework
[50] for completely distributed intrusion detection which restricts the detection to only
the affected nodes. The framework consists of a specification language that is needed to
describe attack scenarios and a decentralized search algorithm that relates events from
different sources to detect them.

By relating events from multiple nodes, one can detect a number of attacks that would
remain unnoticed by only focusing on local activity. It might also increase the chances for
anomaly detection sensors to catch an attack when they can adapt to specific input sources.
The previous chapter introduced centralized and hierarchical designs that attempt to solve
this problem. Nevertheless, these systems use dedicated nodes that act as central points
for collecting data from remote sensors. Therefore, such structures are still vulnerable to
faults and overloading of nodes - especially those that are close to the root of the hierarchy
or the single central analyzer.

We solve the inherent problems of centralized, dedicated nodes by proposing a com-
pletely decentralized approach where the detection of an intrusion is restricted to those
nodes where parts of the attack are directly observable. This approach is influenced by the
work done on alternative correlation variants which are described in Section 3.3.

Our design is related to CSM (Cooperating Security Managers - see Section 3.3.1) in the
way that it distinguishes between a local ID component and an information forwarding unit
at each node. In contrast to this system however, we do not wish to limit the information
exchange between nodes to the login chain of users. Sparta (Security Policy Adaptation
Reinforced Through Agents) [52] follows a similar, distributed correlation mechanism as
described in this dissertation, but is based on mobile agents.

The following sections describe an algorithm that is capable of detecting patterns of
events that occur at multiple nodes of a network in a completely decentralized fashion.
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In addition, the specification language to define distributed patterns is explained. This
language allows the definition of patterns that are more complex than those presented in
the related work in the previous chapter, but can nevertheless be detected without any
dedicated coordination instances.

In our system, an intrusion is defined as a pattern of basic events which can occur at
multiple hosts. A basic event is characterized as the occurrence of something of interest
that could be the sign of an intrusion (e.g. the receipt of a certain IP packet, a failed
authentication or a password file access). Such events could either stem from a local
misuse or an anomaly incident. We also identified the requirement to integrate third-
party systems to perform the local detection and feed their event data into our correlation
algorithm. Our distributed patterns and the detection algorithm can describe and detect
situations where a sequence of events occurs on multiple hosts. This is needed to model a
scenario similar to the one presented as our motivating example in Section 1.1 where a port
scan is followed by abnormal packets. Relating events from different sources is also helpful
to modify the reaction of sensors at nodes that become aware of emerging, hostile patterns.
This results in a framework that enables nodes to develop a network alert behavior when
confronted with threats form intruders.

The decentralized pattern detection process finds distributed patterns by sending mes-
sages between nodes where interesting events occur. Therefore, each node of the protected
network has to run a process that executes the distributed pattern detection algorithm.
The detailed description of the layout of such events and patterns as well as the detection
algorithm forms the core of the chapter. The renunciation of dedicated central compo-
nents and the effort of designing a fully distributed system results in favorable scalability
and fault tolerance properties of our IDS. When a single node in our system fails (or is
compromised), it stops its local detection and ceases to forward pattern information. This
prevents the detection of pattern instances where events occur at the compromised host,
but the rest of the system remains intact. In addition, messages are not sent to designated
nodes but are exchanged between equal peers. This helps to distribute the complete mes-
sage traffic over the network without some pre-defined central bottlenecks. We are aware
of the fact that a distributed system design might result in tremendous message overhead.
This potential danger is addressed at the levels of pattern specification and detection.

4.1 Pattern Specification

The design of our pattern specification language is guided by two conflicting goals. The
first one demands a language that should be as expressive as possible. It would be desirable
to allow the description of complex relationships between events on different hosts using
regular or tree grammars. As our system relies on peer-to-peer message passing between
hosts without a central coordination point, arbitrarily complex patterns might cause an
explosion in the amount of data that needs to be exchanged. In the worst case, each node
has to send all its data to every other node. This conflicts with the second goal, which
demands that the amount of data that has to be transferred between hosts should be as
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small as possible. Therefore we have to impose limitations on the expressiveness of our
pattern language.

As stated above, an event is the smallest entity of a pattern and defined as the oc-
currence of something that might be part of an intrusion. We have designed a simple
language called Event Definition Language (EDL) that allows us to specify an event as an
object together with a set of attributes and their corresponding types (e.g. string, integer).
In order to provide the system with EDL data, we have to install sensors that watch for
the occurrence of interesting events and transform them into EDL objects by setting the
given attributes to the actual values derived from the observed event instance. The actual
implementation and the role of EDL for data collection and its transformation into data
structures suitable for the detection process is explained in more detail in Section 5.1.1.

4.1.1 Definitions

A pattern describes activities on individual hosts as well as interactions between machines.
The basic building block of a pattern is a sequence of basic events that happens locally
on one machine (called host sequence). One can specify a list of events at a local host by
enumerating them and imposing certain constraints on their attributes. We distinguish be-
tween constraints which relate single event attributes with constant values and constraints
which relate different attributes of events using variables. One can use the standard log-
ical operators for both types and an extended set of operators (including in and range)
to relate attributes with constants. A connection (context) between event sequences on
different hosts is established by send events.

Definition:

A pattern P, relating events that occur at n distinct hosts, consists of n sequences
of events, one for each node (an event sequence at a single node is called host
sequence).

A set of events Sy at host A is linked to a set of events Sg at host B, iff Sa
contains a send event to host Sg. Any event that refers to a remote host (e.g.
the sending of a packet to a host, the reception of a packet from a host) might
be used as a send event.

It is only required for a send event that its target B can be determined locally at S4
from the event data.

Consider the case of a port scan that attempts to identify active HTTP ports on hosts
of a target network. When the firewall detects such a scan and knows the address of the
network’s web server, the occurrence of that port scan can be utilized as a send event. In
this case, the target host (i.e. the web server) is locally known to the node that identifies
the suspicious behavior. Therefore, the firewall has all information available to inform the
web server.

The first event of Sg has to be the next event to occur after the send event in S4. It is
required that the send event is the last event in Sy4.
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Definition:
Pattern P is valid, iff the following properties hold.

1. FEach set of events is at least linked to one other set.
2. Every set except one (called the root set) contains exactly one send event

as the last event of the host sequence. The root set contains no send event.
3. The connection graph contains no cycles. The connection graph is built by

considering each event set as a vertexr and each link between two sets as
an edge between the corresponding vertices.

These definitions allow only tree-like pattern structures (i.e. the connection graph is a
tree), where the node with the root set is the root of the tree. Although this restriction
seems limiting at first glance, most desirable situations can be described. Usually, activity
at a target host depends on events that have occurred earlier at several other hosts. This
situation can be easily described by our tree patterns where connection links from those
hosts end at the root set.

The case where events on two different nodes both depend on the occurrence of a
single event at a third node cannot be directly expressed in our pattern language (as there
would be two root sets). Nevertheless, a centralized application might split the original,
illegal pattern into sub-patterns (each representing a legal tree-like structure) and relate
the results itself.

4.1.2 Attack Specification Language

This section describes the syntax and semantics of our pattern description language called
Attack Specification Language (ASL). A pattern definition is written as follows

?ATTACK’ "Scenario Name" ’[’ nodes ’]’ pattern

The nodes section is used to assign an identifier to each node that is later referred to
in the pattern definition.

The pattern section specifies the pattern itself. It consists of a list of event sets, one
for each node that appears in the node section. The event set, which represents the host
sequence, is a list of identifiers, each describing an event. A pre-defined label called send
is used to identify the target node of send events.

Each event can optionally be defined more precisely by constraints on the event’s at-
tribute values. These attribute values can be related to constant values or to variables by a
number of operators (=, !=, <, >, >=and <=) or to constant values by a range or an in
operator. The argument of range is a pair of values specifying the upper and lower bound
of a valid range of values while the argument of in is a list that enumerates all possible
values. More formally, these operators are defined below.

x range (zo,z1) <> 29 <z < 21
x in (g, %1, ..., xp) <> J (0 <i<n)and x =z
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A variable is defined the first time it is used. One must assign a value (bind an attribute
value) to each defined variable exactly once while it may be used arbitrarily often as a right
argument in constraint definitions. The scope of variables is global and its type is inherited
from the defining attribute.

For each event, an optional response function can be specified. This function is invoked
whenever the corresponding event description is fulfilled and it can take the values of
already bound variables, event attributes or constants as arguments. A response function
can be used to generate alerts for the system administrator or to perform active counter-
measures against an intruder (e.g. hardening of firewall). As these functions are invoked
locally at the node where the corresponding event description has been detected, our system
possesses no central response component that can be taken out easily. In addition, response
functions are used to create artificial event objects that are fed back into the detection
process. An artificial event is not related to an actual activity in the environment but is
created during a response by the system itself. It is piped back into the sensor’s event
input queue and can be utilized to satisfy constraints of different (or the same) pattern.
Artificial events are a useful mechanism to exchange information between attack scenarios
or to model timeouts. The output of a certain attack pattern can be used as input for
another pattern to build hierarchical structures or to implement scenarios that count the
number of times a certain basic pattern has occurred. A timeout can be implemented by
starting a timer in a response function that then creates an artificial event when it expires.

4.1.3 Language Grammar

With these explanations, we introduce the syntax of the pattern section in BNF.

pattern : {event set}+

event set : node-id ’{’ {event}+ ’}’

event : [’send(’target-id’):’] event-id ’[’ {constraint ’;’ }x ’]°
constraint : assignment | [label] relation [response]
assignment : ’$’variable-id ’=’ ( attribute | constant )
relation : attribute operator [’ (’] {value ’,’ }* value [’)’]
value : constant | ’$’variable-id

attribute : event-attr-id

operator . 7=’|)!=)|)<)|)>)|)>=7|)<=)| )in)l)range)

response : ’<’ function-id’ (’ arg-list )’ ’>’

arg-list { arg-id ’,’ }* arg-id | e

node-id

target-id

[

|
event-id |
variable-id |
event-attr-id |
function-id |
arg-id : string
constant : string | number
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string . [JaJ_JZJJAJ_JZJJ_JJOJ_JQ;]+
number : digits | digits ’.’ digits
digitS . [JOJ_JQJ] | [111_191:] [JOJ_JQJ]+

The following example shows a classic distributed scenario, a login chain. It describes
a common tactics of intruders to hide their tracks after they have compromised several
machines in the network of the victim. In order to blur his tracks and hide his true
origin, an attacker performs a couple of consecutive logins into different machines. All log
files except one (the host where the hacker entered) show only connections from trusted
machines. Different local time settings and audit file policies often make it difficult to trace
back such a chain. Although the scenario itself does not describe an actual attack, such
behavior is still suspicious enough to alert an administrator.

ATTACK "Telnet Chain'" [ Nodel, Node2 ]
Nodel {
send(Node2) : tcp_connect [ DstPort == 23; ]
}
Node2 {
tcp_connect [ DstPort == 23; ] < alert(DstIP); >
}

The scenario above describes a telnet connection from Nodel to port 23 at Node2 and
from there to port 23 of another remote machine. Node2 describes the root set (i.e. has
no outgoing send event). The target of the send event can easily be extracted as the
destination IP address of the tcp_connect event attribute. This fact is specified in its
EDL definition. The hacker continues from Node2 to a third, remote machine. The IP
address of that host (as DstIP attribute) can be extracted at Node2 and is passed as an
argument to the response function alert which notifies an administrator.

4.2 Pattern Detection

The purpose of the pattern detection process is to identify actual events that satisfy an
attack scenario written in ASL. When a set of events fulfills the temporal and content based
constraints of a scenario an alert is raised. Notice that instead of simply sending a message
to a central system administration console (that yields again a single point of failure),
more sophisticated responses can be implemented. The node itself can issue commands to
reconfigure the firewall or to terminate offending network connections, thereby eliminating
the single point of failure introduced by the central console of a human operator.

4.2.1 Basic Data Structures

In order to be able to process an attack description, it has to be translated from ASL into
a data structure suitable for our system.

S7



Pattern Graph

This is done by transforming a scenario into a directed, acyclic graph (called pattern
graph). An attack scenario describes sequences of events located at different hosts that are
connected by send events. Each single event specified by an ASL scenario is represented as
a node of the resulting graph. The nodes of each host sequence are connected by directed
edges. An edge leads from a node representing a certain event to the node which represents
the immediate successor of that event in the ASL pattern description. Send events require
a little different treatment as they are the last event in their host sequence and therefore
do not have an immediate successor. In this case, a directed edge leads to the first node
of the host sequence where the send event points to.

The resulting graph shows a tree shape and all paths through the graph end at the
last event of the root set’s sequence (called root node). Each node receives a unique
identification number that consists of a part that identifies the attack scenario itself and a
part that identifies each node within the scenario. The following example (see Figure 4.1
below) shows the result of such a transformation, which is actually straightforward as ASL
only allows tree-shaped patterns. The attack scenario describes a pattern of a potential
attack against a web server by a variant of the CodeRed worm. Similar to the hacker
described in the introduction in Section 1.1, this virus does not only scan for an open port
80 but also attempts to retrieve the type of operating system the web server runs by asking
the DNS server for the web server’s HINFO (hardware and OS info) entry. This allows the
virus to target Microsoft IIS servers more accurately. Whenever a port scan detector
notices a scan against port 80 from a certain IP address and the DNS server gets HINFO
queries from the same address and finally the web server receives an HTTP request from
that source, an alarm is raised as such behavior is presumably suspect.

ATTACK “CodeRed X”

[detector, dns7 WWW] Send Node Send Node
detector { (detector.PortScan) (dns.HardwareQuery)

send(www): PortScan [ $x = SrcAddr;

Port == 80; ] @ @

}
dns {

send(www): HardwareQuery [ SrcAddr == $x; ] @ Root Node
} (www.HTTPGetRequest)
www {

HTTPGetRequest [ SrcAddr == $x; |

Pattern Graph
} (Scenario-ID 0)

Figure 4.1: Pattern Graph Transformation

Messages

The detection algorithm does not deal with events itself, instead, it operates on messages.
A message is a compact, more suitable representation of an event. Most attack descriptions
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rely only on a small subset of the event’s attributes for correlation (e.g. only IP addresses
instead of the complete IP header). In ASL, only attributes that are assigned or compared
to variables are of interest to the further detection process. Therefore, there is no need to
operate on the complete event objects.

Obviously, a single event can match the description of multiple event patterns in an
attack scenario. Thus, if more than one description is matched, several message instances
(one for each matching pattern) are created. Whenever a message is created, all relevant
attributes (i.e. the attributes that are assigned or compared to variables in the ASL
description) are copied into it. Then, it is forwarded to the node representing the matching
event description for further processing.

Each message can be written as a triple <id, timestamp, list of (attribute,value)>.
The id of the message is set to the identification of the node of the pattern graph. The
timestamp denotes the time of occurrence of the original event and the attribute/value list
holds the values of the relevant event attributes which have been copied from the original
event attributes. The id of a message defines its type. Different actual message instances
with an identical id are considered to be of the same message type.

It is possible that messages of different types receive different attributes from a single
event - depending on which ones are actually used in the attack description. In addition,
the attribute/value list can be empty when the corresponding ASL event pattern does
not reference any variables at all. In Figure 4.1, a port scan event that targets port
80 from IP address 128.131.0.1 would cause the creation of the message instance <0/0,
time_of_occurrence, (SrcAddr, 128.131.0.1)> that has the type 0/0.

4.2.2 Constraints

An attack description in ASL imposes a number of different constraints on the events that
must be taken into account by the detection algorithm. The set of constraints can be
divided into a temporal, a static and a dynamic subset.

Temporal Constraints

The paths through the pattern graph reflect the temporal relationships of events. Event
A has to happen before event B if and only if B is on the path which leads from A to
the root node. The events of a host sequence have to occur in the same order as they are
defined in the ASL description. When a host sequence is linked to another host sequence
by a send event, all events of the destination sequence have to occur after the send event
in the source sequence.

Static Constraints

An event pattern that relates an event attribute to a constant value imposes a static
constraint onto events (e.g. the equality relation between the Port attribute and the value
80 in the PortScan event in Figure 4.1). Static constraints are easy to evaluate immediately
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as soon as a new event of the appropriate type has been received. When an event satisfies
all static constraints of a certain node (respectively its corresponding event pattern), a
new message instance is created and forwarded to that node. Static constraints are used
to decide which messages need to be created from a certain event but are not used later
during the actual detection process.

Dynamic Constraints

A dynamic constraint is introduced by the use of variables in an attack description. The
definition of a variable in an event pattern and the subsequent use of this variable in other
event patterns introduces relationships between attributes of different events. Although it
is possible to define and use the same variable within a single event pattern, such a variant
can be trivially handled by the more general approach.

The definition of a variable by a certain event attribute and its subsequent use as an
operand in a relation with another attribute creates a direct relation between these two
attributes. In Figure 4.1 above, the definition of variable x as the the value of attribute
SrcAddr in the PortScan event description and its use in the equality operations with
the attributes of the HardwareQuery and HTTPGetRequest events create the following two
dynamic constraints.

[PortScan.SrcAddr
[PortScan.SrcAddr

HardwareQuery.SrcAddr ]
HTTPGetRequest.SrcAddr]

Attributes that define or are related to variables are copied into messages. Therefore,
it is possible to express the relationship between event attributes as (dynamic) constraints
on the values of their corresponding message types. It cannot always be immediately
determined whether an event satisfies its dynamic constraints, hence events that satisfy all
static constraints of a certain event pattern cause a message to be created and passed to
the appropriate node (the one which is associated with that event). It is the task of the
actual detection process to resolve all dynamic and temporal constraints.

4.2.3 Detection Process

The basic detection process can be explained as follows. We have already stated that
events cause messages to be forwarded to their corresponding nodes (to the nodes that are
associated with matching events). The messages may then be moved along the directed
edge of the graph to other nodes according to certain rules. The idea is that each node
can be considered as the root of a subtree of the complete tree pattern. There are node
constraints assigned to each node of the graph such that if there are messages which satisfy
these node constraints, there are events that fulfill the dynamic and temporal constraints
of the complete subtree above that node. Whenever the node constraints of a node are
satisfied, certain messages may be moved one step closer to the root node, hence, they
are pushed over the node’s outgoing edge to its neighbor node below (as we have a tree-
shaped graph, there is at most one outgoing edge for each node). Then, these messages are
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processed at the destination node. This allows the process to successively satisfy subtrees
of the complete pattern and move messages closer to the root node of the pattern graph.
Whenever messages at the root node fulfill the constraints there, the pattern has been
detected (i.e. there exist events that satisfies all constraints of the attack scenario).

The advantage of this approach is the fact that only local information (i.e. the set of
node constraints) is necessary to decide which messages should be forwarded. This helps
to actually distribute nodes of the pattern graph over several hosts and have each node
make local decisions without a central coordination point. Different host sequences may
potentially occur at different hosts.

Node Constraints

The node constraints have to make sure that all events described by the subtree pattern
have occurred, that their temporal order is correct and that all dynamic constraints (which
can be resolved up to this point) are met. The messages that are important for a certain
node to satisfy its node constraints belong to one of the following three groups.

e Messages that are created from events that match the event description of the node
itself (i.e. that have the same id as the node). Obviously, in order to satisfy a pattern,
one event for each node of that pattern is needed. To fulfill a sub-pattern originating
at a node, it is necessary to receive at least one message created from an event that
matches the local event description itself (such a message is called a local message
for that node).

e Messages that are created from events that match the event description of the node’s
immediate predecessors in the pattern graph. Usually each node has only one prede-
cessor but this number can vary for the first node of each host sequence. Such nodes
may have more than one predecessor or non at all.

e Messages whose value(s) are used in at least one dynamic constraint at that node.

The node constraints consist of

1. the set of temporal constraints between the local message and the predecessor nodes’
local messages and

2. all dynamic constraints that can be resolved at this node.

The set of the temporal constraints between the local message and its predecessor
messages guarantees that events described by the local node and by all its immediate
predecessors have occurred. As messages from predecessor nodes may only be forwarded
by them when the events at their predecessor nodes have occurred as well, it is assured that
all events specified by a subtree pattern have taken place in the correct temporal order.
The node constraints have to be modified for nodes without predecessors. For those, it is
only necessary that the local message exists.

A dynamic constraint between attributes of two different events can be resolved as soon
as both operands are available. When messages representing the two events are on-hand,
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their relation can be evaluated and one can determine whether the dynamic constraint is
satisfied or not. Therefore, every dynamic constraint (i.e. a variable definition at one node
and its use at another one) is inserted into the pattern graph at the earliest node possible.
The earliest possible node is determined by finding the first common node in the paths
from each of the constraint operands to the pattern graph’s root node. When one node
is on the path of the other one, the constraint is inserted directly there, otherwise it is
inserted at the node where both paths merge. A pattern graph with dynamic constraints
is shown in Figure 4.2.

n1.e1l
ATTACK "Sample"
[n1,n2,n3]

n1{
el [ $x = a0; ] n2.e1 @ n1.e2

send(n3): e2 [ $y = a1; ] /

1 Dynamic Constraints
n2 { n3.e1 m(2).a1 == m(1).a2
send(n3): e1 [ a2 == $y; ]
n3 {
el[] n3.62 @ Dynamic Constraints
e2[a3 ==%x;] ' m(4).a3 == m(0).a0
}

The occurrence of event n1.e2 results in the creation of message
<2, time of occurrence, (a1, value of a1)>

Figure 4.2: Complete Pattern Graph

A problem arises when transitive relations are introduced by relating a single message
to several other messages. The attributes of events that are independent at first glance
become linked by being related to a common, third event. In such a case, it is not enough
to insert the constraints at the earliest possible node.

Consider the pattern graph in Figure 4.3 and suppose that the messages <0, t1, (al1,0)>,
<0, t2, (al,1)>, <1, t3, (a2,0)>, <1, t4, (a2,1)> and <3, t5, (a3,0)> are received in that
order. The first four messages (the first two from node 0, the next two from node 1) are
eventually passed to node 3 as the value of the first and the third message (which is 0)
as well as the value of the second and fourth message (which is 1) are equal (dynamic
constraint evaluated at node 2). As the attributes of messages with id 1 and 2 are not
compared again at node 3, the value of the final (fifth) message is equal to the value of the
first message and smaller than the value of the forth one. This results in an illegal report
of a successful match.

To prevent this problem, all dynamic constraints that are connected by having at-
tributes of common messages as their operands are combined in a subset of the scenario
constraints called a cluster. When a dynamic constraint operates on messages that are
used in no other dynamic constraints, the message itself becomes a cluster. In Figure 4.3
all three dynamic constraints are part of a single cluster.
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ATTACK “Cluster”
[n1,n2,n3]
n1{

send(n3): e1 [ $x = a1;]

Dynamic Constraints Dynamic Constraints

LZ{ m(0).a1 == m(1).a2 m(0).a1 == m(1).a2
send(n3): e2[ a2 == $§x; ] . ] .
$y =a2;] Dynamic Constraints Dynamic Constraints
} m(3).a3 == m(0).a1 m(3).a3 == m(0).a1
n3 { m(3).a3 <m(1).a2 m(3).a3 <m(1).a2
e3[] m(0).a1 == m(1).a2
e4 [a3 == §x; No Clustering With Clustering
a3 < §y; ]
}

m(x).y indicates the value of attribute y of a message with id x

Figure 4.3: Constraint Clustering

In addition to the insertion of each constraint at the earliest possible node, all con-
straints of a cluster are additionally inserted at the cluster root node (but obviously, no
duplicate constraints are inserted). Similar to the situation with a single constraint, the
cluster root node is the first common node of all the paths that lead from each operand
of every cluster constraint to the root node of the pattern graph. With these additional
constraints, the example messages listed above do not result in a false detect.

Message and Bypass Pool

Each node has a message pool and a bypass pool. The message pool is a place that stores
message instances that are needed to evaluate the local node constraints. The bypass pool
holds message instances that can potentially satisfy node constraints of nodes that are closer
to the root of the pattern graph (but which are not used for the current node constraints).
Messages in the bypass pool are forwarded as soon as their temporal constraints are met.

After the node constraints have been determined, it is easy to calculate the types of the
messages for the message pool and the bypass pool. Obviously, the message pool for each
node consists of all message types that are used in at least one of its node constraints.

The message types needed for the bypass pools are determined next. For each message
type, every node on the path between the first and the last use of messages of that type is
examined. When the message type is not contained in the message pool of a node on that
path, it is added to the bypass pool there. This assures that messages which are needed
to determine node constraints at nodes closer to the root are correctly forwarded there.

The table below shows the node constraints and the types of messages that must be
inserted into the message and bypass pools for the pattern graph in Figure 4.2.
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Nodes Node Constraints Dynamic Constraints Message / Bypass Pools

0 Jm (0) {m(0)} / {}

1 Jm(1) {m(1)} / {}

2 m(2).time > m(0).time {m(0), m(2)} / {}

3 m(3).time > m(1).time | m(2).al == m(1).a2 | {m(1), m(2), m(3)} / {m(0)}
m(3).time > m(2).time

4 m(4).time > m(3).time | m(4).a3 == m(0).a0 {m(0), m(3), m(4)} / {}

Table 4.1: Node Constraints and Message / Bypass Pools

Detection Algorithm

Having determined the node constraints for each node (which makes sure that the subtree
pattern above this node is satisfied) as well as the message and bypass pools, the algorithm
to actually move messages between nodes can be explained. The id of a newly arrived
message is checked to determine whether it should go to the message or to the bypass pool.
When it belongs to neither group, it is simply discarded. This prevents messages from
being moved further towards the root node when they are not needed anymore. When the
message belongs to the bypass pool, it is put there and no immediate further actions are
necessary. Otherwise it is added to the message pool. Whenever a new message is inserted
into the message pool, the node constraints are checked. The algorithm attempts to find a
tuple of messages of different type (i.e. all with distinct identifications) that match all the
node constraints. The tuple has to include one actual message instance of each message
type (i.e. message id) of the message pool and the new message has to be part of the tuple
as well. Consider a potential tuple for node 3 in Figure 4.2 with its message pool {ml,
m2, m3}. It must consist of message instances with the ids 1, 2 and 3. When such a tuple
(or tuples, when more than one set of different messages match the node constraints) can
be identified, the detection process has found messages that match the subtree pattern
starting at the local node. All of the tuple’s messages have to be moved over the outgoing
link to the next node. Because messages in the message pool might be needed later to
satisfy the node constraints together with newly arriving messages, the original messages
remain in the pool and only copies are forwarded. To prevent the system from being
flooded by duplicate messages, each message pool entry is only copied and forwarded to
the next node once. For each tuple that matches the local constraints, the bypass pool
is inspected. The temporal constraints between each message in the bypass pool and all
messages of the matching tuple are checked. When a bypass pool message satisfies all
temporal constraints between itself and every tuple message, it is removed from the pool
and moved to the next node. This is needed to make sure that only messages which do
not violate any temporal constraints are passed on.
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{<0,0,2>} {} {<0.0.2>}{} {<0,0,2>} {}
{<1.4.1>}{}

00 @ <0021() (30 (2) 10022211503 @ (<0,02>,<2,1,15} {}
/ /

00 (<2,1,15} {<0,0,25} (<2.1,1>,<1,4.1>} {<0,0,25}
@{}{} @{}{} @{}{}
Step 1: insert <0,0,2> Step 2: insert <2,1,1> Step 3: insert <1,4,1>

@ (<0,025}{} (<002} {}
<1415} () <1415} ()

q @ (<0,0,2>,<2,1,1>} {} Q @ {<0,0,2>,<2,1,1>} { }

{<2,1,1>,<1,4,1>,<3,6,->} {<2,1,1>,<1,4,1>,<3,6,->}
{<0,0,2>} {<0,0,2>}
(<0,0,2>,<3,6,->} {} {<0,0,2>,<3,6,->,<4,7,2>} { }
Pattern Detected
Step 4: insert <3,6,-> Step 5: insert <4,7,2>

Figure 4.4: Sample Pattern Detection

The situation is slightly different for send nodes. As a send node can have different
next neighbor nodes at different hosts (depending on the target of the send event), the
copying of message pool entries and the deletion of bypass pool elements must be handled
differently. The send node has to keep track which message pool entries have already been
copied and which bypass pool elements have already been removed and forwarded to the
destinations of the send events for each different destination. This implies that bypass
pool elements can never be deleted because they might have to be sent to a completely
new destination host. Elements cannot be kept infinitely long because memory is a limited
resource. We use timers to remove elements from the message and the bypass pools after
a certain, configurable time span. This means that patterns which evolve over a long time
might remain undetected. Note that this is not a limitation of our approach but a problem
that affects all systems that operate on-line and have to keep state. Such systems need a
policy that decides which events to delete when the available memory is exhausted.

The example in Figure 4.4 shows a step-by-step detection of the distributed pattern
which is described by the scenario in Figure 4.2. The node constraints of Figure 4.2 are used
and each tuple is underlined in the figure. Dotted arrows indicate the copying of messages
to the next neighbor. Associated with each node are two sets enclosed in brackets. The
first holds the node’s current message pool entries, the second its bypass pool elements.
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Discussion

The following section briefly discusses the correctness of the detection algorithm while its
performance is evaluated in Section 8.1.

The detection algorithm is correct when it reports an intrusion, if and only if events
occur that satisfy the pattern which the algorithm attempts to detect. We briefly provide
an informal explanation why this is the case.

The explanation is given recursively on the tree shape of the attack scenario pattern.
A node only forwards event information to its (single) successor node in the pattern tree
when events have occurred that match the pattern subtree above this node (which includes
the node itself as the root of that subtree). This implies that all events of the subtree have
occurred in the correct temporal order and satisfy all dynamic constraints which can be
resolved up to this point.

A subtree above a node is satisfied when all local events at a node have been detected,
the send events of all predecessors have been received and all dynamic constraints are
satisfied. As stated above, the predecessor nodes may only forward messages when the
subtrees above those nodes have been satisfied as well. That means that the current node
only has to check for the occurrence of the local events and must consider all dynamic
constraints which can be resolved at that node. This is exactly the way the algorithm
works. It simply attempts to find the occurrence of local events in the correct order that
meet all local dynamic constraints. These dynamic constraints have been inserted at the
earliest node where they can be resolved.

When the subtree above the root of the pattern is satisfied, events that match the whole
tree have been found. In such a case, a match is reported.

4.3 Summary

This chapter presents the design of a distributed pattern detection scheme to relate events
that occur at different hosts. A pattern specification language (i.e. Attack Specification
Language) has been defined that enables domain experts to express intrusion scenarios in
an easy and intuitive manner. In order to prevent an exponential increase in the number
of messages that nodes have to exchange to search for patterns, the expressiveness of
the language was restricted. The consequential decentralized algorithm to find events
that satisfy such patterns has been explained in detail. While this chapter focuses on an
abstract description of the pattern detection algorithm with the needed data structures
and its computational steps, the following chapter will provide details about the concrete
implementation. The presented approach exhibits superior scalability and fault tolerance
properties when compared to current solutions. This claim is supported by the results of
our evaluation which are shown in Section 8.1.
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Chapter 5

Quicksand: A Prototype
Implementation

The reward of a thing well done is to have done it.
— Ralph Waldo Emerson

Quicksand [51] is the name of our system that implements the framework described in
the previous chapter. In addition, it provides functionality to report detected intrusions to
a system administrator and an interface to configure and manage a Quicksand installation.

As explained above, the system can be used to describe and detect situations where a
sequence of events occurs on multiple hosts (such as a port scan detected at the firewall
followed by a packet containing buffer overflow exploit code that targets the web server).
This enables the sensors to modify their reaction at nodes that become aware of emerging,
hostile patterns. Quicksand implements a flexible response mechanism that allows an
administrator to specify actions for each step of an intrusion pattern. In contrast to
traditional systems which usually only react (e.g. generate warnings or harden the firewall)
after an incident has been detected, our mechanism allows fine-grain control over potential
counter-activities while threatening situations emerge. A plug-in mechanism allows the
extension of Quicksand with such response modules and additional sensors. An important
plug-in to realize the system’s ability to adapt to traffic from suspicious sensors is described
in Chapter 7. This sensor is needed to extend Quicksand’s detection framework with
the capability to selectively react to emerging patterns, a behavior needed for Network
Alertness.

Quicksand is implemented in C to allow a high degree of portability and to get good
system performance. A SSL library [68] is utilized to secure network communication be-
tween nodes. The parser to process the pattern specifications is created with the help of
flex [33] and bison [12].
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5.1 System Architecture

This section describes the architecture and implementational details of the realized proto-

type (see Figure 5.1).
Quicksand
Sensor

Event Correlation
Component
Quicksand Quicksand
Sensor Sensor
Local ID Local ID
Unit Unit
Control and Quicksand Sensor
ontrol an :
Configuration Quicksand
Unit Sensor

Enterprise Network

Figure 5.1: Quicksand System Architecture

Quicksand as a system basically consists of a set of hosts which are connected by a
network. Each node runs a Quicksand sensor that is made up of several local intrusion
detection units and an event correlation component. The collaborating event correlation
units deployed throughout the network implement the decentralized detection process. A
(possibly redundant) control component is utilized to perform system configuration and
management. This component can also act as a central point where alerts can be collected.
Notice that although only one control unit is sufficient for a Quicksand installation, it does
not participate in the detection process and therefore cannot be considered as a single
point of failure. As each detecting node itself can initiate a response, it is not necessary to
forward an alert to the control unit.

5.1.1 Local Detection Unit

The local intrusion detection components are responsible for gathering audit data. They
can be implemented as host based units which collect data from the operating system and
user processes or as network based designs that monitor packets via the machine’s network
interface card(s). Local detection units can apply misuse or anomaly based methods to
extract interesting information (i.e. events) from the local data stream. These components
interface directly with the underlying operating system and hardware.

The task of a local detection unit is to identify occurrences which are relevant for
distributed attacks and pass this information to the correlation unit. The interesting
occurrences are called basic events (see Section 4.1). Each basic event that is detected in
a sensor’s input stream is transformed into an instance of the corresponding event class.
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An event class has a type and a list of attributes with their respective types. All
event types have to be determined during the compilation phase of the system (i.e. they
are built into Quicksand) and every local detection unit is capable of producing instances
of event classes of one or more types. The event classes are described by annotated C
structures where each attribute is a member that can be a basic C type or a reference
(pointer) to another structure (i.e. event class). This allows us to assemble more complex
event descriptions as compounds of simpler objects. The type of the class corresponds
to the name (i.e. type) of the C struct. An annotated class description can be directly
transformed into the corresponding C struct by adding a few management fields.

The annotation is used to specify the attribute that determines the target of send
events. The value of this distinguished attribute is later processed by the correlation unit
to determine where messages need to be sent to. Obviously, it is possible to define classes
without any send events. Quicksand uses different event classes that correspond to packets
on the network, classes that reflect activity on a host machine and generic classes that
allow an easy extension of the system when events of new types emerge and need to be
integrated. Similar to object-oriented programming languages, classes can extend other
classes and inherit their attributes.

Consider the case of a network based sensor that can process IP based traffic and
produces event class instances of the types IP, ICMP, TCP and UDP. As a TCP/UDP packet
is encapsulated (contained in the payload) of the IP packet, the corresponding TCP/UDP
event classes have to extend and inherit the attributes from the IP event class. A brief
excerpt from the IP and TCP class definitions (which are both classes that correspond to
network packets) are given below. The C structs that represent those classes are shown
next to the definitions. It is shown how inheritance, which can not directly represented in
C, is realized with a pointer to the parent class.

class ’IP’ { struct IP {
int32 source_addr; unsigned long source_addr;
int32 dest_addr; unsigned long dest_addr;

+ +

class ’TCP’ extends ’IP’ { struct TCP {
int16 source_port; unsigned short source_port;
boolean syn_flag; unsigned char syn_flag;

+

/* parent class - IP */
IP *parent;
}

As mentioned above, the basic event classes and their respective attributes must be
known to the system (i.e. sensors, correlation unit and the management component) in
advance.
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Although it is be possible to forward every detected event to the correlation engine,
the required processing and network bandwidth capacity would soon exceed the available
resources. Therefore, a filter has to be applied to extract only events that might be part
of a larger pattern - which means that they are referenced in at least one ASL scenario
description. Our Event Definition Language (EDL) is used to specify such filters that
describe these interesting occurrences (i.e. basic events) in a sensor independent way.
Whenever a distributed pattern is loaded into a correlation unit, the basic event specifica-
tions need to be forwarded to the local detection component to make sure that the correct
objects are delivered. The following descriptions show two filters named ‘udp-filter’
and ‘tcp-connect’ written in EDL. The first one matches UDP packets originating from
IP address 192.168.0.1 sent to port 7 while the second matches TCP packets that initiate
a virtual connection (TCP 3-way handshake). Notice that the source_addr attribute is
accessible in ‘udp-filter’ because the UDP class is derived from IP.

>udp-filter’: UDP {
source_addr = ’192.168.0.1°;
dest_port = 7;

}

>tcp-connect’: TCP {
syn_flag = true;
}

A problem arises when third party sensors should be directly integrated into our frame-
work. As explained above, every sensor must accept EDL definitions that specify the
relevant basic events for the corresponding intrusion scenario. In addition, they must also
deliver reports of detected occurrences of those events as instances of our event classes.

This is solved by an adaptation manager that translates between the correlation unit
and the local detection components. This manager accepts sensors as plug-ins and performs
two important tasks. First, it collects reports from all active sensors and forwards them in
a single, timely ordered stream to the input queue of the correlation unit. Second, it sends
the EDL definitions to only those sensors that can detect events of the class specified by
that definition. This prevents, for example, network based sensors from receiving filters
for host based events.

Each sensor can either be directly connected to the adaptation manager or must provide
a proxy that can map the sensor’s objects into our object framework and vice versa.
The proxy then translates from the sensor-independent EDL specification into a specific
configuration suitable for the probe.

A number of different sensors have been integrated into Quicksand. For the first pro-
totype, we have implemented a network based probe that puts the network interface card
(NIC) into promiscuous mode. This allows capturing of all packets that are transmitted
over the connected wire, not only those that are destined for the listening host. Currently,
we support the IP, TCP, UDP, ICMP and Ethernet protocol. Packets are matched against
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filters that look for unusual values of header fields or signs of known exploits in the payload.
As a proof of concept for our adaptation manager, we substituted this sensor with Snort
[81]. Snort is an open-source network intrusion detection system that accepts simple rules
to filter TCP, UDP and ICMP packets. It is relatively wide-spread and especially known for
its good performance and ease of use. Filtering is done by rules which are enumerated in
a configuration file, one line per rule. The following two lines show the translation of the
two EDL definitions shown above. These rules are automatically generated by our Snort
proxy plug-in when it receives the EDL definitions from the correlation component. Any
alerts received from Snort are taken by the proxy and converted into the correct event
class instances. Notice that the variable $host is always defined by the proxy as the IP
address of the host where the sensor is installed.

alert udp 192.168.0.1/32 any -> $host/32 7 (msg:’udp-filter’)
alert tcp any any -> $host/32 any (flags:S; msg:’tcp-connect’)

A simple sensor that is capable of processing Linux syslog entries has been written as
well. This demonstrates that both host and network based sensors can be applied to our
design. This sensor scans the OS log entry for authentication events and forwards failed
attempts to the correlation unit.

To provide our system with the needed anomaly based, adaptive sensor, a local com-
ponent that scans DNS traffic for suspicious content is integrated as well (for more details,
see Chapter 7).

5.1.2 Event Correlation Component

The main task of the correlation unit is the implementation and execution of the distributed
detection algorithm (which has been described in Section 4.2). It operates on the data
provided by the local detection unit and on information received as messages from other,
collaborating nodes. The structure of a correlation component is shown in Figure 5.2 and
explained in detail below.

The event data is taken from the main input queue that is fed by the adaptation
manager (see previous Section 5.1.1) and the communication subsystem. Whenever the
system learns of new event data (either produced by a local sensor or encapsulated in
a message), the corresponding object is added to the queue. A consumer thread (called
dispatcher thread), which is started by the correlation unit, retrieves these event objects
one at a time and forwards them to the relevant scenarios. A scenario is relevant for an
event object when the scenario’s description uses at least one basic event that has the
same type as the input element. To prevent the overhead of copying the event object for
each scenario, only references are passed. A simple garbage collector makes sure that the
memory space of every object is freed (collected) after all scenarios have processed it.

A separate thread, each with its own input queue, is started for every scenario. The
dispatcher thread appends the references to new input events to the input queues of all
relevant scenarios. From there, they are removed by the scenario threads and further
processed.
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Figure 5.2: Correlation Component Architecture

An optimization has been implemented that prevents events of certain types from being
forwarded to scenarios when it is impossible that they are part of a pattern even though
the type is used in the scenario description. This is the case when a pattern includes local
sequences with more than one event (i.e. node sequences of length 2 or longer). As it is
required that all local events occur consecutively, it is not necessary to consider the second
(or any later) position in the sequence when the first event has not been seen yet. This
leads to the definition of active event types. The set of active event types for an attack
scenario only includes event types that can potentially be part of an ongoing intrusion.
That means that immediately after system initialization, only the types of the first events
of all node sequences in the scenario need to be considered (and are therefore active). As
an attack progresses, currently active events are witnessed. This causes their successor
events (in the host sequence) to be activated too. It is also possible to deactivate events
in the case that a predecessor event in the sequence times out and is removed from the
detection process.

The active events for each scenario are stored in the active events table which is con-
sulted by the dispatcher process before forwarding events to the relevant scenarios. It is
important to synchronize the activity between the scenario threads and the dispatcher.
It is possible (even common) that two events that are important for the detection of an
attack pattern happen within a very short time period. When the occurrence of the first
event activates the second event it is mandatory that the dispatching of the later event is
not done before the scenario thread has processed the first event. Otherwise, the second
event type would not have been activated yet and the event is lost.
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The processing of an event by the scenario threads is straightforward. The important
data structures for the algorithm are already present as they have been calculated offline.
After moving the event to the correct node in the pattern graph (or possible more) the
only difficult part is to determine efficiently the tuple of messages of different type that
match all the node constraints (see Section 4.2.3).

To calculate the valid message tuples in a naive way, it is necessary to determine all
subsets (derived from the set of messages in the message pool) that contain the newly
arrived message and have members (messages) of the correct types. Then it is necessary
to check for each subset whether the contained messages satisfy all node constraints and
discard those that do not.

Unfortunately, the amount of these subsets is proportional to n' where n is the num-
ber of messages stored at a node and [ is the cardinality of the subset. Therefore it is
computationally too expensive to proceed in this manner. Quicksand solves the problem
by keeping all message combinations that do not violate any node constraint in a search
tree. Instead of storing only the messages themselves and creating new tuples every time
a new message arrives, all partially complete tuples which are valid (i.e. violate no node
constraint) are stored. A simple search tree is shown in Figure 5.3. The message pool
consists of three different message types with the ids 0 (m(0)), 1 (m(1)) and 2 (m(2)). The
‘constraints table’ lists the the constraints between the attribute values of the messages.
Currently, the message pool contains five message instances. All partial tuples that satisfy
the constraints have been inserted into the search tree which is a binary tree with 23 leaves
(2", where n is the number of different message types used for the message pool). A path
from the root to a leaf determines the types of messages that are associated with that leaf.
Choosing the left child of a node implies that the message type which corresponds to this
node is included, choosing the right child implies that the message type is excluded from
the partial tuple. The number in each box that is associated with every terminal node
shows the number of valid partial tuples that belong to this leaf.

Whenever a new message arrives, it is added to all partially complete tuples that do
not include the type of the new message. When this results in a new partially complete
tuple that is still valid, it is simply added to the search tree. When a complete tuple is
the result, it is used for further processing. Most of the time, however, a violation of a
node constraint is detected and the result is discarded. This approach trades storage for
speed. Instead of checking all message subsets for their validity every time a new message
is received, all valid partially complete tuples are already stored. Because the total amount
of valid tuples is only a very small fraction of the amount of possible subsets, the size of
the tree is manageable. Even in the case of several thousand events, the size of the tree
remained under a few megabytes and the processing of new events could be handled in a
few milliseconds.

The correlation unit is also responsible for reacting on detected security violations.
The ASL definition of an attack contains a description of the response functions (i.e.
counter-measures) which should be invoked. A possible active response is the hardening
of firewalls or the interruption of open network connections. Such activities have to be
performed fast and reliable, therefore no central entity is involved. In addition to that, a
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Constraints Message Pool

m(0).value == m(1).value m(0): <0, t, 1> <0, t, 2>
m(0).value < m(2).value m(1): <1,t,1><1,¢, 2>
m(1).value < m(2).value m(2): <2, t, 2>

m(0) IS tuple member m(0) is NO tuple member

[<0,t,1> [<0,t,1> [<0,t,1> [<0,t,1>] [<1,t,1> [<1,t,1>] [<2t,2>]

<1, t, 1>, <1, t, 1>] <2, t,2>] <2,t,2>]

<2, t,2>] [<0,t,2>] [<1,t,2>]
[<0,t, 2>,
<1,t,2>]

Figure 5.3: Message Tuple Calculation

passive response can be executed by transmitting an alarm message to a dedicated node
running a control unit. Two default reactions have been currently implemented. One sends
a message to the syslog daemon reporting an alert to the local machine. While this seems
to be limited in use, consider that syslogd can be instructed to forward information to a
central log server that can be monitored by a system administrator. The second response
is more flexible as it invokes an operating system shell that allows execution of arbitrary
scripts. This has been used to send mail to a system administrator. A more sophisticated
response model is currently under development. This includes active response mechanisms
(e.g. firewall reconfiguration) and balances the expected impact of the response with the
detected threat. Especially for e-commerce sites, it can be undesirable that suspicious
connections of actually innocent customers are interrupted.

The communication between nodes is secured by utilizing a SSL library [68]. Every node
receives a private and a public key when the correlation unit is installed at a host. The
public key is signed by a certification authority (CA) that is responsible for the protected
network. The public key of this CA is present at each correlation unit as well. When
a secure SSL channel is set up, the public/private key pairs allow the communication
partners to authenticate each other which prevents malicious nodes from impersonating
legal senders.
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5.1.3 Control Unit

At least one host needs an installed control unit. This central module is utilized by the
system administrator to configure the system. Its task includes the processing of attack
specifications written in ASL and the configuration of the local intrusion detection and
event correlation units that are distributed over the protected network.

Pattern specifications that are written in our Attack Specification Language need to be
translated into data structures and functions suitable for the detection process. This is
done by an ASL parser that translates attack patterns into C source files which are then
compiled into object files. Response functions are specified as C functions and compiled into
separate object files. Instead of using a generic interpreter to process pattern specifications,
the detection algorithm is directly run as machine code. To remain flexible and to be able
to integrate new patterns on-the-fly (i.e. without changing the code of the event correlation
unit), the algorithm’s code is divided into a pattern dependent and a pattern independent
part. The independent part is implemented as shared code in the correlation unit. Similar
to an operating system, this part provides basic services that can be accessed by the
threads running the attack scenario dependent code. The pattern related part is stored in
the libraries produced by the ASL parser and the response libraries. These libraries are
dynamically loaded into the Quicksand sensors and execute the pattern dependent parts.

It is straightforward to translate the grammar introduced in Section 4.1.3 into a suitable
LR(1)-description needed by the parser generator. The parser itself creates all necessary
data structures (e.g. message and bypass pools) and a thin code layer that runs the pattern
dependent code.

Object files are merged into shared libraries which may be shipped to sensors over a
secure connection (via SSL). These libraries are automatically installed and can thereupon
be utilized by the sensor. The control unit is used to remotely load and unload attack
patterns. As described above, a dedicated thread is started to execute a certain pattern
whenever it is loaded into the correlation engine.

The control unit uses a local database to store information about the libraries that
have already been installed at each host. This database holds a list of symbols exported
by each object file as well as a list of installed object files at each host. That information is
used to prevent the installation of libraries that depend on response functions in different
object files which have not been installed yet. Currently, we only issue a warning message
that enumerates the symbols that cannot be resolved. The problem has to be handled by
the system administrator who has to perform the necessary installations manually. In the
future, we plan an automatic support to perform this update automatically.

A sensor that scans its input for the occurrence of a certain event needs to be compiled
against this event’s corresponding C struct. Therefore, we cannot add new basic events
types to sensor while the system is running. This is no real limitation, as the kinds of basic
events usually do not change frequently. It is more important to be able to update and
modify pattern descriptions which represent the actual attacks, an operation supported by
Quicksand.
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5.2 Event Synchronization

The use of patterns that can specify temporal relationships between events occurring at
different hosts introduces the following challenge. The relative order of distributed events
needs to be known locally at the node that has to determine whether certain events satisfy
the time constraints of a distributed pattern.

Consider the case when a node A sends a message M; to another node B and the
transmission of this message is defined as a send event of a pattern currently evaluated at
node A. The Quicksand instance at node A detects M; and transmits a second message M,
to B informing it that M, has been a relevant send event. When the Quicksand correlation
unit at node B gets My, it has to consider all events that have occurred between the
receipt of message M; and M as relevant for the pattern. The only important question
that remains is how B can determine when M; has reached it.

This task is easy when only one message has been exchanged between A and B but
becomes more complicated when several are involved. Especially when dealing with real
world networks, packets can get lost, delayed or duplicated. This prevents nodes from
simply counting the number of received packets and using this number to exactly specify
the packet at the sending host.

To solve this problem, each packet has to be uniquely identifiable. This enables the
Quicksand instance at the sending host to uniquely refer to each packet that contains an
interesting send event and the receiver to consider only those events for a pattern that
have been monitored after the relevant packet has been received. In order to identify the
packets, we use logical timestamps. Each host utilizes a logical clock to mark outgoing
packets with logical timestamps. The sender can then refer to this logical timestamp when
it detects that a packet contains the send event of a pattern. When the receiver later gets
the message indicating that a certain received packet has carried a send event, it is easy
to decide which local events have occurred before and after the reception of that packet
(with a known logical time). We call the problem of including such an identification or a
logical timestamp into each packet the timestamp wrapping problem.

Note that all packets that are sent between two hosts could potentially be associated
with a send event and therefore have to be identified by a timestamp. That means that
timestamps have to be transparently integrated into each packet even for applications that
are completely unaware of the timestamp service. An example would be a user who utilizes
telnet to connect to another host. Each typed character causes a packet to be sent to the
remote machine that could be associated to a send event.

We have done a simple prototype implementation of such a timestamp wrapping service
for Quicksand which is presented in detail in the following sections. This serves as a proof
of concept that accurate synchronization is possible. For our tests, that involved different
operating systems, a simpler approach has been chosen. We assume a maximum delay
between the actual send event and the message from one Quicksand correlation engine
to the other indicating that the send event has occurred. At the receiving node, the
processing of local messages is simply delayed for that assumed maximum time span to get
a correct temporal order between remote and local events. We are aware of the fact that
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this might introduce incorrect temporal dependencies. When messages arrive too early,
our system might report intrusions that have not taken place (false positives) while we
would miss intrusions (false negatives) when messages take longer than our pre-defined
time span. By using a reasonable long delay, false negatives can be practically prevented,
especially in local networks. In addition, we have never experienced any false positive as
the incidentally occurrence of events specified by a certain pattern during this short time
span is very unlikely.

One problem with the presented approach is that it requires the modification of the
network stack of the underlying operating system. As long as such a service is not imple-
mented in most common OSs (especially Microsoft Windows), the approach can only be
used for systems where the source code is available and can be modified. Therefore, we
tested our approach with Linux and Solaris machines.

The timestamp service can also be used to implement logical clocks according to Lam-
port’s ‘happened-before’ relation [57]. This allows causal ordering of events in distributed
systems. As the order of events occurring at different nodes of a network is critical for
many distributed applications [23], our transparent time service implementation could be
utilized by numerous systems. Ranging from our application of interest, an intrusion detec-
tion system to network management tools, it could also be applied to replication services
such as ISIS [11].

The traditional alternative to logically ordered events are totally ordered events using
physical clocks. When the physical clocks of all involved hosts are synchronized with an
acceptable accuracy, each packet can be simply assigned a physical timestamp. This enables
every node to determine the relative order of events. The needed clock synchronization
could be achieved by using GPS timers or via the network time protocol (NTP). However,
when we are considering a large heterogenous network where the application of GPS for
each computer is too expensive and an NTP server may not always be at hand, our protocol
may be a viable option.

5.2.1 Design Issues

We did not invent a generic method or algorithm to provide a synchronization service but
merely developed an actual instance (implementation) of an existing solution (i.e. logical
timestamps). Therefore, we had to make several design decisions for our implementation
which are discussed below.

These design decisions were guided by four main requirements which our solution should
fulfill.

1. Minimal Overhead - We want to impose as little overhead as possible on the partici-
pating computer systems. That means that the additional bandwidth and comput-
ing resources consumed should be minimized. As each sent packet has to contain
an identification, it is especially important to keep it short to prevent unacceptable
additional network load.
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2. Compatibility - The solution should be compatible to existing network protocols. It
makes no sense to create one’s own protocol that encapsulates or substitutes estab-
lished standard message formats. Existing nodes without timestamp support should
still be able to communicate with nodes marking their packets.

3. Fault Tolerance - Real networks may fail and one has to deal with lost, delayed or
duplicated packets in current datagram (i.e. IP) based networks. We need to include
enough redundancy to cope with a reasonable amount of network faults. Obviously,
this requirement conflicts with the aim to achieve minimal overhead.

4. Sufficient Granularity - It might not be necessary for an application to uniquely
identify each sent message. One could also group a few messages together and assign
an unique identifier to the whole set. This would lead to less overhead, but also
negatively affects accuracy. To be safe (and not to miss actual causal relations) one
has to assume that all packets of the group have been sent at the same time as the
first one. Therefore, some incorrect causal relationships might be introduced at the
receiving host. Our solution has to provide sufficient granularity for a broad range
of applications and optimally identifies each single packet.

To reach these partially contradicting goals, we had to make choices for a suitable
protocol layer, for the exact format of the identifier and its integration into packets as
well as decide between absolute and relative timestamps. For each point, a number of
alternatives are described in the following subsections and the rationales for our decisions
are provided.

Choice of Protocol Layer

The first design issue dealt with the choice of the appropriate protocol layer (according
to the 0SI reference model). We had to choose a layer whose messages should be marked
and considered the data link (more specific Ethernet), the network (IP) and the transport
layer (UDP, TCP). The data link layer does not seem appropriate because it only provides a
mean for higher layer packets to hop between directly connected computers on their route
to the target. As our identifiers are only relevant between the actual endpoints of the
communication and the sender cannot influence the fragmentation performed by the data
link layer between itself and the receiver, it is not necessary to distinguish (and mark)
packets at this level.

A look at the transport layer reveals that two different protocols, UDP and TCP, are
primarily used in most networks and have to be supported. While TCP uses its own 32 bit
sequence number to tag packets, UDP carries no such information. One would have to add
additional information to a UDP packet which increases bandwidth usage.

Additionally, TCP is not a packet oriented protocol but provides a reliable data stream.
Such a stream does not provide enough granularity. When a session between two computers
is established, many messages may be exchanged over such a channel. It is not enough to
record the begin of the session as events may occur later and cause messages to be sent
over the channel which are related to the occurrence of events at the receiving node.
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The payload field of the application layer would be a natural choice when one would
only like to uniquely mark (timestamp) the packets of the appropriate application itself.
Our service, however, has to tag all sent packets for arbitrary applications. When the
identification would be included into the payload of an unaware program and the target
host does not support the timestamp service, the remote application would not be able to
deal with the modified packets. Therefore, the payload field of the application layer does
not suit our needs.

It seems natural to consider each IP packet as a message unit and create an unambiguous
relation between the dispatch and the receipt of each IP packet. Whenever a node monitors
interesting events as a result of a received IP packet, it can easily determine later (after
being informed by the transmitting node that this packet has contained the send event)
which local events have occurred prior and after the receipt of that packet.

In the following discussion, the terms IP packet and message are used interchangeably.
The IPv4 packet header (RFC 791) is shown below.

0 8 16 32 Bit
Vers | IHL ‘ TOS Total Length
Identification Flag Fragment Offset
Time to Live Protocol Checksum

Source Address

Destination Address

Options (if any)

Figure 5.4: IPv4 Header

Timestamp Format

After the decision to mark IP packets had been made, it was necessary to choose a concrete
timestamp format and its integration into the IP packets. Two possibilities were considered.

First, one could use the information available in the header itself. The first obvious
choice is the 16 bit identification field that is used to reassemble fragmented packets at
the target. It is simply incremented by one each time a packet is sent. Additionally, we
considered the length, fragment offset and checksum field. Although the length field is
another 16 bits long, most packets are rather short (to still fit into the longest Ethernet
frame). Therefore, one would observe many identical values which is unsuitable for a
unique identification. The checksum field has to be recalculated after each hop when
the time-to-live field is decremented and cannot be used either. One could use the 13
bits of the fragment offset when the DF (don't fragment) bit is simultaneously set. This
causes packets to be dropped instead of fragmented when they do not fit into a single data
link layer packet and therefore the fragment offset remains untouched. Unfortunately, the
compatibility would be effected negatively as packets can not be sent over networks with
a small MTU (maximum transferable unit) size.
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Second, IP offers the possibility to include up to 40 bytes in an optional section. The
timestamp could be added to the header inside the option field but this would use up
network bandwidth proportional to the size of the identifier.

We chose not to abuse or modify the header information and only use the 2 byte
identifier field. Additionally, we do not extend the size of the packets in any way by adding
options to the header or data to the payload field.

Absolute vs. Relative Timestamp

An important decision had to be made about the design of the timestamp itself. It is
necessary to uniquely identify a packet over a long period of time, optimally over the
whole lifetime of the node which sends messages. Two options are available to achieve this
goal.

One uses a single counter (i.e. absolute timestamp) for the complete lifetime of the
node that is incremented each time a packet is sent. The counter is saved in non-volatile
memory and restored on boot up so it is necessary to provide enough room to cover all
packets sent by that node. In order to prevent an overflow of the counter, at least 6 bytes
are needed for a heavy accessed server on a Fast Ethernet (and maybe more when faster
networks emerge - e.g. Gigabit Ethernet). When the size of the IP header, which is 20
bytes (see Figure 5.4), is compared to the size of the timestamp, the bandwidth overhead
is significant. Especially when one takes into account that the new version of IP (IPv6 -
RFC 2460) reduces the non-address part of the header from 12 to 8 bytes.

The other option uses a shorter counter that uniquely identifies packets in a given
context. The context is established implicitly or by special synchronization packets. These
synchronization packets are acknowledged messages which negotiate a common, agreed
context between the sending and receiving node. This allows us to use shorter timestamps
for intermediate packets. A shorter timestamp can be integrated into the IP header more
easily and has the advantage of reducing the bandwidth overhead. On the contrary, the
synchronization might cause additional packets to be sent and it is not possible to rely on
implicit synchronization alone because of potential network faults.

A shorter timestamp causes less overhead for each individual packet but makes syn-
chronization necessary more often. We claim that an overhead of 6 to 8 bytes per packet is
not acceptable and use a relative timestamp of 2 bytes. This allows us an easy integration
into the IP header but demands some work to maintain a consistent context state between
nodes. The way to achieve such a common context is described in the next section.

5.2.2 Protocol Specification

All nodes that are attached to the network (e.g. computers on the Internet) can be divided
into two sets. One set is called active and consists of all nodes that support the dispatch and
receipt of timestamps while members of the other, called passive, have no notion of logical
time. All active nodes send marked packets all the time and do not adjust their messages
according to the receiver. That implies that marked packets have to be understood by
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passive nodes to guarantee compatibility to existing network protocols. Although active
nodes can easily communicate with passive nodes and vice versa, they have to store some
state information when talking to active nodes. Therefore, it is necessary for each active
node to know whether its communication partner is active or not.

Setup Phase

The knowledge of all active nodes within a network can be disseminated in two ways. One
uses a (potential hierarchical and/or distributed) name service where each active node can
register itself and query for other active nodes. This would be a database that stores a
list of IP addresses that support the timestamp service. While this could make sense for
isolated regions with a dedicated name server, the approach is not applicable for many
interconnected installations. For a global name service comparable to DNS, the adminis-
trative overhead is surely unacceptable. The other way, which we have implemented, uses
a setup phase between two nodes before they communicate for the first time ever. The
sending computer transmits a setup request to a well-known port at the receiving machine
and waits for a response. Meanwhile, the process that queued the original message for
sending is suspended. When no setup reply is received, the node is considered to be pas-
sive, otherwise it is definitely an active node and a context can be established. The results
of such setup requests are stored in a cache and passive computers are asked again (by
sending additional setup requests) after some time. When the reply to a setup message is
lost, the sender considers the receiving machine to be passive and establishes no context.
The receiving machine (that has established a context) notices the problem when the next
setup request arrives. In that case, the context is reset and another reply transmitted.

Timestamp Protocol

In order to uniquely mark all packets that are transmitted to each receiver, the sender
has to store a logical timestamp for every target. In our design, a logical timestamp is 8
bytes long and consists of two parts, a 6 byte context and a 2 byte identifier. For each
packet which is sent to a node, the corresponding timestamp has to be updated. A different
logical timestamp is used between each pair of sender/receiver nodes (when both are active
nodes). Notice that a pair of nodes that exchanges messages in both directions actually
uses two timestamps.

As described in Section 5.2.1, each packet effectively carries only the 2 byte identifier
(stored in the identification field of the IP header as a relative timestamp) while the 6
byte context is established by different means (as described below). The 2'® (0 to 65535)
possible identifiers defined by the 2 byte identification field are divided into three groups,
called low and high and neutral as shown in Figure 5.5. The low group ranges from the
numbers 0 to 1024 while the high group ranges from 2'5 to 2'5 4 1024 (32768 to 33792).
The remaining numbers belong to the neutral group.

The timestamp is initialized only when two active nodes establish a connection for
the first time. Even when one of both temporary becomes passive or unavailable, the
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Low Neutral High Neutral
0 1024 2% 2°+1024 21

Figure 5.5: Identifier Group Division

context and identifier values are saved and restored the next time the other node starts
its timestamp service (i.e. gets active) again. That means that timestamp values have to
survive crashes and need to be kept (or mirrored) in non-volatile memory. When context
information is lost due to a crash, the appropriate communication partner may use setup
packets to bring its partner into a consistent state again. The connection between two nodes
mentioned above is different from a TCP connection (connection oriented communication).
It describes any information that is passed from a host to another one (e.g. UDP packet
and TCP syn packet).

The context at the sender is increased by one every time the used identifiers change
their group membership from neutral to low or from neutral to high. Whenever a sender
marks a message with an identifier from the low group after identifiers from the high group
have previously been used, the context counter is incremented. The same is true for the
dispatch of the first high group identifier after previous low group ones. That means that
the context counter is incremented twice during a single run-through of the identification
counter. The way the protocol works for the sender is shown in Figure 5.6 below. Whenever
a packet is ready to be sent, a state transition is made and the actions at the target state
are executed. The action record describes the insertion of the current identifier value into
the identification field of the IP header and the storage of the send event in an appropriate
database.

record
id++
context++

record
id++

(id 1= 22"°-1) and
(id 1= 27"°1)

Figure 5.6: Protocol at Sending Node

While it is easy to assign the correct context counter value to each packet at the sender,
the situation is not as trivial for the receiver. The update of the context counter at the
receiver can be done implicitly or explicitly by special synchronization (sync) packets. An
implicit update can be done as soon as a low group timestamp arrives after at least one
high group timestamp has been received previously and vice versa. The explicit variant
is the sending of synchronization packets. Before the sender transmits its first message
with a low group timestamp after high group identifiers have previously been used or vice
versa, a special packet including the new context value is sent. This packet is retransmit-
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ted periodically until it has been acknowledged by the receiving host. When a number of
retransmissions fail but the host is still available, it is assumed that the timestamp service
has failed or is no longer active and the host becomes passive. While the synchronization
process is running, all new messages to the receiving host are held back. The delay intro-
duced by explicit synchronization is usually (i.e. without packet loss) the time it takes a
packet to get to the remote machine and back. This simply triples the time it takes for the
regular packet to arrive at the remote host - a time that should be acceptable for almost all
applications. Even an interactive computer game can cope with several lost packets (i.e.
a small time span where no packets arrive), and under normal circumstances the explicit
synchronization will not take longer.

The way the protocol operates at the receiving node is shown in Figure 5.7 below.
Whenever a packet is received, the identification field of its IP header is extracted and a
state transition made. Then the actions of the target state are performed. The action
record describes the assignment of the correct context value to the packet and the storage
of the receive event in an appropriate database.

context++
record

S (id == high) or
(id == high) or (id == neutral)

explicit sync

(id == low) or
explicit sync

(id == high) or
explicit sync

context++

id == low) or  (id ==low) or
( ) record

(id == low) or (id == high) or
(id == neutral) (Id == neutral)

explicit sync  (jg == neutral)

Figure 5.7: Protocol at Receiving Node

Timestamps are assigned to messages at the receiving node by appending the correct
context value to the packet’s identification value in the following way. When a low or high
group packet is received, the current context value is used. When a neutral packet with
an identification field less than 2! arrives, the largest even number that is less or equal to
the current context counter value is used as its context value (e.g. 6 for a context value of
6 and 7). Packets with an identification field greater than 2'5 get the largest odd number
that is less or equal to the current context value (e.g. 7 for a context value of 7 and 8).
This assures that delayed neutral packets are still assigned consistent context values.
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Assumptions

In order for the implementation to work correctly, the following assumptions must hold.
We assume that the communication subsystem may drop, delay or duplicate packets.

e No more than 1024 consecutive packets may be dropped by the communication sub-
system. Otherwise all low or high group packets might get lost and an implicit
synchronization fails. When synchronization packets are used every time the context
changes, this assumption can be dropped. Usually, communication lines are very
reliable and the drop of such are large number of packets is very unlikely.

e A packet with timestamp n must arrive earlier than all packets with timestamps
greater than n + (2' —1024) or not arrive at all. This is necessary for neutral group
packets to be assigned to the correct context. Additionally, a low group packet that
is delayed until later high group packets are received causes an illegal increment of
the context counter. The same is obviously true for delayed high group packets.

While the incorrect increment of the context can be prevented by always sending
synchronization packets, the incorrect assignment of packets to wrong contexts can-
not. Unfortunately, this problem is always existent when utilizing relative counters
and allowing arbitrary delays of packets.

The sending of a synchronization packet can help when packets are regularly delayed.
As new packets are held back during the synchronization process, the time it may take
old packets to arrive is extended by at least the round trip time needed for the sync
messages. This reduces the likelihood of incorrect assigned packets. When packets
are sent via Ethernet on a LAN the order of packets is preserved. Only when packets
are sent over several hops and routers choose different paths to the same destination,
packets may overtake previous ones. However, it is extremely unlikely that some
packets are sent over a very slow line while a couple of thousand others are later
routed over a fast link and arrive earlier (although it might happen in theory).

As stated above, the loss of packets during transmission causes no problems as long
as it occurs infrequent enough or sync packets are used. The duplication of packets poses
no problems either as the receiver simply records the arrival of two or more packets with
the same timestamp in its event log. The pattern matching process itself will have to deal
with such duplicates but as the same packet has been received multiple times it has to be
recorded that often. The most severe problem are delayed packets which are assigned to a
wrong context or which cause premature (i.e. illegal) context increments at the receiver.

The following paragraph deals with consequences of inconsistent context updates or
incorrectly assigned packets. Whenever a packet is assigned to a wrong context (assum-
ing the context values are consistent) it gets a later timestamp than it actually should.
Nevertheless, the correlation process at the sending node notifies the receiver about the
interesting event using the correct, earlier time. When the pattern matching algorithm at
the receiver eventually uses that earlier timestamp to find all events that have happened
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after that point in time, it considers events that have occurred before the actual packet
has been received.

In our area of application (i.e. intrusion detection), the consequence could be a false
positive, the raise of an unjustified alarm. Nevertheless, the occurrence of an incorrect
warning is much less severe than the opposite, the miss of an actual intrusion. Therefore,
a rare incorrect assignment of a packet to a later context can be tolerated. As packets
are never assigned earlier timestamps, it is impossible to miss existing happened-before
relations and therefore a detectable intrusion pattern cannot remain unnoticed.

Inconsistent updates of the context counter may occur in two different ways. On one
hand, the loss of all low or high group packets results in a smaller context counter value
at the receiver. When such an inconsistency is detected during the exchange of sync
packets, the context parts of all events received since the last successful synchronization
are increased accordingly and the context value is adjusted correctly. This causes all
affected messages to be potentially dated later than they have actually been sent. This
might result in the detection of non-existing relations as some (or even all events) are dated
later than they actually have occurred. But as stated previously, to be on the safe side,
events are assumed to have happened at the latest possible point in time.

On the other hand, a delayed low or high group packet might result in a larger context
counter value at the receiving node. In such a situation, the packets might only have been
dated later. As stated above, this situation can be considered acceptable and so only the
context value is adjusted.

Adaptive Synchronization

In order to decrease the network load, we use a technique that we call adaptive synchroniza-
tion. This approach starts by having the sending host transmitting synchronization packets
after every second context change. When the connection between both nodes is reliable,
the sending host notices that all synchronization packets are immediately acknowledged
and both nodes have a consistent view of the current context. This allows us to gradually
relax the dispatching of sync packets and rely upon implicit synchronization. Whenever
a sync packet needs retransmission or the context values do not match, the time between
explicit synchronization is immediately reduced.

Outlook on future IP versions

Another question is the applicability of our approach to the new version of IP, namely
IPv6. As stated before, the size of the non-address part of the IPv6 header has been
reduced to 12 bytes. The field for identifying a packet in case of fragmentation was moved
to the optional header part. Nevertheless, a 20 bit flow label field was introduced which is
intended to uniquely mark a sequence of packets from a source to one or multiple targets.
It seems natural to use this field as a new, slightly extended identification field. This would
allow us to reduce the number of necessary explicit synchronization packets by a factor of
16.
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5.2.3 Implementation

Our implementation is developed in C for a Linux 2.2 kernel. We need to be able to do
the following things.

First, our module has to send and receive synchronization messages (realized as UDP
packets). This can easily be done with normal privileges in user mode by using the network
(socket) interface.

Second, we must be able to inspect outgoing as well as incoming IP packets. This is
necessary to read and set the identification field of the IP packet headers of messages that
are exchanged with other active hosts. Reading could either be done by using a packet
filter interface such as BPF (BSD packet filter) as used by libpcap or by writing a kernel
module that uses the firewall interface. The writing of IP header fields requires a kernel
module with direct access to the packet or a kernel patch.

Third, packets have to be delayed during the synchronization process. Whenever a
process attempts to send a packet to a target host that is currently involved in exchanging
sync packets, it is put to sleep. This can be realized directly inside the kernel (network
code) or by a kernel firewall module.

The implementation is realized as a combination of a daemon process and a kernel mod-
ule using the firewall support (compiled into the kernel). The kernel module is responsible
for updating and reading the identification fields while the daemon process runs in user
space and performs the synchronization. The communication between both parts is done
via system calls.

5.2.4 Evaluation

Performance

This subsection deals with the performance impact of our logical timestamp implementa-
tion. We generate additional overhead at two places.

One is the dispatch and receipt of sync packets. This happens at most once every 2!5
packets and when adaptive synchronization is used considerably less often. The size of a
UDP packet including all header information (20 bytes for IP, 8 bytes for UDP) and payload
(maximal 12 bytes in our implementation) is limited to 40 bytes. When two packets
are exchanged, the resulting proportional increase in bandwidth usage is 0.002 bytes per
packet. Each regular IP packet is sent without any additional overhead and the network
bandwidth remains unaffected.

The other is the processing overhead at the communication partners. Whenever a
packet should be sent to an active host, the appropriate identifier has to be loaded and
written into the IP header. A hash table is used to map IP address of target hosts to
their current context and identifier values. Additionally, the dispatch and the receipt of a
packet has to be stored in the event database for later analysis. Compared with the normal
processing of incoming and outgoing packets, this effort is nevertheless negligible.
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Storage Considerations

It is necessary for a host to store the logical timestamps (8 bytes) for each active host that
it is communicating with. The timestamps have to be saved between reboots and it is
necessary to have an entry for every active node that host has exchanged messages with.
Parts of this database are held on disk and only entries that are currently used are loaded
into kernel memory space into a hash table. Even when assuming that a host contacts a
few thousand active nodes, the size of the data remains relatively small (a few kilobytes)
which seems acceptable for current systems.

A more severe problem is the storage of the event data itself. The granularity of using
IP packets is very fine and a node that sends and receives packets at full network speed
can create thousands of events (i.e. packets) every second. It is obvious that not every
packet should be recorded in an event log. We aggregate all event information produced
by packets between interesting external events (events not caused by dispatch or receipt
of an IP packet) into intervals. That means that only a single entry in the event database
has to be present for all packets that are received between two external events.

5.2.5 Applications

Every application that needs to relate event data from different distributed nodes might
profit from our approach. We assume that events at a node B can be influenced by events
from node A only when a message has been sent from node A to B after the relevant event
occurred at node A and before the relevant event took place at node B. Current systems
that use such assumptions and provide event synchronization usually gather event data at
a central location from different nodes. This simplifies the ordering of processing of events
as information can immediately be timestamped on arrival and is available locally. Most
systems that correlate events from different sources to deduce additional information about
the state of the network follow this approach. This ranges from network management tools
such as HP Open View [85] to intrusion detection systems (refer to Chapter 3). When one
intends to do distributed analysis of data, it is hard to determine at a receiver node which
events have happened at the sender before it dispatched a certain message, especially after
a longer period of time when clock drift effects or resets of physical clocks are issues. One
possibility is the introduction of a service that synchronizes the physical clocks with an
acceptable accuracy and use physical timestamps to mark the sending and receipt of events.
This is a variant that seems less than desirable in large, heterogenous network environments
and again introduces a central service into the system. The other variant uniquely marks
packets and allows a sender to refer to such an identifier to inform the receiver which packet
is interesting. Our proposed logical timestamp implementation provides such a service.

5.3 Summary

The last two chapters explain in detail our proposed correlation framework. While the
previous chapter discusses the pattern specification with the help of our declarative At-
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tack Specification Language and the resulting distributed search algorithm, this chapter
concentrates on the practical aspects of the system.

We present. Quicksand, the implementation of our intrusion detection system that con-
sists of the distributed search algorithm, probes to gather event data and components to
set up and manage a system installation.

Quicksand provides the core detection algorithm together with a communication frame-
work that enables nodes to exchange messages needed for the correlation process in a secure
manner. It includes local sensors to obtain data from the host’s operating system and the
network. A control component is available to translate pattern specifications into a rep-
resentation usable by the search algorithm and to distribute those representations to all
hosts. Quicksand offers an interface to extend its functionality with new sensors and re-
sponse modules. One such module that realizes the adaptive behavior which is needed for
Network Alertness is the anomaly based network sensor that is presented in Chapter 7.

An important prerequisite for distributed pattern detection is the knowledge of the
causal order of events that take place at different hosts in a network. This chapter presents
an efficient protocol that allows the synchronization of interesting occurrences at different
nodes. This is done by including logical timestamp information into the header of the
underlying communication protocol (IP in our case).

Although the expressiveness of our pattern language is very powerful, not all desirable
scenarios can be specified. Intrusions that do not manifest themselves as patterns of related
events cannot be described directly. The following chapter introduces a complementary
mechanism that allows to efficiently deal with such situations.
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Chapter 6

Centralized High-Speed Event
Correlation

Beware of dissipating your powers; strive constantly to concentrate them.
— Johann Wolfgang von Goethe

The distributed correlation framework introduced in the two previous chapters provides
a scalable and fault tolerant mechanism to detect related events on different hosts. The
patterns that can be defined and found by this approach describe scenarios of related
activity that targets a single node. This single node is used as the root node of the
tree-shaped pattern where the detection algorithm terminates. Send events are needed to
establish links between interesting occurrence at distributed hosts.

But there are other scenarios that do not follow the assumption that the relationship
between distributed events can be monitored as send events. Malicious activities can man-
ifest themselves at different nodes without any communication that takes place between
those spots. Important members of this class of intrusive behavior are port scans and door-
knob rattling attacks initiated from an attacker in the outside network. In these scenarios,
many connection attempts are made from a single source outside to many nodes inside the
protected installation, but there is no traffic between these inside hosts themselves. That
prevents our correlation framework to model and detect such reconnaissance activity.

A reasonable way to combat that deficit is the deployment of a single sensor [54] at the
bridge between the inside and the outside network. Activity that occurs completely inside
the network is either visible as connections between hosts or as sequences of events that
occur only locally at a single machine. Such behavior can be modeled by our correlation
framework. When the assumption is made that all traffic from the outside has to pass
the bridge where our sensor is installed, it is possible to monitor all attacks from the
outside that are aimed against multiple hosts inside the protected zone at this point. This
assumption is reasonable because almost all sites protect their network with a firewall
which is exactly the bridge needed for our sensor deployment.

The sensor at the bridge is realized as a network based probe that scans the traffic
between the inside and the outside network. It is based on NetSTAT [102, 103] which

89



is part of the STAT tool suite [101]. The problem is that the detector is installed at a
high-speed link that carries the complete traffic between the protected network and the
outside. To be able to find port scans or doorknob rattling attacks, it is not sufficient to
treat each packet independently. The sensor has to perform stateful inspection of the traffic
it monitors. In this case, the probe has to maintain information about attacks in progress
(e.g. in the case of multi-step attacks) or it has to perform application-level analysis of
the packet contents. These tasks are resource intensive and, in a single-node setup, may
seriously interfere with the basic task of retrieving packets from the wire.

Current network based IDSs are barely capable of real-time traffic analysis on saturated
Fast Ethernet links (100 Mbps) [38]. Analysis tools that can deal with higher throughput
are unable to maintain state between different steps of an attack or they are limited to the
analysis of packet headers. As network technology presses forward, Gigabit Ethernet
(with 1000 Mbps) has become the de-facto standard for large network installations. In
order to protect such installations, a novel approach for network based intrusion detection
is necessary to manage the ever-increasing data volume.

The centralized sensor is a complementary approach that can be deployed in addition
to Quicksand to cover attack scenarios that cannot be modeled in our Attack Specification
Language. Because Quicksand is intended to be utilized for large network installations,
the centralized probe has to cope with high-speed links.

6.1 Traffic Slicing

To solve the problem of managing the massive data volumes on the network link, we pro-
pose a partitioning approach to network security analysis that supports in-depth, stateful
intrusion detection. The approach is centered around a slicing mechanism that divides the
overall network traffic into subsets of manageable size. These subsets (or slices) are then
sent to a number of distributed sensors. The traffic partitioning is done so that a single
slice contains all the evidence necessary to detect a specific attack, making sensor-to-sensor
interactions unnecessary. This approach has often been advocated by the high-performance
research community as a way to distribute the service load across many nodes. In contrast
to the case for standard load balancing, the division (or slicing) of the traffic for intrusion
detection has to be performed in a way that guarantees the detection of all the threat
scenarios considered. If a random division of traffic is used, sensors may not receive suffi-
cient data to detect an intrusion, because different parts of the manifestation of an attack
may have been assigned to different slices. Therefore, when an attack scenario consists of
a number of steps, the slicing mechanism must assure that all of the packets that could
trigger those steps are sent to the sensor configured to detect that specific attack. Our
design allows for meaningful slicing of the network traffic into portions of manageable size.

After a discussion of recent developments in this area in Section 6.2 the system design
is presented. The following Section 6.4 describes the architecture of our prototype tool and
Section 8.2 presents the results of the first quantitative evaluation of our implementation.
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6.2 State-of-the-Art

The possibility of performing network based intrusion detection on high-speed links (e.g.
on 0C-192 links) has been the focus of much debate in the intrusion detection community
recently. A common position is to state that high-speed network based intrusion detection
is not practical because of the technical difficulties encountered in keeping pace with the in-
creasing network speed and the more widespread use of encrypted traffic. Other researchers
(including the author of this dissertation) have advocated an approach where highly dis-
tributed network based sensors are located at the periphery of computer networks; the idea
being that the traffic load is more manageable there.

Even though both of these approaches above have their strengths, the previous section
introduced scenarios where analysis of network traffic on a single high-speed link still rep-
resents a fundamental need (e.g. port scan detection). The commercial world attempted
to respond to this need and a number of vendors now claim to have sensors that can op-
erate on high-speed ATM or Gigabit Ethernet links. For example, ISS [43] offers NetICE
Gigabit Sentry, a system that is designed to monitor traffic on high-speed network con-
nections. The company advertises the system as being capable of performing protocol
reassembly and analysis for several application-level protocols (e.g. HTTP, SMTP, POP) to
identify malicious activities. The tool claims to be the ‘first network-IDS that can han-
dle full Gigabit speeds’. However, the authors of the tool also state that Gigabit Sentry
handles a full gigabit in lab conditions, but real-world performance will likely be less. ‘[...]
Customers should expect at least 300 Mbps real-world performance, and probably more
depending up the nature of their traffic. [...] Gigabit Sentry can only capture slightly
more than 500,000-packets/second’. These comments show the actual difficulties of per-
forming network based intrusion detection on high-speed links. Other IDS vendors such as
Cisco [22] offer comparable products with similar features. Unfortunately, no experimental
data gathered on real networks is presented. TopLayer Networks [96] introduces a switch
that keeps track of application-level sessions. The network traffic is split with regard to
these sessions and forwarded to several intrusion detection sensors. Packets that belong
to the same session are sent through the same link. This allows sensors to detect multiple
steps of an attack within a single session. Unfortunately, the correlation of information be-
tween different sessions is not supported. This could result in missed attacks when attacks
are performed against multiple hosts (e.g. ping sweeps) or across multiple sessions.

Very few research papers have been published that deal with the problem of high-speed
intrusion detection. Sekar et al. [83] describe an approach for high-performance analysis
of network data, but unfortunately they do not provide experimental data based on live
traffic analysis. Their claim of being able to perform real-time intrusion detection at 500
Mbps is based on the processing of offline traffic log files. This estimate is not indicative
of the real effectiveness of the system when operating on live traffic.
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6.3 System Design

The problem of intrusion detection analysis in high-speed networks can be effectively ad-
dressed only if a scalable solution with respect to increasing network speeds is available.
Let us consider the traffic on the monitored network link as a bi-directional stream of link-
layer frames (e.g. Ethernet frames). This stream contains too much data to be processed
in real-time by a centralized entity and has to be divided into several smaller streams that
are fed into a number of different, distributed sensors. Each sensor is only responsible
for a subset of all detectable intrusion scenarios and can therefore manage to process the
incoming volume in real-time. Nevertheless, the division into streams has to be done in a
way that provides each sensor with enough information to detect exactly the same attacks
that it would have witnessed when operating directly on the network link.

6.3.1 Requirements

The overall goal is to perform stateful intrusion detection analysis in high-speed networks.
The approach presented in this chapter can be characterized by the following requirements.

e The system implements a misuse detection approach where signatures representing
attack scenarios are matched against a stream of network events.

e Intrusion detection is performed by a set of sensors, each of which is responsible for
the detection of a subset of the signatures.

e Each sensor is autonomous and does not interact with other sensors.
e The system partitions the analyzed event stream into slices of manageable size.
e Each traffic slice is analyzed by a subset of the intrusion detection sensors.

e The system guarantees that the partitioning of traffic maintains detection of all the
specified attack scenarios. This implies that sensors, signatures, and traffic slices
are configured so that each sensor has access to the traffic necessary to detect the
signatures that have been assigned to it.

e Components can be added to the system to achieve higher throughput. More pre-
cisely, the approach should result in a scalable design where one can add components
as needed to match increased network throughput.

6.3.2 System Architecture

The requirements listed in the previous section have been used as the basis for the design of
a network based intrusion detection system. The system consists of a network tap, a traffic
scatterer, a set of m traffic slicers Sy, ..., Sm_1, a switch, a set of n stream reassemblers
Ry, ..., R,_1, and a set of p intrusion detection sensors Iy, ..., I,_1. A high-level illustration
of the architecture is shown in Figure 6.1.

The network tap component monitors the traffic stream on a high-speed link. Its task is
to extract the sequence F of link-layer frames (fo, fi, ..., f;) that are observable on the wire
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Figure 6.1: Architecture of High-Speed Intrusion Detection System

during a time period A. This sequence of frames is passed to the scatterer which partitions
F into m sub-sequences Fj : 0 < j < m. Each F} contains a (possibly empty) subset of
the frame sequence F. Every frame f; is an element of exactly one sub-sequence F; and
therefore U?iS”Fj = F. The scatterer can use any algorithm to partition F. Hereafter,
it is assumed that the splitting algorithm simply cycles over the m sub-sequences in a
round-robin fashion, assigning f; to F; mod(m)- As a result, each Fj contains an m-th of
the total traffic.

Each sub-sequence Fj is transmitted to a different traffic slicer S;. The task of the
traffic slicers is to route the frames they receive to the sensors that may need them to
detect an attack. This task is not performed by the scatterer, because frame routing may
be complex, requiring a substantial amount of time, while the scatterer has to keep up
with the high traffic throughput and can only perform very limited processing per frame.

The traffic slicers are connected to a switch component, which allows a slicer to send
a frame to one or more of n outgoing channels C;. The set of frames sent to a channel is
denoted by FC;. Each channel C; is associated with a stream reassembler component R;
and a number of intrusion detection sensors. The set of sensors associated with channel
C; is denoted by IC;. All the sensors that are associated with a channel are able to access
all the packets sent on that channel. The original order of two packets could be lost if
the two frames took different paths over distinct slicers to the same channel. Therefore,
the reassemblers associated with each channel make sure that the packets appear on the
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channel in the same order that they have appeared on the high-speed link. That is, each
reassembler R; must make sure that for each pair of frames f;, fr € F'C; it holds that (f;
before f,) < j <k.

Each sensor component I; is associated with ¢ different attack scenarios A; = {4;o, ..,
Aj,—1}. Every attack scenario Aj; has an associated event space Ej;. The event space
specifies which frames are candidates to be part of the manifestation of the attack. For
example, consider an attack targeting a web server called spider within the network
protected by the intrusion detection system. In this case, the event space for that attack
is composed of all the TCP traffic that involves port 80 on host spider.

Event spaces are expressed as disjunctions of clauses, that is, Fj; = cji, V Cjk, V...V Cjk,, s
where each clause cj; is an expression of the type xRy. x denotes a value derived from
the frame f; (e.g., a part of the frame header) while R specifies an arithmetic relation
(e.g., =, !=, <). y can be a constant, the value of a variable or a value derived from
the same frame. Clauses and event spaces may be derived automatically from the attack
descriptions, for example, from signatures written in attack languages such as Bro [69],
Sutekh [75], STATL [31] or Snort [80] as well as our Event Description Language.

6.3.3 Frame Routing

Event spaces are the basis for the definition of the filters used by the slicers to route frames
to different channels. The filters are determined by composing the event spaces associated
with all the scenarios that are ‘active’ on a specific channel. More precisely, the set of
active scenarios is AC; = U]]-f(’fAj where A; is the set of scenarios of I; € IC;. The event
space FEC; for a channel C; is the disjunction of the event spaces of all active scenarios,
which corresponds to the disjunction of all the clauses of all the active scenarios. The
resulting overall expression is the filter that each slicer uses to determine if a frame has to
be routed to that specific channel. Note that it is possible that a certain frame could be
needed by more than one scenario. Therefore, it will be sent on more than one channel.

The configuration of the slicers as described above is static; that is, it is calculated
offline before the system is started. The static approach suffers from the possibility that,
depending on the type of traffic, a large percentage of the network packets could be for-
warded to a single channel. This would result in the overloading of sensors attached to that
channel. The static configuration also makes it impossible to predict the exact number of
sensors that are necessary to deal with a Gigabit link. The load on each sensor depends on
the scenarios used and the actual traffic. The minimum requirement for the slicers is that
the capacity of their incoming and outgoing links must be at least equal to the bandwidth
of the monitored link.

One way to prevent the overloading condition is to perform dynamic load balancing.
This is done by reassigning scenarios to different channels at run-time. This variant obvi-
ously implies the need to reconfigure the filter mechanism at the traffic slicers and update
the assignment of clauses to channels.

In addition to the reassignment of whole scenarios to different channels, it is also pos-
sible to split a single scenario into two or more refined scenarios. The idea is that each
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refined scenario catches only a subset of the attacks that the original scenario covered, but
each can be deployed on a different channel. Obviously, the union of attacks detectable by
all refined scenarios has to cover exactly the same set of attacks as the original scenario
did. This can be done by creating additional constraints on certain attributes of one or
more basic events. Fach constraint limits the number of attacks a refined scenario can
detect. The constraints have to be chosen in a way such that every possible value for
a certain attribute (of the original scenario) is allowed by the constraint of at least one
refined scenario. Then, the set of all refined scenarios, which each cover only a subset of
the attacks of the original one, are capable of detecting the same attacks as the original.

A simple way to partition a particular scenario is to include a constraint on the desti-
nation attribute of each basic event that represents a packet which is sent by the attacker.
One has to partition the set of possible destinations such that each refined scenario only
covers attacks against a certain range of hosts. When the union of these target host ranges
covers all possible attack targets, the set of refined scenarios is capable of finding the same
attacks as the original scenario. Such an approach is necessary when a single scenario
causes too much traffic to be forwarded to a single channel.

In addition, obviously innocent or hostile frames could be filtered out before the scenario
clauses are applied, thereby eliminating traffic that needs no further processing. This could
be used, for instance, to prevent the system from being flooded by packets from distributed
denial-of-service slaves that produce traffic with a unique, known signature.

6.4 Prototype Architecture

The initial set of experiments were primarily aimed at evaluating the effectiveness of the
scatterer/slicer/ reassembler architecture. For these experiments, we deployed three traffic
slicers (m = 3) and four stream reassemblers (n = 4) with one intrusion detection sensor
per stream. The next section presents the details of the hardware and software used
to realize the initial prototype while section 8.2 gives the details of the experiments we
performed and presents the corresponding results.

The prototype is composed of a number of hosts responsible for the analysis of the
traffic carried by a Gigabit link.

The Gigabit link is realized as a direct connection (crossover cable) between two ma-
chines equipped with Intel Xeon 1.7 GHz processors, 512 MB RAM and 64-bit PCI 3Com
996-T Gigabit Ethernet cards running Linux 2.4.2 (Red Hat 7.1). One of the two
machines simulates the network tap and is responsible for creating the network traffic (via
tcpreplay [98]). The other machine acts as the traffic scatterer and is equipped with three
additional 100 Mbps 3Com 905C-TX Ethernet cards.

The scatterer functionality itself is realized as a kernel module attached to the Linux
kernel bridge interface. The bridge interface provides a hook that allows the kernel to
inspect the incoming frames before they are forwarded to the network layer (e.g. the IP
stack). The scatterer module intercepts frames coming from the Gigabit interface and
immediately forwards them to one of the outgoing links through the corresponding Fast
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Ethernet card. The links are selected in a round-robin fashion. The scatterer also attaches
a sequence number to each packet, which is later used by the reassemblers. In order to
overcome the problem of splitting Ethernet frames with a length close to the maximum
transferable unit (MTU), the sequence number has to be integrated into the Ethernet
frame without increasing its size. To leave the data portion untouched, we decided to
modify the Ethernet header. We also aimed to limit the modifications of the Ethernet
frame to a minimum in order to be able to reuse existing hardware (such as network
interface cards and network drivers). Therefore, the MTU had to remain unchanged. For
this reason, we decided to use the six-byte Ethernet source address field for sequence
numbers. As a result, before the traffic scatterer forwards a frame, it writes the current
sequence number into the source address field and increments it.

The experimental setup demonstrates that the partitioning of traffic is possible and
that it allows for the detailed analysis of higher traffic volume (including defragmentation,
stream reassembly, and content analysis). Because we only use three traffic slicers (with an
aggregated bandwidth of 300 Mbps), sustained incoming traffic of 1 Gbps would overload
our experimental setup. However, the introduction of additional traffic slicers would allow
us to handle higher traffic inputs.

The traffic slicers (Intel Pentium 4 1.5 GHz, 256 MB RAM, 3Com 905C-TX Fast
Ethernet cards running Linux 2.4.2 - Redhat 7.1) have the NIC of the link that con-
nects them to the traffic scatterer set to promiscuous mode in order to receive all incoming
frames. The data portion of each incoming frame is matched against the clauses stored
for each channel. Whenever a clause for a channel is satisfied, a copy of the frame is for-
warded to that channel. Note that this could (and usually does) increase the total number
of frames that have to be processed by the intrusion detection sensors. Nevertheless, a
sufficiently large number of sensors combined with sophisticated partitioning enable one
to keep the amount of traffic at each sensor low enough to handle. In our test setup,
the partitioning (i.e. the clauses) was determined as follows. Similar to Snort [81], we
distinguished between an inside network and an outside network, representing the range
of IP addresses of the protected network and its complement, respectively. The protected
network address range is divided according to the existing class C subnetworks. The net-
work addresses are then grouped into four sets, each of which is assigned to a different
channel. This partitioning allows the system to detect both attacks involving a single host
and attacks spanning a subnetwork. As explained in Section 6.3.3, more sophisticated
schemes are possible by analyzing additional information in the packet headers or even by
examining the frame payload.

Once the filters have been configured, the frames have to be routed to the various
channels. As in the case for the transmission between the scatterer and the traffic slicers,
we want to prevent frames from being split when sent to the channels. This makes it
necessary to include the destination address information of the intended channel in the
Ethernet frame itself without increasing its size and without modifying the payload. To
do this, we use the link layer destination address. Therefore, the destination address is
rewritten with values 00:00:00:00:00:01, 00:00:00:00:00:02, etc. depending on the
destination channel. There were two reasons for using a generic link number instead of the
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actual Ethernet addresses as the target address for sensors. First, a number of sensors
may be deployed on each channel, processing portions of the traffic in parallel. Since each
sensor has to receive all packets on the channel where it is attached, selecting the Ethernet
address of a single sensor is not beneficial. Second, whenever the NIC of a sensor has to
be replaced, the new Ethernet address would have to be updated at each traffic slicer. In
order to save this overhead, each traffic slicer simply writes the channel number into the
target address field of outgoing frames.

The actual frame routing is performed by a switch (a Cisco Catalyst 3500XL) that
connects traffic slicers with reassemblers. The MAC address-port table of the switch holds
the static associations between the channel numbers (i.e. the target Ethernet addresses
set by the traffic slicers) and the corresponding outgoing ports. In general, backplanes of
switches have very high bandwidth compared to Ethernet links, so they are not likely to
be overloaded by traffic generated by the scatterer.

In our setup, the stream reassemblers are located at each sensor node (using the same
equipment as the traffic slicers), and they provide the intrusion detection sensors with a
temporally sorted sequence of frames by using the encapsulated sequence numbers. The
reassembly procedure has been integrated into libpcap so that every sensor that utilizes
these routines to capture packets can be run unmodified. For each frame, we assume that
no other frame with a smaller sequence number can arrive after a certain time span (cur-
rently 500 ms). This means that when an out-of-order packet is received, it is temporarily
stored in a queue until either the missing packets are received and the correctly-ordered
batch of packets is passed to the application or the reassembler decides that some packets
have been lost because a timeout expired and the packet is passed without further delay.
Therefore, each received packet is passed to the sensors with a worst case delay that is
equal to the timeout value. The timeout parameter has to be large enough to prevent the
situation where packets with smaller sequence numbers arrive after subsequent frames have
already been processed but small enough so that the reaction lag of the system is within
acceptable limits. Since the processing and transmission of frames is usually very fast and
no retransmission or acknowledgments are utilized, one can expect frames to arrive at each
reassembler in the correct order most of the time. In principle, this allows one to safely
choose a very short time span. We expect to have no problems in reducing the current
timeout value, but at the moment we have no experimental evaluation of the effect of
different timeout values on the effectiveness of intrusion detection.

The network cards of the nodes would normally be receiving traffic at rates close to their
maximum capacity. If administrative connections, such as dynamically setting clauses,
reporting alarms, or performing maintenance work were to go through the same interfaces,
these connections could potentially suffer from packet loss and long delays. To overcome
this problem, each machine is connected to a second dedicated network that provides a
safe medium to perform the tasks mentioned above. An additional communication channel
decoupled from the input path has the additional benefit of increasing the resiliency of the
system against denial-of-service attacks. That is, alarms and reconfiguration commands
still reach all intended receivers since they do not have to compete against the flood of
incoming packets for network access.
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6.5 Summary

This chapter presents an alternative approach to perform intrusion detection and event
correlation at a single, high-speed link. This enables our intrusion detection system to
cope with attack scenarios (such as port scans) that include distributed occurrences which
do not manifest themselves as connection patterns between nodes of the network.

As the main goal of our system is the applicability for large enterprise networks, it is
important to design the centralized approach in a scalable way that can deal with traffic on
very high speed links. This is realized by a slicing mechanism that partitions the network
traffic into portions that are manageable by single sensors. The partitioning is done in a
way that makes sure that every probe receives all the information it requires to detect its
assigned scenarios.

The performance of the prototype, which is presented in this chapter, is evaluated in
Section 8.2.
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Chapter 7

Adaptive Sensors

Adapt or perish, now as ever, is nature’s inexorable imperative.
- H. G. Wells

This chapter describes the second cornerstone of Network Alertness, the design of an
adaptive anomaly sensor [53].

As explained in Section 3.5, almost all network based anomaly detectors work with
underlying traffic models and monitor the flow of packets, i.e. bursts or complete sessions.
The source and destination IP addresses and ports are used to determine parameters such
as the number of total connection arrivals in a certain period of time, the inter-arrival time
between packets or the number of packets to/from a certain machine. These parameters
can be used to detect port scans or denial-of-service attempts. No current sensor is based
on a sufficiently powerful application model that would allow analysis of single packets.
We propose a novel approach that includes the packet payload as well. To circumvent the
problem of encrypted payload, the sensors have to be installed at the same host as the
service (or the application) that is receiving the packets. This allows the host to decrypt
the payload before it is analyzed by our probes.

To be able to react selectively to packets sent form a certain source, it is necessary to
be able to modify the threshold that separates normal from malicious behavior for every
single packet. This includes the analysis of the packet’s payload. The following sections
introduce the design and implementation of our proposed network based sensor that is
capable of performing anomaly based detection on the contents of packets.

The extension of the detection from protocol headers to the payload has the additional
benefit of having the possibility to find Remote-to-Local attacks (R2L). The term Remote-
to-Local attack has been coined during the DARPA sponsored MIT Lincoln Labs intrusion
detection evaluation [56] and specifies intrusion attempts from remote users with the aim of
getting unauthorized local access to the target host (typically with root privileges). Such
attacks usually exploit a vulnerability of a service at the target machine. This is done by
sending invalid input which causes a buffer overflow or an input validation error in the code
running the service. The attacker sends one (or a few) carefully crafted packets including
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shell-code which is executed at the remote machine on behalf of the attacker to elevate his
privileges. As the intruder only has to send very few packets (most of the time a single
one is sufficient), it is nearly impossible for systems that use traffic models to detect such
anomalies. Our sensor combines the capability of adapting to specific attack sources with
the potential to detect an important class of intrusions usually missed by network based
anomaly systems.

The table below shows the results of the top three intrusion detection systems for the
four different intrusion classes used in the DARPA evaluation.

Detection Rates ‘ Scans ‘ DOS ‘ U2R ‘ R2L
Known Attacks | 92% | 80% | 64% | 80%
New Attacks 88% | 22% | 66% | 8%

Table 7.1: DARPA Intrusion Detection Evaluation Results

The figure shows that less than 10% of new R2L intrusion attempts have been detected.
Known attacks describe intrusions that were used during the preparation phase of the
evaluation and were known to the developers of the participating systems. New attacks
describe intrusions that have been added for the actual evaluation. Therefore, the numbers
for the new attacks are more significant in determining the quality of IDSs. While probes or
DOS attacks provide the attacker with additional information or degrade the performance
of target machines, only R2L and U2R (User-to-Root)! intrusions actually compromise a
machine. Therefore, it is important to reliably detect such attacks.

7.1 Sensor Design

The idea of our adaptive anomaly detection is to extend current simple application mod-
els from considering only packet header information at the network and transport layer
(i.e. TCP flags in an application context) to include the application payload as well. Un-
fortunately, the payload of IP packets observed at a network usually varies dramatically.
When the entirety of all IP packets is considered, one can usually deduce only very little
information that can be used for statistical reasoning. Therefore, we cannot process the
payload of packets without some knowledge of the application that created them. This
makes it necessary to partition the network traffic and independently analyze packets sent
by different applications. By concentrating only on one type of traffic, statistical data with
lesser variance can be collected. This allows our probe to establish a notion of ‘normal
traffic’ for each service. Our sensors operate in a service specific setup where different
measurements for different application protocols are applied.

1 User-to-Root attacks specify intrusions where a local user unauthorized elevates his privileges (often
to obtain root permissions). Such attacks are not directly visible on the network.
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At first glance, the vast number of different protocols seems to make our approach
undesirable. Nevertheless, one should consider that it is not necessary to change the basic
detection code for each new service. We use a generic backend that is responsible for
the actual statistical anomaly detection. Service specific front-ends extract data from the
network and transform it into a format suitable for the back-end. Additionally, only a few
services need to be publicly accessible. By monitoring HTTP, DNS, SMTP, IMAP, POP and FTP
traffic, most of the protocols that have to be available for use by anonymous clients from
the Internet are covered. The first prototype that we have developed is currently able to
check DNS traffic.

As stated above, anomaly detection systems detect intrusions by comparing observed
behavior to expected behavior using certain metrics that are defined by the underlying
model. The expected behavior (called profile) has to be defined by the user or can be
automatically deduced during the training period. Because manual creation of expected
behavior is cumbersome and error prone, most systems extract profiles from training data.
It is important to point out the difference between approaches that require classified data
during the training period [59] (i.e. data samples that are marked explicitly as normal
or malicious) to build their models and those that do not [74]. Systems that are based
on classified samples extract features that basically allow the data to be clustered into
a normal and a malicious group. New data is then analyzed according to these selected
features and mapped into one of the sets (obviously raising an alarm when it is classified
as malicious). This approach has the drawback that classified data is rarely available in
new environments where the IDS has to be deployed. Therefore, these systems have to
utilize general models extracted from existing sample data. In changing environments, such
designs may produce many false alarms or miss actual intrusion attempts. We follow the
second approach that uses observed, unclassified traffic from the place where the system is
installed to form a model of ‘normal’ behavior. Any traffic that deviates from that model
is considered hostile.

Our module uses an initial, user definable training period during which it reads packets
from the network. As stated above, this data is split into service specific traffic and forms
the input to build our profiles. After that initial phase, our sensor switches to detection
mode in which the new traffic is compared to our application model to detect anomalies.
When the environment changes dramatically resulting in too many false alarms, it is simple
to update the application model by rerunning the training phase on the changed traffic.

The following section describes the features of network traffic that we use to build our
profile and the metrics that is used to determine the deviation of actual, observed traffic.

7.2 Packet Processing

The task of the packet processing step is to read the network traffic and extract suitable
input data for the following statistical processing step. It is implemented in a single module
called Packet Processing Unit (PPU). Our anomaly detection is based on the analysis of
the payload that is passed as input to the different network services. This implies that
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we cannot directly operate on the packet level itself as an attacker can easily distribute
his malicious payload over several datagrams. Tools such as fragrouter [87] help to split
and send data in several IP fragments or TCP packets. Therefore the statistical processing
receives a service request as the basis for its analysis.

A service request is the user supplied data which is sent over the network to a certain
service to perform a single task on behalf of that user. Usually, a network service is imple-
mented as a daemon operating in an interactive mode that waits for incoming connections
on a well-known port. In order to utilize its services, one has to open a connection to
the daemon port and provide input data. The input data basically consist of the exact
type of the desired service and additional parameters. The daemon parses the supplied
information, processes it and returns the results. It then terminates the connection or
awaits further input. We call the user supplied input sent to the daemon in such a single
transaction a service request. Depending on the service and its exact type, requests can
have different formats and layouts.

For a HTTP request to a web server, the type of service can be GET, HEAD or POST and
contains parameters such as the URL or the type of browser the user runs. In case of DNS,
a service request is usually a single packet that contains the DNS name which should be
resolved or an IP address that needs to be mapped to a DNS name.

The PPU has to extract service requests from the stream of packets on the wire to pass
them to the statistical processing step. The packet processing takes place in two stages.
The first one is service independent and performs generic IP and TCP stream reassembling.
It passes complete UDP packets or acknowledged segments of a TCP stream to the second
stage. This second stage needs service specific knowledge and has to extract single service
requests from its input. It therefore requires basic understanding of the layout of requests
although in most cases, only very limited information is necessary. The end of a request can
usually be determined by watching for an end-of-request character or character sequence
(e.g. two CTRL-LF characters in a HTTP request) or by checking a length field in the request
header (e.g. the number of fixed size resource records in a DNS query). The type of
service is also easily determined by a string (e.g. GET in case of HTTP) or a header value
(e.g. query type and class in case of DNS). The assignment of a type to a certain request is
not enforced by the service protocol itself. It is possible to assign different types to requests
that are considered equal by the service protocol (and by the daemon implementing the
service). In the case of a HTTP request, the fact that it is a GET request may be used
to perform a more detailed analysis on the URL (e.g. one can assign different types to
requests that invoke cgi-programs or php-scripts). The complete service request together
with its type then enters the statistical processing phase.

7.3 Statistical Processing

The statistical processing step is realized by a module called Statistical Processing Unit
(SPU). The SPU is only considered with requests and their types. As stated above, the
statistical properties of requests for different services can be very diverse. But even different
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types of requests for a single service can vary significantly. In case of HTTP traffic, standard
GET requests look very similar but a POST request that transmits lots of data keyed in by a
user into a HTML form may be different. Therefore, requests are divided into several groups
where each group contains requests of types with similar statistical properties. The requests
of each group are then analyzed independently. Currently, the division of requests has to be
done manually by the developer who adds a new service (protocol) to the IDS. We plan to
develop a metrics that allows our sensor to automatically find similar properties of different
request types after the initial setup period and group them accordingly. Nevertheless, most
requests for a certain service are very similar and a reasonable starting point is to divide
all requests into groups according to the associated network service.
The following properties of a request are used to determine its anomaly score.

1. Type of Request
2. Length of Request
3. Payload Distribution

The anomaly score is compared to a threshold that can be manually set by the security
administrator. It should initially be set to a value where no more than ten false alarms
are reported per day?. In Section 8.3 we show that this level allows our sensor to detect a
significant majority of attacks. While the system is operating and hostile patterns emerge,
Quicksand response components alter the threshold to be more sensitive to service requests
from suspicious sources.

The anomaly score of a service request is the weighted sum of the three scores computed
for each of the three properties enumerated above. A number of constant factors have been
introduced into the formulas that are discussed in the next few sections. Most of them are
used to force the scores calculated for each of the three properties above into the same order
of magnitude and could be changed (scaled appropriately) without affecting our sensor.
A few, which have been determined empirically, are needed to reflect our considerations
accordingly.

7.3.1 Type of Request

Including the type of request as a property in calculating the anomaly score has the follow-
ing rationale. Often, exploits that are based on buffer overflows or input validation errors
use a feature of a network service that is rarely or infrequently requested by users. Basic
services are usually well understood and have been used extensively over a long period of
time. An extra feature that has been added for a very specific purpose or very recently
is often less understood and has not been exposed to such a large number of input data
(and test cases). Therefore, it is more likely that the implementation of these features
contains security flaws that can be exploited. The recent, well-known attacks against the

2Ten false alarms per day are considered to produce an acceptable low noise level that allows a system
to be used in a production environment.
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bind implementation of the domain name service (DNS) are not targeted against the stan-
dard name translation routines but against the code that handles NXT (next record) or
TSIG (transaction signature) [16, 17] queries. When only half of all Remote-to-Local
exploits abuse infrequently used features, the probability that such a request contains
malicious payload is much higher than that of a regular one.

We therefore assign higher anomaly scores to requests that are of types that occur less
frequent. The anomaly score (AS) is calculated as follows

ASyype = —log, (pltyp])
pltyp] is given as the probability that a certain request is of type typ. This probability
is equal to the relative frequency that a request with type typ has occurred during the
training period. In order to prevent too high anomaly scores (or even infinite values)
for request types that occur very infrequent (or not at all during the training period) the
probability of each request type is set to be at least 3.05%x107° (yielding a maximal anomaly
score of 15.0).

7.3.2 Length of Request

The length of a request can be a good indicator for the correctness of its content. Usually,
a service request consists of some protocol specific information and user (or user program)
supplied input. The length of the protocol information does not vary much between re-
quests of a certain type. The user supplied input mostly consists of a few, short strings
(e.g. a domain name or URL) in human readable form and does not cause much varia-
tion in the total length either. The situation looks different when requests carry input to
overflow a buffer in the target service. It is necessary to ship the shell-code itself (which
has a typical length of a few hundred bytes) and additional padding that depends on the
length of the buffer which is targeted. Instead of a short URL or a simple domain name,
the user supplied part contains several hundred bytes. This obviously increases the total
length of the request. The anomaly score is calculated by using the mean (u) and the
standard deviation (o) of the lengths of the requests that have been monitored during the
training period. The following formula is used for a request with the length [. The anomaly
score grows exponentially as the request length increases. In order to tolerate a reasonable
amount of deviation of the length values, we use 1.5 as the base and multiply o with a
constant factor of 2.5.

AS,., = 1.555
This formula has the property that it assigns anomaly scores greater than 1.5 (the base
of the exponential function) only to requests that are longer than the average. This is

consistent with our assumption that malicious payload increases the total length. The
maximum value of ASj,, is limited to 15.0.
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7.3.3 Payload Distribution

The biggest advantage in extending the application model to consider the payload of re-
quests is the possibility to analyze it for the occurrence of abnormal content. As we do not
intend to do signature based analysis we have to build a model of a ‘normal’ payload. Our
model is based on the observation that requests mainly contain printable characters and
human readable strings. For example, a HTTP request consists of several plain text lines
and DNS queries contain domain names as strings. This implies that a large percentage of
characters in such requests are drawn from a small subset of all 256 possibilities (ASCII
values for letters, numbers and a few special characters). Like in English text, those char-
acters are not uniformly distributed but occur with different frequencies. Obviously, we
cannot, expect that the frequency distribution is identical to a standard text. Even the
frequency of a certain character (e.g. the frequency of letter ‘e’) varies tremendously
between requests. Nevertheless, there are similarities between the character frequencies
in different service queries. These become apparent when the relative frequencies of all
possible 256 characters are sorted in descending order (obviously, many will be 0 for a
typical request). Our payload analysis is only based on the frequency values themselves
and it does not matter whether the character with the most occurrences is an ‘e’ ora ¢.”.
We call the sorted, relative character frequencies of a request its character distribution.

Consider the text string ‘Aaaza’ with the corresponding ASCII byte values ‘65 97 97
122 97’. The left diagram of Figure 7.1 shows the absolute occurrences of the bytes that
are contained in the string above. The right diagram displays the sorted, relative fre-
quencies (i.e. character distribution) which have been calculated from the absolute values
represented as a histogram.
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Figure 7.1: Character Distributions

For the payload of a regular request, one can expect that the relative frequencies slowly
decrease in value when one moves in the direction of the positive x-axis. In case of abnormal
payload the frequencies can drop extremely fast (because of a peak caused by a very
high frequency of a single character) or barely (in case of a nearly uniform character
distribution).

The character distribution of a perfect normal packet is called payload distribution
(PD). The payload distribution is a discrete distribution with

PD:D— PwithD={neN|0<n<255}and P={peR0<p<1}
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The relative frequency of the character that occurs n-most often (0-most denoting the
maximum) is given as PD(n). When the histogram in Figure 7.1 is interpreted as a payload
distribution then PD(0) = 0.6 and PD(1) = 0.2.

The payload distribution is calculated during the training period. In this period, the
SPU stores the character distributions of all received requests. The payload distribution
is then approximated as the mean of all character distributions. This is done by setting
PD(n) to the mean of the frequencies for the n-most frequent character of all requests. As
we have operated on relative frequencies that sum up to 1.0, the means will do so as well
(making the payload distribution well-defined).

For each request received in detection mode, we assume that the character distribution
is a sample drawn from the payload distribution. We use a statistical test to determine the
likelihood that the sample is really derived from the payload distribution. For a normal
request the test should yield a high confidence in the correctness of this hypothesis while
it should be rejected for malicious payload. We use a variant of the Pearson y2-test as our
‘goodness-of-fit’ test.

For our intended statistical calculations, it is not necessary to operate on all values of
PD directly. Instead, it is enough to consider a small number of intervals. Therefore, we
divide the domain of PD into a total of six segments (as shown in the table below).

Segment |0 1 2 3 4 5
x-Values\o 1-3 4-6 7-11 12-15 16-255

Table 7.2: PD-Intervals for x2-Test

The expected relative frequency of characters in a segment can be easily determined
by adding the values of PD for the corresponding x-values. As the relative frequencies
are sorted in descending order we expect the values of PD(n) to be more significant for
our anomaly score when n is small. This fact is clearly reflected in the division of PD’s
domain.

When a new request arrives, the absolute number of occurrences for each character
is determined. Afterwards, these values are sorted in descending order and combined
according to the table above (aggregating values that belong to the same segment). The
x2-test is utilized to calculate the probability that the given sample (derived from this
request) has been drawn form the payload distribution. The standard test requires the
following steps to be performed.

1. Calculate the observed and expected frequencies - The observed values O; (one for each
segment) are already given and the expected number of occurrences F; are calculated
by multiplying the relative frequencies for each of the six segments with the length
of the request.

2. Compute the x*-value as x* = =% (011_57&)2
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3. Determine the degrees of freedom and obtain the significance - The degrees of freedom
for the y2-test are identical to the number of addends in the formula above minus 1.
This yields 5 in our case. The actual probability that the sample is derived from the
payload distribution (i.e. significance of the sample) is read from a pre-defined table
using the y2-value as index.

The x?-values themselves increase as the likelihood that the sample stems from the
payload distribution decreases. Therefore, it is not necessary to first perform the table
lookup in step 3 and then transform the probability back into an anomaly score. The
x2-value can be used directly for the computation of the score. As stated above, the test
operates on absolute values. This results in higher absolute y2-values for longer packets
than for short ones even though they have the same relative deviation from the payload
distribution. As the packet length is already factored into our anomaly score, we divide
the y2-value by the payload length 1 to get a length independent result. This result is then
multiplied by a constant factor of 15.0 (the maximum used for both other properties) to
get scaled to the correct order of magnitude. The maximum is set to 20.0 (in contrast to
15.0 to reflect the higher importance of this property).

ASpq = X * 1—15
This approach is very efficient. In the following Section 8.3, we show by means of experi-
mental data that this method is able to distinguish between normal and malicious requests
for certain applications. It has the additional advantage compared to signature based sys-
tems that it cannot be fooled by some well known attempts to hide the attacker’s payload.
Signature based systems often contain rules that cause an alarm when long sequences of
0x90 bytes (nop operation of Intel x86 [41] based architectures) are detected in a packet.
As a consequence, attackers substitute such sequences with assembler instructions that act
similar (e.g. add rA, rA, 0 - which adds 0 to the value in register A and stores the result
back to A). This prevents signature based systems from detecting such attacks. In our case,
such sequences still cause a distortion of the request’s character distribution and result in
high anomaly scores. In addition, characters in malicious payload are often XOR’ed with
constants or shifted by a fix value (ROT-13 code). Such evasion attempts do not change
the resulting character distribution and the anomaly score remains the same.

7.4 Anomaly Score

The anomaly score is a value that specifies the extent of the deviation of the received
request from the expected values specified by the profile. It is a compound value derived
from the factors that have been described above and is calculated as follows.

AS = 0.3 x ASype + 0.3 % ASje, +0.4 x AS,q

The anomaly score for each request can be in a range from 0 to 17.00 (when each addend
contributes to the sum with its maximum). The payload anomaly score has slightly more
weight to reflect its importance. This score is compared to a threshold that can be chosen
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by the security administrator. The default threshold is computed during the training phase
and set to a value that would cause 10 false alarms per day when the sensor receives the
training data itself as input. A lower threshold means that is more likely that attacks are
detected with the disadvantage of an increasing number of false alarms. The limit should
be set to the lowest value possible provided that the number of false alarms is manageable.
This decision depends on the type of traffic that is seen on the network and a policy which
decides how many false alarms are considered acceptable. The evaluation presented in
Section 8.3 shows that our prototype module managed to detect all our attacks by setting
the threshold to a value that produced significantly less than 10 false alarms per day during
our experiments.

7.5 Summary

This chapter presents an intrusion detection sensor that uses statistical anomaly detection
to find Remote-to-Local attacks targeted at essential network services. We use a service
based approach that separates statistical data for requests to different services to improve
our detection capability. In contrast to other systems which mainly rely on information in
the network and transport layer headers (TCP/IP) to perform their analysis, we propose
an extended application model that includes the payload as well. This allows to adapt the
detection to single packets sent from specific sources instead of requiring the aggregation
of packets over whole sessions.

The sensor is integrated as a plug-in into the Quicksand intrusion detection framework
and enables correlating nodes to change the anomaly threshold when analyzing traffic
from suspicious senders. The knowledge of emerging hostile patterns that is gained by
the distributed detection process is utilized to modify the data gathering itself. This feed-
back mechanism allows nodes to tighten the analysis of packets from potentially malicious
sources and realizes the envisioned behavior of Network Alertness.
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Chapter 8

Evaluation

The farther the experiment is from theory the closer it is to the Nobel Prize.
— Frederic Joliot-Curie " A Random Walk in Science”

The aim of this chapter is to determine whether our proposed intrusion detection frame-
work fulfills the requirements of Network Alertness. We evaluate the properties of the
distributed correlation process, the centralized high speed detection prototype and the
adaptive sensor module.

The focus of Network Alertness is on a system that is deployable in large networks,
therefore the detection mechanisms must be scalable and fault tolerant to a large extent.
Both, theoretical considerations as well as experimental data, help to support our claim that
the designed framework meets these requirements. The evaluation of the sensor module
concentrates on its ability to analyze the payload of single packets and the efficiency of the
detection scheme.

8.1 Distributed Correlation Approach
This section evaluates the

e scalability and

e fault tolerance

properties of the proposed distributed detection processes. This makes it necessary to
define the evaluation criteria that we use to quantify these properties.

We measure fault tolerance as the percentage of nodes of the complete network which
have their events correlated after a single machine running parts of the IDS (sensor or
correlator) fails or is taken out. This indicates the percentage of distributed patterns that
can still be detected. When a node failure partitions the set of hosts into several subsets
where events are still related within each of these subsets, the highest percentage among
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all of them is chosen. When a correlator that is responsible only for a subset of all nodes
fails, the remaining system may still perform event correlation on a reduced set of hosts.
The fault tolerance measures exactly that fraction of nodes.

The scalability of distributed intrusion detection systems is characterized by two values.
One indicates the total network traffic between all nodes (total traffic) while the other
measures the maximum network traffic at a single node (peak traffic).

We compare our completely decentralized system (distributed approach) to a design
that deploys sensors at every host and centrally collects their data (centralized approach)
and to one that introduces several layers of processing nodes (hierarchical approach) on
top of the sensors which forward data that might be part of a larger attack scenario to
upper level sensors. An example of a centralized system is NSTAT (see Section 3.1.2),
while Emerald and AAfID (Sections 3.2.2 and 3.2.3) follow a hierarchical approach.

8.1.1 Theoretical Considerations

For our theoretical discussion, we assume a network with n hosts and the occurrence of
n * e interesting events during a time interval of length A. The interval A also specifies
when messages ‘time out’ and are removed from the detection process. While the number
of events in the whole system is assumed to be proportional to the number of nodes,
the number of events at each single host may not exceed a certain threshold 7. This is
reasonable as it allows a certain variance of the distribution of events within the system
(i.e. modeling local hot spots such as web or file servers in very large networks) without
allowing a single node from having to deal with arbitrary many events as the number of
nodes grows larger.

The coverage of a network after a single node failure is given below for the different
approaches. We assume that the hierarchical system uses | = |log,,((m — 1) * n)| layers
with m* nodes (k ... 0 to [ — 1) in each layer, where m specifies the number of children for
each node.

System Type of Node Coverage
Centralized Sensor nT_l
Correlator 0
Hierarchical | Sensor nT_l
Correlator (at Layer k) | n — m:;ffl
Root (Layer 0) ol
Decentralized | Node nl

Table 8.1: Fault Tolerance Properties

The loss of a node at layer k in the hierarchical model stops correlation of the complete
1

subtree with % nodes. When the root is lost, each subtree with “= nodes can still

110



do correlation. Not surprisingly, this shows that centralized and hierarchical system are
more vulnerable especially to the loss of important nodes (i.e. nodes in top layers or the
root itself) than our completely distributed design. We perform correlation only at nodes
where the relevant events are actually observable, therefore a loss of some hosts cannot
influence the detection capability of the remaining system.

The theoretical scalability values of our system depend on assumptions about the used
patterns and the number of send events to different targets during the time interval A.

As explained in Section 4.2.3, all messages at the send node have to be copied to each
new target of a send event. This results in message traffic which is proportional to the
number of send events to different targets during A. The average number of send events
at a single node during A is indicated as w. Depending on the used patterns, different
amounts of messages have to be copied over send event links. In the optimal case, only
one message instance, representing the send event itself, has to be transmitted. When the
attack scenario contains dynamic constraints between events that are separated by one or
more send event link, additional messages have to be moved to the target host as well.
The situation worsens when a message has to be moved over several consecutive send links
as it gets copied to each target at every step (yielding potential exponential growth of
the number of messages). Therefore, the depth 0 of a pattern (defined as the maximal
number of consecutive send links a message has to traverse) is an important factor to
determine scalability of our system. Usually, not all event patterns define or use variables
and messages created from those events do not need to be forwarded. We denote v (with
v < 1) as the fraction of pattern descriptions of an attack scenario that actually do define
or use variables and result in messages that might need to be transferred over the net.
When e events occur at a single node, on average only e v of them need to be transmitted
over send links.

As each message only contains part of the data of the complete event object we save
bandwidth in comparison to systems that have to send the whole event itself (because they
do not know which information is important at the higher levels). The ratio between the
event object size and the message size (including id and timestamp) is written as r.

The explanation (and notation) given above allows us to formulate the estimate of the
total network traffic as

n* (e v) xw’

(8.1)

r
As each node equally participates in the detection process, the peak traffic is equal to
the expected average traffic at a single node which results in

O (exv)xw

- (8.2)

nxr r

n* (e*v)*w

Although Equation 8.2 shows the potential for an exponential explosion of the needed
network traffic, the next section will show that ¢ which only depends on the used patterns
is usually very small for our area of application (e.g. none of our attack scenarios had
a ¢ greater than 2). Note that the peak traffic does not depend on the total number
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of nodes in the system which means that under our assumptions the system is perfectly
scalable. Although the situation may be different in practice, the formula indicates good
scalability properties for our design. Additionally, the factors v and r help to keep the
total bandwidth utilization reasonably low.

Table 8.2 shows the total and peak traffic values for a centralized and a hierarchical
solution. We assume that each hierarchy layer is capable of reducing the events it forwards
to a higher level node by a constant factor c.

System Total Traffic | Peak Traffic
Centralized e*xn e*xn
Hierarchical |exn* X!t e | exnxd™?
Decentralized LGOI (exv)set

r r

Table 8.2: Scalability Properties

The total and peak traffic values for the centralized solution reflect the fact that all
event data is sent to a single location. The traffic in the hierarchical system is created
by nodes that forward data up to higher layers. As a fraction (determined by c¢) of the
event data is forwarded over several levels the total traffic consists of the sum of the traffic
volumes between each layer. The peak traffic occurs at the root node (i = [ —1). Although
it is significantly smaller than in the centralized case, it still depends on the number of
nodes in the system.

In both the decentralized and the hierarchical system, the total traffic volume increases
when compared to a centralized design. Nevertheless, the peak traffic indicates that they
scale much better than a centralized one.

8.1.2 Experimental Results

Our intrusion detection system is designed to provide a scalable solution for enterprise
sized networks. Unfortunately, we do not have the resources to perform scalability tests
on such a scale. A simple simulation does not seem reasonable because it would, based
on our assumptions, exactly deliver the results we have derived theoretically. Therefore,
we decided to perform an actual experiment but had to restrict ourselves to our depart-
ment’s network. We ran processes executing our detection algorithm on the web server,
the DNS server, our firewall and six additional hosts. These machines are running Linux
2.2.14 and Sun0S 5.5.1 on different Pentium II, Athlon and Sparc hosts. The idea is
to gather experimental data that can be compared to values that we would expect given
our theoretical considerations.

We use our anomaly sensor described in the previous Chapter 7 and the Snort based
network sniffer to collect data from the network. We provided EDL definitions for interest-
ing network packets (i.e. TCP, UDP, IP and Ethernet) as well as for Snort alerts. These are
the basic building blocks for attack scenarios written in our Attack Specification Language.
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We specified 16 different distributed patterns that aim to detect distributed signatures and
anomalies with the following properties.

Property ‘ Average ‘ Maximum ‘ Minimum
Pattern Depth (3) ‘ 1.19 ‘ 2.00 ‘ 1.00

Fraction of Events with Variables (v) 0.83 1.00 0.50

Table 8.3: Properties of Distributed Patterns

The given numbers in Table 8.4 are based on a week of real data collected in our network
during which we processed 16374 events. We used a time interval (A) of 24 hours.

Property Average | Maximum | Minimum
Events per A 2340 3818 1732
Send Event Targets for Single Node (during A) 1.62 5 0
Total Traffic (in Messages) 3922 7536 3159
Peak Traffic (in Messages) 1011 2722 744

Table 8.4: Message Traffic

An analysis of the traffic showed that our system was exposed to a number of real
intrusion attempts where one was even successful (exploited a hole in our FTP-server).
This supports our assumption that we used real traffic including actual attacks for our
evaluation. As expected, our used patterns did not result in a message explosion and the
total number of messages never exceeded twice the number of actual events. When one
also considers that only relevant attributes (mainly 2 or 4 bytes) instead of the whole
event have to be transmitted, the used bandwidth is comparable to a centralized system.
The unexpected high peak traffic values resulted from many scans that included port 80
which the firewall reported to the web server. In our setup, a high fraction of the messages
concentrated on two machines (web server, DNS server) while regular nodes transmitted
fewer messages. However, an increase of nodes in our local network would not raise the
load at these machines significantly (as the port scan messages were caused by machines
on the Internet anyway) while producing more total traffic inside the network. In such a
case (which also applies to large enterprise intranets), we expect that the ratio between
the messages at these servers and messages at regular nodes decreases.

8.2 Centralized High-Speed Approach

The goal of the set of experiments described in this section is to get a preliminary evaluation
of the effectiveness of our centralized sensor implementation. The general assumption is
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that we are interested in in-depth, stateful, application-level analysis of high-speed traffic.
For this reason, we chose Snort as our ‘reference’ sensor and we enabled reassembling and
defragmentation.

8.2.1 Experimental Results

To run our experiments we used traffic produced by MIT Lincoln Labs as part of the
DARPA 1999 IDS evaluation [56]. More precisely, we used the data from Tuesday of the fifth
week. The traffic log was injected on the Gigabit link using tcpreplay [98]. To achieve
high speed traffic we had to artificially ‘speed up’ the test traffic which has been recorded
on a Fast Ethernet (an option supported by tcpreplay). We assumed that this would
not affect the correctness of our experiment. We also assumed that the LL/MIT traffic is a
reasonable approximation of real-world traffic. This assumption has often been debated,
but we assume that for the extent of the tests below, this is reasonable.

The first experiment was to run Snort on the traffic log containing the test data. The
results of this ‘offline’ run were 11,213 detections in 10 seconds with an offline throughput
of 261 Mbps. The rule set used included 961 rules.

Outside
Internet

Figure 8.1: Single-Node Snort Setup

The second experiment was to run Snort on a single node monitor. The setup is shown
in Figure 8.1. In practice, Snort is run on the scatterer host and it reads directly from the
network card. We measured the decrease in effectiveness of the detection when the traffic
rate increases'. The rule set used included only the 18 rules that actually fired on the test
data obtained during the first test. Figure 8.2 shows the results of this experiment. The
reduced performance is due to packet loss, which becomes substantial at approximately
150 Mbps. This experiment identifies the saturation point of this setup.

The third experiment was to run Snort in the simple setup of Figure 8.1 with a constant
traffic rate of 100 Mbps and an increasing number of signatures. The experiment starts
with only the eighteen signatures that are needed to achieve complete detection for the
given data. The plot in Figure 8.3 shows how the performance decreases as more signatures

!The limit of 200 Mbps in the graphs is the maximum amount of traffic that tcpreplay is able to
generate.
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Figure 8.2: Single-Host Detection Rate for increasing Traffic Levels

are added to the sensor. This experiment demonstrates that such a setup is limited by the
number of signatures that can be used to analyze the traffic stream.
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Figure 8.3: Single-Host Detection Rate for increasing Number of Signatures

The fourth and fifth experiments repeated the previous two experiments, but now by
using Snort sensors in our proposed architecture. Figure 8.4 and 8.5 present the results of
these experiments.

The performance of the single node experiments are included for comparison. The drop
in detection rate at high speeds by the distributed sensor which can be seen in Figure 8.4
is caused by packet loss in the scatterer. The network cards currently used for the output
traffic are not able to handle more than about 170 Mbps. The experimental results show
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Figure 8.4: Distributed Detection Rate for increasing Traffic Levels

that the proposed architecture has increased throughput and is much less sensitive to the
number of signatures used.

8.3 Adaptive Sensors

This section evaluates the prototype of our adaptive sensor that can process and analyze
DNS requests. In contrast to HTTP that sends requests in plain text, the DNS protocol uses a
simple compression mechanism to shorten the length of requests by substituting substrings
of domain names with pointers to previous occurrences of these strings. This could have
a negative effect on our assumption regarding the character distribution. Below, we show
the results of our service specific anomaly detection sensor that has been installed on the
DNS server of our department.

The service independent part of the packet processing unit (PPU) has been realized
with Snort [81] because it already has the ability to reassemble IP and TCP traffic. It
offers an interface that allows developers to use custom modules as plug-ins. We realized
the service dependent part of our PPU as such a plug-in that is inserted directly after
Snort’s IP/TCP reassembly stage. This allows us to operate on completely reassembled
UDP packets or acknowledged chunks of TCP streams.

Usually, DNS uses a single UDP packet to transmit a request to the server. In such a
case, the complete payload of the packet can simply be passed to the statistical processing
unit (SPU). In case of a request that is transmitted over a TCP stream, the PPU connects
subsequent TCP stream chunks which it receives from the TCP reassembler. The simple
header of the DNS request is parsed to determine the amount of data that is transmitted.
When the complete request has been observed, it is passed to the SPU.

It is not entirely obvious how the type of a DNS request should be determined. In order
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Figure 8.5: Distributed Detection Rate for increasing Number of Signatures

to save overhead, each request contains a number of records (called resource records) that
usually have different types. Nevertheless, each DNS request contains a distinguished first
resource record (called question) that specifies the desired operation. We use the type of
that question resource record to calculate the type dependent anomaly score.

Several tables show the application model that was built during a training period of 24
hours. A total of 75463 requests with average length (u) 39.572 and variance (o) 31.915
have been processed.

Type Explanation Occurrences | relative Freq.
PTR Reverse DNS Query 57306 0.7594
A DNS Query 15963 0.2115
ANY Request all Records 1167 0.0155
AAAA | IPv6 Query 599 0.0079
MX Mail Exchange Query 317 0.0042
SOA Zone of Authority 111 0.0015
Total 75463 1.0000

Table 8.5: Request Type Distribution

Table 8.5 above shows the absolute and relative occurrences of requests with respect to
their type.

Table 8.6 below shows the expected character frequencies for all six segments as de-
termined by the payload distribution. The first 32 values of the payload distribution are
displayed in the left diagram of Figure 8.6.

After the initial training period, we used the resulting application model to test our ID
sensor on the department’s DNS server for 10 days. During this time, our module processed
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Segment ‘ 0 1 2 3 4 5
Expected Freq.‘O.ll? 0.257 0.185 0.199 0.117 0.1253

Table 8.6: Expected Request Character Frequencies
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Figure 8.6: Payload and Anomaly Score Distribution

688388 DNS requests. Table 8.7 shows the absolute and relative number of requests with
respect to their anomaly score. In addition, the relative numbers are visualized in the right
diagram of Figure 8.6.

Score | Absolute | Relative || Score | Absolute | Relative
[0,1] 507041 | 0.73653 || [6, 7] 76 | 0.00011
[1,2] 112319 | 0.16316 || [7,8] 14 | 0.00002
[2, 3] 53294 | 0.07742 | [8,9] 6 | 0.00001
[3,4] 13136 | 0.01902 || [9, 10] 0 | 0.00000
[4,5] 2240 | 0.00325 || [10,11] 0 | 0.00000
[5, 6] 262 | 0.00038 || [11,12] 0 | 0.00000

Table 8.7: Absolute and Relative Distribution of Anomaly Scores

We have increased the default threshold of 6.97 to 7.0 and received only 20 false alarms
during the complete test period (an average of only 2 per day). The false alarms have
been exclusively caused by very short requests that contained less than 20 characters. As
the x?-test is inaccurate for very small samples their A,; score was the maximum possible.
Additionally, they have been of types that only occur infrequently. Our sensor could be
modified to put lesser weight on the y2-value for small samples to reflect this inaccuracy.
In that case, the threshold of 7.0 might have resulted in no false alarms at all.

The payload of all requests that have been received during the test period were dumped
into a file with a final size of 67.2 MB. We measured the additional load that our traf-
fic analysis inflicted on the DNS server by running our module offline on that dump file.
The average runtime (after executing the program ten times) on a Pentium 4 (1.4 GHz -
512 MB RAM - Linux 2.4.2) to process the complete file was 41.3 seconds. As 10 days
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worth of data could be analyzed in under a minute the additional load on the DNS server
was negligible.

After the encouraging false alarm rate was explored, we attacked our DNS server with
several actual exploits (obviously we use the latest, patched version of bind). Our tests
included five DNS exploits listed in arachNIDS [6], a well known exploit database, and
additionally the famous but now outdated NXT (‘ADM rocks’) exploit. The arachNIDS site
lists a total of 8 offending signatures of potential attacks against port 53 (used by DNS).
Three of them describe regular requests (e.g. requesting a zone transfer) that might be
used by an attacker to get information. They are not included in our tests because they can
be used in unmodified form by authorized clients to perform legal requests and therefore
should not raise an alarm.

Table 8.8 lists properties and anomaly scores (AS) for all six test cases. All exploits
use requests of types that have not occurred during our training phase and received the
maximum A, scores.

Test Case Length | Ayp | Aien Apa AS
T1 - IQuery 27 | 15.0 | 1.07 | 14.48 | 10.61
T2 - Tsig LSD 509 | 15.0 | 10.86 | 8.99 | 11.36
T3 - Tsig OWN 546 | 15.0 | 13.11 | 16.36 | 14.98
T4 - Infoleak 24 | 15.0 | 1.08 | 13.74 | 10.32
T5 - Tsig Lucy 533 | 15.0 | 12.27 | 9.43 | 11.95
T6 - Nxt 557 | 15.0 | 13.87 | 20.00 | 16.66

Table 8.8: Anomaly Scores of Attacks

Table 8.9 shows for each exploit request the actual and expected character frequencies
for all six segments that have been used to calculate A,4. Figure 8.7 shows typical character
distributions of two exploits. The left diagram shows a distribution with a very large slope
while the distribution in the right one is too uniform.
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Figure 8.7: Exploit Character Distributions

All malicious requests have anomaly scores greater than the threshold and have been
correctly identified as attacks. Notice that in addition to that, all intrusions have anomaly
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Test Case | Seg. 0 | Seg. 1| Seg. 2 | Seg. 3 | Seg. 4 | Seg. 5
IQuery 13 7 3 4 0 0
3 7 6 5 3 3
Tsig LSD 180 105 33 35 18 138
59 130 93 102 60 65
Tsig OWN 275 67 33 40 23 108
64 139 101 108 65 69
Infoleak 11 8 3 2 0 0
3 6 4 5 3
Tsig Lucy 121 69 39 53 36 215
62 135 100 106 63 67
Nxt 61 39 31 46 32 348
64 143 102 112 66 70

Table 8.9: Expected and Actual Character Distribution of Attacks

scores that are larger than those of every regular request received during normal operation.
This indicates that the threshold could be further raised without missing any attacks.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

After all is said and done, a lot more will be said than done.
— Unknown

This dissertation introduces Network Alertness, a novel concept for cooperating intru-
sion detection sensors that correlate event data to find and adaptively react to distributed
attacks. Nodes exchange information of suspicious activity and can become aware of attack
scenarios that affect multiple hosts in parallel; a problem that has been recently coined the
‘Great Challenge’ in intrusion detection by the DARPA [25]. The techniques necessary to
implement our vision and contribute to the solution of this challenge have been presented
and evaluated.

Network Alertness is based on a distributed framework that enables nodes to collaborate
in a peer-to-peer fashion to identify emerging hostile patterns. These patterns can be
described in an Attack Specification Language which utilizes a declarative semantics instead
of an operational one. This helps domain experts to express intrusion scenarios in a more
natural way. In order to prevent an explosion of the number of messages, the specification
language had to be restricted. The consequential decentralized algorithm to find events
that satisfy such patterns was implemented and exhibits superior scalability and fault
tolerant properties when compared to current solutions. This is achieved by restricting the
detection to only those hosts that witness actual parts of the attack. We abandon nodes
with a dedicated task of correlating events as used in traditional centralized or hierarchical
approaches because they limit scalability and are vulnerable to faults or attacks. The
correlation framework, together with an interface to allow deployment and management of
our collaborating sensors, was implemented and named Quicksand. We describe the system
architecture of Quicksand and introduce a mechanism to integrate third-party products
into our design.

An important problem in distributed systems is the synchronization of events, espe-
cially when temporal relationships between occurrences at different machines need to be
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considered. As this is the case with the distributed patterns that can be specified in our
framework, we have designed a universal IP based approach to efficiently exchange time-
stamp information in message based systems. As the network traffic between nodes can
be very high, the primary design goal was the minimization of the introduced overhead.
We achieved this by adding no additional information to each regular packet and perform
explicit synchronization in an adaptive manner as rarely as possible.

As mentioned above, restrictions to our pattern specification language have been nec-
essary to prevent an unreasonable amount of messages that nodes would have to exchange
without them. Although most interesting scenarios can be easily described, it is not pos-
sible to express port scans (or similar reconnaissance activity) from a machine outside the
protected installation against unrelated hosts that are located inside. To circumvent this
drawback, a scalable but centralized detector is introduced that is deployed at the border
between the inside and the outside networks. This system supports stateful, in-depth anal-
ysis of network traffic on high-speed links and covers those scenarios that our distributed
analysis cannot handle. Special care was taken to design this sensor according to the same
requirements used for the peer-to-peer approach; that is a high degree of scalability and
fault tolerance. Therefore, a centralized tap located at the link partitions and forwards the
data to a set of distributed probes where it is analyzed in detail.

In addition to the correlation framework which allows detection of attack scenarios,
the intrusion detection system also has to react to the evolution of hostile patterns. The
most important factor after an emerging threat has been identified is to prevent further
damage. The first step is the identification of hostile packets that are sent by an attacker
as the scenario progresses. This makes it necessary to selectively adapt the probes to traffic
that originates from suspicious sources. We provide a network based anomaly sensor that
extends the current simple models to analyze application data as well. A profile of a
‘normal’ client request to an Internet service is created and compared to every incoming
query in order to determine its anomaly score. This capability of determining a rating for
individual requests allows the modification (or adaptation) of the threshold depending on
its source. When a request is considered to originate from a malicious party, the analysis
can be much tighter.

9.2 Future Work

One of the symptoms of an approaching nervous breakdown is the belief that one’s
work is terribly important.

— Bertrand Russell

Although the presented components provide a coherent framework to correlate events
and react to suspicious intrusion scenarios, there is always room for improvement.

Adaptive sensors are only a first step towards an effective and automatic response
model. Currently, Quicksand notifies an administrator or may run a script when an in-
trusion is identified. No active counter-measures that interrupt connections or terminate
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processes are integrated. It is also thinkable to launch a counter attack against a potential
adversary. This could include simple reconnaissance to learn more about the intruder or
even involve denial-of-service counterstrikes. It would also be beneficial to create a model
that balances a threat which the system is exposed to against the expected result of the
planned response. Especially for e-commerce sites, it is harmful when an IDS always ter-
minates connections and blocks further access from people when only benign threats are
detected, or worse, as a result of a false alarm.

Another point is the automation of the following two tasks that currently have to be
done manually.

One problem involves the automatic installation of shared libraries in Quicksand probes.
As explained in Section 5.1.3, unresolved symbols in shared libraries that contain code of
new scenarios or responses result in a warning message. This requires the system admin-
istrator to manually provide the necessary additional libraries. Similar to an approach
presented in [104], the missing libraries could be determined and loaded automatically.

The other manual task is the clustering of request types into classes (or groups) with
similar properties (see Section 7.3) for the adaptive sensors. This could be automated for
new protocols. Although minimal human intervention is required to define the request
types, the determination of types with analogical structures could be done automatically
by applying information-theoretical or statistical mechanisms.
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