
DIPLOMARBEIT

Byzantine Agreement Under
the Perception-Based Fault

Model

carried out at the Department of Automation
of the Vienna University of Technology

under guidance of

ao.Univ. Prof. Dr. Ulrich Schmid

by

Martin Biely
Matr.Nr. 9526482

Anton Schurzgasse 13
3400 Klosterneuburg

1st February 2002

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Prediction 64

The next 100 years will be a search for better perception

instead of better vision.

— Scott Adams, The Dilbert Future.

i

Abstract

The Byzantine Agreement problem is widely known as a

fundamental problem in fault-tolerant distributed comput-

ing. It was introduced by Lamport, Shostak and Pease in

1980 [43]. In 1978 [38] Gray proved that it is impossible to

solve the related Coordinated Attack problem when links

may be faulty. However, Schmid and Weiss showed in [61]

how to avoid this result by limiting the uncertainty that

faulty links can generate in each round.

Usually very simple fault models are used in the anal-

ysis of distributed algorithms, but by refining the model

through classifying faults the number of necessary proces-

sors can be reduced tremendously. To account for processor

and link faults in a uniform way Schmid [59] developed the

perception-based fault model , which he and Weiss later re-

fined for use with Byzantine agreement protocols. [61]

Along with stating the problem Lamport, Shostak and

Pease also presented an algorithm for solving Consensus.

Unfortunately this algorithm needs messages of exponen-

tial size. Later research has produced polynomial protocols,

three of which I adapted to overcome link faults. These

protocols are all presented in this thesis and have also been

submitted to a renowned computer science journal.

ii

Zusammenfassung

Das “Byzantine Agreement” Problem ist eines der fun-

damentalen Probleme im Gebiet der fehlertoleranten ver-

teilten Computer-Systeme. Es wurde erstmals 1980 von Lam-

port, Shostak und Pease in [43] vorgestellt. Für ein verwand-

tes Problem zeigte Gray schon 1978 , dass es nicht deter-

ministisch lösbar ist, wenn die Netzwerkverbindungen feh-

lerhaft sein können. Schmid und Weiss zeigten in [61], dass

es möglich ist, dieses Ergebnis zu umgehen, indem man die

Unsicherheit, die das defekte Netzwerk in einer Runde eines

synchronen Algorithmus verursachen kann, beschränkt.

Üblicherweise werden bei der Analyse von verteilten Al-

gorithmen nur sehr einfache Fehlermodelle eingesetzt. Es ist

allerdings durch Klassifizierung von Fehlern möglich, einen

Algorithmus genauer zu untersuchen und so die Anzahl der

benötigten Knoten im System erheblich zu verringern. Sol-

che Fehlermodelle werden als hybrid bezeichnet. Das von

Schmid in [59] entwickelte perception-based fault model er-

laubt Fehler von Knoten und Verbindungen in einer einheit-

lichen Art und Weise zu modellieren. [61]

Lamport, Shostak und Pease haben neben der Beschrei-

bung des Problems auch gleich eine Lösung vorgestellt, al-

lerdings benötigt diese Nachrichten von exponentieller Größe.

Erst später wurden Protokolle mit polynomischem Aufwand

entwickelt, von denen ich drei unter dem neuen Fehlermodell

analysiert habe. Die Ergebnisse dieser Analyse werden in

dieser Arbeit vorgestellt, und wurden zur Veröffentlichung

in einem renommierten Fachjournal eingereicht.

iii

Acknowledgments

I thank Ulrich Schmid for his expert guidance and his

great support, and Bettina Weiss for reading and finding

errors.

This research is part of and was supported by the W2F-

project, which targets a wireline/wireless fieldbus based upon

spread-sprectrum (CDMA) communications. W2F is sup-

ported by the Austrian START programme Y41-MAT, see

http://www.auto.tuwien.ac.at/Projects/W2F/.

iv

Contents

1 Introduction 1
1.1 Distributed Systems . 1

2 The Byzantine Agreement Problem 4
2.1 Byzantine Generals . 4
2.2 Related Problems . 4
2.3 Literature Overview . 6
2.4 Formal Definition . 7
2.5 Exponential Solution . 10

3 Modelling Faults 15
3.1 Hybrid Fault Models . 15
3.2 Link Faults . 17
3.3 The Perception-Based Fault Model 18
3.4 Related Work on Link Faults 25

4 Polynomial Byzantine Agreement 31
4.1 Phase Queen . 32
4.2 Phase King . 36
4.3 Simulating Authentication 40

4.3.1 Srikanth & Toueg Authenticated Byzantine Agree-
ment . 41

4.3.2 Hybrid Simulated Broadcast Primitive 45

5 Conclusion 51

v

1 Introduction 1

1 Introduction

The Byzantine Agreement problem is widely known as a fundamen-

tal problem in fault-tolerant distributed computing. This thesis aims

at solving this problem with polynomial sized messages, even in the

presence of link faults. It is organized as follows:

This section aims at giving a general background on distributed

systems and the spectrum of this field covered in this thesis.

Section 2 presents the Byzantine agreement and Consensus prob-

lems. These are important problems in the field of fault-tolerant dis-

tributed systems. After a historical overview of the research on this

problem (Section 2.3), I will present the formal definition of the prob-

lem in Section 2.4. Section 2.5 discusses the straightforward solution

that Lamport, Shostak and Pease presented in [43].

Section 3 is devoted to different fault models. First we will survey

different hybrid fault models, then fault models that include link faults

will be studied. Finally, we will relate those to our perception-based

fault model.

In Section 4 I present three different solutions for the Binary Byzan-

tine agreement problem in the presence of link faults. A discussion of

the conclusions and hints on possible future work given in Section 5

eventually concludes the thesis.

1.1 Distributed Systems

Attiya and Welch [4] define a distributed system as follows:

“A distributed system is a collection of individual computing

devices that can communicate with each other. This very

general definition encompasses a wide range of modern day

computer systems, ranging from a VLSI chip, to a tightly-

coupled shared memory computer multiprocessor, to a local-

area cluster of workstations, to the Internet.” [4]

One aspect that is obvious is that distributed systems are omni-

present in today’s world. Even the CPU of a stand-alone home-computer

1.1 Distributed Systems 2

MP SM

yes

no no

nosynch

asynch

Figure 1. Classification of systems in the scope of this work

may be seen as a distributed system of computing devices, ranging from

the arithmetic integer unit to the on-chip floating point or multimedia

co-processors (i.e., the MMX extension and the like), which all share

some resources like the memory interface or the cache.

It is easy to see that it is very difficult to argue about the whole

range of this definition. Just consider communicating some value from

one computing device to another. This is fairly simple in a processor or

shared memory system, compared to the overhead necessary to accom-

plish the same in a Wide Area Network, say the Internet. Another point

where the systems within this definition obviously differ is the notion

of time: While the computing devices on one chip are usually driven

by the same clock signal, i.e., operate in lock-step, this is obviously not

true in a local area network of workstations.

Distributed systems are hence classified according to the following

two properties:

• timing: asynchronous vs. synchronous

• communication: message-passing (MP) vs. shared-memory (SM)

Figure 1 shows how distributed systems may be classified and which

class is in the scope of this thesis. A tightly coupled shared memory

computer system would be in the top right corner of the figure. The

1.1 Distributed Systems 3

distributed systems in the scope of this thesis are the synchronous,

message-passing systems in the top left corner.

Important reasons for employing a distributed system are the pos-

sibility to share resources and the increase in speed and fault tolerance.

However, there are also disadvantages arising from the inherent uncer-

tainty, which originate from

• differing processor speeds

• varying communication delays

• failures of both links and computing devices

The synchronous distributed systems I am talking about in this

thesis are based on the assumption that the first two of these can be

reasonably bounded, which implies that the protocols presented only

have to deal with failure of links and nodes. It is thus important to use

a realistic and flexible system model.

This thesis considers a synchronous distributed system of n comput-

ing nodes connected by a point-to-point network. The topology of the

network is assumed to be a fully connected graph (this assumption can

be relaxed however, see Remark (SM10) on page 25). The nodes com-

municate by passing messages. The fault model, which is an important

part of the system model, will be discussed in Section 3.3.

In the remainder of this document we will call the computing devices

from the definition above processors for short, which is not meant to

limit the meaning.

2 The Byzantine Agreement Problem 4

2 The Byzantine Agreement Problem

Let us assume that you have a number of processors and that all receive

a value from a dedicated transmitter, e.g. an intelligent sensor. A

Byzantine agreement algorithm can be used to ensure that all (non-

faulty) processors obtain the same value. This greatly simplifies the

design and implementation of replicated services or more generally a

distributed computation.

2.1 Byzantine Generals

The Byzantine agreement problem can be explained in an informal way

by using the Byzantine Generals metaphor [44]:

Consider a town under siege: Usually the town is surrounded by the

enemy army commanded by a “Commanding General”. The army is di-

vided into battalions, headed by “Lieutenant Generals”. This situation

is depicted in Figure 2.

The town has a very good defence system, and thus can only be

taken if sufficiently many battalions attack simultaneously. Unfortu-

nately for the attacking army there are some dishonest generals that

are more loyal to money than to their army, that is why the mayor

of the town was able to bribe them, consequently they will not attack

and in fact they will try to confuse the faithful generals. This kind of

behavior is called Byzantine faulty , hence the name of the metaphor.

The generals know that some of the generals may be “faulty”, but they

do not know which ones they are. Naturally, the Lieutenant Generals

wait to get orders from the Commanding General, such as “attack”

or “wait”. Since even the Commanding General could be faulty the

Lieutenants have to agree upon a common order of what to do.

2.2 Related Problems

A problem closely related to Byzantine agreement is called consensus

or interactive consistency . With this problem there is no dedicated

transmitter, but every processor has some private input value, often

2.2 Related Problems 5

Commanding General

Town

Lieutent General

Figure 2. A town under siege

referred to as initial value, or initial preference and the goal of any

consensus protocol is for all processors to agree on one value v ∈ V.

Consensus is a symmetric problem, whereas Byzantine agreement is

asymmetric.

Note that any solution to one of the problems can be used to solve

the other: To solve Byzantine agreement let the transmitter send its

message and then run consensus using the received message as initial

value. On the other hand consensus can be solved by letting each

processor play the role of the transmitter in one instance of a Byzantine

agreement protocol and then using one voting-function to determine the

final value.

If only two values are allowed, i.e., V = {0, 1}, the problem is called

binary agreement .

Lamport [42] defined a variant called weak Byzantine agreement ,

which will be shortly discussed in Section 2.4. Another weaker form of

agreement, which requires that there are at most k different values in

the set of results of the processors, is called “k-set agreement”, and was

first introduced by Chaudhuri [20].

Another related problem is approximate agreement . In this prob-

lem the processors do not start with discrete input values, but with

real ones. Instead of having to agree exactly, as in the “ordinary”

Byzantine agreement problem, the requirement is relaxed such that the

2.3 Literature Overview 6

results have to be within a certain range ε. Much research on this

subject has been conducted, e.g. in the clock synchronization con-

text, [47, 27, 30, 31, 3].

Another agreement problem with slightly different semantics is the

distributed commit problem, also known as coordinated attack problem

which is a key problem in distributed databases. Informally speaking

the problem is whether to commit or abort a transaction, the difficulty

lies in the fact that if one processor starts with abort as its preference,

then abort is the only legal outcome. Also agreement has to be reached

by all processors, not just by non-faulty ones.1 A discussion of this

problem can be found in any decent book on databases and database

theory such as [18].

2.3 Literature Overview

The Byzantine agreement (BA) problem was first posed by Lamport,

Shostak and Pease in 1980 [43]. In the same paper the authors also

presented a protocol that solves this problem in f + 1 rounds provided

n > 3f , where n is the number of processors and f an upper bound

on the number of Byzantine faulty processors in any execution of the

protocol. They also proved that no solution for n ≤ 3f exists, while

Fischer and Lynch later showed that f + 1 rounds are necessary in the

worst case run of any BA protocol [32]. The protocol of [43] has one

disadvantage, however: It requires the processors to send messages of

exponential size. The design of more efficient protocols has been the

subject of much subsequent research.

The first polynomial communication protocol for Byzantine agree-

ment was provided by Dolev and Strong [29] and subsequently improved

by Dolev, Fischer, Fowler, Lynch and Strong [25] to yield a round com-

plexity of 2f + 3. At the same time Toueg, Perry and Srikanth pro-

vided an identical alternative [70]. Coan [21] presented a family of

Byzantine agreement protocols for n > 4f that – for every d – halt in

f + (f/d) rounds and require messages of size O(nd). However, these

1It is thus only an interesting problem for crash faults, since arbitrary faulty
processors cannot be reasonably restricted in such a way.

2.4 Formal Definition 7

Protocol Year n rounds comm. comp

LSP [43] 80 3f + 1 f + 1 exp(n) exp(n)
DFFLS [25], TPS [70] 82 3f + 1 2f + c poly(n) poly(n)

C [21] 85 4f + 1 f + f

d
O(nd) exp(n)

DRS [28],BD [9],C [22] 86 Ω(f 2) f + 1 poly(n) poly(n)

BDDS [10, 8] 87 3f + 1 f + f

d
O(nd) O(nd)

MW [50] 88 6f + 1 f + 1 poly(n) poly(n)
BGP [16] 89 3f + 1 f + t

d
O(cd) O(cd)

BG [15] 89 4f + 1 f + 1 poly(n) poly(n)
CW [23] 90 Ω(f log f) f + 1 poly(n) poly(n)

BGP [14] 91 (3 + ε)f f + 1 poly(n)O(2
1
ε) poly(n)O(2

1
ε)

GM [34, 35] 93 3f + 1 f + 1 poly(n) poly(n)

Table 1. History of Byzantine agreement [34]

protocols require exponential local computation. In 1986 Dolev, Reis-

chuk and Strong presented (f +1)-round polynomial time BA protocols

for n = Ω(f 2) [28]. At the cost of requiring Ω(f log f) processors, Coan

and Welch developed a polynomial protocol that uses 1-bit messages

and asymptotically optimal total bit-transfer [23].

The best-known solution is based on the following series of papers:

In 1988 Moses and Waarts [50] presented the first polynomial (f + 1)-

round protocol with linear resilience; It required n > 8f and was later

improved to n > 6f . Subsequent research by Berman and Garay [15]

and Garay and Moses [34] has produced f + 1 round Byzantine agree-

ment algorithms in polynomial time, i.e., polynomial communication

and local computation; the last one also achieves the n = 3f + 1 lower

bound on the number of processors. Unfortunately, these algorithms

are complicated.

Table 1 summarizes these results.

Dolev [24] considered non-fully connected networks and proved the

lower bound conn(G) > 2f , where G is the network graph and conn(G)

denotes the node-connectivity, for the minimal connectivity necessary

to solve the consensus problem (cf. Remark (SM10) on page 25).

2.4 Formal Definition

In this section we provide a more formal definition of the Byzantine

agreement and consensus problems. Since we are only considering de-

2.4 Formal Definition 8

terministic algorithms for synchronous systems, where every non-faulty

processor computes its decision value within a fixed number of rounds,

there is an implicit termination property in both definitions. Any al-

gorithm that solves consensus or Byzantine agreement has to comply

to (C1) and (C2), or (B1) and (B2) respectively.

Consensus assumes, as already mentioned above, that every proces-

sor p is provided with some initial value xp ∈ V. A consensus algorithm

will compute a decision value vq at every processor q that satisfies the

following properties:

(C1) (Agreement): If processors p and q are both non-faulty, then both

compute the same value vp = vq.

(C2) (Validity): If all non-faulty processors start with the same initial

value ∀p : xp = v, then every non-faulty processor q computes

vq = v.

Processors that execute the particular Algorithm faithfully, but fail

to communicate their values are called obedient, see Definition 1 (page

21) for details. Therefore it is often possible to show the properties

above for obedient faulty processors as well. These variants are called

Uniform Agreement and Uniform Validity respectively, because they

treat obedient and non-faulty (which are of couse obedient) in a uniform

way.

Byzantine agreement is different from consensus in the sense that

there is a dedicated transmitter pt and agreement is to be reached on

the value it sends. Byzantine agreement is an asymmetric problem in

the sense that one processor has a different role, whereas Consensus

is symmetric since all processors are equal. Thus the Agreement and

Validity properties have a slightly different definition:

(B1) (Agreement): If two processors p and q, one of which may be

the transmitter, are both non-faulty, then both deliver the same

vp = vq.

2.4 Formal Definition 9

(B2) (Validity): If processor p is non-faulty, the value vp delivered by

p is

• v, if the transmitter is non-faulty,

• E, if the transmitter is manifest faulty,

• v or E, if the transmitter is omission faulty,

• the value actually sent, if the transmitter is symmetric faulty,

• any value including E, if the transmitter is arbitrary faulty.

The Validity property contains a forward reference to our fault

model, which will be introduced in Section 3.3. The original prop-

erty only considers a non-faulty and an arbitrary faulty (i.e., Byzantine

faulty) transmitter. By applying the properties to all obedient proces-

sors – instead of only non-faulty ones – we can look at the uniform

variants of the properties.

The following related problems are provided for reference only, and

are not in the scope of this paper.

In [42] Lamport defined a variant of consensus called Weak Agree-

ment . It differs from consensus only in the definition of Validity :

(W1) same as (C1).

(W2) (Validity): If there are no faulty processors and all processors

start with the same initial value ∀p : xp = v, then any processor q

computes vq = v.

On the other hand one can also tighten the Validity property, and

require the decision value to be one benign processor’s input. This

problem is called called strong agreement .

Another related problem that is interesting to mention in this con-

text is k-set agreement . Its properties require only that there are no

more than k different results. The problem can be formalized with

these conditions:

(S1) (Agreement): There is a subset W of V, |W| = k, such that all

decision values are in W: ∀p : vp ∈ W.

2.5 Exponential Solution 10

(S2) (Validity): Any decision value of any process is the initial value

of some process.

2.5 Exponential Solution

The solution presented in this section is essentially the same protocol

as presented by Pease, Shostak and Lamport [43], but is formulated in

a slightly different way. It is widely known as EIG-tree protocol and

goes back to Bar-Noy, Dolev, Dwork and Strong [10, 8]. It is also the

basis of the optimal protocol from [34]. EIG stands for Exponential

Information Gathering .

The basic data structure used by EIG algorithms is a labelled tree,

whose paths from the root to the leaves represent the propagation of

the information. It has f + 2 levels, the node at level 0, the root, is

labelled with λ. Each path is unique and consists of distinct processors’

labels, so each node at level k, 0 ≤ k ≤ f has exactly n − k children.

We use treei(x) to denote the value that is stored in processor pi’s tree

in node x.

Figure 3 shows part of some processor pi’s EIG-tree. The nodes on

the first level (beneath the root λ) are created in round 1 and hold the

values received from the processor denoted by their label. In the second

round the nodes in the second level are added. Each node pjpk now

holds the value pk claims to have received from pj in the first round.

Assuming p2 is a non-faulty processor, treei(p1p2) has the value that p1

sent to p2 in the first round.

Informally, the algorithm proceeds as follows: In round r each pro-

cessor sends the values of all nodes at level r− 1 in his tree to all other

processors.2 Then the processor receives the values from the other pro-

cessors and adds them to his tree. After f + 1 rounds the processor

decides on the value that is delivered by applying the resolve function

2The processor’s initial value is saved in treei(λ).

2.5 Exponential Solution 11

. . .

. . .p1p3p1p2

λ

pnp2p1

p1pn

Figure 3. Part of pi’s EIG-tree

1 for k:=1 to f + 1 do begin
send(level(k) of tree) to all processors

3 foreach (σ,v) received from pj do begin
/* pj has treej(σ) = v */

5 treei(σpj) := v
done

7 done
decide(resolvei(λ))

Figure 4. The Exponential Information Gathering protocol

to the root λ of its tree. The resolve function for processor pi is defined

as:

resolvei(σ) =











treei(σ), if leaf?(σ);
majority(resolvei(σq)), if majority exists;
0, otherwise.

A more formal description of the algorithm is given in Figure 4.

Let me now sketch the proof of correctness for the EIG-protocol

as presented by Lynch [46]. The first two Lemmas 1 and 2 are pretty

obvious. The first one states that non-faulty processors send the same

2.5 Exponential Solution 12

values to all receivers, and the second that a node x corresponding to

a correct processor will resolvei() to the value of treei(x).

Lemma 1 (6.15 from [46]) After f + 1 rounds of the EIG protocol,

the following holds. If i, j and k are all non-faulty processes, with i 6= j,

then treei(x) = treej(x) for every label x ending in k. 2

Lemma 2 (6.16 from [46]) After f + 1 rounds of the EIG protocol

the following holds. Suppose that x is a label ending with the index of a

non-faulty processor. Then there is a value v ∈ V such that treei(x) =

resolvei(x) = v for all non-faulty processors i.

Proof: The proof works by reverse induction on the depth of the node

x, i.e., induction from the leaves up to the nodes at level 1. Due to the

definition of the resolvei() function, the lemma is obvious for the leaves.

For the nodes above the leaves, the lemma follows from the fact that

there is a majority of non-faulty children among the n−|x| ≥ n−f > 2f

children of node x, and that the lemma holds for the children due to

the inductive hypothesis. 2

This suffices to show the Validity property, as defined in Section 2.4.

Note that we only consider arbitrary faulty processors here.

Lemma 3 (6.17 from [46]) If all non-faulty processors begin with the

same initial value v ∈ V, then v is the only possible decision value for

a non-faulty processor.

Proof: Since all non-faulty processors pi start with the same value, say

v, Lemma 1 implies that the nodes corresponding to them will have

value v, i.e., treej(pi) = v, at any non-faulty processor pj. From this it

follows by Lemma 2 that these nodes will also resolve() to v. Since all

non-faulty processors are a majority we know that resolve(λ) = v. 2

A subset C of the nodes in a tree is a path covering if every path

from root to leaves contains at least one node in C. The subset C is a

cut if every path from root to leaves contains exactly one node in C.

2.5 Exponential Solution 13

A tree node x is said to be common in an execution α provided that

after f + 1 rounds of the EIG protocol, all non-faulty processors i have

the same resolvei(x). A set of nodes is common if all nodes in the set

are common.

Lemma 4 (6.18 from [46]) After f +1 rounds of any execution α of

the EIG protocol, there exists a path covering that is common in α.

Proof: Let C be a set of nodes of the form xi, where i is non-faulty.

As observed in Lemma 1, all nodes in C are common. To see why

C is a path covering, consider any path from λ to a leaf. It contains

exactly f + 1 non-root nodes, and each of the f + 1 nodes is unique

due to the construction of the tree. Since there are at most f faulty

processors, there is some node on the path whose label ends in a non-

faulty processor index. This node must be in C. 2

Lemma 5 (6.19 from [46]) After f + 1 rounds of the EIG protocol,

the following holds: Let x be any node label in the EIG tree. If there is

a common path covering of the subtree rooted at x, then x is common.

Proof: By induction on tree labels, working from the leaves up.

Basis: Suppose that x is a leaf. Then the only path covering of x’s

subtree consists of the single node x itself, which is common. So x is

common, as needed.

Inductive Step: Suppose that |x| = r, 0 ≤ r ≤ f . Suppose that

there is a common path covering C of x’s subtree. If x itself is in C,

then x is common as asserted, so suppose x 6∈ C.

Consider any child xl of x. Since x 6∈ C, C induces a common path

covering for the subtree rooted at xl. So by inductive hypothesis xl

is common. Since xl was chosen to be an arbitrary child of x, all the

children of x are common. Then the definition of resolve() implies

that x is common. 2

Lemma 6 (6.20 from [46]) After f + 1 rounds of the EIG protocol

the root, λ, is common.

2.5 Exponential Solution 14

Proof: Due to Lemma 4 there exists a common path covering in the

subtree rooted at λ. Lemma 5 implies that this results in λ being

common. 2

Theorem 1 (6.21) The EIG protocol solves the consensus problem for

n processors with f failures, if n > 3f .

Proof: Validity follows from Lemma 3 and Agreement from 6 and the

fact that all non-faulty processors decide on resolve(λ) which is com-

mon. 2

Unfortunately, there is a discouraging general impossibility result

for deterministic consensus in presence of link faults, which goes back to

Gray’s 1978 paper [38] on atomic commitment in distributed databases:

Theorem 2 (Gray’s Impossibility [46, Thm. 5.1]) There is no de-

terministic algorithm that solves the coordinated attack problem in a

synchronous two-processor system with lossy links.

For that reason this area of research was more or less neglected for

twenty years. Consensus in the presence of link faults was only treated

with randomized algorithms. These suffer from the non-zero probability

of non-termination. Lynch [46] gives an overview on this approach.

As Schmid, Weiss and Rushby [61, 62] show, this impossibility result

can be circumvented by moderately restricting the inconsistency that

link faults may cause system-wide, such that they may only affect a

minority (f s
`) of processors. In the Gray’s Theorem 2, there is no point

in considering what happens in this case since there is no non-empty

minority of processors for n = 2 at all.

3 Modelling Faults 15

3 Modelling Faults

One key aspect in the analysis of distributed systems and distributed

algorithms is the fault model that the analysis is based on. In the

traditional fault model at most f of the n processors may be faulty.

Traditionally, only two kinds of faults were considered:

A processor experiencing a crash fault simply stopped to work, i.e.,

it does not send any more messages. Before it crashes it behaved cor-

rectly, but it may crash within a broadcast, which results in only some

processors receiving a message from the crashed processor.

In contrast a Byzantine or arbitrary faulty processor can change

state arbitrarily and send any messages. Arbitrary faulty processors

can also send different messages to different processors, and can even

cooperate to confuse non-faulty processors.

In Section 3.1 I will summarize the motivation for employing hybrid

fault models, and a give a historical overview on the evolution of these

models. Section 3.3 will present the perception-based fault model. A

number of other approaches to deterministically handling link faults in

synchronous systems will be presented in Section 3.4.

3.1 Hybrid Fault Models

In reality not all of the faulty processors will behave arbitrary faulty,

but will exhibit less severe behavior. This is exploited by hybrid fault

models, which benefit from the fact that less severe faults can be han-

dled with fewer processors than more severe ones. For example, it will

turn out that masking f symmetric faults requires only n ≥ 2f + 1

processors, whereas n ≥ 3f + 1 is needed if all faults are asymmetric

(arbitrary) ones. Since a large number of asymmetric faults is quite

unlikely in practice, this effectively leads to a smaller n for tolerating a

given number of faults. This, in turn, has a positive effect upon depend-

ability by reducing the number n of components that could be faulty,

cf. [54]. System designers will hence appreciate our very detailed hybrid

fault model (Section 3.3) for getting the maximum fault-tolerance out

3.1 Hybrid Fault Models 16

BYZ [44]

MP-2 [49]

AK-4 [5]

PF-3 [53]

AK-5 [6]

TP-3 [69, 45] Symmetric

Malicious

Asymmetric

Omissive

Benign

Byzantine

Omissive

All Faults

Benign

Benign

Omissive

Symmetric

Transmissive
SymmetricSymmetricAsymmetric

Strictly Ommissive

Symmetric
Transmissive
Asymmetric

Transmissive
Asymmetric

Transmissive
SymmetricAsymmetric

Strictly Ommissive

Figure 5. Evolution of Hybrid Fault Models [6]

of a given —and usually quite small— n. Of course, analysis is not

simplified by using a hybrid fault model.

Figure 5 shows the evolution of hybrid fault models. Meyer and

Pradhan were one of the first to introduce a hybrid fault model [49].

They considered two failure modes: Benign faults3 which are evident to

all other processors, and malicious faults, comprising all other faults.

In 1988 Thambidurai and Park [69] split the group of malicious

faults into symmetric and asymmetric faults. Symmetric faults are

perceived identically at all processors, whereas asymmetric (or Byzan-

tine) faulty processors may send different messages to each processor. In

the same paper they present an algorithm, called Z, which was thought

to solve the consensus problem, until Lincoln and Rushby [45] showed

that there are cases in which this is not true.

These or similar models have been successfully applied to a number

of other problems in the domain of distributed algorithms [40, 56, 72,

41, 58, 60].

3This kind of fault was called manifest faulty in later work, e.g. [69, 45, 61],
which is also the term used in the rest of this paper.

3.2 Link Faults 17

Dropping the benign failure mode, Plunkett and Fekete [53] intro-

duced a system model with three failure modes. As illustrated in Fig-

ure 5 (as PF-3) their model differentiates between asymmetric, omissive

and symmetric failures. An omissive faulty processor is one that does

not send messages it would be required to send by the protocol. Note

that this includes crash faults, which are normally in the class of be-

nign faults. Earlier Azadmanesh and Kieckhofer [5] presented a similar

model (AK-4), which is the same except that there are two different

omissive failure modes, for symmetric and asymmetric omissions. Later

Azadmanesh and Kieckhofer [6] added a class of benign faulty proces-

sors. These three models were primarily used to solve Approximate

agreement.

3.2 Link Faults

Process fault models usually rest upon the total number of processor

faults in the entire system. Given the steadily increasing dominance

of communication over computation in modern distributed systems, it

becomes increasingly difficult to apply fault models that capture only

processor faults.

Due to the high reliability of modern processors, communication-

related faults like receiver overruns (run out of buffers), unrecognized

packets (synchronization errors), and CRC errors (data reception prob-

lems) in high-speed wireline and, in particular, all sorts of wireless

networks are increasingly dominating processor faults. As with proces-

sor faults there are various ways to deal with of dealing with link faults

in one’s fault model.

We can differentiate between link faults that cause a link to lose

some (or all) messages and link faults that might even change mes-

sages. We will call such links omission or value faulty, respectively.

Note that most changes to messages can, of course, be detected by

using checksums on the messages. In some applications, however, the

probability of messages that are changed in a way that is not detectable

may not be neglected.

3.3 The Perception-Based Fault Model 18

Another way to differentiate between link faults is to categorize

them as either persistent or transient . Transient faults are the pre-

dominant kind, since the problems that may cause link faults (already

mentioned above) are usually transient: Receiver overruns, loss of syn-

cronization and CRC errors are usually transient, i.e., they affect only

a few messages. Less frequent problems, such as a cut network cable or

broken network interfaces are reasons for persistent errors. Although

these problems will most likely be repaired at some point, they are

persistant in respect to an execution of an agreement algorithm. Note

that networks with link faults, which are persistent throughout the ex-

ecution of the algorithm, are identical to networks whose underlying

network graph is not fully connected (cf. Remark (SM10) on page 25).

Likewise link faults can also be modelled in a static or dynamic way.

In a static model the same links are considered faulty throughout an

execution. This, however, may not be a practical approach if different

links may suffer faults in different rounds, which is usually the case

for transient link faults. To resolve this problem one can view link

faults in a dynamic way and restrict the number of faulty links per

round (instead of per execution). The perception-based fault model

(presented in Section 3.3) goes one step further. It models link faults

on a per round per receiver/sender basis.

In asynchronous systems link faults are relatively easy to handle if

the links satisfy the “fair loss” property: If sending an infinite number

of messages over a possibly faulty link results in an infinite number of

messages to be received, a perfect (but slow) link can be simulated by

suitable retransmission schemes (see, e.g. [12, 2, 73, 39]). This technique

cannot be used in synchronous systems without increasing the duration

of a round, according to the number of message losses that should be

tolerated. This would result in impractically long executions.

3.3 The Perception-Based Fault Model

As the comparison with other models in Section 3.4 will show, link faults

were mostly considered as static, i.e., the links which were allowed to be

3.3 The Perception-Based Fault Model 19

faulty are fixed throughout the whole execution of a given algorithm.

However, given the fact that (1) the execution of algorithms, especially

those with exponential runtime, can take considerable amounts of time

and (2) most link faults are transient this approach requires a much

higher number of processors to overcome link faults than necessary.

This shortcoming is resolved by the perception-based fault model

of [59], which considers link faults as per-round, i.e., in a dynamic

way. Thus only the number of transient and permanent link faults that

can be perceived by one processor in one round have to be taken into

account. The model also discriminates between different kinds of faults,

for both processor and link faults, which allows even better adjustment

to one’s specific needs, and thus lowers the number of processors even

further.

Apart from the general difficulty of modelling link faults, there is

also a specific problem related to consensus in presence of link faults: As

already mentioned in the well-known impossibility result going back to

Gray [38], there is no deterministic algorithm that can solve consensus

in presence of lossy links, cf. [46]. As shown in [61, 62] this result can be

circumvented if the power of link faults is (moderately) restricted. Two

different views, resulting in two constraints, on link faults are required

for this purpose:

Broadcast link faults: We restrict the number f s
` of receivers that could

obtain a faulty message in the broadcast of a single sender, see

Figure 6.

Receive link faults: We restrict the number f r
` of senders that could

appear faulty to any single receiver, see Figure 7.

Schmid [59] shows that processor and link faults are easily accom-

modated in a perception-based fault model , where the usual global, i.e.,

system-wide, number of faults is replaced by the number of faults that

are observable in the processors’ local “perceptions” of the system.

Later [61, 62] this model was generalized from the single-round clock

3.3 The Perception-Based Fault Model 20

Node n
(recv)

(recv)
Node p

(recv)
Node q

Node 1
(recv)

Node s

... faulty

(send)

V1 = (V 1

1
, . . . , V s

1
, . . . , V n

1
)

Vp = (V 1

p
, . . . , V s

p
, . . . , V n

p
)

Vq = (V 1

q
, . . . , V s

q
, . . . , V n

q
)

Vn = (V 1

n
, . . . , V s

n
, . . . , V n

n
)

Figure 6. Example of a broadcast fault that affects the messages
of two recipients.

3.3 The Perception-Based Fault Model 21

Node 1

Node n

Node q

Node p

(send)

(send)

(send)

(send)

(recv)
Node r

... faulty

Vr = (V 1

r
, . . . , V

p

r
, V

q

r
, . . . , V n

r
)

Figure 7. Example of a receive fault that involves the messages
from two senders.

synchronization framework to general round-based synchronous algo-

rithms.

In order to cleanly specify the semantics of such restricted faults,

we will need the notion of obedient processors: An obedient processor

is a live processor that faithfully executes the particular algorithm. It

must hence get its inputs and perform its computations like a non-

faulty processor, but it may fail in specific ways to communicate its

value to the outside world. We will subsequently use this term instead

of non-faulty whenever a processor acts as a receiver.

Definition 1 (System Model) We consider a distributed system of

n processors interconnected by a fully connected point-to-point network,

which has the following properties:

(P1) In any execution, there may be at most fa, fs, fo, and fc arbitrary,

symmetric, omission, and manifest faulty processors. Those fault

modes are defined via the set rvals(Vp, p) of admissible values de-

3.3 The Perception-Based Fault Model 22

livered by obedient receivers when processor p attempts to send

some value Vp in a single broadcast:

– A manifest faulty processor p fails to send a message to any

receiver or sends a value that all receivers q can detect as

obviously bad. They all deliver the value V p
q = ∅ in this

case, i.e., rvals(Vp, p) = {∅}.

– An omission faulty processor p may fail to send the correct

value V p to some of its receivers qi, which deliver V p
qi

= ∅

instead of V p in this case. Hence, rvals(Vp, p) = {Vp, ∅}.

– A symmetric faulty processor p sends the same wrong (but

not usually detectably bad) value Xp to every receiver q.

They all deliver V p
q = Xp—the value ‘actually sent’—in this

case, such that rvals(Vp, p) = {Xp}.

– An arbitrary (asymmetric) faulty processor may inconsis-

tently send any value to any receiver, so rvals(Vp, p) is the

set of all possible values, including ∅.

A processor that is either manifest and omission faulty is called

benign faulty and is assumed to be obedient (if not crashed).

(A1s) If a single [faulty or non-faulty] processor p broadcasts (= succes-

sively sends) a value V p to some set of obedient receiver processors

R, at most f s
` of the delivered values V p

qi
may differ from the ad-

missible receive values in rvals(V p, p). Let f s,a
` ≤ f s

` be the max-

imum number of non-omissive, i.e., non-empty and hence value

faulty, V p
qi

among those.

(A1r) If all processors pi ∈ S of a set of [faulty or non-faulty] pro-

cessors send a message containing V pi to some obedient receiver

processor q, at most f r
` of the delivered values V pi

q may differ

from the admissible receive values in rvals(V pi, pi). Let f r,a
` ≤ f r

`

be the maximum number of non-omissive, i.e., non-empty and

hence value faulty, V pi
q among those.

(A2) The receiver of a message knows who sent it.

(A3) The absence of a message from sender p can be detected at any

receiver q, which leads to V p
q = ∅ for some distinguished value ∅.

3.3 The Perception-Based Fault Model 23

Several essential remarks can be made about a system conforming

to this system model.

(SM1) Assumption (A3) ultimately implies a synchronous system, where

all non-faulty processors operate in lockstep rounds. Any proces-

sor’s round consists of some local computation based upon the

messages received in the previous round, the broadcast of the re-

sulting messages to all processors (including itself) in the system

(A1s) and the reception of those messages (A1r).

(SM2) Our manifest faults differ from the systemwide detectably ones

of [54] and the “benign faults” of [6, 71] by also including sym-

metric omissions (produced by clean crashes). Since a receiver

does not know whether a message is missing due to a symmetric

omission or a more severe type of fault, they are usually more dif-

ficult to handle than pure manifest faults. This is not true for the

Byzantine agreement algorithms analyzed in this paper, however,

so we can safely take over the extended definition from [45] here.

(SM3) Our fault model does not contain a direct equivalent for stan-

dard crash faults, where a processor can die once and forever even

during its broadcast. Crash faults are in fact weaker than our

omission faults (=send/receive omissions [51]), but more severe

than our manifest faults, although link faults allow even some in-

consistency to occur. Nevertheless, both manifest and omission

faults are more severe than crashes in that faulty processors may

resume correct operation in any later round. This behavior is not

equivalent to the crash-recovery model of [2], however, since our

processors may not lose state, but must continuously follow the

algorithm, see Remark (SM4) below.

(SM4) Benign faulty processors are allowed to deliver either the correct

value or else ∅ to their receivers, which implies that they must

know the correct value at least internally. Although we need not

care how this is actually accomplished, it is nevertheless true that

3.3 The Perception-Based Fault Model 24

the only way to ensure this in practice is to assume that benign

faulty processors are obedient (unless they have crashed).

(SM5) Faulty processors must not change their fault mode, i.e., must

be counted in fa, fs, fo or fc according to their most severe be-

haviour. A processor that behaves symmetric faulty in one round

and omission or manifest faulty in another should be considered

arbitrary faulty.

(SM6) A sender processor that suffers from link faults according to

(A1s) is said to commit a broadcast fault , recall Figure 6, whereas

a receiver processor that experiences link faults according to (A1r)

is said to commit a receive fault , recall Figure 7. Each processor’s

receive resp. broadcast fault has its own “budget” f r
` resp. f s

` of

individual link faults, which are independent of processor faults,

and the particular links actually hit are usually different for any

two message broadcasts resp. receptions.

(SM7) We assume that links consist of a pair of unidirectional channels

that can be hit by faults independently. This is also true for the

hypothesized link from a processor to itself, although this one will

not usually suffer from a link fault if the processor is non-faulty.

(SM8) The model parameters f r
` and f s

` are not independent of each

other: If a message from processor p to q is hit by a fault in p’s

message broadcast, it contributes a fault in processor q’s message

reception as well. In fact, (A1s) and (A1r) can only be guaranteed

unconditionally if

f s
` ≤ f r

` and f s,a
` ≤ f r,a

` , (1)

see [61, 62] for details. Note that this implies f r
` = 0 ⇒ f s

` = 0.

(SM9) The system model of Definition 1 considers processor and link

faults independently. Therefore, even a manifest or omission

faulty processor’s broadcast could generate erroneous values at

f s,a
` receivers, for example. By contrast, the original model in [61,

3.4 Related Work on Link Faults 25

Def. 1] assumed that link faults hit only messages from non-faulty

senders to non-faulty receivers. The new model is more natural

and has a better coverage in real systems, but requires a slightly

more complicated analysis.

(SM10) Since the consequences of an incomplete communication graph

can be viewed as link omission faults, any analysis under our fault

model also provides results that are valid for partially connected

networks.

The following lower bound for the number of processors needed to

solve the Byzantine agreement problem was developed in [62].

Theorem 3 (Lower Bound [62]) Any deterministic algorithm that

solves consensus under the system model of Definition 1 with f r
` ≥ f s

`

and f r,a
` ≥ f s,a

` needs n > f r
` + f r,a

` + f s
` + f s,a

` .

3.4 Related Work on Link Faults

The perception-based fault model is not the only way to circumvent the

impossibility result of Gray [38]. A number of approaches to account

for link faults or faults of the receiver’s network interface in processor-

centric models have been proposed. These are, however, insufficient as

the following discussion will show.

If, for instance, link faults are simply mapped to sender process

faults, as in [37], we can find many fault patterns for which all f = n

processors must be considered faulty. Figure 8 shows an example for

n = 4 and f` = 1, with f` denoting the number of incoming links that

may be faulty per round for each processor.

Similar arguments can be found for the more detailed send/receive-

omission fault model of [51], where receive omissions are mapped to a

fault of the receiving processor. Although it has been observed that

only the number of processors that commit a send omission (but not

the number of processors committing a receive omission) needs to be

counted in f , agreement is only shown to hold for a processor that did

3.4 Related Work on Link Faults 26

p1 p2

p3p4 p1 p2 p3 −

Perception vector V3:

Perception vector V2:

− p2 p3 p4

in a round)
(messages collected by p2

(messages collected by p3)

f` omissions/node

Figure 8. Example of a 4-processor system with f` = 1 receive
link faults per processor in each round, where all processors must
be considered faulty in existing fault models.

not commit either type of fault, which implies that in the example of

Figure 8, no processor would remain that could reach agreement.

In both models, the situation gets worse due to the fact that, over

time, any receiver’s f` receive omissions could hit different links. Since

processor faults are usually considered persistent, this will result in the

“exhaustion” of the number of faults f that are tolerated by the system.

Siu, Chin and Yang [65] have used a hybrid fault model, which

accounts for dormant4 and arbitrary faults of both links and processors.

They presented a protocol for Byzantine agreement that works for n >

3Pa + Pd and c > 2Pa + Pd + 2(La + Ld), where n is the number

of processors as usual, c denotes the connectivity of the underlying

network graph and Pa, Pd, resp. La, Ld denote the upper bounds on

the number of arbitrary and dormant processor resp. link faults. What

seems favourable about this model is that the number of processors is

independent of the number of faulty links. However, this is not entirely

true, as the following discussion shows:

Considering the underlying graph of a network: Let κn denote the

node connectivity and κe the edge-connectivity, which are defined as

the number of nodes or edges that may be removed without making

4This class corresponds to what we call omission faults.

3.4 Related Work on Link Faults 27

2

1A

Figure 9. A Graph with node-connectivity κn = 1, egde-
connectivity κe = 2, and a minimal degree of δ = 3.

the graph unconnected,5 and let δ denote the minimal degree6 in the

graph. The graph in Figure 9 has κn = 1, because removing the node

labelled A will split the graph into two; removing the edges labelled 1

and 2, will also produce two sub-graphs, hence κe = 2.

Due to the well-known relation κn ≤ κe ≤ δ, a network graph with

connectivity c implies that δ ≥ c, which in turn implies that there must

be n > c + 1 processors in the system, since a degree δ is only possible

if there are δ other nodes in the graph.7

Thus the algorithm of [65] really needs n > max(3Pa + Pd, 2Pa +

Pd + 2(La + Ld)), which is a lot more than necessary in our systems,

since Siu, Ching and Yang only consider static link faults, i.e., the total

number of links that may be hit in an execution of the algorithm must

be known in advance. They also claim that their algorithm can reach

agreement in t = b(n − 1)/3c rounds, which must be wrong, since it

violates the lower bound for the required number of rounds (correctly

Pa +Pd): if n = 3Pa +Pd +1, they claim that t = Pa + b(Pd)/3c rounds

suffice.

Sayeed, M. Abu-Amara and H. Abu-Amara considered an asyn-

chronous system with arbitrary link faults only [57]. This work is not

comparable to ours, since it deals with link faults only and cannot tol-

5or reducing it to a simple single node graph.
6The number of links a node, i.e. the corresponding processor, has.
7Assuming at most one edge between any two nodes.

3.4 Related Work on Link Faults 28

erate a single processor fault.8 Their algorithm can, however, tolerate

up to t = n−2
2

Byzantine faulty channels, where t is the total number of

link faults throughout an execution. Considering only Byzantine link

faults in the perception-based fault model,9 it is possible to tolerate nf`

such faults in each round, which is equal to O(n2).

The only other work that considers link faults in a dynamic way

is [52]. Pinter and Shinahr assume that omissions may occur on a max-

imum of l different links system-wide per round. Their algorithm is

identical to the “* algorithm”, which was developed by Dolev, Fischer,

Fowler, Lynch and Strong [25], except that it needs a+ l +2 additional

rounds, where a is the number of arbitrary processor faults the algo-

rithm can tolerate. To achieve this the algorithm requires n > 3(a + l)

processors.

The main difference to our perception-based fault model (Section 3.3)

is that Pinter and Shinahr bounded the total number of faulty links per

round with l ≤ n
3
, whereas the total number of omission faulty links tol-

erated by algorithms that work under the perception-based fault model

is nf` � n. Note that the Phase King Protocol10 (Section 4.2) allows

for f` link faults (per round per processor) and fa arbitrary faults, if

n > 3fa +3f`. Since the number of total link faults in a round is nf` in

the perception-based fault model, but only l in the model of Pinter and

Shinahr, it is obvious that this resilience against link faults is much bet-

ter, with approximately the same message complexity of roughly 3(a+l)

and 3(fa+f`) polynomial sized messages for the modified “* algorithm”

and the Phase King protocol respectively.

As already mentioned, a perfect link can be simulated with a suit-

able retransmission scheme. As an example I will summarize the achieve-

ments of Guerraoui, Oliveira and Schiper [39], who provide a method

for solving consensus in an asynchronous system with basic unreliable

8Which is, as Fischer, Lynch and Peterson [33] showed, not possible in asyn-
chronous systems with a deterministic algorithm and without failure detectors.

9I.e., fa = fo = fs = fc = 0, and f r
` = f

r,a
` = fs

` = f
s,a
`

10This discussion only considers arbitrary faults. So consider fs = fo = fc = 0
and only omission faulty links, so f

r,a
` = f

s,a
` = 0. Also assume f r

` = fs
` for now

(cf. Remark (SM8) above).

3.4 Related Work on Link Faults 29

channels. Basic unreliable channels have the following three properties:

Fair Loss If a processor p sends an infinite number of messages to q,

and q does not crash, then q receives an infinite subset of these

messages.

No Creation If a processor q receives message m, then some processor

p has sent m to q.

No Duplication Every message m that is sent by any process p is

received at most once.

Based on these properties Guerraoui et al. implement what they

call stubborn channels, i.e, channels that stubbornly retransmit their

messages, which allow using the Chandra and Toueg algorithm [19]

using eventually strong failure detectors. A direct comparison with our

results is not feasible, since this work is based upon an asynchronous

system model.

Dolev et al. [26] have presented a clock synchronization algorithm

that can handle any number of process and link faults as long as the

correct processors remain connected, using authentication. Schmid [58]

investigated clock synchronization under the perception-based fault

model.

Leader Election in asynchronous systems has been investigated for

different kinds of link faults: Sayeed, Abu-Amara and Abu-Amara al-

lowed Byzantine faulty links [57], while Abu-Amara and Lokre [1], and

also Singh [64], only considered transient omission faults.

Initial faults, which denote links that are initially dead and remain

dead throughout the execution11 were covered by Bar-Yehuda et al.

in [11].

Goldreich and Sneh [36] deal with the general case of a distributed

global computation in an asynchronous system with unidirectional links,

11This kind of faults is equal to a non-existent link, thus this path of research is
really about not fully connected networks.

3.4 Related Work on Link Faults 30

which may suffer undetectable faults. They prove that the lower bound

for the message complexity in such a system is nm

O(logk(n)).
, where n is

the number of processors as usual and m the number of unidirectional

links.12

In Wide Area Networks or even LANs routing is a fundamental

service, whose reliability may not depend on the reliability of the com-

ponents involved. Thus fault tolerance is a basic precondition for any

reasonable routing scheme. Faulty or congested links are more frequent

than failures in one of the routing components. Routing is a field of

its own and can therefore not be covered here. For papers on rout-

ing theory and link faults see, e.g. [7, 48]. An introduction from the

practical point of view can be found in [68], current solutions for the

Internet world are found in the appropriate RFCs [55]. Most inter-

esting might be OSPF (Open Shortest Path First), which is based on

Dijkstra’s shortest path algorithm.

A considerable amount of research has also been conducted on the

problems link faults can cause in hypercube architectures, which is a

massively parallel computer architecture.

12Bidirectional links can be modelled by two unidirectional links in this system.

4 Polynomial Byzantine Agreement 31

4 Polynomial Byzantine Agreement

In Section 2.5 I presented a solution for Byzantine agreement (cf. Sec-

tion 2.4 and [43, 44]). However, that protocol needs exponentially sized

messages and thus exponential time to execute.13 In this section I will

present protocols that also solve the BA-problem while requiring only

polynomial time (and space). The price one has to pay for increasing

the message efficiency is that resilience is decreased.

Before presenting the protocols I will show two properties that will

turn out to be useful in proving the correctness of the protocols. The

first lemma points out that the difference in the number of messages

with a particular value received at two different processors during a

universal exchange can be bounded. A universal exchange is a message

pattern where all (obedient) processors send a message to all other

processors.

Lemma 7 (Difference in Perceptions) Let Cr[v] and Cq[v] be the

number of messages containing v received at two obedient processors r

and q in a full message exchange of a system complying to Definition 1.

Then,

|Cq[v] − Cr[v]| ≤ fa + fo + f r
` + f r,a

` .

Proof: Assuming w.l.o.g. Cq[v] > Cr[v], at most fa arbitrary faulty

senders could have sent v to processor q and x 6= v to processor r,

and at most fo processors could have sent v to q, but no message

to r. Processor faults hence contribute at most fa + fo to |Cq[v] −

Cr[v]|. The remaining terms originate from link faults: Processor q

could have received at most f r,a
` messages containing v from processors

that actually sent x 6= v, and at most f r
` messages containing v could

have been lost in transit to processor r. 2

When using a majority test after a full message exchange as in Line 8

of Figure 10, inconsistent reception could produce a majority for the

13Exponential time always follows from exponential data, since it takes exponen-
tial time to generate or as in this case to send that data.

4.1 Phase Queen 32

value v at some processor q, but a majority for x 6= v at some processor

r 6= q. The question arises how big the lead of v must be at processor

q to be able to guarantee that r will compute the same majority. This

is answered by the following Lemma 8.

Lemma 8 (Deviation of Differences) Let Cr[v] and Cq[v] denote

the number of messages containing v ∈ {0, 1} received at two obedi-

ent processors r and q in a binary full message exchange of a sys-

tem complying to Definition 1. For ∆q[v] = Cq[v] − Cq[1 − v] and

∆r[v] = Cr[v] − Cr[1 − v], we obtain

|∆q[v] − ∆r[v]| ≤ 2fa + fo + f r
` + f r,a

` .

Proof: Abbreviating ∆ = |∆q[v] − ∆r[v]|, each asymmetric faulty

processor could change ∆ by at most 2, by sending v to q but 1 − v to

r, while each omission faulty processor could change ∆ by at most 1,

by failing to send a message to either q or r; the remaining symmetric

and manifest faults cannot change ∆. Processor faults could hence

grow/shrink ∆ by at most 2fa+fo. The worst case deviation due to link

faults occurs when both q and r experience f r,a
` arbitrary ones (which

flip the value sent) and f r
` − f r,a

` omissive ones from different sender

processors; the appropriate contributions sum up to 2f r,a
` +(f r

` −f r,a
`) =

f r
` + f r,a

` . 2

The Phase Queen and King Protocols, which are presented in the

next two subsections (4.1 and 4.2) were developed by Berman, Garay

and Perry [17].

4.1 Phase Queen

The Phase Queen Protocol introduced in [17] is a simple algorithm that

solves consensus for binary values in systems with n > 4f processors, at

most f of which may be arbitrary faulty, and no link faults. It assumes

unique processor identifiers ∈ {1, . . . , n}, uses constant size (1-bit) mes-

sages and takes f + 1 rounds with 2 phases each. Our contribution is

4.1 Phase Queen 33

1 for k:=1 to fa + fs + fo + fc + 2 do begin

3 /* Phase 1: full message exchange */
send(v) to all processors

5 receive(vq) from all processors
C[0] := |{vq : vq = 0}|

7 C[1] := |{vq : vq = 1}|
if C[1] > C[0] then v = 1 else v = 0 fi

9

/* Phase 2: queen’s broadcast */
11 if k = p then

send(v) to all processors
13 fi

receive(vqueen)
15 if vqueen = ∅ then vqueen := 0 fi

if C[v] ≤ C[1 − v] + 2fa + fo + f r
` + f r,a

` then
17 v := vqueen

fi
19 done

Figure 10. Hybrid Phase Queen algorithm, code for processor p

a modified version of the original algorithm that can cope with hybrid

processor and link faults according to the system model of Definition 1.

Figure 10 shows the pseudo code of our hybrid algorithm, which

works as follows: In the first phase of each round, every processor p

broadcasts its current preference value vp to all processors in the system

(including itself) and collects the appropriate messages from its peers;

we will call this a full message exchange. Processor p then counts

how many processors have sent preference for 0 and 1 respectively and

updates its vp accordingly. In the second phase of each round, only

one specific processor (the Phase Queen, whose identifier is equal to

the current round number) broadcasts its new preference. This value

is used by all processors in the system to break ties.

Note that only two non-trivial changes were made to the original

algorithm: First, the bound in the decision when to use the queen’s

4.1 Phase Queen 34

broadcast (line 16 in Figure 10) had to be adapted to our hybrid fault

model. Second, in order to improve the resilience with respect to non-

arbitrary faults, the original condition C[1] > n/2 in the update of the

preference value (line 8) had to be replaced by the simple majority test

C[1] > C[0].

In order to show that the above algorithm satisfies the agreement

(C1) and validity property (C2) of consensus, the analysis of the Phase

Queen algorithm from [4] will be adopted. The first major lemma states

that once sufficiently many processors have the same preference value,

it will not change anymore. Lemma 9 will implies the validity property

(C2).

Let dk denote the number of actually dead processors among the

manifest or omission faulty ones by the beginning of round k; obviously

fc + fo ≥ di ≥ dj must hold14 for all i ≥ j. We will need this value to

discriminate between obedient processors and benign faulty processors

that are dead.

Lemma 9 (Persistence of Agreement) If at least n−fa−fs−dk−

f s
` obedient processors prefer v ∈ {0, 1} at the beginning of round k ∈

{1, . . . , fa +fs +fc +2} in a system with n > 4fa +2fs +2fo +fc +2f s
` +

2f r
` + 2f r,a

` , then all obedient processors prefer v at the end of round k.

Proof: Since n − fa − fs − dk − f s
` obedient processors prefer v at

the beginning of phase k, every obedient processor q receives Cq[v] ≥

n − fa − fs − fo − fc − f s
` − f r

` preferences for v (including its own)

in the first phase of round k. Moreover, since the preference of f s
`

obedient processors was left unspecified by Lemma 9 and at most fa+fs

processors and f r,a
` links may cause erroneous values, processor q could

also get at most Cq[1 − v] ≤ fa + fs + f s
` + f r,a

` preferences for 1 − v.

This implies

Cq[v] ≥ n − fa − fs − fo − fc − f s
` − f r

`

14This allows clean as well as unclean crash faults. Whereas a clean crash can be
accounted for in fc, an unclean one is an asymmetric omission in one round followed
by an symmetric omission in every later round, and must thus be accounted for in
fo.

4.1 Phase Queen 35

> 3fa + fs + fo + f s
` + f r

` + 2f r,a
`

≥ Cq[1 − v] + 2fa + fo + f r
` + f r,a

` .

So every obedient processor q updates its preference vq to v in line 8 in

Figure 10 and ignores the queen’s broadcast in line 16. 2

The second major lemma is a prerequisite for showing that agree-

ment can be reached by means of a non-faulty queen breaking ties.

Lemma 10 (Agreement) Let g be a round whose queen is non-faulty.

Then at least n− fa − fs − dg+1 − f s
` obedient processors finish round g

with the same preference.

Proof: Since the queen g is non-faulty, it sends the same vg to

all receivers. Assume first that all obedient processors use the value

vqueen received from g as their new preference in line 17 of Figure 10.

According to (A1s), at most f s
` of those could have received a queen’s

preference vqueen 6= vg,
15 such that at least n − fa − fs − dg+1 − f s

`

obedient processors have set their preference to vg by the end of round

g.

If, on the other hand, some obedient processor p ignores the queen’s

broadcast and uses its own majority value v as its new preference,

Cp[v]−Cp[1−v] > 2fa +fo +f r
` +f r,a

` according to line 16 in Figure 10.

Hence, for every other obedient processor q (including the non-faulty

queen g), Cq[v]−Cq[1−v] ≥ Cp[v]−Cp[1−v]−2fa −fo −f r
` −f r,a

` > 0

by Lemma 8, so g must have set its preference to v in line 8 as well.

Processor p can therefore safely use its majority value instead of the

queen’s in this case, since they are the same. 2

By means of Lemma 9 and 10, it is not difficult to prove the following

major theorem.

Theorem 4 (Phase Queen) Under the system model of Definition 1

with fa, fs, fo, fc, f
r
` , f r,a

` , f s
` ≥ 0 and n > 4fa+2fs+2fo+fc+2f s

` +2f r
` +

15At most f
s,a
` processors could receive the opposite value 1−vg , and the remain-

ing fs
` − f

s,a
` ones could suffer from omissions, that is, deliver ∅.

4.2 Phase King 36

2f r,a
` , the Phase Queen algorithm of Figure 10 solves binary consensus

in 2(fa+fs+fo+fc+2) phases with a total of (fa+fs+fo+fc+2)(n+1)

1-bit message broadcasts from obedient processors.

Proof: Lemma 9 already implies the validity property (C2): If all

obedient processors start out with the same value v, they will continue

to prefer v until the algorithm terminates after fa + fs + fo + fc + 2

rounds, since there are n − fa − fs − dk ≥ n − fa − fs − fo − fc − f s
`

non-faulty processors in any round k.

To show agreement (C1), we note that all – but at most f s
` – obedi-

ent processors will have the same preference at the end of a non-faulty

queen’s round g by Lemma 10. Definition 1 ensures that at least one

round g ∈ {1, . . . , fa+fs+fo+fc+1} has a non-faulty queen. Since the

algorithm takes fa +fs+fo +fc+2 rounds, Lemma 9 eventually assures

that all obedient processors will have the same (persistent) preference

by the end of round g + 1,16 no matter how many rounds with faulty

queens follow.

To justify the claimed time and communication complexity of our

algorithm, we note that there is one full message exchange consisting

of n broadcasts in phase 1 and one additional queen’s broadcast in

phase 2 of every round. Hence, at most (fa + fs + fo + fc + 2)(n + 1)

1-bit message broadcasts are performed during the whole execution by

processors that faithfully17 follow the algorithm in Figure 10. 2

As a final remark, we note that the number of message broadcasts

of the Phase Queen algorithm could be reduced by one by omitting

the queen’s broadcast in the last round: According to the proof of

Theorem 4, no non-faulty processor uses vqueen in the last round at all.

4.2 Phase King

The Phase King Protocol of [17] improves the Phase Queen algorithm

by adding one phase in every round, in which the processors’ prefer-

16Remember that dk+1 ≤ dk.
17Clearly, there is no way to restrict the number of message broadcasts initiated

by an arbitrary faulty processor.

4.2 Phase King 37

ences from the first phase are exchanged system-wide. This eventually

reduces the sub-optimal fault-tolerance degree n > 4f of the Phase

Queen algorithm to n > 3f . We provide a hybrid variant of this al-

gorithm in Figure 11, which can cope with processor and link faults

according to Definition 1.

The proof for the Phase King Protocol is similar to the one for

the Phase Queen Protocol: The first Lemma 11 will show that once

sufficiently many processors have the same preference value, it will not

change anymore.

Lemma 11 (Persistence of Agreement) If at least n−fa−fs−dk−

f s
` obedient processors prefer v at the beginning of round k ∈ {1, . . . , fa+

fs+fo+fc+2} in a system with n > 3fa+2fs+2fo+fc+2f s
` +2f r

` +2f r,a
`

processors, then all obedient processors prefer v at the end of round k.

Proof: Since at least n − fa − fs − fo − fc − f s
` non-faulty pro-

cessors broadcast v in the first full message exchange, every obedi-

ent processor q obtains Cq[v] ≥ n − fa − fs − fo − fc − f s
` − f r

` and

Cq[1−v] ≤ fa+fs+f s
` +f r,a

` according to our fault model in Definition 1.

Similar to the proof of Lemma 9, this leads to

Cq[v] > Cq[1 − v] + fa + fo + f r
` + f r,a

` ,

which implies that every non-faulty processor among the obedient ones

will send the same M [j] in the second phase. Therefore, every obedient

processor r obtains Dr[v] ≥ n− fa − fs − fo − fc − f r
` and Dr[1− v] ≤

fa + fs + f r,a
` and thus sets its local preference to the same value v in

line 18 in Figure 11; the king’s value vking is ignored in line 26 since

Dr[v] > 2fa + fs + fo + f r
` + 2f r,a

` . 2

The second major lemma is again a prerequisite for showing that

agreement can be reached by means of a non-faulty king breaking ties.

Lemma 12 (Agreement) Let g be a round whose king g is non-faulty.

If n > 3fa +2fs +2fo +fc +2f s
` +2f r

` +2f r,a
` , then at least n−fa −fs −

dg+1−f s
` obedient processors start round g+1 with the same preference.

4.2 Phase King 38

1 for k:=1 to fa + fs + fo + fc + 2 do begin

3 /* Phase 1: initial full message exchange */
send(v) to all processors

5 receive(vq) from all processors
C[0] := |{vq : vq = 0}|

7 C[1] := |{vq : vq = 1}|

9 /* Phase 2: C[j] full message exchange */
for j:=0 to 1 do begin

11 if C[j] > C[1 − j] + fa + fo + f r
` + f r,a

` then
M[j]:=1 else M[j]:=0

13 fi
send(M [j]) to all processors

15 receive(Mq[j]) from all processors
D[j] := |{Mq[j] : Mq[j] = 1}|

17 done
if D[1] > fa + fs + f r,a

` then v:=1 else v:=0 fi
19

/* Phase 3: king’s broadcast */
21 if k = p then

send(v) to all processors
23 fi

receive(vking)
25 if vking = ∅ then vking := v fi

if D[v] ≤ 2fa + fs + fo + f r
` + 2f r,a

` then
27 v := vking

fi
29 done

Figure 11. Hybrid Phase King algorithm, code for processor p

4.2 Phase King 39

Proof: At the end of round g one of the following cases applies in

line 26 of Figure 11:

(1) Dp[vp] ≤ 2fa + fs + fo + f r
` +2f r,a

` for every obedient processor p,

which thus assigns the value vking to vp in line 27. Since at most

f s
` processors could have received a value vking different from the

value vg actually sent, at least n − fa − fs − dg+1 − f s
` obedient

processors end up with the same preference vg as asserted.

(2) Dp[vp] > 2fa + fs + fo + f r
` + 2f r,a

` for some obedient processor

p. We have to show that p’s preference at the end of the round

is equal to the king’s value vg in this case, which will again imply

that all obedient processors except at most f s
` will end up with

a preference for the king’s value vg — either by receiving it, or

by being convinced of it in the first place. We distinguish the

following two possible cases here:

If vp = 1, it must be that Dg[1] > fa + fs + f r,a
` and hence vg = 1,

since Lemma 7 implies Dg[1] ≥ Dp[1] − fa − fo − f r
` − f r,a

` >

fa + fs + f r,a
` . If, on the other hand, vp = 0, we can use the

following argument to show that vg cannot be 1:

We first prove that if an obedient processor q sends Mq[b] = 1

for some b ∈ {0, 1} in the second phase, then no obedient proces-

sor r can send Mr[1 − b] = 1. Assuming the contrary, line 11 in

Figure 11 would require both

∆q = Cq[b] − Cq[1 − b] > fa + fo + f r
` + f r,a

`

−∆r = Cr[1 − b] − Cr[b] > fa + fo + f r
` + f r,a

`

and hence ∆q−∆r > 2fa+2fo+2f r
` +2f r,a

` , which would contradict

Lemma 8.

Now Dp[0] > 2fa + fs + fo + f r
` + 2f r,a

` implies that at least one

non-faulty processor sent M [0] = 1 in the second phase. Conse-

quently, as we have just shown, no obedient processor can have

sent M [1] = 1. Since this implies Dq[1] ≤ fa + fs + f r,a
` for any

obedient processor q (including the king g), vg is set to 0 in line 18,

4.3 Simulating Authentication 40

just before the king’s broadcast. This eventually completes the

proof of Lemma 12. 2

Based on the two Lemmas 11 and 12, it is not hard to show the

following theorem, which summarizes the properties of the Phase King

protocol.

Theorem 5 (Phase King) Under the system model of Definition 1

with fa, fs, fo, fc, f
r
` , f r,a

` , f s
` , f s,a

` ≥ 0 and n > 3fa + 2fs + 2fo + fc +

2f s
` + 2f r

` + 2f r,a
` , the Phase King algorithm of Figure 11 solves binary

consensus in 3(fa + fs + fo + fc + 2) phases with a total of (fa + fs +

fo + fc + 2)(3n + 1) 1-bit message broadcasts from obedient processors.

Proof: Since Lemma 11 and 12 are the same as Lemma 9 and 10,

respectively, the proof of the agreement (C1) and validity property

(C2) is literally the same as in Theorem 4. To justify the claimed

time and message complexity, Figure 11 reveals that every processor

broadcasts three 1-bit messages per round in Phases 1 and 2. Note

that the broadcasts of M [0] and M [1] occur simultaneously in the same

phase. Adding the single message broadcast by every round’s king,

(fa + fs + fo + fc +2)(3n+1) messages are broadcast during the whole

execution by not arbitrary faulty processors. 2

As in the case of the Phase Queen algorithm, it would again be

possible to omit the king’s broadcast in the last round in this algorithm

as well. Moreover, 2-bit messages could be used in the second phase,

which would reduce the number of message broadcasts to (2n+1)(fa +

fs + fo + fc + 2) − 1.

4.3 Simulating Authentication

This section features the hybrid version of the simple binary Byzantine

agreement algorithm of [67] under the system model of Definition 1.

The Byzantine agreement problem was already introduced and defined

formally in Section 2.4.

4.3 Simulating Authentication 41

The algorithm of [67] is built upon two communication primitives:

broadcast(p, m, k) is used to broadcast messages and accept(p, m, k)

is called whenever a message should be received. These primitives are

used to exchange messages (p, m, k) consisting of the identifier of the

sending processor p, some value m ∈ {0, 1} and the round number k.

The semantics of the broadcast primitive are fully captured by the

following three properties:

(C) Correctness:

If a non-faulty processor p executes broadcast(p, m, k) in round

k, then every obedient processor accepts(p, m, k) in the same

round.

(U) Uniform Unforgeability :

If obedient processor p never executes broadcast(p, m, k), then

no obedient processor ever accepts(p, m, k).

(R) Uniform Relay :

If an obedient processor accepts(p, m, k) in round r ≥ k, then

every obedient processor also accepts(p, m, k) in round r + 1 or

earlier.

The usual way to implement these primitives is by means of signed

messages in conjunction with relaying, i.e., forwarding accepted mes-

sages to all other processors in the system. An alternative solution that

circumvents cryptography will be described later in Subsection 4.3.2.

By plugging this hybrid simulated broadcast primitive into the “generic”

hybrid algorithm introduced in Subsection 4.3.1, a non-authenticated

algorithm for Byzantine agreement will be obtained that tolerates hy-

brid processor and link faults. Note that cryptographic implementa-

tions of the broadcast primitive cannot usually tolerate link faults, since

f s
` messages could get lost in every broadcast, thereby violating correct-

ness (C).

4.3.1 Srikanth & Toueg Authenticated Byzantine Agreement

Figure 12 shows our hybrid version of the algorithm for binary Byzan-

tine agreement of [67]. It differs from the original algorithm only in that

4.3 Simulating Authentication 42

1 /* Transmitter t */
if p = t then v := m else v := 0 fi

3 /* Receiver p */
for r:=1 to fa + fs + fo + fc + 1 do

5 /* Round r */
if v = 1 and not yet broadcast(p, ,) then

7 broadcast(p, 1, r)
fi

9 if accept(pk, 1, rk) from r-th distinct pk, including t, then
v := 1

11 fi
done

Figure 12. The hybrid binary Byzantine agreement algorithm of
Srikanth & Toueg, code for processor p

the number of faulty processors t has been replaced by fa + fs + fo + fc

and in that relaying, which was done explicitly in [67, Fig. 1], has been

hidden within broadcast() for simplicity.

The algorithm proceeds in fa + fs + fo + fc + 1 rounds as defined

by the broadcast primitive, where the only value broadcast by obedient

processors is 1; the value 0 is decided upon by default. An obedient

transmitter broadcasts 1 in round 1, if agreement is to be reached on

the value m = 1. Any obedient receiver p sets v := 1 at the end of

round r and hence delivers 1 if it has accepted r messages broadcast by

different processors Pr = {p1, . . . , pr}, one of which is the transmitter.

Note that p 6∈ Pr since p still has v = 0 during round r. The correctness

and relay properties of the broadcast primitive ensure that all other

correct processors accept all messages ∈ Pr plus the one broadcast by p

by round r + 1, hence they will also deliver 1 by then.

If m = 0 is the value to be agreed upon, an obedient transmit-

ter never broadcasts any message. By the unforgeability property no

obedient receiver ever accepts any message originating from the trans-

mitter. Consequently, no obedient processor sets v := 1 and all must

hence deliver 0 by default. Note that a manifest faulty transmitter is

4.3 Simulating Authentication 43

indistinguishable from a correct transmitter that tries to communicate

m = 0, which explains why we assumed ∅ := 0 for the validity property

(B2).

By formalizing the above line of reasoning the following Theorem 6

shows that our hybrid algorithm achieves agreement (B1) and validity

(B2), provided that the broadcast primitive employed in the algorithm

can cope with the processor and link faults of Definition 1.

Theorem 6 (Hybrid Authenticated Algorithm) Given an imple-

mentation of the broadcast primitive that guarantees (C), (U) and (R)

under the system model of Definition 1, the hybrid algorithm of Fig-

ure 12 achieves the Agreement (B1) and Validity (B2) properties of

Byzantine agreement within fa + fs + fo + fc + 1 rounds, where every

obedient processor calls broadcast() at most once during the whole

execution. Either, at least one non-faulty processor calls accept() by

round fa + fs + fo + fc or no non-faulty processor ever calls accept().

Proof: We first show that validity (B2) is achieved. Since (B2) is

void in case of (a) an arbitrary and (b) an omission faulty transmitter

with m = 1 (recall that ∅ = 0 here), we only have to deal with the

following cases:

(1) If the transmitter t is non-faulty and agreement is to be reached on

0, then t does not call broadcast(). Hence, no obedient processor

will ever accept(t, 1,) due to (U) and all obedient receivers will

decide upon the default value v = 0. If agreement is to be reached

on 1, a non-faulty transmitter calls broadcast(t, 1, 1). By (C) all

obedient processors will accept this message in round 1 and set

v := 1 as required.

(2) If the transmitter is manifest faulty or omission faulty with m = 0,

it either does not call broadcast(), or if it does, all resulting

messages are discarded. Hence, those two cases are indistin-

guishable for the receivers and no non-faulty processor will ever

accept(t, 1,) due to (U). Consequently, all non-faulty receivers

will decide upon the default value v = 0 = ∅ as required.

4.3 Simulating Authentication 44

(3) If the transmitter is symmetric faulty, it can only18 appear like a

non-faulty transmitter that broadcasts the opposite value. Hence,

case (1) above applies.

In order to show the agreement property (B1), it suffices to show

that if one non-faulty processor sets v := 1, then all other obedient

processors will do so as well; agreement on 0 occurs per default. Let

q be the first non-faulty processor that executes v := 1, and let l be

the round in which this happens. Then, q must have accepted at least

l different messages containing a value of 1 in round l. We distinguish

two cases: If l < fa + fs + fo + fc + 1, then any obedient processor p

will accept these messages due to (R) at most one round later as well.

Since p will also accept q’s broadcast of (q, 1, l + 1) in round l + 1 due

to (C), it will eventually end up with v := 1 as required.

If, on the other hand, l = fa + fs + fo + fc + 1, then the first

non-faulty processor q that executed v := 1 does so in the last round

fa+fs+fo+fc+1, where it accepted at least fa+fs+fo+fc+1 messages

with a value of 1. However, at least one of these messages originates

from a non-faulty processor, which must have executed v := 1 in some

round l′ < l. This contradicts our assumption of q being the first one,

so at least one non-faulty processor must call accept() strictly before

the last round. 2

We finally note that it would be sufficient to use only fa +fs +fo +1

instead of fa +fs+fo+fc+1 rounds in the algorithm of Figure 12 when

the broadcast primitive of Section 4.3.2 is used: The above proof of

the agreement property (B1) considers only messages that a non-faulty

processor q accepted. However, the algorithm of Figure 13 ensures

that no obedient receiver ever accepts a message from a manifest faulty

broadcaster.

18Recall from Definition 1 that a symmetric faulty processor consistently sends
information that is not detectably bad. A wrong transmitter identifier p or round
number r in a message (p, m, r) would be detected at any receiver.

4.3 Simulating Authentication 45

4.3.2 Hybrid Simulated Broadcast Primitive

As already mentioned, algorithms based on authenticated messages, like

the one of Figure 12, are usually simple, easy to understand and have su-

perior fault-tolerance properties as well. However, cryptographic meth-

ods (see [63] for an overview) typically used for authentication are ex-

pensive operations, that cannot always be afforded in power/bandwidth-

limited systems. Moreover, since there is always a non-zero probability

of guessing or forging a processor’s signature, no present cryptographic

authentication technique is unconditionally secure. Our algorithm’s

fault-tolerance properties, however, depend critically upon an uncom-

promised cryptosystem. As mentioned in [62], processors with broken

signatures can — in the worst case — act as maliciously as arbitrary

faulty processors, which are very costly to tolerate.

Those deficiencies make the non-authenticated implementation of

the broadcast primitive developed by Srikanth & Toueg in [67] attrac-

tive. Instead of using cryptography, their simulated broadcast primi-

tive relies upon the idea of letting all processors witness a processor’s

message broadcast. Using this approach, the algorithm of [67, Fig. 2]

unconditionally guarantees the correctness (C), unforgeability (U) and

relay (R) properties, provided that n > 3f and at most f processors

are arbitrary faulty.

Figure 13 shows our hybrid variant of this simulated broadcast

primitive, which works under the fault model of Definition 1. It pro-

ceeds in consecutive rounds consisting of two phases each, where two

kinds of messages are exchanged: When calling broadcast(p, m, k) in

round k, processor p enters the code in phase 2k. It first sends a mes-

sage (init, p, m, k) to all processors in the system, which is answered

by every witness with a message (echo, p, m, k) in phase 2k + 1. A pro-

cessor calls accept(p, m, k) in some round r ≥ k, when it has received

n− fa − fs − fo − fc − f s
` − f r

` messages containing (echo, p, m, k) from

different processors. Note that the rounds of simulated authenticated

broadcasting run in lockstep with the rounds of the application, i.e.,

the Byzantine agreement algorithm of Figure 12.

4.3 Simulating Authentication 46

Multiple rounds can occur if the initial broadcaster p is faulty. The

additional rounds consist of two identical phases each, where a processor

that has not yet send (echo, p, m, k) could get sufficient evidence that

it should do so, which could in turn convince some processors to accept

in the following phase.

In the original algorithm [67, Fig. 2] any processor q can terminate

its instance of broadcast(p, m, k) after having called accept(p, m, k),

since any other still active processor in the system must have seen

q’s echo message by then. However, in order to deal with link faults,

we had to change the original algorithm in a subtle, but important

way: Link faults can produce f r,a
` erroneous (echo, p, m, k) messages

per round at any obedient processor, which would accumulate over

multiple rounds. In Figure 13, we hence retransmit (echo, p, m, k) in

every additional phase, instead of sending it only once and remembering

receptions from previous rounds. Since other processors may accept one

round later than q according to the relay property (R), however, any

processor must retransmit (echo, p, m, k) up to and including the phase

following acceptance.

By adopting the analysis of [67] with guidance from [59], where the

closely related asynchronous consistent broadcasting primitive of [66]

was analyzed, we can prove the following Theorem 7.

Theorem 7 (Simulated Broadcast) Under the system model of Def-

inition 1 with fa, fs, fo, fc, f
r
` , f r,a

` , f s
` , f s,a

` ≥ 0 and n > 3fa+2fs+2fo+

fc+f s
` +f s,a

` +2f r
` +2f r,a

` , the simulated broadcast primitive of Figure 13

guarantees correctness (C), uniform unforgeability (U), and uniform re-

lay (R). During 0 < r ≤ R rounds, where R is an a priori upper bound

upon the maximum number of rounds the algorithm is allowed to run,

at most (2r − 1)n + 1 broadcasts of (log2 n + log2 R + 2)-bit messages

are performed by obedient processors.

Proof: We show each of the three properties separately:

Correctness: Since p is non-faulty, n − fa − fs − fo − fc − f s
` non-

faulty processors receive the message (init, p, m, k) in phase 2k and

4.3 Simulating Authentication 47

1 /* Round k */
/* Phase 2k: Processor p only (entered by broadcast()) */

3 send(init, p, m, k) to all processors;
/* Phase 2k + 1: All processors */

5 if received(init, p, m, k) from p in phase 2k then
send(echo, p, m, k) to all processors

7 fi
if received(echo, p, m, k) in phase 2k + 1

9 ≥ n − fa − fs − fo − fc − f s
` − f r

` then
accept(p, m, k)

11 fi

13 /* Round r ≥ k + 1 */
/* Phase 2r, 2r + 1 (same code): All processors */

15 if received(echo, p, m, k) in previous phase
≥ n − 2fa − fs − 2fo − fc − f s

` − 2f r
` − f r,a

`

17 or sent(echo, p, m, k) in previous phase then
send(echo, p, m, k) to all processors

19 fi
if accepted(p, m, k) in previous phase then

21 terminate
fi

23 if received(echo, p, m, k) in this phase
≥ n − fa − fs − fo − fc − f r

` then
25 accept(p, m, k)

fi

Figure 13. The hybrid version of the simulated broadcast primitive
of Srikanth & Toueg

4.3 Simulating Authentication 48

send(echo, p, m, k) to all processors in phase 2k + 1. Hence, every

obedient processor receives (echo, p, m, k) from at least n−fa−fs−fo−

fc−f s
` −f r

` distinct processors in phase 2k+1 and thus accepts(p, m, k)

in phase 2k + 1, i.e., in round k.

Uniform Unforgeability : The proof is by contradiction: Assume that

some obedient processor q accepts(p, m, k) in some round r ≥ k, al-

though the obedient processor p did not execute broadcast(p, m, k)

and hence did not send any (init, p, m, k) message in phase 2k. Nev-

ertheless, f s,a
` obedient processors might have received (init, p, m, k) as

the result of a “foreign” broadcast link fault at p, such that at most

fa +fs+f r,a
` +f s,a

` (echo, p, m, k) messages might arrive at any obedient

processor. Since fa+fs+f r,a
` +f s,a

` < n−2fa−fs−2fo−fc−f s
` −2f r

` −f r,a
` ,

no obedient processor, except the at most f s,a
` ones that retransmit

echo (cf. line 17), will ever execute send(echo, p, m, k) in line 18 of

Figure 13. Since q executed accept(p, m, k), however, it must have

received (echo, p, m, k) from at least n − fa − fs − fo − fc − f s
` − f r

` >

fa+fs+f r,a
` +f s,a

` processors, which provides the required contradiction.

Uniform Relay : Let l be the phase in which the first non-faulty proces-

sor q accepts (p, m, k) in round r. Processor q must have received at

least n − fa − fs − fo − fc − f s
` − f r

` echo-messages from different pro-

cessors in phase l, which implies that every other non-faulty processor

must have received at least n − 2fa − fs − 2fo − fc − f s
` − 2f r

` − f r,a
`

echo-messages as well by Lemma 7. According to line 16 of Figure 13,

every non-faulty processor thus emits an echo-message in phase l + 1.

Therefore, by phase l + 1 in round r′ ≤ r + 1, every obedient processor

will receive (echo, p, m, k) at least n − fa − fs − fo − fc − f r
` times and

will hence accept(p, m, k).

As far as the claimed message complexity of broadcast() is con-

cerned, it is of course again impossible to bound the number of message

broadcasts by (arbitrary) faulty processors. Every processor that faith-

fully executes the algorithm of Figure 13, however, executes one broad-

cast of (echo, p, m, k) (Lines 6 and 18) in each phase following the initial

one, where only processor p broadcasts (init, p, m, k) (Line 3). Hence,

4.3 Simulating Authentication 49

during 0 < r ≤ R rounds, at most 1 + n + 2(r − 1)n = (2r − 1)n + 1

broadcasts of (1+ log2 n+1+log2 R)-bit messages are performed. This

eventually completes the proof of Theorem 7. 2

Note that the bound R upon the number of rounds required by

Theorem 7 must be enforced externally, as in the Byzantine agreement

algorithm of Figure 12. After all, the collusion of a faulty broadcaster

with faulty witnesses could let the number of required rounds grow

without bounds, as already noted in [67]. Still, this could only hap-

pen if no non-faulty processor has accepted yet: By the relay property,

all non-faulty processors must accept by the end of the phase follow-

ing acceptance of the first non-faulty processor. Since any non-faulty

processor terminates the algorithm of Figure 13 in the phase after ac-

ceptance, all non-faulty processors must have terminated by the end of

the second phase following acceptance of the first non-faulty processor,

i.e., at most one round later.

With those preparations, it is not difficult to prove our major The-

orem 8.

Theorem 8 (Hybrid Srikanth & Toueg) Under the system model

of Definition 1 with fa, fs, fo, fc, f
r
` , f r,a

` , f s
` , f s,a

` ≥ 0 and n > 3fa +

2fs + 2fo + fc + f s
` + f s,a

` + 2f r
` + 2f r,a

` , the algorithm of Figure 12 in

conjunction with the simulated broadcast primitive of Figure 13 achieves

binary Byzantine agreement in at most 2(fa + fs + fo + fc + 1) phases,

with a total of at most (2(fa + fs + fo + fc + 1) − 1)n2 + n broadcasts

of (2 log2 n + 2)-bit messages from obedient processors.

Proof: The major part of our theorem follows immediately by com-

bining Theorem 6 with Theorem 7.

As far as the claimed time and message complexity is concerned, we

know from Theorem 6 that the first accept of a non-faulty processor

happens in round fa + fs + fo + fc or earlier. Hence, any instance

of the simulated broadcast primitive at an obedient processor must

terminate by round R = fa +fs +fo +fc +1 ≤ n and could generate at

most (2(fa + fs + fo + fc + 1)− 1)n + 1 broadcasts of (2 log2 n + 2)-bit

4.3 Simulating Authentication 50

messages by Theorem 7, since each of the at most n obedient processors

calls broadcast() at most once by Theorem 6, the proof of Theorem 8

is completed. 2

Theorem 6 in conjunction with the tight lower bound n > f r
` +f r,a

` +

f s
` +f s,a

` for consensus developed in [61] finally allows us to derive a—not

necessarily tight—lower bound for the number of processors required

for establishing Correctness, Unforgeability and Relay , cp. [67]: If there

was a broadcast primitive that needs only f r
` +f r,a

` +f s
` +f s,a

` processors,

it would be possible to solve Byzantine agreement by means of the

algorithm of Figure 12, thereby violating the lower bound for consensus.

We thus have the following Theorem 9, which indicates that the hybrid

simulated broadcast primitive of Figure 13 may not be optimal.

Theorem 9 (Lower Bound) Achievement of Correctness (C), Un-

forgeability (U), and Relay (R) under the system model of Definition 1

requires n > f r
` + f r,a

` + f s
` + f s,a

` processors. 2

5 Conclusion 51

5 Conclusion

This paper makes two contributions to the state of the art: (1) It shows

that message-efficient deterministic consensus in synchronous systems

is possible even in the presence of link faults, and (2) improves and

adapts three existing algorithms by analyzing them for hybrid faults.

These adaptions were made using the novel preception-based fault

model of [61], which grants every processor at most f r
` independent re-

ceive link faults and f s
` broadcast link faults in each round, in addition

to at most fa, fs, fo, fc arbitrary, symmetric, omission, and mani-

fest processor faults. The required number of processors for the Phase

King and Queen Algorithms [17] and the non-authenticated algorithm

of Srikanth & Toueg [67] are shown to satisfy

n > 2f s
` + 2f r

` + 2f r,a
` + 4fa + 2fs + 2fo + fc,

n > 2f s
` + 2f r

` + 2f r,a
` + 3fa + 2fs + 2fo + fc,

n > f s
` + f s,a

` + 2f r
` + 2f r,a

` + 3fa + 2fs + 2fo + fc.

Comparison with the (optimal) non-authenticated algorithm OMH

of [61] shows that those algorithms are less resilient to arbitrary link

faults. The resulting fault-tolerance degree n > 2f s
` + 2f r

` does not

match the lower bound n > f s
` + f r

` .

The question whether an optimal message-efficient algorithm exists

remains open and is definitely one direction of future work. Another

direction for further study may be the analysis of solutions for multi-

valued agreement and for asynchronous systems.

List of Figures

1 Classification of systems in the scope of this work 2
2 A town under siege . 5
3 Part of pi’s EIG-tree . 11
4 The Exponential Information Gathering protocol 11
5 Evolution of Hybrid Fault Models [6] 16
6 Example of a broadcast fault that affects the messages

of two recipients. 20
7 Example of a receive fault that involves the messages

from two senders. 21
8 Example of a 4-processor system with f` = 1 receive link

faults per processor in each round, where all processors
must be considered faulty in existing fault models. 26

9 A Graph with node-connectivity κn = 1, egde-connectivity
κe = 2, and a minimal degree of δ = 3. 27

10 Hybrid Phase Queen algorithm, code for processor p . . . 33
11 Hybrid Phase King algorithm, code for processor p . . . 38
12 The hybrid binary Byzantine agreement algorithm of

Srikanth & Toueg, code for processor p 42
13 The hybrid version of the simulated broadcast primitive

of Srikanth & Toueg . 47

List of Tables

1 History of Byzantine agreement [34] 7

References

[1] Hosame Abu-Amara and Jahnavi Lokre. Election in asynchronous
complete networks with intermittent link failures. IEEE Transac-
tions on Computers, 43(7):778–788, July 1994.

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure
detection and consensus in the crash-recovery model. Distributed
Computing, 13(2):99–125, April 2000.

[3] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are wait-free algo-
rithms fast? Journal of the ACM, 41(4):725–763, July 1994.

[4] Hagit Attiya and Jennifer Welch. Distributed Computing.
McGraw-Hill, 1998.

[5] M. H. Azadmanesh and Roger M. Kieckhafer. New hybrid fault
models for asynchronous approximate agreement. IEEE Transac-
tions on Computers, 45(4):439–449, 1996.

[6] M.H. Azadmanesh and Roger M. Kieckhafer. Exploiting omissive
faults in synchronous approximate agreement. IEEE Transactions
on Computers, 49(10):1031–1042, October 2000.

[7] Anindo Banerjea. Fault recovery for guaranteed performance com-
munications connections. IEEE/ACM Transactions on Network-
ing, 7(5):653–668, 1999.

[8] A. Bar-Noy, D. Dolev, C. Dwork, and H.R. Strong. Shifting gears:
changing algorithms on the fly to expedite Byzantine agreement.
Information and Computation, 97(2):205–233, April 1992.

[9] Amotz Bar-Noy and Danny Dolev. Consensus algorithms with
one-bit messages. Distributed Computing, 4:105–110, 1991.

[10] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond
Strong. Shifting gears: Changing algorithms on the fly to expedite
byzantine agreement. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, pages 42–51,
August 1987.

[11] R. Bar-Yehuda, S. Kutten, Y. Wolfstahl, and S. Zaks. Making dis-
tributed spanning tree algorithms fault-resilient. In Franz-Josef
Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors,

Lecture Notes in Computer Science, volume 247, pages 432–444.
Springer, February 1987. Proceedings to STACS’97: 4th annual
Symposium on Theoretical Aspects of Computer Science.

[12] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simu-
lating reliable links with unreliable links in the presence of process
crashes. In Proceedings of the 10th International Workshop on
Distributed Algorithms (WDAG’96), volume 1151 of LNCS, pages
105–122. Springer, October 1996.

[13] Piotr Berman and Juan A. Garay. Asymptotically optimal con-
sensus. In Proc. 16th International Colloquium on Automata, Lan-
guages and Programming, pages 80–94, July 1989.

[14] Piotr Berman and Juan A. Garay. Efficient distributed consen-
sus with n = (3 + ε)t processors. In Proceedings of the 5th In-
ternational Workshop on Distributed Algorithms, pages 129–142,
October 1991.

[15] Piotr Berman and Juan A. Garay. Cloture votes: n/4-resilient dis-
tributed consensus in t+1 rounds. Mathematical Systems Theory,
26:3–19, July 1993.

[16] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards
optimal distributed consenus. In Proceedings of the 30th IEEE
Symposium on the Foundations of Computer Science, pages 410–
415. IEEE Computer Society Press, 1989.

[17] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Asymp-
totically optimal distributed consensus. http://www.bell-
labs.com/user/garay/#distributed-pub, 1992. (A combination of
results from ICALP’89[13], FOCS’89[16], and WDAG’91[14]).

[18] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, Read-
ing, Mass., 1987.

[19] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(4), March 1996.

[20] Soma Chaudhuri. More choices allow more faults: Set consensus
problems in totally asynchronous systems. Information and Con-
trol, 105(1):132–158, July 1993.

[21] Brian Coan. A communication-efficient canonical form for fault-
tolerant distributed algorithms. In Proccedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing, pages
63–72, 1986.

[22] Brian Coan. Efficient agreement using fault diagnosis. Distributed
Computing, 7, 1993. also in Proc 26th Allerton Conf. on Commu-
nication, Control and Computing, 1988.

[23] Brian Coan and Jennifer Welch. Modular construction of an effi-
cient 1-bit byzantine agreement protocol. Mathematical Systems
Theory, 26:131–154, July 1993.

[24] Danny Dolev. The Byzantine generals strike again. Journal of
Algorithms, 3(1):14–30, 1982.

[25] Danny Dolev, Michael J. Fischer, R. Fowler, N. Lynch, and H. Ray-
mond Strong. An efficient algorithm for Byzantine agreement with-
out authentication. Information and Control, 52:257–274, 1982.

[26] Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray
Strong. Dynamic fault-tolerant clock synchronization. Journal of
the Association for Computing Machinery, 42(1):143–185, January
1995.

[27] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W.
Stark, and H. Raymond Strong. Reaching approximate agreement
in the presence of faults. Journal of the ACM, 33(3):499–516, July
1986.

[28] Danny Dolev, Rudiger Reischuk, and H. Raymond Strong. Early
stopping in byzantine agreement. Journal of the ACM, 37(4):720–
741, October 1990.

[29] Danny Dolev and H. Raymond Strong. Polynomial algorithms for
multiple processor agreement. In Proceedings 14th Annual ACM
Symposium on Theory of Computing (STOC’82), pages 401–407,
San Francisco, May 1982.

[30] A. D. Fekete. Asymtotically optimal algorithms for approximate
agreement. Distributed Computing, 4(1):9–29, March 1990.

[31] A. D. Fekete. Asynchronous approximate agreement. Information
and Computation, 115(1):95–124, November 15 1994.

[32] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistancy. Information Processing Letters,
14(4):198–202, May 1982.

[33] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossi-
bility of distributed consensus with one faulty processor. Journal
of the ACM, 32(2):374–382, April 1985.

[34] Juan A. Garay and Yoram Moses. Fully polynomial byzantine
agreement in t+1 rounds. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pages 31–41, San Diego, May
1993. Extended abstract of [35].

[35] Juan A. Garay and Yoram Moses. Fully polynomial byzantine
agreement for n > 3t processors in t + 1 rounds. SIAM Journal of
Computing, 27(1):247–290, February 1998.

[36] Oded Goldreich and Dror Sneh. On the complexity of global com-
putation in the presence of link failures: The case of uni-directional
faults. In Symposium on Principles of Distributed Computing,
pages 103–111, 1992.

[37] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement
with authentication: Observations and applications in tolerating
hybrid and link faults. In Proceedings Dependable Computing for
Critical Applications-5, pages 139–157, Champaign, IL, September
1995.

[38] J.N. Gray. Notes on data base operating systems. In G. Seegmüller
R. Bayer, R.M. Graham, editor, Operating Systems: An Advanced
Course, volume 60 of Lecture Notes in Computer Science, chapter
3.F, page 465. Springer, New York, 1978.

[39] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn communi-
cation channels. Technical report, D’eoartment d’Informatique,
Ecole Polytechnique F’ed’erale de Lausanne, Switzerland, 96.

[40] R.M. Kieckhafer and M.H. Azadmanesh. Reaching approximate
agreement with mixed failure modes. IEEE Transactions on Par-
allel and Distributed Systems, 5(1):53–63, January 1994.

[41] R.M. Kieckhafer and M.H. Azadmanesh. Unified approach to syn-
chronous and asynchronous approximate agreement in the presence

of hybrid faults. IEEE Transactions on Reliability, 44(4):622–631,
December 1995.

[42] Leslie Lamport. The weak byzantine generals problem. Journal of
the ACM, 30:668–676, July 1983.

[43] Leslie Lamport, Robert Shostak, and Marshall Pease. Reach-
ing agreement in the presence of faults. Journal of the ACM,
27(2):228–234, April 1980.

[44] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzan-
tine generals problem. ACM Transactions on Programming Lan-
guages and Systems, 4(3):382–401, July 1982.

[45] Patrick Lincoln and John Rushby. A formally verified algorithm
for interactive consistency under a hybrid fault model. In Pro-
ceedings Fault Tolerant Computing Symposium 23, pages 402–411,
Toulouse, France, June 1993.

[46] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[47] Stephen R. Mahaney and Fred B. Schneider. Inexact agreement:
Accuracy, precision, and graceful degradation. In Proceedings 4th
ACM Symposium on Principles of Distributed Computing, pages
237–249, Minaki, Canada, August 1985.

[48] J. McAlpin and J. Liu. An adaptive routing algorithm for a net-
work with distributed control. In Proceedings of the ISMM In-
ternational Conference. Parallel and Distributed Computing, and
Systems, page 409 pp. Acta Press, Anaheim, CA, USA, 1990.

[49] Fred J. Meyer and Dhiraj K. Pradhan. Consensus with dual failure
modes. In In Digest of Papers of the 17th International Symposium
on Fault-Tolerant Computing, pages 48–54, Pittsburgh, July 1987.

[50] Yoram Moses and Orli Waarts. Coordinated traversal: (t+1)-
round byzantine agreement in polynomial time. Journal of the
ACM, 17(1):110–156, July 1994.

[51] Kenneth J. Perry and Sam Toueg. Distributed agreement in the
presence of processor and communication faults. IEEE Transac-
tions on Software Engineering, SE-12(3):477–482, March 1986.

[52] S. S. Pinter and I. Shinahr. Distributed agreement in the presence
of communication and process failures. In Proceedings of the 14th
IEEE Convention of Electrical & Electronics Engineers in Israel.
IEEE, March 1985.

[53] R. Plunkett and A. Fekete. Approximate agreement with mixed
mode faults. In Proccedings of the 12th International Symposium
on Distributed Computing, pages 333–346. Springer Lecture Notes
in Computer Science 1499, September 1998.

[54] David Powell. Failure mode assumptions and assumption cover-
age. In Proc. 22nd IEEE Int. Symp. on Fault-Tolerant Computing
(FTCS-22), pages 386–395, Boston, MA, USA, 1992. (Revised
version available as LAAS-CNRS Research Report 91462, 1995).

[55] Rfc index. Technical report, Internet Engineering Task Force,
http://www.ietf.org/iesg/1rfc index.txt, 1969.

[56] John Rushby. A formally verified algorithm for clock sychroniza-
tion under a hybrid fault model. In Proceedings ACM Principles of
Distributed Computing (PODC’94), pages 304–313, Los Angeles,
CA, August 1994.

[57] Hasan M. Sayeed, Marwan Abu-Amara, and Hosame Abu-Amara.
Optimal asynchronous agreement and leader election algorithm for
complete networks with Byzantine faulty links. Distributed Com-
puting, 9(3):147–156, 1995.

[58] Ulrich Schmid. Orthogonal accuracy clock synchronization.
Chicago Journal of Theoretical Computer Science, 2000(3):3–77,
2000.

[59] Ulrich Schmid. How to model link failures: A perception-based
fault model. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN’01), pages 57–66, Göteborg,
Sweden, July 1–4, 2001.

[60] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-
tolerant interval intersection with the Lipschitz condition. Dis-
tributed Computing, 14(2):101 – 111, May 2001.

[61] Ulrich Schmid and Bettina Weiss. Consensus with oral/written
messages: Link faults revisited. Technical Report 183/1-110, De-
partment of Automation, TU Vienna, February 2001.

[62] Ulrich Schmid, Bettina Weiss, and John Rushby. Formally verified
byzantine agreement in presence of link faults. 2001. (submitted).

[63] Bruce Schneier. Applied Cryptography. John Wiley & Sons, second
edition, 1996.

[64] Gurdip Singh. Leader election in the presence of link failures.
IEEE Transactions on Parallel and Distributed Systems, 7(3):231–
236, March 1996.

[65] Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. Byzantine
agreement in the presence of mixed faults on processors and links.
IEEE Transactions on Parallel and Distributed Systems, 9(4):335–
345, 1998.

[66] T. K. Srikanth and Sam Toueg. Optimal clock synchronization.
Journal of the ACM, 34(3):626–645, July 1987.

[67] T.K. Srikanth and Sam Toueg. Simulating authenticated broad-
casts to derive simple fault-tolerant algorithms. Distributed Com-
puting, 2:80–94, 1987.

[68] W. Richard Stevens. TCP/IP Illustrated, volume I. Addison-
Wesley, 1994.

[69] P. M. Thambidurai and Y. K. Park. Interactive consistency with
multiple failure modes. In Proceedings 7th Reliable Distributed
Systems Symposium, October 1988.

[70] Sam Toueg, Kenneth J. Perry, and T. K. Srikanth. Fast distributed
agreement. SIAM Journal on Computing, 16(3):445–457, 1987.

[71] Chris J. Walter and Neeraj Suri. The customizable fault/error
model for dependable distributed systems. Theoretical Computer
Science, 2000. (Special issue on Dependable Computing, to ap-
pear).

[72] Chris J. Walter, Neeraj Suri, and M. M. Hugue. Continual on-line
diagnosis of hybrid faults. In Proceedings DCCA-4, January 1994.

[73] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA:
A secure distributed on-line certification authority. Technical Re-
port TR2000-1828, Computer Science Department, Cornell Uni-
versity, December 2000.

