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Deutsche Kurzfassung

Diese Dissertation beschäftigt sich mit nichtkommutativen Feldtheorien. Die
beiden Hauptteile befassen sich mit Renormierung, konkret der Formulierung
und Lösung des sogenannten UV/IR-mbring Problems. Eingeschoben ist
ein Abschnitt über Symmetrien in Zusammenhang mit der Seiberg-Witten
Abbildung von Eichfeldtheorien.

Teil I: Kapitel 1 stellt das Problem vor, Kapitel 2 (basierend auf den Ar-
beiten [1] und [2]) präsentiert zwei einfache Lösungsvorschläge zunächst für
die skalare ^4-Theorie, dann für die Vektoreichfeldtheorie.

Intermezzo: Die Kapitel 3 und 4 (nach [3] bzw. [4]) betrachten zwei Aspekte
der sogenannten Seiberg-Witten (SW-) Abbildung. Dabei handelt es sich
um eine Entwicklung des nichtkommutativen Eichfeldes nach Potenzen des
Nichtkommutativitäts-Parameter 9^. Kapitel 3 diskutiert die Möglichkeiten
einer Konstruktion des Energie-Impuls-Tensors im Rahmen einer SW-entwik-
kelten Eichfeldtheorie. Kapitel 4 formuliert die SW-Abbildung für den Fall
einer nichtkommutativen super Yang-Mills Eichtheorie.

Teil II: Die Kapitel 5, 6 und 7 (nach [5] und [6]) betrachten abermals das
UV/IR-mixing Problem, diesmal von wesentlich grundlegenderer Seite. Der
Formalismus der Quantenfeldtheorie wird sowohl für die nichtkommutative
skalare als auch für die nichtkommutative Vektoreichfeld-Theorie konstru-
iert. Eine abweichende Definition der Zeitordnung führt zu Unitarität und
Renormierbarkeit ohne UV/IR-Probleme, wie anhand der skalaren Feldthe-
orie gezeigt wird.
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Summary

This thesis deals with noncommutative field theories. The two main parts
focus on renormalization, in particular the formulation and solution of the so-
called UV/IR-mixing problem. The interjectional "Intermezzo" treats sym-
metries with respect to the Seiberg-Witten expansion of gauge theories.

Part I: Chapter 1 introduces the problem, chapter 2 (based on the papers
[1] and [2]) presents two simple proposals for a solution, first for the scalar
04-theory, then for the vector gauge field theory.

Intermezzo: Chapters 3 and 4 (after [3] and [4], respectively) consider two as-
pects of the so-called Seiberg-Witten (SW-) map. This is an expansion of the
noncommutative gauge field with respect to the noncommutativity parameter
öfty. Chapter 3 discusses the possibilities to construct the energy-momentum
tensor of a SW-expanded gauge field theory. Chapter 4 formulates the SW-
map for a noncommutative super Yang-Mills gauge theory.

Part II: Chapters 5, 6 and 7 (after [5] and [6]) again focus on the UV/IR-
mixing problem, now from a more fundamental point of view. The formalism
of quantum field theory is constructed for both, noncommutative scalar and
vector gauge field theory. A deviating definition of the time ordering restores
unitarity and renormalizability without UV/IR-problems, which is demon-
strated by means of the scalar field theory.
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Chapter 1

Introduction

1.1 Propaganda
There are two major theories in physics today, Einstein's theory of Special
and general relativity concerning gravity on one hand and quantum mechan-
ics/quantum field theory (which grew eventually to the Standard model)
concerning 'the rest of the world' on the other hand. Both theories rely upon
Standard differential geometry. The Standard model is most efficiently de-
scribed via fibre bundles, and Einstein's theory of gravity uses Riemannian
geometry.

Unfortunately, exactly the attempt of combining both theories (GRT and
QFT) has shown that the concept of space-time as a differentiable manifold
will break down at very small distances. A simple heuristic argument given
by [7], [8] combining the principles of general relativity and quantum the-
ory shows that it is impossible to locate a particle with arbitrary accuracy.
In short, the energy transfer required to make an increasingly exact obser-
vation will eventually create a black hole: A fundamental horizon which
makes impossible any measurement below the Planck length. Of course, one
could argue that space-time still is a manifold. However, history has shown
that physics does not use idealised concepts which are proven to be unde-
tectable (e.g. the aether which became dispensable after Special relativity has
been invented). Thus we conclude: Standard differential geometry is not the
mathematical framework to describe physics at extremely short distances.
Space-time cannot be a manifold.

So, after giving up ,standard differential geometry—what should replace
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it? A first, natural thought would be of a lattice. However, the disadvantage
of a lattice is that symmetries e.g. translational and rotational symmetry in
space-time), which are guiding principles in quantum field theory, are lost.
Furthermore, there are other conceptual problems, for example with the spin
structure and the construction of a differential calculus.

Another, more promising candidate is noncommutative geometry, which
has been pioneered by Alain Connes, [9] for a review see [10]. Based on
an idea by Snyder [11], noncommutative (NC) geometry tries to extend the
principles of quantum mechanics to geometry itself: The concepts of Operator
algebras, Hubert Spaces and functional analysis. Indeed, there exists a class
of metric Spaces equipped with a differential calculus and a spin structure (to
allow for fermions). These mathematical objects are called spectral triples,
[12]. They are noncommutative geometries consisting of a (space/time-) al-
gebra A, represented on a Hubert space 7i, and a Dirac Operator V (which
is necessary to describe a spin structure). Moreover, they allow for the defi-
nition chirality 75 and Charge conjugation J, [13].

The great triumph of the spectral triples is that the Standard model
of modern physics looks mueh simpler when formulated in the language of
spectral triples [13], [14]. The most remarkable features are: the Higgs field
appears as a component of a gauge field living on a spectral triple; parity
breaking and spontaneous symmetry breaking are enforced by the NC for-
mulation; gravity and gauge fields (Yang-Mills and Higgs) are all 'created'
by the the free Dirac Operator: The so called spectral action of the Dirac
Operator T> gives the complete bosonic action of the Standard model, the
Einstein-Hilbert action (with cosmological constant) and an additional Weyl
term in one stroke [15]. Thus the füll bosonic content of the Standard model
is determined by the fermionic content of T>.

Of course, despite this remarkable features, there are technical difficulties
with spectral triples (such as the restriction to compact Spaces with Euclidean
signature). In particular, how to perform the quantisation of the spectral
action is completely unclear. The simplest way to test whether the Standard
calculus of quantum field theory extends to spectral triples is to apply it to
the most simple examples—deformations of a manifold. This means that
we focus our interest on spectral triples depending, let's say, on a set of
Parameters 9 such that for 9 —> 0 we recover an ordinary manifold. Then we
may expect that all results computed within this spectral triple (we call it 9
deformed space, see next chapter ) tend for 9 —> 0 to the results computed
from QFT on a manifold (the ordinary space).
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1.2 The Simplest Case
To obtain the most primitive Version of a spectral triple, one generalises the
usual concepts of quantum raechanics on Euclidean space, which are defined
by the following commutation relation [16], [17],

[*„, p„] = iS^, [xß, xv) = [p„, P„] = 0, (h = l) (l.i)

where X„ and Pv are the hermitian position and momentura Operators, re-
spectively. Now, in Order to get a noncomrautative geometry, we assume the
following natural generalisation

[Xll,Xv]=i9fU,, (1.2)

with the deformation parameter 0M„ being an antisymmetric constant matrix
of dimension [length]2. Thus the noncommutative space-time becomes blurry,
as any two dimensional subspace {xa,Xß} is divided into 'plaquettes' of area
9Qß. Since we want to maintain Lorentz symmetry, the existence of the
constant antisymmetric tensor 0^ makes necessary a modification of the
Lorentz transformation [18].

To construct the perturbative field theory formulation we will use ordi-
nary fields and not operator-valued objects. One has the so-called Moyal-
Weyl correspondence defined by

j>(X) <^> <j>(x), (1.3)

where (}>(X) is an Operator valued functional and <f)(x) is the usual scalar
field depending on ordinary (commuting) Euclidean coordinates x^. The
correspondence is given by

= /<Pxe~ikx<t>{x). (1.4)

Here A; and x are commutative, real variables. With the help of the Baker-
Campbell-Hausdorff-formula one finds (in Euclidean space)

- ( L 5 )
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Now one can introduce the Moyal-Weyl (or star-) product,

( ) ) , (1.6)

which is defined as [16], [19]

= exp Q ^ A A ^ ^(x)0(y)|y=x . (1.7)

Note: The derivatives in this exponential form of the •-product are gener-
alised derivatives in the sense of distribution theory, not ordinary derivatives.
As such one cannot apply the naive rules of differential calculus. To make
this transparent, write <j>(x + a)4>{y) = exp(a/i9^)0(x)^(y), and hide the ex-
ponential of the derivatives in the definition of the product. For example,
with respect to time ordering, it would be completely wrong to use the step
function T(X° - y°) or r(y° - z°) for the product (f>(x + a)<f>(y), [20].

Due to this problems, we will employ a slightly different definition of the
Moyal product throughout this theses:

\ s)eiU, l = l»0ßV. (1.8)

Here the fields need not be analytic functions as in (1.7), but have to vanish
rapidly at infinity. Note that x is the commutative coordinate corresponding
to X. The philosophy in deformed field theory is now to realize the non-
commutativity property by a mere replacement of all ordinary field products
by Moyal products. The advantage of this approach is that one needs not
perform calculations explicitly on the noncommutative algebra A but stays
on familiär, commutative space-time.

1.3 Action

With the star-product one is able to define, for example, the noncommutative
scalar self-interacting classical action in a four-dimensional Euclidean space,

= f (1.9)

The perturbative properties of such a noncommutative field model are studied
in great detail in [21], [22]. Note that the quadratic part of the action (1.9)
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remains unchanged compared to the commutative theory. The *-product in
the interaction term leads to a momentum-dependent phase factor associated
with each vertex in a given Feynman diagram.

In perturbation theory, the interplay of these phase factors produces two
different types of graphs leading to planar and non-planar contributions, as
originally proposed by [16]. These are distinguished by their behaviour with
respect to the ultra-violet (UV) region. The planar graphs show the desired
efFects expected from naive power counting and known from commutative
theory. The planar divergent radiative corrections can therefore be discussed
in the framework of the usual UV-renormalization procedure. Some of the
non-planar diagrams, however, show an ugly nonlocal behaviour. The a
priori divergent contributions are regularized by the phase factors that are
associated with each crossing of lines in the graph. The rapid oscillations of
these phases regulate the integrals and thus suppress any divergence, i. e. an
otherwise divergent graph becomes finite with an effective cutoff (at one-loop)

Aeff = . * = -^=. (1.10)
/OPOP y/p2

Therefore, the original UV-divergence is replaced by an IR-singularity in the
limit of vanishing external momenta p (if one discusses one-loop self-energy
corrections) implying Ae// —> oo (for a rigorous analysis see [23]). This
artifact is the so called UV/IR-mixing problem of NCQFT [21].

1.4 The Problem
In order to understand the UV/IR-mixing problem it is useful to show more
precisely how it enters the game [24], [21]. The action (1.9) induces the
following one-loop Feynman integral describing the first Order quantum cor-
rection to the two point function

where we have used the well-known propagator for the scalar field,
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and the corresponding Feynraan rule for the noncommutative interaction
vertex [21]. This integral splits up in a planar contribution (leading to the
usual mass renormalization),

- 9 2 f
-JJ

and a non-planar contribution,

With the usual techniques using Schwinger parametrisation one gets for the
non-planar expression after Gaussian Integration

where p2 acts as regulator.
With Jo°° f̂ exp(—ua—v/(4a)) = 4yJ(u/v)Ki(^üv) for positive real part

of u and v we find

With the expansion of the modified Bessel function Kx{x) = i 4- f (27 —
1 — 2 In 2) + | In x + O(x3), where 7 ~ 0.577 is the Euler gamma, we get for
small p2

l ( V )w + T l n ( m V )

where O{\) Stands for the terms reraaining finite for p2 —> 0. Thus, as sug-
gested above, in the non-planar section of NCQFT the original UV-divergence
of the commutative theory has been regularized by the momentum dependent
cut-off p2. In the commutative limit 6^ = 0 = p2 the divergence reappears.
Unfortunately, even the regularized divergence (9^ ^ 0) causes troubles: The
first term on the right hand side of (1.17) gives rise to severe IR-singularities
when inserted into higher order loop integrals / dAp. This miraculous con-
servation of misery is exactly the UV/IR-mixing of divergences.



CHAPTER 1. INTRODUCTION

On the other hand, the regularized (A —> oo) planar term reads

After performing the ordinary mass renorraalization (treating the planar
correction) M2 = m2 + 6m2, the effective two point action to first order is

Now, in order to eliminate the UV/IR-mixing, one has to handle the
horrible nonlocal l/p2 terra. At first, we want to present two very simple
approaches.



Chapter 2

Redefinition/Resummation

2.1 Redefinition

2.1.1 Field Redefinition in 04-Theory

The aim of this section is to present a first, simple way of discussing the
IR-singularities. In [25], [26] it has been shown that the concept of field
redefinition originally proposed in [27], [28], [29] is very useful for the pertur-
bative description of noncommutative U(l) gauge field modeis. Therefore,
it is quite natural to use an appropriate field redefinition also in the present
case to analyse the IR-structure of an effective two-point vertex function at
O(g2), at first for the simplest case of a ^4-theory. Similar results have been
derived in [24] in the context of Wilsonian Renormalization Group and hard
noncommutative loop resummation (see next chapter).

In order to keep trace of the infinities we first introduce an effective cutoff,

The one-loop 1PI quadratic effective action (1.19) becomes therefore

,4\ \ (o Q\
g g ^ 1 *r)<^> , I M ' " W / l ' \*-*J
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As is explained in [21] the limit A —» ex» does not commute with the low
momentum limit p —> 0 (IR-region). Of course, this is again a manifestation
of the UV/IR-mixing.

The idea of redefinition is the foUowing: One tries to obtain a "new"
effective one-loop two-point vertex funetion

e / /

92

967T2

(without the problematic term l
 x ) as a result of a field redefinition

(2.4)

A simple calculation shows that a solution f(p) is of the foUowing form

\ ^ ^ ' ( 2-5)

implying the redefinition of the field <f)(x) in position space

Therefore, also the action (1.9) must be changed accordingly

r A (\ ( o o q2 i \

/ \2 V 247T2 9 2 /

n2 \

) • (2-7)

It is now straightforward to compute an "IR-regular" quadratic effective
action up to the given Order in g2 with this new action, yielding

967T2'
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In the limit A —> oo one arrives at

(2.9)

which does not contain any non-integrable IR-singularities [30].
At this point one has to make the following comments:

Because of the last term in (2.7) it is clear that the problem of UV/IR-
mixing is not solved by this simple field redefinition, since the problems
have only been transferred from the 2-point function to higher n-point
functions. For example, at Order g4 the field redefinition produces a
term proportional to

> 4 , (2-10)
(D-m2)^ '

which induces new IR-singularities.

The correction term in the field redefinition (2.6) is of Order g2. Thus,
the bare propagator (the free-field case being defined by g = 0) remains
unchanged:

The field redefinition (2.6) is nonlocal and induces also a nonlocal term
in the action (2.7). Such nonlocal field redefinitions are known to arise
in non-Abelian gauge field modeis quantised in the axial gauge, where
the redefinition must be eompatible with BRST-symmetry [31] (and
references therein).

In order to reproduce the UV/IR-mixing the authors of [21], [22] have
interpreted the IR-singularities in the nonplanar one-loop diagrams as
tree level exchange of new light degrees of freedom. In our approach
there is no need of introducing these degrees of freedom.

Since the dangerous term ^ g .2 * t in (2.2) does not depend on the

mass (physical or bare mass) the massless case is also well defined
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implying a field redefinition

leading to the following quadratic effective one-loop action

(2.13)

for finite A2.

2.1.2 Field Redefinition in Gauge Theory
Now we try to sketch the idea of a redefiniton procedure for a gauge field
model with BRST-symmetry [32], [33]. We begin with a pure [/(l)-noncom-
mutative Yang-Mills (NCYM)-theory, which is described in Euclidean space
at the classical level byl

\ f * F r , (2.14)

where the field strength Fßv is

F^ = dtlAv-d„All-ig[All,Av}M, [A,B)M'= A*B - B* A. (2.15)

The enclosure of fermions can be done in the usual way [34], [35]. Scalar
matter fields are treated in [36]. In order to allow a meaningful perturbation
theory one has to use the BRST-quantisation procedure [32], [33], which
implies the introduction of ghost fields c, c and a multiplier field B for the
gauge fixing. One has the total action

/

Q.
d4x(gB • dpA» + -B • B - c* ö„D„c) + r ^ ^ r , (2.16)

where D^ := d^ — ig[Aß, ,]M- The corresponding nonlinear, SUSY-like and
nilpotent BRST-transformation is given by

sAp = DpC, sc = ic* c,
sc = B, sB = 0,

'aM„ = s2c = s2c = s2B = 0. (2.17)



CHAPTER2. REDEFINITION/RESUMMATION 13

Doing now perturbation theory at the one-loop level (including all con-
tributions Coming from the gluon, ghost, fermion etc. fields) one obtains the
following problematic contribution to the vacuum Polarisation of the photon
[34],

(with ß some numerical constant of Order (g)°), which represents the non-
planar one-loop contribution. This is the well-known UV/IR-mixing term
for non-supersymmetric NCYM-models. It is Singular for pß —>• 0. Note that
(2.18) is, after all, transversal. Its properties regarding gauge covariance will
be discussed below. The corresponding term of the effective action is

Av{-p). (2.19)

(A discussion of Now, in search for a proper field redefinition we notice that
the leading term (order (g)°) of the action is

(2.20)

Now we redefine

Aß(p) -> Aß{p) - \g*ß J g ^ MP) (2-21)

With this (2.20) becomes (note that pßpß = 0)

r = 4 J ( 2 ^

^ - (2-22)

The last term cancels exactly (2.19). Of course, this naive picture of a gauge
field redefinition sufFers from the same problems as for scalar field theory.
In particular, it is not clear if the difficulties in higher Orders of g can be
managed.
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2.2 Resummation
Since the method of field redefinitions has the somewhat awkwaxd property of
changing the action explicitly, we want to discuss another possibility (avoid-
ing this problem) to eure the UV/IR-mixing. Especially, we investigate the
idea of resummation proposed in the literature [24].

2.2.1 The Resummation of 04-Theory
The reeipe to eure the UV/IR-mixing (at one-loop Order) via resummation
is given by adding and subtracting to the classical action (1.9) the term [24],

implying that one has now the following tree level action,

d2 d2

(2.24)

with c = 24 r̂ • The idea is to treat one of the two cancelling terms as modifi-
cation of the propagator and the other as a two-point vertex function. Doing
loop-expansion, this leads to a mixing of Orders in the coupling constant g2

(which is exactly the desired effect of the resummation procedure), but non-
perturbatively the theory remains the same. The process of resummation
allows in principle two possibilities for the resummed propagators,

A , (u\ (n OK\

4-i/vi — TT: z ~ • iz.zoi

As argued in [24] the negative sign corresponds to unphysical taehyonic poles.
Therefore it seems natural that only the positive sign is meaningful. However,
aiming at further calculations concerning gauge theory, we want to stay as
general as possible.

Now one can compute the one-loop quantum correction with the re-
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summed propagator,

AE+ = *-

6 J (2TT)4

k2

k2k2 + m2k2 ± c
cike (2.26)

In the UV-region the integral (2.26) has the same structure as for the non-
resummed theory. Thus, we expect a quite similar result, with a quadrati-
cally divergent contribution from the planar graph and a finite but nonlocal
-^-contribution from the non-planar graph. This will be verified by explicit
calculation. In order to get a Gaussian integral after Schwinger parametrisa-
tion we have to expand (2.26} into partial fractions. Unfortunately, the term
k2k2 causes troubles unless k2 oc k2. Since 6ßV can always be transformed
into a block matrix

(2.27)

we see that 9ßV has only two degrees of freedom. By eliminating one degree
of freedom, thus using the choice 0i2 = 034 =: 0, we find (02)/iJ/ = 02 • 14x4-
At least for this Special choice we can calculate

0
012

0
0

012

0
0
0

0
0
0

~034

0 >
0

#34

0 J

- e7
k2

(2TT)4 (k2)2 + m2k2 ± £

Here the (possibly complex) quantity u = y 5 ^ T fz- Now we can use formu-
lae (2.40), (2.41) from the section 2.3 (if u is real, we introduce a convergence
factor b —> 0 by hand) and obtain for the non-planar part

AE.np± —

(2-29)
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For c = 0 =*• u = ^- this yields exactly the result (1.17). With the expansion
of the modified Bessel function we find for the (p2 —> O)-divergent part

92

(2.30)

where the dots denote the terms finite for p2 -+ 0. The logarithmic term
is harmless, but we have to keep an eye on the -Jj term. We find that this
term is invariant with respect to the choice of sign in (2.25). Therefore it
is cancelled by the counterterm in the action only if we choose the positive
sign in (2.25), which is—after all—not too surprising a result. Thus the
counterterm reads

6T = + J dAx<ß(x)-^<f>(x) (2.31)

(note that ä2 =>• — k2). The result for the planar part is obtained by multi-
plying (2.29) by two and taking the limes p -> 0,

where again the finite terms are ignored. Thus, also in resummed field theory
the planar one-loop correction of the two-point function can be absorbed in
an ordinary mass renormalization of the theory.

2.2.2 Resummation in U(l) NCYM-theory

In gauge theory, the corresponding term for resummation would be (see sec-
tion 2.1.2)

S S? ( 2 - 3 3 )
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As observed in [36] it is gauge-invariant with respect to an infinitesimal
Abelian gauge transformation, 6Aß = d^A. But this is not the füll story,
one has to respect also BRST-invariance (2.17). In order to transform (2.33)
in a BRST-invariant quantity we first define

F := Ö^F^, Dp := B^D,,. (2.34)

The idea is to replace (2.33) by (written in Euclidean coordinate space)

g2ß f * - 1 / x
8 J (D2)2

Of course, r^rj is meant as power series in the gauge field Aß, so we obtain an

infinite set of nonlocal vertices (however, to each order in the gauge coupling
g only a finite number of these vertices contribute). To lowest order in Aß

(2.33) and (2.35) are identical. Indeed, it is straightforward to show that
T̂ ÄTJ • X transforms covariantly if X does (see below). For X = F one has

(2.36)

implying that (2.35) is BRST-invariant. In order to get a resummed gauge
field model one generalises now the calculation of the last section. The re-
summed action reads

(2.37)F * ^ * F F * J
8 (D2)2 8 (D2)2

A similar ansatz for the solution of an analogous problem in high temperature
QCD can be found in [37]. Taking only the bilinear part of (2.37) one can
calculate the resummed U(l)-gauge field propagator as

) (2-38)

The upper sign corresponds to the inclusion of the positive /?-term in (2.37) in
the propagator (treating the negative /?-term as counterterm). One observes
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that the new term in the resummed propagator is independent of the gauge
Parameter a. Moreover, it is transversal due to kßkß = 0. The correct
sign (we expect the upper one, of course) must be checked by explicit one-
loop calculations. Note that the resummation procedure for gauge theories
involves also a resummation of the vertices due to the non-bilinear parts in
the resummed term in (2.37).

2.3 Supplement

In order to keep the above considerations free of long and unilluminating
technical aspects, we present the calculations necessary for the resummed
two-point one-loop graph now.

First we need the complex Euclidean Gauss integral (a real)

fd?ke±iaki+ikii = f

= lim / d4k'e-^^k'2^ = - ^ e * * . (2.39)
e t O y er

With this we get for real b > 0, a real,

e±ia{k*+a±ib)+iki>%) rda(±i4~ + a±ib)e±ia

Jo oa

= ±i rda(±i^- + a±ib)(- 4e '*± f a

Jo
 y da / v a?

^e-e-^-^ia^. (2.40)

Here we use Jo°° ̂ f exp(—ua—v/(4a)) = A{y/ü/yJv)Ki{y/uv) for positive real
part of u and v and find

= -47T2(a ± ib)xH^-Kl(y/(a±ib)i?). (2.41)
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Of course one has to be careful with respect to the sign of the roots, thus
one should check the result (2.41) for Special cases (e. g. a > 0, b -¥ 0) via
ordinary (non-complex) Schwinger parametrisation.

Second we want to give a formal proof that D~lF is a covariant quantity
if F is covariant {D~l is the inverse of the covariant derivative D). In order
to stay as simple as possible, we perform the calculation on ordinary space
first. We have

5XF = i[X,F], (2.42)

ÖXDF = (SXD)F + D(SXF) = (SXD)F + i[(DX), F] + i[X, (DF)}

l i[X,DF].

Prom this we conclude 5XD . = -i[(DX), . ] . With (6xD~l.)
= -D~l(SxD)D-1. we find

SxD~lF = (6xD-l)F + D-l6xF = -D-l(

= iD-l[(DX),D-lF]+iD-l[X,DD-lF]

= iD-^DX), D~lF] + iD~lD[X, D~lF) - iD~l[{DX), D~lF]

= i[X,D-vF]. (2.43)

Now on Moyal deformed space we notice that also there D acts as derivation.
Thus the proof carries on to D~l *F. D

2.4 Conclusion
In our first try we have demonstrated that the (quadratic) IR-singularities ap-
pearing in the 2-point function of noncommutative <^4-theory may be shifted
to higher n-point functions via a field redefinition. One could speculate if
this method, initiating an infinite chain of field redefinitions, could in fact be
used to totally remove the IR-singularities.

In our second attempt we tried a resummation procedure. The results
seemed to be very promising. Unfortunately, whereas the complexity of the
calculations is manageable at 1-loop order, higher ordere appear to be in-
executable especially in gauge theory, where also the vertices have tö be
resummed.
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On the other hand, there were hints that the füll theory still is renormal-
izable. Thus we decided not to pursue loop calculations any further but to
use more rigorous techniques. In concrete, we tried to establish Polchinski's
renormalization group approach [38] on noncommutative field theory. Un-
fortunately, the result was a disaster. Due to completely different types of
nonplanarities appearing at any loop order (see [23]), the elegant inductive
proof of renormalizability of commutative ^-theory presented by Polchinsky
did not carry on to the noncommutative <£4-theory. It was not even possible
to show that the theory is not renormalizable. This uncomfortable sort of
stalemate lead to a severe crisis in our research program.

The solution came—as always—from a completely unexpected direction.
It will be presented in the third part of this thesis. But before (in order to
hold up the thrill a bit...) we want to focus on a completely different aspect
of noncommutative field theories, i. e. we want to present some nice results
concerning the so called Seiberg-Witten map.

Proudly presents: The,Intermezzo...



Intermezzo:
The Seiberg-Witten Map

Ist das die Beute, die du mir schlägst?

Hugo von Hofmannsthal



Premises
In [47] Seiberg and Witten argued that there is an equivalence map be-

tween ordinary Yang-Mills theory and its noncoramutative analogue (see also
[50], [27]). This so called Seiberg-Witten map was originally defined through
the gauge equivalence condition

Äp(A, 9) + SxÄ^A, 9) = Ä^A + SXA, 9), (2.44)

introducing a possibly 0-dependent noncommutative gauge field Ä distin-
guished frora the ordinary (we avoid the word 'commutative' since it could
still be Lie-algebra valued) gauge field A. Indeed, to first order in 9 the map
takes the form (we will use Minkowskian signature throughout the 'Inter-
mezzo')

Ä„(A, 9) = Alt- ±W»'Ap{daAß + Faß) + O(92). (2.45)

The Seiberg-Witten map ensures the gauge equivalence between an ordinary
gauge field and its noncommutative counterpart. It implies that the non-
commutative gauge field Aß (and also F^) can be expanded in a series in
the deformation parameter 9^v of the noncommutative space-time geometry,
with coefficients depending on the ordinary gauge field.

In the first chapter of the 'Intermezzo' we want to discuss the translation
invariance of the SW-expansion of the noncommutative [/(iV)-Yang Mills
(NCYM-) theory. In the second chapter we will focus on the thrilling search
of a Seiberg-Witten map for the noncommutative super Yang-Mills.field.
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Chapter 3

EM-Tensor in NC Gauge Field
Models

3.1 Introduction
In the paper [39] the energy-momentum tensor on noncommutative Spaces
was analysed and it was found that the dilation symmetry is broken due to
the presence of the deformation parameter ö*1" characterising the noncom-
mutative geometry (1.1).

The existence of a constant, fixed antisymmetric tensor tield 6ßV clearly
also breaks the Lorentz symmetry [40], [41] if ÖMI/ does not have a tensorial
transformation behaviour with respect to Lorentz transformations. This Sit-
uation resembles in some sense the axial gauge in gauge field modeis. There
the presence of the constant, fixed gauge 'direction' n11 breaks the Lorentz
invariance, too [31].

In particular, the occurence of 9^ in noncommutative quantum field mod-
eis induces that the corresponding energy-momentum tensor needs neither
be Symmetrie (for massless modeis), nor traceless.

The aim of this chapter is the investigation of the construetion of the
energy-momentum tensor in massless and commutative gauge field modeis
and their noncommutative counterparts, in order to work out the different
aspects of the stress tensor for both cases.

Generally, the usual Noether procedure for the construetion of the canon-
ical energy-momentum tensor in the worst case needs an improvement proce-
dure and the Belinfante trick [42], [43], [44] in order to get a Symmetrie and
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traceless stress tensor. However, due to the idea of Jackiw [44], [45], [46],
there is a more direct method to get the correct stress tensor by combining
the Noether procedure translations with field dependent gauge transforma-
tions.

3.2 Energy-Momentum Tensor in Ordinary
Yang-Mills Theory

In order to demonstrate the various possible constructions (canonical form,
Belinfante procedure, construction modulo a gauge transformation) of the
energy-momentum tensor [39], [42], [43], [44], [45], let us start with a com-
mutative Yang-Mills model, where the gauge field is matrix-valued, A^ =
A^Xa, Xa being the corresponding generators of the gauge group U(N) with
[Xa, Xb) = dab • 1 + f^X0.

The corresponding infinitesimal gauge transformation is given by

6\Aß = dß\ - ig[Aß, X] = : £>„A, (3.1)

implying that the non-Abelian field strength

FßV = d»Av - dvA» - ig{A^ Av) (3.2)

transforms covariantly,

SxF^ = t[A, F^). (3.3)

In the following we set g = 1. Therefore, the gauge invariant non-Abelian
action at the classical level is given by

rfaw[i4] = -^Jdbtr^F^) =: -^[dbtrF2. (3.4)

The equation of motion for the gauge field is

• T ^ - I W A ] = DPF"V = 0. (3.5)

The symmetry transformation (3.1) may be expressed by a functional differ-
ential Operator, the global Ward-identity (Wl)-operator

WG{\) = I dUrD,\(x)j^y (3.6)
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Gauge invariance is stated through WG(X)rinv = 0. This implies the following
local identity for the gauge symmetry,

6 WG(X)rinv = 0. (3.7)
SX(x)

We calculate this explicitly,

6X

- i\AP>

=0 e.o.m.

This defines the locally conserved current for the gauge symmetry,

fG = -i[Ap, F»], -d^ = idß[AP, Fpß\ = 0. (3.8)

Of course, by direct computation and by use of the equation of motion one
easily verifies (3.8).

Now we want to discuss the infinitesimal translation described by the
following global Wl-operator,

Wj = I dUrd^ix)-^^. (3.9)

For convenience, we first calculate (for arbitrary quantities M)

~ I(PxtrMix)5^^ =

+iM(x)[A<r, F"\ - iM(x)[Ap,

= f d4xtr(M(x)DpF
f>u). (3.10)

By applying the Wl-operator (3.9) to the gauge invariant action one gets (as
usual) the canonical energy-momentum tensor due to translational invari-
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ance,

= f
= fd4ztr(dflAv(dpF'») + d^—F2) + dftdpAvF'"'}

= - J d*x &"Tpii = 0. (3.11)

Thus, the canonicaJ energy-momentum tensor is defined as

l ^ 2 (3.12)

It is simple to show that T^ß is locally conserved by using the equation of
motion.

However, T^ is not gauge invariant, not traceless and not Symmetrie in
(p, //). In order to obtain a Symmetrie stress tensor one has two possibilities
[42], [43]. Here we follow the method proposed originally by R. Jackiw [45]
in using an alternative representation for infinitesimal translations. Modulo
a field dependent gauge transformation a possible description of translations
is given by ;

; =f AtrFJ,)^, (3.13)

leading to (with the help of F^F^ = ^F^D^F"" following from the
Bianchi identity)

= Jd*xtr{Fllv{dpF'"' -ilA^F

= Jd*xtr(d»(±{Fpi„F;}) - Fpv&>F; + iFpv[AP,

= f d*xtr(d»{\{Fpv,F;}-\9piiF
2))

= - J fa PT^ = 0, (3.14)
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where Tpii is gauge invariant, Symmetrie and traceless,

TU == -H\{Fpu,Fß»} - \gp,F*). (3.15)

One observes that the Jackiw construetion unifies the Belinfante and im-
provement procedure.

Using the Splitting

F^ = d^Av - dvA» - %[A^ Av) = d^A» - DVA^ (3.16)

one gets for the canonical tensor

\ \ ( 3 . 1 7 )

implying that the difference between the canonical tensor and the Symmetrie
one becomes

PH — Tpi* = ~ ö ^ p i" '*•'" (3.18;

Due to the fact that the Wl-operator of the translation is represented by

W£ = W£ + Wl?= [<fatr(Fp,(x) * + D„A„(x) / Y (3.19)

the field dependent gauge transformation corresponds to the difference Tpil —

(3.20)

This is easily checked by explicit calculation with the use of partial integra-
tion,

-W?Tinv = - J d4xtr(DvAllDpF
t"/)

= - JdAxtr(dp{l-{Fpv,D
vAtl})-DpDvAttF''v). (3.21)
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With the antisymmetry of Fpu the second term is easily shown to vanish.
This is very similar to the construction of the stress tensor of the Maxwell
theory [49].

Another interesting comment has to be raade. If we omit the tr symbol
in the definition of the energy momentura tensor T*^,

\ ^ (3.22)

we get an object which is (due to the equation of motion and the Bianchi
identity) covariantly conserved (proof see below),

Dpf^ = 0. (3.23)

In discussing the noncommutative counterpart we will find that a similar
'covariant conservation' is also valid there. With (3.23) one finds

r;j, (3.24)

which is consistent with

W?Tinv = - f dtx tri&'f') = 0. (3.25)

3.3 Energy-Moment um Tensor in Noncom-
mutative YM-Theory

It is now straightforward to discuss also the noncommutative structure in the
spirit of the considerations done in the previous section. In noncommutative
gauge field modeis one has to replace all field products by •-products [16] and
one introduces the noncommutative matrix valued gauge field Ä as defined
in (2.44). The corresponding gauge invariant action is therefore

( (3.26)

with the noncommutative field strength

K i i (3.27)
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Here the Moyal commutator is given by

[Äp, i„]* := i „ • Av - Av • A^ (3.28)

using the •-product,

A(x) • B(x) = e^"^A{x + £)B(x + 7/)|e=„=0. (3.29)

The infinitesimal gauge transformation is defined as

SxÄp = d^X - i[Äß1 A]* = : Dp • A, (3.30)

where A is the noncommutative counterpart of A of equation (3.1) The equa-
tion of motion for the gauge field then is

^ 0, (3.31)
5AV

 l '

and for the locally conserved gauge current we get

(3.32)

At the level of noncommutative gauge field modeis one can perform the same
Steps as in the previous section. With

J ^ ^ ) (3.33)

we find

Tc
pti = - {\{Fpv, M " K " \9P,Faß * F<*). (3.34)

Analogously we have

fd?t(F () STinv I ÖTinv F

= Jdk tr (d»{\{Fpin F / } * - \gPflFaß * F**)) (3.35)
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and

K := -(\{FP„£/}• - \gP,FQß*F°"). (3.36)

Here { , }* represents the Moyal anti-commutator in the sense of (3.28).
Note that in order to define 'local' quantities / d*x tr—the integration over
space-time and the trace over the colour indices—cannot be separated in non-
commutative geometry. After all, (3.36) is Symmetrie, traceless and trans-
forms covariantly with respect to (3.30), [44]. It is also 'locally' covariantly
conserved (see (3.23)),

D"-kf^ = 0. (3.37)

This is shown with the help of the equation of motion (Dp • FPft = 0) and
{Fpv, D» * F / } * = \{Fpvy D» * / * " } * ,

D" * 7J, = -\{FPv, & * F / } * + \gPfl{D" * Faß, /«*}* = 0. (3.38)

We find that the energy-momentum tensors are not locally conserved1,

Vf^ * 0 * &"rpiL, (3.39)

which is already known from the works [39], [48].

3.4 Energy-Moment um Tensor via Seiberg-
Witten Map

Now we want to go a step further and use the Seiberg-Witten expansion of
Ap. The starting point is equation (3.26).

fW4 = -\Jd4xtr(Fttv*F»''). (3.40)

The SW-map to lowest order in 9ßU for the noncommutative gauge field is

Ä \ d.A» + Fa(i}, (3.41)

1Even a 'formal' definition of the tensors including the tr-symbol is useless, since the
trace of a Moyal commutator is not vanishing locally.
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implying the following field strength expansion [47]

± , F„} - {Ap, D ^ + daFßV}). (3.42)

For the ordinary (commutative, Lie-algebra valued) field Aß and field
strength F^ the corresponding gauge transformations are given by (3.1) and
(3.3), respectively.

Expanding the *-product in (3.26) we have [27], [51]

. (3.43)

The corresponding equation of motion is2

\ - {9pßFQß, F
va) + {F»a, 9aßFv

ß}))

= 0. i (3.44)

The quantity Wv is antisymraetric,

= -IT' = ^ff-y (3.45)
0{dA)

and IIOp is the canonical momentum. The analogous calculations as in section
1 give now

WTT0 ._. f

= - f d*x &"!?£ = 0. (3.46)
2The long but straightforward computation analogous to the previous sections is not

given explicitly
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Thus, the canonical energy-momentum tensor becomes

Tg := tr (\{UPV) d„A"} - gptl£°nv). (3.47)

Similarly, one gets

/

= J
J k £ = 0, (3.48)

implying the following definition,

:= tr(\{Upu, F/} - g ^ , ) . (3.49)

Both currents (3.47) and (3.49) are locally conserved,

VTg = d"Tg = 0, (3.50)

and they are related by a Belinfante like procedure

Tg = Tg + tr(lT(Aßnr))
g (3.51)

One observes that both versions of the energy-momentum tensor, (3.47) and
(3.49), are neither Symmetrie nor traceless. This is due to the fact that the
Lorentz invariance and the dilation symmetry are no longer maintained [46].
However, one has to stress that T*£ is invariant with respect to infinitesimal
gauge transformations (3.1).

3.5 The C/(1)-Case: 0-Deformed Maxwell The-
ory

The simplest, but still interesting, case of a 0-expanded gauge theory is the
C/(1)-NCYM, the 0-deformed Maxwell theory (without sources). One just
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replaces in the expressions derived in the previous section the raatrix-valued
U(N) gauge field AaXa by the ordinary photon field. Omitting the trace
Symbols we get

I- O(62)

(3.52)

Again, with the canonical momentum,
aro i i

~ d(dpA„)- + 4 ^ taßt j + 2 * taß

-(0vßFaßF
pQ - OpßFaßF

va) - Fp
Q9aßFv

ß, (3.53)

we find the equation of motion [48],

dpn
pv = 0. (3.54)

The stress tensors read

T <c,0 _ TT ß Av _ fB

Tpß = !v^*« ~ 9pn^inv (3.55)

Explicitly we have for T^

+FliV9pßFa
ßFva - (FmFpu + F^F^F^P*. (3.56)

The latter equation confirms Kruglov's result [48]. One has to stress that
T°'e is not Symmetrie and not traceless. In Order to expand the tensor (3.36)
for the C/(l)-case to first order in ö*1" one needs (remember A • B = AB +

Ppv =

=o
+Fß

veQßFpQFvß - Fpv

FpuF/il - l-9aßFaß)
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Thus we get

+ FtaFrJFyfi + ß ^ ^ / )

P; (3.57)

We observe that (ignoring the total derivative) the non-symmetric parts of
T*£ do not appear in the expansion of Tpfl. Moreover, these are exactly the

terms where 0p" carries a free index p. For T^ and Tptl we get the analogous
result.

Thus we find that the calculation of the energy-momentum tensor does
not commute with the Seiberg-Witten expansion of fields and Moyal prod-
ucts.

3.6 Conclusion
For noncommutative gauge field modeis we have studied (at the classical
level) the construction of the various energy-momentum tensors in order to
describe translation invariance of different noncommutative gauge field the-
ories. Due to the presence of the deformation parameter 9*" (as a constant,
antisymmetric, fixed tensor) Lorentz and dilation invariance are manifestly
broken, entailing that the corresponding stress tensors are not Symmetrie
and not traceless. The obtained results may be the basis for the discussion
of broken Lorentz and dilation symmetry.



Chapter 4

Seiberg-Witten Map for
NCSYM-Theory

4.1 Introduction
The Seiberg-Witten equivalence between commutative and noncommutative
gauge fields can be traced back [18] to a deeper discussion of Lorentz trans-
formations [53]: In presence of 8 one has to distinguish between 'observer
Lorentz transformations', which transform 9 as a second Order Lorentz tensor,
and 'particle Lorentz transformations', which leave 0 invariant. It turns out
that observer Lorentz transformations are symmetries of the theory, whereas
particle Lorentz symmetry is broken. Being (in principle) an observable, the
breaking of particle Lorentz symmetry must be gauge-invariant [18]. This
is not automatically the case and demands a covariant redefinition of the
Splitting of the observer Lorentz transformation into particle Lorentz trans-
formation plus ö-transformation, which is governed by the Seiberg-Witten
differential equations.

This chapter is an extension of [18] to the components of a noncommu-
tative super vector field in the Wess-Zumino gauge. We derive the Seiberg-
Witten differential equations of super Yang-Mills theory via a covariant Split-
ting of the observer Lorentz transformations into particle Lorentz transfor-
mations and a remainder, using the Splitting for the gauge field derived in
[18] as the starting point. The Seiberg-Witten differential equations lead to
a 0-expansion of the noncommutative super Yang-Mills action in terms of
fields living on commutative space-time. This ö-expanded action is automat-
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ically invariant under commutative gauge transformations and commutative
Lorentz transformations. It is however not invariant under commutative su-
persymmetry transformations. Instead, the 0-expansion of the noncommuta-
tive supersymmetry transformation yields a symmetry transformation of the
0-expanded action which extends the usual supersymmetry transformations
by terms of Order n > 1 in 8. This result implies that the Seiberg-Witten
map for super Yang-Mills theory cannot be expressed in terms of superfields.

4.2 The NCSYM Action and its Symmetries
The most compact way to fonnulate supersymmetric theories is to use the
superfield formalism. The various fields of super Yang-Mills theory can be
regarded as components of the real superfield

<£ = -2C-2xa0a-29äx
ä-eaOaM-9ä9

äM

The anti-commuting variables 0a,0a should not be confused with the non-
commutativity parameter 0*v. The Wess-Zumino gauge consists in setting
the components C,xa,X°>^>& equal to zero. One has ^ • « ^ • ^ = 0in this
gauge. For details about the superfield formalism we refer to [56]. The gauge
transformation is

6j> = i{k - A) + 1$, Ä + ÄJ + ^ 0 0 , Ä - X]] + 0, (4.2)

due to the Wess-Zumino gauge. Here we have

Ä = (l-i9atiedfl~l0292d2)(-2ä-29p-202f)

= -2a - 20p - 292f + 2100*08^ + 2i9afl0d„(0ß) + 02Wd2a,

Ä = -2a - 20p - 202f - 2i0afl0dtlü - 2i0a»9d(1(0p-) + 0202d2ü.
(4.3)
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In order to maintain the Wess-Zumino gauge we need p = p = f = f = 0.
Defining ä = § = ö we find for 6$ (note that 0a0ß = \8p2 and 0^ = ±<S?02)

i -200*03» (ä + ä) - i[-2öa"öi^, ä + ä]

»2Aa + öaö2Aa>o + S]
SXa = —t[Ao,a)]

=*8D = -i[D,w]. (4.4)

The construction of the supersymmetric N=l Yang-Mills action is done in
[56]. In the Wess-Zumino gauge its (noncommutative) component formula-
tion reads

^ \ 4 "* °° °

where .

FMJ/ := 9 ^ -

£)^^° := 9,,^ - i[Äß, X"]* . (4.6)

Some useful properties of objects carrying spinor indices a, a G {1,2} are
listed ät the end of the chapter. The •-(anti)commutators of matrix-valued
Schwartz class functions / , g are defined by

(4-7)

where the *-product is defined by

(/ * 9){x) >= ffy Jj0p Hx+frk) g(x+y) eik», (4.8)

with (9-kY := G^kv, k-y := kßy? and 0^ = -0V» € Af4(R). We consider 0""
as the components of a translation invariant tensor field. The action (4.5) is
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invariant under gauge transformations

(4.9)

observer transformations (translation, Lorentz rotation and dilatation)

Wj = / d*x tr (drÄ, - L + dTXa4- + dTt4s + 9TD-i) ,
J v SA ö\a fix D'

Waß ==

ö\a

}* - \{xß,

(4.10)

v

WD:= I d*xtr[ [=•{?', dsAß (2D + \

and supersymmetry transformations [54]

Wf = / dAx tr f -(TfMäX —7—h (SQD -f
J * SA/t

wi=Jd4xt — +

i

The partial derivative with respect to 9*v has the prpperty

d{Ü*V) _ dÜ

(4.11)

SX

(4.12)

(4.13)

(4.14)
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where the fields Äß, A°, A , D must be assumed to be independent of 9.

4.3 Seiberg-Witten DifFerential Equations
As in (non-supersymmetric) noncommutative Yang-Mills theory [18] we de-
rive the Seiberg-Witten difFerential equations via a Splitting of the observer
Lorentz transformation W£ß into the covariant particle Lorentz transforma-
tion Wj* a and a remaining piece W£aß involving the Seiberg-Witten difFer-
ential equation:

WR = W? -i- wP- d
vyaß — rvd>ia8 T YV0\aß > V

= 0 , (4-16)

2 * = Wlß > P % i , WS] = W§>ß • (4-17)

The motivation for this ansatz is the following. The commutator of an ob-
server Lorentz rotation (4.11) with a gauge transformation (4.9) is again a
gauge transformation,

[W?ß,WZ]=WZß, (4-18)

for some infinitesimal gauge parameter u>a0[a>]. A particle Lorentz transfor-
mation is defined as the part of an observer Lorentz transformation which
does not transform the field ö*1", see (4.16). However, one should require that
a particle Lorentz transformation transforms a gauge-invariant quantity into
another gauge-invariant quantity, otherwise the particle Lorentz transforma-
tion cannot be considered as well-defined [18]. It is sufficient to demand
(4.17) in order to achieve this property. To find the sought for Splitting we
first apply the ansatz of [18] for the Yang-Mills field Ä^:

(4.19)

where X* = xß + 6^VÄU are the covariant coordinates [50] and (ipa^ is a
polynomial in covariant quantities such as 9afi, FK\, Dßl... DßnFKx, antisym-
metric in p, a, of power-counting dimension 3, and expresses the freedom
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in the Splitting. In the following we set Slpoß = 0. The parameter Xaß is
unchanged and given by [18]

= \{2xQ + 0OMP> Aß}* - ^{2xß + 9/Äp, i Q } * . (4.20)\{2xQ + 0OMP> Aß}* - ^{2xß + 9/Äp,

Comparing (4.19) with the ̂ -par t of (4.11) and extending this covarianti-

sation to the remaining fields A°,A ,Dwe obtain from (4.11)

4>;aß

- l-{XßyDa%\ - fäßX)4ä
6X

* - \{Xß, DaD}+) -^j , (4.21)

Now it is straightforward to evaluate

We%ß = W?ß - W?Qß = W j C n ^ : , (4-22)

with

_d___d_ f*-t(*K_J_ ^_±_ ^_A_ dt) 6 \
dßP" ~ de"°+ J % r\d9(» SÄ» + dQ<» SXa + d6f s^

ä + dOc* SDj '
(4.23)

which yields the Seiberg-Witten differential equations (the proof will be given
later using the superspace formalism)

dpÄft

\ ^ dpx
a + A,

-{A<T,d()X +DpX}ir,
i

= -\{Ä,,%D + D.D}. + ̂ {i,,dpt) + D,!)}^ . (4.24)
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The first of these equations was first found in [47].

4.4 6-Expansion of the Action

The differential equations (4.24) are now taken as the starting point for a
0-expansion of the action,

f ^ ) (4.25)
7! V d O n f f l . . . d O W i / Ö = O

It follows from the the second identity in (4.17) that the 0-expansion (4.25)
of the action (4.5) is invariant under commutative gauge transformations.
One also checks the idejntity

\WT ,&"-£-] = [w*, ,^—1 = fwD,^*-^-l = 0 (4.26)
L T ' d9f>°\ L aß dß^i 1 dÖ^i '

for super Yang-Mills theory, which means that the ö-expansion of the fields
leads to a commutative action invariant under commutative rotations and
translations and with commutative dilatational symmetry. The ö-expansion
of (4.5) yields an action which is not invariant under commutative super-
symmetry transformations. Indeed, if we compute the commutators

^ ,W?]Ä „ =

(4.27)

i&D + <" 6 ^) + ^w^Ä,, da\
h

+
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\b, {Äa, A*}*}* , (4.28)

d \

° ] l<"{\, {Äa, A"}*}* , (4.29)

^ ^ } * ] * , ( 4 - 3 0 )

we find that the commutator of a SUSY transformation and a 0-differentia-
tion is given by1 (with e = ^apoöiÄr, A }* - Y^(Tffaä{Ap, X }*)

Ws] =

SAß

_ö_

8\<>
1There is of course a freedom in the diflFerential equations (4.24) given by the fl-terms

in (4.19) and similarly for the other fields. This freedom is not sufficient to obtain a
vanishing right hand side of (4.31).
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i — r\ r» \ i — rT n \ i i "
•| z;(Jpaä[A , UaA u — — OfjafXA , LJpA W I T-
Vö ö / _?6

, (4.31)

where the gauge transformation with respect to a fermionic parameter ü is
defined by

J x OAft ^ ÖA°

(4.32)

The action (4.5) is invariant under the transformation (4.32). It follows now
from (4.25) that the 0-expansion of (4.5) is invariant under the transformation

n=l
(4.33)

which due to [^, Wf] ^ 0 is different from the commutative supersymmetry
transformation (W/) . The first terms of (4.33) read

tr((^

FV<T) + \

+ O{62) . (4.34)

Similar formulae exist for the anti-supersymmetry transformation W?. At
order n = 0 in 0 the expansion of (4.5) is obviously the Standard super
Yang-Mills action

= J d*x tr ( - IFVF,*, + \xaa^D^ + ±D2) , (4.35)
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where <f> = <j>\e=o for <f> € {A^, A°, Ä°, £>}. At first Order in 9 one finds

r(i) _ r(o)

± * ) (4.36)

The ö-expanded action (4.36) could be further analysed, for instance with
respect to new decay Channels of supersymmetric particles—in a similar man-
ner as investigations of modeis without supersymmetry, see e.g. [55].

4.5 Remarks on the Superspace Formalism
Now we want to return to the superspace formalism. We notice that due to
(d£> W«f] ^ 0' s e e (4-31), a Seiberg-Witten map in terms of superfields cannot
exist. All one can do is to write the previous formulae in a more compact
form, in which the super vector field is understood to be in Wess-Zumino
gauge. The gauge transformations and observer Lorentz transformations can
be written in the compact form

Wg = f fxtrft-Wo^Pd^-ifau,].)^) , (4.37)

(4.38)

, (4-39)

* - . (4.40)

Here T.aß = -^9aaQßa
b^s+^diä^ ^ is the spin Operator for the superfield.
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The covariant particle Lorentz rotation reads

^- •= w?

(4.41)

where Xaß is given by (4.20) and

Fa := dj + 29aa^9%Äa - i[Äa, fa . (4.42)

This object, resembling the usual field strength tensor F^, transforms co-
variantly under supergauge transformations (4.37),

ff,
W?(26a9dÄff) = 29a9dd<Tü - 2i[9a9dÄa, w]* - 2i[Ä

WgWÄ.J]*) = -i[dou>-i[Äo,ü]*Jl-i[Äv,

Using the Jacobi identity this yields

W?(F<T) = -i[F<T,cü}ir. (4.43)

The calculation of the Seiberg-Witten expansion is straightforward. We need

K ^ ) (444)

With the use of

Haß{29aalxJhÄli) = 29aaa>aä9
äÄß - (a o ß) (4.45)
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we find

: UxQ, dß<j>}+ - -{Xa, Fß}* - 29<ja9Äß + 29o9d(-{2xa + 0a
pÄp, Aß}*)

+ i[4>, ^{2xa + 9a
pÄp, Äß}*]* - (a O ß)

~{xa,29a9dÄß-i[Äß^)i,}i,

- -{9a
pÄp, dß4> + 29o9dÄß - i[Äß, <̂ ]*}*

- 29aJÄß + -9a9d{2xa + 9a
pÄp, Aß}* + U<j>, {2xQ + 9a

pÄp, '

{xa, 29a9dÄß}ir + l-{xa, i[Äß, <̂ ]*K " \{WK> M + 20aÖdÄß}i

+ \{9£AP, [Aß, & } , - 29aJÄß + 29aJ

+ {2xa + 9>AP, loridAß}* + %-[j>, {xQ, Aß}^ + -[i, {eQ
p

-(a<+ß). (4.46)

After cancellation and with the help of the Jacobi identity we find (note that

,Ä* + \{Äß, 29o9dÄp}it -
 l-{Äß, [Äp, 4>] J * - (ß » p))

-(<*++ß)

Thus we get the final result

^ \ Ä J 1 Ä ^ . (4.47)

Written in components this leads exactly to the formulae (4.24).
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4.6 Conclusion
Following the ideas of [18, 57] we have derived the Seiberg-Witten map for
noncommutative super Yang-Mills theory in Wess-Zumino gauge via the
Splitting of the observer Lorentz transformation into a covariant particle
Lorentz transfonnation and a remainder, which directly leads to the Seiberg-
Witten differential equations. We have also computed the 0-expansion of
the noncommutative super Yang-Mills action, up to first Order in 9. The
0-expanded action is invariant under a transformation which differs from the
commutative supersymmetry transformations by terms of Order n > 1 in
9. For this reason the Seiberg-Witten map cannot be expressed in terms of
superfields.

4.7 Useful Formulae
Spinor indices a, ä € {1,2} are shifted by the antisymmetric metric e°* =
-e 6 0 , eäh = -e^ according to

Xa = eabX
b , X& = £äi>Xi, • (4.48)

Note that spinors are anti-commuting,

(4.49)

The 2x2 a-matrices are given by

^=(ML, ä^=(l,-a)äa, o^=ä^a, (4.50)

where a denotes the three Pauli matrices. The a-matrices satisfy

- gPfiäl/ib + i6"

(4-51)

with a^b = -a^b and
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Chapter 5

Back to the Roots

5.1 Introduction
Now we want to return to the problem of UV/IR mbring presented in Part I
of this thesis. However, from now on we will use Minkowskian signature of
space-time. Apparently, the origin of this inconvenient feature of noncommu-
tative field theories is too fundamental to be curable by a mere application
of mathematical techniques. One has to focus on the underlying physics.
Indeed, this will eventually lead to the solution of another problem: the
violation of unitarity for 0O» ̂  0.

It was pointed out in [58] that in the Minkowskian (non-degenerate) case
the Wick rotation of Euclidean Green's function does not give a meaningful
result, first of all because unitarity would be lost [59]. The reason is that the
Osterwalder-Schrader theorem [60] does not hold. Already in [61] there was
given a proposal for a correct quantisation of field theories on space/time
noncommutative geometries: Starting with interaction Hamiltonians on a
Fock space in the Dirac picture (with free fields)

Hj{t) = f
Jx°=t

dzx : (<fo * A, * • • • * <t>o)(x) : (5.1)

(and averaging over the noncommutativity parameter), where the dots denote
the normal ordering of fields, the contributions to the scattering amplitudes

49
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were defined as the Dyson series

^-f- / dtl...dtn(0T(f>(x1)...<j>(xk)HT(tl)---HI(tn)0) , (5.2)
Tt, J \ / (0)

where T denotes the time-ordering with respect to {x\, ...,x^,ti,..., tn} and
|0) the vacuum State. Unitarity is preserved.

In [58] there was added a second proposal, the iterative solution of the (in-
teracting) field equation (Yang-Feldman approach), which has the advantage
of being manifestly covariant. Unitarity is preserved as well.

A third approach, the direct application of the Gell-Mann-Low formula
for Green's functions,

-s f d4z1... ätz» (O T<ß(Xl) ... <f>(xk)CT(Zl) • • • CT(zn) O)"" (5.3)

where Ci is the interaction Lagrangian, was elaborated in [62]. The super-
script con means projection onto the connected part. Unitarity was investi-
gated in [63]. That approach was called "time-ordered perturbation theory"
in [62], a name which wie find ambiguous. The time-ordering in [62] is consid-
ered for external vertices and interaction points only, and not with respect
to the actual time-order of the fields in the interaction Lagrangian. Thus it
is an interaction-point time-ordering (IPTO), it is explicitly accusal and to
distinguish from a true causal time-ordering. A detailed explanation will be
given below.

After all, these results motivated ourselves to have a closer look at the
very basics of quantum field theory. So long, deformed field theory has been
pursued in a somewhat ambivalent way (see Part I): The Moyal product has
been used in the interaction part of the Lagrangian (remember that the bilin-
ear term remained unchanged). The validity of the usual Lagrangian formal-
ism and ordinary Feynman mies has ever since been assumed but never been
proven. Since it is completely unclear if this formalisms still hold on noncom-
mutative Space, we will now construct the whole perturbative quantum field
theory on deformed Space (following [64]), beginning with the Schrödinger
equation on commutative Space...
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5.2 Pictures

5.2.1 Schrödinger Picture

We Start with the Schrödinger equation (with h = 1),

i§j\Zs{t)) = Hs\Zs(t)), (5.4)

where Hs = HOs + HJS = is the Hamilton Operator consisting of a free part
HQs and an interaction part HJS, and |Z$(£)) is a time dependent Schrö-
dinger State. As long as H$ is time independent, we have the simple solution

\Zs(t)) = e-iH^-^\Zs(tQ)), (5.5)

with some initial State \Zs(t0)).
Now the question is: What is the particular feature of a specific model

described by eq. (5.4)? The answer is simple: Different modeis are distin-
guished by difFerent Hamiltonians. In particular, the states are defined as
Solutions of eq. (5.4) with a particular Hamiltonian.

In the Schrödinger picture (which is denoted by the index 5) we have the
notion of a time independent Hamiltonian, which generates time dependent
states. Physics is described via matrix elements of Operators with these
states. Those Operators are assumed time independent and (if we are lucky)
known, so the interesting thing is to get the correct states.

5.2.2 Heisenberg Picture

But if we have a closer look at the matrix elements of some time independent
Operator As,

(A) = (Zs(t)\As\Zs(t)) = (Zs(t0)\e
+iH^-^Ase-iM^-^\Zs(t0)), (5.6)

we could also argue that we have time independent states \ZH) := \Zs(tQ))
and time dependent Heisenberg Operators AH (let t0 = 0),

AH{t) := e+iHstAse-iHst. (5.7)

This is the Heisenberg picture. Instead of fixing the Operators and searching
for time dependent states, we keep the states fixed and put our interest in
time evoluting Operators.
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Instead of the Schrödinger equation (5.4) for the states, we now have the
Heisenberg equation for the Heisenberg Operators, obtained from differenti-
ating (5.7) with respect to the time (note that 4 s ^ As(i)),

-i^AH(t) = [HH,AH(t)}. (5.8)

Here, HH = Hs is still time independent. The Heisenberg equation looks
indeed very similar to the Schrödinger equation.

5.2.3 Dirac (Interaction) Picture

Somehow in between is the Dirac picture, where states and Operators have
a time evolution. The free part of the Hamiltonian is used to describe the
time evolution of the Operators, whereas the interaction part will describe
the time evolution of the states and is treated like other Operators. The
states in the interaction picture are defined as

\ZD(t)) := eilJost\Zs(t)) . (5.9)

From (ZS\AS\ZS) = (ZD\AD\ZD) we conclude

AD(t) := e+iHostAse-iHost . (5.10)

With

HQD = Hos, HrD(t) := e+iHos*HIDe-iIJos*,

[HQS,eM±iHost)]=O (5.11)

we find the two evolution equations (from 5.9 and (5.4), (5.9), respectively)

^ (5.12)

Note that the first equation is only true for As ^ As(t). We see that the
time evolution of the Operators is defined by the free Hamiltonian, so that
Aj}(t) is simply a solution of the free theory. The time evolution of the
states, on the other hand, depends only on the interaction Hamiltonian.
Note: Since the free Hamiltonians are the same in all pictures, we define
Hos = HQH = HQD = Ho from now on.
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5.3 Lagrange and Hamilton Formalisms for
the Scalar Field

5.3.1 Commutative Space

The free scalar field is described by the equation of motion

(D + m2)^ = 0. (5.13)

This equation of motion can be obtained by a field Variation of the action,

W = J dtL0 = JtPxCo, Co = ̂ (PMdpt) -\m2<l>\

5W = 0 =• (D + m2)<j> = 0. (5.14)

Another possibility is the description via the Hamiltonian H = f dzx%,

n := ̂  = fa H.= <j>n-C. (5.15)

An explicit calculation yields

Ho = J fx^ift + (d<f>)2 + mV2) > 0. (5.16)

Ho is interpreted as the total energy of the free field System. Energy conser-
vation ^Ho = £ f d^xtio = 0 is obtained by use of partial integration and
the equation of motion.

Note: 0 and II correspond to x (the current elongation) and p (the mo-
mentum) of the harmonic oscillator, whereas the Space coordinates x could
be thought of as 'labeis' of the infinitely many harmonic oscillators hanging
around in space. Only time is always time.

5.3.2 Noncommutative Space

Now we have two possibilities in defining the Lagrangian, leading to the same
equation of motion.

£ o = 2 (

(5.17)
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Of course, on noncommutative Space the second possibility seems to be some-
what more natural. Fortunately, Integration / cPx leads to the same action
W for both Lagrangians and the difference is thus not problematic. However,
in defining the Hamiltonian the difference seems to be crucial. In Order to see
what consequences the insertion of the Moyal products into the Lagrangian
has we use the second definition. II = 0 remains unchanged. Now we have

Ho = fd3xH0 = /

^W). (5.18)

Note: Since we have only J d3x we must not drop the stars here! Now we
find

— = - / d3x{<j> * ($ - A ^ + m24>) + (ij>-A<f> + m2<j>) • 4>)|e.0.m. = 0.

(5.19)

A modification of the equation of motion is not necessary to guarantee energy
conservation.

Since we know now that the free field equation is not modified on noncom-
mutative space, we can use the well known Solutions <f>{x) = (f>+(x) + <f>~(x),

Here we have k+ = (uk, k), Uk = yk2 4- m

5.4 Quantum Field Theory
Quantisation is now performed in the following way. We declare the so
long classical fields (5.20) being Operators in the interaction picture, obeying
[U(t, x),$(t, f ) ] = — iS(x — f ) ) . This leads to a natural interpretation of
a+ (k) and a~ (k) as creation and annihilation Operators, respectively,

63(k-k'). (5.21)
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With this we find

/

rfilc
_ _ e - « < . - » ) * + . (5.22)

Inserting (5.20) into the expression (5.18) for the free Hamiltonian we have

-J (rX2(2nyJ
-uu'(a+(k)e+ik+x - a-(k)e-ik+x) * (a+(k')e+ik>+x - a~

-(kk')(a+(k)e+ik+x - a-(k)e-ik+x) * (a+(k')e+ik>+x - a

+m2(a+(k)e+ik+x + a-{k)e~ik+x) * (a+(k')eik>+

We have

^ 3 [d3xeikiX*eik>x = -±-J ,PzJ

Collecting the factors of o+a+, a~a~, a+a~, a~a+ we find (with three mo-
mentum conservation and use of the equation of motion) that the a+a+, a~a~
terms vanish and the a+a~, a~a+ terms have a total factor of 2u2 without
any phase factor. Thus we finally get

HQ= f(fku^(a+(k)a-(k) + a-(k)a+(k)). (5.23)

This is exactly the same expression we would have found for the commutative
theory (which can be seen most easily, since it does not depend on 0 any-
more). Thus, the insertion of the Moyal products does not change the free
Hamiltonian at all. In particular, remind that we have ^HQ = 0 (which is
essential for the construction of our perturbation theory) due to the equation
of motion.

One checks explicitly with (5.21) that the quantised Dirac Operators of
the field (5.20) fulfil the evolution equation, which is most simply done by
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use of HQ as presented in eq. (5.23) (note that HQ does not depend on x^),

(2TT)3 /2

Next we want to introduce some interaction Hamiltonian (written already in
terms of Dirac fields), for example

),, (5.25)

where Hm = Hio(t) is time dependent, as defined above. The evolution
equation for the Dirac states is

i^\ZD(t))=HID\ZD(t)). (5.26)

Since HJO depends explicitly on time we have to solve this iteratively, which
leads to the well known result

\ZD(t)) =T£<^^\ZD(to)), (5.27)
; u(t,u>)

with T being the usual time ordering Operator acting on the (formal) time
argument i! of HJD (see the next subsection). This defines the time evolution
Operator U(t,to). In order to describe scattering processes, we need the S-
operator defined by

S = U(oo, -oo) = Te+i^dt^xC'D{t'£\ (5.28)

where £ /D(Z) = ~'HID{X) is the interaction Lagrangian. Again, T acts on
the time argument of f <ßxCj£>{t,x).

S-matrix elements are thus given by

Sfi := (f\S\i), (5.29)

where \i) and (/ | are the incoming and outgoing states, respectively, q.e.d.
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5.5 A Conceptual Note

On a true noncommutative, four dimensional algebra the "Integration" (i.e.
trace Operation) over a submanifold f d?x is tedious. In Moyal deformed
QFT, which just replaces ordinary products by Moyal products, this problem
does not occur. Here by "noncommutative R4" one understands the algebra
R$ of Schwartz class functions on ordinary four-dimensional Space, equipped
with the multiplication rule

(/ * g)(x) ^Jd'sJ-^ f(x - $ g(x + ,) eil° , l" := IJT . (5.30)

The product (5.30) characterised by a real skew-symmetric translation in-
variant tensor O1"* = —0vli of dimension [length]2 is associative and noncom-
mutative, it is a non-local product on rapidly decreasing functions.

We consider a scalar field theory on R$ given by the classical action

r = f d s T M ^ ) ^ ) \ { * 4 ) i ) %&* + +){
(5.31)

with <f>eM$.
Since the Moyal product is highly nonlocal, the time dependence of HID

is somewhat problematic. This can be seen most easily by the integral rep-
resentation of the Moyal product,

^ ^ ) (5-32)

x<t>(z ~ g W ( * + si- ^h)<f>(z + si + s2- ^)4>{z + si +s2 + s3),

V ;— l(l9
ßt', which shows that the time arguments of / and g are not quite

fixed. For further calculations, the x° component of the left side (the so-
called 'time stamp') is assumed to be 'the time coordinate' of a given field
product, e.g. of HTD- At least, this definition guarantees formal unitarity of
the S-matrix.

Let us now investigate in more detail the difference between total and
interaction-point time ordering. We consider the simplest case of the two-
point function at first Order in g. The Gell-Mann Low-formula implies

G(x,y) = %f*z(o\T{t(x)M{** + * + **){z))\o)m • (5-33)
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(We put the missing factor i directly into the formula for the element of the
S-matrix.) In the same manner as on commutative space-time, the integra-
tion over the interaction point is perfbrmed after taking the time-ordered
product. Since the *-product for $0% ̂  0 is non-local in time, one has to say
clearly what one understands under time-ordering. Let us discuss this for
the geometrical Situation relevant for (5.33):

time time

<t>(z+Sl+S2-hh)
4>{y)

space space
The arangement of fields for the left graph corresponds to the following non-
vanishing contribution to the true time-ordering of (5.33):

G(x,y) =

= f^fll (̂ (̂ jl ^

; (5.34)

Here, r(t) denotes the step function r(t) = 1 for t > 0 and r(t) = 0 for
t < 0. There are 6! = 720 different contributions to (5.33) when interpret-
ing the time-ordering in the Gell-Mann-Low formula as the name suggests.
The time-ordering guarantees that only causal processes contribute to the
5-matrix. Positive energy Solutions propagate forward in time and negative
energy Solutions backward.

In contrast to this true time ordering, we now have interaction point
time ordering (right graph), which is defined with respect to the interaction
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point:

G'(x,y) =

(o

(5.35)

There are now only 3! = 6 different contributions of this type. Since the in-
dividual fields are now (in most of the cases) at the wrong place with respect
to the time-order, the noncommutative version (5.35) of the Gell-Mann-Low
formula violates causality. Now both energy Solutions propagate in any di-
rection of time. After all, contributions (5.2) to the Dyson series are precisely
ordered with respect to the time stamp of the interaction Hamiltonians. It
does not matter how the time-dependence of the interaction Hamiltonian is
produced from the time-dependence of the constituents.

5.6 Gauge Field Theory

5.6.1 Gauge Fixed Lagrangian
The gauge fixed Lagrangian for a pure U(l) gauge field model reads (see [50],
where this has been derived very elegant by use of covariant coordinates as
presented in chapter 5)

^ . (5.36)

We define

F^ := d„A, - dvA„-ig[A^ A»]*. (5.37)

The free part of the Lagrangian thus reads

\ ^ . (5.38)



CHAPTER5. BACK TO THE ROOTS 60

The free field equation reads

DA„ - (1 - -W^erA») = 0. (5.39)

For the free field momenta we find

IT = / " = +/«, n° = -^(PAJ. (5.40)

Now we define

/

r l .
(PXUQ = / d3i(-{>lM,nM}* - £0)

J 2

/

l 1.

2 2

_ ^ _ ( ^ » . 4 . 1 -^r 1 ^ 1 . 4 . 1 I 4 -Jr 4 J . ^ , rt n

l r / . .
2J \

(5.41)

We check explicitly the time independence of the Hamiltonian,

, ÄO - &A0 + {^LlltfodPAo}*. (5.42)

The first line (without the underbraced term) is zero due to the equation of
motion for Ai. After partial integration of the underbraced term with respect
to di = —d* it combines with the second line to the equation of motion for
AQ. Thus we see that ^Ho = 0.



CHAPTER5. BACK TO THE ROOTS 61

For quantisation we rewrite Ho in a convenient form

i/o = \J d*x( ~ W-kd^K + fi^±){d»Alt,dvAv}it). (5.43)

We make the ansatz

where ko = u)k(k) > 0 is a (not yet specified) function of \k\. Inserting this
into the expression for Ho we find

r r 1 / d*k f d?q

Using now the delta fuiictions we find

„ 1 f <Pk f d*qf
J
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+6{h -q)(- WX+ikK (f)
^ ^ k»kvaTv{k)a+{k)))

With the equation of motion (5.39) expressed in terms of a*,

= 0, (5.45)
a

the terms with the non zero exponentials vanish. The remaining terms sim-
plify considerably with the help of the equation of motion. So we get

Ho = \

(ata;+arat)). (5.46)

Quantisation can now be performed in the usual way by imposing the com-
mutator relation

k') . (5.47)

5.6.2 BRST-Symmetry

The free part of the BRST-expanded Lagrangian reads

Lo = f <Px( - ^F^ * F»v + B *s (ÖM„ + | ß ) + Vc*. a^c). (5.48)

Note: For shortness we have defined the symmetrized •a-product,

A*.B = hA*B±B*A), (5.49)
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where the sign is positive for usual fields and negative for Grassmann valued
fields. The use of this *a-product is crucial! The equations of motion read

= UA, - d^erAj) - d,B = o

0. (5.50)

We postpone the treatment of the ghost sector, which in the free theory
decouples from the photon sector anyway. In Order to construct the Hamil-
tonian we have

dc° - n -f
Ä-Ui- fi0'

The latter two equations are primary constraints. Since their Poisson bracket
is not weakly zero,

)}PB = {no(f) - JB(x),nfl(x')}pfl = -63(x - äQ, (5.52)

they are second class constraints. The total Hamiltonian reads (with use of
Äi *a W = (diA0 — Tli) *s IT

1 and partial integration)

HT = I
( Ä*S(U° -B) + (X'2 + B)*sIlB -Ao*3 di^

Ai A2

-B *i diA< - ^B • B + J n j • IT + j F « • F i j ) . (5.53)

Since the constraints should be preserved in tirae, we find conditions for Aj,

{HT,(f>i}pB = \2-diU
i = 0,

{HT,<f>2}pB = -Xx - diA
i - aB = 0. (5.54)

According to Dirac [65], for quantisation the second class constraints are
imposed as strong Operator equations. This is only possible after elimina-
tion of the unphysical degrees of freedom corresponding to the second class
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constraints. Clearly, these degrees of freedom are simply B, Ilß. So, with
= 0 and B = 11° we get the new, quantizable Hamiltonian

H' = [d3x( - Ao *. dilV - n° *, diA*

-£n° * II0 + Jll '* II*+ £** ****). (5.55)

With use of the Hamiltonian equations of motion for the fields,

C TTl X II1

Äo = m = ~diAi"an°' Äi = w = diA°~n<> (556)

we may express the field momenta by the fields and their time derivative.
Inserting this yields exactly the Hamiltonian (5.41) we have found for the
gauge fixed theory:

H'= I c?x((-A° *. &Ä* + A° *a d
idiA°)

+(\Ä* • Ä* + \d*A° • &A0 - Ä* *, &A0)

^diAi * diAi - \diAi • PA'))

= - d?x(Äi*Äi-Ä0*Äo + djAi• öj-̂ 4» - 9,-A)*djAo

^ i * Äo - (diAi) * ( d ^ ) ) ) . (5.57)

Note: The elimination of the ß-field does not spoil our considerations with
respect to the construction of perturbation theory, since the B field has no
interaction vertex.

Now for c, c the Situation is very simple,

I V = [cPxd>'c*sd(1c. (5.58)
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The equations of motion and the momenta are

There are no constraints. For the Hamiltonian we have

(5.59)

= / CTx(b-ka C— C*aC — C*3C + diC-kg OiC)

= Id3x(b*sc + diC*sdic). (5.60)

We check time independence of H^„,

H^= j <Px((t - didiä) *, c + t*a (c - didicf) = 0. (5.61)

Using the following ansatz for c, c,

( 5-6 2 )

(note that c(x) is here imaginary), and the Poisson bracket for Grassmann
fields, {c(x),nc(f)} = {c(x),nc-(f)} = -S3(x - 3), we find

{£+(£), c-(fc')} = {c-(Q,c+(ifc')} = -iS3(k-k'). (5.63)

For üf^ we find with the help of the equations of motion (with ko = cok = k2,
so that kftkp = 2u>l)

H<tm = J dPxd^cix) *. dßc{x)

/

(fix f dzk<ßk' (. .. .,r. ikx .. _ , - . _ikx.j — ^ / —==:{{+ik^{k)exkx^iklic (k)e lkx)
(27T)-1 J 2y/U)kUk' \

= f d3kuk (c*{k)c-(k) + c+(£)c-(£)). (5.64)
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We find that noncommutativity does not spoil the free theory. Quantisation
is done by the replacement of the Poisson brackets by commutators,

{ , }PB =* -i[ , } , (5.65)

which again leads to the well known commutator relations between annihi-
lation and creation Operators of fields.

5.7 Conclusion
We have constructed perturbation theory on noncommutative space from the
beginning. The most important result is equation (5.27): The time ordering
Operator T must not act on the true time argument of the fields in the
exponential but only on the time stamp of the Moyal product. With this
prescription unitarity is maintained even in the case #oi # 0- Indeed, we
are sure that the naive application of the Lagrangian formalism comes along
with a time ordering also of the fields within the Moyal product and is thus
wrong.

Furthermore we have shown that the free Hamiltonian of <j>A- and gauge
field theories are not changed by noncommutativity. Especially, HQ remains
time independent, which is essential for the construction of a perturbation
theory. Note however that in gauge field theory V.j ^ — Cj due to the time
derivatives in the 3-interaction vertex of the gauge field theory.

In the next chapter we will now perform the first simple calculations in
<£4-Interaction Point Time Ordered Perturbation Theory (IPTOPT).



Chapter 6

IPTOPT

6.1 The One-Loop Two-Point Function in
"Interaction Point Time-Ordered Pertur-
bation Theory"

Since the calculation of the sum of terras (5.35) is (at least) by a factor of
120 simpler than the calculation of the sum of terms (5.34), we are happy
to use (5.35). In order jto distinguish from the true time ordering, we call it
"interaction point time-ordered perturbation theory", and use the Symbol 7/
instead of the true causal time-ordering T. The calculation can be shortened
considerably when starting directly from the Feynman rule (6.27) derived
in section 6.2. But without Computing at least one example one has little
understanding for the starting point (6.23) of the general derivation.

Note: In order to look for new aspects we explicitly set 0oi ^ 0, which
is exactly the case excluded in most papers on noncommutative field theory
(due to the unitarity problem).

With these remarks now we are prepared to calculate the entire contribu-
tion to the one-loop two-point function in noncommutative <f>4 theory reads

V J " 7 A\ i \ i • \ - \ / ' w/ v • • • / ^ ' / 1 / t*\

(0)

r(x° -̂  z°)r(z° - j

67
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r(y° - x°)r(x° - z

r(y° - Z°)T(Z° - x

r(z°- x ° ) r (X° - j/°) <0| (<j>
(0)

* 0*

(6.1)

with the •-product given in (5.32). We follow the usual strategy to obtain in
the end the amputated on-shell momentum-space one-loop two-point func-
tion. We insert (5.32) into (6.1) and split each field (at given position x)
<j>(x) = <f>+(x) + <f>~ (x) into negative and positive frequency parts, which have
the property

*-(a:)|d) = O, (0|<£+(x) = 0 . (6.2)

It is convenient now to commute the <j>~ to the right and the <f>+ to the left,
using the commutation rule

l - x 2 ) , (6.3)

where D+{x\ — x2) is the positive frequency propagator (as defined above)

e~*nxi~X2)' "* = y/&+*»2. (6-4)

and k+ = (+u)k, —k) the positive energy on-shell four-momentum. A lengthy
but completely Standard computation yields

G(x,y) = Gcon(x,y) + Gdiacon(x,y) , (6.5)

where we have defined

Gdiscon(x,y) =

+ r(x° - Z°)T(Z° - y°)D+(x-y) + r(z° - x°)r(x° - y°)D(x-y))

+ (x o y)^D+(-ll2-S2+
l{l3)D

+(-lllsl-s2-s3)
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(6.6)

Gcon (x,y) =

D+(-2-h-sl-S2+2-l3)D
+(x-z-s1+ll2)D

+(y-z-s1-S2-s3)

D+(-±h-sl+±l2)D+(x-z-s1-s2+±l3)D
+(y-z-s1-s2-s3)

D+(-fl2-s2
i+±l3)D

+(x-z+±ll)D
+(y-z-sl-s2-s3)

D+(-2-i3-s3)D+(x-z+2-ll)D+(y-z-s1-2-l2))

T(X° - Z°)T(Z° - y°)

+ D+(-fl2-s2-S3)D
+{x-z-sl-s2+2-l3)D

+(z-2-il-y)

+ D+{-\h-si-s2+\l3)D+{x-z-sl-s2-s3)D
+{z+sl-\i2-y)

D+(-l{l3-S3)D+(x-z-sl+2-l2)D+(z-2-h-y)

D+(-\h-Sii+\l2)D
+(x-z-sl-s2-s3)D

+(z+s1+s2-±l3-y)

D+(-lh-sl+2-l2)D
+(x-z-sl-s2+\l3)D

+(z+sl+s2+s3-y)

+ D+(-2-!3-s3)D
+(x-z+2-h)D+(z+Sl-2-l2-y)

+ D+(-2-~l2-s2+2-i3)D
+(x-z+2-h)D+(z+Sl+S2+s3-y)}

r(zQ-xo)r(xo-y0)
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D+(-±l2-s2-s3) D+{z-\h-x)D+{z+sx+s2-\k-y)

D+(-s3-l3)p
+(z-lih-x)D+(z+Sl-^2-y)

D+(-2-li-si-s2+±l3)D+(z+sl-±l2-x)D+(z+sl+s2+s3-y)

D+(-1
2-l2-s2+±l3)D+(z-2-ll-x)D+(z+sl+s2+s3-y)

D+(-±l1-sl+\l2)D
+(z+s1+s2-±l3-x)D+(z+s1+s2+s3-y)>)

(6.7)

We have to take the connected part Gcon(x, y) only. Inserting (6.4) we can
perform the Sf-integrations, which result in (J-distributions in l{, so that the li
integration can be performed as well. The result has a remarkably compact
form:

x (T(X° - y°)T(yQ - zo)e-ik

+ T(y° - X°)T(X° - z°)e-

+ T(X° - Z°)T(Z° - y°)c-*

+ r(y° - Z°)T(Z° - xo)

+ T(Z° - x°)r(x° - y°)

+ T(Z° - y°)T(y° - x°)
(6.8)

where (*+)" = (fc+)„^ and

— f
~ J

("\ 4- pi^+k++iXk+k+ , piKk+k+ , pi\k+k+\

(K,X = ±1) . (6.9)

Next we pass to the Fourier transforraed Green's function

G^ip, q)= ftfx d?yeipx+iqy G^ix, y) . (6.10)
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We insert the identity (use the residue theorem)

i r°° e-**0-^
T(x° - y°) = lim -^- / dt——— (6.11)

and perform the integrations over x, y, z. The result is a host of 5-distribu-
tions, which allow us to integrate over kific2,ti,t2:

X X ( « ! , »2 )

- t 2 -u>kl )+y°(qo-ti -wk2 )+z°

X -Z- V 1 ) 2 /

f _£hL_ f _ f

—Up+i8i qo+üJq-i62

+
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1 1 cos(I(-P)+g-+)

9 t ^ + t t f p + W i < $ 4u>U>
1 1 C08(i(-p)+(-OT

(6.12)

Note the appearance of <S(p+g) implementing conservation of the four mo-
mentum (translation invariance). We have used u±k = u;*.

We amputate the external legs by multiplying (6.12) by the inverse prop-
agators —i[pQ — ux%) and — i(ql — u*). Using (±/c)+ = dbk*, in particular the
identity

/ " "* (o _i _tp±jfc++ig:1:jfc+ _i_ „ip*k+ •_ oiq
±k+\ — 'rf—i:

J (27r)32a»jk

defining now the lPI-vertex functional T we obtain

<z) (pg - o;p
2)(g0

2 - u ; 2 )

f 1 1 c o s ( b + g + ) z , + +)

^ i cos(iP+,n

-u)p+iSi qo+u)q-i82

L 1

— 1 8 2 , , q

cos(^p+<D + _

)

, 1 1 cos(lp-q-)

H
—löi —po—Wp+102
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Taking on-shell extemal momenta po = uip and qo
Single term (the third one):

—ioq there survives a

lim T(p, q) = jz

(6.15)

In the last line we have used momentum conservation p + = — q~ and the
skew-symmetry of 0. The remaining integral over k consists of a planar
0-independent part and a non-planar 0-dependent part (the cosine). The
planar part coincides (up to a factor | ) with the commutative result, it is
divergent and to be renormalized as usual by multiplicative renormalization
(or better completely removed by normal ordering).

To compute the non-planar part, first note that

cos(fc+p+) = cos = c o s cos(fcp) 4- sin sin(kp
(6.16)

where po := (p+)o and p = jr. The uneven sine-term will drop under the
integral. Using the residue theorem we have

= <

i r°°
lim / dko
*-+o 2m J^

lim dk0

a-tu>kpo
^ <

lim-—: / dko
e-̂ o 2m J_oo

1 f°°
l im—- / dk0 ,,

L t-K>2mJ_O0 (k0

(fcoH

(A:oH

(fcoH

h u)k + ie) {ko — Uk

\- uk — ie)(ko — u)k

_e-ifcopo

h W j t - ie)[ko — wk

e-ifcopo

- i e )

+ ie)

+ ie)

ie){kQ - u k - ie)

for po

for po

for po

for po

(6.17)

(6.18)

Inserting (6.16), (6.17) and (6.18) into (6.15) we obtain for the non-planar
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graph

r — ( P + . « " ) s f

(2TT)4 \k%-{fr + m*)+^
independent of the sign of p0. The result (6.19) can obviously be obtained
by Feynman rules, with the prescription that in non-planar tadpoles the
propagator to use is the real part of the Feynman propagator. That real
part is arithmetic mean of causal and acausal propagators. The observed
acausality is no surprise, because according to (5.35) the interaction time-
ordering Tj explicitly violates causality. As we shall see in section 6.2, the
just given Feynman rule is true for tadpole lines only.

Apart from taking the real part, the evaluation of (6.19) coincides with the
computation in the "nai've" Feynman graph approach. Let us nevertheless
repeat the Steps. We employ Zimmermann's e-trick

1 1 e'-i

k2-m2 + ie ^ Jbg,+ w2(»e-l) = (e'-i)k$ + u2
k(e-e'+i+i€€f) '

the denominator of which has for c' < e a positive real part, which allows us
to introduce a Schwinger parameter (remember p0 = up):

*• non—planar\P j Q ) =

V ̂ o?<« 6(4TT)2 (c-cz+i+iee') |
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We have used /0°° § exp(-wa-u/(4a)) = 4v/(u/u)ATi(\/üü) for 8?u > 0 and

In the particular case where the external momentum p is put on-shell, we
have

-P2 = P ~ Pl = ( f o \ / ^ T ^ + %>*)2 - (ö0jy)2 > 0 , (6.22)

because p^ has to be space-like or null as a vector which is orthogonal to the
time-like vector p*. Thus, the projection onto the real part in (6.21) is super-
fluous, and (6.21) agrees exactly with the naive Feynman rule computation
of the sum of graphs

v + y

However, if these graphs appear as subgraphs in a bigger graph, one could
expect (but it is not clear) that the momentum p may be the off-shell mo-
mentum through a propagator, and the projection to the real part makes a
difference. This will be discussed in the next chapter.

6.2 The General Case
The graph we have computed (for off-shell external momenta!) is very often
made responsible for the so-called UV/IR mixing. In fact the Situation is
more complex, as it is very well described in [23]. The ultimate goal must
be to derive the power-counting theorem for interaction point time-ordered
perturbation theory (for noncommutative space and time). In a first step
one has to derive graphical rules to assign an integral to a given graph.

Let us therefore consider the momentum integral for a general Feynman
graph for a noncommutative (f>4 theory. A given connected contribution to the
i£-point function at Order V in the coupling constant has after performing
the Wick contractions, insertion of the D+ according to (6.4), integration
over Si and U appearing in (5.32) and insertion of step functions (6.11) the
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form

idts

4! 7^(2^)3^711(2^20;^./ 1=1 (2n)(ta+ie)
V E+V-l E E+V-l

o=l s=l e=l s=l
VI E

X exp [ — i 5 3 z*> ( E ^vi^t + E ̂ t)e^
ti=l t=l e=l e=l

' 53 iiiKßK»+EEJiÄ + E ^fPtvPh)) •
tj=l i=l e=l e,/=l

(6.23)

There are E+V—1 step functions according to the time differences of the E
external points xe and the V interaction points zv. For each s there are two
non-vanishing T»s, where these two indices * are either two indices e, one
index e and one index,i>, or two indices v. The T,s for which the vertex *
(zo or xe) is later equals +1, the other one —1. This gives the second line in
(6.23). An external point xe is linked via the external line with momentum
pe to exactly one vertex zv, i.e. for given e there is a Single non-vanishing
Jve. For our <f>4 theory there are / = 2V — \E internal lines (E is even)
with momentum ki which link a vertex zv to another vertex z^. Thus, if
v ^ v' (no tadpoles) for given i there are two non-vanishing J„i, whereas
for v = v' we have Jvikf = 0. We Orient the internal and external lines
forward in time. Then, the incidence matrices JVi, Jve equal —1 if the line
leaves v and +1 if the line arrives at v. Similarly, ae = — 1 if the line e
leaves xe and ae = +1 if the line e arrives at xe. The matrices Iij,Iie,Ief
are the intersection matrices [16, 23], which instead of the Euclidean rosette
construction are in IPTO obtained as follows: According to the definition
(5.32) of the •-product, write at each vertex v the four fields in (5.32) as a
time-sequence where z^—\l\ is the latest point and zt,+s1+S2+S3 the earliest
point1, irrespective of the actual time-order of these four points. Connect

xBy the way, this defines the tüne-orientation of tadpole lines.
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these points with vertices 2/1,3/2,3/3, V4 according to the following picture:

time

Zv + 81 + 82 + S3

The phase factor produced by the s„ and /n variables is then given by

3 d%
\asn

n=l
J Aj\ \ n (2TT)4

B'»»)) exp ( ~

\eiw E ̂
(6.24)

We have to define r? = +1 if the line i is connected to an "earlier" field <f>
in the vertex v than the line j , otherwise r$ = 0. Summing over all vertices
and distinguishing external and internal lines, we are led to the following
identification in (6.23):

T — - V^ r" 7 7 I - I ei)JvxJve
v=l v=l v=l

(6.25)

Once more we notice the enormous computational advantage of using the
*-product in the form (5.30).

We perform the Fourier transformation J Ylf=i {dAxe exp(i<7e£e)) of (6.23)
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to external momentum variables q as well as the zv integrations:

e-*0 (4! )^

V

x Y[(2n
0=1

V

X | j ( 2 7 T
o = l

E 1

e=l ^
/

)353(y

KE-
t = l

i j =

:/n
1

d3^
(2TT)32U;(

Eh E J u t
e = l

E

E ̂ "e'
e = l

j

i+E
1=1

oqc +

E

e = l

) II(2
e = l

E+V-l

E
s = l

idt8

(27r)(«(

e,/=l

E+V-l
_ V̂  T t \

oe<7jq°'pqfv J J .

(6.26)

The vectors ^ are always outgoing from internal vertices. There are now
E+V time-component (J-functions involving the E+V—1 integration vari-
ables ts, after integration over which there is one remaining <J-function for
the energy conservation 6(%2f=l q°). We multiply (6.26) by the inverse prop-
agators Ilf=i(-0((9e)2 ~ wge)> remove (27r)4<J4(^^=1ge) by Convention and
put 9° = <Jewqe. There is a non-vanishing contribution only if the external
vertices xe are either before or after the internal vertices Z{. Defining a time-
order of vertices v' < v if z^, < z® we finally get (an illuminating example
will be given below)

/ JE E

[>*?Ä+EE'^*i^+E
»,7=1 t=l e=l e,/=l

/«*i*j, +E E ̂ e ^ c + E ^ ^ / O Ä ) ) •
l l / l

(6.27)

The vertex which is missing in the product over v is the latest one. There
remain /—V+1=L momentum integrations to perform, where L is the num-
ber of loops. The integral (6.27) corresponds to a particular graph with E
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external and V internal vertices which all have different dates. The internal
vertices are composed of four different points according to the four fields
building the vertex, with the time-interval within a vertex smaller than the
time-distance to the neighboured vertices. Any external vertex is a Single
point which is either later or earlier than all points in internal vertices. A
graph is the connection of each two of these 4V+E points by a line which
is oriented forward in time, such that at each point we find exactly one end
of a line. We assign to this graph the integral (6.27) according to the in-
cidence matrices, which also enter in (6.25). Finally, one has to sum over
all different graphs, Note that a given graph does not have any symmetry
because the four points in the vertices have clearly distinguished dates. The
Feynman rule (6.27) is easily generalised to other than (f>4 theories. Eq. (6.27)
is the analytic expression of the Feynman rules listed in [62], apart from a
disagreement in the symmetry factor.

We now see that the graph we have computed was very Special. Because
of V=l the denominator in (6.27) was absent so that the integration over
the propagator momentum k\ was identical to the naive Feynman graph
computation. This remains true for all tadpole lines i, because for them
Jvikf = 0 for all v. For internal lines connecting points in different vertices
we need new techniques to perform the integrations.

6.3 Example
Since the step from (6.26) to (6.27) is somewhat complicated, we want to
give a simple example involving two external lines e, / and two vertices o, b,
ordered in the following way:

time
• Xf

• b

t2

• a

ti
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Note: Nothing is said about the inner lines between the vertices, only the time
ordering of the points is necessary. For this case (6.26) reads (V = 2, E = 2,)

1=1

/ I E E

^ W + E '«/
t=l e=l e,/=l

(6.28)

Here we have defined

r'flr n\ - * [ idhidhidtz
[K'q) ~ 2o;Ve2o;,/ / (2^)^ + ie)(t2 + ie)(t3 + ie)

x II (2n)363(j2J«&+ E J«
v=a,b

t=l d=e,f

Now we perform the integration J dt\ and multiply with the inverse propa-
gator -i\ql -aeüJqe){qQ

e + ffewfc),

G'(k,q) =

-JJQe - VeUqJjqe + ^e^J^TT /* j dt2 J dt3

2uqt2uqf2n(-q°e+aeiüqe) J (27r)2(t2 + ie)(t3 + te)

x (
v=a,6 »=1 d=e,f

»=1 d=e,f
I

x 2TTS ( J2 J«w*< + E
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After cancellation we set g° = aeuqe and use ae = — 1. This leads to

r'(k n\ - — f idhidh
U ^ ' « ' " 2w„ J (2TT)2(<2 + ie)fa + ie)

i

x I J (2TT)3<J3 ( J^ Jviki + ^2 JväWd) 2*5 (q°f - afu>q/ - t3)
b 1 df

(

v=a,b »=1 d=e,f

I

^ Jaduqd -
d=e,f

d=e,f

Now the integration f dt2 yields

G'(k a) = — f i

' q ) 2ug/ J (2TT) (
/

JJ (27T)3«*3(£./«,£ + J2 Jvd(Tdqä)2nS{qo
f - *fu>f - t.)

ö i l df

x JJ ( ) ( £ « , £ +
d=e,f

I

1=1 d—e,f »=1 d=e,f

(6.32)

Doing the integration /d<3 and multiplying with the inverse propagator
—i(q°j — OfWqf){q0f + OfWqf) yields (after cancellation and with <jj = +1)

G'(k,q) = J ] (27r)3«J3( £ Jviki+
v=a,6 i=l d=e,f

T I

d=e,f i=l d=e,f

x—f . (6.33)

Now one can rewrite the 5-functions in order to split off total conservation of
the external four-momenta, (2ir)464(qe + <?/). There remains a (5-function for
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three momentum conservation at each vertex but one. We are free to choose
this one to be the latest vertex of a given graph.

6.4 Summary

As a warm-up for the general treatment we have computed the one-loop
two-point function for a <f>4 theory on noncommutative space and time in
the framework of "interaction point time-ordered perturbation theory". The
calculation is based on free fields (on the mass shell). Our final result (for
that graph) agrees with a Feynman graph computation, provided that one
assigns to the internal line the real part of the Feynman propagator. This can
be understood as the inclusion of acausal processes in the 5-matrix, because
IPTO explicitly violates causality. We think that the trae time-ordering of
the •-product (5.34) would produce the naive Feynman rules involving the
Standard causal Feynman propagator in non-planar graphs. This approach,
however, was shown to violate unitarity of the 5-matrix. We have thus given
up (nano-) causality in order to achieve unitarity in noncommutative field
theories.

Next we have derived the Feynman rules (6.27) for general Green's func-
tions. Power-counting teils us that (6.27) is expected to diverge if there
are subgraphs with E < 4 external lines. If there are non-planar divergent
graphs, it is not possible to absorb the divergences by local (hence planar)
counterterms as usual. One has therefore to analyse whether the oscillating
phases render the power-counting divergent integral finite. This requires to
develop techniques for the computation of (6.27) in analogy to the treatment
of the Euclidean case in [23]. Of urgent interest are the evaluations of the
two-loop two-point function and the one-loop four-point function.



Chapter 7

Feynman Rules and
UV/IR-Mixing

7.1 Examples
Now we want to use the noncomrautative version of the time ordered ex-
pression for Green functions [66], eq. (6.27) to obtain explicit results for
the Fourier transforraed (FT), amputated on-shell two-point one-loop ampli-
tude F*2'1) (tadpole, fig. 7.1), two-point two-loop amplitude F^2'2) (snowman,
fig. 7.2), and four-point one-loop amplitude F^4'1) (fish, fig. 7.3).

tadpole snowman fish mouse

7.1.1 Two-Point One-Loop Tadpole
To see how eq. (6.27) works, we first want to review the on-shell one-loop
correction to the two-point function. One typical contribution to this diagram
is given in figure 7.1.

With eq. (6.27) a general contribution reads

83
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time

Figure 7.1: The contribution (e, 1, / , 1)

where $M„ is the phase depending on the Special configuration of lines at the
vertex. Since there is only one inner line, the /y- term in (6.27) is vanishing.
For the ije term we have to look at all possible configurations of lines at the
4-field vertex v. We have

ij — rt / ^Tii
V

Jte — X 2\Tie ~
T \ "* _O T T

1ef — n / J'efJveJvf-n / J

V

(7.2)

The sura is over all vertices in a particular graph. T?e = +1 if the line i is
connected to an "earlier" field <j> in the vertex v than the line e, otherwise
ry- = 0. We have ae = —1, Jve = +1, <jf = +1, Jvf = —1. For the inner
line we have to distinguish between the one leaving (we denote this by i = I)
and the one arriving (i = 1). Then Jv\ = —1 and Jv\ = +1. Note that the
inner line is by definition oriented forward in time and ki = k\. We write
the time-ordering configuration at the vertex as an array, the contribution in
figure 7.1 is labelled (e, 1,/, 1). Then we find, for the 1^ and the Je/ terms:

e',f'=e,f

(1,1, M

1

1

1

(I, e, /, 1) : - t f ( - O + ktqf + 5«."«;
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(1, /, e, 1) : -tf (-O fc
(e, I, / , 1) : +kfq+ + Ifiq} (I, / , 1, e) : +*+?+ + ±q+q;

(I, e, 1, /) : - t f ( -O + füg} (/, I, c, 1) : -*+(-£") + i«/«.".

Thus for the sum over all possible phase factors we obtain

) = 2 cos (5*"X,«/J (7.3)

x (3e° + c*^*^*"- + e**"**»9'* + e
i6>"'^^'

Inserting this into (7.1). and with gj!" = — q~ we find for the total T

( 7-4 )

This result agrees with the corresponding result (6.15), where the same ara-
plitude was obtained by explicitly commuting out the free field Operators.

7.1.2 Two-Loop Snowman

For the two-loop snowman, in addition to the inner configuration of the lines
at the vertices, we have to respect the two possibilities of time ordering of
the vertices, see figure 7.2.

With V = 2, E = 2, / = 3, eq. (6.27) reads for the left graph, where the
vertex v is before the vertex w.

r<2'2>= (7.5)

g2 f (Ph^k-xPh i(2n)363(-k2 - k3 - qe - qf)
(4!)27 (27r)98a;1u;2a;3 -u*-u>3 + ue-uf+ ie

We have Jv2 = Jv3 = +1, Jwi = Jw3 = —1, ae = +1, Of = —1. We obtain a
non-trivial /y term from the vertex v. For example, the phase of the vertex
v in the left graph is

(2,1,3,1), : -k+kt + ±klkf, (7.6)
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time time

Figure7.2: (2,1,3,1) x (e,2,3,/) (e,2,3,/)x (2,1,3,1)

and is similar for the other 11 contributions. For the vertex w the /y and
Iie terms are non-zero. Again, we present only one contribution (note that
—q~ = +q~j, owing to momentum conservation):

(e, 2,3, f)w :

— k2 qj + «3 qj + —k2 k3 . (7.7)

CoUecting the other 23 terms would be fairly edifying for a Computer. Sum-
ming up all contributions, using again q~ = —qt, integrating out ^ and
setting e = 0 yields

leftft ~ (4!)27 (27r)38a;2
3y Wj^i U

x (3 + c-*'"'**M*k +

x2cosi\kfk2) (6 + 2

k^q+J + (7.8)

The first two lines of the integral kernel are exactly eq. (7.4), with the obvious
replacements (note the correct signs Coming from the a's and J's) — q~ —¥

£ and -qf -t +k£ -> -k2 . For F ^ t we find the same expression with
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fc£3 —> — k^, because of the reversed sign of Jve, etc. This yields exactly the
complex-conjugated expression, so with the help of 4cos2(|) = 2 + 2cos(x)
we get

(7.9)

x (6 + 2 cos (A^) +

/

(ßU f

( 2 ? r ) 3 2 ^ i (6 +

f) + 2 cos((*J -

2 cos(A;+A;2-)

Note the extra i due to the slightly unusual definition of the S-matrix used
in the previous chapter.

7.1.3 Four-Point One-Loop Correction
Finally, for the one-loop correction to the t-channel four-point function we
have the contributions of figure 7.3.

time time

xe

Figure 7.3: Two contributions to T(4>1)

Without going into detail with respect to the phase, we can prove the IR
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finiteness of the sum of these contributions:

L *fc f d3k> (710)
27r)32u;2y (2TT)32U;3

 K J(4!)

i(2n)3S3(-k2-k3-qe-qf)ji(2n)3S3(-k2-k3

\ — CJ2 — u3 + ue —

(-fc2 - £3 - q9 -

Here the phase ^ will be defined in section 7.2.5. With conservation of the
global 4-momentum S4(q~ + qj + q~ + q£), we have wg — Uh = —(u)e — ̂ f)
in the denominator of the second term. Before integrating out k3 we let
£2 —> —^2, £3 —• — 3̂ in the second term, so that ^3 = — k\ — qe — q/ in both
terms. Thus we find

JÜ— f
(4!)»y

^~ *

We find that the denominators are strictly positive,

+ m2 + (k2 + qe + qf)2 + m2 +
—q% — m2 — (fi — m2 + 2ueu>f =

qeqf

|p • q\ < upUq, m > 0).

/ ) > 0

Thus, no new kinematic IR divergence occurs with respect to the commuta-
tive case, although the usual cancellations could not take place because of
the different phases. Hence we made sure that no novel problems arise from
this quarter.
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7.2 The Feynman Rules for IPTOPT
To obtain the set of diagrammatic rules for our model we have to answer
three questions:

1. What is the vertex?

2. What is the propagator?

3. How to construct graphs?

The first of these we postpone to section 7.2.5, while the other two are tackled
by retracing our steps to the explicit result for the tadpole obtained in the
previous chapter.

7.2.1 The Füll Noncommutative Propagator

We start our search for the Feynman (-like) rules of noncommutative IPTOPT
at the explicit expression for the two-point one-loop tadpole G^.

Repeating the notation from the previous chapter (recall that p± :=
(±up,p), up : / W ^

\po-Wp+Wi u}p+u)q-iö2 4wpu)q

+ ]1 i cos(iP+<r)
q0-coq+i6i up+uq-i52 4wpuq '

1 1 cos{\p+q-)x, + .

Po—
1 1 cos(|p-?+) _ ,

qo-uq+i5i po+u}p-iS2 4u)U '

= I(p±,q±), (7.12)

we retrace one step and give the unamputated FT Green function
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j 1 1 cos(^pg) _
u+u—iSi -qo—u}+iS2 4u)U

Making use of local energy-momentum conservation p° = — q° and u;p =
+uq, and of the relation q± = —p*, we eliminate q and contract eq. (7.13)
to

cos ( l
\2

p

cos (\p-p-) I(p-,-p~)). (7.14)

This can easily be written as the sum over two signs:

a a1

-TTTTI- (7-15)

7.2.2 The TO Propagator

Equation (7.15) lets us read ofFthe answers to both our questions. Since we
have not performed any amputation yet, two propagators must be included
in the above expression. We easily identify the TO propagator as

r . (7.16)
2u)p ap° — Up + ie

The 8^-a1 was included to guarantee TO-diagrammatic consistency: every
directed TO line that leaves one vertex (<r) has to arrive at another one
(a1). (The correctness of this addition will become evident in the following
ex am pl es.)
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Note that the same result is also obtained in [68], where the TO propa-
gator is called "contractor".

The global TO of the Note that the same result is also obtained in [68],
where the TO propagator is called "contractor".

The global TO of the vertices is another necessary issue to be encoded in
ATO: every line has to leave its earlier vertex and arrive at its later vertex,
and this must be consistently so for all lines of the diagram. This property
is taken care of by the sign of the pole prescription. As illustrated in the
amplitudes (re)calculated in section 7.3, only products of TO propagators in
TO consistent graphs (if A < B and C < A then C < B) will contribute.
All others (e.g. A < B and C < A but B < C) will have their poles bundled
in the same complex half-plane and hence vanish upon integrating over p°.

7.2.3 Building Graphs

In addition to providing us with a propagator, eq. (7.15) also teils us how
to construct graphs: multiply together all the building blocks for a graph
of given topology — lines, vertices, subgraphs — which all depend on the
entering or leaving (<Tj = ±1) of the lines running into them. Then sum over
all signs. The propagators take care of the correct connection of all parts of
the diagram, especially causal consistency: if vertex A is later than vertex B
and B is later than C, than A is also later than C.

Even at this point we may already calculate the two-point zero-loop func-
tion, the usual covariant propagator,

IAF = > tA (a) = >
^—' ^—' 2u> apo — u + ie

_ J_f t L i ] = . (717)

7.2.4 Complete One-Loop Integrals

To complete our discussion of G(2>1), and for further use in section 7.3.4, we
evaluate the Ts occurring in eq. (7.15).

Abbreviating the (cut-off-regularized) divergent part of the planar term
by Q = A2 + ^ l n ( ^ ) , we give J(p+ , - p + ) , which was already calculated in
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the previous chapter, eq. (31):

Analogously we find

^ ( / S M / 1 ) ) (719)

Calculating the sum of the remaining integrals still has to be done. Adding
the integrands gives

(2^)320;*
2(3 + cos(A;+p+) + cos(k+p~) + cos(fc+(p+ -

The first and second cosine terms are just the ones yielding the non-planar
parts of eqs. (7.18) and (7.19). The third one has to be dealt with explicitly.
With (p+ — p~)p = 2QQflcü and öoo = 0 we can choose a coordinate System
with the z-axis parallel to the 3-vector öoi. Thus integrating out the angles
yields

2 r ^ \ u ) . (7.21)

This we evaluate as

m
(27r)2|0w|a;

i

Hence we have

X(p+, -p~

Ki(2m\Q0i\uj). (7.22)
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For further use (see eq. (7.39)), we finally present another result. Iff
I (p + , —p~) occurs under an integral over cPp together with functions j(p)
invariant under p -» — p, we have:

(3+* i p + i + +<~ i p~'k + +* i { p +-p- ) i

= f d*pf{ß) J ^ L - (3 + ism(p+k+) - ism(p-~k+)

cos(k+p+) + cos(k+p~) + cos(k+(ß+ - p~))\.

sin((p+ — p~)k+) = sin(2u)p9oiki) is antisymmetric in k and thus this term
vanishes. The remaining two sine-terms can be added up (let p —¥ — p in the
second term) to 2isin(A;+p+). Now we have

-.—rr—- sm\wkfr) COS(ÄP) + cos(a;i;Er)sin(A;p) .(2?r)32a;jb v v «^^ v JV,
=0 (antisymmetric in ife)

Choosing p parallel to the z-axis we further evaluate

i-»l2 d|jfc| fl \ • / ~0\ (
\k\ ... xo-— / d(cosi9) sirnwjtp ) cos (

(27r)32a;ifc J_x \

= lim

cas

| | O (27r)22a;fc2i

= 0.

Here we have expressed one sine by (regularized) exponentials. The last
equation follows from Gradstein [67] 3.961 (7 = m, v^y2 + x2 = cuk)'

r
Jo

xdx

for positive real parts of 7, /3 and a. Therefore all the sine terms are shown to
vanish. The cosine integrals have been calculated above and thus we finally
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find for even f(p)

(7.24)

With X(p~, — p+) we find an analogous result.

7.2.5 The Vertex
To answer our first question we straightforwardly peruse eq. (6.27) for no
internal lines and four external ones with general causalities (<x's). Summing
over all possible inner (nano-) TO of the vertex, we proceed as in section 7.1
and find (p" :=

f (cos (irf1!?) cos (\p?ff) cos (±(pV +p?)(ß? +ß?))

(7.25)

Note that here all the momenta are defined outgoing of the vertex. With
the symmetry of the cosine we explicitly check the invariance of (7.25) with
respect to any permutation of the momenta.

Unfortunately, the tadpole has to be treated separately. From eq. (6.27)
it follows that the tadpole line has to be oriented forward in time. Thus only
™ nano-configurations at the vertex contribute. We find for the phase factor
of a 1-loop tadpole (defining p£2, p£3 outgoing, loop momentum p^)

— ovn I ift \ "* T " n"a'n<Tb 1 —. CAp l liUßV J 'abPa Pb I —• A\41 \ J •/ / 4
a,b~\

~ 1 9 V / \ 9 3 j ' ^ ' '

7.2.6 Summary of Diagrammatics
To calculate a Fourier transformed, amputated amplitude, use the following
rules:
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1. An araputated external line carries the momentum q°e; ae = +1 if the
line is directed into the future, ae = — 1 if it runs into the past:

+ m2, q)T. (7.27)

2. For a general, non-tadpolic vertex write a factor

= |(cos (IPVP?) COS (\p?P?) COS (i(rf» +p?W3> +m)

+ (2) «(3) + (2) ++(4)), (7.28)

where all momenta are oriented outwards from the vertex.

3. For a tadpolic vertex (with loop momentum pf), write a factor

% (7-29)

(3 + e + J + e ) cos (|

where P2.P3 are oriented outwards from the vertex.

4. For an inner line, write the propagator

2uop° -
( 7 3 0 )

5. Sum over all a's of the internal lines in order to include all possible
contributions with respect to the time ordering of the inner vertices.

6. Integrate over all loop momenta (including tadpole momenta).

Remember that 4-momentum conservation is valid at all vertices and along
all lines.
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7.3 Examples for the Application of the
Feynmari Rules for NC-IPTOPT

In order to both illustrate the applicability and demonstrate the validity of
the new-found FR (and since a motivation was given for them, rather than a
derivation), we employ them in the recalculation of the diagrams of section
7.1.

In addition we will finally be able to calculate the "mouse"-diagram T^2'3\
which was one of the main motivations for the development of this diagram-
matics.

7.3.1 The Diagrammatic Tadpole

Once again we turn toward the tadpole, obtained by explicitly commuting
out the free-field Operators in the previous chapter and by use of (6.27).

Simplifying eq. (7.26) by using 4-momentum conservation p% =: q* =
—p%, setting the exterrial momenta on-shell <72 = +1,03 = — 1, and defining
Pi =: k+, PfiQ^ =: p we find for the vertex factor

| | (7.31)

Note that the a of the looped line does not occur. Multiplying with the
propagator eq. (7.16), summing over a, a' and integrating over phase Space
then yields the FT NC tadpole amplitude, which is well known by now:

ö i
2w ak°-

( 7 - 3 2 )

The actual fc°-integration can be performed directly for both terms sepa-
rately, heeding non-vanishing semi-circles at infinity. Alternatively they can
be brought over a common denominator, resulting in the usual Feynman
propagator.



CHAPTER 7. FEYNMAN RULES AND UV/IR-MIXING 97

7.3.2 The Diagrammatic Snowman

To further strengthen our confidence in ATO and the vertiees of eqs. (7.25)
and (7.26), we demonstrate how to utilise them to evaluate the snowman of
section 7.1.2.

To obtain the amputated, FT snowman amplitude, we multiply the terms
for the two vertices with each other and with one ATO for the head-loop and
two for the body-loop. Using 4-momentum conservation k$ = — k%, kf =
—k%, summing over a\, aj", a|, tr™,.«̂ , a% = ±1 and integrating over the two
loop-momenta fc{*, &£, we find

r(2,2 ),2 ) = 9_ f d%
4 ! 7 (2TT)4

^ a i d4k2E
A

4! J (2TT)4

ig2 /•

(4!)2 7

2u)2 2^2 ^2^2 — ̂ 2 + i e — 03 A;" — u>2 +

(2TT)4

(fc?)2 - o;2 + ie crjfĉ  ~ ̂ 2 + ie 0$$ +u2-ie
g2 f t̂ fci d3k2Jg2 f t^fci
!)2 J 2ui(2ir(4!)2 J 2ui(2ir)3 (2o;2)2(27r)3 2?r

u>2 — ie

+*°(kt; -kl, +kl)V«(-q;, -qj,+kl, -kl)
1 1

ie —
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ie

—«2—
- V (7.33)

— ie'

In the last step we integrated over k\ as in section 7.3.1 and expanded the
sums over a%2)U3-

Performing the k% integration reveals how ATO selects the correct a-
signs: the poles in the second and the third term are double poles, both
lying on top of each other in the same complex half-plane. Hence we may
close the contour in the other half without enclosing any residuum, yielding a
vanishing integral (mark that the auxiliary semi-circle is harmless, contrary
to the tadpole case).

In the first and the fourth term the poles lie in opposite halves and yield
upon integration 2m/(2u)2). Hence we find

^ L f
(4!)27

f
(4!)27 2o;1(27r)3(2a;2)

3(27r)3

Evaluation of the phases $ and \P, using momentum conservation q
and doing some trivial but tedious trigonometry, yields

) (3 + e

-
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Inserting this into eq. (7.34) we find exactly the same result as eq. (7.9), as
obtained by the TO procedure in section 7.1.2.

7.3.3 The Diagrammatic Fish
To demonstrate that our diagrammatic rules also work in a non-tadpolic
context, we recalculate the <-channel four-point one-loop fish graph evaluated
in section 7.1.3. As above we restrict ourselves to the £-channel.

Using the same notation as in fig. 7.3, we fix the external on-shell mo-
menta as above: ae = —l,a/ = +l,crg = — l,crA = +1. 4-momentum
conservation yields

r^4'1) is then given as

.1) = JL. f Eh.
(4!)27 (2*)«

ie

- ie
g2 f d4k2 1 1

(4!)27 (2TT)4 2w2 2o;

( -
fW(-qe^-Qh~k2'-kt)^

/c2 — o>2 4- ie

>( n~ n+ t + lr~\ \Ül
V i £ j "e j ^*2 ? "*3 /

-\~k2 — u}2 ~\~ ie —i

fv(-q;,-c

kl + ue -
1h>+k2
Wf + a>a

j '""'2 ' "

JO f "H Ct?3

, i ™2 j "

,+kt)
t — ie

— ie

ie
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, +fe3")\ (7

3 — ie '

Inspecting the complex k% plane of the four terms we see that the poles
of the second and the third term lie on the same half-plane and hence yield
vanishing integrals. We thus find (for shortness we retain k3, u3, but of course
eqs. (7.35) still apply)

(4!)2 J ( 2 ^ 2 ^ ^ (7.37)

- Uf — ie

ie

which is identical to eq. (7.11).

7.3.4 The Diagrammatic Mouse - where the UV/IR
Mixing Should Occur

Confident in our new tools, we embark on calculating the two-point three-
loop amplitude of "mouse-like morphology", figure 7.4.

time

Figure 7.4: The macro-contribution uvw
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This amplitude is of great interest since in usual noncommutative QFT it
is the simplest graph that becomes undefined due to the notorious UV/IR-
raixing problem: the two tadpoles inserted into the third each bring a l/kl,
introducing a non-integrable IR-singularity into the remaining, otherwise
UV-finite, loop-integral - usually...

Beginning as in the previous sections (and skipping the steps that are
now familiär), the amplitude of interest is written as

ig3 t

(4!py
d 4 k i d 4 k 2 d 4 k 3 1 1 1

(2TT)4 (2TT)4 (2TT)4 ( 2 O ; I ) 3 2u2 2u3

<Jik% — U2 + ie <73/c° — U3 + ie

+1,-1

ie

Two of the eight possible combinations of au = ±, av = ±, aw = ± result in
the coincidence of all three poles on the same half of the complex plane, and
they thus vanish under fc°-integration. The remaining six summands yield

_%£_(_. f d3*! 1 \( . [d!%__L\(_- f
(4!)3V %] (2TT)»(2WI)5A

 %j (27r)32u;2A * / (

(k+; kf, -kt)*w(k+, kt, -K)V«(q}, -qf, *f. ~kt)

q},

»(*+; *+, -*r)*"(^, *r, -*r)*"(«;. -« ; . *r. -

(7.39)

Here the six terms correspond to the six possible macro-time orderings of the
vertices: uvw, wuv, vwu, uwv, vuw, wvu, respectively.
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7.4 No UV/IR Mixing in IPTOPT
The most interesting feature of IPTOPT is the apparent absence of the
UV/IR-mixing problem. This can be seen in the araplitudes calculated so far
by explicitly performing the loop integrations in the result of the previous
section 7.3.4. No divergence will be fed down via the phases to the next loop.

7.4.1 Explicit Result for the UV/IR Divergence-free
Mouse

To evaluate eq. (7.39) explicitly, we start by integrating over /Ü2 and Â . These
integrals yield, apart frora a possible overall cosine in kx, exactly the T's from
section 7.2.1 and the previous chapter:

1 *(*+;*?,-*?')

= f 4^T~ cos (Wk?) (3 +J \2irJ° 2cjfc • \ 2 / V

= 2a»(i*f*f)l(*f,-*f)- (7-40)

Since these were already evaluated in eq. (7.18)-(7.24), determining the result
for all but the last loop Integration is a mere task of corapilation. Using the
same abbreviations as above we find

g3 1 f d3h 1

lQ - w\K>iml'ktl) - w\Klimlkl)

Q

+ cos(kiöf) + cos((kf

(2Q " ]Si^(ml*i+l) " fi£l*iH*r
l Ä i I l Ä i I
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where K\ (x) is the modified Bessel function. So far in noncommutative QFT
this expression contained an IR divergence: poles in k2 of 2nd order. This is
not the case here as

lira(jkj)2 = -m2G2
0i < 0. (7.42)

This limit will be discussed in more detail in the next section.
Where does this first instance of the absence of the notorious UV/IR-

mixing problem stem from? It is due to the appearance of on-shell 4-momenta
in the noncommutative phases: since, because of the mass, the 0-component
remains non-vanishing for all values of the three-momentum, no pole can
appear.

7.4.2 Argument for the General Absence of UV/IR
Mixing

Encouraged by the above explicit result we give an argument for the absence
of this problem to all ordere — for all r(n>J) — in (IPTO) perturbation theory
in a more general way (although we refrain from writing "proof).

To arrive at this conclusion we remember the n-th order fc-point Green
functions given by the noncommutative Gell-Mann-Low formula

Gn(xu...,xk) (7.43)

= £ J
where Tj denotes the interaction point time ordering and £/(z) is the inter-
action part of the Lagrangian, ^(^•^•«^•0) for noncommutative 04-theory.

Note that all fields occurring in eq. (7.43) are free fields, their Fourier
transforms are on-shell quantities, the 0-component of the four-vector being

Evaluating the *-product between these FT free fields hence produces phase
factors containing on-shell momenta k* only. This remains true after inte-
grating out some (or all) of the loop-momenta occurring later in the evalua-
tion. At no point of the further calculations (evaluating TO, FT, amputation,
...) will this property be changed.
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Why does this novel feature of IPTOPT prohibit the occurrence of the
usual UV/IR problem? First note that for time-like (on-shell) four vectors
kß we find £** to be space-like

= 0 = (We^k" := frk^ (7.45)

and hence

k%<0 V^^O" , fc% = 0 «+ fr = 0". (7.46)

The case fr = 0** is only possible for massive theories eff 0 ^ is of less then
füll rank, which is excluded in IPTOPT since we demand 0jO ^ 0: if 0M„
were of less than füll rank, one could always transform it into 0J,,,, with
®io — 0, which we excluded by definition.

Hence we find

jfc2 = jfc"jfc„ < 0 V*. (7.47)

i
As the usual (i.e. the one found in the literature) UV/IR problem always

occurs in the form of a l/k2 pole, which, for off-shell kß and fr, introduces
a possible new singularity at 0, we see that IPTOPT is free from this (type
of) problem: zero is never reached by an on-shell k2.

The mathematical reason for k2 being not off-shell is possibly the follow-
ing: We have no time ordering ö-function for the nano-configuration of fields
at a vertex. Thus, there is no parameter t from the integral form

Q(x» - y°) = Hm J_ / dt- ^— . (7.48)

Since it is exactly this parameter t which would become the zeroth (off-shell)
component of the internal loop momentum, the absence of t keeps the loop
momentum on-shell.

It is at this point that our argument degrades from being a proof, since it
excludes the appearance of this particular form of mixing only. But in what
other guises it still has to be excluded we are not able to discuss yet.

7.4.3 A Short Note on PT

As a short side-remark we would like to draw your attention to the behaviour
of the amplitudes calculated above under P and/or T acting on the external
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momenta:

P: q->-q, T: a->-a. (7.49)

Hence we find that

^ V) = q*, (7.50)

which do not leave the amplitudes calculated above invariant when only one
of P, T acts on them. However, under the combined action of PT:

PTtf) = P{<T) = -«*, (7-51)
the amplitudes remain unchanged, since the external momenta occur in co-
sine only.

Invariance under PT, however, is a direct consequence of the unitarity of
the S-matrix and the existence of free states; see [69] and references therein.

7.5 Outlook
The first steps were taken in the program of IPTOPT: Feynman rules were
stated and demonstrated to yield the same results as the TO amplitude. In
a sense, IPTOPT developed into interaction-point diagrammatics. Although
note must be taken that these FR are rather conjectured than truly derived,
since (Minkowskian) canonical instead of (Euclidean) PI quantisation was
employed. A more general and rigorous method for obtaining them has
recently been found in [68].

Also a strong motivation for further work utilising this approach was
discovered: the possibility of the general absence of the UV/IR problem. Al-
though a strong argument in favour of this feature was given, a true proof
is still missing and certainly highly desirable. In principle two routes to this
end are imaginable: either continuing in IPTOPT, investigating eq. (6.27)
for the possibility of an inductive proof; or by making use of the diagrammat-
ics proposed in this work. The second approach could also yield important
insights into how to pursue the great question of renormalizability and renor-
malization of noncommutative QFT.

Further work may deepen our understanding of the intricate connections
between nano-causality, unitarity, UV/IR mixing (i.e. its absence), CPT in-
variance and renormalization. Moreover, possible phenomenological implica-
tions of IPTOPT will be of great interest [70]. Anyway, with noncommutative
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QFT a tool to a better understanding of commutative QFT is available, il-
lustrating by similarities and differences the fundamental features of the two
sets of theories.



Die überschwenglich guten Götter sind's

die das gegeben haben.

Hugo von Hofmannsthal
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