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Abstract

This master’s thesis presents a proven-correct implementation of a distributed
topology construction algorithm based upon the Thallner topology construc-
tion method for creating a minimal ∆-node connected fault-tolerant overlay
graph. The algorithm works in asynchronous fault-tolerant distributed systems
augmented with failure detectors. A detailed proof shows that given a perfect
propose module and a period of network stability, the unique minimal overlay
graph is built. This thesis also contains a solvability analysis examining how
the algorithm can be implemented in the presence of simple crash failures, in
the crash-recovery model and in the presence of lossy links.1

Zusammenfassung

Diese Magisterarbeit präsentiert eine bewiesenermaßen korrekte Implemen-
tierung eines verteilten Topologiekonstruktionsalgorithmus basierend auf der
Thallner-Methode zur Topologiekonstruktion, mit der ein minimaler ∆-knoten-
verbundener fehlertoleranter Überlagerungsgraph erzeugt werden kann. Der Al-
gorithmus funktioniert in asynchronen fehlertoleranten verteilten System mit
Fehlerdetektoren. Ein detaillierter Beweis zeigt, dass, falls ein perfektes Propose
Module zur Verfügung steht und das Netzwerk stabil genug bleibt, der minima-
le Überlagerungsgraph erzeugt wird. Diese Magisterarbeit enthält weiters eine
Lösbarkeitsanalyse, die untersucht, wie der Algorithmus bei einfachen Crash-
Fehlern, im Crash-Recovery Modell und bei Nachrichtenverlust implementiert
werden kann.

1This work has been supported by the EC FP6 Integrated Project ASSERT IST-004033,
http://www.assert-online.org.
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1 Introduction

Thallner et. al. [TS04] published a distributed algorithm for constructing a
sparse overlay network that has fixed node-degree and facilitates efficient fault-
tolerant multi-hop communication in large-scale distributed systems. This paper
presents a full pseudo-code implementation of the algorithm for asynchronous
systems with failure detectors and node crashes and proves its correctness.

1.1 Wireless Overlay Networks

Although the algorithm can be used for creating communication topologies out-
side the field of wireless communication, the specific requirements imposed by
this technology make this approach particularily useful in this area of network-
ing.

In computer science, a network is a collection of nodes (or processors—the
terms will be used interchangeably), connected through links, similar to the
mathematical concept of a graph consisting of vertices connected by edges. Usu-
ally, the nodes represent some sort of processing units (e.g. computer devices)
which exchange some kind of data over the links either by direct communication,
i.e. by directly transmitting a message from the sender to the receiver, or by
multi-hop communication, i.e. by passing the message on from node to node un-
til it reaches the receiver. Wireless network do not have a wired infrastructure
providing these links; thus, wireless devices have to build and maintain wireless
links. Two problems arise out of this:

• Wireless devices have a maximum transmission range.

• The cost for sending messages or maintaining links between two nodes at
distance d is proportional to dk, k ≥ 2. Thus, it is cheaper to use two
short links rather than one large link. (See Figure 1.1 for an example.)

The first issue implies that in many cases multi-hop communication is a nec-
cessity; the second one claims that multi-hop communication is more energy
efficient than direct message transmission. Thus, it makes sense to create a
suitable network topology, i.e. a set of well-chosen links over which the nodes
communicate. We call the cost-weighted graph induced by direct connections
the underlying communication graph and the created network topology the over-
lay graph.

Ad-hoc networks are a special class of wireless networks which are constructed
on demand and have to cope with problems such as moving nodes, new nodes
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and crashing/removed nodes. Thus, the topology for ad-hoc networks must be
able to adapt to this changing environment.

Figure 1.1: Example comparing transmission cost for direct vs. multi-hop communica-
tion in the ideal case k = 2.

1.2 Principles of Computer Science

This section includes introductory material and definitions in fundamental areas
of computer science, which are necessary to understand this master’s thesis.

1.2.1 Automata Theory

In theory, a processor is seen as a state machine. A (deterministic) state machine
(or automaton) is an abstract machine with a set of states (Q), a set of symbols
(Σ), a transition function (δ : Q × Σ ⇒ Q), an initial state (S0) and a set of
end states (F ) [wp:04]. As an example, consider the following simple algorithm
running on a processor:

1 var i := 0
2 do

3 read m
4 if m = A
5 i := 0
6 if m = B
7 i := 1
8 loop until m = C

6



The state machine would look like this:

• States:
q0: i = 0, running q1: i = 1, running
q2: i = 0, terminated q3: i = 1, terminated

• Symbols: A, B, C

• Transition function:
(q0, A, q0) (q1, A, q0) (q2, A, q2) (q3, A, q3)
(q0, B, q1) (q1, B, q1) (q2, B, q2) (q3, B, q3)
(q0, C, q2) (q1, C, q3) (q2, C, q2) (q3, C, q3)

• Initial state: q0

• End states: q2, q3

Figure 1.2 contains a graphical representation of the transition function.

q0 q1

q2 q3

B

C

A

C

A B

A,B,C A,B,C

Figure 1.2: Example state machine.

Basically, a pseudo code algorithm can be translated into the state machine
model by identifying states (with a state representing the current variable as-
signments and the current code position, i.e. the instruction pointer) and the
corresponding transition functions (based on the control flow of the program).
As we are analyzing deterministic state machines, states with trivial transitions
(only one possible successor) can be left out. This is the reason why the above
example does not contain a separate state for every line of code.

1.2.2 Distributed Algorithms

The challenge of a distributed algorithm is to solve a global problem (e.g. the
construction of the above mentioned overlay graph) in a distributed fashion, i.e.
there is no central, coodinating computing unit which solves the problem and
informs the other nodes or coordinates the computation. The same code1 is
executed on every processor and the system should continue to work if arbitrary
processors crash.

1Strictly speaking, it is not the same code, as each processor has a different ID it can use in
the code.
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Formally, the system is modelled as follows (compare to [AW04]): A system
consists of a set of n processors p0, . . . , pn−1. Each processor is a state machine as
defined above. Between each two processors there can be a link. The processors
can use the link to exchange messages. For each link, each node on the link
has an in-buffer and an out-buffer variable. When a message send command
is issued on one processor, the message is put in the processor’s out-buffer for
this link. When the message m is delivered from a processor pi to processor pj

during a delivery event del(i, j,m), the message is moved from the out-buffer of
pi to the in-buffer of pj. During the next computation event on pj, the message
will be removed from the in-buffer and processed.

A configuration is a vector (q0, . . . , qn−1) containing the states of all processors
p0, . . . , pn−1. Note that a delivery event changes the state of two processors,
whereas a computation event changes the state of exactly one processor. An
initial configuration is a configuration where each processor is in an initial state.

An example for a distributed algorithm would be the example code of the
previous section with read m replaced by wait for some message m.

1.2.3 Graph Theory

As mentioned above, a graph is a set of vertices (or nodes), some pairs of which
being connected by edges. Figure 1.2 is also an example for a directed graph.
From now on, we will look at undirected graphs without loops. Formally, such
a graph is defined as a set of vertices V and a set of edges E ⊆ V × V with
∀x : (x, x) /∈ E. The degree of a node is the number of edges connected to it. A
graph is

• k-regular if every vertex has degree k.

• connected if, for every pair of vertices, there is a path (i.e. a sequence of
edges) connecting these vertices.

• k-connected if, even after removing k − 1 arbitrary vertices, the graph is
still connected, whereas the removal of k vertices disconnects the graph.
This implies that between every pair of vertices there are k vertex-disjoint
paths, by Menger’s theorem.

• fully connected if there is an edge between every pair of vertices.

1.3 Construction Method2

1.3.1 Idea

The Thallner construction method is based upon a clustering scheme intro-
duced in [Tha04b], which recursively forms groups consisting of ∆ nodes that

2This section is joint work with Bernd Thallner and reviews results from [TS04].
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Figure 1.3: Example of a fully-connected and a 2-connected graph.

are treated like single nodes subsequently. In [TS04], this scheme was extended
to a fully distributed algorithm for constructing and continuously maintaining a
∆-regular and ∆-connected overlay graph for fault-tolerant multi-hop commu-
nication in large-scale wireless networks. See [TS04] for a in-depth analysis of
the method.

The algorithm consists of two reasonably independent parts, which allow to
adapt this scheme to very different wireless networks:

1. The generic construction algorithm (presented in Section 3), which builds
up and continuously maintains the ∆-regular and ∆-connected overlay
graph. It does so by processing proposals for links to be added to the
overlay graph supplied by the specific propose module (see next item).

2. The propose module (cp. Definition 4 and Section 7 in [TS04]), which tries
to find minimal-weight links to be added to the overlay graph. The propose
module is network-specific and allows to trade construction complexity
for minimality of the weight-sum of the overlay graph (and hence overall
energy efficiency, for example).

The analysis presented in this thesis will reveal that the algorithm always con-
verges to the unique minimal topology, for any reasonable propose module. The
eventually constructed overlay graph is ∆-connected, which is optimal, and thus
ensures that ∆ node-disjoint paths exist between any pair of nodes. It has low
total weight and inherently provides failure-locality as well: Even excessively
many failures in some part of the system do not impair fault-tolerant commu-
nication in other parts. As a by-product, the algorithm produces a hierarchy
of clusters represented by a ∆-ary tree that reflects the node “density”. This
property can be used in higher level services, like data aggregation in sensor
networks, routing, naming, as well as geo- and multicasting.
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Whereas the convergence of our algorithm is independent of the choice of
the propose module, (worst case) performance is obviously not: The worst case
message complexity for constructing an overlay graph with n nodes ranges from
O(n) to O(n∆+1), depending upon the propose module used. Similarly, the
worst case time complexity ranges between O(n) and O(n2). On the other hand,
simulation results show good (linear) average complexity and small spanning
factors for most propose modules.

1.3.2 Definitions

Consider a simple undirected weighted graph G = (Π,Λ) consisting of a set
of n nodes Π = {1, ..., n} and a set of weighted edges Λ ⊂ Π × Π × R. The
network is modeled as a communication graph G and contains the set of potential
edges. It is is assumed to be fully connected, in the sense that w < ∞ for any
edge (x, y, w) ∈ Λ.3 Note carefully that this assumption does not mean that
any node actually communicates with every other node, but only that it could
communicate with every (reasonable) peer, if necessary. Both the set of alive
nodes and the weight of the edges in the communication graph G may be time-
variant.

The algorithm constructs a low weight overlay graph G′ that is ∆-regular
and ∆-connected, for some given ∆. Recall from Section 1.2.3 that a graph is
κ-connected (also referred to as κ-node-connected or κ-vertex-connected) if the
removal of any subset of κ − 1 nodes leaves the graph connected while there
exists a subset of κ nodes whose removal disconnects the graph. A graph is
regular of degree r if all nodes have degree r. In order to easily distinguish the
communication graph G and the overlay graph G′, the edges of the latter will
be called connections.

In order to avoid the special top-level group of the overlay graph, employed
in [Tha04b], [TS04] introduces gateway nodes and assumes that a small number
of them (n′′ ≥ 2∆− 2 are sufficient, cf. Theorem 1) are present in the network.
In addition to the wireless communication links to/from regular nodes, which
have to be set up by the algorithm, all gateway nodes are assumed to be fully
interconnected with all other gateway nodes via a dedicated backbone network.
The set of nodes Π hence consists of n′ regular nodes Π′ and n′′ gateway nodes
Π′′ with n = n′ + n′′ and Π = Π′ ∪ Π′′. In order to ensure that gateway
nodes are only used after all regular nodes have been exhausted, it suffices to
assume that the edge weights between regular and gateway resp. gateway and
gateway nodes are chosen according to ∀x ∈ Π′, y ∈ Π′′ ⇒ (x, y,∆2K) ∈ Λ resp.
∀x ∈ Π′′, y ∈ Π′′ ⇒ (x, y, 2∆2K) ∈ Λ, where K is the maximum edge weight
between regular nodes. The algorithm will then construct a low weight overlay
graph G′ = (Π′∪B,C) with B ⊆ Π′′ and C ⊆ Λ. Note that the regular nodes in

3This work does not consider the extension presented in Section 6 in [TS04], which would
allow the fully connected assumption to be dropped.
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G′ have degree ∆; gateway nodes may have degree ∆− 1 due to the additional
backbone interconnection.

1.3.3 Clustering Scheme

This section provides an overview of the clustering scheme, which induces an
overlay graph G′ with the desired properties. The idea is to build groups of
nodes that appear like single nodes, such that they can be treated like those
subsequently.
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Figure 1.4: Communication Graph (a), Network Graph (b) and Topology (c)

Figure 1.4, taken from [TS04], shows an example, where 1.4a is the fully
connected communication graph G, 1.4b depicts the constructed overlay graph
G′ for ∆ = 3, and 1.4c provides the tree representation corresponding to the
constructed topology. From 1.4b it is apparent that the regular nodes (1, 2, 3),
(4, 5, 6) and (8, 9, 10) are combined into groups with id A,B, and D, respectively.
Such a group is formed if all members agree upon the fact that the sum of the
weights of their internal connections (e.g. 4− 5, 4− 6, 5− 6) is minimal over all
alternative group constructions. Each of the ∆ members of a group is connected
to all of the ∆ − 1 other members (internal connections) and has exactly one
connection left (external connection). Since there are ∆ members in a group,
any group has ∆ external connections left, which are available in higher level
groups. From the point of view of higher-level groups, groups hence look like
nodes.
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For example, group C again consists of three members: A single node 7
and two groups A and B, which are connected via their external connections.
Again, all members of C agree upon minimality of the sum of their internal
connections’ weights. Groups E and F finish the topology and include gateway
nodes (11, 12 and 13), which may have degree ∆ − 1 due to the additional
backbone connectivity. Figure 1.4c reveals that the resulting group structure is
a ∆-ary tree. The edges of the tree represent the membership relation among
the groups.

The topology can be formally described as follows: A group consists of an
identifier gi and a set of members(gi). The set of all group identifiers is G. The
set of members(gi) consists of exactly ∆ nodes and groups: members(gi) ⊆ (G∪
Π), |members(gi)| = ∆. A node or group can only be member of a single group4

∀ga, gb ∈ G, ga 6= gb : x ∈ members(ga) ∧ y ∈ members(gb) ⇒ x 6= y. For every
gi ∈ G the nodes of a group are defined as nodes(gi) =

⋃∞
k=0 membersk(gi) ∩Π

where

• members0(gi) = members(gi) and

• membersj(gi) =
⋃

k∈membersj−1(gi)∧k∈G
members(k).

For every node p ∈ Π let nodes(p) = {p}.
A connection (p, q, w) ∈ C from node p to node q with weight w is

a group gi internal connection if p ∈ nodes(ga) and q ∈ nodes(gb) with
ga, gb ∈ members(gi) and ga 6= gb. If there is a connection (p, q, w) ∈ C
between node p ∈ nodes(ga) and node q ∈ nodes(gb) we call the groups
ga, gb connected. The members of a group are fully connected among them:
∀ga, gb ∈ members(gi), ga 6= gb ⇒ ∃p ∈ nodes(ga), q ∈ nodes(gb), (p, q, w) ∈ C.

Hence, every group member has ∆− 1 connections to other group members
and therefore exactly one connection left. Since there are ∆ members in a
group, the group has—like a node—∆ connections left. We call the ∆ nodes of
a group gi with one connection left the terminal nodes Tgi

⊆ Π of a group. By
convention, we define that Tp = p for a single node p ∈ Π.

Definition 1. The weight of a group ω(gi) is a triple (Ai,members(gi),internal
connections of group gi), where Ai is the maximum of the sum of all group gi

internal connection weights and the maximum of all group members’ weights
plus an arbitrary small constant ε, formally: Ai = max(

∑

internal connection
weights,max(members’ group weights) + ε). A group gi has smaller weight than
gj, formally ω(gi) < ω(gj), if Ai is smaller than Aj or, if equal, members(gi) <
members(gj) in lexical order or, if equal, the internal connections of group gi

are smaller than the internal connections of group gj in lexical order.

Note that this definition implies that the weight of a parent group is always
higher than the weight of any of its members. This property is required for

4Note that the member function is not transitive.
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ensuring that the minimum admissible overlay graph introduced in Definition 3
is well defined, and that the distributed algorithm converges.

Definition 2. An overlay graph G′ is called admissible if its corresponding
topology has a single root group groot where all terminal nodes are gateway
nodes: Tgroot ⊆ Π′′.

Recall that by convention, it is assumed that all gateway nodes are fully
connected (primarily via backbone connectivity).

The following Theorems (proven in [TS04]) show that no more than 2∆ − 2
gateway nodes are necessary to construct an admissible overlay graph and that
there exists a unique minimal admissible overlay graph (which is not necessarily
the global minimum-weight overlay graph). Informally, the minimum criterion
for choosing group members requires that the selected group has minimal total
weight of all internal connections, and that all members agree upon this fact.
It may hence be the case that there is a lower-weight choice for some members,
but no one that is better for all members of any alternative group.

Theorem 1. For every graph G with n′ ≥ 1 and n′′ ≥ 2∆ − 2, there exists an
admissible overlay graph G′.

Definition 3. An admissible overlay graph G′ is minimal if, for all members
x ∈ members(gi) of any group gi ∈ G in the corresponding topology tree, no
other group g′ can be built with x ∈ members(g′), ω(g′) < ω(gi) and ∀y ∈
members(g′) : ω(g′) < ω(gy), where gy is the (unique) group in the topology tree
with y ∈ members(gy).

Theorem 2. For every graph G with n′ ≥ 1 and n′′ ≥ 2∆− 2, there is exactly
one minimal admissible overlay graph G′.

The following theorems establish some other important properties of these
overlay graphs.

Theorem 3. In every admissible overlay graph G′ the node degree is bounded
by ∆ and all regular nodes have degree ∆.

Theorem 4. Each admissible graph G′ with n′ ≥ 1 and n′′ ≥ 2∆−2 has
⌊

n−1
∆−1

⌋

groups.

Theorem 5. Each admissible graph G′ with n′′ ≥ 2∆− 2 is ∆-connected.

The above results reveal several general advantages of this approach. First
of all, connection weights may be arbitrary; in particular, they need not to
satisfy the triangle inequality. Moreover, by adding additional constraints to
Definition 3, overlay graphs with specific additional properties can be built.

If the weights in the communication graph reflect physical distance, the topol-
ogy construction scheme clusters nodes according to their spatial density. Nodes

13



1 if a new proposal is provided by a propose module /∗ propose group ∗/
2 broadcast proposal to all participants
3 if all particpants agree that the proposal is better than their current parent
4 all participants join the proposed new group
5
6 periodically /∗ check group ∗/
7 check for group consistency
8 if group is consistent
9 recalculate group weight

10 else

11 all participants leave the group

Figure 1.5: Basic Algorithm

that are close to each other will be near the leafs of the topology tree, which
leads to a nice failure-locality property of our overlay graph: Catastrophic fail-
ures in a spatially localized area will affect communication only in the immediate
neighborhood.

In fact, failures that hit some part of the tree do not severely—if at all—
impair fault-tolerant communication in other parts: The proof of Theorem 5
reveals that failures that completely wipe out all members of some group g do
not impair ∆-connectivity of the remaining tree that results from purging the
subtree rooted at g. Moreover, all nodes within some intact subtree rooted at
some member (or sub-member) of g are still ∆− 1-connected with each other,
since only the single external connection routed via g is cut by the failures in g.

1.3.4 Basic Algorithm

In the basic5 algorithm (Figure 1.5) every existing group (that is, its terminal
nodes) concurrently searches for the minimal-weight next-level group to join.
For this purpose every node repeatedly generates proposals P , consisting of
the group members, the group weight, the group internal connections and the
group’s terminal nodes, which are sent to (the terminal nodes of) the proposed
group members for confirming minimality. Generating a new proposal is typi-
cally triggered periodically, to facilitate adaption to changed connection weights,
or upon detection of a node crash or join. For convergence, the algorithm re-
quires that, in infinite runs, this group check is initiated infinitely often.

To simplify description and analysis, the functionality of generating proposals
is encapsulated in a propose module that must satisfy the following specification:

Definition 4. A propose module generates proposals for groups consisting of ∆
members, ∆ terminal nodes, group internal connections and the corresponding
group weight. A propose module is perfect if it eventually generates proposals
corresponding to groups in the final (unique) minimal overlay graph G′.

5See Section 6 in [TS04] for an extension of the construction algorithm, which keeps topology
changes caused e.g. by a node failure in the vicinity of the failed node. This extension is
particularly beneficial in very dynamic environments.
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For a more detailed analysis of propose modules see [Tha04a] or Section 7
in [TS04]. Section 3, the main part of this work, deals with a proven correct
pseudo implementation of this algorithm in asynchronous systems where non-
blocking atomic commitment is possible.

1.4 Related Work

Study of other fault-tolerant topology control algorithms is outside the scope of
this thesis, see Section 8 in [TS04] and the references mentioned there for an
overview of different solutions.

So far the problem of implementing the “Thallner method” for distributed
construction of overlay networks has not been addressed except for two still
unpublished papers by Bernd Thallner, Ulrich Schmid and myself [TS04,MT04],
which form the basis of this thesis.

1.5 Roadmap

This thesis is organized as follows: Chapter 2 describes the atomic commitment
problem, the reasons for using it in the topology construction algorithm, and
some extensions to the protocol. Chapter 3 contains the main part of this
work: A pseudo code implementation of the distributed topology construction
method. Chapter 4 proves the correctness of the algorithm. Chapter 5 analyzes
the requirements for the system model in terms of synchrony assumptions such
as failure detectors. These results are then extended to more challenging classes
of systems such as the crash-recovery model and networks where messages can
be lost. In Chapter 6 the results are summarized and pointers to further work
are given.
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2 Atomic Commitment

2.1 Introduction

As information about the system is not on a central node but distributed among
different processors, both the group creation (i.e. proposal decision) phase and
the periodic group checking must be coordinated between those processors and
thus involve an underlying distributed agreement problem, whose solution must
satisfy the following conditions:

PROPOSE GROUP

• Termination: Eventually, every correct participant must decide on either
commit (join proposed group) or abort (do not join proposed group).

• Uniform Agreement : All participants must make the same decision.

• Validity : If the common decision is commit, all participants must want
to join the proposed group (because it has lower weight than the current
group).

• Non-triviality : If no participant crashed and all participants want to join
the proposed group, the common decision must be commit.

CHECK GROUP

• Termination: Eventually, every correct participant must decide on either
commit (recalculate weight of existing group) or abort (leave existing
group).

• Uniform Agreement : All participants must make the same decision.

• Validity : If the common decision is commit, all participants must have
consistent information about the existing group.

• Non-triviality : If no participant crashed and all participants have consis-
tent information about the existing group, the common decision must be
commit.

These conditions correspond to a well-known agreement problem called atomic
commitment. The problem originated in the area of distributed databases where
it is necessary to make changes permanent (commit) only if this is possible on
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all participating databases. As we want the above properties to hold even when
nodes crash during the negotiation process, we need a special variant called
non-blocking atomic commitment. A comprehensive discussion of this topic and
different algorithms solving this problem can be found in [BT93].

Note carefully, however, that convergence of the algorithm (i.e. eventual cre-
ation of the overlay graph) only requires the non-triviality condition to hold
eventually. Due to the use of a perfect propose module, the formal correctness
proof can in fact tolerate an arbitrary amount of incorrectly destroyed or in-
correctly not-built groups. This corresponds to the non-blocking weak atomic
commitment, which is weaker (i.e. easier to solve) than traditional non-blocking
atomic commitment [Gue95]. Subsequently, we will use the term atomic commit-
ment and the abbreviation NBAC to refer to this weak variant of the problem.

2.2 Structure

Throughout this work, the following terminology is used: On the initia-
tor of some proposal, initiate atomic commit with parameters data and
participants is called, which is usually implemented by reliably multicasting
(data, participants) to all participants [Ray97]:

1 procedure initiate atomic commit (data, participants)
2 multicast (data, participants) to participants

“multicast” denotes an implementation of a reliable multicast protocol, i.e. a
protocol ensuring that the message is either sent to all participants or to none
(if the node crashes before multicasting). See [Ray97] for a formal definition of
this primitive. Further information about this problem can be found in [HT93].

After an atomic commitment sequence has been initiated on the participants,
the protocol must

1. query the node for its vote (vote commit or vote abort) and

2. inform the node about the global decision (commit or abort).

[Ray97] suggests the following basic structure for a NBAC protocol (adapted
to our terminology):

3 upon delivery of (data, participants)
4 nbac(data, participants)
5
6 procedure nbac(data, participants)
7 var vote←vote(data)
8 var result←⊥
9 send vote to all participants

10 wait for (a) (delivery of a vote vote abort from a participant)
11 or (b) (one of the participants is suspected to be faulty)
12 or (c) (delivery of a vote vote commit from all participants)
13 case

14 (a), (b): result←Unif Cons(abort)
15 (c): result←Unif Cons(commit)
16 decision(result, data)
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We provide two functions to parameterize the NBAC protocol: vote(data)
is called to locally decide on vote commit or vote abort, whereas deci-

sion(result, data) is executed on every participating node after the atomic com-
mitment algorithm reached a common decision. For example, when a new pro-
posal arrives, vote(proposal) would return vote commit if the node or group
wants to join the proposed new group. Afterwards, decision(result, proposal)
would be called after the NBAC protocol has terminated to give the node the
opportunity to join the new group if result = commit.

Unif Cons(proposed value) refers to a sub-protocol solving uniform consen-
sus, a widely studied fundamental problem in distributed computing [PSL80,
Ray97]. Informally speaking, uniform consensus guarantees that all partici-
pants agree on a common value, which must have been proposed by at least
one participant. Note that uniform consensus behaves differently than NBAC
in that any proposed value might be selected, whereas NBAC has strict rules
on when the decision must be commit and when it has to be abort.

Recall the following properties defined for NBAC in [Ray97]:

• Termination: Every correct participant eventually decides.

• Integrity : A participant decides at most once.

• Uniform Agreement : No two participants decide differently.

• Validity : If a participant decides commit then all participants have voted
vote commit.

• Non-Triviality : If all participants vote vote commit and there is no fail-
ure suspicion then the outcome decision is commit.

2.3 Extensions

2.3.1 Commit Data

The first of our extensions (Figure 2.1) piggybacks additional information (called
commit data) on vote commit votes. This information is used to recalculate
the group weight after check groups.

Note that global commit data is only guaranteed to be consistent if the global
decision is commit and no node was suspected. Otherwise, one participant
might not have received the vote commit votes of all participants. Formally,
the following property is added to the NBAC protocol:

• Commit Data Validity : If a participant decides commit and no other
participant was suspected, its output includes all data provided by the
participants when voting.

It is obvious to see that the original properties are not affected by the change.
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17 procedure nbac(data, participants) /∗ commit data extension ∗/
18 var vote←vote(data) /∗ returns VOTE or array (VOTE, local commit data) ∗/
19 var local commit data←⊥
20 if vote is array
21 local commit data←vote[1]
22 vote←vote[0]
23 var result←⊥
24 send (vote, local commit data) to all participants
25 wait for (a) (delivery of a vote vote abort from a participant)
26 or (b) (one of the participants is suspected to be faulty)
27 or (c) (delivery of a vote vote commit from all participants)
28 case

29 (a), (b): result←Unif Cons(abort)
30 (c): result←Unif Cons(commit)
31 var global commit data←array of commit data received from all participants
32 decision(result, data, global commit data)

Figure 2.1: Commit Data extension

2.3.2 Finalizing NBAC

The next extension deals with the fact that in one particular case, it is necessary
to notify the participants that the decision() procedure has been executed on
every correct participant: After some groups or nodes have decided to join a
newly proposed group it is necessary to postpone the periodic group checking
(see Figure 1.5) until the group information have been updated on all partic-
ipating nodes. Otherwise, the periodic group checking protocol could get the
false impression that the group is inconsistent and destroy it, thereby preventing
convergence of the algorithm. We can solve this problem by running two NBAC
sequences in parallel. The following code calls the user-defined functions vote(),
decision() and finalize(), where finalize(result, finalize result, data) is run af-
ter decision() has been executed on all participating nodes (if the result has
been commit). Two NBAC procedures nbac n() parameterizable by vote n()
and decision n() (n ∈ {1, 2}) are used as sub-protocols.

Formally, the following properties are added:

• Local Finalization: Eventually, finalize() will be called on each correct
participant. This happens after decision() has terminated on this partici-
pant.

• Finalization Agreement : No two participants decide on different
finalize results.

• Finalization Validity : If a participant decides on finalize result =
result = commit, decision() has terminated on every participant.

• Finalization Non-Triviality : If there is no failure suspicion then
finalize result = commit.

The correctness can be shown easily:
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33 var r←⊥
34 var nbac id←new unique id (e.g. sequence number)
35
36 upon delivery of (data, participants) /∗ finalizing extension ∗/
37 co−begin /∗ concurrent execution ∗/
38 nbac 1(data, participants)
39 nbac 2(data, participants)
40
41 function vote 1(data)
42 return vote(data)
43
44 function vote 2(data)
45 wait until unblocked
46 return vote commit

47
48 procedure decision 1(result, data)
49 decision(result, data, nbac id)
50 r←result
51 unblock vote 2
52
53 procedure decision 2(result, data)
54 var finalize result←result
55 finalize (r, finalize result, data, nbac id)

Figure 2.2: Finalizing extension

• Termination: Follows from termination of nbac 1 and nbac 2.

• Integrity : Follows from integrity of nbac 1 (i.e. decision 1() is only called
once) and the fact that decision() is only called within decision 1().

• Uniform Agreement : Follows from uniform agreement of nbac 1.

• Validity : Follows from validity of nbac 1.

• Non-Triviality : Follows from non-triviality of nbac 1.

• Local Finalization: decision 2 can only be called after vote 2 has been
unblocked. vote 2 is only unblocked after decision() has terminated.

• Finalization Agreement : Follows from uniform agreement of nbac 2.

• Finalization Validitiy : Assume by contradiction that some pi decides on
finalize result = commit although decision() on pj has not terminated
yet. If finalize result = commit on any node, every participant voted
vote commit for nbac 2. Thus, vote 2() has been unblocked on pj. How-
ever, vote 2() is only unblocked in decision 1() after decision() has termi-
nated, which leads to the required contradiction.

• Finalization Non-Triviality : Follows from non-triviality of nbac 2.

The unique id is used to allow algorithms to match finalize() calls to their
corresponding decision() calls if multiple NBAC sequences run at the same time.
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See Section 5 for additional constraints (failure detectors, reliable links, etc.)
imposed on the system by the requirement for a non-blocking weak atomic
commitment protocol.

It should be implicitly clear from context which NBAC variant is used in
the following code.1 The terms NBAC and “atomic commitment” are used
interchangably throughout this work, referring to the appropriate extension of
the non-blocking weak atomic commitment protocol.

1The commit data extension will be used for check group, whereas propose group will
use the finalizing extension.
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3 Construction Algorithm

This chapter deals with a proven-correct implementation for solving the problem
of distributed construction of the Thallner overlay network according to [MT04].

3.1 Problem Definition

Basically, constructing the overlay graph is a graph theory problem. The input
consists of a fully-connected weighted graph G, i.e. a set of nodes V , a set of
edges E = {x ∈ P (V ) : |x| = 2} and a weight function ωE : E → R. The output
is the unique overlay graph G′, i.e. a set of nodes V ′ = V and a set of edges E ′ ⊆
E, and information about the group membership of the nodes. Globally, this
problem is easily solvable, as shown in Theorem 6 in [TS04]. When information
is distributed among different nodes, the problem is more difficult. Intuitively,
the proof of Theorem 6 in [TS04] cannot be used because in an asynchronous
system consistency of information can only be guaranteed eventually. See the
convergence proof in Section 4.3 for more detailed information.

To solve the problem in a distributed way, the problem must be defined ac-
cordingly. A priori, the global meaning of “existence of a group” is not defined.
There are only local data structures on different nodes (i.e. the state of the
nodes) and one node might think that some group A exists while another one
already knows that it has been destroyed for some reason. Or, worse, some pro-
pose module might think that some group A exists, although, in the meantime,
group A has been destroyed and another group with the same id has been cre-
ated. Another problem is the dissemination of weight information: This newly
created group with id A might have different weight than the “old” group with
the same id, because its internal structure is different. (Recall that the id of
a group depends only on the ids of the group’s terminal nodes). Thus, wrong
decisions can be made on nodes supplied with information that has not been
updated yet.

Thus, the problem is redefined to be solved individually on each node as
follows: The input consists of communication primitives, allowing the node to
send messages to every other node, and a perfect propose module (see Defini-
tion 4). As output, the algorithm produces a set of overlay edges (“connections”)
with this node as an endpoint and some local membership information, such as
which group this node belongs to and where to find information about higher-
level groups. Note that the algorithm does not need to satisfy some termination
property, it must only provide convergence, i.e. if the underlying graph stays
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stable long enough, the data structures containing the membership and connec-
tion information of the overlay graph must eventually be consistent and stable
until new nodes are added, old nodes crash or edge weights change.

3.2 System Model

The presented algorithm requires the following:

• a perfect propose module on each node (see Definition 4),

• a non-blocking weak atomic commitment service (see Section 2.1),

• a fully-connected asynchronous system (see Sections 1.2.2 and 1.2.3),

• two primitives make connection and cancel connection that create and
remove connections in the overlay graph,

• a check group signal triggering group consistency checking. This signal
must occur infinitely often in infinite runs of the algorithm.

The algorithm then guarantees that:

• A consistent, ∆-connected overlay graph corresponding to Theorem 2 is
produced.

• The overlay graph is eventually stable and consistent, i.e. if there are
no changes of the weight of the connections and no nodes are added or
removed, eventually there will be no more changes to the structure of the
overlay graph and all neighbors know each other.

• The algorithm tolerates and adapts to node failures (crash failures).

To make the proof easier to follow, the correctness proof of the algorithm is
based on crash failures. Thus, if a crashed node “recovers”, it must re-enter the
system as a new node. Extending the algorithm to the crash-recovery model is
described in Section 5.2 in detail.

It is also assumed that the propose module does not deliver “impossible”
proposals where two different members have a common terminal node. If this
cannot be guaranteed, simple checks must be introduced, which are omitted in
this work.

3.3 Data Structures

3.3.1 Proposal and Group Structure

Every node has an integer id. Every group of nodes has an id consisting of a set
of ∆ node ids (the terminal nodes of the group, see Section 1.3.3 for details).
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A proposal, as defined in Section 1.3.4, is a structure containing the following
fields:

• Members: A set of ∆ group or node ids.

• Weight: The weight of the group as defined in Definition 1.

• Connections: A set of ∆(∆−1)
2 connection structures. A connection struc-

ture must contain a set of two endpoints and a positive weight of the
connection. Other information possibly needed by make connection, can-

cel connection or the propose module can also be stored in that structure.

• Terminals: A set of ∆ terminal node ids. This set is also the id of the
group.

A group structure has the same fields as a proposal and the following addi-
tional fields:

• ParentID: The group id of the parent group, if applicable.

• LockedBy: ⊥, if the group creation process has finished on all terminal
nodes of all the group’s members (i.e. on all nodes that know about the
group, see below). Otherwise, it contains the unique id of the NBAC
propose group instance in the process of creating the group.

All fields are initially ⊥. While proposals only contain group proposals, a
group structure can also be used to store information about a single node, in
which case Terminals contains the set of only the node’s id, Weight is 0, and
Members and Connections contain the empty set.1 Thus, nodes are treated as
a special kind of group with one terminal node and no members. During this
paper, we use the term group for composite groups (groups with members and
∆ terminal nodes) as well as for general groups (including composite groups and
the special single-node groups). It should be clear from context what type of
group is meant.

Example This is an example illustrating the use of the data structures and the
weight calculation of Definition 1. Assume the following connection costs for
the graph in Figure 1.4:

1Actually, the value of Terminals does not matter for nodes stored in group entries. It is,
however, useful to have gid = Group[gid].T erminals to be consistent with Section 1.3.3.
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Connections Weight/Cost

1− 2, 2 − 3, 3− 1,
4− 5, 5 − 6, 6− 4,
8− 9, 9 − 10, 10 − 8

1

2− 4, 3− 7, 5 − 7 2

6− 8, 7− 12 2.5

12− 9 0.1

others very high

This would result in the following example data structures:

Group A Group E

Members {{1}, {2}, {3}} {{1, 6, 7}, {12}, {8, 9, 10}}

Weight
(3, {{1}, {2}, {3}},
{1− 2, 2− 3, 3− 1})

(6 + ε, {{1, 6, 7}, {12}, {8, 9, 10}},
{6− 8, 7− 12, 12 − 9})

Connections
{({1, 2}, 1),
({2, 3}, 1),
({3, 1}, 1)}

{({6, 8}, 2.5),
({7, 12}, 2.5),
({12, 9}, 0.1)}

Terminals {1, 2, 3} {1, 10, 12}

ParentID {1, 6, 7} {11, 12, 13}

Note that the (first component of the) weight of Group C is max (2 + 2 + 2,
max (3, 3, 0) + ε) = 6. Thus, the weight of Group E is max (2.5 + 2.5 + 0.1,
max (6, 3, 0) + ε) = 6 + ε.

Note that all but the first component of Weight is redundant. Thus, in the
algorithm, for sake of simplicity, we will assume that Weight only stores the
first component of the real weight and the member/connection information is
implicitly used during comparisons. This suffices as the only purpose of the last
components of the weight definition is to ensure unique weights of all groups.

3.3.2 Group Map

The main data structure used by the algorithm is the Group associative array.
Its keys are general group ids (i.e. sets of one or ∆ node ids); the values (group
entries) are group structures. An example representing the overlay graph of
Figure 1.4 can be found in Figure 3.1.

Note that, as this is a distributed algorithm, not every node needs every piece
of group information, i.e. the contents of the Group associative array differ on
different processors. The intuitive main motivation—and the mechanism used
in previous versions of this algorithm—is that some leader of a group, e.g. the
terminal node with the smallest id, must have all information about a group so
that it can make decisions for this group. Note that, using this leader definition,
a terminal node p of a group X, which is not leader of X, might become leader
of a higher level group Y , with X being a member of Y (because some other
node q < p, which was terminal node in X, builds an internal connection in
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Y , thereby forfeiting its terminal node state within the higher level group Y ).
Thus, p must know about Y to (1) determine whether it is leader of Y and,
if it is, to (2) make decisions on behalf of Y . To fulfill this requirement, the
algorithm ensures that all terminal nodes of all members of a group gid have
Group[gid] 6=⊥. However, as soon as the need arises to inform all terminal nodes
of all members, we might as well drop the intuitive requirement for a leader and
have all terminal nodes of all members of a group make decisions for that group.
Thus, the algorithm does not use leader-based decision making any more. See
Figure 3.2 for an example based on Figure 1.4.

gid = Group[gid].T erminals Group[gid].Members Group[gid].ParentID

{1} {} (A){1, 2, 3}
{2} {} (A){1, 2, 3}
{3} {} (A){1, 2, 3}
{4} {} (B){4, 5, 6}
{5} {} (B){4, 5, 6}
{6} {} (B){4, 5, 6}
{7} {} (C){1, 6, 7}
{8} {} (D){8, 9, 10}
{9} {} (D){8, 9, 10}
{10} {} (D){8, 9, 10}
{11} {} (F ){11, 12, 13}
{12} {} (E){1, 10, 12}
{13} {} (F ){11, 12, 13}

A {1, 2, 3} {{1}, {2}, {3}} (C){1, 6, 7}
B {4, 5, 6} {{4}, {5}, {6}} (C){1, 6, 7}
C {1, 6, 7} {{1, 2, 3}, {4, 5, 6}, {7}} (E){1, 10, 12}
D {8, 9, 10} {{8}, {9}, {10}} (E){1, 10, 12}
E {1, 10, 12} {{1, 6, 7}, {12}, {8, 9, 10}} (F ){11, 12, 13}
F {11, 12, 13} {{11}, {1, 10, 12}, {13}} ⊥

Figure 3.1: Group map for Figure 1.4

3.4 Primitives

• make connection and cancel connection are provided by the underlying
infrastructure.

• get connection weight returns the actual weight of an existing connection.
This value must only be known on one of the connection’s endpoints2

2For reasons of simplicity we assume that this value is known by the endpoint with the lowest
node id.

26



Node Group[. . .] is set on this node

1 {1}, (A){1, 2, 3}, (C){1, 6, 7}, (E){1, 10, 12}, (F ){11, 12, 13}
2 {2}, (A){1, 2, 3}, (C){1, 6, 7}
3 {3}, (A){1, 2, 3}, (C){1, 6, 7}
4 {4}, (B){4, 5, 6}, (C){1, 6, 7}
5 {5}, (B){4, 5, 6}, (C){1, 6, 7}
6 {6}, (B){4, 5, 6}, (C){1, 6, 7}, (E){1, 10, 12}
7 {7}, (C){1, 6, 7}, (E){1, 10, 12}
8 {8}, (D){8, 9, 10}, (E){1, 10, 12}
9 {9}, (D){8, 9, 10}, (E){1, 10, 12}

10 {10}, (D){8, 9, 10}, (E){1, 10, 12}, (F ){11, 12, 13}
11 {11}, (F ){11, 12, 13}
12 {12}, (E){1, 10, 12}, (F ){11, 12, 13}
13 {13}, (F ){11, 12, 13}

Figure 3.2: Who knows what in Figure 1.4

and is used to detect changing connection weights (e.g. because of moving
nodes).

3.5 Description

The algorithm consists of single threaded, event/message-driven code. Note
that all blocks of code up to the next wait statment are executed atomically
and non-interruptable.

3.5.1 Main Loop

The main loop (Figure 3.3) is an enhanced version of the base algorithm of
Figure 1.5.

Group is initialized only with the single-node group of the node itself. New
proposals created by the propose module of the node are distributed to the
terminal nodes of all members of the proposed group. An atomic commitment
routine is used to ensure that, even in the case of node failure, either all members
join the proposed group or none does.

Periodically, each node must verify that the locally stored groups are still
valid. Due to the nature of the algorithm, it can happen that the information
stored on two different nodes becomes inconsistent.

Example Groups x and y are members of group A. Group y decides to leave
group A and join group B, which does not include x as a member. Let p be
a node knowing about x but not about y. After y has changed groups, p still
thinks that x is a member of group A, although group A is “broken”, because
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1 var Group[ ]
2
3 Group[{ID}].Members←{}
4 Group[{ID}].Weight←0
5 Group[{ID}].Connections←{}
6 Group[{ID}].T erminals←{ID}
7 Group[{ID}].ParentID←⊥
8 Group[{ID}].LockedBy←⊥
9

10 loop

11 wait for incoming message
12 if received proposal P from local propose module
13 initiate atomic commit propose group:
14 participants = all terminal nodes of all P.Members
15 data = P
16 if received signal to check for broken groups
17 var gid←Group[{ID}].ParentID
18 while gid 6=⊥ ∧Group[gid].LockedBy =⊥
19 initiate atomic commit check group:
20 participants = all terminal nodes of all Group[gid].Members
21 data = Group[gid]
22 gid←Group[gid].ParentID
23 if received atomic commitment message
24 execute atomic commitment phase

Figure 3.3: Main loop

y left. The periodic group consistency check on each node ensures that such
changes are detected and updated in the local data structures, thereby avoiding
group change notification messages and any inconsistency problems that could
occur if such messages were delayed. As a positive side-effect, this check also
detects node crashes and changed weights of groups (see below). In the group
hierarchy, the check starts directly above the node itself (line 17) and then
travels “upwards” the topology graph (line 22, see Figure 1.4(c)). Note that
detecting node crashes and changed group weights is necessary anyway, which
is another reason why we chose to also detect “left” groups using this polling
method rather than using an additional (possibly more efficient) notification via
explicit message passing.

As NBAC is usually implemented as a multi-phase protocol, we must listen for
messages starting the next phase of an ongoing atomic commitment and execute
the corresponding phase. Note that, on each node, many atomic commitment
sequences can be active and waiting for messages initiating their next phase at
any given time. Thus, it is mandatory to proceed with the correct phase of the
correct atomic commitment sequence in line 24 (or initiate a new sequence, if
an initial atomic commitment message arrives).

Note that both of the atomic commitment variants (propose group and
check group) use the set of all terminal nodes of all members of a group as
participants. Thus, ∆ (all members are single-node groups) to ∆2 (all members
are composite groups) nodes participate in each atomic commitment problem.
This is used to distribute the information about the join or leave to all these
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nodes. See Section 3.3 for an explanation as to why this is necessary.

3.5.2 Atomic Commitment Functions

25 function vote propose group(group) /∗ local decision of atomic commitment ∗/
26 var gid←element gid of group.Members with ID ∈ gid
27 if want to join(gid, group)
28 return vote commit /∗ better group found ∗/
29 else

30 return vote abort /∗ current group is better ∗/
31
32 procedure decision propose group(result, group,nbac id) /∗ locally execute NBAC decision ∗/
33 var gid←element gid of group.Members with ID ∈ gid
34 if result = commit

35 if want to join(gid, group) /∗ check again, something might have changed ∗/
36 join group(gid, group)
37 Group[group.Terminals].LockedBy←nbac id /∗ wait until everyone finished building ∗/
38
39 /∗ decision has been executed everywhere ∗/
40 procedure finalize propose group(result, finalize result, group,nbac id)
41 var gid←element gid of group.Members with ID ∈ gid
42 if is locally consistent (group) ∧ Group[group.Terminals].LockedBy = nbac id ∧ \
43 result = commit /∗ see in check group below ∗/
44 if finalize result = abort /∗ node crash after decision ∗/
45 leave group(gid)
46 if finalize result = commit

47 Group[group.Terminals].LockedBy←⊥
48
49 function want to join(gid, group) /∗ true, if member gid should join group ∗/
50 return Group[gid] 6=⊥ ∧ \
51 (Group[gid].ParentID =⊥ ∨ group.Weight < Group[Group[gid].ParentID].Weight)∧ \
52 (Group[group.Terminals] =⊥ ∨Group[group.Terminals].Weight > Group[gid].Weight)∧ \
53 group.Weight > Group[gid].Weight

Figure 3.4: propose group

The atomic commitment algorithm (Figure 3.4 for propose group and Fig-
ure 3.5 for check group) uses the procedure vote. . . () to decide on the lo-
cal vote (vote commit or vote abort). After a common decision has been
reached, decision. . . () is called on each participating node to execute the com-
mon decision. After decision. . . () has been executed on all participating nodes,
finalize. . . () (if used) is called on all participating nodes. In addition to the
original result, a finalize result is returned to indicate whether some node
was suspected after decision. . . () has been executed. As a global commit de-
cision requires all participating nodes to be alive and to send some kind of
vote commit message, we can piggyback some data (“commit data”, returned
with the return statement from vote. . . ()) with that message and safely as-
sume that the set union of the commit data values from all the participants can
be made available as parameter commit data to decision. . . (). This parame-
ter’s value is undefined if the global decision was abort. See Section 2.3 for a
detailed description of these atomic commitment extensions.
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54 function vote check group(group) /∗ local decision of atomic commitment ∗/
55 var gid←element gid of group.Members with ID ∈ gid
56 if is locally consistent (group)
57 return (vote commit, \ /∗ group consistent ∗/
58 (Group[gid].Weight,

P

c∈group.Connections:ID=min(c.Endpoints) get connection weight(c)))

59 else

60 return vote abort /∗ group inconsistent ∗/
61
62 procedure decision check group(result, group, commit data) /∗ locally execute NBAC decision ∗/
63 var gid←element gid of group.Members with ID ∈ gid
64 if is locally consistent (group)
65 if result = commit /∗ update weight ∗/
66 Group[group.Terminals].Weight←calculate weight(commit data, group)
67 if Group[gid].Weight ≥ Group[group.Terminals].Weight
68 leave group(gid) /∗ weight consistency violated ∗/
69 else if Group[group.Terminals].ParentID 6=⊥ ∧ \
70 Group[group.Terminals].Weight ≥ Group[Group[group.Terminals].ParentID].Weight
71 leave group(group.Terminals) /∗ weight consistency violated ∗/
72 if result = abort /∗ leave broken group ∗/
73 if Group[gid] 6=⊥ ∧Group[gid].ParentID = group.Terminals
74 leave group(gid)
75
76 function is locally consistent (group) /∗ group ∼= Group[group.Terminals]? ∗/
77 return Group[group.Terminals] 6=⊥ ∧ \
78 Group[group.Terminals].Members = group.Members∧ \
79 Group[group.Terminals].Connections = group.Connections
80
81 function calculate weight (data, group) /∗ calculate actual weight of group ∗/
82 var group weights←create set (∀d ∈ data : d[0])
83 var connection weight sums←create set (∀d ∈ data : d[1])
84 return (max(

P

connection weight sums, (max group weights) + ε), group.members, group.Connections)

Figure 3.5: check group
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PROPOSE GROUP The nodes only vote vote commit if the received pro-
posal is better than the current parent group. After a commit group decision
has been reached, all participants call join group to update their internal data,
if the member group has not been destroyed or joined a better proposal in the
meantime (which can happen because atomic commitment group decision mes-
sages need not arrive in the correct order). We ensure that the weight of the
new parent group is greater than the weight of the member (which is one of the
requirements specified in Definition 1).

LockedBy is reset in finalize to ensure that the new group is only checked
in the main loop after all participants have finished joining it. Otherwise, a
check group could destroy a perfectly fine group that has just not finished
being built yet.

CHECK GROUP vote commit is only returned if the group is consistent with
the group entry of the atomic commitment initiator. If the node decides to
abort, all members that still exist and have not left the group already leave it.
If the participants decide to commit, the group weight is recalculated based on
Definition 1 (implemented as function calculate weight()).

3.5.3 Joining and Leaving Groups

85 procedure join group(gid, group) /∗ member gid joins new group ∗/
86 if Group[gid].ParentID 6=⊥
87 leave group(gid)
88 Group[group.Terminals]←group
89 Group[gid].ParentID←group.Terminals
90 for all c in group.Connections
91 if ID is endpoint in c
92 make connection c
93
94 procedure leave group(gid) /∗ member gid leaves its current group ∗/
95 if Group[gid].ParentID 6=⊥
96 for all c in Group[Group[gid].ParentID].Connections
97 if ID is endpoint in c
98 cancel connection c
99 leave group(Group[gid].ParentID)

100 Group[gid].ParentID←⊥

Both procedures assume that Group[gid] 6=⊥, which is checked in deci-

sion. . . ().

join group() leaves the current group first, if necessary. Then, the group entry
is modified, and connections in the underlying infrastructure are being created.

leave group() removes the connections built by the group and clears un-
necessary data structures. It requires that Group[Group[gid].ParentID] 6=⊥.
The calling procedures (join group(), decision. . . ()) will only guarantee that
Group[gid].ParentID 6=⊥. However, Theorem 6 will prove that those two as-
sertions are equal.
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3.6 Improvements

This section presents extensions to the algorithm improving either complexity
or implementability.

3.6.1 Leader-based Voting

Although the algorithm exhibits guaranteed convergence, one drawback is the
extensive use of the potentially expensive atomic commitment protocol and,
therefore, a potentially high message complexity (depending on the concrete
system model). One idea, which has yet to be analyzed in detail regarding use-
fulness and implementability, is leader-based voting : A designated leader makes
decisions on behalf of the group. This would reduce the maximum number of
atomic commitment participants from ∆2 to ∆. The following intuitive ap-
proaches to this problem can be identified:

1. The leader is a function of the set of terminal nodes, e.g. the terminal
node with the smallest id. The set of terminal nodes, however, can change
completely when moving up the hierarchy tree. For example, let ∆ be
2 and let w.l.o.g. a1 and b1 be the leaders of the groups {a1, a2} and
{b1, b2}. If the best proposal happens to be one where a1 and b1 build an
internal connection and a2 and b2 are the new terminal nodes, we have
the situation that two nodes, that have not been leaders of a lower-level
group, become leaders of a higher-level group. This introduces the problem
that either: (a) non-leader terminal nodes must be informed about every
decision leaders take or (b) the situation can arise that within a high-level
group there is no terminal node knowing information about a complete
path from this group down to one of the single-node groups. This would
require some of the safety properties, e.g. the fact that there is no loop in
the hierarchy, to be guaranteed in a distributed fashion rather than as a
node-level invariant.

2. The leader is some inner node p of the group A, i.e. not necessarily a
terminal node. This would allow to retain the failure-locality property,
because if p crashes, all higher-level groups including A will be detroyed
and, therefore, the loss of information does not do any additional damage.
Additionally, using a suitable algorithm, it could be guaranteed that only
a node that has already been leader in a member group of A can become
leader in the higher-level group A, thus avoiding the problems mentioned
above.

The drawback, however, of this approach is the fact that the current com-
position of the Group map does not “know” about any nodes but the
terminal nodes of the members and including a complete list of nodes into
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a group entry would exceed its bounded memory usage of O(∆2 log n)3.
Thus, the need for an additional Leader field would arise.

3. Another option would be to use a designated node not necessarily within
the group as data storage. This could even cause the atomic commitment
requirement to be dropped, if all information is concentrated on a single
node. However, this would completely eliminate fault-locality, thereby
contradicting one of the main goals of this topology construction method.

3.6.2 Silent Atomic Commitment Participants

As Section 5 will show, ensuring a majority of correct participants for every
atomic commitment instance can reduce the system model requirements. For
example, the algorithm might still be implementable with fair lossy links or
weaker failure detectors if this requirement is satisfied.

However, ensuring a majority of correct participants for every ∆-size subset of
Π requires that the number of faulty nodes is at most d∆

2 e− 1. As this is a very
restrictive requirement, this extension works by including all nodes in Π in the
NBAC rather than only the designated participants in each atomic commitment
instance. These additional “silent” participants just vote vote commit. This
change has the following effects:

• Message complexity increases.

• The probability of an outcome abort because of a suspected node in-
creases.

• Requiring a majority of correct participants for each atomic commit in-
stance allows dn

2 e − 1 rather than d∆2 e − 1 nodes to fail.

3O(∆2) is the upper bound for the number of node ids in the individual fields of the group
entry and log n is the maximum amount of memory consumed by one node id.
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4 Correctness

A stable period is a period in time during which no node crashes or is suspected
as faulty, no new nodes are added and no connection weights change.

For each stable period the underlying communication network can be seen as
a fully-connected graph G with n′ regular nodes Π′ and n′′ gateway nodes Π′′

(Π = Π′ ∪ Π′′ and n = n′ + n′′). See Section 1.3.2 for an extensive definition
of the difference between regular and gateway nodes. According to Theorem 2,
there is a unique overlay graph G′ which our algorithm is supposed to create. As
mentioned in the theorem, we require that n′ ≥ 1 and n′′ ≥ 2∆− 2. Note that
if these requirements are not fulfilled, the algorithm does not lose liveness but
simply does not produce the desired overlay graph. Thus, if the requirements
are fulfilled during a later stable period which lasts long enough, the algorithm
will produce the desired overlay graph then.

To show that the algorithm is correct, it will be proven that:

• At the beginning of each iteration of the main loop the local data structures
are consistent.

• The algorithm does not deadlock.

• If the stable period lasts long enough, G′ will eventually be constructed.

The following definitions are used (p being a node id):

• Groupp is the local variable Group at node p.

• Parentip is the “i-th parent of p”. Formally, it is recursively defined as
follows:

– Parent0p := p

– Parentnp := Groupp[Parentn−1
p ].ParentID

• Parentlistp is defined as the list (Parent0p, Parent1p, . . . , Parentnp ), with
Parentnp 6=⊥ and Parentn+1

p =⊥.

4.1 Consistency

Lemma 1. The assignment
var gid ← element gid of group.Members with ID ∈ gid
always returns exactly one value for gid.
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Proof. The assignment occurs at the beginning of atomic commitment functions.
group is passed as a parameter of the atomic commitment. Thus, node ID
participates in an atomic commitment with group being the data passed by the
initiator. Assume by contradiction that no value for gid is returned, i.e. ID
is not a terminal node of any of group’s members. However, lines 13 and 19
show that all atomic commitment participants are terminal nodes of at least
one member of group. A contradiction.

We now assume that more than one candidate values for gid exist. This
contradicts our assumption in Section 3.2 that no impossible proposals (i.e.
proposals where two members share a common terminal node) are created. As
the Member field of group entries is never changed, this property also holds for
the group entry passed to the check group atomic commitment.

Theorem 6. For all nodes p: At the beginning of each iteration of the main
loop (i.e. every time the execution reaches line 11), the following invariants hold
(m, g 6=⊥):

1. The node only knows about all groups in its parent list.
∀g : g ∈ Parentlistp ⇔ Groupp[g] 6=⊥

2. p is a terminal node in all parent list entries except for the last one.
∀i, 0 ≤ i ≤ |Parentlistp| − 2 : p ∈ Groupp[Parentip].T erminals.

3. The weights of the parent list entries are strictly increasing.
∀m, g : Groupp[m].ParentID = g ⇒ Groupp[g].Weight >
Groupp[m].Weight

4. The parent list is finite.
∃i : Parentip =⊥

5. The parent-member relationship is consistent.
∀m, g : Groupp[m].ParentID = g ⇔ m ∈ Groupp[g].Members ∧ p ∈ m

Note that, as LockedBy, ParentID and Weight are the only fields that are
changed in the algorithm, Groupp[g] 6=⊥ implies that all other fields of Groupp[g]
contain all the information initially provided by the proposal that was assigned
to Groupp[g] in join group().

Proof. Exeution of the algorithm on a node can be seen as a series of computa-
tion events, each corresponding to an iteration of the main loop as one atomic
step (until line 11 is reached again, which allows receive events to occur). Thus,
we can prove this lemma by induction on the series of configurations of the node.

Section 3.5.1 shows that, initially,

• Groupp[p] 6=⊥

• Groupp[p].ParentID =⊥, and, thus, Parentlistp = (p)
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• Groupp[p].Members = {}

• ∀q 6= p : Groupp[q] =⊥

Thus, initially, the five invariants hold.
For the induction step, we analyze the following code blocks in which the

Group array is changed and which could theoretically violate the invariants.
Note that we can ignore changes to LockedBy as they do not affect the in-
variants. The only code blocks to be considered are the decision. . . () and fi-

nalize. . . () functions (and the subroutines they call). By showing that these
functions do not violate the invariants, we prove the correctness of the theorem.

Note that leave group(gid) requires Group[gid] 6=⊥. To do something useful,
Group[Group[gid].ParentID] 6=⊥ must hold as well. This is, however, satis-
fied at all code lines where leave group() is called directly. (The case where
leave group() is called from join group() is handled further below.) Note that,
in the code lines mentioned below, Lemma 1 guarantees that gid contains a valid
value which, by definition, is in group.Members.

• Line 45: is locally consistent() guarantees that Group[group.T erminals]
exists and its Members field is consistent with group.Members.
Thus, gid, a member of group.Members, is also a member of
Group[group.T erminals].Members. The fifth invariant thus implies that
Group[gid] exists as well and Group[gid].ParentID = group.T erminals.

• Line 68: Analogous to line 45.

• Line 71: is locally consistent() guarantees that Group[group.T erminals]
exists. The if statement right before line 71 assures that
Group[group.T erminals].ParentID 6=⊥ and, using the fifth invariant,
thus Group[Group[group.T erminals].ParentID] 6=⊥ as well.

• Line 74: Analogous to line 45.

From this we can conclude that, if the first invariant was satisfied before
calling leave group, the parameter passed to leave group is in Parentlistp.

check group The recursion in leave group sets the group entries of all entries
in Parentlistp following (but not including) gid to ⊥. Group[gid].ParentID is
also set to ⊥, making gid the last entry in Parentlistp. Thus, the first invariant
still holds after execution of leave group().

As no new entries are added to Parentlistp, the second and forth invari-
ants are still satisfied. If no group weights are changed (line 66), the same
holds for the third invariant. Otherwise, assume that the third invariant is vi-
olated in line 66. There are two possibilities: Group[group.T erminals].Weight
can become smaller or equal to weight of the previous parent list entry
(gid). This is checked in line 67 and corrected in the following line by
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removing all entries following gid from the parent list. The other case,
Group[group.T erminals].Weight becoming greater or equal to its parent, is
checked in line 69 and corrected in the following line by removing all entries
following group.T erminals from the parent list.

To prove the fifth invariant it suffices to look at the group entries con-
tained in Parentlistp, as the first invariant shows that these entries are
the only ones having ParentID or Members set. Let i be the index of
leave group’s parameter gid in the parent list. The group entries from
Parent0p to Parenti−1

p did not change at all (as the third invariant proves
that there are no duplicate entries in the parent list) and therefore still sat-
isfy the fifth invariant. Group[Parenti−1

p ].ParentID = Parentip, Parenti−1
p =

Group[Parentip].Members and ID ∈ Parenti−1
p also hold because those values

have not been changed. Group[Parenti
p].ParentID, the ParentID of the last

element in the parent list, equals ⊥, thereby also satisfying the fifth invariant.

propose group We have just shown that leave group() does not violate the in-
variants if it is guaranteed that its parameter gid satisfies Group[gid] 6=⊥ and
Group[Group[gid].ParentID] 6=⊥. join group’s parameter gid fulfills the first
requirement, which is guaranteed in function want to join(). The second re-
quirement is checked in line 86 (using the first invariant). Thus, the call to
leave group() in line 87 returns with a consistent group structure. Note that af-
ter line 87, gid is the last entry in the parent list, because either line 86 evaluated
to false or leave group(gid) has been called.

Afterwards, Group[group.T erminals] is set and Group[gid].ParentID is
linked to this new group, making it the new last entry in the parent list.

Group[group.T erminals].ParentID must be ⊥ (thus ending the parent list),
because proposals always have ParentID =⊥. This is consistent with the first
invariant. The second invariant holds because of the definition of gid in line 33
by ensuring that the node id ID (= p) is in gid, the new second-to-last entry in
the parent list.

There are two ways to violate the third invariant. The first one occurs if
the newly joined group has a lower (or equal) weight compared to its member
gid. However, function want to join(), which is called right before join group(),
ensures that the new group’s weight is strictly greater than the weight of gid.
The second possibility to violate the third invariant is by changing the weight
of an existing group. This can happen if the new group’s id is already present
in the parent list (i.e. Group[group.T erminals] 6=⊥) and, thus, the group entry
gets overwritten in line 88. Let us look at the state of the node right before
calling join group(). Let i be the index of the member that wants to join the
new group. We have two cases:

1. group.T erminals ∈ (Parent0p, . . . , Parentip = gid). Then we know that
want to join() evaluated to true, that Group[group.T erminals] 6=⊥ and,
therefore, Group[group.T erminals].Weight > Group[gid].Weight (see
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line 52). This, however, contradicts our assumption that the third in-
variant was satisfied before calling decision propose group() (i.e. at the
beginning of the main loop iteration).

2. group.T erminals ∈ (Parenti+1
p , . . . , Parent

|Parentlistp|−1
p ). This does not

violate the invariant either because in the new parent list after executing
join group() group.T erminals is the i + 1-th entry, ending the list.

The third invariant thus guarantees that no loop exists in the parent list. As
every statement can add at most one entry to the parent list, the forth invariant
is satisfied as well.

We have already shown that after the call to leave group() the invariants are
still fulfilled. Note that after line 88 Group[group.T erminals].ParentID =⊥
and, therefore, does not need to be considered. Thus, we only have to show that
after join group() gid ∈ Group[group.T erminals].Members and p ∈ gid. Note
that Group[group.T erminals] = group. The definition of gid in line 33 thus
gurantees that the fifth invariant is not violated.

4.2 Liveness

Lemma 2. All incoming messages will eventually be processed.

Proof. To prove this lemma we must show that no operation executed in the
main thread blocks the thread forever. There is one recursion and one loop that
need to be analyzed:

First, there is the recursion in leave group(). We have shown in the proof of
Theorem 6 that, when leave group() is called, Group[gid] 6=⊥. Thus, according
to Theorem 6, gid ∈ Parentlistp. The recursion traverses the parent list until
it reaches the end (Group[gid].ParentID =⊥). As the parent list is finite, the
end is eventually reached and leave group() terminates. As there are no changes
to the parent list from the start of the main loop iteration to the point right
before leave group is called, we can use the above invariants.

Then, there is the while loop in line 18. The loop traverses the parent list
from the second to the last entry, unless it is terminated earlier by an unfinished
group. As above, we can use the fact that the parent list is finite to prove the
termination of this loop.

All other loops are for loops on finite sets and, therefore, do not pose a
problem, as the sets are not modified within the loop body. Thus, all iterations
of the main loop eventually terminate, and all messages in the message queue
will eventually be received in line 11.

Lemma 3. All atomic commitment sequences eventually terminate.

Proof. As the atomic commitment protocol itself is assumed to be non-blocking
this follows directly from the the previous proof that the execution cannot get
stuck in one of the subroutines.
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4.3 Convergence

Even with the safety and liveness properties from the previous sections, it is not
at all obvious that the algorithm will converge. This section proves formally
that the unique overlay graph will eventually be constructed, provided that (a)
a perfect propose module is used and (b) at every node, the check group signal
occurs infinitely often in infinite runs.

4.3.1 Proof Idea

The reader familiar with [TS04] might argue that a convergence proof already
exists in that paper. However, that proof, which is repeated here for convenience,
is not enough to prove convergence of the algorithm presented in this work.

Theorem 7. The presented algorithm with a perfect propose mod-
ule converges and constructs the unique minimum admissible overlay
graph G′ for every communication graph G with n′′ ≥ 2∆ − 2, pro-
vided that G remains stable.

Proof. We use induction on the number i ≥ 0 of groups in the set Gi

of stable groups constructed so far. For i = 0, G0 = Π contains all
single-node “groups” only. Eventually, the perfect propose module
generates the minimal proposal with P.Members ⊆ G0 and g0 =
P.Terminals1. From the algorithm, it follows that every node in
P.Members accepts the proposal and joins the group. After all,
there is no alternative group containing a node from P.Members
with less weight, since (1) g0 is minimal and each higher-level group
that contains g0 has higher weight than g0 according to Definition
1. Therefore, the group g0 is stable in that it will not be destroyed
again later on.

For Gi = Gi−1 ∪ {gi−1}, eventually some propose module gen-
erates the minimal proposal with P.Members ⊆ Gi and gi =
P.Terminals. For the same reasoning as for i = 0, the group gi

is eventually joined by every member in P.Members and remains
stable. The algorithm hence converges from the bottom to the root
of the topology tree. Since Theorem 1 holds also for the minimum
admissible overlay graph, it is ensured that all regular nodes are used
up before gateway nodes are considered. Hence, the root group can
be constructed since at least 2∆−2 gateway nodes are available.

(Note that this proof uses gi in a different way than the proof presented in
the next section.)

1Recall that the set of terminal node id’s P.Terminals is used as the group id.
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Although this proof gives some important insights into the general behavior
of the construction method, it cannot be applied directly to the presented algo-
rithm. Consider the topology from Figure 4.1 as a counterexample for ∆ = 3:

Figure 4.1(a) contains the underlying communication graph. We are assuming
a fully-connected graph; thus, all edges not shown in this figure are assumed to
have very high cost. Note that {1, 2′, 3′} and {a, b, c} are the two smallest groups
in G′ (see Figure 4.1(b)):

• {1, 2′, 3′}, because it is the overall group with smallest weight and, there-
fore, if a proposal for {1, 2′, 3′} arrives, it will be accepted;

• {a, b, c}, because after {1, 2′, 3′} has been created (which will eventually
happen, given a perfect propose module), the low-weight group {1, 2, 3}
cannot be built any more and, therefore, {a, b, c} is the next smallest
group.

Thus, {1, 2′, 3′} corresponds to g0 in the above theorem and {a, b, c} corre-
sponds to g1.

Consider the situation depicted in Figure 4.1(c): There have been proposals
for the groups {1, 2, 3}, {1, 4, 5} (members {1, 2, 3}, 4, 5) and {5, a, b} (members
{1, 4, 5}, a, b), which have all been accepted. Any proposal for g1 would be
rejected by a and b because they would not want to leave a group with weight
41 + ε to join a group with weight 45.

Now a proposal for g0 arrives, which is accepted. The theorem claims that
if a proposal for g1 arrived now, it will be accepted eventually. Note, how-
ever, that this is not at all obvious, as a and b still believe that they are part
of the “old” group {5, a, b} with weight 41 + ε and, thus, reject proposals for
g1. Fortunately, node 1 knows that {5, a, b} no longer exists, and it is one of
the nodes included in the next check group for group {5, a, b}, causing the
information to propagate upwards quite soon. A more complex example, how-
ever, could include additional layers of groups between {1, 2, 3}/{1, 2′ , 3′} and
{5, a, b}, making it necessary for the information to travel upwards the topology
tree though well-placed check groups, until g1 can finally be accepted.

Consider another example: Starting with the situation in Figure 4.1(c), pro-
posals for {1, 2′, 3′}, {a, b, c} and {1, 4, 5} cause the overlay graph to exhibit the
structure of Figure 4.1(d). A delayed proposal for group {5, a, b}, which has been
created when the graph looked like Figure 4.1(c) and thus incorrectly states the
weight of the group as 41+ε rather than 51+ε, could cause the existing group g1

with weight 45 to be destroyed, until, eventually, the weight information is up-
dated through check groups. Again, by introducing additional layers into the
example it can be shown that more than one check group might be necessary
before convergence of the algorithm can resume.

Thus, we can conclude that Theorem 7 does not suffice to prove convergence
of the topology construction algorithm, since the fact that gi will eventually
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be joined is not proven (although one might intuitively expect—and we will
show—that this must eventually happen).

4.3.2 Full Proof

In what follows, we will assume that, in addition to a perfect propose module,
it will be the case that infinitely many check group signals will occur at every
node in an infinite run.

We use the following definitions:

• An atomic commitment sequence is finished iff finalize . . . () (or deci-

sion . . . (), if finalize . . . () is not employed), has been executed on all par-
ticipating nodes.

• An atomic commitment sequence is active, iff it has been initiated, but it
is not finished yet.

Note that neither a group id nor a group entry can uniquely identify a “group”
in its topological structure. A group entry (i.e. a local entry in the Group
map) only stores information about the member ids of the group, not about
the composition of these members. Thus, it is possible that two group entries
are equal but the underlying trees below the group’s members have different
structure.

Fix any point in time as the beginning of the stable period. This stable period
ends if any node crashes, any node is added to the system, any connection weight
changes or the underlying failure detector of the atomic commitment protocol
suspects a node to have crashed.

We can now define the convergence of the algorithm as follows: If the stable
period lasts long enough, eventually the unique overlay graph will be constructed
and all groups will be stable, in the sense that they will not be destroyed during
the stable period.

Let C = (g1, . . . , gm) be the list of all general (i.e. single node and composite)
groups in G′, the unique overlay graph as defined in Theorem 2, in the order of
increasing weights. Let Ci be the i-element prefix set of C. Note that Cn is the
list of all 0-weight single-node groups (in arbitrary order). We define:

Definition 5. A group entry is i-weighted, if

• it has a corresponding group g in Ci with the same group id and the same
weight or

• it has a weight greater than the weight of gi.

A group id gid is i-stable at a given time, if, in the current configuration and
every following configuration until the end of the stable period, all group entries
on all nodes with this id are i-weighted.

A group id exists permanently if it will not be destroyed until the end of the
stable period.
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Informally, an i-weighted group entry is a group entry which will not prevent
the creation of group gi. See Figure 4.2 for an overview of the convergence proof.
We show that if all groups are i − 1 stable and the groups g0, . . . , gi−1 exist
permanently, there exists a time t1 after which the information in the propose
modules is sufficiently accurate. (Definition 6 explains the exact meaning of
sufficiently accurate in this case.) Then, an inner induction shows that there
exists a time t2 after which all group ids are i-stable, i.e. all group entries on all
nodes are i-weighted. Afterwards, we can show that the claim from Theorem 7
holds and gi will be constructed and cannot be destroyed until the end of the
stable period.

t0

all groups
(i− 1)-stable

g0, . . . , gi−1

exist permanently

Definition 6

t1

PM updated

Induction on Level 0. . . L (proof for upper bound L)

Induction step (Lemma 5):

t2

all groups
i-stable

(Lemma 6)

(t3)

g0, . . . , gi

exist permanently

t′0

Level 0 . . . j − 1
groups are

i-stable

t′1

PM updated

t′2

propose groups
finished

t′3

check groups
finished

indirect proof:
Level 0 . . . j groups

are i-stable

Figure 4.2: Overview of the convergence proof

Lemma 4. For all i, n ≤ i ≤ |C| it holds: If the stable period lasts long enough,
there is a time after which all groups in Ci exist permanently and all group ids
are i-stable.

Proof. Initially, for Cn the lemma holds trivially: All single-node groups
g1, . . . , gn always exist and all composite groups have (and will always have)
a weight greater than 0, the weight of gn, the last single-node group.

It can be shown that, if the condition is satisfied for i−1 at time t0, eventually,
it is satisfied for i, too. As, by assumption, all groups in (g1, . . . , gi−1) = Ci−1

exist permanently and their group ids are i−1-stable, these ids are by definition
also i-stable. Thus, we just have to show that eventually gi is constructed and
becomes i-stable, and that all other group ids become i-stable as well.

Definition 6. Let t1 be the time after t0 when all propose modules have adapted
to the change (i.e. they know the correct connection weights and if they propose a
group where all member group ids are in Ci−1, the proposal has correct weight).

We will now show that there is a time t2 > t1 after which all group entries
on all processors have either correct weight, if their group id is in Ci, or have a
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weight greater than the weight of gi (which might not have been built yet). To
do this, we introduce the concept of the (time-variant) level of a group entry.
A single-node group always has level 0. For composite groups, the definition
is a bit more complicated. The intuitive notion would be to define the level as
follows:

Informally, the level corresponds to the height of the group in the topology
tree. As we cannot guarantee global consistency of the group entries, the level
is “attached” to the group entry during atomic commitment, where there is
agreement between the different members of a group. We use level ′ rather
than level in the formal definition below because this intuitive definition is not
sufficient, as we will show.

Definition 7. The level′tp [gid] of a group id gid on a node p at time t is defined
as

• 0 for single-node group ids and

• at each successful check group or propose group with participant set

P , the level is updated to 1 + maxp′∈P level
′tp′

p′ [mp′ ], with mp′ being the
member of gid on whose behalf p′ participates in the check group or
propose group and tp′ being the time at which p′ voted vote commit.

Now we would use an induction proof on the level of the group ids to show
that all group ids are i-stable. Note, however, that the induction step (j−1→ j)
would fail in the following case: The group entries for group A have level′ k > j.
Propose module X knows about group A and proposes a new group B with A
as one of its members. In the meantime, however, the graph reconstructs itself,
group A is destroyed and, later, a group A′ with the same terminal nodes (and,
thus, the same group id) as A is built. Assume that a group entry of A′ has
level′ j − 1, all other members of B have level′ less than or equal to j − 1 and
group B is built when the proposal arrives at the nodes. (Note that the nodes
do not see a difference between the proposed member A and A′, as the Member
field of a proposal only contains group ids.) Until the next check group for B
is performed, we cannot use the induction hypothesis to prove that B’s weight
satisfies the i-stable requirement, because the propose module calculated its
initial weight using the weight of A whose group entries level′’s were k > j.

There are two ways to solve this problem: One is to prove that there is an
upper bound b for how often such a situation can happen and define level j
group ids to be i-stable after b cycles of check groups and propose module
information updates. The other, which is used below, is to redefine the level as
follows:

Definition 8. The leveltp[gid] of a group id gid on a node p at time t is defined
as 0 for single-node group entries. For a composite group entry gid,

• the level is set initially during the decision phase of pro-

pose group for a proposal from some propose module X to
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1 + maxm∈Groupp[gid.Members] level
t′m
pm [m] with t′m being the time at

which the last update regarding m’s weight has been sent to X that has
been received before X sent out the proposal. pm is the node that sent this
update to X.

• During the decision phase of each successful check group with partici-

pant set P , the level is updated to 1+maxp′∈P level
tp′

p′ [mp′ ], with mp′ being
the member of gid on whose behalf p′ participates in the check group

and tp′ being the time at which p′ voted vote commit.

Intuitively, this means that the level of a newly created group entry is the
level the propose module “thought” that the new group entry would have. The
process of updating the level is similar to updating the group weight during a
successful check group. Now we can use a straight-forward induction proof
on the following lemma.

Lemma 5. For all j ≥ 0 holds: There is a time after which in all configurations
until the end of the stable period all group entries whose level is less than or equal
to level j are i-weighted.

Proof. Proof by induction. Level 0 group entries (single-node groups) are al-
ways i-stable. Assume that after time t′0 the lemma holds for j − 1. Let t′1 be
the time after which the information in the propose modules has been updated
for all group entries that existed at time t′0. Let t′2 be the time after all pro-

pose groups whose proposals were created before t′1 have been finished. Let t′3
be the time by which for every group entry that existied at t′2 a check group

has been started after t′2 and finished.
Finally assume by contradiction that there is a time t after t′3 (but within the

stable period) in which a group entry g with group id gid on node p has a level
less than or equal to j but is not i-weighted. If the group entry has a level less
than j, this contradicts the assumption that the lemma holds for j − 1. If the
group entry has level j, we have the following cases:

• The last update to the level of the group entry g has been a pro-

pose group. This propose group must have been created after t′1
(otherwise, there would have been a check group for this group en-
try between t′2 and t′3). Thus, by definition of t′1, the proposal was based
on group information sent from some nodes after t′0. As the group entry
has level j, its members had level j − 1 or less when the propose module
was updated (according to the definition of level). As the propose module
was updated after t′0, we can assume that all groups with level j − 1 or
less were i-weighted. Here we have two cases:

– At least one member had a weight greater than the weight of gi.
Then, the weight of the proposed new group was also greater than gi.
As there has been no check group in the mean-time, the weight
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of g is still greater than gi. Thus, g is i-weighted and we have the
required contradiction.

– All members were in Ci. As they were i-weighted, their weights
were correct. Thus, we have the following cases: (1) g’s id is in
Ci−1. This contradicts the assumption of the outer induction that
the groups in Ci−1 already existed permanently before t′1. (2) g’s id
is not in Ci−1 and its weight is less than gi’s weight. This contradicts
the minimality of gi (as all members are in Ci). (3) g’s id is not
in Ci−1 and its weight is equal to or greater than the weight of gi.
This contradicts the assumption that g is not i-stable. (Note that
two groups with different group ids cannot have the same weight
according to Definition 1.)

• The last update to the level of the group entry g has been a check group.
This check group must have been started after t′2. As the group entry
has level j, the group entries of the members must have had level j − 1
or less during the vote phases of their terminal nodes. By assumption we
know that these entries were i-weighted and, thus, the same reasoning as
in the previous point applies (except for the case where g ∈ Ci−1, this now
leads to a contradiction regarding the assumption that g is not i-stable, as
all groups in Ci−1 permanently exist and the weight of the members must
be correct).

However, Lemma 5 does not yet prove that i-stability for all nodes is reached
in finite time as level numbers can rise without bound. We can, however, show
that after a certain level a group entry must have weight greater than the weight
of gi, thereby becoming i-weighted. Note that for every given tuple (t, p, gid)
which has a level leveltp[gid] > 0 and a weight Groupp[gid].Weight (at time t)
associated to it, we can use the definition of level to find a tuple (t′, p′, gid′)
with levelt

′

p′ [gid′] = leveltp[gid] − 1 and a weight Groupp′ [gid′].Weight (at time
t′) < Groupp[gid].Weight (at time t). Note that the difference between those
weights is at least the fixed constant ε. Thus, we know that there must be an
(unknown) level L, where all group entries with level L or greater must always
have a weight greater than the weight of gi. Using this fact and Lemma 5 we
can conclude the following lemma:

Lemma 6. There is a time t2 after which all group ids are i-stable.

It is easy to see that, if gi does not exist yet and a proposal for gi arrives, it
will be accepted because all conditions in want to join() are satisfied:

Groupp[gid] 6=⊥: gid ∈ Ci−1 and, by assumption, all groups in Ci−1 exist perma-
nently.
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(Groupp[gid].ParentID =⊥ ∨ group.Weight < Groupp[Groupp[gid].ParentID].Weight):
Assume by contradiction that there is some better parent group g ′ than the
proposed gi.

If g′ ∈ Ci, we have a contradiction because two groups g ′ and gi with the
same member cannot coexist in G′. Thus, g′ /∈ Ci. Lemma 6 shows that in
this case the weight of g′ is greater than the weight of gi, which contradicts the
assumption that g′ is better.

(Group[group.Terminals] =⊥ ∨Group[group.Terminals].Weight > Group[gid].Weight):
Assume that this condition is violated. This would mean that gi’s terminals
are already in the parent list below gid. As gid ∈ Ci−1, this would mean that gi

is also in Ci−1. This would introduce a duplicate entry in C, which is prohibited
by construction.

group.Weight > Group[gid].Weight: gid is in Ci−1 and, therefore, must have correct
weight. After time t2, all proposals where all members are in Ci−1 have correct
weight. Thus, this condition is satisfied.

We have shown that gi is eventually being constructed after t2. To show
that gi exists permanently, we assume by contradiction that gi will be destroyed
on some node p any time in the future (during the stable period). This could
happen in the following cases:

• Some member m of gi joins a better proposal P . As Lemma 6 guarantees
that the group id of P is i-stable, P has either greater weight than gi,
which contradicts the assumption that P is better than gi, or P is in Ci.
However, gi is also in Ci and there cannot be two groups with the same
member in C.

• check group returns abort for gi. As we have shown that no member
will join a better proposal, this can only happen if a member m ∈ Ci−1

is destroyed, which violates the induction assumption, or a processor is
suspected to have crashed, which violates the condition that we are within
the stable period, where no crashes or false suspicions are allowed.

• check group returns commit for a lower-level group but causes gi to be
destroyed because of a weight inconsistency. As the weights of the lower-
level groups (which are in Ci−1) do not change and Lemma 6 assures that
they are correct, this cannot happen.

Lemma 4 shows that the groups in G′ will eventually be constructed. As
G′ is complete, i.e., builds a hierarchy from the single-node groups to high-
level groups including the gateway nodes, there is no room for other groups
without breaking the existing structure. As the groups exist permanently and
thus cannot be destroyed as long as the stable period lasts, we can conclude the
following theorem:
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Theorem 8. If the stable period lasts long enough, the constructed topology will
be the unique overlay graph.

48



5 Implementability

Section 3.2 stated the following system-level requirements for the topology con-
struction algorithm: (1) a non-blocking weak atomic commitment service (see
Section 2.1) and (2) a fully-connected asynchronous system (see Sections 1.2.2
and 1.2.3).

Agreement problems and their solvability in asynchronous systems has been
studied extensively in literature. This chapter gives an overview over the current
state of research and applies this information to the presented algorithm. Note
that in contrast to previous parts of this work, where atomic commitment and
NBAC were used as synonyms for the non-blocking weak atomic commitment
problem, this section uses a more differentiated terminology: atomic commit-
ment (AC), non-blocking atomic commitment (NB-AC) and non-blocking weak
atomic commitment (NB-WAC) and their respective unique abbreviations re-
fer to three different problems as specified in Section 2.1. When following the
references in this work, note that the terminology used in the papers is not
consistent.

Intuitively the following relations hold between these problems: AC ≤ NB-AC
and NB-WAC ≤ NB-AC.

[TS92] gives an introduction on agreement problems. They also claim that

The commit problem is strictly harder to solve than the consensus
problem because of this priority in favor of aborts. Therefore, any
result indicating the impossibility of consensus translates to an im-
possibility result for the commit problem.1

Such an impossibility proof for a deterministic solution of the consensus prob-
lem in the presence of failures in a purely asynchronous system has been given
by Fischer, Lynch and Patterson [FLP85]. Thus, AC is not solvable in the pres-
ence of failures. As any solution to the NB-AC problem would also solve AC,
this also proves the impossibility of NB-AC.

5.1 Crash Failure Detectors

To circumvent this problem without restricting the asynchronous model more
than necessary, Chandra and Toueg [CT96] introduced the concept of unreliable
failure detectors (FDs). Local failure detector modules monitor the system

1Note that this claim is not entirely correct: Guerraoui showed in [Gue02] that NB-AC is
actually not strictly harder than consensus. Nevertheless, the impossibility result holds.

49



and inform the algorithm about nodes they suspect to have failed. Chandra
and Toueg identified multiple classes of failure detectors, distinguished by their
accuracy properties:

• Perfect (P): No process is suspected before it crashes.

• Strong (S): Some correct process is never suspected.

• Eventually Perfect (�P): There is a time after which correct processes are
not suspected by any correct process.

• Eventually Strong (�S): There is a time after which some correct process
is never suspected by any correct process.

All of these have in common that eventually every process that crashes is
permanently suspected by every correct process (completeness). [CT96] also
presents a class of FDs satisfying only a weaker variant of the completeness
property (“Eventually every process that crashes is permanently suspected by
some correct process.”), but as those FDs can be transformed into failure detec-
tors satisfying the stronger property, we can ignore this variant for our analysis
of solvability.

[CT96] also shows that consensus is solvable using S in any asynchronous
systems; �S suffices, if there is a majority of correct processes. In [Gue95], Guer-
raoui presents a reduction from NB-WAC to consensus; thus, the same results
hold for NB-WAC. The question, whether a weaker failure detector would suffice
for solving NB-WAC is raised in [Gue95] but left open for further research. While
there are some papers on minimal FDs for NB-AC, for example [DGFG+04] by
Delporte-Gallet and Fauconnier, NB-WAC still lacks such results.

Recall that the stable period defined in Section 4 requires that no node is
falsely suspected by any failure detector during the time necessary to construct
the overlay graph. We can only guarantee this requirement using the FDs spec-
ified above by choosing an eventually perfect or perfect failure detector. Oth-
erwise, with �S or S, it is possible that some group is never built because one
of the nodes is permanently suspected by some failure detector. In practice, a
weaker FD might suffice if false suspicions are seldom enough: If the frequency
is low enough, convergence (i.e. construction of the overlay graph) will be de-
layed but not prevented. After the overlay graph has been constructed, a false
suspicion during a check group for some group gid will cause all groups in the
group hierarchy on the path from gid to the root group to be destroyed. Due to
the failure locality properties of the algorithm, other subtrees are not affected
and the overlay graph will be rebuilt as soon as the corresponding proposals
arrive. For example, a falsely suspected node 8 in Figure 1.4 could only cause
groups D, E and F to be destroyed but would not affect groups A, B or C.

Thus, if we combine the requirements imposed by the need to implement NB-
WAC with arbitrary many failures (S) and the absence of false suspicions during
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the stable period (�P), the minimal failure detector that guarantees convergence
in every case is P.

Another possibility would be to implement the silent participant extension
presented in Section 3.6.2: With this modified algorithm and the additional
constraint that a majority of nodes is correct, �S would suffice to implement
NB-WAC. Thus, an eventually perfect FD (�P) could be used to satisfy all
requirements and guarantee convergence.

Note, however, that S is not the proven weakest failure detector for imple-
menting NB-WAC with an arbitrary number of failures and, therefore, it might
well be possible that �P suffices even without the need to modify the algorithm
and the requirement for a majority of correct processes. Actually, we assume
that it might be possible to devise an extension of the algorithm which toler-
ates non-terminating NB-WAC instances and still guarantees convergence. In
that case, �P would suffice without the silent participant extension even with a
majority of faulty processes. See Section 6.1 for details on this approach.

5.2 Crash & Recovery

So far, the only failure possibility which has been considered for nodes in this
work is the crash failure model: A node works correctly until some time t, after
which no more messages are sent by this node. If a node “recovers”, it enters
the system as a new node with a new unique id and an empty state.

The crash-recovery model as specified in [ACT98] differentiates between

• two types of good processors: always up (never crashes), eventually up
(will crash at least once but will eventually remain up) and

• two types of bad processors: eventually down (will eventually crash perma-
nently), unstable (keeps on crashing and recovering infinitely many times).

Before presenting a solution for the crash-recovery model, we must define the
behavior the algorithm should have in this model. Clearly, unstable nodes can
prevent the creation of the overlay graph by participating when they are up and
causing their groups to be destroyed again when they are down.

As the stable period already requires that no nodes crash and no new nodes
are added (i.e. no nodes recover), it suffices to show that NB-WAC can be solved
in this model to ensure liveness of the algorithm until the stable period begins.

5.2.1 Solving NB-WAC

[ACT98] presents an algorithm to solve uniform consensus in the crash-recovery
model using one of their failure detectors �Se and �Su. We can show that NB-
WAC can be solved in this model if there are no link failures. To do that,
we adapt the crash-model based transformation presented in [Gue95]. See Fig-
ure 5.1 for the algorithm.
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1 function NB−WAC(votei)
2 send (votei) to all
3 d←Di

4 for all nodes pj

5 wait until
6 (1) received (votej) from pj or
7 (2) pj /∈ Di.trustlist or
8 (3) d.epoch[pj] < Di.epoch[pj] or
9 (4) received (recovered) from pj

10 if (2) or (3) or (4) or votej = vote abort

11 return uniformConsensus(abort)
12 return uniformConsensus(commit)
13
14 upon recovery:
15 send (recovered) to all

Figure 5.1: Solving NB-WAC in the crash-recovery model

Di represents the failure detector of class �Se at processor i, which outputs a
trust list and an epoch number for every process in the trust list. �Se satisfies
the following properties specified in [ACT98]:

• Monotonicity : At every good process, eventually the epoch numbers are
nondecreasing.

• Completeness: For every bad process b and for every good process g,
either eventually g permanently suspects b or b’s epoch number at g is
unbounded.

• Accuracy : For some good process K and for every good process g, eventu-
ally g permanently trusts K and K’s epoch number at g stops changing.

We can now show that the above algorithm solves NB-WAC.

Theorem 9. The above algorithm reduces NB-WAC to uniform consensus in
the crash-recovery model without link failures with either �Se or �Su.

Proof. As the only difference between �Se and �Su is a strictly stronger accuracy
property in �Su, it suffices to show the proof for �Se.

• Termination: Every correct participant eventually decides. Once the al-
gorithm has reached one of the return lines, termination follows from the
termination property of uniform consensus. Thus, we only have to show
that the while loop eventually terminates. If pj is good, either the vote
(if pj is up) or recovered (if pj has crashed and recovered) is received.
If pj is bad, the completeness property of the failure detector guarantees
that either condition (2) or (3) is satisfied.

• Integrity: A participant decides at most once. As a participant decides by
leaving the function and the function is entered only once, integrity holds.
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• Uniform Agreement: No two participants decide differently. Follows di-
rectly from the uniform agreement property of uniform consensus.

• Validity: If a participant decides commit then all participants have voted
vote commit. Assume by contradiction that some participant p decides
commit although some participant q has voted vote abort. If p de-
cides commit, the consensus decision must have been commit. Thus,
some process r must have used commit as the input for consensus, i.e.
it must have executed line 12. This line, however, can only be reached
by r if it received a vote vote commit from every node, including q. A
contradiction.

• Non-Triviality: Because of the different type of failure recognition in the
crash-recovery model, the non-triviality condition can be defined as fol-
lows: If all participants vote vote commit, no participant crashes, there
is no failure suspicion, and no epoch number on any participant increases
then the outcome decision is commit. For the outcome decision to be
abort, some process p must have used abort as the input for consen-
sus, i.e. line 11 must have been executed on process p. However, (2) and
(3) would imply that at least one process was suspected, (4) can only be
satisfied if at least one process crashed, and votej = vote abort contra-
dicts the assumption that all participants voted vote commit. Thus, the
required contradiction is reached.

5.2.2 Topology Construction Algorithm

Note that because of the accuracy property of the failure detector, the above
non-triviality condition is strong enough to guarantee that the right proposals
will be accepted during the stable period.

Running multiple instances of NB-WAC in series or concurrently, however,
imposes the problems discussed in Section 9 of [ACT98]: Stable storage is re-
quired to prevent “old” recovered messages to interrupt a “new” NB-WAC
instance. Note that stable storage is only necessary to store (1) information
about which NB-WAC instances the node participates in at the moment so that
it can tag the recovered message appropriately and (2) to store the proposal
and decision values used internally by the uniform consensus protocol. As the
uniform consensus algorithms presented in [ACT98] also face this problem, this
is not an additional restriction imposed by NB-WAC.

As group consistency is checked regularily, outdated state is not a problem,
with one exception: It is possible that a node misses the finalizing event of a
group creation by crashing and recovering. Thus, if stable storage is also used
for the topology construction algorithm, and, thus, the node still has group
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information from before the crash, LockedBy must be reset for all groups to
ensure that consistency checking is performed for them:

16 upon recovery:
17 for all gid in Group
18 Group[gid].LockedBy←⊥

Note that the invariants proven in Section 4.1, which are the basis for the
covergence proof, still hold in the recovered state.

From this result and the results in [ACT98] we can conclude that our tolopogy
construction algorithm can be implemented in the crash-recovery model using
�Se or a stronger failure detector and stable storage, as long as the number
of always-up nodes is greater than the number of bad nodes (see Section 5
in [ACT98] for details about this requirement). Note that this requirement
refers to nodes participating in one particular consensus/NB-WAC instance, not
to nodes participating in the topology construction algorithm. As the algorithm
can require an arbitrary ∆-sized subset of Π to participate in NB-WAC, this
actually requires more always-up than bad nodes in every ∆-sized subset of Π.
Therefore, the silent participant extension from Section 3.6.2 would be required
to reduce this requirement to the weaker requirement of having more always-up
than bad nodes within Π.

5.3 Link Failures

So far only reliable links were considered. However, link failures are likely
to occur in real systems. It is easy to see that arbitrary link failures could
lead to permanent network partitioning, rendering the problem of creating the
unique overlay graph unsolvable. Two weaker models of link failures presented
in [BCBT96] include eventually reliable (ER) links, where there is a time after
which all messages sent are eventually received, and fair lossy (FL) links, which
guarantee that if an infinite number of messages are sent, an infinite subset of
these messages is received.

5.3.1 Crash Failure Model

The following relationships between these models in the presence of crash failures
have been identified: Trivially, an eventually reliable link satisfies the properties
of a fair lossy link. [BCBT96] has shown that reliable links are “strictly stronger”
than eventually reliable links, i.e. there are problems that can be solved with
reliable links but cannot be solved in the presence of eventually reliable links.
They also show that some problems solvable with reliable links remain solvable
with fair lossy links but become unsolvable with unreliable links. Thus, the
following relation holds:

reliable ⊂ ER ⊆ FL ⊂ unreliable
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Another result is that, if a majority of nodes is correct, fair lossy links can
simulate reliable links. Therefore, if this condition is satisfied, NB-WAC can be
solved and the topology construction algorithm works as specified.

5.3.2 Crash-Recovery Model

In the crash-recovery model, [ACT98] provides us with a uniform consensus
algorithm tolerating fair lossy links. We can adapt the transformation from
NB-WAC to consensus in Section 5.2 by replacing send in lines 2 and 15 with
s-send and defining the following function:

19 function s−send(message) to pj

20 fork new thread:
21 loop /∗ repeat forever ∗/
22 send message to pj

Theorem 10. The modified algorithm reduces NB-WAC to uniform consensus
in the crash-recovery model with fair lossy links and �Se or �Su.

Proof. Again, due to the reducability from �Su to �Se it suffices to show the
proof only for �Se. The proofs for Integrity, Uniform Agreement, Validity and
Non-Triviality are completely analogous to the proof of Theorem 9. Note that, if
some node pj is good, s-send guarantees that either the vote or the recovered

message eventually arrives at all good nodes, because only a finite subset of the
infinite number of sent messages can be lost. Thus, the Termination proof from
Theorem 9 also applies.
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6 Conclusion

6.1 Further Work

Although this work contains a complete correctness and implementability proof,
some question have been left open and might be worth of further investigation:

• This work solves NB-WAC by reducing it to consensus. NB-WAC, how-
ever, might be solvable with a weaker failure detector than consensus, thus
reducing the requirements regarding failure detectors or a certain percent-
age of correct nodes for the topology construction algorithm. Further
research regarding the weakest failure detector for solving NB-WAC will
be necessary to answer this question.

• In the crash-recovery model, unstable nodes can disrupt large parts of
the topology if they are on a low level within the topology tree. An
approach where nodes are “punished” for being unstable by giving them
penalty weight and thus moving them up the topology tree might be worth
investigating, especially as epoch numbers already provide this kind of
information. Positioning those nodes on a higher level means that a crash
would disrupt less other groups and therefore improve failure locality.

• Chapter 5 partly references costly simulation-based proofs to show that
the algorithm can also be implemented in more general system models.
These solutions might not be the most efficient; thus, further analysis
could yield better solutions.

• As shown in Chapter 5, NB-WAC requires a majority of correct processes
to terminate under certain system model conditions. However, it might be
possible that (1) the safety conditions (agreement etc.) are still satisfied
even if a majority of correct processes fails and (2) the topology construc-
tion algorithm can be modified such that termination is not necessary for
a NB-WAC instance in which node crashes occur. This option would be
worth investigating as it could be used to drop the f < d∆

2 e requirement
even with only an eventually perfect failure detector.

• The algorithm presented in Section 5.3.2 for solving NB-WAC in the crash-
recovery model in the presence of fair lossy links is not quiescent, i.e. it
does not eventually stop sending messages. [ACT00] analyzes the problem
of quiescent reliable communication in the presence of crash and link fail-
ures. Generalizing their results to the crash-recovery model would allow
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designing a quiescent algorithm solving NB-WAC in the crash-recovery
model in the presence of lossy links (or proving its impossibility).

6.2 Results

After giving an introduction to the topology construction method developed
by Thallner et al. [TS04], a pseudo code implementation of the distributed
algorithm, a detailed description and its correctness proof were presented. The
algorithm can use arbitrary propose modules [Tha04a]; with a perfect propose
module it will construct the unique minimal overlay graph if the network stays
stable long enough. The only communication primitive used is non-blocking
weak atomic commitment, an agreement problem which has been shown to be
reducible to uniform consensus (see [Gue95] for the crash model and Section 5.2.1
of this work for the crash-recovery model). The algorithm does not lose logical
safety and liveness during crash failures and can also cope with recovering nodes,
either with an empty state and a new node id, or an old state and the original
id. Given an appropriate number of correct nodes, even fair lossy or eventually
reliable links can be tolerated.

As a by-product, this thesis also contains a reduction from non-blocking weak
atomic commitment to uniform consensus in the crash-recovery model.
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