
MASTER’S THESIS

Trust-based Security in Web

Services

Information Systems Institute

Distributed Systems Group

Technical University of Vienna

supervised by

Ao.Univ.Prof. Mag. Dr. Schahram Dustdar

and

Univ.Ass. Dipl.-Ing. Dr.techn. Clemens Kerer

by

Christian Platzer

Samerweg 35

6060 Hall in Tirol

Vienna, May 2nd 2004

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Für meine Eltern

Danksagung

Für sein persönliches und fachliches Engagement, sowie für die ausgezeich-

nete Betreuung während der Erstellung dieser Arbeit, gilt mein persönlicher

Dank Clemens Kerer.

Ganz besonderer Dank gilt meiner Familie, die mich auf meinem Weg immer

unterstützt hat, und mir in schwierigen Zeiten den nötigen Rückhalt gab.

Nur dadurch war es mir möglich, die richtigen Entscheidungen zu treffen

und auch dazu zu stehen.

Kurzfassung

Im Zuge dieser Arbeit wurde SimOffice, ein auf Vertrauen basierendes System

zur dynamischen Verwaltung von Zugriffsrechten für Web services entwickelt.

Web services gewinnen als neue Technologie zur Entwicklung von verteilten,

service-orientierten Applikationen zunehmend an Bedeutung. Mit der wach-

senden Zahl dieser Dienste - speziell im firmeninternen Bereich - steigen auch

die Kosten zur Wartung der dazugehörigen Benutzerkonten rapide an.

Die Grundidee hinter dieser Arbeit war, ein sich selbst verwaltendes System

zu schaffen, in dem Zugriffsrechte automatisch vergeben werden. Zu diesem

Zweck wurde ein Algorithmus entwickelt, der versucht, die menschliche Art

der Urteilsfindung zu imitieren. Dieser auf Vertrauen basierte Ansatz wurde

schließlich in einer Fallstudie implementiert, um zu zeigen, dass eine dear-

tige Form der Verwaltung von Benutzerkonten auch in einem rein auf Web

services basierten System zu einer deutlichen Aufwandsminderung führt.

Weiters wurden verschiedene Möglichkeiten diskutiert, um diesen Ansatz in

weiterer Folge auch auf Systeme ausweiten zu können, denen andere Tech-

nologien zugrunde liegen.

Abstract

In the course of this thesis SimOffice, an environment with trust-based access

control for Web services, was developed.

Web services are gaining more and more importance as a technology to de-

velop distributed, service-oriented applications. With the growing number of

services, especially within corporate networks, the expense to maintain user

accounts for every single service grows tremendously.

The basic idea behind this concept was to create a self maintaining system,

where access restrictions are set automatically. For this purpose an algo-

rithm was developed, which mimics the way humans pronounce a judgement

about another party. This trust-based approach was finally implemented in

the SimOffice case study to demonstrate that this way to maintain user ac-

counts eventually leads to a reduction of effort, even in a system completely

based on Web services.

Furthermore, some ways to extend this approach to systems based on other

technologies, were discussed.

CONTENTS vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 5

1.3 Structure of this Thesis . 6

2 State Of The Art Review 7

2.1 The Notion of the Web Service 7

2.2 HTTP . 8

2.3 XML . 10

2.4 SOAP . 12

2.5 Publishing and Finding Web Services 14

2.5.1 WSDL . 14

2.5.2 UDDI . 15

2.6 Using Web Services . 17

2.7 Trust-related Projects . 19

3 Related Work 21

3.1 Definition of Trust . 21

3.2 Establishing Trust . 24

3.3 A Formal Representation of Trust 27

3.3.1 Basic Trust . 27

3.3.2 The Trust Value . 27

3.3.3 Importance . 28

3.3.4 Acquaintance . 29

3.4 Rules for Interaction . 30

3.5 Risk and Punishment . 34

4 The SimOffice Concept 35

4.1 Prerequisites . 35

4.1.1 Hardware . 35

CONTENTS vii

4.1.2 Software . 35

4.1.3 Availability . 36

4.2 Architectural Design . 38

4.2.1 Server Dependence . 38

4.2.2 Identification . 41

4.2.3 Discovery . 44

4.3 Trust-related Design . 45

4.3.1 Variables . 45

4.3.2 Default Values . 48

4.3.3 Trust Adjustment and Punishment 50

4.3.4 Recommendation Trust 57

4.3.5 User groups . 58

5 Case Study 60

5.1 Implementation . 60

5.1.1 Back-end . 61

5.1.2 Front-end . 63

5.2 Sample Setup . 65

5.2.1 Deployment and Server Setup 65

5.2.2 Node Setup . 66

5.2.3 Use Case Scenario . 68

6 Evaluation 78

6.1 Concept-related Aspects . 78

6.1.1 Repeated Actions . 78

6.1.2 Opportunity for Errors 79

6.1.3 The Situational Trust Value 80

6.1.4 Guest accounts . 80

6.1.5 Callbacks . 81

6.1.6 Privacy . 81

6.1.7 Node extension . 82

CONTENTS viii

6.2 Future Work . 83

6.2.1 P2P Architecture . 83

6.2.2 Content-based Judgment 84

7 Conclusion 85

A Appendix - Node configuration 86

LIST OF FIGURES ix

List of Figures

1 WSDL to UDDI mapping . 16

2 Invoking a Web service . 17

3 Architecture with directly connected nodes 39

4 Architecture with a trust server 39

5 Double-sided exponential approach 51

6 Example for double-sided exponential approach 53

7 Single-sided exponential approach 55

8 Bea Weblogic Workshop 8.1 61

9 Workshop Test Browser . 62

10 Borland Delphi 7.0 . 63

11 SimOffice client application 64

12 Scenario 1 - Initial trust . 69

13 Scenario 2 - Direct trust . 70

14 Scenario 3 - One recommendation 72

15 Scenario 4 - Superuser . 73

16 Scenario 5 - Group dependent trust limit 0,7 74

17 Scenario 6 - Three recommendations 76

LIST OF TABLES x

List of Tables

1 Prisoners’ dilemma payoff . 25

2 Architecture comparison . 40

3 Mail Server Setup . 86

4 Web Server Maintenance Setup 86

5 Workers Database Setup . 86

6 Mr. Coffee Setup . 87

7 Printer Setup . 87

8 File Server Setup . 88

1

1 Introduction

Today more and more companies employ administrators to maintain their

network, adjust user privileges and keep everything up and running. With

the growing size of these companies, the amount of work put into these activ-

ities grows enormously until a point is reached when a single person can no

longer overlook this meshwork of permissions, exceptions and policies. Apart

from the resulting overhead to add, delete or adjust permissions, this may

also results in some severe security leaks. Wouldn’t it be great if a computer

system could decide by itself whether to grant access rights to a requesting

user or not?

Another trend arising in the sector of software development is to reuse

functionality in the form of Web services. Web services are a platform-

independent way to establish communication between two applications con-

nected through a network. Here the maintenance of policies is even more

expensive. A distributed application can use many different functions and

every single one needs to be secured in a proper way. It would be a hard

task for a human to adjust all security levels properly because new functions

need to be added while others are obsolete and not used any more.

SimOffice is a security-aware network environment that attacks these prob-

lems with a combination of common security standards and a completely new

method to judge a user’s intentions. The goal is to create an independent

system where decisions are made based on trustworthiness. This way the

’thinking’ is done by the system while a human supervisor can still influence

the judgement in some special cases. The assessment itself tries to imitate

human behavior and human trust. Of course this concept is not limited to

Web services but can be applied to almost every security-sensitive area in

computer networks.

SimOffice will simulate a possible environment within an office where even

the coffee maker is accessible through a Web service. And what is a harder

punishment for bad behavior than a denial of coffee!

1.1 Motivation 2

1.1 Motivation

Today, the majority of software companies are implementing tools based

around the new standards for Web services [41, 45, 46]. Considering the

fast development and the strong commitment of several important software

companies like IBM and Microsoft, a wide range of ready-to-use services

throughout the entire Web can be expected soon. Google for example, one

of the most popular search engines on the web, already offers a Web ser-

vice for web queries [16]. An implementation based on the provided API is

straight forward and requires but basic programming skills.

But Web services available on the Web will not remain the only applica-

tion for these standards. Modularity and language-independency paved the

way for combined applications, using basic Web services even in closed en-

vironments like corporate networks. Thus it is quite possible to implement

a company’s applications as Web services and make them accessible through

published descriptions (see WSDL-Files in 2.5.1). The advantages of such an

architecture are obvious: Services are completely independent of implemen-

tation or operating system and useable from everywhere within the entire

network. Developers are encouraged to use the provided functionality with-

out further knowledge of the involved code. Each Web service is registered

at a centralized spot which makes service discovery much easier.

Another trend in the development of computer systems is to adapt the human

way of thinking, to address security aspects like access rights or judgment of

the other parties intent. Combining both, Web services and an intuitive way

of access management is the main motivation for this thesis.

Let’s take a look at a possible scenario to offer a better illustration:

Al is employed as a programmer at Bits-and-Bytes Industries. His task is to

write a program which calculates the average income of his team’s employ-

ees. Al knows an employee who works in the personnel department and he

uses a program to read and write to and from the personnel database. Un-

1.1 Motivation 3

fortunately this program was written in Visual C++, whereas he uses Java

for development. He has no knowledge how to use C++ code in Java, so he

decides to create his own database connection and rewrites the code for the

same functionality.

Now we take the same scenario at Makrohard Ldt., where Web services are

used to increase efficiency. The moment Al realizes that the code he desires

may have been written before, he looks up the service description on the

companies central server, downloads the WSDL-File and includes it in his

application. All he has to do afterwards is load every employee via the Web

service and calculate the mean value. This way he saved time and money for

the company.

And thats what Web services are designed for after all. To increase effi-

ciency and simplify software development. But there is a major drawback

that needs to be addressed as well. To continue the above example we as-

sume Bob worked at Makrohard Ldt. too but he was fired today because he

refused to design his programs as Web services. He decides to write one last

program and uses the same Web service Al used but he has something far

more evil in mind. Instead of reading an employee’s data, he deletes every

single employee from the company’s database. He can do this, because the

service does not only provide functions to read records from the database

but also to write and delete them.

This example is a little oversubtle of course. In reality access to Web services

will be restricted depending on how important they are. This can be done by

an administrator who sets access rights for every user account for example.

But with increasing modularity the number of Web services will simultane-

ously grow and maintenance will become almost impossible. So what really

is needed is some sort of self-organizing mechanism for access restriction.

Section 1.2 describes arising problems when it comes to maintain security in

Web services. It also outlines my approach towards a potential solution.

To continue the scenario above, Bob would have been unable to use the men-

1.1 Motivation 4

tioned Web service in a self-organizing system, because the moment he was

fired, he would have been classified as ’untrustworthy’ by a central entity and

his access rights limited to a innocuous level. Had he still tried to invoke the

Web service it had simply ignored the request or even sent a warning to the

system administrator. Either way Bob would have been unable to cause any

damage to the system.

1.2 Problem Definition 5

1.2 Problem Definition

The main problem is to create a reasonable combination of accessibility and

access restrictions.

A federation of Web services must meet some requirements to retain a use-

ful nature: First, access rights to a single Web service must not be fixed if

the total number of available services grows too large to maintain it man-

ually. A dynamic technique to adjust access levels automatically is needed.

Nevertheless there must be a facility to change access rights manually too.

Otherwise an administrator would be unable to customize access restrictions

if it is necessary.

On the other hand the whole system has to be accessible to every authorized

user. What’s a perfect safe system worth if nobody can use it?

To meet the requirements above a mechanism is utilized that most people

use everyday: Trust.

This approach intends to mimic the decisions taken by humans when it comes

to judging wether an action of an opposing party is beneficial or not. The

goal is to create a federation of Web services where security is assured both

by common safety techniques for transport and privacy and a trust-based

approach for access control.

Creating such a system is not an easy task because systems regulated by

trust-based mechanisms tend to be unstable in long-term view. This would

result in a complete distrust or the counterpart, a blind trust situation. Nei-

ther of this two conditions is suitable for a computer system whose main task

is to provide a public service. This thesis will treat the problem of estab-

lishing trust relationships and evaluate the capabilities of trust-based access

control.

1.3 Structure of this Thesis 6

1.3 Structure of this Thesis

Chapter 2 gives an overview of the state of the art for Web services and a

description of the underlying technologies. Furthermore this chapter explains

how to handle Web services and introduces the fundamental standards such

as WSDL, XML and SOAP.

Chapter 3 keeps track of related work and papers this thesis is based on. It

concentrates on trust and methods for trust management as well as punish-

ment and other principles to keep an already established trust-based envi-

ronment working.

Chapter 4 discusses the design of the trust-aware network environment SimOf-

fice and gives insights into the architectural and design decisions made during

the development of the SimOffice case study.

Chapter 5 focuses on the implementation, describes the tools used and shows

the problems encountered during the development process.

Chapter 6 presents the SimOffice case study in detail. It demonstrates the

finished implementation, provides an overview of the main features, and of-

fers a walk-through for several typical scenarios.

In Chapter 7 an evaluation of the work presented in this thesis and ideas for

further research are given.

Chapter 8 summarizes the contribution of this work and rounds off the thesis.

7

2 State Of The Art Review

This section introduces Web service technologies and explains how to invoke,

publish and provide Web services in a distributed environment. Section 2.7

also gives a short overview of trust-related projects and their significance for

the development of behavior-aware computer systems.

2.1 The Notion of the Web Service

In [39] the definition of a Web service is given as: ”any process that can be

integrated into external systems through valid XML documents over Internet

protocols”. This definition outlines the general idea Web services are built

for.

Unlike services in general, Web services are based on specifications for data

transfer, method invocation and publishing. This is often misunderstood

and when a Web service is mentioned it sometimes refers to a general service

provided on the Web, like the weather forecast on a Web page for example.

The weather forecast is a service and provides its functionality for a variety

of users but unless it comprises an interface to communicate with other ap-

plications via SOAP (see Section 2.4) it is no Web service by definition.

Web services can be seen as software components with an interface to com-

municate with other software components. They have a certain functionality

that is available through a special kind of Remote Procedure Call. In fact

they even evolved from traditional Remote Procedure Calls. The difference

lies in the interface and the method for transportation. Furthermore Web

services can not be viewed or used with an ordinary browser. They require

a unified form of messaging embedded in a XML document. This communi-

cation architecture contains three subcomponents.

• Consumer: This denotes the entity utilizing the Web service. This is

another application in most cases.

2.2 HTTP 8

• Transport: It defines the means for the communication the Consumer

uses while interacting with a service.

• Provider: The service provider.

In order to keep the whole system truly platform-independent, transport in

both direction uses XML. This includes the description of an operation to

execute and the data payload as well. Although transportation is not re-

stricted to a specific protocol or method, HTTP became the most popular

way to pass on XML documents between Web services. The following sec-

tion will start with the first step in our course to understand Web services:

Transportation.

2.2 HTTP

Found everywhere on the Internet, HTTP (HyperText Transfer Protocol)

is a ubiquitous protocol for data connections between Web browsers and

servers.

This protocol is the current standard for transferring HTML documents,

although it is designed to be extensible to almost any document format like

XML for example. HTTP Version 1.1 is documented in RFC 2068 [34].

It operates over TCP connections, usually to port 80, though any other port

can be used. After a successful connection, the client transmits a request

message to the server, which sends a reply message back.

The simplest HTTP message is ”GET url”, to which the server replies by

sending the named document. If the document doesn’t exist, the server may

send an HTML-encoded message stating this. This form of communication

represents a typical request/response mechanism. A client sends a request

for a specific document to the server and waits for a response. If the server

does not respond with the requested document it is up to the client to wait

for the timeout and request the same document again. This loosely coupled

type of communication is very common in client-server architectures.

2.2 HTTP 9

In addition to GET requests, clients can also send HEAD and POST requests,

of which POSTs are the most important. POSTs are used for HTML forms

and other operations that require the client to transmit a block of data to

the server. After sending the header and the blank line, the client transmits

the data.

This way Web services utilize the HTTP protocol to transmit both Data

payload and service request to a Web service. Now it is time to explain how

the transmitted data looks like.

2.3 XML 10

2.3 XML

XML is an abbreviation for Extensible Markup Language [44]. It is designed

to describe data and improve the functionality of the Web by providing more

flexible and adaptable ways of information representation. It is called exten-

sible because its format is not fixed like HTML. Instead, XML is a meta-

language which lets you design your own customized markup languages. A

markup is a mechanism to specify structures within a document, whereas

the way to add markup to a document is defined by the XML specification.

But unlike HTML, XML does not specify semantics or a set of tags. There

is no prescribed method for rendering XML documents, so semantics will be

defined by the application using it or by style sheets.

The following example will show the structure of an XML document and how

data is represented:

<?xml version="1.0" encoding="ISO-8859-1"?>

<note noteID="1">

<to>Bob</to>

<from>Al</from>

<heading>Our dilemma</heading>

<body>Don’t dare to squeal on me man!</body>

</note>

This basic XML document starts with the XML declaration in the first line.

It defines the XML version and the used character encoding. In this case the

document conforms to the 1.0 specification of XML and uses the ISO-8859-1

(Latin-1/West European) character set. It is important to specify the char-

acter set to avoid misinterpretation of the provided data.

The next line describes the root element of the document. Elements are one

way to store data in an XML document. The following 4 lines describe the

child elements of root (to, from, heading and body). By looking at the ele-

ments it is easy to see that the XML document represents a message. The

2.3 XML 11

last line finally describes the end of the root element, completing the note

from Al to Bob. Along with the root element in the second line comes an

attribute called noteID. Attributes are another way to store data and used

to provide additional information about elements, also called meta-data. In

this case it may be used to count the messages sent from Al to Bob.

A list of legal elements that defines the document structure is the Document

Type Definition (DTD). A document with correct XML syntax is called ”Well

Formed” while a ”Valid” XML document also conforms to a DTD.

More and more applications make use of XML to store information because

of its benefits. Some of them are:

• The structure is well-defined and can be passed between different com-

puter systems which would otherwise be unable to communicate.

• Data payload is encapsuled in tags and therefore readable by human

viewers.

• Due to their textual nature, XML-Files are platform-independent.

These advantages made XML the perfect format to communicate between

Web services. To ensure a platform and language independent use for every

Web service, SOAP was developed. It is an XML application with defined

elements and a predefined structure. The following section will treat SOAP

in detail.

2.4 SOAP 12

2.4 SOAP

SOAP, the Simple Object Access Protocol [46] was developed to enable a

communication between Web services. It was designed as a lightweight pro-

tocol for exchange of information in a decentralized, distributed environment.

SOAP is an extensible, text-based framework for enabling communication be-

tween diverse parties that have no prior knowledge of each other [8]. This is

the requirement a transport protocol for Web services has to fulfill. SOAP

specifies a mechanism to perform remote procedure calls and therefore re-

moves the requirement that two systems must run on the same platform

or be written in the same programming language. SOAP also defines data

encoding rules, called base level encodings or Section 5 encodings. It is im-

portant to note that these Section 5 encodings are not mandatory in any

way, so clients and servers are free to use different conventions for encoding

data as long as they agree on format.

All this is done in the context of a standardized message format. The pri-

mary part of this message has a MIME type of text/xml and contains the

SOAP envelope which is an XML document.

The envelope consists of a an optional header which may target the nodes

that perform intermediate processing, and a mandatory body which is in-

tended for the final recipient of the message. This way a firewall can be

adjusted to filter SOAP Messages with an inappropriate header for example.

The Header may also hold digital signatures for a request contained in the

body.

The body contains the serialized payload. For a request this is the method

argument where the surrounding XML tag must have the same name as the

called method. The response body contains the return value if it exists.

Data types are not delineated in the SOAP envelope explicitly so the type of

a result parameter can not be discovered just by looking at the SOAP mes-

sage. Client applications define data types either generically through Section

5 encodings, or privately via agreed-upon server contracts.

2.4 SOAP 13

The anatomy of a SOAP Envelope looks like this:

<SOAP-ENV: Envelope xmlns:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

<t:Transaction-ID xmlns:t="some-URI">

552511951722

</t:Transaction-ID>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:RemoteFunction xmlns:m="some-URI">

<Parameter1>123</Parameter1>

</m: RemoteFunction>

</SOAP-ENV:Body>

</SOAP-Envelope>

In this example, the header contains some additional information enclosed

by the Transaction-ID tag. This ID can be processed by any node before the

final service node to ensure the request’s correctness for example.

The body contains but one method call in the request. The called method’s

name is RemoteFunction whereas the methods parameter Parameter1 is 123.

The parameters type may be of integer type but could be a String as well.

The client application must decide how to handle it.

SOAP messages are fundamentally one-way transmissions from a sender to

a receiver, but they are often combined to implement a request/response

mechanism.

Summing up, SOAP is an XML-based protocol for sending messages and

making remote procedure calls in a distributed environment. Using SOAP,

data can be serialized without regard to any transport protocol, although

HTTP is typically the protocol of choice.

2.5 Publishing and Finding Web Services 14

2.5 Publishing and Finding Web Services

2.5.1 WSDL

With SOAP, a communication between Web services is possible and struc-

tured and each participant knows how to send or receive the corresponding

SOAP Message. The final step to complete the communication architecture

of Web services is to define how to access a service once it is implemented.

This is where the Web Service Description Language (WSDL, [45]) steps in.

WSDL describes services as collections of network endpoints, or ports [45].

Again it is an XML document with a defined grammar where the abstract

definition of endpoints and messages is separated from their concrete network

deployment or data format bindings. WSDL documents use the following el-

ements to describe a Web service:

• Types: A container for data type definitions. In contrast to SOAP,

WSDL can define types using some type system (such as XSD).

• Message: A definition of the data being passed in a single RPC.

• Operation: A description of an action (method) supported by the

service.

• Port Type: A set of operations supported by one or more endpoints.

• Binding: A concrete data format specification for a particular port

type.

• Port: A single endpoint defined as a combination of a binding and the

network address where it can be found.

• Service: A collection of related endpoints.

Now that a Web service can be described completely, the only remain-

ing problem is how a potential user can find the corresponding description

(WSDL document). The following section deals with this last problem.

2.5 Publishing and Finding Web Services 15

2.5.2 UDDI

Universal Description Discovery and Integration (UDDI) provides a method

for publishing and finding service descriptions [41]. It is a directory where

Web services can be registered and assigned to a service provider, therefore

forming a structure that resembles a yellow pages directory. Any user can

browse the directory to search for a desired service and download the descrip-

tion in case of a match. UDDI is an industry initiative (ARIBA, IBM and

Microsoft) to enable businesses to quickly and dynamically find and trans-

act with each other. Searching a UDDI registry can be done by any UDDI

browser or by the registry’s Web interface if present. Microsoft for exam-

ple, provides both a Web interface [32] and the original UDDI registry [31]

to search for an entry. A query with ’weather’ as the search string returns

about 10 results at the Microsoft UDDI registry. The corresponding WSDL

File can be found in the overview document if it was specified.

The UDDI registry is implemented as multiple peer nodes where the reg-

istration across all nodes is replicated by node operators. Again, the data

structure of the registry is XML yet a WSDL document cannot be published

without additional precautions. The structure of a UDDI registry differs

from a WSDL file because UDDI also supports business and service informa-

tion. As a result, UDDI has no direct support for WSDL or any other service

description mechanism. After adjusting the WSDL service description the

UDDI registry contains the services general description, port bindings and

a reference to the original WSDL File as tModels [42]. Figure 1 shows how

this mapping works in detail.

2.5 Publishing and Finding Web Services 16

Figure 1: WSDL to UDDI mapping

Every service interface of a WSDL file is published as a tModel in the UDDI

registry. A service interface includes types, message, portType and binding.

Some elements of the business service are constructed using information from

the WSDL service description. The service name for example, is used as the

name of the UDDI’s business service entry. A complete description how to

map WSDL files to UDDI entities can be found at the IBM developers page

[19].

Publishing the service description to a UDDI directory was the last step in

the process to create a Web service.

2.6 Using Web Services 17

2.6 Using Web Services

To finally use a Web service, several steps have to be performed. Figure 2

shows the order of the events, followed by a description of how to execute

each step.

Figure 2: Invoking a Web service

1. Locating the Web service. This can either be done by browsing a

public UDDI registry or by means of an existing WSDL document. It

is possible to build a private UDDI registry as well. Private registries

are easier to maintain due to their size but it can be hard to discover

the UDDI registry’s position. Sometimes, a company’s main Web page

is linked to WSDL documents, too (see [16]).

2.6 Using Web Services 18

2. Creating the SOAP Message. This is done by the development tool in

most cases. Tools like Weblogic Workshop from BEA or Web service

Development Kit from Microsoft will create valid SOAP messages for

the methods described in the WSDL document or UDDI registry.

3. Transmission. Another advantage of message transport via HTTP is

the service providers firewall setting. If the firewall permits Port 80

(HTTP POST/GET) connections, a SOAP message is able to pass

through as well. If the firewall is unable to filter and process SOAP

requests on the other hand, it leaves the system vulnerable to attackers

who use the Web service’s functionality for a potential attack.

4. Parsing the SOAP message is done by the provider’s Application Server.

The parser decides if the request is valid and decides which procedure

to call.

5. Processing. The service provider calls all necessary procedures, or even

other Web services, to complete the requested task.

6. Return the result. The result is wrapped in a SOAP reply and returned

to the requestor where the client application can parse the message and

evaluate the included data.

2.7 Trust-related Projects 19

2.7 Trust-related Projects

A state of the art analysis on trust-related topics is not easy to perform

because there are no existing standards for this issue at the moment. There

are some related standards worth mentioning though.

One of this standards is the Web Services Trust Language or WS-Trust [20].

This title is a bit confusing since the standard does not describe how to

manage trust in a federation of Web services. It rather describes a mechanism

to obtain a Security Token and establish a trusted relation among two parties.

This relation is of no dynamic nature but of a static one. With other words,

WS-Trust is able to handle complete trust or complete distrust but nothing

in between. A requestor sends a request, and if the policy permits and

the recipient’s requirements are met, then the requestor receives a security

token response. Once a Security Token is successfully obtained and used in

a request, the SOAP Messages of the issuing party are trusted. A security

token can be requested by a SOAP action that is defined as:

http://schemas.xmlsoap.org/security/RequestSecurityToken

while the SOAP action for security token responses on a port is defined as:

http://schemas.xmlsoap.org/security/RequestSecurityTokenResponse

The standard also allows a hierarchical structure to fetch the token for a

specific user as long as the trust chain eventually leads to a trusted root.

This structure represents a very special way of trust propagation which is an

important issue in this thesis. However, WS-Trust is an insufficient tool to

create a trust-aware environment if staggered levels of trust are required.

The second standard worth mentioning is the Web services Federation Lan-

guage (WS-Federation, [21]). It defines mechanisms to allow different secu-

rity realms to federate using different or like mechanisms by allowing and

brokering trust of identities, attributes and authentication between partici-

pating Web services. In a federated single sign on, a user authenticates at a

2.7 Trust-related Projects 20

portal within the federation of Web services. Once he is successfully authen-

ticated, he can use other portals without authentication because the portals

are linked through their identity providers. This way his user data is passed

on from one portal to another. Managing identities is another important

topic treated later in this thesis.

An example for a project dealing with role assignment based on a user’s

behavior is the TERM Server Architecture, done at Purdue University’s

Center for Education and Research in Information Assurance and Security

(CERIAS, [7]). This project implements access control based on direct and

recommended trust.

Furthermore it tries to establish a standard for trust in Computer Systems

and deal with the arising problems for which there is no satisfying solution

at the moment.

21

3 Related Work

3.1 Definition of Trust

Trust, as we know it, is a very important aspect of human life. We use it

every day in one way or another. For instance, we go to work and trust

airplanes not to crash our houses meanwhile, we trust our bank to give us

the money we claim and some even trust their computers to work every time

they switch them on. Trust is central to all transactions, where our own

actions are dependent on the actions of others. Thus, excluding instances

where trust in someone has no influence on our decisions. Trust can be

strong or weak depending on the environment. Morton Deutsch defines trust

as follows [25]:

• If an individual is confronted with an ambiguous path, a path that

can lead to an event perceived to be beneficial (Va+) or to an event

perceived to be harmful (Va-);

• He perceives that the occurrence of Va+ or Va- is contingent on the

behavior of another person; and

• He perceives that strength of Va- to be greater than that strength of

Va+.

In this definition, Deutsch describes an event with a beneficial outcome as

Va+, while a harmful result is entitled as Va-. His view of a trust relation-

ship is such that any event is linked with other events by either conducive

or detrimental paths. To reach another event, one of the available paths has

to be taken. This definition is based on psychology but outlines one of the

most important requirements to establish trust. If the perceived benefit were

greater than the perceived harmfulness then the significance of trust in the

choice would not be that big. In other words, a trust relation requires a

harmful path with more significance than the beneficial one. An employee

3.1 Definition of Trust 22

for example, would not choose to hack a database and switch identity with

another employee if the others salary was less than his own.

A more concrete and mathematical definition is given by Diego Gambetta

[14]:

Trust (or, symmetrically, distrust) is a particular level of the sub-

jective probability with which an agent assesses that another agent

or group of agents will perform a particular action, both before he

can monitor such action (or independently or his capacity ever be

able to monitor it) and in a context in which it affects his own

action.

When we say we trust someone or that someone is trustworthy,

we implicitly mean that the probability that he will perform an

action that is beneficial or at least not detrimental to us is high

enough fur us to consider engaging in some form of cooperation

with him.

Correspondingly when we say that someone is untrustworthy, we

imply that that probability is low enough for us to refrain from

doing so.

Both definitions combined will give the requirements that have to be met

when building an environment based on trust. Gambetta [14] measures trust

with a range from 0 to 1, where 1 represents complete or blind trust and 0

is complete distrust. With that in mind, trust gains the following properties

[10]:

1. Trust is relativized to some transaction. A may trust B to drive a car

but not to baby-sit.

2. Trust is a measurable belief. A may trust B more than A trusts C for

the same business.

3.1 Definition of Trust 23

3. Trust is directed. A may trust B to be a profitable costumer but B may

distrust A to be a retailer worth buying from.

4. Trust exists in time. The fact that A trusted B in the past does not in

itself guarantee that A will trust B in the future. B’s performance and

other relevant information may lead A to re-evaluate it’s trust in B.

5. Trust evolves in time, even within the same transaction. During a

transaction, the more A realizes it can depend on B for a service X the

more A trusts B. On the other hand, A’s trust in B may decrease if B

proves to be less dependable than A anticipated.

6. Trust between collectives does not necessarily distribute to trust between

their members. On the assumption that A trusts a group of contractors

to deliver (as a group) in a collaborative project, one cannot conclude

that A trusts each member of the team to deliver independently.

7. Trust is reflexive, yet trust in oneself is measurable. A may trust his

lawyer to win a case in court more than he trusts himself to do it.

Self-assignment underlies the ability of an agent to delegate or offer a

task to another agent in order to improve efficiency or reduce risk.

Beside the above definitions and restraints, trust is treated differently in some

other sectors. Sociology for example deals with responsibilities and moral in

this context. These concepts, although strongly related to the notion of

trust, are hard to measure or to include in a conceptual form. The ability to

measure trust is the main prerequisite to create a concept of a trust-based

security environment in a network. Gambetta’s definition of trust forms the

basis for this thesis. Deutsch on the other hand, gave a valuable hint on

methods to keep a trust relationship balanced, once it is established. A

balance of benefit and harmfulness is a main criterion for a working trust-

based environment. Section 3.5 covers this subject in detail.

3.2 Establishing Trust 24

3.2 Establishing Trust

Trust relationships are usually based on identity [40]. Information about

an agent’s behavior that was gained earlier can only be applied in later

transactions, if the agent is recognized as the very same. Thus a working

authentication system is essential to establish a trusted environment. This

system can be a private/public key infrastructure, certificates or some other

method to ensure someone’s identity.

This respect is the most limiting part in the adaption of trust in computer

systems. A user who must first obtain a security token, get a private key or

has to request a certificate before he can use a specific Service, is limited right

from the beginning. Unfortunately there is no satisfying work-around for this

problem. The reason is simple. Without any auxiliary form of authentica-

tion, the only way to identify a user is to identify the computer itself. If the

same computer is then used by another person, it is impossible to distinguish

between them. Even a public/private key structure is not a perfect proof for

a given identity out of the same reason. It is still possible for multiple per-

sons to share their access data but it is unlikely enough to be compromised

and therefore a sufficient method to ensure a user’s identity.

In this identity-based trust, a trust relationship will be of a strong or weak

value. The prisoners’ dilemma [24] is a common example for trust relations

and the problem of unknown identities.

Consider two burglars, Bob and Al, got caught by the police. Each has to

choose whether to confess or not and whether to implicate the other or not.

The scenario is as follows [25]:

• If neither Bob nor Al confesses the both will serve one year for carrying

a concealed weapon.

• If Bob confesses and implicates Al and at the same time Al confesses

and implicates Bob the both will serve 10 years each.

3.2 Establishing Trust 25

• If Bob confesses and implicates Al but Al does not confess then Bob

goes free and Al gets 20 years and vice versa.

The payoffs of this prisoners’ dilemma are shown in Table 1. Now Bob and

Al
Confess Don’t confess

Bob Confess 10/10 0/20
Don’t confess 20/0 1/1

Table 1: Prisoners’ dilemma payoff

Al are kept in two different cells, unable to communicate with each other.

They will try to choose a strategy that will minimize the time they have to

stay in prison. Without further knowledge of the others’ behavior, everyone

will choose the so called dominant strategy [24] for their best payoff. If Al

confesses there are two options: If Bob confesses too, he gets 10 years but

if he doesn’t he will be free. If Al does not confess on the other hand, he

has the option of 20 years in the case of Bob confessing and one year if he

doesn’t. So both of them will choose to confess to avoid the worst case, no

matter what the other does and consequently get 10 years each, which is not

the best possible outcome.

In the above example they both could have got away with one year each,

if they had trusted that the other person would not confess. But trusting

the other person in this kind of scenario can be difficult. They could have

used a trusted third party for instance. Maybe a lawyer they both know and

who suggests how both of them benefit most. If the identity of this lawyer

is acknowledged by both burglars, he can establish a trust relation.

Another option would show if Al and Bob knew each other since they were

children. In this case they would know each other well enough to assess

whether the other confesses of not. This relation is called direct trust.

3.2 Establishing Trust 26

If trust between Al and Bob is not high enough, punishment may matter.

Each of them will think twice if it is a wise decision to confess when he gets

punished by the other’s gang afterwards. How punishment influences a con-

tinuum of trust will be discussed in Chapter 3.5.

The following section explains how a trust relationship like this can be ex-

pressed in a more mathematical way and how a distributed system deals with

it.

3.3 A Formal Representation of Trust 27

3.3 A Formal Representation of Trust

3.3.1 Basic Trust

Particular agents or entities are represented by the letters a to z, while each

agent is a member of A, the set of all agents. Furthermore, situations are

represented by greek letters α and ω. A situation is defined here as a specific

point in time relative to a specific agent. Thus different agents at the same

point in time will not consider themselves to be in identical situations [29].

Situations apply to agents and therefore the notation becomes αx to ωx for

situations from the point of view of agent x, for example.

An agent x has a basic trust value Tx , derived from previous experience.

If no previous experience is present an initial trust value is used. This value,

which is dynamically altered in the light of all experience, is used in the

formation of trusting relationships with unknown agents, and is represented

as Tx normalized over (0,1) [29]. It is important to realize that it does not

correspond to the amount of trust x has in any other agent, but only to the

general trusting disposition of x and is less ’fluid’ and changeable than a

trust in any specific agent. This value is important for unknown users and

defines the amount of trust available as a foundation to build up a mutual

trust relationship.

3.3.2 The Trust Value

In [29] the representation of trust is defined as follows:

Given two agents, x,y ε A, to say x trusts y, we write: Tx(y). In addition

to being a representation of the fact that x trusts y, this value is normal-

ized over (0,1), of the amount of trust x has in y. In other words, should

Tx(y) = 1, then x has complete or blind trust in y. The trust value is a view

of a particular agent of another with regard to the trusted agent’s general

capabilities. Furthermore, different situations may require different views

3.3 A Formal Representation of Trust 28

of trust. The amount of trust in a particular agent in a given situation is

represented in [29] as, for example, Tx(y, αx), normalized over (0,1) for x ’s

situational trust in, or reliance on, y to perform correctly in situation αx.

Note the interchangeability of the concepts of situational trust and reliance

here. At present, they are considered to be identical. However, it may be

feasible in the future to separate the two concepts, although closely related,

to reflect more closely the more philosophical views in the subject [29]. For

this work it does not matter if an agent’s decision to cooperate with another

agent is viewed as reliance or trust because it is a question of interpretation.

3.3.3 Importance

The agents’s estimate of how important a situation is to itself is a value nor-

malized over (0,1), represented by Ix(αx). The importance is an estimation

of x on how much situation αx means to it. The importance of a situation

to an agent is useful in determining the amount of situational trust to place

in an agent at any given time. Related to the importance of a situation are

the concepts of cost and benefits pertaining to that situation.

The costs of a situation are measured in terms of the problems associated

with incompetent or malevolent behavior on the part of another agent in a

relationship. This costs are represented by Cx(αx), with a value normalized

over (0,1). These potential costs are relative only to the agent concerned.

As such, the potential costs of untrustworthy behavior remain the same. On

the other hand, the benefits of trustworthy behavior from the agent(s) being

worked with, are represented as Bx(αx), normalized over (0,1).

Take the example of a bank account for a better understanding of impor-

tance and cost/benefit. From the owner’s point of view, transactions from

the account will be far more important than transactions to it. For simplic-

ity, malevolent behavior occurs in the form of unauthorized transactions and

therefore a unauthorized transaction to the account is not harmful to the

account’s owner. The costs for a wrong transactions from the account can

3.3 A Formal Representation of Trust 29

be very high though. The benefits for authorized transactions are similar.

Accepting a incoming transaction will be more beneficial than authorizing

an outgoing transfer.

3.3.4 Acquaintance

Since trust is based on previous interactions and situations to a large extent,

some method of showing whether an agent is known to another or not is

needed. This is referred to as acquaintance, represented as Kx(y). Again,

its value is normalized over (0,1). For simplicity it can also be treated as a

boolean value.

3.4 Rules for Interaction 30

3.4 Rules for Interaction

With this notation we can now express a trust relationship for a specific

agent. The provided equations are neither intended to be a exact represen-

tation of human cognition nor as a final statement how trust works within

agents. They help to make decisions in particular situations.

The ’amount’ of direct trust an agent has in another, depends on the initial

or general trust in that agent and the importance of the whole situation for

the trusting agent:

Tx(y, αx) = f(Tx(y), Ix(αx))

In general, if Ix(αx) > Tx(y), the resulting situational trust will be Tx(y, αx) <

Tx(y). If the importance of a specific situation is higher than the trust value

for the other agent, the direct trust value for this particular action will always

be lower than the initial trust in the other agent. This function calculates a

value based on importance and previous experience only. If this method is

sufficient the value can be obtained with the following equation:

Tx(y, αx) = Tx(y) + (Tx(y) ∗ (Tx(y)− Ix(αx)))

Note that the decision to trust a specific agent may also be related to the

other agent’s competence in the given situation.

In Order to cooperate with agent y, the trust x has in y for that situation

has to be above a certain threshold for this particular action. This threshold

is a function of importance, costs and benefits:

If Tx(y, αx) > Cooperation Thresholdx(αx) ⇒ Will Cooperate(x, y, αx)

with:

Cooperation Thresholdx(αx) =
Perceived Riskx(αx)

Perceived Competencex(y, αx)
∗ Ix(αx)

3.4 Rules for Interaction 31

Here, Perceived Competencex(y, αx) reflects the influence of an agent’s com-

petence, and allows cooperation with an agent which is not trusted very

much, or an agent in an important situation where the agent is known to

be reliable and competent. The Perceived Riskx(αx) represents the agent’s

best estimate of the situation’s potential costs and benefits. Both terms are

explained as follows:

Perceived Competence

If the trusting agent has no knowledge of the other agent, or the situation,

then:

Perceived Competencex(y, αx) = Tx

It is possible for the trusting agent to know the agent to be trusted though.

If so, it may have some form of trust in that agent already. In this case

competence of y is Tx(y) instead of Tx.

Perceived Risk

Risk is a balance of cost, benefits and importance of a given situation. Ac-

cording to Marsh [29], a good estimate for the perceived risk is:

Perceived Riskx(αx) =
Cx(αx)

Bx(αx)
∗ Ix(αx)

The threshold for a successful cooperation is higher, the higher the costs and

the importance of the situation. If different degrees of cooperation are pos-

sible, staggered thresholds according to the different importance values are

imaginable.

The last rule to complete agent’s interactions concerns the propagation of

trust. Marsh [29] did not take a recommendation into consideration, that al-

lows an agent to rely on the trust of a third agent. The idea of small worlds

is a fitting approach to this problem. Based on the Small World hypothesis

3.4 Rules for Interaction 32

[18], members of any large network are connected to each other through short

chains of intermediate acquaintances. In an experiment to prove the hypoth-

esis, packages were sent to 100 random people in the USA with the order to

transfer the package to the original recipient using only people known at a

first-name basis. The astonishing result is one of ’six degrees of separation’,

which states that any two people in the U.S. population at the time are con-

nected by no more than six other people.

This model can be mapped to smaller networks as well. It is possible to rely

on the trust of a third agent which is connected to the trusted agent as well.

If no path to the desired agent can be found, the initial trust value is used

for the first interaction.

To stay true to the notation of Marsh, this recommendation affects the basic

trust of x in z in case agent x has no prior knowledge about z. Provided that

x already knows agent y and y already established a trust relation, its initial

trust can be adjusted as follows:

Tx = Tx +
Tx(y) ∗ (Ty(z)− Tx)

2

This adjustment reflects a recommendation of a trusted third party and in-

fluences the basic trust value of the trusting agent. The assumption is such

that agent y already established a relationship with agent z. How much

influence y ’s assessment of z has on the initial trust of x, depends on x ’s

previous experience with y. The more x trusts y, the more influence will

y ’s recommendation have on x ’s initial trust. This function always takes x ’s

own trust value into consideration. This way x will never completely rely on

another’s recommendation. In the most extreme case, when x has an initial

trust of Tx = 0 and blind trust in y and y has blind trust in z, x ’s initial

trust value is raised to:

Tx = 0 +
1 ∗ (1− 0)

2
= 0.5

3.4 Rules for Interaction 33

This represents a change from a complete distrust situation to a neutral view.

The formulae above are of heuristic nature and intend to provide a useful

tool for the evaluation of situations and cooperative relationships. A more

theoretical trust derivation algorithm is given in [48]. This algorithm deals

with entities and graphs for relations between different agents. It presents a

formalism for expressing trust relations along with an algorithm for deriving

trust relations from recommendations.

The next section finally deals with risk and punishment in an already estab-

lished trusted environment.

3.5 Risk and Punishment 34

3.5 Risk and Punishment

Punishment is introduced to balance a trust-based environment and to keep

it from being unstable. If there is an absence of suitable punishment, that

is incurred loss, for breaking agreements or contracts, individuals will not

possess the appropriate incentives to fulfil them [9]. The result would be

complete distrust for the multitude of the participating agents. Because this

will be generally recognized within the population, agents will not choose

to enter transactions with one another. Thus, what could in principle be a

mutually beneficial relationship will not be initiated. Secondly, the threat of

punishment for errant behavior must be credible, else the threat is no threat.

The enforcement agency itself must be trustworthy and will do what it says

and only what it says [9].

This way punishment can be used to balance an existing system and out-

weigh the costs and benefits a transaction implies. What is punishment for

one agent, represents risk (to be punished) for the other. In a real example

punishment could consist of stakes, an agent has do deposit before it may

enter the trusted environment.

With this in mind, the following sections deal with the attempt to establish

a working model of a trusted environment.

35

4 The SimOffice Concept

With all this theoretical knowledge about Web services, Internet technologies,

trust and the various forms of trust relationships, it is time to make something

useful out of it. This chapter gives an insight into the development process of

the SimOffice environment. It discusses the most important decisions taken

during the conceptual work, and how possible alternatives would look like.

4.1 Prerequisites

4.1.1 Hardware

To participate in the SimOffice environment all a user needs is a network

interface and the proper connection. As long as the transport of messages

based on internet protocols is possible, the basic hardware requirements for

SimOffice are met. Depending on a user’s processing power and connection

speed, the time to complete a single transaction will vary. Different clients

will require different response times. A second to complete a request for

a coffee will be sufficient, but for a file server this is not sufficient at all.

Therefore, performance-related hardware requirements must be chosen for

each client individually.

4.1.2 Software

The biggest benefit of an architecture based on Web services becomes ob-

vious here. A user is not bound to a certain piece of software, to use or

even provide a Web service in this environment. What is needed though, is

a proper way to de- and encode SOAP messages sent via HTTP for exam-

ple. Furthermore, a Web browser will ease the process of discovering a Web

service but is not strictly required. For the architectural design, this creates

the following guidelines:

4.1 Prerequisites 36

• SimOffice-related data transfer should only happen through SOAP

messages. Any form of platform- or even language-dependent com-

munication is a limiting factor and should be avoided.

• Arbitrary ways to establish communication between two points within

the SimOffice environment are not desired and should be reduced to a

minimum amount.

• Potential users should be able to participate in the SimOffice environ-

ment with no or a minimum of prior knowledge.

Section 4.3 explains how these guidelines are carried out in detail.

4.1.3 Availability

Apart from hardware and software requirements, availability is the third big

issue that needs to be addressed before a meaningful concept can be created.

Two options are possible:

• A Web service is always available. In this case, an unavailable service is

considered erroneous. In general the service is expected to reply within

a given time.

• A Web service is available only once or at random times. Unavailable

services are expected and handled by the system.

Web services are in principle designed to be available as long as they exist.

UDDI registries do not comprise a facility to check the availability status of

a once registered Web service. As a result, public UDDI entries are often

obsolete because they are used for testing purposes or not updated properly.

On the other hand it is not mandatory to register every Web service at a

UDDI registry. If the service discovery is solved otherwise, nothing speaks

against the use of Web services in ad-hoc network environments.

4.1 Prerequisites 37

SimOffice will definitely allow ad-hoc connections for the consuming Web

service. Whether a provider of a Web service is treated as an erroneous

node when it does not respond will be discussed in the next section.

Other important issues like scalability, network security or privacy are dis-

cussed later in this chapter because they directly influence the decisions made

during the design process.

4.2 Architectural Design 38

4.2 Architectural Design

As mentioned earlier, the SimOffice architecture consists of two main parts:

1. Providing Web Services: A providing Web service offers the function-

ality within the environment. A file server is a good example. It holds

at least one Web service with different functions for creating, deleting

or moving files. The whole file server is entitled as a node within the

SimOffice environment. One node consists of one or more Web services.

2. Consuming Web services: A consuming Web service represents the

’user’ within the system and is not a constant part of SimOffice. In

the example with the file server, a service that invokes the methods to

delete, move or create a file is treated as a user. A node can be both

consuming and providing Web services at once.

Communication within SimOffice is entirely based on Web services. The

concept presented from now on focuses on trust-based Web services. To

build up an environment based on trust, the first decision is how to pass on

trust-related information between two nodes.

4.2.1 Server Dependence

One method to pass information between two nodes is a direct connection.

This connection is preferably established with a Web service on each side to

stay language and platform independent.

Figure 3 shows how the nodes interact with each other.

4.2 Architectural Design 39

Node 3

Node 1

Node 2

User

SimOffice environment

Figure 3: Architecture with directly connected nodes

The other alternative is a trust server or trust engine that establishes the

connection between two nodes. Again the communication between trust

server and nodes is achieved with Web services.

Node 3

Trust server

Node 2

User

SimOffice environment

Node 1

Figure 4: Architecture with a trust server

Either way, a node must know the correct way to receive or transmit trust-

related data. This fact is designated as trust-awareness in this thesis. With-

out this knowledge, a node cannot join the SimOffice environment. The

advantages and disadvantages of the different architectures are compared in

4.2 Architectural Design 40

Table 2 for a better illustration.

Server-based architecture Server-less architecture

Services are registered at the server,
either in a private UDDI registry or
as WSDL-Files to download.

Service discovery is very problematic
without a UDDI registry or a cen-
tral registration point. Some sort
of broadcast for available services
would be needed.

A provider asks the trust server to
assess a requesting user.

Every service provider must com-
prise an algorithm for judgment and
trust propagation as well as an inter-
face for incoming requests to judge a
third party.

The trust server deals with trust rec-
ommendation and only delivers the
result to the requesting party.

A provider must choose whether to
ask a third party for recommenda-
tion or rely on its own experiences.

The trust server is a single point of
failure. In case of an attack or fail-
ure, the whole system is affected.

Security attacks or possible failures
will only affect one node. The re-
maining system will still be func-
tional.

New user accounts are available im-
mediately after they are known to
the trust server. A possible ’Supe-
ruser’ can be created for all Web ser-
vices by simply responding with the
highest trust ratio of 1.

A distribution system for new user
accounts has to be created. The gen-
eration of a ’Superuser’ is not possi-
ble at a single point. Instead, every
node must provide some sort of facil-
ity to create extraordinary accounts.

Table 2: Architecture comparison

The server-based architecture is the method of choice for SimOffice. Above

all, the possibility to create user groups relatively easy at a single point was

casting for this decision. Furthermore, the trust engine is responsible to

evaluate the trust levels for a user at a specific node, which enables low-

performance nodes like the coffee maker to participate in the environment

too. Additionally, a node’s required trust-awareness is minimal.

4.2 Architectural Design 41

4.2.2 Identification

The next problem is Authentication. Who needs to be identified within

the SimOffice environment? The answer is simple: Everyone that needs to

be judged before access is granted or denied. This includes every Web service

consumer, no doubt about that. For a service provider this is more difficult

to decide. Let us take a look at a possible scenario.

SimOffice is extended with a node that provides functionality for printing

various documents. This node is implemented directly at the printer server

by Betty, one of the company’s employees. When finished, it has to be pub-

lished to the central trust server to join the trusted environment and receive

recommendations for example. Before it is published, it will be checked for

things like program errors and trust awareness by both, the programmer and

the system administrator who is responsible for the trust server. This check

ensures that this new node fits into the existing structure and works as in-

tended. After the new node is approved and added to the environment, it

will remain unchanged until it is unregistered. After a few days, Betty wants

to use the Web Service she programmed herself to print a few pages. Like

every other user she needs to authenticate first before she has access to the

service. Fortunately for her she is a respected employee and her trust level

is high enough for this operation.

It is helpful to look at SimOffice as a distributed application, where every

node represents a set of procedures of the entire application. A node will not

behave in an unexpected way and therefore it is not necessary to judge it’s

intent or identify it like a user. With other words, once a node is success-

fully integrated into the SimOffice environment, it is treated as a trusted,

integral part or the system. If a node uses another node’s functionality, the

connection is represented as a blind trust relationship. This structure makes

it difficult to handle guests on the other hand. If a user would like to provide

his own Web services, their functionality have to be approved by the system

4.2 Architectural Design 42

administrator first. Even then, this ’guest’ would represent a unreliable node

which cannot guarantee it’s availability. Therefore guests or generally ad-hoc

services are not intended to extend the SimOffice environment.

Several ways to finally identify a user are possible. An idea mentioned ear-

lier in this thesis was to use the IP or hardware address of a connection for

authentication purposes. This ’passive’ form of authentication has the big

advantage that no user must be aware of the authentication method. Never-

theless, Section 3.2 explains why this form of identification is not sufficient

in this context.

The most commonly used authentication mechanism is called basic authen-

tication. To gain access to a specific resource, a user must provide an ID

and a password. If the user is authorized to access the requested resource an

answer is sent back. An application of this scheme in the SimOffice environ-

ment would result in the following characteristics:

• A user must register at a central point to create a user ID along with

a password. The trust server can represent this point.

• A potential user must provide his ID and password in every request.

Connections between Web services are of a request-response type and

limited to one transaction. Persistent connections are not supported.

• ID and password are either sent in the SOAP header or as part of the

data payload. In the latter case, both services must provide support

for the additional parameters.

• After receiving a request, the providing node fetches the authentication

data and queries the trust server for the user’s access rights. If the user

is trusted, the proper response is sent back.

This approach is very fitting and meets all requirements to authenticate a

user in the SimOffice environment. Unfortunately there is one catch. User

4.2 Architectural Design 43

ID and password are sent as plain text within the SOAP message. As a

consequence this messages are susceptible to eavesdropper and therefore a

severe security leak. Anyone with access to the SOAP message on its way

from the sender to the receiver would be able to read the login data and use

it to send messages with another identity.

The final step in this evolution of authentication methods is to encode the

message’s data. This leads to the very commonly used private/public key

infrastructure. In this model, the central point of authentication is repre-

sented by a certification authority. Every user has to register there first, to

receive a private key for his user ID. When sending a message, the user ID

has to be sent along with the payload or in the header and has to be encoded

with the corresponding private key. Once received, the public key, which is

accessible at the certification authority, can be used to decode the message

and verify the user’s identity. This way a SOAP message is protected against

eavesdropping as well as message tampering and replaying. This method to

secure SOAP messages is part of the current security standards for Web ser-

vices (WS-Security [22]).

The solution with a private/public key infrastructure requires a high amount
of client awareness. A client must know how to sign a request with the pri-
vate key. This involves some additional expenditure which is the price for
the secure transmission.
The SimOffice case study will use the user ID/password method for au-
thentication simply because it is much easier to implement and the way to
authenticate a user has no influence on the functionality of trust relationships
itself.
Based on these considerations, a SOAP request containing user ID an pass-
word would look like this:

<SOAP-ENV: Envelope xmlns:

SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header>

4.2 Architectural Design 44

<t:user-id xmlns:t="some-URI">Johnny Mnemonic</t:user-id>

<t:password xmlns:t="some-URI">pityyoucanreadthis</t:password>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:RemoteFunction xmlns:m="some-URI">

<Parameter1>123</Parameter1>

</m: RemoteFunction>

</SOAP-ENV:Body>

</SOAP-Envelope>

This completes the basic architecture of SimOffice. What remains is the

question how to discover a Web Service once a user was successfully regis-

tered.

4.2.3 Discovery

Two ways are designated to service discovery. The first one is to make the

WSDL documents of all nodes accessible at a specific point like the certifi-

cation authority. Secondly, every Web service will be published at a private

UDDI registry. What remains is the question how to find the UDDI-registry’s

location or the index page where the WSDL files are published. With the

architecture existing so far, it is now possible to identify the first point a new

participant must access before he is able to use a Web services within the

SimOffice environment. The very first action will be the creation of the user

account. For this purpose a Web interface has to be created where various

information about the new user is gathered. Upon completion of the regis-

tration process, a link to both UDDI registry and WSDL download area is

displayed.

With this last point, the coarse architecture of SimOffice and its most impor-

tant elements is complete. The next section will explain how this fundament

is used to finally establish the desired trust relationships.

4.3 Trust-related Design 45

4.3 Trust-related Design

As the most important part of my thesis, this section covers the process to

assess an identified user based on previous experiences. Some methods and

ideas to balance trust values will be refuted or proven during implementation

and are of a theoretical nature at the moment.

4.3.1 Variables

The whole concept of trust is based on variables. Some of them are related

to a node or a specific Web service, while others evolve in time to represent

a relationship. With the architecture of a central trust server, the question

where to keep these variables comes up.

The situational trust value Tx(y, αx) can be viewed as the key value that is

only needed where an assessment about another party is made. All other

variables, including importance Ix(αx) and initial trust value Tx are stored

at the same position because they are used to calculate the trust value.

It is possible to either manage the variables at the trust server or at the

concerning node itself. The following pros and cons for both methods will

ease the decision which way to use.

Node manages variables: A simple scenario, where the node receives a

single request from an already identified user, would cause the following

order of events:

1. The node receives a request with authentication data.

2. The node sends the data (ID and password) to the trust server

and asks for a recommendation. Along with the user’s data, the

node must also send the situational trust value which is evaluated

by the node itself because all required variables are available.

4.3 Trust-related Design 46

3. The trust server evaluates the request and decides whether other

nodes are required for recommendation. If so, the trust engine

must request every node’s recommendation and wait for their re-

sponses. Upon completion or a predesignated timeout the trust

engine works out the recommendation value and sends it back to

the invoking node.

4. The node receives the trust engine’s assessment and finally grants

or denies access to the requested service.

5. In case of an access violation or misbehavior, the node sends an

additional message to the trust server with information like pa-

rameter or requested function to carry out punishment if neces-

sary. Simultaneously, the node alters the situational trust value

for the requesting user.

An advantage of this method is the independence of the different nodes.

Adjustments of the variable’s values take place directly at the node and

do not concern the trust server, thus making it easier to balance new

nodes without affecting other nodes. This approach involves a large

amount of network traffic on the other hand. Every node that is taken

into consideration for a recommendation causes an additional SOAP

request as well as an additional delay if only one node does not respond.

Furthermore a node must be capable of storing values and calculating

trust values which involves a considerable amount of computing power.

This fact probably rules out the coffee maker as a node.

Trust server manages variables: This approach deals with the mere op-

posite. The trust server manages as many variables as possible thus

reducing the amount of server-node traffic. The same scenario men-

tioned above would appear in the following manner:

1. The node receives a request with authentication data.

4.3 Trust-related Design 47

2. The node passes the identification data on to the trust server,

along with relevant parameters (e.g. the amount of pages to print

at a printer service) and asks whether to carry out the operation

or deny the access.

3. The trust server receives the request, checks if the ID is valid and

calculates the trust value. Because the data of all other nodes is

accessible at the trust server, the trust engine can immediately

calculate a recommendation that takes all other nodes into ac-

count.

4. If the trust value is higher than the threshold, the trust server

entitles the node to carry out the operation and complete the

request. If the trust level is too low, the node simply denies to

complete the request. In both cases the situational trust value

is adjusted by the trust engine as well as possible punishment in

case of a misbehavior.

This scenario makes it plain that the second approach comprises more

benefits. It involves almost no effort for a single node to participate

in the SimOffice environment. All a node has to do is pass on the

request’s data to the server and wait for the permission to carry out

the requested operation. Even the coffee maker will be able to do that.

On the other hand the trust server is both, a single point of failure

and a limit for the environment’s scalability. Depending on the trust

server’s performance, a limited amount of nodes can be handled by the

trust engine at the same time.

The second approach perpetuates the thought of a completely server-based

design and additionally comprises a very convenient way to add new function-

ality to the system if the trust server is designed cunningly. A well-designed

trust engine will assign adequate default values to the variables of a newly

added node. If chosen properly, there will be no need to adjust these values

4.3 Trust-related Design 48

in many cases.

This very important issue is discussed in the next section.

4.3.2 Default Values

Default Values are used for new nodes. As soon as a new node registers at

the trust server, those values are used to initially fill the database. If not

altered afterwards, they still have to represent a meaningful node, whereas

’meaningful’ refers to a node where access rights are neither too low nor too

high. If a user with an average trust level (e.g. 0.5) just manages to cross

the threshold, the system has the desired behavior.

The following listing will give the default values for all variables as well as a

detailed description of their influence on the system’s behavior. A file server

is consulted as an example with the whole file server representing a node,

while three Web services to read, write and delete a single file are the node’s

functions.

Initial trust value Tx: This variable represents the confidence that is put

into an unknown user. The lower this value is, the more the user has to prove

himself before he reaches a high trust level.

This value is global to the whole node and cannot be adjusted for a sin-

gle function of the node. In case of the file server it means every new user

is trusted equally, no matter which function he desires to use. To initially

permit or grant access to the different functions, their threshold levels have

to be set accordingly. For a neutral start the default for initial trust Tx = 0.5.

Importance Ix: As the name implies, this variable is a measure of how

important a node is. Again this variable applies to the whole node and is not

altered individually for different functions. It would seem fitting to apply

different importance values to different functions, like Iread = 0.3, Iwrite =

0.5, Idelete = 0.7 for instance, but this would result in two variables affecting

4.3 Trust-related Design 49

the final accomplishment of the request and therefore distort the character-

istic for a later trust adjustment. First the importance. The lower it is, the

higher will be the situational trust. According to Section 3.4, the value for

situational trust is obtained by the following equation:

Tx(y, αx) = Tx(y) + (Tx(y) ∗ (Tx(y)− Ix(αx)))

This value is then checked against the threshold to figure out whether the

operation is carried out or not. This threshold is the second variable that

influences the final accomplishment of the operation. Both, a low importance

and a low threshold would lead to a very low required situational trust. In

the file server example, user with a low situational trust of 0.3 would still be

able to access the read function if threshold and importance were set to 0.3

too. A file server is more important than that and therefore the importance

to read, write and delete a file are set to 0.7 in this example. A neutral

default is Ix = 0.5 again.

Cooperation threshold, cost and benefit Cx,Bx: The cooperation

threshold appoints how trusted a user must be, before an operation is car-

ried out. It originally is a function of cost, benefit and competence. This is

a fitting approach for equal trust relationships but not for SimOffice where

a node always takes requests but never invokes a service of a client. As a

result, an operation’s benefit is a pointless value. A node will not benefit

from any operation while a certain cost may exist. With the equation

Perceived Riskx(αx) =
Cx(αx)

Bx(αx)
∗ Ix(αx) =

Cx

0
∗ Ix,

the result would be an infinite risk. Therefore, threshold levels are not cal-

culated based on risk but defined with a fixed value for every single function

in the SimOffice environment. The more significant a function is, the higher

the threshold level. A default value of 0.5 for the threshold completes the

4.3 Trust-related Design 50

picture of a neutral assessment of new users, assuring that he is able to access

functions with low and average importance.

The next section finally discusses how to properly adjust trust levels.

4.3.3 Trust Adjustment and Punishment

The adjustment of trust levels is the most important and by the way the

most interesting point of my thesis. The whole concept heavily depends on

the way that a user’s behavior influences the system’s reaction in the future.

It is helpful to visualize how human assessment works and which rules it

follows. Some of the most obvious properties are:

• Trust in a specific agent should never reach the values 0 and 1. Blind

trust and complete distrust are undesirable conditions and have to be

avoided if possible. It would cause the system to snap in a state where

it is impossible to return. Blind trust would never result in misbehavior

while complete distrust represses any chance to prove again.

• Trust alteration is based on importance. The more important the ac-

tion is, the more the agent’s behavior influences future assessments.

• To what extend the direct trust is altered also depends on the quan-

tity of transactions. A single transaction of a common event will not

influence the trust level as much as a transaction of a rare event.

An algorithm has to be found that alters the direct trust value of an agent

according to these properties.

Double-sided exponential approach

This approach uses an exponential function for both malevolent and trust-

worthy behavior. Exponential functions satisfy the requirement to converge

towards a specific value. First we have to set up an equation for both cases

where the function for trustworthy behavior converges towards one, while the

4.3 Trust-related Design 51

function for untrustworthy behavior converges towards zero. Figure 5 shows

the desired shape of both functions.

Figure 5: Double-sided exponential approach

The first equation that is applied in case of a trustworthy behavior is repre-

sented by a simple exponential function:

y = f(x) = e−
1
x ∀x ∈ (0,∞]

To calculate a subsequent value from a given trust level, the following equa-

tions have to be combined:

yinitial = e−
1
x

⇒ ln(yinitial) = −1

x

⇒ x = − 1

ln(yinitial)

4.3 Trust-related Design 52

and

ygood = e−
1

x+c

⇒ ygood = e
− 1

− 1
ln(yinitial)

+c

ygood = e
− ln(yinitial)

c∗ln(yinitial)−1 ∀ yinitial ∈ (0, 1].

The constant c defines the slope and is a function of importance I and

increment s :

c = s ∗ Ix

The function to compute loss of trust in case of an untrustworthy behavior

is very similar:

y = f(x) = 1− e−
1
x ∀x ∈ (0,∞]

Again, a combination of subsequent steps is used to calculate the adjustment

for malevolent behavior:

yinitial = 1− e−
1
x

⇒ 1− yinitial = e−
1
x

⇒ ln(1− yinitial) = −1

x

⇒ x = − 1

ln(1− yinitial)

and

ybad = 1− e−
1

x+c

⇒ ybad = 1− e
− 1

c− 1
ln(1−yinitial)

ybad = 1− e
− ln(1−yinitial)

c∗ln(1−yinitial)−1 ∀ yinitial ∈ (0, 1].

4.3 Trust-related Design 53

The constant c in this equation is the same as in the first equation for trust-

worthy behavior.

With these formulae it is now possible to create an example for a better

illustration. The following conditions are assumed:

• The initial trust level is very low and represents a very suspicious view

for the first interaction, where nothing is known about the agent (Tx =

0.01).

• The importance of the node is average (Ix = 0.5), and increment is set

to s = 0.2.

• Out of 10 accesses, one malevolent behavior occurs.

• 200 transactions are traced.

The result is shown in Figure 6.

Figure 6: Example for double-sided exponential approach

4.3 Trust-related Design 54

This approach gives quite a good account of human trust. In the above ex-

ample, the agent will never achieve a higher trust level than 0.8 and if the

threshold is set to that amount, the operation simply requires a better behav-

ior than one fault out of ten. The higher the trust level is, the more impact a

misbehavior has. Therefore an agent cannot ’gather’ trust for future actions.

One last adaption is possible to reflect human trust even better. With the

formulae used so far, an equilibrium of trustworthy and untrustworthy be-

havior would cause the situational trust to converge towards 0.5. That means

an agent that alternately behaves trustworthy and untrustworthy is seen as

neutral. If this is not intended, the value towards which the situational trust

converges can be adjusted by the use of asymmetric importance values for

the constant’s (c) calculation. The adaption looks as follows:

cgood = s ∗ (1− Ix), cbad = s ∗ Ix

For the implementation of the SimOffice case study, this adaption will be

used because malevolent behavior is expected to be a minority.

4.3 Trust-related Design 55

Single-sided exponential approach

In contrary to the previous method, this approach utilizes only one function

to adjust trust levels. Unlike the double-sided approach, accumulation of

trust is possible here. Although this method is not adequate for SimOffice,

it is noteworthy for other fields where judgement is based on other aspects. A

newly hired employee is the best example that utilizes this way of assessment.

The business management will first assign projects with lower importance to

the new employee to give him a chance to prove himself. If he does it right,

new and more important projects will be assigned to him. If he fails he will

not immediately get fired but assigned less important projects again. If he

continues to fail he will eventually reach a point where he is useless, crosses

the threshold and really gets fired.

Figure 7 shows the desired shape of the function.

Figure 7: Single-sided exponential approach

4.3 Trust-related Design 56

To achieve this characteristic, the following function is used:

y = f(x) = sign(x) ∗ e−
1
|x| ∀ x ∈ R

This functions produces values in an Interval of (-1,1). Normalized over (0,1)

the function is:

y = f(x) =
(sign(x) ∗ e−

1
|x|) + 1

2
∀ x ∈ R

In contrast to the double-sided approach, values at the abscissa are not bound

to a certain limit which facilitates the usage of this method enormously.

Neutral assessment starts with x = 0. For trustworthy behavior, a constant

c is added while it is subtracted for malevolent behavior. The constant c is

again:

c = s ∗ Ix

with this new value for x the according trust value is obtained with the above

mentioned function.

Both presented approaches are expedient in a fitting environment and are

highly flexible to meet the requirements of a given situation.

Another point worth consideration is punishment and what form of punish-

ment is sufficient in the SimOffice environment. One form already exists as

soon as the double-sided algorithm is applied. The trust engine can decide if

a request poses a trust violation which leads to a removal of access rights. If

the trust engine denies to carry out the requested operation, no harm is done

and a decrease of the requestors trust level is a sufficient form of punishment.

A different system is imaginable where an operation is carried out no matter

if it poses an access violation or not. To ensure sufficient punishment a user

can be forced to deposit a certain amount of cash at the certification author-

4.3 Trust-related Design 57

ity upon registration. In case of a malevolent behavior this cash is reduced

according to the importance of the requested action.

SimOffice will not comprise functionality that is carried out by all means

and therefore trust reduction is put down as a sufficient form of punishment.

4.3.4 Recommendation Trust

With the server based architecture of SimOffice, recommendation trust is

relatively easy to cover. Section 3.4 already introduced an algorithm to

adjust trust values according to the experiences of other parties. The original

formula altered the basic trust value according to the amount of trust that

is put into the node which presents the recommendation:

Tx = Tx +
Tx(y) ∗ (Ty(z)− Tx)

2

The SimOffice environment is a little different. Recommendations occur

only between two nodes and their relationship is not expressed by a certain

trust level. Instead the importance of the asked node is used to weight the

recommendation, changing the formula to:

Tx = Tx +
Iy ∗ (Ty(z)− Tx)

2

In this method, where the user is represented by z, it is ensured that a

recommendations from the coffee maker does not influence the initial trust

level as much as a suggestion made by the file server. The proceeding to

finally apply this formula is simple. When a node receives a request from an

unknown user, the trust engine iterates through all other nodes within the

environment. If an iterated node exhibits an existing assessment, the above

function is applied. This way all nodes are taken into consideration.

4.3 Trust-related Design 58

4.3.5 User groups

The final step to complete the entire concept of SimOffice is to create a facil-

ity for different user groups. An administrator for example must be able to

access every Web service, no matter how high his trust level is. On the other

hand there may exist some employees that should never be able to access cer-

tain functionality. Again the server based design comes in handy. After the

situational trust value is calculated (see Section 4.3.2), it is post-processed

by the trust engine. Only two cases are possible:

Superuser: If the user is a member of the superuser group, the situational

trust value is set to 1 and therefore represents blind trust. This user will

always hit the threshold.

Ordinary User: All other accounts are represented by a maximum situa-

tional trust level, to which the situational trust is trimmed if the maximum

is exceeded. Let us take Bob for an example again. He starts as a new em-

ployee and is a member of the user group ’standard’ which limits situational

trust to 0.5. He proves well and although he never behaves in a malevolent

manner he is not able to access Web services with a higher threshold than

0.5. What he does not know is the fact that his trust level for the coffee

maker is already at 0.73. After a year he is promoted to a member of ’valu-

able employees’ where the maximum situational trust is 0.8. Now he is able

to take full advantage of all his good behavior and enjoys the moccachino

which is granted at a trust level of 0.7 or higher.

4.3 Trust-related Design 59

With this last point, the SimOffice design is complete. The trust-related

design presented in Section 4.3 and it’s subsections is a general concept and

therefore not limited to SimOffice or even Web services. Instead, it can be

applied to all kinds of systems where an assessment about another party is

required to grant or deny access to a specific resource. It is required to be

able to identify the other party though. Otherwise the assessment would be

worthless. An adoption of this concept for E-Mails to filter Spam for example

would fail because the origin of an E-Mail is not genuine and therefore not

sufficient for a reasonable judgment. However, an application of this concept

for peer to peer networks would be imaginable. There, the trust level could

be used to distribute bandwidth between multiple users for example.

The next section will discuss how this concept was adopted and implemented

in the course of the SimOffice case study.

60

5 Case Study

5.1 Implementation

This section deals with the implementation of the SimOffice case study, the

involved development tools and the different parts it consists of.

Basically, SimOffice entitles the environment, including the trust server and

all participating nodes. The environment alone is not very ostensive though

and that is why a client application was built to give a visual view of all

provided features.

The back-end part of the case study implements the functionality discussed

in the previous section. It’s external appearance is limited to a set of WSDL

files for all participating nodes, and the corresponding Web services waiting

to accept incoming SOAP messages.

The front-end part of the SimOffice case study is an application which utilizes

the provided WSDL documents to show how a possible client can look like. It

is implemented in a different programming language to demonstrate platform

independency again.

5.1 Implementation 61

5.1.1 Back-end

The Weblogic Workshop 8.1 from Bea Inc. [4] was the development environ-

ment of choice for the SimOffice back-end. It is a very powerful integrated

development environment for Web applications and Web services. Figure 8

Figure 8: Bea Weblogic Workshop 8.1

shows the Weblogic desktop during the implementation phase.

Weblogic is compliant with Java 2 Enterprise Edition version 1.3. Web ser-

vices are developed as Java methods with primitive data types for input and

output. As soon as a Java method is marked as a common operation, We-

blogic accepts SOAP messages with the corresponding parameters to use the

method as a Web service.

5.1 Implementation 62

Weblogic Workshop provides a built-in server which is permanently updated

during the development process. Therefore it is not necessary to separately

deploy the Web services during the debug process. It is possible though,

to compile the complete application to an EAR archive and deploy it to a

production server.

For SimOffice, every node including the trust engine was implemented as

a single Web service with interfaces for every function. The ’maintenance’

Web service for example consists of five methods. To test one of these, We-

blogic provides a test browser to access the Web services without the need

Figure 9: Workshop Test Browser

to implement a test client first. Upon completion of the back-end, a client

application was developed to provide a better visual representation of the

SimOffice environment.

5.1 Implementation 63

5.1.2 Front-end

The client application which represents the front-end of SimOffice is not

bound to a program language or platform. To demonstrate the possibilities

Figure 10: Borland Delphi 7.0

of the SimOffice architecture, the client is implemented in Borland Delphi

7.0 as a single executable.

It is possible to create a WSDL file for every Web service in Weblogic Work-

shop. Delphi on the other hand, offers the facility to import WSDL doc-

uments and create service controls for the contained method descriptions.

Finally making the remote method call can therefore be done in two lines of

code. The only problem here is the server location which is an integral part

5.1 Implementation 64

of every WSDL document because it defines the URL where the Web service

can be reached. When generated in Weblogic, this URL defaults to ’local-

host’ which is inappropriate unless client and server are running at the same

machine. If the server is deployed somewhere else or the client is executed

at a remote computer, the ’localhost’ in the WSDL files must be changed to

the correct IP before they can be used. Figure 11 shows the main screen of

Figure 11: SimOffice client application

the SimOffice client application example.

The following section describes the application’s functioning in detail.

5.2 Sample Setup 65

5.2 Sample Setup

The most descriptive way to explain the finished SimOffice case study is a

detailed example.

For this purpose, Al is consulted one last time. He heard of Locosoft Un-

limited, a company which is looking for a new staff member. He decides to

apply for the work and attends the job interview. Meanwhile Locosoft’s sys-

tem administrator completes the last steps for the setup of SimOffice, their

new trust-based working environment.

5.2.1 Deployment and Server Setup

The SimOffice back-end is delivered in a single Web archive with the name

SimOfficeWeb.ear. Locosoft’s system administrator deploys the application

archive at the local production server. After deployment, SimOffice is ready

to take up nodes. The trust engine offers five methods for server operation:

editOrCreateUser: This method creates a user for SimOffice with a pass-

word and the associated user group. If the user already exists, password

and group are overwritten.

createNode: New nodes are registered with this method. The node has a

unique ID as well as node importance and the initial trust value.

setThreshold: This method sets the threshold for a specific service at a

given node.

getStatistics: This method returns a list of strings with valuable informa-

tion about a node and a specified user.

permissionToComply: This is the most important method. Whenever a

user tries to access a Web service, the trust engine is asked for per-

mission. Trust levels are altered in this method too, depending on the

requested action and the user’s access rights.

5.2 Sample Setup 66

New nodes can now be added to the environment.

5.2.2 Node Setup

To successfully add a node to SimOffice, two steps are necessary:

1. Register the node at the trust engine

To initialize a node at the trust engine, the administrator uses the server’s

Create Node method. It is accessible as a Web service and has to be called,

to store the node’s importance and initial trust values. After this, the admin-

istrator registers every function and the related threshold with the server’s

set Threshold method. To keep track of all values, the administrator de-

cides to create an ’initialize’ method at every participating node. This way,

new functionality can easily be registered at the trust engine, if the node is

extended someday. The initialize method for the Mail server looks like this:

public void initializeNode()

{

enginecontrol.createNode(2,0.4,0.4); // ID=2,I=0.4,T(x)=0.4

enginecontrol.setThreshold(2,1,0.4); // sendmail

enginecontrol.setThreshold(2,2,0.6); // receive mail

}

This node’s ID is 2 and it holds two functions with Thresholds 0.4 and

0.6. The initialize method is not available as a Web service and only the

administrator is able to call it. See Appendix A for a lists of initial node

configuration.

The second step to complete the node setup is to ask for permission every

time a user requests an operation.

5.2 Sample Setup 67

2. Add node awareness

This part is quite easy to achieve. Instead of accomplishing the requested

operation immediately, the node must first ask the trust engine for the per-

mission to do so. For this purpose, the node invokes the server’s permission

to comply method, with username and password of the requestor as param-

eters. If the answer is true, the operation is carried out.

The adjusted nodes are now ready to accept requests and therefore, their

WSDL descriptions can be published. The administrator makes all files avail-

able for download at the company’s Intranet. This way they can be used to

build personal applications that use the provided functions.

5.2 Sample Setup 68

5.2.3 Use Case Scenario

Meanwhile, Al finished his job interview and is hired as a new employee.

The system administrator now creates Al’s user account for the SimOffice

environment. Like every new employee, Al is assigned to the ’standard’ user

group which limits his maximum situational trust to 0.5. Al knows nothing

about this. All he sees is the SimOffice client application that is installed

on his desktop and an e-mail from his system administrator with his access

data. He decides to give it a try, logs in with his user data and tries to

order a black coffee (see Table 6). His request arrives at the trust engine and

initiates the following order of events:

• Al is unknown to the coffee maker. Therefore his initial trust is set to

Tx = 0.3.

• The trust engine asks every known node for recommendation but Al

has not caused any events so far. Thus his initial trust value is not

altered in any way.

• The situational trust for the coffee maker is now computed as:

Tx(Al) = Tx + (Tx ∗ (Tx − Ix)) = 0.3 + (0.3 ∗ (0.3− 0.5)) = 0.24.

• The situational trust value is checked against the threshold for black

coffee which is 0.5. Al is not authorized to order black coffee. The

coffee maker refuses to accomplish his request.

• Al’s unauthorized request demands punishment and so his initial trust

is altered as:

Txbad
= 1− e−

ln(1−Tx)
c∗ln(1−Tx)−1

with c = s ∗ Ix = 0.1 ∗ 0.5 = 0.05

⇒ Txbad
= 1− e−

ln(1−0.3)
0.05∗ln(1−0.3)−1 = 0.2956

Figure 12 visualizes the trust levels for Al within the SimOffice environment.

All Al sees, is that the coffee maker does not trust him. A little confused, he

5.2 Sample Setup 69

Figure 12: Scenario 1 - Initial trust

tries to order a Café Latte and he succeeds since the threshold is only 0.15

for this one.

One month and 31 Café Latte later, Al tries to order a black coffee again.

Now the situation is different:

• Al’s month of good behavior at the coffee maker raised his trust level

to Tx = 0.65.

• Again, the trust engine asks for recommendation but Al has not used

another node yet. Therefore his initial trust value is not altered.

• The situational trust for the coffee maker is computed as:

Tx(Al) = Tx + (Tx ∗ (Tx − Ix)) = 0.65 + (0.65 ∗ (0.65− 0.5)) = 0.7475.

He is a member of the ’standard’ user group, so his situational trust is

5.2 Sample Setup 70

trimmed to Tx(y) = 0.5.

• The situational trust value is checked against the threshold for black

coffee which is 0.5 too. Now Al is authorized to order this coffee and

his request is carried out.

• Al’s authorized request demands reward and so his initial trust is al-

tered as:

Txgood
= e−

ln(Tx)
c∗ln(Tx)−1

with c = s ∗ (1− Ix) = 0.1 ∗ (1− 0.5) = 0.05

⇒ Txgood
= e−

ln(0.65)
0.05∗ln(0.65)−1 = 0.6559

While sipping his coffee, Al decides to try one of SimOffice’s other function-

Figure 13: Scenario 2 - Direct trust

5.2 Sample Setup 71

alities. He connects to the printer and tries to print 15 copies of the latest

joke he received as a junk mail. He submits his request, causing the following

order of events:

• Al is unknown to the printer at the moment. According to Table 7, his

initial trust value is set to Tx = 0.3.

• The trust engine asks for recommendation at all known nodes and

because the coffee maker already knows Al, his initial trust is altered

as follows:

Tprinter = Tinit +
Icoffee∗(Tcoffee(Al)−Tinit)

2
= 0.3 + 0.5∗(0.6559−0.3)

2
= 0.389

• Now the situational trust can be calculated:

Tx(Al) = Tx +(Tx ∗ (Tx− Ix)) = 0.389+(0.389∗ (0.389− 0.5)) = 0.346.

• The threshold to print between 11 and 20 pages is set to 0.3. Without

the coffee maker’s recommendation, Al would not have been able to

print the pages but his good behavior enabled him to do so.

• Al’s authorized request is again rewarded, by adjusting his trust to:

Txgood
= e−

ln(Tx)
c∗ln(Tx)−1

with c = s ∗ (1− Iprinter) = 0.1 ∗ (1− 0.5) = 0.05

⇒ Txgood
= e−

ln(0.389)
0.05∗ln(0.389)−1 = 0.404

Figure 14 visualizes the influence of one recommendation for the printer.

5.2 Sample Setup 72

Figure 14: Scenario 3 - One recommendation

Happy with his funny mail, Al continues his work. After some time, his

superior assigns him the task to access the worker’s database and fire Bob.

For this purpose the administrator is told to assign temporary superuser

rights to Al. Again, Al logs in and accesses SimOffice as he used to do. The

events he causes are a bit different this time:

• Al’s Identity is checked with the provided username and password.

• The trust engine recognizes Al as a member of the superuser group and

immediately grants permission for the requested action. Bob is fired

without further questions.

• No adjustment of Al’s trust value is carried out, because he is unable

to cause malevolent actions and therefore no reward (or punishment)

5.2 Sample Setup 73

is necessary.

Figure 15: Scenario 4 - Superuser

One year passes and Al is promoted to a higher position. At the same time his

SimOffice account is changed to a member of the ’advanced’ group, limiting

his maximum situational trust to 0.7 now. He starts to grow tired of black

coffee and so he tries to order a moccachino. He receives the following result:

• Al’s reputation at the coffee maker is legendary. Over the year, his

initial trust grew to Tx = 0.7.

• The trust engine does not ask other nodes for their opinion because Al

is already known here.

• The situational trust for Al is:

Tx(Al) = Tx + (Tx ∗ (Tx − Ix)) = 0.7 + (0.7 ∗ (0.7− 0.5)) = 0.84. This

5.2 Sample Setup 74

would be enough for the strong mocca, but his user group trims the

situational trust to 0.7 again.

• The situational trust value is checked against the threshold for the

moccachino which is 0.7. Luckily, Al is able to match the threshold

and his coffee is granted.

• Al’s request with the new group membership causes the trust engine

to alter his trust value to:

Txgood
= e−

ln(Tx)
c∗ln(Tx)−1

with c = s ∗ (1− Icoffee) = 0.1 ∗ (1− 0.5) = 0.05

⇒ Txgood
= e−

ln(0.7)
0.05∗ln(0.7)−1 = 0.7043

Figure 16: Scenario 5 - Group dependent trust limit 0,7

5.2 Sample Setup 75

One day, when Al is promoted again and his group membership is changed

to ’full user’, he will eventually be able to order the extra strong mocca.

To take some further advantage of his new position, Al decides to use the

Mail service provided by SimOffice and write a mail. Now he is known at

more than one point within the SimOffice environment which leads to the

following cycle:

• Al never interacted with the mail server before. Therefore his trust

level is set to the initial trust value of Tx = 0.4 for this node (see Table

3).

• The trust engine asks the existing nodes for their recommendation trust

about Al. At this point he is known at three other nodes and every

one is taken into consideration, altering his initial trust to:

Coffee maker: With Icoffee = 0.5 and Tcoffee(Al) = 0.706 Al’s initial

Trust is altered to:

Tmail = Tinit+
Icoffee∗(Tcoffee(Al)−Tinit)

2
= 0.4+ 0.5∗(0.706−0.4)

2
= 0.4765.

Printer: With Iprinter = 0.5 and Tprinter(Al) = 0.803 Al’s initial Trust

is altered to:

Tmail = Tmail+
Iprinter∗(Tprinter(Al)−Tmail)

2
= 0.4765+0.5∗(0.803−0.4765)

2
=

0.5581.

File Server: With Ifile = 0.7 and Tprinter(Al) = 0.7588 Al’s initial

Trust is finally altered to:

Tmail = Tmail +
Ifile∗(Tfile(Al)−Tmail)

2
= 0.5581 + 0.7∗(0.7588−0.5581)

2
=

0.6283.

• The situational trust for Al is:

Tx(Al) = Tx +(Tx ∗ (Tx− Ix)) = 0.6283+(0.6283(0.6283−0.4)) = 0.77.

As an ’advanced’ user, this value is trimmed to 0.7 again.

• The situational trust value is checked against the thresholds for the

operation he requested which is 0.6. The recommendation from all the

5.2 Sample Setup 76

other nodes was so high, that he is instantly able to use all functions

of the mail server.

• Al’s first request at the mail server raised his trust value from initially

0.4 to:

Txgood
= e−

ln(Tx)
c∗ln(Tx)−1

with c = s ∗ (1− Imail) = 0.1 ∗ (1− 0.4) = 0.06

⇒ Txgood
= e−

ln(0.0.6283)
0.06∗ln(0.0.6283)−1 = 0.631

Figure 17: Scenario 6 - Three recommendations

Figure 17 shows the high impact of three recommending sources for the

Mail service. The initial trust value is almost doubled because of Al’s good

behavior at the other services.

5.2 Sample Setup 77

After his good experiences with Locosoft and SimOffice, Al decides to change

his job and gather some additional experience in another company. The day

he leaves, the administrator deletes his user account for SimOffice which in-

cludes the experiences at the nodes he already made. Should Al ever decide

to come back to Locosoft, he would have to start his journey all over again.

But before he decides that, he better gets used to Cappuchino again.

With this last cycle, the most common events happening within SimOffice

were displayed. Based on this experience, the following section will give an

evaluation of the presented work and ideas for further extensions.

78

6 Evaluation

6.1 Concept-related Aspects

With the implemented SimOffice environment, it is obvious that the overall

concept works. A far more important question though is whether the whole

concept even makes sense.

This section mentions the major problems arising in the SimOffice environ-

ment and how a possible solution can look like. Furthermore some of the

major advantages of the whole concept are discussed.

6.1.1 Repeated Actions

The easiest way to trick SimOffice is with repeatedly executed actions. Once

a user has access to a specific action, it is treated as trustworthy behav-

ior when the function is executed. In junction with Web services as the

underlying technology, this fact is like a death blow for a trust-based archi-

tecture. For example, the moment an agent has access to the file server’s

modify-function, he could use the WSDL file and easily write a program that

modifies the same file over and over again. Every access would represent

trustworthy behavior, raising the concerning trust level to values like 0.9 or

higher without even clicking a button. This problem is not a result of the

concept. It is simply caused by a lack of properly rated actions. SimOffice is

purely action based. That means only actions or called methods are able to

influence a users trust level. For some nodes this is actually sufficient. The

coffee maker is a good example. If someone likes to order 1000 Cappuchinos

only to raise his trust level, he may do so. The file server on the other hand

is different. Like mentioned above, it may matter in which time intervals

accesses occur.

The solution for this problem is a proper node setup. Some nodes will demand

to track time to prevent exploiting the trust based system. The printer

6.1 Concept-related Aspects 79

for example may limit it’s printing capacity to a specified amount per day

instead of pages printed at one time. The file server could track the intervals

between file accesses and then conclude if the behavior is trustworthy or

not. Another solution is, to exclude certain functions from awarding and

punishing operations. This primarily affects functions for status retrieval

or polling operations. The functions are still limited by a user’s trust level

and are therefore accessible with a sufficient trust level but invocation of

the operation does not affect the trust level. This way only ’important’

operations are subject to the punishment/award system.

Giving a general solution for this problem is impossible, because every node

needs individual setup to represent human trust as accurately as possible.

6.1.2 Opportunity for Errors

This issue is closely related to the problem above. In an action-based envi-

ronment it is impossible to behave untrustworthy, if the trust level is higher

than the highest threshold. Again, a more accurate node setup will solve this

problem. Even if an agent is able to print 200 pages at once, he can still be

treated untrustworthy when his daily limit is exceeded. A well designed node

always offers a chance for bad behavior as long as the trust level is below 1

(blind trust). The more things influence the final assessment, the harder the

system is to compromise.

6.1 Concept-related Aspects 80

6.1.3 The Situational Trust Value

The situational trust value as described in Section 3.3 has the purpose to

alter the trust in a specific agent, according to the importance of the node.

The function however, does not limit the result to an interval between (0, 1).

As a result, the situational trust which is calculated with every new transac-

tion, distorts the exponential function for reward an punishment.

The trust characteristic looks even better when the situational trust value

is omitted and the direct trust in the agent respectively the recommended

trust value, is used to compare to the threshold instead. The node’s impor-

tance still influences the reward and punishment functions to make sure that

trust levels on more important nodes do not raise as fast as trust levels of

unimportant nodes. This way it is impossible to obtain values above one or

lower than zero.

Omitting the situational trust value for an assessment will be sufficient for

most applications. Which method is finally used, does not influence the

systems behavior. It merely presents an additional way to balance the entire

environment.

6.1.4 Guest accounts

Not implemented in the SimOffice environment is a facility for guest ac-

counts. A guest account would be used for unrecognized usernames and/or

passwords. In this case, instead of refusing access to SimOffice, the user could

be treated as a guest, very similar to the administrator, where the trust level

is a fixed value like 0.2 for instance. Thus, enabling unregistered users to ac-

cess functionality with low priority. SimOffice basically represents a closed

environment with one network and no access control based on location. A

guest account is a convenient way to enable access to the network from the

Internet for example. Every request that arrives at the Web server could be

treated as a guest and therefore grant access to some basic functions.

6.1 Concept-related Aspects 81

6.1.5 Callbacks

More complex operations that need some time to execute are currently de-

signed with an extra function to poll the status. A much better solution for

time-intensive actions is the ’callback’. Callbacks invoke a Web service at the

client application upon completion of the requested action. The advantage

is, that the client application does not block until an answer is received. An

example for a callback is the coffee maker. Right now, it is implemented with

a function to poll the status of the coffee maker. By using a callback service,

the coffee maker would be able to notify the requestor when the coffee is

ready.

Unfortunately, callbacks are not widely supported yet. Delphi for example,

does not support callbacks and therefore a design which includes them would

again limit the usability for some program languages.

6.1.6 Privacy

Another arising question concerns privacy. Users tend to feel offended when

every single action they make is traced by a system administrator. This is

possible in SimOffice too, but a balanced system will not frequently demand

human interaction except for account management. As a result, every user is

judged the same way and it does not matter if the user’s current trust level

is a result of frequent misbehavior or just infrequent usage (with low start

level). So a trust-based access control in fact improves privacy for the users.

6.1 Concept-related Aspects 82

6.1.7 Node extension

Adding new nodes to the system is very easy and does not require a server

downtime. This important point is one of the major benefits of the concept

and a basic requirement for a dynamic system. This feature could be ex-

tended to a system, where nodes are added and removed ad-hoc. The result

would be an environment, where users are able to register their own Web

services at the server and provide their functionality to the network. On the

other hand, nodes would become subject to trust-based assessment too, be-

cause their functionality is not guaranteed and therefore not initially trusted.

The trust engine would react by deleting a node’s experiences as soon as the

node is removed. Upon re-registration, this experiences would have to be

built up again.

An ad-hoc capable system based on Web services causes a serious problem

for the users nevertheless. Building distributed applications based on a sys-

tem with unknown availability is almost impossible. An application using

10 different Web services for example, would cease function if one of the ser-

vices is not functional. This is the reason why SimOffice was built as a static

environment with guaranteed availability of it’s components.

6.2 Future Work 83

6.2 Future Work

6.2.1 P2P Architecture

Many extensions of SimOffice are possible in the future. A big task is to

change the architecture to a pure peer-to-peer environment, where no server

presents a single point of failure. The arising problems with user accounts

and peer awareness are challenging tasks for further research. Two possible

approaches are described below:

Broadcast Messages: A common problem along peer-to-peer architectures

is how to pass on data and reach every node within the system. One

way to replace the trust server, is to transfer trust- and user-related

data with broadcast messages. The node itself judges a requesting

agent based on it’s own experience and recommendation from other

nodes. This method generates a massive amount of network traffic

and is therefore not suitable for large networks. Additionally, the envi-

ronment is restricted to a single network and therefore subject to it’s

boundaries. Only nodes within the same sub net can be addressed.

Node List: Far less network traffic would be caused by a system, where

every node keeps a list of participating nodes. In addition to the algo-

rithm necessary for judgment, every node must also comprise a facility

to decide which nodes to ask for a possible recommendation. Further-

more, an algorithm to find other nodes and make a node known to the

network must be implemented for every agent.

Both approaches require a higher amount of processing power than a server-

based architecture. Furthermore, authenticating a user is still a problem

unless a certification authority is involved. In this case a single point of

failure would still be present.

Although finding a solution for this problems is not part of this thesis, it is

interesting to think about the complexity of these issues.

6.2 Future Work 84

6.2.2 Content-based Judgment

Another idea is to extend the conditions for trustworthy and untrustworthy

behavior to content-related aspects as well. Although it reaches more to the

field of artificial intelligence, it would be an interesting extension neverthe-

less. In such a system, the judgement would be based on the actions taken,

as well as the related content that is produced or consumed. In case of the

File server, a content-aware trust engine would keep track of the files a user

tries to access and decide how to deal with this user. Even if the user’s trust

level is high enough to read files, the trust engine could decide to deny ac-

cess to some files because of their confidential content. Deciding if a file is

confidential or not, is a most challenging task and object for further research.

With all the mentioned aspects, SimOffice is still an innovative way to con-

trol access within a distributed federation of Web services. Although the

implemented framework is far from being perfect, it nevertheless points the

direction for trust-controlled access monitoring in tomorrow’s computer sys-

tems. It’s extendability and ability to adept different environments, makes

SimOffice a fitting solution to secure various kinds of computer systems.

85

7 Conclusion

The SimOffice environment developed in the course of this diploma thesis

represents a trust-based access control for federated Web services. The design

is based on exponential functions to adjust trust levels according to a user’s

behavior. A trust engine was designed that comprises an algorithm to assess

incoming requests and permit or deny access to the demanded resource. A

facility to add, delete and modify users, passwords and group membership

was created.

The implemented case study showed that SimOffice offers an extensible so-

lution for various environments. The concept is independent of platform

and programming language and offers a flexible way to connect applications

through Web services. SimOffice comprises a trust server which dynamically

administrates participating nodes.

The concept describes an innovative approach for automatic access control

and presents two algorithms for trust adjustment.

For future distributed systems, trust will constitute an upcoming method to

build behavior-aware architectures. This new perspective will enable devel-

opers to keep pace with the growing amount of administrative complexity.

86

A Appendix - Node configuration

Variable Value

Initial trust value 0.4
Importance 0.4
Threshold for receive mail 0.4
Threshold for send mail 0.6

Table 3: Mail Server Setup

Variable Value

Initial trust value 0.4
Importance 0.3
Threshold for google search 0.2
Threshold for get index 0.4
Threshold for set index 0.6

Table 4: Web Server Maintenance Setup

Variable Value

Initial trust value 0.5
Importance 0.8
Threshold for list of employees 0.3
Threshold for hire 0.6
Threshold for fire 0.8

Table 5: Workers Database Setup

87

Variable Value

Initial trust value 0.3
Importance 0.5
Threshold for status retreival 0.05
Threshold for Cafe Latte 0.15
Threshold for Cappuchino 0.3
Threshold for black Coffee 0.5
Threshold for Moccachino 0.7
Threshold for extra strong Mocca 0.8

Table 6: Mr. Coffee Setup

Variable Value

Initial trust value 0.3
Importance 0.5
Threshold for one copy 0.1
Threshold for 2-10 copies 0.2
Threshold for 11-20 copies 0.3
Threshold for 21-50 copies 0.5
Threshold for 51-100 copies 0.6
Threshold for more than 100 copies 0.8
Threshold for real print 0.9

Table 7: Printer Setup

88

Variable Value

Initial trust value 0.5
Importance 0.7
Threshold for file list retrieval 0.2
Threshold for modify 0.3
Threshold for create 0.5
Threshold for delete 0.7

Table 8: File Server Setup

REFERENCES 89

References

[1] A. Abdul-Rahman. Supporting trust in virtual communities, 1998.

[2] M. D. Abrahams. Trusted system concepts, 1995.

[3] P. Bateson. The biological evolution of cooperation and trust, 2000.

[4] Bea Systems Inc. Bea Weblogic Workshop 8.1, http://www.bea.com/, 2002.

[5] T. Beth, M. Borcherding, and B. Klein. Validation of trust in open networks,

2000.

[6] M. Blaze, J. Feigenbaum, and P. Resnick. Managing trust in an information-

labeling system, 1996.

[7] Center for Education and Research in Information Assurance and

Security (CERIAS). Formalizing Trust, Fraud, and Vulnerability,

http://www.cs.purdue.edu/homes/bb/NSFtrust.html, 2003.

[8] T. Clements. Overview of SOAP. Java Developers Forum,

http://java.sun.com/developer/technicalArticles/xml/webservices/, 2001.

[9] P. Dasgupta. Trust as a commodity.

[10] T. Dimitrakos. A Service-Oriented Trust Management Framework. In Trust,

Reputation, and Security: Theories and Practice, pages 53–72. Rino Falcone,

Suzanne Barber, Larry Korba and Munindar Singh, 2003.

[11] J. Dunn. Trust and political agency, 2000.

[12] C. English, P. Nixon, and S. Terzis. Dynamic trust models for ubiquitous

computing environments, 1996.

[13] L. Eschenauer, V. D. Gligor, and J. Baras. On trust establishment in mobile

ad-hoc networks, 2002.

[14] D. Gambetta. Can We Trust Trust?, chapter 13, pages 213–237. Basil Black-

well, 1988. Reprinted in electronic edition from Department of Sociology,

University of Oxford.

[15] D. Good. Individuals, interpersonal relations, and trust, 2000.

[16] Google Inc. Google Web Api’s Developers Kit, http://www.google.com/apis/,

2004.

[17] E. Gray, P. O’Connel, C. Jensen, S. Weber, J. Seigneur, and C. Yong. Towards

a framework for assessing trust-based admission control.

REFERENCES 90

[18] E. Gray, J.-M. Seigneur, Y. Chen, and C. Jensen. Trust propagation in small

worlds.

[19] IBM. Understanding WSDL in a UDDI registry, http://www-

106.ibm.com/developerworks/webservices/library/ws-wsdl/, 2002.

[20] IBM. Web Services Trust Language (WS-Trust),

http://www.ibm.com/developerworks/library/ws-trust/index.html, 2002.

[21] IBM. Web Services Federation Language (WS-Federation),

http://www.ibm.com/developerworks/library/ws-fed/, 2003.

[22] IBM. Web Services Security (WS-Security), http://www-

106.ibm.com/developerworks/webservices/library/ws-secure/, 2003.

[23] C. E. Irvine. A national trusted computing strategy, 2002.

[24] W. King. The prisoners’ dilemma.

[25] P. Lamsal. Understanding trust and security, Oct. 2001.

http://www.cs.Helsinki.FI/u/lamsal/papers/UnderstandingTrustAndSecurity.pdf.

[26] N. Luhmann. Familiarity, confidence, trust: Problems and alternatives, 2000.

[27] S. Marsh. Investigating trust between users and agents in a multi agent

portfolio.

[28] S. Marsh. Trust and reliance in multi agent systems, 1992.

[29] S. Marsh. Trust in distributed artificial intelligence. In Modelling Autonomous

Agents in a Multi-Agent World, pages 94–112, 1992.

[30] S. Marsh. Formalising trust as a computational concept, 1994.

[31] Microsoft. Microsoft UDDI Business Registry Node,

http://uddi.microsoft.com/inquire, 2004.

[32] Microsoft. Microsoft UDDI Business Registry Node: Web Search,

http://uddi.microsoft.com/search, 2004.

[33] S. Mishra and R. D. Schlichting. Abstractions for constructing dependable

distributed systems, 1992.

[34] Network Working Group. Hypertext Transfer Protocol – HTTP/1.1,

ftp://ftp.rfc-editor.org/in-notes/rfc2068.txt, 1997.

[35] P. G. Neumann. Practical architectures for survivable systems and networks,

2000.

[36] P. Nikader and K. Karvonen. Users and trust in cyberspace, 2001.

REFERENCES 91

[37] S. Overhagen and P. Thomas. WS-Specification: Specifying Web Services

Using UDDI Improvements. In Web, Web-Services, and Database Systems,

pages 100–110. Akmal B. Chaudrin, Mario Jeckle, Erhard Rahm and Rainer

Unland, 2002.

[38] P. F. Pires, M. R. Benevides, and M. Mattoso. Building Reliable Web Services

Compositions. In Web, Web-Services, and Database Systems, pages 59–72.

Akmal B. Chaudrin, Mario Jeckle, Erhard Rahm and Rainer Unland, 2002.

[39] S. Robak and B. Franczyk. Modeling Web Services Variability with Feature

Diagrams. In Web, Web-Services, and Database Systems, pages 120–128.

Akmal B. Chaudrin, Mario Jeckle, Erhard Rahm and Rainer Unland, 2002.

[40] N. Shankar and W. A. Arbaugh. On trust for ubiquitous computing.

[41] UDDI.org. UDDI Technical White Paper, http://www.uddi.org/pubs/Iru-

UDDI-Technical-White-Paper.pdf, 2000.

[42] UDDI.org. Using WSDL in a UDDI Registry,

http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf,

2000.

[43] B. Williams. Formal structures and social reality, 2000.

[44] World Wide Web Consortium (W3C). Extensible Markup Language,

http://www.w3.org/XML/, 1996.

[45] World Wide Web Consortium (W3C). Web Services Description Language

(WSDL) 1.1, http://www.w3.org/TR/wsdl/, 2001.

[46] World Wide Web Consortium (W3C). SOAP Version 1.2: Messaging Frame-

work, http://www.w3.org/TR/SOAP/, 2003.

[47] R. Yahalom. Trust relationships in secure systems, a distributed authentica-

tion perspective, 1999.

[48] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure systems–

A distributed authentication perspective. In RSP: IEEE Computer Society

Symposium on Research in Security and Privacy, 1993.

[49] Y. Zhang. Intrusion detection in wireless ad-hoc networks, 2000.

[50] L. Zhou. Securing ad hoc networks, 2000.

