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Phantasie ist wichtiger als Wissen.
Wissen ist begrenzt.

Albert Einstein

Imagination is more important than knowledge.
Knowledge is limited.

Albert Einstein
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Abstract

Wood is used in many applications in civil engineering but due to its complex hierarchical
structure was this organic orthotropic material, neglected in research. Even though the
behavior and properties of wood for uniaxial loading states were known in great detail for
a long time, the research necessity regarding the biaxial behavior of the material remain
comprehensive.

The lack of knowledge of biaxial strength properties led to simplified assumptions in
design codes, which did not account for the complex biaxial interaction. With the emerging
of numerical methods like the finite element method and the resulting ability of comput-
ing more complex structures, material models for wood and several other materials were
required, to apply these methods to structures subjected to multi-axial stress states such
as shells or structural details.

Based on biaxial experiments on clear spruce wood in the LR-plane, an orthotropic
single-surface material model for wood under plane stress states was developed. The miss-
ing identification of failure modes by this model led to the description of the biaxial material
behavior by a multi-surface constitutive model by Mackenzie-Helnwein et al. This model
incorporates four state-surfaces, each of which includes modes for the description of post
failure behavior.

This thesis presents this multi-surface material model and its numerical implementation
in finite element programs in a detailed form. Before elucidating the mathematical and
constitutive basic modules needed for this purpose, a short overview on the anatomy and
structure of wood, as well as on the experiments identifying failure modes is given. The
latter are the basis for the model and provide deeper insight in the material and its behavior.

Subsequently, the four state-surfaces and their softening and/or hardening behavior are
discussed. The surfaces for tension both in fiber and in radial direction are characterized
by a brittle failure. The latter surface is a mixed mode tension-shear model. The compres-
sion state-surfaces are characterized by non-linear hardening in radial direction and minor
softening behavior in fiber direction.

The aim of this work is to reveal and resolve problems regarding stability of the nu-
merical implementation of the multi-surface plasticity model. The identification of the
characteristic length as the mathematical cause for some computational instabilities leads
to the development of new algorithms for the description of softening behavior at large
values of this model parameter. These algorithms at hands, the computational stability
can be enhanced. Furthermore, independence of the numerical stability of an implementa-
tion from the characteristic length is an indispensible prerequisite for the applicability of
a material model for large engineering structures.

A stable material model for plane stressed wood with its numerical stability widely
unaffected by variations of material parameters is an important component for a technically
more sophisticated and economic use of the material wood. Hence it will help to increase
its range of applicability as a building material.



Kurzfassung

Holz wird im Bauingenieurwesen in vielen Anwendungen eingesetzt. Aufgrund des kom-
plexen hierarchischen Aufbaus wurde dieses organische orthotrope Material in der modern-
en Wissenschaft vernachlässigt. Obwohl die wesentlichen Eigenschaften und das Verhalten
von Holz unter einaxialen Belastungszuständen seit langer Zeit detailiert bekannt sind, gibt
es noch einen erstaundlich hohen Forschungbedarf über die biaxialen Eigenschaften.

Der Mangel an Wissen über die biaxiale Materialeigenschaften führte zu vereinfachten
Annahmen in Normen, die die komplexe biaxiale Interaktion nicht berücksichtigen. Mit
dem Aufkommen numerischer Methoden wie der Finiten Element Methode und den da-
raus resultierenden Möglichkeiten komplexere Konstruktionen zu berechnen, wurden Ma-
terialmodelle für Holz und andere Materialien notwendig. Diese sind erforderlich um diese
Methoden für Konstruktionen unter mehr-axialen Spannungszuständen, wie Schalen oder
Konstruktionsdetails, einsetzen zu können.

Ein orthotropes Einflächenmodell für Holz unter ebenen Spannungszuständen wurde
von biaxialen Experimenten an reinem Fichtenholz in der LR-Ebene wurde am Institut
für Mechanik der Werkstoffe und Strukturen abgeleitet. Die fehlende Möglichkeit der
Identifikation von Versagensmechanismen mittels dieses Modells führte zur Beschreibung
des biaxialen Materialverhaltens mit einem mehrflächen Plastizitätsmodell von Mackenzie-
Helnwein et.al. Dieses Modell beinhaltet vier Zustandsflächen, die von den jeweiligen
Versagenstypen abgeleitet wurden.

Diese Diplomarbeit beschreibt dieses orthotrope mehrflächen Plastizitätsmodell und
die numerische Implementierung in einem Finite Elemente Programm in detailierter Form.
Bevor die mathematischen und konstitutiven Grundbausteine für diesen Zweck erläutert
werden, gibt eine kurze Übersicht über die Anantomie und Struktur von Holz sowie die
Experimente mit den beobachteten Versagensmechanismen einen genaueren Einblick in das
Material und sein Verhalten.

Anschliessend werden die vier Zustandsflächen und deren Entfestigungs- bzw. Ver-
festigungsverhalten beschrieben. Die Flächen für Zugbeanspruchung in und normal zur
Faserrichtung beschreiben sprödes Zugversagen. Jene normal zur Faser beschreibt ein
kombiniertes Zug- und Schubmodell. Die Druck-Zustandsflächen sind durch eine nicht-
lineare Verfestigung in radialer Richtung und eine geringe Entfestigung in Faserrichtung
gekennzeichnet.

Das Ziel dieser Arbeit ist Probleme in der numerischen Implementierung des mehrflächen
Plastizitätsmodells zu identifizieren und weitestgehend zu beheben. Die Identifikation der
charakteristischen Länge als den mathematischen Grund für einige Instabilitäten bei FE-
Berechungen führte zur Entwicklung von neuen Algorithmen zur Berechnung der Entfest-
igung für große Werte dieses Modellparameters.

Mit diesen Algorithmen kann die Stabilität von Berechnungen deutlich verbessert wer-
den. Weiters ist die Unabhängigkeit der Stabilität der numerischen Implementierung von
der charakteristischen Länge eine Voraussetzung für die Anwendung des Materialmodells
auf, im Bauingenieurwesen übliche, große Strukturen.

Ein von Modellparametern weitgehend unabhängig stabiles Materialmodell für Holz ist
eine nützliche Komponente für eine technisch anspruchsvolle und wirtschaftliche Nutzung
des Materials Holz und daher ein Schritt zur weiteren Verbreitung als Baumaterial.
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Chapter1
Introduction

1.1 Wood as a material

Wood is an indispensable material in the development of mankind and it is the most
important sustainable mass raw material available. It has been used by man as building
material since the rise of civilization and even before this time as energy resource and for
tools. Newer applications use wood as a chemical raw material, such as paper, or as a raw
material for wood composites or other bio-materials.

The extensive use of wood since the beginning of mans history is mainly due to its vast
occurrence, but also to its easy availability and mechanical properties.

Forests occupy approximately one third of the earth’s land area, which makes wood a
natural resource that is worldwide available and regenerates itself constantly in the forests,
faster than it is deforested. Moreover, the primary energy demand for extraction, transport,
manufacturing and processing of wood products is very low.

In two aspects wood can be considered as an intelligent material, first due to

• its ability to detect its mechanical environment and adapt its structure to changing
of stresses (adaptive growth) and second

• as a composite material on the nano structural level.

The material wood can be described as a fiber-composite cellular material with a hi-
erarchical structure. It is optimized on all levels from the nano scale up to the scale of
a whole tree. The cell walls structural skeleton contains cellulose fibers embedded in an
amorphous matrix of hemicellulose and lignin.

The fact that wood is a naturally grown material does not have only positive sides.
Nature is non-linear and not regular. Branches, existent in every tree, lead to inhomo-
geneities in the structure of wood. The appearance of knots in wood is irregular and can
not be predicted. Knots lead to stress concentrations and weaken the material in general.
Besides this inhomogeneity there are several other defects that may occur. Some of this
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wood defects are growing anomalies like pressure wood, cracks in the raw material, distor-
tions, curvatures, insect attack and fungal decay. Correct treatment and processing as well
as a proper usage of wood in constructions can minimize the risk of many of this wood
disadvantages.

1.2 Wood in structures

The origin for the vast use of timber in all kinds of constructions are also its mechanical
properties. The high strength, ft,0,‖ ≈ 70 − 100 N/mm2 for spruce wood (Picea abies),
and low density, ρ ≈ 0.45 g/cm3, result in one of the lowest strength/density ratios for
commonly used materials in civil engineering.

Even though wood is one of the oldest materials used by man it is still of interest for
scientists to analyze and investigate its structure and characteristics. Because of the fact
that wood is a traditional material and is used in everyday life, one tends to overlook its
importance for the future.

Besides the need for a better knowledge of the bodywork of wood to be used in material
science, new cognitions about its mechanical properties are required for evaluating the
possibility of wood usage in different engineering applications.

The use of wood for construction purposes changed and increased significantly with
time and so have the methods to determine the best way of using the material wood
in accordance with its unique (material) properties. As with all building materials the
cost of materials strongly increased in the last centuries, while the cost of labor constantly
dropped. This made a more accurate estimation of the bearing capacity of wood necessary.

The application of numerical calculation methods such as Finite-Element-Method (FEM)
in structural engineering was one of the latest developments to determine structural re-
sponses to extraneous causes. The FEM can be used to assess the stiffness and strength
performance of complicated wood structures close to reality.

In order to use the possibilities of calculating two and three dimensional structures like
plates and shells or to improve structural details, and not depend on one-dimensional mod-
els or one-dimensional approximations, numerical simulation methods made the availability
of an appropriate material model necessary.

For the most common construction materials in civil engineering this models exist
already in several variants. Due to its hierarchical structure and its orthotropic behavior,
material models for wood are more complicated than those for isotropic materials like
concrete and steel. Moreover, the complexity of the needed tests to determine the two- or
even three-dimensional behavior of wood was so high, that only recently some work was
done to develop a 2-D material model for a plane stress state.

1.3 Motivation

The orthotropic behavior of wood is characterized by distinctive difference in the material
properties in the material directions. Mechanical properties like the elastic stiffness as well
as the strength, exhibit a high ratio of their values in grain direction with respect to the
values in radial direction. The difference of the values between tangential (T) and radial



Introduction 1.3: Motivation 3

(R) direction is marginal in comparison to the large difference between the radial and the
grain or longitudinal (L) direction. Not only the material orientation, given here with
respect to the stem of a tree, also the loading direction is essential for the performance of
wood. Tensile and compression strength in general show a large difference in their maximal
values.

Due to this complex behavior, multi-axial experiments are difficult to perform. Tests
for uniaxial states of stress have been performed in a wide range of different setups, but
hardly any test under two- or even three-dimensional loading were accomplished.

The lack of knowledge concerning the biaxial behavior was reduced in the mid eight-
ies when the first tests were performed by Spengler [41], Ehlbeck and Hemmer [10] and
Hemmer [20]. A much more detailed insight in the behavior of wood under plane stress
conditions was given in the nineties by Eberhardsteiner [7], Eberhardsteiner et al. [8, 9]
and Gingerl [17].

They performed more than 400 individual tests with clear spruce wood specimens and
loaded them in the LR-plane with 70 different biaxial stress states. The stress as well
as the strain history was measured for all tests, leading to stress-strain relationships for
biaxially stressed orthotropic material wood. Also in the post-failure regime the stress-
strain behavior was recorded.

The lack of data concerning the interaction of different loading directions led to the use
of the one-dimensional failure strengths, tensile and compressive, for the grain and radial
direction in almost all codes, to define failure in the according direction for two dimensional
stress states. Shear failure was defined as the maximum strength of the according plane.
This failure values are equivalent to a cuboid as failure surface in the stress space. This
box-like failure criterion was used in the works of Francois and Morlier [15] and Adalian
and Morlier [1].

The elliptic failure surface developed by Tsai and Wu [42] for anisotropic materials fits
the failure locations of the biaxial strength tests, as Eberhardsteiner [7] showed. Helnwein
et al. [29] used a two-surface model to fit the same data, by adding a second surface for
compression failure in radial direction. This allowed a better representation of failure in
radial compression direction by implementing a hardening behavior.

A single-surface material model using the failure criterion of Tsai and Wu and imple-
menting softening behavior for four different failure modes was suggested by Mackenzie-
Helnwein et al. in [33]. A single-surface model is incapable of distinguishing between
different failure modes. To accomplish a description of the softening for each mode, the
single-surface was approximated to a multi-surface model. This multi-surface plasticity
surface was developed by Mackenzie-Helnwein [30, 31] and comprises one surface for each
failure mode observed in the biaxial strength tests. It is also based on the experimental
data by Eberhardsteiner [7] and thus takes the coupling effects, observed in this tests, into
account. The identification of a specific failure mode is possible with this model.

This work will perpetuate this four-surface failure model for clear spruce wood under
plane stress conditions with the main focus on the softening model. The non-linear post-
failure behavior was identified for four different failure modes and, with considerations
of microscopic effects, macromechanically interpreted [30]. The detailed description of
the softening behavior and its implementation with regard to a realistic finite-element
discretization are the motivation for this thesis.
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1.4 Scope of work

A general description as well as the mathematical formulation and computational imple-
mentation of the multi-surface failure model developed by Mackenzie-Helnwein [30, 31] is
the content of this work. The emphasis is put on the post-failure behavior of this model,
by focusing on unstable crack initialization. The last chapter is attended to solutions for
numeric algorithms using the softening model.

After this short introduction on wood and its mechanical modeling a short overview of
the anatomy and structure of wood is given in Chapter 2.

Chapter 3 presents the experiments by Eberhardsteiner [7] and the four failure modes
with the micromechanically motivated explanation for their occurrence.

The mathematical tools for the description of the multi-surface model are presented in
Chapter 4. An introduction on mathematical characterization of orthotropy is followed by
the description of material stiffness and plasticity in this chapter. An individual section
on multi-surface plasticity is the last part of this chapter on material modeling.

The material model with its four state surfaces is given in Chapter 5. After the in-
troduction of a generic failure surface in the stress space and generic description of the
softening/hardening state, each surface is described in detail. At the end of Chapter 5 a
visualization of the multi-surface model in orthotropic stress space and a comparison with
other models is given.

In Chapter 6 the numerical implementation in a finite-element program is described.
The implementation of an individual surface, as well as the complete set of surfaces, includ-
ing the accompanying problems at intersections, are shown in different sections. Besides
the numerical formulation of the algorithmic tangent, an approximation for it is also given.

The last Chapter 7 deals with the problems of the numerical implementation of the
softening model. A description for one-dimension is included, to present the problem in
a concise way. The local and global effects in softening are shown theoretically and by
several computations of different examples.

A summary of this work and a view on future developments can be found in Chapter 8.



Chapter2
Anatomy of wood

Wood is an organic material with a complex hierarchical structure. It can be defined as
the tissue which results from the secondary growth in the cambium of a living tree (see
Section 2.1). The material can be described as a cellular composite structure. The walls
of its cells are built up with cellulose fibrils, which are embedded in an amorphous matrix
of hemicellulose and lignin.

The hierarchical structure of wood is optimized on each level. The shape of the whole
tree, the cellular structure, and the construction of the cell wall are examples for this
optimization process of nature.

This chapter contains a short introduction to the anatomy of wood. In the four sections
are four different levels of observation discussed. Starting with the macroscale, the tree
and its structure are described, followed by a description of the wood cell on the microscale
and the nano structure of the cell wall. The last section concerns the molecular structure
of the microfibrils.

The material model described in this work was developed for clear spruce wood, there-
fore the main focus is put on Norwegian spruce (Picea abies). This species is preferably
growing in a climate with high humidity. Its appearance shows slim, tall and straight trees
with a general height of 30 to 50 m and an average diameter of the stem of maximum
1.2 m. In Europe, especially in Austria, it is one of the most common conifer species. Due
to its fast growth spurce is widely cultivated and used as building material in this region.
Other common conifer trees in Austria are pine (Pinus) and larch (Larix ).

Relevant literature on the topic of the anatomy of wood is e.g. [12, 14, 43], whereas a
short overview can be found in [21, 25].

2.1 The tree - macroscale

In this section the structure of wood at the macroscale, i.e. in the range of 10−3 to 10−1

meters, is described.
The natural tasks of the structure that supports the trees greenery are mechanical
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stability, transport and storage of water and minerals. The wood tissue of the tree fulfills
these functions with a radial structure of different layers. The shape of a tree is optimized
to transmit the external loadings in the best possible way to the underground. If the
loading or the underground changes, e.g. after a slope gliding of the soil, the shape is
adapted to the new requirements.

A tree is growing in every part, the stem, the branches and the roots. The origin of this
growth is the cambial zone, which is located between the outer peel of the tree (bark) and
the inner wood tissue. In the cambium, cells in two directions are developed due to growth.
Toward the outside the phloem or bark cells are created, whereas toward the center the
xylem or wood is built. The latter is called the secondary growth. The radial growing
advance in the phloem is smaller than in the xylem.

In the following the components of a stem cross-section are described from the outer
to the inner layer.

• The protective outer layer of the tree is the bark, which is divided into inner bark
(living phloem) and outer bark (dead phloem).

• The cambium is a microscopic layer of living cells, that is not visible to the naked
eye. Cells of the cambium subdivide and thus lead to growth in both, in inward
direction and in outward direction.

• One part of the xylem is the latewood, which grows in summer and provides the
main strength to the tree. It has a high density and is mostly dark.

• The earlywood, the other part of the xylem, is built in spring with lower density
and light color. It provides the main water transport for the tree.

• The pith marks the center of a tree. It has a diameter of a few millimeters and
represents the first cells grown in a tree. In early stages the pith stores and supports
water in its cells for the germs, later the pith stores nutrients or it dies off.

Latewood and earlywood make up for the better part of the stem. They form an annual

or growth ring. In trees that grow in regions with pronounced seasonal climate these rings
are clearly distinguishable. In winter the growth stops completely, until the next annual
ring with earlywood and latewood is added in the following year. This structure adds up
and forms the wood structure, which does not change, once it is grown. The number of
annual rings leads to the age of a tree, whereas by its thickness and structure information
on environmental influences, like climate, is provided.

In old trees heartwood or corewood with its darker and sapwood with a lighter color can
sometimes be distinguished. For spruce the color difference is marginal and thus corewood
and sapwood can not be distinguished with the naked eye. The color of spruce wood is
yellow-white.

2.2 The wood cell - microscale

In the dimension of millimeters down to micrometers the wood structure displays its cellular
formation. Cellular solids are preferred to all-solids in nature and biology not only because
of the lower density. The resulting voids of cellular solids can be used for several purposes.
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In order to fulfill the three tasks mentioned in the beginning of Section 2.1, the cellular
structure is essential for a tree because it provides high strength, while requiring less
material. Moreover, the cells form a sophisticated system for the controlled interchange of
water and minerals and they stores nutrients.

The wood cells are mostly oriented parallel to the stem. The shape of the cells can be
described as hollow tubes with closed ends. A wood cell can just about be seen by the
naked eye, but a clear distinction is only possible with optical help.

The major two different kinds of trees, coniferous and deciduous trees, have generally
different cellular structures, named with the wood types softwood and hardwood, respec-
tively.

The biogenetically younger deciduous trees exhibit a more complex structure with sev-
eral cell types. The main types are fibers, vessels and parenchyma cells. Fibers are long
and slender cells and they mainly contribute to the mechanical strength. The main water
transport takes place in vessels, which are long tubes with open ends to allow flow of the
water. Parenchyma cells store nutrients. All cell types appear in various forms. The most
obvious difference in comparison to softwood are the vessels, which are a magnitude of
order bigger than other cells and thus influence the more or less uniform structure.

Coniferous trees are evolutionally older, nevertheless their anatomy is considerably
simpler and more regular. Spruce wood is ranked among softwoods and serves as basis of
this work.

Softwood consists of only two different wood cell types, which are tracheids and paren-
chyma cells.

Tracheids

Tracheids (prosenchymatic cells) are long and slender tubular cells with tapered ends and
a lumen enclosed. Their cross-section is nearly rectangular or hexagonal.

Tracheids make up approximately 95 % of the total volume of spruce wood, with similar
amounts in other softwoods. Their average length in spruce wood is 2.9 mm and the
diameter varies from 7 to 32 µm depending on the location in the growth ring. Earlywood
tracheids have thinner walls and a large mostly quadratic lumen. The cells become smaller
in radial direction until reaching the annual ring border, where an abrupt stop indicates
the complete growth pause in autumn and winter. This latewood tracheids have thicker
cell walls and thus a smaller lumen. The transition between earlywood and latewood cells
is more or less continuous.

The functions of tracheids are mechanical support and water transport. The spacious
earlywood tracheids are best suited for the transport of water, whereas the latewood of
the annual rings with the thick walls of the tracheids provides strength and mechanically
support the tree. Prosenchymatic cells also exist in radial direction. These ray tracheids
form in combination with the longitudinal tracheids a sophisticated conduction system for
the interchange of water and minerals in the whole tree.

Softwood does not have continuous vessels for the water transport as hardwood does.
Thus the water runs vertical in tracheids and, because prosenchymatic cells are closed
volumina, needs to pass through the cell wall to the adjacent cell, where it continues
vertically. To allow this penetration the cell walls are equipped with bordered pits. Most
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Figure 2.1: Cross-section of spruce wood tracheids: (a) two annual rings, (b)
annual ring border, (c) earlywood tracheids with bordered pits and (d) latewood
tracheids [25].

of the pits are located in the radial cell walls and especially more in earlywood tracheids,
whereas the tangential walls have little or no pits.

The pits are pathways or gaps in the secondary cell wall. A membrane, which is
located between the two cells, consists of the middle lamella and the primary cell walls
(see Section 2.3). The influence of the pits on the mechanical properties of the cell wall
is unknown. In bordered pits the secondary wall is separated from the primary wall and
vaulted as a spherical shell to form the pit chamber. This shell, the porus, has a hole in
the top part, where water can enter into the pit chamber and penetrate through the pit
membrane. The pit membrane in coniferous trees is thickened in the center, forming the
torus. Interchange of liquids takes place in the margo, which is the thin membrane around
the torus.
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In case of a high pressure difference between two adjacent cells the bordered pits serve
as a valve and may close the pit irreversibly. Through stretching of the margo, the torus
is pressed against the porus, thus closing the pit.

Figure 2.1 shows micrographs of a cross-section of spruce wood tracheid cells in different
scales from 1 mm down to 20 µm obtained by Scanning Electron Microscopy (SEM). In
Figures 2.1(a) and (b) the different sizes of cells in the earlywood and latewood as part of a
growth ring are visible. Figures 2.1(c) and (d) show the pits in the cell walls of earlywood
and latewood cells, respectively. In comparison to hardwood the more or less uniform
anatomy of softwood becomes visible from this pictures.

Contrary to other softwood species, spruce wood shows a relatively regular cellular
structure. The cells are aligned in regular lines. The cross-sections of its tracheids are
nearly perfectly rectangular and show rounded edges.

Parenchyma cells

Parenchyma cells are short cells with a more or less flat end and thin wall. They form
a tissue arranged like bricks and are the only living cells in a tree. All other cell types
die soon after their formation. As prosenchymatic cells the parenchyma cells appear as
longitudinal and radial cells in coniferous trees. The main function of ray and longitudinal
parenchyma cells is storage of nutrients. Epithelia cells of vertical and horizontal resin
canals are responsible for the secretion of elements. The wood rays, where parenchyma
cells are agglomerated, seldom run continuously through the whole radius from pith to
bark. More likely they split into single shorter rays.

Parenchyma cells also need pits for water conduction. These simple pits connect living
parenchyma cells with each other. The secondary wall is recessed forming a small canal.
The exchange of plasmatic material takes place at the membrane in this canal, consisting
of the middle lamella and the primary cell wall on both sides.

A combination of bordered and simple pits exists in tracheids that cross radial wood
rays. These half bordered pits are constructed as simple pits to the parenchyma cell’s side
and regular to the adjacent tracheid.

2.3 The cell wall - nanoscale

The cell wall can be described as a layered wall made of high-polymeric organic matter.
The main macromolecular components are cellulose, polyoses or hemicelluloses, and lignin,
which account for approximately 97 to 99 % of the wood structure. The term macromolec-

ular states that the components consist of chains of molecules. The rest are low molecular
weight substances like alcohols and aromatic compounds.

Cellulose is a polymer with a high molecular weight that is built up from only β-D-
glucose and is one of the few natural compounds that maintains the same primary structure
regardless of the organism it originates from, such as wood, cotton, grass or other plants. It
is the main structural component of plant cell walls and accounts for 40 to 50 wt% of wood
cell walls. The long cellulose chains form crystalline fibrils, as described in Section 2.4.
A higher percentage can be found in tension wood of deciduous trees, where only a few
percent lignin is contained in the cell walls.
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Hemicellulose or polyoses also forms molecular chains, which are much shorter than
in cellulose, due to side-groups or branches in the structure. The chemical structure de-
pends on its origin, unlike cellulose. The content of polyoses in the cell wall is about 20 to
40 wt%. It is part of the matrix that surrounds the cellulose fibrils.

Lignin is a three-dimensional amorphous polymer. It is a major component of the cell
wall giving it its final strength. It provides the compressive strength to the walls, thus the
content of lignin in compression wood is higher. Lignin is also part of the matrix in which
the fibrils are embedded.

In spruce the proportion of the three major components cellulose, hemicellulose and
lignin is 40, 31 and 28 %, respectively. The matrix of hemicellulose and lignin is amorphous
and softer than the cellulose fibrils, also called microfibrils. Therefore one can describe
wood as stiff fibers embedded in a ductile matrix forming a natural fiber composite.

The layers of the cell wall mark the different steps in the process of the cell formation.
The layers are arranged concentric and have different chemical compositions and different
orientations of the structural components. In the following listing the different layers from
the outer to the inner are described. This is equivalent to the direction of development of
the layers.

• The middle lamella (ML) is the layer between two adjacent cells, gluing them to-
gether. It is very thin and nearly without cellulose. It consists mainly of hemicellulose
and lignin.

• With the middle layer the form of the cells are defined. The cells now start growing
the primary wall (P). The cellulose fibrils are spread in a random network over this
layer. The primary wall allows an expansion of the cell, which is necessary in this
state of cell growth.

• After the cell expansion has stopped, the secondary wall is built with either two or
three layers. The fibrils in the first two layers are closely packed and parallel to each
other. In the secondary wall layer 1 (S1) the cellulose fibrils are wound around
the lumen in a slight helical slope in several counter-running laminae.

• In the secondary wall layer 2 (S2) the fibrils are also running in a helix form, but
it is characterized by a steep angle. In latewood of spruce the average tilt angle of
the fibrils with respect to the longitudinal cell axis, the so called microfibril angle

(MFA), is about 20◦, whereas in earlywood the MFA was found to be approximately
0◦, i.e. the microfibrils are oriented vertical [26].

• The secondary wall layer 3 (S3) exits only in parenchyma cells. The cellulose
microfibrils are oriented randomly.

• In the last layer, the tertiary wall (T), the cellulose fibrils are oriented more or less
randomly, but have a slightly helical shape.

• In some cells, such as parenchyma, the luminal surfaces, i.e. the inner part of the
cell wall, is covered with warts, forming a warty layer (W).
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In Table 2.1 the average thicknesses of the tracheid cell wall layers in spruce wood are
given with the relative amount of the wall. The S2 layer is by far the prevailing layer of the
cell wall, especially in cells which provide strength to the wood structure. Therefore the
mechanical properties of the S2 layer are dominating the mechanical properties of wood.
The microfibril angle is crucial for the mechanical behavior of the wood. It varies for
different tree species and also within a tree. In compression wood of conifer trees and in
the juvenile wood near the pith the MFA increases.

Table 2.1: Average thickness and percentage of the cell wall layers of spruce
wood (Picea abies) tracheids [13].

earlywood latewood
layer [µm] [%] [µm] [%]

ML/2+P 0.09 4.3 0.09 2.1
S1 0.26 12.4 0.38 8.8
S2 1.66 79.0 3.69 85.8
T 0.09 4.3 0.14 3.3

total 2.10 100.0 4.30 100.0

2.4 The microfibril - molecularscale

Wood is formed by mainly three chemical elements, namely carbon, oxygen and hydrogen.
Because the cell wall accounts for nearly the whole wood material, the composition of the
cell wall with approximately 50 wt% carbon, 43 wt% oxygen and 6 wt% hydrogen, can be
assumed to represent the material wood. This composition is equivalent to 32 carbon, 21
oxygen and 47 hydrogen atoms per unit.

The most important component of wood is the cellulose, which forms the structural
skeleton of nearly every cell wall layer.

Cellulose is a linear polymer with a uniform chain structure. This chain is built by
anhydroglucopyranose units, which are bound together with β-(1→4)-glycosidic link-
ages. One molecule of water is eliminated by the linkage of carbon 1 and carbon 4. Two
anhydroglucopyranose units form a cellobiose unit with a length of 1.03 nm. These cel-
lobiose units built up long cellulose chains, which are characteristic for wood. Only the
β-glycosidic linkage with the β-position of the OH-group at carbon 1 allows the formation
of elongated chains, whereas other glycosidic linkages would lead to different polymers.

The size of these cellulose chains is given by the ratio of the molecular weight of the chain
to the molecular weight of the cellobiose unit and is defined as the degree of polymerization.

The cellulose chains are bound together and stabilized within itself by H-bounds at
the OH-groups of each unit, hence forming a supramolecular structure. These H-bounds
are responsible for the chemical and physical properties of cellulose. The two different
types of H-bounds are the intramolecular and the intermolecular H-bounds. The first are
bounds within a chain between two units and define the stiffness of the chain and the
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orientation of the chain in the lattice of the crystallites. The latter connect the chains with
each other and are the reason for the formation of fibrils and their crystalline structure.

The formed crystals are native cellulose or cellulose I. Its crystalline structure is
constructed from monoclinic unit cells. A monoclinic cell of the crystal lattice has the form
of a cube with one angle β = 84◦ not being a right angle. The dimensions of this cube are
a = 0.82 nm, b = 0.79 nm and c = 1.03 nm, where the angle β is defined between a and b.
The length c is oriented parallel to the longitudinal axis of a fibril.

An elementary cellulose fibril is built up by elongated cellulose chains, which form
a crystal lattice. Its diameter is about 2.5 nm in spruce wood. The dimension of the
crystalline region is with approximately 2.2 nm perpendicular to the fibril axis slightly
smaller than the fibril diameter. The length of a crystal of about 11 nm is two or more
orders of magnitude smaller than the length of a fibril.

The elementary cellulose fibril are combined to form a bundle of fibrils. This larger
fibrils are the microfibrils, which are, embedded in a matrix, the basic module of the cell
wall and hence the wood.



Chapter3
Biaxial experiments

The material model for wood described in this work is based on biaxial experiments per-
formed by Eberhardsteiner [7]. The goals of the research project conducted by Eberhard-
steiner [7], Eberhardsteiner et al. [8, 9] and Gingerl [17] was to investigate the mechanical
behavior of spruce wood under biaxial loading oblique to the fiber direction. The stress-
strain relationship in the pre-failure domain and the failure location need to be known for
arbitrary strain paths in order to develop a constitutive model.

For this type of loading there was a significant lack of knowledge, resulting in an insuf-
ficient variety of constitutive models for the orthotropic material wood. The orthotropic
properties of wood arise from its hierarchical structure, as described in Chapter 2 and the
resulting fiber alignment. The uniaxial mechanical behavior is also strongly influenced by
the orthotropy, i.e. the grain angle.
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Figure 3.1: Uniaxial strength of wood [23] and biaxial strain state [7].

Figure 3.1 shows the decrease of uniaxial strength properties with increasing grain angle
ϕ with respect to the loading direction. The appearance of shear deformation, that occurs
at uniaxial loading of orthotropic materials oblique to the principal material directions is



Biaxial experiments 3.1: Equipment and test procedure 14

also shown in this figure. The decrease of tensile strength of nearly 50 % in case of only
15◦ deviation of the fiber to the loading direction, is much more significant than the one
of the compressive strength.

To investigate the behavior of wood under biaxial loading conditions 439 individual
displacement-driven biaxial tests were performed on cruciform spruce wood specimens at
the Institute for Mechanics of Materials and Structures of Vienna University of Technol-
ogy. A special servo-hydraulic testing device for biaxial loading of anisotropic materials
was used, which also measured the applied forces. The strain history was derived from
analyses performed with a 3D Electronic Speckle Pattern Interferometer, with which three-
dimensional contactless full-field deformation measurements were carried out.

This chapter gives an overview of these experiments and the obtained results. A detailed
description and all test results can be found in [7]. In the last section the observed failure
modes and their macroscopic interpretation are introduced.

3.1 Equipment and test procedure

Testing device

The used biaxial servo-hydraulic testing device was developed for this experiments. The
specimens were mounted in the biaxial testing device by means of 12 steel bolts, which
acted as points of application of the loads. Figure 3.2 shows the bolts of the testing device
with the specimen attached to them. At each loading point two loading axis were attached
with an angle of approximately 45◦. Each of the 24 loading axes consists of a load cell, an
inductive displacement transducer, a piston rod and a hydraulic cylinder.

Figure 3.2: Spruce wood specimen in biaxial testing device [7].

Each hydraulic cylinder could apply a tensile or compressive force of ≈14 kN. The
accuracy of the force measurement was 0.04 kN.

The testing machine featured, as mentioned above, a displacement-driven loading appli-
cation. Each load application point is individually movable in two directions, thus in-plane
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tensile and compression forces could be applied. The loading axes had a mobility of ±5 mm,
with an absolute positioning accuracy of 2.4 µm.

Specimen

The shape of the specimen was determined and optimized by means of finite element
analysis, to accomplish the requirements for a homogeneous strain and stress state within
the measuring area. The specimen was a full symmetric cruciform plate as shown in
Figure 3.3.
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Figure 3.3: Cruciform specimen with applied displacements [7] and coordinate
system {1;2} and material coordinate system {L;R}.

At the loading points steel plates were glued to the wooden specimen to prevent fracture
in these regions. The testing and measuring area was a wood area located in the middle
of the specimen with a dimension of 140 mm times 140 mm and a thickness t of 4.5 mm.
At this area the specimen was slimmer, to ensure failure initiation there. For biaxial
compression tests the testing area was slightly thicker with t = 7.5 − 9.5 mm to prevent
buckling.

The principal directions of stress had to correspond with the horizontal and vertical
direction of the specimen in order to avoid stress and strain concentrations in the corners of
the measurement area. The specimen was antisymmetrically loaded at the loading points.
A shear force was applied to achieve a principal stress state in the testing area.

In a material test the purpose of the specimen is the simulation of a infinitesimal
element of the material wood. To accomplish this the specimen had to be technological
homogeneous. This required constant distance of annual rings, parallel and straight annual
rings, no inclusions, no defect- or rotary-growth and no knots or other failures. The
obtained material is also called clear wood.
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Deformation measurement

The deformation analysis system used for this experiments had to meet two major re-
quirements. The mechanical homogeneity of the strain field needed to be controlled in
the measuring field until failure was reached. Besides this qualitative requirement, the
quantitative requirement was to measure the displacement and strain field until failure.

The used deformation measurement system was a 3D Electronic Speckle Pattern Inter-
ferometer (3D ESPI) system. The advantages of such a system are

• 3D measurement, i.e. all components of the deformation vector and not only a scalar
value,

• full-field measurement in all points of the testing area, leading to a 2D displacement
field,

• contactless measurement, i.e. without any mechanical interaction with the specimen,

• high accuracy, at least in the µm-range, and

• measurement in real-time; measuring time for every load increment only a few sec-
onds.

Further details on this method and a description of the implementation for this testing
configuration can be found in [17, 7].

3.2 Experimental implementation

As most used in uniaxial tests, the chosen material parameters of the investigated clear
spruce wood were the density ρ and the moisture content u. After a test the volume and
the mass of a special wood specimen were determined and the density was calculated. The
specimens were stored in a climatic chamber at 20 ◦C and 65 % relative humidity, leading
to a constant moisture content of u = 12 %. Keeping the moisture content constant keeps
also the influence of this parameter on the strength properties constant. Therefore each
test was performed within one hour.

The experimental parameters, loading direction (defined by ϕ) and loading ratio κ,
varied for each test. The loading direction is defined by the grain angle ϕ, which is defined
as the angle between the applied first principal stress direction and the fiber direction. Five
different fiber directions were chosen for the experiments: ϕ = 0◦, 7.5◦, 15◦, 30◦, and 45◦.
The loading ratio κ describes the biaxial loading conditions. Its definition is κ = Dh : Dv,
where Dh and Dv are the horizontal and the vertical displacements in certain loading points
as shown in Figure 3.3. This ratio is approximately equivalent to the ratio of the normal
components of the strain state, ε1 : ε2.

The specimen were loaded step-wise until failure was reached. The displacement in-
crements varied between 4 and 10 µm. After reaching the load-plateau a deformation
measurement was performed and the arose differences were analyzed.

Displacements and forces were measured and from these the strain and stress compo-
nents computed. Numerical differentiation of the measured incremental displacements and
summation over all load steps lead to the strain field.
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It was assumed that when the testing area in the middle of the specimen was not under
a homogeneous state of deformation, the influence of the loading zones was significant with
respect to the observed forces at the loading points. Thus, failure was defined as the first
extreme value of any of the two measured stress values σ1 and σ2. It occurred in most tests
approximately after 500-1000 displacements steps.

3.3 Test results

The main goal of the research project [7] was to describe the biaxial stress-strain relation-
ship of clear spruce wood and to distinguish failure modes and their occurrence. To inves-
tigate the unloading behavior before reaching failure a small amount of the total number
of proportional tests was performed with loading-unloading cycles at different load levels.

The data is given in terms of the independent variables σ1, σ2 and ϕ. The coordinate
system {1;2} in which the data is given, is aligned with the horizontal and vertical axes
of the specimen (see Fig. 3.3). The formulation of the material model will be stated in
terms of the stresses for the material directions longitudinal (L) or grain and radial (R).
The transformation of stress components is given as

σL = σ1 cos2 ϕ+ σ2 sin2 ϕ,

σR = σ1 sin2 ϕ+ σ2 cos2 ϕ, (3.1)

τLR = (σ1 − σ2) sinϕ cosϕ.

For every test configuration {ϕ, κ} six proportional tests were performed. Figure 3.4
shows the complete set of tests for grain angles ϕ = 0◦ and ϕ = 45◦. The axes aligned
with the horizontal and vertical axis 1 and 2 of the cruciform specimen, as indicated in
Figure 3.3. Their values are the principal stresses σ1 and σ2.

The stress path of tests with tension in radial direction are linear, whereas wood under
compression in radial direction shows a non-linear elastic stress-strain relation.

Each line represents the evolution of the principal stress ratio σ2/σ1 according the given
loading ratio κ. Such charts were created for all five different fiber directions and are con-
tained in [7]. The stress-strain relationship for every test were evaluated and documented
in [7]. Four characteristic stress-strain relationships are shown in Figure 3.5.

In Figure 3.4 the material failure for each test is indicated with a symbol at the end of
each line. This failure points form an ellipse in the stress space defined by the principal
stress axes σ1 and σ2. For different grain angles ϕ this ellipse rotates, as it can be seen by
comparing the two graphs in Figure 3.4. This ellipses describe the strength of clear spruce
wood.

Eberhardsteiner [7] used an ellipse described by a second order tensor polynomial ac-
cording to Tsai and Wu [42] to fit this data. Figure 3.5 shows three elliptic failure en-
velopes. Each data point in Figure 3.5 indicates material failure of a test. The data points
for ϕ = 0◦ are plotted in a σL − σR graph, because for this grain angle the stresses in
material direction σL and σR are equal to the principal stresses σ1 and σ2, respectively. By
transforming stress states with ϕ 6= 0◦ in material coordinates, these data points can be
used for illustrations in a σL − σR diagram. The blue failure envelope is based on the data
points ϕ = 0◦, whereas for the red and green ellipses experimental data of all grain angles
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Figure 3.4: Biaxial stress-strain curves and failure positions for fiber directions
ϕ = 0◦ and ϕ = 45◦ [7].

up to ϕ = 45◦ were considered. The green envelope was computed neglecting extreme
values of each test configuration.

The scatter of the data points is only larger in the fiber tensile regime. The fiber
compression regime with mixed loading shows very little scatter.
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Figure 3.5: Elliptic failure envelopes and stress-strain curves with fracture type
for characteristic loading types [30, 31].

3.4 Failure modes

Four different failure modes can be distinguish from the biaxial experiments. This failure
modes occur in the tension and compression regime in the fiber and radial direction, re-
spectively. Figure 3.5 shows a picture of the specimen after failure for every failure mode
and a characteristic stress-strain relationship of a test exhibiting this behavior.

This section describes the four identified failure modes, their macroscopic characteri-
zation and a micromechanical explanation for their occurrence [30, 31]. The constitutive
model, presented in detail in Chapter 5, describes this modes mathematically with four
different failure surfaces.

(a) Fiber tension

This mode can be described as brittle tensile failure in fiber direction. As already mentioned
above, the strength shows a large scatter for this mode, that only occurs for small grain
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angles. This failure type is indicated by a cascading crack pattern on the macroscopic
level. A reason for this crack pattern can be found on the microscopic scale in the strength
of the cells [40].

The tensile strength of the fibers and the shear strength between the cells is approxi-
mately the same. After the rupture of the weakest fiber, the crack initially perpendicular
to grain turns parallel to the fibers. Such a shear crack runs between the cells or within
a cell wall. The shear crack evolves further until it reaches a weak cell and changes back
to a crack in radial direction. This change between fiber rupture and inter-cell shear fail-
ure is indicated in Figure 3.6(a). The boundary between earlywood and latewood is most
vulnerable to a shear crack.

The large scatter in the tensile strength can be explained with the statistical variation of
the cell strength in the specimen and the importance of the weakest fiber for the evolution
of the crack. The observed cascading crack pattern follows the weakest cell in a cell
compound and combines shear failure with tensile failure of a fiber. Thus a description of
this failure type on the macroscopic level is not directly possible.

The tensile tests in fiber direction described in this chapter show a brittle failure be-
havior with immediate loss of strength and without any softening, as observable in the left
stress-strain relationship in Figure 3.5(a). On the contrary experiments on single cells or
on cell compounds with a few fibers show a softening behavior [11]. Other tests on the
micro scale show a dominant recovery mechanism that reforms the amorphous matrix be-
tween the cellulose microfibrils within the cell wall, maintaining its mechanical properties.
This plastic response was found to be similar to that effected by moving dislocations in
metals [22]. Due to the size of the specimen this effect is not visible on the macroscale.

shear
failure

inter-cellular

growth rings

fiber rupture

fracture zone

cell wall buckling

cell cap failure

wood cell

wood cell

fiber tension fiber compression

(b)(a)

Figure 3.6: Tensile and compression failure modes in fiber direction.
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(b) Fiber compression

Compression failure in fiber direction is signalized by the development of bands of damaged
cells. This cell damage observed at a microscopic scale results from either inelastic cell
wall buckling or brittle failure of the cell caps [16], as indicated in Figure 3.6(b). The
combination with shear loading will more likely lead to cell wall buckling, but within a
characteristic macroscopic reference volume a combination of these two failure types will
be dominate. This is due to the variability of the micro structure, like different cell size
and wall thickness, and chemistry.

The stress-strain curve for fiber compression in Figure 3.5(b) shows a minor non-
linearity before failure and a softening after reaching the maximum strength. The initial
strength drops off after failure, but stays at a strength plateau as observed in uniaxial
tests. This strength degradation amounts to 20 to 30 % and it is not as strong as in the
tensile regime. The strength degradation is caused by the before mentioned microscopic
cell damage that occurs in a local region - the crushing band width - and is dependent on
the fracture toughness.

At large compressive strains of about 50-60 % a sharp increase of the fiber compression
strength occurs. This effect is called densification and leads to a significant increase in
strength, while the material becomes nearly rigid. Densification causes a homogeneous
deformation on a macroscopic level and is independent from the fracture toughness and
the size of the crushing band width.

(c) Radial tension

The tensile failure perpendicular to grain and mixed mode failure is also brittle, as already
described for fiber tension (see the stress-strain curve in Figure 3.5(c)). The failure pattern
shows distinct straight cracks parallel to the fibers. The observed crack patterns showed a
combination of mode I and mode II crack development. Loading at any grain angle may
lead to this failure type.

If a developed crack is loaded with a compressive normal stress, shear stress can be
transfered by friction over the two crack surfaces. This shear stress is smaller than the
initial shear strength and decreases until it reached a residual value.

(d) Radial compression

The failure behavior for compressive loads perpendicular to the fiber direction can be
described as ductile. A linear elastic behavior in unloading-reloading cycles and hardening
plasticity can be observed in the right stress-strain relationship of Figure 3.5(d). The
stiffness degradation in the different unloading-reloading cycles is negligible for the tested
range of small strains.

The non-linear behavior, observable in the stress-strain curves, emanates from inelastic
deformations during loading. The crushing of single cell rows, observed on the microscopic
level, leads to homogeneous plastic deformations on the macroscopic scale. This is due
to the repeated micro structure of the annual rings and the size of the specimen, which
contains several annual rings.
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−σR

−εR

Figure 3.7: Failure mode for radial compression.

Thus this is the only mode were yielding-like deformations are observable. This effect
can be seen in the stress-strain curve of Figure 3.5(d). It is similar to the saturation type
hardening in metal plasticity.

Always a full cell row crushes with increasing plastic deformations, as indicated in
Figure 3.7. The weakest rows are the ones in the early wood of the annual ring. Higher
stress leads to the collapse of smaller and stronger cell rows until reaching the latewood
rows. When the pore space has reached a minimum the compressive strength steeply
increases [16]. The last phase is called densification and occurs as in the fiber direction
at large compressive strains. The deformation process for radial compression is shown in
Figure 3.7 for an elastic, a plastic and a point with densification.



Chapter4
Material modeling

In this chapter, we will develop the basic ingredients for successful constitutive modeling of
orthotropic materials. In the first section the mathematical description of orthotropy and
the difference between the invariants of isotropic and the orthotropic tensors are given. Sub-
sequently, the derivation of the elasticity tensors for isotropy and orthotropy, respectively,
is elucidated. Finally, the theory of plasticity is discussed. Besides the main compounds
of this theory for a single yield-surfaces, the foundations for multi-surface plasticity are
given.

4.1 Orthotropy

The word orthotropy is a compound of the words orthogonal and anisotropy. A material
is isotropic if it does not possess any distinct preferred directional behavior. Otherwise, it
is orthogonal anisotropic. A special case of anisotropy is orthogonal anisotropy, or short,
orthotropy. Orthotropic materials possess three mutually perpendicular symmetry planes.
Examples for orthotropic materials are wood, ligaments, muscles or reinforced concrete
plates.

The way how an orthotropic material behavior effects the solution strategy for a prob-
lem in theory of elasticity is illustrated in Figure 4.1. From a change du of the global
displacement field u follows the local change dε of the strain from the rate-kinematic re-
lations. A constitutive law, that connects the internal strain dε with the internal stress
change dσ, is obtained from material-tests. The material behavior, such as the orthotropy,
are represented in the elastic stiffness tensor C. By formulating the equilibrium of a sys-
tem, the internal and external forces are to be balanced with each other. A free body
diagram, the principal of virtual work, and the minimum of potential energy are the three
possibilities of statics to formulate equilibrium conditions. From the kinematic relations,
the equilibrium condition, and the constitutive law follows a set of equations to solve the
problem. The change of the external forces df and of the displacement field du can be
connected by the system stiffness matrix K.
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Figure 4.1: Effect of orthotropy in elasticity-theory.

4.1.1 Mathematical characterization

The mathematical characterization of orthotropy is based on the comparison of a deformed
body, where parts of this body where subjected to a transformation Q before the defor-
mation.

Figure 4.2 shows an undeformed body U . The material point X is subjected to a
transformation Q. To define the properties of this transformation, the body undergoes a
deformation u in the transformed U ? and initial condition U . The acting forces along the
interface of the material point in the deformed body D are compared.

The mathematical definition of isotropy, illustrated by Figure 4.2, can be stated as

t = t? ∀ X ∈ U or ∀ x ∈ D, (4.1)

where t? and t are stress-vectors at the interface, that follow from Cauchy’s formulas

t = nσ, (4.2)

in the same point, with and without a transformation Q of a material part, respectively. n
is the normal vector in a point on the interface of this material part. A transformation is
a symmetry transformation if condition (4.1) is satisfied. And, therefore does not change
the properties of the material.

(4.1) holds when the material does not change its behavior, due to a transformation Q.
If (4.1) holds for

• any orthogonal transformation Q ∈ SO(3) ⇒ material is isotropic

• only the identity transformation Q = 1 ⇒ material is generally anisotropic

• certain transformations Q ∈ MO(3) ∈ SO(3) ⇒ mat. possesses special anisotropy.
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Figure 4.2: Illustration of the mathematical definition of isotropy and or-
thotropy.

The material symmetry group SO(3) or isotropy group of a material is defined as the
group of transformations of the material coordinates which leave the constitutive equations
invariant [32]. MO(3) is the material orthogonal group defining the type of anisotropy. For
an orthotropic material, this group consists of rotations of 180◦ each about three mutually
orthogonal axes defined by the unit normal vectors A1, A2 and A3.

The transformation of a vector A, defined in a arbitrary observer coordinate system
e1, e2, to a new orientation A? can be written

A? = QA. (4.3)

A transformation of a second order tensor S = A⊗ A yields from (4.3) as

S? = A? ⊗ A? = (QA) ⊗ (QA) = Q(A⊗ A)QT = QSQT . (4.4)

The last operations of (4.4) become more clear, when performed in index notation as
follows:

S?
ij = A?

iA
?
j = QikAkQjlAl = QikAkAlQ

T
lj = QikSklQ

T
lj. (4.5)

Similar tensor definitions are used in Section 4.1.2 for the formulation of structural tensors.
To check if Q is a symmetry transformation one needs to compute a potential function

of the material, e.g. the Helmholtz free energy ψ(ε). As indicated in Figure 4.2 this
computation needs to be performed for the unaltered body U and for the body U ?, where
parts have been subjected to a transformation. A deformation u yields to strains ε. The
strain tensor ε

? after the transformation, e.g. a rotation, follows from the strain tensor ε

ε
? = QεQT . (4.6)
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Q is a symmetry transformation if the Helmholtz free angry ψ(ε) does not change due to
this transformation, i.e.

ψ(ε) ≡ ψ(ε?). (4.7)

Only for isotropic materials are all operations symmetry transformations. For the
special anisotropy orthotropy (4.1) only holds for certain symmetry transformations Q ∈
MO(3), which will be described subsequently for the two-dimensional case Q ∈ MO(2).

The symmetry operation for an orthotropic material, in the two-dimensional, plane
case, are shown in Figure 4.3. The vectors e1 and e2 define an arbitrary orthonormal
coordinate system. The left figure in 4.3 shows the unit normal vectors A1 and A2 that
are permanently attached to the orthogonal axis, that define the orthotropic directions of
the material. A general position (red) with an angle Φ to the observer coordinate system
and a special position (blue), where the vectors A1 and A2 are aligned with the observer
coordinate system, is shown. Note, that the four material parts that were subjected to the
symmetry transformations indicated in Figure 4.3, have the same alignment. This is an
obvious requirement the symmetry of the transformation, because the body, i.e. material,
must not change its mechanical properties and response.

A2

A1 A1

A2

θ

NO CHANGE

e3 ⇒ −1A2

A1

A2

A2A2

A1

A1

cos θ

s
in

θ

e1

e2

REFLECTION

A1

⇒ 1

about

180
◦

ROTATION

e3

normal normale1 ⇒ D1 e2 ⇒ D2

Figure 4.3: Symmetry transformations for 2D orthotropy.

If no change is observed for the material response, it is obviously a symmetry operation.
Mathematically this is equivalent to

Q = 1. (4.8)

A rotation of 180◦ is also a symmetry operation and is equivalent to a sign change of
the basis vectors. It can be written

Q = −1. (4.9)

The fact that det 1 = 1 is positive, proves that the transformation (4.9) actually is a
rotation. The symmetry operation reflection with normal e1 can be computed as

Q = D1 = 1 − 2M1, (4.10)

where M1 is a structural tensor, which are laid out in detail in Section 4.1.2. The reflec-
tion with normal e2 is also a symmetry transformation, but it is a combination of other
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symmetry transformations and hence depending on other transformations. A rotation of
180◦ and a reflection with normal e1 gives the same result

Q = D2 = D1 · (−1). (4.11)

Both transformations D1 and D2 have negative determinant, detD = −1, which proves
that these actually are reflections.

The symmetry group for two dimensional orthotropy therefore is

MO(2) = {1,−1,D1} , (4.12)

where the symmetry transformation D2 is excluded, because it is not independent from
the other members in the group. This transformations Q ∈ MO(2) cause no change in
the material behavior if applied to the whole structure or parts of it. Table 4.1 shows the
matrix representation of the four symmetry transformations for two dimensional orthotropy
for the special case that the observer coordinate system e1 and e2 is in accordance with
the vectors A1 and A2. The notation {�ij} for the matrix-representation of a tensor was
taken from [18]. In the three dimensional case, the orthotropic symmetry transformations
are

MO(3) = {1,−1,R1,R2,R3} , (4.13)

where R1, R2 and R3 are rotations of 180◦ about the three main material axes.

Table 4.1: Matrix representation of symmetry transformations for two dimen-
sional orthotropy for the special coordinate-system A1 = e1 and A2 = e2.

MO(2) {1ab} −{1ab} {D1ab} {D2ab}

{Qab}
[

1 0
0 1

] [
−1 0
0 −1

] [
−1 0
0 1

] [
1 0
0 −1

]

4.1.2 Structural tensors

The main directions of the tree are described by a ortho-normal system of three basis-
vectors Ai with i ∈ 1, 2, 3. These are not unique, because some transformations, e.g. a
rotation of 180◦ about any of these directions, changes the sign of the two other basis
vectors. As explained above, symmetry transformations must not change the behavior of
orthotropic materials. Thus, the vectors Ai are not directly suitable to describe orthotropic
material behavior. The definition of structural tensors is used to allow for the formulation
of tensor functions for an orthotropic material. They ensure that the material tensors
and tensor functions are not changed by transformations, by applying changes according
to the symmetry of the transformation in the coordinates (components) of the tensors.
Tensors are coordinate-independent objects, hence this applies also to structural tensors.
Transformations between different coordinate systems, e.g. from the coordinate system
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used in the finite element computation to the material coordinate system, will only change
the components in the particular coordinate system, with consideration of orthotropic
symmetry transformation.

The structural tensors are constructed from unit normal vectors that are locally aligned
with the L or grain (longitudinal), R or radial and T or tangential growth directions of
the tree. This material vectors AL, AR and AT are shown in Figure 4.4.

A2 = AR

A3 = AT

A1 = AL

Figure 4.4: Definition of the material vectors aligned to the directions of the
tree [30].

The structural tensors for three dimensions are [30]

ML = AL ⊗ AL, MR = AR ⊗ AR, and MT = AT ⊗ AT . (4.14)

For the material model elucidated in this work, a plane state of stress in the LR-plane
leads to a two dimensional problem. The last structural tensor of (4.14), MT , is therefore
not needed for the formulation.

Ai are aligned with and permanently attached to the main orthotropic material direc-
tions as shown in Figure 4.4. They are unique and independent of the (observer) coordinate
system. Changing the observer coordinate system leads to an alteration of the components
of Ai, but not its orientation.

The left figure in 4.3 shows the base vectors Ai inclined with an angle θ (red) and
aligned (blue) with the observer coordinate system e1 and e2. The general coordinate
representation of the base vectors follow from simple geometric considerations to

AL =

[
cos θ
sin θ

]

and AR =

[
− sin θ
cos θ

]

, (4.15)

where AL and AR are vectors with AL · AR = 0, i.e. they are orthogonal. For a special
coordinate system that is aligned with Ai, i.e. θ = 0, the coordinate representation changes
using cos θ = 1 and sin θ = 0.

Computing the structural tensors

Mi = Ai ⊗ Ai = AiA
T
i (4.16)

is fairly easy in an arbitrary chosen observer coordinate system. They make the implemen-
tation of transformations better understandable. For the special case, that the observer



Material modeling 4.1: Orthotropy 29

coordinate system e1 and e2 and e3 is identical to the vectors AL, AR and AT , the com-
putation of ML according to (4.16) can be written for the

{MLab} =

[
1
0

]
[

1 0
]

=

[
1 0
0 0

]

, (4.17)

where {�ij} indicates the matrix-representation of a tensor, which was taken from [18].
Table 4.2 shows the coordinate representation of the base vectors Ai and the struc-

tural tensors Mi for an observer coordinate system with θ = 0◦, 45◦, 90◦ and 180◦. The
representations of the structural tensors for 0◦ and 180◦ are equal, which shows that the
rotation of 180◦ is a symmetry transformation, for which the material must not change its
behavior.

Table 4.2: Coordinate representation of material vectors and structural tensors
for different angles θ.

θ AL AR ML = AL ⊗ AL MR = AR ⊗ AR

0◦
[

1
0

] [
0
1

] [
1 0
0 0

] [
0 0
0 1

]

45◦
[

1/
√

2

1/
√

2

] [
−1/

√
2

1/
√

2

] [
1/2 1/2
1/2 1/2

] [
1/2 −1/2
−1/2 1/2

]

90◦
[

0
1

]

= A2

[
−1
0

]

= −A1

[
0 0
0 1

] [
1 0
0 0

]

180◦
[
−1
0

]

= −A1

[
0
−1

]

= −A2

[
1 0
0 0

] [
0 0
0 1

]

The norm ‖�‖ of any vector Ai must be one, since the structural tensors must be
constructed from unit vectors. The sum of ML and MR in any coordinate system must be

1 = AL ⊗ AL + AR ⊗ AR = ML + MR ⇒ {1ab} =

[
1 0
0 1

]

(4.18)

for any θ, because the 2nd order identity tensor is an isotropic tensor, which is in invariant
under any coordinate transformation.

The shear base tensor N

An important abbreviation used in connection with the shear terms is the tensor

N =
1

2
(AL ⊗ AR + AR ⊗ AL) . (4.19)
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The matrix and vector representations of N for a coordinate system aligned with A1 and
A2 are

{Nab} =

[
0 1/2

1/2 0

]

, {Na} =





0
0

2 · 1/2 = 1



 and {Na} =





0
0

1/2



 ,

(4.20)
where {Na} is the vector representation in covariant and {Na} in contra-variant coordi-
nates, respectively. N according to (4.19) is no structural tensor, because its sign changes
under symmetry transformation.

According to a general convention, the second order stress tensor σ is used in contra-
variant coordinates

σ =

[
σLL τLR

τRL σRR

]

⇒ {σa} =





σLL

σRR

τLR



 . (4.21)

Symmetric tensors can be written with (4.19) as

σ = σLLAL ⊗ AL + σRRAR ⊗ AR + τLR (AL ⊗ AR + AR ⊗ AL) =

= σLLML + σRRMR + 2τLRN. (4.22)

The strain tensor ε is commonly represented in covariant coordinates. Its matrix and
vector representations, respectively, are

ε =

[
εLL εLR

εRL εRR

]

⇒ {εa} =





εLL

εRR

2εLR = γLR



 , (4.23)

where γLR = 2εLR is the engineering strain. ε can be written, using the definition of N
according to (4.19), as

ε = εLLAL ⊗ AL + εRRAR ⊗ AR + εLR (AL ⊗ AR + AR ⊗ AL) =

= εLLML + εRRMR + γLRN. (4.24)

Computing the double dot product or double contraction of a symmetric second order
tensor and N leads to the shear stress

σ : N =
1

2
σ : (AL ⊗ AR + AR ⊗ AL) =

1

2
(ALσAR + ARσAL) =

1

2
(τLR + τRL) = τLR

(4.25)
and for the strain tensor to the shear strain

ε : N =
1

2
(εLR + εRL) = εLR =

γLR

2
. (4.26)

Both results (4.25) and (4.26) represent components which are almost identical to stress
(strain) invariants except for they are carrying a sign while the invariants do not.



Material modeling 4.1: Orthotropy 31

4.1.3 Orthotropic invariants

Physical values must not change if the coordinate system is changed. Both, stresses and
strains are physical values, which are mathematically formulated in tensors σ and ε, respec-
tively. The orthotropic tensor functions used to describe the multi-surface material model
need to be expressed in terms of invariants. These are scalar-values which are independent
of any coordinate transformation. The mathematical description of an orthotropic tensor
function is only complete if a complete set of linearly independent orthotropic invariants,
the so-called integrity basis, is used for this description.

For the isotropic two-dimensional case, the invariants follow from the characteristic
equation of the strain tensor ε

λ2 − λ tr ε + det ε = 0. (4.27)

From the Hamilton-Cayley theorem, which states that a tensor satisfies its own character-
istic equation, follows

ε
2 − ε tr ε + 1det ε = 0. (4.28)

Double contraction of (4.28) with 1, which is equal to computing the trace of (4.28), leads
to the scalar equation

tr ε
2 − tr ε tr ε + 2 det ε = 0, (4.29)

which renders one of the invariant tr ε, tr ε
2, and det ε redundant. Thus, two independent

invariants for isotropy can be chosen from tr ε
2, tr ε and, det ε, e.g.

Iiso = tr ε and IIiso = det ε =
1

2

[
(tr ε)2 − tr ε

2
]
. (4.30)

The orthotropic invariants are constructed as simultaneous invariants of a tensor and
the structural tensors. The formulation as a combination of a tensor and a structural tensor
can be found in [3, 47]. The invariants are formulated in terms of the structural tensors
to encapsulate the material behavior, such an information is not necessary for isotropic
materials. One suitable set of invariants for 2D isotropic problems can be obtained by
rewriting the first isotropic invariant of the strain tensor ε using (4.18) as

Iiso = tr ε = ε : 1 = ε : ML + ε : MR = εLL + εRR (4.31)

and the second one as
IIiso = det ε = εLLεRR − ε2

LR. (4.32)

One suitable set of independent invariants for 2D orthotropic problems is εLL, εRR, and
ε2

LR. These values have to be formulated, such that they are independent to coordinate
transformations. For this purpose structural tensors are used.

The square of the shear strain can be expressed using the structural tensors as follows:

tr εMLεMR = tr(ε · AL ⊗ AL · ε · AR
︸ ︷︷ ︸

εLR

⊗AR) = εLR (ε · AL ⊗ AR) : 1
︸ ︷︷ ︸

εLR

= ε2
LR =

1

4
γ2

LR,

(4.33)
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where the second simplification indicated by the under-brace becomes clear with 1 = {δij}
and

(ε ·AL ⊗ AR) : 1 = (εijAL,jAR,k)δik = εkjAL,jAR,k = AR,kεkjAL,j = εRL = εLR. (4.34)

A general tensor Mij can be partitioned as

Mij = Ai ⊗ Aj =
1

2
(Ai ⊗ Aj + Aj ⊗ Ai) +

1

2
(Ai ⊗ Aj − Aj ⊗ Ai), (4.35)

where the first term is the symmetric part of the tensor and the second its antisymmetric
part. When multiplying a symmetric tensor with a general tensor, the antisymmetric part
of this tensor drops out of the computation. Using this property with the symmetric strain
tensor ε and considering (4.35) the shear component may also be written,

4ε2
LR = γ2

LR = 4(ε : AL ⊗ AR)2 = 4

[

ε :
1

2
(AL ⊗ AR + AR ⊗ AL)

]2

= 4 [ε : N]2 =

= ε : (AL ⊗ AR + AR ⊗ AL) ⊗ (AL ⊗ AR + AR ⊗ AL) : ε = ε : M : ε, (4.36)

where M is defined as

M = (AL ⊗ AR + AR ⊗ AL) ⊗ (AL ⊗ AR + AR ⊗ AL) = 4N⊗ N (4.37)

and N according to the definition (4.19) is the symmetric part of AL ⊗ AR.
A complete set of linearly independent orthotropic invariants for a plane stress in the

LR-plane is therefore

Iortho = εLL = tr εML = ε : ML, IIortho = εRR = tr εMR = ε : MR (4.38)

and
IIIortho = γ2

LR = 4 tr εMLεMR = ε : M : ε. (4.39)

Instead of the shear strain, the engineering strain γLR is used to represent the third invari-
ant. These invariants form an integrity basis for the tensors σ, ML, and MR. Note, that
in the orthotropic case, three invariants are necessary, whereas for isotropy only two invari-
ants are needed. For three dimensional problems, a complete set of orthotropic invariants
is [30]

εLL = tr εML, εRR = tr εMR, εTT = tr εMT , III = det ε,

γ2
LR = 4 trεMLεMR, γ2

TL = 4 tr εMT εML, γ2
RT = 4 tr εMRεMT . (4.40)

The fact that the shear components are squared shows, that the sign of the shear strain
is meaningless under orthotropic symmetry transformations. From this follows, that all
orthotropic functions are symmetric with respect to the planes γLR = 0, γTL = 0 and
γRT = 0. This applies also for the stress tensor, leading, e.g., to a symmetry of any yield
function with respect to the (τLR = 0)-plane (see Chapter 5). The set of invariants for
2D problems can be deducted from (4.40) by means of the plane stress conditions in the
LR-plane, σTT = τTL = τRT = 0, leading to γTL = γRT = 0.
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For the stress tensor σ, a set of invariants similar to those given in (4.38) and (4.39)
can be obtained for 2D-problems as

σLL = tr σML, σRR = trσMR and τ 2
LR = tr σMLσMR (4.41)

or alternatively expressed as

σLL = σ : ML, σRR = σ : MR and τ 2
LR =

1

4
σ : M : σ. (4.42)

With these two sets of invariants for the strain (4.38), (4.39) and stress tensor (4.41),
respectively, all scalar valued orthotropic functions can be defined as polynomials. This is
used for the description of all state functions

fi = fi(σ) = fi(σLL, σRR, τ
2
LR), (4.43)

which are defined in the orthotropic stress space, and also for the construction of the
Helmholtz free energy function

ψ = ψ(ε) = ψ(εLL, εRR, γ
2
LR), (4.44)

which will used to compute the orthotropic elastic tensor C in Section 4.2. Details on state
functions will be discussed in Chapter 5.

4.2 Elasticity tensor

The second law of thermodynamics for isothermal states, i.e. no change in temperature, is
used for the derivation of the relationship between stresses and strains. The definition of
the elasticity tensor is also connected to the second law of thermodynamics.

The second law of thermodynamics states that the dissipation power D, defined as
the difference between the input power P into a system and the rate of change of the
Helmholtz free energy ψ, must be greater or equal than zero. In mathematical terms, this
can be expressed as

D = P − ψ̇(ε) ≥ 0. (4.45)

The input energy and the Helmholtz free energy are given to

P = σε̇ and ψ̇ =
∂ψ

∂ε
: ε, (4.46)

so the dissipation can be written as

D =

(

σ − ∂ψ

∂ε

)

: ε ≥ 0. (4.47)

For elastic processes there is no dissipation regardless of the strain path ε̇. Thus, the
equal sign must be valid in (4.47), yielding the elastic constitutive relation:

σ =
∂ψ

∂ε
. (4.48)

Relation (4.48) is commonly assumed to be valid even for inelastic processes. For linear
elastic materials the strain energy density is a quadratic function of the strain, e.g. ψ =
1/2 ε : C : ε with C being a constant fourth-order tensor.
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4.2.1 Isotropic elasticity tensor

The elasticity tensor is defined as the stiffness in the elastic regime, defined by

dσ = C : dε (4.49)

Using (4.48) one can express (4.49) and obtains

dσ =
∂2ψ

∂ε ⊗ ∂ε
: dε = C : dε ⇒ C :=

∂2ψ

∂ε ⊗ ∂ε
. (4.50)

For linear elastic materials, the Helmholtz free energy is a quadratic function. It can
be written as a polynomial of the isotropic invariants (4.30) as

ψ(ε) =
1

2

(
η1I

2
iso + η2IIiso

)
, (4.51)

where η1 and η2 are material parameters, which need to be determined. The second
isotropic invariant IIiso can be rewritten using

tr ε
2 = (ε · ε) : 1 = εikεkjδij = εikεki = εikεik = ε : ε (4.52)

as

IIiso =
1

2

[
(tr ε)2 − tr ε

2
]

=
1

2
[ε : 1 ⊗ 1 : ε − ε : ε] . (4.53)

The stress tensor can be written based on the Helmholtz free energy and (4.48) as

σ =
∂ψ

∂ε
= η1Iiso1 + η2

1

2

∂IIiso
∂ε

= η1ε : 1 ⊗ 1 + η2
1

2
(ε : 1 ⊗ 1 − ε). (4.54)

where ∂IIiso/∂ε is found from the differential dIIiso and the definition

dIIiso =:
∂IIiso
∂ε

: dε =
1

2
[dε : 1 ⊗ 1 : ε + ε : 1 ⊗ 1 : dε − dε : ε − ε : dε] =

= [ε : 1 ⊗ 1 − ε] : dε. (4.55)

Computing the differential of the stress tensor (4.54) requires the second partial derivative
of the free energy,

C =
∂2ψ

∂ε ⊗ ∂ε
= η11 ⊗ 1 + η2

1

2
(1 ⊗ 1 − I) = λ1 ⊗ 1 + µI. (4.56)

C connects the strain differential with the stress differential and thus leads to the elastic
tensor for isotropic materials. The factors

λ = η1 +
1

2
η2 and µ = −1

2
η2 (4.57)

are called Lame’s constants [34]. Because C (4.56) is constant, (4.49) can be integrated.
Due to the convention for the stress and strain tensor expressed in (4.21) and (4.23),
respectively, and the incremental form of Hooke’s law

d{σa} = {C
ab} · d{εb} (4.58)
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the matrix representation of the elastic tensor has to be given in contra-variant coordinates.
Thus, the matrix representations of the forth order tensor

(1 ⊗ 1)ijkl = δijδkl and I
ijkl =

1

2
(δikδjl + δilδjk) (4.59)

for contra-variant coordinates are, respectively,

{
(1 ⊗ 1)ab

}
=





1 1 0
1 1 0
0 0 0



 ,
{
I
ab
}

=





1 0 0
0 1 0
0 0 1/2



 . (4.60)

The ”shear component” or ”mixed component” of I follows from

I
33 =

1

4
(I1212 + I

1221 + I
2112 + I

2121) (4.61)

and

I
ijkl = I

1212 =
1

2
(δ11δ22 + δ12δ21) =

1

2
(1 · 1 + 0 · 0) =

1

2
. (4.62)

Thus, the matrix representation of C (4.56) follows from (4.60) as

{C}ab =





η1 η1 + 1
2
η2 0

η1 + 1
2
η2 η1 0

0 0 −1
4
η2



 . (4.63)

Comparing (4.63) with Hooke’s law for isotropic plane stress as given in [34], i.e.,

C = (K − 2

3
G)1 ⊗ 1 + 2GI =

E

1 − ν2





1 ν 0
ν 1 0
0 0 1−ν

2



 . (4.64)

leads to the determination of the parameters η1 and η2 as

η1 =
E

1 − ν2
and η2 =

−4E

2(1 + ν)
= −4G, (4.65)

where E is Young’s modulus, ν is Poisson’s ratio, G the shear modulus, and K the bulk
modulus.

4.2.2 Orthotropic elastic tensor

For the formulation of the Helmholtz free energy, the orthotropic invariants of the strain
tensor εLL, εRR (4.38) and (γLR)2 = 4ε2

LR (4.39) are used to construct a complex second
order polynomial

ψ(ε) = µ1
1

2
(ε : ML)2 + µ2

1

2
(ε : MR)2 + µ3(ε : ML)(ε : MR) + µ4

1

2
ε : M : ε (4.66)

The keep the formulation, according to the orthotropic material behavior, valid for all
coordinate systems, the Helmholtz free energy for the orthotropic case is a polynomial
with the structural (second order) tensors.
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According to (4.48), the first derivative of (4.66) with respect to ε yields the stress as

σ =
∂ψ

∂ε
= µ1(ε : ML)ML + µ2(ε : MR)MR + µ3(ε : ML)MR + µ3(ε : MR)ML + µ4M : ε.

(4.67)
The stiffness tensor C follows from (4.67) and (4.49) as

C =
∂2ψ

∂ε ⊗ ∂ε
= µ1ML ⊗ML +µ2MR ⊗MR + µ3(ML ⊗MR + MR ⊗ML) + µ4M. (4.68)

For a special coordinate system with e1 = AL and e2 = AR, i.e. the material coordinate
system coincides with the observer coordinate system, the matrix representation of (4.68)
follows from (4.37) and (4.61) as

{
C

ab
}

=





µ1 µ3 0
µ3 µ2 0
0 0 µ4



 . (4.69)

Comparison with Hooke’s law for orthotropic plane stress given in [34], i.e.,

C = D
−1 =

1

∆





EL νLRER 0
νLRER ER 0

0 0 ∆GLR



 with ∆ = 1−νRLνLR = 1−νLR
ER

EL

, (4.70)

where D is the elastic compliance tensor, allows for identification of µ1 to µ4 in terms of
Young’s moduli and Poisson’s ratios. The elastic stiffness tensor C in (4.68) thus can be
written as

C =
EL

∆
ML ⊗ ML +

ER

∆
MR ⊗ MR +

νLRER

∆
(ML ⊗ MR + MR ⊗ ML) +GLRM, (4.71)

where EL and ER are the elasticity moduli in grain and radial direction,respectively, νLR

and νRL are two Poisson’s ratios and GLR is the shear modulus in the LR-plane. The
representation of C in (4.71) is valid for any coordinate system, also for curved coordinate
systems, and thus applicable for arbitrary spatial orientations of the wood.

Note that both the isotopic (4.56) and the orthotropic (4.71) material tensor are ob-
tained as a linear combination of isotropic and orthotropic fourth-order tensor generators.
I and 1 ⊗ 1 are the (only) two isotropic fourth-order generators, whereas the orthotropic
tensor generators are constructed from the structural tensors to Mi ⊗Mj and M. Another
major difference is the fact that in the orthotropic case the shear stiffness is an independent
variable, as are the elastic moduli. As for isotropy, the shear modulus can be expresses in
terms of E and ν (see (4.65)), which is not possible for orthotropic materials.

Only four of the five material parameters EL, ER, νLR, νRL, and GLR are indepen-
dent and sufficient to describe an orthotropic material for plane stress states. In the
three-dimensional case, nine independent material parameters are needed. These are three
elastic moduli, three Poisson’s ratios, and three shear moduli. Isotropic materials are fully
characterized by two independent material parameters, e.g. E and ν, or G and K, both in
two and three dimensions.

Table 4.3 gives an overview of the required independent invariants and material param-
eters for isotropic and orthotropic materials both in two and three dimensions. It should be
noted, that there exists an infinite number of invariants but most of them can be expressed
as polynomials of others by means of the Caley-Hamilton theorem.
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Table 4.3: Number of independent invariants and material parameters for
isotropic and orthotropic materials.

isotropy orthotropy
independent invariants

2D 2 3
3D 3 7

material parameters
2D 2 4
3D 2 9

4.3 Theory of plasticity

An introduction to the theory of plasticity can be found in [34], whereas a detailed discus-
sion is given in [38] and [27].

In linear theory of elasticity the knowledge of the elastic tangent is enough to solve a
problem with Hooke’s law

σ = Cε, (4.72)

if the deformations are known. The theory of plasticity deals with the generation of
permanent (irreversible) strain during a general deformation of a body. If this residual
strain evolves in a rate-independent fashion, it is called plastic strain ε

p. For small strains,
an additive decomposition of the total strain into elastic and plastic parts is assumed. This
can be expressed as

ε = ε
e + ε

p. (4.73)

where ε
e is the elastic strain. The theory of plasticity needs to be formulated in rate equa-

tions which are given in infinitesimal terms, because the deformation state is dependent
on the loading history. With the existence of plastic strains there still is a unique rela-
tionship between stresses and strains. The evolution of plastic strain, however, depends on
the loading path. Thus the problems must be solved incrementally. Time differentiation
of (4.73) leads to its rate formulation

dε

dt
= ε̇ = ε̇

e + ε̇
p. (4.74)

Only the elastic strain causes stresses. This is reflected in the Helmhotz free energy as

ψ = ψ̂(εe) = ψ̂(ε − ε
p) (4.75)

and subsequently in the constitutive relation

σ =
∂ψ̂

∂ε
=
∂ψ̂

∂εe
:
∂εe

∂ε
=
∂ψ̂

∂εe
(4.76)

and
∂ψ̂

∂εp
=
∂ψ̂

∂εe
:
∂εe

∂εp
= − ∂ψ̂

∂εe
= −σ. (4.77)
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Thus, for ideally plastic processes, the rate of the Helmholtz free energy is only a function
of the elastic strain, yielding, using (4.77) and (4.76),

ψ̇(εe) = ψ̇(ε − ε
p) =

∂ψ

∂ε
: ε̇ +

∂ψ

∂εp
: ε̇

p =
∂ψ

∂ε
: ε̇ − ∂ψ

∂ε
: ε̇

p =
∂ψ

∂ε
(ε̇ − ε̇

p), (4.78)

leading, using the first equation of (4.46), to a dissipation power

D = P − ψ̇ =

(

σ − ∂ψ

∂ε

)

: ε̇ +
∂ψ

∂ε
: ε̇

p ≥ 0. (4.79)

In the elastic range the plastic strain rate and therefore the dissipation vanishes, revealing
once again (4.48). Assuming (4.48) remains valid even for inelastic processes, the expression
for the plastic dissipation (4.79) becomes

D =
∂ψ

∂ε
: ε̇

p = − ∂ψ

∂εp
: ε̇

p = σ : ε̇
p ≥ 0. (4.80)

In addition to the elastic stress strain relationship (4.47) the following components are
essential for a complete plasticity model:

• yield criterion to limit the elastic domain,

• plastic flow rule to identify ε̇
p,

• hardening and/or softening laws,

• the consistency condition, and

• the loading and unloading conditions.

These six components of the theory of plasticity are elucidated in detail in the subsequent
subsections.

4.3.1 Elastic stress-strain relationships

The theory of elasticity is used as part of the hyperelastic theory of plasticity to evaluate
the stress. The relations may be linear or non-linear. The additive decomposition (4.73)
of the strain tensor is used to describe the elastic stress-strain relationships in the theory
of plasticity. The constitutive equation or stress function

σ =
∂ψ(ε − ε

p)

∂ε
(4.81)

follows from the second law of thermodynamics as laid out in the beginning of Section 4.2
and in (4.76). From the rate form of the stress function

σ̇ =
d

dt

(
∂ψ(ε − ε

p)

∂ε

)

=
∂2ψ

∂ε ⊗ ∂ε
: ε̇ +

∂2ψ

∂ε ⊗ ∂εp
: ε̇

p (4.82)
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yields the definition of the material stiffness tensor to

C :=
∂2ψ(ε − ε

p)

∂ε ⊗ ∂ε
. (4.83)

The second term of (4.82) can be written due to the additive decomposition as

∂2ψ

∂ε ⊗ ∂εp
=

∂2ψ

∂εe ⊗ ∂εe
:
∂εe

∂εp
= − ∂2ψ

∂εe ⊗ ∂εe
= −C. (4.84)

Thus the rate form of the stress function reads

σ̇ = C(ε̇ − ε̇
p). (4.85)

For a constant elasticity tensor C a special form of (4.85) is

σ = C(ε − ε
p). (4.86)

The general form of the elasticity tensor for orthotropic materials such as wood, for which
a material model is described in this work, was given in Section 4.2.

4.3.2 Yield criterion and elastic domain

A criterion needs to be formulated to identify elastic and plastic states, respectively. This
criterion is defined by means of a yield function f(σ), which describes a surface in the
stress-space. The values of the yield function then characterizes the state of the material
as follows:

f(σ) < 0 . . . elastic material behavior (elastic loading, or unloading) (4.87)

f(σ) = 0 . . . plastic material behavior. (4.88)

f(σ) > 0 is not possible for an elasto-plastic material. The stress-space for three dimen-
sional isotropic problems is the Haigh-Westergaard stress-space, which coordinates are the
principal stresses σ1, σ2 and σ3. For plane stress states a two dimensional stress-space is
sufficient for isotropic materials but a three dimensional one is necessary for orthotropic
materials. The coordinate system is formed by the orthotropic invariants given in (4.41).

As mentioned above, stresses σ, which would lead to f(σ) > 0 are not admissible.
Admissible stress states need to be within an admissible domain of elastic stresses. This
elastic domain can be defined by a function f : R3 × R3 × Rn → R in the stress-space and
an admissible states {σ,q} ∈ R3 × R3 × Rn as

Eσ :=
{
(σ ∈ R

3 × R
3,q ∈ R

n) ∈ R
3 × R

3 × R
n |f(σ,q) ≤ 0

}
, (4.89)

where q comprises a hardening behavior and the superscript n gives the number of compo-
nents of the hardening stress q. For perfect plasticity, f(σ,q) = f(σ) only depends on the
stress σ. Any other kind of plasticity leads to hardening or softening and thus a general
form f(σ,q). Hardening behavior will be described in more detail in Section 4.3.4. The
boundary ∂Eσ of this admissible domain

∂Eσ :=
{
(σ,q) ∈ R

3 × R
3 × R

n |f(σ,q) = 0
}

(4.90)

is the yield-surface f , which has to be a convex function [27].
The yield and failure criterion’s used to define the multi-surface model in the stress-

space will be introduced and discussed in Chapter 5.
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4.3.3 Flow rule

To evaluate the plastic component ε
p of the total strain, the rate of change of the plastic

strain tensor needs to be defined by the plastic flow rule

ε̇
p = γr(σ,q), (4.91)

where the tensor valued function r defines the direction of the plastic flow and γ is the
positive semidefinite scalar consistency parameter, which defines the length (i.e., the norm)
of ε̇

p in stress-space. The flow rule describes the evolution of the plastic strains.
If the plastic flow direction r is equal to the stress-gradient of the yield-function f(σ,q)

at a point σ, the flow rule is called associative flow rule, i.e.,

ε̇
p = γ

∂f

∂σ
. (4.92)

If the direction r of the plastic flow ε̇
p is not directly connected to the yield-surface, one

speaks of a non-associative flow rule

ε̇
p = γ

∂g

∂σ
, (4.93)

where the function g(σ,q) is the plastic flow potential or load-function. The stress gradient
of the plastic flow potential is used to describe the direction r of the plastic flow ε̇

p. This
may be necessary where tests show a behavior, which cannot be described by (4.92).

The consistency parameter γ needs to obey the condition

γ ≥ 0, (4.94)

where γ > 0 is true for plastic loading and γ = 0 holds for elastic loading or unloading.

4.3.4 Hardening and softening rule

With plastic deformation the material may harden or soften, which means it changes the
state at which yielding occurs. This is equal to a movement of the yield-surfaces in the
stress space. Adding a hardening/softening potential H(α) to the Helmholtz free energy
according to (4.66) leads to ψ(εe,α). The (associative) hardening rule can be written as

α̇ = γh(σ,q) with q = −∂ψ(εe,α)

∂α
and h(σ,q) =

∂f(σ,q)

∂q
, (4.95)

where α is a strain-like hardening variable and the function h(σ,q) describes the type of
hardening/softening. Besides perfect plasticity, i.e. no hardening, three different types of
hardening may be distinguished:

• Isotropic hardening leads to growth (scaling) of the yield-surface, without translation
of the surface in the stress-space.

• Kinematic hardening moves the yield-surface in stress-space, without changing size.

• Mixed hardening changes the shape and location of the yield-surface.

The hardening/softening rule describes the evolution of the hardening variable α, i.e., it
controls the change of the yield-surface.
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4.3.5 Loading and unloading conditions

The loading and unloading conditions are also called the Kuhn-Tucker conditions. From (4.87),
(4.88) and (4.94) follow the conditions to distinguish between elastic loading and unloading,
plastic loading or neutral loading as

• f < 0 and γ = 0 ⇒ elastic loading or unloading,

• f = 0 and γ = 0 ⇒ neutral loading,

• f = 0 and γ > 0 ⇒ plastic loading.

From this three combinations follows γf = 0. Together with the conditions (4.87), (4.88)
and (4.94), we obtain the Kuhn-Tucker loading-unloading conditions

γ ≥ 0, f(σ,q) ≤ 0 and γf(σ,q) = 0. (4.96)

4.3.6 Consistency condition

The yield-function and the consistency parameter need to satisfy the consistency condition

γḟ(σ,q) = 0. (4.97)

The consistency condition assures admissibility of stress. This should be discussed for the
two possible cases after yielding has occurred, i.e., for a point on the yield-surface:

• If both, f and ḟ are equal to zero, then a point on the yield-surface will stay on this
surface, i.e. plastic loading occurs and γ > 0.

• For f = 0 and ḟ < 0, a point on the yield-surface will be moved into the elastic
regime, i.e. elastic unloading occurs. Thus the rate of change of the plastic strain,
ε̇

p, must vanish. This is equivalent to γ = 0.

In both cases, the consistency condition (4.97) is satisfied.
An overview of the possible situations for states in plasticity is given in Table 4.4. If

f = 0 the stress point is on the yield surface. Therefore, σ ∈ ∂Eσ. For f < 0, the stress
point is positioned within the elastic regime, thus σ ∈ Eσ see (4.89).

Table 4.4: Possible combinations of f , ḟ and γ and their loading state equiva-
lence.

f ḟ γ state

< 0 - = 0 → elastic loading
= 0 < 0 = 0 → unloading
= 0 = 0 = 0 → neutral loading
= 0 = 0 > 0 → plastic loading

The case f > 0 is not possible since the stress point would be positioned in the outside
the admissible domain. ḟ > 0 would lead for the stress point of the next time step to be
projected into the non-admissible set f > 0.
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4.3.7 Elasto-plastic tangent tensor

With plastic material behavior the stiffness changes with time, thus the linear elastic
material behavior described by Hooke’s law (4.72), must be replaced by a rate equation

σ̇ = C
ep

ε̇. (4.98)

to describe the elasto-plastic material. To compute the elasto-plastic tangent operator Cep

one first needs to identify the consistency parameter γ.
From the consistency condition (4.97) follows

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂q
· q̇ = ∂σf : σ̇ + ∂qf · q̇ = 0. (4.99)

Using the rate form of Hooke’s law, (4.85), and the flow rule (4.91) leads to

σ̇ = C : (ε̇ − γr). (4.100)

Substituting σ̇ in (4.99) by (4.100) and using the hardening rule (4.95) yields

ḟ = ∂σf : C : ε̇ − γ(∂σf : C : r + ∂qf · h) = 0. (4.101)

The consistency parameter, follows from (4.101) as

γ =
∂σf : C : ε̇

∂σf : C : r + ∂qf · h . (4.102)

For f = ḟ = 0 follows that γ ≥ 0 and therefore that ∂σf : C : ε̇ ≥ 0. This term can
be used for the geometrical interpretation of the plastic loading condition. The angle Θ
between the direction of the strain ε and the gradient of the yield-function ∂σf in a point
σ can be computed as

cos Θ =
∂σf : C : ε̇

(∂σf : C : ∂σf)1/2(ε̇ : C : ε̇)1/2
. (4.103)

For Θ < 90◦ plastic loading occurs, whereas Θ = 90◦ leads to neutral loading. Θ < 90◦

indicates associative plasticity. In Figure 6.2 the angle Θ is shown.
To achieve a formula for the elasto-plastic tangent tensor, the consistency parameter γ

according (4.102) is substituted in (4.100), leading to

σ̇ =

(

C − C : r⊗ ∂σf : C

∂σf : C : r + ∂qf · h

)

: ε̇. (4.104)

(4.104) has the same form as (4.98). Thus, the elasto-plastic tangent tensor follows to

C
ep = C − C : r ⊗ ∂σf : C

∂σf : C : r + ∂qf · h . (4.105)

In the case of an associative flow rule, C
ep is symmetric. However, in the general case

of non-associative plasticity, Cep is not symmetric. Perfect plasticity is characterized by
h = 0, and thus has no effect on symmetry of Cep.

The elasto-plastic tangent tensor Cep can not be used in an iterative computational
framework without loss of the quadratic rate of asymptotic convergence, the big advantage
of the generalized Newton algorithm. The source of the problem is an inconsistency between
the numerical time integration algorithm and the infinitesimal character of (4.104). Thus
the algorithmic elasto-plastic tangent operator C

ep
n+1 must be determined. This will be

elucidated in Section 6.5 for the cases of a single and for multiple yield-surfaces.
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4.4 Multi-surface plasticity

In this section, the general framework for multi-surface plasticity will be discussed. The
discussion given in Section 4.3 only refers to a single-surface plasticity model, i.e., an elastic
domain E � with smooth boundary ∂E � .

The orthotropic plasticity model for wood consists of multiple yield-surfaces combined
defining a single convex elastic domain with piecewise smooth boundary. In case of the
model described in this work, these are four different surfaces. The intersections of these
surfaces, i.e. the edges and corners, are the reasons for the non-smooth elastic domain E � of
a multi-surface plasticity model. An extensive formulation for such a model is given in [38].
The edges and corners of the elastic domain are singular lines and points, respectively,
and need special algorithmic treatment of the numerical implementation. Details on this
algorithmic treatment will be given in 6.4.

The six essential components of a single-surface plasticity model as discussed in Subsec-
tions 4.3.1 to 4.3.6 do not lose general validity, but their formulation needs to be generalized
for multiple yield-surfaces. The only exception are the equations for the elastic stress-strain
relationships (4.83), (4.86) and (4.85), which do not change and are also valid for multi-
surface plasticity. This is obvious, because the elastic response must not depend on the
plastic behavior.

An index α ∈ {1, 2, 3, 4} is introduced, for the identification of individual yield-surfaces.
In general, α is not limited to four surfaces. Note that in this chapter, the general Einstein
summation convention for repeated indices is not used.

Yield criterion and elastic domain

The yield functions used in this work will be specified further in Chapter 5. Each of them
describes a yield criterion with the same interpretation as discussed in Section 4.3.2, i.e.
for each α ∈ {1, 2, 3, 4} one has to satisfy

fα ≤ 0. (4.106)

The non-smooth elastic domain can be formulated as a combination of all yield-surfaces to

E � :=
{
(σ,q) ∈ R

3 × R
3 × R

n |fα(σ,q) ≤ 0 ∀ α ∈ [1, . . . , m]
}
, (4.107)

where m = 4 is the total number of yield-surfaces. mact ≤ m is the number of active
constraints for a point on one or more yield-surfaces, i.e. (σ,q) ∈ ∂Eσ. The set of indices
associated with the active constrains mact is called Jact.

In the case of independent constraints for each surface, mact > 1 is possible only if
the point (σ,q) is positioned on an edge or in a corner. In addition the number of active
constraints in this case is limited with mact < m, i.e. it is not possible that all yield-surfaces
are active.

Flow rule and hardening/softening rule

The plastic flow tensor ε̇
p and the motion of the yield-surface in the stress space controlled

by the hardening rule, are described by a tensor sum over n < m active yield-surfaces fα.
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This general flow rule is

ε̇
p =

∑

α∈Jact

γαrα(σ,q), with Jact ⊂ {1, 2, . . . , m} (4.108)

is the subset of active yield-surfaces and rα(σ,q) is the respective direction of the plastic
flow of the α-th yield-surface. rα is defined both for the associative and for the non-
associative case as

rα(σ,q) = ∂σfα(σ,q) and rα(σ,q) = ∂σgα(σ,q), (4.109)

respectively. The hardening or softening rule follows as

α̇ =
∑

α∈Jact

γαhα(σ,q) with hα =
∂fα(σ,q)

∂q
. (4.110)

α is a set of strain-type hardening variables.

Consistency and Kuhn-Tucker conditions

The m ≥ 1 plastic consistency parameters γα need to satisfy the consistency condition

γαḟα(σ,q) = 0 (4.111)

and the loading and unloading conditions

γα ≥ 0, fα(σ,q) ≤ 0 and γαfα(σ,q) = 0 ∀ α ∈ {1, 2, . . . , m}. (4.112)

Elasto-plastic tangent moduli

The procedure to compute the elasto-plastic tangent moduli is similar to the one explained
in detain in Section 4.3.7. The change of the yield-surface can be written using the chain
rule as

ḟα = ∂σfα : σ̇ + ∂qfα · q̇ = 0. (4.113)

Using (4.85), and the flow rule (4.108) and hardening rules (4.110), ḟα can be expressed as

ḟα = ∂σfα : C : ε̇ −
∑

β∈Jact

gαβγ
β = 0 (4.114)

where
gαβ(σ,q) = ∂σfα : C : rβ + ∂qfα · hβ, (4.115)

is the plastic metric of the corner region. From (4.114) and {gαβ} = {gαβ}−1 or
∑

β∈Jact

gαβgβγ = δα
γ (4.116)

follows the consistency parameter to

γβ = 0 ∀ β 6∈ Jact

γα =
∑

γ∈Jact

gαγ [∂σfγ : C : ε̇] ∀ α ∈ Jact. (4.117)
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Plastic flow occurs if Jact 6= {}. In this case ∂σfα : C : ε̇ > 0 and γα ≥ 0 for each active
yield-surface.

The elasto-plastic tangent tensor for multiple yield-surfaces follows from in the same
line of derivations as previously described in Subsection 4.3.7 as

C
ep = C iff Jact = {},

C
ep = C −

∑

α,β∈Jact

gαβ [C : rα] ⊗ [C : ∂σfβ] iff Jact 6= {}. (4.118)

In the general case of non-associative plasticity Cep is unsymmetric, since Cep + CepT 6= 0.
Associative plasticity for each yield-surface, i.e. rα = ∂σfα ∀ α ∈ Jact, leads to a
symmetric Cep.



Chapter5
Multi-surface plasticity model for
wood

In this chapter we will formulate the theoretical framework for a multi-surface constitutive
model for wood. First, we present a generic state function, a generic flow rule, a generic
hardening/softening law. Second, these three functions will be specified for each of the
four surfaces used to define the multi-surface plasticity model. Furthermore, all necessary
derivations of these functions will be given. These are required for a generic formulation
of the return mapping algorithm and the algorithmic tangent, which both will be derived
in Chapter 6.

The multi-surface plasticity model for clear spruce wood described in this chapter was
first proposed and developed by Mackenzie-Helnwein et al. [30]. Some enhancements and
changes will be applied to the description of the failure surfaces for fiber tension (see
Section 5.2), and the mixed mode failure mode (see Section 5.5), as well as to the parameter
identification for the the radial compression model (see Section 5.4).

5.1 Generic constitutive functions

5.1.1 Generic formulation of orthotropic state-surfaces

The term state surface was chosen to capture the different character of surfaces for modeling
either development of inelastic (plastic) deformations or failure mechanism of biaxially
stressed clear spruce wood.

Mechanisms with softening behavior characterize material failure in a localized manner,
i.e, by cracking. Respective state surfaces characterize the actual state of residual strength.
That surface describing the initial strength of the virgin material is called the failure

surface. Failure surface characterizes onset of failure. Thus it applies only to mechanisms
possessing softening behavior.

Mechanisms with hardening-type behavior show homogeneous inelastic strains, very
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similar to plastic yielding. Thus, respective surfaces will be denoted as yield surface. We
are well aware that this does not mean that wood possesses the ability to yield as we know
it from metals. The reference is to an analogy in the macroscopic deformation behavior
only.

All state surfaces used to describe this orthotropic multi-surface model shall be charac-
terized in a unified way in order to keep the mathematical description compact and easier
understandable. They are constructed as scalar valued second-order (i.e. quadratic, no
terms O(σ)3 or higher) tensor-polynomials. For orthotropic materials, such a polynomial
p(σ) can be expressed in terms of the orthotropic invariants defined in (4.41) as follows:

p(σ) = p̃(σLL, σRR, τ
2
LR) = a0 +a1σLL +a2σRR +a3σ

2
LL +a4σ

2
RR +a5σLLσRR +a6τ

2
LR. (5.1)

The stress invariants used in (5.1) can be expressed in terms of σ and the structural tensors
ML and MR, and the tensor N according to (4.19) as

σLL = σ : ML, σRR = σ : MR, and τLR = σ : N. (5.2)

Substituting (5.2) into (5.1) leads to

p(σ) = a0 + (a1ML + a2ML) : σ + (5.3)

+ σ :

[

a3ML ⊗ ML + a4MR ⊗ MR +
1

2
a5(ML ⊗ MR + MR ⊗ ML) +

1

4
a6M

]

: σ

with M and N as defined in (4.37) and (4.19), respectively. The expression within the first
set of parenthesis defines a second-order tensor. A general two-dimensional second-order
tensor a can be written as

a = aLLAL ⊗ AL + aRRAR ⊗ AR + aLRAL ⊗ AR + aRLAR ⊗ AL. (5.4)

Comparing (5.4) with the first term in parenthesis in (5.3) leads to

a = aLLML + aRRMR with aLL = a1, aRR = a2 and aLR = aRL = 0. (5.5)

The last three equations in (5.5) could be derived directly from orthotropic symmetry
conditions. The expression in brackets in (5.3) defines a fourth-order tensor

b = bLLLLML ⊗ML + bRRRRMR ⊗MR + bLLRR(ML ⊗MR +MR ⊗ML)+ bLRLRM (5.6)

with

bLLLL = a3, bRRRR = a4, bLLRR =
1

2
a5 and bLRLR =

1

4
a6. (5.7)

This tensor represents the most general form of a two-dimensional orthotropic fourth-order
tensor.

Thus, using (5.3), (5.5), (5.6), and a0 = q − Y , the second-order scalar valued tensor
polynomial (5.1) can be written as

f(σ) = aLLσLL + aRRσRR + bLLLLσ
2
LL + bRRRRσ

2
RR +

+ 2bLLRRσLLσRR + 4bLRLRτ
2
LR + q − Y

= a : σ + σ : b : σ + q − Y (5.8)
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or in index notation
f(σij) = aijσ

ij + σijbijklσ
kl + q − Y. (5.9)

(5.8) is the generic representation of all state functions. This generic function utilizes two
orthotropic tensors a and b which are of second and forth order, respectively, the hardening
stress q = q̃(α) and the strength function Y = Ỹ (α). It is obvious from (5.8) that only six
independent material parameters are required to define the material tensors a and b. The
index notation states that the parameter tensors a and b need to be expressed in covariant
coordinates. The covariant matrix representation of a is [18]

{aa} =





aLL

aRR

aLR



 . (5.10)

and that of b is

{bab} =





bLLLL bLLRR 2bLLLR

bRRLL bRRRR 2bRRLR

2bLRLL 2bLRRR 4bLRLR



 . (5.11)

Computing the shear term in (5.8), and substituting bLRLR by means of (5.7) results in

τLR 4 bLRLR τLR = a6 τ
2
LR, (5.12)

which, in terms, is the shear term in (5.1). A distinction between lower and upper indices
to represent covariant and contra-variant tensors is not necessary for most parts of this
work. Only where needed for clarity, the matrix representation will be given with indices.

The construction of this generalized yield criterion allows for several types of surfaces in
three dimensional stress space. Considering that the component bLRLR needs to be positive
in order to ensure positive shear strength, three generic shapes of the general orthotropic
state surface are possible. Depending on sub determinant S = bLLLLbRRRR − b2LLRR, one
can identify the following shapes

• S > 0 . . . ellipsoidal surface (closed)

• S = 0 . . . parabolic surface (open)

• S < 0 . . . hyperbolic surface (open)

Only the ellipsoidal shape is closed. This is the only one which can be used for a single
surface model. It is known as the Tsai-Wu failure criterion [42]. Both, parabolic and
hyperbolic surfaces, are best suited for a multi-surface model due to their clear direction
of the resulting plastic flow, and the fact that open surfaces allow for a clear distinction
of tensile and compressive regimes. The multi-surface model described in this work uses
three parabolic and one hyperbolic surfaces.

5.1.2 Generic flow and softening/hardening rule

The evolution law for the plastic strain can be defined in two ways, (i) as a tensor valued
function and (ii) by means of the flow potential theory.
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The orthotropic flow rule can be written as a second-order tensorial polynomial with
forth order orthotropic tensors H0, H1 and H2 as [3]

ε̇
p = (H0 : 1 + H1 : σ + H2 : σ

2)γ̇, (5.13)

where the tensors H0, H1 and H2 depend on the stress invariants and the structural tensors
Mα, and γ̇ is the scalar positive semidefinite consistency parameter. Further details on the
representation theory of tensor valued function can be found in the books [3, 4] by Betten,
and in papers by Boehler [5] and Zheng [47].

Using the flow potential theory described by Lubliner, Malvern, and Simo and Hughes
in [27, 32, 38], which introduces a scalar flow potential g(σ), the plastic flow can be
expressed as

ε̇
p = γ̇

∂g(σ)

∂σ
= γ̇(A? + B? : σ + C? : σ

2). (5.14)

g(σ) can be written as a second-order scalar valued tensorial polynomial with the second-
order orthotropic tensor A? and the fourth order orthotropic tensors B? and C?, respec-
tively. Nevertheless, the definition (5.14) of the plastic flow in the flow potential theory is
only first-order accurate, whereas (5.13) is exact, as proven by Betten in [4].

Using the flow potential g(σ) = A? : σ + σ : B? : σ − 1 with A? 6= a and B? 6= b
leads to a non-associative flow rule. If the plastic flow is normal to the yield function, i.e.
g(σ) = f(σ), one speaks of an associative flow rule. Computing the first partial derivation
of generic yield function (5.8) with respect to σ yields

∂f(σ)

∂σ
= a + 2b : σ. (5.15)

The generic orthotropic plastic flow rule can be written as

ε̇
p = γ̇r, (5.16)

where r = ∂f/∂σ for associative plasticity and r = ∂g/∂σ for non-associative plasticity.
Formulation (5.15) shows that the orthotropic evolution law may be described only by a
first-order tensor polynomial. Use of the flow potential theory thus results in a simplified
orthotropic flow rule.

The generic evolution of a strain like hardening/softening parameter vector α can be
expressed as

α̇ = γ̇s, (5.17)

where s is a function of the plastic flow direction r. The components of α are positive
semi-definite. If the rate of a component would be negative, i.e. during unloading, it will
be zero, since unloading does not cause a softening behavior. This will be accomplished
with the ramp function

〈x〉 =
x + |x|

2
= x

1 + signx

2
. (5.18)
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5.2 Fiber-tension surface

The equal priority of the fiber rupture and inter-fiber shear failure (see in Chapter 3)
leads to a constitutive assumption [33]. This constitutive assumption states that tensile
failure under uniaxial loads occurs at the same level for both, tension in fiber direction and
uniaxial tension close to but not exactly in the grain direction.

This assumption leads to a parabolic failure surface in the stress space which predicts
the same uniaxial tensile strength for small variations of the grain angle from the fiber
direction. This model was first proposed by Mackenzie-Helnwein [33]. A suitable set of
parameters for the generic polynomial failure criterion without hardening,

f = a : σ + σ : b : σ − Y ≤ 0, (5.19)

is defined by

a = aLLML ⇒ {aa} =





aLL

0
0



 (5.20)

and

b = bRRRRMR ⊗ MR + bLRLRM ⇒ {bab} =





0 0 0
0 bRRRR 0
0 0 4bLRLR



 (5.21)

with

aLL =
1

β0
t,L

, bRRRR =
1

β0
t,L

2 , bLRLR =
1

4β0
t,L

2 , and Y =
βt,L

β0
t,L

. (5.22)

β0
t,L is the initial tensile strength in fiber direction and βt,L the residual tensile strength

after crack initiation. It is described by the softening rule

βt,L = β0
t,L exp (−kt,Lαt,L) , (5.23)

where αt,L is a strain like softening parameter, which is equivalent to a crack opening of a
single discrete crack perpendicular to grain divided by the characteristic length, the model
parameter `c, i.e. αt,L = w/`c.

{aa} and {bab} are the matrix representations of the tensors a and b, given for for
the special case of a coordinate system aligned the material coordinate system L-R (see
Section 4.1). All matrix representations of second- and fourth-order tensors in the sub-
sequent sections will be given for the same specialization. If this representation is used
for the implementation instead of the general form, the stress tensor and the strain tensor
need to be transformed into the special coordinate system (see Chapter 6 for details). The
general strength parameters (5.22) are not tensor components except for this very special
coordinate system. However, they are material parameters and as such independent of
coordinate transformations. The tensor component b1212, e.g., is almost always never equal
to bLRLR.
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Using the equality in (5.19) defines a parabolic surface with its axis parallel to the
σL-axis. It can be written either as

ft,L = aLLσLL + bRRRRσ
2
RR + 4bLRLRτ

2
LR − Y ≤ 0 (5.24)

or as

ft,L =
σLL

β0
t,L

+
σ2

RR

β0
t,L

2 +
τ 2
LR

β0
t,L

2 − βt,L

β0
t,L

≤ 0. (5.25)

It is clear from (5.25) that the yield-function ft,L is dimensionless. This simplifies combi-
nation of various state surfaces.

The softening parameter αt,L is controlled by the evolution law for the plastic strain,

ε̇
p = γ̇t,L

∂ft,L

∂σ
= γ̇t,Lrt,L, (5.26)

and the non-associative softening rule as

α̇t,L = 〈ML : ε̇
p〉 = γ̇t,L 〈ML : rt,L〉

︸ ︷︷ ︸

=: st,L

= γ̇t,Lst,L. (5.27)

This softening rule is obviously a non-associative one because

α̇t,L 6= γ̇t,L
∂f

∂q
= −γ̇t,L

∂f

∂Y
= γ̇t,L. (5.28)

The dimensionless factor

kt,L =
β0

t,L`c,L

GI
f,L

(5.29)

is a function of the material parameters initial strength β0
t,L, mode I fracture toughness of

the fibers GI
f,L and the model parameter characteristic length `c,L. This relation follows

from equivalent dissipated energy for full crack development (i.e., rupture). The latter ma-
terial parameter defines the width of a crack zone. The cascading crack pattern described
in Chapter 3 evolves in this crack zone.

`c has significant influence in the macroscopic behavior of the model. The post-failure
behavior as described by (5.23), is shown in Fig. 5.1 for `c = 1, 5, 10 and 100 mm.
Fig. 5.1(a) shows the strength function β(αt,L) over the strain-like parameter αt,L. The
strength drops faster as `c increases. The strength remains uniquely defined for each αt,L

regardless of the size of `c. Fig. 5.1(b) shows the corresponding stress-strain relation. Again
the stress drops faster as `c increases. However, for `c = 10 mm and `c = 100 mm, the
stress-strain relations are no longer unique. This is the source of numerical instabilities
and convergence problems, which will be addressed in Chapter 7.

Controlled by (5.23), the state surface moves along the σL-axis until it reaches the origin,
which is tantamount to a complete loss of strength. Due to the exponential design of the
softening function, this will happen at αt,L = ∞, but most of the fracture energy GI

f,L is
already lost much earlier. Softening only influences the strength function Y in (5.19). The
surface therefore experiences translation along the σLL-axis, but no change in curvature.
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material parameters
fiber tension
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Figure 5.1: Post-failure behavior for uniaxial tension according to the fiber
tension model (5.25)

Characteristic stages of the post failure behavior of the fiber tension model are shown
in Figure 5.2. The characteristic length of `c,L = 1 mm was chosen to show the motion of
the surface in the stress space. A fraction zone width of this size is physically implausible
and also difficult to model because a finite element mesh with all elements smaller than
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Figure 5.2: Motion of the fiber tension surface in the cross-sections (a) σRR = 0
and (b) τRL = 0 for `c = 1 mm.
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1 mm edge length is not possible for large structures. High values of `c,L, i.e high values
of kt,L, lead to abrupt loss of strength.

The plastic flow direction for this failure mechanism is computed from the yield function
as

rt,L =
∂f

∂σ
= a + 2b : σ =

1

β0
t,L

ML + 2
σRR

β0
t,L

2MR + 2
τLR

β0
t,L

2N. (5.30)

(5.30) indicates use of the associative flow rule. Other derivatives and their matrix rep-
resentations needed for the development of the return mapping algorithm in Section 6
are

∂f

∂α
= kt,LY = kt,L

βt,L

β0
t,L

, (5.31)

∂2g

∂σ ⊗ ∂σ
=

∂2f

∂σ ⊗ ∂σ
= 2b ⇒

{(
∂2g

∂σ ⊗ ∂σ

)

ab

}

=
2

β0
t,L

2





0 0 0
0 1 0
0 0 1



 (5.32)

and
∂2g

∂σ ⊗ ∂α
=
∂rt,L

∂α
= 0. (5.33)

The derivative of the softening rule (5.27) yields

∂s̃t,R

∂rt,L
= ML

〈ML : rt,L〉
ML : rt,L

(5.34)

∂s̃t,R/∂rt,L = ML can be simplified because the plastic flow rt,L just appears in the calcu-
lation if the fiber tension surface is active and

st,L = s̃t,L(rt,L) := 〈ML : rt,L〉 = rLL =







1

β0
t,L

> 0 if fc,L is active

0 if fc,L is inactive
(5.35)

is always positive and, thus the ramp-function in (5.34) is always positive.

5.3 Fiber-compression surface

The micro-mechanical behavior of compressive failure in fiber direction is not yet com-
pletely understood. The failure description with the single surface model according to
Tsai and Wu [42] in combination with those parameters identified by Eberhardsteiner [7]
provides good predictions for combined loading in the compressive regime. Therefore the
failure envelope for fiber compression is associated with this model [30]. The compressive
state surface is defined by a parabolic approximation of the single surface model proposed
in [7].

Similar to the failure surface for tension in fiber direction, the state surface is con-
structed as a paraboloid with its axis parallel to the σL-axis. A direct interaction with
the shear stress and the lateral normal stress σR has to be accounted for in this mode.
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The latter was not necessary in the tensile region. A parabolic approximation at min σL is
achieved using the generic failure envelope

f = a : σ + σ : b : σ + q − Y ≤ 0 (5.36)

with constant material tensors

a = aLLML + aRRMR ⇒ {aa} =





aLL

aRR

0



 (5.37)

and

b = bRRRRMR ⊗ MR + 4bLRLRN ⊗ N ⇒ {bab} =





0 0 0
0 bRRRR 0
0 0 4bLRLR



 , (5.38)

where the material parameters are

aLL = − 1

β0
c,L

, aRR =
A

β0
c,L

, bRRRR =
B

β0
c,L

2 and bLRLR =
C

4β0
c,L

2 . (5.39)

β0
c,L = |minσL| is the initial compressive strength in L-direction. The dimensionless pa-

rameters A,B > 0 and C > 0 are chosen such to fit the curvature of the single surface
model at min σL. The dimensionless character of (5.36) is apparent from its invariant
representation

fc,L = aLLσLL + aRRσRR + bRRRRσ
2
RR + 4bLRLRτ

2
LR + q − Y ≤ 0 (5.40)

in combination with (5.39), leading to

fc,L = − 1

β0
c,L

σLL +
A

β0
c,L

σRR +
B

β0
c,L

2σ
2
RR +

C

β0
c,L

2 τ
2
LR + q − Y ≤ 0. (5.41)

The strength function Y = Y (αc,L) and the hardening stress q = q(αc,L) describe the
strength degradation and densification behavior, respectively. They are shown in Fig. 5.3.
The strength degradation, i.e. the softening behavior, is not pronounced as strong as for
the tensile regime, where the strength is lost nearly immediately as failure is induced.
The functions Y (αc,L) and q(αc,L) were derived from uniaxial static tests by Adalian and
Morlier [1] under the assumption of a linear elastic behavior prior to failure. The strength
function is constructed as

Y = 1 − Y1

Y0

[1 − exp (−kc,Lαc,L)] (5.42)

where Y0 = β0
c,L and Y1 are strength parameters as indicated in Fig. 5.3. In analogy

to (5.29), the softening rate is controlled by a parameter

kc,L =
β0

c,L`c,L

GI
fc,L

(5.43)
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Figure 5.3: Parameters for strength function and hardening stress

and a strain-like state variable αc,L. The strength parameter β0
c,L, the fracture toughness

for compressive failure in fiber direction GI
fc,L (cell cap failure), and the fracture zone band

width can be obtained from the fiber compression tests by Adalian and Morlier [1]. The
characteristic length `c given by the finite element size is used to describe the fracture zone
band width.

The second part of the post failure behavior, the densification, causes internal stresses
which do not cause additional dissipation of fracture energy. Instead they cause an increase
of effective compressive strength. This is modeled by the hardening stress

q(αc,L) = −HL,d

β0
c,L

〈αc,L − αL,d〉2
αL,∞ − αc,L

, (5.44)

where HL,d is a hardening stiffness parameter, αL,d marks the onset of densification, and
αL,∞ represents the maximum compaction strain. The magnitudes of the strain-like pa-
rameters αL,d and αL,∞ are already in the range of large strains and hence are beyond the
validity of the discussed small strain model.

The evolution law for αc,L is based on the associative flow rule

ε̇
p = γ̇c,L

∂fc,L

∂σ
= γ̇c,Lrc,L, (5.45)

and the non-associative softening rule

α̇c,L := 〈MR : ε̇
p〉 = γ̇c,L 〈MR : rc,L〉 = γ̇c,Lsc,L. (5.46)

The associative plastic flow direction rc,L follows from (5.45) and (5.41) as

rc,L =
∂f

∂σ
= a + 2b : σ = − 1

β0
c,L

ML +

(

A

β0
c,L

+
2B

β0
c,L

2σRR

)

MR +
2C

β0
c,L

2 τLRN (5.47)

with its vector representation

{(rc,L)a} =
1

β0
c,L









−1

A+
2B

β0
c,L

σRR

2C

β0
c,L

τLR









. (5.48)
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Figure 5.4: Post-failure behavior according to the fiber compression
model (5.41).

The post failure behavior for the compressive regime according to (5.42) and (5.44) is
shown in Figure 5.4 for `c = 1, 5, 10 and 100 mm. Figure 5.4(a) shows the the strength
function β(αc,L) over the αc,L. Figure 5.4(b) shows the corresponding stress-strain relation-
ship of the stress σLL(αc,L) and the total strain εLL. All stress-strain relationships shown
in Figure 5.4(b) are unique. The values of `c for which the stress-strain relationship is not
unique are much higher than in the fiber tensile regime. It is clearly visible, that softening
is not as pronounced as for the fiber tension behavior and that densification, described
by (5.44), is an effect at large strains.

The good match of the initial fiber compression surface (red) with the failure surface
by Tsai and Wu (dashed black) can be seen in Fig. 5.5. The softening behavior is also
shown in Fig. 5.5 evaluated for `c,L = 100 mm for various states of hardening αc,L ∈
{0.01, 0.02, 0.05, 0.5} and densification αc,L = 0.7. The last shown position of the fiber
compression surface at αc,L = 0.7 allows for higher compressive stresses than at the initial
state. This behavior is typical for densification. Besides the translation, the state surface
experiences a small change in curvature.

The hardening function Y (αc,L) and hardening stress q(αc,L) are the only terms in the
yield-function (5.41) which depend on the strain-like variable αc,L, leading to

∂f

∂α
=

∂q

∂αc,L

− ∂Y

∂αc,L

(5.49)

with
∂q

∂αc,L

= −HL,d

β0
c,L

〈αc,L − αL,d〉
(αL,∞ − αc,L)2 (2αL,∞ − αc,L − αL,d) = −κL,d (5.50)

and
∂Y

∂αc,L

= −kc,L
Y1

β0
c,L

e−kc,Lαc,L = κL,Y . (5.51)
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Figure 5.5: Motion of the fiber compression surface in the cross-sections (a)
σRR = 0 and (b) τRL = 0 for `c = 100 mm.

Due to the associative flow rule, the derivatives

∂2g

∂σ ⊗ ∂σ
=

∂2f

∂σ ⊗ ∂σ
= 2b ⇒

{(
∂2g

∂σ ⊗ ∂σ

)

ab

}

=
2

β0
c,L

2





0 0 0
0 B 0
0 0 C



 (5.52)

and
∂2g

∂σ ⊗ ∂α
= 0 (5.53)

can be obtained directly from equation (5.41).
Substituting (5.47) into (5.46) yields

sc,L = s̃c,L(rc,L) := 〈−ML : rc,L〉 =







1

β0
c,L

if fc,L is active

0 if fc,L is inactive
. (5.54)

For an active state surface fc,L, the derivative of s̃c,L with respect to rc,L can be expressed
as

∂s̃c,L

∂rc,L
= −ML

〈−ML : rc,L〉
ML : rc,L

= −ML. (5.55)

5.4 Radial-compression surface

The model used for this failure mode was first introduced by Mackenzie-Helnwein et al. in
[19] and further developed in [30] and [33].
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A dimensionless version of the formulation used in [30] and [33] is obtained by normal-
ization with respect to the initial radial compressive strength β0

c,R as

fc,R = − c

β0
c,R

σLL − 1

β0
c,R

σRR +
µ

β0
c,R

τ 2
LR + q − Y ≤ 0, (5.56)

where c is a dimensionless material parameter, µ is a material parameter with dimension
one over stress-unit. As in the compression model in fiber direction, Y (αc,R) is a strength
function and q(αc,R) is the hardening stress function used for describing densification.
Comparison of (5.56) with the general state function (5.8) yields the identification of the
general strength parameters

aLL = − c

β0
c,R

, aRR = − 1

β0
c,R

, and bLRLR =
µ

4β0
c,R

. (5.57)

The parameter tensors and their respective matrix representation follow as

a = aLLML + aRRMR ⇒ {aa} = − 1

β0
c,R





c
1
0



 (5.58)

and

b = 4bLRLRN ⊗ N = bLRLRM ⇒ {bab} =
µ

β0
c,R





0 0 0
0 0 0
0 0 1



 . (5.59)

The surface defined by (5.56) is a paraboloid with the σR-axis as its axis. As hardening
progresses (i.e. cell crushing), the surfaces moves along the −σR-axis away from the origin
without changing its curvature.

Hardening at small strains is described by the strength function

Y (αc,R) = 1 +
Y1

Y0

[
1 − e−kc,Rαc,R

]
, (5.60)

where Y0 = β0
c,R is the initial compressive strength, and Y0 + Y1 is the plateau strength,

and kc,R is a dimensionless parameter controlling the slope of the strength function. αc,R

is a strain-like hardening parameter.
Like for both longitudinal-loading models an associative flow rule The softening param-

eter αc,R is controlled by the evolution law for the plastic strain,

ε̇
p = γ̇c,R

∂f

∂σ
= γ̇c,Rrc,R (5.61)

and a non-associative softening rule as

α̇c,R = 〈MR : ε̇
p〉 = γ̇c,R 〈MR : rc,R〉 = γ̇c,Rsc,R. (5.62)

Following same arguments as for fiber compression in Section 5.3, the densification is
modeled by the hardening stress

q(αc,R) := −HR,d

β0
c,R

〈αc,R − αR,d〉2
αR,∞ − αc,R

, (5.63)
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with HR,d as hardening stiffness parameter and the material parameters αR,d and αR,∞,
marking the onset and ultimate densification strain, respectively. The graphical inter-
pretation of the strength function Y (αc,R) and the hardening stress q(αc,R) is shown in
Figure 5.6.

densificationcell crushing

−q

βc,R = Y−q

Y0

Y1

αR,d αR,∞

αc,R

β0
c,R

Figure 5.6: Definition of parameters for the strength- and densification func-
tions.

From (5.56) and (5.61) the associative plastic flow direction follows as

rc,R =
∂f

∂σ
= a + 2b : σ = − c

β0
c,R

ML − 1

β0
c,R

MR +
2µ

β0
c,R

τLRN. (5.64)

According to (5.64) plastic flow occurs mainly, coinciding with experiments, as compaction
in radial direction. Uniaxial compression tests insinuate plastic strain in fiber direction
to be smaller than predicted by (5.64). This is modeled by using a non-associative flow
potential

g = − c̄

β0
c,R

σLL − 1

β0
c,R

σRR +
µ

βt,R

τ 2
LR + q − Y (5.65)

with 0 ≤ c̄ < c, leading to a non-associative flow direction r̃c,R

r̃c,R =
∂g

∂σ
= ã + 2b̃ : σ = − c̄

β0
c,R

ML − 1

β0
c,R

MR +
2µ

β0
c,R

τLRN. (5.66)

where ã and b̃ are non-associative parameter tensors. r̃c,R can be obtained by replacing the
material parameter c in (5.64) by c̄. This would have influence only on the tensor-parameter
aLL, leading to b̃ = b, whereas

ã = ãLLML + ãRRMR ⇒ {ãa} = − 1

β0
c,R





c̄
1
0



 . (5.67)

The effect of hardening and densification on the post failure behavior for this mecha-
nism is illustrated in Fig. 5.7. This is the only mode, where stable homogeneous inelastic
deformations can be observed. Hence this is the only model which does not depend on the
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Figure 5.7: Post-failure behavior of the radial compression model (5.56).

characteristic length `c. Furthermore, the notion for this surface as a yield surface instead
of a failure surface is reasonable.

Figure 5.8 illustrates hardening behavior of the radial compression model. The surface
only moves along the σRR-axis and does not change its shape. Note that the initial surface
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Figure 5.8: Motion of the radial compression surface in the cross-section σLL =
0 (`c without influence).
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(red) shows the lowest compressive strength. Contrary to the fiber compression model,
this surface can only move in the σRR-direction.

The surface used by Helnwein [30] for the numerical example intersects the plane
σRR = 0 before the radial tension surface, meaning pure shear would activate the ra-
dial compression model. Test results for the exact behavior of wood under pure shear are
not available, but it seems reasonable to activate the mixed mode radial tension surface
instead. The material parameter µ describes the curvature of the radial compression sur-
face. In this work µ is chosen, that this surface intersects the plane σRR = 0 first along
the whole length of the plasticity envelope. This is visible in Figure 5.15. The parameter
c influences the slope of the paraboloid to the plane σRR = 0.

If the associative flow rule is used, the derivations ∂g/∂σ = ∂f/∂σ = rc,R,

∂2g

∂σ ⊗ ∂σ
=

∂2f

∂σ ⊗ ∂σ
=
∂rc,R

∂σ
= 2b ⇒

{(
∂2g

∂σ ⊗ ∂σ

)

ab

}

=





0 0 0
0 0 0
0 0 2µ/β0

c,R





(5.68)
and

∂2g

∂σ ⊗ ∂α
= 0 (5.69)

can be obtained directly from (5.56). As in Section 5.3, the derivation of the yield-
function (5.56) with respect to αc,R is given by the sum of the derivatives

∂f

∂α
=

∂q

∂αc,R
− ∂Y

∂αc,R
= − (κR,d + κR,Y ) (5.70)

with
∂q

∂αc,R
= −HR,d

β0
c,R

〈αc,R − αR,d〉
(αR,∞ − αc,R)2 (2αR,∞ − αc,R − αR,d) = −κR,d (5.71)

and
∂Y

∂αc,R

= kc,R
Y1

β0
c,R

e−kc,Rαc,R = κR,Y . (5.72)

Substituting (5.64) into (5.62) yields the hardening ratio as

sc,R = s̃c,R(rc,R) := 〈−MR : rc,R〉 =
1

β0
c,R

. (5.73)

For an active yield surface fc,R, the derivative of s̃c,R with respect to rc,R can be written as

∂s̃c,R

∂rc,R

= −MR
〈−MR : rc,R〉

MR : rc,R

= −MR, (5.74)

following the same arguments as given in Section 5.2. Substituting (5.73) into (5.62) yields

α̇c,R =
γ̇c,R

β0
c,R

. (5.75)
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Disregarding the normation factor β0
c,R in (5.75), a similar expression could be acquired on

the basis of associative plasticity as

α̇c,R = γ̇c,R
∂f

∂q
= γ̇c,R. (5.76)

But in such a formulation, the simple physical interpretation of αc,R and ε
p from (5.62)

would get lost.

5.5 Radial-tension and mixed mode surface

Mackenzie-Helnwein [30, 33] proposed a modified Mohr-Coulomb failure criterion for this
mode, which is based on the model of Weihe [44, 45] and Kröplin & Weihe [24]. The latter
was used by Lucena-Simon et al. [28] to describe the microscopic failure mechanism in the
RT-plane of spruce wood. This work will present a slightly modified version of the model
used in [33] by using a non-associative flow rule.

The model of Weihe was developed for frictional materials like soil. Cracked wood also
displays frictional behavior between two adjacent surfaces of a crack, when subjected to
compressive normal stress (σR < 0) and shear (τLR 6= 0).

The state surface is obtained by specialization of the friction model by Kröplin &
Weihe [24] for a crack in parallel to grain as follows

ft,RS =
1

β0
t,R

(
β0

t,R + a0

)

[

− (σRR − βt,R − a)2 +
τ 2
LR

tan2 φ
+ a2

]

≤ 0. (5.77)

βt,R is the current tensile strength perpendicular to grain direction, a is a stress-like pa-
rameter and tanφ is the friction coefficient of the crack surface.

Equation (5.77) is normalized with a dominator containing the initial values of βt,R and
a. The latter is obtained by using the equality in (5.77) and σRR = 0 as

a0 =
β0

s
2 − β0

t,R
2
tan2 φ

2β0
t,R tan2 φ

, (5.78)

where β0
s is the initial shear strength and β0

t,R is the initial tensile strength perpendicular
to grain.

For a graphical interpretation of the parameters βt,R, β0
s , a, and φ see Figure 5.9. The

mixed mode radial tension model describes mode I and mode II cracks. Mode I leads to
a translation of this surface toward σRR = 0. Mode II not only moves the surface toward
the origin of the σRR axis, but also changes its shape. The limit state consists of two plane
surfaces with a straight intersection at the σLL-axis (σRR = 0 and τLR = 0). This so-called
friction cone is equivalent to a coulomb friction material and applies to wood after it is
fractured. ψ is the effective (initial or current) friction angle. The relation between shear
and normal stress reads

|τLR| = σRR tanψ. (5.79)

From (5.79) follows that a reduction of the effective friction angle leads to smaller shear
stresses in dependency of the normal stress σRR and the material parameters βt,R and
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Figure 5.9: Failure surface of the radial tension model for a plane with
σLL =const.

a. A reduction of the initial friction coefficient (tanψ) to an ultimate friction coefficient
(tanψ∞ = tanφ, the friction cone) can be explained by polishing effects on the crack
surfaces due to relative slip. The ultimate friction angle ψ∞ = φ is a material parameter
and is independent from σRR and a.

To prevent numerical problems at a = 0, i.e. at the edge of the residual friction cone,
a minimum value amin is introduced. If amin is chosen small enough, the accuracy of this
model is not affected by this assumption.

Writing (5.77) in the form

ft,RS =
1

D

[

−2 (βt,R + a) σRR − σ2
RR +

τ 2
LR

tan2 φ
+ βt,R (βt,R + 2a)

]

≤ 0 (5.80)

with D = β0
t,R

(
β0

t,R + a0

)
and comparing it with the generic state surface (5.8) leads for

q = 0 to the parameter tensors a and b and their respective matrix representation as

a = aRRMR ⇒ {aa} =





0
aRR

0



 (5.81)

and

b = bRRRRMR ⊗ MR + bLRLRM ⇒ {bab} =





0 0 0
0 bRRRR 0
0 0 4bLRLR



 (5.82)

with the tensor parameters

aRR =
2 (βt,R + a)

D
, bRRRR = − 1

D
, bLRLR =

1

4D tan2 φ
(5.83)
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and the strength function

Y =
1

D
βt,R (βt,R + 2a) . (5.84)

This criterion describes a hyperbolic surface in orthotropic stress space. Of the two half
surfaces defined by (5.77), only the one satisfying σR ≤ βt,R is of physical relevance. A
special algorithm will be developed in Section 7.2 to ensure that any stress point violating
(5.77) is projected to the correct surface.

Out of the four state surfaces of this multi-surface model, this is the only one using a
non-associative plastic flow rule

ε̇
p = γ̇t,RS

∂g

∂σ
= γ̇t,RS r̃t,RS . (5.85)

An associative plastic flow direction defined as

rt,RS =
∂f

∂σ
= a + 2b : σ =

2

D

[

(βt,R + a− σRR)MR +
τLR

tan2 φ
N

]

(5.86)

would allow for plastic flow leading to volume increase due to shear strain, which con-
tradicts experimental evidence. Stress states with shear component τLR and compression
stress σRR < 0 show only a deviatoric part in the deformation and no increase of volume.
Therefore, a non-associative plastic flow direction r̃t,R is defined. It is constructed based
on rt,R according to (5.86), assuming that its shear component

r̃L = 2

(
∂f

∂σ
: N

)

N = 2rt,R : N ⊗ N = 8bLRLRτLRN (5.87)

remains valid but its normal component (responsible for volume change)

r̃R =

(
∂f

∂σ
: MR

)

︸ ︷︷ ︸

length

MR
︸︷︷︸

direction

= rt,R : MR ⊗ MR = (aRR + 2bRRRRσRR)MR (5.88)

being the source of the contradiction, will be changed. r̃R will be scaled by a factor

κ =
〈σRR − βt,R + a tan2 φ〉2

a2 tan4 φ
, (5.89)

resulting in a non-associative flow direction

r̃t,RS = r̃R + κr̃L =
2

D

[

κ (βt,R + a− σRR)MR +
τLR

tan2 φ
N

]

(5.90)

and its vector representation

{(r̃t,RS)a} =
2

D





0
κ (βt,R + a− σRR)

τLR/ tan2 φ



 . (5.91)
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The flow potential g could be obtained by integrating (5.90), but it is not needed for (5.90).
If observed in an plane with σLL =const., the the vector r̃t,RS turns from the positive

σRR-direction in the point (σRR = βt,R, τLR = 0) continuously until reaching the direction
parallel to τLR in the points on the state surface with σRR = −a tan2 φ. The point (σRR =
−a tan2 φ, τLR = 0) is the point of curvature of the part of the hyperbolic surface, which
is physically relevant for the state surface. In all points with σRR < −a tan2 φ the plastic
flow direction is parallel to τLR.

To prevent problems in the numerical implementation κ is constructed such that a small
normal part of the plastic flow direction r̃t,RS for states that satisfy (a tan2 φ−βt,R) < σR <
0 remains, even though σR < 0 for this points.

A quadratic function was used for κ, leading to a smooth function κ and thus a con-
tinuous function for its derivation. The derivative of the ramp function (5.18), i.e.

∂

∂x
〈x〉 =

1 + signx

2
, (5.92)

is not continuous, as can be verified by

lim
x→0+

〈x〉
x

= 1 and lim
x→0−

〈x〉
x

= 0. (5.93)

(5.92) can also be expressed as
∂

∂x
〈x〉 :=

〈x〉
x
. (5.94)

To verify (5.94) one needs to compute the second derivative of the ramp function (5.18)

∂2

∂x2
〈x〉 =

{
0 . . . x 6= 0

undefined . . . x = 0
. (5.95)

Because limx→0+ of (5.95) is equal to zero as is limx→0− of (5.95), one can define

∂2

∂x2
〈x〉
∣
∣
∣
∣
x=0

:= 0. (5.96)

With (5.96) and the fact that x can not be zero for the radial tension state function, since
the point of curvature x = σRR − βt,R + a tan2 φ = 0 is located with in the elastic domain
Eσ and not on its boundary ∂Eσ. Thus, and because of (5.96), the definition (5.94) holds.
Using (5.94), the derivation of the function 〈x〉2 (used in κ (5.89)) leads to

∂ 〈x〉2
∂x

=
〈x〉2
x
, thus lim

x→0+

〈x〉2
x

= lim
x→0−

〈x〉2
x

= 0. (5.97)

From the second equation (5.97) follows that the derivative of κ (5.89) is continuous.

The softening functions, describing the stiffness degradation, are derived from Weihe’s
formulation [45]. They were originally defined as

βt,R = max (0, 1 − ξI − ξII)β
0
t,R and a = (1 − ξII) a0 (5.98)
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with two normalized state variables ξI ∈ [0, 1] and ξII ∈ [0, 1]. They are defined by their
evolution laws

ξ̇I =
`c,R
GI

f,R

βt,Rα̇t,R (5.99)

ξ̇II =
`c,R
GII

f,R

(|τLR| − 〈−σR tanφ〉) α̇s, (5.100)

which describe the currently dissipated fraction of GI
f,R and GII

f,R. GI
f,R and GII

f,R are the
fracture toughnesses for mode I and mode II, respectively, `c,R is the characteristic length
in radial direction, and

α̇ =

{
α̇t,R

α̇S

}

=

{
〈MR : ε̇

p〉√
ε̇

p
Mε̇

p

}

=

{
〈ε̇p

RR〉
|γ̇p

LR|

}

(5.101)

is the vector of inelastic interface strains (αi ∈ [0,∞)). Substituting (5.85) into (5.101)
yields to

α̇ = γ̇t,RS

{
〈MR : r̃t,RS〉√

4tr (MR : r̃t,RS : ML : r̃t,RS)

}

︸ ︷︷ ︸

=: st,RS

= γ̇t,RSst,RS . (5.102)

Specializing (5.98) to (5.101) for mode I only, i.e. for ξII = 0, yields

ξ̇I = (1 − ξI)
`c,R
GI

f,R

β0
t,Rα̇t,R = (1 − ξI) kIα̇t,R (5.103)

with

kI =
β0

t,R`c,R

GI
f,R

. (5.104)

This may be rewritten in the standard form of a first order time-differential equation

ξ̇I + kIα̇t,RξI = kIα̇t,R. (5.105)

The homogeneous solution of (5.105) can be determined by writing (5.105) as

dξI
dt

+ kIα̇t,RξI = 0 ⇒ 1

ξI
dξI = −kIα̇t,R dt. (5.106)

Time integration of (5.106) with t0 = 0 and ξI,0 = 0

∫ ξI

ξI,0

1

ξI
dξI = −kIα̇t,R

∫ t

t0

dt ⇒ ln

(
ξI
A

)

= −kI α̇t,Rt (5.107)

and subsequently
ξI,h = A exp (−kIαt,R) with A ∈ R. (5.108)

An attempt for the particular solution of (5.105) is, e.g. ξI,p = B. B = 1 can be verified
by insertion of ξI,p = B and ξ̇I,p = Ḃ = 0 into (5.105). Adding the homogeneous (5.108)
and particular solution yields the general solution of (5.105) as

ξI = ξI,h + ξI,p = 1 + A exp (−kIαt,R) . (5.109)
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The constant A is obtained from the initial conditions α = 0 → ξI = 0 and follows
A = −B = −1 and therefore

ξI = 1 − exp (−kIαt,R) . (5.110)

Backsubstitution of (5.110) and ξII = 0 in (5.98) yields

βt,R = β0
t,R exp (−kIαt,R) . (5.111)

Mixed mode softening is modeled as an extension of (5.111) as

βt,R = β0
t,R exp (−kIαt,R) exp (−kIIαS) (5.112)

and

a = a0 exp (−kIIαS) with kII =
β0

S`c,R
GII

f,R

. (5.113)

These formulas will be used instead of equations (5.98).
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Figure 5.10: Modeled post-failure behavior for radial tension σRR (mode I).

The softening behavior for mode I according to (5.112) is shown in Figure 5.10(a) for
`c,R = 1, 5, 10, and 100 mm. It shows the strength function βt,R over the strain-like
parameter αt,R. In Figure 5.10(b) the corresponding stress-strain relationships is shown.

Mode II softening behavior is illustrated for the same values of `c,R in Figure 5.11(a)
and the the corresponding stress-strain relationships of the shear stress τLR and the shear
deformation γLR in Figure 5.11(b). In Fig. 5.11(a) the strength function βs, which was
computed from (5.78) with a according to (5.113), is shown over αS.

In both modes the strength drops faster with higher `c,R and the stress-strain relations
are not unique for values of `c,R exceeding a certain length, which is `c,R ≈ 5 mm and `c,R ≈
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Figure 5.11: Modeled post-failure behavior for shear τLR (mode II).

2 mm for mode I and mode II, respectively. The fact that the stress-strain relationships
are not always unique leads to numerical problems. This will be discussed in Chapter 7

Figure 5.12 shows the interaction surface between mode I and II. The same material
parameters as given in the Figures 5.10 and 5.11 were used. The loss of strength (dimen-

`c = 10 mm

`c = 1 mm

αS

αt,R

`c = 100 mm

1 − βt,R/β0

t,R

Figure 5.12: Strength degradation for mixed mode loading and `c = 1, 10 and
100 mm.
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sionless) is shown over the two strain-like parameters αt,R and αS for `c,R = 1, 10, and
100 mm. The transition from a blue to a red colored interaction surface indicates decreas-
ing strength. Red parts of the surface indicate states, where most of the initial strength is
lost.

The second equation in (5.113) represents only an approximation for kII. The precise
form can be obtained by solving a set of ordinary differential equations

ẏ =







β̇t,R

β̇S

ȧ
α̇t,R

α̇S

Ė







= f (y) , (5.114)

which is necessary due to the actual coupling of mode I and mode II. f (y) is a set of
function, which depend on the components of the vector y. The last entry in y is the rate
of the dissipated mechanical energy E . The differential equation (5.100) for plain mode II
loading (σRR = 0) reads

ξ̇II =
`c,R
GII

f,R

|τLR|α̇S. (5.115)

From (5.101) follows that the change of the strain like parameter α̇S equals the change of
the plastic shear deformation γ̇p

LR. Using α̇S = γ̇p
LR and substituting the associative flow

rule (5.86) with σRR = 0 into the second and first line of (5.102) yields

γ̇t,RS =
tan2 φ

2|τLR|
γ̇p

LR and α̇t,R = 2 (βt,R + a) γ̇t,RS =
tan2 φ (βt,R + a)

|τLR|
γ̇p

LR, (5.116)

respectively. Time differentiation of (5.112) and (5.113) yields

β̇t,R =
∂βt,R

∂αt,R
α̇t,R +

∂βt,R

∂αS
α̇S and ȧ =

∂a

∂αS
α̇S. (5.117)

Using the equality in (5.77) with τLR = βS yields

βS =
√

βt,R (βt,R + 2a) tan2 φ. (5.118)

Time differentiation of (5.118)

β̇S =
∂βS

∂αt,R
α̇t,R +

∂βS

∂αS
α̇S. (5.119)

Substituting

∂βt,R

∂αt,R
= kIβt,R,

∂βt,R

∂αS
= kIIβt,R and

∂a

∂αS
= kIIa (5.120)



Multi-surface plasticity model for wood 5.5: Radial-tension surface 70

into (5.117), the results into (5.119) and using (5.116) to express α̇t,R leads to the specific
set of differential equations







β̇t,R

β̇S

ȧ
α̇t,R

α̇S

Ė







=







−βt,R

[

(βt,R + a)
tan2 φ

|βS|
kI + kII

]

−βt,R (βt,R + a)2 tan4 φ

βS|βS|
kI − βSkII

−akII

(βt,R + a)
tan2 φ

|βS|
1

`c,RβS







γ̇p
LR, (5.121)

with γ̇p
LR as only free variable which can be set one due to the rate independent plasticity.

The dissipated energy E must be identical for continuum mechanics with

E =

∫

V e

DdV e (5.122)

and for fracture mechanics with

E =

∫

Ae

GII
f,RdAe, (5.123)

where V e is the volume of a cracked element and Ae is the area of the actual crack through
the very same element. Hence, the solution of (5.121) can be obtained as

GII
f,R

(
kII, β

0
S, `c,R

)
= `c,R

∫ ∞

0

D dt. (5.124)

In general this provides an implicit definition for kII but no explicit expression can be
given. Varying `c,R and solving (5.121) by numerical integration does affect the result for
E . Hence, (5.124) can be reduced to

GII
f,R (kII, β

0
S)

`c,R
=

∫ ∞

0

D dt = E . (5.125)

This condition is violated by the second equation in (5.113), which is used as an approxi-
mation for (5.125).

Mode I (dashed lines) and mode II (solid lines) softening of the mixed mode radial
tension model is shown in Figure 5.13 for `c,R = 1 mm and different values of α. Prob-
lems with such small values of `c,R were discussed in Section 5.2. The transition from the
hyperbolic surface to the friction cone with increasing α, as described in the beginning of
this section, is nicely shown.

For the return map algorithm (to be described in Chapter 6), the computation of
additional partial derivatives is necessary. An important part of these derivatives are
partial derivatives of the non-associative scaling function κ according to (5.89). It is a
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Figure 5.13: Motion of the radial tension surface in the cross-section σLL = 0
for `c = 1 mm (only mode I: dashed lines, only mode II: solid lines).

function of σRR and both state variables αt,R and αS. Its derivatives with respect to these
variables are

∂κ

∂σRR

=: κ,σ =
2 〈σRR − βt,R + a tan2 φ〉

a2 tan4 φ
, (5.126)

∂κ

∂αt,R
=: κ,αR = kIβt,Rκ,σ (5.127)

and
∂κ

∂αS
=: κ,αS = kII

[
κ,σ

(
βt,R − a tan2 φ

)
+ 2κ

]
. (5.128)

The second partial derivative of the flow potential g with respect to σ can be derived
from (5.90) and dr̃t,RS = Dσ r̃t,RS : dσ as

∂2g

∂σ ⊗ ∂σ
:= Dσ r̃t,RS =

2

D

{

[(βt,R + a− σRR)κ,σ − κ]MR ⊗ MR +
1

tan2 φ
N ⊗ N

}

.

(5.129)
The mixed partial derivative of g follows from (5.90) and with (5.120) to

∂2g

∂σ ⊗ ∂α
=

[
∂2g

∂σ ⊗ ∂αt,R

∂2g

∂σ ⊗ ∂αS

]T

(5.130)

with
∂2g

∂σ ⊗ ∂αt,R

=
2kIβt,R

D
[(βt,R + a− σRR) κ,σ − κ]MR (5.131)

and
∂2g

∂σ ⊗ ∂αS

=
2

D
[(βt,R + a− σRR) κ,σ − kII (βt,R + a) κ]MR. (5.132)
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The derivative of the yield function (5.77) with respect to α is obtained as

∂f

∂α
=

[
∂f

∂αt,R

∂f

∂αS

]T

(5.133)

with
∂f

∂αt,R
= −2kIβt,R

D
(σRR − βt,R − a) (5.134)

and
∂f

∂αS

= −2kII

D
[βt,R (σRR − βt,R − a) + a (σRR − βt,R)] . (5.135)

The ratios s of r̃t,RS relevant for softening thus can be written for an active state surface
ft,RS as

s =

{
st,R

sS

}

= s̃(r̃t,RS) :=

{
〈MR : r̃t,RS〉√
r̃t,RSMr̃t,RS

}

=
2

D

{
(βt,R + a− σRR)κ

|τLR|/ tan2 φ

}

(5.136)

and as s = 0 if it is inactive. Its derivative with respect to the plastic flow direction r̃t,RS

is obtained as
∂s̃

∂r̃t,RS
=

[

MR
〈MR : r̃t,RS〉
MR : r̃t,RS

M : r̃t,RS
√

r̃t,RS : M : r̃t,RS

]

. (5.137)

A simplification for these components was developed in Section 5.2. It leads to

∂s̃

∂r̃t,RS
=
[

MR sign (τLR)N
]
. (5.138)

5.6 Visualization

Four state surfaces for clear spruce wood under plane stress states were developed in
Sections 5.2 to 5.5. Each surface covers one failure mode observed in the experiments by
Eberhardsteiner [7].

One can imagine the orthotropic stress space with invariants (4.41) σLL, σRR, and τ 2
RL

as the main coordinate axes. This three-dimensional stress space is similar to the Haigh-
Westergard stress space for isotropic materials. To obtain a visualization of the failure
envelope which is easier to interpret, τRL will be used instead of τ 2

RL. This results in
symmetric pictures with respect to the plane τRL = 0. Each of the state surfaces is only
valid until it intersects another yield surface. The evolving multi-surface failure envelope
is shown in its initial configuration in Figure 5.14.

The surfaces for radial compression and radial tension account for the highest portion
of the whole model. Hence, the failure modes perpendicular to grain dominate the behavior
of wood. The fiber tension mode has the least amount of influence with all possible plane
stress states, but it accounts for those, possessing the highest strength values and thus is
the preferred design mode. The fiber compression mode covers a larger domain than the
fiber tension mode, due to its higher tolerance to changes of the grain angle ϕ.

Table 5.1 contains a composition of all material parameters used in this work to describe
the failure envelope for clear spruce wood in the orthotropic stress space. Also the material
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Figure 5.14: Multi-surface model in its initial state (failure envelope).

parameters for the elastic domain, i.e. for the orthotropic elasticity tensor C (4.71), are
given. All values are given in the units [MPa] and [mm]. This unified depiction enables the
direct use of these values in the mathematical implementation of the multi-surface model.
We are well aware that a sensible unit for the fracture toughness Gf is energy per area.
The conversion to the before mentioned units is given as

[Gf ] = 1
J

m2
= 1

N · m
m2

= 1Pa · m = 10−3MPa · mm. (5.139)

Table 5.1: Material parameters for the multi-surface plasticity model

elastic domain

EL = 15000 MPa GLR = 751 MPa
ER = 830 MPa νLR = 0.40

fiber tension surface

β0
t,L = 65.00 MPa GI

ft,L = 1.65 MPa·mm

fiber compression surface

β0
c,L = 49.99 MPa Y1,L = 10.00 MPa GI

fc,L = 50.00 MPa·mm
A = 1.17 B = 44.89 C = 20.51

HL,d = 15.00 MPa αL,d = 0.50 αL,∞ = 0.75
radial compression surface

β0
c,R = 4.00 MPa Y1,R = 1.80 MPa
c = -0.0075 µ = 0.50 MPa−1 kc,R = 30.00

HR,d = 2.00 MPa αR,d = 0.10 αR,∞ = 0.75
radial tension surface

β0
t,R = 4.50 MPa GI

f,R = 0.30 MPa·mm
β0

S = 8.25 MPa φ = 25.00◦ GII
f,R = 0.30 MPa·mm

Figure 5.15 shows cross-sections through the planes σRR = 0 and τRL = 0. One can
recognize the parabolic shape of the fiber tension (magenta) and fiber compression (red)
state surfaces in the cross-sections but not the shape of the radial surfaces. The latter are
only visible as a straight line in these plots.

For comparison, the single-surface failure envelope on the basis of the Tsai and Wu
criterion [42] with parameters identified by Eberhardsteiner [7] is shown as green dashed
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Figure 5.15: Cross-sections through planes (a) σRR = 0 and (b) τRL = 0.

line in Figure 5.15. The parameters were determined according to the results of the exper-
iments Eberhardsteiner [7] (see Chapter 3), with the definition of failure as the first (local)
maximum any principal normal stress.

The single-surface model used in [35] is indicated by a dashed cyan line in Fig. 5.15. It
describes the elastic domain for this model, which does not necessarily coincide with the
points of failure as defined in [7]. This model also based on the Tsai and Wu criterion [42]
but its parameters were fitted to the strength values of the multi-surface model. Due to the
large scatter of the tensile strength in fiber direction, βt,L was chosen significantly smaller
than the strength obtained by the failure envelope by Eberhardsteiner. This results in a
shorter ellipse visible in the cross-sections in Fig. 5.15(a) and (b).

Figure 5.16 shows the cross-section for σLL = 0. The parabolic radial compression yield
surface (blue) and the physically relevant branch of the hyperboloid representing the radial
tension model (black) can be identified. The fiber compression surface (red) appears as
an ellipse. One can clearly see that it is not relevant, since a stress path originating from
within the elastic domain Eσ (gray) would first reach one of the radial envelopes.

The significant difference of the failure envelope (dashed green) indicating the experi-
mental results [7] and the multi-surface, as well as the single-surface model is due to the
homogeneous inelastic strains in the radial compression regime. These strains lead to a
material behavior that is no longer elastic. Failure according to the definition above is ob-
served in the inelastic regime, resulting in a failure domain that is bigger than the elastic
domain.

The ellipse representing the fiber tension surface is too large to be visible in this portion
of the cross-section. The over and under estimations of the single-surface model (dashed
cyan), accounted for by the multi-surface model (Gray elastic domain Eσ), are clearly
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Figure 5.16: Cross-section through plane σLL = 0,

visible in the Figures 5.15 and 5.16.
Figure 5.17 shows a possible motion of all state surfaces in the τRL = 0 plane. In this

case all failure modes were activated. A motion of each surface individual or combined
with others is obviously possible. The individual kinematics of each surface were shown in
Figures 5.2 to 5.13 in the previous sections for constant `c and various values for the state
variables α.
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Figure 5.17: Possible motion of state surfaces in the plane τRL = 0.

5.7 Comparison of material models

Besides the multi-surface failure model described in this chapter several other models exist
that predict the material behavior of clear spruce wood. One is the single-surface model by
Tsai and Wu [42] for orthotropic materials. Details on this model can be found in [33, 35].
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A third model is the so called box-like failure model [1, 15], that is used in most design
codes. This multi-surface model consists of four plane surfaces, each defined by the uniaxial
strength in the respective main material direction. These surfaces describe a cube in the
orthotropic stress space.

The uniaxial tensile and compressive strength is a good value to compare orthotropic
material models with each other. This was done for the above mentioned failure models
by Helnwein et al. [30]. A uniaxial stress state leads for a orthotropic material to a general
plane stress state, thus an arbitrary stress state can be described by two values, uniaxial
strength βu and gain angle ϕ.
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Figure 5.18: Uniaxial strength of clear spruce wood in dependency of the grain
angle ϕ computed with different failure models [30].

The uniaxial stress state is defined by a single stress σ1 = σ, a vanishing second principal
stress σ2 = 0 and a grain angle ϕ. Using this definition with the uniaxial strength σ = βu

in (3.2) yields

σL = βu cos2 ϕ

σR = βu sin2 ϕ. (5.140)

τLR = βu sinϕ cosϕ

Insertion of this values in the respective yield conditions for the each surface of the multi-
surface (5.24), (5.40), (5.56) and (5.77) and the single-surface model leads to quadratic
equations for βu, which can be computed for each grain angle 0◦ ≤ ϕ ≤ 90◦. The uniaxial
tensile and compressive strength for ϕ = 0◦ of the multi-surface model were used to fit the
box-like model.

Figure 5.18 shows the result of this comparison. The tensile and compression uniaxial
strength are shown in dependency of the grain angle ϕ. As already observed in Section 5.6,
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the two surfaces for radial direction of the multi-surface model cover most of the possible
loading types. The tension cut-off of the fiber tension surface and the fiber compression
surface are only valid for small grain angles. The relevant range of grain angles for each
surface of the multi-surface model is indicated at the bottom of Figure 5.18 by the respective
color.

The over-estimation by design codes, which use the box-like model, is also indicated in
the same figure. In the tensile regime the over-estimation is in the range of ϕ = 10◦ to
45◦, whereas the strength of nearly the whole compression regime is overrated. The peak
of approximately 60% strength over-estimation is reached for tensile loading at a grain
angle of slightly under 30◦ and for compression stresses slightly under 40◦. The reason for
this misestimation is the missing coupling of the normal and shear stresses, that occurs in
biaxial loading states, in the box-like model.

The Tsai and Wu model shows a good accordance with the multi-surface model, with
only a small over-estimation of the tensile strength in grain direction, but does not allow
the distinction of failure modes.



Chapter6
Numerical implementation

The constitutive model for rate-independent plasticity of the orthotropic material clear
spruce wood introduced in Chapter 4 and Chapter 5, is formulated as a set of rate equations.
In general, no closed form integral can be obtained for these equation. A numerical time
integration algorithm has to be employed. In this work the Euler backward algorithm
will be used. It was first proposed by Simo and Taylor [39], and generalized by Simo and
Hughes [38], both for isotropic elasto-plastic materials. Nevertheless, the algorithms in [38]
can also be applied to orthotropic plasticity. The described algorithm involves an elastic
predictor step and, if necessary, a plastic corrector step.

6.1 Numerical integration – incremental formulation

Any incremental form emanates from a known instance time tn. All state variables are
assumed known at tn. The problem is to find a solution for all state variables after a given
time increment ∆t. The related time instance tn+1 is obtained as

tn+1 = tn + ∆t. (6.1)

The update of state variables from tn to tn+1 is performed by numerical integration of the
rate equations given in Section 4.3 and Chapter 5.

Values of a variables at tn are indicated by a subscript n. Values of a variables at tn+1

are indicated by a subscript n+ 1. Following previous arguments, variables with subscript
n are assumed known.

The numerical time integration algorithm works as follows:

• Obtain the total strain εn+1 from the global displacement field un+1. Hence, the
total strain is assumed known at tn+1.

• Apply the Euler backward integration to both the flow rule and the hardening law
to obtain ε

p
n and αn+1.
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• Find total stress σn+1, hardening stress qn+1, and current strength Yn+1 from respec-
tive hyperelastic relations.

• Enforce active yield conditions at tn+1.

Therefore one speaks of a strain-driven process in which εn+1 is the basic independent
variable. This procedure is called the return-mapping algorithm with input variables εn+1,
ε

p
n, αn and the output variables σn+1, qn+1, Yn+1, ε

p
n+1 and αn+1. The stress σn+1 is a

dependent variable following from the hyperelastic stress-strain relation (4.86).
In Chapter 5 the driving variable εn+1 was defined in ordinary differential equation in

the form
ε̇

p = γ̇αrα α ∈ {1, 2, 3, 4} (6.2)

for each of the four state surfaces (indicated by the subscript α), where rα = ∂gα/∂σ with
gα = fα for some surfaces (see Chapter 5 for details). For the proposed state surfaces and
flow rules, rα is linear with respect to the stress tensor σ. Time integration of (6.2) yields

ε
p
n+1 = ε

p
n +

tn+1∫

tn

ε̇
pdt, (6.3)

where ε
p
n is the know value of the plastic strain at time tn and ε

p
n+1 is the plastic strain at

tn+1. ε̇
p depends on the load path during the interval [tn, tn+1]. A numerical approximation

for the integral in (6.3) is obtained from the general implicit Euler integration rule as

ε
p
n+1 ≈ ε

p
n + ε̇

p
n+θ∆t, (6.4)

with time step ∆t = tn+1 − tn and θ ∈ [0, 1] as shown in Figure 6.1.

ε̇
p(t)2

ε̇
p(t)1

θ = 0 θ2θ1 θ = 1

∆t
ε̇

p

t

t1
n+1∫

t1
n

ε̇
p
dt = ε̇

p

n+θ1
∆t

t2
n+1∫

t2
n

ε̇
p
dt = ε̇

p

n+θ2
∆t

2
1

∆t ∆t

t
2
n t

2
n+1t

1
n+1t

1
n

Figure 6.1: Geometrical interpretation of θ.

For every time step there exists one θ for which the exact solution is obtained for the
area under the function ε̇

p(t), but its value is not known a priory. See Figure 6.1 for an
illustration. The right part of the figure shows two segments of the same function. One
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θ can be found for each segment, but it depends on the location of the segment. This is
shown for two different segments, indicated by the numbers 1 and 2. Assuming a value for θ
leads to different numerical integration algorithms for (6.2). The most common integration
algorithms are

• θ = 0 → forward or explicit Euler,

• θ = 1/2 → midpoint rule, and

• θ = 1 → backward or implicit Euler.

Only the midpoint rule leads to a second order accuracy. θ ≥ 1/2 leads to unconditional
linearized stability [38]. Values of θ ≥ 1/2 always lead to stable solutions and convergence
to a solution, thus these algorithms are unconditionally stable. For the integration of the
elasto-plastic initial value problem the best suitable rule to use is the implicit backward
Euler algorithm.

For θ = 1, equation (6.4) yields under consideration of (6.2)

ε
p
n+1 ≈ ε

p
n + ε̇

p
n+1∆t = ε

p
n + rn+1 γ̇n+1∆t

︸ ︷︷ ︸

=: γn+1

= ε
p
n + γn+1rn+1

︸ ︷︷ ︸

=: ∆ε
p

= ε
p
n + ∆ε

p, (6.5)

where γn+1 ≥ 0 is the algorithmic counterpart of the consistency parameter γ̇. The solu-
tion is getting more accurate as the time step ∆t decreases, but the computational effort
increases.

Similar to (6.5) one can also integrate the general softening rule α̇ = γ̇s as defined for
each surface in 5.2 to 5.5 leading to

αn+1 = αn + γn+1sn+1 = αn + ∆α, (6.6)

where αn, αn+1 and sn+1 can be scalars or two component vectors, as e.g. for the radial
tension model from Section 5.5.

The hyperelastic stress-strain relation (4.86) yields

σn+1 = C :
(
εn+1 − ε

p
n+1

)
, (6.7)

where the elastic material tensor C is constant. The hardening stress qn+1 and the strength
function Yn+1 follow from

qn+1 = qn+1(αn+1) and Yn+1 = Yn+1(αn+1), (6.8)

respectively. The incremental consistency parameter γn+1 is obtained from the algorithmic
consistency condition

fn+1 = fn+1(σn+1, qn+1) = 0. (6.9)

6.2 Return mapping algorithm for a single orthotropic

state surface

In this section the numerical solution will be specialized for a single orthotropic surface.
This algorithm can be used to describe (i) a single failure mode, (ii) a single-surface model
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with the appropriate parameters and derivatives, and (iii) a multi-surface model where
only one surface is active. The latter saves computer time because the involved system of
equations is smaller than for the full formulation for multiple active surfaces.

The implicit integration typically leads to an iterative procedure for solving the non-
linear consistency condition fn+1 = 0. The result of this procedure is the incremental
consistency parameter γn+1 (see (6.5) and (6.6)).

The return mapping algorithm, the most common algorithm to solve problems in plas-
ticity, consist of two main steps. The first step is the elastic predictor also called the trial
state. This is computed assuming that the next step is elastic loading or unloading. If
the trial state is outside the elastic domain, i.e. the yield surface, it is used as a starting
point for the iteration to solve the plastic corrector. The plastic corrector is the second
step of the return mapping algorithm and projects the trial state back on the yield sur-
face. The elastic-plastic operator split of the return mapping algorithm can be written in
rate-formulation as

Total = Elastic predictor + Plastic corrector
ε̇ = ε̇ ε̇ = ε̇ ε̇ = 0

ε̇
p = γr(σ, q) = ε̇

p = 0 + ε̇
p = γr(σ, q).

α̇ = − γs(σ, q) α̇ = 0 α̇ = − γs(σ, q)

(6.10)

One needs to find a useful notion to defined the elastic predictor. As shown in [38]
the Kuhn-Tucker conditions can be formulated in a different way based on plastic loading.
Loading is characterized by the so-called rate-of-trial elastic stress

σ̇
tr := C : ε̇ (6.11)

and the conditions to define a plastic state such that

f(σ, q) = 0 and ∂σf(σ, q) : σ̇
tr > 0. (6.12)

This formulation can be used to distinguish between an instantaneous elastic process and
an instantaneous plastic process. The equivalence of the rate of trial stress condition and
the Kuhn-Tucker conditions (4.96) becomes obvious, when substituting (6.11) into (4.102),
yielding

γ =
∂σf : σ̇

tr

∂σf : C : r + ∂qf · h . (6.13)

For a point on the yield surface, f = 0, (6.13) leads to a positive value of γ, as (6.12) holds
for a plastic state, and thus with (6.11) follows from (4.101) ḟ = 0. The advantage of this
method is, that all values can be computed based on an elastic state.

Replacing the rates by finite increments in the rate-of-trial stress condition (6.11)
and (6.12) leads to the trial state

γtr
n+1 = 0, ε

p,tr
n+1 = ε

p
n + γtr

n+1rn+1 = ε
p
n,

α
tr
n+1 = αn, qtr

n+1 = qn, and Y tr
n+1 = Yn. (6.14)

From the hyperelastic law follows

σ
tr
n+1 =

∂ψ

∂ε

∣
∣
∣
∣
tr

= C : ε
e,tr
n+1 = C : (εn+1 − ε

p,tr
n+1) = C : (εn+1 − ε

p
n). (6.15)
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The trial state allows for a direct computational implementation of the incremental version
of the Kuhn-Tucker loading/unloading conditions

γn+1 ≥ 0, fn+1 ≤ 0 and γn+1fn+1 = 0. (6.16)

Freezing the plastic strain ε
p and the internal variables α during a time step would be the

physical explanation of the trial state. With the yield condition

f tr
n+1 = f(σtr

n+1, q
tr
n+1, Y

tr
n+1) > 0 (6.17)

it can be tested if the trial state is admissible. If this condition is not fulfilled, i.e. if
the trial state is located outside the elastic domain, the plastic corrector step must be
computed.

To solve the non-linear initial value problem defined by the rate-independent plasticity
model given with the flow rule (6.5), the softening rule (6.6), the stress-strain relation (6.7),
the definitions of the plastic flow direction r and the softening ratio s and the consistency
condition (6.9), one can rephrase the equations in terms of residuums as

Rσ,n+1 = C
−1 : σn+1 − εn+1 + ε

p
n+1 = 0, (6.18)

Rε,n+1 = ε
p
n+1 − ε

p
n − γn+1rn+1 = 0, (6.19)

Rr,n+1 = rn+1 −
∂gn+1

∂σn+1

= 0, (6.20)

Rα,n+1 = αn+1 − αn − γn+1sn+1 = 0, (6.21)

Rs,n+1 = sn+1 − s̃(rn+1) = 0, (6.22)

and
Rf,n+1 = fn+1 = 0. (6.23)

The function s̃(rn+1) in (6.22) extracts the hardening direction sn+1 from the plastic flow
direction rn+1. Each residuum presents a measure for the error of each equation, and hence
a measure of the distance of any approximate state from its true solution. Combining these
equations to a generalized residuum vector

Rn+1 = {Rσ,n+1 Rε,n+1 Rr,n+1 Rα,n+1 Rs,n+1 Rf,n+1}T (6.24)

and defining a generalized vector of independent unknowns

qn+1 =
{
σn+1 ε

p
n+1 rn+1 αn+1 sn+1 γn+1

}T
(6.25)

allows for an easier formulation of the iterative procedure.
These equations can be solved using the generalized Newton-Raphson method. The

series expansion of Rn+1 = 0 is

R
(k)
n+1 +DqR

(k)
n+1 • ∆qn+1 +D2

qqR
(k)
n+1 • ∆qn+1 ⊗ ∆qn+1 + · · · = 0. (6.26)

The generalized Newton-Raphson method follows after the elimination of terms higher
than first order in (6.26) (i.e. linearization) to

R
(k)
n+1 +DqR

(k)
n+1 • ∆qn+1 = 0, (6.27)
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where • stands for the appropriate contraction operator (either a second order tensor
product, a vector product, or a scalar product) according to the entry in ∆q. This method
only requires a first-order tangent operator, because higher order terms are not used. The
(k + 1)th-approximation of qn+1 follows from (6.27) as

q
(k+1)
n+1 = q

(k)
n+1 + ∆qn+1 (6.28)

with
∆qn+1 = −(DqR

(k)
n+1)

−1 • R
(k)
n+1. (6.29)

With q
(k+1)
n+1 a new generalized residuum vector R

(k+1)
n+1 = R(q

(k+1)
n+1 ) can be computed.

Steps (6.28) and (6.29) have to be repeated until

‖R(k+1)
n+1 ‖ ≤ tolerance, (6.30)

with a tolerance value in the range of approximately 10 · ε, where ε stands for the accuracy
of the used computer. The start value q

(0)
n+1 for the iteration follows from the trial state

defined in (6.14) and (6.15), and from the definition of the vector qn+1 (6.25). It reads

q
(0)
n+1 = qtr

n+1 =
{
σ

tr
n+1 ε

p,tr
n+1 rtr

n+1 α
tr
n+1 str

n+1 γ
tr
n+1

}T
. (6.31)

The tangent operator for the Newton algorithm can be obtained from the differential

dRn+1 = DqRn+1 • dqn+1 +DεRn+1 : dεn+1, (6.32)

where DqRn+1 is obtained for εn+1 = constant and DεRn+1 is computed for qn+1 = con-
stant. The latter operator is not used needed at this point but will be used for the com-
putation of the consistent tangent operator in Section 6.5.

The differentials of equations (6.18) to (6.23) for independent variables in qn+1 as
defined in (6.25) and εn+1 = constant are obtained as follows

dRσ = C
−1 : dσn+1 + dε

p
n+1, (6.33)

dRε = dε
p
n+1 − dγn+1rn+1 − γn+1drn+1, (6.34)

dRr = drn+1 −
∂2gn+1

∂σn+1 ⊗ ∂σn+1

: dσn+1 −
∂2gn+1

∂σn+1 ⊗ ∂αn+1

· dαn+1, (6.35)

dRα = dαn+1 − dγn+1sn+1 − γn+1dsn+1, (6.36)

dRs = dsn+1 −
∂s̃n+1

∂rn+1
: drn+1, (6.37)

and

dRf =
∂fn+1

∂σn+1
: dσn+1 +

∂fn+1

∂qn+1

∂qn+1

∂αn+1
· dαn+1 +

∂fn+1

∂Yn+1

∂Yn+1

∂αn+1
· dαn+1. (6.38)

The first and second-order partial derivatives in (6.35), (6.37) and (6.38) were defined
defined for each state surface in Chapter 5. They will be abbreviated as “∂◦◦�”, where “�”
stands for the function to be differentiated and “◦” for each partial derivative. Combining
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equations (6.33) to (6.38) yields the differential dRn+1 according to (6.27). Using dRn+1 =:
DRn+1 • dqn+1 uniquely defines the tangent operator DqRn+1 as

DqRn+1 =











C
−1

I 0 0 0 0
0 I −γn+1I 0 0 −rn+1

−∂σσg 0 I −∂σαg 0 0
0 0 0 I γn+1 −sn+1

0 0 −∂r s̃ 0 I 0
∂σf 0 0 ∂αf 0 0











. (6.39)

Computation of the inverse of (6.39) poses a significant numerical effort. This effort can
be reduced by solving (6.27) not directly but by means of a staggered scheme instead. A
suitable staggered scheme is obtained by solving (6.27), one variable at a time, by using
one row of (6.27) at a time. DqRn+1, as needed in (6.27), was defined in (6.39). To prevent
multiple usage of the same equation and to obtain a stable algorithm, the rows associated
with ∆σ and ∆α, i.e. the 1st and 4th row of (6.27), are combined to one equation as

[

R
(k)
σ,n+1

R
(k)
α,n+1

]

+

[
C−1 0
0 I

][

∆σ
(k)
n+1

∆α
(k)
n+1

]

+

[
I

0

]

: ∆ε
p (k)
n+1

+

[
0

−γn+1I

]

∆s
(k)
n+1 +

[
0

−sn+1

]

∆γ
(k)
n+1 = 0. (6.40)

From the 3rd row of (6.27) one obtains

∆r
(k)
n+1 =

[
∂σσg ∂σαg

]

[

∆σ
(k)
n+1

∆α
(k)
n+1

]

− R
(k)
r,n+1. (6.41)

Substituting (6.41) into the 2nd and 5th row of (6.27) yields

∆ε
p (k)
n+1 = r

(k)
n+1∆γ

(k)
n+1 + γ

(k)
n+1

[
∂σσg ∂σαg

]

[

∆σ
(k)
n+1

∆α
(k)
n+1

]

− R
(k)
1,n+1 (6.42)

with
R

(k)
1,n+1 = γ

(k)
n+1R

(k)
r,n+1 + R

(k)
ε,n+1. (6.43)

and

∆s
(k)
n+1 = ∂r s̃

[
∂σσg ∂σαg

]

[

∆σ
(k)
n+1

∆α
(k)
n+1

]

− R
(k)
2,n+1 (6.44)

with
R

(k)
2,n+1 = ∂rs̃ R

(k)
r,n+1 + R

(k)
s,n+1, (6.45)

respectively. With (6.42) and (6.44) in the two-vector equation (6.40) for ∆σn+1 and ∆αn+1

leads to
[

C−1 + γ
(k)
n+1 ∂σσg γ

(k)
n+1 ∂σαg

−γ(k)
n+1 ∂rs̃ : ∂σσg I − γ

(k)
n+1 ∂r s̃ : ∂σαg

][

∆σ
(k)
n+1

∆α
(k)
n+1

]

=

=

[

−r
(k)
n+1

s
(k)
n+1

]

∆γ
(k)
n+1 −

[

R
(k)
σ,n+1 − R

(k)
1,n+1

R
(k)
α,n+1 + γ

(k)
n+1R

(k)
2,n+1

]

. (6.46)
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Solving (6.46) for {∆σn+1 ∆αn+1}T yields
[

∆σ
(k)
n+1

∆α
(k)
n+1

]

= Ξ
(k)
n+1

[

−r
(k)
n+1

s
(k)
n+1

]

∆γ
(k)
n+1 −

[

R
(k)
3,n+1

R
(k)
4,n+1

]

(6.47)

with [

R
(k)
3,n+1

R
(k)
4,n+1

]

= Ξ
(k)
n+1

[

R
(k)
σ,n+1 − R

(k)
1,n+1

R
(k)
α,n+1 + γ

(k)
n+1R

(k)
2,n+1

]

(6.48)

and

Ξ
(k)
n+1 =

[

C−1 + γ
(k)
n+1 ∂σσg γ

(k)
n+1 ∂σαg

−γ(k)
n+1 ∂r s̃ : ∂σσg I − γ

(k)
n+1 ∂rs̃ : ∂σαg

]−1

. (6.49)

Using (6.47) to reduce the 6th row of (6.27) yields

[
∂σf ∂αf

]
Ξ

(k)
n+1 •

[

−r
(k)
n+1

s
(k)
n+1

]

︸ ︷︷ ︸

A(k)
γ

∆γ
(k)
n+1 =

[
∂σf ∂αf

]

[

R
(k)
3,n+1

R
(k)
4,n+1

]

−R
(k)
f,n+1

︸ ︷︷ ︸

R
(k)
5,n+1

, (6.50)

which can be solved for ∆γ
(k)
n+1 as

∆γ
(k)
n+1 =

R
(k)
5,n+1

A
(k)
γ

. (6.51)

Back substituting ∆γ
(k)
n+1 according to (6.51) into (6.47) yields ∆σ

(k)
n+1 and ∆α

(k)
n+1. Sub-

stituting {∆σ
(k)
n+1 ∆α

(k)
n+1}T into (6.41) and (6.44) yields ∆r

(k)
n+1 and ∆s

(k)
n+1, respectively.

Using the obtained results for ∆γ
(k)
n+1 and {∆σ

(k)
n+1 ∆α

(k)
n+1}T in (6.42) yields ∆ε

p (k)
n+1 . Thus

all components of ∆q
(k)
n+1 are known.

The new and better approximation q
(k+1)
n+1 for qn+1 is obtained from (6.28) as

q
(k+1)
n+1 = q

(k)
n+1 +







∆σ
(k)
n+1

∆ε
p (k)
n+1

∆r
(k)
n+1

∆α
(k)
n+1

∆s
(k)
n+1

∆γ
(k)
n+1







. (6.52)

The residuum R
(k+1)
n+1 = Rn+1(q

(k+1)
n+1 ) follows from (6.24). The vector Rn+1 is computed

at every step throughout the iteration. This procedure is repeated until convergence cri-
terion (6.30) is satisfied.

The return mapping algorithm can be viewed as back-projection of the trial state onto
the yield surface, as illustrated in Figure 6.2. For the special case of associative plasticity,
the return map represents the closest point projection for the C-metric. The described
procedure is part of the plastic corrector step in the two-step additive split of the elastic-
plastic problem.
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σ
tr
n+1

C : rn+1

Θ

rn+1 = ∂σgn+1

return map
closest point projection
in cartesian metric

= −γn+1C : rn+1

−C : (εp

n+1 − ε
p
n)

fn = 0

σn

σn+1

fn+1 = 0

Eσ,n

∂σfn+1

Eσ,n+1

∂Eσ,n ∂Eσ,n+1

Figure 6.2: Geometric illustration of the concept of closest point projection and
the return mapping algorithm, for an yield surface with isotropic and kinematic
hardening.

6.3 Specialization of the return mapping algorithm

for two and more state surfaces

As mentioned in the beginning of Section 6.2, the algorithm described therein is strictly
applicable only to a single surface. The return mapping algorithm can be interpreted as
a projection in orthotropic stress space. There is no uniqueness problem for projection to
a convex single surface model. The wood model described in this work consists of four
orthotropic state surfaces. In such a multi-surface model the solution could be located
on any of the four surfaces, on a line at the intersection of two (edge), or on a point at
the intersection of three surfaces (corner). Thus a set of active state surfaces Jact can be
defined as mentioned in 4.4. Through violation of individual conditions by the trial state
one can identify active surfaces. If more than one surface is active, the projection becomes
a linear combination of several vectors. This vectors are defined for each surface by its
consistency parameter γi,n+1 and its plastic flow direction ri,n+1.

The return mapping algorithm for multiple active surfaces is an extension of (6.5) as
follows

ε
p
n+1 = ε

p
n +

∑

i∈Jact

γi,n+1ri,n+1

︸ ︷︷ ︸

∆ε
p
n+1

(6.53)

Substituting (6.53) into the hyperelastic law (6.7) yields

σn+1 = C : (εn+1 − ε
p
n) −

∑

i∈Jact

γi,n+1C : ri,n+1 = σ
tr
n+1 −

∑

i∈Jact

γi,n+1C : ri,n+1 (6.54)
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Figure 6.3 shows a corner projection in stress space. The figure illustrates a corner space
defined by the base vectors C : ri,n+1 of three state surfaces. The consistency parameters
γi,n+1 are the coordinates in this system.

Jact = {a,b,c}

fa = 0

σtrial
n+1

fc = 0

fb = 0

C : rc,n+1

C : rb,n+1
σn+1

C : ra,n+1

C : (εp
n+1− εp

n) = ∑
i∈Jact

γi,n+1 C : ri,n+1

Figure 6.3: Combined projection of the trial stress onto active surfaces

Hardening and softening laws are formulated such that no coupling between various
models occurs. This leads to decoupled integration equations and to the fact that it is
impossible for more than three surfaces to be active. Time integration of the hardening-
softening laws for each surface i ∈ Jact leads to

αi,n+1 = αi,n + γi,n+1si,n+1. (6.55)

To make the implementation easier one can also combine all parameters αi,n+1, i = 1, 2, 3, 4,
into one large vector αn+1 containing all hardening-softening variables. The softening ratios
si have to be written in vectors s?

i as

s?
i,n+1 =







...
si,n+1

...







(6.56)

Use of vectors s?
i,n+1 enables the description of the interactions between different softening

modes. The i-th component of s?
i,n+1 is the softening ratio for the i-th state surface and

the other components describe the coupling of the hardening and softening behavior with
other surfaces. If the i-th component of s?

i,n+1 is the only non-zero entry no coupling effect
is taken into account. If the j-th component, j 6= i, is non-zero, it describes the effect of
the j-th mode on the i-th one.

The general form of (6.55) thus follows as

αn+1 = αn +
∑

i∈Jact

γi,n+1s
?
i,n+1. (6.57)

This way there is only one vector containing l state variables, where l = mact + 1 in case
the radial tension surface is active and l = mact if that surface is inactive.

The approach with residuum equations used for single-surface plasticity can also be
used for the non-linear initial value problem of multi-surface plasticity. The generalized
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Newton-Raphson method (6.27) will also be used for multi-surface plasticity. The number
of unknowns and the definition of the tangent operator DqRn+1 will be adjusted for this
purpose.

A single active surface in a multi-surface model yields to the same unknowns as a
single-surface model. These six unknowns are the stress tensor σ, the plastic strain ε

p, a
plastic flow direction ri, a softening parameter αi, a softening ratio s?

i , and a consistency
parameter γi. With every additional active surface four unknowns (ri, αi, s?

i , γi) are added
to the system of equations.

The softening parameters αi are combined to a single vector α according to (6.57) thus
leading to one vectorial equation. For each active surface an equation for ri, s?

i , and γi is
added in (6.27). Hence a vector of unknowns can be written

qn+1 =
{
σn+1 ε

p
n+1 {ri,n+1} αn+1 {s?

i,n+1} {γi,n+1}
}T

(6.58)

with

{�i,n+1} =







�a,n+1

�b,n+1
...







Jact = {a, b, . . . }, (6.59)

where � stands for either r, s?, or γ. The residuums equivalent to ones used in Section 6.2
follow for multi-surface plasticity as

Rε,n+1 = ε
p
n+1 − ε

p
n −

∑

i∈Jact

γi,n+1ri,n+1 = 0, (6.60)

Rr,i,n+1 = rn+1 − ∂σgi = 0, (6.61)

Rα,n+1 = αn+1 − αn −
∑

i∈Jact

γi,n+1s
?
i,n+1 = 0, (6.62)

Rs,i,n+1 = s?
i,n+1 −

∑

j∈Jact

s̃i(rj,n+1) = 0 ∀ i ∈ Jact, (6.63)

and
Rf,i,n+1 = fi,n+1 = 0. (6.64)

The residuum Rσ,n+1 (6.18) of the return mapping algorithm for a single surface is also
valid for multiple surfaces.

The differential of (6.63) follows as

dRs,i = ds?
i,n+1 −

∑

j∈Jact

∂s̃i,n+1

∂rj,n+1
drj,n+1 ∀ i ∈ Jact. (6.65)

If the softening modes of the state surfaces are uncoupled, several ∂rj
s̃i|n=1 become zero.

For decoupled Harding/softening, equation (6.65) reduces to

dRs,i = ds?
i,n+1 −

∂s̃i,n+1

∂ri,n+1
dri,n+1 (6.66)
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The summations in (6.60) and (6.62) can be rewritten using (6.59) as

∑

j∈Jact

�j,n+14j,n+1 =
{

�a,n+1 �b,n+1 . . .
}
•







4a,n+1

4b,n+1
...







= {�j,n+1}T • {4j,n+1},

(6.67)
where � and 4 stands for the respective term in the sum.

The multi-surface equivalence to (6.27) is obtained from (6.18), (6.60), (6.61), (6.62),
(6.66), and (6.64) as






Rσ

Rε

{Rr,i}
Rα

{Rs,i}
{Rf,i}







+











C−1 I 0 0 0 0
0 I −{Iγi

}T 0 0 −{ri,n+1}T

−{∂σσgi} 0 I −{∂σαgi} 0 0
0 0 0 Ill {Ill,γi

}T −{s?
i,n+1}T

0 0 −{∂ri
s̃i} 0 Ill 0

{∂σfi} 0 0 {∂αfi} 0 0











•







∆σ

∆ε
p

{∆ri}
∆α

{∆s?
i }

{∆γi}







= 0,

(6.68)
with

Iγi
= γi,n+1I, Ill,γi

= γi,n+1Ill, and {Ill} =






1 0 . . .
0 1 . . .
...

...
. . .






l×l

. (6.69)

The index n + 1 in (6.68) is suppressed.
This nonlinear system of equations will be solved in a similar way as described in

Section 6.2 with a partitioned solution scheme for multiple state surfaces. The obtained
solution scheme is given in Table 6.1. The index (k) that indicates the current approxi-
mation of the (n+ 1)-values is suppressed in Table 6.1 Using the definition of qn+1 (6.58)

and (6.28) a new approximation q
(k+1)
n+1 can be computed with ∆q as

q
(k+1)
n+1 :=







σ
(k+1)
n+1

ε
p (k+1)
n+1

{r(k+1)
i,n+1}

α
(k+1)
n+1

{s? (k+1)
i,n+1 }

{γ(k+1)
i,n+1 }







=







σ
(k)
n+1

ε
p (k)
n+1

{r(k)
i,n+1}

α
(k)
n+1

{s? (k)
i,n+1}

{γ(k)
i,n+1}







+







∆σ
(k)
n+1

∆ε
p (k)
n+1

{∆r
(k)
i,n+1}

∆α
(k)
n+1

{∆s
? (k)
i,n+1}

{∆γ(k)
i,n+1}







. (6.70)

The components of ∆q are given by equations (viii)-(xii) in Table 6.1.
With this approximation the updated values of the yield function and its derivatives for

each surface can be obtained and the next approximation step given in Table 6.1 follows
until (6.30) is satisfied.

The computation scheme of Table 6.1 can be compared to (6.29). Hence Table 6.1 is
equivalent to −(DqRn+1)

−1 and a given residuum Rn+1.
To maintain an overview of each tensor, vector and variable, Table 6.2 lists all vari-

ables with their dimensions used in the computation. For tensors the matrix and vector
representations are given.
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Table 6.1: Partitioned solution scheme for stress projection

• Residuum

Rn+1 =







Rσ,n+1

Rε,n+1

{Rr,i,n+1}
Rα,n+1

{Rs,i,n+1}
{Rf,i,n+1}







=







C−1 : σn+1 − εn+1 + ε
p
n+1

ε
p
n+1 − ε

p
n −

∑

i∈Jact

γi,n+1ri,n+1

{ri,n+1} − {∂σgi}
αn+1 − αn −

∑

i∈Jact

γi,n+1s
?
i,n+1

{s?
i,n+1} − {s̃i(ri,n+1)}

{fi,n+1}







(i)

• Ξ-matrix by inversion

Ξn+1 =







C
−1 +

∑

i∈Jact

γi,n+1 ∂σσgi

∑

i∈Jact

γi,n+1 ∂σαgi

−
∑

i∈Jact

γi,n+1 ∂ri
si ∂σσgi I −

∑

i∈Jact

γi,n+1 ∂ri
s̃i ∂σαgi







−1

(ii)

• Left- and right-hand sides

R1,n+1 =
∑

i∈Jact

γi,n+1Rr,i,n+1 + Rε,n+1 (iii)

R2,i,n+1 = ∂ri
s̃iRr,i,n+1 + Rs,i,n+1 ∀ i ∈ Jact (iv)

[
R3,n+1

R4,n+1

]

= Ξn+1





Rσ,n+1 − R1,n+1

Rα,n+1 +
∑

i∈Jact

γi,n+1R2,i,n+1



 (v)

{R5,i,n+1} =
[
{∂σfi} {∂αfi}

]
[

R3,n+1

R4,n+1

]

− {Rf,i,n+1} (vi)

{Aγ,ij} =
[
{∂σfi} {∂αfi}

]
Ξn+1

[
−{rj,n+1}T

{s?
j,n+1}T

]

(vii)

• Solve i-equations to compute {∆γj} for each active surface j ∈ Jact

{Aγ,ij}{∆γj,n+1} = {R5,i,n+1} (viii)

• Compute correction factor for each component of ∆q

[
∆σn+1

∆αn+1

]

= Ξn+1

∑

i∈Jact

[
−{ri,n+1}T

{s?
i,n+1}T

]

∆γi,n+1 −
[

R3,n+1

R4,n+1

]

(ix)

{∆ri,n+1} =
[
{∂σσgi} {∂σαgi}

]
[

∆σn+1

∆αn+1

]

− {Rr,i,n+1} (x)

∆s?
i,n+1 = ∂ri

s̃i∆ri,n+1 − Rs,i,n+1 ∀ i ∈ Jact (xi)

∆ε
p
n+1 = −C

−1 : ∆σn+1 − ∆Rσ,n+1 (xii)
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Table 6.2: Dimension of variables and derivations
variable one surface RT surface several surfaces

fi 1 × 1 1 × 1 mact × 1
∂fi,σ 1 × 3 1 × 3 mact × 3
∂fi,α 1 × 1 1 × 2 mact × l
∂gi,σ 1 × 3 1 × 3 mact × 3
∂gi,σσ 3 × 3 3 × 3 (3 × 3) ×mact

∂gi,σα 3 × 1 3 × 2 (3 × l) ×mact

si 1 × 1 2 × 1 (l × 1) ×mact

∂si,ri 1 × 3 2 × 3 (l × 3) ×mact

α 1 × 1 2 × 1 (l × 1) ×mact

γ 1 × 1 1 × 1 mact × 1
i ∈ Jact, l = mact + 1 if RT ∈ Jact else l = mact

6.4 Corner-projection in multi-surface plasticity

The return mapping algorithm for trial states close to the intersection of yield surfaces,
i.e. close to edges or corners, may result in a wrong projection. Two cases may occur,
where an apparently correct projection leads to a wrong result. In Figure 6.4 the wrong
projection and the correction with a new projection are are pictorially indicated for both
cases.

γi,n+1 < 0 ! fi,n+1 > 0 !

σn+1

σn+1

ri,n+1

Eσ

C : rj,n+1

rj,n+1

C : ri,n+1
−γi,n+1C : ri,n+1

Eσ

σ
tr
n+1 σ

tr
n+1

C : ri,n+1

−γi,n+1C : ri,n+1

rj,n+1

C : rj,n+1σn+1

−C : (εp
n+1 − ε

p
n)

σn+1

fi,n+1 = 0 fi,n+1 = 0

ri,n+1

fj,n+1 = 0

−γj,n+1C : rj,n+1
fj,n+1 = 0

−γj.n+1C : rj,n+1

∂fi,n+1

∂σn+1

∂fi,n+1

∂σn+1

∂fj,n+1

∂σn+1

∂fj,n+1

∂σn+1

CASE 2CASE 1

Figure 6.4: Geometric illustration of both cases in the corner projection of the
return mapping algorithm.

Case 1

The first case is indicated by a state with f tr
i,n+1 > 0 and f tr

j,n+1 > 0, where Jact = {i, j}.
This leads to a projection of the stress point onto the intersection of the surfaces fi,n+1 and
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fj,n+1, as both are active. During this projection a consistency parameter with γi,n+1 < 0
occurs in equation (6.54). This is equivalent to a projection vector, that does not point
toward the yield surfaces, if using the trial point as a reference. Because γi,n+1 < 0 violates
of the Kuhn-Tucker conditions (4.112) the projection is invalid, even though the projected
solution σn+1 satisfies the yield-conditions fα,n+1 = 0.

Repeating this projection and setting the surface that led to the violation of the loading
and unloading condition with γi,n+1 < 0 inactive, i.e. fi,n+1 = 0, leads to a correct
projection on the other surface fj.

Case 2

In Case 2 only one yield surface is active fj,n+1 > 0(Jact = {j}) and also its consistency
parameter γj,n+1 > 0 does not violate the Kuhn-Tucker conditions. Nevertheless the con-
verged projection result σn+1 violates the yield-condition fi,n+1 < 0. This means the stress
point is located in the non-admissible set and not, as required, on the border of the ad-
missible set ∂E � (4.107). This means, that a yield surface fj, which was not active before
the projection is now active.

Setting the yield surface, which violated the yield condition after convergence, active
with fj,n+1 > 0 for a new projection leads to the correct solution.

Algorithm for corner-projection

The general solution of this problem is an algorithm, that first computes a projection as
predetermined by

Jact =
{
f tr

i,n+1 ≥ 0
}
. (6.71)

After checking
γi,n+1 > 0 and fi,n+1 < 0 ∀ i ∈ Jact (6.72)

it computes a new projection if (6.72) was violated. For the second projection a new set
of active yield surfaces according to

J new
act = {i ∈ Jact|γi,n+1 ≥ 0} ∪ {j 6∈ Jact|fj,n+1 > 0} (6.73)

is used. This algorithm needs to verify every projection, also if only one surface was active
in the first projection.

6.5 Algorithmic tangent

With the back projection of a stress point, the state for a given time increment is know.
In order to be able to compute the next displacement field of the structure a finite element
program also needs the stiffness at this time-step. This stiffness at a time tn+1 is called
the consistent algorithmic elasto-plastic tangent C

ep
n+1. The elasto-plastic tangent has to

be consistent with the integration algorithm (projection) in order to achieve quadratic
convergence. Use of the continuum tangent Cep or an error in the matrix representation of
tensors would not yield to quadratic convergence to a solution. The integration algorithm
itself only assures a stable solution.
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The consistent algorithmic elasto-plastic tangent is defined as the tensor operator that
connects an finite small change in total strain εn+1 with a finite small change in the
projected stress σn+1, i.e.

dσn+1 = C
ep
n+1 : dεn+1. (6.74)

Also the partitioned solution schemes in Sections 6.2 and 6.3 connect the total strain with
the stress. Thus the closed solution of (6.27), i.e. the inversion of DqRn+1 can be used to
compute C

ep
n+1.

At a converged solution for the projection the residuum Rn+1 = 0, hence also its
differential dRn+1 = 0. Setting dRn+1 = 0 in (6.32) yields

dqn+1 = −(DqRn+1)
−1 •DεRn+1 : dεn+1 (6.75)

with
DεRn+1 = {−I, 0, 0, 0, 0, 0}T . (6.76)

(6.76) is evident from the differential of (6.18)

dRσ = −dεn+1, (6.77)

as all other differentials of (6.19) to (6.23) are zero. Taking into account that the first
entry of dqn+1 is dσn+1 and comparing (6.75) with (6.74) makes clear that the first entry
of (DqRn+1)

−1 is equal to the consistent tangent operator. Thus, a formula for the elasto-
plastic stiffness at a given time increment can be written as

C
ep
n+1 = {I 0 0 0 0 0} • (DqRn+1)

−1 • {I 0 0 0 0 0}T . (6.78)

As mentioned in Section 6.3 the algorithm described in Table 6.1 is exactly equal to the
negative inverse of the first-order tangent operator. Thus one can introduce an analogy by
comparing (6.29) with (6.75) that

• replaces the incremental correction ∆ for each iteration (k) with an finite differential
step d,

• introduces a new residuum Rn+1 = {−dεn+1 0 0 0 0 0}T and

• a new vector of unknowns qn+1 = {dσn+1 0 0 0 0 0}T .

This analogy simply states that if one inputs a small change of ε
p into the newton algorithm

and computes the change in σ the necessary computation steps must be equal to C
ep
n+1.

Applying this analogy to Table 6.1 leads to a closed formula for the consistent tangent
operator for multiple state surfaces. Table 6.3 shows the computation of the consistent
elasto-plastic tangent operator from this analogy.

Leaving out the summation and suppressing the subscripts i and j in the definition of
Fn+1 leads to the tangent operator for a single surface. The matrix {Aγ,ij}−1 degenerates
to 1/Aγ,n+1.

To ensure, that at the first plastic step the elasto-plastic tangent and not the elastic
tangent is used, the yield condition should be checked with a negative tolerance value.
This leads to a faster convergence.
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Table 6.3: Computation of the consistent elasto-plastic tangent operator

• From the analogy (other components of Rn+1 and ∆qn+1 are zero)

Rσ,n+1 = −dεn+1 and ∆σn+1 = dσn+1 (i)

• Thus, from (i) in Table 6.1 yield the new right-hand sides

R1,n+1 = 0 {R2,i,n+1} = 0 (ii)
[

R3,n+1

R4,n+1

]

= Ξn+1

[
−dεn+1

0

]

(iii)

{R5,i,n+1} =
[
{∂σfi} {∂αfi}

]
Ξn+1

[
−dεn+1

0

]

(iv)

• dγj follows by multiplying (viii) in Table 6.1 with an inverse matrix {Aγ,ji}−1 to

{Aγ,ki}−1{Aγ,ij}{dγj,n+1} = {δkj}{dγj,n+1} = {Aγ,ki}−1{R5,i,n+1} (v)

{dγk} = {Aγ,ki}−1{R5,i,n+1} with {Aγ,ik}−1{Aγ,kj} = {δij} (vi)

• To compute dσn+1 one may introduce a transformation matrix P such that

dσn+1 = P

[
dσn+1

dαn+1

]

with P = [I 0] (vii)

• Using (ix) from Table 6.1 with (iv) and (vi) yields

dσn+1 = P : Ξn+1

[
−{ri,n+1}
{s?

i,n+1}

]

{Aγ,ij}−1{R5,j,n+1} − P : Ξn+1

[
−dεn+1

0

]

(viii)

• Inserting (iv) into (viii) and prescind dεn+1 leads to (subscript n+1 suppressed)

dσ =

(

−P : Ξ

[
−{ri}
{s?

i }

]

{Aγ,ij}−1
[
{∂σfi} {∂αfi}

]
Ξ : P

T + P : Ξ : P
T

)

dε

(ix)

• By definition (see (6.74)) the term in parentheses is the consistent tangent

C
ep
n+1 = P : Ξn+1 : P

T − P : Ξn+1 • Fn+1 • Ξn+1 : P
T with (x)

Fn+1 =
∑

i∈Jact

∑

j∈Jact

[
−ri,n+1A

−1
γ,ij ∂σfj −ri,n+1A

−1
γ,ij ∂αfj

s?
i,n+1A

−1
γ,ij ∂σfj s?

i,n+1A
−1
γ,ij ∂αfj

]

(xi)
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6.6 Approximation of the algorithmic tangent

An approximation for C
ep
n+1 can be computed in a much easier way and may be avail to

check the results of the obtained formula for the elasto-plastic tangent.
The algorithmic tangent operator is defined by the gradient in a point of the plastic

range of the stress-strain relationship. This definition can be used to write

C
ep
n+1 =

dσn+1

dεn+1
=

[
dσn+1

dεLL,n+1

dσn+1

dεRR,n+1

dσn+1

dεLR,n+1

]

, (6.79)

i.e. a small change λ in εn+1 when computing σn+1 as described in 6.2 and 6.3 leads to
the tangent operator.

The definition of the derivation

dσn+1

dx
= lim

λ→0

σn+1 (x + λ) − σn+1 (x)

λ
(6.80)

can be used to compute the i-th column of C
ep
n+1,approx, from an incremental change λ

of each component i of εn+1. This incremental change leads to a small stress difference.
Taking the limit of this increment toward zero leads to an infinitely small stress difference,
thus

C
ep
n+1,approx : Mi = lim

λ→0

σn+1 (εn+1 + λMi) − σn+1 (εn+1)

λ
i ∈ 1, 2, 3 (6.81)

with
M1 = ML, M2 = MR, and M3 = N, (6.82)

results in the i-th column of (6.79).

6.7 Residuum

The residuum given in Table 6.1 equation (i) is used to determine if the return mapping
algorithm has reached the solution values, i.e. Rn+1 = 0. The different components of
Rn+1 have different units. It may therefore be the case, that one component has a much
higher influence, because its order of magnitude is higher. To prevent this, all components
need to be dimensionless.

The last component Rf,n+1 is the only dimensionless value, due to the construction of
the state surfaces given in Chapter 5. Rσ,n+1, Rε,n+1 and Rα,n+1 are strain-like compo-
nents with a dimension of stress over stiffness. The components Rr,n+1 and Rs,n+1 have a
dimension of one over stress.

The dimensionless condition to determine, if the end of the return mapping algorithm
is reached, reads

‖R‖ =
E

β0
(‖Rσ‖ + ‖Rε‖ + ‖Rα‖) + β0 (‖Rr‖ + ‖Rs‖) + |Rf | = 0. (6.83)

In the numerical implementation, (6.83) needs to be satisfied only in accordance with
the numerical possibilities of the computer. The tolerance factor should be close to the
possible accuracy of the machine.
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The convergence check should be made with a relative tolerance for ‖Rn+1‖/‖Rn+1‖(0),
where ‖Rn+1‖(0) is the value at the start of the iteration. And also with an absolute
tolerance, which is smaller than the relative one, for ‖Rn+1‖. The second inquiry with
the absolute tolerance prevents a high or infinite number of iterations, when ‖Rn+1‖(0) is
already very close to the computer accuracy.

6.8 Interdependency of return mapping algorithm and

FE-computation

The numerical solution of a plane stress problem in orthotropic multi-surface plasticity
requires two major computational components.

The first component deals with the material modeling itself and was elucidated in
this chapter. The return mapping algorithm, which is standard for isotropic materials, was
specified for multi-surface plasticity. A special framework to handle the orthotropic proper-
ties of wood was used to formulate the material model and its algorithmic implementation.
This framework was given in Chapter 4.

The second component is the numerical computation of the actual problem. The so-
lution for the deformation and stress states of a solid body, in general, requires numerical
methods. Only in a few relatively easy problems a analytical solution exist. The numerical
method used in this work is the finite-element method. Finite indicates, that the body
is divided into elements with finite dimensions. Moreover, also the loading history is sub-
divided into finite time increments. Literature on the topic of finite element analysis is
broad. A short introduction can be found in [34], whereas the books [2, 48] give a detailed
discussion on the finite element method.

There are two possibilities for the computation of the local stresses and stiffness, which
provide core information needed for any finite element analysis.

One can either use the strains ε
12, given by the finite element program, and compute the

stresses σ
12 and stiffness C12 with the return mapping algorithm in the coordinate system

defined by e1 and e2 of the FE-program. In this case the algorithm needs to be programmed
with the general structural tenors, which carry the information of the orientation of the
grain direction, defined by the grain angle ϕ.

An other way is the compute the local solution of the return mapping algorithm in the
material coordinates defined by AL and AR and transformed it back into the coordinate
system of the finite element computation. In this case the formulation of the return map-
ping algorithm can be specified for the case that the material coordinate system is equal
to the observer coordinate system, i.e. AL = e1 and AR = e2.

The strains from the FE-analysis need to be transformed into local material coordinates
with

ε
LR = Tε

12. (6.84)

After convergence of the solution in the return mapping algorithm the stresses and stiff-
ness must be transformed back into the coordinate system of the finite element program
according to

σ
12 = TT

σ
LR and C

12 = TT
C

LRT. (6.85)
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The transformation matrix T is only depending on the grain angle ϕ and is given to

T =





cos2 ϕ sin2 ϕ sinϕ cosϕ
sin2 ϕ cos2 ϕ − sinϕ cosϕ

−2 sinϕ cosϕ 2 sinϕ cosϕ cos2 ϕ− sin2 ϕ



 . (6.86)



Chapter7
Stabilizing numerical algorithms for
unstable cracks

The material model was implemented in a finite element program written for MATLAB.
To control the different state surfaces, several examples were analyzed. For a standard
implementation, examples that activated the softening behavior of a surface did not show
quadratic convergence or any convergence at all. Moreover, some results did show stress
states at levels much higher than any allowed state.

This behavior was found to originate from two different levels of the computational
implementation: the local effect of the softening model, and the global structural level,
both of which have to be considered separately. The model parameter characteristic length
`c, which is connected to the description of cracks in this material model, is the main
parameter influencing numerical problems due to softening behavior resulting from crack
development.

In this chapter, the theoretical background for this numerical problem will be developed.
Possible solution algorithms are laid out and convergence studies will demonstrate their
effect. The first two subsections deal with the influence of the softening model included
in the plasticity model described in Chapter 5, whereas the last subsection describes the
structural influence on the convergence behavior.

7.1 Description of the problem for one dimension

All softening functions given in Chapter 5 used to describe the post-failure behavior of
spruce wood for the observed failure modes are of the type

β (α) = β0 exp (−kα) . (7.1)
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All these functions are based on an exponential decrease of the initial strength β0 with
respect either to the crack opening w or the strain-like parameter

α :=
w

`c
, (7.2)

where `c is the characteristic length. Figure 7.1 shows the softening behavior for these two
representations.
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Figure 7.1: Strength softening model with respect to w and α.

Figure 7.1 and 7.3 show softening functions and stress-strain curves for the tensile
strength in longitudinal direction, even though the validity of these graphs is general. The
softening functions of the state surfaces only differ in the material parameters, which in-
fluence the position and curvature of the exponential function. For a given surface, the
softening function is only influenced by `c.

To model a crack one has to find a way to deal with the numerical problems emanating
from the discontinuity in the displacement field due to a crack. The characteristic length
`c is the extension of a domain over which a crack opening w will be distributed as an
equivalent strain ε

p in a smeared crack model. `c may be the length of a finite element
perpendicular to the crack direction.

The interpretation of α is therefore depending on the chosen representative dimension
of the finite element mesh. It can be interpreted as an equivalent crack strain. For a given
crack opening w the corresponding value of α depends on the characteristic length and
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therefore on the dimension of the used finite element mesh. Figure 7.2 shows the graphical
interpretation of the relationship between the parameter α, the crack opening w and the
average total strain ε for a representative volume at failure.

`c

u

εe`c

w = α`c

`εe

wuε =
u

`c

Figure 7.2: Representative volume (finite element) with crack opening.

The following derivations are shown only for one-dimensional problems in order to
explicate problems that occur in the two-dimensional implementation of this softening
model and to make them more comprehensible.

7.1.1 Determination of softening coefficient k

The softening coefficient k in (7.1) may be identified in terms of fracture mechanical prop-
erties. This will be outlined in this subsection. Using a one-dimensional yield-function

f (σ, β) = σ − β ≤ 0 (7.3)

and the before-mentioned general form of the softening function (7.1), one can compute
the factor k in the exponent from energetic considerations.

Using a flow rule and a softening rule

ε̇p =
∂f

∂σ
γ̇ = γ̇ and α̇ = |ε̇p| = γ̇, (7.4)

respectively, and the fact that at failure (f = 0) the stresses are equal to the strength of
the material σ = β(α) , the dissipation (4.80) can be written as

D = σε̇p = β(α)γ̇ = β(α)α̇. (7.5)

Dissipation is defined as the density of mechanical power converted into heat. Integration
of the dissipation over the representative volume V of a continuum and over the process
time t leads to the total dissipated energy E during crack development as

E =

∫

V

∞∫

0

D dt dV =

∫

V

∞∫

0

β(α)α̇ dt dV = V

∞∫

0

β(α) dα. (7.6)
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For the last operation in (7.6) it is assumed that D is constant in V . In fracture mechanics
the energy release rate or fracture toughness Gf is introduced. It is a measure for the
energy loss per area of a newly developed crack surface. Considering a fully developed
crack through the element (see Fig. 7.2) with an area A, the dissipated energy follows as

E =

∫

A

∞∫

0

σn dw dA = AGf (7.7)

The work done by the plastic deformations in a continuum must be equivalent to the
work done by a crack as described in fracture mechanics. E for the continuum concept
(equ. (7.6)) and E for the fracture mechanics concept (equ. (7.7)) describes the same
physical process and thus must be identical. This leads to

V

∞∫

0

β(α) dα = AGf ⇒
∞∫

0

β(α) dα =
Gf

V/A
=
Gf

`c
(7.8)

with characteristic length `c := V/A. From equation (7.8) it is obvious that the area under
the softening function in the upper graph in Figure 7.1 equals Gf/`c (or to Gf in the lower
graph).

Using the definition of the softening function (7.1) in the second equation of (7.8) and
performing the integration leads to a closed expression for the coefficient k as

Gf

`c
=

1

k

∞∫

0

β0 exp (−kα) d(kα) ⇒ k =
β0`c
Gf

. (7.9)

The coefficient k determines how strong the softening effect is at the element level. A
larger k leads to a stronger (faster) degeneration of strength as the crack opens. Therefore,
a higher value for the ratio β0/Gf and larger characteristical length `c, e.g. a coarser finite
element mesh have the same impact on the softening behavior.

The influence of k in the behavior of the material model is illustrated in Figure 7.3
in a stress-strain diagram. Each graph is a representation of f(σ) = 0, i.e. for an active
yield surface. The area left to this function indicates f < 0, the area to the right indicates
f > 0. The latter therefore does not allow any stress points. After stress reaches the
ultimate strength the strength decreases at an exponential rate. This is illustrated by
Figure 7.3.

For sufficiently small values of k there is only one unique solution. For high values of
k the solution becomes non-unique. In a numerical simulation, the first plastic iteration
step found by the return mapping algorithm may be positioned on the wrong branch of
the exponential function.

A non-unique stress-strain relationship occurs as k exceeds a critical value kcrit. As
β0/Gf is constant for a specific material, a critical characteristic length `c,crit corresponds
with kcrit. For a given strain ε there exist up to three solutions for the stress σ. This leads
to numerical problems as the solution is not unique in this regime. The typical observation
related to this phenomenon is an alternation of the iterative procedure between two or three
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Figure 7.3: Stress-strain curve for different values of `c and therefore of k.

of the possible solutions. Section 7.2 describes two algorithms to eliminate this numerical
problem.

As `c increases the range between different solutions grows larger until reaching the
limit state of `c = ∞, where only the elastic part of the curve in Figure 7.3 and the
strain-axis remain (they define the asymptotes as `c → ∞).

The curve for `c,crit marks the limit state for the transition from stable to unstable crack
propagation. States with `c > `c,crit display an abrupt and immediate drop of strength at
the first inelastic (plastic) step, whereas states with `c < `c,crit show a continuous transition
from elastic loading to plastic softening. The latter case allows a stable crack propagation,
where cracks open slowly until they are fully developed. An unstable crack propagation
leads to sudden opening of a crack and related drop of strength (see Fig. 7.3).

A characteristical length of zero would mean no strain softening behavior at all. This,
however, is a limit which cannot be reached by a continuum based formulation. The
corresponding stress-strain curve for `c = 0 would be equal to an elastic-ideally plastic
material behavior.

7.1.2 Critical characteristical length

Figure 7.4 shows the softening behavior according to (7.1) and the appertaining stress-
strain relationship for an `c > `c,crit. To understand the connection between the two
functions, the derivation of the stiffness is given in this subsection. Integration of these
functions over α and ε, respectively, results in Gf/`c in both cases. This result shows that
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the areas under both functions are identical. The gradient of the softening function in any
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Figure 7.4: Softening function and corresponding stress-strain curve.

point α is smaller than zero and defines the hardening modulus to

H =
∂β(α)

∂α
= −kβ0 exp(−kα) = −kβ(α) ≤ 0. (7.10)

The softening modulus H can be written in terms of a incremental change in ∆w = `c∆α
and a resulting incremental change or in differential values as

H = lim
∆w→0

∆σ

∆w/`c
. =

dσ

dw/`c
. (7.11)

The elastic stiffness E (or C) in the elastic regime changes to the elasto-plastic stiffness
K (or C

ep) after crack initiation. In the case of the non-unique solution domain, i.e.
`c > `c,crit, Cep can be greater than zero and even reach infinity. The latter case occurs
when exactly two solutions for σ are possible, which is the point of inflection on the stress-
strain curve. Exactly one solution at the point of inflection indicates the critical state.

Looking at an element with length `c, the total strain

ε = εe + εp =
u

`c
(7.12)

or the strain differential

dε = dεe + dεp =
du

`c
(7.13)

can be computed, where u is the displacement as shown in Figure 7.2 and du its differential
change.

For εp = 0 and therefore f < 0, the elastic strain follows from Hooke’s Law to

dεe =
dσ

E
. (7.14)
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From the definition (7.2) of the strain-like parameter α and from (7.4) one can write

dεp =
dw

`c
(7.15)

for the differential of plastic strain. Substituting (7.14) and (7.15) into equation (7.12)
yield the differential strain under consideration of (7.11) as

dε =
du

`c
=

dσ

E
+

dw

`c
=

(
1

E
+

1

H

)

dσ =
E +H

EH
dσ. (7.16)

Writing equation (7.16) in the form of stiffness times deformation equals stress one obtains
a formula for the one-dimensional elasto-plastic stiffness

dσ =
EH

E +H
dε = C

epdε ∀ ε >
β0

E
. (7.17)

The critical value for `c is reached when the point of inflection of the stress-strain
curve in Figure 7.4 complies with the last elastic point. At the point of inflection of the
plastic regime the elasto-plastic stiffness reaches the limit value of infinity. It is evident
from (7.17) that a hardening modulus equal to the negative Young’s modulus yields to an
infinite elasto-plastic stiffness.

The last state in the elastic regime and, for `c = `c,crit, the point of inflection are
characterized by α = 0. From (7.10) one can compute the hardening modulus for α = 0 to

H(α = 0) = −kβ0 < 0. (7.18)

This negative (k > 0, β0 > 0) “hardening modulus” is due to its sign a “softening modulus”.
The critical characteristic length `c,crit is found from (7.18) and

H + E = 0 ⇒ kβ0 = E. (7.19)

Using (7.9) and solving for `c leads to the critical characteristic length

`c,crit =
EGf

(β0)2
. (7.20)

The effect of `c = `c,crit is shown in Figure 7.4. The first inelastic strain increment ∆ε
can result either in a stable crack propagation with ∆σstable or in an unstable one with
∆σunstable, depending on the value of `c. ∆σstable and ∆σunstable are indicated in Fig. 7.4.
The proper solution for α right after crack initiation is either α = 0 in the case of a stable
crack or α� 0 for unstable crack propagation.

If the elastic energy stored in the element is bigger than the energy necessary to fully
developed a crack, the crack opens abruptly. A small variation of strength in the material
leads to immediate loss of strength. The resulting stress strain curve does not show a con-
tinuous softening behavior, but rather an abrupt loss of strength. A continuous softening
curve can neither be achieved with stress-driven nor with strain-driven tests, due to two or
three possible analytical solutions. Further loading leads to growth of the crack opening,
as most strength was lost at crack initiation. A softening function with relatively high
values for `c,crit triggers this behavior. Wood shows such a behavior in fiber and radial
tension direction as described in Chapter 3.4.
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7.1.3 Maximum softening

A fully developed crack and therefore the maximum possible softening state is important for
algorithms that eliminate the numerical problems described in this section. Theoretically,
a fully developed crack can never occur due to the exponential softening function. When
97 % of Gf are released, the error made by assuming a full crack, is considered acceptable
small.

Before crack initialization, the deformation state in an element is characterized by

∆ε = ∆εe =
∆u

`c
and ∆εp =

∆w

`c
= 0. (7.21)

An incremental displacement ∆u leads to an increase in the total strain εn+1 = εn + ∆ε
with

∆ε = ∆εe + ∆εp =
∆σ

E
+

∆w

`c
=

∆u

`c
. (7.22)

From (7.22) the increment of crack opening can be computed to

∆w = ∆u− ∆εe`c. (7.23)

At the fully developed crack the reversed elastic deformation adds to the total incremental
strain ∆ε, because the elastic unloading of the two separated parts of the element of length
`c is no longer restricted. The crack opening for maximum softening therefore reads

∆w = ∆u+ εe
n`c or ∆εp = ∆ε+ εe

n, (7.24)

with εe
n = C−1σn+1. With εn+1 = εn + ∆ε and σn+1 = C(εn − εp

n), (7.24) can be written as

∆εp = εn+1 − εn + C
−1σn+1 = εn+1 − εn + C

−1
C (εn − εp

n) = εn+1 − εp
n. (7.25)

If the element is loaded after the crack is fully opened, an increase in displacement causes
equal increase of the crack opening, i.e.

∆u = ∆w. (7.26)

7.2 Solution and implementation for biaxial stress states

7.2.1 Altering the start values of the return map algorithm

The critical point for numerical algorithms is to solve the non-linear problem of finding
the correct solution for state variables αn+1 and ε

p
n+1 even for high values of `c and the

resulting abrupt loss of strength.
There are several possibilities to dial with the numerical difficulties in the projection

algorithm:

• Using a quadratic newton algorithm to solve the equation fn+1 = 0 to determine a
better start value for γn+1.
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• Using an explicit Euler algorithm for the first iteration step to get a start value for
γn+1 closer to the true solution.

• Using the limit state of maximum softening, i.e. fully separated crack surfaces, to
determine an upper limit for γn+1.

The key for all solutions is to find a better start value for the projection algorithm (return

mapping algorithm). The standard start value for the consistency parameter, γ
(0)
n+1, is zero,

i.e. the trial state. The trial state leads to a residuum vector R
(0)
n+1 with only one non-zero

entry, i.e. the yield function f
(0)
n+1. Modifying γ

(0)
n+1 means changing the state variable α

(0)
n+1.

With γ
(0)
n+1 > 0 the values for R

(0)
ε according (6.19) and R

(0)
α according (6.21) are no longer

zero. The start value σ
(0)
n+1 is no longer the trial state. Therefore also R

(0)
σ according (6.18)

is non-zero. R
(0)
r according (6.20) and R

(0)
s according (6.22) are dependent on the state

variable αn+1 and thus change their values in dependency of the active failure surface.
The additional computational effort should be as small as possible, as this algorithm

needs to be run for every gauss point in every iteration step of every time step. The least
computational effort and also the easiest solution to implement is the last given above.

The limit state of maximum softening, as described in Section 7.1, can be written as

∆ε
p
max = εn+1 − ε

p
n =

∆wmax

`c
. (7.27)

From this maximal possible plastic strain increment the start values for each failure
surface can be computed. These values are closer to the solution and they are positioned
on the correct softening path. In some cases of small `c, these start values may not be as
good as γ

(0)
n+1 = 0, but the algorithm still converges to the correct solution at a quadratic

rate.
To determine, which characteristic length for each respective state surface is within

the numerical stable range, the critical characteristical lengths are given in Table 7.1.
These values are only valid if no more than one surface is active. For `c,crit of the fiber
compression surface, (β0)2 in the denominator of equation (7.20) must be substituted by
Y1Y0. The other `c,crit follow from (7.20) and the material parameters from Table 5.1.

Table 7.1: Critical characteristical length for each state surfaces

Surface `c,crit [mm]

Fiber tension 5.858
Fiber compression 1503.006
Radial tension - mode I 12.296
Radial tension - mode II 3.310
Radial compression ∞

For the fiber tension and the radial tension surfaces an algorithm is required to be
able to use practical dimensions of `c. From Table 7.1, Figures 5.1, 5.10, and 5.11 it is
obvious that values of `c > 5 mm are not possible when solving without an additional
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measure to eliminate stability problems as described in Section 7.1. Values for `c in the
order of magnitude of a few millimeters would require a very fine finite element mesh
when modeling bigger structures. Such fine meshes are hard to create and require huge
computational resources.

The fiber compression surface does not show high sensitivity to `c, as the post-failure
behavior in Figure 5.4 and the high critical characteristical length (see Table 7.1) showed.
`c in the range of few decimeters is beyond limit state. Nevertheless, to eliminate any
problem with `c the following algorithm will also be implemented for this surface.

The state surface for the radial compression mechanism does not contain softening
behavior. The post-failure behavior (Figure 5.6) does not show any dependency of `c.
Therefore the start values are not being altered for this surface.

7.2.2 Algorithm for fiber tension and compression

The algorithm for fiber tension and compression is given without the indices t and c,
because it is valid for both.

The maximum increment ∆α of the state variable αL,n+1 and the start value for α
(0)
L,n+1

follows from (7.27) to

∆α
(0)
L,max = γ

(0)
n+1s

(0)
L,n+1 = 〈±ML∆ε

p
max〉 = |∆εp

LL,max| (7.28)

and
α

(0)
n+1,max = αn + ∆α

(0)
L,max. (7.29)

The start value for σn+1 changes from the trial stress tensor σ
tr
n+1 because of γ

(0)
n+1 6= 0 to

a new start value σ
(0)
n+1 for the return mapping algorithm. From (6.5) in (6.7) and with

consideration of the σ
tr
n+1 ((6.15)) this start value follows to

σ
(0)
n+1 = C : (εn+1 − ε

p
n − ∆ε

p
max) = σ

tr
n+1 − C : ∆ε

p
max. (7.30)

With the altered start values σ
(0)
n+1 and α

(0)
L,n+1 = α

(0)
L,max, new values for r

(0)
L,n+1 and s

(0)
L,n+1

can be computed from the according state surface, i.e. from the equations (5.30) and (5.35)
or (5.47) and (5.54), respectively.

The new start value for the consistency parameter follows from (7.28), as s
(0)
L,n+1 is now

know, to

γ
(0)
n+1 =

∆α
(0)
L,max

s
(0)
L,n+1

, (7.31)

where s
(0)
L,n+1 > 0, since the direction of the plastic flow r

(0)
n+1 always points away from the

surface and thus its components are positive.
(7.27) also defines the start value for the plastic strain as

ε
p (0)
n+1 = ε

p
n + ∆ε

p
max = εn+1. (7.32)

After changing the usual start values for the iterative projection needed for the return
mapping algorithm the iteration for Rn+1 = 0 starts normally.
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7.2.3 Algorithm for radial tension - stress space

The radial tension surface incorporates also the shear invariant of stress. The respective
surface consists of a hyperbola, only one arm of which is physically valid, as discussed
in Chapter 5. Besides finding better start values for the return mapping algorithm, it is
essential that the projected stress point lays always on the correct arm of the hyperbola.
To ensure this, the start point must always be as close as possible to the correct solution
branch. Two different approaches have been implemented. In the first approach the trial
stress point is projected, in the stress space, on the hyperbola in the maximal softened
state of the increment. The geometry of the projection was chosen in the stress space in a
way to achieve a best possible approximation of the actual projection.

The start value for the state variables αn+1 must be edited in the same way as in
the fiber direction surfaces (fiber tension and fiber compression). The incremental state
variable in radial tension can be computed from the maximum possible incremental plastic
strain (7.27) to

∆α
(0)
t,R,max = γn+1st,R,n+1 = 〈MR∆ε

p
max〉 = |∆εp

RR,max|. (7.33)

Also the incremental state variable for shear follows from the same equation

∆α
(0)
S,max = γn+1sS,n+1 =

√

∆ε
p
max : M : ∆ε

p
max = |∆γp

S,max|. (7.34)

With (7.33) and (7.34) the start value for the state variable is

α
(0)
n+1,max =

{
αn,t,R,max

αn,S,max

}

+

{

∆α
(0)
t,R,max

∆α
(0)
S,max

}

= αn + ∆α
(0)
t,RS,max. (7.35)

Knowing α
(0)
n+1,max, the model parameters β

(0)
t,R and a(0), which define the position and

curvature of the hyperbola in the stress space for the maximum softening within this load
step, can be computed from (5.112) and (5.113). With the unchanged trial value for the
stress tensor σ

tr
n+1 an intersection point σ

?
n+1 of a chosen projection line and the maximal

softened hyperbola can be determined. The projection is performed in a plane parallel to
the σLL = 0 plane, therefore only the values of σRR and τLR change in σ

tr
n+1.

To achieve a good approximation of the correct projection, the plastic flow direction
should be approximated by the chosen projection to achieve σ

?
n+1. Two different possibil-

ities are elucidated at the end of this section.
From (7.30) an equation for ∆ε

p can be converted to

∆ε
p
max = C

−1 : (σtr
n+1 − σ

(0)
n+1) = C

−1 : d, (7.36)

where σ
(0)
n+1 = σ

?
n+1 is the, by the projection, given point on the state surface and d is the

vector of this projection. The first entry in d is zero, because the projection is parallel to
the σLL = 0 plane.

(7.36) can be used with ∆ε
p
max = γn+1rn+1 and the assumption γn+1 = 1, to compute

a plastic flow
r

?,(0)
n+1 = C

−1 : d, (7.37)
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which can be compared to a transformation of the projection d from the stress in the
strain space. The direction and distance to the trial state from the intersection point on
the hyperbola is represented by the vector d and the norm of this vector ‖d‖, respectively.
Figure 7.5 shows the radial tension surface in the σLL = 0 plane and the vector d with the
different values of the plastic flow rn+1. To correct the length, the plastic flow needs to be
adjusted to plastic flow in this point

r
(0)
n+1 =

r
?,(0)
n+1

‖r?,(0)
n+1 ‖

‖ ∂g

∂σ?
n+1

‖, (7.38)

where ∂g/∂σ?
n+1 = rt,RS is the direction of the plastic flow in the point σ

?
n+1 on the

hyperbola, which can be evaluated from (5.90).
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Figure 7.5: Projection onto the radial tension state surface in the σLL plane.

If the trial stress point is very close to the hyperbola, i.e. ‖d‖ is smaller than a tolerance,
the start value for the plastic flow can be set equal to the plastic flow in the intersection
point σ

?
n+1, leading to

r
(0)
n+1 =

∂g

∂σ?
n+1

, (7.39)
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This measure is necessary, because for small ‖d‖ the direction d can not be computed
accurate enough any more. The tolerance should be smaller than a/2 to ensure that also
for a surface close to the maximal softened state, the stress point is closer to the physical
relevant branch. Such a surface is characterized by a very small a.

The theoretical limit for a is zero, as this represents the residual state of this surface.
To prevent numerical problems at the tip of the friction cone a limit for a slightly higher
than zero was set in the algorithm. Therefore the tip is always rounded. This measurement
does not influence the accuracy of this model.

The consistency parameter follows from the ratio of the plastic flow, resulting from the
transformation of the vector d, and the length of the plastic flow in the intersection point

γ
(0)
n+1 =

r
?,(0)
n+1

r
(0)
n+1

=
r

?,(0)
n+1

∂g/∂σ?
n+1

, (7.40)

to ensure a correct, with r
(0)
n+1 concurrent, value.

The start values for the softening rule s
(0)
n+1 follow from (5.136) with the computed

plastic flow r
(0)
n+1.

With the values for γ
(0)
n+1 and r

(0)
n+1 the start value for the stress tensor results from

σ
(0)
n+1 = σ

tr
n+1 − γ

(0)
n+1C : r

(0)
n+1 (7.41)

and (7.32) is valid for the plastic strain.
The projection can be accomplished in many ways. Besides using the hyperbola itself

as the projection aim, also a tangent to the hyperbola could be used. Leading to a slightly
easier computation of the intersection of two straight lines. In this case it must be ensured,
that the gradients of the surface and the tangent plane in the projection point are equal.

The formulation of the state surface for radial tension (5.77) can be easily transformed
into a general equation of a hyperbola

x2

a2
− y2

b2
= 1 (7.42)

with
x = σRR − βt,R − a, y = τLR and b = a tan(φ). (7.43)

Projection

The definition of a tangent plane to a function f(x) in point x̃ is

f(x̃) +Df |
x̃
∆x = 0 (7.44)

The differential of (7.42) reads

df =
∂f

∂x
dx +

∂f

∂y
dy = −2x̃

a2
dx+

2ỹ

b2
dy = 0 (7.45)

with
dx = ∆x = x− x̃ and dy = ∆y = y − ỹ (7.46)
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and with (7.42) evaluated at x̃ the equation for the tangent plane follows to

− x̃

a2
x+

ỹ

b2
y + 1 = 0. (7.47)

Using the tangent plane for the projection, i.e. as a new state surfaces for the first projec-
tion, does not give the optimal start value for the projection.

Using an intersection directly with the hyperbola leads to better results. Two different
intersections with the hyperbola are being mentioned here. For the first possibility the
projection is assumed normal to the asymptote for angles α > φ, where

α = tan−1 τ tr
LR

σtr
R − σ%,R

(7.48)

is the angle of the line between the two stress points and the τLR-axis (see Fig. 7.5). For
angles α < φ the projection was directed to the point of curvature of the physical relevant
branch of the hyperbola. Better results were achieved by changing the projection for stress
points with σRR > σ%,R to a parallel line to the σRR-axis.

From the geometry of the hyperbola given in Figure 5.9, the R-component of the
curvature point of the right arm of the hyperbola, follows to

σ%,R = βt,R − a tan2(φ). (7.49)

The L and LR-coordinates are equal to zero, so that σ% = [0, σ%,R, 0]T .
The equation of a line through the curvature point and an arbitrary point,i.e. the trail

state, reads
y =

(
σtr

R − σ%,R

)
tanα = kx+ y0 (7.50)

with

k = tanα and y0 = a
tanα

cos2 φ
. (7.51)

and σtr
R = x + βt,R + a as the R-component of σ

tr
n+1.

Computing the intersection of this line with the hyperbola, by insertion of (7.50)
in (7.42) leads to

x̃1,2 =
−ky0 ± tanφ

√

a2(tan2 φ− k2) + y2
0

k2 − tan2 φ
, (7.52)

where the correct intersection point is the one with the higher x-coordinate. This solution
is valid for angles α ≤ π

2
− φ. In special case of α = φ, the denominator of (7.52) vanishes

and the quadratic equation reduces to a linear equation with

x̃ = −y
2
0 + a2 tan2 φ

2ky0
= − a

2 cos2 φ
− a cos2 φ

2
(7.53)

as the solution.
The line equation for α > π

2
− φ, which describes a normal line on the asymptote, is

equal to (7.50) with α = π
2
− φ. The slop k and y0 follow therefore to

k =
1

tanα
= tan

(π

2
− φ

)

and y0 = a
1

cos φ sinφ
. (7.54)
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The x-coordinate of the intersection point for this case is

x̃1,2 =
−a/ cos2 φ± a

√
2 tan3 φ/ cosφ

1 − tan4 φ
. (7.55)

The y-coordinate of the intersection ỹ in all cases can be computed by back insertion
in the equation of the straight line (7.50).

This projection does not give an accurate enough starting point for the return mapping
algorithm and is therefore not used. The results implied a better approximation to the
correct projection, which is controlled by the plastic flow direction. Hence the plastic flow
direction was used to approximate the projection. For associative plasticity the plastic
flow direction is perpendicular to the state surface. The non-associative flow rule used for
the radial tension surface leads to a plastic flow r̃t,RS normal to the surface for τLR = 0.
For negative values of σRR the plastic flow is parallel to the σRR = 0 plane. Between those
values r̃t,RS is shifted from one direction to the other according to the function κ according
to (5.88). The plastic flow directions in a plane with σLL = 0 are shown in Figure 7.5.

The intersection of a line parallel to the τLR-axis is trivial, as the line is defined by a
constant value of x. The y-coordinate of the intersection point follows from (7.42). The
coordinates of the projection point for trial states with σtr

R < σ%,R are therefore

x̃ = σtr
R and ỹ = b

√
(
x̃

a

)2

− 1 sign τ tr
LR, (7.56)

where the sign-function ensures the correct position of the projected stress point.

7.2.4 Algorithm for radial tension - strain space

The second approach, to ensure, that the starting point is close enough to the correct arm
of the hyperbola, does not deal with a projection in the stress space. It rather formulates
the intersection of the projection with the hyperbola in the strain space, leading to a
quadratic equation for the consistency parameter γn+1. Problems with points, that are
very close to the surface, do not occur with this solution.

The computation of the maximum state variable for a full crack α
(0)
n+1,max according

to (7.35) is equal to the previous approach.
The tensors a and b of the corresponding hyperbola follow from (5.81), (5.82) and (5.83)

in dependency from α
(0)
n+1,max. Also the position of the curvature point σ% is dependent on

the state variable and was given above in (7.49).
The vector of the projection, defined in the stress space, will be defined in the same

way as explained above, according to the non-associative plastic flow direction. For stress
points with σRR > σ%,R the projection line is defined by the trial stress and the curvature
point of the physical relevant branch of the hyperbola as

r̄n+1 = P : σ
tr
n+1 − σ% with P =





0 0 0
0 1 0
0 0 1



 . (7.57)
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The projection is parallel to the σLL = 0 plane, as can be seen from the assembly of P. If
a trial stress point is positioned, such that σRR < σ%,R, the point will be projected parallel
to the τLR-axis. That means the vector r̄n+1 must be edited to

r̄n+1 = r̄n+1 − MR(MR : r̄n+1). (7.58)

The searched intersection point can be written with ∆ε
p
max = γ̄n+1r̄n+1 and (7.30) as

σ
(0)
n+1 = σ

tr
n+1 − C : r̄n+1γ̄n+1, (7.59)

where the term C : r̄n+1 stands for the direction of the projection and γ̄n+1 for the distance
to the surface.

Using the definition of the generic yield function (5.8) with q = 0 and (7.59) leads to a
quadratic equation (indices n+ 1 suppressed)

a : σ
tr + σ

tr : b : σ
tr − Y

︸ ︷︷ ︸

f tr

+(−2σtr : b : C : r̄−a : C : r̄)γ̄+ r̄ : C : b : C : r̄γ̄2 = 0. (7.60)

The equality in (7.60) is used because a point on the surface is needed. The first part
of (7.60) is equal to the value of the yield function of the trial state f tr. This quadratic
equation is equivalent to a intersection of a straight line (projection) with an hyperbola
(failure surface). The solutions of (7.60) are given by

γ̄1,2
n+1 =

B ±
√
B2 − 4AC

2A
(7.61)

with

A = r̄n+1 : C : b : C : r̄n+1, B = 2σtr
n+1 : b : C : r̄n+1 + a : C : r̄n+1 and C = f tr.

(7.62)
Five different possibilities for the solution exist. Figure 7.6 shows the according pro-

jection lines. In the first case, both solutions of γ̄n+1 are positive and the smaller one is
the correct value of γ̄n+1, because the vector r̄n+1 points from the trial state point to the
left arm of the hyperbola. Therefore the shorter vector points to the correct intersection
point.

The second case is similar to the first, but the vector r̄n+1 needs to be changed according
to (7.58), leading to a projection that does not intersect the curvature point.

In the case of a positive and a negative value (case three in Figure 7.6), the positive
is the correct value for γ̄n+1, because the vector r̄n+1 must point to the left branch of the
hyperbola.

The solutions of (7.61) in case four are also both positive (as in case one), but the trial
stress point is within the right branch of the hyperbola, which means f tr < 0. The larger
of the two γ̄n+1 points to the correct projection point. To eliminate problems with the
inquiry at the border of f tr = 0 with the tolerance, both solutions should be checked for
their position.

If the projection is parallel to the asymptote, as in case five, the term A is equal to
zero and (7.61) simplifies to γ̄n+1 = −C/B with only one solution for γ̄n+1.
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Figure 7.6: Graphical interpretation of the solutions of (7.61).

With the correct γ̄n+1, the projected stress point σ
(0)
n+1 follows from (7.59). The starting

value for the plastic flow r
(0)
n+1 is computed from the plastic flow direction r̃n+1,t,RS according

to (5.90) at this point. The consistency parameter needs to be adjusted to this new plastic
flow

γ
(0)
n+1 = γ̄n+1

‖r̄n+1‖
‖r(0)

n+1‖
. (7.63)

The computation of s
(0)
n+1 and ε

(0)
n+1 is equal to the previous approach.

7.2.5 Convergence study for large `c

To point out the effectivity of this algorithms, a convergence study for a large characteristi-
cal length `c = 100 mm was performed for each failure mode. The algorithm has an impact
on the results of the fiber tension and the radial tension (mode I and II) surfaces. The
critical characteristical length `c,crit for the fiber compression surface is much higher than
100 mm and the radial compression surface is independent of `c. The results for these two
surfaces are given nevertheless, to show their general convergence behavior. The material
parameters for this computations were taken from Table 5.1.
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Figure 7.7: Example to show convergence, softening behavior and stress-strain
relationship for each surface with `c = 100 mm.

A single finite element with a length of 4 mm and a width of 2 mm was loaded with
nodal displacements as shown in Figure 7.7 for each state surface. The softening behavior,
with an underlying characteristical length of `c = 100 mm, are also shown in this figure,
as are the stress-strain relationships of all surfaces. For the radial tension surface mode I
and mode II are considered individually to be able to distinguish between the effects on
tension in radial direction and pure shear.

Tables 7.2 to 7.4 show the convergence behavior of the iteration for the time steps and
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for the return mapping algorithm, i.e. the projection in the stress space. The number
of integration steps for a time step is abbreviated with IS. Whereas PS stands for the
number of iteration steps for a projection. For each integration point on a finite element
(gauss-point) one projection has to be computed per iteration of the time step. If more
than one number is given for a time step, this means that a different amount of steps was
needed during the iteration. Obviously the number of the projection can only be given for
plastic load steps. The computation was evaluated for very high values of t, i.e. α and ε

to see if the algorithm works also for a completely softened state. The large strains are to
high, for the validation in this model, which was developed for small deformations.

Table 7.2: Fiber tension model with `c = 100 mm

FT with algorithm FT without algorithm

u σt,L PS IS σt,L PS IS
[mm] [N/mm2] [-] [-] [N/mm2] [-] [-]

0.0100 37.5 - 2 37.5 - 2
0.017333 65.0 - 2 65.0 - 2
0.017334 2.5e-6 1-3 5 65.0 2 4
0.0200 2.5e-7 1 3 75.6 4 4
0.0220 2.5e-8 1 3 83.5 4 4
0.0250 1.32e-9 1 3 95.3 4 4
0.0300 9.5e-12 1 2 114.7 4 4
0.0350 0 1 2 134.0 4 4
0.0400 0 1 2 153.3 4 4
0.0500 0 1 2 191.6 4 4
0.0750 0 1 2 286.9 5 4
0.1000 0 1 2 381.8 4 4
0.1500 0 1 2 570.8 5 4
0.2000 0 1 2 759.4 4 4
0.3000 0 1 2 1136.0 5 4
0.4000 0 1 2 1512.0 4 3
0.5000 0 1 2 1888.0 4 4

To show the effect of the algorithm for large `c, the fiber tension surface was once
computed without and once with the algorithm. Both results are shown in Table 7.2. The
solutions for the stress in fiber direction increase after the ultimate strength and follow
the wrong branch of the stress-strain relationship (see Fig. 7.3) if the algorithm is not
used. With the implementation of the algorithm, the correct branch can be reached by the
projection. The brittle behavior in fiber tensile direction leads to an immediate total loss
of strength after reaching the ultimate strength and a crack occurs. The convergence of the
iteration in the load step, as well as in the return mapping algorithm is better than without
the algorithm. For the first plastic step a few more iteration steps for the projection were
needed. For high strains, i.e. values of α, the computation accuracy is reached because
the softening follows an exponential function, which reaches exactly zero for α → ∞.
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Table 7.3: Fiber compression model with `c = 100 mm and radial compression
model

FC RC

u −σc,L PS IS u −σc,R PS IS
[mm] [N/mm2] [-] [-] [mm] [N/mm2] [-] [-]

0.0100 37.5 - 2 0.0100 2 - 2
0.013306 49.9 - 2 0.0150 3.11 - 2
0.013307 49.8 3 4 0.0170 3.53 - 2
0.0150 49.5 3 4 0.019277 4.00 2 2
0.0170 48.9 3 4 0.019278 4.00 1,3 3
0.0200 48.3 3 4 0.0200 4.01 1,3 3
0.0220 47.8 3 4 0.0220 4.03 1,3 3
0.0250 47.2 3 4 0.0250 4.06 1,3 3
0.0300 46.2 3 4 0.0300 4.13 1,3 3
0.0350 45.5 3 4 0.0350 4.19 1,3 3
0.0400 44.9 3 4 0.0400 4.25 1,3 3
0.0500 43.7 3 4 0.0500 4.20 1,3 3
0.0750 41.9 3 4 0.0750 4.50 1,3 3
0.1000 40.9 3 4 0.1000 4.79 1,3 3
0.1500 40.1 3 4 0.1500 5.10 1,3 3
0.2000 40.0 3 4 0.2000 5.31 1,3 3
0.3000 39.9 2,3 4 0.3000 5.57 1,3 3
0.4000 39.9 2 3 0.4000 5.60 1,3 3
0.5000 39.9 2 3 0.5000 5.70 1,3 3

Table 7.3 shows the results for compression behavior in both, fiber and radial direction.
The fiber compressive behavior only incorporates a minor softening. A `c of 100 mm is
small enough to not cause numerical problems if the algorithm is not used. Even with
the large strains used in this example, the densification in the post failure behavior is not
reached. An indicator that this range is only of importance for large strains, which are
not considered in the material model. The convergence is quadratic in both iterations and
reaches the correct solution in a few steps.

The hardening of compression loading in radial direction is shown in 7.3. Because of
the independency from `c there is no problem with the convergence.

Finding the correct solution in a projection onto the Weihe-Kroeplin fiber tension and
mixed mode surface is most problematic. This is due to its construction as an hyperbolic
surface in stress space. Projections on the correct branch of this hyperboloid need special
procedures as laid out earlier in this section.

The method discussed in Subsection 7.2.3 was used to accomplish the results in Ta-
ble 7.4. As in the fiber tension direction, the tensile strength is immediately lost after
reaching the ultimate strength. Also here the computation accuracy reaches its limits for
large strains. Besides a slightly higher number for the first plastic projection, all iterations
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Table 7.4: Radial tension model for mode I and II with `c = 100 mm

RT mode I RT mode II

u σt,L PS IS u τS PS IS
[mm] [N/mm2] [-] [-] [mm] [N/mm2] [-] [-]

0.0100 2.2 - 2 0.0100 1.88 - 2
0.021686 4.5 - 2 0.0200 3.75 - 2
0.021687 1.33e-3 5 4 0.0300 5.63 - 2
0.0220 1.18e-3 3,4 3 0.0400 7.51 - 2
0.0250 3.82e-4 3,4 3 0.043942 8.25 - 2
0.0300 5.85e-5 3,4 3 0.043942 3.32e-11 19 2
0.0350 2.73e-6 3,4 3 0.0450 3.32e-11 1 2
0.0400 1.38e-6 2,4 3 0.0500 3.27e-11 1,4 2
0.0500 3.20e-8 2,4 3 0.0600 3.25e-11 1,4 2
0.0750 2.7e-12 1,4 3 0.0750 3.25e-11 1,4 2
0.1000 0 1,4 2 0.1000 3.25e-11 1,4 2
0.1500 0 2,4 2 0.1500 3.25e-11 1,4 2
0.2000 0 1,4 2 0.2000 3.25e-11 1,5 2
0.3000 0 1,3 2 0.3000 3.25e-11 1,5 2
0.4000 0 1,3 2 0.4000 3.25e-11 1,5 2
0.5000 0 1,3 2 0.5000 3.25e-11 1,5 2

show the same magnitude as in the other calculations.
The shear strength is also lost abruptly after crack initialization. The computation

does not reach zero for large strains in this case, because the theoretical limit of a = 0
and therefore τLR = 0, was not permitted in the numerical implementation. This led to a
residual τLR according to amin and a minor error, which is negligible.

Due to the boundary conditions for the pure shear example and hence the known
deformation state of the element, no iteration is necessary for the load steps. The number
of iteration for the first plastic projection is very high. The reason for this unknown, but
the solution is correct and further steps do not show this anomaly.

7.2.6 Mixed mode example

Tensile loading of an element in radial direction with a minor shear loading leads to mixed
mode loading. Mode I and II of the radial tension surface interact. The projection algo-
rithm for this case could not reach results for a value `c = 100 mm. Even though a better
starting point is computed the iteration starts to alternated. For values of `c = 20mm or
smaller the iteration does not alternated, but a quadratic convergence can not be reached.
The return mapping algorithm converges to the correct solution, but the iteration in the
time step does not converge.

Because of the importance of the shear interaction for all surfaces, a computation of a
general structure with this material model is not yet possible.

Figure 7.8 shows the return mapping algorithm for an element loaded in radial tensile
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direction, as shown in Fig. 7.7. The grain angle to the loading direction was ϕ = 45◦.
This led to a mixed mode loading. For `c = 10 mm and `c = 20 mm the trial, start and
converged states are shown for the first iteration of the return mapping algorithm of the
first integration point.
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Figure 7.8: Mixed mode convergence for `c = 10 mm and `c = 20 mm with
ϕ = 45◦.

The computation was performed with both algorithms suggested for the radial tension
surface in Sections 7.2.3 and 7.2.4. The same solution was reached in both cases. The
figure shows the iteration states for the algorithm of Section 7.2.3. It is obvious that for
the trail state and during the iteration the stress point is not on the yield surface. The
yield condition f = 0 must only hold for the converged state.

The start values of both algorithms are indicated by σ
(0),1
n+1 for the algorithm of Sec-

tion 7.2.3 and σ
(0),2
n+1 for Section 7.2.4. The projection for the start value is shown by an

arrow for the first algorithm.
For `c = 20 mm the right branch of the hyperbola is already closer to the trial state

than the correct one. Thus the solution would converge to this branch of the hyperbola.
In both examples the converged state is between the trial and the start state. This

is consistent with the fact that the start state is the state of maximal softening for this
increment. The softening behavior is much stronger for `c = 20 mm. The radial tensile
strength βt,R has already reached zero, whereas with `c = 10 mm a residual strength of
about 1 N/mm2 is still existing.

7.2.7 Start values for return mapping algorithm in edges and
corners

The starting values for each surface are changed by the algorithms described above, for
each surface individually. This is no problem for the variables of the residual vector Rn+1,



Stabilizing numerical algorithms for unstable cracks 7.3: Structural-level 120

αi,n+1, si,n+1, ri,n+1 and γi,n+1, which describe the state of the failure surface i ∈ Jact

and exist for each surface. αi,n+1 and si,n+1 are combined into vectors αn+1 and s?
n+1,

respectively. For ri,n+1 and γi,n+1 an equation was formulated for each surface individually
(see Chapter 6).

The other unknowns of a state are the stress tensor σn+1 and the plastic strain ten-

sor ε
p
n+1. For each surface the start values σ

(0)
i,n+1 and ε

p (0)
i,n+1 are computed individually,

therefore collective values σ
(0)
n+1 and ε

p,(0)
n+1 need to be found to perform a projection to a

corner.
Computing a combined strain tensor ∆ε

p and from this the stress point

σ
(0)
n+1 = C :

(

εn+1 − ε
p
n −

∑

i∈Jact

γ
(0)
i,n+1r

(0)
i,n+1

)

(7.64)

gives good start values, if the active yield-surfaces are perpendicular to each other. For
small angels between the the surfaces, the resulting stress point may be far off the correct
solution.

A better value for the stress tensor is the vectorial midpoint in the stress space, defined
by

σ
(0)
n+1 =

∑

i∈Jact

σ
(0)
i,n+1

mact
, (7.65)

where mact is the number of active yield surfaces i ∈ Jact. The corresponding plastic strain
is given by

ε
p
n+1 = εn+1 − C

−1 : σ
(0)
n+1. (7.66)

7.3 Problem on structural-level

The numerical difficulties with high values of the characteristical length described in Sec-
tion 7.1 and the solutions given in Section 7.2 for the gauss-point level, show the problem
on a local element level. Another effect on the global or structural level appears when sev-
eral finite elements are connected to model a structure. The same characteristical length
`c can lead to problems in the convergence of the iteration in a time step depending on the
ratio of the maximum elastic load to the according displacement, i.e. the elastic stiffness
of the structure.

7.3.1 One-dimensional example

To clarify the numerical problem on a global level it is first shown in a one-dimensional
example.

Figure 7.9 shows three rod elements where the middle one comprises a softening be-
havior after reaching the elastic limit and the two outer elements are elastic until infinity.
The stiffnesses are therefore given by EA/` in the elastic range and KA/` after failure,
where E = C is the elastic stiffness, K = C

ep is the elasto-plastic stiffness, A the area of
the cross-section of the rod and ` the length of the element.
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Figure 7.9: One dimensional example to show structural influence.

The first picture in Figure 7.9 represents the last step in the elastic range. The first
and second iteration step for the solution of this system after applying a incremental
displacement ∆un+1 on the global structure is shown in the other sketches. The node
forces, i.e. the internal stresses, and the resulting nodal displacements, i.e. the internal
strains, are included in the sketches to indicate the iteration process. The (0)-iteration
assumes an elastic behavior that results in higher nodal forces in the elastic elements than
in the middle element, as this reaches its ultimate strength. To reach an equilibrium at the
nodes, the forces must become smaller, which is only possible by elongation of the inner
element (equivalent to a crack opening) and a shortening of the outer elements (equivalent
to an elastic unloading). This results in a drop of the global force, that accords with
the projection onto the softening curve. This iteration step will be continued until an
equilibrium state for the structure in reached (n+1(0)). At this state the displacement
increment, i.e. the whole crack opening, is being added to the middle element and the
elastic elements are fully unloaded, assuming a fully developed crack.

Different force-displacement curves for structures with the same `c are shown in Fig-
ure 7.10. The different elastic structure stiffnesses and therefore the different displacements
where plastic deformations occur, are visible. The transition from a stable structural perfor-
mance with relative high elastic stiffnesses to a unstable performance with lower stiffnesses
is visible. For the same characteristical length the softening behavior of the structures is
not equal for all. They differ in a most basic way, with a huge influence in the structural
behavior.

The problem for a certain elastic structure stiffness, is in the projection from the in-
correct elastic solution to the correct solution on the softening curve, as this curve has
two possible solutions. One of this solutions is on the wrong branch of the exponential
softening curve and may be closer to the correct one, depending on its curvature. This is
visible in Figure 7.10, as the wrong path of the force-displacement curve gets closer to the
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Figure 7.10: Force-displacement curves of structures with equal `c.

last elastic state (uplastic), with decreasing elastic stiffness. After unloading, the perma-
nent plastic deformation for a system with equal length of the elements with elasto-plastic
properties (=`c) must be the same for all, as indicated in the lower picture of Figure 7.10.

The stiffness matrix for a structure as shown in Fig. 7.9 in the plastic state (i.e. after
failure) is given to

KT =
A

`el







E −E 0 0

−E E +K `el

`c
−K `el

`c
0

0 −K `el

`c
E +K `el

`c
−E

0 0 −E E






. (7.67)

The first row and the first column can be neglected because of the boundary condition in
the left node u = 0. For the limit state with K → 0, i.e. no residual elasto-plastic stiffness
after a full crack, the stiffness of the structure can be written

KT =
EA

`el





1 0 0
0 1 −1
0 −1 1



 . (7.68)
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To find the deformation state of the structure the set of equations

KT u = f (7.69)

must be solved, where u is the vector of nodal displacements and f is the vector of nodal
forces. A solution of (7.69) is not possible if KT is singular, i.e. detKT = 0. Also if a
submatrix of KT is singular a convergence to a solution is impossible. K is the only value
comprising the the softening parameters `c, Gf , and β0. To find the critical crack opening
(detKT = 0), the determinant of the submatrix with entries of K must be set equal to
zero. The sub-matrix with the second and third row and column of KT in (7.67) leads to
the determination equation for the critical plastic stiffness

(

E +K
`el
`c

)2

−
(

−K`el
`c

)2

= 0 or E2 + 2EK
`el
`c

= 0. (7.70)

The critical plastic stiffness Kcrit can be computed from this equation to

Kcrit = −E`c
2`el

. (7.71)

From (7.17) with (7.10) follows

K = C
ep = − Ekβ

E − kβ
(7.72)

and setting Kcrit = K with the (7.1) leads to

`cE

kβ0
= (2`el + `c) exp(−kα). (7.73)

With ` = 2`el + `c and the definition of k from (7.9) the critical crack opening can be
written

wcrit =
Gf

β0
ln

(
`(β0)2

EGf

)

. (7.74)

Notice that the total length ` influences the critical state on structural level and not `c

alone. Setting the critical crack opening equal to zero leads to the same equation for `crit as
for `c,crit according to (7.20). This is due to the construction of this example, that behaves
for a full crack like a single element.

7.3.2 Convergence study for a biaxial stress state

To show the effect of different elastic stiffnesses for biaxial stress states, a simple example
was computed with the material model described in this work.

The algorithms elucidated in Section 7.2 were used to eliminate problems in the con-
vergence on the gauss-point level. The example is shown in Figure 7.11. The dimensions
`c and `el where changed according to Table 7.5 with all possible combinations.

The loading in the examples is tension in fiber direction. The computation has therefore
only been carried out with the fiber tension surface. The other three surfaces of the material
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Figure 7.11: Example to show structural behavior effects.

model were deactivated. Three of the four failure surfaces, including the fiber tension
surface, comprehend the softening behavior, which is the subject matter of this chapter.

The displacement increment history was constructed by a combination of all displace-
ments uplast. This results in some increments of about one tenth of a micrometer or less.
The first step at which plastic deformations occur was set only one hundredth of a mil-
limeter or less higher than the analytical value.

Table 7.5: Values for the model dimensions `c and `el
`c [mm] 1 2 3 4 5 6
`el [mm] 0.1 0.5 1 2 3 4

The results of the convergence study with 36 finite element analyses are given in Ta-
ble 7.6. For each of the six different characteristical length `c the total length ` of the
example, the displacement uplast , the critical crack opening wcrit and the number of iter-
ation steps of the first plastic step are shown. From ` one can compute the displacement

uplast = `
β0

E
, (7.75)

where plastic deformations occur. For wcrit the equation of the one-dimensional example
was used. The validation of these values is therefore limited and they are only given for
comparison.

An ’x’ stands for a computation were alteration occurred after ten iteration steps.
This alteration either results in no solution or in the solution on the wrong path in the
force-displacement diagram. A solution on the wrong branch would be equivalent to a
hardening effect instead of a softening of the structure. In some cases the solution found
in the first plastic step was very close to the correct one and the solutions of subsequent
steps were on the correct softening path. This cases showed nearly quadratic convergence
and slower convergence at the first steps. This results were also marked not converged, due
to the alteration in the first step and the missing quadratic convergence. This occurred in
examples close to the last converged example with small `el.
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Table 7.6: Convergence study results

`c 1 mm 2 mm 3 mm

`el ` uplast wcrit IS ` uplast wcrit IS ` uplast wcrit IS
[mm] [mm] [µm] [µm] [-] [mm] [µm] [µm] [-] [mm] [µm] [µm] [-]

0 1 4.33 -44.9 4 2 8.67 -27.3 4 3 13.00 -17.0 4
0.1 1.2 5.20 -40.2 4 2.2 9.53 -24.9 4 3.2 13.87 -15.3 4
0.5 2 8.67 -27.3 4 3 13.00 -17.0 5 4 17.33 -9.7 5
1 3 13.00 -17.0 5 4 17.33 -9.7 5 5 21.67 -4.0 5
2 5 21.67 -4.0 5 6 26.00 0.6 x 7 30.33 4.5 x
3 7 30.33 4.5 x 8 34.67 7.9 x 9 39.00 10.9 x
4 9 39.00 10.9 x 10 43.33 13.6 x 11 47.67 16.0 x

`c 4 mm 5 mm 6 mm

`el ` uplast wcrit IS ` uplast wcrit IS ` uplast wcrit IS
[mm] [mm] [µm] [µm] [-] [mm] [µm] [µm] [-] [mm] [µm] [µm] [-]

0 4 17.33 -9.7 4 5 21.67 -4.0 4 6 26.00 0.6 5
0.1 4.2 18.20 -8.4 5 5.2 22.53 -3.0 5 6.2 26.87 1.4 7
0.5 5 21.67 -4.0 5 6 26.00 0.6 x 7 30.33 4.5 x
1 6 26.00 0.6 x 7 30.33 4.5 x 8 34.67 7.9 x
2 8 34.67 7.9 x 9 39.00 10.9 x 10 43.33 13.6 x
3 10 43.33 13.6 x 11 47.67 16.0 x 12 52.00 18.2 x
4 12 52.00 18.2 x 13 56.33 20.2 x 14 60.67 22.1 x

IS . . . number of integration steps x . . . no quadratic solution

For all different characteristic lengths the examples show an alternation at the same
total length `. This length indicates the critical length `crit between a unique and non-
unique solution. Also a critical plastic deformation uplast,crit can be specified.

From Table 7.6 one can see that the critical total length must be smaller than 6 mm or
the critical plastic deformation must be smaller than 2.6 mm. To narrow the range of the
values, more examples were computed for `c = 1 mm, with elastic length between 2 and
3 mm. At `el = 2.45 mm the projection did not converge. This corresponds to a critical
total length `crit = 5.8 mm and a critical plastic displacement uplast,crit = 0.0256 mm.

Using the equations derived for the one-dimensional case is a good approximation for
most of these examples. With the material parameters from Table 5.1 for the fiber ten-
sion surface the critical total length yields `crit = 5.858 mm with a corresponding plastic
displacement of uplast,crit = 0.0254 mm. This analytical results coincide perfectly with the
results from the computations.

The critical crack opening wcrit vanishes at the critical state with `crit. A correct, stable
solution is characterized by wcrit < 0, whereas a negative wcrit results in an alteration of
the projection algorithm or in a wrong solution. The distance between the correct solution
and the starting value of the iteration increases with the critical crack opening.

This example reveals the general problem, but only for a special case. A general, more
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complicated structure follows different rules, even though a critical state, where numerical
difficulties occur, will also exist.

Computing this example with geometric nonlinearity can lead to error in the results.
This is due to the fact, that large deformations occur, when the crack is opened very
wide, to verify the stability of the algorithm. The deformations in the elements that
are subject to plastic strains, are much higher than in elastic elements. This leads to a
distorted computation of the stress, which can lead to stress values in the elastic elements,
that are higher than the initial strength. This hardening effect can be avoided if the
geometric nonlinearity is formulated with the second Piola-Kirchhoff stress tensor. For
small deformations, geometric nonlinearity formulated with the first Piola-Kirchhoff stress
tensor is applicable, because the difference in the solutions is marginal.



Chapter8
Summary and conclusions

8.1 Summary

This thesis presented a multi-surface plasticity model for the description the pre- and
post-failure behavior of clear spruce wood under plane stress conditions. The mathemat-
ical background and the algorithms for the numerical implementation in a finite element
program of a multi-surface model by Mackenzie-Helnwein [30], were reviewed. The four
failure surfaces of this model were described using orthotropic tensor functions. The non-
linear softening behavior was analyzed and discussed. Both, the surface and its motion
due to softening or hardening, respectively, were graphically shown in the stress space.

For failure due to fiber tension, a tension cut-off surface to model fiber rupture was
defined. It assumed same maximum strength for small variations of the grain angles.
Combined tensile and shear failure in planes parallel to grain were modeled using a for-
mulation by Weihe [44, 45]. An open parabolic failure surface for fiber compression was
fit to the single-surface model of Tsai and Wu [42] based on the parameters identified by
Eberhardsteiner [7]. Compressive failure in for radial direction was modeled by a surface
suggested by Helnwein et al. [29], even though parameters were recalibrated.

Some problems regarding numerical instability of the solution algorithm for the soft-
ening behavior at larger characteristic length `c and larger time steps were solved. The
modeling parameter characteristic length `c was identified as crucial for the convergence
behavior at a local gauss point level. Its effect and thus the effect of the finite element
discretization on the model with regard to the development of a stable or unstable crack
was analyzed. A critical characteristic length `c,crit was identified and a solution strategy
for the return mapping algorithm at large characteristic length for was presented. The
implementation of this algorithm for those three surfaces showing softening behavior was
laid out, including a special algorithm for the radial tension failure surface. Convergence
studies at large characteristic lengths showed the improvements achieved by the proposed
algorithms.

On a structural or global level, convergence problems with an unstable crack propaga-
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tion were identified and explained for one dimensional examples. Calculations for 36 plane
stress examples using the fiber tension failure surface confirmed the results in a convergence
study.

8.2 Conclusions

The convergence problems observed for coarse finite element meshes could be eliminated
at a local level both for the tension and the compression surfaces in fiber direction. The
numerical stability of the radial tension model in the post-failure regime could be enhanced,
but not stabilized without limitations. Even though the convergence behavior for radial
tension and pure shear could be enhanced for large characteristic lengths, mixed mode
loading still leads to difficulties with the convergence behavior. The possible maximum
values for the characteristic length could be increased for mixed mode loading, but not to
a level which would allow a discretization of larger structures without limitations. Very fine
finite element meshes with very small elements would lead to excessive need for hardware
resources and computation time. Thus, the solution of this remaining problem is essential
for the full utilization of this material model.

The difficulties in modeling the initialization of an unstable crack in a structure were
specified, but not solved. The effects could be confined to the global structural level. This
structural level can not be influenced by the material model alone. The problem must be
addressed at the gobal level of a finite element analysis. Use of the generalized arc-length
method [6, 37, 36, 46] may help solving this problem but has not been investigated in this
work.

8.3 Future developments

Future enhancement of this multi-surface failure model for wood should focus on the re-
maining issus with the local stability of the model. The general stability of the whole
model depends on improvements of the behavior under mixed mode loading. Therefore,
the first step in future developments should be algorithmic enhancements for the radial
tension failure surface.

The back-calculation of biaxial tests showing unstable crack development, is a good
verification of the post-failure behavior of the multi-surface wood model. If the structural
convergence problems cannot be controled by local stability alone, a solution at global
level of the finite element analysis must be found. This may require incorporation of more
sophisticated path following techniques.

Interdependency of the different failure-surfaces and their strength functions is another
source of potential improvements. Inelastic (plastic) deformations in one direction may
reduces the strength in other material directions. Incorporating these effects in the model
may lead to higher accuracy of the predicted material behavior.

Due to the occurrence of large strains perpendicular to grain, the model should be
extended to accommodate finite strains.
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