DISSERTATION

Entwicklung und Betrieb einer Anlage zur druckaufgeladenen Holzstaubverbrennung

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von
O.Univ.-Prof. Dipl.-Ing. Dr.techn. Hermann Haselbacher - E313 -

Institut für Thermische Turbomaschinen und Energieanlagen

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenbau

von

Dipl.-Ing. Mario Pelzmann
Matr.Nr.: 9125658
Webgasse 37/3/59, A-1060 Wien
geb. am 15. August 1973

Vorwort

Die vorliegende Arbeit entstand in den Jahren 1998 bis 2001 während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Thermische Turbomaschinen und Energieanlagen der Technischen Universität Wien im Rahmen des EU-Forschungsprojekts Cyclone gasiFICATION OF PULVERIZED BIOMASS FOR OPERATION OF GAS TURBINES IN COGENERATION plants. In diesem Zusammenhang ist stellvertretend für alle Beteiligten die Vorarbeit von Herrn Dipl.-Ing. Dr.techn. Franz Sengschmied hervorzuheben.

Dem Institutsvorstand Herrn O.Univ.-Prof. Dipl.-Ing. Dr.techn. Hermann Haselbacher danke ich für die Themenstellung und für die uneingeschränkte Unterstützung dieser Arbeit.

Herrn Univ.-Prof. Dipl.-Ing. Dr.techn. Wilhelm Höflinger danke ich für die freundliche Übernahme des Koreferates.

Für das angenehme und freundschaftliche Arbeitsklima bedanke ich mich bei allen Kollegen und Mitarbeitern des Institutes. Besonders erwähnen möchte ich hierbei die Herren Dipl.Ing. Michael Posch, Dipl.-Ing. Dr.techn. Christoph Tmej sowie Dipl.-Ing. Dr.techn.Reinhard Willinger und Dipl.-Ing. Dr.techn. Edgar Hortig.

Mein besonderer Dank gilt den Herren Dipl.-Ing. Johann Eberharter, Ing. Gerhard Kanzler, Markus Schneider und Wolfgang Faulend, die durch Anregungen und vor allem durch ihre tatkräftige Unterstützung zum Gelingen dieser Arbeit wesentlich beigetragen haben.

Weiters gilt mein Dank Herrn Dipl.-Ing. Gerald Bachmann (Institut für Verfahrens-, Brennstoff- und Umwelttechnik) für sein persönliches Engagement bei Messungen an der Versuchsanlage.

Ein ganz großes Dankeschön gilt meiner Verlobten Sabine Mlcak für die große Geduld, die sie meiner Arbeit in den letzten Monaten entgegengebracht hat.

Kurzfassung

Ausgehend von Voruntersuchungen, daßf für den Leistungsbereich von 1-2 $M W_{e l}$ die thermische Stromerzeugung durch direkt holzstaubgefeuerte Gasturbinen - verglichen mit anderen holzgefeuerten thermischen Prozessen - sowohl technisch als auch wirtschaftlich gesehen vorteilhaft ist, arbeitet man am Institutes für Thermische Turbomaschinen und Energieanlagen der Technischen Universität Wien an der Realisierung einer direkt holzstaubgefeuerten Gasturbinenanlage. Im Rahmen dieses Forschungsvorhabens beschäftigt sich die vorliegende Arbeit mit der Entwicklung und dem Betrieb einer Versuchsanlage zur druckaufgeladenen Verbrennung von Holzspänen und Holzstaub. Zu diesem Zweck wird eine zweistufige Brennkammer, wobei die Primärkammer als Zyklonbrennkammer ausgeführt wird, und ein Axialzyklon entwickelt.
Mit der Versuchsanlage wird ein offener Gasturbinenprozeß simuliert. Das druckaufgeladene Heißgas der Brennkammer wird nach Entstaubung in einem Axialzyklon mit Hilfe einer Drosselklappe auf Umgebungsdruck expandiert. Das Betriebsverhalten der Brennkammer und die Abscheideleistung des Zyklons wird gemessen und bewertet.

Die vorliegende Arbeit wird zeigen, daß die entwickelte Brennkammer hinsichtlich Verbrennungsqualität, aber auch bezüglich Umwelt und Wirtschaftlichkeit, die folgenden Anforderungen erfüllt:

- Ausreichende Brennstoffverweilzeit in der Brennkammer, um einen optimalen Ausbrand des Brennstoffes zu erzielen.
- Schadstoffarme Verbrennung; Minimierung von $\mathrm{CO}-, C_{n} H_{m^{-}}$und $N O_{x^{-}}$-Emissionen durch gezielte Verbrennungsführung.

Bei der Verbrennung von Holz bietet die gestufte Verbrennungsführung Möglichkeiten schadstoffarm zu verbrennen. Durch Trennung der Verbrennungszone in eine primäre unterstöchiometrische Vergasungszone und eine sekundäre Nachbrennzone mit Luft- bzw. Sauerstoffüberschuß lassen sich die Emissionen im Abgas reduzieren bzw. vermeiden.

Bei den Verbrennungsversuchen werden die drei unterschiedlichen Holzsorten schwedischer Holzstaub, Fichtenspäne und Buchenspäne verfeuert. Die Unterschiede im Verbrennungsverhalten dieser drei Brennholzsorten werden gemessen und gegenübergestellt.
Weiters wird mit Hilfe des Vergasungsgleichgewichtes, analog zur Kohlevergasung, die Vergasungstemperatur in Abhängigkeit vom verwendeten Brennstoff berechnet. Damit kann bei Verwendung anderer Holzsorten die Vergasungstemperatur in der Primärkammer voraus berrechnet werden.

Von besonderem Interesse ist die Abgaszusammensetzung, die mit Hilfe eines Rauchgasanalysators gemessen wird. Das Emissionsverhalten in Abhängigkeit von gewählten Verbrennungsbedingungen gibt Aufschluß über die Betriebscharakteristik der Brennkammer. Es wird gezeigt, daß die Anlage der österreichischen Luftreinhalteverordnung entspricht.

Das Heißgas aus der Brennkammer ist mit Aschepartikel verunreinigt. Je nach Aschegehalt des verwendeten Brennholzes variiert die Partikelbeladung des Heißgases. Es wird gezeigt, daßs mit Hilfe des Axialzyklons ein Großteil dieser Partikel aus dem Gasstrom entfernt werden kann.
Im Hinblick auf den geplanten Betrieb einer Gasturbine wird der Axialzyklon nach folgenden Kriterien ausgelegt:

- Abscheideleistung: Grenzkorn, Teilchengröße bei der Teilchen noch abgeschieden werden, und Abscheidegrad.
- Druckverlust des Heißgases beim Durchströmen des Zyklons: Je geringer der Druckverlust des Gases beim Durchströmen des Zyklons ist, umso größer ist der Wirkungsgrad im Gasturbinenprozeß.

Abschließend werden die Ergebnisse der Staubmessungen im Abgasstrom gezeigt. Neben gravimetrischen Staubmessungen, zur Betsimmung der Abgasbeladung, wird weiters die Partikelgrößenverteilung im Abgasstrom bestimmt. Die Messung der Staubgrößenverteilung erfolgt mit Hilfe eines Kaskadenimpaktors.

Abstract

In the power range from 1 to $2 M W_{e l}$, wood-fired gas turbines can be expected to be economically advantageous compared with other thermal power cycles operated with wood fuel. Based on this consideration the development of a wood particle fired gas turbine with direct combustion is one of the research objectives of the Institute of Thermal Turbomachines and Powerplants at the Vienna University of Technology. Within this project the present thesis deals with the development and the realization of a test facility for pressurized wood combustion. This means, in particular, engineering, manufacture and operation of a combustion chamber and a hot gas cyclone are carried out.
The test rig consists of a fuel feeding system, the combustion chamber, the cyclone separator, a compressor and a damper. The damper is used to expand the hot pressurized gas from the combustor.
A large series of test runs was carried out with 3 different wood fuels (swedish sawdust, spruce and beech), numerous fuel feed rates and equivalence ratios in the combustion chamber to investigate the combustion and emission performance of the test facility. The combustion chamber is shown to have a wide operating range and can handle different sawdust tolerating variations in moisture content.

One of the main goals of this PhD thesis is to show that the pressurized combustion chamber for pulverized wood fulfils the following requirements:

- Sufficient burning times for achieving almost complete fuel-burnout in the combustion chamber.
- Reduction of emissions ($C O, C_{n} H_{m}$ and $N O_{x}$) in the exhaust by using staged combustion technique.

Using a two stage combustor, the combustion process can be divided in two zones: A primary zone for pyrolysed-gasified-combustion and a secondary zone where the gas from the primary zone is combusted with excess air. This combustion technique offers the possibility to reduce emissions in the exhaust gas.

Furthermore the water-gas shift reaction is used to calculate gasification temperatures for different fuels and equivalence ratios in the primary combustion zone. The calculation shows that the temperatures compare well with experimental data.

Gas composition is of major importance for analysing the combustion process. High CO and $C_{n} H_{m}$ concentrations in the exhaust indicate incomplete combustion in the two stage combustion chamber. A main purpose of the test runs was to investigate the effect of air staging and temperature on the emissions of $C O, C_{n} H_{m}$ and $N O_{x}$. It will be shown that the emissions are within the Austrian emission limits.

Hot gas cleaning plays an important role in the development of the direct wood particle fired gas turbine. The removal of solid particles from combustion gases is essential to maintain the useful life of gas turbine components. In gas turbine plants with wood combustion systems, high concentrations of particulates can lead to an unacceptable level of maintenance. Hot gas cleaning is therefore a fundamental step in wood combustion systems.
Cyclone cleaning systems offer at present one of the best solutions for removing solids from high-temperature high-pressure flows. These devices are simple, inexpensive and practically maintenance-free and possess relatively high separation efficiency. Their main disadvantage is a low separation efficiency for particles of sizes less than $5 \mu \mathrm{~m}$.

Finally, results of dust measurements are presented. The dust concentration in the exhaust and the particle size distribution in the exhaust are shown.

Inhaltsverzeichnis

1 Einleitung 1
1.1 Holz als Energieträger 1
1.2 Stand der Technik 3
1.2.1 Wirbelschichtsysteme 3
1.2.2 Flugstromsysteme 4
1.2.2.1 Externe Vergasung 4
1.2.2.2 Direktgefeuerte Gasturbine 5
1.3 Aufgabenstellung und Zielsetzung 7
I Grundlagen 10
2 Holz als Brennstoff 11
2.1 Eigenschaften von Holz 11
2.1.1 Morphologische Eigenschaften 11
2.1.2 Physikalische Eigenschaften 12
2.1.3 Chemische Eigenschaften 12
2.2 Holzverbrennung 15
2.2.1 Erwärmung und Trocknung 15
2.2.2 Pyrolyse 16
2.2.3 Oxidation 16
2.3 Asche und Emissionen aus Holzfeuerungen 18
2.4 Verbrennungsrechnung 19
2.4.1 Vollständige Verbrennung 20
2.4.2 Unvollständige Verbrennung 21
2.4.3 Verbrennungstemperatur und Dissoziation 21
2.5 Zündtemperatur von Holz 22
3 Gasturbinen 24
3.1 Der offene Gasturbinenprozeß 24
3.2 Thermodynamik 25
4 Heißgasentstaubung 28
4.1 Keramische Filter 29
4.2 Heißgaszyklon 30
4.3 Gegenüberstellung: Keramischer Filter - Heißgaszyklon 32
II Konzeption der Anlage 34
5 Versuchsanlage Holzstaubfeuerung 35
5.1 Anlagenteilsysteme 35
5.2 Meßtechnik 38
5.2.1 Druckmessung 38
5.2.2 Temperaturmessung 40
5.2.3 Massenstrommessung 40
5.2.4 Rauchgasmessung 41
5.2.5 Staubmessung 44
5.2.6 Meßdatenerfassung 46
6 Zweistufige holzstaubgefeuerte Brennkammer 47
6.1 Eigenschaften einer Zyklonbrennkammer 48
6.2 Auslegung der Brennkammer 50
6.2.1 Wärmetechnische Auslegung 50
6.2.1.1 Zyklonkammer 51
6.2.1.2 Nachbrennkammer 53
6.2.2 Konstruktive Auslegung 53
6.2.2.1 Primärkammer 53
6.2.2.2 Sekundärkammer 55
6.3 Anfahren der Brennkammer 58
7 Axialzyklon 59
7.1 Theorie der Zyklonabscheider 59
7.1.1 Trennkorn und Abscheideleistung 60
7.1.2 Druckverlust 61
7.1.3 Drallerzeugung 62
7.2 Konstruktion des Axialzyklons 63
III Betriebsverhalten und Meßergebnisse 67
8 Betrieb der Versuchsanlage 68
8.1 Charakterisierung der Brennstoffe 68
8.2 Verbrennung in der Brennkammer 70
8.2.1 Vergasung 71
8.2.2 Berechnung der Vergasungstemperatur 73
8.2.3 Temperaturen in der Zyklonbrennkammer 75
8.2.3.1 Schwedischer Holzstaub 77
8.2.3.2 Fichtenspäne 79
8.2.3.3 Buchenspäne 80
8.2.3.4 Vergleich der Vergasungstemperaturen 81
8.2.4 Nachbrennkammer 82
8.2.5 Brennkammeraustritt 84
8.3 Betriebsbereiche der zweistufigen Brennkammer 84
8.4 Druckverlust der Anlage 86
8.4.1 Druckverlust Radialverdichteraustritt - Brennkammeraustritt 87
8.4.2 Druckverlust Axialzykloneintritt - Axialzyklonaustritt 88
8.4.3 Bewertung der Druckverluste 89
9 Schadstoffe 91
9.1 Kohlenmonoxid 91
9.2 Kohlenwasserstoffe 93
9.3 Stickoxide 95
9.3.1 Bildung von Stickoxiden bei der Verbrennung 95
9.3.1.1 Thermisches $N O$ 95
9.3.1.2 Promptes $N O$ 96
9.3.1.3 Brennstoff- NO 96
9.3.1.4 Stickoxide bei der Holzverbrennung 98
9.3.2 NO_{x}-Emissionen der zweistufigen Brennkammer 99
9.4 Staubemissionen 100
9.4.1 Staubkonzentration 101
9.4.2 Korngrößenverteilung 103
10 Zusammenfassung und Ausblick 105
A Spezifische Enthalpie eines Gases 115
B Verbrennungsversuche 116

Formelzeichen

Lateinische Formelzeichen

A_{e}	[m^{2}]	Fläche
A_{R}	[m^{2}]	innere Zyklonwandfläche
b	[m]	Leitschaufelhöhe
c	[m / s]	Strömungsgeschwindigkeit
c_{p}	[$\mathrm{J} / \mathrm{kgK}$]	spez. Wärmekapazität bei konst. Druck
C	[-]	Durchflufkoeffizient
d	[m]	Blendendurchmesser
d_{50}	[m]	Mediandurchmesser
d_{a}	[m]	Austrittsdurchmesser der Zyklonkammer
$d_{a e}$	[m]	aerodynamischer Durchmesser
$d_{B K}$	[m]	Innendurchmesser Flammrohr
d_{p}	[m]	Partikeldurchmesser
D	[m]	Rohrinnendurchmesser (Kap.5.2.3)
D	[\%]	Durchgangssumme
\dot{D}	$\left[\mathrm{kgm}^{2} / \mathrm{s}^{2}\right]$	Drehimpulsstrom
E	[-]	Vorgeschwindigkeitsfaktor
F_{W}	$\left[\mathrm{kgm} / \mathrm{s}^{2}\right]$	Schleppkraft
F_{Z}	$\left[\mathrm{kgm} / \mathrm{s}^{2}\right]$	Zentrifugalkraft
g	$\left[\mathrm{m} / \mathrm{s}^{2}\right.$]	Erdbeschleunigung
$G r$	[-]	Grashofzahl
h	[J / kg]	spezifische Enthalpie
h_{E}	[m]	Höhe der Trennfläche
h_{T}	[m]	Spalttauchrohrlänge
H_{o}	[$k J / k g]$	Brennwert
H_{u}	[$k J / k g$]	Heizwert
\dot{I}	[$\left.\mathrm{kgm} / \mathrm{s}^{2}\right]$	Impulsstrom
k	$[1 / s]$	Reaktionsgeschwindigkeit
K	[-]	Gleichgewichtskonstante
$l_{B K}$	[m]	Höhe der Zyklonkammer
L	$\left[\frac{\mathrm{kg}}{\text { kgBrennstoff }}\right]$	Verbrennungsluftmenge
$L_{\text {min }}$	$\left[\frac{k g}{\text { kgBrennstoff }}\right]$	stöchiometrischer Luftbedarf
m	[kg]	Masse
\dot{m}	[kg / s]	Massenstrom
\dot{m}_{A}	$[\mathrm{kg} / \mathrm{s}]$	Staubmassenstrom im Rohgas
$\dot{m}_{r e i n}$	[$\mathrm{kg} / \mathrm{s}]$	Staubmassenstrom im Reingas
$\dot{m}_{a b}$	$[\mathrm{kg} / \mathrm{s}]$	abgeschiedener Staubmassenstrom

M_{i}	[$\mathrm{kg} / \mathrm{kmol}]$	molare Masse des Stoffes i
n	[-]	Wirbelexponent
n_{i}	[mol$]$	Stoffmenge des Stoffes i
$O_{2, m i n}$	$\left[\frac{\mathrm{kg}}{\text { kgBrennstoff }}\right]$	stöchiometrischer Sauerstoffbedarf
p	[Pa]	Druck
$p_{B K}$	[Pa]	Brennkammerdruck
P	[W]	Leistung
q	[J/kg]	spezifische übertragene Wärme
$\dot{q}_{B K}$	$[1 / s]$	Volumenbelastung der Brennkammer
\dot{Q}	[W]	Wärmestrom
r	[m]	Radius
r	[$k J / k g$]	Verdampfungswärme (Kap.2.4)
r_{a}	[m]	Zyklonwandradius
r_{T}	[m]	Tauchrohrradius
R	[J/kgK]	Gaskonstante
$R e$	[-]	Reynoldszahl
S	[-]	Drallzahl
$S_{\text {geo }}$	[-]	geometrische Drallzahl
T	$\left[{ }^{\circ} \mathrm{C}\right]$	Temperatur
T_{V}	$\left[{ }^{\circ} \mathrm{C}\right]$	Vergasungstemperatur
$T_{V b}$	$\left[{ }^{\circ} \mathrm{C}\right]$	Verbrennungstemperatur
$T_{V b, \text { theo }}$	$\left[{ }^{\circ} \mathrm{C}\right]$	adiabate Verbrennungstemperatur
u	$[\mathrm{m} / \mathrm{s}]$	Umfangsgeschwindigkeit
$u_{B r}$	[\%]	Feuchtigkeit
$u_{\text {roh }}$	[\%]	Wassergehalt
v	[m / s]	Geschwindigkeit
v_{r}	[m/s]	Radialgeschwindigkeit
v_{T}	[m / s]	Tauchrohrgeschwindigkeit
\dot{V}	$\left[m^{3} / \mathrm{s}\right]$	Volumenstrom
$V_{B K}$	$\left[m^{3}\right]$	Zyklonkammervolumen
V_{f}	$\left[\frac{m_{N}^{3}}{\text { kgBrennstoff }}\right]$	feuchtes Abgasvolumen
$V_{t r}$	$\left[\frac{m_{N}^{3}}{\text { kgBrennstoff }}\right]$	trockenes Abgasvolumen
w_{e}	[m / s]	tangentiale Lufteintrittsgeschwindigkeit
w_{p}	[m / s]	Partikelsinkgeschwindigkeit
w_{t}	[J/kg]	spezifische technische Arbeit
x	[m]	Laufkoordinate entlang der Brennkammerachse
x_{50}	[m]	Trennkorn

Griechische Formelzeichen

α	$\left[W / m^{2} K\right]$	Wärmeübergangszahl
β	$[-]$	Durchmesserverhältnis (Kap.5.2.3)
β	$\left[{ }^{\circ}\right]$	Umlenkwinkel
γ	$[\%]$	Massenanteil
Δ	$[-]$	relative Änderung einer beliebigen Größe
ε	$[-]$	Expansionszahl (Kap 5)
ε	$[-]$	Emissionskoeffizient
ζ	$[-]$	Druckverlustbeiwert
$\eta_{Z y k l o n}$	$[-]$	Zyklonabscheidegrad (Kap.7)

$\eta_{B k}$	$[-]$	Brennkammerwirkungsgrad
η_{F}	$[-]$	Fraktionsabscheidegrad
η_{m}	$[-]$	mechanischer Wirkungsgrad
η_{p}	$[-]$	polytroper Wirkungsgrad
$\eta_{t h}$	$[-]$	thermischer Wirkungsgrad
κ	$[-]$	Isentropenexponent
λ	$[-]$	Verbrennungsluftverhältnis
$\lambda_{i s o l}$	$[W / m K]$	Wärmeleitungskoeffizient der Isolierung
λ_{V}	$[-]$	Vergasungsluftverhältnis der Zyklonkammer
λ_{s}	$[-]$	Wandreibungsbeiwert
$\mu_{G a s}$	$[k g / m s]$	dynamische Viskosität
μ	$[-]$	Gasbeladung
ν	$\left[\mathrm{m}^{2} / \mathrm{s}\right]$	kinematische Viskosität
ν	$[-]$	Polytropenverhältnis (Kap.3.2)
ν_{i}	$[-]$	stöchiometrischer Koeffizient
Π_{V}	$[-]$	Verdichtungsverhältnis
Π_{T}	$[-]$	Expansionsverhältnis
ρ	$\left[k g / \mathrm{m}^{3}\right]$	Dichte
ρ_{B}	$\left[1 / \mathrm{m}^{2}\right]$	Bahnkrümmung
ρ_{P}	$\left[k g / \mathrm{m}^{3}\right]$	Partikeldichte
φ	$\left[{ }^{\circ}\right]$	Winkelkoordinate
ψ	$[-]$	Luftstufungsverhältnis

Indizes

a	aussen
$B K$	Brennkammer
$B r$	Brennstoff
D	Druckbehälter
e	Brennkammereintritt
E	Zykloneintritt
f	feucht
F	Förderluft
i	innen
Isol	Isolierung
$k o n v$	Konvektion
L	Luft
N	Normzustand (Kap. 8.1.4)
P	Partikel
$p r i m$	Primärluft
r	in radialer Richtung
R	Reaktion
sek	Sekundärluft
$S t r a h l$	Strahlung
$t e r$	Tertiärluft
$t r$	trocken
T	Tauchrohr
T	Turbine (Kap.3)
U	Umgebung

$V \quad$ Vergasung
$V \quad$ Verdichter (Kap. 2)
$V b$ Verbrennung
W Flammrohrwand

Exponenten

- gemittelt
- erste Ableitung nach der Zeit
+ Totalzustand

Kapitel 1

Einleitung

Das Institut für Thermische Turbomaschinen und Energieanlagen der Technischen Universität Wien beschäftigt sich unter anderem mit der Erzeugung von elektrischem Strom basierend auf erneuerbaren Energieträgern. Ziel eines Projekts ist der Betrieb einer Gasturbine mit Holzstaub.
Neben ökonomischen Studien über den Betrieb holzstaubgefeuerter Gasturbinen begann Sengschmied [61] mit der Entwicklung eines theoretischen Konzepts zur Holzstaubverbrennung. Joppich [37] und TmeJ [71] entwickelten ein Brennstoffördersystem, um die Holzstaubverbrennung in einer druckaufgeladenen Brennkammer ermöglichen zu können.

1.1 Holz als Energieträger

Die derzeitige weltweite Energieversorgung entspricht noch bei weitem nicht dem Kriterium der Nachhaltigkeit, da sie zum überwiegenden Teil auf fossilen Energieträgern beruht, und bei nicht rechtzeitigem Umstieg auf erneuerbare Energieträger zu einer dauerhaften Veränderung des Erdklimas mit allen Konsequenzen führen wird. In vielen Ländern wird außerdem auf die risikoreiche und dem Prinzip der Nachhaltigkeit widerstrebende Kernenergie zurückgegriffen. Dabei nimmt man für ein paar Jahrzehnte der Energiegewinnung die Belastung der Gesellschaft und Umwelt mit radioaktiv strahlendem Müll in Kauf.
Das österreichische Energieaufkommen ist durch einen hohen Anteil erneuerbarer Energieträger gekennzeichnet (Wasserkraft, Biomasse, Solarenergie). Der österreichische Anteil am Gesamtenergieverbrauch der EU-Staaten liegt gegenwärtig bei knapp unter 2.0%. Bei erneuerbaren Energieträgern liegt der Anteil allerdings bei 8.0%. Österreich kann derzeit 23.2% seines Primärenergiebedarfs mit erneuerbaren Energieträgern decken [7] (siehe Abb.1.1).

\longleftarrow Fossile Energieträger
\square Erneuerbare Energieträger

Abbildung 1.1: Anteil der erneuerbaren Energie am Gesamtenergieeinsatz (1998)

Die traditionellen erneuerbaren Energieträger (Wasserkraft und Biomasse vorwiegend in Form von Brennholz) nehmen dabei den überwiegenden Anteil ein (siehe Abb.1.2). Die neuen erneuerbaren Energieträger (Strom aus Biomasse, Windenergie, Biogas und Solarenergie) haben derzeit noch einen geringen Anteil, weisen aber zum Teil erhebliche Steigerungsraten auf. In Österreich wird der Erzeugung von Strom aus Holzverbrennung dabei das größte Potential bei den neuen erneuerbaren Energieträgern zugeschrieben.

Abbildung 1.2: Die erneuerbaren Energieträger in Österreich (1998)

Bei der energetischen Nutzung von Holz zählt Österreich zu den führenden Ländern in Europa. Von der Gesamtfläche Österreichs ($84.000 \mathrm{~km}^{2}$) sind 47% mit Wald bedeckt. Der Holzvorrat in den heimischen Wäldern wird auf etwa 1.000 Mio. Vorratsfestmeter geschätzt. Eine sinnvolle Nutzung von Holz als Primärenergieträger bringt ökologische als auch ökonomische Vorteile mit sich:

- Die Verbrennung von Holz ist $\mathbf{C O}_{2}$-neutral: Bei der Verbrennung von Holz wird nur jene Menge CO_{2} freigesetzt, die bei der Photosynthese aus dem CO_{2} der Luft gebunden wurde.
- Holz ist ein Rohstoff, der bei kontrollierter und extensiver Forstwirtschaft unerschöpflich bzw. erneuerbar ist: Der laufende jährliche Zuwachs im Ertragswald beträgt ca. 28 Mio. Festmeter und ist damit deutlich höher als die jährliche Nutzung von etwa 20 Mio. Festmeter.
- Holz steht im Gegensatz zu fossilen Energieträgern in Österreich in ausreichendem Maß zur Verfügung: Die Verwendung von Holz als Energieträger vermindert die Abhängigkeit von Energieimporten.

Am 10.5.2000 hat die Europäische Kommission den Vorschlag für eine Richtlinie des Europäischen Parlaments und des Rates zur Förderung der Stromerzeugung aus erneuerbaren Energiequellen im Elektrizitätsbinnenmarkt angenommen. Der Vorschlag der Kommission stützt sich auf das Weißbuch von 1997 über erneuerbare Energieträger, in dem die grundlegende Bedeutung dieser alternativen Energiequellen für Sicherheit und Diversifizierung der Versorgung, den Umweltschutz sowie den wirtschaftlichen und sozialen Zusammenhalt hervorgehoben wird. Der Vorschlag, mit dem die Regierungen der EU und die Industrie aufgefordert werden sich zu einer verstärkten Nutzung nachwachsender Energiequellen bei der Stromerzeugung zu verpflichten, ist notwendig, damit die EU ihre Verpflichtungen im Rahmen des Protokolls von Kyoto über Klimaänderung erfüllen und die Treibhausgasemissionen bis zum Jahr 2010 um 8% verringern kann. Deshalb ist es notwendig, daß der Anteil der Stromversorgung aus nachwachsenden Energiequellen auf 22.1% erhöht wird.

Neben der verstärkten Nutzung von Wasserkraft bietet die thermische Stromerzeugung aus Holz eine sinnvolle Möglichkeit das vereinbarte Ziel zu erreichen. In einigen Industriezweigen kann der Einsatz von nachwachsenden Primärenergieträgern durchaus wirtschaftlich durchgeführt werden.
Eine Energiebilanz für Sägewerke zeigt, daß diese aus anfallenden Sägespänen und Schleifstäuben den Eigenbedarf an elektrischer Energie und Prozeßwärme bereitstellen könnten. Für die Versorgung eines größeren holzverarbeitenden Betriebs wäre eine Kraftwerksleistung von $1 M W_{e l}$ erforderlich.
Die thermische Stromerzeugung aus Holzstaub und Holzspänen ist entweder mit einem Dampfkraftprozeß oder mit einem Gasturbinenprozeß möglich. Die Installation von Dampfturbinen mit der damit verbundenen Feuerungstechnik ist mit sehr hohen Investitionskosten verbunden und ab Leistungen von $30 M W_{t h}$ wirtschaftlich einsetzbar. Im Leistungsbereich von 1 bis $2 M W_{e l}$ stellt der Gasturbinenprozeß die kostengünstigere Variante der Stromerzeugung dar.

1.2 Stand der Technik

Dieser Abschnitt gibt einen kurzen Überblick über Möglichkeiten Gasturbinen mit Holzspänen bzw. Holzstäuben zu betreiben.
Neben Systemen mit direkter Verbrennung von Holz in der Gasturbinenbrennkammer werden Systeme mit externer Vergasung und anschließender Verbrennung des Produktgases in der Gasturbinenbrennkammer unterschieden.
Grundsätzlich werden für die direkte Verbrennung als auch für die Vergasung von Holzspänen und Holzstäuben zwei Feuerungsmethoden als zielführend angesehen:

- Wirbelschichtfeuerung bzw. Wirbelschichtvergasung
- Flugstromfeuerung bzw. Flugstromvergasung

1.2.1 Wirbelschichtsysteme

Aufgrund des sehr guten Wärmeübergangs innerhalb der Fluidisierungszone erzielen Wirbelschichtsysteme sehr gute Reaktionsbedingungen für die Verbrennung bzw. Vergasung von Feststoffen. Neben der Möglichkeit auch inhomogene Brennstoffe wie Müll oder Abfallholz zu verwerten, können in Wirbelschichtanlagen neben Spänen und Stäuben gleichzeitig auch größere Brennholzstücke zum Einsatz kommen.
Wirbelschichtsysteme stellen aber technisch sehr aufwendige und damit verbund teuere Lösungen dar. Bei Kohlefeuerungen werden nach LEITHNER [44] Wirbelschichtsysteme erst ab einen thermischen Leistungsbereich von $200 M W_{t h}$ für wirtschaftlich gehalten.
Ein weiteres Problem beim Betrieb von Gasturbinen mit Wirbelschichtsystemen stellt die Verunreinigung des Heißgases mit Bettmaterial dar. Bettmaterial, zu meist Sand, wird mit dem Heißgas ausgetragen und kann an den Turbinenteilen zu Erosion führen.
Die Entwicklung zeigt, daß Wirbelschichtfeuerungen für Dampfkraftprozesse zur Erzeugung von Elektrizität und Wärme sehr gut geeignet sind. In den letzten Jahren wurden mehrere Anlagen dieser Art in Europa in Betrieb genommen (Großbritannien, Schweden, Deutschland, Finnland, ...).

1.2.2 Flugstromsysteme

Für den Leistungsbereich von 1 bis $2 M W_{e l}$ erweisen sich Flugstromsysteme aufgrund geringerer Investitionskosten zweckmäßiger als Wirbelschichtsysteme:

- Externe druckaufgeladene Vergasung von Holz in einem Flugstromvergaser und der Betrieb der Gasturbine mit dem Produktgas.
- Direkte Verbrennung von Holz in einer Flugstrombrennkammer und der Betrieb der Gasturbine mit dem Heißgas.

1.2.2.1 Externe Vergasung

Unter Vergasung fester Brennstoffe versteht man deren teilweise Oxidation mittels eines Vergasungsmittels (z.B. Luft oder Wasserdampf) unter Erhaltung eines brennbaren oder zur chemischen Synthese brauchbaren Produktgases. Wichtig ist der unterstöchiometrische Einsatz des Vergasungsmittels, um nicht eine totale Reaktion des Brennstoffes zu erzielen. Je nach Qualität des Vergasers können dabei Produktgase mit Energieinhalten bis zu $12 \mathrm{MJ} / \mathrm{m}_{N}^{3}$ (Schwachgas) hergestellt werden.
Nach einer entsprechenden Gasreinigung kann das Produktgas in einer speziell für Schwachgas adaptierten Brennkammer eingesetzt und eine Gasturbine betrieben werden (siehe Abb.1.3).

Abbildung 1.3: Gasturbine und externer Vergaser

Griffiths et al. [23] betreiben zur Zeit in Cardiff eine Zyklonbrennkammer zur Flugstromvergasung von Holzstaub. Das Produktgas soll in einer speziell entwickelten Gasturbinenbrennkammer zum Einsatz kommen. Cousins and Robinson [12] in Neuseeland entwickelten ebenfalls einen Zyklonvergaser zur Herstellung von Produktgas aus Holz. Beide Vergaser erzeugen Produktgase mit maximalen kalorischen Energieinhalten von 5-6 MJ $/ m_{N}^{3}$.

Für Systeme mit externer Vergasung und anschließender Verbrennung in einer adaptierten Brennkammer liegen nach LARSON ET AL. [43] die Kapitalkosten pro installiertem $k W$ im niedrigen und mittleren Leistungsbereich vier bis fünf Mal so hoch wie bei direktgefeuerten Anlagen. Weiters wird durch den Wegfall des Vergasungsreaktors bei direktgefeuerten Anlagen ein höherer thermischer Wirkungsgrad erzielt.

1.2.2.2 Direktgefeuerte Gasturbine

Bei der direkt holzgefeuerten Gasturbine ist eine für die Holzverbrennung geeignete druckaufgeladene Brennkammer und ein Heißgasentstauber zwischen Verdichter und Turbine notwendig (siehe Abb.1.4).

G ... Generator
V ... Verdichter
T ... Turbine

Abbildung 1.4: Direkt holzgefeuerte Gasturbine

Das Holz wird verbrannt und das druckaufgeladene Heißgas der Turbine zugeführt. Turbinen und Verdichter, wie sie für Öl- oder Gasbetrieb gebaut werden, lassen sich mit geringen baulichem Aufwand auf Holzbetrieb umrüsten.
Vor allem bei direkt gefeuerten Gasturbinen bietet die Flugstromverbrennung gegenüber Wirbelschichtsystemen den Vorteil, daß der eingesetzte Brennstoff ohne Vorhandensein von Bettmaterial ausbrennt. Aufgrund der fehlenden Speichermasse (Bettmaterial) weisen Flugstrombrennkammern ein dynamisches Verhalten auf, das eine rasche Reaktion auf Turbinenlastwechsel ermöglicht.

Die direkte Verbrennung von festen Brennstoffen in Gasturbinenbrennkammern ist seit den Fünfziger Jahren immer wieder Gegenstand von Forschungsvorhaben. Ausgehend von Forschungsergebnissen kohlegefeuerter Gasturbinenbrennkammern wurde von der Aerospace Research Corporation (USA) eine mit Holzstaub gefeuerte Brennkammer entwickelt [28]. 1978 begann man mit den Forschungsarbeiten an einer mit 5 bis 11 mm großen Sägespänen befeuerten Versuchsanlage. Als Brennkammer wählte man eine Silobrennkammer zur Flugstromverbrennung. Das aus der Brennkammer austretende Heißgas wurde mit drei in Serie geschalteten Zyklonen entstaubt. Im Betrieb erwies sich die Silobrennkammer als ungeeignet, weil kein vollständiger Ausbrand des Holzes erreicht werden konnte. Außerdem kam man zu der Erkenntnis, daß ein einzelner Zyklon für die Staubabscheidung ausreichend ist.

Aufgrund der im wesentlichen positiven Erkenntnisse mit der Versuchsanlage wurde 1986 in Red Boiling Springs (USA) eine Pilotanlage mit $3 M W_{t h}$ in Betrieb genommen. Gegenüber der Versuchsanlage wurde die Silobrennkammer mit einer Sekundärbrennkammer erweitert, um einen besseren Holzausbrand zu erzielen (siehe Abb.1.5). Zur Brennstofförderung dienten in Serie geschaltete Zellradschleusen. Für diese Anlage liegen Betriebserfahrungen von über 760 Stunden vor [29].

Abbildung 1.5: Gasturbinenbrennkammer nach HAMRICK [29]

Wegen des immer noch mäßigen Holzausbrandes (Flugkoks) und der Flugasche kam es bereits nach 26 Betriebsstunden zu Ascheablagerungen am Turbinenteil. Durch spülen mit Nußschalen konnten diese Verunreinigungen entfernt werden. Um harte Ablagerungen auf den Turbinenschaufeln zu vermeiden wurde die Turbineneintrittstemperatur mit $760^{\circ} \mathrm{C}$ begrenzt.

In Schweden arbeiten am Royal Institute of Technology in Stockholm und an der Lulea University of Technology ebenfalls Ingenieure an der Realisierung einer direkt holzstaubgefeuerten Gasturbine. FREDRIKSSON AND KALLNER [21] entwickelten dazu eine zweistufige Flugstrombrennkammer zur Holzstaubverbrennung.
Um die Verweilzeit der eingebrachten Holzteilchen in der Reaktionszone zu erhöhen, wurde die primäre Brennkammer ähnlich einem Zyklonabscheider konstruiert (siehe Abb.1.6). Diese spezielle Gestaltung konnte einerseits einen vernünftigen Ausbrand des Holzes gewährleisten, andererseits konnte ein Großteil der bei der Verbrennung anfallenden Asche in der Brennkammer abgeschieden werden.

Abbildung 1.6: Zweistufige Gasturbinenbrennkammer

Fredriksson and Kallner konnten bei der Verbrennung von Holzstaub mit Partikelgrößen um 1 mm einen Ausbrand von 95 bis 97% erzielen. Es ist geplant druckaufgeladene Versuche durchzuführen, um letztendlich den Betrieb einer 45 kW Gasturbine zu realisieren.

Von den vorgestellten Forschungsarbeiten zeigt das Konzept der Zyklonbrennkammer großes Potential eine Gasturbine direkt mit Holzstaub zu betreiben. Obwohl für die Primärbrennkammer nur ein herkömmlicher Zyklonabscheider verwendet wurde, konnte ein guter Ausbrand erzielt werden. Eine Anpassung der Zyklonkammergeometrie an die Verbrennungsreaktion und eine gezielte Auslegung der Nachbrennkammer sollten die weitere Entwicklungsziele darstellen.

1.3 Aufgabenstellung und Zielsetzung

Aufgabenstellung

Aus den in der Literatur vorgestellten Möglichkeiten zum Betrieb einer direkt holzstaubgefeuerten Gasturbine lassen sich folgende Entwicklungsziele für eine Anlage ableiten:

- Entwicklung einer Flugstromfeuerung zur Erzielung eines nahezu vollständigen Ausbrandes.
- Aufgrund der zunehmenden Belastung der Umwelt soll der Schadstoffaustoß der Anlage - soweit möglich - durch Primärmaßnahmen minimiert werden.
- Einsatz eines geeigneten Entstaubers zum Schutz der Turbinenteile.

Nach Berechnungen von SENGSCHMIED [61] bietet eine Zyklonbrennkammer ausreichende Brennstoffverweilzeiten, um einen nahezu vollständigen Ausbrand von Holzspänen zu erzielen. Diese Feuerungsmethode eignet sich besonders für die Verbrennung von staubförmigen Brennstoffen mit hohem Gehalt an flüchtigen Bestandteilen.
Weiters ermöglicht eine zweistufige Verbrennungsführung eine schadstoffarme Holzverbrennung hinsichtlich Stickoxidemissionen $\left(N O_{x}\right)$. Bei Menschen behindert $N O_{x}$ in der Atemluft die Luftaufnahme in der Lunge. In der Atmosphere bilden sich unter Lichteinwirkung mit Hilfe von $N O_{x}$ Oxydantien (z.B. Ozon). Diese Stoffe schädigen Pflanzen, da die Photosynthese gestört wird [19]. Auch gelten Stickoxid- und Kohlenwasserstoffemissionen als Verursacher für photochemischen Smog [27].
Stickoxidemissionen können durch zweistufige Verbrennung, wobei in der ersten Stufe das Holz unterstöchiometrisch verbrannt wird, stark reduziert werden. Durch entsprechende Gestaltung der Sekundärbrennkammer kann der Kohlenwasserstoff- und auch der Kohlenmonoxidausstoß der Brennkammer reduziert werden.
Nach der vollständigen Verbrennung von Holz sind im Heißgas der Brennkammer feste unbrennbare Bestandteile enthalten. Vor dem Eintritt des Heißgases in die Drosselklappe bzw. in eine Turbine soll ein Zyklon die Ascheteilchen aus dem Gas abscheiden. Die Asche kann zu Erosion und Verschmutzung auf den Turbinenschaufeln führen. Da Druckverluste im Gasturbinenprozeß zu Wirkungsgradverlusten führen, soll der eingesetzte Entstauber einen möglichst geringen Druckverlust aufweisen.

Zielsetzung

Nach einer detaillierten Auseinandersetzung mit dem Brennstoff Holz und dessen Verbrennungseigenschaften ist es das Ziel, eine Versuchsanlage zur druckaufgeladenen Verbrennung von Holzspänen und Holzstaub zu entwickeln und zu betreiben. Zu diesem Zweck werden eine zweistufige Brennkammer, wobei die Primärkammer als Zyklonbrennkammer ausgeführt wird, und ein Axialzyklon entwickelt.
In der Versuchsanlage soll ein offener Gasturbinenprozeß simuliert werden. Das druckaufgeladene, heiße Abgas der Brennkammer wird nach Durchströmen des Axialzyklons mit Hilfe einer Drosselklappe auf Umgebungsdruck expandiert. Das Betriebsverhalten der Brennkammer und die Abscheideleistung des Zyklons in Abhängigkeit von unterschiedlichen Brennstoffen werden gemessen und bewertet.
In der Brennkammer werden drei unterschiedliche Holzsorten (schwedischer Holzstaub, Fichtenspäne und Buchenspäne) zum Einsatz kommen. Die Unterschiede im Verbrennungsverhalten der drei Brennholzsorten werden gemessen und gegenübergestellt.
Mit Hilfe des Vergasungsgleichgewichtes wird, analog zur Kohlevergasung [76], die Vergasungstemperatur abhängig vom verwendeten Brennstoff berechnet. Damit kann bei Verwendung anderer Holzsorten die Vergasungstemperatur in der Primärkammer voraus berrechnet werden.
Von besonderem Interesse ist die Abgaszusammensetzung, die mit Hilfe eines Rauchgasanalysators gemessen wird. Das Emissionsverhalten in Abhängigkeit von gewählten Verbrennungsbedingungen soll Aufschluß geben über die Betriebscharakteristik der Brennkammer. Es soll gezeigt werden, daß die Anlage die österreichischen Luftreinhalteverordnung erfüllen kann.

Im Hinblick auf einen geplanten Gasturbinenbetrieb wird weiters die Staubbeladung und die Korngrößenverteilung des im Axialzyklon aufbereiteten Heißgasstroms gemessen. Die Heißgasqualität soll gewährleisten, daß die Turbine betriebssicher und mit möglichst großer Verfügbarkeit betrieben werden kannen.
Da der Wirkungsgrad des Gasturbinenprozesses unter anderem vom Druckverlust zwischen Verdichteraustritt und Turbineneintritt abhängt, wird der Druckverlust der Anlagenkomponenten gemessen und bewertet.

Teil I

Grundlagen

Kapitel 2

Holz als Brennstoff

Holz ist ein anisotroper, hygroskopischer Stoff dessen Verbrennungsverhalten sich von dem flüssiger und gasförmiger Energieträger (Öl und Erdgas) in zwei wesentlichen Punkten unterscheidet:

- Holz weist als Brennstoff große Schwankungen in Feuchtigkeit, Stückgröße und Morphologie auf.
- Die Holzverbrennung ist ein komplexer, in mehereren Stufen ablaufender Prozeß.

Um eine schadstoffarme Verbrennung zu erreichen, muß diesen Merkmalen sowohl bei der Feuerungstechnik als auch bei der Betriebsweise Aufmerksamkeit entgegen gebracht werden. Eine Übersicht über verschiedenen Feuerungssysteme kann den Quellen [3] und [6] entnommen werden.

2.1 Eigenschaften von Holz

Um Holz als Energieträger optimal einsetzen zu können, ist es notwendig die morphologischen, physikalischen und chemischen Eigenschaften näher zu betrachten. Diese Eigenschaften sind maßgebend für die Holzverbrennung.
Die morphologischen Eigenschaften beschreiben die makroskopische Struktur des Holzes, die physikalischen Eigenschaften unter anderem die Fähigkeit Wasser aufzunehmen und zu binden, und die chemischen Eigenschaften geben Auskunft über die Holzfaserbestandteile.

2.1.1 Morphologische Eigenschaften

Holz besteht aus einer Vielzahl strukturbildender Zellen unterschiedlichster Art und Form. Entsprechend den Funktionen im Stamm werden im Holz die drei Gewebearten Festigungsgewebe, Leitgewebe und Speichergewebe unterschieden. Je mehr Hohlräume und Kanäle die Holzstruktur aufweist, desto mehr Wasser kann im Holz gebunden werden.
Aufgrund der Unterschiede in der Holzstruktur unterteilt man in Weichholz (Nadelholz) und Hartholz (Laubholz). Während bei Weichhölzern der Wassertransport vom Festigungsgewebe übernommen wird, haben Harthölzer ein speziell ausgebildetes Wasserleitungssystem mit Poren und Kanälen entwickelt [74].
Bei der Verbrennung von Weichholz wird die geschlossene Zellstruktur durch Hitzeeinwirkung aufgebrochen (Knistern des Feuers). Die Entgasung verläuft intensiv, da das Aufbrechen der Zellstrukturen zu einer Oberflächenvergrößserung führt. Beim Verbrennen von Harthölzern hingegen entweichen Wasserdampf und füchtige Bestandteile (=Flüchtige) durch die Kanäle
und Poren.
Ein weiteres Merkmal mit Einfluß auf die Verbrennung ist die unterschiedliche Dichte der beiden Holzarten. Das schwerere Hartholz hält die Glut länger als das rasch abbrennende Weichholz.

2.1.2 Physikalische Eigenschaften

Holz ist hygroskopisch und bindet Wasser durch Absorption und Adsorption. Das Wasser wird dabei durch Kapillareffekte aufgenommen.
In der Praxis wird die im Holz vorhandene Wassermenge auf zwei Arten angegeben.

- Feuchtigkeit:

$$
\begin{equation*}
u_{B r}=\frac{\text { Masse des Wassers }}{\text { Masse von trockenem Holz }} \tag{2.1}
\end{equation*}
$$

- Wassergehalt:

$$
\begin{equation*}
u_{\text {roh }}=\frac{\text { Masse des Wassers }}{\text { Masse von feuchtem Holz }} \tag{2.2}
\end{equation*}
$$

Der Feuchtegehalt von waldfrischem Holz liegt zwischen 60 und 100%. Der maximale Feuchtegehalt von Holz kann jedoch bis zu $u_{B r}=400 \%$ (bzw. $u_{r o h}=80 \%$) betragen.
Das in Hohlräumen absorbierte Wasser nennt man Freies Wasser oder Grobe Feuchtigkeit. Das in der Mikrostruktur adsorbierte Wasser wird als Gebundenes Wasser oder Hygroskopische Feuchtigkeit bezeichnet. Dabei werden Wassermoleküle durch Wasserstoffbrückenbildung an die Holzstruktur gebunden, das Holz beginnt zu quillen.
Holz kann Wasser nur bis zu einem Sättigungspunkt (je nach Holzart bis zu $u_{\text {roh }}=23-25 \%$) durch Adsorption binden. Während das absorbierte Wasser durch Lagerung entfernt werden kann, läßt sich das adsorbierte Wasser nur durch Wärmeeinwirkung entfernen.

2.1.3 Chemische Eigenschaften

Die Grundbausteine der Holzsubstanz sind die organischen Verbindungen Zellulose, Hemizellulose und Lignin. In geringer Form kommen auch Amine, Öle, Säuren, Alkohole und anorganische Bestandteile im Holz vor.
Bis zu 50% der Masse (siehe Tab.2.1) nimmt Zellulose, die dem Holz die Struktur verleiht, ein. Daneben dient Hemizellulose zur Versteifung und Lignin zur Verbindung der Struktur.

	Zellulose $\%$	Hemizellulose $\%$	Lignin $\%$
Weichholz	$40-45$	$24-37$	$25-30$
Hartholz	$40-50$	$22-40$	$15-25$

Tabelle 2.1: Holzzusammensetzung [62]

Zellulose ist ein makromolekulares Fadenmolekül. Der Grundbaustein von Zellulose ist Glukose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. Durch Verkettung von Glukosemolekülen entsteht diese hochpolymere Gerüstsubstanz [3] (siehe Abb.2.1). Je nach Polymerisationsgrad n können 100 bis 5000 Glukosemoleküle aneinander gereiht sein. Die Makromoleküle der Zellulose bilden Ketten, die sich
unter Ausbildung von Wasserstoffbrücken zu langgestreckten Bündeln, den Elementarfibrillen, zusammenlagern. Etwa 20 Elementarfibrillen ergeben ebenfalls in Folge von Wasserstoffbrückenbildung eine Mikrofibrille, den Grundbaustein der Pflanzenzellwände [51].

Grundstruktur

Abbildung 2.1: Strukturformel Zellulose

Die chemischen Eigenschaften eines Stoffes werden durch die Art und Anordnung seiner funktionellen Gruppen entscheidend beeinflußt. Für die Verbrennung sind sie von besonderer Bedeutung, weil sie unter Hitzeeinwirkung als einzelne Moleküle abgespalten werden (Flüchtige) und so den Verbrennungsvorgang maßgeblich beeinflussen. Die wichtigsten funktionellen Gruppen der Zellulose sind -OH und $-\mathrm{CH}_{2} \mathrm{OH}$ (primäre Alkohole). Vor allem die sehr reaktiven OH-Gruppen lassen sich schnell pyrolisieren und anschließend oxidieren.

Hemizellulose ist wie Zellulose ein Polysaccharid. Zusätzlich zu den alkoholischen Gruppen besitzt Hemizellulose auch Methyl- $-\mathrm{CH}_{3}$ und Carboxylgruppen -COOH . Im Gegensatz zum linearen Zellulosemolekül weist die Struktur zahlreiche Kettenverzweigungen auf. Grundbausteine von Hemizellulose sind Hexosen und Pentosen. Das am häufigsten vorkommende Monomer ist Xylose. Im Gegensatz zu der in kristalliner Ordnung auftretenden Zellulose besitzt die amorphe Struktur von Hemizellulose keine große Festigkeit.

Lignin ist der Leim der die Holzstruktur zusammenhält. Im Gegensatz zu Zellulose und Hemizellulose sind die Grundelemente von Lignin (Phenolpropane) keine zyklischen sondern aromatische Strukturen. Die zahlreichen räumlichen Verkettungen führen zu einer amorphen Struktur. Im Gegensatz zu den Benzolringen bei Kohlen sind die Benzolringe in der Ligninstruktur nicht untereinander verbunden. Die wichtigsten funktionellen Gruppen im Lignin sind die primären Alkohole - OH und $-\mathrm{CH}_{2} \mathrm{OH}$ (siehe Abb.2.2).

Wie in allen Organismen findet man auch im Holz Heteroatome wie N, S oder $C l$. Diese für die Pflanze lebenswichtigen Elemente gelangen aus dem Boden in den Organismus. Vor allem Stickstoff benötigt der Organismus zur Bildung von spezifischen Eiweißstoffen, den Enzymen. Fast alle biologischen Reaktionen, z.B. Pflanzenwachstum, laufen nur in Anwesenheit von Enzymen ab.
Lignin wird im Baum zwischen Rinde und äußerster Holzschicht (Splintholz) produziert. Phenylalanin, ein stickstoffhältiger Eiweisstoff, gilt dabei als Vorläufersubstanz von Lignin. Die im Phenylalanin enthaltenen Aminogruppen $-\mathrm{NH}_{2}$ gelangen dadurch in das Holz und sind mitverantwortlich für den Stickstoffgehalt im Brennstoff [57].

Abbildung 2.2: Ausschnitt aus einer Ligninstruktur

Der große Anteil an Flüchtigen in der Holzsubstanz ist eine Folge des großen Anteils an funktionellen Gruppen in der Struktur. Im Gegensatz zu Kohlen, die weniger funktionelle Gruppen aber große polyaromatische Strukturen aufweisen, die unter Temperatureinwirkung langsamer aufbrechen, entsteht beim Erhitzen von Holz eine geringe Menge Koks (siehe Tab.2.2).

	Flüchtige $\%$	Koks $\%$	Asche $\%$
Holz	$70-85$	$14-25$	$0,25-2$
Kohle	$4-30$	$55-80$	$5-15$

Tabelle 2.2: Flüchtige und Koks beim Erhitzen von Holz und Kohle

Zur Charakterisierung fester Brennstoffe hinsichtlich ihrer Verbrennungseigenschaften und ihrer elementaren Zusammensetzung kommen folgende Analyseverfahren zur Anwendung:

- Immediatanalyse:

Bei der Immediatanalyse werden der Heizwert, der Anteil an Flüchtigen sowie der Wasser- und Aschegehalt des Brennstoffes bestimmt.

- Elementaranalyse:

Die Elementaranalyse gibt Auskunft über die mengenmäßige Zusammensetzung des Brennstoffes hinsichtlich seiner elementaren Grundstoffe (Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff, Schwefel, Chlor, ...).

Trotz der Unterschiede in der Morphologie unterscheiden sich die Holzarten nur geringfügig hinsichtlich ihrer elementaren Zusammensetzung .

2.2 Holzverbrennung

Bei der Verbrennung findet zwischen den brennbaren Bestandteilen des Brennstoffes und Sauerstoff eine mit hoher Geschwindigkeit ablaufende exotherme Reaktion statt. Durch die freiwerdende Energie entsteht ein Rauchgas hoher Enthalpie. In einer Staubfeuerung wirkt die Feststoffphase wie eine über den gesamten Feuerraum verteilte Quelle an Brenngasen [60]. Durch die Pyrolyse des Feststoffes werden flüchtige Reaktionsprodukte und Kokspartikel gebildet.
Die Verbrennung von Holz erfolgt in Teilschritten. Folgende Vorgänge laufen, bis zu einem gewissen Grad zeitlich gestaffelt, ab:

1. Erwärmung und Trocknung
2. Pyrolyse
3. Oxidation

2.2.1 Erwärmung und Trocknung

Im ersten Schritt der Verbrennung muß das Brennholz auf eine für die Pyrolyse notwendige Temperatur von ca. $225^{\circ} \mathrm{C}$ bis $375^{\circ} \mathrm{C}$ erwärmt werden. Ebenfalls muß das im Holz vorhandene Wasser verdampft werden. Je nach Wassergehalt im Brennstoff wird dazu unterschiedlich viel Energie benötigt.
Es kommt zu keiner chemischen Veränderung im Brennstoff.

2.2.2 Pyrolyse

In der Pyrolysephase (Entgasungsphase) wird der Brennstoff ohne Anwesenheit von Sauerstoff durch Einwirken von Wärme chemisch zersetzt (endothermer Vorgang). Zellulose und Hemizellulose weisen dabei gegenüber Lignin ein unterschiedliches Pyrolyseverhalten auf. Bei Zellulose und Hemizellulose beginnen die Verbindungen zwischen den einzelnen Monomeren aufzubrechen. Weitere Reaktionen spalten die Monomere zu gasförmigen Fragmenten (z.B. $C_{2} H_{6}$) und festem Koks (Koks $=$ beinahe reiner Kohlenstoff). Höhere Temperaturen während der Pyrolyse führen zu höheren Anteilen an Flüchtigen, niedrigere Temperaturen fördern die Koksbildung [62]. Bei Temperaturen um $400^{\circ} \mathrm{C}$ gehen bis zu 90% der Zellulose und Hemizellulose in gasförmigen Zustand über. Neben Teeren wird dabei $\mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}$, H_{2} und CO freigesetzt [63].
Bei der Pyrolyse von Lignin entsteht aufgrund der im Lignin vorhandenen Benzolringe mehr Koks als bei der Zersetzung von Zellulose und Hemizellulose. Der Koksanteil bei den Pyrolyseprodukten kann bis zu 50% ausmachen [11].
Als Grad der Pyrolyse bezeichnet man das Verhältnis der Pyrolyseprodukte Flüchtige zu Koks. Während Holz aufgrund des hohen Anteils an Flüchtigen Pyrolysegrade > 1 aufweist, haben Kohlen Pyrolysegrade ≤ 1. Je größer der Pyrolysegrad, umso stärker ist die Freisetzung von Flüchtigen.
Bei der Verbrennung von Holz brennen in erster Linie die bei der Pyrolyse freigesetzten Gase. Holz ist deshalb im Gegensatz zu Kohle ein langflammiger Brennstoff. Bei der Feuerungskonstruktion muß diesem Umstand Rechnung getragen werden und deshalb ein entsprechend großer Brennraum vorgesehen werden. Eine vorzeitige Abkühlung der Flammen an Brennkammerwandungen würde zu einer unvollständigen Verbrennung der Pyrolyseprodukte führen.

2.2.3 Oxidation

Bei der Oxidation, der eigentlichen Verbrennung, muß man zwischen den Reaktionen der gasförmigen Flüchtigen (homogene Reaktionen) und der Oxidation des festen Koks (heterogene Reaktionen) unterscheiden. Die gasförmigen Pyrolyseprodukte können über eine Vielzahl von Reaktionswegen aufoxidiert werden.
Nach Edwards [16] endet die Pyrolysephase mit der Bildung freier Radikale. Danach setzen die ersten Oxidationsreaktionen ein.
Ein möglicher Reaktionsverlauf, der die Oxidation von $\mathrm{C}_{2} \mathrm{H}_{6}$ (eine häufig bei der Pyrolyse entstehende Kohlenwasserstoffverbindung) beschreibt, kann wie folgt angegeben werden [16]:
mit M (z.B. Asche, Staub oder Brennkammerwandungen) als Katalysator

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{6}+M \longrightarrow 2 \mathrm{CH}_{3} \cdot+M \tag{2.3}\\
2 \mathrm{CH}_{3} \cdot+2 C_{2} H_{6} \longrightarrow 2 \mathrm{CH}_{4}+2 C_{2} H_{5} \tag{2.4}\\
M+C_{2} H_{5} \cdot \longrightarrow H \cdot+C_{2} H_{4}+M \tag{2.5}\\
H \cdot+C_{2} H_{6} \longrightarrow H_{2}+C_{2} H_{5} \tag{2.6}
\end{gather*}
$$

In der nächsten Stufe beginnen die Radikale mit Sauerstoff zu reagieren. Dabei wird $\mathrm{CH}_{2} \mathrm{O}$ gebildet.

$$
\begin{gather*}
2 \mathrm{CH}_{3} \cdot+\mathrm{O}_{2}+\mathrm{M} \longrightarrow \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{M} \tag{2.7}\\
\mathrm{CH}_{3} \mathrm{O}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{OH} \tag{2.8}
\end{gather*}
$$

Im letzten Schritt reagiert $\mathrm{CH}_{2} \mathrm{O}$ über Teilreaktionen zu den Endprodukten $\mathrm{H}_{2} \mathrm{O}$ und CO_{2} [25].

$$
\begin{gather*}
\mathrm{CH}_{2} \mathrm{O}+\mathrm{OH} \cdot \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \tag{2.9}\\
\mathrm{CHO}+\mathrm{OH} \cdot \longrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \tag{2.10}\\
\mathrm{CO}+\mathrm{OH} \cdot \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H} \tag{2.11}
\end{gather*}
$$

Die Oxidation der Flüchtigen benötigt etwa $10-20 \%$ der Zeit, die für die Oxidation der Kokspartikel benötigt wird.
Für die Oxidation des bei der Pyrolyse entstandenen Koks geben Bradbury ET aL. [4] drei mögliche Reaktionspartner an. Der poröse Koks bietet an seiner Oberfläche Angriffstellen für $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ und CO_{2}.

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{2.12}
\end{equation*}
$$

In den sauerstoffarmen Verbrennungszonen treten neben der Reaktion des Kohlenstoffes mit Sauerstoff die heterogene Wassergasreaktion

$$
\begin{equation*}
\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}+\mathrm{H}_{2} \tag{2.13}
\end{equation*}
$$

und die Boudouard-Reaktion auf:

$$
\begin{equation*}
\mathrm{C}+\mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO} \tag{2.14}
\end{equation*}
$$

Die Geschwindigkeit der Koksoxidation ist abhängig von der Anzahl freier Stellen an der Koksoberfläche. Bei kleinen Kokspartikeln erhöht sich deren spezifische Oberfläche, die Koksoxidation kann schneller ablaufen.
Das Endprodukt bei der überstöchiometrischen Verbrennung von Koks ist CO_{2}. Die Koksausbranddauer (heterogene Reaktion) ist ausschlaggebend für die gesamte Holzabbranddauer.

Einen wesentlichen Einfluß auf die Verbrennung fester Stoffe hat die Brennstoffpartikelgrösse. Bei der Erwärmung und Pyrolyse von Holzpartikeln erfolgt der Wärmeeintrag über die Partikeloberfläche. Je kleiner die Partikel sind, umso größer ist deren spezifische Oberfläche. Kleine Holzpartikel lassen sich deshalb schneller erwärmen und entgasen.
Bei der Pyrolyse großer Partikel entstehen größere Koksteilchen die längere Ausbrandzeiten benötigen. Eine detaillierte Beschreibung des Holzpartikelabbrandes kann aus SENGSCHMIED [61] entnommen werden.

2.3 Asche und Emissionen aus Holzfeuerungen

Bei der Verbrennung von Holz fällt neben den gasförmigen Verbrennungsprodukten auch Asche an. Diese in allen festen Brennstoffen enthaltenen mineralischen Begleitstoffe beeinflussen den Verbrennungsverlauf nur wenig. In der Asche sind diejenigen festen Rückstände erfaßst, die nicht mit Sauerstoff reagieren.
Je nach Zusammensetzung beginnt Holzasche bei Temperaturen ab $1100^{\circ} \mathrm{C}$ zu erweichen (siehe Tab.2.3).

	Erweichungstemperatur der Asche $\left[{ }^{\circ} \mathrm{C}\right]$	Fließtemperatur der Asche $\left[{ }^{\circ} \mathrm{C}\right]$
Buche	1250	1440
Fichte	1360	1660
Kiefer	1200	1450

Tabelle 2.3: Ascheschmelzverhalten

Um ein Anbacken von Asche an den Brennkammerwandungen zu verhindern, sollte die Temperatur in der Brennkammer die jeweiligen Ascheerweichungstemperaturen nicht überschreiten.
Trotz des geringen Aschegehalts im Brennholz muß die anfallende Asche aus dem Feuerungsraum entfernt werden. Bei der Konstruktion der Feuerung muß dieser Umstand beachtet werden.

Die bei der Verbrennung entstehenden Emissionen können in zwei Gruppen unterteilt werden:

- Emissionen aus vollständiger Verbrennung
- Kohlendioxid CO_{2}
- Wasser $\mathrm{H}_{2} \mathrm{O}$
- Stickoxide $N O_{x}$
- Aschepartikel
- Emissionen aus unvollständiger Verbrennung
neben $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{x}$ und Asche
- Kohlenwasserstoffe $C_{n} H_{m}$
- Kohlenmonoxid $C O$
- organische Partikel

Emissionen aus vollständiger Verbrennung sind unvermeidbar. Emissionen aus unvollständiger Verbrennung können jedoch vermieden werden.
$\mathrm{H}_{2} \mathrm{O}$-Emissionen können für die Umwelt als unbedenklich angesehen werden. Auch die bei der Holzverbrennung entstehenden $\mathrm{CO}_{2}-$ Emissionen werden im Gegensatz zu bei der Verbrennung fossiler Brennstoffe gebildetem CO_{2} als unbedenklich angesehen, weil Holz als Brennstoff dem Nachhaltigkeitsprinzip entspricht. $\mathrm{CO}-, C_{n} H_{m}$ - und $N O_{x}$-Emissionen gelten jedoch als bei der Holzverbrennung anfallende Schadstoffe.
Als Grundvoraussetzung für eine vollständige Verbrennung gilt, daß der Brennstoff genügend Zeit bekommt, bei möglichst hohen Temperaturen vollständig ausbrennen zu können. Für die Auslegung einer Feuerung bedeutet dies eine Aufteilung der Verbrennungsluft in Primär- und

Sekundärluft, eine möglichst homogene Vermischung der Brennluft mit dem Brennstoff sowie eine richtig dimensionierte Brennkammer. In einer Feuerung, die eine örtliche Trennung von Entgasung, Oxidation und Wärmeabgabe aufweist, können unverbrannte Schadstoffe während des stationären Betriebs weitgehend vermieden werden.

2.4 Verbrennungsrechnung

Bei der Verbrennung findet unter Freisetzung von Wärme eine Oxidation der bremnbaren Bestandteile des Brennstoffes mit Luftsauerstoff statt.
Die brennbaren Bestandteile sind hauptsächlich Kohlenstoff und Wasserstoff, daneben Stickstoff sowie Schwefel. Als Ballaststoffe kommen Sauerstoff, Asche und Wasser im Holz vor.
Bei festen und flüssigen Brennstoffen werden die Mengen der vorhandenen Elemente mittels Elementaranalyse bestimmt und als Massenanteile angegeben.
$\gamma_{c}, \gamma_{h}, \gamma_{o}, \gamma_{n}$ und γ_{s} sind die Massenanteile von Kohlenstoff, Wasserstoff, Sauerstoff, Stickstoff und Schwefel des Holzes. γ_{a} und γ_{w} sind Asche und Wasseranteil im Brennholz. Es gilt:

$$
\begin{equation*}
\gamma_{c}+\gamma_{h}+\gamma_{o}+\gamma_{n}+\gamma_{s}+\gamma_{a}+\gamma_{w}=1 \tag{2.15}
\end{equation*}
$$

Die freiwerdende Wärmemenge bei vollständiger Verbrennung eines Stoffes hängt von der Art, Masse und Zustand des zu verbrennenden Stoffes ab. Heizwert und Brennwert gelten als Maßs für die im Brennstoff gebundene chemische Energie. Der Brennwert H_{o} ist um den Betrag der Verdampfungswärme des in den Abgasen enthaltenen Wassers größer als der Heizwert H_{u}. In den meisten technischen Feuerungen enthalten die Abgase Wasser in dampfförmigem Zustand, sodaß bei Verbrennungsrechnungen mit dem Heizwert H_{u} zu rechnen ist. Mit der Verdampfungsenthalpie von Wasser $r\left(r_{0}{ }^{\circ} \mathrm{C}=2500 \mathrm{~kJ} / \mathrm{kg}\right)$ gilt:

$$
\begin{equation*}
H_{o, 0^{\circ} C}=H_{u, 0^{\circ} C}+r \frac{9 \gamma_{h}+\gamma_{w}}{100} \quad\left[\frac{k J}{k g \text { Brennstoff }}\right] \tag{2.16}
\end{equation*}
$$

Bei festen Brennstoffen läßt sich die genaue Größse des Heizwertes H_{u} wegen der vielen möglichen Bindungsarten der Elemente nur mit Hilfe eines Kalorimeters bestimmen. Bei bekannter Zusammensetzung des Brennstoffes kann der Heizwert wie folgt angenähert werden:

$$
\begin{equation*}
H_{u}=34.8 \gamma c+93.9 \gamma_{h}+10.5 \gamma_{s}+6.3 \gamma n-10.8 \gamma o-2.5 \gamma w \quad\left[\frac{M J}{k g \text { Brennstoff }}\right] \tag{2.17}
\end{equation*}
$$

Aus Gleichung 2.17 wird die Abhängigkeit des Heizwertes H_{u} vom Wassergehalt im Brennstoff ersichtlich. Mit zunehmendem Wassergehalt verringert sich der Heizwert H_{u} des Brennstoffes (siehe Tab.2.4).

$u_{\text {roh }}$	0%	20%	40%	60%
Laubholz	$17.5 \mathrm{MJ} / \mathrm{kg}$	$13.5 \mathrm{MJ} / \mathrm{kg}$	$9.5 \mathrm{MJ} / \mathrm{kg}$	$5.5 \mathrm{MJ} / \mathrm{kg}$
Nadelholz	$20 \mathrm{MJ} / \mathrm{kg}$	$15.5 \mathrm{MJ} / \mathrm{kg}$	$11 \mathrm{MJ} / \mathrm{kg}$	$6.5 \mathrm{MJ} / \mathrm{kg}$

Tabelle 2.4: Heizwert von Holz

2.4.1 Vollständige Verbrennung

Die Bedingungen für eine vollständige Verbrennung liegen vor, wenn folgende Punkte erfüllt sind [54]:

- Der erforderliche Sauerstoff verfügbar ist.
- Die Zündtemperatur erreicht ist.

Der minimale Sauerstoffbedarf $O_{2, m i n}$ für die vollständige, stöchiometrische Verbrennung kann wie folgt ermittelt werden:

$$
\begin{gather*}
O_{2, m i n}=2.667 \gamma_{c}+8 \gamma_{h}+\gamma s-\gamma o \quad\left[\frac{k g}{k g \text { Brennstoff }}\right] \tag{2.18}\\
O_{2, m i n}=1.867 \gamma_{c}+5.6 \gamma_{h}+0.7 \gamma s-0.7 \gamma o \quad\left[\frac{m_{N}^{3}}{\text { kg Brennstof } f}\right] \tag{2.19}
\end{gather*}
$$

Da meistens Luft und nicht reiner Sauerstoff für die Verbrennung verwendet wird, definiert man eine minimale Luftmenge $L_{\text {min }} . L_{\text {min }}$ bezeichnet den Mindestluftbedarf für die stöchiometrische Verbrennung eines Feststoffes.

$$
\begin{align*}
L_{\min } & =\frac{O_{2, \text { min }}}{0.232} \quad\left[\frac{\mathrm{~kg}}{\mathrm{~kg} \text { Brennstof } f}\right] \tag{2.20}\\
L_{\min } & =\frac{O_{2, \text { min }}}{0.21} \quad\left[\frac{m_{N}^{3}}{\mathrm{~kg} \mathrm{Brennstoff}}\right] \tag{2.21}
\end{align*}
$$

Bei fast allen technischen Feuerungen muß mehr Luft, überstöchiometrisch, der Verbrennungszone zugeführt werden, um eine vollständige Verbrennung zu erzielen. Das Verhältnis der tatsächlich zugeführten Luftmenge L zu $\mathrm{L}_{\text {min }}$ wird als Luftzahl λ bezeichnet.

$$
\begin{equation*}
\lambda=\frac{L}{L_{m i n}} \tag{2.22}
\end{equation*}
$$

Bei vollständiger Verbrennung enthält das Verbrennungsgas $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{~N}_{2}$ und O_{2}. Das feuchte Abgas setzt sich wie folgt zusammen:

$$
\begin{equation*}
V=V_{C O_{2}}+V_{H_{2} O}+V_{S O_{2}}+V_{N_{2}}+V_{O_{2}} \tag{2.23}
\end{equation*}
$$

Für die wasserfreie Abgasmenge $\mathrm{V}_{t r}$ erhält man:

$$
\begin{equation*}
V_{t r}=1.867 \gamma_{c}+0.7 \gamma s+(\lambda-0.21) L_{\min } \quad\left[\frac{m_{N}^{3}}{\text { kg Brennstof } f}\right] \tag{2.24}
\end{equation*}
$$

Die feuchte Abgasmenge V_{f} ergibt sich zu:

$$
\begin{equation*}
V_{f}=V_{t r}+11.2 \gamma h+1.24 \gamma w \quad\left[\frac{m_{N}^{3}}{\text { kg Brennstoff }}\right] \tag{2.25}
\end{equation*}
$$

Die trockene Rauchgaszusammensetzung kann wie folgt berechnet werden:

$$
\begin{gather*}
\mathrm{CO}_{2}=\frac{1.867 \gamma c}{V_{t r}} \quad[\mathrm{Vol} . \%] \tag{2.26}\\
N_{2}=\frac{0.79 L_{m i n} \lambda}{V_{t r}} \quad[\mathrm{Vol} . \%] \tag{2.27}\\
O_{2}=\frac{0.21 L_{m i n}(\lambda-1)}{V_{t r}} \quad[\text { Vol. } \%] \tag{2.28}
\end{gather*}
$$

Für jeden Brennstoff gibt es einen Höchstwert der CO_{2}-Konzentration ($\mathrm{CO}_{2, \max }$), der bei vollständiger Verbrennung mit $\lambda=1$ erreicht wird. Für feste Brennstoffe gilt annähernd:

$$
\begin{equation*}
\lambda=\frac{C O_{2, \max }}{C O_{2, g e m e s s e n}} \tag{2.29}
\end{equation*}
$$

Durch Messen des CO_{2}-Gehalts kann somit direkt die Luftzahl bei der Verbrennung berechnet werden.

2.4.2 Unvollständige Verbrennung

Bei der unvollständigen, unterstöchiometrischen Verbrennung kommt es aufgrund des Sauerstoffmangeles $(\lambda<1)$ zu keiner vollständigen Oxidation. Während bei der vollständigen Verbrennung der gesamte Kohlenstoff zu CO_{2} und der Wasserstoff zu $\mathrm{H}_{2} \mathrm{O}$ umgewandelt wird, verbleiben bei der unterstöchiometrischen Verbrennung $C O, C, H_{2}$ und $C_{n} H_{m}$ im Abgas [13].
In der Praxis muß es nicht immer Luftmangel sein, der eine unvollständige Verbrennung zur Folge hat. Aufgrund ungleichmäßiger Brennstoffverteilung in der Verbrennungszone können Teilzonen auftreten in denen die Verbrennungsreaktionen wegen lokalem Sauerstoffmangel unvollkommen sind.
Die Gleichungen (2.17-2.23) gelten nicht für die unvollständige Verbrennung.

2.4.3 Verbrennungstemperatur und Dissoziation

Die Verbrennungstemperatur $T_{V b, \text { theo }}$ ist die Temperatur, die Verbrennungsgase bei vollständiger Verbrennung theoretisch annehmen würden, gäbe es keine Wärmeverluste im Feuerraum (adiabate Verbrennung). $T_{V b, t h e o}$ läßt sich aus dem Heizwert H_{u} des Brennstoffes und der mittleren spezifischen Wärme $\overline{c_{p, \text { Heigas }}}$ des Verbrennungsgases errechnen. Mit h_{B}, spezifische Enthalpie des eingebrachten Brennstoffmassenstroms $\dot{m}_{B r}$, und h_{L}, spezifische Enthalpie des Verbrennungsluftstroms \dot{m}_{L}, erhält man:

$$
\begin{equation*}
T_{V b, \text { theo }}=\frac{\dot{m}_{B r} H_{u}+\dot{m}_{B r} h_{B}+\dot{m}_{L} h_{L}}{\overline{c_{p, H e i g a s}} \dot{V}_{f} \rho_{f, H \text { Heigas }}} \quad\left[{ }^{\circ} C\right] \tag{2.30}
\end{equation*}
$$

Die größte mögliche Verbrennungstemperatur stellt sich bei stöchiometrischen Verbrennungsbedingungen ein. In diesem Fall wird kein Sauerstoffballast bzw. erhöhter Stickstoffballast miterwärmt.
Temperaturen über $1400^{\circ} C$ sind lediglich Rechengrößen. Sie werden nicht erreicht, da ab
diesen Temperaturen Brennstoff und Sauerstoff nicht vollständig zu CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ reagieren. Die Reaktionsprodukte enthalten $\mathrm{CO}, \mathrm{H}_{2}$ und O_{2} sowie freie Radikale. Diese Erscheinung wird Dissoziation, die im Abgas verbleibende Reaktionsenthalpie als spezifische Dissoziationswärme $q_{d i s s}$ bezeichnet [25].
Bei der Dissoziation (Trennung) geht man von der Vorstellung aus, daß die Reaktionsprodukte bei Temperaturen über $1400^{\circ} \mathrm{C}$ beginnen sich aufzuspalten. Je höher die Temperatur, desto ausgeprägter die Dissoziationseffekte. Die in technischen Feuerungen auftretenden Verbrennungstemperaturen liegen immer unter den theoretisch errechneten Temperaturen.

$$
\begin{equation*}
T_{V b}=\frac{\dot{m}_{B r} H_{u}+\dot{m}_{B r} h_{B}+\dot{m}_{L} h_{L}-\left(\dot{m}_{B r}+\dot{m}_{L}\right) q_{d i s s}}{\bar{c}_{p, \text { Heigas }}} \dot{V}_{f} \rho_{f, \text { Heigas }} \quad\left[{ }^{\circ} C\right] \tag{2.31}
\end{equation*}
$$

Aus Prozeßgründen ist es meist nicht möglich eine adiabate Verbrennung durchzuführen. Ein Teil der zugeführten Brennstoffwärmeleistung wird über die Feuerungswandungen ausgetragen $\left(\dot{Q}_{w}\right)$. Die tatsächliche Heißgastemperatur beträgt deshalb:

$$
\begin{equation*}
T_{H e i g a s}=\frac{\dot{m}_{B r} H_{u}+\dot{m}_{B r} h_{B}+\dot{m}_{L} h_{L}-\left(\dot{m}_{B r}+\dot{m}_{L}\right) q_{d i s s}-\dot{Q}_{w}}{\overline{c_{p, H e i g a s}} \dot{V}_{f} \rho_{f, H e i g a s}} \quad\left[{ }^{\circ} C\right] \tag{2.32}
\end{equation*}
$$

Die auf diese Weise maximal erreichbaren Heißgastemperaturen bei der Verbrennung von Holz liegen größenordnungsmäßig um $1400^{\circ} C$.

2.5 Zündtemperatur von Holz

Soll eine Verbrennungsreaktion in Gang gesetzt werden, so muß von außen die notwendige Zündnergie zugeführt werden. Sobald die Reaktion eingeleitet ist, wird die Zündenergie für die weitere Brennstoffreaktion aus der Reaktionszone entnommen. In einem Rückkoppelungsvorgang wird ein Teilstrom Energie an die zuströmenden Reaktanden geleitet, um diese zu aktivieren. Über folgende Transportmechanismen wird die Energie abgegeben: Wärmeleitung, Diffusion, Konvektion und Strahlung. Bei manchen energiearmen Brennstoffen gelingt das Weiterzünden nicht, sodaß eine stetige Zündflamme in der Brennkammer notwendig ist. Ein Maß für die zur Einleitung der Verbrennung nötigen Aktivierungsenergie ist die Zündtemperatur. Auf diese Temperatur müssen Brennstoff und Oxidationsmittel erwärmt werden, damit die Verbrennung einsetzt (siehe Tab.2.5).

	Hartholz	Weichholz	Holzkohle	Steinkohle
Zündtemperatur	$300^{\circ} \mathrm{C}$	$250^{\circ} \mathrm{C}$	$300-425^{\circ} \mathrm{C}$	$500^{\circ} \mathrm{C}$

Tabelle 2.5: Zündtemperatur von Brennstoff in Luft [34]

Je kleiner die Brennstoffpartikel sind, umso schneller können die Partikel auf die notwendig Zündtemperatur erwärmt werden und umso intensiver und schneller startet der Verbrennungsvorgang.
In technischen Feuerungen laufen die Verbrennungsvorgänge bei nahezu konstantem Druck ab. Explosionen, Verbrennung mit eindeutiger Druckzunahme, können auftreten, wenn in einem geschlossenen Raum eine so große Brennstoffmasse verbrannt wird, daß der Druck merklich ansteigt, oder wenn der Brennstoff so schnell verbrennt, daß die umgebenden Gasmassen durch ihre Massenträgheit eine starke Druckzunahme bewirken (z.B. bei Verbrennung
mit reinem Sauerstoff). In Feuerungen werden deshalb die Brennstoffmengen beim Zünden so bemessen, daß es zu keiner Brennstoffansammlung kommt und dadurch Explosionen verhindert werden.

Kapitel 3

Gasturbinen

3.1 Der offene Gasturbinenprozeß

Im allgemeinen werden Gasturbinen nach der Prozefführung in offene und nicht offene Gasturbinen unterteilt. Offene Gasturbine bedeutet, daßs das Arbeitsmedium Luft aus der Umgebung angesaugt und das Abgas der Turbine an die Umgebung ausgestoßsen wird. Bei nicht offenen Gasturbinen wird das Arbeitsmedium zumindest zum Teil im Kreis geführt.

Abbildung 3.1: Einfache, offene Gasturbine

Die Bezeichnung einfache Gasturbine drückt aus, daß das System nur aus den Grundelementen Verdichter, Turbine und Generator betseht. Die vom Verdichter angesaugte und verdichtete Luft dient als Brennluft in der Brennkammer. Als Brennstoffe kommen Öl, Gas oder zukünftig Holz zum Einsatz. Die heißen Abgase der Brennkammer werden in der Turbine entspannt. An die rotierende Welle des Turbinenlaufrades sind Verdichter und Generator gekoppelt. Die Differenz zwischen der erhaltene Expansionsarbeit und der benötigten Verdichtungsarbeit wird mit Hilfe eines Generators in elektrische Energie umgewandelt.
Um das Turbinenlaufrad vor unzulässigen Wärmespannungen und Laständerungen zu schützen soll der Wärmeinhalt des Abgases am Turbineneintritt möglichst konstant gehalten werden. Einige Turbinenhersteller tolerieren bei Turbinen im Leistungsbereichen zwischen 4 bis $8 M W_{e l}$ Abweichungen von $\pm 10 \%$ [5]. Lastschwankungen über $\pm 20 \%$ sollten unbedingt vermieden werden.

3.2 Thermodynamik

Thermodaynamisch kann der offene Gasturbinenprozeß wie folgt im h,s-Diagramm dargestellt werden (siehe Abb.3.2):

Abbildung 3.2: Offener Gasturbinenprozeß im h,s-Diagramm

Nach dem 1.Hauptsatz der Thermodynamik gilt für einen stationären Fließprozeß zwischen den Zustandspunkten A und B :
Die Änderung der Enthalpie und der kinetischen Energie zwischen A und B ist gleich der zwischen A und B zugeführten Wärme $q_{A B}$ und der verrichteten technischen Arbeit $w_{t, A B}$ (siehe Gl.3.1).

$$
\begin{equation*}
q_{A B}+w_{t, A B}=h_{B}-h_{A}+\frac{c_{B}^{2}}{2}-\frac{c_{A}^{2}}{2} \tag{3.1}
\end{equation*}
$$

Durch Einführung der Totalzustände von Enthalpie h, Temperatur T und Druck p in einem Zustandspunkt i

$$
\begin{gather*}
h_{i}^{+}=h_{i}+\frac{c_{i}^{2}}{2} \tag{3.2}\\
T_{i}^{+}=T_{i}+\frac{c_{i}^{2}}{2 c_{p}} \tag{3.3}\\
p_{i}^{+}=p_{i}+\rho \frac{c_{i}^{2}}{2} \tag{3.4}
\end{gather*}
$$

wird unter der Annahme einer jeweils mittleren spezifischen Wärmekapazität \bar{c}_{p} die Verdichtung der Luft zwischen den Zuständen 0 und 1^{1} nach dem 1.Hauptsatz durch

$$
\begin{equation*}
w_{t, 01}=h_{1}^{+}-h_{0}^{+}=\bar{c}_{p V}\left(T_{1}^{+}-T_{0}^{+}\right) \tag{3.5}
\end{equation*}
$$

[^0]die Wärmezufuhr zwischen den Zustandspunkten 1 und 2 durch
\[

$$
\begin{equation*}
q_{12}=h_{2}^{+}-h_{1}^{+}=\bar{c}_{p B k}\left(T_{2}^{+}-T_{1}^{+}\right) \tag{3.6}
\end{equation*}
$$

\]

und die Expansion in der Turbine zwischen den Zustandspunkten 2 und 3 durch

$$
\begin{equation*}
w_{t, 23}=h_{3}^{+}-h_{2}^{+}=\bar{c}_{p T}\left(T_{3}^{+}-T_{2}^{+}\right) \tag{3.7}
\end{equation*}
$$

ausgedrückt. Die technische Nutzarbeit ist somit gleich der Differenz aus der Expansionsarbeit in der Turbine $w_{t, 23}$ mal einem mechanischen Wirkungsgrad η_{m} und der für den Betrieb des Verdichters aufzubringenden Arbeit $w_{t, 01}$.

$$
\begin{equation*}
-w_{t}=\eta_{m}\left(-w_{t, 23}\right)-w_{t, 01}=\eta_{m} \bar{c}_{p T}\left(T_{2}^{+}-T_{3}^{+}\right)-\bar{c}_{p V}\left(T_{1}^{+}-T_{0}^{+}\right) \tag{3.8}
\end{equation*}
$$

Unter der Annahme konstanter spezifischer Wärmekapazität gelten für die Zustandsänderungen der Verdichtung und der Expansion eines idealen Gases die Polytropengleichungen:

$$
\begin{equation*}
\left(\frac{T_{1}^{+}}{T_{0}^{+}}\right)=\left(\frac{p_{1}^{+}}{p_{0}^{+}}\right)^{\nu_{V} \frac{R}{\bar{c}_{p V}}} \quad\left(\frac{T_{3}^{+}}{T_{2}^{+}}\right)=\left(\frac{p_{3}^{+}}{p_{2}^{+}}\right)^{\nu_{T} \frac{R}{\bar{c}_{p T}}} \tag{3.9}
\end{equation*}
$$

Das Polytropenverhältnis für die Verdichtung ν_{V} ist gleich dem Kehrwert des polytropen Verdichterwirkungsgrades, das Polytropenverhältnis für die Expansion ν_{T} ist gleich dem polytropen Turbinenwirkungsgrad.

$$
\begin{equation*}
\nu_{V}=\frac{1}{\eta_{p V}} \quad \nu_{T}=\eta_{p T} \tag{3.10}
\end{equation*}
$$

Unter Einführung der Verdichtungsverhältnisse

$$
\begin{equation*}
\Pi_{V}=\left(\frac{p_{1}^{+}}{p_{0}^{+}}\right) \quad \Pi_{T}=\left(\frac{p_{2}^{+}}{p_{3}^{+}}\right) \tag{3.11}
\end{equation*}
$$

werden die Gleichungen 3.9 zu

$$
\begin{equation*}
T_{1}^{+}=T_{0}^{+} \Pi_{V}^{\nu_{V} \frac{R}{\bar{c}_{p V}}} \quad T_{3}^{+}=T_{2}^{+} \Pi_{T}^{-\nu_{T} \frac{R}{\bar{c}_{p T}}} \tag{3.12}
\end{equation*}
$$

und damit ergibt sich durch Einsetzen in Gleichung 3.8 die technische Nutzarbeit w_{t} zu

$$
\begin{equation*}
-w_{t}=\eta_{m} \bar{c}_{p T} T_{2}^{+}\left(1-\Pi_{T}^{-\nu_{T} \frac{R}{\bar{c}_{p T}}}\right)-\bar{c}_{p V} T_{0}^{+}\left(\Pi_{V}^{\nu_{V} \frac{R}{\bar{c}_{p V}}}-1\right) \tag{3.13}
\end{equation*}
$$

bzw. durch Einsetzen in Gleichung 3.6 die in der Gasturbinenbrennkammer zugeführte Wärme $q_{12} \mathrm{zu}$

$$
\begin{equation*}
q_{12}=\bar{c}_{p B k}\left(T_{2}^{+}-T_{0}^{+} \Pi_{V}^{\frac{1}{\eta_{p V}} \frac{R}{\bar{c}_{p V}}}\right) \tag{3.14}
\end{equation*}
$$

Der thermische Wirkungsgrad der Gasturbine wird wie folgt definiert:

$$
\begin{equation*}
\eta_{t h}:=\frac{P_{t}}{\dot{Q}_{12}}=\frac{-w_{t}}{q_{12}} \tag{3.15}
\end{equation*}
$$

Durch Einsetzen der Gleichungen 3.13 und 3.14 und mit der Vereinfachung, daß die spezifische Wärmekapazität über dem gesamten Prozeß konstant ist, kommt man zum folgenden Anlagenwirkungsgrad $\eta_{t h}$:

$$
\begin{equation*}
\eta_{t h}=\frac{\eta_{m}\left(\frac{T_{2}^{+}}{T_{0}^{+}}\right)\left(1-\Pi_{T}^{-\nu_{T} \frac{R}{\bar{c}_{p}}}\right)-\left(\Pi_{V}^{\nu_{V} \frac{R}{\bar{c}_{p}}}-1\right)}{\left(\frac{T_{2}^{+}}{T_{0}^{+}}\right)-\Pi_{V}^{\nu_{V} \frac{R}{\bar{c}_{p}}}} \tag{3.16}
\end{equation*}
$$

Da die dem Prozeß zugeführte Wärmeleistung auch als Produkt aus Brennstoffmassenstrom $\dot{m}_{B r}$, Heizwert H_{u} des Brennstoffes und dem Wirkungsgrad der Brennkammer $\eta_{B k}$ geschrieben werden kann

$$
\begin{equation*}
\dot{Q}_{12}=\eta_{B k} \dot{m}_{B r} H_{u} \tag{3.17}
\end{equation*}
$$

ergibt sich schließlich für den Brennstoffbedarf der Gasturbine:

$$
\begin{equation*}
\dot{m}_{B r}=\frac{P_{t}}{\eta_{t h} \eta_{B k} H_{u}} \tag{3.18}
\end{equation*}
$$

Es sei aber darauf hingewiesen, daß zur exakten Bestimmung des Gasturbinenwirkungsgrades $\eta_{t h}$ die spezifische Wärmekapazität für Verdichtung und Expansion getrennt betrachtet werden sollte.
In Abbildung 3.2 ist angenommen, daß die Zustandsänderung von 1 nach 2 bei konstantem Druck erfolgt. In der Praxis tritt zwischen Verdichteraustritt und Turbineneintritt aber immer ein Druckverlust auf. So mit gilt für den praktischen Prozeß:

$$
\begin{equation*}
\Pi_{V}>\Pi_{T} \tag{3.19}
\end{equation*}
$$

Wenn das Druckverhältnis Π_{T} kleiner wird, verringert sich die nutzbare technische Arbeit $w_{t, 23}$ der Turbine (siehe Gleichungen 3.7 und 3.9).
Bei einer direkt feststoffgefeuerten Gasturbine muß nach der Brennkammer ein Entstauber zum Schutz der Turbine vor Verschmutzung und Erosion geschaltet werden. Zum Druckverlust der Brennkammer summiert sich somit der Druckverlust des Entstaubers. Brennkammer und Entstauber sollten deshalb im Hinblick auf den Gasturbinenwirkungsgrad $\eta_{t h}$ möglichst geringe Druckverluste aufweisen.

Kapitel 4

Heißgasentstaubung

Aerosole sind feste und füssige Partikel und Partikelansammlungen mit Korngrößen zwischen $10^{-3} \mu \mathrm{~m}$ bis $10^{3} \mu \mathrm{~m}$, welche in einer umgebenden Gasphase suspendiert sind [33]. Aerosole im Heißgas können unterteilt werden in:

Flugkoks und kohlenstoffhältige Verbindungen aus unvollständiger Verbrennung.
Asche und unbrennbare Verunreinigungen die in den Feuerraum gelangen.
Ein Großteil der Partikel im Heißgas nach Holzfeuerungen sind kleiner $5 \mu \mathrm{~m}$ und werden beim Betrieb einer holzstaubgefeuerten Gasturbine hauptsächlich zu Verschmutzungen führen. Die restlichen, größeren Partikel können neben Verschmutzungen auch Erosion verursachen. Grad der Verschmutzung und Erosion der beaufschlagten Turbinenteile hängt dabei von folgenden Parametern ab:

- Staubbeladung
- Partikelgrößenverteilung
- Struktur der Partikel (Gestalt, Dichte, Härtegrad, ...)
- Auslegung der Beschaufelung
- Temperatur

Das Erosionsrisiko sinkt mit abnehmender Partikelgröße, weil kleinere Partikel der Gasströmung besser folgen und entsprechend ihrer geringeren kinetischen Energie beim Aufprall auf Turbinenteile die Werkstoffoberfläche weniger schädigen. Zur Zeit werden für Gasturbinen mit Heißgaseintrittstemperaturen größer $1000^{\circ} \mathrm{C}$ Kohlenaschebeladungen von etwa 10 mg pro kg Heigas bei Partikeldurchmessern von 5 bis $10 \mu \mathrm{~m}$ als zulässig angesehen [69]. Einige Hersteller bieten bereits Gasturbinen an, die bei $700^{\circ} \mathrm{C}$ maximale Kohlenaschebeladungen bis zu $150 \mathrm{mg} / \mathrm{m}_{N}^{3}$ erlauben, wobei maximal 10% der Partikel größer $10 \mu \mathrm{~m}$ sein dürfen [45]. Für holzgefeuerte Gasturbinen liegen zur Zeit noch keine Angaben über Grenzbeladungen und kritische Partikelgrößen vor.
Wird nach Expansion in der Turbine der Abgasstrom an die Umgebung abgegeben, so muß die Abgasbeladung weiters auch die Anforderungen der jeweiligen nationalen Luftreinhalteverordnung erfüllen. Der Grenzwert der Luftreinhalteverordnung kann durchaus unter der zulässigen Grenzbeladung der verwendeten Turbine liegen.

Unter Entstaubung versteht man die Entfernung von Teilchen aus Aerodispersionen. Handelt es sich beim Trägermedium der Feststoffteilchen um ein Heißgas, so spricht man von Heißgasentstaubung. Um Heißgase mit bis zu $800^{\circ} \mathrm{C}$ zu entstauben bieten sich zur Zeit zwei Methoden an:

1. Keramische Filter

2. Heißgaszyklon

4.1 Keramische Filter

Der prinzipielle Aufbau eines Entstaubers mit keramischen Filterelementen wird in Abbildung 4.1 dargestellt.

Abbildung 4.1: Keramischer Filter [15]

Das Gas strömt durch poröse keramische Filterkerzen, der Staub lagert sich als Filterkuchen an der Keramikoberfläche ab. Die Filterkerzen wirken als Oberflächenfilter. Bei zunehmender Staubablagerung an den Filterelementen erhöht sich der Druckverlust des Gases beim Durchströmen. Die Filterelemente müssen deshalb periodisch abgereinigt werden. Zu diesem Zweck wird Druckluft gegen die Filtrationsrichtung, durch die Filterelemente, geblasen. Der Staub wird am unteren Ende des Filterbehälters ausgetragen.
Bei den verwendeten Filterkerzen handelt es sich zumeist um hohlzylindrische, selbsttragende Siliziumcarbidelemente mit einem grobporösen Trägerkörper und einer feinstfiltrierenden Oberfläche.

Bei der Heißgasentstaubung mit keramischen Filtern bereitet neben der geringen mechanischen Festigkeit der Filterelemente die Abreinigung der Elemente große Schwierigkeiten. Bei der üblichen Abreinigung mittels Druckstoß treten neben den rein mechanischen Belastungen große thermische Beanspruchungen des Filtermaterials auf. Durch das schlagartig einströmende kalte Spülgas kommt es zu Temperaturwechselspannungen in der Keramik [67].

4.2 Heißgaszyklon

Ein Zyklon ist ein Entstauber, in dem Strömungskräfte und die auf ein Teilchen wirkende Trägheitskraft bzw. Zentrifugalkraft für die Abscheidung maßgebend sind [66]. Die einfachste Ausführung eines Zyklons wird in Abbildung 4.2 dargestellt:

Abbildung 4.2: Zyklon

Das heiße, staubhältige Rohgas erzeugt durch den tangentialen Eintritt in den Zyklon eine Drallströmung, in der die Umfangsgeschwindigkeit u die dominierende Geschwindigkeitskomponente darstellt [45]. Die Umfangsgeschwindigkeit u bestimmt die auf ein Partikel wirkende Zentrifugalkraft und damit die Geschwindigkeit, mit der das Partikel zur Wand transportiert wird.

Die Umfangsgeschwindigkeit u weist in der Nähe des Tauchrohrradius r_{T} ein Maximum auf (siehe Abb.4.3).

Abbildung 4.3: Strömungsprofile im Zyklon [50]

Innerhalb dieses Radius verhält sich die Strömung im Zyklon wie ein Starrkörperwirbel wobei gilt:

$$
\begin{equation*}
\frac{u}{r}=k o n s t \tag{4.1}
\end{equation*}
$$

Für $r>r_{T}$ kann die Strömung im Zyklon bis zur Wandgrenzschicht mit einem modifizierten Ansatz für Potentialströmungen beschrieben werden:

$$
\begin{equation*}
u r^{n}=k o n s t \tag{4.2}
\end{equation*}
$$

Der Wirbelexponent n berücksichtigt den Reibungseinfluß und liegt bei Strömungen in Zyklonen zwischen 0,5 und 0,8 . Messungen von KIRCH [40] zeigen, daß die Umfangsgeschwindigkeit auf einem konstanten Radius über der gesamten Zyklonhöhe nahezu unverändert bleibt und nur in Wandnähe deutlich absinkt. Dieses Verhalten gilt uneingeschränkt nur im Bereich des starken Dralls.
Die Umfangsgeschwindigkeit u bestimmt im wesentlichen den erreichbaren Trenngrad im Zyklon. Die auf ein Staubteilchen (Durchmesser d_{p} und Partikeldichte ρ_{p}) wirkende Umfangkomponente bewirkt die auf das Teilchen wirkende Zentrifugalkraft und somit die Sedimentationsgeschwindigkeit w_{P} (radiale Geschwindigkeitskomponente des Staubteilchens):

$$
\begin{equation*}
w_{P}=\frac{1}{18 \mu_{G a s}}\left(\rho_{P}-\rho_{G a s}\right) d_{P}^{2} \frac{u^{2}}{r} \tag{4.3}
\end{equation*}
$$

Die Berechnung der charakteristischen Umfangsgeschwindigkeit ist in allen bekannten Zyklonmodellen Voraussetzung bei der Bestimmung der Trennleistung.
Der Einfluß der Axialgeschwindigkeit auf die Trennleistung ist als gering einzustufen und wird von den Berechnungsmodellen nicht berücksichtigt.
Die Bestimmung der Radialgeschwindigkeit v_{r} ist im Vergleich zu den beiden oben genannten Geschwindigkeiten mit sehr viel größeren Schwierigkeiten verbunden. Messungen von Mothes [50] auf dem Tauchrohrradius ergeben qualitativ den in Abbildung 4.3 gezeigten Verlauf. Die Radialgeschwindigkeit ist über der Zyklonhöhe weitgehend konstant, wächst in den Bereichen unterhalb des Tauchrohres und oberhalb des Ascheaustrages jedoch an. In der Regel wird zur Berechnung der mittleren Radialgeschwindigkeit das Verhältnis des Volumenstromes zur durchströmten Fläche verwendet:

$$
\begin{equation*}
v_{r}=\frac{\dot{V}}{2 r_{T} \pi h_{E}} \tag{4.4}
\end{equation*}
$$

Die zur Zyklonachse gerichtete Radialgeschwindigkeit des Gases wirkt der Sedimentation der Partikel entgegen und ist deshalb ein wichtiger Parameter zur Berechnung der Trennleistung. Die Strömung im Tauchrohr hat einen wesentlichen Einfluß auf die Ausbildung des Geschwindigkeitsprofils der Hauptströmung. Die im Einlauf des Tauchrohres vorliegende Strömung prägt den gesamten Bereich unterhalb des Tauchrohres. Der Tauchrohrdurchmesser steht in direktem Zusammenhang zur maximal erreichbaren Umfangsgeschwindigkeit (siehe Gleichungen 4.1 und 4.2). Die hohen Strömungsgeschwindigkeiten, die im Tauchrohr in unmittelbarer Wandnähe auftreten, bewirken, daß $70-90 \%$ des Gesamtzyklondruckverlustes im Tauchrohr stattfinden. Der Gesamtdruckverlust im Zyklon umfast den Druckverlust des Abscheideraumes Δp_{E} und den Verlust im Tauchrohr Δp_{T} :

$$
\begin{equation*}
\Delta p=\Delta p_{E}+\Delta p_{T} \tag{4.5}
\end{equation*}
$$

Bezogen auf die Tauchrohrgeschwindigkeit v_{T} ergeben sich:

$$
\begin{equation*}
\Delta p_{E}=\zeta_{E} \frac{\rho_{G a s} v_{T}^{2}}{2} \quad \Delta p_{T}=\zeta_{T} \frac{\rho_{G a s} v_{T}^{2}}{2} \tag{4.6}
\end{equation*}
$$

Die Gestaltung des Tauchrohres hat deshalb sowohl auf Trenngrad als auch auf den damit verbundenen Druckverlust entscheidende Bedeutung.
Bei Heißgaszyklonen beeinflußt die hohe Temperatur des strömenden Fluids die Abscheideleistung des Zyklons. Mit zunehmender Temperatur sinkt die Gasdichte und steigen dynamische und kinematische Zähigkeit. Der Anstieg der Gaszähigkeit führt wegen der Zunahme der Wandreibung zu einer Verringerung der Umfangsgeschwindigkeiten im Zyklon und somit zu geringeren Sedimentationsgeschwindigkeiten w_{p}. Die geringere Dichte des Gases wiederum erhöht die Sedimentationswirkung (siehe Gl.4.3).
Die Auslegungsgleichungen für Trennleistung und Druckverlust können sowohl für Kaltgaszyklone als auch für Heißgaszyklone angewendet werden.

4.3 Gegenüberstellung: Keramischer Filter - Heißgaszyklon

Ein keramischer Filter hat gegenüber dem Zyklon ein eindeutig besseres Abscheideverhalten. Während der Zyklon Teilchen kleiner $5 \mu \mathrm{~m}$ kaum noch abscheiden kann, weisen keramische

Filterelemente selbst bei $0.5 \mu \mathrm{~m}$ noch Abscheidegrade über 50% auf.
Ein weiterer Vorteil der keramischen Filter ist der geringe Druckverlust. Durch Reduzieren der Strömungsgeschwindigkeit beim Durchströmen der Filterkerzen kann bei gleichbleibender Abscheideleistung der Druckverlust verringert werden. Eine Reduzierung der Strömungsgeschwindigkeit kann durch erhöhen der Anzahl von Filterelementen erzielt werden. Ein gleichbleibender Volumenstrom fließt durch eine größere Fläche und verursacht einen geringeren Druckverlust.
Beim Zyklon hängt der Druckverlust zum Großteil von der Tauchrohrgeschwindigkeit ab. Reduziert man die Tauchrohrgeschwindigkeit und damit den Druckverlust, so reduziert man aber auch gleichzeitig die Abscheideleistung des Zyklons (siehe Gl.4.1, 4.2 und 4.3).
Ein Zyklon wiederum kommt ohne Einbauten und teure Abreinigungsvorrichtungen aus. Für den Betrieb benötigt man im Gegensatz zu keramischen Filtern keinerlei Meß- und Steuerungseinrichtungen. Auch hinsichtlich der Baugröße unterscheiden sich beide Entstaubungsanlagen. Zyklone werden aufgrund der benötigten hohen Strömungsgeschwindigkeiten kompakter als keramische Filter ausgeführt. Vor allem bei der Heißgasentstaubung ist die kompakte Bauweise günstig, weil die benötigten hitzebeständigen Materialien sehr teuer sind.
Um das Heilgas der holzstaubgefeuerten Brennkammer zu entstauben wurden die Kosten für einen entsprechenden Zyklon mit den Kosten für einen keramischen Heißgasentstauber verglichen:
Die Investitionskosten für einen keramischen Entstauber liegen um den Faktor 10 höher als die Kosten für einen Zyklonabscheider.
Die Abscheideleistung des keramischen Entstaubers liegt dabei aber eindeutig über der Abscheideleistung des verglichenen Zyklons.
Zur Zeit liegen noch keine Richtlinien für zulässige Holzaschebeladungen beim Betrieb von Gasturbinen vor. Da Holzaschen bis zu 50% aus CaO bestehen, weisen sie gegenüber den bis zu $40 \% \mathrm{SiO}_{2}$ und $15 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$ hältigen Kohleaschen [56] ein geringeres Erosionsrisiko für die Turbinenteile auf [25]. Die mit Zyklonen erzielbaren Reingasqualitäten können somit durchaus ausreichen, um einen holzgefeuerten Gasturbinenbetrieb zu gewährleisten.
Sollte der Heißgaszyklon die Anforderungen der Österreichischen Luftreinhalteverordnung nicht erfüllen, so kann eine zusätzliche Entstaubung des bereits expandierten und abgekühlten Abgases mit Hilfe von kostengünstigeren Kaltgasentstaubern (z.B. Schlauchfilter) stattfinden. Die Kombination eines Heißgaszyklons und eines Kaltgasentstaubers kann durchaus günstiger ausfallen, als ein keramischer Heißgasentstauber.
Letztendlich wird eine wirtschaftliche Stromerzeugung aus Holz nur dann sinnvoll sein, wenn die Investitionskosten der Anlage möglichst gering sind.

Teil II

Konzeption der Anlage

Kapitel 5

Versuchsanlage Holzstaubfeuerung

In diesem Kapitel wird der grundlegende Aufbau und die Funktionsweise der Versuchsanlage beschrieben. Konstruktion und Auslegung der Hauptkomponenten, Brennkammer und Zyklon, werden später ausführlich behandelt.
Ziel ist die druckaufgeladene, schadstoffarme Verbrennung von unterschiedlichen Holzstaubsorten, sowie die anschließende Entstaubung des Heißgasstroms. Abbildung 5.1 zeigt das Verfahrensfließbild der Anlage.
Die vom Verdichter geförderte Luft wird mit Hilfe der Regelklappe $V 12$ in Kühlluft und Prozefluft geteilt. Danach wird, je nach Betriebsweise der Brennkammer, der Luftmassenstrom $\dot{m}_{\text {Prozess }}$ mittels Regelklappen $V 4, V 5$ und $V 9$ in Primär-, Sekundär- und Tertiärluftmassenstrom aufgeteilt.
Das Brennholz wird mit Hilfe des Brennstoffördersystems nach Joppich pneumatisch in die Brennkammer gefördert. Der mit einem Flammenwächter verbundene Kugelhahn V1 dient zum Absperren des Injektors, falls es in der Förderleitung zum Rückbrand kommen sollte. Das bis zu $800^{\circ} \mathrm{C}$ heiße Rauchgas verläßt die Brennkammer und wird anschließend im Zyklon entstaubt. Nach der Entstaubung wird mit Hilfe eines Rauchgasanalysegerätes die Gaszusammensetzung online gemessen ($G C C$).
Mit Hilfe einer pneumatisch gesteuerten Droselklappe läßt sich ein Überdruck in der Brennkammer aufbauen. Gleichzeitig wird das druckaufgeladene Heißgas über der Drosselklappe entspannt. In einer späteren Projektphase wird an der TU Wien die Drosselklappe durch eine Turbine ersetzt und so ein offener Gasturbinenprozeß realisiert werden.
Da die Drosselklappe und der Abgaskanal nur für Gastemperaturen kleiner $400^{\circ} \mathrm{C}$ ausgelegt sind, wird vor der Drosselklappe durch Zumischen der Kühlluft der Rauchgasstrom auf unter $400^{\circ} \mathrm{C}$ gekühlt. Staubmessungen, Konzentrationsmessungen und Partikelgrößsenverteilungen, werden nach Entspannung des Abgases im Abgaskanal durchgeführt ($D C$).

5.1 Anlagenteilsysteme

Die wichtigsten Teilsysteme in der Anlage sind:

- Brennstoffördersystem
- Verdichter
- Brennkammer
- Zyklon
- Drosselklappe

Abbildung 5.1: Verfahrensfliefbild

Das Brennstoffördersystem wurde von Andreas Joppich am Institut für thermische Turbomaschinen und Energieanlagen entwickelt und betrieben. Eine genaue Beschreibung der Funktionsweise sowie Betriebserfahrungen können aus [37] entnommen werden.
Vor Inbetriebnahme wird der Brennstoffbehälter mit Holz befüllt. Anschließend wird der Behälter geschlossen und unter Betriebsdruck gesetzt. Das Betriebsdruckniveau entspricht dabei in etwa dem Betriebsdruck der Brennkammer. Auf diese Weise ist es möglich in die druckbeaufschlagte Brennkammer Holz zu fördern. In der derzeitigen Konzeption des Brennstoffördersystems ist das Behälterfüllvolumen bestimmend für die Dauer eines Verbrennungszykluses.
Im Brennstoffbehälter verhindert ein Rührwerk einerseits Brückenbildungen des Brennstoffes, andererseits wird der Brennstoff homogenisiert und ein gleichmäßiger Materialzufluß in die unterhalb des Behälters angeordnete Förderschnecke erzielt. Neben der Aufgabe des gleichmäfigen Materialaustrages aus dem Brennstoffbehälter, dosiert die Förderschnecke über ihre Drehzahl den Brennstoffmassenstrom. Obwohl Schneckenförderer allgemein zu den kontinuierlich fördernden Stetigförderern gezählt werden, weist ihr Fördergutstrom zum Teil erhebliche Schwankungen auf. Verursacht wird diese Erscheinung durch die gangweise Förderung zwischen den einzelnen Schneckenblättern. Um die Anforderung nach möglichst gleichmäßiger Brennstoffbeschickung zu erfüllen, wird der Förderschnecke eine Schwingrinne nachgeschaltet. Die Schwingrinne wirft den Brennstoff über der Trichteröffnung des Gutaufgabeinjektors ab. Die Hauptaufgabe des Injektors besteht darin, einen kontinuierlichen und störungsfreien Materialeintrag in die Förderleitung sicherzustellen. Um diesen Vorgang zu unterstützen, kann zusätzlich Luft in den Injektorboden und den Injektortrichter eingeblasen werden. Die Förderleitung mündet schließlich in die Brennkammer.
Die Förderluft liefert eine Verdichteranlage bestehend aus Schraubenverdichter und Windkessel. Hinter der Verdichteranlage wird die Förderluft verzweigt in Primärförderluft und Sekundärförderluft. Während die Primärförderluft zur Erzeugung des Treibstrahls im Injektor dient, erzielt man mit der Sekundärförderluft den Druckaufbau im Sendebereich. Allgemein wird unter Sekundärförderluft der Förderluftanteil verstanden, der nicht durch die Treibdüse des Injektors eingeblasen wird. Der Vordruck der Primärluft und die Vordrücke der einzelnen Sekundärluftstränge werden jeweils über separate Druckminderventile eingestellt. In der Anlage sind noch weitere Absperr- und Entlüftungsventile installiert, die bei Störfällen in der Anlage ein sicheres Abfahren garantieren.

Als Verdichter kommt ein Radialverdichter der Firma PGW Turbo Leipzig GmbH zum Einsatz. Mit Hilfe eines drehzahlregelbaren Elektromotors der Firma ELIN können die geforderten Verdichterluftmassenströme eingestellt werden. Im Zusammenspiel mit der Drosselklappe kann ein Druckaufbau bis zu 1.8 bar absolut erzielt werden.

Eine zweistufige Zyklonbrennkammer dient zur Verfeuerung des Holzstaubes. Die Brennkammerstufung erzielt eine schadstoffarme Verbrennung sowie einen guten Holzausbrand. Die Brennkammer erlaubt durch druckfeste Bauweise druckaufgeladene Verbrennungen. Weiters wird durch gezielte Luftführung innerhalb der Brennkammer ein geringer Wärmeverlust an die Umgebung erreicht.
Die bei der Verbrennung anfallende Holzasche wird aufgrund der hohen Strömungsgeschwindigkeiten in der Brennkammer vollkommen ausgetragen.

Die Aschepartikeln im bis zu $800^{\circ} C$ heißen Rauchgasstrom werden im Zyklon abgeschieden. Der Zyklon ist als Axialzyklon ausgeführt. Diese Bauweise läßt eine kleinere und kompaktere Gestaltung gegenüber Gegenstromzyklonen, wie in Abbildung 4.2 skizziert, zu.

Die Drosselklappe hat die Aufgabe einerseits im Zusammenspiel mit dem Radialverdichter einen Druckaufbau zu erzeugen und andererseits das druckaufgeladene Heißgas auf Umgebungsdruck zu entspannen. Die pneumatische Regelung der Klappe ermöglicht die Voreinstellung eines geforderten Klappendruckverlustes. Das heißt auch bei Änderung des Gasmassenstroms bleibt der Druckverlust konstant.

5.2 Meßtechnik

Die an der Versuchsanlage durchgeführten Messungen und Meßmethoden werden im folgenden dargestellt. Die Meßstellen des Versuchsstandes können dem Instrumentenschema in Abbildung 5.2 und 6.5 entnommen werden.
Neben Absolutdruck-, Relativdruck- und Temperaturmessungen werden Messungen der Gaszusammensetzung und Staubbeladung durchgeführt. Luftmassenstrommessungen werden mit Hilfe von Meßblenden durchgeführt.
Einige Messungen, wie z.B. Oberflächentemperaturen der Heißgasleitung oder Flammenwächter in der Zyklonkammer, dienen der Überwachung der Versuchsanlage während des Betriebes. Diese Meßaufnehmer sind in Abbildung 5.2 nicht dargestellt, da diese Meßdaten nicht weiter zur Auswertung herangezogen werden.

5.2.1 Druckmessung

Bei der Messung der Absolutdrücke und Relativdrücke kommen piezoresistive Drucksensoren zum Einsatz. Die Bauart, Meßbereiche, und der vom Hersteller angegebene Anzeigefehler der in Abbildung 5.2 dargestellten Druckaufnehmer sind in Tabelle 5.1 aufgelistet.

Bezeichnung	Druckmessung (Differenz-/Relativdruck)	Meßbereich in bar	Anzeigefehler (vom Meßbereichsendwert)
PI-1	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-2	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-3	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-4	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-5	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-6	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-7	Absolutdruck	$1 \ldots 1.5$	$\pm 0.5 \%$
PI-8	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-9	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-10	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-TV1	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
PI-R2	Absolutdruck	$0 . . .1 .1$	$\pm 1 \%$
PI-S	Absolutdruck	$1 \ldots 3$	$\pm 0.5 \%$
D1	Relativdruck	$0 \ldots 0.069$	$\pm 1 \%$
D2	Relativdruck	$0 . . .0 .069$	$\pm 1 \%$
D4	Relativdruck	$0 \ldots 0.069$	$\pm 1 \%$
D5	Relativdruck	$0 \ldots 0.069$	$\pm 1 \%$
$\Delta-$ P	Relativdruck	$0 . . .0 .069$	$\pm 1 \%$

Tabelle 5.1: Druckaufnehmer: Meßbereiche und Anzeigefehler

Abbildung 5.2: Instrumentierung

Da für die Absolutdruckaufnehmer ein Langzeitdrift $\leq 4 \mathrm{mbar} /$ Jahr vom Hersteller garantiert wird, müssen diese Druckaufnehmer nur halbjährlich kalibriert werden. Die Relativdruckaufnehmer werden hingegen aufgrund des stärkeren Drifts monatlich nachkalibriert.

5.2.2 Temperaturmessung

Als Temperaturmeßfühler dienen Mantel-Thermoelemente des Typs K (Nickel - Chrom/Nickel), N (Nickel/Chrom/Silizium - Nickel/Chrom) und strahlungsgeschützte Thermoelemente vom Typ B (Platin/Rhodium - Platin/Rhodium). Die Bauart, Meßbereiche und absolute Meßfehler (vom Hersteller angegeben) der verwendeten Thermoelemente sind in Tabelle 5.2 aufgelistet.

Bezeichnung	Thermoelement	Meßbereich ${ }^{\circ} \mathrm{C}$	absoluter Meßfehler
TI-1	Typ B	$100 \ldots 1600$	$\pm 4^{\circ} \mathrm{C}$
TI-2	Typ B	$100 \ldots 1600$	$\pm 4^{\circ} \mathrm{C}$
TI-3	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-4	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-5	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-6	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-7	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-8	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-9	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-10	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-TV1	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-R2	Typ K	$-40 \ldots 1000$	$\pm 2.5^{\circ} \mathrm{C}$
TI-W	Typ K	$-40 \ldots 1200$	$\pm 9^{\circ} \mathrm{C}$
Luvo-1	Typ N	$0 \ldots 1300$	$\pm 4^{\circ} \mathrm{C}$
Luvo-2	Typ N	$0 \ldots 1300$	$\pm 4^{\circ} \mathrm{C}$
Luvo-3	Typ N	$0 \ldots 1300$	$\pm 4^{\circ} \mathrm{C}$
Luvo-4	Typ N	$0 \ldots 1300$	$\pm 4^{\circ} \mathrm{C}$

Tabelle 5.2: Thermoelemente: Meßbereiche und absolute Meßfehler

Die Thermoelemente Luvo-1 bis Luvo-4 werden für den Anfahrvorgang der Verbrennung benötigt. Die Thermoelemente sind am Eintritt in die Brennkammer positioniert. Der Einsatzort der restlichen Thermoelemente kann Abbildung 5.2 entnommen werden.
Thermoelemente liefern in Abhängigkeit von der Temperatur an der Meßspitze des Thermoelementes eine Thermospannung von wenigen $m V$. Mittels Ausgleichsleitungen wird diese Spannung an isothermalen Blockklemmen an einer Meßkarte abgenommen. Zur exakten Bestimmung der Temperatur am Thermoelement muß die Temperatur an der Blockklemme gemessen werden, um Thermospannungen am Übergang von Ausgleichsleitung zu Meßkarte kompensieren zu können. Ein Thermistor an der Meßkarte bestimmt diese Referenztemperatur und der Meßcomputer errechnet die Temperatur am Thermoelement.

5.2.3 Massenstrommessung

Luftmassenströme $\dot{m}_{\text {Luft }}, \dot{m}_{\text {Prozess }}, \dot{m}_{p r i m}$ und $\dot{m}_{s e k}$ werden mit Normblenden nach DIN 1952 gemessen. Die Bestimmungsgleichung lautet:

$$
\begin{equation*}
\dot{m}=C E \epsilon \frac{\pi}{4} d^{2} \sqrt{2 \Delta p \rho} \tag{5.1}
\end{equation*}
$$

Darin sind d der Blendendurchmesser, Δp der über der Blende anliegende Wirkdruck, E

$$
\begin{equation*}
E=\frac{1}{\sqrt{1-\beta^{4}}} \tag{5.2}
\end{equation*}
$$

der Vorgeschwindigkeitsfaktor und ϵ

$$
\begin{equation*}
\epsilon=1-\left(0,41+0,35 \beta^{4}\right) \frac{\Delta p}{\kappa p} \tag{5.3}
\end{equation*}
$$

die Expansionszahl. β ist das Verhältnis zwischen Blenden- und Rohrinnendurchmesser D

$$
\begin{equation*}
\beta=\frac{d}{D} \tag{5.4}
\end{equation*}
$$

und κ der Isentropenexponent. Der in Gleichung 5.1 verwendete Durchflußfaktor C bezeichnet eine auf die Rohr-Reynoldszahl $R e_{d}$ und das Durchmesserverhältnis β bezogene Funktion:

$$
\begin{equation*}
C=0,5959+0,0312 \beta^{2,1}-0,184 \beta^{8}+0,0029 \beta^{2,5}\left(\frac{10^{6}}{R e_{d}}\right)^{0,75} \tag{5.5}
\end{equation*}
$$

Mit $v_{R o h r}$, Strömungsgeschwindigkeit der Luft vor der Blende, errechnet sich die RohrReynoldszahl zu:

$$
\begin{equation*}
R e_{d}=\frac{v_{R o h r} D}{\nu_{L u f t}} \tag{5.6}
\end{equation*}
$$

Zur Bestimmung des jeweiligen Isentropenexponenten κ, der über die Gaskonstante R und die spezifische Wärmekapazität c_{p} der Luft berechnet wird, dient die an der jeweiligen Blende gemessene Temperatur. Luftdichte $\rho_{L u f t}$ und kinematische Viskosität $\nu_{L u f t}$ werden ebenfalls durch Messen der jeweiligen Temperaturen sowie der im Labor gemessenen Luftfeuchtigkeit und der Absulutdrücke vor den Blenden ermittelt.
Der maximale relative Meßfehler, ermittelt aus den Meßunsicherheiten der Mefaufnehmer und den in der Norm angegebenen Unsicherheiten von Expansionszahl und Durchflußkoeffizient, errechnet sich mit der Gausschen Fehlerfortpflanzung zu $\pm 2.6 \%$.

5.2.4 Rauchgasmessung

Ein kleiner Teilstrom des heißen Rauchgases wird dem Rauchgasmeßgerät zur Bestimmung der Gaszusammensetzung zugeführt. Nach dem Eintritt in den Analysator wird das Gas zuerst gefiltert und getrocknet. Danach wird die Zusammensetzung des trockenen Gases gemessen.
Die Messung der Rauchgaskomponenten $\mathrm{CO}_{2}, \mathrm{CO}$, und NO_{x} findet in einem nichtdispersiven Infrarotanalysator ($N D I R$) statt.

Abbildung 5.3: Schematische Darstellung des NDIR-Mefprinzips

Wie in Abbildung 5.3 dargestellt werden Meßgas und Nullgas (Luft), geregelt mittels Magnetventilen, abwechselnd den Meßzellen zugeführt. Infrarotlicht wird nur vom Meßgas absorbiert, weshalb die in den Detektoren gemessene Infrarot-Lichtintensität moduliert ist. Die Amplitude dieses Wechselsignals ist die Basis der NDIR-Meßmethode.
In der Infrarotquelle erzeugtes IR-Licht passiert die Meßzelle und gelangt anschließend in einen Detektor. Wird die Meßzelle von Nullgas durchströmt, so erreicht mehr IR-Licht den Detektor. Demgegenüber erreicht weniger IR-Licht den Detektor wenn Meßgas durch die Zelle strömt. Der Grad der Abschwächung steht im Verhältnis zur Mefgaskonzentration in der Meßzelle.
Ein Detektor enthält eine bewegliche Membrane, die Druckänderungen in der optischen Zelle aufnimmt. Besteht eine Differenz in der absorbierten Energie zwischen Meß- und Nullgas, so entsteht eine Druckänderung innerhalb der optischen Zelle die wiederum von der Membrane erfaft wird. Die Schwingung wird elektrisch weiterverarbeitet und liefert das Meßergebnis. Es entsteht keine Membranschwingung wenn die Meßgaskonzentration gleich der Nullgaskonzentration ist.
Ein Detektor besteht aus zwei hintereinanderliegenden optischen Zellen. Die vordere Zelle
(Main) hat die Aufgabe die zu messende Komponente und Interferenzkomponenten zu erfassen, während die hintere Zelle (Comp) hauptsächlich Interferenzkomponenten mißt. Diese Meßanordnung dient zur Minimierung der Querempfindlichkeiten während der Messung.
Die spezielle Anordnung bei der $N O_{x}$-Meßung dient zur Minimierung der Querbeeinflußung durch CO_{2}. Das Ausgangssignal des CO_{2}-Detektors wird zur Signalkorrektur des $\mathrm{NO}_{x^{-}}$ Detektors verwendet. Gleichzeitig wird der CO_{2}-Detektor auch zur tatsächlichen CO_{2} - Messung verwendet.
Die O_{2}-Konzentration im trockenen Abgas wird mit der paramagnetischen Sauerstoffmessung durchgeführt (siehe Abb.5.4).

Abbildung 5.4: Paramagnetische Sauerstoffmessung

Sauerstoff, ein paramagnetisches Gas, besitzt die Eigenschaft, in einem Magnetfeld gebunden zu werden, wo aufgrund der Verdichtung der Druck ansteigt. Dieser Druck wirkt als Gegendruck für die einströmende Umgebungsluft und wird am Detektor gemessen. Die Druckänderungen werden über ein Kondensatormikrophon in elektrische Signale umgewandelt. Da das Meßfeld pulsiert, entsteht ein Wechselsignal wobei die Amplitude ein Maß für die $O_{2^{-}}$ Konzentration darstellt.
Aufgrund der Meßanordnung entsteht bei sauerstofflosen Meßgasen keine Druckschwankung und somit kein Detektorsignal. Kalibriert man den Analysator mit sauerstoffreiem Prüfgas kann ein Nullpunktsdrift nahezu ausgeschlossen werden.
Die Messung der $C_{n} H_{m}$-Konzentration im Abgas erfolgt mit einem Flammenionisationsdetektor.
In einer reinen Wasserstofflamme, die unter Zufuhr von kohlenwasserstoffreier Luft brennt, entsteht durch Anlegen eines elektrischen Feldes ein sehr kleiner, meßbarer Ionenstrom. Wird dieser Flamme ein kohlenwasserstoffhältiges Meßgas zugesetzt, so steigt der Ionenstrom pro-
portional der Zahl der pro Zeiteinheit zugeführten Kohlenwasserstoffmoleküle. Der Ionenstrom wird elektronisch verstärkt und entsprechend einer Eichgeraden, die mit Propangas erstellt wird, eine propangasäquivalente Konzentration bestimmt.
Die vom Hersteller des Meßgerätes, Firma Horriba, angegebenen Meßbereiche und Meßfehler der gemessenen Gaskomponenten können Tabelle 5.3 entnommen werden.

Gemessene Komponente	Meßprinzip	Meßbereich	Reproduzier- barkeit	Anzeige- fehler
CO	NDIR Methode	$0 \ldots . .1 \mathrm{vol} \%$	$\pm 0.5 \%$	$\pm 1 \%$
CO_{2}	NDIR Methode	$0 \ldots 25 \mathrm{vol} \%$	$\pm 0.5 \%$	$\pm 1 \%$
NO_{x}	NDIR Methode	$0 \ldots 400 \mathrm{ppm}$	$\pm 0.5 \%$	$\pm 1 \%$
O_{2}	Magneto- pneumatisch	$10 \ldots 25 \mathrm{vol} \%$	$\pm 0.5 \%$	$\pm 1 \%$
$C_{n} H_{m}$	Flammen- Ionisation	$0 \ldots 100 \mathrm{ppm}$	$\pm 0.5 \%$	$\pm 1 \%$

Tabelle 5.3: Rauchgasmessung: Meßbereiche, Reproduzierbarkeit

Aufgrund der Nullpunkt- und Endwertdrifts wird das Gerät während des Betriebes kontinuierlich mit entsprechenden Prüfgasen kalibriert.

5.2.5 Staubmessung

Bei der Staubmessung im Abgas werden der Staubgehalt und die Korngrößenverteilung bestimmt.
Zur Bestimmung des Staubgehalts wird die gravimetrische Methode nach VDI-Richtlinie 2066 - Staubmessung in strömenden Gasen, Gravimetrische Bestimmung der Staubbeladung - angewendet. Bei der Staubmessung wird eine Teilgasstrom vom Abgas entnommen und der im Teilstrom enthaltene Staub mit Hilfe eines Filters vollständig abgeschieden und anschließend ausgewogen. Durch Messen des durch den Filter durchgesetzten Gasvolumens kann die Staubkonzentration bestimmt werden. Die Meßanordnung sowie die Absaugsonde können aus VDI-Richtlinie 2066 entnommen werden. Die Teilstromentnahme aus dem Abgasstrom muß isokinetisch erfolgen.
Die Meßunsicherheiten beim Bestimmen der Teilvolumenstrombeladung ergeben sich aus

- Meßunsicherheit bei der Bestimmung des Teilvolumenstroms
- Meßunsicherheit beim Bestimmen der Staubmasse.

Für die Messung wird ein diskontinuierliches Staubprobensystem mit Gasuhr der Firma Ströhlein verwendet. Das Gerät arbeitet entsprechend der VDI-Richtlinie 2066, der Unsicherheitsbereich bei der Messung im Größenordnungsbereich von $150 \mathrm{mg} / \mathrm{m}_{N}^{3}$ liegt nach Angaben des Herstellers bei $\pm 15 \%$.
Partikelgrößenmessungen werden mit Hilfe eines Kaskadenimpaktors durchgeführt. Die Messung erfolgte nach VDI-Richtlinie 2066 - Staubmessung in strömenden Gasen, Fraktionierende Staubmessung nach dem Impaktionsverfahren. Dabei handelt es sich um ein Meßverfahren bei dem die gesamte Staubmenge in Größenklassen getrennt und anschließend eine

Mengenbestimmung an den einzelnen abgeschiedenen Fraktionen vorgenommen wird. Die Abscheidung der Teilchen im Impaktor erfolgt nach dem von Trägheitskräften verursachten Impaktorprinzip (siehe Abb.5.5).

Abbildung 5.5: Arbeitsweise eines Kaskadenimpaktors

Infolge der Wirkung von Trägheitskräften verlassen die Teilchen die Stromlinien, bewegen sich auf die Abscheidefläche zu und werden dort je nach Teilchengröße abgeschieden. Hierbei ergibt sich wegen der unterschiedlichen Verhältnisse von Trägheitskräften und Strömungswiderstand eine Auffächerung der Teilchenbahn nach ihrer Größe; Auftreffart und Abscheidewahrscheinlichkeit hängen von der Teilchengröße ab.
Der verwendete Kaskadenimpaktor besitzt die Abscheidestufen für Partikelfraktionen größer $20 \mu \mathrm{~m}, 14 \mu \mathrm{~m}, 10 \mu \mathrm{~m}, 5 \mu \mathrm{~m}, 2.5 \mu \mathrm{~m}, 1 \mu \mathrm{~m}, 0.5 \mu \mathrm{~m}, 0.25 \mu \mathrm{~m}, 0.12 \mu \mathrm{~m}$ und $0.06 \mu \mathrm{~m}$. Die Meßunsicherheiten beim Bestimmen der Korngrößenverteilung ergeben sich aus

- Probennahmefehler
- Fehler bei der Abscheidung im Kaskadenimpaktor
- Fehler aufgrund der Reproduzierbarkeit bei der Gewichtsbestimmung

Mit Ausnahme des Probenahmefehlers können die anderen Fehler nach dem Gaufschen Fehlerfortpflanzungsgesetz unter der Annahme einer ausgewogenen Staubmasse von 0.5 mg zusammengefaßt und wie folgt für die Ermittlung der Korngrößenverteilung quantifiziert werden:

> relativer Mefsfehler bei Stufe $0.06 \mu \mathrm{~m}: \pm 7.8 \%$
> relativer Meffehler bei Stufe $14 \mu \mathrm{~m}: \pm 4 \%$

Die relativen Meßfehler der anderen Kaskadenimpaktorstufen liegen zwischen $\pm 4 \%$ und $\pm 7.8 \%$.

5.2.6 Meßdatenerfassung

Alle physikalischen Meßgrößen werden über elektronische Sensoren in Meßspannungen oder Mefsströme umgewandelt und mit einem elektronischen Meßdatenerfassungssystem automatisch erfaßst, weiterverarbeitet und gespeichert. Auf der Meßkarte werden über Analog/DigitalWandler die analogen Meßsignale (Spannungen von 0 V DC bis maximal 10 V DC) in digitale Daten mit einer Auflösung von 12 - bit umgewandelt und dadurch zur weiteren Verarbeitung für den PC konditioniert. Die Datenerfassung auf der Meßkarte erfolgt mit $100 \mathrm{kS} / \mathrm{s}$. Für die Mefdatenverarbeitung und Datenspeicherung wird das Programm LabVIEW von National Instruments verwendet.

Kapitel 6

Zweistufige holzstaubgefeuerte Brennkammer

Eine Flugstaubfeuerung bietet den Vorteil, daß, ähnlich einer Gasfeuerung, der eingebrachte Brennstoff mit der zugeführten Verbrennungsluft, ohne Vorhandensein einer Speichermasse, ausbrennt. Dadurch lassen sich gegenüber Rost- oder Wirbelschichtfeuerungen schnelle Lastwechsel durchführen. Für den Betrieb von Gasturbinen stellen Flugstaubfeuerungen geeignete Feuerungsanlagen dar, weil sie durch ihr Verbrennungsverhalten schnellen Turbinenlastwechseln folgen können.
Für die druckaufgeladene Verbrennung von Holzstaub wird eine spezielle Staubfeuerung entwickelt und gefertigt. Im Hinblick auf die Verbrennungsqualität, aber auch bezüglich Umwelt und Wirtschaftlichkeit, muß diese Holzstaubfeuerung folgende Aspekte erfüllen:

- Schadstoffarme Verbrennung; Minimierung von $C O-, C_{n} H_{m^{-}}$und $N O_{x^{-}}$-Emissionen durch gezielte Verbrennungsführung.
- Ausreichende Brennstoffverweilzeit in der Brennkammer, um einen optimalen Ausbrand des Brennstoffes zu erzielen.

Bei der Verbrennung fester Brennstoffe bietet die gestufte Verbrennungsführung die Möglichkeit Schadstoffemissionen zu minimieren [53, 34, 13]. Durch Trennung der Verbrennungszone in eine primäre unterstöchiometrische Vergasungszone und eine sekundäre Nachbrennzone mit Luft- bzw. Sauerstoffüberschuß, lassen sich die $N O_{x}$-Emissionen im Abgas reduzieren und $C O$ - und $C_{n} H_{m}$-Emissionen großteils vermeiden. Aus diesem Grund wird die Brennkammer zur Holzstaubverbrennung als zweistufige Feuerung, mit einer primären Vergasungszone, die eine Umsetzung des eingebrachten Holzstaubes garantiert, und einer sekundären Nachbrennzone, ausgelegt.
Nach theoretischen Untersuchungen am Institut für thermische Turbomaschinen und Energieanlagen, durchgeführt von Franz Sengschmied, erfüllt eine Zyklonbrennkammer die Anforderungen nach optimaler Brennstoffreaktion in der primären Zone. Der eingebrachte Holzstaub wird zu CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ sowie, bedingt durch die unterstöchiometrische Reaktion, in gasförmige Verbrennungszwischenprodukte umgewandelt. Der homogene Ausbrand der in der Zyklonkammer gebildeten gasförmigen Verbrennungszwischenprodukte CO und H_{2} kann in einer sekundären Nachbrennkammer unter Luftüberschuß erfolgen.
Sengschmied berechnete mit Hilfe eines numerischen Rechenprogramms die Strömungsvorgänge in einer Zyklonbrennkammer. Durch erweitern des Strömungsprogramms mit einem Partikelabbrandmodell für Holzstaub konnte er weiters die reagierende Strömung simulieren. Die von Sengschmied berechneten Ergebnisse sind maßgebend für die Wahl einer primären Zyklonkammer bei der Auslegung der zweistufigen holzstaubgefeuerten Brennkammer. Die

Modellbeschreibung sowie Simulationsergebnisse vom Verhalten einer Zyklonkammer können bei SENGSCHMIED [61] nachgelesen werden.

6.1 Eigenschaften einer Zyklonbrennkammer

Die aus der Literatur bekannten Strömungsverhältnisse in einer Zyklonbrennkammer können wie folgt zusammengefaßst werden:
Die Strömung in der Zyklonbrennkammer ist wie in einem Zyklonabscheider ${ }^{1}$ durch einen Festkörperwirbel im Bereich der Brennkammerachse und durch einen Potentialwirbel im Bereich $r>r_{T}$ gekennzeichnet (siehe Abb.6.1).

Abbildung 6.1: Strömung in der Zyklonbrennkammer

Die Strömung in Wandnähe wird durch die tangential einströmende Luft bestimmt. Durch die Position der tangential angeordneten Lufteindrittsdüsen und Variieren des Tauchrohrdurchmessers (Tauchrohr $=$ Austrittsöffnung der Zyklonkammer) läßt sich das Geschwindigkeitsprofil und somit die Strömungsausbildung in der Brennkammer verändern.
Die Brennstoffzufuhr in die Zyklonkammer kann sowohl tangential als auch axial erfolgen. Der eingeblasene Holzstaub wird in der Zyklonkammer dispergiert und von der Gasströmung mitgerissen. Wird die Zyklonbrennkammer, wie in Abbildung 6.1 dargestellt, in mehreren Ebenen mit Luft beschickt, so bilden sich zwischen den Lufteintrittsebenen auf Kreisbahnen verlaufende Brennstoffringe aus [10].
Auf ein Einzelpartikel wirkt neben Strömungskräften die durch die Kreisbewegung verursachte Zentrifugalkraft. Diese Kraft drückt das Partikel zur Brennkammerwand und so in den Brennstoffring. Je kleiner die Partikelgröße ist, umso geringer wirkt die zur Brennkammerwand gerichtete Zentrifugalkraft. Kleine Partikel werden schneller mit der Gasströmung mitgerissen und aus der Brennkammer ausgetragen. Diese Eigenschaft der Zyklonbrennkammer

[^1]führt dazu, daß große Partikel, die eine größere Verweilzeit für die Verbrennungsreaktionen benötigen, länger in der Brennkammer verbleiben, während kleine Partikel, die rasch abbrennen, geringere Verweilzeiten in der Brennkammer haben [38].
Ein Kennzeichen einer Zyklonbrennkammer ist das Auftreten einer axialen Strömungsumkehr am Austritt aus dem Tauchrohr ab Erreichen einer bestimmten Drallzahl (siehe Abb.6.2).

Abbildung 6.2: Zyklonbrennkammer mit Rückströmzone

Die Drallzahl oder Drallgrad S bezeichnet das Verhältnis vom Drehimpulsstrom \dot{D} zum Produkt aus Axialimpulsstrom \dot{I} und dem charakteristischen Radius r :

$$
\begin{equation*}
S=\frac{\dot{D}}{\dot{I} r} \tag{6.1}
\end{equation*}
$$

Die Drallzahl stellt ein Maß für die Erhöhung der mittleren Wegstrecke der Reaktanten in der verdrallten Strömung dar [8]. Für die Zyklonbrennkammer mit Durchmesser $d_{B K}$ kann die Drallzahl S wie folgt vereinfacht angegeben werden:

$$
\begin{equation*}
S=\frac{d_{B K}^{2} \pi}{4 A_{e}} \frac{\rho}{\rho_{e}} \tag{6.2}
\end{equation*}
$$

ρ bezeichnet die Dichte des Heißgases in der Zyklonbrennkammer, ρ_{e} steht für die Dichte der Luft am Eintritt in die Kammer. Weiters bezeichnet A_{e} die Summe der Eintrittsquerschnitte A_{i} aller Lufteintrittsdüsen.
Für die nichtreagierende Zyklonbrennkammerströmung kann die Drallzahl auch als rein geometrisch definierte Größe angegeben werden [36]:

$$
\begin{equation*}
S_{g e o}=\frac{d_{B K}^{2} \pi}{4 A_{e}}=\frac{A_{B K}}{A_{e}}=\frac{w_{e}}{\bar{u}} \tag{6.3}
\end{equation*}
$$

Mit

$$
\begin{equation*}
\bar{u}=\frac{4 \dot{m}}{d_{B K}^{2} \pi \rho} \tag{6.4}
\end{equation*}
$$

und der tangentialen Brennkammereintrittsgeschwindigkeit

$$
\begin{equation*}
w_{e}=\frac{\dot{m}}{A_{e} \rho_{e}} \tag{6.5}
\end{equation*}
$$

gebildet mit Hilfe des Lufteintrittsmassenstrom \dot{m}.
Nach Literaturangaben setzt bei Drallzahlen größer 0.6 und Tauchrohrreynoldszahlen größer 18.000 Rückströmung ein.

Durch die Drehströmung im Tauchrohr entsteht eine Verteilung des statischen Druckes, die ein Minimum auf der Drehachse aufweist. Der Druckunterschied von der Achse zur Tauchrohrwand nimmt mit zunehmender Drallzahl zu. Eine Änderung der Tangentialgeschwindigkeitsverteilung in axialer Richtung führt zu einer Rückstromung auf der Drehachse:
Die Reduzierung der Tangentialgeschwindigkeit, verursacht durch die Querschnittserweiterung beim Übergang von Tauchrohr auf die Nachbrennkammer, bewirkt einen geringeren radialen Druckanstieg. Dies führt im Bereich der Brennkammerachse zu einer Zunahme des statischen Druckes und ab einer bestimmten Drallstärke kommt es zur Umkehrung der Geschwindigkeitsrichtung und damit zur Ausbildung eines inneren Rückströmgebietes [26, 36]. Die aus der Zyklonbrennkammer austretenden Heißgase können im Tauchrohr eine axiale Rückströmzone ausbilden. Diese Rückführung der Reaktionsgase in die primäre Verbrennungszone führt zu erhöhten Strömungsdruckverlusten. CARLOWITZ ET AL. [9] untersuchten den Einfluß des Durchmessersprungs am Zyklonaustritt und zeigten, daß durch Entdrallung der Strömung in der Nachbrennkammer mit Hilfe von Leitblechen die Rückströmung weitgehend vermieden werden kann.

6.2 Auslegung der Brennkammer

Die Auslegung der Brennkammer untergliedert sich in einen wärmetechnischen und in einen konstruktiven Teil. Bei der wärmetechnischen Auslegung steht die thermische Leistung der Brennkammer im Mittelpunkt. Die bei der Verbrennung des eingebrachten Brennstoffes benötigten Luftmassenströme legen die geometrischen Abmessungen des Brennraumes fest. Bei der konstruktiven Auslegung sind die Verbrennungsführung, Kühlung der Brennkammerwandungen und die technische Realisierbarkeit der Brennkammer maßgebend.
Die zweistufige Brennkammer wird mit einer primären Zyklonbrennkammer und einer sekundären Nachbrennkammer ausgeführt. Diese Bauweise bietet die Möglichkeit, in der Zyklonkammer unterstöchiometrisch und in der Sekundärkammer mit Luftüberschuß zu verbrennen. In der Primärkammer wird der gesamte Brennstoff eingeblasen. In der Sekundärkammer, ausgeführt als axial durchströmte Nachbrennkammer, erfolgt die Nachverbrennung der in der Zyklonkammer gebildeten Verbrennungszwischenprodukte CO und H_{2}.
Die bei der Verbrennung anfallende Asche wird mit dem Heißgasstrom aus der Brennkammer ausgetragen und anschließend in einem Zyklon abgeschieden. Durch den Ascheaustrag kann die Brennkammer kontinuierlich betrieben werden, es sammelt sich keine Asche in der Verbrennungszone an.

6.2.1 Wärmetechnische Auslegung

Der Brennstoff wird mit der Förderluft axial in die Zyklonbrennkammer eingeblasen. Die Verdichterluft tritt entsprechend der Luftstufung in primäre, sekundäre und tertiäre Luftströme in die Brennkammer ein. Um günstige Bedingungen für eine $N O_{x^{-}}$-arme Verbrennung zu erzielen, erfolgt die Verbrennung in der Zyklonbrennkammer (Förderluft und Primärluft) unter

Luftmangel. Mit der in der Sekundärbrennkammer eingebrachten Sekundärluft erfolgt der vollständige Ausbrand der in der Zyklonbrennkammer gebildeten Verbrennungszwischenprodukte CO und H_{2}. Der Sekundärluftmassenstrom wird dabei so geregelt, daß die Temperatur in der Nachbrennzone eine vollständige Oxidation von CO und H_{2} ermöglicht. Mit Hilfe der Tertiärluft kann das Heißgas der Sekundärbrennkammer auf gewünschte Brennkammeraustrittstemperaturen gekühlt werden.
Im später geplanten Gasturbinenbetrieb kann man mit Hilfe der Tertiärluft die gewünschte Turbineneintrittstemperatur eingestellt werden.

6.2.1.1 Zyklonkammer

Die Brennkammervolumenbelastung $\dot{q}_{B K}$ kennzeichnet die auf das Produkt aus Brennkammerdruck $p_{B K}$ und Brennkammervolumen $V_{B K}$ bezogene freigesetzte Wärmeleistung \dot{Q} :

$$
\begin{equation*}
\dot{q}_{B K}=\frac{\dot{Q}}{V_{B K} p_{B K}} \tag{6.6}
\end{equation*}
$$

$\dot{q}_{B K}$, Dimension s^{-1}, charakterisiert die Aufenthaltszeit des Rauchgases in der Brennkammer. Bei unterstöchiometrischem Betrieb der Brennkammer bildet man $\dot{q}_{B K}$ mit der in die Brennkammer eingebrachten Wärmemenge des Brennstoffes \dot{Q}_{B}.
KRUCZEK ET AL. [41] empfehlen für den atmosphärischen Betrieb einer mit Ligninabfällen (40% Zellulose und 60% Lignin; $u_{r o h}=6 \% ; H_{u}=17600 \mathrm{~kJ} / \mathrm{kg}$) gefeuerten Zyklonbrennkammer eine thermische Volumsbelastung von 3 bis $4.6 \mathrm{MW} / \mathrm{m}^{3}$. Diese Volumsbelastung entspricht einem $\dot{q}_{B K}$ von 30 bis $46 \mathrm{~s}^{-1}$.
Damit errechnet sich im Leistungsbereich von 200 bis $500 k W_{t h}$ für die Primärbrennkammer ein entsprechendes Fassungsvermögen von 701 (siehe Tabelle 6.1).

Primärbrennkammer- volumen 70 l	$\dot{q}_{B K}=30$ $\left[s^{-1}\right]$	$\dot{q}_{B K}=46$ $\left[s^{-1}\right]$
1 bar	$210 k W$	$325 k W$
2 bar	420 kW	650 kW

Tabelle 6.1: Brennkammervolumsbelastung

Damit der Brennstoff von der in Achsennähe herrschenden Austrittströmung wegbewegt wird und so eine möglichst große Verweilzeit in der Brennkammer erfährt, ist die Ausbildung eines starken Fliehkraftfeldes in der Primärbrennkammer notwendig. Besonders wichtig ist dabei eine möglichst große Tangentialgeschwindigkeit im Bereich des Überganges von Potentialwirbel zu Festkörperwirbel (siehe Abb.6.1). Die Erhöhung der geometrischen Drallzahl $S_{g e o}$ und die Erhöhung des Verhältnisses Primärbrennkammerlänge $l_{B K}$ zu Brennkammerdurchmesser $d_{B K}$ bewirken eine Verminderung des tangentialen Geschwindigkeitsmaximums im Übergangsbereich von Festkörperwirbel zu Potentialwirbel und eine Verlagerung des Übergangsbereiches zu größeren Radien (siehe Abb.6.3). Weiters führt die Vergrößerung des Verhältnisses von Tauchrohrdurchmesser d_{a} zu Brennkammerdurchmesser $d_{B K}$ zu einer Abflachung des tangentialen Geschwindigkeitsprofils. Ab einem Verhältnis > 0.7 tritt der für die Zyklonströmung typische Potentialwirbel nicht mehr in Erscheinung.

Abbildung 6.3: Umfangsgeschwindigkeit u in Abhängigkeit zu Geometrieverhältnissen [1]
Troyankin [72] empfiehlt für Zyklonbrennkammern mit einer tangentialen bodennahen Lufteindüsung folgende Geometrieverhältnisse:

$$
\begin{equation*}
\frac{l_{B K}}{d_{B K}}=1.5-1.8 \quad \frac{d_{a}}{d_{B K}}=0.4-0.65 \tag{6.7}
\end{equation*}
$$

Ausgehend von den in Gleichung 6.7 beschriebenen Geometrieverhältnissen modelierte SENGSCHMIED eine Zyklonbrennkammer mit mehreren Lufteintrittsebenen. Basierend auf den dabei erhaltenen Berechnungsergebnissen empfiehlt Sengschmied folgende Geometrie für eine Zyklonbrennkammer mit mehreren Lufteintrittsebenen:

$$
\begin{equation*}
\frac{l_{B K}}{d_{B K}}=2 \quad \frac{d_{a}}{d_{B K}}=0.4 \tag{6.8}
\end{equation*}
$$

Mit Gleichung 6.8 und einem Brennkammervolumen von $70 l$ ergibt sich folgende Geometrie der primären Zyklonbrennkammer:

Brennkammerdurchmesser $d_{B K}: 370 \mathrm{~mm}$
Brennkammerlänge $l_{B K}: 714 \mathrm{~mm}$
Tauchrohrdurchmesser $d_{a}: 159 \mathrm{~mm}$
Für die Eintrittsgeschwindigkeit w_{e} in die Primärbrenkammer sind folgende Werte aus der Literatur bekannt:
Cousins and Robinson ${ }^{2}$ [12] betreiben ihren Zyklonvergaser mit Eintrittsgeschwindigkeiten von $8-12 \mathrm{~m} / \mathrm{s}$. Fredriksson ET.AL ${ }^{3}$ [21] düsen die Luft mit $25-40 \mathrm{~m} / \mathrm{s}$ in die Brennkammer ein.
Bei der zweistufigen, holzstaubgefeuerten Brennkammer tritt die Verbrennungsluft über drei Lufteintrittsebenen $\grave{a} 2$ Luftdüsen tangential in die Zyklonkammer ein. Um Eintrittsgeschwindigkeit von $w_{e}=15-35 \mathrm{~m} / \mathrm{s}$ und eine Drallzahl von $S_{g e o}=7-15 \mathrm{zu}$ erzielen, werden die 6 Lufteintrittsdurchmesser mit 20 mm ausgeführt.

[^2]
6.2.1.2 Nachbrennkammer

Im Gegensatz zur Primärbrennkammer werden in der Nachbrennkammer keine festen Brennstoffe sondern gasförmige Verbrennungszwischenprodukte oxidiert. Diese homogenen Reaktionen laufen viel schneller als die Verbrennungsprozesse in der Zyklonbrennkammer ab. Deshalb ist es nicht notwendig eine Drallströmung in der Nachbrennkammer zu erzeugen, um die Verweildauer der Reaktionspartner zu verlängern.
Die Sekundärluft zur Nachverbrennung wird am Übergang Primär- zu Sekundärbrennkammer axial eingebracht (siehe Abb.6.2). Die Sekundärluft und die heißen verdrallten Gase aus der Zyklonbrennkammer reagieren und strömen in axialer Richtung zum Brennkammeraustritt. Durch die Vermischung verringert sich der Drall der austretenden Heißgase, eine Rückströmung in die Zyklonbrennkammer wird dadurch verhindert.
Die Oxidation der Verbrennungszwischenprodukte CO und H_{2} erfolgt umso rascher, je höher die Temperatur in der Mischzone ist. Bei Temperaturen über $600^{\circ} \mathrm{C}$ erfolgen die Reaktionen in wenigen Millisekunden [73]. Eine Verweilzeit in der Sekundärbrennkammer von einer Zehntelsekunde reicht aus, um eine vollständige Nachverbrennung zu erzielen.
Bei einer Sekundärbrennkammerlänge $l_{B K, s}$ von 700 mm und einem Brennkammerdurchmesser von $d_{B K, s}=370 \mathrm{~mm}$ ergeben sich für die in Tabelle 6.1 beschriebenen Leistungsbereiche mittlere Rauchgasverweilzeiten von $\tau_{R G}=0.1-0.7 \mathrm{sec}$.

6.2.2 Konstruktive Auslegung

Die zweistufige Verbrennung erfolgt in einem isolierten Flammrohr, der äußere Teil der Brennkammer wird als Druckbehälter ausgeführt. Im Spalt zwischen Flammrohr und Druckbehälter wird die Sekundär- und Tertiärluft zu Kühlzwecken geführt.

6.2.2.1 Primärkammer

Das Flammrohr der Zyklonkammer wird nach den in Kapitel 6.2.1 ermittelten Abmessungen gefertigt, die Abmessungen des Druckbehälters und die Ausführung der Isolierung der Primärkammer können mit Hilfe eines Näherungsmodells ermittelt werden.

Abbildung 6.4: Modell zur Wärmeübertragung in der Brennkammer

Wie Abbildung 6.4 zeigt, läßt sich das Wärmeübertragungsverhalten im Primärbereich der Brennkammer durch zwei konzentrische Zylinder, Höhe $l_{B K}=714 \mathrm{~mm}$, simulieren. Der innere Zylinder, Wandstärke 4 mm , symbolisiert das Flammrohr, der äußere Zylinder, Wandstärke 10 mm steht für den Druckbehälter.
Während das Flammrohr außen mit Keramikfasermatte, Wärmeleitungskoeffizient $\lambda_{\text {Isol }}=$ $0.02 \mathrm{~W} /(\mathrm{mK})$, isoliert ist, wird der Druckbehälter, Außendurchmesser 570 mm , an seiner Innenseite mit der selben Keramikfasermatte ausgekleidet. Ausgehend von einer Brennkammerleistung von $250 \mathrm{k} W_{t h}$, entspricht einem Sekundärluftmassenstrom $\dot{m}_{S e k}$ von $0.1 \mathrm{~kg} / \mathrm{s} \mathrm{im}$ Luftspalt und einer Flammrohrwandtemperatur T_{W} von $1100^{\circ} C$, kann mit Hilfe folgender Gleichungen die Temperaturverteilung in den Brennkammerwandungen berechnet werden:

Wärmeleitung in Isolierung des Flammrohres:

$$
\begin{equation*}
\dot{Q}=\frac{T_{W}-T_{I s o l, i}}{\ln \frac{d_{I s o l, i}}{d_{B K}}}\left(\pi l_{B K}\right) \lambda_{I s o l} \tag{6.9}
\end{equation*}
$$

Konvektion an Isolierung des Flammrohres:

$$
\begin{equation*}
\dot{Q}_{K o n v, i}=\alpha_{i} \frac{\left(T_{I s o l, i}-T_{\text {Eintritt }}\right)-\left(T_{\text {Isol }, i}-T_{\text {Austritt }}\right)}{\ln \frac{T_{I s o l, i}-T_{\text {Eintritt }}}{T_{\text {Isol }, i}-T_{\text {Austritt }}}}\left(d_{I s o l, i} \pi l_{B K}\right) \tag{6.10}
\end{equation*}
$$

Strahlungsaustausch zwischen innerer und äußerer Isolierung:

$$
\begin{gather*}
\dot{Q}_{S t r a h l}=\dot{Q}-\dot{Q}_{K o n v, i} \tag{6.11}\\
\dot{Q}_{S t r a h l}=\epsilon_{i, a} \sigma\left(T_{I s o l, i}^{4}-T_{I s o l, a}^{4}\right)\left(d_{I s o l, a} \pi l_{B K}\right) \tag{6.12}\\
\epsilon_{i, a}=\frac{1}{\frac{1}{\epsilon_{i}}+\frac{d_{I s o l, i}}{d_{I s o l, a}}\left(\frac{1}{\epsilon_{a}}-1\right)} \tag{6.13}
\end{gather*}
$$

Energiebilanz über Kühlluft im Spalt:

$$
\begin{equation*}
\dot{m}_{S e k} \bar{c}_{p L u f t}\left(T_{A u s t r i t t}-T_{E i n t r i t t}\right)=\dot{Q}_{K o n v, i}+\dot{Q}_{K o n v, a} \tag{6.14}
\end{equation*}
$$

Konvektion an Isolierung des Druckbehälters:

$$
\begin{equation*}
\dot{Q}_{K o n v, a}=\alpha_{a} \frac{\left(T_{I s o l, a}-T_{E i n t r i t t}\right)-\left(T_{I s o l, a}-T_{A u s t r i t t}\right)}{\ln \frac{T_{I s o l, a}-T_{E i n t r i t t}}{T_{\text {Isol }, a}-T_{\text {Austritt }}}}\left(d_{I s o l, a} \pi l_{B K}\right) \tag{6.15}
\end{equation*}
$$

Wärmeleitung in Isolierung des Druckbehälters:

$$
\begin{equation*}
\dot{Q}-\dot{Q}_{K o n v, a}-\dot{Q}_{K o n v, i}=\frac{T_{I s o l, a}-T_{D}}{\ln \frac{d_{D}}{d_{I s o l, a}}}\left(\pi l_{B K}\right) \lambda_{I s o l} \tag{6.16}
\end{equation*}
$$

Natürliche Konvektion an Druckbehälteroberfläche:

$$
\begin{equation*}
\dot{Q}_{K o n v, D}=\left(d_{D} \pi l_{B K}\right) \frac{\lambda_{L u f t}\left(T_{D}-T_{U}\right)}{l_{B K}} \frac{1.6}{3} G r_{L u f t}^{\frac{1}{4}} \tag{6.17}
\end{equation*}
$$

Strahlungsaustausch zwischen Druckbehälteroberfläche und Umgebung:

$$
\begin{equation*}
\dot{Q}_{S t r a h l, U}=\epsilon_{D} \sigma\left(T_{D}^{4}-T_{U}^{4}\right)\left(d_{D} \pi l_{B K}\right) \tag{6.18}
\end{equation*}
$$

Summe der Wärmeströme:

$$
\begin{equation*}
\dot{Q}=\dot{Q}_{K o n v, i}+\dot{Q}_{K o n v, a}+\dot{Q}_{K o n v, D}+\dot{Q}_{S t r a h l, U} \tag{6.19}
\end{equation*}
$$

α_{a} und α_{i} sind Wärmeübergangszahlen, die den konvektiven Wärmeübergang auf die im Spalt strömende Sekundärluft beschreiben. Beide Werte werden nach VDI-Wärmeatlas - Wärmeübertragung im konzentrischen Ringspalt - berechnet. $G r_{L u f t}$ und $\lambda_{L u f t}$ bezeichnen die Grashofzahl und den Wärmeleitungskoeffizienten der Luft. ϵ_{i} und ϵ_{a} stehen für die Emissionskoeffizienten der inneren und äußeren Isolierung. Die für die Berechnung verwendeten Emissionskoeffizienten und Wärmeleitungskoeffizienten können ebenfalls der Stoffdatenbank des VDIWärmeatlas entnommen werden.
Mit Hilfe der 11 Gleichungen 6.9-6.19 kann die Temperatur des Druckbehälters, der Wärmeaustrag vom primären Flammrohr \dot{Q} und der Wärmeverlust der primären Brennkammer an die Umgebung in Abhängigkeit von unterschiedlichen Isolierstärken berechnet werden. Für die Wahl von 25 mm Keramikfasermatte zur Isolierung des Flammrohres und ebenfalls 25 mm Keramikfasermatte zur Auskleidung des Druckbehälters errechnet sich für $T_{W}=1100^{\circ} \mathrm{C}$ die Oberflächentemperatur des Druckbehälters T_{D} zu $55^{\circ} \mathrm{C}$, der Wärmestrom \dot{Q} zu 10 kW und ein Wärmeverlust $\left(\dot{Q}_{K o n v, D}+\dot{Q}_{S t r a h l, U}\right)$ der primären Brennkammer an die Umgebung von 5 kW . Variiert man die Flammrohrwandtemperatur T_{W} zwischen 1000 und $1200^{\circ} C$, so ändern sich die errechneten Wärmeströme und die Oberffächentemperatur des Druckbehälters nur geringfügig (siehe Tabelle 6.2):

	$T_{W}=1000^{\circ} \mathrm{C}$	$T_{W}=1100^{\circ} \mathrm{C}$	$T_{W}=1200^{\circ} \mathrm{C}$
T_{D}	$49^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$67^{\circ} \mathrm{C}$
\dot{Q}	8.5 kW	10 kW	11 kW

Tabelle 6.2: Einfluß von T_{W} auf die Näherungsrechnung

6.2.2.2 Sekundärkammer

Zur Kühlung des sekundären Flammrohres wird die Tertiärluft verwendet. Diese Kühlluft tritt tangential in den Spalt zwischen Flammrohr und Druckbehälter und vermischt sich am Brennkammeraustritt mit dem Heißgas der Nachbrennkammer. Da in der sekundären Verbrennungszone geringere Reaktionstemperaturen vorherrschen und der Tertiärluftmassenstrom ungefähr dreimal größer als der Sekundärluftmassenstrom ist, treten die größten thermischen Belastungen des Druckbehälters in der Primärzone auf. Für die sekundäre Zone der Brennkammer kann aus diesen Gründen eine Isolierung mit 25 mm Keramikfasermatte am Flammrohr und Druckbehälter als ausreichend angesehen werden.

Abbildung 6.5: Zweistufige Zyklonbrennkammer

Die konstruktive Ausführung der gesamten Brennkammer kann Abbildung 6.5 entnommen werden. Innerhalb des Druckbehälters, der Verbrennungen bis zu 2 bar Überdruck zuläßt, befindet sich das isolierte Flammrohr mit den in Kapitel 6.2.1 beschriebenen Abmessungen.

Abbildung 6.6: Lufteintritt in die Primärbrennkammer

Die Pimärluft wird tangential (siehe Abb.6.6) in 3 Ebenen in die Zyklonkammer eingeblasen. Die Sekündärluft, die nur in der untersten Ebene des Druckbehälters (siehe Abb.6.7) eingeblasen wird, kühlt das mit Keramikfasermatte isolierte primäre Flammrohr und strömt vorgewärmt in die Nachbrennkammer.

Schnitt B-B

Abbildung 6.7: Sekundär- und Primärlufteneintritt

Am Austritt des Flammrohres vermischen sich das Heißgas mit der Tertiärluft und strömt durch die Heißgasleitung zum Axialzyklon ${ }^{4}$.
Der Brennstoff wird von unten mit Hilfe einer höhenverstellbaren Umlenkdüse in die Zyklonkammer eingebracht. Das Gemisch aus Holzstaub und Förderluft wird durch die Düse gleichmäßig über dem Brennkammerquerschnitt verteilt. Durch die Vermischung des eingeblasenen Holzstaubes mit den in der Primärbrennkammer vorhandenen heißen Verbrennungsgasen setzen die in Kapitel 2.2 beschriebenen Verbrennungsvorgänge ein. Es ist keine Stützfeuerung notwendig, um den Verbrennungsvorgang in der Brennkammer aufrecht zu erhalten.

6.3 Anfahren der Brennkammer

Die Holzstaubverbrennung in der Zyklonbrennkammer wird mit Hilfe elektrischer Luftvorwärmer gestartet. Zu diesem Zweck wird die Primärluft vor dem Eintreten in die Primärkammer mittels temperaturgesteuerter Luftvorwärmen bis auf $600^{\circ} \mathrm{C}$ vorgewärmt. Die 4 Luftvorwärmer liefern bis zu 20 kW Leistungseintrag in die Zyklonbrennkammer und ermöglichen ein rasches Zünden des eingeblasen Holzstaubes. Setzt die Verbrennung in der Brennkammer ein, werden die Luftvorwärmer abgeschaltet, die freiwerdende Verbrennungswärme garantiert eine stabiles Weiterzünden des weiterhin eingebrachten Holzstaubes.
Geregelt werden die Luftvorwärmer mit Hilfe der Thermoelemente Luvo-1 bis Luvo-4, welche die Lufttemperaturen am Austritt der Heizelemente messen. Dadurch läßt sich eine langsame Aufheizgeschwindigkeit einstellen und so thermische Spannungen im Flammrohr verhindern.

[^3]
Kapitel 7

Axialzyklon

Das Heißgas aus der Zyklonbrennkammer ist mit Aschepartikeln verunreinigt. Je nach Aschegehalt des verwendeten Brennholzes variiert die Partikelbeladung des Heißgases. Mit Hilfe eines Zyklonabscheiders soll das Heißgas (Rohgas) gereinigt werden.
Im Hinblick auf den geplanten Betrieb einer Gasturbine muß dieser Zyklon nach folgenden Kriterien ausgelegt werden:

Abscheideleistung: Grenzkorn, Teilchengrößse bei der Teilchen noch abgeschieden werden, und Abscheidegrad. Hasler et al. [30] fordern beim Gasturbinenbetrieb Trennkorngrößen von $\sim 5 \mu m$.

Druckverlust: Druckverlust des Heilggases beim Durchströmen des Zyklons. Je geringer der Druckverlust des Gases beim Durchströmen des Zyklons ist, umso größer ist der Wirkungsgrad im Gasturbinenproze Ω^{1}.

Hitzebeständigkeit: Die Festigkeitsauslegung muß gewährleisten, daß der Zyklon bei Heißgastemperaturen von $800^{\circ} \mathrm{C}$ gefahrlos betrieben werden kann.

Herkömmliche Zyklonabscheider (siehe Abb.4.2) genügen heute nur noch selten den Anforderungen der Gasentstaubung. Ursache sind meist Sekundärströmungen im Abscheideraum. Sie stören den der elementaren Zyklontheorie zugrundeliegenden Trennvorgang. Dies läßt sich durch konstruktive Ausbildungen des Zyklons (Gestalt und Abmessungen des Abscheideraums, Anordnung von Einlauf- und Austrittsöffnung, Leitvorrichtungen für die Strömung) vermeiden [59].
Trotz unterschiedlichster Bauformen bleibt der Abscheidemechanismus immer gleich. Die Auslegung von Zyklonen basiert somit immer auf den in VDI-Richlinie 3676 - Zyklone zur Abscheidung von Feststoffen aus Gasen - beschriebenen Gleichungen.

7.1 Theorie der Zyklonabscheider

Die meisten Zyklone funktionieren nach dem in Kaplitel 4.2 beschriebenen Gleichgewichtsprinzip. Staubhältiges Gas mit dem Volumenstrom \dot{V} strömt mit Drall in einen zylindrischen Abscheideraum. Das Reingas verläßt den Raum radial durch die Trennfäche, eine gedachte Verlängerung des Tauchrohrs, und strömt axial durch das Tauchrohr nach außen. Auf die Staubteilchen (Masse m_{p}) wirken dabei neben der Schleppkraft F_{w} die Zentrifugalkraft F_{z}, die grobe Teilchen nach außen an die Wand schleudert. Feine Teilchen werden mit dem Gasstrom infolge der Schleppkraft der Strömung radial durch die Trennfläche nach innen ins Reingas mitgenommen (siehe Abb.7.1).

[^4]

Abbildung 7.1: Partikel im Zyklon

Da die Abscheideleistung des Zyklonabscheiders von der wirkenden Zentrifugalkraft

$$
\begin{equation*}
F_{z}=m_{p} u^{2} \rho_{B} \tag{7.1}
\end{equation*}
$$

und somit von der Zentrifugalbeschleunigung abhängt, ist der Ort mit der größten Umfangsgeschwindigkeit maßgebend für die Auslegung des Zyklons hinsichtlich Abscheideleistung und Trennkorn.

7.1.1 Trennkorn und Abscheideleistung

Die Strömung im Zyklon kann durch einen Festkörperwirbel im Bereich $r<r_{T}$ und durch einen Potentialwirbel im Bereich $r>r_{T}$ beschrieben werden. Bei $r=r_{T}$ (fiktive Trennfläche) stellt sich die höchste Umfangsgeschwindigkeit ein [2]. Das Trennkorn, das kleinste noch im Zyklon abscheidbare Teilchen, läßt sich somit aus einer Gleichgewichtsbilanz an der Trennfläche des Zyklons wie folgt berechnen:
Auf ein Teilchen wirkt die von F_{z} verursachte nach außen gerichtete Sedimentationsgeschwindigkeit w_{p} (Gl.4.3)und die von F_{w} verursachte nach innen gerichtete Radialgeschwindigkeit v_{r} (Gl.4.4). Gilt für ein Teilchen mit charakteristischem Durchmesser d_{p} an der Trennfläche ($r=r_{T}$) folgende Beziehung,

$$
\begin{equation*}
w_{P}\left(d_{p}\right)=v_{r} \tag{7.2}
\end{equation*}
$$

so befindet sich das Partikel im Gleichgewicht und wird weder abgeschieden noch mit dem Gasstrom ausgetragen. Der Partikeldurchmesser d_{p}, der Gleichung 7.2 erfüllt, wird x_{50} bezeichnet und charakterisiert das Trennkorn des Zyklonabscheiders.
Alle Teilchen mit charakteristischem Durchmesser $d_{p}>x_{50}$ werden wegen $w_{p}\left(d_{p}\right)>v_{r}$ im Zyklon abgeschieden. x_{50} kann durch einsetzen von Gleichung 4.3 in Gleichung 7.2 folgendermaßen angeschrieben werden:

$$
\begin{equation*}
x_{50}=\sqrt{\frac{18 \mu_{G a s} r_{T} v_{r}}{\left(\rho_{p}-\rho_{G a s}\right) u_{T}^{2}}} \tag{7.3}
\end{equation*}
$$

Zur Berechnung des Trennkorns x_{50} benötigt man die Kenntnis der Umfangsgeschwindigkeit u_{T} an der Trennfläche. Nach VDI-Richlinie 3676 gilt für u_{T} :

$$
\begin{equation*}
u_{T}=\frac{u_{a} \frac{r_{a}}{r_{T}}}{1+\frac{\lambda_{s}}{2} \frac{A_{R}}{V} u_{a} \sqrt{\frac{r_{a}}{r_{T}}}} \tag{7.4}
\end{equation*}
$$

λ_{s} bezeichnet den von der Staubbeladung des Gases abhängigen Wandreibungsbeiwert und kann den VDI-Richtlinien 3676 entnommen werden. A_{R} beschreibt die Summe aller inneren Wandflächen des Zyklons und r_{a} steht für den äußeren Radius des Zyklonbehälters. Der Volumenstrom \dot{V} bezeichnet den zu reinigenden Gasstrom und u_{a} ist die Umfangsgeschwindigkeit des Gases bei $r=r_{a}$.
Bei bekannter Staubkorngrößenverteilung im zu reinigenden Abgasstrom kann man mittels der Trennkorngröße x_{50} den Reingasstaubgehalt errechnen. Alle Teilchen $>x_{50}$ werden im Zyklon abgeschieden, Teilchen $<x_{50}$ werden mit dem Gasstrom ausgetragen. x_{50} stellt somit die Trenngrenze bei der Zyklonentstaubung dar (theoretischer Verlauf).
Praktisch weisen Zyklone aber keine scharfe Trenngrenze sondern einen Übergangsbereich auf (tatsächlicher Verlauf). Man definiert deshalb einen Fraktionsabscheidegrad η_{F}, welcher die Abscheidung in Abhängigkeit von der Partikelgröße beschreibt (siehe Abb.7.2). Ein steiler Verlauf der Fraktionsabscheidekurve beschreibt eine scharfe Trennung im Zyklon.

Abbildung 7.2: Fraktionsabscheidegrad η_{F}

Teilchen mit d_{p} geringfügig größer als x_{50} werden teilweise mit dem Gasstrom ausgetragen, während einige kleinere Teilchen, im Gegensatz zur Rechnung, dennoch abgeschieden werden. Untersuchungen an Zyklonabscheidern zeigen, daß der Fraktionsabscheidegrad $\eta_{F}=0.5$ nicht immer bei x_{50} liegen muß. Der Verlauf der Fraktionsabscheidegradkurve hängt im wesentlichen von der Bauart des Zyklons ab.
Der gesamte Abscheidegrad $\eta_{Z y k l o n}$ des Zyklons errechnet sich zu:

$$
\begin{equation*}
\eta_{Z y k l o n}=1-\frac{\mu_{r e i n}}{\mu_{r o h}} \tag{7.5}
\end{equation*}
$$

$\mu_{\text {roh }}$ bezeichnet dabei die Beladung des Gases vor dem Zyklon und $\mu_{r e i n}$ die Beladung nach dem Zyklon.

7.1.2 Druckverlust

Die Durchströmung des Zyklonabscheiders ist mit einem Druckverlust verbunden. Der auf die Tauchrohrgeschwindigkeit v_{T} bezogene Druckverlust (Gl.4.5 und 4.6) beruht bis zu 90%
auf der Energiedissipation beim Durchströmen des Tauchrohres [66]. Der restliche Druckverlust wird, neben Verlusten beim Einströmen in den Zyklon, großteils durch Wandreibung im Bereich des Abscheidebehälters hervorgerufen .
Um den Druckverlust von Zyklonabscheidern zu verringern, bieten sich Maßnahmen an, die die hohe kinetische Energie der Tauchrohrströmung in Druckenergie umsetzen. Leitschaufeln, um die Strömung zu entdrallen, und Diffusoren können den Druckverlust im Tauchrohr erheblich senken [58].
Eine weitere Möglichkeit Energieverluste im Zyklon zu reduzieren bieten Spalttauchrohre (siehe Abb.7.3). Diese Leitvorrichtung in der Trennfläche des Zyklons bildet ein verlängertes Tauchrohr. SCHMIDT [59] entwickelte Spalttauchrohre, die den Druckverlust eines Zyklons um bis zu 50% reduzieren.

Abbildung 7.3: Spalttauchrohre: 1.) Doppelspalt aus zwei Halbrohren; 2.) Schraubenspalt; 3.) Dreiviertelkreis-Rohr mit Diffusorspalt; 4.) Spiralwickel-Tauchrohr

Die Wirkung eines Spalttauchrohres beruht darauf, daß ein oder mehrere Längsspalten gegen die mit der Umfangsgeschwindigkeit u_{T} zirkulierende Strömung angestellt sind. Daraus resultiert ein entsprechend gleichmäßiger Staudruck, der das Gas gleichmäßsig über der gesamten Länge in das bodenseitig geschlossene Tauchrohr strömen läßt. Zusätzlich verringert sich bei der Verwendung eines Spalttauchrohres die Turbulenz der Zyklonströmung.
Die Berechnung der Spaltweite s eines Spalttauchrohres geht von der Kontinuitätsbedingung und der Potentialwirbelströmung (Gl.4.2) aus. s ergibt sich zu:

$$
\begin{equation*}
s=\frac{\dot{V}}{h_{T} u_{a}\left(\frac{r_{a}}{r_{T}}\right)^{n}} \tag{7.6}
\end{equation*}
$$

7.1.3 Drallerzeugung

Bei den meisten Zyklonen wird der Drall durch tangentiales Einströmen des zu reinigenden Gasstromes erzeugt. Das einströmende Gas zeigt dabei als eine Art Freistrahl Fernwirkung auf den Wirbel im Zyklon, wodurch die Radialgeschwindigkeit v_{r} beim Eintritt in die Trennfläche stark beeinflußt werden kann. Dies führt zu unscharfer Trennung der Partikel; Fraktionsabscheidegrad mit flachem Verlauf ist die Folge. Abhilfe bringen mehrere Tangentialeinläufe oder Leitschaufeln, die die eintretende Strömung verdrallen. Axialschaufelgitter führen zu
einer gleichmäßigen Verteilung der Radialgeschwindigkeit über der Trennfläche [65].
Bei der Verwendung eines axialen Schaufelgitters erfährt der Gasstrom beim Eintritt in den Abscheideraum eine Umlenkung β. Die tangentiale Geschwindigkeitskomponente u_{e} beim Austritt aus dem axialen Leitapparat errechnet sich zu:

$$
\begin{equation*}
u_{e}=u_{L e i t} \sin \beta \tag{7.7}
\end{equation*}
$$

$u_{\text {Leit }}$ bezeichnet die unter dem Winkel β aus dem Leitappart austretende Gasgeschwindigkeit. Damit errechnet man nach VDI-Richlinie 3676 die zur Berechnung von u_{T} (Gl. 7.4) benötigte Umfangsgeschwindigkeit u_{a} an der Außenwand des Abscheideraumes:

$$
\begin{equation*}
u_{a}=\frac{u_{e} \frac{r_{e}}{r_{a}}}{\alpha} \tag{7.8}
\end{equation*}
$$

α bezeichnet den Einschnürungsbeiwert, der für Kreisbogensegmentschaufeln mit 0.95 angegeben werden kann. r_{e} ist ein für den Leitapparteinlauf charakteristischer Radius und errechnet sich zu

$$
\begin{equation*}
r_{e}=r_{a}-\frac{b}{2} \tag{7.9}
\end{equation*}
$$

wobei b die Schaufelhöhe am Austritt des Leitappartes bezeichnet.

7.2 Konstruktion des Axialzyklons

SCHMIDT [59] gibt in seinem Bericht - Ungewöhnliche Zyklonabscheider - einen Überblick über spezielle Bauformen von Zyklonabscheidern mit verbesserten Eigenschaften hinsichtlich Trennkorngröße x_{50}, Abscheidegrad η, Druckverlust und Herstellungskosten.

Abbildung 7.4: Durchström-Zyklone: 1.) mit innerem Austragsspalt und Abschirmplatte; 2.) mit Spalttauchrohr, äußerem Austragsspalt und Grenzschicht-Gegenspirale am Boden

Dieser Bericht beschreibt unter anderem einen Durchströmzyklon (siehe Abb.7.4), der mit Spalttauchrohr und Abschirmplatte, die am ebenen Austrittsboden einen Staubtransport in
das Tauchrohr verhindert, ausgestattet ist. Diese Bauweise zeigt im Vergleich zu gängigen Umkehrzyklonen einen deutlich geringeren Druckverlust und verhindert, aufgrund des Wegrückens des Einlaufes vom Tauchrohraustrag, eine Kurzschlußströmung von staubhältigem Gas in den Reingasstrom. Außerdem kann dieser Zyklon zylindrisch ausgeführt werden, die Fertigung eines teueren Kegelmantels ist somit nicht notwendig.
Zur Heißgasentstaubung in der Versuchsanlage wird basierend auf dem Konzept des Durchströmzyklons ein Axialzyklon konstruiert. Im Gegensatz zum in Abbildung 7.4 vorgestellten Zyklon wird die Verdrallung am Eintritt in den Axialzyklon mit Hilfe eines axialen Umlenkgitters erzielt. Diese Bauweise hat vor allem bei der Ausführung als Heißgaszyklon Vorteile gegenüber tangentialen Einläufen. Für die Zyklonwandungen am Zykloneintritt ergeben sich dadurch keine Verschneidungskonstruktionen, die Wärmespannungen verursachen.
Die Ausführung des am Institut konstruiert und zur Heißgasentstaubung verwendeten Axialzyklons kann Abbildung 7.5 entnommen werden.

Abbildung 7.5: Axialzyklon

Der staubhältige heiße Rohgasstrom aus der Brennkammer gelangt über die Heißgasleitung in den Axialzyklon. Am Eintritt in den Zyklon wird der Gasstrom vom Leitapparat verdrallt (tangentiale Umlenkung um 60°). Die Aschepartikel, die die Verdrallung des Gasstromes mitmachen, werden unter Wirkung der Zentrifugalkraft nach außen geschleudert. Da die Teilchen neben der Umfangskomponente auch eine axiale Geschwindigkeitskomponente aufweisen, gelangen die Teilchen auf ihrer Flugbahn in den Austragsspalt und anschließend in die Entleerung. Der Reingasstrom gelangt über das doppelt geschlitzte Spalttauchrohr in die weiterführende Heißgasleitung. Richtbleche nach dem Spalttauchrohr verringern die Verwirbelung des austretenden Reingasstromes und reduzieren dadurch (siehe Kap.7.1.2) den Druckverlust.

Das Spalttauchrohr besteht aus zwei radial versetzten Rohrhalbschalen (siehe Abb.7.6).

Abbildung 7.6: Schnitt C-C

Die von Wärmeverlusten hervorgerufenen Temperaturunterschiede zwischen dem äußeren Mantel und den inneren Zyklonteilen verursachen unterschiedliche Längenausdehnungen. Um die daraus resultierenden Wärmespannungen zu vermeiden, ist das mit der Gegenspiralplatte verschweißte Tauchrohr nicht mit dem Leitapparat verbunden: Das Tauchrohr kann sich ungehindert ausdehnen.
Die Umlenkstreifen auf der Gegenspiralplatte lenken Teilchen, die nicht direkt in den Austragspalt gelangt sind und auf der Platte auftreffen, nach außen. Dabei gelangen diese Teilchen in den Austragsspalt und im weiteren in die Entleerung.
Alle durch den Spalt strömenden Ascheteilchen werden in der Kammer hinter der Gegenspirale aufgefangen. Über eine Entleerung im unteren Teil der Kammer können die Teilchen aus dem Axialzyklon entfernt werden.
Für die Auslegung des Axialzyklons ist der zu reinigende Volumenstrom maßgebend. Entsprechend der Auslegung der Brennkammer ${ }^{2}$ ergeben sich folgende Betriebspunkte (siehe Tabelle 7.1):

Auslegungspunkte des Zyklons	Brennkammer- leistung	Heißgas- temperatur	zu reinigender Volumenstrom
1 bar	250 kW	$800^{\circ} \mathrm{C}$	$0.78 \mathrm{~m}^{3} / \mathrm{s}$
2 bar	500 kW	$800^{\circ} \mathrm{C}$	$0.78 \mathrm{~m}^{3} / \mathrm{s}$
3 bar	750 kW	$800^{\circ} \mathrm{C}$	$0.78 \mathrm{~m}^{3} / \mathrm{s}$

Tabelle 7.1: Auslegung des Axialzyklons

Tabelle 7.1 zeigt, daß bei den unterschiedlichen Auslegungspunkten der Volumenstrom konstant bleibt.

[^5]Mit den in Kapitel 4 und 7 beschriebenen Gleichungen ergeben sich für eine gewünschte Trennkorngröße $x_{50}<\mathbf{5} \mu m$ folgende Abmessungen für den Axialzyklon:
zu reinigender Volumenstrom $\dot{V}: 0.78 \mathrm{~m}^{3} / \mathrm{s}$ enspricht $v_{\boldsymbol{e}}$ von $26.2 \mathrm{~m} / \mathrm{s}$
Zyklonaußenradius $r_{a}: 150 \mathrm{~mm}$
Spalttauchrohrradius $r_{T}: 75 \mathrm{~mm}$
Spalttauchrohrlänge $h_{T}: 750 \mathrm{~mm}$
Breite des Spaltes am Spalttauchrohr s: 20 mm
Umlenkwinkel im Leitapparat $\beta: 60^{\circ}$
Schaufelbreite $b: 47.5 \mathrm{~mm}$
Tauchrohrgeschwindigkeit $v_{T}: 35 \mathrm{~m} / \mathrm{s}$
Zur besseren Veranschaulichung des Axialzyklons zeigt Abbildung 7.7 ein 3D-Modell des Zyklons.

Abbildung 7.7: 3D-Modell des Axialzyklons

Zyklon und Heißgasleitung werden aufgrund der hohen Auslegungstemperatur ($800^{\circ} \mathrm{C}$) aus hitzebeständigen Blechen (1.4835) gefertigt. Diese austenitischen Bleche sind bis $1100^{\circ} \mathrm{C}$ zunderfest und bieten für den Auslegungspunkt $\left(800^{\circ} C\right.$ und 3 bar) ausreichende Festigkeitswerte, um die Wandungen des Zyklons und der Heißgasleitung mit 4-5 mm Dicke ausführen zu können.

Teil III

Betriebsverhalten und Meßergebnisse

Kapitel 8

Betrieb der Versuchsanlage

In diesem Kapitel wird das Betriebsverhalten der im Abschnitt Konzeption der Anlage beschriebenen Versuchsanlage dargestellt. Der Betrieb der Brennkammer und das Verhalten des Axialzyklons stehen dabei im Vordergrund.
Das Betreibsverhalten der Anlage wird anhand des Verbrennungsverhaltens von drei unterschiedlichen Holzsorten untersucht. Die drei Holzsorten, die gängige europäische Nutzhölzer repräsentieren, unterscheiden sich hinsichtlich ihrer Korngrößenverteilung, des Wassergehaltes und der Elementarzusammensetzung.

8.1 Charakterisierung der Brennstoffe

Folgende Holzsorten werden in der zweistufigen Brennkammer verfeuert:

Schwedischer Holzstaub: Ein bei der Verarbeitung von schwedischen Kiefern- und Tannenhölzern anfallendes Holzstaubgemisch. Im Gegensatz zu den anderen beiden Brennstoffsorten sind im Schwedischen Holzstaub Rindeteilchen enthalten.

Fichtenspäne: Späne, die bei der Verarbeitung von Fichtenholz anfallen. Fichtenholz (Weichholz) ist eines der wichtigsten Nutzhölzer der österreichischen Wälder.

Buchenspäne: Buchenspäne (Hartholz), die ebenfalls in Österreich bei holzverarbeitenden Betrieben anfallen.

Mit Hilfe der Immediat- und Elementaranalyse ${ }^{1}$ können die drei Brennstoffsorten wie folgt charakterisiert werden:

feuchtes Holz	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
Wassergehalt $u_{\text {roh }}[$ Massen $\%]$	3	10.3	9
Aschegehalt $[$ Massen\%]	1.3	0.25	0.54
Heizwert $H_{u}[$ MJJ/kg]	18.86	16.49	16.28
Flüchtige $[$ Massen\% $]$	80	76	76.4
Tiegelkoks $[$ Massen $\%]$	17	13.7	14.6

Tabelle 8.1: Immediatanalysen der drei Holzsorten

Durch Lagern über größsere Zeiträume kann sich der Wassergehalt im Brennholz ändern. Immediatanalysen sollten deshalb in zeitlichen Abständen wiederholt werden.

[^6]| trockenes
 Holz | Schwedischer
 Holzstaub | Fichten-
 späne | Buchen-
 späne |
| :---: | :---: | :---: | :---: |
| $\gamma_{C}[$ Massen\%] | 50.8 | 49.2 | 48.1 |
| $\gamma_{H}[$ Massen\%] | 6.2 | 6.3 | 6.1 |
| γ_{O} [Massen\%] | 42.6 | 44.3 | 45.5 |
| γ_{N} [Massen\%] | 0.1 | 0.02 | 0.04 |
| γ_{S} [Massen\%] | <0.1 | <0.05 | <0.05 |
| $\gamma_{C l}[$ Massen\%] | <0.1 | <0.01 | <0.01 |

Tabelle 8.2: Elementaranalysen der drei Holzsorten

Aus Tabelle 8.1 kann man entnehmen, dafs der schwedische Holzstaub wegen seines geringen Wassergehaltes den größten Heizwert H_{u} aufweist. Fichtenspäne und Buchenspäne haben aufgrund des ähnlichen Wassergehaltes beinahe idente Heizwerte.
Da im schwedischen Holzstaub Rindeteilchen enthalten sind, hat diese Brennstoffsorte den größsten Ascheanteil. Während reines Holz Aschanteile um 0.25-0.5\% aufweist (Zedernholz bis max. 2\%), macht der Ascheanteil bei der Verbrennung von Rinde bis zu 4% aus [34]. Je nach Aschgehalt im Brennstoff ergeben sich dadurch unterschiedliche Aschebeladungen im Brennkammerheilggas.
Weiters stellt die Ascheerweichung einen Grenzwert für die Feuerraumtemperatur dar. Je nach verbrannter Holzsorte beginnt die anfallende Asche bei unterschiedlichen Temperaturen zu erweichen. Die weichen Ascheteilchen können zu Anbackungen im Flammrohr führen. Beim Betrieb der Brennkammer sollten deshalb Feuerraum- und Flammrohrtemperaturen immer unter den jeweiligen Ascheerweichungspunkten liegen.

	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
Erweichungstemperatur	$1250^{\circ} \mathrm{C}$	$1360^{\circ} \mathrm{C}$	$1250^{\circ} \mathrm{C}$
Fließtemperatur	$1500^{\circ} \mathrm{C}$	$1660^{\circ} \mathrm{C}$	$1440^{\circ} \mathrm{C}$

Tabelle 8.3: Ascheschmelzpunkte der verwendeten Holzsorten

Der schwedische Holzstaub weist den höchsten Gehalt an Brennstoffstickstoff γ_{N} auf (siehe Tab.8.2). Auch dieser erhöhte Wert ergibt sich aufgrund des Rindeanteils im Staubgemenge. Im Gegensatz zum reinen Holz enthält Rinde mehr Stickstoff, da durch den Holzwachstumsprozeß ziwschen Rinde und Splintholz die Konzentration an Stickstoff in diesem Bereich des Baumes am größten ist [57].
Ein weiteres Kriterium zur Unterscheidung der drei Brennholzsorten stellt die Korngrößenverteilungen der Späne bzw. Stäube dar. Mittels Siebanalyse wird die Durchgangssumme
 d_{50}. $50 \mathrm{Massen} \%$ der Teilchen weisen größere Partikeldurchmesser als d_{50} und $50 \mathrm{Massen} \%$ kleinere Durchmesser als d_{50} auf. Für die in Abbildung 8.1 dargestellten Korngrößenverteilungen von schwedischem Holzstaub, Buchenspänen und Fichtenspänen ergeben sich folgende Medianwerte:
schwedischer Holzstaub $\quad d_{50}: \quad 280 \mu m$
Fichtenspäne
Buchenspäne
$d_{50}: \quad 810 \mu m$
$d_{50}: \quad 1150 \mu m$

Abbildung 8.1: Rückstandsummenkurven der drei Holzsorten

8.2 Verbrennung in der Brennkammer

Bei Feststoffeuerungen ohne Luftstufung muß man die Verbrennung bei möglichst geringem Luftüberschuß durchführen ($\lambda=1.1$), um bei möglichst hohen Reaktionstemperaturen hinsichtlich $C O$ und $C_{n} H_{m}$ schadstoffarm verbrennen zu können. Die hohen Verbrennungstemperaturen aber führen aufgrund einsetzender Ascheerweichung zu Anbackungen im Feuerraum. Verschmutzungen und hohe thermische Beanspruchungen (Verzunderungen) der Feuerraumwandungen sind die Folgen.
Die zweistufige Brennkammer bietet die Möglichkeit, bei geringen Verbrennungstemperaturen dennoch schadstoffarm zu verbrennen.
Der für die Verbrennung in der zweistufigen Brennkammer ${ }^{2}$ benötigte Brennstoff wird mit Förderluft in die Zyklonkammer eingeblasen. Der Förderluftmassenstrom \dot{m}_{F} und der in drei Ebenen tangential eingeblasene Primärluftmassenstrom $\dot{m}_{\text {prim }}$ ergeben den in der Zyklonbrennkammer zur unterstöchiometrischen Verbrennung bzw. Vergasung verfügbaren Luftstrom \dot{m}_{V}.

$$
\begin{equation*}
\dot{m}_{V}=\dot{m}_{F}+\dot{m}_{p r i m} \tag{8.1}
\end{equation*}
$$

Der Sekundärluftmassenstrom $\dot{m}_{s e k}$ tritt am unteren Ende des sekundären Flammrohres in die Nachbrennkammer und oxidiert die in der Zyklonbrennkammer gebildeten Verbrennungszwischenprodukte CO und H_{2}.
Um den eingeblasenen Brennstoff vollständig verbrennen zu können, muß die nach Gleichung

[^7]2.15 errechnete stöchiometrische Luftmenge $L_{\text {min }}$ zugeführt werden. Für die Vergasung $\left(\lambda_{V}\right)$ wird in der Zyklonkammer die Luftmenge L_{V} benötigt:
\[

$$
\begin{equation*}
L_{V}=\lambda_{V} L_{m i n} \tag{8.2}
\end{equation*}
$$

\]

Zum Beispiel bedeutet $\lambda_{V}=0.5$, daßs nur die Hälfte der für eine vollständige Verbrennung benötigten Sauerstoffmenge in der Zyklonbrennkammer vorhanden ist.
Aufgrund des Sauerstoffmangels kann der eingebrachte Brennstoff nicht vollständig oxidiert werden. Die im Brennstoff gespeicherte Energie (H_{u}) wird nur zum Teil in der Zyklonkammer freigesetzt. Die Feuerraumtemperatur bei unterstöchiometrischer Verbrennung liegt deshalb unter der bei stöchiometrischer Verbrennung erzielbaren Feuerraumtemperatur $T_{V b}$.
Die Verbrennungstemperaturen in der Nachbrennkammer sind ebenfalls kleiner als $T_{V b}$, weil die Nachverbrennung mit Luftüberschuß erfolgt und somit der Stickstoffbalast und Sauerstoffüberschuß miterwärmt werden müssen. In der primären und in der sekundären Verbrennungszone können durch Luftstufung die Verbrennungstemperaturen gesenkt und dadurch die Ascheerweichung verhindert werden.

8.2.1 Vergasung

Bei der gezielten unvollständigen Verbrennung bzw. Vergasung ($\lambda_{V}<1$), findet keine vollständige Oxidation des Brennstoffes statt. Neben den energiefreisetzenden Oxidationsreaktionen

$$
\begin{array}{cl}
C+O_{2} \xrightarrow{K_{C O_{2}}} \mathrm{CO}_{2} & \Delta H=-406 \frac{k J}{m o l}
\end{array} K_{\mathrm{CO}_{2}}=\frac{p_{C O_{2}}}{p_{O_{2}}}
$$

stellen sich auch Reaktionen (Vergasungsreaktionen) zwischen den Verbrennungsendprodukten (CO_{2} und $\mathrm{H}_{2} \mathrm{O}$) und Verbrennungszwischenprodukten ($\mathrm{CO}, \mathrm{H}_{2}$ und C) ein.
Der Großteil des in die Verbrennungszone eingebrachten Brennstoffes geht in kurzer Zeit mittels Pyrolyse in die Gasphase über und reagiert aufgrund des Sauerstoffmangels zum Teil mit den Verbrennungsendprodukten.
Mit Hilfe der homogenen Wassergasreaktion läßt sich das Gleichgewicht zwischen den gasförmigen Verbrennungsendprodukte $\left(\mathrm{CO}_{2}\right.$ und $\left.\mathrm{H}_{2} \mathrm{O}\right)$ und den gasförmigen Verbrennungszwischenprodukten (CO und H_{2}) anschreiben:

Homogene Wassergasreaktion:

$$
\begin{equation*}
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{W}}{\rightleftharpoons} \mathrm{CO}_{2}+\mathrm{H}_{2} \quad \Delta H=-40.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad K_{W}=\frac{p_{C O_{2}} p_{\mathrm{H}_{2}}}{p_{\mathrm{CO} p_{\mathrm{H}_{2} \mathrm{O}}}} \tag{8.6}
\end{equation*}
$$

Aufgrund des Sauerstoffmangels reagiert auch der bei der Pyrolyse gebildete feste Koks mit den gasförmigen Verbrennungsendprodukten. Im Gegensatz zur homogenen Wassergasreaktion laufen diese heterogenen Reaktionen viel langsamer ab:

Boudouard-Reaktion:

$$
\begin{equation*}
C+C O_{2} \stackrel{K_{B}}{\rightleftharpoons} 2 C O \quad \Delta H=173 \frac{k J}{m o l} \quad K_{B}=\frac{p_{C O}^{2}}{p_{C O_{2}}} \tag{8.7}
\end{equation*}
$$

Methanbildungsreaktion:

$$
\begin{equation*}
C+2 H_{2} \stackrel{K_{M}}{\rightleftharpoons} C H_{4} \quad \Delta H=-87.5 \frac{k J}{m o l} \quad K_{M}=\frac{p_{C H_{4}}}{p_{H_{2}}^{2}} \tag{8.8}
\end{equation*}
$$

Heterogene Wassergasreaktion:

$$
\begin{equation*}
C+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{\text {het } W}}{\rightleftharpoons} \mathrm{CO}+\mathrm{H}_{2} \quad \Delta H=118.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad K_{h e t W}=\frac{p_{C O} p_{h_{2}}}{p_{\mathrm{H}_{2} \mathrm{O}}} \tag{8.9}
\end{equation*}
$$

Mit Hilfe der temperaturabhängigen Gleichgewichtskonstanten K kann der Verlauf einer Reaktion beschrieben werden. Mit steigendem Wert der Gleichgewichtskonstanten verschiebt sich das Reaktionsgleichgewicht innerhalb der chemischen Gleichung zur rechten Seite hin. Bei sehr großen Gleichgewichtskonstanten finden sich kaum noch linksseitige Reaktionspartner in der Reaktionszone. Die Gleichgewicktskonstanten der Gleichungen 8.3, 8.4 und 8.5 weisen folgende Temperaturabhängigkeit auf (Tab. 8.4):

	$800^{\circ} \mathrm{C}$	$1300^{\circ} \mathrm{C}$
$K_{\mathrm{CO}_{2}}$	1.810^{17}	1.510^{13}
K_{CO}	1.410^{18}	4.510^{16}
$K_{\mathrm{H}_{2} \mathrm{O}}$	2.210^{16}	4.510^{10}

Tabelle 8.4: Gleichgewichtskonstanten $K_{\mathrm{CO}_{2}}, K_{\mathrm{CO}}$ und $K_{\mathrm{H}_{2} \mathrm{O}}$ [42]

Für die Vergasungsreaktionen (Gl. 8.6-9) ergeben sich folgende temperaturabhängigen Gleichgewichtskonstanten (Tab. 8.5):

	$800^{\circ} \mathrm{C}$	$1300^{\circ} \mathrm{C}$
K_{W}	1.04	0.33
K_{B}	7.65	310^{3}
K_{M}	4.7210^{-2}	1.8210^{-3}
$K_{\text {het } W}$	7.97	110^{3}

Tabelle 8.5: Gleichgewichtskonstanten K_{W}, K_{B}, K_{M} und $K_{h e t W}$ [42]

Während homogene Reaktionen über das gesamte Volumen der Reaktionspartner verteilt sein können, finden heterogene Reaktionen nur an den Oberflächen der Feststoffpartner statt. Die Zusammensetzung des Verbrennungsgases kann somit ohne Berücksichtigung der heterogenen Reaktionen ermittelt werden [25].
Neben der Gleichgewichtskonstanten K, mit deren Hilfe die Gleichgewichtszusammensetzung einer Reaktion beschrieben wird, gibt die Reaktionskinetik (Reaktionsgeschwindigkeit) Auskunft über die Zeitdauer zum Erreichen der Gleichgewichtszusammensetzung. Die Reaktionsgeschwindigkeit bei der homogenen Wassergasreaktion nimmt mit steigender Temperatur zu.

Erfolgt die Vergasung mit Luft so kann bei Temperaturen über $1000^{\circ} \mathrm{C}$ vom homogenen Wassergasgleichgewicht in der Gasphase ausgegangen werden [13, 76].
Mit Hilfe der homogenen Wassergasreaktion (Gl.8.6) und den Oxidationsreaktionen (Gl.8.35) läßt sich somit iterativ die Gaszusammensetzung im Vergaser (Zyklonkammer) und im weiteren die Temperatur des Gases im Gleichgewichtszustand berechnen.

8.2.2 Berechnung der Vergasungstemperatur

Nimmt man an, daß sich bei unterstöchiometrischer Verbrennung mit der Sauerstoffmenge $\lambda_{V} \mathrm{O}_{2, \min }$ in der Reaktionszone ein Gemisch aus $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$ und H_{2} (sowie N_{2}) bildet [24, 68], so lassen sich folgende Massenbilanzen für die Verbrennungszone anschreiben:

Massenbilanz Kohlenstoff

$$
\begin{equation*}
\gamma_{c}=\nu_{C O_{2}}+\nu_{C O} \tag{8.10}
\end{equation*}
$$

Massenbilanz Sauerstoff

$$
\begin{equation*}
\gamma_{O}+\lambda_{V} O_{2, m i n}=\nu_{C O_{2}}+\nu_{C O}+\nu_{H_{2} O} \tag{8.11}
\end{equation*}
$$

Massenbilanz Wasserstoff

$$
\begin{equation*}
\gamma_{H}=\nu_{H_{2}}+\nu_{H_{2} O} \tag{8.12}
\end{equation*}
$$

$\nu_{\mathrm{CO}_{2}}, \nu_{\mathrm{CO}}, \nu_{\mathrm{H}_{2} \mathrm{O}}$ und $\nu_{\mathrm{H}_{2}}$ bezeichnen die bei der Vergasung pro kg Brennstoff gebildeten Mengen an $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}$, und H_{2}. Da bei Gasen Partialdrücke identisch mit den Molverhältnissen der Gaskomponenten sind, kann das homogenen Wassergasgleichgewicht abhängig von der Vergasungstemperatur T_{V} wie folgt ausgedrückt werden:

$$
\begin{equation*}
K_{W}\left(T_{V}\right)=\frac{p_{C O_{2}} p_{\mathrm{H}_{2}}}{p_{\mathrm{CO}} p_{\mathrm{H}_{2} \mathrm{O}}}=\frac{n_{\mathrm{CO}}^{2}}{} n_{\mathrm{H}_{2}}, n_{\mathrm{CO} n_{\mathrm{H}_{2} \mathrm{O}}} \tag{8.13}
\end{equation*}
$$

$n_{\mathrm{CO}_{2}}, n_{\mathrm{CO}}, n_{\mathrm{H}_{2} \mathrm{O}}$ und $n_{\mathrm{H}_{2}}$ bezeichnen die mit der jeweiligen Molmasse M zu ermittelnden Mohlanzahlen der Gaskomponenten.

$$
\begin{gather*}
n_{C O_{2}}=\frac{\nu_{C O_{2}}}{M_{C O_{2}}}=\frac{\nu_{C O_{2}}}{44.01} \tag{8.14}\\
n_{\mathrm{CO}}=\frac{\nu_{\mathrm{CO}}}{M_{\mathrm{CO}}}=\frac{\nu_{\mathrm{CO}}}{28.01} \tag{8.15}\\
n_{\mathrm{H}_{2} \mathrm{O}}=\frac{\nu_{\mathrm{H}_{2} \mathrm{O}}}{M_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\nu_{\mathrm{H}_{2} \mathrm{O}}}{18.02} \tag{8.16}\\
n_{\mathrm{H}_{2}}=\frac{\nu_{H_{2}}}{M_{\mathrm{H}_{2}}}=\frac{\nu_{H_{2}}}{2.02} \tag{8.17}
\end{gather*}
$$

Weiters läßt sich nach GUMZ [24] die Gleichgewichtskonstante K_{W} als Funktion der Temperatur anschreiben:

$$
\begin{equation*}
K_{W}(T)=10^{\left(-36.725+\frac{3994.7}{T}-4.462410^{-3} T+0.67181510^{-6} T^{2}+12.2203 \log (T)\right)} \tag{8.18}
\end{equation*}
$$

Die Berechnung der Vergasungstemperatur T_{V} und der Gaszusammensetzung in der Verbrennungszone erfolgt iterativ: Durch Wahl einer Startlösung $T_{V, 0}$ kann mit Hilfe der Gleichungen 8.10-13 eine erste Lösung $\nu_{C O_{2}, 0}, \nu_{C O, 0}, \nu_{H_{2} \mathrm{O}, 0}$ und $\nu_{H_{2}, 0}$ errechnet werden. Die Bestimmuung von $\nu_{C O_{2}}, \nu_{C O}, \nu_{H_{2} \mathrm{O}}$ und $\nu_{\mathrm{H}_{2}}$ sowie T_{V} erfolgt mit Hilfe einer Energiebilanz:

Bei der vollständigen stöchiometrischen Verbrennung des Holzes wird die Energie H_{u} freigestzt. Bei der unterstöchiometrischen Verbrennung sind neben CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ auch CO und $\mathrm{H}_{2} \mathrm{im}$ Verbrennungsgas vorhanden. Die im CO und H_{2} gespeicherte chemische Energie bleibt gebunden und verringert dadurch die in der Verbrennungszone freiwerdende Energie:

$$
\begin{equation*}
H_{V e r g a s}=H_{u}-\nu_{C O} \frac{283.1}{M_{C O}}-\nu_{H_{2}} \frac{241.5}{M_{H_{2}}} \quad \frac{M J}{k g} \tag{8.19}
\end{equation*}
$$

mit:

$$
\begin{array}{ll}
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} & \Delta H=-283.1
\end{array} \frac{M J}{\mathrm{kmol}}
$$

Gleichzeitig kann mit Hilfe eines numerischen Berechnungsverfahrens nach DIEDERICHSEN ET AL. [14] die spezifische Enthalpie $h(T)$ eines Verbrennungsgases mit bekannter Zusammensetzung und Gastemperatur T berechnet werden. Für eine Lösung $n_{\mathrm{CO}_{2}}, n_{\mathrm{CO}}, n_{\mathrm{H}_{2} \mathrm{O}}$, $n_{H_{2}}$ und $n_{N_{2}}$ kann mit dem Berechnungsverfahren die spezifische Enthalpie $h\left(T_{V}\right)$ berechnet werden.
Unter der Annahme, daß die Temperaturen der zugeführten Luft m_{V} und des Brennstoffes $m_{B r}$ beim Eintritt in den Reaktionsraum $0^{\circ} C$ betragen, muß, entprechend der adiabaten Energiebilanz, das Produkt aus spezifischer Enthalpie $h\left(T_{V}\right)$ und der Verbrennungsgasmasse dem Produkt aus freiwerdender Energie $H_{V e r g a s}$ und Brennstoffmasse $m_{B r}$ entsprechen.

$$
\begin{equation*}
m_{B r} H_{V e r g a s}=\left(\nu_{C O_{2}}+\nu_{C O}+\nu_{H_{2} \mathrm{O}}+\nu_{H_{2}}+\nu_{N_{2}}\right) h\left(T_{V}\right) \tag{8.22}
\end{equation*}
$$

Handelt es sich um keine adiabate Verbrennung, so verliert der Feuerraum die Energie Q_{w}. Gleichung 8.22 ist deshalb wie folgt zu erweitern:

$$
\begin{equation*}
m_{B r} H_{V e r g a s}-Q_{w}=\left(\nu_{C O_{2}}+\nu_{C O}+\nu_{H_{2} O}+\nu_{H_{2}}+\nu_{N_{2}}\right) h\left(T_{V}\right) \tag{8.23}
\end{equation*}
$$

T_{V} und in weiterer Folge $\nu_{\mathrm{CO}_{2}}, \nu_{\mathrm{CO}}, \nu_{\mathrm{H}_{2} \mathrm{O}}$ und $\nu_{\mathrm{H}_{2}}$ werden nun solange iteriert bis Gleichung 8.23 ausreichend genau ($\pm 1 \%$) erfüllt wird (siehe Abb.8.2).

Diese Berechnungsmethode liefert in Abhängigkeit vom Luftverhältnis λ_{V} in der Vergasungszone die Gleichgewichtszusammensetzung und die Temperatur T_{V} des Heißgases.

Abbildung 8.2: Berechnungsverfahren

Während der Holzverbrennung bilden sich in der Zyklonkammer Bereiche mit unterschiedlichen Brennstoffkonzentrationen ${ }^{3}$ (Brennstoffringe) aus, sodaß für die Zyklonkammer keine einheitliche Temperatur angegeben werden kann [12, 41]. Im äuferen Bereich der Brennkammer (Bereich des Potentialwirbels $\frac{d_{a}}{2}<r<\frac{d_{B K}}{2}$) laufen die in Kapitel 2 beschriebenen Teilschritte der Verbrennung ab. Im Bereich $r<\frac{d_{a}}{2}$ (Festkörperwirbel) befinden sich die über die Trennfläche eingetretenen bereits reagierten und im Gleichgewicht befindlichen Verbrennungsgase [20]. Die Gase in dieser inneren Zone stehen im Vergasungsgleichgewicht und haben die entsprechende Gastemperatur T_{V}.

8.2.3 Temperaturen in der Zyklonbrennkammer

Mit Hilfe eines durchströmten, strahlungsgeschützten Typ B Thermoelements ($T I-1$) wird in der Zyklonkammer die Gleichgewichtstemperatur gemessen. Das Thermoelement mißt in Höhe der zweiten Lufteintrittsebene im Bereich $r \sim \frac{d_{a}}{2}$ und $\varphi=0^{\circ}$ die Gastemperatur (genaue Position siehe Abb.6.5).
In diesem Bereich der Zyklonkammer hat das Verbrennungsgas bereits die Verbrennungszonen im äußeren Bereich der Zyklonkammer ($\frac{d_{a}}{2}<r<\frac{d_{B K}}{2}$) durchlaufen und befindet sich annähernd im Vergasungsgleichgewicht (Gl.8.6). Die am Thermoelement gemessene Temperatur entspricht der Vergasungsgleichgewichtstemperatur $T_{V}\left(\lambda_{V}\right)$.
Im folgenden wird für die drei unterschiedlichen Brennstoffe das Vergasungsgleichgewicht und die Vergasungstemperatur T_{V} in Abhängigkeit von λ_{V} berechnet. Anschließend werden die Berechnungsergebnisse den in der zweistufigen Brennkammer gemessenen Temperaturen TI-1 gegenübergestellt.
Zur Berechnung des Vergasungsgleichgewichtes ist es notwendig den Wärmeverlust der Zyklonkammer zu kennen (siehe Gl.8.23). In Kapitel 6 wurde der Wärmeübergang in der Brennkammer für den Lastfall 250 kW angenähert. Bei einer angenommenen Flammrohrtemperatur von $1100^{\circ} \mathrm{C}$ errechnet sich ein Wärmeverlust \dot{Q}_{W} der Primärbrennkammer von 10 kW . Weiters liefert die Berechnung eine mittlere Oberflächentemperatur des primären Druckbehälters von $55^{\circ} \mathrm{C}$.
Da der Wärmeverlust der Zyklonkammer nicht direkt gemessen werden kann wird das Berechnungsmodell mit Hilfe der me§baren Oberflächentemperatur des primären Druckbehälters verifiziert:

[^8]

Abbildung 8.3: Brennkammeroberflächentemperatur

Abbildung 8.3 zeigt die Temperaturverteilung an der Druckbehälteroberfläche bei stationärem Betrieb der Brennkammer mit 250 kW , einer Flammrohrtemperatur von $1120^{\circ} \mathrm{C}$ und einem Sekundärluftmassenstrom von $\dot{m}_{s e k}=1.05 \mathrm{~kg} / \mathrm{s}$ (entspricht einer Brennstoffmenge von $50 \mathrm{~kg} / \mathrm{h}$ schwedischem Holzstaub).
$\varphi=0^{\circ}$ und $\varphi=90^{\circ}$, entsprechend der Winkelkoordinaten φ von Abbildung 6.6, bezeichnen die Bereiche mit den Extremwerten der Oberflächentemperatur. Bei $\varphi=0^{\circ}$, entspricht der Winkelkoordinate des Sekundärlufteintritts (siehe Abb.6.7), stellen sich aufgrund der Nähe zu den Lufteintrittsstutzen die geringsten Oberflächentemperaturen ein. Bei $\varphi=90^{\circ}$ werden wegen der Entfernung zu den Kühlluft- und Brennlufteintritten die maximalen Oberflächentemperaturen gemessen.
Die Meßergebnisse stimmen im Bereich der ersten und zweiten Lufteintrittsebene mit der berechneten mittleren Druckbehältertemperatur von $55^{\circ} C$ überein. In Höhe der dritten Lufteintrittsebene bildet sich eine Zone mit Temperaturen bis zu $80^{\circ} C$ aus. Diese erhöhten Temperaturen werden verursacht durch Wärmestrahlung aus der sekundären Nachbrennkammer. Durch die Sekundärlufteinlässe zwischen Zyklonkammer und Nachbrennkammer kommt es zum Strahlungsaustausch zwischen der sekundären Verbrennungszone und der Isolationsauskleidung des Druckbehälters (siehe Abb.6.5). Mit steigender Temperatur in der Nachbrennzone steigt dadurch die Oberflächentemperatur in Höhe der dritten Lufteintrittsbene. Meßbar wird dieser Temperaturanstieg gegenüber der Oberflächentemperatur im Bereich der ersten und zweiten Lufteintrittsebene ab Nachbrennkammertemperaturen $T I-2>700^{\circ} C$. Für Feuerraumtemperaturen $T I-2<700^{\circ} C$ bleibt die Oberflächentemperatur des gesamten primären Druckbehälters um $\sim 55^{\circ} \mathrm{C}$. Die Temperaturerhöhung im Bereich der dritten Lufteintrittsebene hängt nur von der Verbrennungsführung in der Nachbrennkammer ab.
Die Ergebnisse des Näherungsmodells, Wärmeverlust der Primärkammer von $10 k W$ und Oberflächentemperatur von $55^{\circ} \mathrm{C}$, entsprechen somit den tatsächlich beim Brennkammerbetrieb erzielten Temperaturen und Wärmeströmen.
Der Wärmeverlust der Zyklonkammer hängt zum größten Teil von der Flammrohrtemperatur und nur geringfügig vom Kühlluftmassenstrom (Sekundärluft) ab (siehe Gleichungen 6.8-17). Bei gleichbleibender Flammrohrtemperatur und variierender thermischer Leistung (150 kW bis $400 k W$) errechnet sich ein absoluter Wärmeverlust \dot{Q}_{W} von 8 bis $12 k W$. Je größer die thermische Leistung in der Primärkammer, umso geringer fällt der prozentuelle Wärmeverlust aus.

Im folgenden werden Temperaturen $T I-1$ in Abhängigkeit zur Luftzahl gemessen und den Berechnungsergebnissen des Vergasungsgleichgewichtes gegenübergestellt. Die Berechnungen der Temperaturen T_{V} bei unterstöchiometrischer Verbrennung von schwedischem Holzstaub, Fichtenspänen und Buchenspänen werden mit einem mittleren Wärmeverlust der Primärbrennkammer von $10 k W$ durchgeführt.

8.2.3.1 Schwedischer Holzstaub

Schwedischer Holzstaub wird bei unterschiedlichen unterstöchiometrischen Lufteinstellungen λ_{V} in der Zyklonkammer vergast und in der Sekundärbrennkammer nachverbrannt.
Abbildung 8.3 zeigt die mit dem Thermoelement $T I-1$ gemessenen Temperaturen in der Zyklonkammer. Ebenfalls dargestellt ist die mit Hilfe des Wassergasgleichgewichtes nach Kapitel 8.2.2 iterativ berechnete Vergasungsgleichgewichtstemperatur T_{V} sowie die berechnete Gaszusammensetzung.
Die Ascheerweichungstemperatur des schwedischen Holzstaubes (siehe Tab.8.3) limitiert die Verbrennung auf Feuerraumtemperaturen $<1250^{\circ} \mathrm{C}$. Die Verbrennungsversuche in der zweistufigen Brennkammer ergeben, daß in der Zyklonkammer ab Luftzahlen $\lambda_{V} \sim 0.63$ Vergasungstemperaturen größer $1250^{\circ} C$ auftreten. Bei Luftverhältnissen $\lambda_{V}<0.45$ liegen die Temperaturen in der Primärkammer unter $1000^{\circ} \mathrm{C}$.

Abbildung 8.4: Vergasungsgleichgewicht; schwedischer Holzstaub

Abbildung 8.4 zeigt gute Übereinstimmung zwischen dem berechneten Temperaturverlauf und den gemessenen Temperaturen $T I-1$ im Bereich $0.45<\lambda_{V}<0.6$. Für kleinere $\lambda_{V^{-}}$ Werte erzielt die Rechnung geringere Temperaturen als tatsächlich gemessen werden.
Verantwortlich dafür ist die temperaturabhängige Reaktionsgeschwindigkeit bei der homogenen Wassergasreaktion. Erst bei Temperaturen ab $950^{\circ} \mathrm{C}$ ist die Reaktion schnell genug, sodaßs sich bei Verbrennungs- und Vergasungsreaktionen mit Luft das Reaktionsgleichgewicht K_{W} einstellt [76, 74, 52]. Das Gleichgewichtsmodell kann somit im Temperaturbereich unter $950^{\circ} \mathrm{C}$ nicht mehr angewendet werden, die Vergasung muß mit einem kinetischen Berechnungsmodell simuliert werden.
Das Berechnungsmodell liefert für Luftzahlen $\lambda_{V} \sim 0.65-1$ Reaktionstemperaturen von $1400-1900^{\circ} \mathrm{C}$. Praktisch lassen sich in der Verbrennungszone aber maximal Temperaturen von $1500^{\circ} \mathrm{C}$ erzielen [25, 21].
$\mathrm{Ab} 1400^{\circ} \mathrm{C}$ beginnen die Verbrennungs- bzw. Vergasungsprodukte zu dissoziieren.

$$
\begin{align*}
& 2 \mathrm{CO}_{2} \stackrel{K_{\text {diss } \mathrm{CO}_{2}}}{\rightleftharpoons} 2 \mathrm{CO}+\mathrm{O}_{2} \quad \Delta H=567 \frac{\mathrm{~kJ}}{\mathrm{~m}_{N}^{3}} \tag{8.24}\\
& 2 \mathrm{H}_{2} \mathrm{O} \tag{8.25}\\
& \stackrel{K_{\text {diss }} \mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} 2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad \Delta H=482 \frac{\mathrm{~kJ}}{\mathrm{~m}_{N}^{3}}
\end{align*}
$$

Die mehratomigen Verbrennungsprodukte CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ zerfallen. Diese Vorgänge sind endotherm, entziehen dem Feuerraum Wärme [13, 25] und senken dadurch die tatsächliche Gastemperatur. Mit zunehmender Temperatur steigt der Grad der Dissoziation, die Reaktionsgleichgewichte $K_{d i s s \mathrm{CO}_{2}}$ und $K_{d i s s \mathrm{H}_{2} \mathrm{O}}$ verschieben sich zu den rechtsseitigen Reaktionspartnern. Da das Berechnungsmodell keine Dissotiationseffekte berücksichtigt, können nur Vergasungsgleichgewichte bis $1400^{\circ} \mathrm{C}$ berechnet werden.
Im unteren Teil der Abbildung 8.4 ist die berechnete Gleichgewichtszusammensetzung des Heilgases dargestellt. Während der Anteil von CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ im Heißgas mit zunehmendem λ_{V} steigt, nehmen die CO - und H_{2}-Konzentrationen kontinuierlich ab. Bei $\lambda_{V}=1$ (stöchiometrische Verbrennung) befinden sich theoretisch keine Verbrennungszwischenprodukte (CO und H_{2}) im Verbrennungsgas. Kohlenstoff und Wasserstoff sind vollständig zu CO_{2} und $\mathrm{H}_{2} \mathrm{O}$ oxidiert.

8.2.3.2 Fichtenspäne

Die Fichtenspäne werden ebenfalls bei unterschiedlichen unterstöchiometrischen Lufteinstellungen in der Zyklonkammer vergast und in der Sekundärbrennkammer nachverbrannt.

Abbildung 8.5: Vergasungsgleichgewicht; Fichtenspäne

Abbildung 8.5 zeigt die bei der Verbrennung der Fichtenspäne gemessenen Gastemperaturen TI-1 sowie die mit Hilfe des Wassergasgleichgewichtes berechneten Vergasungstemperatu-
ren T_{V} und Gleichgewichtszusammensetzungen.
Wie bei der Verbrennung des schwedischen Holzstaubes stimmen die berechnete und gemessen Temperatur im Bereich $1000^{\circ} \mathrm{C}-1350^{\circ} \mathrm{C}$ annähernd überein.
Im Gegensatz zum schwedischen Holzstaub haben die Fichtenspäne aufgrund des höheren Feuchtegehalts einen geringeren Heizwert H_{u} (siehe Tab.8.1). Die bei der Reaktion im Feuerraum freiwerdende Energie ist dadurch um ca. 10% geringer als bei der Vergasung des schwedischen Holzstaubes. Bei gleicher Luftzahl λ_{V} stellen sich bei der Vergasung von Fichtenspänen kleinere Temperaturen als bei der Vergasung von schwedischem Holzstaub ein.
Die Erweichung der bei Verbrennung von Fichtenholz anfallenden Asche setzt bei Temperaturen über $1360^{\circ} \mathrm{C}$ ein. Verwendet man Fichtenspäne als Brennstoff kann die Brennkammer bis zu Temperaturen von $1350^{\circ} \mathrm{C}$ betrieben werden.

8.2.3.3 Buchenspäne

Bei der unterstöchiometrischen Verbrennung der Buchenspäne stellen sich beinahe die gleichen Temperaturen wie bei der Verbrennung der Fichtenspäne ein. Aufgrund des ähnlichen Feuchtegehaltes der beiden Holzsorten weisen beide Brennstoffe beinahe identische Heizwerte H_{u} auf. Bei der Reaktion mit Sauerstoff wird somit die gleiche Energie freigesetzt.

Abbildung 8.6: Vergasungsgleichgewicht; Buchenspäne

Auch bei der Vergasung der Buchenspäne zeigen die Meßwerte und der berechnete Temperaturverlauf gute Übereinstimmung im Temperaturbereich $1000^{\circ} \mathrm{C}-1250^{\circ} \mathrm{C}$ (siehe Abb.8.6).

Analog zu den Ergebnissen bei derVergasung von schwedischem Holzstaub und von Fichtenspänen kann aus Abbildung 8.6 auch die Gleichgewichtszusammensetzung des Heißgases entnommen werden.
Da Buchenasche bei Temperaturen um $1250^{\circ} \mathrm{C}$ zu Erweichen beginnt, soll die Vergasung nur bis zu Luftzahlen $\lambda_{V}<0.7$ durchgeführt werden. Temperaturen über $1250^{\circ} C$ führten in der Brennkammer zu Ascheanbackungen.

8.2.3.4 Vergleich der Vergasungstemperaturen

Aus den Verbrennungsversuchen mit den drei Brennstoffen wird ersichtlich, daß der Feuchtegehalt und der damit verbundene Heizwert des jeweiligen Brennstoffes maßgeblichen Einfluß auf die luftzahlabhängigen Vergasungstemperaturen in der Zyklonkammer ausüben. Abbildung 8.7 zeigt die berechneten Gleichgewichtstemperaturen vom schwedischen Holzstaub, der Fichtenspäne und der Buchenspäne.

Abbildung 8.7: Gegenüberstellung der berechneten Vergasungstemperaturen

Bei der Vergasung des schwedischen Holzstaubes ($u_{r o h}=3 \%$) treten höhere Gleichgewichtstemperaturen auf als bei der Vergasung von Fichtenspäne ($u_{r o h}=10.3 \%$) und Buchenspäne ($u_{r o h}=9 \%$). Je höher der Feuchtegehalt im Brennstoff, umso geringer ist die Vergasungstemperatur T_{V}. Bei der Vergasung feuchter Brennstoffe verschiebt sich der Betriebsbereich der Zyklonkammer zu höheren unterstöchiometrischen Luftzahlen λ_{V}.

Im Temperaturbereich $1000^{\circ} C-1300^{\circ} C$ läßt sich mit Hilfe des Wassergasgleichgewichtes die Vergasungstemperatur in der Zyklonkammer ausreichend genau berechnen. Das Berechnungsmodell bietet die Möglichkeit das Zyklonkammerverhalten bei Verwendung neuer Brennstoffe zu berechnen. Bei bekannter Immediatanalyse des Brennholzes lassen sich Verbrennungstemperaturen in Abhängigkeit von λ_{V} vorausberechnen.
Weiters kann mit Hilfe des Wassergasgleichgewichtes der Einfluß von Verbrennungsluftvorwärmung simuliert werden. Durch erweitern von Gleichung 8.23 kann der zusätzliche Energieeintrag $Q_{L u f t}$ in den Feuerraum rechnerisch erfaßt werden:

$$
\begin{equation*}
m_{B r} H_{V e r g a s}+Q_{L u f t}-Q_{w}=\left(\nu_{C O_{2}}+\nu_{C O}+\nu_{H_{2} \mathrm{O}}+\nu_{H_{2}}+\nu_{N_{2}}\right) h\left(T_{V}\right) \tag{8.26}
\end{equation*}
$$

Der Einsatz eines Rekuperators kann somit simuliert und ein entsprechender Betriebsbereich der Zyklonkammer in Abhängigkeit vom verwendeten Brennstoff festgelegt werden.

8.2.4 Nachbrennkammer

In der Nachbrennkammer werden die im Heißgas der Zyklonkammer enthaltenen Verbrennungszwischenprodukte (CO und H_{2}) oxidiert. Betrachtet man primäre und sekundäre Verbrennung vereint, so kann die gesamte Reaktion in der zweistufigen Brennkammer als überstöchiometrische Verbrennung ($\lambda>1$) angesehen werden. Die Summe aus dem in die Zyklonkammer eingebrachten Luftstrom \dot{m}_{V} und dem Sekundärluftstrom $\dot{m}_{s e k}$ ergeben den für die gesmate Verbrennung zur Verfügung stehenden Verbrennungsluftstrom \dot{L}.
Am Austritt aus der Primärkammer trifft das Heißgas auf die Sekundärluft ${ }^{4}$. Die beiden Gasströme mischen sich und beim axialen Durchströmen der Nachbrennkammer reagiert der zugeführte Sauerstoff der Sekundärluft mit CO und H_{2} zu CO_{2} und $\mathrm{H}_{2} \mathrm{O}$. Die im Heißgas der Zyklonkammer enthaltene Energie (Heizwerte von CO und H_{2}) wird freigesetzt.
Im Gegensatz zum Reaktionsverhalten der Zyklonkammer (ähnlich einem Rührkessel) erfolgt die Nachverbrennung in der Sekundärkammer axial über die Brennkammerhöhe verteilt (ähnlich einem Rohrreaktor). Nachdem im unteren Teil der Nachbrennkammer die Gasströme aufeinandertreffen, setzen die Verbrennungsreaktionen ein. Am Austritt aus der Sekundärkammer liegen nur noch Verbrennungsendprodukte vor.
Damit in der Sekundärkammer die Oxidation der Komponenten CO und H_{2} einsetzt muß eine gute Vermischung des CO - und H_{2}-hältigen Heißgases mit dem eingebrachten Sauerstoff erfolgen. Gleichzeitig dürfen die gasförmigen $\mathrm{CO}-$ und H_{2}-Komponenten von der Sekundärluft (Eintrittstemperatur der Sekundärluft $30-70^{\circ} \mathrm{C}$, bei Gasturbinenbetrieb bis zu $200^{\circ} \mathrm{C}$) nicht unter die jeweiligen Zündtemperaturen (siehe Tab.8.6) abgekühlt werden.

	CO	H_{2}
Zündtemperatur	$610^{\circ} \mathrm{C}$	$530^{\circ} \mathrm{C}$

Tabelle 8.6: Zündtemperatur CO und H_{2} (als Gemisch mit Luft) [34]

Um eine vollständige Nachverbrennung in der Sekundärkammer zu erzielen, muß der Sekundärluftmassenstrom auf die Temperatur und den Massenstrom des Heißgases der Zyklonkammer abgestimmt werden.
In der Sekundärkammer wird mit einem strahlungsgeschützten Typ B Thermoelement die Temperatur an der Stelle $T I-2$ gemessen (siehe Abb.6.5). TI-2 representiert den Fortschritt der Nachverbrennung in der Sekundärkammer. Je höher die gemessene Temperatur $T I-2$ umso weiter ist der $\mathrm{CO}-$ bzw. $\mathrm{H}_{2}-$ Ausbrand in Höhe der Meßstelle fortgeschritten. Verbrennungsversuche in der zweistufigen Brennkammer ergeben, daß bei Temperatur $T I-2<700^{\circ} C$ die Verweilzeit in der Nachbrennkammer nicht ausreicht um am Austritt aus der Nachbrennkammer eine vollständige Oxidation des $C O$ zu erzielen. Die Zumischung von Tertiärluft $\dot{m}_{t e r}$ am Sekundärkammeraustritt kühlt den Abgasstrom der Brennkammer weiter ab, nichtoxidiertes $C O$ wird über den Abgaskanal in die Umgebung ausgetragen.
Die Auswertung der Verbrennungsversuche ergibt weiters, daß die Temperatur an der Stelle $T I-2$ abhängig vom Luftstufungsverhältnis ψ

$$
\begin{equation*}
\psi=\frac{\dot{m}_{s e k}}{\dot{m}_{V}} \tag{8.27}
\end{equation*}
$$

ist.
Die Verbrennung in der zweistufigen Brennkammer erfolgt mit dem Luftmassenstrom \dot{L}. Dieser Luftmassenstrom teilt sich wie folgt auf Zyklonkammer und Nachbrennkammer auf:

[^9]\[

$$
\begin{equation*}
\dot{L}=\dot{m}_{V}+\dot{m}_{S e k} \tag{8.28}
\end{equation*}
$$

\]

oder mit Gleichung 2.22:

$$
\begin{equation*}
\lambda L_{m i n}=\lambda_{V} L_{m i n}+\left(\lambda-\lambda_{V}\right) L_{m i n} \tag{8.29}
\end{equation*}
$$

Abbildung 8.8 zeigt den Einfluß von λ und λ_{V} auf das Luftstufungsverhältnis ψ.

Abbildung 8.8: Brennluftverhältnisse in der Brennkammer

Mit steigendem ψ wird die Abkühlung des Heißgases verstärkt. Die rasche Oxidation der Komponenten CO und H_{2} wird nicht mehr gewährleistet. Verbrennungsversuche in der zweistufigen Brennkammer ergeben einen deutlichen Anstieg von $C O$-Emissionen im Abgaskanal bei Luftstufungsverhältnissen $\psi>3$.
Wird bei gleichbleibendem λ die Luftzahl λ_{V} in der Zyklonkammer reduziert, so steigt das Luftstufungsverhältnis ψ. Je nach Verbrennungsführung in der Zyklonkammer (λ_{V}) muß die Gesamtluftzahl der Verbrennung angepaßt sein. Um eine schadstoffarme Verbrennung hinsichtlich $C O$-Emissionen zu erzielen, muß bei $\lambda_{V} \sim 0.4-0.5$ die Gesamtluftzahl $\lambda<2$ sein um $\psi<3$ zu erzielen (siehe Abb.8.8).
Die Gesamtluftzahl λ bei der Verbrennung in der gestuften Brennkammer soll $\lambda=1.4$ nicht unterschreiten, weil bei zu geringen Luftüberschüssen die Reaktionstemperaturen in der Nachbrennkammer steigen und die Ascheerweichungstemperaturen überschritten werden. Bei Verbrennung von schwedischem Holzstaub konnten bei $\lambda \sim 1.3$ erste Ascheanpackungen in der Sekundärkammer festgestellt werden.
Bei Luftstufungsverhältnissen $\psi<3$ hängt die Gastemperatur am Austritt der Sekundärbrennkammer nur von der Gesamtluftzahl λ ab. Die Verbrennungszwischenprodukte sind nahezu vollständig oxidiert, der gesamte Heizwert des in der Zyklonkammer eingebrachten Holzes ist vollständig freigesetzt worden.

8.2.5 Brennkammeraustritt

Die Austrittstemperatur aus der zweistufigen Brennkammer ergibt sich als Mischtemperatur zwischen dem Heißgasstrom der Nachbrennkammer und der Tertiärluft. Der Tertiärluftstrom $\dot{m}_{t e r}$ dient einerseits zur Kühlung der Nachbrennkammer und andererseits zur Regelung der Temperatur des Heißgasstroms $\dot{m}_{\text {Heissgas }}$.
Mit Hilfe eines Typ K Thermoelementes wird an der Position TI-3 die Temperatur des Heißgasstroms (T_{3}) gemessen (siehe Abb.5.2). Abhängig vom Kühlluftmassenstrom $\dot{m}_{t e r}$ können Heißgastemperaturen bis zu $800^{\circ} C$ (Grenzwert der Rohrleitungsbelastung) erzielt werden. Der Heißgasmassenstrom $\dot{m}_{\text {Heissgas }}$ ergibt sich zu:

$$
\begin{equation*}
\dot{m}_{\text {Heissgas }}=\dot{m}_{\text {Brennluft }}+\dot{m}_{\text {Brennstoff }} \tag{8.30}
\end{equation*}
$$

mit

$$
\begin{equation*}
\dot{m}_{B r e n n l u f t}=\dot{m}_{F}+\dot{m}_{p r i m}+\dot{m}_{s e k}+\dot{m}_{t e r} \tag{8.31}
\end{equation*}
$$

8.3 Betriebsbereiche der zweistufigen Brennkammer

Tabelle 8.7 zeigt die erfolgreich getesteten Betriebsbereiche der zweistufigen Brennkammer (Versuchsübersicht siehe Anhang B).

	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
Brennkammerdruck	$1-1.7 \mathrm{bar}$	$1-1.7 \mathrm{bar}$	$1-1.7 \mathrm{bar}$
Gesamtluftzahl λ	$1.4-2.2$	1.42	1.42
Primärluftzahl λ_{V}	$0.45-0.65$	$0.45-0.75$	$0.42-0.7$
Brennkammeraustrittstemperatur	bis $800^{\circ} \mathrm{C}$	bis $800^{\circ} \mathrm{C}$	bis $800^{\circ} \mathrm{C}$
thermische Brennkammerleistug	$150-290 \mathrm{~kW}$	$180-310 \mathrm{~kW}$	$180-290 \mathrm{~kW}$

Tabelle 8.7: Leistungsbereich der gestuften Brennkammer

Der Druck in der Brennkammer wird vom maximal erzielbaren Austrittsdruck des verwendeten Radialverdichters begrenzt. Der Brennkammerdruck von 1.7 bar stellt keine Betriebsgrenze der Brennkammer dar. Die Betriebsbereiche von λ und λ_{V} entsprechen den in Kapitel 8.2.3-4 getroffenen Überlegungen.

Der erzielbare Heifgasmassenstrom $\dot{m}_{\text {Heissgas }}$, der für den Betrieb einer Gasturbine zur Verfügung steht, ergibt sich als Funktion der Brennkammeraustrittstemperatur und der über den Brennstoff eingebrachten thermischen Leistung ($\dot{m}_{B r e n n s t o f f} H_{u}$).

$$
\begin{equation*}
\dot{m}_{H e i s s g a s}=\frac{\dot{m}_{B r e n n s t o f f} H_{u}+\dot{m}_{B r e n n l u f t} h_{L}}{\bar{c}_{p, \text { Heissgas }} T_{3}} \tag{8.32}
\end{equation*}
$$

Abhängig vom verwendeten Brennstoff und vom jeweiligen Wassergehalt $u_{r o h}$ unterscheiden sich die bei der Verbrennung erzielbaren Heißgasmassenströme. Im folgenden werden die nach Gleichung 8.30 berechneten Heißgasströme (als Funktion der eingebrachten Holzmenge) gemessenen Betriebspunkten gegenübergestellt:

Abbildung 8.9: Heißgas bei Verbrennung von schwedischem Holzstaub
Die bei der Verbrennung von schwedischem Holzstaub erzielten Heißgasmassenströme $\dot{m}_{\text {Heissgas }}$ liegen unter den mittels Gleichung 8.32 berechneten Werten (siehe Abb.8.9). Verantwortlich dafür sind Wärmeverluste in der Brennkammer und beim Durchströmen der nicht isolierten Heilgasleitung (Brennkammeraustritt bis zur Meßstelle TI-3).

Abbildung 8.10: Heifgas bei Verbrennung von Fichtenspänen
Bei der Verbrennung der Fichtenspäne liegen die Meßwerte für $\dot{m}_{\text {Heissgas }}$ ebenfalls unter den berechneten Massenströmen (siehe Abb.8.10). Wiederum sind Wärmeverluste in der Anlage verantwortlich für die Differenz.

Im direkten vergleich von Abbildung 8.9 und 8.10 wird der größere Heizwert H_{u} des schwedischen Holzstaubes ersichtlich. Verbrennt man gleiche Holzmengen (in Abb.8.9 und 8.10 für $40 \mathrm{~kg} / \mathrm{h}$ bzw. $55 \mathrm{~kg} / \mathrm{h}$ dargestellt) zur Erzielung identischer Heißgastemperaturen T_{3}, so erhält man bei der Verwendung von schwedischem Holzstaub größere Heißgasmassenströme.

Abbildung 8.11: Heißgas bei Verbrennung von Buchenspänen
Abbildung 8.11 zeigt die berechneten und gemessenen Heißgasmassenströme bei der Verbrennung von Buchenspänen. Da die Heizwerte von Buchenspänen und Fichtenspänen beinahe identisch sind (siehe Tab.8.1), ergibt sich ein annähernd gleiches Verhalten hinsichtlich Heißgasstrom und Heißgastemperatur.

8.4 Druckverlust der Anlage

Beim Betrieb einer Gasturbine verringert der Druckverlust zwischen Verdichteraustritt und Turbineneintritt die technische Nutzarbeit (Gl.3.13). Der Wirkungsgrad einer Anlage wird reduziert (siehe Kapitel 3).
Die Versuchsanlage simuliert mit Hilfe einer Drosselklappe einen offenen Gasturbinenprozeß. Der Gesamtdruckverlust $\Delta p_{G e s}$ zwischen Radialverdichteraustritt ($P I-6$) und Drosselklappeneintritt ($P I-8$) wird somit den Wirkungsgrad des geplanten offenen Gasturbinenprozesses entscheidend beeinflussen (siehe Abb.8.12).
Von besonderem Interesse ist der vom Axialzyklon verursachte Teildruckverlust Δp_{Z}. Gegenüber herkömmlichen Zyklonabscheidern wurde der Axialzyklon zur Erzielung eines möglichst geringen Druckverlusts Δp_{Z} konstruiert.
Im Folgenden wird für die Untersuchung des Gesamtdruckverlusts $\Delta p_{G e s}$ und des Zyklondruckverlusts Δp_{Z} die Anlage vom Verdichteraustritt bis zum Drosselklappeneintritt in zwei Bereiche unterteilt:

Radialverdichteraustritt bis Brennkammeraustritt: $\Delta p_{R, B K}$
Axialzykloneintritt bis Axialzyklonaustritt: Δp_{Z}

Aufgrund der Meßungenauigkeit der Absolutdruckaufnehmer werden die im folgenden dargestellten Relativdrücke zwischen $P I-6$ und $P I-3$ sowie zwischen $P I-3$ und $P I-8$ mit Hilfe von Relativdruckaufnehmern ermittelt (siehe Abb.8.12 und Tab.5.1).

Abbildung 8.12: Druckmeßstellen in der Versuchsanlage

8.4.1 Druckverlust Radialverdichteraustritt - Brennkammeraustritt

Der Druckverlust $\Delta p_{R, B K}(P I-6$ bis $P I-3)$ setzt sich aus den Teilverlusten der parallel und in Serie geschalteten Komponenten und Rohrstränge zusammen (siehe Abb.8.12). Meßblenden und Stellventile bzw. Rückschlagklappen, die für den Versuchsbetrieb der Anlage unbedingt erforderlich sind, sowie Rohrleitungen und die zweistufige Brennkammer verursachen luftmassenstromabhängige Druckverluste. Je nach gewünschten Verbrennungsbedingungen in der Brennkammer wird mit Hilfe der Stellventile die Verdichterluft im Rohrleitungsnetz vor der Brennkammer aufgeteilt. Der Druckverlust $\Delta p_{R, B K}$ wird von der Verbrennungsführung in der Brennkammer bestimmt.
Der Druckverlust vom Radialverdichteraustritt $P I-6$ ($p_{6}, \rho_{L u f t, T_{6}}$ und v_{6}) bis zum Axialzykloneintritt PI-3 ($p_{3}, \rho_{\text {Heissgas }}$ und v_{3}) kann wie folgt ermittelt werden:

$$
\begin{equation*}
\Delta p_{R, B K}=\left(p_{6}+\rho_{\left(L u f t, T_{6}\right)} \frac{v_{6}^{2}}{2}\right)-\left(p_{3}+\rho_{H e i s s g a s} \frac{v_{3}^{2}}{2}\right) \tag{8.33}
\end{equation*}
$$

Die Verbrennung in der Brennkammer erhöht den Druckverlust $\Delta p_{R, B K}$. Durch die Bildung des Heißgases in der Brennkammer steigt das Gasvolumen und der Druckverlust nimmt gegenüber einem Kaltgasbetrieb (Durchströmen der Anlage mit Luft ohne Verbrennungsreaktion) zu.

Abbildung 8.13: Druckverlust: Radialverdichteraustritt bis Brennkammeraustritt

Abbildung 8.13 zeigt den Druckverlust $\Delta p_{R, B K}$ bezogen auf die Radialverdichteraustrittsgeschwindigkeit v_{R}. Die Druckverluste wurde ermittelt bei vollständig geöffneten Ventilen $V 4$, $V 5, V 9$ und $V 2$. Mefswerte $30^{\circ} \mathrm{C}$ stellen Kaltgasbetrieb (keine Verbrennungsreaktion in der Brennkammer) dar. Meßwerte $600^{\circ} \mathrm{C}\left(T_{3}=600^{\circ} \mathrm{C}\right.$) und Meßwerte $700^{\circ} \mathrm{C}\left(T_{3}=700^{\circ} \mathrm{C}\right)$ zeigen die Druckverluste bei der Verbrennung von schwdischem Holzstaub ($40 \mathrm{~kg} / \mathrm{h}$).
Der Druckverlust der Brennkammer nimmt bei steigenden Brennkammeraustrittstemperaturen zu. Höhere Temperaturen und die daraus resultierenden steigenden Gaszähigkeiten und steigenden Strömungsgeschwindigkeiten bewirken in der zweistufigen Brennkammer größere Druckverluste (siehe Abb.8.13, Meßwerte $600^{\circ} \mathrm{C}$ und $700^{\circ} \mathrm{C}$).
Δp_{M}, die Summe der Druckverluste der in Serie geschalteten Blenden $D 2$ und D4, verursacht den größfen Teil des Druckverlusts zwischen Radialverdichteraustritt und Brennkammeraustritt (siehe Tab. B.1).

	Abgas- temp. $\left[{ }^{\circ} C\right]$	$\Delta p_{R, B K}$ $[\mathrm{~Pa}]$	Δp_{M} $[\mathrm{~Pa}]$	$\frac{\Delta p_{M}}{\Delta p_{R, B K}}$ Schwedischer Holzstaub
	700	1900	1400	0.75
	600	2100	1550	0.75
	30	1500	1300	0.87

Tabelle 8.8: Anteil von Δp_{M} an $\Delta p_{R, B K}$

Im Kaltgasbetrieb sind die Meßblenden für bis zu 87% des Druckverlustes $\Delta p_{R, B K}$ verantwortlich. Im Heißgasbetrieb (Verbrennung in der Brennkammer) reduziert sich der Anteil von Δp_{M} gegenüber $\Delta p_{R, B K}$. Dennoch verursachen die Mefßblenden annähernd 75% des Druckverlustes zwischen Radialverdichteraustritt und Brennkammeraustritt.

8.4.2 Druckverlust Axialzykloneintritt - Axialzyklonaustritt

Der Druckverlust beim Durchströmen des Axialzyklons wird zwischen Zykloneintritt PI-3 (p_{3} und v_{3}) und Zyklonaustritt $P I-8$ (p_{8} und v_{8})ermittelt. Der Druckverlust Δp_{Z} ergibt sich zu:

$$
\begin{equation*}
\Delta p_{Z}=\left(p_{3}+\rho \frac{v_{3}^{2}}{2}\right)-\left(p_{8}+\rho \frac{v_{8}^{2}}{2}\right) \tag{8.34}
\end{equation*}
$$

Bezieht man den Druckverlust Δp_{Z} auf die Tauchrohrgeschwindigkeit $v_{T, Z y k l o n}$ so kann Δp_{Z} wie folgt angeschrieben werden:

$$
\begin{equation*}
\Delta p_{Z}=\zeta_{Z y k l o n} \frac{\rho_{\text {Heissgas }} v_{T, Z y k l o n}^{2}}{2} \tag{8.35}
\end{equation*}
$$

$\rho_{\text {Heissgas }}$ bezeichnet eine mittlere Abgasdichte.

Abbildung 8.14: Druckverlust im Axialzyklon

Abbildung 8.14 zeigt die gemessenen Druckverluste Δp_{Z} beim Durchströmen des Axialzyklons. Nach Gleichung 8.35 lassen sich die Meßwerte mit $\zeta_{Z y k l o n}=5.5$ annähern.
Während herkömmliche Zyklone Druckverlustbeiwerte >7 aufweisen [33] verursacht der Axialzyklon aufgrund der Verwendung eines geschlitzten Spalttauchrohres deutlich geringere Druckverluste [59].

8.4.3 Bewertung der Druckverluste

Der gesamte Druckverlust $\Delta p_{G e s}$ vom Radialverdichteraustritt bis zum Drosselklappeneintritt ergibt sich als Summe:

$$
\begin{equation*}
\Delta p_{G e s}=\Delta p_{Z}+\Delta p_{R, B K} \tag{8.36}
\end{equation*}
$$

Tabelle 9.1 zeigt den gesamten Druckverlust $\Delta p_{G e s}$ in Abhängigkeit vom verwendeten Brennstoff und der eingebrachten thermischen Leistung. Weiters zeigt Tabelle 8.9 den Anteil des Zyklondruckverlustes Δp_{z} und den Anteil des Mefblendendruckverlustes Δp_{M} am Gesamtdruckverlust ziwschen $P I-6$ und $P I-8$.

	$\begin{gathered} \mathrm{Holz} \\ {[\mathrm{~kg} / \mathrm{h}]} \\ \hline \end{gathered}$	$\begin{gathered} \text { Abgas- } \\ \text { temp. }\left[{ }^{\circ} \mathrm{C}\right] \\ \hline \end{gathered}$	$\begin{gathered} \Delta p_{R, B K} \\ {[\mathrm{~Pa}]} \\ \hline \end{gathered}$	$\begin{gathered} \Delta p_{M} \\ {[\mathrm{~Pa}]} \\ \hline \end{gathered}$	$\begin{aligned} & \Delta p_{Z} \\ & {[\mathrm{~Pa}]} \\ & \hline \end{aligned}$	$\begin{gathered} \Delta p_{\text {Ges }} \\ {[\mathrm{Pa}]} \\ \hline \end{gathered}$	$\frac{\Delta p_{Z}}{\Delta p_{G e s}}$	$\frac{\Delta p_{M}}{\Delta p_{\text {Ges }}}$
Schwedischer Holzstaub	55	700	3500	2400	1700	$\begin{aligned} & \hline 5200 \\ & 5900 \end{aligned}$	0.33	0.46
		600	4000	2700	1900		0.32	0.46
	40	700	1900	1400	1000	$\begin{aligned} & 2900 \\ & 3400 \end{aligned}$	0.34	0.48
		600	2100	1550	1300		0.38	0.45
Fichtenspäne	55	700	2800	1800	1300	$\begin{aligned} & \hline 4100 \\ & 5400 \\ & 3500 \\ & 3000 \end{aligned}$	0.32	0.44
		600	3500	2400	1900		0.35	0.44
	40	700	2000	1500	1500		0.3	0.43
		600	2100	1400	900		0.3	0.46
Buchenspäne	55	700	2800	1800	1300	$\begin{aligned} & \hline \hline 4100 \\ & 5150 \end{aligned}$	0.32	0.44
		600	3500	2300	1650		0.32	0.45
	40	700	1700	1100	900	$\begin{aligned} & 2600 \\ & 2900 \end{aligned}$	0.35	0.42
		600	1900	1400	1000		0.34	0.48

Tabelle 8.9: Anlagendruckverlust

Die Meßblenden der Versuchsanlage verursachen ungefähr 45% des gesamten Druckverlustes $\Delta p_{\text {Ges }}$. Um den Druckverlust in der Anlage zu reduzieren bieten diese Meßblenden das größte Einsparungspotential. Im Hinblick auf einen guten Wirkungsgrad beim Betrieb einer Turbine sollte deshalb eine Veränderung der Mefblendenschaltung oder eine alternative Massenstrommessung in Betracht gezogen werden.
Beim Aufbau der Versuchsanlage wurde auf eine Optimierung der Druckverluste verzichtet. Der Anlagenwirkungsgrad war bei den Verbrennungsversuchen von untergeordneter Bedeutung.
Bei der Realisierung einer direkt gefeuerten Gasturbine ist es jedoch für die Erzielung eines vernünftigen Wirkungsgrades umbedingt notwendig, daß die Druckverluste in der Anlage minimiert werden (vgl. Kapitel 3).

Kapitel 9

Schadstoffe

Bei der Verbrennung von Holz werden neben Kohlendioxid und Wasser verschiedene umweltbelastende Schadstoffe freigesetzt. Bei unvollständiger Verbrennung gelangen Kohlenmonoxid und Kohlenwasserstoffe (CO und $C_{n} H_{m}$) sowie durch vollständige Verbrennung Stickoxide ($N O_{x}$) und Staubemissionen in die Atmosphere. Die gasförmigen Schadstoffe können durch geeignete Verbrennungsführung großteils verhindert und die festen Staubbeladungen durch den Einsatz von Entstaubern (Axialzyklon) reduziert werden.
In Österreich gelten für den Betrieb von Holzfeuerungsanlagen folgende Grenzwerte (siehe Tab.9.1); alle Werte bezogen auf $\mathbf{1 3 \%} O_{2}$.

Brennstoffleistung:	$\leq 100 \mathrm{~kW}$	$100-350 \mathrm{~kW}$	$350-2000 \mathrm{~kW}$
$C O\left[\mathrm{mg} / \mathrm{m}_{\mathrm{N}}^{3}\right]$	800	800	250
$C_{n} \mathrm{H}_{m}\left[\mathrm{mg} / \mathrm{m}_{N}^{3}\right]$	Abfallholz	500	50
$N O_{x}\left[\mathrm{mg} / \mathrm{m}_{N}^{3}\right]$	Hartholz	300	500
	Weichholz	250	300
	150	250	300
			150
250			

Tabelle 9.1: Österreichische Luftreinhalteverordnung BGBI.Nr.331/1997, Holzfeuerungen

Mit dieser Verordnung des Wirtschaftsministers vom 18.11.1997 wird auf Grund der Bestimmungen des § 82 GewO 1994 i.d.F. der Novelle 1997 die Aufstellung und der Betrieb von Holzfeuerungsanlagen in genehmigten, gewerblichen Betriebsanlagen zur Erzeugung von Prozeßwärme geregelt. Im folgenden werden die beim Betrieb der Versuchsanlage gemessenen Schadstoffemissionen in Abhängigkeit vom jeweiligen Brennstoff und der Verbrennungsführung dargestellt und den Grenzwerten des BGBl.Nr.331/1997 gegenübergestellt. Alle dargestellten Meßergebnisse sind auf $13 \% O_{2}$ umgerechnet.

9.1 Kohlenmonoxid

Um eine kohlenmonoxidarme Verbrennung zu erzielen, sollte die Oxidation des Kohlenstoffes bzw. des bereits durch Teiloxidation gebildeten Kohlenmonoxides bei möglichst hohen Temperaturen und unter geringem Luftüberschuß erfolgen [70]. Hohe Temperaturen ($>800^{\circ} \mathrm{C}$) beschleunigen den Oxidationsvorgang und erfordern geringere Gasverweilzeiten in der Verbrennungszone.
Bei der Verbrennung von Holz kann folgende Korrelation zwischen $C O$ und λ angegeben werden [35]:

Abbildung 9.1: $C O-\lambda$-Korrelation [35]

Abbildung 9.1 zeigt die schematische Darstellung der CO -Emissionen in Abhängigkeit vom Luftüberschuß in der gesamten Verbrennungszone. Im Bereich A verringern sich die $\mathrm{CO}-$ Emissionen aufgrund des steigenden Sauerstoffeintrages. Mit steigendem Sauerstoffgehalt in der Verbrennungszone verbessert sich der Ausbrand zu CO_{2}. Lokale Zonen mit Sauerstoffmangel werden in der Verbrennungszone reduziert.
Durch Erhöhung des Luftüberschusses sinkt die Verbrennungstemperatur in der Reaktionszone. In den Bereichen B und C steigen die $C O$-Emissionen aufgrund der geringerwerdenden Verbrennungstemperaturen an.
Um eine Minimierung der CO -Emissionen zu erzielen, sollte die Holzverbrennung bei Luftzahlen $\lambda \sim 1.4-1.8$ betrieben werden.

Da die Auslegung der Versuchsanlage Brennkammerheißgastemperaturen $<800^{\circ} \mathrm{C}$ verlangt, muß bei Verbrennung mit $\lambda=1.4 \sim 1.8$ (entspricht Heißgastemperaturen $>1000^{\circ} \mathrm{C}$) der Heißgasstrom gekühlt werden. Zu diesem Zweck wird der Heißgasstrom mit dem Tertiärluftstrom gemischt. Diese dreifache Luftstufung ermöglicht Heißgastemperaturen $<800^{\circ} \mathrm{C}$ (entspricht $\lambda>3$), dennoch erfolgt die Verbrennung in der gestuften Brennkammer kohlenmonoxidarm.
In der zweistufigen Brennkammer wird in der Zyklonkammer unterstöchiometrisch verbrannt und gezielt $C O$ produziert. Bei der überstöchiometrischen Nachverbrennung in der Sekundärkammer wird das CO vollständig zu CO_{2} aufoxidiert:

$$
\begin{equation*}
2 \mathrm{CO}+\mathrm{O}_{2} \xrightarrow{k(T)} 2 \mathrm{CO}_{2} \tag{9.1}
\end{equation*}
$$

$k(T)$ bezeichnet die Reaktionsgeschwindigkeit in Abhängigkeit von der vorherrschenden Reaktionstemperatur. Treffen heißes $C O$ und kalte Nachbrennluft ($\sim 80^{\circ} C$) zusammen, so wird die Reaktionsgeschwindigkeit von der sich einstellenden Mischtemperatur bestimmt [46]. Bei zunehmendem Sekundärluftmassenstrom wird das zu oxidierende $C O$ stärker abgekühlt und die Reaktionszeit zur Umwandlung von CO zu CO_{2} nimmt zu. Abbildung 9.2 zeigt die bei stationärem Brennkammerbetrieb gemessenen CO -Emissionen im Abgas in Abhängigkeit zur Nachbrennkammertemperatur an der Stelle TI-2 (siehe Abb.6.5).

Abbildung 9.2: Einfluß der Mischtemperatur auf CO -Emissionen

Mit steigender Nachbrennkammertemperatur $T I-2$ verringern sich die $C O$-Emissionen im Heißgas.
Die Verbrennung von Fichtenspänen und Buchenspänen verursacht bei gleichen Temperaturen $T I-2$ beinahe identische $C O$-Emissionen im Heißgas (siehe Abb.9.2). Die $C O$-Werte bei der Verbrennung von schwedischem Holzstaub liegen über den Meßwerten der anderen beiden Holzsorten. Bei der Vergasung von schwedischem Holzstaub ergeben sich aufgrund der geringeren λ_{V} (siehe Tab.8.7) höheren $C O$-Konzentrationen in der Vergasungszone (siehe Abb.8.3-5) und somit mehr CO -Emissionen im Abgas.
Der zulässige Grenzwert ($250 \mathrm{mg} / \mathrm{m}_{N}^{3}$) kann beim Betrieb der Anlage unterschritten werden. Mit sinkendem Luftstufungsverhältnis ψ steigt die Temperatur $T I-2$ und das deutliche Reduktionspotential gegenüber dem vorgeschriebenen Grenzwert wird ersichtlich.

9.2 Kohlenwasserstoffe

Bei allen kohlenwasserstoffhältigen Brennstoffen können Pyrolyseprodukte wie Aldehyde (z.B. $\mathrm{CH}_{2} \mathrm{O}$) oder Ketone unverbrannt aus der Flamme austreten [25]. Während CO -Emissionen aufgrund unvollständiger Oxidation des im Brennstoff enthaltenen Kohlenstoffes entstehen, sind $C_{n} H_{m}$-Emissionen dadurch gekennzeichnet, daß sie nie mit Sauerstoff reagiert haben [70].
Aus der Zyklonkammer werden vereinzelt nichtreagierte Holzteilchen ausgetragen, die erst beim Durchströmen der Nachbrennkammer die notwendigen Verbrennungsschritte durchlaufen. Ähnlich der CO -Nachverbrennung laufen diese Schritte (Trocknung, Pyrolyse und Oxidation der Holzpartikel) bei zunehmender Temperatur schneller ab.
Abbildung 9.3 zeigt die bei stationärem Brennkammerbetrieb gemessenen $C_{n} H_{m}$-Emissionen im Abgas in Abhängigkeit zur Nachbrennkammertemperatur $T I-2$.
Die in Abbildung 9.3 dargestellten $C_{n} H_{m}$-Konzentrationen bezeichnen ein Äquivalent zu den unterschiedlichen Kohlenwasserstofformen im Abgas. Die bei der Verbrennung in der zweistufigen Brennkammer gemessenen $C_{n} H_{m}$-Werte entsprechen dem Propanäquivalent.

Abbildung 9.3: Einfluß der Temperatur $T I-2$ auf $C_{n} H_{m}$-Emissionen

Bei der Verbrennung zeigen alle drei Holzsorten ein identisches Verhalten hinsichtlich der Menge an emittierten Kohlenwasserstoffen: Bei steigender Sekundärkammertemperatur TI-2 sinken die $C_{n} H_{m}$ - Konzentrationen im Abgas. Der Grenzwert der österreichischen Luftreinhalteverordnung ($20 \mathrm{mg} / \mathrm{m}_{N}^{3}$) wird deutlich unterschritten.

Für die gestufte Holzverbrennung ist charakteristisch, daß sinkende $C O$-Emissionen immer auch sinkende $C_{n} H_{m}$-Emissionen bedeuten [53] (Abb.9.4):

Abbildung 9.4: $C O$ und $C_{n} H_{m}$ bei der Holzverbrennung

Maßnahmen zur Minimierung von CO -Emissionen bewirken gleichzeitig eine Minimierung von $C_{n} H_{m}$ - Emissionen.

9.3 Stickoxide

Im Gegensatz zu Kohlenmonoxid- und Kohlenwasserstoffemissionen zählen die Stickoxide zu den unvermeidbaren Schadstoffen im Abgas einer Feuerungsanlage. Stickoxide ($N O_{x}$) beschreiben ein Gemenge aus Stickstoffmonoxid NO , Stickstoffdioxid NO_{2} und Lachgas $\mathrm{N}_{2} \mathrm{O}$. Die bei der Verbrennung von Holz entstehenden Stickoxidemissionen enthalten über $90 \% N O$, der Rest besteht fast ausschlieflich aus NO_{2} [39].
Stickoxide gelten als umweltschädlich, weil sie die Bildung von bodennahem Ozon unterstützen und zur Smog-Bildung beitragen. Weiters konnte nachgewiesen werden, daß Stickoxide Mitverursacher von Saurem Regen sind.
Feuerungsanlagen gelten neben dem Straßenverkehr als Hauptverursacher von Stickoxidemissionen. Um den $N O_{x}$-Ausstoß einer Feuerungsanlage zu reduzieren bieten sich zwei Möglichkeiten:

- Entfernung von bereits gebildetem $N O_{x}$ aus dem Abgasstrom mittels DENOX-Anlagen
- Reduzierung der $N O_{x}$-Bildung durch geeignete Verbrennungsführung

Aufgrund der hohen Investitionskosten kommen DENOX-Anlagen bei kleinen Feuerungsanlagenen ($<10 M W$) nicht zum Einsatz. Bei Kleinanlagen versucht man durch $N O_{x}$-arme Verbrennungsführung die Bildung von $N O_{x}$ zu reduzieren.

9.3.1 Bildung von Stickoxiden bei der Verbrennung

Abhängig von der Reaktionstemperatur und der Luftzahl in der Reaktionszone werden aus Luftstickstoff und im Brennstoff enthaltenem Stickstoff (Brennstoffstickstoff) $\mathrm{NO}, \mathrm{NH}_{3}$ und $H C N$ freigesetzt bzw. gebildet.
NO_{2} entsteht erst durch Oxidation von bereits gebildtem NO mit Luftsauerstoff O_{2} [25].

$$
\begin{equation*}
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \tag{9.2}
\end{equation*}
$$

Zur Reaktion nach Gleichung 9.2 kommt es meist nur dann, wenn das sauerstoffhältige Heißgas rasch abgekühlt wird.
Das in der Verbrennungszone gebildte $N O$ kann aufgrund seiner Entstehung in drei unterschiedliche Arten unterteilt werden:

- Thermisches $N O$ [77]
- Promptes $N O$ [18]
- Brennstoff-NO [55]

9.3.1.1 Thermisches $N O$

Thermisches $N O$ entsteht durch Oxidationsreaktionen zwischen Luftstickstoff und Sauerstoff. Diese stark temperaturabhängigen Reaktionen können mit Hilfe des Zeldovich-Mechanismus

$$
\begin{align*}
& N_{2}+O \rightleftharpoons N O+N . \tag{9.3}\\
& N \cdot+O_{2} \rightleftharpoons N O+O .
\end{align*}
$$

bzw. mit dem erweiterten ZELDOVICH-Mechanismus

$$
\begin{equation*}
N \cdot+O H \cdot \rightleftharpoons N O+H \tag{9.5}
\end{equation*}
$$

beschrieben werden. Bei Verbrennungstemperaturen unter $1500^{\circ} \mathrm{C}$ wird die Bildung von thermischem $N O$ sehr stark reduziert [47]. Weiters behindern unterstöchiometrische Verbrennungsbedingungen (Sauerstoffmangel) die Bildung von thermischem NO nach Gleichungen 9.2-4. Untersuchungsergebnisse bei unterstöchiometrischer Kohleverbrennung zeigen, daß bei Verbrennungstemperaturen unter $1500^{\circ} \mathrm{C}$ kaum thermisches $N O$ gebildet wird [49].

9.3.1.2 Promptes $N O$

Promptes $N O$ wird gebildet durch die Reaktion von Luftstickstoff mit Kohlenwasserstoffradikalen bei unterstöchiometrischen Verbrennungsbedingungen. Dieser Effekt wurde erstmals von Fenimore wie folgt beschrieben:

$$
\begin{equation*}
N_{2}+C H_{x} \cdot \rightleftharpoons H C N+N \cdot+\ldots \tag{9.6}
\end{equation*}
$$

N. reagiert daraufhin nach Gleichung 9.4 oder 9.5 . Der Cyanwasserstoff $H C N$ reagiert in weiterer Folge ebenfalls zu $N O$ (siehe Kap.9.3.1.3).
Erfahrungen aus Kohlefeuerungen zeigen, daß die Bildung von promptem $N O$ bei unterstöchiometrischer Verbrennung berücksichtigt werden muß [31].

9.3.1.3 Brennstoff- NO

Die Bildung von Brennstoff- $N O$ ist der dominierende Stickoxidbildungsmechanismus bei der Verbrennung von stickstoffhältigen Brennstoffen. Brennstoff- $N O$ entsteht aus im Brennstoff gebundenen Stickstoff und Sauerststoff.
Während in Kohle der Stickstoff gebunden innerhalb von Ringstrukturen (z.B. Pyridin) vorliegt, kommt der Stickstoff im Holz großteils in funktionellen Aminogruppen ($-\mathrm{NH}_{2}$) vor. Bei der Pyrolyse werden die Aminogruppen als Ammoniak NH_{3} abgespalten [32]. Aus dem in Ringstrukturen gebundenen Stickstoff wird großteils $H C N$ gebildet.
Nur ein geringer in Ringstrukturen gebundener Teil vom Stickstoff verbleibt während der Pyrolyse im Koks. Dieser bei der Holzverbrennung in geringem Anteil im Koks enthaltene Stickstoff reagiert zum Teil mit Sauerstoff zu $N O$, der Rest bleibt in der Asche gebunden. Die zu Radikalen konvertierten Ammoniak und Cyanwasserstoff reagieren mit Sauerstoff in Teilschritten zu $N O$ [32]. Der globale Reaktionsweg kann wie folgt angeschrieben werden:

$$
\begin{equation*}
\mathrm{NH}_{3} / \mathrm{HCN}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\ldots \tag{9.7}
\end{equation*}
$$

Bei Sauerstoffmangel und Vorhandensein von bereits gebildetem $N O$ reagieren NH_{3} und $H C N$ über Teilschritte zu reinem Stickstoff N_{2} :

$$
\begin{equation*}
\mathrm{NO}+\mathrm{NH}_{3} / \mathrm{HCN} \rightarrow \mathrm{~N}_{2}+\ldots \tag{9.8}
\end{equation*}
$$

Die parallel ablaufenden Gleichungen 9.7 und 9.8 kommen je nach Sauerstoffeintrag in der Verbrennungszone zur Geltung.
Bei zunehmendem Luftüberschuß in der Verbrennungzone sinkt die Wahrscheinlichkeit, daß NO und $\mathrm{NH}_{3}-$ Moleküle zusammentreffen und nach Gleichungen 9.8 reagieren. Die Reduktion von bereits gebildeten $N O$ sinkt mit steigendem Sauerstoffeintrag.
Durch Reduzierung des Sauerstoffangebotes in der Verbrennungszone gewinnt Gleichng 9.8 an Bedeutung. Das in der Verbrennungszone entstandene NO trifft häufiger auf NH_{3} - und $H C N$-Moleküle und wird zu N_{2} reduziert. Die Reduktion von $N O$ zu N_{2} ist umso ausgeprägter, je länger das $N O$ in der sauerstoffarmen Verbrennungszone verweilt. Durch die längere Verweilzeit wird ein Zusammentreffen von $N O$ mit $N H_{3}$ und $H C N$ wahrscheinlicher.
Wird die Sauerstoffmenge in der unterstöchiometrischen Verbrennngszone weiter reduziert, so erreicht man abhängig von der Verbrennungstemperatur ein unterstöchiometrisches Verbrennungsluftverhältnis mit maximalem $N O$-Reduktionspotential. Unter diesem Verbrennungsluftverhältnis werden aufgrund des Sauerstoffmangels die während der Pyrolyse freigesetzten NH_{3} - und HCN -Moleküle nur zum Teil zu $N O$ umgewandelt. Weiters kann es aufgrund des Sauerstoffmangels und des Kohlenwasserstoffüberschusses in der Reaktionszone zu Rückbildungsreaktionen von freigesetztem $N O$ zu $H C N$ kommen:

$$
\begin{equation*}
N O+C_{n} H_{m} \rightarrow H C N+\ldots \tag{9.9}
\end{equation*}
$$

Um einen vollständigen Brennstoffausbrand zu erzielen, folgt auf die unterstöchiometrische Reaktionszone die Nachverbrennung mit Luftüberschuß. Die in der unterstöchiometrische Reaktionszone nicht reagierten NH_{3} - und $H C N-$ Moleküle gelangen mit dem Heißgas in die sauerstoffreiche Nachverbrennungszone. In der Nachbrennkammer reagieren NH_{3} und $H C N$ nach Gleichungen $9.7 \mathrm{zu} N O$. Die $N O$-Reduktion nach Gleichung 9.8 bleibt aufgrund des Sauerstoffüberschusses in der Nachbrennzone aus.
SkREIBERG ET AL. [64] untersuchten in Abhängigkeit vom Luftverhältnis λ die $N O$-Bildung bei Verbrennungsvorgängen (siehe Abb.9.5).

Abbildung 9.5: TFN-Konversion in Abhängigkeit von λ [64]

Außer N_{2} wurden alle in der reagierten Heißgasphase enthaltenen Stickstoffverbindungen gemessen und zu TFN (Total-Fixed-Nitrogen: $\mathrm{NO}, \mathrm{NH}_{3}$ und HCN) zusammengefaßt.
Abbildung 9.5 zeigt die gemessenen TFN-Konzentrationen bezogen auf den gesamten mit dem Brennstoff eingebrachten Stickstoff. In Abhängigkeit vom Luftverhältnis und der Verbrennungstemperatur werden die Verläufe der TFN-Konzentrationen in Abbildung 9.5 dargestellt.
Deutlich erkennbar ist das TFN-Minimum bei gezielter unterstöchiometrischer Verbrennung. Das nach Gleichung 9.7 gebildete $N O$ wird nach Gleichung 9.8 zu N_{2} reduziert.
Bei steigenden Reaktionstemperaturen verschiebt sich das Minimum zu kleineren Luftzahlen λ. Weiters wird ersichtlich, daßs erst bei Verbrennungstemperaturen $>800^{\circ} \mathrm{C}$ das volle Reduktionspotential ausgeschöpft werden kann.
Weiters wird aus Abbildung 9.5 die Bildung von thermischem NO bei Verbrennungstemperaturen ab $1500^{\circ} \mathrm{C}$ und Luftzahlen $\lambda>1$ ersichtlich. Im Heifgas sind mehr TFN-Stickstoffverbindungen enthalten als Stickstoff über dem Brennstoff eingebracht wird (TFN-Wert >1). Der Überschuß an TFN ergibt sich aufgrund der Oxidation von Luftstickstoff zu NO (siehe Kap.9.1.3.1).
Aus Abbildung 9.5 wird weiters ersichtlich, daß im Temperaturbereich $1000^{\circ} \mathrm{C}$ bis $1600^{\circ} \mathrm{C}$ das $N O$-Reduktionspotential nahezu unabhängig von der Verbrennungstemperatur ist.

9.3.1.4 Stickoxide bei der Holzverbrennung

Die bei der Verbrennung von Holz gebildeten $N O_{x}$-Emissionen stammen fast ausschließlich vom im Brennstoff enthaltenem Stickstoff. Da bei der Verbrennung von Holz die maximal erzielbaren Verbrennungstemperaturen höchstens $1500^{\circ} \mathrm{C}$ ausmachen, keine Brennluftvorwärmung vorausgesetzt, wird kaum thermisches $N O$ gebildet [22]. Promptes $N O$ liefert ebenfalls nur einen sehr geringen Beitrag zu den gesamten $N O_{x}$-Emissionen im Abgas. Die Reaktion nach Gleichung 9.6 setzt voraus, daßs die stabile Dreifachbindung des Luftstickstoffes N_{2} aufgebrochen wird. Ähnlich der Bildung von thermischem $N O$ wird die Bildung von promptem $N O$ erst bei hohen Temperaturen relevant.
Abbildung 9.6 zeigt eine Zusammenfassung der möglichen $N O$-Bildungsmechanismen bei der Verbrennung von Holz.

Abbildung 9.6: NO -Bildungsmechanismen bei der Verbrennung von Holz

9.3.2 NO_{x}-Emissionen der zweistufigen Brennkammer

Die Ausführung der zweistufigen Brennkammer ermöglicht die Stufung der Verbrennungsluft. In der unterstöchiometrischen Verbrennungszone (λ_{V}) erfolgt die Verbrennung unter Luftmangel, in der Nachverbrennungszone mit Luftüberschuß. Dadurch ist es möglich, die bei der Holzverbrennung unvermeidbaren $N O_{x}$-Emissionen zu reduzieren.
Da die $N O_{x}$-Emissionen bei der Holzverbrennung hauptsächlich vom Brennstoffstickstoff verursacht sind, führen höhere Stickstoffanteile im Holz zu erhöhten $N O$-Emissionen.

trockenes Holz	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
Brennstoffstickstoff [Massen\%]	0.1	0.02	0.04

Tabelle 9.2: Stickstoffgehalt der verwendeten Holzsorten

Aus Tabelle 9.2 wird ersichtlich, daß der schwedische Holzstaub den größten Stickstoffanteil aufweist. Im Holzstaub enthaltene Rindeteilchen verursachen den erhöhten Stickstoffgehalt. Im folgenden werden in Abhängigkeit vom Luftverhältnis in der Zyklonkammer die gemessenen $N O_{x}$-Emissionen im Heißgas dargestellt (siehe Abb.9.7). Zur Veranschaulichung des Einflusses der Luftstufung auf die $N O_{x}$-Emissionen wurde die Zyklonkammer auch mit Luftüberschuß betrieben. Beim Betrieb mit einem Luftverhältnis $\lambda>1$ erfolgt in der sekundären Nachbrennkammer ausschließlich eine Luftzumischung.

Abbildung 9.7: $N O_{x}$-Emissionen in Abhängigkeit vom Luftverhältnis in der Zyklonkammer

Abbildung 9.7 zeigt den Verlauf der $N O_{x}$-Emissionen bei der Verbrennung von schwedischem Holzstaub, Fichtenspänen und Buchenspänen. Die Emissionen weisen im Bereich $\lambda \sim 0.7-0.8$ ein Minimum auf. Schwedischer Holzstaub verursacht aufgrund des hohen Stickstoffgehaltes die größten $N O_{x}$-Konzentrationen im Heißgas.
Je größer der Stickstoffgehalt im verwendeten Holz, umso größer ist das mittels Luftstufung erzielbare $N O_{x}$-Reduktionspotential [64]. Abbildung 9.8 zeigt, daß bei der Verbrennung von stickstoffreichem Holz (schwedischem Holzstaub) der steilste Abfall der $N O_{x}$-Emissionen erzielt werden kann.

Abbildung 9.8: $N O_{x}$-Emissionen in Abhängigkeit von λ_{V}

Aufgrund der hohen TFN-Konzentrationen bei der Verbrennung von stickstoffreichem Holz erhöht sich die Wahrscheinlichkeit, daß NO mit NH_{3} - oder HCN -Molekülen zu N_{2} reduziert wird (siehe Gleichung 9.8).

Die Grenzwerte der österreichischen Luftreinhalteverordnung (abhängig von der verwendeten Holzsorte) können bei der Verbrennung in der zweistufigen Brennkammer mittels Luftstufung eindeutig unterschritten werden. Das $N O_{x}$-Reduktionspotential gegenüber überstöchiometrischer und ungestufter Verbrennungsführung wird beim Zyklonkammerbetrieb mit $\lambda_{V} \sim 0.6-0.7$ eindeutig ersichtlich.

9.4 Staubemissionen

Die bei der Holzverbrennung anfallende Asche wird mit dem Heißgasstrom aus der Brennkammer ausgetragen. Abhängig vom Aschegehalt des verfeuerten Brennholzes sowie vom Ausbrand in der Brennkammer ergibt sich die Asche- bzw. Staubbeladung des Heißgasstroms $\left(\dot{m}_{A}\right)$. Ein Großteil der Verunreinigungen im Heißgasstrom wird im Axialzyklon abgeschieden ($\dot{m}_{a b}$). Der gereinigte Gasstrom (Restbeladung $\dot{m}_{r e i n}$) wird an der Drosselklappe expandiert (bzw. in einer weiteren Projektstufe einer Turbine zugeführt) und daraufhin an die Umgebung abgegeben.
Der in der Österreichischen Luftreinhalteverordnung angegebene zulässige Grenzwert gilt für an die Umgebung emittierte Staubmengen. Dieser Wert steht in keinem Zusammenhang zu Grenzwerten für den Betrieb von Gasturbinen. Während die Österreichische Luftreinhalteverordnung ausschließlich die Menge des emittierten Staubes limitiert, stellt der Gasturbinenbetrieb auch Anforderungen an die Partikelgrößfe im Heißgas.

9.4.1 Staubkonzentration

Mittels der gravimetrischen Staubmeßmethode ${ }^{1}$ wird die Staubbeladung des gereinigten Heißgasstromes bestimmt.

Abbildung 9.9: Staubemissionen; bezogen auf $13 \% O_{2}$ im Abgas

Die in Abbildung 9.9 dargestellten Bereiche zeigen die bei der Verbrennung von schwedischem Holzstaub, Fichtenspänen und Buchenspänen anfallenden Staubemissionen bezogen auf $13 \% O_{2}$. Während die Staubemissionen bei der Verbrennung von Fichtenspänen und Buchenspänen deutlich unter dem Grenzwert der Luftreinhalteverordnung liegen, überschreiten die Staubemissionen bei der Verbrennung von schwedischem Holzstaub den Grenzwert von $150 \mathrm{mg} / \mathrm{m}_{N}^{3}$.
Die unterschiedlichen Staubkonzentrationen im Heißgas ergeben sich aufgrund der unterschiedlichen Ascheanteile in den drei Brennholzsorten (siehe Tab.9.3).

feuchtes Holz	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
Aschegehalt [Massen\%]	1.3	0.25	0.54

Tabelle 9.3: Aschegehalt der verwendeten Holzsorten

Bei geringem Aschegehalt im Brennstoff fallen geringe Staubbeladungen \dot{m}_{A} am Brennkammeraustritt an. Bei gleichbleibendem Abscheidegrad des Zyklons ($\eta_{Z y k l o n}=\frac{\dot{m}_{a b}}{\dot{m}_{A}}$) ergeben sich dadurch geringere Reingasbeladungen $\dot{m}_{r e i n}$ am Zyklonaustritt.
Mit \dot{m}_{A} (Funktion vom Ausbrand in der Brennkammer) läßts sich der Abscheidegrad $\eta_{Z y k l o n}$ des Axialzyklons bestimmen.

$$
\begin{gather*}
\dot{m}_{A}=\dot{m}_{a b}+\dot{m}_{r e i n} \tag{9.10}\\
\eta_{Z y k l o n}=1-\frac{\dot{m}_{r e i n}}{\dot{m}_{A}} \tag{9.11}
\end{gather*}
$$

[^10]Die Untersuchung der bei stationärem Betrieb der zweistufigen Brennkammer im Axialzyklon abgeschiedenen Aschen ergibt unter Beachtung der Meßungenauigkeiten folgende Werte für den Aschenausbrand (siehe Tab.9.4):

	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
maximaler Ausbrand [Massen\%]	98.7%	99.75%	99.46%
minimaler Ausbrand [Massen\%]	$>98 \%$	$>99 \%$	$>99 \%$

Tabelle 9.4: Holzausbrand

Damit errechnen sich folgende Werte für den Abscheidegrad des Axialzyklons $\eta_{Z y k l o n}$ (Tab.9.5):

	Schwedischer Holzstaub	Fichten- späne	Buchen- späne
$\eta_{\text {Zyklon }}$ (max. Ausbrand)	83%	84%	80%
$\eta_{\text {Zyklon }}$ (min. Ausbrand)	89%	91%	88%

Tabelle 9.5: Abscheidegrad $\eta_{Z y k l o n}$ des Axialzyklons

Die Ergebnisse in Tabelle 9.5 zeigen, daß der Abscheidegrad des Axialzyklons beinahe unabhängig von der verfeuerten Holzsorte ist. Um bei der Verbrennung unterschiedlicher Holzsorten gleiche Abscheidegrade zu erzielen müssen nach der Theorie der Zyklonabscheider (VDI-Richtlinie 3676) die Aschepartikel im Heißgas der Brennkammer annähernd gleiche Korngrößenverteilungen aufweisen.

Für den Betrieb von Gasturbinen sind die zulässigen Grenzwerte der Staubbeladung (siehe Kap.4) unabhängig von der Sauerstoffkonzentration im Abgas. Die Verschmutzung und Erosion von Turbinenteilen hängt nur von der absoluten Feststoffbeladung des Heißgasstroms ab . Die gemessenen Staubkonzentrationen werden deshalb nicht auf $13 \% \mathrm{O}_{2}$ umgerechnet. Die nach Lorenz [45] für Kohleasche angegebene Grenzbeladung von $150 \mathrm{mg} / \mathrm{m}_{N}^{3}$ ist zufällig identisch mit dem Wert der österreichischen Luftreinhalteverordnung.

Abbildung 9.10: Absolute Staubbeladung nach Axialzyklonaustritt

Die in Abbildung 9.10 dargestellten Meßwerte liegen unter der zulässigen Grenzbeladung für Kohleaschen.

9.4.2 Korngrößenverteilung

Die Korngrößenverteilung im gereinigten Heißgasstrom wird mit Hilfe eines Kaskadenimpaktors ${ }^{2}$ bestimmt. Zur Darstellung des korngrößenanalytischen Meßergebnisses verwendet man die Durchgangssumme D (bzw. Rückstandsumme R). Die Durchgangssumme beschreibt den prozentuellen Anteil der Staubmasse der kleinere Partikeldurchmesser aufweist, als der entsprechende aerodynamische Durchmesser $d_{a e}$ auf der Abszisse angibt.
Mit Hilfe des aerodynamischen Durchmessers $d_{a e}$ lassen sich Teilchen beliebiger Form und Dichte hinsichtlich ihrer Sinkgeschwindigkeit charakterisieren. Der aerodynamische Durchmesser $d_{a e}$ bezeichnet den Durchmesser einer Kugel der Dichte $1 \mathrm{~g} / \mathrm{cm}^{3}$, die in ruhender oder laminar strömender Luft die gleiche Sinkgeschwindigkeit wie das betrachtete Partikel aufweist.
Bei der Kaskadenimpaktormessung werden Teilmassen ΔM in einem Korngrößenspektrum Δx gemessen. Die Durchgangssummenkurve $D(x)$ errechnet sich als Flächensumme über die Teilmassen ΔM.

$$
\begin{equation*}
D(x)=\int_{0}^{x}(\Delta M) d x \tag{9.12}
\end{equation*}
$$

Unabhängig von der verwendeten Brennholzsorte ergibt sich die für den Axialzyklon charakteristische Durchgangssummenkurve der Staubteilchen im gereinigten Abgasstrom.

Abbildung 9.11: Durchgangssummenkurve

Die in Abbildung 9.11 dargestellte Durchgangssumme D beschreibt die Korngrößenverteilung der nach Abscheidung im Axialzyklon im Heißgasstrom verbliebenen Teilchen in Abhängigkeit zum aerodynamischen Durchmessers $d_{a e} .50 \%$ der im Abgasstrom enthaltenen Staubmenge weist Korngrößen $d_{a e}$ kleiner $5 \mu m$ auf (Mediandurchmesser), 70% der Staubmenge liegt unter $10 \mu m$.

[^11]Die mit Hilfe des Kaskadenimpaktors gemessene Korngrößsenverteilung vergleicht die Sinkgeschwindigkeit der Ascheteilchen mit der Sinkgeschwindigkeit einer Kugel der Dichte $1 \mathrm{~g} / \mathrm{cm}^{3}$. Da Aschepartikel aus Holzverbrennung eine Feststoffdichte $\sim 2 \mathrm{~g} / \mathrm{cm}^{3}$ aufweisen, ist die tatsächliche Partikelgröße der Staubteilchen im Heißgas kleiner als der in Abbildung 9.11 dargestellte aerodynamische Durchmesser $d_{a e}$.
Der Medianwert der tatsächlichen Partikelgröße d_{p} liegt somit unter der Größe des in Abbildung 9.11 dargestellten Medianwertes des aerodynamischen Durchmessers.

Die beim Betrieb der Versuchsanlage gemessenen Partikelgrößen und Heißgasbeladungen liegen annähernd im Größenordnungsbereich der in der Literatur angegebenen Grenzwerte für den Betrieb von Gasturbinen ($\sim 5 \mu \mathrm{~m}$ und $50-150 \mathrm{mg} / \mathrm{m}_{N}^{3}$) [30, 45].

Kapitel 10

Zusammenfassung und Ausblick

Abstract

Im Rahmen dieser Arbeit wurde ein Versuchsstand zur druckaufgeladenen Holzstaubverbrennung aufgebaut und in Betrieb genommen. Eine zweistufige Brennkammer und ein Axialzyklon zur Heißgasentstaubung wurden für diesen Zweck am Institut entwickelt. Das Betriebsverhalten der Anlage wurde mit Hilfe dreier unterschiedlicher Brennholzsorten untersucht. Um das Verbrennungsverhalten der Brennkammer bei der Verwendung neuer Holzsorten abschätzen zu können, wurde weiters ein Berechnungsmodell erstellt.

Brennkammer

Die wesentlichen Anforderungen an die holzstaubgefeuerte Brennkammer sind:

- Schadstoffarme Verbrennung; Minimierung von $\mathrm{CO}-, \mathrm{C}_{n} \mathrm{H}_{m}$ - und NO_{x}-Emissionen durch gezielte Verbrennungsführung.
- Ausreichende Brennstoffverweilzeit in der Brennkammer, um einen optimalen Ausbrand des Brennstoffes zu erzielen.

Schadstoffarme Verbrennung

Die gestufte Verbrennungsführung in der zweistufigen Brennkammer ermöglicht $\mathrm{CO}-, \mathrm{C}_{n} \mathrm{H}_{m}$ und $N O_{x}$-Konzentrationen im Brennkammerabgas zu reduzieren.
Während CO - und $C_{n} H_{m}$ - Emissionen durch die Verbrennungsbedingungen in der Sekundärkammer der zweistufigen Brennkammer bestimmt werden, lassen sich die $N O_{x}$-Emissionen durch die Verbrennungsführung in der Primärkammer beeinflußen.
Rauchgasmessungen bei der Verbrennung von unterschiedlichen Brennholzsorten haben gezeigt, daßß bei unterstöchiometrischen Verbrennungsbedingungen in der Primärkammer ($\lambda_{V} \sim$ $0.6-0.7$) und Luftstufungsverhältnissen $\psi<3$ die Einhaltung der Grenzwerte der österreichischen Luftreinhalteverordnung gewährleistet wird.

Optimaler Ausbrand in der Brennkammer

In der zweistufigen Brennkammer findet die primäre Verbrennung in einer Zyklonkammer statt . Durch die Strömungsverhältnisse in der Zyklonkammer erhöht sich die Verweizeit des eingeblasenen Holzstaubes in der Verbrennungszone. Je nach Aschegehalt des verwendeten Brennholzes kann ein Ausbrand $>98 \%$ erzielt werden.

Axialzyklon

Folgende Anforderungen werden an den Axialzyklon gestellt:

- Ausreichende Abscheideleistung, um einen späteren Gasturbinenbetrieb zu ermöglichen.
- Möglichst geringer Druckverlust.

Abscheideleistung

Der Axialzyklon ist ausgelegt für Trennkorngrößen $x_{50} \sim 5 \mu m$. Die in der Literatur angegebenen Grenzwerte für den Betrieb von Gasturbinen mit Kohlestaub ($\sim 5 \mu m$ und $50-150 \mathrm{mg} / m_{N}^{3}$) können eingehalten werden.
Staubmessungen bei der Verbrennung von unterschiedlichen Brennholzsorten zeigen, daß vor allem bei Hölzern mit geringem Ascheanteil sehr geringe Heißgasbeladungen auftreten. Bei der Verbrennung von Fichtenspänen konnten Abgasbeladungen $<35 \mathrm{mg} / \mathrm{m}_{N}^{3}$ erzielt werden. Da für den Betrieb von holzstaubgefeuerten Gasturbinenanlagen zur Zeit keine Betriebserfahrungen vorliegen können auch keine Grenzwerte über zulässige Staubbeladungen angegeben werden. Die Richtlinien von kohlestaubgefeuerten Gasturbinenanlagen können nur als Anhaltspunkte herangezogen werden, weil sich Holzaschen und Kohleaschen hinsichtlich Härtegrad, Dichte und chemischer Zusammensetzung unterscheiden.
Durch die Bestimmung des aerodynamischen Durchmessers $d_{a e}$ könnnen die Partikel im Heißgasstrom hinsichtlich ihrer Sinkgeschwindigkeit charakterisiert werden. Auskunft auf die Wirkung auf Turbinenteile können jedoch nur bedingt davon abgeleitet werden. Die Entwicklung eines geeigneten Meßverfahrens zur Charakterisierung von Partikeln hinsichtlich ihrer Wirkung auf die Turbine (Härtegrad, Masse) wäre hilfreich für den Betrieb von feststoffgefeuerten Gasturbinen.

Druckverlust

Durch die Verwendung eines Spalttauchrohres verursacht der Axialzyklon gegenüber herkömmlichen Zyklonen geringere Druckverluste.
Während herkömmliche Zyklone Druckverlustbeiwerte $\zeta>7$ aufweisen kann der Druckverlustbeiwert des Axialzyklons mit $\zeta_{Z y k l o n} \sim 5.5$ angegeben werden (alle Druckverlustbeiwerte ζ bezogen auf die Tauchrohrgeschwindigkeit).

Berechnungsmodell

Aufbauend auf den theoretischen Grundlagen der Feststoffvergasung wurde ein Berechungsmodell entwickelt, mit dessen Hilfe man Verbrennungstemperaturen bei unterstöchiometrischer Verbrennung ermitteln kann. In Anlehnung an Berechnungsmodelle bei der Kohlevergasung kann mit dem auf dem Wassergasgleichgewicht basierenden Modell das Verhalten in der Zyklonkammer errechnet werden. Im Temperaturbereich $1000-1300^{\circ} \mathrm{C}$ erzielt das Berechnungsmodell gute Übereinstimmung mit in der Brennkammer gemessenen Vergasungsgleichgewichtstemperaturen.
Mit Hilfe des Modells kann das Verhalten der Brennkammer bei der Verbrennung anderer Holzsorten vorausberechnet werden. Der Einfluß der Brennstoffeuchte auf die erzielbaren Verbrennungstemperaturen in Abhängigkeit zur Luftzahl λ_{V} hilft geeignete Verbrennungsbedingungen in der Primärkammer einzustellen.
Weiters ermöglicht das Berechnungsmodell die Berechnung des Primärkammerverhaltens beim Einsatz von Brennluftvorwärmung.

Ausblick

Die zweistufige Brennkammer in Kombination mit dem Axialzyklon und einem entsprechenden Verdichter ermöglicht den Betrieb einer Turbine. Am Institut für Thermische Turbomaschinen und Energieanlagen ist geplant mit der vorhandenen Versuchsanlage eine $80 k W_{e l}$ Gasturbine (KHD T216) zu betreiben. Diese Gasturbine erzielt bei der Verwendung von Dieselöl Verdichtungsverhältnisse von ~ 2.8 und wird mit Turbineneintrittstemperaturen um $800^{\circ} C$ betrieben. Ziel ist es, den Betrieb dieser Gasturbine mit Holzstaub zu ermöglichen. Das Betriebs- und Emissionsverhalten dieser holzstaubgefeuerten Gasturbinenanlage soll untersucht werden.
Die Verbrennungsversuche ergaben, daß für den Betrieb der Gasturbine Brennholzsorten mit geringem Aschegehalt besonders gut geeignet sind. Geringe Ascheanteile im Holz ergeben geringe Partikelkonzentrationen im Heißgasstrom und reduzieren dadurch die Belastung der Turbinenteile hinsichtlich Erosion und Verschmutzung. Fichtenholz, mit dem niedrigsten Aschegehalt der drei verwendeten Holzsorten, verursacht die geringsten Heißgasbeladungen und kann für den Gasturbinenbetrieb als am besten geeignet angesehen werden.
Bei Vollastbetrieb der Gasturbine sollte die primäre Zyklonkammer der zweistufigen Brennkammer mit $\lambda_{V} \sim 0.7$ und die Nachbrennkammer mit einem Luftstufungsverhältnis $\psi<3$ betrieben werden, um eine schadstoffarme Verbrennung zu erzielen. Bei Lastabsenkung (Drehzahl der Gasturbine bleibt konstant, Turbineneintrittstemperatur sinkt) wird der Brennstoffeintrag in die Brennkammer reduziert. Bei unveränderter Brennluftaufteilung würden das unterstöchiometrische Luftverhältnis λ_{V} in der Zyklonkammer und damit verbunden auch die Vergasungstemperatur und die $N O_{x}$-Konzentrationen im Heißgas steigen. Um dies zu verhindern sollten die Luftverhältnisse in der zweistufigen Brennkammer wenn möglich den Lastwechseln entsprechend geregelt werden, so daß $\lambda_{V} \sim 0.7$ beibehalten werden kann.
Für den Betrieb von Gasturbinen im Leistungsbereich um $1 M W_{e l}$ (z.B. SATURN von Solar Turbines Inc. oder M1A-01 von Kawasaki Heavy Industries) kann mit Hilfe der in Kapitel 6 beschriebenen Auslegungskriterien eine entsprechend größere Brennkammer konstruiert werden. Man muß jedoch das erhöhte Verdichtungsverhältnisse dieser Gasturbinen von ~ 8 berücksichtigen und den Brennkammerdruckbehälter entsprechend auslegen. Weiters sei auch auf die höheren $N O_{x}$-Emissionen im Heißgas hingewiesen, die sich bei der Verbrennung bei erhöhtem Druck ergeben [48].

Literaturverzeichnis

[1] Baluev, E.D. und Troyankin, V.: The effect of the design parameters on the aerodynamics of cyclone chambers, Thermal Engineering, 14(2):99-105, 1967.
[2] Bohnet, M.: Zyklonabscheider zum Trennen von Gas-Feststoff-Strömungen, Chem.-Ing.-Tech., 54 Nr.7:621-630, 1982.
[3] Bossel, U. und Gunold, B.: Wärme aus Holz, Holzheizung in Theorie und Praxis, Verlag C.F.Müller, Karlsruhe, 1982.
[4] Bradbury, A.G. and Shafizadeh, F.: Role of oxygen chemisorption in lowtemperature ignition of cellulose, Combustion Flame, 37:85-89, 1980.
[5] Brown, A.E. und van den Heuvel, E.: Producer Gas Quality Requirement for IGCC Gas Turbine Use, Research Report, Netherlands Agency for Energy and Environment, MHP Management \& Secretarial Services, Maarn, 1996.
[6] Bundesamt für Energiewirtschaft: Handbuch der Holzheizung, Studie Nr.32, Bern, 1986.
[7] Bundesministerium für UmwelT.: Erneuerbare Energieträger in Österreich, Situationsbericht, Bundesministerium Wien, 1999.
[8] Carlowitz, O.: Modellversuche zur gezielten Beeinflussung der Strömung in einer Zyklonbrennkammer, Dissertation, Technische Universität Clausthal, 1978.
[9] Carlowitz, O., Scholz, R.: Vereinfachte Berechnung von Wirbelfäden zur Erzeugung freier Turbulenz in Mischkammern, Abhandlung der Braunschweigisch Wissenschaftlichen Gesellschaft, 1980.
[10] Cautius, W.: Zwei Jahre Entwicklungsarbeit am Zyklon, Mitteilungen der VGB, 21:234-237, 1952.
[11] Connors, W.J. and Johanson, L.N.: Thermal degradation of kraft lignin in tetralin, Holzforschung, 34:29-37, 1980.
[12] Cousins, J.W. and Robinson, W.H.: Gasification of sawdust in an air-blown cyclone gasifier, Ind. Eng. Chem. Process Des. Dev., 24:1281-1287, 1985.
[13] Dauer, S.: Verbrennungstechnik, Hartmann und Braun AG, Frankfurt, 1974.
[14] Diederichsen, Ch. und Baehr, H.D.: Berechnungsgleichungen für Enthalpie und Entropie der Komponenten von Luft und Verbrennungsgasen, Brennstoff Wärme Kraft, 40:30-34, 1988.
[15] Durst, M. und Vollmer, H.: Hochleistungsentstaubung und Heißgasfiltration mit keramischen Filterelementen, Entsorgungspraxis, Nr.11, 1988.
[16] EDWARDS, J.: Combustion: formation and emission of trace species, Ann Arbor Science Publ., Michigan, 1974.
[17] Fengel, D.: Holz, Morphologie und Eigenschaften, Ullmanns Enzyklopädie der technischen Chemie, Verlag Chemie, Band 12:669-679.
[18] Fenimore, C.P.: Formation of nitric oxide in premixed hydrocarbon flames, Proc. 13th Int. Symp. Combustion, Pittsburgh, 1971.
[19] Frasz, F.: Grundzüge wärmetechnischer Anlagen, Vorlesungsskriptum, Technische Universität Wien, 1998.
[20] Fredriksson, Ch.: Exploratory experimental and theoretical studies of cyclone gasification of wood powder, Doctoral Thesis, University of Lulea, 1999.
[21] Fredriksson, J. und Kallner, P.: Cyclone combustion of wood powder for gas turbine application, Technical Report ISRN KTH/KRV/R-93/2-SE, Royal Institute of Technology, Stockholm, 1993.
[22] Glassman, I.: Combustion, Academic Press, New York, 1977.
[23] Griffiths, A.J. AND SYRED, N.: Cyclone gasification of pulverised biomass for operation of gas turbines in cogeneration Plants, Technical Report No. 2663, Cardiff School of Engineering, Cardiff, 2000.
[24] Gumz, W.: Vergasung fester Brennstoffe, Springer-Verlag, Berlin, 1952.
[25] GÜNTHER, R.: Verbrennung und Feuerungen, Springer-Verlag, Berlin, 1974.
[26] Gupta, A.K., Lilley, D.G. And Syred, N.: Swirl Flows, Tunbridge Wells, Kent \& Cambridge, 1984.
[27] HaAGEn-Smith, A.J.: Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44:1342-1346, 1952.
[28] HamRICK, J.T.: Development of biomass as an alternative fuel for gas turbines, Technical Report PLN-7673, Aerospace Research Corp., Roanoke, Virginia, USA, April 1991.
[29] HamRICK, J.T. UND OWEN, N.H.: Gas-turbine performance with high moisture content biomass, Biotechnology and Bioengineering Symposium No.14, 553-561, 1984.
[30] Hasler, P. und Nussbaumer, T.: Gas cleaning for IC engine applications from fixed bed biomass gasification, Biomass and Bioenergy, 16:385-395, 1999.
[31] Hayhurst, A.N.: , Progress in Energy and Combustion Science, 6:35, 1980.
[32] Hill, S.C. and Douglas Smoot, L.: Modeling of nitrogen oxides formation and destruction in combustion systems, Progress in Energy and Combustion Science, 26:417458, 2000.
[33] HÖFLINGER, W.: Entstaubungstechnik, Vorlesungsskriptum, Technische Universität Wien, 1999.
[34] HofbauEr, H.: Auslegung verfahrenstechnischer Prozesse - Verbrennungsanlagen, Vorlesungsskriptum, Technische Universität Wien, 1996.
[35] HofbauEr, H.: Proseminar aus Brennstoff- und Energietechnologie, Skriptum, Technische Universität Wien, 1996.
[36] Jacobs, J.: Turbulente Mischung in Zyklonbrennkammern, Dissertation, Technische Universität Karlsruhe, 1974.
[37] Joppich, A.: Pneumatisches Brennstoffördersystem für direkt holzstaubgefeuerte Gasturbine, Dissertation, Technische Universität Wien, 1999.
[38] KaLishevski, L.L.: Charakteristik einer Zyklonkammer bei der Verbrennung, Teploenergetica, 5(2):27-33, 1958.
[39] Kester, R.A.: Nitrogen oxide emissions from a pilot plant spreader stoker bark fired boiler, Ph.D.Thesis, University of Washington, Seattle, 1980.
[40] KIRCH, R.: Der Einfluß der Turbulenz auf die Partikelbewegung im Gaszyklon, VDIFortschrittsbericht Nr. 145, VDI-Verlag, Düsseldorf, 1988.
[41] Kruczek, H. and Ferens, W.: An experimentell study of lignin combustion in cyclone chamber, VDI-Berichte Nr. 1090, 16.Deutscher Flammentag, 235-240, 1993.
[42] Kunert, St.: Vergasung von Biomasse in einer intern zirkulierenden Wirbelschicht, Diplomarbeit, Technische Universität Wien, 1995.
[43] Larson, E.D. and Williams, R.H.: Biomass fired steam injected gas turbine cogeneration, Cogen-Turbo: 2nd Int. Symp on Turbomachinery, 57-66, 1988.
[44] LEITHNER, R.: Einfluß unterschiedlicher WSF-Systeme auf Auslegung, Konstruktion und Betriebsweise der Dampferzeuger, VGB Kraftwerkstechnik, 69(7):675-701, Juli 1989.
[45] Lorenz, T.: Heißgasentstaubung mit Zyklonen, VDI-Fortschrittsbericht Nr. 366, VDIVerlag, Düsseldorf, 1994.
[46] LyngFelt, A. AND LECKNER, B.: Combustionof wood-chips in a circulating fluidized bed boiler - NO and CO emissions as functions of temperature and air-staging, Fuel, 78:1065-1072, 1999.
[47] Malte, P.C.: Mechanisms and kinetics of pollutant formation during reaction of pulverized coal, Plenum, 186, New York, 1979.
[48] Meisl, J., Bauer, H.J. And Wittig, S.: Untersuchung des Druckeinflusses auf die $N O_{x}-E m i s s i o n e n ~ a u s ~ G a s t u r b i n e n b r e n n k a m m e r n ~ m i t ~ z w e i s t u f i g e r ~ V e r b r e n n u n g s f u ̈ h-~$ rung, VDI-Berichte Nr. 1193:607-614, 1995.
[49] Milne, T.A.:, Combustion Science and Technology, 16:139, 1977.
[50] Mothes, H.: Bewegung und Abscheidung der Partikeln im Zyklon, Dissertation, TH Karlsruhe, 1982.
[51] Neufingerl, F. und Urban, O.: Organische Chemie, Bohmann Verlag, Wien, 1988.
[52] Neumann, K.K. und Keil, F.: Kinetik der Vergasung, Brennstoff Wärme Kraft, 33:22-25, 1981.
[53] Nussbaumer, T.: Emissionen von Holzfeuerungen, Forschungsprogramm 12 des Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung, ETH Zürich, 1988.
[54] Padouvas, E.: Verbrennungsrechnung, Vorlesungsskriptum, Technische Universität Wien, 1996.
[55] Pershing, D.W.: Pulverised coal combustion: The influence of fuel composition and flame temperature on thermal and fuel $N O_{x}$, Proc. 16th Int. Symp. Combustion, 1976.
[56] Ramesh, A. AND Kozinski, J.A.: Investigations of ash topography/morphology and their relationship with heavy metals leachability, Environmental Pollution, 111:255-262, 2001.
[57] SARKANEN, K.V. AND LUDWIG, C.H.: Lignins: occurence, formation, structure and reactions, Wiley Interscience, New York, 1971.
[58] SCHIELE, O.: Möglichkeiten zur Wiedergewinnung der Drallenergie von zyklonabscheidern, VDI-Tagungsheft 3, Probleme des Zyklonabscheiders, 20-22.
[59] Schmidt, P.: Ungewöhnliche Zyklonabscheider, Chem.-Ing.-Tech., 62 Nr.7:536-543, 1990.
[60] Schnell, U.: Berechnung der Stickoxidemissionen von Kohlenstaubfeuerungen, Dissertation, Universität Stuttgart, 1990.
[61] SENGSCHMIED, F.: Ein Beitrag zur Entwicklung einer druckbeaufschlagten Brennkammer für die zweistufige Verbrennung von Holzstaub, Dissertation, Technische Universität Wien, 1995.
[62] Shafizadeh, F. AND DeGroot, W.F.: Combustion characteristics of cellulosic fuels, Academic Press, New York, 1976.
[63] Shafizadeh, F. AND LAI, Y.Z.: Thermal degradation of glucose, Journal Org. Chem., 37:278-284, 1972.
[64] Skreiberg, O. and Glarborg, P.: Kinetic $N O_{x}$ modelling and experimental results from single wood particle combustion, Fuel, 76:671-682, 1997.
[65] Smith, J.L.: Cyclones, Basic Eng., 84:602-608 und 609-615, 1962.
[66] STAUDINGER, G.: Mechanische Verfahrenstechnik 2, Vorlesungsskriptum, Technische Universität Graz, 1994.
[67] Stringer, J. and Leitch, A.J.: Ceramic candle filter performance at the Grimethorpe pressurized fluidized bed combustor, J. Engineering for Gas Turbines and Power, April 371-379, 1992.
[68] Tabatabaie-Raissi, A. and Trezek, G.J.: Parameters governing biomass gasification, Ind.Eng.Chem.Res., 26:221-228, 1987.
[69] TASSIKER, O.J.: High temperature high pressure electrostatic precipitator for electric power generation technologies, ICHem Symposium Series, Nr.99:331-349, 1972.
[70] Tillman, D.A., Rossi, A.J. and Kitto, W.D.: Wood Combustion, Academic Press, New York, 1981.
[71] TMEJ, CH.: Betriebsverhalten eines Brennstoffördersystems für direkt holzstaubgefeuerte Gasturbinen, Dissertation, Technische Universität Wien, 1995.
[72] Troyankin, V. and Baluev, E.D.: The aerodynamic resistance and efficiency of a cyclone chamber, Thermal Engineering, 16(6):29-32, 1969.
[73] TURNS, S.R.: An introduction to combustion, McGraw-Hill Inc., New York, 1974.
[74] ULLMANN Ullmanns Encyclopedia of industrial chemistry, 6.Auflage, 2001.
[75] VEREIN Deutscher Ingenieure: Wärmetechnische Arbeitsmappe, 13. erw. Auflage, VDI-Verlag, Düsseldorf, 1988.
[76] YAN, H.M. AND HEIDENREICH, C.: Modelling of bubbling fluidised bed coal gasifiers, Fuel, 78:1027-1047, University of Adelaide, 1999.
[77] ZELDOVICH, Y.B.: , Acta Physicochim, 21:577, USSR, 1946.

Verwendete Normen und Richtlinien:

Deutsches Institut für Normung e.V.: DIN 1952
Durchflußmessung mit Blenden, Düsen und Venturirohren in voll durchströmten Rohren mit Kreisquerschnitt, Beuth Verlag GmbH, Berlin, Juli 1982.

VDI-RichtLinie 2066
Staubmessungen in strömenden Gasen - Gravimetrische Bestimmung der Staubbeladung, Beuth Verlag GmbH, VDI-Handbuch Staub, Berlin, Oktober 1975.

VDI-RichtLinie 2066

Staubmessungen in strömenden Gasen - Fraktionierende Staubmessung nach dem Impaktionsverfahren, Beuth Verlag GmbH, VDI-Handbuch Staub, Berlin, Oktober 1975.

VDI-RichtLinie 3676
Zyklone zur Abscheidung von Feststoffen aus Gasen, VDI-Wärmeatlas 6.Auflage, 1991.

Tabellenverzeichnis

2.1 Holzzusammensetzung [62] 12
2.2 Flüchtige und Koks beim Erhitzen von Holz und Kohle 15
2.3 Ascheschmelzverhalten 18
2.4 Heizwert von Holz 19
2.5 Zündtemperatur von Brennstoff in Luft [34] 22
5.1 Druckaufnehmer: Meßbereiche und Anzeigefehler 38
5.2 Thermoelemente: Meßbereiche und absolute Meßfehler 40
5.3 Rauchgasmessung: Meßbereiche, Reproduzierbarkeit 44
6.1 Brennkammervolumsbelastung 51
6.2 Einfluß von T_{W} auf die Näherungsrechnung 55
7.1 Auslegung des Axialzyklons 65
8.1 Immediatanalysen der drei Holzsorten 68
8.2 Elementaranalysen der drei Holzsorten 69
8.3 Ascheschmelzpunkte der verwendeten Holzsorten 69
8.4 Gleichgewichtskonstanten $K_{\mathrm{CO}_{2}}, K_{\mathrm{CO}}$ und $K_{\mathrm{H}_{2} \mathrm{O}}$ [42] 72
8.5 Gleichgewichtskonstanten K_{W}, K_{B}, K_{M} und $K_{h e t W}$ [42] 72
8.6 Zündtemperatur CO und H_{2} (als Gemisch mit Luft) [34] 82
8.7 Leistungsbereich der gestuften Brennkammer 84
8.8 Anteil von Δp_{M} an $\Delta p_{R, B K}$ 88
8.9 Anlagendruckverlust 90
9.1 Österreichische Luftreinhalteverordnung BGBl.Nr.331/1997, Holzfeuerungen 91
9.2 Stickstoffgehalt der verwendeten Holzsorten 99
9.3 Aschegehalt der verwendeten Holzsorten 101
9.4 Holzausbrand 102
9.5 Abscheidegrad $\eta_{Z y k l o n}$ des Axialzyklons 102
B. 1 Verbrennungsversuche 116

Abbildungsverzeichnis

1.1 Anteil der erneuerbaren Energie am Gesamtenergieeinsatz (1998) 1
1.2 Die erneuerbaren Energieträger in Österreich (1998) 2
1.3 Gasturbine und externer Vergaser 4
1.4 Direkt holzgefeuerte Gasturbine 5
1.5 Gasturbinenbrennkammer nach HAMRICK [29] 6
1.6 Zweistufige Gasturbinenbrennkammer 7
2.1 Strukturformel Zellulose 13
2.2 Ausschnitt aus einer Ligninstruktur 14
3.1 Einfache, offene Gasturbine 24
3.2 Offener Gasturbinenprozeß im h,s-Diagramm 25
4.1 Keramischer Filter [15] 29
4.2 Zyklon 30
4.3 Strömungsprofile im Zyklon [50] 31
5.1 Verfahrensfließbild 36
5.2 Instrumentierung 39
5.3 Schematische Darstellung des NDIR-Meßprinzips 42
5.4 Paramagnetische Sauerstoffmessung 43
5.5 Arbeitsweise eines Kaskadenimpaktors 45
6.1 Strömung in der Zyklonbrennkammer 48
6.2 Zyklonbrennkammer mit Rückströmzone 49
6.3 Umfangsgeschwindigkeit u in Abhängigkeit zu Geometrieverhältnissen [1] 52
6.4 Modell zur Wärmeübertragung in der Brennkammer 53
6.5 Zweistufige Zyklonbrennkammer 56
6.6 Lufteintritt in die Primärbrennkammer 57
6.7 Sekundär- und Primärlufteneintritt 57
7.1 Partikel im Zyklon 60
7.2 Fraktionsabscheidegrad η_{F} 61
7.3 Spalttauchrohre: 1.) Doppelspalt aus zwei Halbrohren; 2.) Schraubenspalt; 3.) Dreiviertelkreis-Rohr mit Diffusorspalt; 4.) Spiralwickel-Tauchrohr 62
7.4 Durchström-Zyklone: 1.) mit innerem Austragsspalt und Abschirmplatte; 2.) mit Spalttauchrohr, äußerem Austragsspalt und Grenzschicht-Gegenspirale am Bo- den 63
7.5 Axialzyklon 64
7.6 Schnitt C-C 65
7.7 3D-Modell des Axialzyklons 66
8.1 Rückstandsummenkurven der drei Holzsorten 70
8.2 Berechnungsverfahren 75
8.3 Brennkammeroberflächentemperatur 76
8.4 Vergasungsgleichgewicht; schwedischer Holzstaub 78
8.5 Vergasungsgleichgewicht; Fichtenspäne 79
8.6 Vergasungsgleichgewicht; Buchenspäne 80
8.7 Gegenüberstellung der berechneten Vergasungstemperaturen 81
8.8 Brennluftverhältnisse in der Brennkammer 83
8.9 Heißgas bei Verbrennung von schwedischem Holzstaub 85
8.10 Heißgas bei Verbrennung von Fichtenspänen 85
8.11 Heißgas bei Verbrennung von Buchenspänen 86
8.12 Druckmeßstellen in der Versuchsanlage 87
8.13 Druckverlust: Radialverdichteraustritt bis Brennkammeraustritt 88
8.14 Druckverlust im Axialzyklon 89
9.1 $C O-\lambda$-Korrelation [35] 92
9.2 Einfluß der Mischtemperatur auf CO -Emissionen 93
9.3 Einfluß der Temperatur $T I-2$ auf $C_{n} H_{m}$-Emissionen 94
9.4 CO und $C_{n} H_{m}$ bei der Holzverbrennung 94
9.5 TFN-Konversion in Abhängigkeit von λ [64] 97
9.6 NO -Bildungsmechanismen bei der Verbrennung von Holz 98
9.7 $N O_{x}$-Emissionen in Abhängigkeit vom Luftverhältnis in der Zyklonkammer 99
9.8 $N O_{x}$-Emissionen in Abhängigkeit von λ_{V} 100
9.9 Staubemissionen; bezogen auf $13 \% O_{2}$ im Abgas 101
9.10 Absolute Staubbeladung nach Axialzyklonaustritt 102
9.11 Durchgangssummenkurve 103

Anhang A

Spezifische Enthalpie eines Gases

Die spezifische Enthalpie idealer Gase erhält man durch Integration ihrer spezifischen isobaren Wärmekapazitäten c_{p}^{0}. Ein Potenzreihen-Ansatz mit 12 Termen gibt die Abhängigkeit von c_{p}^{0} ausreichend genau wieder.

$$
\begin{gather*}
c_{p}^{0}=R \sum_{k=1}^{n} C_{k} T_{R}^{k-6} \tag{A.1}\\
T_{R}=\frac{T}{1000} \tag{A.2}
\end{gather*}
$$

Die Bezugsenthalpie $h=0$ ist für die Temperatur $T=0^{\circ} C$ festgelegt. Durch Integration von Gleichung A. 1 ergibt sich für die spezifische Enthalpie die Berechnungsgleichung [14]:

$$
\begin{equation*}
h_{T_{R}}=\sum_{k=1}^{12} H_{k} T_{R}^{k-5}+H_{13} \ln \left(T_{R}\right) \tag{A.3}
\end{equation*}
$$

Ist die Zusammensetzung des idealen Verbrennungsgasgemisches in Massenanteilen m_{i} gegeben, so berechnet man die Koeffizienten H_{k} aus den entsprechenden Koeffizienten $H_{k, i}$ der reinen Komponenten:

$$
\begin{equation*}
H_{k}=\sum_{i} m_{i} H_{k, i} \quad k=1,2,3, . .13 \tag{A.4}
\end{equation*}
$$

Diederichsen et al. [14] geben die Koeffizienten $H_{k, i}$ für acht ideale Gase, trockene Luft und Luftstickstoff an.
Für die mittlere spezifische Wärmekapazität gilt somit:

$$
\begin{equation*}
\overline{c_{p}^{0}}=\frac{h}{T-273,15} \tag{A.5}
\end{equation*}
$$

Anhang B

Verbrennungsversuche

Gliederung der einzelnen Verbrennungsversuche (Ergebnisse bei stationärem Betrieb):

	$\begin{gathered} \mathrm{Holz} \\ {[\mathrm{~kg} / \mathrm{h}]} \end{gathered}$	Leistung $[\mathrm{kW}]$	λ_{V}	$\begin{gathered} \dot{m}_{V} \\ {[\mathrm{~kg} / \mathrm{s}]} \end{gathered}$	λ	$\dot{m}_{s e k}$ $[\mathrm{kg} / \mathrm{s}]$	$\dot{m}_{\text {Heissgas }}$ $[\mathrm{kg} / \mathrm{s}]$	$\begin{gathered} T_{3} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	Brennkammerdruck [bar]
Schwed. Holzstaub	28	150	0.46	0.022	2.0	0.07	0.16	700	1
			0.54	0.025	1.9	0.063	0.18	600	1
			0.58	0.027	1.6	0.048	0.22	500	1
	40	210	0.48	0.032	1.6	0.075	0.22	700	1
			0.54	0.036	1.4	0.057	0.26	600	1
			0.63	0.042	2.2	0.105	0.31	500	1
	55	290	0.6	0.055	1.6	0.1	0.3	700	1
			0.5	0.046	1.4	0.082	0.35	600	1
			0.48	0.044	2.2	0.158	0.44	500	1
	40	210	0.54	0.036	2	0.084	0.26	600	1.4
			0.58	0.039	1.9	0.07	0.22	700	1.7
	55	290	0.6	0.055	1.7	0.12	0.3	700	1.5
			0.58	0.052	1.9	0.13	0.3	700	1.7
Fichte	40	180	0.46	0.027	1.6	0.067	0.19	700	1
			0.54	0.032	1.7	0.068	0.23	600	1
	55	260	0.5	0.04	1.8	0.11	0.27	700	1
			0.64	0.052	1.9	0.1	0.31	600	1
			0.7	0.057	1.5	0.065	0.38	500	1
	68	310	0.66	0.066	1.8	0.11	0.34	700	1
			0.48	0.048	1.9	0.142	0.39	600	1
	40	180	0.66	0.039	1.7	0.068	0.23	600	1.5
	55	260	0.63	0.051	1.8	0.093	0.27	700	1.6
Buche	40	170	0.46	0.027	1.9	0.08	0.18	700	1
			0.53	0.03	1.5	0.058	0.23	600	1
			0.65	0.033	1.9	0.08	0.27	500	1
	55	250	0.62	0.049	1.8	0.09	0.27	700	1
			0.57	0.048	1.9	0.1	0.31	600	1
			0.53	0.042	1.5	0.064	0.37	500	1
	64	290	0.7	0.068	1.8	0.11	0.36	600	1
	55	260	0.64	0.052	1.8	0.098	0.27	700	1.5

Tabelle B.1: Verbrennungsversuche

Lebenslauf

Name: geboren am: geboren in: als Sohn von: Familienstand:	Mario Pelzmann $1979-1982$		
Fürstenfeld (Stmk)			
Anneliese und Franz Pelzmann			
verlobt mit Sabine Mlcak		\quad	Volksschule in Wien, 6
:---			
$1973-1991$			
$1991-1997$	\quad	Realgymnasium Rahlgasse Wien,6	
:---			
Diplomstudium Verfahrenstechnik an der			
Technischen Universität Wien			
Studienzweig: Apparate u. Anlagenbau			

[^0]: ${ }^{1}$ vgl. Abb. 3.1 und 3.2

[^1]: ${ }^{1}$ vgl. Kapitel 4.2

[^2]: ${ }^{2}$ vgl. Kapitel 1.2.1
 ${ }^{3}$ vgl. Kapitel 1.2.2

[^3]: ${ }^{4}$ vgl. Abbildung 5.1

[^4]: ${ }^{1}$ vgl. Kapitel 3.2

[^5]: ${ }^{2}$ vgl. Kapitel 6.2.1.1

[^6]: ${ }^{1}$ vgl. Kapitel 2.1.3

[^7]: ${ }^{2}$ vgl. Abb.6.4

[^8]: ${ }^{3}$ vgl. Kapitel 6.1

[^9]: ${ }^{4}$ vgl. Abb.6.5

[^10]: ${ }^{1}$ vgl. Kap 5.2.5

[^11]: ${ }^{2}$ vgl. Kap 5.2

