
Technische Universität Wien

Diplomarbeit

Three-Dimensional Device Simulation
with MINIMOS-NT using the

WAFER-STATE-SERVER

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Klaus-Tibor Grasser

und

Univ.Ass. Dipl-Ing. Andreas Gehring

E360 - Institut für Mikroelektronik

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Robert Entner
9725877 / E754

Neustiftg. 20/6, 1070 Wien

eMail: robert@entner.net

Wien, im September 2003

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 

mailto:robert@entner.net


To Anna and Sarah



Abstract

The fast growing market for semiconductor devices and the rapid development of new tech-
nologies in this segment has lead to the development of numerous simulation tools. They
cover both the simulation of the manufacturing process of a device as well as the simulation of
its electrical characteristics.

All these simulation tools cover different stages in the development of semiconductor devices.
So it is obvious that choosing those tools that are best suited for the different development steps
and combining them to simulate the whole production flow would yield the best results.

However, there is no standard description of simulation data and for reading and writing it
from and to a file. To solve this issue the WAFER-STATE-SERVER was developed at the Insti-
tute for Microelectronics. It can handle various file formats from different vendors and can be
expanded to support new formats with minimal effort.

Within this thesis the general-purpose device and circuit simulator MINIMOS-NT was en-
hanced with the capability of reading and writing data from and to the WAFER-STATE-SERVER.
This allows MINIMOS-NT to interact with various other simulators and to incorporate it into
the workflow of device development.

This work presents the design tools and data models that were necessary for the implementa-
tion of the new functionality into MINIMOS-NT and for testing it. Also the issues arising during
the work and its solutions are presented. For reference a short introduction to the WAFER-
STATE-SERVER is given which is used for reading, manipulating, and writing simulation data.
This description should make it easy for beginners to access the WAFER-STATE-SERVER.

To demonstrate the functionality of the implementation, several three-dimensional devices are
created and simulated.
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Kurzfassung

Der schnelllebige Markt für Halbleiterbaulemente und die rasche Entwicklung neuer Technolo-
gien in diesem Segment hat zur Entwicklung zahlreicher Simulationswerkzeuge geführt. Sie
dienen einerseits der Simulation des Herstellungsprozesses eines Bauelementes als auch seiner
elektrischen Eigenschaften.

Verschiedene Stadien im Entwicklungsprozess eines Bauelementes werden durch die jeweili-
gen Simulationswerkzeuge abgedeckt. Da wäre es durchaus wünschenswert Werkzeuge ver-
schiedener Hersteller für die unterschiedlichen Entwicklungsstufen zu kombinieren um die
besten Ergebnisse zu erzielen.

Da es allerdings keinen einheitlichen Standard gibt um auf die Simulationsdaten zuzugreifen,
ist es äußerst mühsam die Tools verschiedener Hersteller zu kombinieren. Um dieses Problem
zu lösen wurde am Institut für Mikroelektronik der WAFER-STATE-SERVER entwickelt. Er kann
verschiedenste Dateiformate diverser Hersteller verarbeiten und kann auch mit minimalem
Aufwand erweitert werden.

In dieser Diplomarbeit wurde der Bauelement- und Schaltungssimulator MINIMOS-NT erweit-
ert, um auf den WAFER-STATE-SERVER zugreifen zu können. Dadurch ist es MINIMOS-NT
möglich mit den unterschiedlichsten Simulatoren zusammen zu arbeiten und sich in den Work-
flow der Bauelemententwicklung leicht einzugliedern.

Es werden jene Designwerkzeuge und Datenmodelle präsentiert, die für die Implementierung
und den Test der neuen Funktionalität in MINIMOS-NT notwendig waren. Weiters wird auf
die Probleme und deren Lösungen eingegangen, die während der Arbeit auftraten. Auch ist
eine kurze Einleitung für die Ansteuerung des WAFER-STATE-SERVER enthalten, um einen
schnellen Einstieg zu ermöglichen.

Um die Funktionalität der Implementierungen zu demonstrieren wurden einige dreidimen-
sionale Bauelemente erstellt und simuliert.
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Terminology

Most abbreviations and technical terms in this thesis are self-explanatory. Care has been taken
to use well defined and precise expressions. For an easy way to keep track of the terms and
their meanings they are summarized in Table 1.

TCAD Technology Computer Aided Design
Wafer-State The data which describes the condition of a

wafer. It contains the physical layout of the in-
tegrated devices, the structure of the simulation
grid, and attributes like the impurity concentra-
tion or the temperature.

WAFER-STATE-SERVER The class library used to store and manipulate
simulated data [bind02].

MINIMOS-NT Device and circuit simulator developed at the
Institute for Microelectronics [mmnt].

SMARTV Visualization tool developed at the Institute for
Microelectronics. It is capable of handling .wss
files from the WAFER-STATE-SERVER. A Ger-
man description of the program can be found
in [zohl03].

IDDL Input Deck Description Language. It is used as
a base for input files to control many process-
and device simulation tools at the Institute for
Microelectronics [klim02].

LAYGRID Three-dimensional preprocessor/grid genera-
tor. It generates three-dimensional geometries
and a tetrahedalized simulation grid [sap].

ADDANAIPD Tool for adding dopant concentrations to de-
vices. It can also be used to refine the grids.

Table 1: A glossary of terms used.
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Chapter 1

Introduction

In the last decades the importance of electronic devices has grown rapidly. This success has
been triggered by three scientists in the last century, namely John Bardeen, Walter Houser
Brattain, and William Bradford Shockley, who invented the transistor at Bell Laboratories in
December 1947. The transistor could replace the thermionic valve – also known as vacuum
tube – in most applications for various reasons: Transistors are smaller in size, cheaper, easier
to manufacture, have lower operation voltages, a lower power dissipation, a higher reliability,
and a greater endurance.

In the sixties, the discrete transistor was replaced by integrated circuits. Without requiring
much more space on the expensive wafers, one integrated circuit could replace dozens of tran-
sistors. Further progress in technology lead to a very high level of integration which enabled
the development of microprocessors in the seventies.

Nowadays, progress in development is still significant. The level of integration becomes higher
and higher while the size of the microchips is reduced to increase the capabilities of the chip
and to decrease manufacturing costs. But as the size of integrated circuits is decreasing, new
physical effects come up which have to be considered. As development time is a key fac-
tor for the manufacturers they simulate the fabrication process and the electrical behavior of
transistors with Technology Computer Aided Design (TCAD) simulation programs to reduce
development time.

Today, many tools from various software vendors are available to simulate the semiconductor
fabrication process and the resulting devices. But unfortunately, most of them use different
file formats to store their data. So it is extremely cumbersome to combine tools from different
vendors to simulate the whole process and simulation flow.

The data which describes the condition of a wafer before or after a simulation process is called
Wafer-State. It contains the physical layout of the integrated devices, the structure of the simu-
lation grid, and attributes like the impurity concentration or the temperature. This information,
or part of it, is needed by the simulation tools. To have a common database the WAFER-STATE-
SERVER was developed at the Institute for Microelectronics. It represents an application pro-
gramming interface (API) with a set of classes to store the state of a wafer. Using the WAFER-
STATE-SERVER the tool developers have a common database to store and retrieve their data.

1



CHAPTER 1. INTRODUCTION

The WAFER-STATE-SERVER has its own file format but can also read and write proprietary file
formats. So it can be used as a wrapper tool to feed the output from the simulation tool of
one vendor to the tool of another vendor. This enables the use of the best suited tools for the
various steps in the process and device simulation flow.

Within this thesis the device and circuit simulation tool MINIMOS-NT is connected to the
WAFER-STATE-SERVER. With this enhancement it is now easy to integrate MINIMOS-NT in
a simulation flow with the other tools developed at the Institute for Microelectronics.

2



Chapter 2

TCAD Design Tools and Data Models

Each vendor of Technology Computer Aided Design (TCAD) simulation tools ‘invented’ their
own file format for storing the simulation data. Most of these file formats are optimized for
the special needs of a specific tool. Therefore the file formats are not compatible and it is very
difficult to translate them to another format. This is the reason why it is sometimes practically
impossible to combine different tools for the simulation of one process flow. Hence, a data
model was created which can store Wafer-State information in a tool-independent manner.
This information must be sufficient for a wide range of tools and it should be possible to export
and import the data to tool-specific file formats.

2.1 TCAD Data Model

A data model for TCAD simulation has to deal with four major aspects [bind02].

• The tool must store the results of a simulation for further processing. This could be an-
other simulation step or visualization.

• The tool must manage different gridding tools. It must be possible to switch between
gridding algorithms without much effort.

• The extraction of topological information must be supported. So, the user can manipu-
late the underlying geometry after a topography step which changes the structure of the
device.

• All data structures and algorithms must be available in three spatial dimensions.

All above defined requirements are met in the WAFER-STATE-SERVER which is discussed in
detail in Section 2.3.

3



2.2. Grid Theory CHAPTER 2. TCAD DESIGN TOOLS AND DATA MODELS

2.2 Grid Theory

In TCAD applications the discretization of the simulation domain plays a major role. The con-
tinuous model must be discretized into a large number of small elements to allow the solution
of the partial differential equations by numerical methods. With these partial differential equa-
tions the underlying physical behavior can be simulated. In the domain of device simulation
this could be, for example, Poisson’s equation for the electrostatic potential.

The discretization of a spatial domain is called mesh generation. The mesh has to fulfill differ-
ent criteria depending on the problem that has to be solved.

One way of creating a mesh is the Delaunay triangulation, for which, in the first place, the
Voronoı̈ diagram has to be derived.

2.2.1 The Voronoı̈ Diagram

Definition 2.1 (Voronoı̈ diagram) Let P = {p1, . . . , pk} be a finite set of points in the n-dimensional
space Rn and their location vectors xi �= xj ∀ i �= j. The region given by

V(pi) = {x | ‖x − xi‖ ≤ ‖x − xj‖ ∀ j �= i}
is called Voronoı̈ region (Voronoı̈ box) associated with pi and

V(P) =
k⋃

i=1

V(pi)

is said to be the Voronoı̈ diagram of P.

Figure 2.1 depicts a Voronoı̈ diagram in two spatial dimensions. Every point within a Voronoı̈
box is closer to the grid-point within the box than to any other grid-point.

The Voronoı̈ theory can be expanded to three spatial dimensions. In this case the Voronoı̈ boxes
are three-dimensional and Definition 2.1 remains valid.

2.2.2 Delaunay Triangulation

The WAFER-STATE-SERVER uses tetrahedrons to describe its three-dimensional grids. To gener-
ate such grids the Delaunay triangulation can be efficiently utilized as robust tetrahedalization
engine [flei99].

Starting from the Voronoı̈ definition the Delaunay triangulation can be constructed. By joining
the vertices belonging to two adjacent boxes the Delaunay triangulation depicted in Figure 2.2
is formed.

The Delaunay-based meshing approach consists of two tasks. One task addresses the mesh
topography which is defined through the placement of mesh points within the simulation do-
main. The other task is to perform the Delaunay triangulation for this point set and thus creat-
ing the mesh topology. The sequence in which these tasks are carried out can be freely chosen
and results into two different classes.

4



2.2. Grid Theory CHAPTER 2. TCAD DESIGN TOOLS AND DATA MODELS

Figure 2.1: Voronoı̈ diagram consisting of 9 points and the corresponding Voronoı̈ boxes.

Figure 2.2: Voronoı̈ boxes (light gray) and the corresponding Delaunay triangulation.
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• The Delaunay triangulation is first computed for the boundary of the simulation domain
(boundary mesh). Then the mesh points are inserted into the triangulation / tetraheda-
lization and the mesh topology is updated according to the Delaunay definition.

• The cluster of points filling the simulation domain is first created and the Delaunay Tri-
angulation is performed afterwards.

Both approaches take advantage from the Delaunay triangulation and can also be combined
for better results.

Creating an initial set of points at first is straightforward and easily allows to avoid overlapping
or inconsistent elements (as the elements in this stage are only points). On the other hand a
lot of information about the structure of the simulation domain is provided by a Delaunay
boundary mesh. This information can be used to add internal mesh points in an ‘intelligent’
way.

2.3 WAFER-STATE-SERVER

To comply with the requirements of a TCAD data model the WAFER-STATE-SERVER was devel-
oped. It represents an API with a set of classes written in C++ to store and handle Wafer-State
information.

The WAFER-STATE-SERVER stores all properties of the simulation domain, which mainly covers
two major aspects:

• The topological structure of the simulation domain. It determines the position of various
materials on the wafer that are grouped to segments. Figure 2.3 shows the topological
structure of a MOS transistor.

• The distribution of physical quantities within the wafer. As an example, the dopant con-
centration is depicted in Figure 2.4.

Additionally, the WAFER-STATE-SERVER offers various methods to access and modify these
properties. These comprise, for example, a method for interpolating an attribute from one grid
to another or a method for creating a single grid from all grids of a certain segment.

2.3.1 Data Structure

The data stored by the WAFER-STATE-SERVER is organized in sections that can recursively con-
tain subsections as shown in Figure 2.5. At the top level two sections are mandatory, namely
the points and the segments sections.

In the points section the coordinates of all points of the grids are stored in a list. The grid
elements themselves do not store the coordinates but only refer to the index of the points to
prevent redundancy.
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Figure 2.3: Topological structure of a MOS transistor.
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Figure 2.4: Dopant concentration of the Silicon segment shown in Figure 2.3.
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Figure 2.5: Structure of the wafer data as stored by the WAFER-STATE-SERVER.
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In the segments section an arbitrary number of attributes, properties, boundaries, and stand-
alone grids can be stored.

Attributes can be either quantities or properties.

Quantities are defined on a grid and store one or more values for each grid point. This could
be for example the doping concentration, the electrostatic potential, or the electric field
vectors.

Properties store a value for a whole segment. This could be for example the material type or
the permittivity.

Boundaries define a part of the hull of a segment. They can hold an arbitrary number of
quantities and properties.

Stand-alone grids represent the geometry of the segment. If at least one distributed quantity
is defined on the segment, the stand-alone grid is optional. In this case the grid of the
quantity can define the geometry of the segment. Otherwise it must be present.

2.3.2 Operations

The WAFER-STATE-SERVER must offer various operations on the wafer data. They are impor-
tant to supply the simulation tools with the necessary information and to keep the wafer data
consistent.

• Extraction of the interface between two segments.

• Extraction of the boundary of a segment.

• Extraction of the surface of a wafer.

• Interpolating the data from one grid to another. This operation must be explicitly invok-
able by the simulation tool.

• Merging the wafer with the result of a simulation. This is necessary for example when
an etch simulation changes the topography of the wafer. It would not make sense if
the removed parts of the wafer still had their grid points and quantities. The merging
operation must hence compute new grids and interpolate the attributes onto the new
grids.

2.3.3 Reader and Writer

The I/O module of the WAFER-STATE-SERVER comprises a set of classes and methods to write
and read wafer data using different file formats.

As the classes for the reader and the writer are completely independent, it is only necessary
to implement the operation needed (reading or writing) when a new file format has to be sup-
ported.

9



2.4. The IDDL CHAPTER 2. TCAD DESIGN TOOLS AND DATA MODELS

With this capability the WAFER-STATE-SERVER can be used as a file converter to transform data
between different file formats. This functionality is used by the program ioconv developed at
the Institute for Microelectronics.

Currently the I/O module supports five file formats.

WSS is the native WAFER-STATE-SERVER file format. It is human readable (ASCII), so it is pos-
sible to generate simple wafer structures with a text editor. Figure 2.6 shows an example
.wss source file describing a simple silicon block consisting of one segment. Figure 2.7
depicts the resulting cube.

HDF (Hierarchical Data Format) is a binary format. It is maintained at the National Center for
Supercomputing Applications at the University of Illinois at Urbana - Champaign [hdf].
As it is a binary file format it is smaller in size and the reading performance is better. The
WAFER-STATE-SERVER supports HDF version 5 for reading and writing. HDF version 4
is not compatible to version 5 and thus neither readable nor writable by the I/O module.

FEM is the native file format of the program package SAP (Smart Analysis Programs) [sap]
developed at the Institute for Microelectronics. Only the reader is implemented.

PIF is the old native file format of various tools from the Institute for Microelectronics at the
Technical University of Vienna. It was initially proposed for the exchange of simulation
data by Duvall [duva88] in 1988. However, there are various semantically incompatible
PIF versions. The support by the I/O module has therefore been limited to some specific
implementations. As all newly developed simulators from the Institute for Microelec-
tronics are based upon the WAFER-STATE-SERVER this drawback is tolerable.

DF-ISE is the native file format of the ISE software company [ise]. To use the software suite of
this vendor a reader and a writer were implemented.

2.4 The Input Deck Description Language

At the Institute for Microelectronics the powerful Input Deck Description Language (IDDL)
was developed. It is used to control many of the device and process simulation tools.

The IDDL files normally have the extension .ipd and can be considered as control files for the
applications. MINIMOS-NT for example needs a lot of information for a simulation run. There
are the name of the device description file, the voltage each contact is to be set to, the name of
the output file, the stepping details if for example the voltage at a contact is to be varied, just
to name a few. Also the different material types like Silicon, Aluminium, or Poly-Silicon are
defined in an IDDL material database. As the information is packed into the .ipd file one does
not need an unmanageable amount of command-line parameters for the simulator.

But the .ipd files are not just a collection of parameters. The IDDL is a very powerful program-
ming language capable of inheritance, various different operators, handling complex numbers,
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VERSION "1.4"

NAME siliconblock

DIMENSION 3

POINTS

{

10 10 0 # Point 0

0 10 0 # Point 1

0 0 0 # Point 2

10 10 10 # Point 3

5 5 10 # Point 4

10 0 0 # Point 5

0 10 10 # Point 6

10 0 10 # Point 7

0 0 10 # Point 8

}

SEGMENTS

{

Segment1

{

GRID grid1

{

0 1 2 3

1 2 3 4

2 0 3 5

2 3 4 5

3 1 4 6

3 4 5 7

1 4 6 8

1 2 4 8

4 2 5 8

4 5 7 8

}

ATTRIBUTES

{

MaterialType

{

"Si"

}

}

}

}

Figure 2.6: A .wss file describing a simple silicon block consisting of one segment. The num-
bers in the GRID section refer to the coordinates defined in the POINTS section. Every
line builds up one tetraeder consisting of four points. The resulting cube is depicted
in Figure 2.7.
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Figure 2.7: This cube was generated from the .wss source from Figure 2.6.

physical units, powerful functions, and much more. As it is also possible to define new func-
tions within an .ipd file, the functionality can be improved. For a detailed description see
[klim02].

Figure 2.8 shows an example of an .ipd file. It was used to simulate the diode in Section 5.3.

2.5 The Vienna Make Utility

The Vienna Make Utility, VMAKE [tupp96], is a system-independent, case-oriented make util-
ity developed at the Institute for Microelectronics. VMAKE was developed to overcome the
drawbacks of existing software engineering tools like MAKE or JAM.

MAKE lacks the ability to handle global software project information. Also dependence defini-
tions are only handled locally.

JAM is able to use global dependences by identifying file names. The drawback JAM has to
cope with is the lack of total system independence. So it is not possible to run JAM with the
same set of description files on different platforms without any modifications.

Most of the process and device simulation tools and their libraries at the Institute for Microelec-
tronics are managed by VMAKE, which can therefore be used as central software engineering
tool to build the various projects.
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#include <defaults.ipd> // load the default settings

Device : DeviceDefaults // inherit the default device

{

Input { file = "diode"; } // input file: diode.wss

Output { file = "diode_out"; } // output file: diode_out.wss

// the voltage steps from -1V to 3V in 0.05V steps

+LeftContact = step(-1.0V,3.0V,0.05V);

+RightContact = 0.0 V;

Phys

{

srh = "*";

sh = ""; // do not simulate self heating

+LeftContact

{

contactName = "LeftContact";

Contact

{

Ohmic

{

type = "Voltage,Thermal";

Rth = 4.0e-4 "K cm^2/W";

}

}

}

+RightContact : LeftContact

{

contactName = "RightContact";

}

}

}

Curve // information about a .crv output file

{

file = "diode_out"; // output curve file: diode_out.crv

Response // data to include in the curve file

{

+I = output("Device", "I", "LeftContact");

+Ul = output("Device", "V", "LeftContact");

}

}

// use the default iteration scheme

Iterate { Scheme : SchemeDefaults.DD; }

Figure 2.8: An example of an .ipd file.
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Visualization

AddAnaIpd

SmartV

Simulation

Topology of the Device

Minimos−NT

Laygrid

Implanting

Figure 2.9: Workflow for generating, implanting, simulating, and visualization of a device.

2.6 TCAD Data Tools

Several tools for the generation, modification, and visualization of three-dimensional devices
are developed at the Institute for Microelectronics. This section introduces the most important
tools that have been used to simulate a complete process workflow.

Figure 2.9 depicts the workflow for the whole generation, implantation, simulation, and visu-
alization process used within this work. Only analytic ways for generating a device and its
properties were used. So no process simulation steps like etching, diffusion, or lithography
were simulated. Instead the tools described in the following sections were utilized.

2.6.1 LAYGRID

The tool LAYGRID is part of the Smart Analysis Programs (SAP) program package. SAP was
designed for the numerical simulation (finite elements method) and for the investigation of
the thermal and the electrical characteristics of interconnect lines within integrated circuits. It
consists of two finite element simulators (SCAP and STAP), three input preprocessors (CUTGRID,
LAYGRID, and TRANSGRID) and three visualization tools (FEMPOST, SAPVIEW, and SMARTV).
Table 2.1 depicts the tools of the package.

LAYGRID can be used to generate three-dimensional grid structures. It is basically a console
tool, that reads the control information from a .lay file. The control files are human readable
text-files.
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Program Description
CUTGRID Two-dimensional preprocessor and grid gener-

ator. It generates two-dimensional surfaces and
a triangulated grid.

LAYGRID Three-dimensional preprocessor and grid gen-
erator. It generates three-dimensional geome-
tries and a tetrahedalized simulation grid.

TRANSGRID Three-dimensional preprocessor and grid gen-
erator. It generates three-dimensional geome-
tries and a simulation grid with either tetra-
hedrons (which consist of four points and
four faces) or hexaedrons (eight points and six
faces).

SCAP Extracts capacities from a structure of conduc-
tors. The insulators and conductors are as-
sumed ideal.

STAP Transient and static thermical and electrical
simulation.

FEMPOST Simple visualization tool.
SAPVIEW Advanced visualization tool.
SMARTV Sophisticated three-dimensional visualization

tool. It is capable of reading the new .wss file
format.

Table 2.1: The tools of the SAP package.

The three-dimensional geometry is modeled in terms of horizontal layers. These horizontal
layers are defined by two-dimensional geometrical objects. The objects can be rectangles, poly-
gons, or circles. Figure 2.10 depicts a part of an interconnect structure which has been generated
with LAYGRID.

Figure 2.11 shows the .lay file that was used to generate the MOS transistor described in
Section 5.3. In the first part of the .lay file the global scaling factor is defined. All geometric
length specifications are multiplied with the factor unitlength.

Then the different layers are defined with the keyword mask. In this example the structures
within the layers consist only of rectangles. The first number pair in the rectangle definition
specifies the lower left corner of the object. The second number pair defines the width and the
height.

In the third part of the example file the thickness of the layers and the order in which they are
stacked is defined with the keyword layerstructure. Within this statement, the origin of the
layers is defined first. Then the different layers are referenced by their label (M0-M3) and their
thickness. The layers are separated by lines containing one ore more ‘-’ signs.
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Figure 2.10: A typical interconnect structure generated with LAYGRID.

The last part defines the material types of the different geometrical objects. As one can see the
gate contact is modeled with poly silicon.

When a .wss file has to be generated by LAYGRID, then the following command line can be
used:

laygrid --wss --max-area 0.1 layfile.lay

The --max-area argument limits the maximum area of the generated triangles. This comes in
very handy when the whole grid should be refined.

A drawback of this method is that the whole grid is refined. If an electrically interesting area of
the simulation device is refined using this method, then also uninteresting areas of the device
like for example in the lower parts of the substrate of a MOS transistor are refined and thus
leads to an unnecessarily large amount of points. The following section shows some ‘tricks’ to
refine the grid more intelligently.
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unitlength { 1.0 um } /* defines the unit of all numbers */

/* definition of the 2d layers */

mask { M0 rectangle { R1 Bulk { -2 -1 } { 5 2 }}}

mask { M1 rectangle { R1 Si { -2 -1 } { 5 2 }}

rectangle { R2 Si { 0 -1 } { 1 2 }}

rectangle { R3 Si { 0.05 -1 } { 0.9 2 }}

rectangle { R4 Si { 0.10 -1 } { 0.8 2 }}

rectangle { R5 Si { 0.15 -1 } { 0.7 2 }}

rectangle { R6 Si { 0.25 -1 } { 0.5 2 }}

rectangle { R7 Si { 0.35 -1 } { 0.3 2 }}

rectangle { R8 Si { 0.45 -1 } { 0.1 2 }}

}

mask { M7 rectangle { R18 SiO2 { -2 -1 } { 5 2 }}

rectangle { R11 Source { -2 -1 } { 1 2 }}

rectangle { R12 Drain { 2 -1 } { 1 2 }}

}

mask { M8 rectangle { R10 SiO2 { -2 -1 } { 5 2 }}

rectangle { R11 Source { -2 -1 } { 1 2 }}

rectangle { R13 Gate { 0 -1 } { 1 2 }}

rectangle { R12 Drain { 2 -1 } { 1 2 }}

}

/* the 2d layers are stacked and have the specified thickness */

layerstructure {

origin { 0 0 0 }

plane { ------------ }

layer { M0 0.5 }

plane { ------------ }

layer { M1 1.5995 }

plane { ------------ }

layer { M1 0.0005 }

plane { ------------ }

layer { M7 0.0025 }

plane { ------------ }

layer { M8 0.05 }

plane { ------------ }

}

/* definition of the material types of the segments */

material { Source Al }

material { Gate Poly }

material { Drain Al }

material { Bulk Al }

material { SiO2 SiO2 }

material { Si Si }

Figure 2.11: An example of a .lay file.
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Figure 2.12: Part of a MOSFET grid without (left) and with grid refinement via a dummy layer.

Grid Refinement

LAYGRID offers some ‘tricks’ to refine the grid of the generated device in specific areas.

When a MOSFET is simulated, for example, the interesting area of the device is the uppermost
part of the substrate where the channel builds up. So the grid in the first few nanometers
under the gate oxide must be very fine and with growing depth the grid has to become coarser
to avoid unnecessary grid points. Figure 2.12 depicts a part of a grid without and with this grid
refinement.

LAYGRID offers a method to generate such grids by introducing so called ‘dummy layers’ into
the grid structure. If we take the substrate layer of a MOSFET as example it can be split up
into two layers where the first one has nearly the thickness of the original layer and the second
builds up the rest. So, LAYGRID is forced to add a grid plane between the two layers. Since
the grid line spacing cannot change by more than a predefined factor between consecutive grid
lines, LAYGRID adds additional grid planes to the substrate to build up a strong refinement close
to the dummy layer which gets coarser when moving away from this layer. This is exactly the
type of grid refinement needed for the simulation of a MOSFET and its channel on the upper
side of the substrate.

Figure 2.13 shows the different layerstructures for a grid with- and without refinement. The
resulting device structure is exactly the same, that means that no ‘extra segment’ is generated
by the dummy layer. Only the grid is different.

Another way to refine the grid structure is to use so called ‘dummy faces’. They do not lead to
a better refined grid in z direction, but instead refine the grid in the x and y directions.
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/* without grid-refinement */ /* grid-refinement via a dummy layer */

layerstructure { layerstructure {

origin { 0 0 0 } origin { 0 0 0 }

plane { --- } plane { --- }

layer { Bulk 0.05 } layer { Bulk 0.05 }

plane { --- } plane { --- }

layer { Substrate 1.6 } layer { Substrate 1.599 }

plane { --- } plane { --- }

layer { GateOxide 0.0025 } layer { Substrate 0.001 } /* dummy layer */

plane { --- } plane { --- }

layer { Contacts 0.05 } layer { GateOxide 0.0025 }

plane { --- } plane { --- }

} layer { Contacts 0.05 }

plane { --- }

}

Figure 2.13: An example of grid refinement by using a dummy layer.

A dummy face is an additional geometrical object in a mask definition. Instead of using a
simple rectangle to describe a gate contact of a transistor, for example, two rectangles are used.
The first one stays the same as without dummy face. The second rectangle is positioned within
the first one, and forces the grid generation algorithm to add new grid points. Figure 2.14
depicts two grids generated with and without a dummy face.

2.6.2 ADDANAIPD

The next step in the generation of a device like the MOS transistor of the examples section is
the doping of the material and the refinement of the grid in the areas of interest. Those areas
are, for example, in the substrate directly under the gate contact where the channel is formed.
This partial refinement is important because a global refinement would lead to a grid with a
tremendously higher amount of grid points.

The input files of ADDANAIPD are written in the Input Deck Description Language (IDDL)
described in Section 2.4. Figure 2.15 shows parts of the input file used for the MOS transistor
of Section 5.3.

In the GridSpacing section the global grid can be refined. The coordinates denote the maxi-
mum distance between two grid points in the x, y, and z direction. The refinement of the whole
grid with this command should be used with care. The size of the simulation data can grow
rapidly when the whole grid is refined instead of just the interesting areas.

The GridRefinement section is used to refine the grid within a given area. BoxLL and BoxUR
specify the lower left and the upper right corners of the box. The BoxSpacing command is used
in the same way as GridSpacing, but in this case only the grid within the box is refined. For
all the areas within the simulation domain where a quantity changes its value very quickly a
refinement box should be used to increase the grid resolution.

In the Wafer section the in- and output files are given.
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Figure 2.14: A Grid generated without (left) and with a dummy face. The refinement is
achieved by the inner rectangle which has the same material type as the original
but forces the grid generator to insert additional grid points.

Finally, in the Attributes section a quantity can be written on the segments of the device. In
the example depicted in Figure 2.15 this is the p-type doping of the substrate. The doping
profile has been specified via analytic functions as seen in the example. The n-type doping of
the device was not included in this example to increase its readability, but the definition looks
very much the same as in the p-type case.

This example file makes use of many sophisticated capabilities of the IDDL. New variables are
defined and functions are used to calculate the dopant profile. The VAL variable returns the
resulting value and depends on the X, Y, and the Z coordinate of the point. To get a deeper
insight into the IDDL see [klim02].

ADDANAIPD produces a .wss file which includes new grids and new quantities, namely impu-
rity concentrations. This file can then be used as direct input for the device simulator MINIMOS-
NT.

20



2.6. TCAD Data Tools CHAPTER 2. TCAD DESIGN TOOLS AND DATA MODELS

AddAnalytical

{

GridSpacing // global refinement of the grid

{

XYZ = [0.3,0.5,0.3];

}

GridRefinement // refinement of the n-channel area

{

BoxChannel

{

BoxLL = [0.0, -1.0, 1.645];

BoxUR = [1.0, 1.0, 1.655];

BoxSpacing = [0.1, 0.4, 0.001];

}

}

Wafer // in- and output files

{

Input

{

filetype = "wss";

filename = "simple.wss";

}

Output

{

filetype = "wss";

filename = "simple_doped.wss";

}

}

Attributes

{

Si

{

Boron_Active_Body

{

ext X;

ext Y;

ext Z;

species = "Boron_Active";

C = 1.6e17;

C2 = 2.0e16;

height = 1.65;

value = if(Z>height-0.09, 1.0, 0.0);

delta = if(Z>height-0.025, 1.0, 1/(0.09-0.025) * abs(height-0.09-Z));

VAL = (C2 + (C * value * delta)) * 1.0 "1/cm^3";

}

// n-type doping omitted

} // Si

} // Attributes

} // AddAnalytical

Figure 2.15: An example of an ADDANAIPD input file.
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Figure 2.16: The SMARTV main window. Parts of the doping profile of a MOS transistor are
visualized.

2.6.3 SMARTV

SMARTV can be used to visualize the topology of a simulation domain and the quantities and
their distribution across the simulated device. The pictures in Section 5.3 have been created
with SMARTV.

SMARTV has recently been developed at the Institute for Microelectronics [zohl03]. It is written
in C++ using the QT widget set from Trolltech [trol] and the Visualization Toolkit (VTK) [vtk].
Figure 2.16 depicts the main window and its function buttons.

SMARTV is equipped with a wide range of functions. The buttons on the left hand side can
be used to switch different kinds of visualization on or off. These are, for example, the grid
structure, the grid points, the surface, the outline, and many more.

The buttons on top are mainly for invoking different kinds of options menus. For example the
color-bar option where the range or the scale of the color-bar can be changed, or the screenshot
function which was used to generate many images within this thesis.

A good documentation of the tool, which is only available in German right now, and a step by
step manual on installing SMARTV, can be found in [zohl03].

22



2.6. TCAD Data Tools CHAPTER 2. TCAD DESIGN TOOLS AND DATA MODELS

#n Vl Id

#u V A

-7.60000000e+00 -1.26206244e-17

-7.50000000e+00 -1.26206245e-17

-7.40000000e+00 -1.26206245e-17

-7.30000000e+00 -1.26206244e-17

... ...

Figure 2.17: An example of a .crv file.

2.6.4 XCRV

MINIMOS-NT writes simulation output which has been specified in the Curve.Response sec-
tion to a .crv file.

A .crv file can hold all characteristic values when an input parameter is stepped. So it is
for example possible to calculate and store the characteristic curve of a diode by stepping the
potential of one of the contacts and store the potentials together with the calculated currents in
a .crv file.

Figure 2.17 shows the first few lines of an example .crv file. The first line after the # symbol
determine the names of the columns. The optional second line determines the units. Then
the values follow in a list. When more input parameters are stepped in a simulation run, for
example to get the characteristic curves at different simulation temperatures, then the different
data blocks are separated by an empty line.

For visualization of such .crv files the Python script XCRV has been developed at the Institute
for Microelectronics. XCRV is a preprocessor for the plotting tool XMGRACE1.

XMGRACE is a powerful WYSIWYG two-dimensional plotting tool for the X Window System.
Figure 2.18 depicts the main window with the plot of a dopant profile. It has a convenient
point-and-click graphical user interface and is capable of displaying two-dimensional curves in
various different styles with different line types, different marker symbols, different colors and
so on. The settings can all be changed by using the Motif/Lesstif user interface of XMGRACE.
In order to have a more convenient way of modifying the style settings for more than one plot
the program is also capable of setting the parameters via console options. This is where the
work of XCRV begins. In order to have a uniform design for all curves within one report it
offers style files. Within a style file all options for the visualization of the curves are set. This
style file can then be used to generate all plots within one report to guarantee a uniform design.

XCRV not only offers style files but has also some special functions that can be applied to
columns of the input file. So it is for example possible to multiply all currents of a simulated
device by 2 before the data is displayed with XMGRACE. This functionality comes in very
handy when for example only one half of a symmetric device has been simulated and the
resulting currents have to be multiplied by 2.

1XMGRACE was developed by the Grace Development Team and can be downloaded at:
http://plasma-gate.weizmann.ac.il/Grace/.
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Figure 2.18: The main window of XMGRACE showing the plot of a dopant profile within a
MOSFET.

Example

An example command-line to generate a plot of an output characteristics of a MOSFET could
look like this2:

xcrv mosfet_out.crv -x Drain Id/1e-6 -xl ’Drain Voltage [V]’ -yl \
’Drain Current [\xm\f{}A]’ -lt ’V\sGS\N = 0.8 V’ -r 0,0,2,6

The file mosfet out.crv is loaded and the columns Drain and Id are plotted where the values
of Id are divided by 106. This causes the unit of the currents to be converted from [A] to [µA]
in this example.

The parameters -xl and -yl set the axis description texts, -lt sets the legend text for the curve,
and -r limits the data range from x/y: 0/0 to x/y: 2/6.

More Information about XCRV and its options can be found in [mmnt].

2The trailing \ indicates that the whole text is put into one line.
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Chapter 3

Device Simulation with MINIMOS-NT

MINIMOS-NT is a general purpose device and circuit simulator. In its actual release 2.0 it
is capable of two-dimensional simulations. It was extended to a multi-dimensional device
simulator capable of two- and three-dimensional device simulations by Klima [klim02].

MINIMOS-NT can calculate carrier transport using either the drift-diffusion (DD) or the hy-
drodynamic (HD) transport model. The following section provides a glimpse on the physical
models implemented in MINIMOS-NT.

3.1 Device Simulation Equations

Simulating microelectronic devices means to calculate the charge transport within the simula-
tion domain. Charge transport can be described by the motion of electrons and holes which
leads to the current flow through the device.

The basic equations solved by a device simulator are the Poisson equation, which can be de-
rived from Maxwell’s equations, and the continuity equations for electrons and holes [selb84,
mmnt].

div(ε · grad ψ) = q · (n − p − C) (3.1)

div Jn = q ·
(

R +
∂n
∂t

)
(3.2)

div Jp = −q ·
(

R +
∂p
∂t

)
(3.3)

C denotes the net concentration of the ionized dopants, ε is the dielectric permittivity of the
semiconductor. The expression R = Rn − Gn = Rp − Gp determines the net recombination rate
where Rn/Gn and Rp/Gp are the recombination/generation rates for electrons and holes. The
term q · (n − p − C) forms the negative space charge density −�.
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The electrostatic potential ψ and the electron and hole concentrations n and p are the unknown
quantities of this equation system and are to be calculated.

3.1.1 Drift-Diffusion Transport Model

The component of the current which is caused by the electric field is called drift current. The
current density and the electric field are related by Ohm’s law. The drift current can be split up
into two equations for the electrons (n) and the holes (p), respectively.

Jdrift
n = σnE (3.4)

Jdrift
p = σpE (3.5)

The conductivities are:

σn = qnµn (3.6)
σp = qpµp (3.7)

Where µn and µp denote the mobility of the electrons and the holes.

The component which is caused by the thermal motion of the carriers is called diffusion current.
It is driven by a gradient in the carrier concentration. The expressions for the diffusion currents
are:

Jdiffusion
n = qDngrad n (3.8)

Jdiffusion
p = −qDpgrad p (3.9)

Where Dn and Dp are the diffusion coefficients for electrons and holes. For conditions close to
thermal equilibrium and for non-degenerated carrier systems (Boltzmann statistics), the diffu-
sion coefficients are related to the mobilities by the Einstein relation:

Dn = µn
kBTn

q
(3.10)

Dp = µp
kBTp

q
(3.11)

The drift-diffusion transport model takes, as the name suggests, both described carrier trans-
port effects into account and thus forms the drift-diffusion current relations:

Jn = qnµnE + qDngrad n (3.12)

Jp = qpµpE − qDpgrad p (3.13)
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3.1.2 The Hydrodynamic Transport Model

The hydrodynamic transport model expands the drift-diffusion transport model. With this
model the carrier temperatures are allowed to differ from the lattice temperature [mmnt].

The current relations take the form:

Jn = qµnn
(

grad
(

EC

q
− ψ

)
+

kB

q
· NC,0

n
· grad

(
nTn

NC,0

))
(3.14)

Jp = qµpp
(

grad
(

EV

q
− ψ

)
− kB

q
· NV,0

p
· grad

(
pTp

NV,0

))
(3.15)

Tn and Tp denote the carrier temperatures, EC and EV the position-dependent band edge en-
ergies, and NC,0 and NV,0 the effective density of states. The density of states are evaluated at
some reference temperature T0.

3.1.3 The Lattice Heat Flow Equation

MINIMOS-NT is capable of taking self heating effects in semiconductor devices into account.
Therefore the lattice heat flow equation has to be solved:

div(κL · grad TL) = ρL · cL · ∂TL

∂t
− H (3.16)

The coefficients ρL, cL, and κL denote the mass density, the specific heat, and the thermal con-
ductivity of the material. The model used to calculate the heat generation H depends on the
transport model used.

When the drift-diffusion transport model is used, H equals the Joule heat:

H = grad
(

EC

q
− ψ

)
· Jn + grad

(
EV

q
− ψ

)
· Jp + R · (EC − EV) (3.17)

When the hydrodynamic transport model is chosen, then the relaxation terms are used:

H =
3 · kB

2
·
(

n · Tn − TL

τε,n
+ p · Tp − TL

τε,p

)
(3.18)

3.1.4 The Quasi-Fermi Potential

In unipolar devices, like MOS capacitors or MOSFETs, it is possible to assume a constant quasi-
Fermi potential for one carrier type. With this assumption the current density for this carrier
type can be neglected.
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Within MINIMOS-NT, for each device in a circuit a quasi-Fermi potential can be specified. The
quasi-Fermi potential is then used to calculate the local concentration of the considered carrier
type. This reduces the simulation time dramatically as no continuity equation needs to be
solved for this carrier system. For the drift-diffusion transport model the equation system
size is reduced by about 1/3 and for the hydrodynamic transport model the equation system
is reduced by about 2/5 because the corresponding continuity equations and the energy flux
equation are not solved.

3.1.5 Magnetic Effects

MINIMOS-NT can simulate the deflection of carriers due to an applied magnetic field (Lorentz
force) in semiconductors. To achieve this the Poisson and continuity equations are solved to-
gether with the following equation system [mmnt]:

Jn = −σn ·grad φn −σn · 1
1 + (µ∗

n · B)2 ((µ∗
n ·B×grad φn)−µ∗

n ·B(µ∗
n ·B× (B×grad φn))) (3.19)

Jp = −σp ·grad φp −σp · 1
1 + (µ∗

p · B)2 ((µ∗
p ·B×grad φp)−µ∗

p ·B(µ∗
p ·B× (B×grad φp))) (3.20)

The symbols σn and σp denote the electric conductivities of the electrons and holes, φn and
φp the electron and hole quasi-Fermi potentials, B is the magnetic field, µ∗

n and µ∗
p the hall

mobility related to the normal mobility where µ∗
n = rn · µn and rn is the hall scattering factor.

In MINIMOS-NT rn and rp are set to 1.15 and 0.7 by default and can be changed via the input
deck (see Section 2.4).

3.2 Generation and Recombination Models

This section shows different models for calculating the generation and recombination of elec-
trons and holes. The overall recombination rate R is computed as the sum of the recombination
rates calculated by these models (R = Rmodel1 + Rmodel2 + Rmodel3 · · ·). Whether MINIMOS-NT
should use a certain model or not can be specified in the input deck.

Shockley-Read-Hall (SRH) and Surface Recombination describes carrier generation in space
charge regions and recombination in high injection regions.

Auger Recombination is a process where three particles are involved and happens in equilib-
rium.

Direct (radiative) Recombination is of importance for direct bandgap semiconductors. It is
proportional to the carrier concentrations.

Trap Assisted Band-to-Band Tunneling describes the generation of carriers in high field re-
gions. It is modeled similar to the SRH process.
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Pi
Pj

Vi
Aij

dij

Figure 3.1: Control volume for the box integration method and its characteristics. Vi is the
volume of the Voronoı̈ box, Pi and Pj are two grid points, Aij the area of the box
segment between the boxes of point Pi and Pj, and dij is the distance between those
two points.

Band-to-Band Tunneling describes the carrier generation in the high field region due to the
field emission of valence electrons leaving back holes. Within MINIMOS-NT the trap as-
sisted band-to-band tunneling process is replaced by the band-to-band tunneling process
when the magnitude of the electric field increases.

Impact Ionization model can be used in the drift-diffusion (DD) and in the hydrodynamic
(HD) transport models of MINIMOS-NT. In the DD model it is electric field and in the
HD model carrier-temperature dependent.

3.3 Box Integration Method

The simulation domain has to be discretized in order to solve the system of partial differential
equations. Within MINIMOS-NT the box integration method is used. The simulation domain
is partitioned into sub domains, so called Voronoı̈ boxes (see Section 2.2).

Figure 3.1 shows a control volume and the characteristic parameters used for the box integra-
tion method.

For the numerical solution of Poisson’s equation (3.1) it needs to be discretized on a grid. The
discretization can be done as follows:

∑
j

DijAij = �iVi. (3.21)

Here Dij is an approximation for the projection of the dielectric flux density. It is calculated by
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the finite difference approximation:

Dij = −ε
ψj − ψi

dij
. (3.22)

The value of ε is approximated by the average value of the permittivity of the two regions:

ε =
ε i + ε j

2
. (3.23)

Since the vertices connecting two grid points must be chosen in such a way that a negative
coupling between the grid points is avoided (Aij can be negative when the grid is not properly
formed), the box integration method demands a very sophisticated grid generator. Expecially
in three spatial dimensions, the problem of generating a grid for arbitrary geometries is quite
demanding.

3.4 PIF File Format

The original file format of MINIMOS-NT is the PIF (Profile Interchange Format) file format. It
was initially proposed for the exchange of simulation data by Duvall [duva88] in 1988. It is
used by MINIMOS-NT to load and save simulation data such as geometry information, ma-
terial types, doping data, the simulation grid, and quantities like the current density or the
electrostatic potential.

Within MINIMOS-NT the so called PIF-libraries are used to access PIF files. But as the PIF-
libraries are optimized for two spatial dimensions, expanding the PIF-libraries to three-dimen-
sional capabilities would require a complete redesign. Also, MINIMOS-NT would still be re-
stricted to the grids, file-formats, and functionality supported by these libraries. Therefore, a
new interface was developed which can use any kind of library for accessing simulation data.
This could be for example the WAFER-STATE-SERVER which is described in Section 2.3.

Figure 3.2 depicts this new interface within MINIMOS-NT which is split up into two parts.
One part of the interface is responsible for reading and writing the grid information which
comprises the mesh points, the segment grids, the Voronoı̈ information, and the boundary
information. On the other hand there is the interface part responsible for reading and writing
the quantity information like the impurity concentration, the electrostatic potential, or the hole
concentration.

The PIF-libraries comprise the following modules:

• The GAS (Geometry Attribute Support) library implements functions for accessing quan-
tity information within PIF files.

• The GRS (Grid Support) library provides functions for reading, writing, and manipulat-
ing grids. It is also capable of interpolating quantities to newly introduced grid points.
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WSSDev/Quan

Grid InformationQuantities

PIF

PAI

Minimos−NT

GRSGAS

G2S

Figure 3.2: Libraries used within MINIMOS-NT to access the different file formats.

• The G2S (Geometry Two-dimensional Support) library provides a central geometry-hand-
ling facility. It provides functions for geometry checking and allows applications to query
information from geometries, like which lines belong to what face boundary, or which
faces or segments touch each other.

• The PAI (Pif Application Interface) offers a procedural interface for accessing PIF files.

3.5 DEV/QUAN File Format

To bypass the problems of the PIF file format with regard to three dimensional in- and output
files the DEV/QUAN file format was created. The description of the wafer consists of two
files. The .dev part stores the device description consisting of the grids, the segments, and the
Voronoı̈ information. The .quan part stores the attributes of the wafer. This is for example the
impurity concentration of semiconductor segments.
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The DEV/QUAN file format was only intended as temporary solution. It is not included in the
release version of MINIMOS-NT. Instead, the file format has been replaced by an interface to
the WAFER-STATE-SERVER within this thesis.

3.6 The Internal Data Structure

MINIMOS-NT needs a lot of information about the device it has to simulate. These are:

• The physical grid points. They are stored in a list. The segments themselves do not store
the physical points but references to the list. Thus redundancy is avoided.

• An arbitrary number of segments. They contain:

– References to the physical points that build up the topography of the segment.

– The volumes of the Voronoı̈ boxes belonging to the referenced points (see Section
2.2.1).

– The connections between the segment points. These connections consist of the in-
dices of the two points, the flux between the points – which is defined as the area
between the two Voronoı̈ boxes assigned to the points (see Section 2.2.1) divided by
the distance –, and their distance.

• An arbitrary number of boundaries. They contain:

– A reference to the two segments the boundary lies in between.

– A list of the boundary points of the two segments.

– The area between the two Voronoı̈ boxes assigned to the points (see Section 2.2.1).

• The physical quantities that serve as input for certain models are generated by other
models. These are, for example, the electrostatic potential or the dielectric permittivity.

This is the required information that has to be acquired from the WAFER-STATE-SERVER. The
data is then stored within the internal data structure of MINIMOS-NT.
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Chapter 4

Implementation

The primary target of this thesis was to enhance the device and circuit simulator MINIMOS-NT
so that it can handle the file format .wss. This is the native file format of the WAFER-STATE-
SERVER.

This enhancement is important because the Institute for Microelectronics is establishing a stan-
dard file format for its simulation programs. The process simulation tools and also some ana-
lytical device generation tools are capable of using the WAFER-STATE-SERVER to access in- and
output files. Hence, it is a logical step to enhance the device simulator for seamless integration
in the tool-chain of the Institute.

MINIMOS-NT needs a lot of information about the simulation domain. These are, for example,
the coordinates of the grid points of the mesh, the quantities on these grid points – as the dopant
concentration –, and the Voronoı̈ information (see Section 2.2.1).

A part of the necessary information about the simulation domain is provided directly by the
WAFER-STATE-SERVER. Other data, namely the Voronoı̈ information, has to be generated from
the grid. The internal data structure of MINIMOS-NT is then filled with this information and
the simulation run is started.

Both, the WAFER-STATE-SERVER and MINIMOS-NT are – mostly – implemented using the ob-
ject oriented programming language C++. This fact was of great help at the development pro-
cess and avoided the need for a language wrapper.

4.1 Accessing the WAFER-STATE-SERVER

The following sections give a short introduction to using the WAFER-STATE-SERVER API and
its methods. For a deeper insight into the WAFER-STATE-SERVER see [bind02].
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/* instantiate a default configuration */

Config_h waferConfig(new Config());

/* instantiate a .wss reader */

Reader_h rd = instantiateReader(waferConfig, "wss", "mosfet.wss");

/* instantiate a Wafer object with the data stored in mosfet.wss */

Wafer_h wafer = newWafer(rd, waferConfig);

Figure 4.1: Reading a .wss file and instantiating a new Wafer object.

4.1.1 Reading a .wss File

Care has been taken when implementing the interface of the WAFER-STATE-SERVER. The
programmers focused their attention on straightforward instantiation and use of the WAFER-
STATE-SERVER. This reduces the code for reading a .wss file to three lines.

Figure 4.1 depicts the code snipped to aquire an instance of a Wafer object with the data from a
.wss file.

MINIMOS-NT does not use the described newWafer method of the WAFER-STATE-SERVER. In-
stead the Wafer is instantiated via the method newWaferPointer, which has the same function-
ality but returns a Wafer* instead of a Wafer h. The reason for this is that MINIMOS-NT does
not use handles but relies on pointers instead (see Section 4.2.3).

4.1.2 Reading from the Wafer Object

After the instantiation of the Wafer object we can use it to retrieve, modify, or write the wafer
data.

Figure 4.2 shows how to use the Wafer object to retrieve the segments, the attributes, and the
grid points of a device.

As seen in the code example retrieving information from the Wafer object leads to iterating
through the data structure of the wafer. The nextSegment method is used for iterating the
segments, nextWafPoint is used for iterating the WaferPoints, and so on.

The WAFER-STATE-SERVER has two different types of points. These are the Point and the
WaferPoint. The first one denotes a physical point and stores the coordinates. But as one point
can be part of two or more different segments – this is the case for example at the interface
between two segments – the WaferPoint was introduced. It stores the attributes of the seg-
ment point and a handle to a Point. This prevents the WAFER-STATE-SERVER from storing one
physical point multiple times and therefore avoids redundancy.

It is of course possible to retrieve the physical point from a wafer point with the toPoint h()
method. On the other hand it is not possible to cast a Point to a WaferPoint.
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/* The segment object stores the grids and attributes of a segment. */

Segment_h seg;

unsigned int segIt = 0;

/* iterating over all segments */

while ((seg = wafer->nextSegment(segIt)))

{

Attr_h attr;

unsigned int attrIt = 0;

cout << "Segment: " << seg->getName() << endl;

/* iterate over all attributes of the segment */

while ((attr = seg->nextAttribute(attrIt)))

{

cout << "Attribute: " << attr->getName() << endl;

/* only quantities are distributed on a grid */

if (attr->isQuantity())

{

Quantity_h quan = castToQuantity(attr);

Locater_h loc = quan->getLocater();

WafPoint_h wafPoint;

unsigned int pointIt = 0;

/* iterate over all points of the quantity */

while ((wafPoint = loc->nextWafPoint(pointIt)))

{

Point_h point = wafPoint->toPoint_h();

cout << "Point[x,y,z]: [" << point->x << ","

<< point->y << "," << point->z << "]" << endl;

unsigned int valIt = 0;

Val_h val;

/* iterate over all values stored on the point */

while ((val = wafPoint->getVal(valIt)))

{

cout << "Value: " << val->str_rep() << endl;

}

}

}

}

}

Figure 4.2: Reading from the Wafer object and dumping information about the segments, at-
tributes, and points to standard output.
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unsigned int waferDimension = 3;

/* instantiate a .wss writer object */

Writer_h writer(instantiateWriter(waferDimension, "wss",

"Testwafer", "testwafer.wss"));

/* dump the wafer data to the file testwafer.wss */

dumpWafer(wafer, writer);

Figure 4.3: Writing the Wafer data to a .wss file.

4.1.3 Writing to a .wss File

To save the data stored in a Wafer object to a file an appropriate Writer has to be instantiated.
Then the function dumpWafer is called which dumps all data of the Wafer object to the file
identified by the Writer object. Figure 4.3 shows an example of the writing process.

4.2 Implementation Issues

The WAFER-STATE-SERVER and MINIMOS-NT are projects of high complexity. This implies
that both projects depend on a lot of libraries and other projects. As they were developed
totally separated from each other in the past, some compatibility issues arose when they had
to be combined.

4.2.1 Identical File Names

One of the first issues encountered was VMAKE’s lack of namespaces for the source file struc-
ture of the projects it manages. Hence, two source files may not have the same file name. If,
for example, two header files had the same name then VMAKE would not know which file to
include at an #include statement.

Because of the complexity of the projects that had to be linked it was no surprise that some
source files of the two projects had the same name. Table 4.1 shows the concerned files. On the
MINIMOS-NT side the files were not directly in the MINIMOS-NT project but in the VLIBCXX

project which it depends on. On the WAFER-STATE-SERVER side one of the concerned files was
in the DYNLIB project.

Filename MINIMOS-NT WAFER-STATE-SERVER

vector.hh vlibcxx/src/vector.hh wafer/geo-lib/vector.hh
typeid.hh vlibcxx/src/typeid.hh dynlib/typeid.hh

Table 4.1: The same filenames in two different projects.

36



4.2. Implementation Issues CHAPTER 4. IMPLEMENTATION

This issue was solved by simply renaming the source files. The author decided to rename the
files that were part of the MINIMOS-NT project. The reason was simply that these files were
not included in that many other projects as the files of the WAFER-STATE-SERVER.

To avoid this problem a naming convention could be established. Within MINIMOS-NT, for
example, every file name starts with three letters according to the functionality of the file. As
an example the prefix mmq stands for MiniMos-Quantity and files with this prefix handle the
quantity information within the project.

The problem is that such a naming convention must be introduced at the beginning of a soft-
ware project. Changing the filenames afterwards is error-prone and the programmers have to
learn the new scheme. Also it is rather unusual to use prefixes in today’s software develop-
ment.

After renaming the files and changing several #include statements both projects could reside
in one VMAKE project. This does not imply that they can be linked together, which leads to the
second issue.

4.2.2 Identical Class Names

The second issue was the lack of namespaces. As the variables of both projects were not
wrapped by namespaces it occurred that two classes had the same name. So the compiler
stopped with an error when the class was to be defined the second time.

This issue was solved by renaming two classes of the MINIMOS-NT project. Doing so lead to
editing numerous files that were using these classes.

But as identical names for variables only cause problems when both definitions are included
by one file, this issue is not totally solved yet. It can recur whenever another header file from
one project is included in another project and they use identical names for global variables.

To avoid this issue all global variables and class definitions should be wrapped by namespaces.
By doing so the global namespace remains clean. Of course the problem re-arises when two
namespaces have the same name, so care has to be taken when choosing the namespace names.

4.2.3 Pointers and Handles

The WAFER-STATE-SERVER is a rather recent project. This is the reason why the developers
could choose a very ‘modern’ approach for class design. So they abstained totally from the
use of pointers and used a self defined-handle class instead. This approach is recommended
in [stro00] and provides a simple but efficient way of garbage collection. Figure 4.4 shows the
usage of both, a handle and a pointer.

A handle consists of two pointers. One points to the data to manage (the representation pointer)
and the other to an integer variable with a reference counter. When the first handle to a data
object is created the representation pointer is directed to the data object, memory for the ref-
erence counter is allocated, and the counter is set to 1. For every handle that is assigned to
another handle, the left hand handle’s reference counter is decremented by 1 and the object is
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void handleTest()

{

/* A handle to a class named someClass is defined and an object of

someClass instantiated. */

Handle<someClass> someClass_h(new someClass());

/* A pointer to a newly allocated someClass object is defined. */

someClass* someClass_p = new someClass();

/* The methods of someClass_h can be used the same way as the

methods of someClass_p. */

someClass_h->method1();

someClass_h->method2();

someClass_p->method1();

}

/* The someClass_h object is automatically destroyed when the handle

gets out of scope. The someClass_p object is not destroyed and

wastes memory that cannot be used outside the function

handleTest(). */

Figure 4.4: Comparison between handles and pointer.

deleted if the reference counter is 0. Then the left hand handle copies the pointers of the right
hand handle and the reference counter is incremented by 1. Figure 4.5 depicts the steps in an
assignment process.

Before assignment Deleted object

cnt1=1Point1 Point2 cnt2=1 Point1 cnt1=2

Handle2Handle1Handle1 Handle2

cnt2=0Point2

After assignment

Figure 4.5: Assignment of handles. Before the assignment two independent handles with in-
dependent objects exist (the data object and the reference counter object). After the
assignment the second handle points to the same objects as the first handle and its
objects are destroyed because no handle is referencing them.

When a handle is deleted the reference counter is decremented by 1 and the object is deleted if
the counter is 0.

With this method it is always guaranteed that an object is automatically deleted when no more
handles are referencing to it.
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To ensure full syntax compatibility to a real pointer the handle class overloads the operators *,
->, <, and >.

MINIMOS-NT was first reported by C. Fischer [fisc94] and T. Simlinger [siml96] in 1994. As the
Standard Template Library (STL) did not exist at this time and the handle concept is based on
the STL, the design of MINIMOS-NT was strongly based on pointers.

This divergence would not matter at all, but as the WAFER-STATE-SERVER did not offer the
facility to return pointers to its objects MINIMOS-NT would be forced to use STL handles.

Therefore, a new method has been implemented in the WAFER-STATE-SERVER that generates a
new Wafer object and returns a pointer to it instead of a handle. This approach of course partly
violates the concept of handles and would make it possible to bypass the automatic garbage
collection.

4.2.4 Project Dependencies

One issue was the size of the MINIMOS-NT project. The developers of MINIMOS-NT should
not be forced to get and compile the whole WAFER-STATE-SERVER project and its dependencies
when they do not need the .wss capabilities of MINIMOS-NT. Therefore all the changes made to
the MINIMOS-NT project for WAFER-STATE-SERVER accessibility are wrapped by preprocessor
commands and turned off per default.

Enabling the WAFER-STATE-SERVER capabilities in MINIMOS-NT

To enable the WAFER-STATE-SERVER capabilities in MINIMOS-NT the following steps are nec-
essary:

1. In the C++ header file vproject/mmnt/mms/mmsmain.hh the preprocessor directive:
#define USE MMNT WAFER 0 must be set to 1.

2. In the C++ header file vproject/mmnt/mmg/mmgdelaunay.hh the following include direc-
tives have to be restored:

• #include "wafer.hh"

• #include "wafertools.hh"

• #include "attr.hh"

• #include "wafelem.hh"

3. In the C++ source file vproject/mmnt/mmq/mmqquan.cc the following include directives
have to be restored:

• #include "wafer.hh"

• #include "reader.hh"

4. In the C++ source file vproject/mmnt/mms/mmsdevice.cc the following include direc-
tives have to be restored:
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• #include "wafer.hh"

• #include "reader.hh"

5. In the VMAKE configuration file vproject/mmnt/vmfile.mk the following project lib-
raries have to be restored:

• IueCxxLibrary

• Wafer-Attributes-Library

• Wafer-AllGridder-Library

• DynWrLibrary

• DynRdLibrary

• Sap-Library

6. In the VMAKE configuration file vproject/mmnt/vmake.prj the following project depen-
dencies have to be restored:

• IueCxxLibraryProject

• WaferStateServer

7. The whole WAFER-STATE-SERVER project and its dependencies have to be loaded. These
are namely:

• vproject/wafer

• vproject/iuecxx

• vproject/ipdcxx

• vproject/antlr

• vproject/dynlib

• vproject/serlib

• vproject/pthreadcxx

• vproject/deLink

8. The JAVA software developers package has to be installed.

The reason why all the #include commands had to be commented out is that VMAKE is not
able to ignore code that is disabled by preprocessor commands.

After building the wafer project the mmnt project can be compiled and linked.
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Chapter 5

Practical Aspects and Examples

5.1 Using .wss Files as Input for MINIMOS-NT

For reading a .wss file as device and quantity description instead of the .pif format a new
command line argument (-wss) was introduced in MINIMOS-NT. The input deck can stay un-
touched but instead of an input file with the extension .pif an input file with the extension
.wss has to exist. The output is written to the file specified in the input deck with the extension
.wss.

For visualization of a device and the calculated quantities the tool SMARTV can be used. It was
developed at the Institute for Microelectronics [zohl03] and can read .wss files natively. Most
of the pictures of devices and their quantities within this work have been made with SMARTV.
A short introduction to this tool is given in Section 2.6.3.

5.2 The Gridding Issue

One of the most important aspects in the area of device simulation is the discretization of the
simulation domain. As described in Section 2.2 this is not a trivial task at all. Especially when
it comes to three-dimensional mesh generation and when the Delaunay criterion has to be
fulfilled – as it has to be for simulations with MINIMOS-NT – this task is not fully solved yet.

The gridder DELINK is used at the Institute for Microelectronics within the WAFER-STATE-
SERVER and all tools that are based on it. Unfortunately it turned out to not being perfectly
suited for all areas of application.

LAYGRID has been used for generating the three-dimensional device structures. Figure 5.1
depicts a grid structure which is part of a MOSFET that was generated with LAYGRID. The
tetrahedrons – or their representing triangles on the surface – are well ordered with no big
gaps or anomalies. On the top of the structure the grid is refined because this is the electrically
interesting part where the channel is built up.

LAYGRID has the big advantage that it does not need a sophisticated three-dimensional grid
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Figure 5.1: Example of a ‘nice’ mesh.

generator. Instead two-dimensional outlines of the structure are generated which are then
triangulated with a two-dimensional triangulation library as for example TRIANGLE [tria]. This
structure is then extended to the third dimension. This method forms so called ‘Manhattan’
structures.

After the topology of the device is formed the substrate of the transistor has to be doped. This
task is performed with the tool ADDANAIPD. It can be used to put any distributed quantity on
a device structure. The quantity concentrations are described via analytical functions with the
coordinates as parameters and the quantity concentration as return value.

Figure 5.2 depicts the grid structure that was generated with LAYGRID. The device was doped
with Boron via ADDANAIPD which used DELINK as gridder. The impurity concentration is
visualized. Although the doping meant to be a clean, horizontal bar the malformed grid made
it chaotic. Also on the uppermost part of the structure where the grid should be refined to very
close horizontal lines the gridder broke this concept by using very large tetrahedrons – which
appear as triangles in the figure.

These malformed grids not only cause extreme inaccuracies but also impose big problems on
MINIMOS-NT whose numeric solver has difficulties to converge with these meshes.

To oppose this problem a preprocessor for DELINK is being developed at the Institute for Mi-
croelectronics. It solves the Poisson equation on the device and feeds the information about the
iso-potential contours to DELINK. By this means a for many applications good mesh can be
generated.

Most examples simulated within this work are not meshed with DELINK to circumvent the
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Figure 5.2: Example of a ‘bad’ mesh.

problems arising from inadequate grids. Therefore the grids are generated by LAYGRID and
then not altered anymore. To achieve this new functionality had to be implemented in the tool
ADDANAIPD.

5.3 Examples

In this section some devices and their simulation results are presented.

5.3.1 Si-Block

The first device under test is a silicon block as depicted in Figure 5.3. It was chosen because it
has a very simple structure and can proof the basic interoperability of MINIMOS-NT and the
WAFER-STATE-SERVER.

The block is made of pure silicon and has two aluminium contacts. As the silicon is not doped
it acts as a pretty good insulator.

The two aluminium contacts were set to 0 V and 10 V. The computed electrostatic potential in
the block must be evenly distributed across the whole length of the silicon segment.
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Figure 5.3: Structure of the silicon block.

Results

The arrangement was simulated with MINIMOS-NT in three spatial dimensions. Figure 5.4
shows the distribution of the electrostatic potential within the silicon block. As expected the
potential is evenly distributed from 0 to 10 Volt across the material.
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Figure 5.4: Distribution of the electrostatic potential within a silicon block. The aluminium
contacts are set to 10 respectively 0 Volt.

This result shows that the wafer data was passed from and to the WAFER-STATE-SERVER cor-
rectly and that the quantity information (in this case the electrostatic potential and the electrical
field) was written correctly.
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Figure 5.5: Dopant profile of a Silicon pn-diode.

5.3.2 Silicon pn-Diode

The silicon pn-diode is the next step in increasing the complexity of simulation data.

To simulate the behavior of a pn-diode a Silicon block was created with a constant Boron im-
purity concentration of 2 × 1017 cm−3. This block was then doped with a Phosphorus concen-
tration of 5 × 1018 cm−3 on the top side and contacted with Aluminium. The device Structure
can be seen in Figure 5.5.

In the simulation run with MINIMOS-NT 0 V were applied to the cathode (the contact on the
lower side of the block) and the voltage on the anode was stepped from 0 V to 2 V. This way
the diods output characteristics could be generated. It is depicted in Figure 5.6.

The figures 5.7 and 5.8 depict the electron and hole currents, respectively. For these results an
anode voltage of 1 V was applied and the cathode was set to 0 V.
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Figure 5.6: Output characteristics of a silicon pn-diode in logarithmic (left) and linear scale.

Figure 5.7: Magnitude of the electron current density within the diode in logarithmic scale.
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Figure 5.8: Magnitude of the hole current density within the diode in logarithmic scale.

5.3.3 MOSFET Transistor

The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) consists of a source and a
drain, two highly conducting n-type semiconductor regions in the p-type substrate. A poly-
crystalline gate covers the region between source and drain, but it is separated from the semi-
conductor by the gate oxide. On the lower side of the substrate is the bulk contact. The
charge on the gate of the device controls the movement of charge between the source and drain
through the channel under the gate.

Figure 5.9 shows this structure as it was simulated. To reduce unnecessary simulation data the
device was cut alongside the channel. This is possible as the device is perfectly symmetric. All
calculated currents have then to be multiplied by two.

In this example an n-channel MOSFET was chosen. Therefore under the source and the drain
contacts wells with Arsenic (n-type) are formed as seen in Figure 5.9. The concentration goes
up to 1.6 × 1020 cm−3. Underneath the gate contact a small film with Boron (p-type) was im-
planted with a concentration of 1.4 × 1017 cm−3. The whole substrate has a minimum Boron
concentration of 2 × 1016 V.

The dimensions of the device are:

• width: 5 µm

• height: 1.6 µm

• depth: 5 µm
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Figure 5.9: Topology of a simple MOSFET and the concentration of the Arsenic doping.

• gate length: 1 µm

• gate width: 1 µm

• gate-oxide thickness: 15 nm

Gridding Issues

The MOSFET turned out to be very demanding concerning the grid generation. In contrast to
the silicon block and the pn-diode the mesh of the transistor has to be very carefully refined in
important areas.

Using LAYGRID with the refinement method described in Section 2.6.1 a perfectly suitable grid
could be generated. But as LAYGRID is only capable of generating the topology of the simula-
tion domain and cannot be used to add dopant concentrations to the device ADDANAIPD has
to be used for doping. Unfortunately, ADDANAIPD, at this stage, used DELINK as gridding
tool. This combination generated grids like seen in Figure 5.2. With grids of this quality no
representative simulation run could be performed.
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Alternative Gridding

Another way of generating the mesh for the MOSFET was achieved by using a newly imple-
mented functionality of the ADDANAIPD tool which allows the use of the grid generated by
LAYGRID for the doping process. LAYGRID turned out to be powerful enough to generate a
suitable grid with the ‘dummy layer’ and ‘dummy face’ mechanism described in Section 2.6.1.

Also the tool CREATEORTHO was very useful for the generation of three-dimensional devices.
CREATEORTHO is written in PYTHON and generates orthogonal grid structures.

Simulation

The first simulation run was made for calculating the output characteristics of the MOSFET.
Therefore the following voltages were applied to the electric contacts of the device:

• Source: 0 V

• Drain: Stepped from 0 V to 1.2 V in 0.1 V steps

• Gate: Stepped from 0.7 V to 1.2 V in 0.1 V steps

• Bulk: 0 V

Figure 5.10 depicts the output characteristics of the mosfet. The following figures 5.11, 5.12,
5.13, and 5.14 depict the electrostatic potential, the electron concentration, the electric field,
and the electron current with the following input voltages:

• Source: 0 V

• Drain: 1.2 V

• Gate: 1.2 V

• Bulk: 0 V
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Figure 5.10: Output characteristics of the MOSFET. The gate voltages range from 0.7 V to 1.2 V.

Figure 5.11: Distribution of the electrostatic potential across the MOSFET.
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Figure 5.12: Electron concentration in the MOSFET in logarithmic scale.

Figure 5.13: Magnitude of the electric field in the MOSFET.
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Figure 5.14: Magnitude of the electron current density in the MOSFET. The scale is logarithmic.

5.3.4 Carbon Nanotube Field Effect Transistor

Shrinking of silicon CMOS technology has its limits. Problems arise at feature sizes smaller
than 50 nm due to physical aspects. Manufacturing problems related to lithography or inter-
connects are also increasing. Therefore much attention is paid to new technologies like nan-
otechnology.

Carbon nanotubes are very promising candidates for future nanoelectronic applications. A
nanotube can be seen as a single sheet of graphite that has been rolled up into a tube. De-
pending on the direction in which the sheet was rolled up, the tubes are either metallic with
high electrical conductivity, or semiconductors with relatively large band gaps. They gain their
promising electrical properties as a consequence of the electric band structure which depends
on the exact position of the carbon atoms forming the tube.

In contrast to single-wall nanotubes, which only consist of one tube of carbon, multi-wall nan-
otubes are built from several concentric tubes, nested inside each other like Russian dolls.

Semiconductor nanotubes can be used as active elements in field-effect transistor (FET) designs.
Figure 5.15 depicts the device structure of a lateral and an axial Carbon Nanotube Field Effect
Transistor (CNT-FET) [unge03].

The lateral CNT-FET resembles conventional MOSFET structures where the silicon channel is
replaced by a single-wall or multi-wall carbon nanotube with semiconducting properties. It is
connecting the source and drain contacts.
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Figure 5.15: The structure of a lateral (left) and axial carbon nanotube field effect transistor.

The gate contact of the axial CNT-FET lies above the source contact. They are separated by a
thin gate oxide. At this positioning the capacitive coupling between the gate and the tube is
much weaker than at the lateral positioning of the gate. The advantage is the much smaller
footprint of the structure.

Lateral CNT-FETs show good performance with high ION/IOFF ratios. But as the manufactura-
bility challenges are still significant – especially for large scale integration – transistors with
axially aligned carbon nanotubes are considered. They show worse device characteristics but
are more suitable for large scale integration.

Simulation

As the carbon nanotube in a CNT-FET has semiconducting attributes, the tube could be mod-
eled with silicon for the simulation. In the simulation run with MINIMOS-NT the gates of both
CNT-FETs were set to −10 V. The source and drain contacts were kept at 0 V.

Figures 5.17 and 5.16 show the distribution of the electrostatic potential at the carbon nanotube
in the axial CNT-FET and the lateral CNT-FET. What can be seen from the figures is the much
stronger influence of the gate field on the tube in the lateral CNT-FET. The maximum of the
absolute value of the electrostatic potential is spread over the whole tube. This leads to better
device characteristics than can be achieved in lateral devices.

In the axial CNT-FET the peak of the electrostatic potential is smaller and concentrated in a
limited area of the tube. The rest of the tube is not as strongly coupled to the gate field.
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Figure 5.16: A lateral carbon nanotube field effect transistor simulated with MINIMOS-NT.
Source and drain are set to 0 V and the gate is set to −10 V. The electrostatic po-
tential in the carbon tube is visualized.
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Figure 5.17: An axial carbon nanotube field effect transistor simulated with MINIMOS-NT.
Source and drain are set to 0 V and the gate is set to −10 V. The electrostatic po-
tential in the carbon tube is visualized.
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Chapter 6

Summary and Outlook

The device and circuit simulator MINIMOS-NT has been coupled to the WAFER-STATE-SERVER.
Therefore, MINIMOS-NT is now capable of reading and writing the .wss file format. It is pos-
sible to integrate MINIMOS-NT seamlessly into the process and device simulation flow of the
simulation tools developed at the Institute for Microelectronics. The fabrication process of a
semiconductor device can be simulated by the process group at the Institute for Microelec-
tronics and the resulting device can then be fed into MINIMOS-NT to simulate the electrical
behavior.

This work presented the design tools and data models that were necessary for the implemen-
tation of the new functionality into MINIMOS-NT. Also the issues arising from combining two
major software projects and their solutions were shown. Special care has been taken to show
how devices can be constructed in three-dimensions with the software tools developed at the
Institute for Microelectronics and how optimized simulation grids can be constructed.

The applicability of the new features has been demonstrated with several examples where typ-
ical device structures have been created and simulated. A simple pn-diode, a MOSFET, but
also advanced structures like axial and lateral carbon nanotubes have been simulated in three
spatial dimensions. As visualization tools exist for the .wss file format the results could be
visualized easily.

The consistent miniaturization and the increasing demands on semiconductor devices makes
the development of increasingly complex device structures necessary. As these improvements
let three-dimensional effects become stronger and stronger it is important to simulate such
devices in three spatial dimensions. But as the complexity the simulator has to cope with ex-
plodes with this expansion, the computational effort compared to two-dimensional simulations
is enormous. Therefore, methods to increase the simulation speed have to be developed. This
involves very sophisticated gridding tools that are capable of refining the grid in sensitive areas
of the simulation domain and keep the grid coarse in other regions.

Especially the grid generation in three spatial dimensions turned out to be a very demanding
task. The WAFER-STATE-SERVER and most tools which generate three-dimensional structures
or add distributed quantities to devices use DELINK as gridder. Although DELINK is a very
sophisticated gridding tool, it needs a good initial set of points as basis. At the Institute for
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Microelectronics a new tool is developed that acts as such a preprocessor for DELINK. The
quality of grids for device simulations can be greatly enhanced with this new tool.

The current release 2.0 of MINIMOS-NT is restricted to two spatial dimensions. Based on
[klim02] and this thesis the release of a new version of MINIMOS-NT can be prepared. The
new release will be capable of simulating three dimensional device structures and read and
write an increasing number of different file formats from different vendors.

57



Bibliography

[bind02] T. Binder, “Rigorous Integration of Semiconductor Process and Device Simulators”
Dissertation, Technische Universität Wien, 2002
http://www.iue.tuwien.ac.at/phd/binder

[ise] ISE Integrated Systems Engineering
http://www.ise.ch/

[duva88] S.G. Duvall, “An Interchange Format for Process and Device Simulation”
IEEE Trans.Computer-Aided Design, CAD-7(7):741-754, 1988.

[fisc94] C. Fischer, “Bauelementsimulation in einer computergestützten Entwurfsumge-
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