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Abstract

My diploma thesis which I wrote under the supervision of Prof. Teichmann in the winter
term 2004/2005 covers several topics in stochastic analysis and interest rate theory. The
first chapter is dedicated to an introduction to stochastic analysis. Brownian motion
is introduced and the construction of the Itô integral is described. The Stratonovich
integral is defined and the interpretation and connection of both integrals is explained.
The text continues with Itô’s formula. Then a deep analysis of conditions under which
existence and uniqueness of the solution of a stochastic differential equation can be
guaranteed follows. The text covers the case of Lipschitz continuity as well as Hölder
continuity of the volatility term.

The text continues with the introduction of the generator of an Itô diffusion and one
of its applications - the Dynkin formula - which is applied to the analysis of recurrence
and transience of Brownian motion in dimension n. We show that an Itô diffusion has
the Markov property and finish the introductory part with Girsanov’s theorem and
the martingale representation theorem which have many applications in interest rate
theory.

The second chapter starts with an introduction to arbitrage-free pricing of zero-
coupon bonds and various ideas of interest rates. For the main purpose of this text
- the pricing of caps and floors - the idea of LIBOR rates is crucial. Therefore we
continue with a definition of the LIBOR rate for a certain period. We construct an
arbitrage-free model for a LIBOR rate market in a discrete as well as in a continuous
tenor setting.

The main chapter of this text is the chapter on interest rate derivatives. It starts
with the definition of swap rates, caps and floors and captions and gives formulas of
their value. Those contracts can be seen as European style options. We therefore
continue with Black’s formula for European options on bonds. We then define and il-
lustrate the notion of implied volatility. This notion gives us a new measure of accuracy
of our models and shows us the need to develop and analyze more sophisticated models
such as the stochastic volatility model. We start following the ideas of Andersen and
Brotherton-Ratcliffe. They introduce a model of a LIBOR rate whose variance process
is modeled by a mean reverting stochastic differential equation in the form used in
the Cox-Ingersoll-Ross model. The Brownian motions driving the SDE for the LIBOR
rate and the SDE for the variance process respectively are assumed to be uncorrelated.
They therefore start to develop the price of a cap with constant variance first. We
cite their result of a partly explicit formula up to order 3 of

√
T − t. Andersen and

Brotherton-Ratcliffe then start to define a certain Laplace transform of the variance
process and develop it in terms of the volatility of variance parameter up to order 4.
We now analyze the Laplace transform in a different way. For integer dimension of
the CIR-model we find the representation as element of the second Wiener - Itô chaos.
We then use a formula from quantum field theory to find a closed expression for its



Laplace transform where a Carleman-Fredholm determinant appears. We finally want
to motivate this approach in order to price the cap in the stochastic volatility model.
The appendix provides theorems and proofs of various fields of probability theory such
as the martingale problem and the chaos expansion of an L2−random variable. An
introduction of Bessel processes and the connection to the CIR-model can be found
in detail. Version 1.01 is simply edited with some minor corrections in notation and
expression.
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Chapter 1

Introduction to Stochastic Analysis

1.1 The Brownian Motion

Most of the theorems and definitions are taken from Teichmann [16] and
Øksendal [13].

1.1.1 The Wiener Process

The Wiener process is named after the mathematician Norbert Wiener and it is defined
as follows:

Definition 1.1.1 (The Wiener Process). A stochastic process (Wt)t≥0 is called Wiener
process if it is Gaussian and if

E[Wt] = 0

E[WtWs] = s ∧ t. (1.1)

Theorem 1.1.1 (Existence of the Wiener Process). Let (Ω,F ,P) be a probability space
with a sequence of i.i.d. (independent identically distributed) random variables (Xn)n≥0

such that each Xn is N(0,1)-distributed then there is a Wiener process (Wt)t≥0 on
(Ω,F ,P).

Proof. • First choose an orthonormal basis (ei)i≥0 for the Hilbert space
L2(R≥0,B(R≥0), dx).

• Then we define a unique isometry η such that η(ei) = Xi for i ≥ 0.

• We have to remark that the span of theXi is a space of Gaussian random variables
and obviously every finite selection is multinormally distributed.

• Therefore η : L2(R≥0,B(R≥0), dx) → L2(Ω,F ,P) is a well defined linear map
with the isometry property

E[η(f)η(g)] =

∫ ∞

0

f(s)g(s)ds.
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• We now define Wt := η(1[0,t]) for t ≥ 0.

• The resulting process then is Gaussian by definition of η satisfying that E[Wt] = 0
and by the isometry

E[WtWs] =

∫ ∞

0

1[0,t](u)1[0,s](u)du = s ∧ t,

and therefore a Wiener process.

1.1.2 Brownian Motion, Definition and Properties

Definition 1.1.2 (A Version of a Process). A stochastic process Xt is a version of
another process Yt if ∀t P(Xt = Yt) = 1. So they coincide outside of a null set for each
t.

Definition 1.1.3 (Indistinguishability). A stochastic process Xt is indistinguishable
from another process Yt if P(∀t,Xt = Yt) = 1. So they coincide outside of one null set.

Definition 1.1.4 (Usual Conditions). A filtration of a probability space (Ω,F ,P) is
said to fulfill the usual conditions if

• Ft+ =
⋂

s>tFs = Ft (right continuity)

• Ft is complete meaning that it contains all P-null sets.

Definition 1.1.5 (Martingale). A process Mt is a martingale if it fulfills the following
properties:

1. Mt is adapted to Ft.

2. Mt is integrable.

3. E[Mt|Fs] = Ms, t ≥ s.

Definition 1.1.6 (Stopping Time). Given a probability space (Ω,F ,P) and a filtration
(Ft)t≥0 then a random variable τ : Ω −→ R≥0 is called a stopping time with respect to
(Ft)t≥0 if the set of events {τ ≤ t} ∈ Ft ∀t.

Definition 1.1.7 (Local Martingale). A process Mt is a local martingale if and only
if there exists a sequence of stopping times Tn tending to infinity such that Mt∧Tn - the
stopped processes - are martingales for all n.

Remark 1.1.1. Note that a stochastic process Mt is called bounded if there exists a
constant K such that for all ω and t ≥ 0 |Mt| ≤ K holds.

Theorem 1.1.2. A bounded local martingale is a martingale.
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Proof. Let Tn be the sequence of stopping times of the definition of the local martingale
Mt. Then Tn tends to infinity and Mt∧Tn tends to Mt pointwise.
Moreover limn→∞E[Mt∧Tn|Fs] = E[Mt|Fs] by dominated convergence (the constant
can be taken as dominating function). By definition Mt∧Tn is a martingale and so
E[Mt∧Tn|Fs] = Ms∧Tn . Putting all this together we get

E[Mt|Fs] = lim
n→∞

E[Mt∧Tn|Fs] = lim
n→∞

Ms∧Tn = Ms

which completes the proof.

Definition 1.1.8 (Brownian Motion). An adapted process (Bt)t∈R≥0
is called Brownian

Motion if it fulfills the following properties:

1. B0 = 0 almost surely (a.s.).

2. The increment Bt −Bs is independent of Fs (the filtration at time s) for t > s.

3. Bt−Bs is normally distributed with mean zero and variance t−s. The distribution
is stationary.

4. There is a continuous version. Continuous in the sense that the map t→ Bt(ω)
is continuous almost surely.

With these properties one can show that the process Bt is a martingale with respect
to its natural filtration (the filtration generated by the process itself).

E[Bt − Bs|Fs] = E[Bt − Bs] = 0 =⇒ E[Bt|Fs] = Bs (by independence and adapt-
edness).

The question whether Brownian Motion exists is answered by the Kolmogorov-
Centsov Theorem (see Øksendal [13]) (we have a Wiener process which is moreover
adapted and by Kolmogorov-Centsov we have continuity).

Definition 1.1.9 (Quadratic Variation). The quadratic variation Qt of a stochastic
process (Xt)t≥0 is defined by

Qt = lim
∆→0

n−1∑
i=0

(Xti+1
−Xti)

2

where the limit is taken over a partition of [0, t] with
mesh ∆ := max0≤i≤n−1 |ti+1 − ti| in probability.

Theorem 1.1.3. The quadratic variation
∑2n−1

k=0 (Bt k+1
2n
−Bt k

2n
)2 of a Brownian Motion

Bt converges to t in L2. Thus the total variation
∑n−1

k=0 |Btk+1
− Btk | of a Brownian

Motion is a.s. infinite.

We will moreover need to define a Brownian Motion in d Dimensions .
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Definition 1.1.10. A process (Bt)t≥0 with Bt : Ω 7→ Rd is called a d-dimensional
Brownian Motion with respect to the filtration (Ft)t≥0 which satisfies the usual condi-
tions, if the following properties hold:

• B0 = 0 (d-dimensional)

• Bt is Ft-measurable

• the process has continuous trajectories a.s. (this means that t 7→ Bt(ω) is contin-
uous almost surely)

• Bt − Bs is independent of Fs, t ≥, s ≥ 0 and multinormally distributed with
expectation 0 and covariance matrix of the form: (t− s) ·E where E denotes the
d-dimensional identity matrix.

Now the question could arise, whether such a process exists. I will show that
Bt = (B1

t , . . . , B
d
t ) where each Bi

t is a 1-dimensional BM is a d-dimensional BM: We
first choose the probability space:

• the space Ω := Ω1 × . . .× Ωd

• the sigma-algebra F := F1
⊗

. . .
⊗
Fd

• the prob. measure P := P1
⊗

. . .
⊗

Pd

• the filtration (Ft) := F1
t

⊗
. . .

⊗
Fd

t

The requirements of the definition are met:

• B0 = 0

• Bt is Ft measurable since Bi
t is F i

t measurable.

• The trajectories are a.s. continuous because they are a.s. continuous in each
component.

• The independence of Bt − Bs holds since the measures are product measures on
(Ω,F ,P) and Bi

t −Bi
s is independent of F i

s, s ≤ t
Bi

t −Bi
s is N(0, t− s) distributed and since (Bi

t)t≥0 is independent of (Bj
t )t≥0 we

have that E[(Bi
t −Bi

s)(B
j
t −Bj

s)] = δij(t− s).

Remark 1.1.2. It is clear that BM is a Wiener process. For a BM one needs moreover
the filtration - there is no word mentioned in the definition above about a filtration in
the setting of a Wiener process. Finally we have the almost surely continuous paths of
BM which are so important in many notions.
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1.2 Stochastic Integration

In applications in finance and other fields of science we need to give a meaning to so
called stochastic integrals with respect to Brownian motion. The dynamics of processes
are often modeled in the following way:

Xt = X0 +

∫ t

0

b(s,Xs)ds+ ”

∫ t

0

σ(s,Xs)dBs”.

Thus we need to understand problems and methods of the construction of such a
stochastic integral. We will first see where the problems arise.

Lemma 1.2.1 (Moments of Increments of the Brownian Motion). Let (Bt)t≥0 denote
a BM. Then

E[(Bt −Bs)
2k] =

(2k)!

k!2k
(t− s)k . (1.2)

Proof. Bt − Bs is normally distributed with mean zero and variance t-s - this follows
from the stationary of the distribution (Bt−Bs has the same distribution as Bt−s−B0).
Therefore we have to calculate the moments of a normally distributed random variable

with these parameters. From the characteristic function: E[eiuX ] = e−
u2

2
(t−s) we find

the result by comparison of the coefficients.

Theorem 1.2.1 (Theorem of Wiener). Let t > 0 be a fixed point in time and (Bs)s≥0

a BM, then

lim
n→∞

2n−1∑
i=0

(B t(i+1)
2n

−B ti
2n

)2 = t (1.3)

almost surely.

Proof. For n ≥ 1 we define

Sn =
2n−1∑
i=0

(B t(i+1)
2n

−B ti
2n

)2.

One easily sees that (think of E[(Bt −Bs)
2] = t− s for t ≥ s):

E[Sn] = t

E[S2
n] =

2n−1∑
i=0

E[(B t(i+1)
2n

−B ti
2n

)4] +
2n−1∑
i6=j=0

E[(B t(i+1)
2n

−B ti
2n

)2(B t(j+1)
2n

−B tj
2n

)2]

= t2(3
2n

22n
+

2n − 1

2n
) = t2(

2

2n
+ 1)
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Further basic calculations lead to

E[(Sn − t)2] = E[S2
n]− 2E[Sn]t+ t2 =

t2(
2

2n
+ 1− 2 + 1) =

t2

2n−1

for n ≥ 1. Tchebychev’s inequality gives:

P((Sn − t)2 ≥ 1

2
n
2

) ≤ 2
n
2
t2

2n−1
=

1

2
n
2

2t2.

Using the convergence part of Borel-Cantelli (First Borel Cantelli Lemma) thinking of
the fact that the sum

∑∞
i=1

1

2
i
2

converges one sees that the set of events ω for which

(Sn− t)2 ≥ 1

2
n
2

for infinitely many n has P-measure 0. Therefore on a set of measure 1

(this is almost surely) we have that limn→∞ Sn = t.

Remark 1.2.1. Using dyadic partitions of time we were able to assure that the sum
converges but every refining sequence of partitions leads to this result.

Remark 1.2.2. It is shown directly that the quadratic variation of a BM tends to t
for n→∞ in L2 (!) by using the independence of the increments, for any sequence of
partitions with mesh tending to zero.

The important task now is to decide how to interpret the integral w.r.t. the Brown-
ian motion. As mentioned before the Brownian motion has a.s. infinite total variation.
Thus a pathwise integral in the Lebesgue-Stieltjes sense is not possible. To say it in
other more illustrative words: the paths of BM are too rough to define a Lebesgue-
Stieltjes integral w.r.t. BM. Consider an integral of the form

∫ T

S
ftdBt. If we assume

that f has the following form:

φt =
∑
j≥0

ej · 1(j·2−n,(j+1)·2−n](t). (1.4)

Then there is more than only one interpretation of∫ T

S

φtdBt =
∑
j≥0

ej(Btj+1
−Btj) (1.5)

where the t′ks are the points in time defined in the equation above. The procedure to
deal with such integrals is to approximate the function f by

∑
j f(t∗j) ·1(tj ,tj+1](t) where

the points t∗j belong to the interval [tj, tj+1]. Then we define the integral as the limit of∑
j f(t∗j)[Btj+1

−Btj ] in a certain sense that will be explained later. So far I just want
to mention that different choices of the t∗j ’s lead to different results.

• t∗j = tj (the left end point), which leads to the Itô integral denoted by
∫ T

S
f(t)dBt.

Summary 1.1. We can summarize that it is useful to define an integral w.r.t. BM
but it can not be defined pathwise because the paths of BM are too rough. So we need
a new interpretation.
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1.3 The Itô Interpretation

1.3.1 The Itô Integral

This section is based on a lecture given by Josef Teichmann: Stochastic Analysis [16].
Itô decided to use the evaluation at the left end point of the interval to define the

approximating step function. By doing this he achieves that the value of a function
adapted to the Brownian filtration is independent of the increment of the Brownian
motion. This will become clear with more formalism.

Definition 1.3.1 (A Progressively Measurable Process). Let (Ω,F ,P) be a prob-
ability space and (Ft)t≥0 a filtration. Then a stochastic process (φt)t≥0 is progressively
measurable if:

• φ : Ω× Rt≥0 → Rd is measurable with respect to F
⊗
B(Rt≥0) and

• φ : Ω× [0, t] → Rd is measurable w.r.t. Ft

⊗
B([0, t])

Where B denotes the Borel-sigma-algebra. The last property can be seen as: φs ·1[0,t](s)
lies in L2(Ω× [0, t],Ft

⊗
B([0, t], dt

⊗
P).

Additionally we need an integrability property:

E[

∫ ∞

0

φ(s)2ds] =

∫
Ω

∫ ∞

0

φ(s, ω)2dsdP(ω) <∞.

Example 1.1. To give an illustrative example for a progressively measurable process
we take the following:

(Xt)t≥0 adapted to Ft

(Xt)t≥0 has continuous trajectories

E[
∫∞

0
X2

t dt] ≤ ∞
=⇒ (Xt)t≥0 is progressively measurable.

Proof. (Xt)t≥0 seen as a measurable function Ω× R≥0 7→ Rn can be approximated by

Xn
s = 10(s)X0 ·+

N−1∑
i=0

1(tni ,tni+1](s) ·Xn
ti

(1.6)

With 0 ≤ tn0 , . . . , t
n
Nn

< ∞ with a mesh refining for n → ∞. This process is progres-
sively measurable and from continuity of the paths we get:

lim
n→∞

Xn = X.
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Additionally we introduce a certain class of functions, which will be used as our
set from which we take integrands to define the Itô-integral

∫ t

0
f(s)dBs for an f :

[0, t]× Ω → Rd bounded and measurable, and Bt a d-dimensional BM.

Definition 1.3.2 (Simple Predictable Processes). Let E denote the set

{f : Ω× R≥0 → Rd|f(s) =
n−1∑
i=0

Fi1(ti,ti+1](s)} (1.7)

with 0 = t0 ≤ t1 ≤ . . . < tn = t and Fi is Fti−measurable and square integrable.

So the elements of E are step functions with Fti-measurable jumps. E ⊂ L2([0, t]×
Ω,Rd) but it is not dense at all!

For such an f ∈ E we can define the Itô integral in the following way:

I(f) =

∫ ∞

0

ft dBt =
d∑

j=1

n−1∑
i=0

F j
i (Bj

ti+1
−Bj

ti) (1.8)

Theorem 1.3.1. E ⊂ L2
prog(Ω× R≥0,Fprog, P

⊗
dt)

Proof: On (Ω × R) we have the sigma-algebra Fprog which is generated by all
progressively measurable processes. So we can write L2

prog(Ω× R≥0,Fprog, P
⊗

dt).

Theorem 1.3.2. (Itô’s Lemma)
The Itô integral I : E 7→ L2(Ω,F ,P) is an isometry in the following sense: Let

f, g ∈ E then for d = 1

E[I(f)I(g)] = E[

∫ ∞

0

f(t)g(t)dt]. (1.9)

Where the last expectation can be seen as E[ω 7→
∫∞

0
f(t, ω)g(t, ω)dt]. In general:

E[I(f)I(g)] =< f, g >L2
prog

. (1.10)

Proof of the Lemma for the case d = 1, the general case is proved in the same way
but additionally uses the independence of the components of the d-dimensional BM:
E[I(f)I(g)] =
E[(

∑n−1
i=0 Fi(Bti+1

−Bti))(
∑n−1

j=0 Gj(Btj+1
−Btj))] =

E[
∑n−1

i=0 FiGi(Bti+1
−Bti)

2] + 2E[
∑n−1

0=i<j FiGj(Bti+1
−Bti)(Btj+1

−Btj)] =
|Fi, Gi Fti −measurable, and the increment of the BM is independent of Fti

and finally we use that E[Btj+1
−Btj |Ftj ] = 0| =

E[E[
∑n−1

i=0 FiGi(Bti+1
−Bti)

2|Fti ]]+2E[E[
∑n−1

0=i<j FiGj(Bti+1
−Bti)(Btj+1

−Btj)|Fti ]] =

E[
∑n−1

i=0 FiGiE[(Bti+1
−Bti)

2]] + 2E[E[
∑n−1

0=i<j FiGj(Bti+1
−Bti)(Btj+1

−Btj)|Ftj ]] =

E[
∑n−1

i=0 FiGi(ti+1 − ti)] + 2E[
∑n−1

0=i<j FiGj(Bti+1
−Bti)E[Btj+1

−Btj |Ftj ]] =

E[
∑n−1

i=0 FiGi(ti+1 − ti)]

10



Theorem 1.3.3. The closure of E equals L2
prog(Ω × R≥0,Fprog,P

⊗
dt). Formally we

have that

E = L2
prog(Ω× R≥0,Fprog,P

⊗
dt). (1.11)

Proof. For each element of L2
prog(Ω× R≥0) we need a sequence in E that converges to

it.

• First we replace R≥0 by [0, 1].

• Take µ a measurable process in L2(Ω× [0, 1],Fprog,P
⊗

dt).

• This process can be approximated by a bounded progressively measurable process
µ′ = µ ∧ n→ µ.

• This µ′ can be approximated by a continuous adapted process which finally can
be approximated by a simple predictable step process ∈ E .

• To make the last point clearer: we define µ′h(t) = 1
h

∫ t

t−h
µ′(s)ds for t, h > 0 and

µ′h(s) = 0 for s ≤ 0. This µ′h(t) tends to µ′ for h→ 0 by Lebesgue’s differentiation
theorem. The integration makes it continuous!

• Thus for a fixed ω ∈ Ω , µ′h(t)(ω) → µ(t)(ω) holds almost everywhere in [0, 1]
and so

•
∫ 1

0
|µ′h(s)(ω)− µ′(s)(ω)|2ds→ 0 by dominated convergence and

• E[
∫ 1

0
|µ′h(s)(ω) − µ′(s)(ω)|2ds] → 0 again by dominated convergence and by

boundedness.

• Finally Fubini’s theorem tells us that if this integral exists, the iterated ones do
so, too, and this is the measure in L2

prog(dt
⊗

dP ).

• Continuity and adaptedness of the µ′h complete the proof.

Definition 1.3.3. The closure of E in L2
prog is denoted by L(B).

Remark 1.3.1. The definite integral of a progressively measurable process u(s) is de-
fined by: ∫ t

0

u(s)dBs =

∫ ∞

0

1[0,t](s)u(s)dBs

for t ≥ 0 which is well defined for a progressively measurable process.

Theorem 1.3.4. The process Mt :=
∫ t

0
u(s)dBs is a martingale w.r.t. the filtration

(Fs)s≥0 for u ∈ L(B).

11



Proof. Let u ∈ E be given by

u(s) =
n−1∑
i=0

Fi1(ti,ti+1](s)

then the stochastic integral is calculated by

Mt =
n−1∑
i=0

Fi(Bt∧ti+1
−Bt∧ti).

Given s ≥ t and assume that there is a k ≤ n with tk = t then

E[Ms|Ft] =
n−1∑

i=0,ti+1≤t

Fi(Bs∧ti+1
−Bs∧ti)

+
n−1∑

i=0,ti+1>t

E[FiE[Bs∧ti+1
−Bs∧ti|Fti ]|Ft]

=
k−1∑
i=0

Fi(Bs∧ti+1
−Bs∧ti) = Mt.

The assumptions are trivial because we can always refine the partition. By L2 conver-
gence of the conditional expectation we obtain the result.

Theorem 1.3.5. The process Mt :=
∫ t

0
u(s)dBs has a version with continuous paths.

Proof. Analogous to the proof before we write

Mt =
n−1∑
i=0

Fi(Bt∧ti+1
−Bt∧ti)

for t ≥ 0 which is continuous due to the continuity of BM. We now consider a Cauchy
sequence un ∈ ε converging to u and denote the associated martingales by Mn, then
by Doob’s martingale inequality we have

P(sup
t≤T

|Mn
t −Mm

t | ≥ ε) ≤ 1

ε2
E[|Mn

T −Mm
T |2].

By the Itô isometry this equals

1

ε2
E[

∫ T

0

(un(s)− um(s))2ds] → 0

for n,m→∞. So, we can find a subsequence nk such that

P(sup
t≤T

|Mnk
t −M

nk+1

t | ≥ 1

2k
) ≤ 1

2k

12



for k > 0. By the Borel-Cantelli Lemma we obtain that the set of events, where
this supremum is greater than 1

2k for infinitely many k has measure zero (because of
convergence of the sum). So we can define I(u) almost surely as uniform limit of
continuous processes - which yields continuity.

Remark 1.3.2. All simple processes u ∈ E are progressively measurable by defini-
tion. Given u ∈ L2

prog with continuous paths, then we can approximate the process
(us1[0,t](s))s≥0 by elements in ε of the form

un
s :=

2n−1∑
i=0

u ti
2n

1
( ti
2n ,

t(i+1)
2n ]

(s),

which converge to us by continuity and in L2
prog by dominated convergence. Therefore

we can calculate the Itô integral for processes in L2
prog with continuous paths by

lim
n→∞

∫ t

0

un
sdBs = lim

n→∞

2n−1∑
i=0

u ti
2n

(B t(i+1)
2n

−B ti
2n

).

We shall always take a continuous version.

Summary 1.2. We can state that there is a proper definition of an integral of a
progressively measurable process w.r.t. BM by Itô. This Itô integral leads to continuous
martingales.

1.3.2 Itô’s formula

Definition 1.3.4 (Itô process). A process (Xt)t≥0 of the form

Xt = X0 +

∫ t

0

v(s)dBs +

∫ t

0

u(s)ds (1.12)

with u, v ∈ L2
progis called an Itô process.

Theorem 1.3.6. Let f ∈ C2
b (R) (bounded, with bounded first and second derivative)

and Xt an Itô process. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)u(s)dBs +

∫ t

0

f ′(Xs)v(s)ds

+
1

2

∫ t

0

f ′′(Xs)u
2(s)ds (1.13)

holds.

For the proof see for example Øksendal [13]. First it assumes f ∈ C∞
b (R) to use

the Taylor expansion of f(x) and careful computations of the limits lead to the result.
Finally f is approximated by C2

b (R)−functions.

13



Remark 1.3.3. Itô’s formula is often used to describe f(Xt) by means of integrals.
This often gives a better picture of the process.

Definition 1.3.5. We introduce the following notations:

dXt = u(t)dBt + v(t)dt for an Itô process and (1.14)

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 for Itô’s formula (1.15)

for convenience.

Theorem 1.3.7 (Refined Version of Itô’s Formula). Let f(t, x) ∈ R1,2 (thus once
differentiable in t and two times in x) and Xt an Itô process then

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
ds+

∫ t

0

∂f

∂x
dXs +

1

2

∫ t

0

∂2f

∂x2
(dXs)

2. (1.16)

Remark 1.3.4. Like this we have a formula for functions that depend on an Itô process
and time explicitly.

Example 1.2. The so called stochastic exponential of a deterministic process h ∈
L2(R≥0,B(R≥0), dx) is defined in the following way:

ε(h)t = exp(

∫ t

0

h(s)dBs −
1

2

∫ t

0

h(s)2ds) (1.17)

for t ≥ 0. If we define the Itô process Xt = h(t)dBt − 1
2
h(t)2dt,X0 = 0 and take

f(x) = exp(x) then Itô’s formula shows that

d(exp(Xt)) = exp(Xt)dXt +
1

2
exp(Xt)(dX

2
t )

= exp(Xt)h(t)dBt. (1.18)

One thing has to be observed: exp(x) is not bounded at all. But it behaves nicely - we
can stop the process at a stopping time and then apply Itô’s formula on the stopped
process and then let the stopping time tend to infinity. So this process can be expressed
in terms of an Itô integral. This is remarkable.

Stochastic Integration by Parts

The so called integration by parts is a useful method for calculating certain stochastic
integrals.

Corollary 1.3.1 (Stochastic Integration by Parts). Let a deterministic f(s) be con-
tinuously differentiable then∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsf
′(s)ds (1.19)

holds.
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Proof. Take the Itô process dXt = dBt and the function F (t, x) = f(t) · x.
Then Itô’s formula leads to

F (t,Xt) = f(0) ·B0︸ ︷︷ ︸
=0

+

∫ t

0

∂F

∂s
ds+

∫ t

0

∂F

∂x
dXs +

∫ t

0

1

2

∂2F

∂x2︸︷︷︸
=0

(dXs)
2

f(t)Bt =

∫ t

0

f ′(s)Bsds+

∫ t

0

f(s)dBs.

Summary 1.3. In this section we got to know Itô processes and learned how to repre-
sent functions of Itô processes using Itô’s formula. In a corollary we saw an integration
by parts formula which has convenient applications.

1.4 The Stratonovich Interpretation

We define another integral idea, written down in terms of an Itô integral and the
covariance process. Read more details in [15]. First we give a condition for the existence
of the quadratic variation of a martingale M (denoted by 〈M,M〉):

Theorem 1.4.1. A continuous and bounded martingale M is of finite quadratic varia-
tion and 〈M,M〉 is the unique continuous increasing adapted process vanishing at zero
such that M2 − 〈M,M〉 is a martingale.

We can quote a similar theorem for a local martingale:

Theorem 1.4.2. If M is a continuous and bounded local martingale, there exists a
unique continuous increasing adapted process 〈M,M〉, vanishing at zero, such that
M2 − 〈M,M〉 is a local martingale.

Definition 1.4.1 (Semi-Martingale). A stochastic Rd-valued process
X = (X1, . . . , Xd) is called a semi-martingale if each component has a unique decom-
position of the form

X i = X i
0 +M i + Ai

where M i is a local martingale and Ai an adapted process of finite variation, with
M i

0 = Ai
0 = 0.

The following proposition can be found in [15]:

Proposition 1.4.1. A continuous semimartingale X = M + A has finite quadratic
variation and 〈X,X〉 = 〈M,M〉.
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Proof. If ∆ is a subdivision of [0, t] then

|
∑

i

(Mti+1
−Mti)(Ati+1

− Ati)| ≤ (sup
i
|Mti+1

−Mti|)Vart(A)

where Vart(A) is the variation of A on [0, t], and this converges to 0 when |∆| tends to
zero because of continuity of M . Likewise lim|∆|→0

∑
i(Ati+1

− Ati)
2 = 0.

Definition 1.4.2 (Covariation Process). The covariation process (or the bracket) of 2
continuous semi-martingales X = M + A and Y = N + B is denoted by 〈X, Y 〉 and
equals 〈M,N〉. 〈X, Y 〉 is the limit in probability of

∑
i(Xti+1

−Xti)(Yti+1
− Yti).

It can be derived from the quadratic variation of the processes by the following
formula:

〈M,N〉t =
〈M +N,M +N〉t − 〈M −N,M −N〉t

4
.

Conclusion 1.1. The quadratic variation process of dBt equals dt and in general the
covariation process of an Itô diffusion of the form dMt = atdt+ btdBt equals b2tdt.

It can be proved that the Stratonovich integral is the limit of the following form:

lim
n→∞

n∑
i=0

M (ti+1+ti)

2

(Bti+1
−Bti) =

∫ t

0

Mt ◦ dBt (1.20)

with ti = t
n
i. So it can be interpreted as a stochastic integral w.r.t. BM where we

don’t evaluate M at the left end point of the interval but at the middle point.

Definition 1.4.3 (The Stratonovich Integral). The Stratonovich integral of a semi-
martingale Mt w.r.t. the BM Bt is defined as∫ t

0

Ms ◦ dBs :=

∫ t

0

MsdBs +
1

2
〈M,B〉t. (1.21)

Remark 1.4.1. Note that it is crucial for the process Mt for which one wants to define
the Stratonovich integral to be a semi-martingale. This is a condition that shrinks the
class of integrands (from progressively measurable to semi-martingales additionally).

Whereas the Itô formulation is convenient for the analysis of probabilistic properties
the Stratonovich interpretation shows the geometric behavior. The reader will see this
in the sections later in the text.
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1.5 Stochastic Differential Equations

1.5.1 Existence and Uniqueness of the Solution of an SDE

First we have to do some definitions on how a process can be a solution of an SDE. Ad-
ditionally we will define two notions of uniqueness of such a solution. These definitions
can be found in [8]. The intent is to assign a meaning to an SDE of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (1.22)

where B = {Bt; 0 ≤ t <∞} is an r-dimensional Brownian motion and
X = {Xt; 0 ≤ t < ∞} is a suitable process with continuous sample paths and values
in Rd - the ’solution’ of the equation.

Definition 1.5.1 (Strong Solution). A strong solution of the SDE 1.22 on the given
probability space (Ω,F ,P) and with respect to the fixed Brownian motion B and initial
condition ζ, is a process X = {Xt; 0 ≤ t < ∞} with continuous sample paths and the
following properties:

1. X is adapted to the filtration Ft (the augmentation of the filtration generated by
B and the initial condition),

2. P(X0 = ζ) = 1,

3. P(
∫ t

0
bi(s,Xs) + σ2

ij(s,Xs)ds < ∞) = 1 holds for every 1 ≤ i, j ≤ d, 1 ≤ j ≤ r
and 0 ≤ t <∞ and

4. Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs holds almost surely.

On the other hand we define a weak solution:

Definition 1.5.2 (Solution in the Weak Sense). A solution in the weak sense of
the SDE 1.22 is a triple (X,B), (Ω,F ,P),Ft, where

1. (Ω,F ,P) is a probability space, and Ft is a filtration of sub-σ-fields of F satisfying
the usual conditions,

2. X = {Xt,Ft; 0 ≤ t < ∞} is a continuous, adapted Rd−valued process, B =
{Bt,Ft; 0 ≤ t <∞} is an r-dimensional Brownian motion, and

3. P(
∫ t

0
bi(s,Xs) + σ2

ij(s,Xs)ds < ∞) = 1 holds for every 1 ≤ i, j ≤ d, 1 ≤ j ≤ r
and 0 ≤ t <∞ and

4. Xt = X0 +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs holds almost surely.

The difference of the definitions is that the filtration in the definition of a weak
solution is not necessarily the augmentation of the filtration generated by B and the
initial condition. But as B is a Brownian motion w.r.t. Ft, another connection is given.
It is clear that strong solvability implies weak solvability.

We now give two definitions of uniqueness (from [15]):
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Definition 1.5.3 (Pathwise Uniqueness). There is pathwise uniqueness of 1.22 if
whenever (X,B) and (X ′, B′) are two solutions defined on the same filtered space with
B = B′ and X0 = X ′

0 a.s. then X and X ′ are indistinguishable.

Some authors refer to this kind of uniqueness as strong uniqueness.

Definition 1.5.4 (Uniqueness in Law). There is uniqueness in law of 1.22 if, for
every x ∈ Rd, whenever (X,B) and (X ′, B′) are two solutions such that X0 = x and
X ′

0 = x a.s., then the laws of X and X ′ are equal.

Some authors refer to this kind of uniqueness as weak uniqueness.

The Case of Lipschitz Coefficients

In this section I want to prove the existence and uniqueness of the solution of an SDE.
The proof can be found in Øksendal [13] and Teichmann [16]. The classical theorems
needed can be found in Williams’ book [17]. Additionally we will have to recall the
fixed point theorem of Banach:

Theorem 1.5.1. (Banach’s Fixed Point Theorem) Let (M,d) be a metric space more-
over let F : M →M be a function satisfying d(F (x), F (y)) ≤ K · d(x, y),
K < 1. Then there exists a unique fixed point x which can be found by iterating the
function F starting with an initial value x0. More formally:

∃!x, F (x) = x,

x = lim
n→∞

F n(x0).

The condition on the function F is a Lipschitz condition with a Lipschitz constant
smaller than one. Besides that we will need the lemma of Gronwall.

Lemma 1.5.1. (Lemma of Gronwall) Given a function v : [0, T ] → R being non-
negative and continuous and satisfying v(t) ≤ F + A ·

∫ t

0
v(s)ds, t ∈ [0, T ] and F,A ∈

R≥0, then v(t) ≤ F · exp(At) holds.

In the proof of the main theorem we will moreover need some essential theorems
from probability theory:

Theorem 1.5.2. (Doob’s Martingale Inequality) Let Mt be an Lp−martingale for
p ∈ [1,∞) with continuous trajectories, then

P(sup0≤t≤T |Mt| ≥ λ) ≤ 1

λp
E(|MT |p) (1.23)

holds.
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Theorem 1.5.3. (Tchebychev’s Inequality) Let X be an L2− random variable then

P(|X| ≥ λ) ≤ 1

λ2
E[X2] (1.24)

holds.

Theorem 1.5.4. (Borel-Cantelli Lemma) Let (Ω,F , P ) be a probability space and An

be a sequence of events (An ∈ F). Then the following two assertions hold:

a)
∑

n

P(An) <∞ ⇒ P(lim supnAn) = 0 (1.25)

b)
∑

n

P(An) = ∞ and the (An)n∈N are independent

⇒ P(lim supnAn) = 1. (1.26)

Theorem 1.5.5. (Existence and uniqueness theorem for stochastic differen-
tial equations) Let T > 0 and b : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m be
measurable functions satisfying

‖b(t, x)‖+ ‖σ(t, x)‖ ≤ C(1 + ‖x‖); x ∈ Rn, t ∈ [0, T ] (1.27)

for some constant C, (where ‖σ‖2 =
∑
|σij|2) and such that

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ D‖y − x‖; x, y ∈ Rn, t ∈ [0, T ] (1.28)

for some constant D. Let Z be a random variable which is independent of F∞, the σ−
algebra generated by Bs, s ≥ 0 and such that

E[‖Z‖2] <∞.

Then the stochastic differential equation

Xt = b(t,Xt)dt+ σ(t,Xt)dBt, 0 ≤ t ≤ T,X0 = Z (1.29)

has a unique t-continuous solution Xt(ω) with the property that Xt(ω) is adapted to the
filtration FZ

t generated by Z and Bs; s ≤ t and

E[

∫ T

0

‖Xt‖2dt] <∞. (1.30)
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Proof. uniqueness:
Let (X1

t )t≥0and (X2
t )t≥0 be solutions of the SDE of the form

Xk = b(t,Xt)dt+ σ(t,Xt)dBt

andX1
0 = X2

0 = Z satisfying the L2 condition of a solution. Then by using the following
tools

(A+B)2 ≤ 3 · (A2 +B2)∫ t

0

1 · f(s)ds ≤ t
1
2 · (

∫ t

0

f(s)2ds)
1
2

the Itô isometry

in the following computations:

E[‖X1
t −X2

t ‖2] = E[‖
∫ t

0

(b(s,X1
s )− b(s,X2

s ))ds +

∫ t

0

(σ(s,X1
s )− σ(s,X2

s ))dBs‖2]

≤ 3 · (E[‖
∫ t

0

(b(s,X1
s )− b(s,X2

s ))ds‖2] + E[‖
∫ t

0

(σ(s,X1
s )− σ(s,X2

s ))dBs‖2])

≤ 3 · t ·
∫ t

0

E[‖(b(s,X1
s )− b(s,X2

s ))‖2]ds + 3 ·
∫ t

0

E[‖(σ(s,X1
s )− σ(s,X2

s ))‖2]ds)

≤ 3 · t ·D2

∫ t

0

E[‖X1
s −X2

s‖2]ds + 3 ·D2

∫ t

0

E[‖X1
s −X2

s‖2]ds

Now we can apply Gronwall’s lemma with F = 0
So v(s) ≤ 3 · (1 + t) ·D2

∫ t

0
v(s)ds

=⇒ v(s) = 0 on [0, t]. This implies that X1
t = X2

t a.s. - in other words (X1
t )t≥0 is

indistinguishable from (X2
t )t≥0.

existence:
The proof of the existence is done by the Picard-Lindelöff Iteration:
We start with Y

(0)
t = Z. Further iterations lead to Y

(k)
t and Y

(k+1)
t , k ≥ 0. The

following relationship obviously holds:

Y
(k+1)
t = Z +

∫ t

0

b(s, Y (k)
s )ds+

∫ t

0

σ(s, Y (k)
s )dBs.

Similar calculations as in the uniqueness proof lead to:

E[‖Y (k+1)
t − Y

(k)
t ‖2] ≤ 3 · (T + 1) ·D2

∫ t

0

E[‖Y (k)
s − Y (k−1)

s ‖2]ds.

So we have for t ≤ T :

E[‖Y (1)
t − Y

(0)
t ‖2] ≤ 2C2t2 · (1 + E[‖Z‖2] + 2C2t(1 + E[‖Z‖2])

≤ A1 · t
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and induction shows that the following holds:

E[‖Y (k+1)
t − Y

(k)
t ‖2] ≤ tk+1

(k + 1)!
Ak+1

2 ; k ≥ 0, 0 ≤ t ≤ T.

Where A1 depends on E[‖Z‖2], C and T and A2 only depends on E[‖Z‖2], C,D and T .
Moreover

sup
0≤t≤T

‖Y (k+1)
t − Y

(k)
t ‖ ≤

∫ T

0

‖b(s, Y (k)
s )− b(s, Y (k−1)

s )‖ds

+ sup
0≤t≤T

‖
∫ t

0

(σ(s, Y (k)
s )− σ(s, Y (k−1)

s ))dBs‖.

Where the last expression is a martingale.

P( sup
0≤t≤T

‖Y (k+1)
t − Y

(k)
t ‖ >

1

2k
)

≤ P((

∫ T

0

‖b(s, Y (k)
s )− b(s, Y (k−1)

s )‖ds)2 >
1

22k+2
)

+P( sup
0≤t≤T

‖
∫ t

0

(σ(s, Y (k)
s )− σ(s, Y (k−1)

s ))dBs‖ >
1

2k+1
)

By Doob’s maximal martingale inequality, Tchebychev’s inequality and the Itô isome-
try we get that this is:

≤ 22k+2 · T ·
∫ T

0

E[‖b(s, Y (k)
s )− b(s, Y (k−1)

s )‖2]ds

+ 22k+2 ·
∫ T

0

E[‖σ(s, Y (k)
s )− σ(s, Y (k−1)

s )‖2]ds

≤ 22k+2D2(T + 1)

∫ T

0

Ak
2t

k

k!
dt ≤ (4A2T )k+1

(k + 1)!
, if A2 ≥ D2(T + 1).

This sum converges and so we can apply the Borel-Cantelli Lemma. It gives that
the set of ω such that sup0≤t≤T ‖Y

(k+1)
t − Y (k)

t ‖ > 1
2k for infinitely many k has measure

zero. Thus for almost all ω there exists k0 = k0(ω) such that sup0≤t≤T ‖Y
(k+1)
t −Y (k)

t ‖ ≤
1
2k k ≥ k0. Therefore the sequence

Y
(n)
t = Y

(0)
t +

n−1∑
k=0

(Y k+1
t − Y k

t )

is uniformly convergent in [0, T ] for almost all ω. Let us denote this limit by Xt. Xt

is continuous because Y
(n)
t is continuous for all n and it is Ft-measurable for the same
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reason. Moreover we want to show the adaptedness and the integrability:

E[‖Y (n)
t − Y

(m)
t ‖2]

1
2 = ‖Y (n)

t − Y
(m)
t ‖L2(P ) = ‖

m−1∑
k=n

(Y
(k+1)
t − Y

(k)
t )‖L2(P )

≤
m−1∑
k=n

‖Y (k+1)
t − Y

(k)
t ‖L2(P ) ≤

∞∑
k=n

[
(A2t)

k+1

(k + 1)!
]
1
2 → 0 as n→∞.

So Y
(n)
t converges in L2(P ) to a limit say Yt. So a subsequence converges ω−pointwise

to Yt and therefore we must have Yt = Xt a.s. So Xt fulfills the adaptedness and
integrability property.

The last thing to show is that this limit really fulfills the SDE: By Fatou and some
results before we have:

E[

∫ T

0

‖Xt − Y
(n)
t ‖2dt] ≤ lim sup

m→∞
E[

∫ T

0

‖Y (m)
t − Y

(n)
t ‖2dt] → 0

as n→∞. By the Itô isometry it follows that∫ t

0

σ(s, Y (n)
s )dBs →

∫ t

0

σ(s,Xs)dBs

and by the Hölder inequality that∫ t

0

b(s, Y (n)
s )ds→

∫ t

0

b(s,Xs)ds

in L2(P ). So by taking the limit in the representation

Y
(n+1)
t = X0 +

∫ t

0

b(s, Y (n)
s )ds+

∫ t

0

σ(s, Y (n)
s )dBs.

we get the final result.

Remark 1.5.1. In the notions of uniqueness and existence which we got to know we
can say that this theorem gives conditions for a strongly unique strong solution.

Example 1.3. Ornstein-Uhlenbeck process The solution of the following SDE is
called Ornstein-Uhlenbeck process:

dXt = a · (b−Xt) · dt+ σ · dBt, X0 = x > 0 a, b, σ ∈ R. (1.31)

The requirements for a unique solution are fulfilled:
The uniqueness requirement:

|a · (b−X)− a · (b− Y )|+ |σ − σ| = a · |X − Y |
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The growth requirement:

|a · (b−X)|+ |σ| = |ab− aX|+ |σ|
≤ max(|ab|, |a|) · |1 +X|+ |σ|.

So this equation has a unique solution. It can be found by the method of variation of
constants.

Example 1.4. Black-Scholes Model This model describes the value process of one
unit of a stock. The equation is:

dSt = µ · St · dt+ σ · St · dBt, S0 ∈ R≥0. (1.32)

Example 1.5. Vasicek Model This models the overnight interest rate rt by an
Ornstein-Uhlenbeck process. The rate is modeled by the following equation:

drt = a · (b− rt) · dt+ σ · dBt, r0 ∈ R≥0. (1.33)

Theorems for the Case of Hölder-continuous Coefficients

Theorems on existence and uniqueness in the more general case of Hölder-continuous
coefficients can be found in the book of Karatzas and Shreve [8] and in the book of
Revuz and Yor [15].

Remark 1.5.2. The existence of a solution for an SDE with a square root appearing
in the volatility term can not be guaranteed by the theorems in the last section (although
needed e.g. in the CIR-model). The square root is Hölder of order 1

2
. Let without loss

of generality x ≥ y then (
√
x−√y)2 = x−2

√
xy+y ≤ x−2y+y = x−y and therefore√

x−√y ≤
√
x− y.

Proposition 1.5.1 (Yamada & Watanabe (1971)). Let us suppose that the coefficients
of the one-dimensional equation

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

satisfy the conditions

|b(t, x)− b(t, y)| ≤ K|x− y|
|σ(t, x)− σ(t, y)| ≤ h(|x− y|)

for every 0 ≤ t <∞ and x ∈ R, y ∈ R, where K is a positive constant and h : [0,∞) →
[0,∞) is a strictly increasing function with h(0) = 0 and∫ ε

0

h−2(u)du = ∞,∀ε > 0

then strong uniqueness holds.
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One easily sees that h(x) = xα for α ≥ 1
2

is a possible choice and this enables us to
cope with the square root.

Remark 1.5.3. Yamada and Watanabe actually established proposition 1.5.1 under a
weaker condition on b(t, x) namely

|b(t, x)− b(t, y)| ≤ κ(|x− y|), 0 ≤ t <∞, x ∈ R, y ∈ R

where κ : [0,∞) → [0,∞) is strictly increasing and concave with κ(0) = 0 and∫ ε

0
κ−1(u)du = ∞,∀ε > 0.

Karatzas and Shreve [8](page 323) quote a theorem on the existence of a weak
solution in the case of a time-homogeneous SDE with bounded continuous coefficients.

Theorem 1.5.6 (Skorohod (1965), Strook & Varadhan (1969)). Consider the SDE

dXt = b(Xt)dt+ σ(Xt)dBt

where the coefficients bi, σij : Rd → R are bounded and continuous functions. Corre-
sponding to every initial distribution µ on B(Rd) with

∫
Rd ‖x‖2mµ(dx) < ∞ for some

m > 1, there exists a weak solution.

1.5.2 Differential Operators

In this section I want to repeat and make clear how vector fields and differential oper-
ators are connected. This was explained in Teichmann’s lecture [16].

Definition 1.5.5. For V : Rn 7→ Rn (a vector field) and a smooth function f : Rn 7→ R
we can define the value of a differential operator V on a function in the following way:

V f(x) = V (x) · grad f

=
n∑

i=1

vi(x)
∂

∂xi

f(x).

Remark 1.5.4. The importance of this will become clear if one wants to apply a
function to the solution of an SDE.

Definition 1.5.6. We define the differential operator D applied to a function

V : Rn 7→ Rn by DV =


∂V1

∂x1
. . . ∂V1

∂xn
...

. . .
...

∂Vn

∂x1

... ∂Vn

∂xn

 .
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1.5.3 Notation

We will use two ways to write down SDE’s:

•

dXt = V (Xt)dt+
d∑

i=1

Vi(Xt)dB
i
t X0 = x

With the vector fields V : Rn 7→ Rn (the Itô drift) and Vi : Rn 7→ Rn, i = 1, . . . d
(the volatility vector fields) and d BM’s.
In this notation we introduce V 0 = V + 1

2

∑d
i=1DVi ·Vi the so called Stratonovich

corrected Itô drift. This drift shows the geometric drift of the process which is
the Itô drift plus terms coming from the covariation process.

•
dXt = b(Xt)dt+ σ(Xt)dBt, 0 ≤ t ≤ T,X0 = Z

with b : Rn → Rn and σ : Rn → Rn×d.

Those definitions are equivalent and we will use the notation that is most convenient.

1.5.4 Solution Methods

As in the case of an ODE there are only a few equations that have an explicit solution
here I point out 2 methods for SDE’s of a special structure.

Variation of Constants

The variation of constants enables us to solve an SDE of the following form

dXt = (a− bXt)dt+ cdBt a, b, c ∈ R. (1.34)

Such an equation is called scalar SDE. This particular equation is know as the Lagrange
equation, the solution is the mean reverting Ornstein-Uhlenbeck process. The solution
is given by

Xt = e−bt · (X0 +

∫ t

0

aebsds+

∫ t

0

cebsdBs). (1.35)

Proof. The homogeneous equation dzt = −bztdt has the solution zt = z0 · e−bt So a
variation of the constants shows that

Xt = z0(t) · e−bt

dXt = e−btdz0(t)− bXtdt (Itô’s formula)

by e−btdz0(t) = adt+ cdBt

z0(t) = X0 +

∫ t

0

aebsds+

∫ t

0

cebsdBs.

By multiplying by e−bt we get the result.
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A Formula for n Dimensions and d Brownian Motions

Theorem 1.5.7. Let f and V 1, . . . , V d : [0, T ] → Rn be smooth functions and A be a
constant N ×N matrix, then the unique solution of the SDE

dXt = (f(t) + AXt)dt+
d∑

i=1

V i(t)dBi
t (1.36)

with initial value X0 ∈ Rn is given by

Xt = exp(At)X0 +

∫ t

0

exp(A(t− s))f(s)ds+
d∑

i=1

∫ t

0

exp(A(t− s))V i(s)dBi
s.

The proof is a simple application of Itô’s formula.

1.5.5 Supplements on the Existence and Uniqueness Theorem

For this section see Arnold [3]. We needed the Lipschitz condition to guarantee that
b(t, x) and σ(t, x) do not change faster than x itself. This excludes discontinuous
functions as coefficients and even a large class of continuous ones. To enlarge the class
of functions for which we can guarantee a solution we need the following corollary.

Corollary 1.5.1. The existence and uniqueness theorem remains valid if we replace
the Lipschitz condition with the more general condition that, for every N > 0, there
exists a constant KN s.t., for all t ∈ [0, T ], ‖x‖ ≤ N and ‖y‖ ≤ N

‖b(x, t)− b(y, t)‖+ ‖σ(x, t)− σ(y, t)‖ ≤ KN‖x− y‖. (1.37)

Another corollary helps to recognize when a function fulfills a Lipschitz condition.

Corollary 1.5.2. For the Lipschitz condition in the existence and uniqueness theorem
or its generalization (1.37) to be satisfied it is sufficient that the functions b(x, t) and
σ(x, t) have continuous partial derivatives of first order w.r.t. the components of x
for every t ∈ [0, T ] and that these be bounded on [0, T ] × Rn (or in the case of the
generalization on [0, T ]× {‖x‖ ≤ N}).

Proof. This is proved by the mean-value theorem for each component.

We now focus on the second condition on the coefficients - the so called explosion
condition. This condition allows at most linear increase of the functions b and σ. If
this condition is violated one speaks of the phenomenon of explosion of the solution.

Example 1.6. Consider the scalar ODE

dXt = X2
t dt,X0 = c.

The solution is Xt = 0 for c = 0 and Xt = (1/c − t)−1 for c 6= 0. So we see that the
solution is only defined for c > 0 on the interval [0, 1/c). At t = 1/c the explosion
takes place.
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Definition 1.5.7 (Global Solution). If the functions b and σ are defined on [0,∞)×Rn

and if the assumptions of the existence and uniqueness theorem hold on every finite
subinterval [0, T ] of [0,∞) , then the SDE

dXt = b(Xt, t)dt+ σ(t,Xt)dBt, X0 = Z

has a unique solution Xt defined on the entire half-line [0,∞). Such a solution is called
a global solution.

Example 1.7. Consider the autonomous (meaning that there is no explicit dependence
of the coefficients on time) SDE

dXt = −1/2 exp(−2Xt)dt+ exp(−Xt)dBt.

For x < 0 the coefficients do not satisfy any Lipschitz or growth condition. So explo-
sions are possible. The function Xt = log(Bt +eX0) is a unique solution on the interval
[0, η) with instant of explosion

η = inf{t : Bt = −eX0} > 0.

This can be verified by Itô’s formula.

The following is shown in a theorem of McKean:

Theorem 1.5.8. The autonomous SDE

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = c

where b and σ are continuously differentiable functions, has a unique local solution that
is defined up to a (random) explosion time η in the interval 0 ≤ η ≤ ∞. If η < ∞
then Xη− = −∞ or ∞.

One more theorem will help us to understand the behavior of a solution up to a
stopping-time.

Theorem 1.5.9. Let the vector fields V, Vi : U ⊂ Rn → Rn with U open, i = 1, . . . , d
and let them be in C∞. Then the SDE

dXx
t := V (Xx

t )dt+
d∑

i=1

Vi(X
x
t )dBi

t (1.38)

has a unique strong solution up to a stopping time τ > 0.

By a strong solution Xx
t we mean a process Xt starting at x that fulfills the SDE

with a version of the BM given in advance and constructed by the Picard-Lindelöff
procedure in the existence theorem. We introduce the pair [(Xx

t ), τx], τx > 0,P− a.s.

of a process Xt starting at x fulfilling E[
∫ τx

0
X2

t ] <∞ with a stopping time until which
it is defined. With these conventions we can start to prove this theorem.
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Proof. We choose a K ⊂ U compact such that the interior of K is not empty. For
each x in the interior of K we can find a pair consisting of a strong solution and the
corresponding stopping time until which it is defined [(Xx

t ), τx] such that Xx
t fulfills

the SDE 1.38. We now define the vector fields

Ṽ (x) := V (x)ψ(x)

Ṽ1(x) := V1(x)ψ(x)
...

Ṽd(x) := Vd(x)ψ(x).

With a function ψ : U → R such that ψ|K = 1 and ψ has compact support in U and
such that the vector fields Ṽi(x) and Ṽ (x) are still C∞ but now bounded. Therefore by
the existence theorem we have a solution (X̃x

t )t≥0 that fulfills equation 1.38 with the
tilde vector fields plugged in. If we now define the stopping time τx := inf{t|Xx

t /∈ K}
then we have for x in the interior of K that τx > 0 a.s. and that the process X̃x

t solves
equation 1.38 up to the stopping time τx. We did not specify the compact set in U so
we can take any and there is a solution for every x ∈ U .

If we now have 2 pairs [Xx
t , τ

x] and [X̂x
t , τ̂

x] where both processes are strong so-
lutions up to the respective stopping time then they have to coincide up to the min-
imum of these times (which is again a stopping time) by uniqueness and the pair
[Xx

t ,min(τx, τ̂x)] is unique.

Summary 1.4. In this section we saw some cases in which we can guarantee a solution
of an SDE. 2 standard methods of solving SDE’s of a certain form were presented and
finally some theorems about local solutions.

1.6 Properties of the solution of an SDE

Most of the theorems and definitions found here are taken from Øksendal [13] and
Teichmann [16].

1.6.1 What a Diffusion Really Does

A rotation in R2 can be described by the following system of ODE’s:(
x′

y′

)
=

(
0 1
−1 0

)
·
(
x
y

)
(1.39)

with x(0) = x0 ∈ R and y(0) = y0 ∈ R as initial conditions. This system can be solved
by methods from the theory of ODE’s like the Picard-Lindelöff iteration which leads
to the solution (

x(t)
y(t)

)
=

(
x0 cos(t) + y0 sin(t)
−x0 sin(t) + y0 cos(t)

)
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We now have a look at a noisy rotation as an example:

dx = ydBt, x(0) = 1

dy = −xdBt, y(0) = 0 (1.40)

this system has the solution:

x(t) = e
t
2 cos(Bt)

y(t) = e−
t
2 sin(Bt)

In this example we see that the solution, though it is a local martingale (only Itô
integrals appear in the SDE system), leaves the unit disc and the distance to the origin
tends to ∞.

If we look at another example :

dx = −1

2
xdt+ ydBt, x(0) = x0

dy = −1

2
ydt− xdBt, y(0) = y0 (1.41)

This system is solved by(
x(t)
y(t)

)
= exp(Bt

(
0 1
−1 0

)
)

(
x0

y0

)
(1.42)

Observe that (x(t), y(t)) remain on the unit disc for all t.
So what is the difference between these two systems? It is the drift term. There is

always another drift coming from the quadratic variation of the BM. It is canceled by
the added drift in the second stochastic example and in the first process one sees what
happens if one neglects this drift. We can say that the real behavior of the solution of
a SDE is determined by the so called Stratonovich corrected Itô drift. Lets calculate
for example the drift of (1.40):

V (x, y) = 0, V1(x, y) = (y,−x) =⇒

V0(x, y) = 0− 1

2
(−x,−y) =

1

2
(x, y)

This is exactly the drift that was subtracted in the system (1.41) leading to solutions
that stay on the unit disc.

1.6.2 The Generator of an Itô Process

One fundamental thing to understand is the connection between an Itô process and a
second order differential operator. This connection is given by the generator of the Itô
process denoted by A:
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Definition 1.6.1. The infinitesimal generator A of an Itô process Xt in Rn is defined
in the following way:

Af(x) = lim
t↓0

E[f(Xt)]− f(x)

t
; x ∈ Rn. (1.43)

We denote the set of functions f : Rn → R for which this limit exists by DA(x).
DA denotes the set of functions for which the limit exists for all x ∈ Rn. We need some
more results, to express this connection in terms of the vector fields associated to the
process.

Lemma 1.6.1. Let Yt be an Itô process in Rn of the form

Y x
t = x+

∫ t

0

usds+

∫ t

0

vsdBs.

Let f ∈ C2(R) with compact support and moreover τ be a stopping time and assume
that E[τ ] < ∞. Assume that u(t, ω) and v(t, ω) are bounded on the set of (t, ω) such
that Y (t, ω) belongs to the support of f .

Then E[f(Yτ )] =

f(x) + E[

∫ τ

0

(
∑

i

ui(s, ω)
∂f

∂xi

(Ys) +
1

2

∑
i,j

(vvT )i,j(s, ω)
∂2f

∂xi∂xj

(Ys))ds]. (1.44)

Proof. If we put Z = f(Y ) and suppress some confusing notation then we get by
applying Itô’s formula that

dZ =
∑

i

∂f

∂xi

(Y )dYi +
1

2

∑
i,j

∂2f

∂xi∂xj

(Y )dYidYj

=
∑

i

ui
∂f

∂xi

dt+
1

2

∑
i,j

∂2f

∂xi∂xj

(vdB)i(vdB)j +
∑

i

∂f

∂xi

(vdB)i.

The next line follows easily from previous observations and the following:

(vdB)i · (vdB)j = (
∑

k

vikdBk)(
∑

n

vjndBn)

= (
∑

k

vikvjk)dt = (vvT )ijdt,

so

f(Yt) = f(Y0) +

∫ t

0

(
∑

i

ui
∂f

∂xi

+
1

2

∑
i,j

(vvT )ij
∂2f

∂xi∂xj

)ds

+
∑
i,k

∫ t

0

vik
∂f

∂xi

dBk.
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Hence

E[f(Yτ ] = f(x) + E[

∫ τ

0

(
∑

i

ui
∂f

∂xi

(Y ) +
1

2

∑
i,j

(vvT )ij
∂2f

∂xi∂xj

(Y ))ds]

+
∑
i,k

E[

∫ τ

0

vik
∂f

∂xi

(Y )dBk].

If g is a bounded Borel function, |g| ≤M , then for all integers k we have

E[

∫ τ∧k

0

g(Ys)dBs] = E[

∫ k

0

1{s<τ}g(Ys)dBs] = 0

since g and 1{s<τ} are both Fs-measurable. Moreover it follows by monotone conver-
gence of τ ∧ k → τ that

E[(

∫ τ

0

g(Ys)dBs −
∫ τ∧k

0

g(Ys)dBs)
2] = E[(

∫ t

τ∧k

g(Ys)dBs)
2]

=︸︷︷︸
Itô isometry

E[

∫ τ

τ∧k

g2(Ys)ds] ≤M2 · E[τ − τ ∧ k] →︸︷︷︸
k→∞

0.

Therefore

E[

∫ τ

0

g(Ys)dBs] = lim
k→∞

E[

∫ τ∧k

0

g(Ys)dBs] = 0.

Theorem 1.6.1. Let Xt be an Itô process of the form Xt = b(Xt)dt + σ(Xt)dBt. If
f ∈ C2

0(R) then f ∈ DA and

Af(x) =
∑

i

bi(x)
∂f

∂xi

+
1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj

.

Proof. This follows from the last lemma if one takes τ = t and then looks at the
definition of the generator:

Af(x) = limt↓0
E[f(Xt)]−f(x)

t

limt↓0
1
t
· (f(x) + E[

∫ t

0
(
∑

i bi(Xs)
∂f
∂xi

+ 1
2

∑
i,j(σσ

T )i,j(Xs)
∂2f

∂xi∂xj
)ds]− f(x)) =

limt↓0 E[1
t

∫ t

0
(
∑

i bi(Xs)
∂f
∂xi

+ 1
2

∑
i,j(σσ

T )i,j(Xs)
∂2f

∂xi∂xj
)ds] =∑

i bi(x)
∂f
∂xi

+ 1
2

∑
i,j(σσ

T )i,j(x)
∂2f

∂xi∂xj

The last line holds by continuity and for t → 0 the process is x ∈ Rn thus the expec-
tation loses its meaning . Together with the definition of A we get the result.
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Theorem 1.6.2. If we write the SDE in the way dXt = V (Xt)dt +
∑d

i=1 Vi(Xt)dB
i
t

described before then we can define the generator in the following way:

Af = (V0 −
d∑

i=1

V 2
i )f (1.45)

= V0 · gradf −
d∑

i=1

Vi(Vi · gradf) (1.46)

where V0 is the Stratonovich corrected Itô drift and the Vi are the volatility vector fields.
This leads to the same object as the definitions before.

Example 1.8. The n-dimensional BM is the solution of dXt = dBt, so we have b = 0
and σ = In (the identity matrix in Rn×n). Thus the generator is the following:

Af =
1

2

∑ ∂2f

∂x2
i

=
1

2

∑
∆f.

1.6.3 The Dynkin Formula

With the results of the previous section we can propose a very useful theorem. Before
that we have to define an object.

Definition 1.6.2 (Stopping Time). Let (Ω,F ,P) be a probability space, and Ft a
filtration. Then a random variable τ is called a stopping time w.r.t. Ft if

{τ ≤ t} ∈ Ft for all t ≥ 0. (1.47)

Theorem 1.6.3 (Dynkin’s Formula). Let f ∈ C2
0(Rn). Suppose τ is a stopping time

with E[τ ] <∞. Then

E[f(Xτ ] = f(x) + E[

∫ τ

0

Af(Xs)ds]. (1.48)

There is nothing left to prove after the last section on the generator. I just want to
give a very illustrative example.

Example 1.9. We look at a n-dimensional BM starting at a ∈ Rn furthermore
we assume |a| < R. Thus the BM starts inside of a ball of radius R centered at the
origin. By applying Dynkin’s formula we will be able to answer the following question:
What is E[τK ] if τK denotes the exit time of the ball KR = {x ∈ Rn; |x| < R} ?
We introduce a stopping time σk = min(k, τK) for an arbitrary k ∈ N furthermore we
need an f ∈ C2

0(Rn) - we take |x|2 for |x| < R. We don’t have to define f for other
x because we will only integrate the process with values inside of the ball. Now we can
apply Dynkin’s formula with the stopping time σk because we know that it has finite
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expectation:

E[f(Bσk)] = f(a) + E[

∫ σk

0

1

2
∆f(Bs)ds]

= |a|2 + E[

∫ σk

0

n · ds] = |a|2 + nE[σk].

One sees this easily be computing the 2nd derivatives of the square of the norm in Rn

and summing them up. If we now think of the fact that |x| ≤ R until the stopping time
and that E[|x|2] ≤ R2 we arrive at E[σk] ≤ 1

n
(R2−|a|2) for all k. For k →∞ σk → τK

a.s. we see that

E[τK ] =
1

n
(R2 − |a|2).

This follows from the fact that |x| is not less or equal R like in the case of the σk where
we took the minimum of τ and k but if we stop at τ |x| = R holds.

We can answer more questions by applying Dynkin’s formula:
Assume n ≥ 2 and |b| > R - what is the probability that a BM starting at b hits the ball
K ? Let αk be the first exit time from the annulus Ak = {x,R < |x| < 2kR}; k =
1, 2, . . . and we put TK = inf{t > 0;Xt ∈ K}. Next we choose a function f - again
with compact support. We choose it for x in the annulus in the following way:

f(x) =

{
−log|x| for n = 2
|x|2−n for n > 2

. Dynkin’s formula simplifies, because of 4f = 0 inside

of the A′ks, as basic calculations show to

E[f(Bαk
)] = f(b) for all k.

The BM can exit the annulus either to the ball inside it or to the exterior, thus we
define

pk = P(|Bαk| = R), qk = P(|Bαk| = 2kR).

We have to consider the case n = 2 and n ≥ 2 separately:
n = 2 :

E[f(Bαk
)] = f(b)

− logR · pk − (logR + k · log 2)qk = − log |b|

for all k.

So for k →∞ qk has to tend to 0, so that

pk → 1

P(TK <∞) = 1.
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This phenomenon of coming back a.s. is called recurrence. The BM is recurrent in R2.
Now the case
n > 2 :
In the same way as before we get that

pk ·R2−n + qk · (2kR)2−n = |b|2−n.

Since 0 ≤ qk ≤ 1 we get by k →∞

lim
k→∞

pk = P(TK <∞) = (
|b|
R

)2−n.

So it does not come back with probability one. This is called transience and we conclude
that the BM is transient in Rn for n > 2.

1.6.4 The Markov Property

To define this property we need some notation: Xs,x
t is the process at time t that had

the value x at the point in time s.

Definition 1.6.3. An Itô process Xt is called time-homogeneous diffusion if
Xt(ω) = X(t, ω) : [0,∞)× Ω → Rn satisfies the SDE of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s, Xs = x. (1.49)

Where Bt is a m-dimensional BM and b : Rn → Rn and σ : Rn → Rn×m. Note that the
associated vector fields do not depend on t explicitly. This leads to time-homogeneity
in the following sense:

Xs,x
s+h = x+

∫ s+h

s

b(Xs,x
u )du+

∫ s+h

s

σ(Xs,x
u )dBu

= x+

∫ h

0

b(Xs,x
s+v)dv +

∫ h

0

σ(Xs,x
s+v)dB̃v, (u = s+ v) (1.50)

where B̃v = Bs+v −Bs; v ≥ 0 and the filtration is (F̃v) = (Fs+v).

It is clear that (B̃v)v≥0 and (Bv)v≥0 have the same P-distribution and therefore
(Xs,x

s+h)h≥0 and (X0,x
h )h≥0 have the same P-distribution.

Theorem 1.6.4 (The Markov Property for Itô Diffusions). Let f denote a Borel func-
tion from Rn to R and Xt an Itô diffusion then for t, h ≥ 0

E[f(Xt+h)|Ft] = E[f(Xh)]|X0=Xt(ω). (1.51)
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Proof. We have for r ≥ t

Xr(ω) = Xt(ω) +

∫ r

t

b(Xu)du+

∫ r

t

σ(Xu)dBu

and by uniqueness

Xr(ω) = X t,Xt
r (ω).

If we define

F (x, t, r, ω) = X t,x
r (ω); r ≥ t,

then we can rewrite the theorem as

E[f(F (Xt, t, t+ h, ω))|Ft] = E[f(F (x, 0, h, ω))]|x=Xt .

Now we put

g(x, ω) = f ◦ F (x, t, t+ h, ω)

then g is measurable.
So we can approximate g by bounded functions of the form

m∑
k=1

φk(x)ψk(ω).

Hence by usage of the properties of the conditional expectation we get

E[g(Xt, ω)|Ft] = E[lim
∑

φk(Xt)ψk(ω)|Ft]

= lim
∑

φk(Xt)E[ψk(ω)|Ft]

= lim
∑

E[φk(y)ψk(ω)|Ft]|y=Xt

= E[g(y, ω)|Ft]|y=Xt =︸︷︷︸
g indep. of Ft

E[g(y, ω)]|y=Xt .

Finally by time-homogeneity of the process we get

E[f(F (Xt, t, t+ h, ω))|Ft] = E[f(F (y, t, t+ h, ω))]|y=Xt

= E[f(F (y, 0, h, ω))]|y=Xt .

The next theorem shows that this property can be generalized from a fixed point
in time t to a stopping time τ . But before that we need the definition of the filtration
of a stopping time.
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Definition 1.6.4. Let (Ω,F ,P) be a probability space, and Ft a filtration. Let τ be
a stopping time w.r.t. Ft. Then the sigma-algebra Fτ consists of the sets A ∈ F
satisfying

A
⋂
{τ ≤ t} ∈ Ft for all t ≥ 0. (1.52)

Theorem 1.6.5 (The Strong Markov Property). Let f be a bounded Borel function
on Rn, τ a stopping time <∞ a.s. Then

E[f(Xτ+h)|Fτ ] = E[f(Xh)]|X0=Xτ , for all h ≥ 0. (1.53)

Proof. The proof tries to redo the prove of the Markov Property but needs more tech-
nical care in order to deal with the stopping time. It can be found in Øksendal [13] for
example.

Summary 1.5. In this section we learned about the meaning of the Stratonovich cor-
rected Itô drift to understand the geometric behavior of a diffusion. Then we got to
know Dynkin’s formula which is a useful tool in combination with stopping times. We
got some results on the difference of the geometric behavior of the BM in 2 dimensions
and in more than 2 dimensions. Finally we saw that an Itô diffusion fulfills the Markov
property.

1.7 Girsanov’s Theorem

This theorem has a lot of applications in finance and other fields where stochastic
calculus is used, so it is essential to quote a version of it.

Theorem 1.7.1 (Girsanov’s Theorem). Let Yt ∈ Rn be a n-dimensional process of the
form:

dYt = atdt+ dBt; t ≤ T, Y0 = 0.

Where T is a given constant ≤ ∞ and Bt is an n-dimensional Brownian motion. Put

Mt = exp(−
∫ t

0

asdBs −
1

2

∫ t

0

a2
sds); t ≤ T.

Moreover assume that a(s, ω) satisfies the so called Novikov condition

E[exp(
1

2

∫ T

0

a2
sds)] <∞.

Where E = EP denotes the expectation w.r.t. P - the original probability law - then we
can define a measure Q on (Ω,FT ) by

dQ = MTdP.

Then Yt is a Brownian Motion w.r.t. to the probability law Q for t ≤ T .
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Remark 1.7.1. So what does this theorem tell us? It says: If I change the drift of
BM from 0 to a drift at then how does the law change and can I find a law such
that it remains a BM? Note that the change of measure corresponds to the stochastic
exponential of the process −at! Furthermore compare this to the standardization of a
random variable X ∼ N(µ, σ2).

1.8 Martingale Representation Theorem

Definition 1.8.1 (Brownian martingale). A Brownian martingale is a martingale
w.r.t. to the filtration induced by the Brownian Motion.

Theorem 1.8.1 (Martingale Representation Theorem for Brownian Martingales). Let
(Ft)

T
t=0 be the augmented (set of P-null sets added)Brownian filtration assume that Mt

is a square-integrable Brownian martingale, then there exists an adapted process φt with

E[

∫ T

0

φ2
tdt] <∞

and

Mt = M0 +

∫ T

0

φsdBs.

Remark 1.8.1. There is a more general version of this theorem where martingales as
such are covered, but we don’t need it in this text.

Proof. part (1): First assume M0 = 0 =⇒ E[MT |Ft] = Mt,E[MT ] = 0. Next consider

the space L2([0, T ]) = {H|H is adapted and fulfills E[
∫ T

0
H2

sds] <∞}
which is a Hilbert space with 〈H, H̃〉 = E[

∫ T

0
HsH̃sds].

Moreover consider L2,0(Ω,FT ,P) = L2(Ω,FT ,P)
⋂
{R|E[R] = 0} the space of centered

L2 random variables.
We define a map:

I : L2([0, T ]) → L2,0(Ω,FT ,P)

I(X) 7→
∫ T

0

XsdWs.

L2([0, T ]) is a Hilbert space and the map I is an isometry (the Itô isometry) therefore
I(L2([0, T ])) =: V is a complete (closed) subspace of L2,0(Ω,FT ,P).

To show the theorem it is enough to show that V = L2,0(Ω,FT ,P), because this
implies that each centered square integrable r.v. is representable as a stochastic integral
w.r.t. BM. Especially: MT =

∫ T

0
φtdBt =⇒Mt =

∫ t

0
φsdBs.

We show this now: Let Z be an element of L0,2
⋂
V ⊥ (the orthogonal complement of

V ). To show that L0,2 = V we have to show that Z = 0. Consider Zt := E[Z|Ft] then
Zt is a right continuous martingale by assumption on the filtration (right continuity).
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Let H ∈ L2([0, T ]) : NT =
∫ T

0
HtdBt and Nt = E[NT |Ft] =

∫ t

0
HsdBs (which is a

continuous martingale). Moreover τ is a bounded stopping time =⇒ Nτ =
∫ τ

0
HtdBt =∫ T

0
1[0,τ ](t)HtdBt and therefore Nτ ∈ V and

0 =︸︷︷︸
orthogonality

E[ZNτ ]

=︸︷︷︸
tower property

E[NτE[Z|Fτ ]]

=︸︷︷︸
per definition

E[NτZτ ].

This holds for all bounded stopping times, therefore NtZt is a martingale.
part (2): Consider the function f(t, x) = exp(iθx+ 1

2
θ2t) with i =

√
−1 and θ ∈ R.

Then we define

M θ
t := f(t, Bt) = exp(iθBt +

1

2
θ2t)

= exp(
1

2
θ2t) · (cos(θBt) + i sin(θBt)).

Obviously |M θ
t | = exp(1

2
θ2t) is bounded for t ≤ T . By Itô we get:

M θ
t = 1 + i · θ

∫ t

0

f(s, Bs)dBs +
1

2

∫ t

0

θ2f(s, Bs)ds−
1

2

∫ t

0

θ2f(s, Bs)ds.

Remember that a continuous local martingale is a martingale if it is bounded therefore
M θ

t is a martingale for all θ ∈ R and by part(1) E[ZtM
θ
t ] = ZsM

θ
s

=⇒ E[Zt exp(i · θBt +
1

2
θ2t)|Fs] = Zs · exp(i · θBs +

1

2
θ2s)

=⇒ E[Zt exp(i · θ(Bt −Bs))|Fs] = Zs · exp(−1

2
θ2(t− s)). (1.54)

Now we look at the partition: 0 = t0 < t1 < . . . < tn = T and
Btk −Btk−1

=: ∆k

E[ZT · exp(i
n∑

k=1

θk∆k)] = E[ E[ZT · exp(iθn∆n)|Ftn−1 ]︸ ︷︷ ︸
=(1.54)Ztn−1 ·exp(− 1

2
θ2
n(T−tn−1))

exp(i
n−1∑
k=1

θk∆k)]

= . . . = exp(i
n∑

k=1

θ2
k(tk − tk−1) · E[Z0] =︸︷︷︸

Z0=0 a.s.

0

=⇒ ZT⊥ exp(i
∑n

k=1 θk∆k),∀n, ∀θk ∈ R. Which finally gives together with the unique-
ness of the Fourier transform that ZT = 0 a.s.
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uniqueness: Assume that there exist two processes φ, φ′ such that∫ t

0

φsdBs =

∫ t

0

φ′sdBs. Then∫ t

0

(φs − φ′s)dBs = 0 a.s

=⇒ E[(

∫ t

0

(φs − φ′s)dBs)
2] =︸︷︷︸

Itô

E[

∫ t

0

(φs − φ′s)
2ds] = 0

=⇒ φs = φ′s ds⊗ dP a.s.
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Chapter 2

Interest Rate Theory

2.1 Zero-coupon Bonds, Forward Rates and the Short

Rate

The sources of the following theorems were the lecture of Prof.Grandits [4], the book
of Lamberton and Lapeyre [10], the book by Kijima [9] and the book of Musiela and
Rutkowski [11]. Many concepts of interest rates have been developed so far. I decided
to explain the concept of a zero-coupon bond first. Then the abstract notion of a
instantaneous forward rate and finally the rather classical notion of an instantaneous
short rate.

2.1.1 Zero-Coupon Bonds

Let T ∗ be a fixed point in time as ultimate time horizon for all market activities.

Definition 2.1.1 (Zero-coupon Bond). A zero-coupon bond of maturity T defines a
security paying one unit of cash to its holder at the fixed date T in the future.

Remark 2.1.1. The expression zero-coupon bond will often be abbreviated by z.c.b. -
zero-coupon bonds are also called discount bonds. No intermediate payments (coupon
payments) are done.

By convention the bond’s principal (also called face value or nominal value) will be
1 unit of a currency. The price of a z.c.b at time t ≤ T will be denoted by P (t, T ). It
is obvious that P (T, T ) = 1 for any T ≤ T ∗. We will assume that for any T ≤ T ∗ the
bond price P (s, T )T

s=0 follows a strictly positive and adapted process on a probability
space (Ω,F ,P) with a filtration F = (Ft)

T ∗
t=0. Two kinds of bonds are distinguished -

corporate bonds and default-free bonds. In corporate bonds there is the risk of default,
whereas default-free bonds are issued by governments and other institutions such that
one can assume that this default risk vanishes.
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2.1.2 Term Structure of Interest Rates

If we consider a z.c.b. with maturity T ≤ T ∗ then the simple rate of return from
holding the bond over the period [t, T ] is given by:

1− P (t, T )

P (t, T )
=

1

P (t, T )
− 1.

Compare this to the solution for r of

P (t, T )(1 + r) = 1.

The equivalent rate of return with continuous compounding is commonly referred to
as a yield to maturity on a bond. This is defined formally in the following definition.

Definition 2.1.2. The adapted process Y (t, T ) defined by

Y (t, T ) = − 1

T − t
lnP (t, T ), ∀t ∈ [0, T ), (2.1)

is called the yield-to-maturity on a zero-coupon bond maturing at time T .

Remark 2.1.2. Compare this to the solution for r of

P (t, T ) exp(r(T − t)) = 1.

The term structure of interest rates, known as yield curve, is the function that
relates the yield Y (t, T ) to the maturity T . It is obvious that for an arbitrary fixed
maturity T and a given yield to maturity Y (t, T )

P (t, T ) = exp(−Y (t, T )(T − t)), ∀t ∈ [0, T )

holds. This discount function relates a bond price to a maturity.
In practice the yield curve is derived from the prices of several actively traded

interest rate instruments. It is determined for one day only by the prices quoted on
that day. The shape of a historically observed yield curve varies over time. This shows
the complexity of finding a model for the stochastic behavior of the term structure of
interest rates.

2.1.3 Forward Interest Rates

We introduce the notion of a forward rate f(t, T ) at time t ≤ T . It should be interpreted
as the interest rate over the infinitesimal interval [T, T + dT ] as seen from time t. It
is a mathematically idealized concept rather than an observable quantity. But widely
accepted due to an approach to modeling a bond price by Heath, Jarrow and Morton.
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Given a family f(t, T ), t ≤ T ≤ T ∗ of instantaneous forward rates the bond prices
are defined by

P (t, T ) = exp(−
∫ T

t

f(t, u)du), ∀t ∈ [0, T ]. (2.2)

So if we consider the family of bond prices P (t, T ) to be C1 w.r.t. T then the implied
instantaneous forward interest rate f(t, T ) can be defined.

Definition 2.1.3 (Forward Rate). The family of instantaneous forward rates f(t, T ), t ≤
T ≤ T ∗ is formally defined by

f(t, T ) = −∂ lnP (t, T )

∂T
. (2.3)

Remark 2.1.3. Thus we assume the map T 7→ P (t, T ) to be C1.

2.1.4 Short-term Interest Rate

This notion is the most traditional. We denote the instantaneous interest rate (short
term interest rate, spot interest rate) by rt. Meaning the rate for a risk-free borrowing
or lending over the infinitesimal interval [t, t+dt]. In a stochastic setup it is an adapted
process defined on a filtered probability space (Ω,F ,P). We moreover assume rt to be
a stochastic process such that almost all sample paths are integrable on [0, T ∗] w.r.t.
the Lebesgue measure. With these assumptions we can introduce the adapted process
P of finite variation and with continuous sample paths given by

Pt = exp(

∫ t

0

rudu), ∀t ∈ [0, T ∗]. (2.4)

Equivalently for almost all ω ∈ Ω Pt solves the differential equation

dPt = rtPtdt

with P0 = 1 by convention. Financially it can be interpreted as the price process of a
risk-free security which continuously compounds at the rate rt.

Remark 2.1.4. The connection to a forward rate is given by rt = f(t, t).

2.1.5 Arbitrage-free Pricing of Zero-coupon Bonds

The price processes P (t, T ) fulfill the properties described before and moreover we
specialize the probability space (Ω,F ,P) the be filtered by the P-completed filtration
generated by the Brownian motion. We will write

P ∗(t, T ) =
P (t, T )

Pt

with Pt = exp(

∫ t

0

rudu) (2.5)

for the discounted price of the z.c.b. with maturity T .
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Definition 2.1.4. For two probability measures on a measurable space (Ω,F) Q ∼ P
means that the measures have the same null sets.

In interest rate theory arbitrage free pricing is difficult to characterize. Therefore
we define it as the existence of an equivalent martingale measure.

Definition 2.1.5 (Arbitrage Free Prices of Zero Coupon Bonds). A family of zero-
coupon bond prices is arbitrage free (relative to r) if there exists a measure Q ∼ P such
that the discounted bond prices P ∗(t, T ) are martingales.

Conclusion 2.1. Let P (t, T ) a family of bond prices. Then the following statements
are equivalent:

1. the family is arbitrage free

2. ∃Q ∼ P such that P (t, T ) = EQ[exp(−
∫ T

t
rudu)|Ft].

Proof. (1) =⇒ (2) : ∃Q : P ∗(t, T ) is a Q-martingale (definition of arbitrage freeness)

P (t, T ) =︸︷︷︸
by def.

Pt · P ∗(t, T ) = PtEQ[P ∗(T, T )|Ft] =

PtEQ[
P (T, T )

PT

|Ft] =︸︷︷︸
P (T,T )=1

EQ[
Pt

PT

|Ft] = EQ[exp(−
∫ T

t

rudu)|Ft)]

(2) =⇒ (1) :

EQ[P ∗(T, T )|Ft] =︸︷︷︸
by def.

EQ[
P (T, T )

PT

|Ft] =

EQ[
Pt

PtPT

|Ft] =
1

Pt

EQ[exp(−
∫ T

t

rudu)|Ft] =︸︷︷︸
by assertion 2

1

Pt

P (t, T ) = P ∗(t, T )

So the discounted bond prices are martingales w.r.t. Q.

We now consider interest rate markets driven by a d-dimensional Brownian motion.

Lemma 2.1.1. Let (M)T
t=0 be a continuous martingale and let

P(Mt > 0) = 1 ∀t ∈ [0, T ] =⇒ P(Mt > 0,∀t ∈ [0, T ]) = 1.

Proof. Just a sketch of the proof: Take a stopping time that indicates the time, when
the process equals zero. Use Doob’s optional stopping and by definition of the condi-
tional expectation and continuity you get the result.
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Lemma 2.1.2. Let (Ft)
T
t=0 be the augmented Brownian filtration moreover let Q �

P and consider Lt = EP[
dQ
dP |Ft], the density process, then the following notions are

equivalent:

1. Q ∼ P

2. ∃qs with P(
∫ T

0
qsds <∞) = 1 such that Lt = exp(

∫ t

0
qsdBs − 1

2

∫ t

0
q2
sds).

Proof. (2) =⇒ (1) :
This is clear since Lt > 0 a.s. i.e. the two measures have the same null sets.
(1) =⇒ (2) :
Thinking of the martingale representation theorem we know that

∃γs such that Lt = L0 +

∫ t

0

γsdBs

with P(
∫ T

0
γ2

sds < ∞) = 1. We know moreover that L0 = EP[
dQ
dP |F0] = EP[

dQ
dP ] = 1.

From (1) we have that Lt > 0 a.s. ∀t ∈ [0, T ]. So by lemma (2.1.1) we have that
P(Lt > 0,∀t ∈ [0, T ]) = 1. Now we apply Itô’s formula with f(x) = ln(x):

ln(Lt) = 0︸︷︷︸
ln(L0)=ln(1)

+

∫ t

0

1

Ls

γs︸ ︷︷ ︸
:=qs

dBs −
1

2

∫ t

0

1

L2
s

γ2
s︸ ︷︷ ︸

=q2
s

ds

ln(Lt) =

∫ t

0

qsdBs −
1

2

∫ t

0

q2
sds

Lt = exp(

∫ t

0

qsdBs −
1

2

∫ t

0

q2
sds)

with P(
∫ T

0
q2
sds <∞) = 1 and qs well-defined ensured by lemma (2.1.1).

The main goal in the following lemma and theorem is to find an SDE with respect
to the physical measure P.

Lemma 2.1.3. Let P (t, T ) be a family of arbitrage-free bond prices, then we have the
representation:

P (t, T ) = EP[exp(−
∫ T

t

rudu+

∫ T

t

qudBu −
1

2

∫ T

t

q2
udu)|Ft]

where ru is the overnight rate and qu is from the equivalent martingale measure of
lemma (2.1.2).

Proof.

P (t, T ) = EQ[exp(−
∫ T

t
rudu)|Ft] =︸︷︷︸

Bayes’ formula (lemma 4.2.1)

EP[exp(−
∫ T

t
rudu)

LT

Lt
|Ft] =

= EP[exp(−
∫ T

t
rudu) · exp(

∫ T

0
qudBu − 1

2

∫ T

0
q2
udu) · exp(−

∫ t

0
qudBu + 1

2

∫ t

0
q2
udu)|Ft] =

= EP[exp(−
∫ T

t
rudu+

∫ T

t
qudBu − 1

2

∫ T

t
q2
udu)|Ft]
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Remark 2.1.5. In this proof Bayes’ formula (lemma 4.2.1) is applied. See the appendix
for the proof and details.

Theorem 2.1.1. Let P (t, T ) be an arbitrage-free family of zero coupon bonds, then
there exists for all T an adapted process σT

t with the integrability assumption

P(

∫ T

0

(σT
t )2ds <∞) = 1

such that

P (t, T ) = P (0, T ) +

∫ t

0

(ru − quσ
T
u )P (u, T )du+

∫ t

0

σT
uP (u, T )dBu (2.6)

or in other terms:

dP (t, T )

P (t, T )
= (rt − qtσ

T
t )︸ ︷︷ ︸

so this is the yield in expectation

dt+ σT
t dBt.

Proof. P ∗(t, T ) is a Q-martingale =⇒ P ∗(t, T ) · Lt is a P-martingale. Thus by the
martingale representation theorem and lemma (2.1.2) we get that

∃θT
t such that

P ∗(t, T )Lt

P ∗(0, T ) L0︸︷︷︸
=1

= exp(

∫ t

0

θT
u dBu −

1

2

∫ t

0

(θT
u )2du)

=⇒ P ∗(t, T )

P ∗(0, T )
= exp(

∫ t

0

(θT
u − qu)dBu −

1

2

∫ t

0

((θT
u )2 − q2

u)du).

Thinking of P ∗(t, T ) = P (t,T )

exp(−
R t
0 rudu)

we get

P (t, T )

P (0, T )
= exp(

∫ t

0

ru −
1

2
((θT

u )2 − q2
u)du+

∫ t

0

(θT
u − qu)dBu)

=: exp(Xt).

Then by Itô’s formula it follows that

Xt =

∫ t

0

Ksds+

∫ t

0

HsdBs

exp(Xt) = 1 +

∫ t

0

exp(Xs)Ksds+

∫ t

0

exp(Xs)
1

2
H2

sds+

∫ t

0

exp(Xs)HsdBs.
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Finally we find that

P (t, T )

P (0, T )
= 1 +

∫ t

0

P (s, T )

P (0, T )
Ksds+

1

2

∫ t

0

P (s, T )

P (0, T )
H2

sds+

∫ t

0

P (s, T )

P (0, T )
HsdBs

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T )[rs −
1

2
((σT

s )2 − q2
s) +

1

2
(θT

s − qs)
2]ds+∫ t

0

P (s, T ) (θT
s − qs)︸ ︷︷ ︸
=σT

s

dBs

= P (0, T ) +

∫ t

0

P (s, T )(rs + q2
s − θT

s qs)ds+

∫ t

0

P (s, T )σT
s dBs

= P (0, T ) +

∫ t

0

P (s, T )(rs − qsσ
T
s )ds+

∫ t

0

P (s, T )σT
s dBs.

Remark 2.1.6. The −qs in this formula can be seen as some kind of risk premium.

Theorem 2.1.2. Let B̃t := Bt −
∫ t

0
qudu then

1. B̃t is a Q−Brownian Motion.

2. the formula of theorem 2.1.1 becomes:

dP (t, T )

P (0, T )
= rtdt+ σT

t dB̃t.

Proof. 1. Lt = E[dQ
dP |Ft] which equals the stochastic exponential of qs so the assertion

follows by Girsanov’s theorem.
2.

dP (t, T )

P (0, T )
= (rt − qtσ

T
t )dt+ σT

t (dB̃t + qtdt)

= rtdt+ σT
t dB̃t.

Remark 2.1.7. There are models that focus on the short rate (e.g. Vasicek Model,
Cox-Ingersoll-Ross Model) and others that focus on the forward rate (the so called
Heath-Jarrow-Morton methodology).
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2.2 LIBOR Rates

The notions described in the section before assume the existence of instantaneous rates.
This assumption requires a certain degree of smoothness with respect to the tenor
(i.e.maturity) of bond prices and their volatilities. Thus the step that we want to do now
is to construct families of arbitrage free bond prices without referring to instantaneous,
continuously compounded rates, which is more suitable in some circumstances.

2.2.1 The Mathematical Setting

We assume a probability space (Ω,F ,P) equipped with a filtration (Ft)t∈[0,T ∗] which
fulfills the usual conditions. Moreover the process B is a d−dimensional standard
Brownian motion defined on this probability space and the filtration is the P-augmented
natural filtration of B. We will use the following notations:

Mloc(P) for the class of all real valued local martingales

M(P) for the class of all real valued martingales

V for the class of all real valued adapted processes of finite variation

A for the class of all real valued predictable processes of finite variation

Sp(P) for the class of real valued special semi-martingales, i.e. X ∈ Sp(P) means that
X admits a decomposition X = X0 +M + A where M ∈M(P) and A ∈ A.

The superscript + stands for the collection of strictly positive processes of a certain
class. The subscript c stands for the collection of processes of a certain class with
continuous sample paths. For example M(P)+

c will denote the class of strictly positive
martingales with continuous paths. Attention: S+

p (P) will denote the class of special
martingales which are strictly positive and (!) the process of left-hand limits is also
strictly positive. Note that the class Sp(P) as well as S+

p (P) is invariant w.r.t. a change
of measure to an equivalent measure. Q and P are equivalent if the Radon-Nikodym
derivative

Λt = E[
dQ
dP
|Ft] ∀t ∈ [0, T ∗]

is a locally bounded process. Since the filtration is the one generated by the Brown-
ian motion, Λt will follow a continuous exponential martingale - hence it will be lo-
cally bounded (see the section on the martingale representation theorem, section 1.8).
Therefore we will simply write Sp and S+

p .
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Assumptions on the Bond Price

The family of bond prices fulfills the assumptions that we had before. It is a family
of strictly positive real-valued adapted processes P (t, T ), t ∈ [0, T ] with P (T, T ) = 1
for every T ∈ [0, T ∗]. In this section the family of bond prices will be assumed to be
given - meaning already constructed by a certain procedure. But we make the following
assumptions:

(BP.1) For any maturity date T ∈ [0, T ∗], the bond price P (t, T ), t ∈ [0, T ] belongs
to the class S+

p .

(BP.2) For any fixed T ∈ [0, T ∗], the forward process

FP (t, T, T ∗) :=
P (t, T )

P (t, T ∗)
, ∀t ∈ [0, T ]

follows a martingale under P, or equivalently

P (t, T ) = EP[
P (t, T ∗)

P (T, T ∗)
|Ft], ∀t ∈ [0, T ]. (2.7)

Remark 2.2.1. We see the equivalence by:

EP[FP (T, T, T ∗)|Ft] =︸︷︷︸
martingale property

FP (t, T, T ∗) = P (t,T )
P (t,T ∗)

⇔
EP[FP (T, T, T ∗)P (t, T ∗)|Ft] = P (t, T ) by adaptedness of P (t, T ∗).

So by those assumptions the introduced process FP (t, T, T ∗), t ∈ [0, T ] follows a
continuous, strictly positive P-martingale w.r.t. the filtration generated by the d-
dimensional BM, so that FP ∈ M+

c (P). By the martingale representation theorem
(d-dimensional version) we know that there exists an Rd-valued predictable process
γ(t, T, T ∗), t ∈ [0, T ] such that

FP (t, T, T ∗) = FP (0, T, T ∗)εt(γ) =

= FP (0, T, T ∗) exp(
∫ t

0
γ(u, T, T ∗)dBu − 1

2

∫ t

0
|γ(u, T, T ∗)|2du). (2.8)

Put in another way using Itô we see that for a fixed maturity T

dFP (t, T, T ∗) = FP (t, T, T ∗)γ(t, T, T ∗)dBt. (2.9)

If we consider any 2 maturities T, U ∈ [0, T ∗] then we define the forward process
FP (t, T, U) by

FP (t, T, U) :=
FP (t, T, T ∗)

FP (t, U, T ∗)
, ∀t ∈ [0, T ∧ U ]. (2.10)
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Suppose U > T - then the amount

fs(t, T, U) = (U − T )−1(FP (t, T, U)− 1) (2.11)

is the add-on (annualized) forward rate over the future time interval [T, U ] prevailing
at time t and

f(t, T, U) =
lnFP (t, T, U)

U − T

is the (continuously compounded) forward rate at time t.

Remark 2.2.2. For a better understanding of equation 2.11 and the following, think
of a solution for r of

P (t, T ) = P (t, U)(1 + r(U − T ))

and
P (t, T ) = P (t, U) exp(r(U − T ))

respectively.

On the other hand if U < T then FP (t, T, U) represents the value at time t of the
forward price of a T -maturity bond for a forward contract that settles at time U .

Lemma 2.2.1. Given 2 maturities T, U ∈ [0, T ∗] then the SDE describing the dynamics
of the forward process under P is given by

dFP (t, T, U) = FP (t, T, U)γ(t, T, U) · (dBt − γ(t, U, T ∗)dt), (2.12)

with
γ(t, T, U) = γ(t, T, T ∗)− γ(t, U, T ∗)

for every t ∈ [0, T ∧ U ].

Proof. The proof follows easily by applying Itô’s formula.

Using Girsanov’s theorem we can write equation (2.12) like this:

dFP (t, T, U) = FP (t, T, U)γ(t, T, U) · dBU
t (2.13)

with

BU
t = Bt −

∫ t

0

γ(u, U, T ∗)du

for every t ∈ [0, U ].
This process BU

t is a standard BM on the probability space (Ω, (Ft)t∈[0,U ],PU) with
PU ∼ P and the Radon-Nikodym derivative

dPU

dP
= εU(γ(u, U, T ∗)) P a.s..

This measure PU is called a forward measure. Solving equation (2.13) we find that

FP (t, T, U) = FP (0, T, U)εt(γ(u, U, T
∗))

For t ∈ [0, T ∧ U ]. Where the stochastic exponential is meant w.r.t. the BM BU
t .
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Remark 2.2.3. Note that PT ∗ = P and BT ∗
t = Bt by the definition of FP (t, T, T ∗) and

(BP.2).

2.2.2 Definition of Spot and Forward Martingale measure

We want to have clear definitions for the measures that appeared in the theorems
before. So we sum up:

Definition 2.2.1 (Forward Martingale Measure). Let U be a fixed maturity date. QU ∼
P a probability measure on (Ω,FU) is called a forward martingale measure for the date
U if for any maturity T ∈ [0, T ∗], the forward process FP (t, T, U), t ∈ [0, T ∧ U ], is a
local martingale under QU .

In the setting above obviously P is a forward martingale measure for the date T ∗.

Definition 2.2.2 (Spot Martingale Measure). A spot martingale measure for the set
up BP.1 − BP.2 is any probability measure P∗ ∼ P on (Ω,FT ∗) for which there exists
a process P ∗ ∈ A+, with P ∗

0 = 1, and such that for any maturity T ∈ [0, T ∗] the bond
price P (t, T ) satisfies

P (t, T ) = EP∗ [P
∗
t /P

∗
T |Ft], ∀t ∈ [0, T ].

2.2.3 Arbitrage-free Properties and the Implied Savings Ac-
count

Arbitrage-freeness

We will get to know two kinds of arbitrage-freeness. One without the presence of cash
(a pure bond market) and another one that includes a cash account.

Definition 2.2.3 (Weak No-Arbitrage Condition). A family of bond prices P (t, T ) is
said to satisfy the weak no-arbitrage condition if and only if there exists an equivalent
probability measure Q ∼ P on (Ω,FT ∗) s.t. for any maturity T ≤ T ∗ the forward
process FP (t, T, T ∗) = P (t, T )/P (t, T ∗) belongs to Mloc(Q). We say that the family
satisfies the no-arbitrage condition if in addition P (T, U) ≤ 1 holds for any maturities
T ≤ U ∈ [0, T ∗].

The inequality P (T, U) ≤ 1 is equivalent to FP (T, U, T ) ≤ 1 and leads to

FP (t, U, T ) = EP[FP (T, U, T )|Ft] ≤ 1

for every t ∈ [0, T ]. Since almost all sample paths of the forward process are continuous
we can reformulate this condition in the following way:

(BP.3) For any two maturities T ≤ U with probability 1 P (t, U) ≤ P (t, T ), ∀t ∈
[0, T ] holds.
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The contrary inequality would lead to arbitrage if one assumes the presence of an
increasing savings account. I.e. if P (t, U) > P (t, T ) then I could issue a U -maturity
bond and buy a T -maturity bond at time t. I would have P (t, U) − P (t, T ) units of
currency and to meet the liability at time U it is enough to carry one unit of currency,
received at time T over the period [T, U ]. I try to make this clear in the following
table:

points in time t T U
+P (t, U) −P (T, U) -1
−P (t, T ) +1 1

sum P (t, U)− P (t, T ) > 0 −P (T, U) + 1 -1 + 1 = 0

One sees that in case of presence of a risk-free savings account I could have earned
interest from my surplus at time t and could easily have put away the 1 unit at time
U and I would have had a profit equal to this interest payment.

So we see that no-arbitrage in a bond market with presence of cash is strongly
related to the existence of a savings account implied by the family P (t, T ).

Definition 2.2.4 (Implied savings Account). A savings account implied by the family
P (t, T ) of bond prices is an arbitrary process P ∗ which belongs to A+, with P ∗

0 = 1,
and s.t. there exists a probability measure P∗ ∼ P on (Ω,FT ∗) under which the relative
bond price

P ∗(t, T ) = P (t, T )/P ∗
t , ∀t ∈ [0, T ]

is a martingale for any maturity T ∈ [0, T ∗].

Compare this definition with the definition of a spot martingale measure.

The Implied Savings Account

In this section we will investigate about the existence of an implied savings account
under the assumptions (BP.1)− (BP.3).

We first need some preliminary results for the terminal discounting factor Dt =
P−1(t, T ∗), t ∈ [0, T ∗]. Note that D belongs to S+

p .

Lemma 2.2.2. Under the assumptions (BP.1) − (BP.3), the terminal discounting
factor D is a strictly positive supermartingale under the forward martingale measure
P.

Proof. With (BP.2) and (BP.3) we obtain

P (t, U) = EP[
P (t, T ∗)

P (U, T ∗)
|Ft] ≤ EP[

P (t, T ∗)

P (T, T ∗)
|Ft] = P (t, T ),

so that
EP[DU |Ft] ≤ EP[DT |Ft] ∀t ≤ T ≤ U ≤ T ∗.
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Setting t = T in the last inequality, we find that

EP[DU |FT ] ≤ EP[DT |FT ] = DT

for every T ≤ U ≤ T ∗ so that D is a P- supermartingale.

To show the existence of an implied savings account we will use the following
standard result from Itô stochastic calculus.

Proposition 2.2.1. Suppose X belongs to the class S+
p , with X0 = 1. There exists a

unique pair (M,A) of stochastic processes such that X = MA, the process M belongs
to M(P)+

loc, with M0 = 1, and A belongs to A+, with A0 = 1. If in addition X is a
supermartingale, then A is a decreasing process.

Corollary 2.2.1. Under (BP.1)−(BP.2), there exists a predictable process ξ integrable
w.r.t. the BM B, and such that the terminal discount factor D admits the unique
decomposition

Dt = D0ÃtM̃t = D0Ãtεt(ξ), ∀t ∈ [0, T ∗],

where M̃t ∈ M(P)+
c,loc and Ãt ∈ A+, with the initial value 1 for both processes. If in

addition condition (BP.3) is met, then Ã is a decreasing process.

This corollary is a consequence of the last lemma and the last proposition and the
representation theorem of a strictly positive martingale w.r.t. the Brownian filtration.

Now we come to the main proposition of this section:

Proposition 2.2.2. Let the family of bond prices P (t, T ) satisfy (BP.1) − (BP.3).
Assume that the process M̃ defined by the multiplicative decomposition (corollary 2.2.1)
of the terminal discount factor D, is a martingale (not only a local martingale) under
P. Let P ∗ = 1/Ã be an increasing predictable process uniquely determined by corollary
2.2.1. Then the following holds:

• P ∗ represents a savings account implied by the family P (t, T ).

• P ∗ is associated with the spot martingale measure P∗, given by

dP∗

dP
:= M̃T ∗ = P ∗

T ∗P (0, T ∗), P− a.s. (2.14)

• The relative price process P (t, T ∗)/P ∗
t follows a martingale under the forward

martingale measure P for the date T ∗.

Lemma 2.2.3. Let P ∗ and P̂ be two processes of A+ such that for every T ∈ [0, T ∗]

EP∗ [P
∗
t /P

∗
T |Ft] = EP̂[P̂t/P̂T |Ft]

for every t ∈ [0, T ], where P∗ ∼ P̂. If P ∗
0 = P̂0 then P ∗ = P̂ .
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Corollary 2.2.2. Under (BP.1)−(BP.2), the uniqueness of an implied savings account
holds.

We sum it all up by the last corollary of this section:

Corollary 2.2.3. Under (BP.1)− (BP.2), the following are equivalent:

• The bond price P (t, T ) is a non-increasing function of the maturity T .

• The forward process FP (t, T, U), t ≤ T ≤ U is never strictly less than 1.

• The bond price P (t, T ) is never strictly greater than 1.

• The implied savings account follows an increasing process.

Summary 2.1. The last corollary sums it up perfectly. Having the two fundamental
assumptions on the bond prices we get a lot more by asking the price not to be strictly
greater than one. The main observation is that this assumption that might appear to
be trivial nevertheless implies a riskless savings account.

2.2.4 Bond Price Volatility

We assume (BP.1)− (BP.3) to hold. Then we define a bond price volatility.

Definition 2.2.5 (Bond Price Volatility). An Rd-valued process b(t, T ) is called a bond
price volatility for maturity T if the bond price admits the representation

dP (t, T ) = P (t, T )b(t, T ) · dBt + dCT
t (2.15)

where CT
t is a predictable process of finite variation.

Under (BP.1) − (BP.2) the existence and uniqueness of the bond price volatility
follows from the canonical decomposition of the special semi-martingale. It is also
invariant under the change to an equivalent probability measure. More precisely we
have that b(t, T ) stays the same while the BM changes to a BM in the new measure
and the process CT

t is changed too. But we assumed (BP.3) to hold as well and so we
have that there exists a process P ∗

t and a spot martingale measure P∗ such that the
relative bond prices (Z∗(t, T )) follow a local martingale. Thus the relative bond prices
can be expressed as stochastic integrals with respect to the BM B∗

t

Z∗(t, T ) = P (0, T )εt(b(t, T )).

By setting t = T we can easily find an expression for P ∗
t in terms of the bond price

volatility. Finally we note that for any maturities T, U ∈ [0, T ∗] the forward volatility
(volatility of the forward process) is given by

γ(t, T, U) = b(t, T )− b(t, U),∀t ∈ [0, T ∧ U ].
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2.2.5 Forward LIBOR Rates

The general assumptions made in the section before ((BP.1) and (BP.2)) still hold in
this notion of forward rates. We have a family of bond prices, denoted by P (t, T )
and thereby a collection FP (t, T, U) of forward processes. In this setting we define the
notion of a LIBOR rate.

Definition 2.2.6 (LIBOR Rate). For a strictly positive real number δ the so called
δ-LIBOR rate for the date T ≤ T ∗ − δ prevailing at time t is denoted by L(t, T ) and
defined by

1 + δL(t, T ) = FP (t, T, T + δ), ∀t ∈ [0, T ]. (2.16)

Remark 2.2.4. The abbreviation LIBOR stands for London Interbank Offered Rate.
These rates are most commonly used in international financial markets.

Remark 2.2.5. Typical choices for δ are 0.25 or 0.5 which leads to so called 3-month
LIBOR rates and 6-month LIBOR rates respectively.

If we compare this definition with equation (2.11) in the last section then we see
that

L(t, T ) = fs(t, T, T + δ)

meaning that the LIBOR rate L(t, T ) represents the add-on forward rate prevailing at
time t for the interval [T, T + δ]. For any maturity T ∈ [T ∗− δ, T ∗] we can express the
LIBOR rate in terms of bond prices:

1 + δL(t, T ) =
P (t, T )

P (t, T + δ)
∀t ∈ [0, T ].

The initial structure if a LIBOR rate is given by

L(0, T ) = fs(0, T, T + δ) = δ−1(
P (0, T )

P (0, T + δ)
− 1).

In the same manner as in the section before we get the following SDE under the forward
probability measure PT+δ:

dL(t, T ) = δ−1FP (t, T, T + δ)γ(t, T, T + δ) · dBT+δ
t ,

with BT+δ
t defined analogous as before.

Plugging in the definition of L(t, T ) leads to the SDE

dL(t, T ) = δ−1(1 + δL(t, T ))γ(t, T, T + δ) · dBT+δ
t (2.17)

for the process L. Suppose that LIBOR rates are strictly positive then we can rewrite
equation (2.17) as

dL(t, T ) = L(t, T )λ(t, T ) · dBT+δ
t (2.18)
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where for any t ∈ [0, T ]

λ(t, T ) =
1 + δL(t, T )

δL(t, T )
γ(t, T, T + δ). (2.19)

This shows that a model for LIBOR rates depends on the collection of forward rates.
So we can find two characterizing properties:

(LR.1) For any maturity T ≤ T ∗− δ, we are given an Rd-valued, bounded, determin-
istic function λ(t, T ) which represents the volatility of the forward LIBOR rate
process L(t, T ) for t ∈ [0, T ].

(LR.2) We assume a strictly decreasing and strictly positive initial term structure
P̃ (0, T ), T ∈ [0, T ∗], and by that an initial term structure L(0, T ) of forward
LIBOR rates

L(0, T ) = δ−1(
P̃ (0, T )

P̃ (0, T + δ)
− 1), ∀T ∈ [0, T ∗ − δ].

Remark 2.2.6. For the function λ a stochastic function could be chosen as well, but
in this introduction we focus on a model where λ is deterministic. This leads to the so
called lognormal model. Later on we have a look at what we can do if the volatility is
assumed to follow a stochastic process.

Advantages of Using LIBOR rates

Using LIBOR rates has several advantages and therefore they have become one of the
most important notions in the financial industry.

1. Market models for LIBOR rates are based on observable market rates whereas
continuously compounded instantaneous rates are not observable.

2. Most of the derivative contracts are based on a certain LIBOR rate (floors/caps,
swaps).

3. LIBOR market models are consistent with the market convention of quoting caps
using Black’s formula.

2.2.6 The Discrete Tenor Model

We assume that the horizon date T ∗ is a multiple of δ, say T ∗ = Mδ with M ∈ N.
We will consider a finite number of dates, T ∗mδ = T ∗ −mδ for m = 1, . . . ,M − 1. This
is what is meant by discrete tenor. The LIBOR rates still follow a continuous-time
process. We start by defining the LIBOR rate for the longest maturity, L(t, T ∗δ ). We
postulate that L(t, T ∗δ ) follows the following SDE under P:

dL(t, T ∗δ ) = L(t, T ∗δ )λ(t, T ∗δ ) · dBt, (2.20)
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with

L(0, T ∗δ ) = δ−1(
P̃ (0, T ∗δ )

P̃ (0, T ∗)
− 1).

By solving equation (2.20), we postulate that for every t ∈ [0, T ∗δ ]

L(t, T ∗δ ) = δ−1(
P̃ (0, T ∗δ )

P̃ (0, T ∗)
− 1)εt(λ(·, T ∗δ )). (2.21)

Remark 2.2.7. Here one sees that L(t, T ∗δ ) is lognormally distributed by thinking of
the definition of a lognormally distributed random variable and the definition of the
stochastic exponential εt().

Since P̃ (0, T ∗δ ) > P̃ (0, T ∗) it is clear that L(t, T ∗δ ) ∈ M+
c (P). Also by assumption

for fixed t ≤ T ∗ − δ, L(t, T ∗δ ) has lognormal probability law under P.
The next step is to define the forward LIBOR rate for the date T ∗2δ using the relation

(2.19) with T = T ∗δ , i.e.

γ(t, T ∗δ , T
∗) =

δL(t, T ∗δ )

1 + L(t, T ∗δ )
λ(t, T ∗δ ), ∀t ∈ [0, T ∗ − δ]. (2.22)

We know from the general properties of the forward process (equation 2.9) that the
forward process FP (t, T ∗δ , T

∗) solves the following SDE under P:

dFP (t, T ∗δ , T
∗) = FP (t, T ∗δ , T

∗)γ(t, T ∗δ , T
∗) · dBt (2.23)

with the initial condition FP (0, T ∗δ , T
∗) = P̃ (0, T ∗δ )/P̃ (0, T ∗). The forward process

belongs to M(P)+
c since the volatility γ is a bounded process.

We introduce a d-dimensional process BT ∗δ by

BT ∗δ = Bt −
∫ t

0

γ(u, T ∗δ , T
∗)du, ∀t ∈ [0, T ∗δ ].

By assumption on the volatility function γ(t, T ∗δ , T
∗) is bounded and by Girsanov’s

theorem we get the existence of the process BT ∗δ and the associated probability measure
PT ∗δ

under which BT ∗δ is a BM. We have that the change from P to the equivalent
measure PT ∗δ

is P-a.s. given by

dPT ∗δ

dP
= εT ∗δ

(γ(·, T ∗δ , T ∗))

Now we are able to specify the dynamics of the forward LIBOR rate for the date T ∗2δ

under the forward probability measure PT ∗δ
. Analogously to (2.20), we set

dL(t, T ∗2δ) = L(t, T ∗2δ)λ(t, T ∗2δ) · dB
T ∗δ
t
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with the initial condition

L(0, T ∗2δ) = δ−1(
P̃ (0, T ∗2δ)

P̃ (0, T ∗δ )
− 1).

Solving this equation and comparing with (2.19) for T = T ∗2δ, we get

γ(t, T ∗2δ, T
∗
δ ) =

δL(t, T ∗2δ)

1 + δL(t, T ∗2δ)
λ(t, T ∗2δ), ∀t ∈ [0, T ∗2δ].

To find γ(t, T ∗2δ, T
∗), we compare with (2.19) and using the relation

γ(t, T ∗2δ, T
∗
δ ) = γ(t, T ∗2δ, T

∗)− γ(t, T ∗δ , T
∗), ∀t ∈ [0, T ∗2δ]

we get the process.
Given the process γ(t, T ∗2δ, T

∗
δ ), we can define BT ∗2δ and PT ∗2δ

corresponding to the
date T ∗2δ and so forth. Working backwards to the first date T ∗(M−1)δ = δ we construct

a family of forward LIBOR rates L(t, T ∗mδ), m = 1, . . . ,M − 1. Notice that the
lognormal probability law of every process L(t, T ∗mδ) under the corresponding forward
measure PT ∗

(m−1)δ
is ensured. We have for any m = 1, . . . ,M − 1

dL(t, T ∗mδ) = L(t, T ∗mδ)λ(t, T ∗mδ) · dB
T ∗
(m−1)δ

t

where BT ∗
(m−1)δ is a standard BM under PT ∗

(m−1)δ
. This completes the lognormal model

of forward LIBOR rates.

The Implied Savings Account in the Discrete Model

Simultaneously we constructed a family of forward LIBOR rates and the associated
forward processes. Therefore it is interesting to examine the existence and unique-
ness of an implied savings account. In a discrete time setting it is a process P ∗

t , t =
0, δ, . . . , T ∗ = Mδ. From the definition of the forward rate

FP (t, Tj, Tj+1) =
FP (t, Tj, T

∗)

FP (t, Tj+1, T ∗)
=

P (t, Tj)

P (t, Tj+1)

with Tj = jδ. This yields by setting t = Tj

FP (Tj, Tj, Tj+1) =
1

P (Tj, Tj+1)
.

Thus the price of a bond P (Tj, Tj+1) is uniquely defined in the model. Although a
bond that matures at time Tj does not physically exist, it seems justifiable to see
FP (Tj, Tj, Tj+1) as its forward value at time Tj for the date Tj+1. In other words the
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spot value of one unit of cash at time Tj+1 received at time Tj equals P−1(Tj, Tj+1).
The discrete savings account thus equals

P ∗
Tk

=
k∏

j=1

FP (Tj−1, Tj−1, Tj) =
k∏

j=1

1

P (Tj−1, Tj)

for k = 0, . . . ,M − 1. (remember P ∗
0 = 1).

It is easily seen that by FP (Tj, Tj, Tj+1) = 1+ δL(Tj, Tj+1) > 1 for j = 1, . . . ,M −1
and by P ∗

Tj+1
= FP (Tj, Tj, Tj+1)P

∗
Tj

the discrete savings account process is a strictly
increasing process. Moreover we define a measure P∗ ∼ P on (Ω,FT ∗) by the formula
from the section on the implied savings account by

dP∗

dP
= P ∗

T ∗P (0, T ∗),P− a.s. (2.24)

We see this, if we consider the condition

P (Tl, Tk) = EP∗ [P
∗
Tl
/P ∗

Tk
|FTl

]

for every l ≤ k ≤ M , then in the case l = k − 1 this condition coincides with the
condition on the implied savings account.

2.2.7 The Continuous Tenor Case

In a continuous model all forward LIBOR rates L(t, T ) with T ∈ [0, T ∗] are specified.
This is done using the procedure described before and filling the gaps between the
discrete maturities. The construction of a model in which each forward LIBOR rate
L(t, T ) follows as lognormal process under the forward measure for the date T + δ is
done by a backward induction.

First Step

We construct a discrete tenor model using the method described in the section before.

Second Step

We first fill the gap for maturities T ∈ (T ∗δ , T
∗). We do not have to take the forward

LIBOR rate L(t, T ) into account, because we don’t have any for T in this interval. But
we are given values of the implied savings account for the dates T ∗δ and T ∗ from the
previous construction. Note that those values P ∗

T ∗δ
and P ∗

T ∗ are FT ∗δ
measurable. We

define a spot martingale measure P∗ using formula 2.24. We search for an increasing
function α : [T ∗δ , T

∗] such that α(T ∗δ ) = 0 and α(T ∗) = 1 since the model has to match
a given initial term structure. The process

lnP ∗
t = (1− α(t)) lnP ∗

T ∗δ
+ α(t) lnP ∗

T ∗ , ∀t ∈ [T ∗δ , T
∗],
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satisfies P̃ (0, t) = EP∗ [1/P
∗
t ] for every t ∈ [T ∗δ , T

∗]. From 0 < P ∗
T ∗δ
< P ∗

T ∗ and P̃ (0, t), t ∈
[T ∗δ , T

∗], is assumed to be strictly decreasing, we see that such a function α exists
uniquely.

Third Step

In the second step we have constructed the implied savings account for every T ∈
[T ∗δ , T

∗]. Hence a forward martingale measure for any date T ∈ (T ∗δ , T
∗) can be defined

by

dPT

dP∗
=

1

P ∗
T P̃ (0, T )

,P∗ − a.s. (2.25)

Combining this with formula 2.24 we get

dPT

dP
=
dPT

dP∗
dP∗

dP
=
P ∗

T ∗P̃ (0, T ∗)

P ∗
T P̃ (0, T )

,P− a.s.

for every T ∈ [T ∗δ , T
∗].

Moreover we have

dPT

dP |Ft

= EP[
P ∗

T ∗P̃ (0, T ∗)

P ∗
T P̃ (0, T )

|Ft], ∀t ∈ [0, T ].

By exponential representation of the martingale (the change of measure process) we
get

dPT

dP |Ft

=
P̃ (0, T ∗)

P̃ (0, T )
εt(γ(·, T, T ∗)), ∀t ∈ [0, T ].

This process γ defines the forward volatility for any T ∈ (T ∗δ , T
∗). We are even able to

define the PT -BM BT . Given those objects we define the forward LIBOR rate process
L(t, Tδ) by

dL(t, Tδ) = L(t, Tδ)λ(t, Tδ) · dBT
t

with Tδ = T − δ and initial condition

L(0, Tδ) = δ−1(
P̃ (0, Tδ)

P̃ (0, T )
− 1).

Finally we can set

γ(t, T ∗δ , T
∗) =

δL(t, T ∗δ )

1 + δL(t, T ∗δ )
λ(t, T ∗δ ), ∀t ∈ [0, T ∗δ ].

To define the forward measure PU and the corresponding BM BU for any maturity
U ∈ (T ∗2δ, T

∗
δ ) we put

γ(t, U, T ) = γ(t, Tδ, T ) =
δL(t, Tδ)

1 + δL(t, Tδ)
λ(t, Tδ), ∀t ∈ [0, Tδ],
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where U = Tδ so that T = U + δ belongs to (T ∗δ , T
∗). Note that we get γ(t, U, T ∗) in

the same manner as before by the relation

γ(t, U, T ∗) = γ(t, U, T )− γ(t, T, T ∗), ∀t ∈ [0, U ].

By proceeding this backward induction we specify a fully continuous family of
forward LIBOR rates. Simultaneously we define the forward volatilities γ(t, T, T ∗) and
by that the forward processes F (t, T, T ∗) which fulfill the SDE

dF (t, T, T ∗) = F (t, T, T ∗)γ(t, T, T ∗) ·Bt.

By formally setting P (t, T ) = F (t, T, t) the collection of forward process admits an
associated family of bond prices. The bond prices obtained in this way fulfill the weak
no-arbitrage condition but the no-arbitrage with cash (FP (T, T, U) ≥ 1 for U ≥ T )
may fail to hold. See papers of Musiela and Rutkowski for detailed information.

Summary 2.2. In this section we got to know LIBOR rates as interest rates for
periods in a discrete setting as well as in a continuous setting. They are useful in
some applications and assuming deterministic volatility their models lead to lognormal
distributions.
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Chapter 3

Interest Rate Derivatives

3.1 Forward Swap Rates

3.1.1 A Swap Contract

A swap contract (or swap) is an agreement between two parties to exchange cash flows
at future points in time according to a prearranged formula. The two most popular
kinds of swaps are standard interest swaps and cross-currency swaps (differential
swaps). In a so called plain vanilla interest swap party A agrees to pay to party B
amounts of money determined by a fixed interest rate on some principal at each of
the payment dates whereas party B pays interest at a floating reference rate on the
same principal for the same period of time. Such an interest swap can be used to
transform a fixed interest rate loan into a floating-rate loan or vice versa. Swaps are
also distinguished in who pays the fixed and who pays the floating rate:

Payer Swap: The fixed rate is payed at the end (or beginning) of each period and
the floating rate is received. Also called fixed-for-floating swap.

Receiver Swap: The investor pays a floating rate and receives a fixed one.

It is also distinguished whether those agreements are settled in arrears (at the end of
each period) or in advance (in the beginning).

Given a set of points in time T0, T1, . . . Tn a forward start swap (or simply forward
swap) is a swap contract entered at some date t < T0 with payment dates corresponding
to the set of dates (corresponding to settlement in arrear or in advance - n dates
always.). The forward swap rate is the value of the fixed rate which makes the
value of the forward swap zero. The market makes quotes of these rates for several
maturities. The most typical option contract associated with swaps is a swaption - an
option on the value of the underlying swap or equivalently on the (forward) swap rate.
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3.1.2 Interest Rate Swaps

We consider a forward start payer swap settled in arrear with notional principal N .
Moreover we consider a finite collection of dates Tj, j = 1, . . . , n. The distance of those
dates has the constant value δ. The floating rate L(Tj) is received at time Tj+1 and
set at time Tj by looking at the price of a zero-coupon bond over that period. Thus
L(Tj) satisfies

P (Tj, Tj+1)
−1 = 1 + (Tj+1 − Tj)L(Tj) = 1 + δL(Tj). (3.1)

We see that this formulation agrees with the market quotations of LIBOR and L(Tj)
can be seen as the spot LIBOR rate prevailing at time Tj for the period δ. We remember
the more general definition of a LIBOR rate

1 + δL(t, Tj) =
P (t, Tj)

P (t, Tj+1)

and see that L(Tj) coincides with L(Tj, Tj). The cash flows of the payer are at any of
the dates Tj, j = 1, . . . , n and the amounts are L(Tj−1)δN and −κδN , where κ stands
for the preassigned fixed rate of interest. We make some notation clear:

n : The number of payments is referred to as the length of the swap.

T0, . . . , Tn−1 : Those points in time are called the reset dates.

T1, . . . , Tn : Those points in time are called the settlement dates.

T0 : The first reset date is referred to as the start date of a swap.

[Tj−1, Tj] : Such an interval is referred to as the jth accrual period.

N : The notional principal is assumed to be 1 without loss of generality.

The value of a forward start payer swap at time t - denoted by FSt or FSt(κ) - is
given by

FSt(κ) = EP∗ [
n∑

j=1

Pt

PTj

(L(Tj−1)− κ)δ|Ft]

=
n∑

j=1

EP∗ [
Pt

PTj

(P (Tj−1, Tj)
−1 − δ̃)|Ft], (3.2)

with δ̃ = 1 + κδ. Using the adaptedness of the bond price we get:

FSt(κ) =
n∑

j=1

EP∗ [P (Tj−1, Tj)
−1 Pt

PTj−1

EP∗ [
PTj−1

PTj

|FTj−1
]|Ft]

−
n∑

j=1

δ̃EP∗ [
Pt

PTj

|Ft] =
n∑

j=1

P (t, Tj−1)− δ̃P (t, Tj). (3.3)
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Rearranging leads to

FSt(κ) = P (t, T0)−
n∑

j=1

cjP (t, Tj) (3.4)

for every t ∈ [0, T ], with cj = κδ for j = 1, . . . , n − 1 and cn = δ̃. Like this one sees
that a swap contract settles in arrears can be seen as receiving a z.c.b. and to deliver
a specified coupon bearing bond.

The situation is a bit more complicated in a forward start payer swap that is
settled in advance. This means that the reset dates and the settlement dates coincide.
There are various convention in how to discount the payments. In the U.S. and in
many European markets the cash flows at the settlement dates Tj, j = 0, . . . , n− 1 are
L(Tj)δ(1 +L(Tj)δ)

−1 and −κδ(1 +L(Tj)δ)
−1. The value of this contract is denoted by

FS∗∗t (κ) and at time t it equals:

FS∗∗t (κ) = EP∗ [
n−1∑
j=0

Pt

PTj

(L(Tj)− κ)δ

1 + L(Tj)δ
|Ft]

= EP∗ [
n−1∑
j=0

Pt

PTj

(L(Tj)− κ)δP (Tj, Tj+1)|Ft]

= EP∗ [
n∑

j=1

Pt

PTj

(L(Tj−1)− κ)δ|Ft] (3.5)

which equals the value of a swap settled in arrears.
Finally I just mention the convention in Australia where the cash flows are
L(Tj)δ(1 + L(Tj)δ)

−1 and −κδ(1 + κδ)−1. This leads to the value of a swap settled in
arrears but discounted with the fixed rate κ.

Definition 3.1.1 (Forward Swap Rate). The forward swap rate κ(t, T0, n) at time t
for the date T0 is the value for the fixed rate κ which makes the value of the forward
swap zero. This is the value of κ such that FSt(κ) = 0.

Using equation (3.4) we easily get

κ(t, T0, n) = (P (t, T0)− P (t, Tn))(δ
n∑

j=1

P (t, Tj))
−1. (3.6)

Definition 3.1.2 (Swap Rate). A swap (swap rate) is the forward swap rate with
t = T0.

It equals:

κ(T0, T0, n) = (1− P (T0, Tn))(δ
n∑

j=1

P (T0, Tj))
−1. (3.7)
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To finish this general section we have a look at a 1-period swap. With n = 1 and
T = Tj the formula for the forward swap rate gives:

κ(t, Tj, 1) =
P (t, Tj)− P (t, Tj+1)

δP (t, Tj+1)
, ∀t ∈ [0, Tj].

We see the identity κ(t, Tj, 1) = L(t, Tj) so it coincides with the LIBOR rate over the
period [Tj, Tj+1].

3.1.3 Model of Forward Swap Rates

The model described in this section was developed by Jamishidian. For reference look
at [6]. We consider a forward start fixed-for-floating interest rate swap which starts at
time Tj of a given collection of points in time Tj = jδ, j = 1, . . . ,M . This contract
has M − j accrual periods. From equation (3.6) we know that the forward swap rate
κ(t, Tj,M) - the value for the fixed rate κ such that the value of the contract is zero -
is given by

κ(t, Tj,M) = (P (t, Tj)− P (t, TM))(δ
M∑

l=j+1

P (t, Tl))
−1

for every t ∈ [0, Tj] and every j = 1, . . . ,M − 1.
We will consider a family of swap rates κ̃(t, Tj) = κ(t, Tj,M−j) with j = 1, . . . ,M−

1. By this definition the swaps differ in length but mature at the same time T ∗ = TM .
We define T ∗kδ := T ∗ − kδ with T ∗0 = T ∗. The forward swap rate for a date T ∗mδ is then
given by:

κ̃(t, T ∗mδ) =
P (t, T ∗mδ)− P (t, T ∗)

δ(P (t, T ∗(m−1)δ) + · · ·+ P (t, T ∗))
, ∀t ∈ [0, T ∗mδ]. (3.8)

We assume that the bond prices P (t, T ∗mδ),m = 1, . . . ,M − 1 are given on a filtered
probability space (Ω,F ,P) with a BM B. We assume P = PT ∗ to be the forward measure
for the date T ∗ and let BT ∗ be its forward BM. We define for any m = 1, . . . ,M − 1
the coupon process

Gt(m) :=
m−1∑
k=0

P (t, T ∗kδ), ∀t ∈ [0, T ∗(m−1)δ].

The forward swap measure P̃T ∗
(m−1)δ

for the date T ∗(m−1)δ is the equivalent measure to

P, which corresponds to the choice of G(m) as numeraire. In other words under this
measure the relative bond prices

Zm(t, T ∗kδ) :=
P (t, T ∗kδ)

Gt(m)
t ∈ [T ∗kδ ∧ T ∗mδ]
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with m fixed and k = 0, . . . ,M − 1 follow a local martingale. Obviously Gt(1) =
P (t, T ∗) holds and by Z1(t, T

∗
kδ) = FP (t, T ∗kδ, T

∗) we see that the measure P̃T ∗ can
be chosen to be the forward martingale measure PT ∗ . Finally from the definition of
κ̃(t, T ∗mδ) and Gt(m) we see that κ̃(t, T ∗mδ) is a local martingale under P̃T ∗

(m−1)δ
:

κ̃(t, T ∗mδ) = δ−1(Zm(t, T ∗mδ)− Zm(t, T ∗)), ∀t ∈ [0, T ∗mδ].

The aim is to construct a direct model of forward swap rates of the form

dκ̃(t, T ∗(m+1)δ) = κ̃(t, T ∗(m+1)δ)ν(t, T
∗
(m+1)δ) · dB̃

T ∗mδ
t

for every m = 0, . . . ,M−2, where B̃
T ∗mδ
t is a BM under the forward swap measure P̃T ∗mδ

.
The bounded deterministic functions ν(·, T ∗mδ) : [0, T ∗mδ] → R, m = 1, . . . ,M−1 form
the family of volatility functions of the swap rates. The initial condition is given in
terms of the initial term structure P̃ (0, T ∗mδ), m = 1, . . . ,M − 1 and in order to be
consistent the initial condition is

κ̃(0, T ∗(m+1)δ) =
P̃ (0, T ∗(m+1)δ)− P̃ (0, T ∗)

δ(P̃ (0, T ∗mδ) + · · ·+ P̃ (0, T ∗))
. (3.9)

The first step is to find an SDE for the forward swap rate κ̃(t, T ∗δ ) by

dκ̃(t, T ∗δ ) = κ̃(t, T ∗δ )ν(t, T ∗δ ) · dB̃T ∗

t

with the initial condition

κ̃(0, T ∗δ ) =
P̃ (0, T ∗δ )− P̃ (0, T ∗)

δP̃ (0, T ∗)
.

Remark 3.1.1. Note that B̃T ∗
t = BT ∗

t = Bt

The next step is to define an SDE for κ̃(t, T ∗2δ). Therefore we have to define the
forward measure and the BM for the time T ∗2δ. Additionally we will need the following
lemma.

Lemma 3.1.1. Let G and H be real-valued adapted processes, such that dGt = Gtgt·dBt

and dHt = Htht · dBt. Assume that H > −1 . Then the process Yt = Gt/(1 + Ht)
satisfies

dYt = Yt(gt −
Htht

1 +Ht

) · (dBt −
Htht

1 +Ht

dt). (3.10)

Proof. The proof follows easily by Itô’s formula.
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To define the process κ̃(t, T ∗2δ) we note that Z1(t, T
∗
kδ) = FP (t, T ∗kδ, T

∗) for each
possible k follows a strictly positive local martingale under the measure P̃T ∗ = PT ∗ .
Like this we have

dZ1(t, T
∗
kδ) = Z1(t, T

∗
kδ)γ1(t, T

∗
kδ) ·BT ∗

t

for some process γ1(t, T
∗
kδ). If we now define the process Z2 by

Z2(t, T
∗
kδ) =

P (t, T ∗kδ)

P (t, T ∗kδ) + P (t, T ∗)
=

Z1(t, T
∗
kδ)

1 + Z1(t, T ∗δ )
.

We postulate that the process Z2(t, T
∗
kδ) follows a local martingale under P̃T ∗δ

. Applying
lemma 3.1.1 and Girsanov’s theorem we see that this holds true and that the associated
BM looks like this:

B̃
T ∗δ
t = B̃T ∗

t −
∫ t

0

Z1(u, T
∗
δ )γ(u, T ∗δ )

1 + Z1(u, T ∗δ )
du ∀t ∈ [0, T ∗δ ].

The measure P̃T ∗δ
is also found by Girsanov’s theorem. For an explicit expression for

B̃
T ∗δ
t note that

Z1(t, T
∗
δ ) =

P (t, T ∗δ )

P (t, T ∗)
= δκ̃(t, T ∗δ ) + Z1(t, T

∗) = δκ̃(t, T ∗δ ) + 1.

From the SDE’s for the respective expressions we get

Z1(t, T
∗
δ )γ(t, T ∗δ ) = δκ̃(t, T ∗δ )ν(t, T ∗δ ).

So we get the following explicit expression:

B̃
T ∗δ
t = B̃T ∗

t −
∫ t

0

δκ̃(u, T ∗δ )

δκ̃(u, T ∗δ ) + 2
ν(u, T ∗δ )du,∀t ∈ [0, T ∗δ ].

We are now able to define the forward swap measure P̃T ∗δ
and the process κ̃(t, T ∗2δ) by

dκ̃(t, T ∗2δ) = κ̃(t, T ∗2δ)ν(t, T
∗
2δ) · dB̃

T ∗δ
t

with the initial condition

κ̃(0, T ∗2δ) =
P̃ (0, T ∗2δ)− P̃ (0, T ∗)

δ(P̃ (0, T ∗δ ) + P̃ (0, T ∗))
.

Before we do the general step we consider the third step explicitly. We want to find a
swap forward measure and an associated BM for the process κ̃(t, T ∗3δ). We define

Z3(t, T
∗
kδ) =

P (t, T ∗kδ)

P (t, T ∗2δ) + P (t, T ∗δ ) + P (t, T ∗)
=

Z2(t, T
∗
kδ)

1 + Z2(t, T ∗2δ)
.
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The associated BM is then given by

B̃
T ∗2δ
t = B̃

T ∗δ
t −

∫ t

0

Z2(u, T
∗
2δ)

1 + Z2(u, T ∗2δ)
γ2(u, T

∗
2δ)du

for t ∈ [0, T ∗2δ]. Note that

Z2(t, T
∗
2δ) =

P (t, T ∗2δ)

P (t, T ∗δ ) + P (t, T ∗)
= δκ̃(t, T ∗2δ) + Z2(t, T

∗)

with

Z2(t, T
∗) =

Z1(t, T
∗)

δκ̃(t, T ∗δ ) + Z1(t, T ∗) + 1
,

where Z1(t, T
∗) is already defined in the previous step.

In general, if we assume that we have defined forward swap rates κ̃(t, T ∗δ ), . . . , κ̃(t, T ∗mδ),

the forward swap measure P̃T ∗
(m−1)δ

and the associated BM B
T ∗
(m−1)δ

t . The aim is to de-

termine the forward swap measure P̃T ∗mδ
, B

T ∗mδ
t and of course the forward swap rate

κ̃(t, T ∗(m+1)δ). We postulate that

Zm+1(t, T
∗
kδ) =

P (t, Tkδ)

P (t, Tmδ) + · · ·+ P (t, T ∗)
=

Zm(t, T ∗kδ)

1 + Zm(t, T ∗mδ)

follow local martingales under P̃T ∗mδ
. With help of lemma 3.1.1 we find the BM:

B
T ∗mδ
t = BT ∗

t −
∫ t

0

Zm(u, T ∗mδ)

1 + Zm(u, T ∗mδ)
γm(u, T ∗mδ)du

for t ∈ [0, T ∗mδ]. As in the step before we see that

Zm(t, T ∗mδ) =
P (t, T ∗mδ)

P (t, T ∗(m−1)δ) + · · ·+ P (t, T ∗)
= δκ̃(t, T ∗mδ) + Zm(t, T ∗)

with

Zm(t, T ∗) =
Zm−1(t, T

∗)

δκ̃(t, T ∗(m−1)δ) + Zm−1(t, T ∗) + 1
.

Zm−1(·, T ∗) is a rational function of the swap rates that have already been found and
therefore the BM is defined. Now we easily find the forward martingale measure and
thereby an SDE to define κ̃(t, T ∗(m+1)δ).

Summary 3.1. In this section we got to know swap contracts and (forward) swap
rates. Finally we saw that it is possible to define a direct model (not explicitly via the
LIBOR model) for forward swap rates by martingale methods.
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3.2 More Interest Rate Derivatives

In the following section on interest derivatives the pricing will be done by discount-
ing with the money market account Pt and the measure P∗ under which the assets
discounted using the savings account are martingales.

3.2.1 Caps and Floors

A interest rate cap is an agreement in which the grantor (seller) has the obligation
to pay cash to the holder (buyer) if a particular interest rate exceeds a certain
level at some future date.

A interest rate floor is an agreement in which the grantor (seller) has the obligation
to pay cash to the holder (buyer) if a particular interest rate is below a certain
level at some future date.

To make some notions clear: a caplet (resp. a floorlet) is then one so called leg of the
cap (resp. floor). This means that if we have a cap over N periods then it consists
of N caplets. Caps and floors can either be settled in arrears or in advance. We
place ourselves in a similar set-up as in a swap agreement. We have points in time
Tj, j = 1, . . . , n where Tj − Tj−1 = δ with a fixed δ > 0. The cash flow at time Tj is
N(L(Tj−1)− κ)+δ. Where κ is the so called cap strike rate, meaning the crucial level
of an interest rate and L(Tj−1) is the interest rate for the period [Tj−1, Tj] determined
at the reset date Tj−1. It satisfies

1

P (Tj−1, Tj)
= 1 + L(Tj−1)δ.

The arbitrage price of at time t ≤ T0 of a forward cap is then (N = 1 by assumption)

FCt =
n∑

j=1

EP∗ [
Pt

PTj

(L(Tj−1)− κ)+δ|Ft].

Let’s consider on caplet with reset date T and settlement date T1 = T + δ. The value
at time t for this caplet then equals:

Cplt = EP∗ [
Pt

PT1

((P (T, T1)
−1 − 1)δ−1 − κ)+δ|Ft]

= EP∗ [
Pt

PT1

(
1

P (T, T1)
− δ̃)+|Ft]

= EP∗ [
Pt

PT

(
1

P (T, T1)
− δ̃)+EP∗ [

PT

PT1

|FT ]|Ft]

= EP∗ [
Pt

PT

(1− δ̃P (T, T1))
+|Ft]

= P (t, T )EPT
[(1− δ̃P (T, T1))

+|Ft]

68



Where the last equality comes from the representation in the forward measure PT . Like
this one sees that a caplet can either be seen as put option on a zero-coupon bond or
as an option on a one-period swap.

3.2.2 Captions

In the last section we saw that a caplet can be seen as a put option on a zero-coupon
bond. There exist call options on a cap. Such a caption is thus a call option on a
portfolio of put options. Its pay-off can be described by

CCT = (
n∑

j=1

CpljT −K)+

with CpljT standing for the price at time T of the jth caplet of the cap. T is of course
the expiry date of the call option and K is the strike price.

3.2.3 Swaptions

A swaption is an option on a swap agreement. The owner of a payer (receiver re-
spectively) swaption with strike rate κ maturing at time T = T0 has the right to enter
at time T the underlying forward payer (receiver respectively) swap settled in arrears.
From the section before we know that FST (κ) is the value at time T of a payer swap
with fixed rate κ. It is now clear that the price of a swaption at time t equals

PSt = EP∗ [
Pt

PT

(FST (κ))+|Ft].

This can be written more explicitly in the following terms:

PSt = EP∗ [
Pt

PT

(EP∗ [
n∑

j=1

PT

PTj

(L(Tj−1)− κ)δ)|FT ])+|Ft].

For the receiver swaption we have the price

RSt = EP∗ [
Pt

PT

(−FST (κ))+|Ft].

Summary 3.2. In this section we got to know a certain number of interest rate deriv-
atives. We showed some principles how (forward) prices of these derivatives can be
expressed and found a structure that resembles the form of an option.

3.3 Option Valuation

In this section we will assume the bond price volatilities to be bounded deterministic
functions. This will be weakened as the final result of this text.
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3.3.1 The Arbitrage Price of a Contingent Claim

Definition 3.3.1 (Forward Contract). A forward contract is an agreement, established
at time t ≤ T , to pay or receive a preassigned payoff - say X - at time T , at an agreed
forward price.

Remark 3.3.1. The times of course fulfill t ≤ T ≤ T ∗. The forward price at time t
of the payoff X at time T will be denoted by FX(t, T ).

Lemma 3.3.1. The forward price at time t for the date T of an attainable contingent
claim X which settles at time T equals

FX(t, T ) = EPT
[X|Ft],∀t ∈ [0, T ], (3.11)

provided that X is PT -integrable.

Definition 3.3.2 (Arbitrage Price). The arbitrage-free price of an contingent claim X
is called its arbitrage price.

Lemma 3.3.2. The arbitrage price of a contingent claim X is given by the formula

πt(X) = P (t, T )EPT
[X|Ft],∀t ∈ [0, T ]. (3.12)

Just some thoughts about the proof. We have that under the forward measure any
asset with maturity T discounted with the bond price is a martingale. So for time
t we have the discount factor P (t,T )

P (T,T )
and the rest follows by measurability of P (t, T ).

Another way to look at this formula is to think of the spot martingale measure and
the savings account and then do a change of measure from the spot to the forward
measure as done in sections before.

Corollary 3.3.1. Let X be an arbitrary attainable contingent claim which settles at
time U . If U ≤ T , then the price of X at time t ≤ U equals

πt(X) = P (t, T )EPT
[XP (U, T )−1|Ft].

3.3.2 A Version of Black’s Formula for Bond Options

The pay-off of a European call option written on a zero-coupon bond which matures
at time U ≥ T at expiry time T equals

CT = (P (T, U)−K)+.

Because of P (T, U) = FP (T, U, T ) this can be reexpressed by

CT = (FP (T, U, T )−K)+ = FP (T, U, T )1D −K1D

where
D = {P (T, U) > K}.
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Theorem 3.3.1. Assume that the bond price volatilities b(t, T ) and b(t, U) are bounded
deterministic functions. The arbitrage price at time t ∈ [0, T ] of a European call option
with expiry date T and strike price K, written on a zero-coupon bond which matures
at time U ≥ T , equals

Ct = P (t, U)N(h1(P (t, U), t, T ))−KP (t, T )N(h2(P (t, U), t, T )), (3.13)

where

h1,2(b, t, T ) =
ln(b/K)− ln(P (t, T ))± 1

2
v2

U(t, T )

vU(t, T )
(3.14)

for (b, t) ∈ R+ × [0, T ], and

v2
U(t, T ) =

∫ T

t

|b(u, U)− b(u, T )|2du,∀t ∈ [0, T ]. (3.15)

The arbitrage price of the corresponding European put option written on a zero-coupon
bond equals

Pt = KP (t, T )N(−h2(P (t, U), t, T ))− P (t, U)N(−h1(P (t, U), t, T )).

Proof. From lemma 3.3.2 we know that we have to evaluate the conditional expectation:

Ct = P (t, T )EPT
[FP (T, U, T )1D|Ft]−KP (t, T )PT (D|Ft) := I1 − I2.

Furthermore we know about the dynamics of FP (t, U, T ) under PT and thus find

FP (T, U, T ) = FP (t, U, T ) exp(

∫ T

t

γ(u, U, T ) · dBT
u −

1

2

∫ T

t

|γ(u, U, T )|2du),

where γ(u, U, T ) = b(u, U)− b(u, T ). This can be rewritten as

FP (T, U, T ) = FP (t, U, T ) exp(ζ(t, T )− 1

2
v2

U(t, T )).

In this formula FP (t, U, T ) is of course Ft- measurable, and

ζ(t, T ) =
∫ T

t
γ(u, U, T )) · dBT

u is a Gaussian random variable under PT , independent
of Ft with expectation zero and variance v2

U(t, T ). Using those properties and the
properties of conditional expectation we find that

PT (D|Ft) = PT (ζ(t, T ) < ln(
FP (t, U, T )

K
)− 1

2
v2

U(t, T )).

Finally we see that

I2 = KP (t, T )N(
ln(FP (t,U,T )

K
)− 1

2
v2

U(t, T )

vU(t, T )
).
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To finish the proof we have to show the expression for I1. To do this we introduce the
equivalent measure P̃T ∼ PT on (Ω,Ft) defined by

dP̃T

dPT

= exp(

∫ T

0

γ(u, U, T ) · dBT
u −

1

2

∫ T

0

|γ(u, U, T )|2du) := η̃T .

By Girsanov it is clear that

B̃T
t = BT

t −
∫ t

0

γ(u, U, T )du,∀t ∈ [0, T ]

is a standard BM under P̃T . For the forward price we get the expression

FP (T, U, T ) = FP (t, U, T ) exp(

∫ T

t

γ(u, U, T ) · dB̃T
u +

1

2

∫ T

t

|γ(u, U, T )|2du)

so that

FP (T, U, T ) = FP (t, U, T ) exp(ζ̃(t, T )− 1

2
v2

U(t, T )).

ζ̃(t, T ) =
∫ T

t
γ(u, U, T ) · dB̃T

u is a Gaussian random variable under P̃T , independent of
Ft with expectation zero and variance v2

U(t, T ). Again looking at lemma 3.3.2 we get
(note that P (t, T ) cancels in the multiplication with FP (t, U, T ))

I1 = P (t, U)EPT
[1D exp(

∫ T

t

γ(u, U, T ) · dBT
u +

1

2

∫ T

t

|γ(u, U, T )|2du)|Ft].

Rewritten this is
I1 = P (t, U)EPT

[η̃T η̃
−1
t 1D|Ft]

which is by using the abstract Bayes rule

I1 = P (t, U)P̃T (D|Ft).

So we can finish the proof with the last two statements:

P̃T (D|Ft) = P̃T (ζ̃(t, T ) ≤ ln(
FP (t, U, T )

K
) +

1

2
v2

U(t, T )),

and thus

I1 = P (t, U)N(
ln (FP (t, U, T )/K) + 1

2
v2

U(t, T )
1
2
vU(t, T )

).

The price of the put option can be calculated analogously.

72



3.4 Black’s Formula for Caplets and the Volatility

Smile

We already mentioned cap contracts and caplets. We consider a cap that pays if the
LIBOR rate exceeds a strike rate K. If we assume the lognormal model for the LIBOR
rate then we can find a price for a caplet using Black’s formula.

Remark 3.4.1. If we speak of the lognormal model then the volatility function is as-
sumed to be deterministic.

Proposition 3.4.1. If we price a caplet at time t for the period [T, T + δ] with strike
rate K using Black’s formula then we have the following:

PC,t = P (t, T + δ)δ[L(t, T )Φ(d+)−KΦ(d−)],

where Φ is the cumulative normal distribution function and

d± =
log(L(t, T )/K)± 1

2
σ2

T (T − t)

σT

√
T − t

.

3.4.1 Implied Volatility

Financial contracts such as derivatives are freely traded on various markets and in
various currencies. Often there exist more or less useful models to price those deriv-
atives. Prices can be observed in the market and reflect the situation best. Working
with stochastic differential equations one has some volatility term. Then one gets an
equation of the following type:

PMarket,t(T,K) = PModel,t(T,K, σ), (3.16)

where T stands for the maturity, σ for the volatility and K for the strike price (in
case of a derivative of the form of an option). If we have a closed expression for the
price in the model then we can solve it (usually some numerical method is needed) for
the volatility σ. This solution for the unknown volatility is then called the implied
volatility.

Remark 3.4.2. The implied volatility can be specified more precisely. If e.g. Black’s
formula was used to find the price of the option then we call it the Black-implied volatil-
ity.

3.4.2 Volatility-Smile

Comparing model prices to market prices implied volatility reveals some systematics.
One could think that this indicator of mispricing does not follow any rules. But it
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is well known and documented in various papers (such as the one by Jarrow, Li, and
Zhao [7]) that the implied volatility of equity options as well as the implied volatility of
caplets show significant patterns. The authors of the article [7] give empirical evidence
that the implied volatility of LIBOR rates if plotted in dependence on the strike rate
form some kind of smile. Meaning that the implied volatility is small if the cap is at
the money (so the strike rate equals the LIBOR rate) and significantly higher in case
of caps out of the money (LIBOR is smaller than the strike rate) and in the money
(LIBOR is higher than the strike rate). So the graph shows the so called volatility
smile. There is also empirical evidence that this smile is more recognizable after the
terrorist attacks of the 11th of September 2001. Moreover there is evidence that this
phenomenon is stronger in case of short times to maturity. Finally they observed that
this smile is not symmetric. ITM (in the money) caps seem to have a much stronger
skew than OTM (out of the money) caps. By observing this phenomenon we found a
new task for LIBOR market models. It is desirable to be able to capture the volatility
smile. The standard lognormal model is not able to do this. One model that has much
more flexibility is described in the following section.

Remark 3.4.3. The article shows that even the most sophisticated LIBOR models can
not fully capture the volatility smile of caps.

Remark 3.4.4. Of course the evidence is not only given in form of some plots. There
has been made multivariate regression analysis to estimate the dependence on maturity
and moneyness of the implied volatility and other statistical methods have been used.
My aim here is only to make clear how the need for other models than the lognormal
model is motivated.

3.5 The Stochastic Volatility Model

The stochastic volatility model in this section was defined by L.Andersen and R.Brotherton-
Ratcliffe [2]. They assume the volatility to solve a scalar mean-reverting SDE. Namely

V (t) = κ(θ − V (t))dt+ ηψ(V (t))dZn+1(t), (3.17)

where θ, η and κ are positive constants. Zn+1(t) is a Brownian motion under the
forward martingale measure Pn+1. ψ : R+ → R+ is a well-behaved function (a concrete
choice for ψ will follow). To make sure that V is nonnegative we must assume that
ψ(0) = 0. In applications it is often natural to scale the process such that θ = 1.
Doing that one gives the quantity 1−V (t) the meaning of the percentage at which the
volatility differs form the long-term mean.

Definition 3.5.1. The stochastic volatility model for LIBOR rates of Andersen and
Brotherton-Ratcliffe (2001) assumes that the dynamics of the LIBOR rate are given by
the following SDE:

dLn(t) = ϕ(Ln(t))
√
V (t)λn(t)TdBn+1(t) (3.18)
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where Bn+1 is a d-dimensional Brownian motion under the forward measure Pn+1.
Ln(t) = L(t, Tn) is the forward LIBOR rate for the period [Tn, Tn+1] of some given
partition of the time interval of the model. ϕ : R+ → R+ is a function satisfying
certain regularity conditions. V (t) is the volatility process described in equation 3.17,
and λn(t) is a deterministic d-dimensional function.

Andersen and Brotherton-Ratcliffe moreover assume that Zn+1(t) and Bn+1(t) are
uncorrelated. This is consistent with the evidence that in all major fixed income
markets the correlation between short-dated forward rates and their volatilities is in-
distinguishable form zero. They propose ϕ(x) = xα with 0 < α < 1 as a choice for ϕ
and thereby they were able to find closed-form expressions for the prices of options.

Jarrow, Li and Zhao [7] specialized the model defining the following equations:

dLn(t) = ϕ(Ln(t))
√
V (t)dBn+1(t), (3.19)

dV (t) = κ(θ − V (t))dt+ η
√
V (t)dZn+1(t). (3.20)

The choice of ϕ is the same: ϕ(x) = xγ with γ ∈ (0, 1). This generates a downward
sloping volatility skew. The uncorrelated volatility process V (t) produces a symmetric
volatility smile. The combination of both produces an asymmetric smile as desired.

3.5.1 The Observed Model

We want to specialize the general model of Andersen and Brotherton-Ratcliffe. We
assume the volatility to follow equation (3.20) - thus we specialize the function ψ(V (t))
to

√
V (t) - and we assume the LIBOR rate to follow

dLn(t) = ϕ(Ln(t))
√
V (t)λn(t)TdBn+1(t). (3.21)

We want to price a caplet with strike rate X in this model. The arbitrage-free price is
given by

C(t) = P (t, Tn+1)δE
Pn+1 [(Ln(Tn)−X)+|Ft]. (3.22)

We define the function G(t, Ln(t), V (t)) := EPn+1 [(Ln(Tn)−X)+|Ft]. In order to price
a European style option we can replace the term λn(t)TdBn+1(t) by ‖λn(t)‖dY (t) -
where Y (t) is a one dimensional Brownian motion uncorrelated to Zn+1(t). From the
Feynman-Kac theorem we find the following PDE for G(t, L, V ):

∂G

∂t
+ κ(θ − V )

∂G

∂V
+

1

2
ε2V

∂2G

∂V 2
+

1

2
ϕ(Ln)2V ‖λn(t)‖2∂

2G

∂L2
n

= 0,

with the boundary condition G(Tn, Ln, V ) = (Ln−X)+. There are 2 things to remark:

1. The absence of a mixed derivative of the form ∂2G
∂Ln∂V

comes from the assumption
of the vanishing correlation between the two Brownian motions.
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2. We have ψ(V )2 = V .

In the following asymptotic calculations I follow the article [2] and use some of
their notation dropping the subscript n and writing λ (a scalar) instead of ‖λn(t)‖.
The PDE then becomes:

∂G

∂t
+ κ(θ − V )

∂G

∂V
+

1

2
ε2V

∂2G

∂V 2
+

1

2
ϕ(L)2V λ2∂

2G

∂L2
= 0, (3.23)

with the boundary condition G(T, L, V ) = (L−X)+.

3.5.2 An Asymptotic Solution for V constant

In this section we assume V to be constant and set it without loss of generality equal
to one. Moreover we set λ(t)2 = c for a constant c. The PDE (3.23) then becomes:

∂G

∂t
+

1

2
ϕ(L)2c

∂2G

∂L2
= 0 (3.24)

with the boundary condition G(T, L) = (L−X)+.
In this setting the authors of [2] state a proposition for constant volatility:

Proposition 3.5.1. Let τ = T − t. An asymptotic expansion for the solution to (3.24)
is G(t, L) = g(t, L, c) where

g(t, L, c) = LΦ(d+)−XΦ(d−), d± =
ln(L/X)± 1

2
Ω(t, L, c)2

Ω(t, L, c)
(3.25)

where Φ is the commulative Gaussian distribution function, and

Ω(t, L, c) = Ω0(L)c
1
2 τ

1
2 + Ω1(L)c

3
2 τ

3
2 +O(τ

5
2 ),

Ω0(L) =
ln(L/X)∫ L

X
ϕ(u)−1du

,

Ω1(L) = − Ω0(L)

(
∫ L

X
ϕ(u)−1du)2

ln(Ω0(L)(
LX

ϕ(L)ϕ(X)
)

1
2 ). (3.26)

Proof. The result of this proposition represents an expansion around the volatility
term in the Black formula which we got to know in sections before (for the choice

ϕ(L) = L). Ω(t,F,c)√
τ

thus represents the implied Black volatility. For τ → 0 we must

require Ω(t, F, c) ∼ τ
1
2 so we seek for a solution for small τ of the form

Ω(t, L, c) =
∑
i≥0

ci+
1
2 τ i+ 1

2 Ωi(L). (3.27)
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The weights of the integer powers in this series vanish because of the structure of the
resulting homogeneous differential equations. Substituting 3.27 into 3.24 and matching
terms of order τ

1
2 gives

L2Ω2
0 = ϕ2(L)(1− Ω′

0

Ω0

L ln(L/X))2 (3.28)

where Ω′
0 denotes the derivative w.r.t. L. Squaring and rearranging of 3.28 leads to an

ODE of the Bernoulli type. The boundary condition (the limit F → X for Ω0 must
be finite) and discarding the negative solution leads to the expression for Ω0 in the

proposition. For the terms of order τ
3
2 in 3.27 we get

2LΩ1 =
1

2
ϕ2(L)(LΩ′′

0 + Ω′
0)− ϕ(L)L ln(L/X)(

Ω′
1

Ω1

− Ω1Ω
′
0

Ω2
0

), (3.29)

leading again to a Bernoulli ODE. The solution of this ODE considering all constraints
leads to the expression in the proposition.

The authors furthermore introduce the notion of the implied skew volatility .
As mentioned in the proof Ω/

√
T − t represents the implied Black volatility σimp which

is often quoted in interest rate caps markets. Thus we can find a new definition:

Definition 3.5.2 (Implied Skew Volatility). The solution of g(t, λ2
imp) = G(t) where

G(t) is the market-quoted cap price is called the implied skew volatility (a scalar in this
context).

The authors give a connection between σimp and λimp which can be used for quick
calibration of the model if the implied volatility is quoted. The relation is as follows:

σimp ≈ Ω0(L)λimp + Ω1(L)λ3
imp(T − t). (3.30)

One sees this easily be plugging into the proposition: We had that Ω/
√
τ represents

the implied volatility. Then we can rearrange to:

σimpτ
1
2 = Ω0(L)λimpτ

1
2 + Ω1(L)λ3

impτ
3
2 +O(τ

5
2 )

and get the assertion.

λ not Constant in Time

Andersen and Brotherton-Ratcliffe continue their analysis assuming λ(t)2 not to be
constant anymore in time. V still equals 1. The PDE then becomes:

∂G

∂t
+

1

2
ϕ(L)2λ(t)2∂

2G

∂L2
= 0, (3.31)

with the boundary condition G(T, L) = (L−X)+. Then the following proposition can
be quoted:
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Proposition 3.5.2. An asymptotic solution to (3.31) is given by

G(T, L) = g(t, L, (T − t)−1

∫ T

t

λ(u)2du),

where g is defined in proposition 3.5.1.

Proof. Performing a deterministic time-change (compare [1]) one finds that the propo-

sition holds unchanged if one sets cτ =
∫ T

t
λ(u)2du. This is also seen from the structure

of the pricing PDE.

3.5.3 Stochastic V

We now let V follow the SDE 3.20. The assumption that the Brownian motion of the
LIBOR rate and the Brownian motion of the variance process are uncorrelated allows
us to write an asymptotic solution as

G(t, L, V ) = E[g(t, L, (T − t)−1U(T )|Ft] (3.32)

where U(T ) =
∫ T

t
λ(u)2V (u)du. The expectation is take w.r.t. the forward martingale

measure Pn+1. The density of this U(T ) is not that easy to generate but with some
known results on the variance process we can find the first moment:

µU(t, V (t)) := E[U(T )|Ft] =

∫ T

t

λ(u)2E[V (u)|Ft]du (3.33)

=

∫ T

t

λ(u)2(θ + (V (t)− θ) exp(−κ(u− t)))du (3.34)

To establish higher moments we now introduce the Laplace transform of U(T )
which is given by E[exp(−sU(T ))] := L(t, V, s), with complex valued s. Andersen
and Brotherton-Ratcliffe then introduce the centered Laplace transform l(t, V, s) =
E[a−s[U(T )−µU (t,V )]] and expand it in orders of ε2 - the squared volatility of variance
parameter. They use this expansion of the centered Laplace transform to get expres-
sions for the centered moments of higher order of U(T ) and finally give a Taylor style
expansions using these centered moments. The approach that we want to analyze now
is to interpret the variance process as element of the second Wiener - Itô chaos and get
expressions for the Laplace transform via that way.

The Variance Process as Element of the Second Chaos

If we consider the Markov property, then it can be proved that for a bounded and
continuous function r

E[exp(

∫ T

t

r(u, V (u)x)du)|Ft]
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equals

E[exp(

∫ T−t

0

r(u+ t, V (u)x)du)]|x=V (t).

We can therefore consider the non-conditional expectation and insert V (t) afterwards
(for details see [10]).

We have that V (t) can be transformed to a squared Bessel process BESQ δ. V (t)
can be expressed as e−atYα(t) with Y a BESQ δ with δ = 4ab/c2 and α(t) = c2

4a
(eat− 1).

We assume δ ∈ N and δ ≥ 2. We will write α(t) = τt for short. Then we have a BESQ δ

Y of the form

Yτt = x+
δ∑

i=1

(Bi
τt
)2.

The variance process

V (t) = x+

∫ t

0

a(b− V (s))ds+

∫ t

0

c
√
V (t)dBt

then equals

e−atYτt = x+ e−at

δ∑
i=1

(Bi
τt
)2

in law.

Lemma 3.5.1. Let B be a Brownian motion, then∫ t

0

∫ s

0

dBudBs =

∫ t

0

BsdBs = (B2
t − t)/2.

Proof. From 4.6 we know that 2
∫ t

0

∫ s

0
dBudBs = tH2(Bt/t

1
2 ). The result follows easily.

We rewrite e−atYτt to see the projections onto the chaos 0 and 2 by

e−atYτt = x+ e−at

δ∑
i=1

(Bi
τt
)2 = x+ 2e−at

δ∑
i=1

∫ τt

0

Bi
sdB

i
s + e−atδτt.

Now we bring s
∫ T−t

0
λ(u+t)2e−auYτudu into a suitable form: s

∫ T−t

0
λ(u+t)2e−auYτudu =

2s
δ∑

i=1

(

∫ T−t

0

λ(u+ t)2e−au

∫ τu

0

∫ u1

0

dBi
u2
dBi

u1
du) + s

∫ T−t

0

λ(u+ t)2(δe−auτu + x)du =

2s
δ∑

i=1

I1 + sI2.
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For I1 we get the following expression by interchanging the order of integration:∫ T−t

0

∫ τu

0

∫ u1

0

λ(u+ t)2e−audBi
u2
dBi

u1
du =∫ T−t

0

∫ T−t

0

∫ T−t

0

λ(u+ t)2e−au1[0,τu](u1)1[0,u1](u2)dB
i
u2
dBi

u1
du =∫ T−t

0

∫ T−t

0

∫ T−t

0

λ(u+ t)2e−au1(u1,T−t](τu)1(u2,T−t](u1)dB
i
u2
dBi

u1
du =∫ T−t

0

∫ T−t

0

(

∫ T−t

0

λ(u+ t)2e−au1(u1,T−t](τu)du)1(u2,T−t](u1)dB
i
u2
dBi

u1
=∫ T−t

0

∫ u1

0

(

∫ T−t

0

λ(u+ t)2e−au1(u1,T−t](τu)du)dB
i
u2
dBi

u1
=∫ T−t

0

∫ u1

0

(

∫ T−t

0

λ(u+ t)2e−au1(u1,T−t](τu)du)dB
i
u2
dBi

u1
.

We now symmetrize the kernel of this expression and denote it by C(u1, u2) and mul-
tiply it by 2s:

C(u1, u2) =

∫ T−t

0

λ(u+ t)2e−au2s
1

2
(1(u1,T−t](τu) + 1(u2,T−t](τu))du

C(u1, u2) =

∫ T−t

0

λ(u+ t)2e−aus(1(u1,T−t](τu) + 1(u2,T−t](τu))du. (3.35)

For I2 we get a useful expression by plugging in δ = 4ab
c2

and τu = α(u) = c2

4a
(eau − 1):

I2 =

∫ T−t

0

λ(u+ t)2(b(1− e−au) + x)du. (3.36)

In order to calculate the Laplace transform we want to calculate E[exp(−Y )]. If Y is
out of the second chaos then we have a useful theorem.

Exponentiated Second Chaos

The following theorem on exponentiated second chaos can be found in a paper of
Graselli and Hurd [5]. Please have a look into the appendix for the notation. We want
to find the expectation of an L2-random variable of the form exp(−Y ) with

Y = A+

∫
∆

B(τ1)dBτ1 +

∫
∆2

C(τ1, τ2)dBτ1dBτ2 . (3.37)

We introduce the space H(+)
≤2 ⊂ H≤2 := H0⊕H1⊕H2. If we moreover define C in 3.37

to fulfill C(τ1, τ2) = C(τ2, τ1) whenever τ1 > τ2 then C is the kernel of a symmetric
integral operator on L2(∆), i.e.

[Cf ](τ) =

∫ ∞

0

C(τ, τ1)f(τ1)dτ1.
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Then we say that Y ∈ H≤2 is in H(+)
≤2 if C is the kernel of a symmetric Hilbert-Schmidt

operator on L2(∆) such that 1 + C has non-negative spectrum.

Remark 3.5.1. Recall: Hilbert-Schmidt operators are finite norm operators under the
norm

‖C‖2
HS =

∫
∆2

|C(τ1, τ2)|2dτ1dτ2.

We assume this Y to be element of a subspace H(+)
≤2 .

Proposition 3.5.3. Let Y ∈ H(+)
≤2 . Then

E[exp(−Y )] = [det2(1 + C)]−
1
2

exp(−A+
1

2

∫
∆2

B(τ1)
T (1 + C)−1(τ1, τ2)B(τ2)dτ1dτ2).

Remark 3.5.2. The Carleman-Fredholm determinant is defined as the extension of
the formula

det2(1 + C) = det(1 + C) exp(−Tr(C))

from finite rank operators to bounded Hilbert-Schmidt operators.

The Laplace Transform

Applying the last theorem with

• A = s
∫ T−t

0
λ(u+ t)2(b(1− e−au) + x)du (compare equation 3.36)

• B = 0, and

• C(u1, u2) = s
∫ T−t

0
λ(u+t)2e−au(1(u1,T−t](τu)+1(u2,T−t](τu))du (compare equation

3.35)

leads to an expression for the Laplace transform of a compact form.

Proposition 3.5.4. E[exp(−s
∫ T

t
λ(u)2V (u)xdu)|Ft] can be expressed in the following

form:
[det2(1 + C)]−

1
2 exp(−A).

Proof. This proposition is direct consequence of proposition 3.5.3 and the preceding
calculations.

The last proposition applied to the Laplace transform leads to:

L(t, V, s) = [det2(1 + C)]−
1
2 exp(−s

∫ T−t

0

λ(u+ t)2(b(1− e−au) + V (t)x)du)

where C(t1, t2) is defined as above and V (t)x is the variance process at time t started
at x.
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Chapter 4

Appendix

4.1 Proofs of Classical Theorems

Proof: 4.1.1. Proof of the Gronwall Lemma Given a function v : [0, T ] → R
being non-negative and continuous and satisfying v(t) ≤ F + A ·

∫ t

0
v(s)ds, t ∈ [0, T ],

then v(t) ≤ F · exp(At) holds.

Proof of the lemma: Let’s assume A 6= 0 (otherwise the lemma is trivial). We define
a function w(t) :=

∫ t

0
v(s)ds. Thus w(t) ∈ C1([0, T ],R). Then w′(t) = v(t), t ∈ [0, T ]

and thus w′(t) ≤ F + A ·
∫ t

0
v(s)ds.

From partial integration (
∫ t

0
(f(s)·g(s))′ds =

∫ t

0
h(s)g′(s)ds+

∫ t

0
g(s)f ′(s)ds)we know

that

exp(−At)w(t) =

∫ t

0

exp(−As)w′(s)ds+

∫ t

0

w(s)(−A)exp(−As)ds

- thinking of the fact that w(0) = 0.
This is ≤

∫ t

0
exp(−As)(F +Aw(s))ds+

∫ t

0
w(s)(−A)exp(−As)ds by the assumption

on w′(t). This equals F ·
∫ t

0
exp(−As)ds and finally by integration it follows that w(t) ≤

F
A
(exp(At)− 1). Which yields the proposition for w′(t) which is identical with v(t).

Proof: 4.1.2. Proof of Tchebychev’s Inequality Let X be a L2− random variable
then

P(|X| ≥ λ) ≤ 1

λ2
E[X2]. (4.1)

Proof: We have that E[X2] =
∫

R x
2dF (x) ≥

∫
|x|≥λ

x2dF (x) ≥
λ2 ·

∫
|x|≥λ

dF (x) = λ2 · P(|X| ≥ λ).

Proof: 4.1.3. Proof of the First Borel-Cantelli Lemma
Let (En : n ∈ N) be a sequence of events such that

∑
P(En) <∞.

Then P(lim supEn) = 0.
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Proof: We denote Gm =
⋃

n≥mEn and G = lim sup(En). Then for each m P(G) ≤
P(Gm) by monotone convergence and P(Gm) ≤

∑
n≥m P(En) by basic properties of the

probability measure. If we let m→∞ then we have the result.

Proof: 4.1.4. Proof of the Second Borel-Cantelli Lemma
If (En : n ∈ N) is a sequence of independent events, then∑

P(En) = ∞⇒ P(lim supEn) = 1

Proof: First

(lim supEn)c = lim inf Ec
n =

⋂
m

⋃
n≥m

Ec
n.

With pn denoting P(Ec
n), we have

P(
⋃

n≥m

Ec
n) =

∏
n≥m

(1− pn).

For x ≥ 0, 1− x ≤ exp(−x), so that, since
∑
pn = ∞∏

n≥m

(1− pn) ≤ exp(−
∑
n≥m

pn) = 0

So, P[(lim supEn)c] = 0.

Proof: 4.1.5. Proof of Doob’s Martingale Inequality
Let Mt be an Lp−martingale for p ∈ [1,∞) with continuous trajectories, then

P(sup0≤t≤T‖Mt‖ ≥ λ) ≤ 1

λp
E(‖MT‖p) (4.2)

holds.
To proof this, we need another lemma, the so called

Lemma 4.1.1. Hunt Property Let a stochastic process (Ss)s≥0 be nonnegative with
continuous paths and adapted to a filtration (Fs)s≥0 and moreover let the submartingale
property be fulfilled: E(St|Fs) ≥ Ss then for 2 stopping times σ, τ with σ ≤ τ ≤ T a.s.
E[Sσ] ≤ E[Sτ ] holds.

Proof of the lemma:
Assume that σ ≤ τ ≤ T take finitely many values 0 = t0 < t1 < . . . < tn = T .

Then E[Sτ − Sσ] = E[
∑n

i=1(Sti − Sti−1
) · 1{σ≤ti−1<τ}︸ ︷︷ ︸

Fti−1−measurable

] =
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∑n
i=1 E[E[Sti − Sti−1

|Fti−1
]︸ ︷︷ ︸

≥0

·1{σ≤ti−1<τ}] ≥ 0. Now consider the stopping times

τn := { τi
2n

if
τ(i−1)

2n
< τ ≤ τi

2n
} i = 1, . . . , 2n.

Then E[Sτn − Sσn ] → E[Sτ − Sσ] for n→∞ pointwise by the continuity of the paths.
Moreover {Sτ |τ ≤ T, τ a stopping time taking finitely many values} is a uniformly
integrable family:

E[Sτ1{Sτ≥λ}] =
∑n

i=1 E[Sti1{Sti≥λ}1{τ=ti}] ≤︸︷︷︸
submartingale

∑n
i=1 E[ST1{Sti≥λ}1{τ=ti}] =

E[ST1{ST≥λ}] ≤ E[ST1{max0≤s≤T Ss≥λ}] → 0 as λ→∞.

Now we can prove Doob’s inequality: If (Mt)t≥0 is a martingale with continuous
paths, then St = |Mt| is a submartingale with cont. paths and St ≥ 0. One sees this
easily using Jensen:

E[|Mt||Fs] ≥︸︷︷︸
Jensen

|E[Mt|Fs]| = |Ms|, t ≥ s

We introduce a stopping time:

σ = inf{s ≥ 0||Ms| ≥ λ} ∧ T

Then we see that:

P(max0≤t≤T |Mt| ≥ λ)λp ≤ E[|Mσ|p
1

λp
]λp ≤ E[|MT |p] (by Hunt)

Remark 4.1.1. (|Mt|p)t≥0 is a submartingale.
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4.2 Theorems from Measure Theory

The knowledge of fundamental notions such as the notion of a σ-algebra and of a
measurable function is presupposed.

Theorem 4.2.1 (Monotone Convergence). Let fn be a monotone, nondecreasing se-
quence of nonnegative, measurable functions and let f denote its limit. Moreover let P
be a probability measure. Then ∫

fdP = lim
n

∫
fndP.

In terms of an expectation:

E[limnfn] = E[f ] = limnE[fn]

Theorem 4.2.2 (Monotone Convergence - extended). Let fn be a monotone , nonde-
creasing sequence of measurable functions moreover let g be a measurable function with∫
gdP > −∞ and fn ≥ g ∀n and let f denote its limit, then∫

fdP = lim
n

∫
fndP.

Theorem 4.2.3 (Dominated Convergence). Let fn be a sequence of measurable func-
tions, moreover let f and g be measurable and let |fn| ≤ g a.s. and

∫
|g|dP <∞ then

limnfn = f a.s. implies

limn

∫
fndP =

∫
fdP

or in terms of expectation:
E[f ] = limnE[fn].

Remark 4.2.1. Those theorems tell us under which condition we are allowed to ’pull
out’ a limit. By that we get properties of a sequence for its limit.

Theorem 4.2.4 (Theorem of Radon-Nikodym). Let P and Q be two probability mea-
sures on a probability space (Ω,F ,P) and let Q be absolutely continuous w.r.t. P then
there is an P- a.s. unique random variable X such that

Q(A) =

∫
A

XdP

for all sets of events A ∈ F .

Remark 4.2.2. This theorem tells us how a change of measures is done and under
which circumstances it can be done. This is often used to change from a natural prob-
ability measure P to a martingale measure Q.

85



Now assume two equivalent measures P and Q defined on a common measure space
(Ω,F). Let the Radon-Nikodym derivative of Q w.r.t. P equal

dQ
dP

= η

P-a.s. This r.v. η is strictly positive P-a.s. (by equivalence) and P-integrable with
EP[η] = 1. Finally it is clear that EQ[ψ] = EP[ηψ] holds for any Q-integrable r.v. ψ.

Lemma 4.2.1. Let G be a sub-σ-algebra of the σ-algebra F , and let ψ be a r.v. inte-
grable w.r.t. Q. Then the following abstract version of the Bayes formula holds:

EQ[ψ|G] =
EP[ηψ|G]

EP[η|G]
(4.3)

Proof. It is easily checked that EP[η|G] is strictly positive P-a.s. so that the right hand
side is well defined. By assumption ηψ is P-integrable and we have to show that

EP[ηψ|G] = EQ[ψ|G]EP[η|G].

The right hand side of this formula defines a G-measurable r.v. so we have to show
that for any A ∈ G, we have∫

A

ηψdP =

∫
A

EQ[ψ|G]EP[η|G]dP.

But for every A ∈ G, we get:∫
A

ηψdP =

∫
A

ψdQ =

∫
A

EQ[ψ|G]dQ =

∫
A

EQ[ψ|G]ηdP

=

∫
A

EP[EQ[ψ|G]η|G]dP =

∫
A

EQ[ψ|G]EP[η|G]dP. (4.4)
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4.3 Wiener-Itô Chaos Expansion

The Wiener-Itô chaos expansion leads to an orthogonal decomposition of an L2−random
variable. A very clear introduction to this topic is given in [14]. LetBt be a 1−dimensional
Brownian motion on a filtered probability space (Ω,F ,P) with the filtration (Ft)t≥0

generated by Bs, s ≤ t. Fix T > 0. We consider functions g of the form g : [0, T ]n → R.
Such a g is called symmetric if g(x1, . . . , xn) = g(xπ(1), . . . , xπ(n)) for all permutations
π on {1, . . . , n}. If in addition

‖g‖2
L2([0,T ]n) :=

∫
[0,T ]n

g2(x1, . . . , xn)dx1 . . . dxn <∞

then we say that g ∈ L̂2([0, T ]n), the space of symmetric square integrable functions
on [0, T ]n. We define the set Sn = {(x1, x2, . . . , xn) ∈ [0, T ]n; 0 ≤ x1 ≤ x2 ≤ . . . ≤
xn ≤ T}. This set occupies the fraction 1

n!
of the whole n-dimensional box [0, T ]n and

therefore for g ∈ L̂2([0, T ]n) we have

‖g‖2
L2([0,T ]n) = n!

∫
Sn

g2(x1, . . . , xn)dx1 . . . dxn = n!‖g‖2
Sn
. (4.5)

For any real function f defined on [0, T ]n we define the symmetrization of f̃ of f by

f̃ =
1

n!

∑
σ

f(xσ1 , . . . , xσn),

where the sum is taken over all permutations of {1, . . . , n}.

Example 4.1. The following examples explain how to proceed in order to symmetrize
a function:

• Consider the function f(x1, x2) = x2
1 + x2 sin(x1). Its symmetrization is

f̃ =
1

2
[x2

1 + x2
2 + x2 sin(x1) + x1 sin(x2)].

• Now, consider the function f(t1, t2) = 1{t1<t<t2} then its symmetrization is

f̃ =
1

2
(1{t1<t<t2} + 1{t2<t<t1}).

For a deterministic f defined on Sn, n ≥ 1 such that

‖f‖2
L2(Sn) :=

∫
Sn

f 2(t1, . . . , tn)dt1 . . . dtn <∞

we can define the n-fold Itô integral by

Jn(f) =

∫ T

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dBt1 · · · dBtn−1dBtn .
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This object is well-defined because at each Itô integration w.r.t. Bti the integrand is
Fti−adapted and square-integrable w.r.t. dP × dti, 1 ≤ i ≤ n. Iterated application of
the Itô isometry leads to

E[J2
n(h)] = ‖h‖2

L2(Sn)

for a deterministic h ∈ L2(Sn). For g ∈ L2(Sm) and h ∈ L2(Sn) with m < n we get

E[Jm(g)Jn(h)] = 0.

For a g ∈ L̂2([0, T ]n) we define

In(g) =

∫
[0,T ]n

g(t1, . . . , tn)dB
N

n
t := n!Jn(g).

Obviously we have from previous results that

E[I2
n(g)] = E[(n!)2J2

n(g)] = (n!)2‖g‖2
L2(Sn) = n!‖g‖2

L2([0,T ]n)

for all g ∈ L̂2([0, T ]n).
Moreover for each n ≥ 0 we have the nth Hermite polynomial defined by

Hn(x) = (−1)nex2/2 d
n

dxn
e−x2/2.

ThenH(n) (the nth Wiener chaos) denotes the space span{Hn(
∫ T

0
htdBt)|h ∈ L2([0, T ])},

n > 0 and H(0) denotes the space of constant random variables. One can show that
these spaces form an orthogonal decomposition of the space L2(Ω,FT ,P) i.d.

L2(Ω,FT ,P) = ⊕∞
n=0H(n).

There is a useful formula for the special case that the integrand is the tensor power of
a function g ∈ L2([0, T ]):

n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

g(t1)g(t2) · · · g(tn)dBt1dBt2 · · · dBtn = ‖g‖nHn(

∫ T

0
g(t)dBt

‖g‖
), (4.6)

where the norm is the norm in L2([0, T ]). The formula simplifies if ‖g‖L2([0,T ]) = 1 is
assumed.

Example 4.2. We can write an element of H(3) if we assume that f is one-dimensional
as ∫ T

0

∫ s3

0

∫ s2

0

f3(s1, s2, s3)dBs1dBs2dBs3 .
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Theorem 4.3.1 (The Wiener-Itô chaos expansion). Let ϕ be an FT−measurable ran-
dom variable such that ‖ϕ‖2

L2(Ω) := EP[ϕ
2] < ∞. Then there exists a unique sequence

(fn)∞n=0 of deterministic functions fn ∈ L̂2([0, T ]n) such that

ϕ =
∞∑

n=0

In(fn) (convergence in L2).

Moreover, we have the isometry

EP[ϕ
2] =

∞∑
n=0

n!‖fn‖2
L2([0,T ]n).

Graselli and Hurd ([5]) use a different notation to express stochastic integrals w.r.t.
Brownian motion of dimension n. They define ∆ := R+×{1, . . . , N} and for h ∈ L2(∆)
the integral

∫
h(τ)dBτ :=

∑
µ

∫∞
0
f(s, µ)dBµ

s where τ denotes the pair (s, µ) ∈ ∆.

An element of the 2nd chaos is then written as
∫

∆2
C(τ1, τ2)dBτ1dBτ2 , where we have

the definition ∆n := {(τ1, . . . , τn)|τi = (si, µi) ∈ ∆, 0 ≤ s1 ≤ . . . ≤ sn <∞}.

4.4 Mathematical Tools

4.4.1 Solution Methods of ODE’s

Bernoulli ODE’s

A Bernoulli ordinary differential equation is an equation of the form (we have y is
y(x)):

y′ + yf(x) = yag(x) (4.7)

with a 6= 0, 1. The substitution z = y1−a, z′ = (1 − a)y−ay′ leads to a linear ODE of
the type: z′ + (1− a)zf(x) = (1− a)g(x).

Linear ODE’s

A linear ODE is an ODE of the form

y′ + a(x)y = f(x).

The solution of such an ODE is:

y(x) = exp(−A(x))(

∫
exp(A(x))f(x)dx+ C)

with A(x) =
∫
a(x)dx.
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4.4.2 Lévy’s Criterion for Brownian Motion

Let Bt be a process adapted to the filtration Ft. Let Bt have the following properties:

1. Bt has continuous sample paths.

2. Bt is a martingale.

3. Bt has quadratic variation t.

Then Bt is a Brownian motion.

Proof. It is enough to show that for every α ∈ R exp(αBt− 1
2
α2t) is a martingale. We

have that for t > s ≥ 0

E[exp(α(Bt −Bs))|Fs] = exp(
1

2
α2(t− s)).

We see this using the martingale property and rearranging the expressions. This shows
that

• Bt −Bs is independent of Fs because the right hand side is constant.

• Bt −Bs is N(0,t-s) - thinking of the characteristic function.

To see that the expression is a martingale we define f(x, t) = exp(αx − 1
2
α2t). Then

we see by Itô’s formula that f(Bt, t) is a martingale because ∂f
∂t

+ 1
2

∂2f
∂x2 = 0.

4.4.3 The Martingale Problem

For a short introduction to this problem read [13].
If Xt is an Itô diffusion in Rn of the form dXt = b(Xt)dt+σ(Xt)dBt with generator

A and if f ∈ C2
0(Rn) then

f(Xt) = f(x) +

∫ t

0

Af(Xs)ds+

∫ t

0

∇fT (Xs)σ(Xs)dBs.

Then we can define Mt = f(Xt)−
∫ t

0
Af(Xr)dr and this process is a martingale w.r.t.

the filtrationMt which is generated by the processXt. We can identify each ω ∈ Ω with
Xx

t (ω) and thereby identify the space (Ω,M,Qx) with (C[0,∞)n,B(C[0,∞)n), Q̃x).
Regarding the law of Xx

t as a probability measure Q̃x on B we can formulate a theorem:

Theorem 4.4.1. If Q̃x is the probability measure induced by the law Qx of an Itô diffu-
sion Xt, then for all f ∈ C2

0(Rn) the process Mt (as defined above) is a Q̃x−martingale.
w.r.t. the Borel σ−algebra of C[0,∞)n.

We can put this theorem into a bit different words and make a definition:
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Definition 4.4.1 (Martingale Problem). Let L be a semi-elliptic differential operator
of the form

L =
∑

bi
∂

∂xi

+
∑
i,j

aij
∂2

∂xi∂xj

where the coefficients bi, aij are locally bounded Borel measurable functions on Rn. Then
we say that a probability measure P̃ x on (C[0,∞)n,B(C[0,∞)n)) solves the martingale
problem for L (starting at x) if the process

Mt = f(ωt)−
∫ t

0

Lf(ωr)dr,M0 = f(x) P̃ x-a.s.

is a P̃ x martingale w.r.t. Bt, for all f ∈ C2
0(Rn). The martingale problem is called

well-posed if there is a unique measure P̃ x solving the martingale problem.

Like this we see that Q̃x solves the martingale problem for A whenever Xt is a weak
solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dBt. (4.8)

Conversely it can be proved that if P̃x solves the martingale problem for an operator
L starting at x, for all x ∈ Rn, then there exists a weak solution of the SDE 4.8. The
following result of Strook and Varadhan gives conditions if a martingale problem has
a solution.

Proposition 4.4.1. L =
∑
bi

∂
∂xi

+
∑

i,j aij
∂2

∂xi∂xj
has a unique solution of the martin-

gale problem if [aij] is everywhere positive definite, aij is continuous, b(x) is measurable
and there exists a constant D such that

|b(x)|+ |a(x)|
1
2 ≤ D(1 + |x|) for all x ∈ Rn.

Conditions on the Existence of a Weak Solution

Karatzas and Shreve [8] give various conditions when the solvability of the martingale
problem and the existence of a weak solution to an SDE of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (4.9)

are implied by each other. We have the following assertions:

1. There exists a weak solution to 4.9 with initial distribution µ.

2. There exists a solution P to the local martingale problem associated with the
differential operator A with P(y(0) ∈ Γ) = µ(Γ); Γ ∈ B(Rn).

3. There exists a solution P to the martingale problem associated with A with
P(y(0) ∈ Γ) = µ(Γ); Γ ∈ B(Rn).
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Proposition 4.4.2. Condition (1) and (2) are equivalent and are implied by (3). Fur-
thermore (1) implies (3) under either of the additional assumptions:

• For each T < ∞ ‖σ(t, y)‖ ≤ KT ; 0 ≤ t ≤ T, y ∈ C[0,∞)n, where KT is a
constant depending on T .

• Each σij is of the form σij(t, y) = σ̃ij(t, y(t)) where the Borel-measurable functions
σ̃ij : [0,∞)× Rn → R are bounded on compact sets.
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4.4.4 Random Time Change

Øksendal [13] describes a random time change in the following way. We have an Ft-
adapted r.v. ct ≥ 0. We define βt =

∫ t

0
csds. Then we call this βt a random time

change with time change rate ct. βt is also Ft-adapted and the mapping t → βt is
non-decreasing. If we now define a r.v. αt by αt = inf{s; βs > t}. Then αt is the right
inverse of βt i.e. β(αt) = t, ∀t ≥ 0 and the mapping t → αt is right continuous. If
we assume that cs > 0 for almost all s then t → βt is strictly increasing, t → αt is
continuous and αt is also the left inverse of βt i.e. α(βt) = t, ∀t ≥ 0. We now ask
how and under which condition a process can be transformed into a BM by a random
time change. We have the following theorem:

Theorem 4.4.2. Let dYt = vtdBt, v ∈ Rn×m, Bt ∈ Rm be an Itô integral in Rn,Y0 = 0
and assume that

vvT (t) = ctIn

for some process ct ≥ 0. Let αt, βt be as in the definition of a random time change.
Then Yαt is an n-dimensional BM.

Corollary 4.4.1. Let ct ≥ 0 be given and define Yt =
∫ t

0

√
csdBs, where Bs is an

n-dimensional BM. Then Yαt is also an n-dimensional BM.

We now know how we get a new BM but for applications it is of great interest how
Itô integrals change. So we change time in an Itô integral which will lead to an Itô
integral again but driven by a different BM B̃.

Lemma 4.4.1. Suppose s→ αs is continuous, α0 = 0 for almost all ω. Fix t > 0 such
that βt <∞ and assume that E[αt] <∞. For k = 1, 2, . . . put

tj =

{
j2−k if j2−k ≤ αt,

t if j2−k > αt.

and choose rj such that αrj
= tj. Suppose f ≥ 0 is Fs-adapted, bounded and continuous

in s for almost all ω. Then

lim
k→∞

∑
j

f(αj)∆Bαj
=

∫ αt

0

fsdBs a.s., (4.10)

where αj = αrj
,∆Bαj

= Bαj+1
−Bαj

and the limit is in L2(Ω,P).

Proof. For all k we have

E[(
∑

j

f(αj)∆Bαj
−

∫ αt

0

fsdBs)
2] = E[(

∑
j

∫ αj+1

αj

(f(αj)− fs)dBs)
2]

∑
j

E[(

∫ αj+1

αj

(f(αj)− fs)dBs)
2] =

∑
j

E[

∫ αj+1

αj

(f(αj)− fs)
2ds]

= E[

∫ αt

0

(f − fk)
2ds],
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where fk(s) =
∑

j f(tj)1(tj ,tj+1](s) is the elementary (predictable) approximation to
f .

As main result of this section we state a time change formula for Itô integrals:

Theorem 4.4.3. Suppose cs and αs are continuous in s and α0 = 0 for almost all ω
and that E[αt] < ∞. Let Bs be an n-dimensional BM and let vs ∈ Vn×m

H be bounded
and continuous in s. Define

B̃t = lim
k→∞

∑
j

√
cαj

∆Bαj
=

∫ αt

0

√
csdBs. (4.11)

Then B̃t is an F (m)
αt BM and∫ αt

0

vsdBs =

∫ t

0

vαr

√
α′rdB̃r,P− a.s. (4.12)

where α′r is the derivative of αr w.r.t. r, so that α′r = 1
cαr

for almost all r ≥ 0 and
almost all ω ∈ Ω.

Remark 4.4.1. This theorem is taken from [13] and there is no use to explain the
notation in detail. The author uses the space Vn×m

H to denote the space of properly
adapted integrands for an Itô integral. The filtration F (m) is the one generated by the
m-dimensional BM.

Proof. The existence of the limit in equation 4.11 and the identity follow by applying
the last lemma to the function fs =

√
cs. Then by the last corollary we have that B̃ is

an F (m)
αt BM. It remains to prove equation 4.12:∫ αt

0

vsdBs = limk→∞
∑

j

v(αj)∆Bαj

= limk→∞
∑

j

v(αj)

√
1

c(αj)

√
c(αj)∆Bαj

= limk→∞
∑

j

v(αj)

√
1

c(αj)
∆B̃j

=

∫ t

0

v(αr)

√
1

c(αr)
dB̃r.
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4.4.5 Bessel Processes

This introduction to the theory of Bessel process is taken from [15]. To define and ana-
lyze Bessel processes we need the following notation: BM δ will denote a δ−dimensional
Brownian motion. The process ρt denotes the modulus of BM δ and Px denotes the
measure of the Brownian motion started at x. Ft denotes the complete Brownian
filtration. Now we can state a proposition on the density of ρt:

Proposition 4.4.3. For every δ ≥ 1 the process ρt, t ≥ 0, is a homogeneous Ft−Markov
process with respect to each Px, x ∈ Rδ. For δ ≥ 2, its semi-group P δ

t is given on [0,∞)
by the densities

pδ
t (a, b) = (a/t)(b/a)δ/2Iδ/2−1(ab/t) exp(−(a2 + b2)/2t)

for a, b > 0, where Iν is the modified Bessel function of index ν, and

pδ
t (0, b) = Γ(δ/2)2δ/2−1t−δ/2bδ−1 exp(−b2/2t).

Definition 4.4.2 (Bessel Process). A Markov process with semi-group P δ
t is called a

δ− dimensional Bessel process.

We will denote such a process by BES δ and BES δ(x) if it starts at x ≥ 0. Itô’s
formula shows that ρ solves

ρ2
t = ρ2

0 + 2
δ∑

i=1

∫ t

0

Bi
sdB

i
s + δt.

For δ > 1, ρt is a.s. greater than zero and for δ = 1 the set {s : ρs = 0} has a.s. zero
Lebesgue measure. So we can consider the process

βt =
δ∑

i=1

∫ t

0

(Bi
s/ρs)dB

i
s

which is a Brownian motion since 〈β, β〉 = t. Therefore ρ2
t satisfies the SDE

ρ2
t = ρ2

0 + 2

∫ t

0

Bi
sdβs + δt.

If we set, for any real δ ≥ 0 and x ≥ 0, the process

Zt = x+ 2

∫ t

0

√
|Zs|dβs + δt

then it can be shown that this SDE has a unique strong solution which is ≥ 0 thus the
absolute value can be discarded.
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Definition 4.4.3. For every δ ≥ 0 and x ≥ 0 the unique strong solution of the equation

Zt = x+ 2

∫ t

0

√
Zsdβs + δt

is called the square of the δ−dimensional Bessel process started at x and is denoted by
BESQ δ(x).

Remark 4.4.2. The law of BESQ δ(x) on C(R≥0,R)is denoted by Qδ
x. The number

ν = (δ/2) − 1 is called the index of the corresponding process. We write BESQ(ν)

instead of BESQ δ sometimes for convenience.

We have the following theorem on the convolution of measures of squared Bessel
processes:

Theorem 4.4.4. For every δ, δ′ ≥ 0 and x, x′ ≥ 0,

Qδ
x ∗Qδ′

x′ = Qδ+δ′

x+x′ .

Corollary 4.4.2. If µ is a measure on R≥0 such that
∫∞

0
(1 + t)dµ(t) <∞, there exist

two numbers Aµ and Bµ > 0 such that

Qδ
x[exp(−

∫ ∞

0

Xtdµ(t))] = Ax
µB

δ
µ

where X is the coordinate process.

Proof. We call the left-hand side φ(x, δ). The condition on µ entails that

φ(x, δ) ≥ exp(−Qδ
x(

∫ ∞

0

Xtdµ(t))) = exp(−(

∫ ∞

0

(x+ δtdµ(t))) > 0.

Moreover from the theorem we have φ(x+x′, δ+δ′) = φ(x, δ)φ(x′, δ′), so that φ(x, δ) =
φ(x, 0)φ(0, δ). These functions are multiplicative and equal to 1 at 0. Furthermore they
are monotone and thus measurable.

We now want to compute the constants Aµ and Bµ explicitly.

Computation of the Constants

If µ is a Radon measure on [0,∞) then the differential equation (in the distribution
sense) φ′′ = φµ has a unique solution φµ which is positive, non increasing on [0,∞) and
such that φµ(0) = 1. The function φµ is convex so the right-hand side derivative exists
and is ≤ 0. Since φµ is non increasing the limit φµ(∞) := limx→∞ φµ(x) exists and
belongs to [0, 1]. We can assume φµ(∞) < 1 because otherwise φµ is identical 1 and
µ = 0. We still assume µ to satisfy

∫∞
0

(1 + x)dµ(x) < ∞ which leads to φµ(∞) > 0
(in the proof found in [15]). We define Xµ =

∫∞
0
Xtdµ(t).
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Theorem 4.4.5. Under the preceding assumptions we have that

Qδ
x[exp(−1

2
Xµ)] = φµ(∞)δ/2 exp(

x

2
φ′µ(0)).

To illustrate this result we will prove the following corollary:

Corollary 4.4.3.

Qδ
x[exp(−b

2

2

∫ 1

0

Xsds)] = (cosh b)−δ/2 exp(−1

2
xb tanh b).

Proof. We must compute φµ for µ(ds) = b2ds on [0, 1]. Thus on [0, 1] we must have
φµ(t) = α cosh bt + β sinh bt and φµ(0) = 1 forces α = 1. Since φµ is constant on
[1,∞) and φ′µ is continuous we need φ′µ(1) = 0 which is b sinh b + βb cosh b = 0 and
thus β = − tanh b. Finally we have φµ(t) = cosh bt − tanh b sinh bt on [0, 1]. Then
φµ(∞) = φµ(1) = (cosh b)−1 and φ′µ(0) = −b tanh b.

4.4.6 The Connection between Bessel processes and the CIR
model

If we have a square root process rt of the form

drt = a(b− rt)dt+ c
√
rtdBt, r0 ∈ R

and a BESQ δ X of the form

Xt = x+ δt+ 2

∫ t

0

√
XsdBs.

We now consider the process at the point in time α(t) = c2

4a
(eat − 1):

Xα(t) = x+ δα(t) + 2

∫ α(t)

0

√
XsdBs.

By theorem 4.4.3 we see the following (
√
α(r)′ = c

2
ear/2):

Xα(t) = x+ δα(t) +

∫ t

0

√
Xαr2

c

2
ear/2dB̃r

Xα(t) = x+ δα(t) +

∫ t

0

c
√
Xαre

ardB̃r.

The Brownian motion B̃ is defined by B̃t =
∫ α(t)

0
2
c
e−as/2dBs. If we now set rt =

e−atXα(t) then we get by Itô’s formula:

drt = d(e−atXα(t)) = −ae−atXα(t)dt+ e−atdXα(t)

drt = (−art + e−atδα(t)′)dt+ e−atc
√
Xα(t)e

at/2dB̃t

drt = (−art + e−at 4ab

c2
c2

4
eat)dt+ c

√
Xα(t)e

−at/2dB̃t

drt = a(b− rt)dt+ c
√
rtdB̃t.
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By the existence of a weak solution of the SDE for a BESQ δ X we get the weak
existence of the SDE for e−atXα(t) =: rt. Thus we get the existence of the solution of
the square root process by the Bessel process. Uniqueness is shown by the theorem of
Yamada and Watanabe 1.5.1.

4.4.7 The Carleman-Fredholm determinant

David Nualart [12] gives a short description of the Carleman-Fredholm determinant
and how it can be calculated. We have a measure space (T,B, µ) and K ∈ L2(T × T ).
Moreover we assume that the Hilbert space H = L2(T ) is separable and {ei, i ≥ 1}
to be a complete orthonormal system in H. In the case K =

∑n
i,j=1 aijei ⊗ ej the

Carelman-Fedholm determinant of I +K is defined as

det2(I +K) = det(I + A) exp(−Tr(A)),

where A = (aij)1≤i,j≤n. It can be proved that the mapping K → det2(I + K) is
continuous in L2(T×T ). Consequently it can be extended to the whole space L2(T×T ).
A useful formula to compute det2(I +K), where K ∈ L2(T × T ), is the following:

det2(I +K) = 1 +
∞∑
2

γn

n!
,

where γn =
∫

T n det(K̂(ti, tj))µ(dt1) . . . µ(dtn). Here K̂(ti, tj) = K(ti, tj), if i 6= j and
K(ti, ti) = 0.
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by Ellipses

[11] Marek Musiela, Marek Rutkowski, Martingale Methods in Financial Modelling,
Springer (corrected second printing 1998)

[12] David Nualart, The Malliavin Calculus and Related Topics, Springer (1995)

99

http://www.fam.tuwien.ac.at/
http://www.fam.tuwien.ac.at/
http://www.fam.tuwien.ac.at/


[13] Bernt Øksendal, Stochastic Differential Equations, Springer (1995)

[14] Bernt Øksendal, An Introduction to Malliavin Calculus with Applications to Eco-
nomics, paper May 1997

[15] Daniel Revuz, Marc Yor, Continuous Martingales and Brownian Motion, Springer
(1991)

[16] Josef Teichmann, Stochastic Analysis, lecture at the Technical University of Vi-
enna, check for notes at http://www.fam.tuwien.ac.at/∼jteichma/

[17] David Williams, Probability with Martingales, Cambridge Mathematical Text-
books (1991)

100

http://www.fam.tuwien.ac.at/~jteichma/
http://www.fam.tuwien.ac.at/~jteichma/
http://www.fam.tuwien.ac.at/~jteichma/


Index

Arbitrage free, 42

Banach’s Fixed Point Theorem, 18
Bessel process, 95
Bond option

- explicit formula, 70
Borel-Cantelli Lemma, 19

- proof of the second, 83
- proof of the first, 82

Brownian Motion, 5
- quadratic variation, 5
- in d Dimensions, 5
- recurrence, 34
- transience, 34

Cap, 68
- caption, 69

Covariation process, 16

Doob’s Martingale Inequality, 18
- proof, 83

Dynkin’s Formula, 32

Floor, 68
Forward

- swap rate
- definition, 63

- martingale measure, 50
- measure, 49
- process, 48
- rate, 41
- swap rate

- market model, 64

Girsanov’s Theorem, 36
Gronwall Lemma, 18

- proof, 82

Implied savings account, 51
Infinitesimal generator, 29

LIBOR rate, 47
- continuous tenor model, 58
- definition, 54
- discrete tenor model, 55

Markov Property, 34
- strong Markov Property, 36

Martingale
- martingale problem, 91
- Brownian martingale, 37
- definition, 4
- local martingale, 4
- martingale representation theorem,

37
- semi-martingale, 15

Novikov’s condition, 36

Picard-Lindelöff, 20, 28
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