
Ph.D. Thesis

Model Driven Development
of Inter-organizational Workflows

Conducted for the purpose of receiving the academic title
'Doktor der technischen Wissenschaften'

Supervisor

Gerti Kappel
Institute of Software Technology and Interactive Systems [El 88]

Submitted at the Vienna University of Technology
Faculty of Informatics

by

Gerhard Kramler
9255117

Feldsdorf 9
4201 Gramastetten

Vienna, May 18, 2004 x

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Contents

Abstract v

Zusammenfassung vi

1 Introduction 1
1.1 Need for Model Driven Development 2
1.2 ContributionofThisThesis 3

1 XML-based Technologies 5

2 Specification Languages 6
2.1 Introduction 6
2.2 Framework of Requirements 7

2.2.1 Functional Perspective 7
2.2.2 Operational Perspective 9
2.2.3 Behavioral Perspective 9
2.2.4 Informational Perspective 9
2.2.5 Interaction Perspective 10
2.2.6 Organizational Perspective 10
2.2.7 Transactional Perspective 11

2.3 Comparison of Specification Languages 11
2.3.1 WSDL - Web Service Description Language 13
2.3.2 WSFL - Web Service Flow Language 14
2.3.3 XLANG 14
2.3.4 BPML - Business Process Modeling Language 15
2.3.5 WSCL - Web Service Conversation Language 15
2.3.6 ebXML - Electronic Business XML 15
2.3.7 WPDL - Workflow Process Definition Language 16

2.4 Summary Of Results And Classification Of Languages 16
2.5 Conclusions 17

n

Comparing WSDL-based and ebXML-based Approaches 19
3.1 Introduction 19
3.2 Framework for Comparison 21
3.3 Overview of Approaches 22
3.4 Comparison 24

3.4.1 Information Items Layer 24
3.4.2 Documents Layer 25
3.4.3 Interactions Layer 25
3.4.4 Services Layer 30

3.5 Summary and Outlook 33

Example B2B Protocol Specification 36
4.1 Introduction 36

4.1.1 Overview of Approaches 38
4.2 Information Items Layer 39

4.2.1 WSDL-based Approach 39
4.2.2 ebXML-based Approach 39

4.3 Documents Layer 40
4.3.1 WSDL-based Approach 41
4.3.2 ebXML-based Approach 41

4.4 Interactions Layer 41
4.4.1 WSDL-based Approach 42
4.4.2 ebXML-based Approach 44

4.5 Services Layer 50
4.5.1 WSDL-based Approach 50
4.5.2 ebXML-based Approach 54

4.6 Discussion 55

II Model Driven Development 57

5 Representing XML Schema with UML 58
5.1 Introduction 58
5.2 Transformation Rules and UML Profile 60

5.2.1 Schema Document 61
5.2.2 Complex Type Definition 61
5.2.3 Simple Type Definition 62
5.2.4 Element Declaration and Usage 64
5.2.5 Attribute Declaration and Usage 67
5.2.6 Model Group 67
5.2.7 Identity Constraint Definition 69
5.2.8 Group Definition and Reference 71
5.2.9 Annotations 71

m

5.2.10 Notation 72
5.3 UML Profile Implementation 72

5.3.1 Package Stereotypes 73
5.3.2 Class Stereotypes 74
5.3.3 Property Stereotypes 76
5.3.4 Generalization Stereotypes 77
5.3.5 Datatype Stereotypes 78
5.3.6 Comment Stereotypes 80

5.4 Comparison and Outlook 81

6 Approaches to Extending XML Schema 83
6.1 Introduction 83
6.2 An Overview of Active XML Schema 84
6.3 Evaluation Criteria 85
6.4 Approaches 86

6.4.1 Proprietary Schema Approach 86
6.4.2 Side by Side Approach 88
6.4.3 Framework Approach 89
6.4.4 Specialized XML Schema Approach 92

6.5 Comparison and Related Work 94

6.6 Conclusion 96

7 Outlook 97

8 Acknowledgements 99

ListofFigures 100

ListofTables 101

Bibliography 102

Curriculum Vitae 110

IV

Abstract

The rise of the web has spurred automation of cooperation among organizations. Inter-
organizational workflows support such cooperations in a way similar to traditional intra-
organizational workflows that support business processes within an organization. The distinct
characteristics of inter-organizational workflows, such as heterogeneity and autonomy of the par-
ticipating Software Systems, has lead to the development of several new XML-based technologies
supporting inter-organizational cooperation. These technologies, however, introduce additional
complexity into the development of inter-organizational workflows. Model driven development
is an approach to master these complexities by using higher-level modeis as main development
artifacts. In the model driven architecrure (MDA), UML can be employed as common modelling
language for modeis at various levels of abstraction and various technologies.

The goal of this thesis is to exploit the application of MDA for model driven development of
inter-organizational workflows. In this respect, several contributions are made. First, a survey
of current XML-based technologies is given, discussing the commonalities and differences of
the various languages and identifying requirements on any modelling language supporting them
as target technologies. Second, an extension of UML for platform-specific modelling of XML
documents is defined, specifically addressing the problem of round-trip engineering. Third, dif-
ferent ways of extending schema specifications for XML documents are investigated, addressing
the lack of expressiveness of XML Schemas as compared to UML modeis.

Zusammenfassung

Das Web wird vermehrt zur automatisierten Abwicklung organisationsübergreifender Kooper-
ationen genutzt. Inter-organisationale Workflows unterstützen solche Kooperationen in einer
Weise, vergleichbar mit klassischen Workflows, welche Geschäftsprozesse innerhalb einer Or-
ganisation unterstützen. Die spezifischen Merkmale inter-organisationaler Workflows, wie
Heterogenität und Autonomie der beteiligten Softwaresysteme, führten zur Entwicklung ver-
schiedener neuer, XML-basierter Technologien zur Implementierung inter-organisationaler
Workflows. Die Verwendung dieser neuen Technologien bedingt jedoch eine erhöhte Komplex-
ität der Softwareentwicklung. Modellbasierte Softwareentwicklung ist ein Ansatz zum einfachen
Umgang mit der zunehmenden Technologiekomplexität durch Verwendung von technologieun-
abhängigen, abstrakten Modellen als Basis für die Softwareentwicklung. Im Rahmen der Model
Driven Architecture (MDA) wird UML als einheitliche Modellierungssprache für Modelle auf
verschiedenen Abstraktionsebenen und für verschiedene Technologien eingesetzt.

Ziel der Dissertation ist es, die MDA für die modellbasierte Entwicklung inter-
organisationaler Workflows zu adaptieren. Dazu erfolgt zunächst ein Überblick und Ver-
gleich aktueller XML-basierter Technologien, speziell im Hinblick auf deren unterschiedliche
Ausdrucksstärke und der damit verbundenen Anforderungen an eine unterstützende Modell-
ierungssprache. Auf Basis dieser Anforderungen wird eine Erweiterung der UML zur platt-
formspezifischen Modellierung von XML-Dokumenten vorgenommen, welche insbesondere
eine Grundlage für das Round-Trip Engineering bildet. Schliesslich werden verschiedene
Möglichkeiten zur Erweiterung von XML Schema-Spezifikationen aufgezeigt, die es er-
möglichen, die grössere Ausdrucksstärke von UML auch in XML abzubilden.

VI

Chapter 1

Introduction

The idea of capturing and Controlling business processes by means of Computer technology is
relatively old, the first Systems dating back to the 70ies [100]. Mainly due to immature tech-
nology, however, it took more than 15 years, until business process automation spread beyond
research communities and conquered the market as Workflow management Systems (WFMS)
[49]. Nowadays, not least due to recent developments in object-oriented technology, WFMS are
able to keep their promise of raising the productivity and competitive edge of an organization.
Traditional WFMS Support the design, execution, and monitoring of long lasting business pro-
cesses that typically involve multiple activities and multiple collaborating resources within an
organization [42, 45].

Practice has shown, however, that it is more and more required to relax the assumption that
a process is executed by a single WFMS within the limits of a Single organization [86, 2, 58]. A
certain process may span multiple, geographically distributed WFMS employed by, e.g., multi-
ple cooperating organizations in a value chain. Thanks to the rise of the Internet and the Web in
particular, along with basic building block technologies such as XML and Web Services, the par-
ticipation of several organizations in shared business processes has been made possible. Business
processes are able to cross organizational boundaries to an extent never experienced before. The
Web and its accompanying technologies are used for conducting global business transactions and
coordinating the business processes. Workflow technology appears as a possible key to integrate
Web applications in a process-centered manner. For example, collaborative telecommunication
Services led to the coupling of business processes of telecom partners resulting in shared Work-
flow processes, Virtual enterprises combine Services from different companies leading to Virtual
business processes that go beyond a single enterprise boundary.

This evolution more and more turns w/ra-organisational workflows into /«ter-organizational
workflows, thus focusing on workflows across organizational boundaries based on Web tech-
nology. The uniqueness of an inter-organizational Workflow is characterized by several issues,
including among others heterogeneity with respect to hardware, Software, automation levels and
Workflow control policies and autonomy of the local Systems leading to a lack of cross-company
access to Workflow resources (such as agents, tools, and information) and the missing of a com-
plete view of the whole Workflow [99].

These peculiarities of inter-organizational workflows make it necessary to explicitly specify

1

CHAPTER1. INTRODUCTION 2

the interfaces of the cooperating Software Systems in order to achieve interoperability and loose
coupling, representing the most crucial prerequisites for realizing inter-organizational workflows.
So-called B2B protocols provide for the formal specification of relevant aspects of an interface,
ranging from document types to transactions. Several languages for the specification of B2B
protocols have been already proposed (e.g., BPEL [4] or ebXML [82]) each of them having
different origins and pursuing different goals for dealing with the unique characteristics of inter-
organizational workflows.

1.1 Need for Model Driven Development

To provide the basis for a sound engineering approach when developing inter-organizational
workflows on basis of these B2B protocol specification languages, the employment of appro-
priate modelling formalisms is essential [86, 23]. Carefully designed modeis not only facilitate
development, integration and maintenance but provide also the basis for automating at least some
of the construction process itself. This idea is followed by OMG's Model Driven Architecture
(MDA) [31], which could be therefore employed as the key component for facilitating the model
driven development of inter-organizational workflows.

The MDA is a Software development approach in which modeis are the key part of the defini-
tion of a Software System. Abstract, technology independent modeis (so-called PIMs - platform
independent modeis) are refined to more concrete modeis, eventually resulting in platform spe-
cific modeis (PSMs). Instead of handing the PSMs over to programmers for implementation, the
structure and behavior of a System which is captured within a PSM is automatically transformed
into executable artifacts (such as code or configuration flies) [29]. With this approach, the speci-
fication of System functionality is separated from the specification of the implementation of that
functionality on a specific platform. Although the Standard does not prescribe a certain mod-
elling formalism, it is recommended to apply (piain) UML for the PIM, whereas for the PSM,
UML tailored to the target technology could be employed. The knowledge of the platform is
encoded into transformations which are reused for many Systems rather than redesigned for each
new System1, according to the motto "design once, build it on any platform".

The MDA approach promises a number of benefits including improved portability and inter-
operability due to separating the application knowledge from the mapping to a specific imple-
mentation technology, increased productivity due to automating the mapping, improved quality
due to reuse of well proven patterns and best practices in the mapping and the possibility of
validating the correctness of the modeis, and improved maintainability and resilience to changes
caused by emerging technologies due to better Separation of concerns [19, 57].

Despite of these various benefits, the application of the MDA to inter-organizational Work-
flow has not yet been fully exploited. The current Situation concerning model driven development
of inter-organizational workflows can be characterized as follows. First, there is a proliferation of
languages for describing inter-organizational workflows at a very low level of abstraction, most

1 Since in the MDA, automated transformations play a key role, it is important that transformations can be de-
veloped as efficiently as possible. Therefore, in April 2002, the OMG issued a Request for Proposais (RFP) for a
Standard syntax and execution semantics for transformations [29].

CHAPTER 1. INTRODUCTION 3

of them being XML-based. Second, some of these languages provide also some more abstract
modeling formalisms, using, however, proprietary modeling languages as basis. Third, there are
extensions of UML which support modeling for a particular target technology, only. The main
Problems resulting from this Situation are the following:

• specification concepts of low-level languages are not sufficient for being employed in an
abstract PIM

• proprietary specification and modelling languages do not support integration into an overall
engineering process based on a Standard modelling language such as UML

• the lack of an integrated modelling formalism for all languages prevents the support of
business partners using different target technologies and languages

• round-trip engineering is not possible, thus hampering the integration with pre-existing
B2B protocol specification languages

1.2 Contribution of This Thesis

In regard of these crucial problems, the contribution of this thesis is threefold. First, a survey of
currentXML-based target technologies is given, discussing the commonalities and differences of
the various languages and identifying requirements for any modelling language supporting them
as target technologies. Second, an extension of UML for platform-specific modelling of XML
documents is defined, specifically addressing the problem of round-trip engineering. Third, dif-
ferent ways of extending schema specifications for XML documents are investigated, addressing
the lack of expressiveness of XML Schemas as compared to UML modeis.

According to this contribution, this thesis is structured into two parts, considering XML-
based technologies and model driven development, respectively. Fig. 1.1 provides an overview
of the considered applications of MDA to inter-organizational workflows and the relationship to
the structure of this thesis.

Within Part I, Chapter 2 provides a survey of seven XML-based specification languages for
inter-organizational workflows, comparing the features of the languages based on a framework
of requirements for inter-organizational workflows. Chapter 3 focuses on the two most suitable
and relevant target technologies for B2B protocols, i.e., Web Services and ebXML, and provides
an in-depth comparison of the respective features of the two technologies. This comparison is
further supported in Chapter 4 by an exemplary specification of a B2B protocol using each of the
two technologies.

In Part II, new and improved concepts for model driven development of these two target
technologies are presented. Chapter 5 defines an UML profile for modelling XML documents
supporting round-trip engineering with XML Schema as target technology. Chapter 6 takes the
problem of mapping between UML and XML Schema a Step further in discussing approaches
to extend XML Schema supporting modelling concepts not native to XML. Finally, Chapter 7
provides an outlook to open issues and future research.

CHAPTER 1. INTRODUCTION

Chapter 7

PIM

Code

Chapters 5-6 Chapters 2-4

Figure 1.1: Application of MDA to inter-organizational workflows

Note that, each of the thesis' chapters is self-contained, starting with an abstract and con-
cluding with a summary, thus representing an original contribution on its own. For this reason,
some terminology used is specific to each chapter, thus documenting the evolutionary nature of
this work over time. This is also the reason why the chapters can be read independent of each
other. When reading them in the given order, however, a step-by-step introduction into the field
is provided.

PartI

XML-based Technologies

Chapter 2

Specification of Interorganizational
Workflows - A Comparison of Approaches

With the rise of the Web as the major platform for making data and Services available for both, hu-
mans and applications, interorganizational workflows became a crucial issue. Several languages
for the specification of interorganizational workflows have been already proposed, each of them
having different origins and pursuing different goals for dealing with the unique characteristics
of interorganizational workflows. This paper compares these proposals, trying to identify their
strengths and shortcomings. As a pre-requisite, a framework of requirements is suggested which
categorizes the major characteristics of specification languages for interorganizational workflows
into different perspectives. For each of these perspectives, a set of functional requirements is pro-
posed thereby emphasizing the difference to traditional intraorganizational workflows. On the
basis of this framework, seven representative specification languages are surveyed and compared
to each other.

2.1 Introduction

Workflow Management Systems are a mature technology for automating and Controlling business
processes [49, 42]. With the rise of the Web as the major platform for making data and Services
available for both, humans and applications, a new challenge has become prevalent requiring not
only the support of workflows within individual organizations (called intraorganizational work-
flows), but also workflows crossing organizational boundaries referred to as interorganizational
workflows [83,21,76].

Although interorganizational workflows are still very much open to research, one can iden-
tify three major characteristics which distinguish them from intraorganizational workflows and
at the same time lead to several new functional requirements on specification languages, not
present in the intraorganizational case. First, interoperability is a prerequisite for interorganiza-
tional workflows. Interoperability requires agreements on the interfaces between organizations,
which provide a common understanding of the data and Services exchanged. Interface standard-
ization or interface bridging become necessary in spite of potential heterogeneity of autonomous

CHAPTER2. SPECIFICATION LANGUAGES 7

organizations' interfaces [96]. Second, the autonomy of organizations participating in an interor-
ganizational Workflow has to be considered, whereby different kinds of autonomy are relevant
at different stages in the lifecycle of the Workflow. These comprise design autonomy at build
time, communication and execution autonomy at run time, and association autonomy at "agree-
ment time" (cf. [74]). Finally, the openness of the environment leads to requirements concerning
legality, trust, privacy, and security, which do not predominate in an intraorganizational environ-
ment.

For dealing with these unique characteristics, several languages for the specification of in-
terorganizational workflows have been already proposed, each of them having different origins
and pursuing different goals. This paper compares these proposals, trying to identify their
strengths and shortcomings. According to that overall goal, the remainder of this paper is struc-
tured as follows. Section 2.2 presents the requirements framework along seven perspectives,
emphasizing on interoperability and autonomy. Section 2.3 gives an overview of seven different
specification languages and points out their distinguishing characteristics in light of the require-
ments framework. Section 2.4 puts the results of our comparison into perspective by presenting
a classification of the languages based on the requirements framework. Section 2.5 concludes
the paper by discussing the implications of our results on future work.

2.2 Framework of Requirements

In order to identify the functional requirements on languages for interorganizational Workflow
specification, we use a general model for the specification of workflows presented in [68]. This
model comprises eight perspectives, namely functional, operational, behavioral, informational,
organizational, causal, historical, and transactional. These perspectives have been derived from
areas like Software process modeling, organizational modeling, coordination theory, and Work-
flow modeling [38]. As an additional perspective, we introduce interactions, to cope with the
need for direct interactions between organizations, specifically relevant in interorganizational
workflows. Note that this framework does not attempt to define a minimal set of concepts but
is rather based on the union of the concepts supported by the various approaches. Figure 2.1
illustrates these perspectives and relates them to the basic building blocks of a Workflow model
basically using the notation of UML activity diagrams.

In the following, we will discuss the functional requirements within each of the perspectives1,
focusing especially on interoperability and autonomy issues and covering the main features of
the languages compared further on.

2.2.1 Functional Perspective

The functional perspective describes what has to be done in a Workflow, as specified by a Work-
flow type. A Workflow type typically includes a description of the Workflow goal, of input and

Note that our discussion excludes both causal and historical perspective, as they are not addressed by any of the
compared languages.

CHAPTER2. SPECIFICATION LANGUAGES

Organizational.
Perspective

Historical
Perspective

Causal
Perspective

Interaction
Perspective

Organization B Informational
Perspective

Functional
and
Operational
Perspective

Behavioral
Perspective

Transactional
Perspective

Figure 2.1: Perspectives in Workflow specification

Output data, additional constraints, and a decomposition into smaller units of work, which are
either atomic activities, or composite subworkflows.

Interorganizational Workflow Type. A Workflow type spanning multiple organizations has
to make clear which activities will be performed by which of the participating organizations,
in order to provide a shared understanding of the overall Workflow. We call the part of an in-
terorganizational Workflow type assigned to one and the same organization Workflow fragment
[50]. Specification of Workflow fragments and of interdependencies between the fragments is
necessary because, unlike in intraorganizational workflows, the participants act autonomously
and must coordinate themselves by means of interactions (cf. 2.2.5), rather than relying on a
central Workflow engine.

Information Hiding. A language for interorganizational Workflow specification should be
flexible enough to support both public and private Workflow types (cf. [85]). Apublic Workflow
type is shared among collaborating organizations in order to provide a common understanding
of the interorganizational Workflow. It should, however, disclose only as few details as neces-
sary of the Workflow intemal to the organizations, to preserve the organizations' privacy and
design autonomy. A private Workflow type is used to define the complete Workflow internal to
an organization, including both public visible and private activities. In order to support these
requirements, a flexible information hiding mechanism is required.

CHAPTER2. SPECIFICATION LANGUAGES 9

Activity Semantics. For interoperability reasons, it should be possible to specify not only
the decomposition of a Workflow into activities, but also the semantics of these activities, e.g.,
by means of pre- and postconditions.

2.2.2 Operational Perspective

The operational perspective describes how activities are implemented.
Activity Implementation. A Workflow specification language should allow to specify ac-

tivity implementations, being a prerequisite for executable specifications, which in turn simplify
the development of Workflow Systems. It should be possible, however, to exclude the imple-
mentation specification from a public Workflow type, thus preserving the design. autonomy of
organizations.

2.2.3 Behavioral Perspective

The behavioral perspective is concerned about when activities have to be performed, which is de-
fined by the control flow dependencies among activities. Specification of control flow is essential
in interorganizational workflows for the coordination of Workflow fragments.

Control Flow Primitives. At least the Standard primitives for behavior specification of work-
flows should be supported. These comprise sequence, conditional execution based on transition
conditions, fork and join of parallel threads, and loops based on looping conditions [17].

Timing Constraints. Constraints on duration or completion time of individual activities and
of whole workflows are especially important in interorganizational workflows as a method to
ensure timely execution of workflows despite execution autonomy of the participants.

Exception Handling. Different kinds of exceptions can occur and need to be handled in
an interorganizational Workflow. Among them are timeouts, exceptions raised by activities or
communicated from an interdependent Workflow fragment, and infrastructure exceptions such as
communication failures. A Workflow specification should define how to deal with such excep-
tions.

2.2.4 Informational Perspective

The informational perspective comprises data strucrures, and data flow between activities. In
interorganizational workflows, data structures have to be specified such that both syntactic and
semantic interoperability is enabled [96]. Specification of data flow must additionally consider
autonomy and privacy of organizations.

Data Types. Both primitive data types and type constructors for complex data types are
needed, as the data strucrures dealt with in interorganizational workflows are often complex
business documents.

Re-useable Data Types. The ability to define re-useable libraries of data types is required,
as such libraries are a prerequisite for standardization efforts.

Data Flow. A data flow specification should express which data is created and accessed by
which activities, in order to facilitate both executable specifications and interoperability. If the

CHAPTER2. SPECIFICATION LANGUAGES 10

data flow specification also Supports data transformations, the Integration of heterogeneous data
formats is possible.

2.2.5 Interaction Perspective

Interdependencies between Workflow fragments require interactions among the participants to
coordinate the execution of Workflow fragments. In intraorganizational workflows, these inter-
actions can be mediated through a central Workflow engine. In interorganizational workflows,
however, the participating organizations need to interact directly.

Interaction Primitives. Interaction primitives are essential as they imply the control flow
and data flow between organizations or Workflow fragments. Common interaction primitives,
such as a request/response pair of messages, should be supported.

Interaction Implementation. A complete interaction specification must also comprise the
binding of interactions to a concrete data representation, such as an XML vocabulary, and a
transport protocol, such as HTTP.

Implementation Independence. Interaction primitives and the binding of primitives
to a concrete interaction implementation should be separate concerns, as this allows for
implementation-independent Workflow types, which can be combined with different implemen-
tations, thereby increasing re-usability.

2.2.6 Organizational Perspective

The organizational perspective is concerned about who participates in which role in a Work-
flow. In contrast to traditional workflows, in interorganizational workflows the participants are
autonomous organizations. The difference arising is that interorganizational workflows cannot
build upon a centralized organizational model, which defines the roles of and relationships be-
tween all organizations.

Roles. Support for roles is required in order to define Workflow types that do not contain
references to any particular organization, thus being re-useable across organizations.

Profiles. Organization profiles should be supported, i.e., a description of the capabilities of
a particular organization in terms of which roles the organization can play in which Workflow
types. Profiles are intended to be shared with (potential) collaborating organizations, e.g., by
Publishing them in a registry thus facilitating future collaboration.

Agreements. Once organizations agree on collaborating in a certain interorganizational
Workflow for a certain time, this should be formally documented to allow, e.g., for authoriza-
tion checks. Therefore, a language for specification of interorganizational workflows should be
able to specify the workflow-related aspects of interorganizational agreements. Note that the
process of reaching agreements is out of the scope of this paper.

Dynamic Participation. Some interorganizational workflows require a flexible decision at
run time regarding the organizations that will participate in the Workflow. For example, in a
purchase Workflow, the shipping Service provider could be selected depending on the location of
the customer, the quantity of ordered goods, and the time to deliver. In such cases, the Workflow
type must specify how to dynamically select organizations, either based directly on Workflow

CHAPTER2. SPECIFICATION LANGUAGES 11

data, or by querying a registry. Although this requirement is not specific to interorganizational
workflows, Special issues arise, such as dynamic interoperability, and legal aspects.

2.2.7 Transactional Perspective

The transactional perspective describes which parts of a Workflow exhibit which transactional
properties. Requirements regarding specification of interorganizational transactions differ con-
siderably from those regarding intraorganizational transactions.

Intraorganizational Transactions. Considering specification of transactions within Work-
flow fragments, different transactional modeis for activities and even whole Workflow fragments
should be supported, ranging from modeis based on traditional ACID properties to extended
transaction modeis relaxing those properties thus being suitable for long running workflows [75].

Interorganizational Transactions. For the specification of transactions spanning organi-
zation boundaries, a transaction model with loosely coupling semantics should be supported,
such that both, design autonomy and execution autonomy are respected. Note that distributed
transactions based on ACID or extended transaction modeis are not suitable, as they require the
participants to take part in a two-phase-commit protocol thus leading to tight coupling [20]. In
this respect, the notion of interoperable transactions has been proposed as a more suitable tech-
nique [97].

2.3 Comparison of Specification Languages

Based on our requirements framework, this section presents the results of our comparison of
seven languages for interorganizational Workflow specification: WSDL, WSFL, ebXML, BPML,
XLANG, BPEL, WSCL, WSCI, and WPDL. The rationale behind choosing these seven lan-
guages is that they either provide a set of interesting concepts and/or are supported by a promi-
nent consortium. A further intent was to assort a representative mix of approaches having both,
different origins and different implementations or application areas. Although WSDL and WPDL
are not dedicated languages for specifying interorganizational workflows, we have included them
into our comparison for the following reasons. WSDL, a representative of Service specification
languages, constitutes the basis for many dedicated interorganizational workflows specification
languages. WPDL, a representative of traditional Workflow specification languages, is used as a
means to highlight the differences berween traditional intraorganizational workflows and interor-
ganizational workflows. Figure 2.2 illustrates these languages, the arcs denoting either influence
relationships or indicating the concrete usage of concepts.

In the following, we will give an overview of the languages and highlight their major
strengths and shortcomings. An overview of the evaluation results can be found in Table 2.1.
The notation used is +, /, and —, meaning that the corresponding requirement is, respectively,
fulfilled, partially fulfilled, or not fulfilled at all.

CHAPTER2. SPECIFICATION LANGUAGES 12

Table 2.1: Overview of Evaluation Results

Functional

Operational

Behavioral

Informational

Interaction

Organizational

Transactional

Interorg. Workflow Type
Information Hiding
Activity Semantics
Activity Implementation

Control Flow Primitives
Timing Constraints
Exception Handling
Data Types
Re—usable Data Types
Data Flow
Interaction Primitives
Interaction Implementation
Implement. Independence
Roles
Profiles
Agreements
Dynamic Participation
Intraorg. Transactions
Interorg. Transactions

Languages

W
SD

L

—
/
/
—

—
—
—
+
/
/
+
+
+
+
/
—
—

—
—

W
SF

L
+
/
/
+

+
—
/
+
/
+
+
+
+
+
/
—
+

—
—

X
L

A
N

G

+
/
/
+

/
/
+
+
/
/
+
+
—

—
/
/
—
+
—

B
PM

L

—
+
/
+

+
+
+
+

/
+
+
—
+
+
—
—
+
+

/

eb
X

M
L

+
/
+

—
+
+
+
+
+
/
+
+
+
+
+
+
—

—
+

W
SC

L

+
/
/

—

/
—
—
+
/
/
+
—
+
+
—
—
—

—
—

W
PD

L

/
/
/
+

+
+
—
+
/
/

—
—
+
+
—
—
—

—
—

Tasks

R
e-

us
ab

le
 W

f.
 T

yp
es

+
+

+
+

+

+
+

Pr
of

ile
s

/
+
+

+
/
/
+

+
+

+
+

/
/

Im
pl

em
en

ta
tio

n

+

+
/
+
+

+
+
+

/
/

/
/

CHAPTER2. SPECIFICATION LANGUAGES 13

Origins EDI, UMM Internet
(HTTP)

XML, XML Name-
spaces, XML Schema

Distributed Computing
(RPC, CORBA)

Languages for the
specification of
interorganizational
workflows

Exemplary
implementations
& applications

ebXML

i

EAI, B2Bi Workflow
Management

OAGIS,
Rosettanet

/ WPDL

Web Service
Frameworks

XLANG BPML

\
MS BizTalk
Server

WSFL

i
IBM
WebSphere

Various WfMS

Legend

1 used by

i influences

Figure 2.2: Overview of languages for interorganizational Workflow specification

2.3.1 WSDL - Web Service Description Language

WSDL [91] is a language for interface specification of web Services. A web Service as specified
by WSDL is a Software component, accessible through the Internet. Unlike interorganizational
workflows, web Services are offered by individual organizations and thus do neither provide an
interorganizational Workflow type nor support behavior specification. The strength of WSDL is
specification of interactions, and many of the languages compared herein build upon WSDL to re-
use this capability. In this respect, WSDL offers two interaction primitives, a one-way message
transmission from one Workflow fragment to another, and a request/response pair of messages.
Note that since WSDL specifies Workflow fragments (WSDL p o r t t y p e) independent of each
other, the interaction primitives come in two variants, one for the fragment initiating the interac-
tion (n o t i f i c a t i o n and s o l i c i t - r e s p o n s e) , and a pendant for the fragment accepting
the interaction (one-way and r e q u e s t - r e s p o n s e , respectively). Concerning specification
of interaction Implementation, WSDL includes a set of protocol bindings. The SOAP binding
allows to use SOAP for the specification of both, data presentation and transport protocol, which
by itself provides a set of alternative choices. Additionally, a HTTP GET/POST binding and
a MIME binding are directly supported by WSDL. Interaction Implementation independence is
supported by a Separation of the logical specification of a Workflow fragment, a WSDL p o r t
t y p e , from the b i n d i n g specifications and the implementation specification (s e r v i c e) .

WSDL has its roots in the area of distributed Computing, with ancestors such as CORBA IDL
and RPC. The main differences to its ancestors are the simplicity of WSDL, and that it is based
on open Standards defined by the W3C, such as XML, XML Schema, XML Namespaces, and
SOAP. WSDL Version 1.1 has been published as a Note by the W3C, and is broadly supported
by web service implementation frameworks, such as Microsoft's .NET.

CHAPTER2. SPECIFICATION LANGUAGES 14

2.3.2 WSFL - Web Service Flow Language

WSFL [48] is built on top of WSDL, and extends WSDL in two orthogonal dimensions thus
addressing besides interaction also most of the other perspectives. First, WSFL can be used to
refine a WSDL Service specification (p o r t t y p e) using concepts known from Workflow man-
agement [49]. Controlflow and dataflow is specified by means of c o n t r o l 1 i n k s and d a t a
l i n k s between activities. Activity implementations are specified by referring to a WSDL de-
scription of a Service which actually implements the activity, whereby the referred Service may
be provided either organization-internal (i n t e r n a l) or by another organization (e x p o r t) .
The organizations providing external Services are selected by so-called l o c a t o r s , which iden-
tify participating organizations either statically, or dynamically either based on Workflow data
or via an UDDI [79] query (cf. dynamic participation). The second dimension is that WSFL
can be used to compose Workflow fragments thus creating interorganizational Workflow types
in a bottom up way. The component Workflow fragments may be either WSFL-refined Service
specifications, or pure WSDL Service specifications. WSFL especially Supports integration of
Workflow fragments with heterogeneous data structures by means of a map element, which uses
XPath [89] expressions to specify the data transformation rules.

Version 1.0 of WSFL has been published by IBM, and is intended as contribution to a future
Standard in this field. WSFL is already supported by IBM products such as WebSphere Business
Integrator [35].

2.3.3 XLANG

XLANG [78] is similar to WSFL, in that it allows to refine WSDL Service specification with
behavior, and in that it provides a means to specify compositions of WSDL Services. There
are, however, a number of major differences to WSFL concerning behavioral and transactional,
functional, and organizational perspectives. First, XLANG uses a different approach to behav-
ior specification, which is more similar to block-structured programming languages than to tra-
ditional Workflow languages and provides specific Support for message handling, timing, and
exception handling not available in WSFL. Furthermore, XLANG supports ACID transactions
as well as open nested transactions with compensation. The second major difference to WSFL
is that XLANG focuses on specifying public Workflow types thereby preserving the design au-
tonomy of organizations. For instance, transition conditions and timing constraints can only be
expressed by names qualified using namespaces. For the same reason, organization-internal data
flow cannot be specified, and transactions are not allowed to span Workflow fragments. The
downside of these features is that XLANG specifications are not executable. The last difference
we would like to point out is the way how WSDL specifications can be composed. An XLANG
Workflow fragment is defined as an extension (XLANG: b e h a v i o r) of a WSDL s e r v i c e spec-
ification, which is bound to a particular network address and thereby to a specific organization.
Compositions of XLANG service specifications can be defined using so-called c o n t r a c t s .
Since c o n t r a c t s define the collaboration among particular organizations, they are a kind of
agreement, whereas in WSFL compositions of service specifications are not bound to particular
organizations.

CHAPTER2. SPECIFICATION LANGUAGES 15

The initial public draft of the specification has been published by Microsoft. XLANG is used
by Microsoft's BizTalk server [55] and supported with tools for graphical modeling as well as
runtime enactment.

2.3.4 BPML - Business Process Modeling Language

BPML [3] is in many respects similar to XLANG. Besides these similarities, it provides on the
one hand additional concepts, such as executable specifications, transactions spanning Workflow
fragments, dynamic participation, and a specific information hiding mechanism, and on the other
hand, lacks interaction implementation. Most notably, BPML Supports executable specifications
which are based on XPath, including executable transition conditions, timing constraints, and
data flow specification. Furthermore, information hiding is best supported by a flexible visibility
mechanism, which explicitly distinguishes between public Workflow types (called p r o c e s s
a b s t r a c t) and private ones (called p r o c e s s) .

Only an early draft of BPML (version 0.4) has been published by the Business Process Man-
agement Initiative (BPMI).

2.3.5 WSCL - Web Service Conversation Language

WSCL [27] is a light-weight interface specification language, with the goal "to define the min-
imal set of concepts necessary to specify conversations". Like XLANG, WSCL is specifically
targeted at public Workflow types. The minimalism of WSCL certainly makes the language and
any implementation of it very simple, but at the same time restricts expressiveness of WSCL
specifications. For instance, concerning the organizationalperspective, WSDL limits the num-
ber of participants in an interorganizational Workflow to two. Regarding the behavioralperspec-
tive, WSCL does not support parallel activities nor timing constraints, and transition conditions
can only use the result type of a preceding activity for decisions. Despite its limitations, the sim-
plicity of WSCL qualifies the language for a combination with WSDL in order to define stateful
Services [27].

WSCL has been developed by HP, derived from the Conversation Definition Language (CDL)
of its now abandoned E-Speak framework. Version 1.0 has been sent to the W3C as a standard-
ization proposal.

2.3.6 ebXML - Electronic Business XML

ebXML (h t t p : //www. ebxml . o r g /) is an initiative supported by UN/CEFACT and OASIS
with the intention to create a successor to traditional EDI Standards based on XML and Inter-
net Standards. A distinguishing characteristic of ebXML is that it wants to provide a complete
framework for business to business transactions, and that it is based on a modeling method-
ology [34] for interorganizational workflows. The broad coverage of the ebXML framework
is captured by a set of related specifications [28]. Specific highlights of ebXML are its Sup-
port for re-useable data types, interorganizational transactions, and profiles and agreements.

CHAPTER2. SPECIFICATION LANGUAGES 16

Re-useable data types are addressed by the core components specification. A core compo-
nent is a data structure with well defined semantics, which is re-useable in many domains and
applications. Users of core components can adapt and compose them by means of so-called
c o n t e x t r u l e s and a s s e m b l y r u l e s , respectively while providing a trace back to the
original semantics. The ebXML interactionprimitives, called b u s i n e s s t r a n s a c t i o n s ,
are a superset of the WSDL primitives. Specifically, ebXML interaction primitives also sup-
port timing, security, and atomicity properties. Both profiles and agreements are best supported
by ebXML. An ebXML C o l l a b o r a t i o n P r o t o c o l P r o f i l e (CPP) includes information
identifying an organization, the Workflow types and roles supported by that organization, and
technical parameters concerning interactions in the supported Workflow types. An ebXML
C o l l a b o r a t i o n P r o t o c o l A g r e e m e n t (CPA) can be derived from the intersection of two
matching CPPs and includes additional information, such as Status and lifetime of the agreement.

Since the ebXML project has been finished, the ebXML specifications have been adopted by
various standardization efforts, either as a framework for specifying their particular vocabularies
and processes, e.g., by the Open Applications Group [22], or by just using the ebXML messaging
Standard, like RosettaNet does. Currently, work on ebXML is continuing in follow on projects.

2.3.7 WPDL - Workflow Process Definition Language

WPDL [17] is part of a set of Standards in the area of Workflow management Systems defined by
the Workflow Management Coalition (WfMC). WPDL is intended for the exchange of Workflow
types between Workflow management Systems (WfMS), but it has not specifically designed for
specification of interorganizational Workflow types. Nevertheless, many concepts of WPDL can
be adapted to be used in an interorganizational setting [15]. The main drawback, however, is its
lack of interaction Support. Although the necessary interactions could be derived from the control
flow and data flow dependencies between Workflow fragments [15], there is no standardized way
for specifying interactions. Finally, it has to be noted that unlike all other languages described in
this paper, WPDL is not based on XML.

2.4 Summary Of Results And Classification Of Languages

In this section, we will try to briefly summarize the results of our comparison by classifying
the languages according to their suitability for three different tasks necessary when specifying
interorganizational workflows in a top down manner (cf. Figure 2.3). These tasks are specifica-
tion of re-usable Workflow types, specification of profiles, and specification of implementation
details. Each of the tasks relates to a specific subset of the requirements identified in our frame-
work in Section 2.2, as described in Table 2.1.

First, the interorganizational Workflow should be specified in a re-usable manner. It should
neither contain details private to an organization, thus preserving autonomy, nor details specific
to an organization, thus increasing reusability. Except XLANG, which lacks support for roles,
all languages qualify for these requirements (cf. Table 2.1). Most notably, ebXML specifically
Supports re-useable information components and is therefore especially suited.

CHAPTER2. SPECIFICATION LANGUAGES 17

. x
Re-usable Workflow Types / /WSDL\ \ P r o f i l e Specification

Implementation Details

Figure 2.3: Suitability of Workflow Specification Languages

Second, as soon as a certain organization wants to announce its capability to play a specific
role in an interorganizational Workflow, profile specifications have to be added. With this, de-
tails of an organization capable of participating in the Workflow are defined including the role
the organization plays together with technology-specific parameters, such as network protocol
and network addresses to be used for communication purposes. The qualifying languages are
ebXML, and WSFL (cf. Table 1). XLANG cannot be used since it lacks Support for roles,
WSDL lacks control flow primitives. WSCL, BPML, and WPDL do not qualify because they
neither support interaction implementation nor profiles.

Third, implementation details have to be added. This requires that the specification is com-
plete, including all activities which are part of the Workflow (even if they are private and not part
of the profile) thus allowing for an executable specification. The only language qualifying for
this task is WSFL (cf. Table 2.1). XLANG does not support executable transition conditions
and intraorganizational data flow.2 BPML and WPDL fail only due to the lack of interaction im-
plementation. The remaining languages, i.e., WSDL, ebXML, and WSCL, are not intended for
implementation specification, and consequently do not support most of the requirements specific
to this task.

2.5 Conclusions
The comparison presented in this paper shows that no single language fulfills all requirements
identified for specifying interorganizational workflows. There are two obvious approaches to
cope with this problem: either some of the languages are extended such that they address all of
the requirements, or the languages which are best suitable for individual tasks are combined. The
first approach of extending languages would have the advantage that a uniform language could
be used, thus avoiding incompatibility and integration problems. Such a "complete" language
would need to be very modular in that it can be adapted to the specific requirements of each
of the tasks. The second approach of combining languages would have the advantage that the

2The XLANG specification mentions executable specifications as a future extension of XLANG, although this
is already supported by the BizTalk Server, a commercially available product which is based on XLANG.

CHAPTER2. SPECIFICATION LANGUAGES 18

existing languages and tools could be re-used. It requires, however, to make the languages com-
patible. While this is the case for some languages, like WSDL and WSCL, it is not for others.
For instance, a combination of ebXML, which is best suited for both specification of interor-
ganizational libraries and profiles, with one suited for implementation, such as WSFL, is tricky
because the ebXML interaction patterns are not compatible with the ones used by WSFL. A more
severe problem is that non of the languages suitable for implementation also Support ebXML's
transaction concept. Additionally, it has to be considered that an implementation language must
also support the ebXML features for timing constraints and exception handling, which, e.g., is
not the case with WSFL.

Our current research activities focus on employing the model driven architecture (MDA) such
that, based on a platform independent model of an interorganizational Workflow, it is possible to
automatically derive Workflow specifications expressed in the specification languages best suited
for any of the different tasks.

Chapter 3

Comparing WSDL-based and
ebXML-based Approaches for B2B
Protocol Specification

When automating business processes spanning organizational boundaries, it is required to ex-
plicitly specify the interfaces of the cooperating Software Systems in order to achieve the desired
properties of interoperability and loose coupling. So-called B2B protocols provide for the for-
mal specification of relevant aspects of an interface, ranging from document types to transac-
tions. Currently, there are two main approaches proposed for the specification of B2B protocols,
the WSDL-based approach supporting Web Service languages, and the ebXML-based approach
supporting languages defined along the ebXML project. Unfortunately, these approaches are
not compatible, thus an organization wanting to engage in B2B collaboration needs to decide
whether to embark on any of these new approaches, and which ones to use. This paper intro-
duces a conceptual framework for B2B protocols, and based on this framework, a methodical
comparison of the two approaches is provided, answering the questions of what the differences
are and whether there are chances to achieve interoperability.

3.1 Introduction

The automation of business processes spanning organizational boundaries has potential. First
Steps towards this goal have proven highly successful, namely the use of email for communica-
tion between human agents, and the use of web applications for communication between humans
and business applications published to the extranet or internet. The complete automation of busi-
ness processes, however, still suffers from high implementation cost. Basically, the additional
complexity is that the business applications of cooperating organizations cannot be developed
independently of each other but need to be interoperable.

Interoperability of cooperating business applications which provides automation requires ex-
plicit specification of requirements and constraints on the business application's interfaces. Such
specifications are referred to as B2B protocols [12], business protocols [64], public workflows

19

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 20

[85], or conversation processes [15]. It has to be emphasized that the specification of a B2B pro-
tocol should be separated from the specifications of workflows within organizations that Support
the protocol, in order to facilitate loose coupling and design autonomy of the intra-organizational
workflows [13, 16].

A B2B protocol defines various aspects of an interface, such as the transport protocol, doc-
ument types, security requirements, and transactional properties, to mention just a few. An
organization playing a certain role in a collaboration has to support the protocol specifications
in order to guarantee interoperability. If a protocol specification does not cover certain aspects,
these have to be agreed on out of band by organizations willing to cooperate in order to achieve
interoperability of their applications. Examples of widely used B2B protocols are EDIFACT,
which Covers only document types, and RosettaNet, which Covers all of the above mentioned
aspects.

Defining protocol specifications by means of formal languages - such as W3C's XML
Schema for the specification of document types - is beneficial in various respects. First, it
enables tool support for development tasks such as consistency checks, development of data
transformations, and customization of predefined protocols in a controlled manner, thus easing
the adoption of a B2B protocol by an organization. Second, interpretation of the specification
allows for a generic, re-useable implementation of functions such as Schema validation, messag-
ing, and security management. Finally, formal specifications which are published on the web
or in specialized repositories provide the basis for automated dynamic discovery and integration
with any organization supporting a matching B2B protocol.

Currently, there are two main technologies proposed for the specification of B2B protocols.
Most prominently, the Web Services idea [46] subsumes a set of specification languages, with
WSDL as its core and several proposed extensions, such as BPEL4WS for the specification of
behavioral aspects. Although the intended application domain of Web Services is not limited
to B2B protocols, B2B is considered the most prominent one. In parallel to Web Services, the
ebXML initiative1 has developed a set of Standards specifically targeted at the specification of
B2B protocols. Vendor support for ebXML, however, is not as strong as for Web Services.
Furthermore the ebXML-based and the WSDL-based approaches are not compatible, thus an
organization wanting to engage in B2B collaboration needs to decide whether to embark on any
of these new technologies, and which ones to use.

There have already been efforts in comparing ebXML and Web Services. In [12], Bussler
identifies the required elements of a B2B protocol, and classifies various B2B Standards using
the categories "business event", "syndication", and "supporting". Languages for the specification
of (aspects of) B2B protocols, such as ebXML and WSDL, are identified as supporting Standards.
No further evaluation of the classified B2B Standards concerning the required protocol elements
is provided. In [84], van der Aalst uses a comprehensive set of control flow and interaction pat-
terns to evaluate the features of several languages proposed for the specification of processes,
including BPEL4WS and Workflow management products. The evaluation is focused on the
control flow aspect, and does not include languages specific for B2B protocol specification. It
is concluded that languages proposed by Software vendors are often influenced by that vendors'

"http://www.ebxml.org/

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 21

product interests, neglecting the real problems. In [73], Shapiro presents a detailed comparison
of BPEL4WS, XPDL, the WfMCs proposed Standard for XML-based Workflow specification
languages, and BPML, a language similar in scope with BPEL. The comparison focuses on the
specification of executable workflows and leaves out the concepts provided by BPEL4WS and
BPML for protocol specification. Similarly, our previous work [5] provides an overview of vari-
ous process specification languages including WSDL-based and ebXML-based ones, but without
making a clear distinction between protocol specification and implementation specification, and
without specifically highlighting the differences between WSDL-based and ebXML-based ap-
proaches. The relationship of Web Services and ebXML has also been discussed in various
magazine articles. For example, [39] argues that ebXML is advantageous in typical "regulated"
B2B scenarios, whereas Web Services are considered adequate for more loose collaborations
without formal commitments.

This paper intends to provide further insight by presenting a methodical comparison of lan-
guages focusing on protocol specification based on a framework for the classification of protocol
layers and aspects. Specifically, we aim to answer the questions of what the actual differences are
between WSDL-based and ebXML-based languages, and whether there are chances to achieve
interoperability. In the following section, we present the framework used to guide the compari-
son. Section 3.3 gives a short overview of the languages and their relationship to our framework.
The detailed comparison is given in Section 3.4. Section 3.5 concludes with a summary of the
comparison and an outlook to future research.

3.2 Framework for Comparison

To describe and compare the capabilities of the two approaches, this section introduces a concep-
tual framework to provide for common terms. The framework is based on the eCo Framework
[25], which provides for a general description of e-commerce Systems, and on the Workflow
model proposed in [68], which provides for a more specific description of Workflow Systems.

First, the conceptual framework is based on the eCo Framework. The latter is a layered
model and can be used by businesses to define and publish descriptions about their e-commerce
Systems. It defines seven layers, whereby the upper three layers (i.e., the "networks", "markets"
and "business" layer) are not relevant for the description of a B2B protocol. The fourth layer,
the Services layer, is used to describe Services by their interfaces which are provided and used by
businesses. A Service may be composed of sub-services and may invoke other Services. These
interactions between Services are described at the interactions layer. It describes the types of
interactions behind each Service, and the types of messages which are exchanged during each
interaction. A message type may contain several document types, which are described at the
documents layer. Finally, the information items layer describes the types of information items
that may be used in document types.

Each layer of the eCo Framework provides for the layer above and builds on the layer beneath.
The layered architecture implies that an artefact defined at one layer is independent of any layer
above. For example, a document type is defined independent of interactions or Services it is used
in. Thus it can be reused across interactions and Services.

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 22

Services
interactions
documents
info. items

func.
X
X
—
—

org.
X
—
—
—

info.
X
X
X
X

behav.
X
X
—
—

secur.
—
X
—
—

trans.
X
X
—
—

causal
—
—
—
X

oper.
—
X
—
—

Table 3.1: Supported combinations of eCo layers and Workflow aspects

Second, the conceptual framework is based on the Workflow model proposed by Rausch-
Schott [68], which describes several aspects of workflows that Workflow descriptions have to
cope with. While the functional aspect specifies what is to be executed, i.e., the semantics of
a function provided by a Workflow, the operational aspect defines how the function is imple-
mented. The behavioral aspect describes how functions can be composed, e.g., as a sequence or
alternative. Concentrating on data, the informational aspect describes data structures and data
flow between functions. The organizational aspect describes personal and technical resources.
The transactional aspect deals with consistency, i.e., how transactions can be used to guarantee
consistent execution of functions or whole workflows. The causal aspect defines why a certain
B2B protocol is specified in a certain way and why it is being executed. And finally, the historical
aspect defines which data should be logged at which point in time.

While Rausch-Schott's model is intended to describe workflows that execute within a single
business, all but one aspect apply for B2B protocols as well and can thus be leveraged for their
characterization. The historical aspect cannot be leveraged because it describes aspects that
each participating business is responsible for separately. Since B2B protocols cross business
boundaries in contrast to traditional workflows, it is necessary to introduce an additional security
aspect. It describes confidentiality, non-repudiation, integrity, authorization, and authentication.

The conceptual framework uses the layers of the eCo framework as a classification of re-
quirements on a B2B protocol specification language, whereby each layer is refined by relevant
Workflow aspects. Considering relevance of combinations of aspects and layers, we consider
only combinations of aspects and layers that are supported by the approaches. The respective
meaning of each of these combinations has been derived from the idiosyncrasies of the ebXML-
based and WSDL-based approaches and will be described along the layer-by-layer comparison
of approaches in Section 3.4. Table 3.1 summarizes the supported combinations of layers and
aspects.

3.3 Overview of Approaches

Each of the two approaches employs a set of specific languages for the specification of different
parts of a B2B protocol. The languages employed in the WSDL-based approach have been
selected from the various proposals made in the Web Services area. Since Web Service languages
are developed by Software vendors in loose cooperation, different options are available for certain

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 23

specification tasks. For the purpose of the comparison, we have included those languages which
we consider as having the broadest support among Software vendors. The languages employed in
the ebXML-based approach are those developed along the ebXML project and following efforts.
The comparison is based on the most recent language specifications. This section introduces the
languages employed by either approach, and how these languages relate to each other and to our
conceprual framework (cf. Figure 3.1).

The WSDL-based approach employs XML Schema (cf. [93, 94]) for the specification of
information items. The documents layer is not supported. Interaction types are specified using
WSDL (Web Service Description Language, cf. [91]) in combination with WSSP (Web Services
Security Policy, cf. [36]), whereby WSSP complements WSDL in that it focuses on the security
aspect. It should be noted that WSSP is in an initial public draft State, which exhibits inconsisten-
cies. Nevertheless, it has been included in this comparison because it is the only option available
for specifying the security aspect. Service types are specified using BPEL (Business Process
Execution Language for Web Services, cf. [4]). Note that WSDL also Supports specification of
service types, but WSDL's concept of Service type refers to Software components, whereas BPEL
specifies service types from a business case point of view, which is also the view taken in this
paper.

Layers

Services

WSDL-based Approach

WSDL BPEL

Interactions WSDL WSSP

Documents

Information
Items XML Schema

ebXML-based Approach

BPSS CPPA

BPSS CPPA

BPSS

XML Schema CCTS

Figure 3.1: Layers of the conceprual framework and supporting languages

The ebXML-based approach also employs XML Schema for the specification of informa-
tion items. Furthermore, CCTS (Core Components Technical Specification, cf. [81]) defines
a methodology and language for identification of information items, which can be used in the
process of defining information items. Document types are specified using BPSS (Business Pro-
cess Specification Schema, cf. [82]). Interaction types are specified in terms of BPSS and CPPA
(Collaboration-Protocol Profile and Agreement Specification, cf. [59]). BPSS provides for the
technology- and business-independent aspects, whereas CPPA is used to Supplement technology
and business details. In particular, CPPA can be used to overwrite certain properties of inter-
action types as defined with BPSS in order to adapt them to the needs of a specific business.
Service types are specified using also BPSS and CPPA. Similar to the interaction layer, CPPA
can be used to adapt a service type to a specific business.

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 24

3.4 Comparison

The comparison is performed along the layers of the eCo model. Beginning at the base layer,
layer by layer and aspect by aspect we will detail the conceptual framework and analyze and
compare the two approaches. The approaches are described in terms of our conceptual frame-
work, with links to the keywords of the specific languages to provide for a better understanding.
Keywords are denoted in Courier fönt using the above introduced language-specific acronyms as
namespace prefix (e.g., wsdl :message). Note that this comparison is performed at the level
of language concepts, for an example specification expressed using both approaches it is referred
to Chapter 4.

3.4.1 Information Items Layer

The Information Items layer specifies re-useable data types, such as address, product code, and
price, independent of their use in particular documents. Aspects of Workflow modeling supported
in the specification of information items are the informational and the causal aspects.

Both the WSDL-based and the ebXML-based approach support XML Schema as the pre-
ferred language for the specification of information items. We will briefly review XML Schema
in the light of our conceptual framework.

The Informational Aspect is concerned with the structure and semantics of information
items, including refinement of information items, composition of information items, and various
constraints such as cardinality.

In this respect, XML Schema provides built-in datatypes and structuring mechanisms. XML
Schema's built-in datatypes are very generic and do not provide semantics specific to the needs
of B2B applications. It is therefore necessary to define more specific ones. Recently, standard-
ization efforts in the B2B area, such as OAG2 and UBL3, have begun to support XML Schema
for the specification of information items, thus such Standard information items can be directly
employed in a WSDL-based or ebXML-based B2B protocol specification.

The Causal Aspect is concerned with the reasons behind the design of information items,
i.e., the identification of influence factors such as the requirements of a specific industry or a
certain country.

XML Schema does not support the causal aspect of information item specification. However,
CCTS, a part of the ebXML project, addresses this aspect. CCTS defines a methodology and
language for the identification and specification of so-called core components, i.e., generic infor-
mation items which are independent of any particular business context such as business process,
industry, and official constraints, and thus widely reusable. To make core components usable
in a specific application context, they are adapted by means of restrictions and/or extensions in
order to incorporate the specific requirements. As the semantics of a specific information item

2http://www.openapplications.org/
3http://www.oasis-open.org/committees/ubl/

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 25

can be derived from the semantics of the core component it is based upon, semantic expressive-
ness and interoperability is improved. CCTS does not specify a concrete Schema language for
core components and Information items, which makes the methodology applicable to different
technologies such as EDI and ebXML. Unfortunately, there is no standardized way to transform
core components to XML Schema. As a possible solution to this problem, the UBL effort creates
Schemas in XML Schema for core components which have been derived from existing Standard
document types. UBL Schemas can be directly used in both ebXML-based and WSDL-based
protocol specifications.

Comparison: The two approaches are very similar as both support XML Schema. Core
components are an innovative part of ebXML which could help overcome the problem of multiple
competing Standards by introducing common abstract information items. However, bindings of
core components to specific Schema definition languages are currently missing, and the core
components methodology is not specific to ebXML and can be used with WSDL as well.

3.4.2 Documents Layer

Documents are Containers for information items and are used to carry information in the Work-
flow within and across businesses. Only the informational aspect is supported in the specification
of document types.

In the WSDL-based approach, document types are not supported at all, meaning that mes-
sage types are defmed directly based on information items. In the ebXML-based approach,
there is some support for document types addressing the informational aspect. A document
type is specified in terms of a name and the information item contained in the document
(bpss :BusinessDocument) . The information item may be further restricted allowing for
application-specific restrictions of Standard information items, e.g., the Status value must be "ac-
cept" (b p s s : C o n d i t i o n E x p r e s s i o n) .

Comparison: Although the WSDL-based approach does not support document types, the
difference to the ebXML-based approach is small and could be overcome by using appropriately
specified information items. In both approaches, documents are not considered first class objects.
The approaches focus on messages instead (cf. Interactions Layer). It is therefore not possible
to describe document-oriented functions such as tracking the flow of a document in a Workflow.

3.4.3 Interactions Layer

An interaction is a basic exchange of messages between business partners having a certain effect.
Interaction types are specified in a declarative way by means of predefined constructs supporting
common interaction patterns. A typical interaction pattern is request/response, e.g., one partner
sends a purchase order request, and the other responds with an acknowledgement, meaning that
the order is in effect. Another typical pattern is the oneway interaction, e.g., one business partner
sends a shipment notification. Several Workflow aspects are supported in the specification of

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 26

an interaction type, namely the functional, informational, behavioral, security, transactional, and
operational aspects.

In the WSDL-based approach, interactions have the semantics of remote procedure calls
(wsd l : o p e r a t ion) , i.e., the initiating partner requests some function and the responding part-
ner performs that function and returns the result. Two kinds of interaction types are supported,
namely request/response and oneway. Note that WSDL itself Supports two views in the specifi-
cation of interaction types, an initiator view and a responder view. When used in combination
with BPEL (as described in this paper), however, only the responder view is used. Interaction
types are defined in the context of an interface of a Software component (wsdl : p o r t T y p e)
and are thus not reusable.

In the ebXML-based approach, the guiding principle behind interactions is the so-called busi-
ness transaction (bpss : B u s i n e s s T r a n s a c t i o n) , i.e., a request/response kind of interac-
tion which may create or resolve a commitment between the two involved partners. Specifically,
the ebXML-based approach adheres to the metamodel for business transactions defined by UMM
(UN/CEFACT Modeling Methodology, cf. [80]). UMM also defines a set of so-called analysis
patterns for business transactions such as Commercial Transaction and Query/Response, which
can be directly used in ebXML.

The Functional Aspect defines the intention of an interaction, i.e., its goal.
In the WSDL-based approach, the functionality of an interaction is specified only in terms

of a name and whether the interaction delivers a result (request/response pattern) or not (oneway
pattern). As mentioned above, the functionality is defined only from the responder's view.

In the ebXML-based approach, an interaction is specified in terms of a name, informal pre-
and postconditions, and whether it delivers a result. Furthermore, an interaction is decomposed
into the functionality at the initiating role (bpss : R e q u e s t i n g B u s i n e s s A c t i v i t y) and at
the responding role (bpss : R e s p o n d i n g B u s i n e s s A c t i v i t y) , each of which is specified
by a name.

In comparison, the ebXML-based approach provides richer support for the specification of
an interaction's functionality, although not on a formal basis.

The Informational Aspect refers to the messages exchanged during an interaction. Mes-
sages are defined by a message type, which in turn specifies the documents to be included in the
message.

In the WSDL-based approach, oneway interaction types comprise only one message
(wsd l : i n p u t) , whereas request/response interaction types comprise a request message
(wsd l : i n p u t) , and a number of alternative response messages (wsd l : o u t p u t or one out
of a set of named w s d l : f a u l t messages). Message types are named reusable entities
(wsd l : message) . Since WSDL has no first-class concept of document type, message types
are defined in terms of a list of named information items (wsd l : p a r t) .

In the ebXML-based approach, interaction types comprise one requesting mes-
sage and optionally a number of alternative responding messages. A message type
(bpss : DocumentEnvelope) is defined by a name, one primary document, which is defined
by a document type, and additionally any number of named attachments, which can be defined

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 27

either by a document type, by a MIME type, or left unspecified. Opposed to the WSDL-based
approach, message types cannot be reused across interaction types.

Overall, both approaches show only minor differences in this aspect. The WSDL-based
approach provides reusable message types. The ebXML-based approach distinguishes between
a primary document and attachments.

The Behavioral Aspect addresses the control flow during an interaction in terms of ordering
message exchanges and of defining initiating and responding roles. Furthermore, timing and
exceptions need to be considered. Typically, the behavior, i.e., the control flow of interactions is
predefined and only limited means of customization are possible.

In the WSDL-based approach, the behavior of the oneway interaction type is asynchronous,
i.e., the initiator sends a message to the receiver. Neither timing nor exceptions are relevant at
this level of abstraction. The request/response interaction type is synchronous, i.e., the initiator
sends a request message to the responder, who responds after processing the message with either
a normal response or an exception message. It is not possible to specify any timing parameters.

In the ebXML-based approach, the behavior of interactions follows the UMM metamodel
for business transactions, which defines the control flow as an enhanced request/response
model. Basically, the initiator sends a message to the responder, the responder processes
the request, and optionally sends back a response message thereby indicating success or fail-
ure of the interaction (bpss : i s P o s i t i v e R e s p o n s e) . This basic model is enhanced with
optional acknowledgement Signals indicating receipt of the request and response messages,
respectively, or indicating acceptance of the request message. Signals indicate either suc-
cess or exceptional termination. A receipt acknowledgement may inform about successful
Schema validation (bpss : i s I n t e l l i g i b l e C h e c k R e q u i r e d) , an acceptance acknowl-
edgement informs about some further validation of the request message's content. Timeout
values can be specified for both request processing (bpss : t imeToPerf orm) and signalling
(bpss : t imeToAcknowledgeReceipt , bpss : t imeToAcknowledgeAcceptance).

The interaction types supported by the WSDL-based approach match the RPC concept known
from programming languages, whereas the interaction types supported by the ebXML-based
approach are a superset of the WSDL ones, additionally including acknowledgement Signals and
timing constraints.

The Security Aspect addresses security properties of interactions, namely integrity, authen-
ticity, and confidentiality of messages, as well as authorization and non-repudiation.

In the WSDL-based approach, only integrity, authenticity, and confidentiality of individ-
ual messages are addressed. In particular, a message type can have an attached security policy
(wssp: Pol icy) , which can specify integrity and authenticity (wssp: I n t e g r i t y) and confi-
dentiality (wssp: C o n f i d e n t i a l i t y) requirements of selected parts of a message. Selecting
parts of a message is done using XPath, which is very expressive but requires knowledge about
the SOAP message format and processing model.

In the ebXML-based approach, the following security requirements can be specified for
each document which is part of a message: integrity (b p s s : isTamperProof) , authen-
ticity (bpss : i s A u t h e n t i c a t e d) , and confidentiality (bpss : isConf i d e n t i a l) . Au-

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 28

thorization (bpss : i s A u t h o r i z a t i o n R e q u i r e d) and non-repudiation (b p s s : i s N o n -
R e p u d i a t i o n R e q u i r e d and b p s s : i s N o n R e p u d i a t i o n O f R e c e i p t R e q u i r e d , re-
spectively) can be specified for the initiating role and the responding role.

In comparison, the WSDL-based approach Supports message security in a more flexible but
also more low-level way, and does not Support specification of authorization and non-repudiation,
the latter being also supported by the ebXML-based approach and being specifically relevant in
B2B protocols.

The Transactional Aspect considers transactional properties of an interaction, such as atom-
icity and consistency, which are of particular importance in a distributed System without central
control.

In the WSDL-based approach, transactional properties of an interaction cannot be specified
explicitly. Although transaction Support is addressed by several proposed protocols such as WS-
Transaction4 and BTP5, the means for including them in a WSDL-based protocol specification
have yet to be defined.

In the ebXML-based approach, at least the atomicity property of transactions is supported
in that each interaction is considered atomic, meaning that an interaction has a defined end and
in that both parties have a consistent knowledge of whether it has succeeded or failed. If it
has failed, it doesn't create any commitments. It has to be mentioned that the behavior of an
interaction is not sufficient to guarantee a consistent understanding about an interaction's final
State, therefore a separate interaction may be necessary to notify the responder about a failure
at the initiator. A detailed analysis of the differences between the ebXML behavior and two-
phase distributed transaction protocols such as BTP can be found in [32]. Besides atomicity, it
can be specified that an interaction must be conducted using a reliable means of communication
(bpss : i s G u a r a n t e e d D e l i v e r y R e q u i r e d) , essentially regarding message exchanges as
sub-transactions of an interaction.

The transactional aspect is addressed only in the ebXML-based approach in that all interac-
tions are considered atomic. This simplifies the specification of business transactions, as these
must include the specification of transactional capabilities.

The Operational Aspect considers how interactions are performed, i.e., the particular
implementation-level protocols to be used for message transport and encoding, security, and
transaction coordination. While in either approach some of these decisions are fix, some options
can be selected in the protocol specification.

In the WSDL-based approach, several options for message transport are available, includ-
ing HTTP and SOAP over HTTP (wsd l : b ind ing) , whereby WSDL interactions are directly
mapped to HTTP interactions. Regarding message encoding (wsdl : b i n d i n g) , the available
options include SOAP and SOAP with Attachments6. Message security is realized according to
WS-Security7, which does not support attachments.

4http://www.ibm.com/developerworks/library/ws-transpec/
5http://www.oasis-open.org/committees/tc\protect\Tl\textunderscorehome.

php?wg\protect\Tl\textunderscoreabbrev=business-transaction
6http://www.w3.org/TR/SOAP-attachments
7http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 29

The ebXML-based approach defines its own messaging protocol [60]. It builds
on SOAP with Attachments and provides extensions addressing reliable messaging and
message security. As underlying transport protocols, HTTP, SMTP, and FTP can
be used (cppa : T r a n s p o r t P r o t o c o l) . The mapping between ebXML interactions
and the interactions of the transport protocol can be flexibly defined, supporting both
synchronous and asynchronous bindings (cppa: CanSend, cppa :CanRece ive , and
cppa : syncReplyMode). Message encoding is done using SOAP with Attachments,
whereby the SOAP message is used for purposes of the ebXML messaging protocol
and documents are encoded as attachments. The layout of that encoding can be spec-
ified in detail (cppa: Packaging) . Message security is realized using S/MIME for
document encryption and XML Signature for signatures carried in the SOAP message
(c p p a : S e n d e r D i g i t a l E n v e l o p e , cppa : SenderNonRepudia t ion , etc.). Non-
repudiation and transaction coordination are realized on top of the ebXML interaction behav-
ior utilizing the the request/response messages and the corresponding acknowledgement signals.
Reliable messaging is provided by ebXML's messaging protocol and can be configured in terms
of number of retries and retry interval (cppa: R e l i a b l e M e s s a g i n g) .

Both approaches use the same core technologies such as HTTP, SOAP, and XML Signature,
however, differently. In particular, the ebXML-based approach defines its own SOAP extensions
regarding reliable messaging and message security and supports both synchronous and asyn-
chronous bindings to lower-level transport protocols.

Comparison:
Besides the operational differences, the most important differences between the two ap-

proaches are at the conceptual level as described. The WSDL-based approach provides only
simple, generic interaction types suitable for many domains. On the contrary, in the ebXML-
based approach interaction types are bundled with features such as non-repudiation and transac-
tions, which make them specifically useful in B2B applications.

Considering interoperability, it is basically possible to express interaction types from the
WSDL-based approach in terms of the ebXML-based approach, not taking into account the im-
plied atomicity of ebXML interactions and the operational differences. Vice versa, two different
approaches exist. First, interoperability can be achieved by extending WSDL interaction types
with more specific features. Since this requires adaptation of existing specifications and tools
of the WSDL-based approach, it is not considered viable. Second, ebXML interaction types
could be expressed using existing and/or forthcoming behavior, security, and transaction features
of the WSDL-based approach (cf. Services Layer). This approach allows the combination of
features in very flexible ways, e.g. one could realize a transaction which involves several interac-
tions and spans multiple business partners, which is not possible in the ebXML-based approach.
The downside is that the resulting specification is much more complex and that the semantics
of ebXML's business transactions is not captured explicitly. Besides conceptual interoperability
as discussed above, operational interoperability could be achieved by adaptation mechanisms to
translate between the different technologies, however, having conceptual interoperability as a
prerequisite.

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 30

3.4.4 Services Layer

A Service is the work done by a business (the Service provider) that benefits another (the ser-
vice consumer). For the specification of a Service type, the supported Workflow aspects are the
functional, organizational, behavioral, informational, and transactional ones, as discussed below.

In the WSDL-based approach, Service types are unilateral, i.e., the Service functionality,
behavior, etc. are specified from the Service provider's point of view. In particular, Service
types are specified using BPEL, which builds upon WSDL interaction types and provides for the
specification of so-called abstract processes (bpel : p r o c e s s) . BPEL also provides concepts
for the specification of so-called executable processes, which define the Workflow realizing a
Service type, however, these are out of scope of a B2B protocol.

In the ebXML-based approach, two kinds of Service types are distinguished. Bilateral
Service types are restricted to exactly two roles, i.e., Service provider and Service consumer
(bpss : B i n a r y C o l l a b o r a t i o n) . Multilateral Service types involving many roles can be
specified as a composition of bilateral Service types (bpss : Mul t i P a r t y C o l l a b o r a t ion).
Each of these two kinds of Service types address all but the informational Workflow aspect.

The Functional Aspect is concerned with the work provided by the Service type and its
functional decomposition. Regarding decomposition, a Service type can be decomposed into
sub-services and ultimately into interactions as defined in the interactions layer.

In the WSDL-based approach, the functionality of a Service type is specified
in terms of a name and the decomposition into interactions (b p e l : invoke and
b p e l : r e c e i v e / b p e l : r e p l y for used and provided functionality, respectively). Through
appropriate combination of these constructs, execution dependencies between interactions can
be defined in flexible ways.

In the ebXML-based approach, bilateral Service types are specified in terms of a
name, informal pre- and postconditions, and the decomposition into bilateral sub-services
(bpss : C o l l a b o r a t i o n A c t i v i t y) a n d interactions (bpss : B u s i n e s s T r a n s a c t i o n -
A c t i v i t y) . Multilateral Service types are specified in terms of a name and the decomposition
into bilateral sub-services. Execution dependencies between interactions can be defined in both
service types, in particular nesting of interactions is supported (bpss : o n l n i t i a t ion).

Comparing both approaches, ebXML provides a richer model supporting pre- and postcon-
ditions and recursive composition of service types, although only for bilateral service types.

The Organizational Aspect addresses the roles of businesses involved in a service type,
and the authorizations and obligations of each role. Furthermore, a role's agent selection policy
defines how a particular business playing that role is identified in an actual service instance.

In the WSDL-based approach, a service type specifies one primary role (b p e l : p r o c e s s)
and a number of secondary roles (b p e l : p a r t n e r) . Only the primary role's functional, behav-
ioral, and informational properties can be specified explicitly, whereas the corresponding prop-
erties of secondary roles are left undefined except for the compatibility requirements imposed
by their relationship with the primary role. Agent selection policies are supported by means of
a specific data type (b p e l : s e r v i c e R e f e rence) which can be used in conjunction with a

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 31

data flow specification (bpe l : a s s i g n) to define possible businesses playing a certain role,
allowing to determine it dynamically at run time.

In the ebXML-based approach, bilateral Service types define two roles (bpss :Ro le) ,
which are associated with the initiating and responding roles of the interactions that con-
stitute the Service (bpss : f romRole and b p s s : t oRole , respectively), thereby implying
the authorizations and obligations of each of the two roles in terms of functional, behav-
ioral, informational, and transactional aspects. Multilateral Service types define multiple roles
(bpss : B u s i n e s s P a r t n e r R o l e) , whereby the relationship between each pair of roles is de-
fined in terms of a bilateral sub-service. A multilateral Service type can furthermore specify
the coordination obligations of a role which is involved in multiple bilateral sub-services using
nesting of interactions (see functional aspect). Agent selection policies are not supported in the
ebXML-based approach.

In comparison, the ebXML-based approach basically supports binary relationships, which
can be considered as closer related to agreements or contracts between collaborating partners,
whereas the WSDL-based approach focuses on the specification of individual roles or endpoints
of relationships rather than relationships, which can be considered as closer related to the im-
plementation of the Workflow supporting the Service. Furthermore, the two approaches have
different limitations regarding the specification of roles and agent selection policies.

The Informational Aspect is concerned with protocol relevant data used in a Service type,
which is defined by variables, their data types, the data flow, and message correlation, i.e., the
association of messages to Service instances.

In the WSDL-based approach, data used in a Service type is defined local to the primary
role, in terms of variables (b p e l : v a r i a b l e) , data types (wsdl : message), the data flow
between variables (bpel r a s s i g n) , and the data flow between variables and interactions
(b p e l : i n p u t V a r i a b l e and b p e l : o u t p u t v a r i a b l e) . Protocol relevant data is explic-
itly identified using XPath expressions applied to the contents of variables (b p e l : p r o p e r t y) .
The data flow of protocol relevant data must be completely specified, whereas the flow of other
application data can be specified only partially. Message correlation is defined based on a subset
of the protocol relevant data which identifies a Service instance in the context of an interaction
(b p e l : c o r r e l a t i o n S e t) .

In the ebXML-based approach neither variables nor data flow can be specified. Furthermore,
message correlation does not need to be defined explicitly in the Service type as it is handled by
the underlying run time infrastructure.

Since the ebXML-based approach does not address the informational aspect. The WSDL-
based approach on the contrary provides support, especially the specification of message corre-
lation provides independence from operational level support for long-running sessions. Further-
more, since the complete specification of data flow is an important prerequisite for the specifica-
tion of executable processes, the Step from Service types to executable processes is smaller than
in the ebXML-based approach.

The Behavioral Aspect describes the dynamics of a service type in terms of states and the
control flow between them, including conditions, timing, and exception handling.

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 32

In the WSDL-based approach, behavior of a Service type is described as local to the primary
role, and only the states and control flow of the primary role are explicitly defined. Behav-
ior is specified primarily in a block-structured way using atomic and composite states. Atomic
states are requested interactions (bpel : invoke), the begin and end of provided interactions
(bpel : r e c e i v e and b p e l : reply) , and service-internal data flow (bpel : ass ign) . Com-
posite states consist of nested atomic or composite states and are interruptible (bpel : scope).
Control flow between states can be specified as sequential (bpe l : sequence, b p e l : l ink) ,
parallel (bpe l : flow), conditional (bpel : switch), repetitive (bpel :while), and as trig-
gered by a timeout or a message receipt (b p e l : p ick, b p e l : eventHandler). Conditions
and temporal expressions are defined using XPath. Regarding exception handling, an exception
can be thrown by a failed interaction or explicitly (bpe l : throw); once thrown the containing
State is interrupted and a corresponding exception handler associated with the State is activated
(bpel : catch) .

In the ebXML-based approach, the behavior of bilateral service types is defined in terms of
the states and the control flow of the relationship as a whole, i.e., without taking into account
that each of the role playing actors must manage its own State and control flow. The concepts
provided for behavior specification are similar to those provided by UML activity diagrams.
In particular, states are defined as either interactions or sub-services, both of which cannot be
interrupted. Control flow between states can be specified as sequential (bpss : T rans i t i on) ,
parallel (bpss : Fork and bpss : Join), conditional (bpss : T r a n s i t i o n with condition),
repetitive (by a cyclic graph of transitions), nested (bpss : o n l n i t i a t i o n) and as triggered
by a timeout of an interaction or a sub-service (bpss : timeToPerf orra). Conditions can
be expressed using XPath, time durations can be either defined as constant or left undefined.
Regarding exception handling, exceptions can be thrown by a failed interaction, a timeout, or
explicitly by means of specific terminal states (bpss : Fa i lu re) . Exceptional control flow is
defined based on appropriate control flow conditions referring to success or failure of the State
preceding a transition (bpss : condit ionGuard). The behavior of multilateral service types
is specified differently in that no global synchronized State is assumed. The behavior interrelating
different sub-services is specified local to the role involved in these sub-services. In particular,
the control flow between certain states of interrelated sub-services can be specified as sequential
or nested (bpss : T r a n s i t i o n , bpss : o n l n i t i a t i o n) .

In the behavioral aspect, the approaches show another big conceptual difference by speci-
fying behavior based on a bilateral synchronized State vs. local to individual roles. Bilateral
synchronized State as provided by the ebXML-based approach greatly simplifies the behavior
specification as there is, e.g., no need for message triggered behavior, whereas a control flow
specification for individual roles may provide higher flexibility. Regarding the control flow con-
cepts provided, ebXML provides fewer and simpler concepts, which helps keeping simple spec-
ifications simple, whereas the WSDL-based approach better addresses exception handling, event
handling, and timing.

The Transactional Aspect considers the transactional properties of a service type, such as
atomicity, and the specific means to achieve them, such as compensation handlers.

In the WSDL-based approach, the transactional aspect is considered to some extent in that

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 33

a mechanism supporting the specification of transaction compensation in open nested transac-
tions is provided (b p e l : c o m p e n s a t i o n H a n d l e r) . It is, however, not possible to explicitly
specify the transactional properties of a Service type.

In the ebXML-based approach, a simple solution based on the atomicity property of inter-
actions is provided in that also all bilateral Service types are defined as being atomic units of
work, but multilateral Service types do not exhibit transactional properties. Regarding compen-
sation, no specific concepts are supported, therefore compensating behavior must be specified
using control flow mechanisms. Besides atomicity, it can be specified that an interaction has le-
gal consequences if completed successfully (bpss : i s L e g a l l y B i n d i n g) , which is, in some
sense, a transactional property.

The ebXML-based approach offers a complete but simple solution to transaction specification
in that all bilateral Service types are atomic per definition, whereas the WSDL-based approach
provides part of a sophisticated solution, i.e., a compensation handling mechanism, but transac-
tional properties cannot be specified as such. Perhaps this will change in future versions when
distributed transaction protocols suitable for the WSDL-based approach are available, which
would enable complex distributed transactions.

Comparison:
Two general differences can be observed between the WSDL-based and the ebXML-based

approach, namely unilateral vs. bilateral specification of Service types, and powerful but complex
vs. simplified constructs regarding the behavioral, informational, and transactional aspects.

Regarding interoperability, in general it is not possible to express WSDL-based Service speci-
fications in terms of ebXML-based ones due to ebXML's lack of expressive power in the informa-
tional and behavioral aspects. Translating ebXML-based service specifications to WSDL-based
ones is possible to some extent. Such a translation would include generating unilateral specifi-
cations of bi- and multilateral ones, and generating generic data flow and message correlation
specifications. The binary and multiparty relationships as well as the semantics of transactional-
ity and business transactions, however, cannot be translated.

3.5 Summary and Outlook

We have introduced a conceptual framework for the analysis of B2B protocols, based on existing
frameworks from the areas of B2B protocol specification and Workflow management, respec-
tively. Using this framework, two major approaches for specifying B2B protocols, the WSDL-
based approach and the ebXML-based approach, have been analyzed and compared.

The results of the comparison show that the difference between the two approaches at the base
layers of the eCo framework, i.e., information items and documents, are quite small, whereas at
the higher layers, i.e., interactions and Services, the approaches provide different concepts. The
main differences between the two approaches are summarized in Table 3.2. As can be seen, the
ebXML-based approach provides richer concepts at the interactions layer allowing for a declara-
tive specification of many interaction characteristics relevant to business transactions. Based on
this rieh interaction concept, the concepts provided at the Services layer are simple while being

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 34

Layers

Services

interactions

documents
info. items

WSDL-based Approach

unilateral, expressive
(data flow, message correlation,
agent selection, exceptions,
events, and compensation)
asynchronous (oneway) and
synchronous (request/response)
interactions

not supported
none

ebXML-based Approach

primarily bilateral, simple
(synchronized State), transaction
atomicity

request/response with acknowledge-
ments supporting non-repudiation
and transaction atomicity, timing,
synchronous and asynchronous binding,
and reliable messaging
rudimentary support only
core components methodology
(not exclusive to this approach)

Table 3.2: Main distinguishing characteristics of the two approaches

sufficiently expressive. In contrast, the WSDL-based approach Supports only basic interaction
concepts but offers powerful concepts at the Services layer. Resulting from the differences, there
is no direct interoperability between the WSDL-based approach and the ebXML-based approach,
neither conceptually nor operationally.

Finally, answering the question of which of the approaches to use, the ebXML-based ap-
proach is favorable for its closer alignment with the B2B domain, because it provides more
specific concepts and is therefore much simpler to use while being expressive enough to cover
typical B2B applications. The WSDL-based approach, on the other hand, is favorable for its
much stronger vendor support and tool availability. Furthermore, it is closer aligned with exist-
ing Software components which need to be integrated in the implementation of a B2B protocol
in an organization.

To get best of both approaches, one could use the ebXML-based approach for the specifi-
cation of a B2B protocol, and automatically generate a WSDL-based specification suitable for
implementation. This would require to defme a transformation from ebXML-based to WSDL-
based specifications. Since the WSDL-based specification would not capture all concerns cov-
ered in the ebXML-based specification, e.g., non-repudiation, the B2B protocol would comprise
both specifications. Going one Step further, one could use a conceptual modeling language such
as UML for the design of B2B protocols independent of the idiosyncrasies of particular specifi-
cation languages, and automatically generate WSDL-based and/or ebXML-based specifications
out of the UML modeis following the model-driven architecture approach8. This would require
to define a UML profile for B2B protocol specification and corresponding mappings to WSDL
and ebXML. Such a UML profile would likely be based on the conceptual framework used in
this paper, and on already existing work such as the UMM [80] and OMG's UML Profile for
Enterprise Distributed Object Computing [62]. Elaborating these ideas, as well as completing

8http://www.omg.org/mda/

CHAPTER 3. COMPARING WSDL-BASED AND EBXML-BASED APPROACHES 35

the conceptual framework with the business and market layers of the eCo framework, is subject
of ongoing work.

Chapter 4

Example B2B Protocol Specification Using
WSDL and ebXML

The automation of business processes spanning organizations requires the formal specification
of so-called B2B protocols, which define the interfaces of cooperating business Software Systems
thereby enabling interoperability and loose coupling. Currently, there are two main approaches
proposed for the specification of B2B protocols, the WSDL-based approach supporting Web Ser-
vice languages, and the ebXML-based approach supporting languages defined along the ebXML
project. This paper describes an example B2B protocol specification using either approach based
on a coramon scenario, in order to provide an understanding of the respective approaches and
their differences at the source code level.

4.1 Introduction
Automation of collaboration between organizations requires an explicit specification of require-
ments and constraints on the business application's interfaces to enable interoperability. Such
specifications are referred to as B2B protocols [12], business protocols [64], public workflows
[85], or conversation processes [15]. A B2B protocol defines various aspects of an interface, such
as the transport protocol, document types, security requirements, and transactional properties, to
mention just a few. Examples of widely used B2B protocols are EDIFACT, which Covers only
document types, and RosettaNet, which Covers all of the above mentioned aspects. It has to be
emphasized that the specification of a B2B protocol should be separated from the specifications
of workflows within organizations that support the protocol, in order to facilitate loose coupling
and design autonomy of the intra-organizational workflows [13, 16].

Defining protocol specifications by means of formal languages - such as W3C's XML
Schema for the specification of document types - is beneficial in various respects. First, it
enables tool support for development tasks such as consistency checks, development of data
transformations, and customization of predefined protocols in a controlled manner, thus easing
the adoption of a B2B protocol by an organization. Second, Interpretation of the specification
allows for a generic, re-useable implementation of functions such as Schema validation, rnessag-

36

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 37

ing, and security management. Finally, formal specifications which are published on the web
or in specialized repositories provide the basis for automated dynamic discovery and Integration
with any organization supporting a matching B2B protocol.

Currently, there are two main technologies proposed for the specification of B2B protocols.
Most prominently, the Web Services idea [46] subsumes a set of specification languages, with
WSDL as its core and several proposed extensions, such as BPEL4WS or WSCI for the spec-
ification of behavioral aspects. Although the intended application domain of Web Services is
not limited to B2B protocols, B2B is considered the most prominent one. In parallel to Web
Services, the ebXML initiative1 has developed a set of Standards specifically targeted at the spec-
ification of B2B protocols. Vendor support for ebXML, however, is not as strong as for Web
Services. Furthermore the ebXML-based and the WSDL-based approaches are not compatible,
thus an organization wanting to engage in B2B collaboration needs to decide whether to embark
on any of these new technologies, and which ones to use.

This paper describes an example B2B protocol specification of a common example using
either approach in order to provide an understanding of the respective approaches and their dif-
ferences at the source code level. The example business process involves two organizations, a
buyer and a seller, and two interactions, goods ordering and notifying shipment. The process
proceeds in two Steps. First, the buyer Orders the goods from the seller, who in turn acknowl-
edges the order. Second, if the order acknowledgement was positive, and when the ordered goods
become ready to be shipped, the seller notifies the buyer about that event.

To make the the two example specifications more comparable, we employ the eCo architec-
ture [25] for structuring the description of the example specifications. The eCo architecture is
a layered model for descriptions about e-commerce Systems. It defines seven layers, whereby
the upper three layers (i.e., the "networks", "markets" and "business" layer) are out of scope of
the example business process. The fourth layer, the Services layer, is used to describe Services
by their interfaces which are provided and used by businesses. A Service may be composed of
sub-services and may invoke other Services. These interactions between Services are described
at the interactions layer. It describes the types of interactions behind each Service, and the types
of messages which are exchanged during each interaction. A message type may contain several
document types, which are described at the documents layer. Finally, the information items layer
describes the types of information items that may be used in document types.

The examples are explained layer by layer in a bottom-up way, starting at the information
items layer, because of the layered architecture implying that an artefact defined at one layer
is independent of any layer above. In particular, we will discuss for each layer what needs to
be specified and how it can be done using the WSDL-based and the ebXML-based approach,
respectively, by presenting excerpts from source code and corresponding explanations. In the
remainder of this section, we present a short overview of the languages employed in the two
approaches. In the following sections, the example specifications are presented layer by layer.
The paper concludes with a discussion of the results.

'http://www.ebxml.org/

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 38

4.1.1 Overview of Approaches

Each of the two approaches employs a set of specific languages for the specification of differ-
ent parts of a B2B protocol. The languages employed in the WSDL-based approach have been
selected from the various proposals made in the Web Services area. Since Web Service lan-
guages are developed by Software vendors in loose cooperation, different options are available
for certain specification tasks. In this example, we have used those languages which we con-
sider as having the broadest support among Software vendors. The languages employed in the
ebXML-based approach are those developed along the ebXML project and following efforts.
The comparison is based on the most recent language specifications. This section introduces the
languages employed by either approach, and how these languages relate to each other and to the
eCo architecture (cf. Figure 4.1).

The WSDL-based approach employs XML Schema (cf. [93, 94]) for the specification of
information items. The documents layer is not supported. Interaction types are specified using
WSDL (Web Service Description Language, cf. [91]) in combination with WSSP (Web Services
Security Policy, cf. [36]), whereby WSSP complements WSDL in that it focuses on the security
aspect. It should be noted that WSSP is in an initial public draft State, which exhibits inconsisten-
cies. Nevertheless, it has been included in this comparison because it is the only Option available
for specifying the security aspect. Service types are specified using BPEL (Business Process
Execution Language for Web Services, cf. [4]). Note that WSDL also Supports specification of
Service types, but WSDL's concept of Service type refers to Software components, whereas BPEL
specifies Service types from a business case point of view, which is also the view taken in this
paper.

Layers

Services

WSDL-based Approach

I WSDL ! BPEL

Interactions WSDL WSSP

Documents

Information
Items XML Schema

ebXML-based Approach

BPSS CPPA

BPSS CPPA

BPSS

XML Schema CCTS

Figure 4.1: eCo layers and supporting languages

The ebXML-based approach also employs XML Schema for the specification of informa-
tion items. Furthermore, CCTS (Core Components Technical Specification, cf. [81]) defines
a methodology and language for identification of information items, which can be used in the
process of defining information items. Document types are specified using BPSS (Business Pro-
cess Specification Schema, cf. [82]). Interaction types are specified in terms of BPSS and CPPA
(Collaboration-Protocol Profile and Agreement Specification, cf. [59]). BPSS provides for the

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 39

technology- and business-independent aspects, whereas CPPA is used to Supplement technology
and business details. In particular, CPPA can be used to overwrite certain properties of inter-
action types as defined with BPSS in Order to adapt them to the needs of a specific business.
Service types are specified using also BPSS and CPPA. Similar to the interaction layer, CPPA
can be used to adapt a Service type to a specific business.

4.2 Information Items Layer

The information items needed in our business process include simple information items such as
order id, and issue date, and also complex information items such as order lines, and the complete
order. Information items are intended to be reused in different applications in order to facilitate
integration and interoperability. Consequently, existing information items should be reused as
much as possible.

4.2.1 WSDL-based Approach

In the WSDL-based approach, information items are specified using XML Schema. See the
ebXML-based approach below for an information item specification based on XML Schema,
which can also be used in the WSDL-based approach.

4.2.2 ebXML-based Approach

In the ebXML-based approach, information items are preferrably specified using XML Schema.
Furthermore, a methodology for finding existing information items and defining new ones is
provided by CCTS. The basic concept of this methodology are the so-called core components,
i.e., generic information items which are independent of any particular business context such
as business process, industry, and official constraints, and thus widely reusable. To make core
components usable in a specific application context, they are adapted by means of restrictions
and/or extensions in order to incorporate the specific requirements. Adapted core components are
called business information entity. CCTS is primarily intended to be applied by standardization
efforts.

For instance, the UBL effort2 creates a library of core components based on existing Standard
document types (xCBL3), and also provides Schemas in XML Schema for these core compo-
nents. Among the information items defined by UBL is Order , which is also usable in our
example business process. The XML Schema fragment below shows part of the definition of the
UBL Orde r business information entity. As can be seen, an UBL Schema provides documenta-
tion linking back to the core components implemented by the schema by means of the elements
c c t s : ABIE and c c t s : BBIE denoting aggregate and basic business information entities, re-
spectively. Such linking information facilitates deriving the semantics of the XML elements
specified in the schema.

2http://www.oasis-open.org/committees/ubl/
3http://www.xcbl.org/

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 40

Information item specification usingXML Schema as done in UBL4

<?xml version="l.0" encoding="UTF-8"?>
<xsd:Schema

xmlns:bie="urn:oasis:names:tc:ubl:Order:1.0:0.70.xsd"
xmlns:ccts="urn:oasis:names:tc:ubl:CoreComponentParameters...

<xsd:element name="Order" type="OrderType" id="UBL000001"/>
<xsd:complexType name="OrderType" id="UBL000001">

<xsd:annotation>
<xsd:documentation>

<ccts:ABIE dictionaryEntryName="Order. Details"
definition="information directly relating to

the order."
obj ectClassTerm="Order"
propertyTerm="Details"
representationTerm="Details"/>

</xsd:documentation>
</xsd:annotation>
<xsd:seguence>

<xsd:element ref="OrderID" id="UBL000002">
<xsd:annotation>

<xsd:documentation>
<ccts:BBIE dictionaryEntryName="Order. Identifier"

definition="The Orderld element is a
unique number assigned to the Order in
respect to the parties assigning the
number."

objectClassTerm="Order"
propertyTerm="Identification"
representationTerm="Identifier"/>

</xsd:documentation>
</xsd:annotation>

</xsd:element>

4.3 Documents Layer

The document types used in our business process are order, order acceptance, order denial, and
shipment notice.

4Excerpt from UBL_Library_0p70_Order.xsd downloaded from h t tp : / /oas i s -open .org /
committees/ubl/lcsc/0p70/UBL0p70.zip

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 41

4.3.1 WSDL-based Approach

In the WSDL-based approach, specification of document types is not supported at all, meaning
that interaction types are defined directly based on information items representing documents,
such as the Order element shown above.

4.3.2 ebXML-based Approach

In the ebXML-based approach, document types need to be explicitly specified in terms of a
name and the information item contained in the document. The information item may be further
restricted allowing for application-specific restrictions of Standard information items.

In the fragment of a BPSS below (element bpss : P r o c e s s S e p c i f i c a t i o n) , a docu-
ment named P u r c h a s e O r d e r is specified (element bps s : BusinessDocument) in terms
of a Reference to the Order information item as described in the information items layer. Fur-
thermore, it is specified that the order document will contain pricing information in US dollars
(element b p s s : C o n d i t i o n E x p r e s s i o n) .

Document type specification using BPSS

<bpss:ProcessSpecification . . .>
<bpss:BusinessDocument name="PurchaseOrder"

nameID="PurchaseOrder_BD"
specificationLocation="UBL_Library_0p70_Order.xsd" />
specificationElement="Order" >

<bpss:ConditionExpression expressionLanguage="XPath"
expression="/Order/OrderPricingCurrencyCode = 'USD'" />

</bpss:BusinessDocument>

4.4 Interactions Layer

The interaction types used in our business process are order and shipment notification. The
order interaction type involves the buyer sending and order to the seller and the seller processing
the request and responding with either an order confirmation or an order denial. The shipment
notification interaction type involves the seller sending a shipment notice to the buyer.

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 42

4.4.1 WSDL-based Approach

In the WSDL-based approach, interactions are specified using WSDL and WSSP. WSDL sup-
ports message types as first class entities, interaction types are defined based upon message types.
We will first describe the specification of message types using WSDL in combination with WSSP,
and, based on that, describe the specification of interaction types using WSDL.

The fragment of a WSDL Schema shown below (element w s d l : def i n i t i o n s) defines a
message type named P u r c h a s e O r d e r in terms of its data structure and security policies (ele-
ment w s d l : message) . The message type comprises one message part named o r d e r , which
in turn is defined by the XML Schema element specification u b l : Orde r as shown in the infor-
mation items layer. The relationship to the specific Schema is established via the w s d l : i m p o r t
element. Note that the original UBL Schema doens't define a target namespace for the Or-
der element. For the purpose of this example, we assume that the element is defined in some
namespace, as WSDL doesn't support unqualified references. As an extension to the WSDL
message type, WSSP is used to specify a security policy named t n s : I n t e g r i t y P o l i c y
and attach it to the P u r c h a s e O r d e r message type (attribute wsp: P o l i c y R e f s). The
t n s : I n t e g r i t y P o l i c y defines that the message body will be signed using a certain algo-
rithm and that an X509 certificate of the signer's identity is to be included. Note that the specifi-
cation of the parts of the message requiring to be signed (element M e s s a g e P a r t s) is an XPath
expression evaluated in the context of a SOAP message's root element SOAP:Envelope.
Therefore, this security policy depends on SOAP being used.

Message type specified using WSDL and WSSP

<wsdl:definitions . . .>

<wsdl:import namespace="urn:oasis rnames:tc:ubl:Order:1.0:0.70"
location="UBL_Library_0p70_Order NS.xsd" />

<wsdl:message name="PurchaseOrder"
wsp:PolicyRefs="tns:IntegrityPolicy">

<wsdl:part name="order"
element="ubl:Order" />

</wsdl:message>

<wsp:UsingPolicy wsdl:Required="true"/>

<wsp:Policy . . . Name="IntegrityPolicy">
<wssp:Integrity wsp:Usage="wsp:Required">

<wssp:Algorithm Type="wssp:AlgCanonicalization"
URI="http://www.w3.org/Signature/Drafts/xml-exc-cl4n"/>

<wssp:Algorithm Type="wssp:AlgSignature"
URI="http://www.w3.org/2000/09/xmldsig#rsa-shal"/>

<wssp:SecurityToken>
<wssp:TokenType>wssp:X509v3</wssp:TokenType>

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 43

</wssp:SecurityToken>
<MessageParts

Dialect="http://Schemas.xmlsoap.org/2 002/12/wsse#part">
wsp:Body()</MessageParts>

</wssp:Integrity>
</wsp:Policy>

Regarding interaction types, WSDL supports two kinds of interaction types, namely re-
quest/response and oneway. The order interaction type can be specified using a request/response
kind of interaction type, whereas the shipment notification can be specified using a oneway kind.

In WSDL, interaction types are defined in the context of an interface of a Software compo-
nent (wsd l : p o r t T y p e) . Two views are supported in the specification of interaction types, an
initiator view and a responder view. When used in combination with BPEL, as described in this
paper, however, only the responder view is used. In our example, this means that the interaction
types have to be grouped into two port types. One for the interaction types responded to by the
buyer, i.e., the shipment notification interaction type, and another port type for the interaction
types responded to by seller, i.e., the order interaction type.

The WSDL fragment below shows the specification of the O r d e r interaction type (ele-
ment w s d l : O p e r a t i o n) as part of the seller's port type (element p o r t T y p e) . It is a re-
quest/response kind of interaction type, as indicated by the w s d l : i n p u t element defining the
request message, followed by a w s d l : Outpu t element defining the normal response message
and a w s d l : f a u l t element indicating a potential error response message.

The operational details of the interaction types in a port type are specified in a so-called
binding. Operational details include the transport protocol to be used, and the message encod-
ing format. In the WSDL fragment below, a binding of the seller's port is shown (element
w s d l : b i n d i n g) , which specifies that SOAP over HTTP is used as transport protocol (element
s o a p : b i n d i n g) . Furthermore, the fragment shows the message encoding specification for the
request message, defining it as a SOAP message with the order part contained as an element of
the SOAP body encoded in literal form, i.e., as defined by the XML Schema.

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 44

Interaction type specified using WSDL

<wsdl:portType name="Seller_PT">
<wsdl:Operation name="Order">

<wsdl:input message="tns:PurchaseOrder"/>
<wsdl: Output message="tns : PurchaseOrderAcceptance"/>
<wsdl:fault name="denied" message="tns:PurchaseOrderDenial"/>

</wsdl:operation>

<wsdl:binding name="Seller_SOAP_PT" type="tns:Seller_PT">
<soap:binding transport="http://Schemas.xmlsoap.org/soap/http'

style="document" />
<wsdl:Operation name="Order">

<wsdl:input>
<soap:body parts="order" use="literal"/>

</wsdl:input>
<wsdl:Output ...>
<wsdl:fault ...>

</wsdl:operation>

</wsdl:definitions>

4.4.2 ebXML-based Approach

In the ebXML-based approach, BPSS and CPPA are used in combination for the specification
of interaction types. BPSS provides for the specification of abstract Service types, and CPPA
provides for the specification of operational details as well as configuration parameters relevant
to a particular business or a particular agreement between businesses. In the following, we will
first describe the use of BPSS for the specification interaction types, and then the use of CPPA.

BPSS interaction types are specified based on the metamodel for business transactions
defined by UMM (UN/CEFACT Modeling Methodology, cf. [80]). UMM also defines a
set of so-called analysis patterns for business transactions such as Commercial Transaction
and Query/Response, which can be directly implemented in BPSS. In the BPSS fragment
below, the order interaction type is defined (element b p s s : B u s i n e s s T r a n s a c t i o n)
according to the "commercial transaction" pattern as defined by UMM5 with the corre-
sponding security, timing, and reliability constraints. The specification is divided into
the requsting role (bpss : R e q u e s t i n g B u s i n e s s A c t i v i t y) and the responding role
(bpss : R e s p o n d i n g B u s i n e s s A c t i v i t y) . For each of the roles, the interaction param-
eters are specified, as well as the request and response messages. The request message is

5Neither UMM nor ebXML define possible values of the attribute p a t t e r n . The URI used in the example is
fictious.

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 45

defined as comprising one primary document PurchaseOrder with certain security prop-
erties and no attachments (element bpss :DocumentEnvelope). Two alternative response
messages are defined, one (PurchaseOrderAcceptance) indicating success, the other
(PurchaseOrderDenial) indicating failure (attribute i sPos i t iveResponse) .

Interaction type specification using BPSS

<bpss:ProcessSpecification ...>

<bpss:BusinessTransaction name="PurchaseOrderTransaction"
nameID="PurchaseOrderTransaction_BT"
pattern="http://ebxml.org/patt/CommercialTransaction"
isGuaranteedDeliveryRequired="true">

<bpss:RequestingBusinessActivity name="Offer"
isAuthorizationRequired="true"
isIntelligibleCheckRequired="true"
isNonRepudiationReceiptRequired="true"
isNonRepudiationRequired="true"
timeToAcknowledgeAcceptance="PT6H"
retryCount="3"

timeToAcknowledgeReceipt="PT2H">
<bpss:DocumentEnvelope businessDocument="PurchaseOrder"

businessDocumentIDRef="PurchaseOrder_BD"
isAuthenticated="true"
isConfidential="false"
isTamperProof="true" />

</bpss:RequestingBusinessActivity>
<bpss:RespondingBusinessActivity name="Accept"

isAuthorizationRequired="true"
isIntelligibleCheckRequired="true"
isNonRepudiationRequired="true"
timeToAcknowledgeReceipt="PT2H">

<bpss:DocumentEnvelope

businessDocument="PurchaseOrderAcceptance"
isPositiveResponse="true"
... />

<bpss:DocumentEnvelope
businessDocument="PurchaseOrderDenial"
isPositiveResponse="false"
... />

</bpss:RespondingBusinessActivity>
</bpss:BusinessTransaction>

The operational details are specified using CPPA in a so-called collaboration protocol pro-
file (element cppa : C o l l a b o r a t i o n P r o t o c o l P r o f i l e) , fragments of which are shown

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 46

below. CPPA does not adhere to the eCo layered architecture as operational details can only be
specified in the context of a particular business or in the context of a particular agreement be-
tween businesses. Unlike with abstract interaction types, the specification of operational details
of a service type is not reusable across businesses. In the following, the example specification
of the seller is presented along five main components called service binding, delivery Channel,
transport protocol configuration, ebXML messaging protocol configuration, and message pack-
aging specification.

The service binding (element cppa : Se rv i ceB ind ing) specifies the operational de-
tails for each of the interactions in a service type (the service type is referenced via the
cppa: P r o c e s s S p e c i f i c a t i o n element, its description can be found in Section 4.5). Note
that this is another difference to the eCo architecture as operational details are not specified
per interaction type but only per usage of an interaction type in a particular service type and
in the context of a particular business. The cppa :Ro le element identifies the role within
the service type, in our case the seller. Since the operational details are specified in the con-
text of the seller, the responder's view is taken for the oder interaction and the initiator's view
is taken for the notify shipment interaction. The specification deals with individual incom-
ing and outgoing messages, for example in the order interaction, there is an incoming request
message (element cppa : CanReceive), an outgoing receipt acknowledgement message (el-
ement cppa: CanSend, not shown in füll detail), and so on. Note that the acknowledge-
ment message is implicitly specified by the BPSS interaction types but needs to be explicitly
specified at this level. The relationship of the individual messages to BPSS interactions is de-
fined via the cppa: A c t i o n C o n t e x t element. The actual operational details, i.e., the spec-
ification of the delivery Channel and the message packaging to be used, are given by the ele-
ment cppa : Channe l Id the attribute cppa : package ld , respectively. Furthermore, mest-
ing of CanSend and CanReceive elements could be used to express synchronous message
exchanges. In our example, however, all request, acknowledgement, and response messages
are exchanged asynchronously. Finally, the settings of the BPSS interaction type regarding se-
curity and timing could be overwritten, but in our example they remain unchanged (element
t p : B u s i n e s s T r a n s a c t i o n C h a r a c t e r i s t i c s) .

Service binding specification using CPPA

<cppa:CollaborationProtocolProfile . . .>
<cppa:Partyinfo partyName="aSeiler" . . .>

<cppa:CollaborationRole>
<cppa:ProcessSpecification cppa:version="l.0"

cppa:name="test"
xlink:href="test.bpss.xml"
cppa:uuid="urn:icann:buyer.com:bpid:test$1.0" >

<cppa:Role cppa:name="test"
xlink:href="test.bpss.xml#SellerId" />

<cppa:ServiceBinding>

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 47

<cppa: Service> um: icann:buyer. com:bpid: tes t$ l . 0
</cppa:Service>
<cppa:CanSend>...</cppa:CanSend>

<!-- asynchronous binding:
CanReceive independent from CanSend -->

<cppa:CanReceive>
<cppa:ThisPartyActionBinding

cppa:id="Seller_ReceiveOffer"
cppa:action="Offer"
cppa:packageId="Seller_OrderRequestPackage">

<cppa:BusinessTransactionCharacteristics />
<cppa:ActionContext

cppa:binaryCollaboration="DropOrder"
cppa:businessTransactionActivity="Order"
cppa:requestOrResponseAction="Offer"/>

<cppa:ChannelId>Seller_asyncChannel</cppa:Channelld>
</cppa:ThisPartyActionBinding>

</cppa:CanReceive>

The delivery Channel specifies the endpoint where the seller can be reached, in terms of the
transport protocol and messaging protocol. Different to the WSDL-based approach, the specifi-
cation is not separated into business-specific and business-independent aspects. As the focus of
this example is B2B protocol specification, we omit the business-specific details such as security
certificates identifying a particular business.

A delivery Channel is basically specified by referencing a transport protocol configu-
ration (attribute cppa : t r a n s p o r t l d) and a messaging protocol configuration (attribute
c p p a : docExchangeld) .

Endpoint specification using CPPA

<cppa:DeliveryChannel cppa:ChannelId="Seller_asyncChannel"
cppa:transportId="Seller_transport"
cppa:docExchangeId="Seller_docExchange"

<cppa:MessagingCharacteristics />
</cppa:DeliveryChannel>

The transport protocol configuration specified the transport protocol(s) available for send-
ing and/or receiving messages (element cppa: Transpor t) . In our example, we basically
specify that HTTPS with basic or digest authentication is to be used as transport protocol
(element tp :Transpor tSender) . Note that the security configuration parameters such
as C l i e n t C e r t i f ica teRef and S e r v e r S e c u r i t y D e t a i l s R e f refer to business-
specific settings not included in this example.

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 48

Endpoint transport protocol specification using CPPA

•ecppa: Transport cppa : transportId="Seiler_transport">
<cppa:TransportSender>

<cppa:TransportProtocol cppa:version="l.1"> HTTP
</cppa:TransportProtocol>
<cppa:AccessAuthentication> basic
</cppa:AccessAuthentication>
<cppa:AccessAuthentication> digest
</cppa:AccessAuthentication>
<cppa:TransportClientSecurity>

<cppa:TransportSecurityProtocol cppa:version="3.0"> SSL
</cppa:TransportSecurityProtocol>
<cppa:ClientCertificateRef

cppa:certId="Seller_ClientCert" />
<cppa:ServerSecurityDetailsRef

cppa:securityId="Seller_SecurityDetails" />
</cppa:TransportClientSecurity>

</cppa:TransportSender>
<cppa:TransportReceiver>

The messaging protocol configuration shown below specifies the parameters for ebXML mes-
saging protocol, including reliable messaging parameters, and signature and encryption algo-
rithms (element cppa : DocExchange).

Endpoint messaging configuration specification using CPPA

<cppa:DocExchange cppa:docExchangeId="Seller_docExchange">
<cppa:ebXMLSenderBinding cppa:version="2.0">

<cppa:ReliableMessaging>
<cppa:Retries>3</cppa:Retries>
<cppa:RetryInterval>PT2H</cppa:RetryInterval>
<cppa:MessageOrderSemantics> Guaranteed
</cppa:MessageOrderSemantics>

</cppa:ReliableMessaging>
<cppa:PersistDuration>PlD</cppa:PersistDuration>
<cppa:SenderNonRepudiation>

<cppa:NonRepudiationProtocol>
http://www.w3.org/2000/09/xmldsig#

</cppa:NonRepudiationProtocol>
<cppa:HashFunction>

http://www.w3.org/2000/09/xmldsig#shal
</cppa:HashFunction>
<cppa:SignatureAlgorithm>

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 49

http://www.w3.org/2 000/09/xmldsig#dsa-shal
</cppa:SignatureAlgorithm>
<cppa:SigningCertificateRef

cppa:certId="Seller_SigningCert" />
</cppa:SenderNonRepudiation>
<cppa:SenderDigitalEnvelope>

<cppa:DigitalEnvelopeProtocol cppa:version="2.0"> S/MIME
</cppa:DigitalEnvelopeProtocol>
<cppa:EncryptionAlgorithm> DES-CBC
</cppa:EncryptionAlgorithm>
<cppa:EncryptionSecurityDetailsRef

cppa:securityId="Seller_SecurityDetails" />
</cppa:SenderDigitalEnvelope>

<cppa:ebXMLReceiverBinding cppa:version="2.0">

Finally, the message packaging specification shown below defines the message layout and
MIME parameters for individual documents such as the order (element cppa : S i m p l e P a r t)
and for the whole messages such as an order request message (element c p p a : Packag ing) .

Message packaging specification using CPPA

<cppa:SimplePart cppa:id="Seller_OrderRequest"
cppa:mimetype="application/xml">

<cppa:NamespaceSupported
cppa:location="UBL_Library_0p70_Order.xsd"
cppa:version="0.7">

urn:oasis:naraes:tc:ubl:Order:1.0:0.70
</cppa:NamespaceSupported>

</cppa:SimplePart>

<cppa:Packaging cppa:id="Seller_OrderRequestPackage">
<cppa:ProcessingCapabilities cppa:parse="true"

cppa:generate="true" / >
<cppa:CompositeList>

<cppa:Composite cppa:id="Seller_RequestMsg"
cppa:mimetype="multipart/related"
cppa:mimeparameters="type=text/xml">

<cppa:Constituent cppa:idref="Seller_MsgHdr"/>
<cppa:Constituent cppa:idref="Seller_OrderRequest"/>

</cppa:Composite>
</cppa:CompositeList>

</cppa:Packaging>

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 50

4.5 Services Layer

The Service type specifies the whole business process, based upon the interaction types specified
in the previous section. In our example, two roles need to be specified, i.e., buyer and seilen The
control flow has to be specified such that it Starts with the buyer ordering goods from the seller,
who in turn acknowledges the order. If the order acknowledgement was positive, and when the
ordered goods become ready to be shipped, the seller notifies the buyer about that event.

4.5.1 WSDL-based Approach

The WSDL-based approach employs BPEL for the specification of business processes. A BPEL
process is always local to one business role, and it specifies the behavior of that role and the
interactions with it's partners. In our example, we will show the specification of the seller's
process. For purpose of readability, the description is split up into several parts. First, a BPEL-
specific extension to the WSDL specification is provided as a prerequisite to the BPEL process
specification. The BPEL process specification itself is presented in the parts process header,
receive order, reply acceptance (the latter two realizing the order interaction), and notify shipment
(realizing that interaction).

BPEL is based on WSDL-specified interaction types, but requires two extensions to the
WSDL specification. First, so-called Service links have to be defined, which specify the relation-
ship between WSDL port types and the roles in a BPEL process in terms of uses and provides
relationships. In our example, the buyer provides the port type Buyer_PT and uses another port
type S e l l e r _ P T provided by the seller (element s i n k : s e r v i c e L i n k T y p e) . Second, so-
called message properties have to be defined, which provide names to be used in BPEL process
specifications for accessing message data, and mappings to actual message content. Message
properties are primarily used for message correlation, i.e., the association of messages to process
instances. In our example, process instances are identified using the buyer's order id. Therefore,
a corresponding property is declared (element b p e l : p r o p e r t y) , as well as a mapping to the
O r d e r l d element of the order document (element b p e l : p r o p e r t y A l i a s) .

Service link and message properties extending the WSDL specification

<wsdl:definitions ...>

<!-Ü relationship among partners' interfaces -->
<slnk:serviceLinkType name="BuyerSellerLink">

<slnk:role name="buyer">
<sInk:portType name="buy:Buyer_PT"/>

</slnk:role>
<slnk:role name="seller">

<slnk:portType name="sell:Seller_PT"/>
</slnk:role>

</slnk:serviceLinkType>

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 51

<!-- transparent access to message properties -->
<bpel:property name="tns:buyerOrderId"

type="dn:OrderId"/>
<bpel:propertyAlias propertyName="tns:buyerOrderId"

messageType="tns:PurchaseOrder"
part="order"
query="Order/Orderld" />

</wsdl:definitions>

The actual BPEL specification of the sellers process (element p r o c e s s) is a so-called ab-
stract process (attribute a b s t r a c t P r o c e s s = " y e s ") , meaning that it does not provide an
executable process but just the protocol which has to be followed by an implementation. Be-
fore the actual process specification, it defines the interacting partners, the process-relevant data,
and the properties to be used for message correlation. In our example, there is only one in-
teracting partner, the buyer (element b p e l r p a r t n e r) . The process-relevant data are ba-
sically the messages exchanged with the buyer, such as the order, the order acceptance, etc.
The message types specified in WSDL can be directly used for variable specification (element
b p e l : v a r i a b l e s) . Regarding message correlation, the above defined property for the buyer's
order id will be used for message correlation (element b p e l : c o r r e l a t i o n S e t) .

Specificaiton ofthe seller's process using BPEL, part 1: header

<bpel:process name="SellerOrderProcessing"
targetNamespace="http://seller.example.com/schemas/order"
abstractProcess="yes" . . . ">

<bpel:partners>
<bpel:partner name="buyer"

serviceLinkType="tns:BuyerSellerLink"
myRole="seller"
partnerRole="buyer"/>

</bpel:partners>

<bpel:variables>
<bpel:variable name="BuyersOrder"

messageType="pt:PurchaseOrder" />
<bpel:variable name="OrderAcknowledgement"

messageType="pt:PurchaseOrderAcceptance" />

</bpel:variables>

«cbpel: correlationSets>
<bpel:correlationSet name="orderCorrelation"

properties="pt:buyerOrderId"/>
</bpel:correlationSets>

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 52

The actual process is a sequence of order interaction and notify shipment interaction (ele-
ment b p e l : s equence) . The order interaction is defined within a so-called scope (element
b p e l : scope) defining a time limit of 24 hours for the interaction (element b p e l : onAlarm)
as well as the possibility for the buyer to interrupt the interaction (element b p e l : onMessage).
Within this scope, the behavior of the order interaction is defined as a sequence of receiving the
order from the seller (element b p e l : r e c e i v e) , and replying (see next part). This process is
actually triggered by an order received from a buyer (attribute c r e a t e l n s t a n c e = "yes") .
Furthermore, the buyer's order id contained in the order message will be used for identification
of the newly created process instance (element b e p l : c o r r e l a t i o n) . Note that this requires
the buyer's order id to be unique across all process instances.

Specificaiton ofthe seller's process using BPEL, part 2: receive order

<!-- default faultHandler and compensationHandler used -->

<!-- sequence of order and notify shipment -->
<bpel:sequence>

<!-- scope of order interact ion -->
<bpel:scope>

<bpel:eventHandlers>
<!-- event handler providing timeout -->
<bpel:onAlarm for="PT24H">

<bpel:throw faultName="tns:Timeout" />
</bpel:onAlarm>
<!-- event handler providing interact ion termination -->
<bpel:onMessage partner="buyer"

portType="pt:Seller_PT"
operation="NotificationOfFailure"
variable="FailureNotification">

<bpel:correlation set="orderCorrelation">
•ebpel: throw f aultName="tns :BuyerNotif icationOf Failure "/>

</bpel:onMessage>

</bpel:eventHandlers>

<bpel:sequence>
<bpel:receive partner="buyer"

portType="pt:Seller_PT"
operat ion="Order"
variable="BuyersOrder"
createlnstance="yes">

<bpel:correlations>
<bpel:correlation set="orderCorrelation"

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 53

initiation="yes"/>
</bpel:correlations>

</bpel:receive>

Continuing the order interaction, the order request is followed by a reply, which may either
be an acceptance or a denial. A switch-statement (element b p e l : s w i t c h) is used to denote the
two alternatives. BPEL requires to specify the conditions under which either case is selected. In
our example - as in most protocol specifications - we do not want this decision to be specified in
the protocol but in the implementation process. Therefore, a condition based on an uninitialized
variable is used (attribute c o n d i t i o n) , making the condition expression non-deterministic.
In case the order is accepted, an acceptance message is sent to the buyer, thereby completing
the order interaction. The process includes a data flow specification (element b p e l : copy),
modeling that the acceptance message will include the same buyer's order id as the request
message. This buyer's order id is again used for message correlation, in this case to identify
the interaction instance which should be completed. In case the order is not accepted, a denial
message is replied and a fault is thrown to terminate the process (element b p e l : o t h e r w i s e) .

Specificaiton ofthe seller's process using BPEL, part 3: reply to order

<bpel:switch>

<bpel:case condition="getVariableProperty('Orderstate',
'isOkay')">

<bpel:sequence>
<bpel:assign>

<bpel:copy>
<bpel:from variable="BuyersOrder"

property="tns:BuyerOrderId" />
<bpel:to variable="OrderAcknowledgement"

property="tns:BuyerOrderId" />
</bpel:copy>

</bpel:assign>
<bpel:reply partner="buyer"

portType="pt:Seller_PT"
operation="Order"
variable="OrderAcknowledgement" >

<bpel:correlations>
<bpel:correlation set="orderCorrelation" />

</bpel:correlations>
</bpel:reply>

</bpel:sequence>
</bpel:case>

<bpel:otherwise>

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 54

</bpel:otherwise>
</bpel:switch>

</bpel:sequence>
</bpel:scope>

The last part of the process specifies the shipment notification interaction (element
b p e l : invoke). For interactions initiated by the process, there is no need to specify request
processing and response generation, therefore the specification is much simpler. Note that be-
tween the order interaction and the notify shipment interaction, some internal processing at the
seller will happen, which is not modelled in this abstract process specification.

Specificaiton ofthe seller's process using BPEL, part 4: notify shipment

«cbpel: invoke partner="buyer"
portType="ip:Buyer_PT"
operat ion="Shipping"
OutputContainer="ShipmentNotice">

<bpel:correlations>
<bpel:correlation set="orderCorrelation" />

</bpel:correlations>
</bpel:invoke>

</bpel:seguence>

</bpel:process>

4.5.2 ebXML-based Approach

In the ebXML-based approach, the business process between two interacting businesses is spec-
ified using so-called binary collaborations (element bpss :BinaryCol labora t ion) . A
binary collaboration defines two business roles participating in the process, the interactions used
in the process, and the control flow among businesses and interactions. In our example, there
are two roles, buyer and seller (element bpss : Role), whereby the buyer initiates the process
(attribute i n i t i a t i n g R o l e = "Buyerld"). The process Starts with the order interaction (el-
ement bpss : S t a r t) and, if that succeeds, continues to the shipment notification interaction
(element bpss : T rans i t i on) , and finally ends (element bpss : Success). In case of a
failure of either interaction, the process ends in an error State (element bpss : Fa i lu re) . The
interactions (elements bpss : B u s i n e s s T r a n s a c t i o n A c t i v i t y) are defined based on the
reusable interaction types (attribute bus ine s sTransac t i on) , additionally assigning the
process roles with the Initiator and responder roles ofthe interaction (attributes f romRole and
toRole, respectively) and providing an execution deadline (attribute timeToPerf orm).

CHAPTER 4. EXAMPLE B2B PROTOCOL SPECIFICATION 55

Service type specification using BPSS

•cbpss : ProcessSpecif ication name="test"
uuid="urn:icann:buyer.com:bpid:test$l.0" version="l.0"

<bpss:BinaryCollaboration name="DropOrder"
initiatingRole="Buyerld">

<bpss:Role name="Buyer" nameID="Buyerld"/>
<bpss:Role name="Seller" nameID="SellerId"/>
<bpss:Start toBusinessState="Order"

toBusinessStateIDRef="Order_BTA"/>
<bpss:BusinessTransactionActivity name="Order"

fromRole="Buyer"
toRole="Seller"
businessTransaction="PurchaseOrderTransaction"
timeToPerform="PT24H"/>

<bpss:BusinessTransactionActivity name="ShipmentNotice"
fromRole="Seiler"
toRole="Buyer"
businessTransaction="AdvanceShipmentNotice"
timeToPerform="PT24H"/>

<bpss:Success fromBusinessState="ShipmentNotice"
condit ionGuard="Success"/>

<bpss:Failure fromBusinessState="Order"
conditionGuard="Failure"/>

<bpss:Failure fromBusinessState="ShipmentNotice"
conditionGuard="Failure"/>

<bpss:Transition fromBusinessState="Order"
toBusinessState="ShipmentNotice"
conditionGuard="Success">

</bpss:Transition>
</bpss:BinaryCollaboration>

</bpss:ProcessSpecification>

4.6 Discussion

Summarizing the differences between the two approaches, it becomes obvious that the ebXML-
based approach involves a lot of complexity in the interactions layer as compared to the WSDL-
based approach. Specifically the specification of operational details using CPPA becomes quite
complex and verbose. On the other hand, at the Services layer the ebXML-based specification
is much simpler and more readable as compared to the WSDL-based approach. Part of this dif-
ference stems from the fact that in the ebXML-based approach concepts such as deadlines for

CHAPTER4. EXAMPLE B2B PROTOCOL SPECIFICATION 56

interactions are built-in, whereas in the WSDL-based approach they must be explicitly specified
in order to get a comparable specification. A conclusion which can be drawn from this observa-
tion is that the WSDL-based approach is preferrable in applications which can not benefit from
the built-in features of the ebXML interaction types. Consequently, typical "EDI-style" business
processes are preferrably specified using the ebXML-based approach.

Commonalities among the two approaches can be found mostly in the lower eCo layers.
Specifically, the information items layer provides a common base. The documents layer is of
little or no relevance to both approaches. Also the interactions layer shows some commonalities,
since SOAP messaging is used in both approaches, including a common notion of endpoint. The
ebXML-based approach, however, relies on its own messaging protocol, which is based on top
of SOAP. And at the higher layers, different concepts are used in the two approaches.

Regarding the eCo architecture used for structuring the description, it does not fit exactly with
the structuring of the languages. Specifically in the ebXML-based approach the specificaiton
of operational details of interaction types using CPPA does not fit into the eCo layers. There
are also some misfits in the WSDL-based approach, e.g., interaction types cannot be specified
independently of port types, but port types are closer related to the Services layer rather than to
the interactions layer.

Finally, we would like to mention that proper tool Support is an important prerequisite for the
practicability of either of the two approaches for creating and managing B2B protocol specifica-
tions.

Part II

Model Driven Development

57

Chapter 5

Representing XML Schema with UML

There is a need to integrate XML Schemas, i.e., Schemas written in XML Schema, into UML-
based Software development processes. Not only the production of XML Schemas out of UML
modeis is required, but even more the integration of given XML Schemas as input into the devel-
opment process. In the model driven architecture, a two step integration is assumed, comprising
a platform specific model and a platform independent model. This paper addresses the prob-
lem of automatically creating a platform specific model for XML Schemas. A UML profile and
transformation rules from XML Schema to the UML profile are defined, supporting creation of a
platform specific UML model that is as concise and semantically expressive as possible without
loosing XML Schema information.

5.1 Introduction

UML is being used as de-facto Standard for Software development, including web applications
that exchange XML documents. Therefore a need arises to integrate XML Schemas, i.e., Schemas
written in XML Schema, into UML-based Software development processes. Not only the pro-
duction of XML Schemas out of UML modeis is required, but even more the integration of XML
Schemas as input into the development process, because Standard data structures and document
types are part of the requirements.

In the model driven architecture [57], a two step integration is assumed, comprising a plat-
form specific model which abstracts from implementation language details, and a platform in-
dependent model which abstracts from technology details. For the platform independent model,
piain UML is applied, whereas for the platform specific model, UML tailored to the target tech-
nology is employed. A UML profile for XML Schema as possible target technology is the main
contribution of this paper.

The problem of automatically transforming XML Schemas into a platform specific model
hasn't been addressed in enough detail yet. In particular, we are looking for a semantically
equivalent representation of an XML Schema in UML supporting a bijective mapping between
both representations. A solution to this problem has to address the whole ränge of XML Schema
concepts, such that any XML schema can be expressed in UML. The goal is to support round-

58

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 59

trip engineering, i.e., transformation from XML Schema to UML and back again without loss
of Schema information. Furthermore, a solution should maximize understandability of semantic
concepts by users knowledgeable of UML but not XML Schema. Semantic equivalence is even
more important when the UML modeis are to be used for application code generation, as it will
happen in a model-driven development process.

The transformation problem is a matter of both syntax and semantics. The syntactical aspect
can be solved easily - at least in theory -, since an XML-based syntax is defined for both lan-
guages. The semantical differences are more difficult to solve, since UML class diagrams aim
primarily at a conceptual level, dealing with classes, generalizations, and associations, whereas
XML Schema is at a technology-specific level, dealing with elements, attributes, and the gram-
matical structure of elements. Although a rough equivalence between some concepts of both
languages can be easily found, e.g., the correspondence between XML Schema complex types
and UML classes, there are also semantical and syntactical heterogeneities. The most important
stumbling blocks when transforming from XML Schema to UML are that XML Schema supports
specification of content grammars, first class attributes and elements, and identity constraints.

Existing work on representing XML Schema in UML has emerged from approaches to plat-
form specific modeling in UML and transforming these modeis to XML Schema, with the recog-
nized need for UML extensions to specify XML Schema peculiarities. [11] is the first approach
of this kind to modeling XML Schemas using UML. Although based on a predecessor to XML
Schema, it introduces UML extensions addressing modelling of elements and attributes, model
groups, and enumerations that can also be found in following approaches. [14] describes an ap-
proach based on XMI rules for transforming UML to XML Schema. [14] also defines a UML
profile which addresses most XML Schema concepts, except of simple content complex types,
global elements and attributes, and identity constraints. Regarding semantic equivalence, the pro-
file has some weaknesses in its representation of model groups, i.e., sequence, choice, and all.
Based on the profile defined in [14], a two-way transformation between XML Schema and UML
has been implemented in the commercially available tool "hypermodel"1. [65] has addressed
some of the weaknesses of [14], addressing representation of enumerations and other restric-
tion constraints, and of list and union type constructors, although the latter doesn't conform to
UML. [24] (in german, based on [18]) also defines a profile similar to that in [14], with some
enhancements regarding simple types and notations. [69] points out the importance of separating
the conceptual Schema, i.e., the platform independent model, from the logical Schema, i.e., the
platform specific model, a Separation that is not considered in the other approaches. In [69], the
logical Schema is a direct, one-to-one representation of the XML Schema in terms of a UML
profile. The profile2 Covers almost all concepts of XML Schema, but several of its representa-
tions are not UML conform. Related work on mapping conceptual modeis expressed in UML
or EER to XML Schema or DTD, has identified various options for transforming conceptual-
level concepts to XML Schema concepts [14, 18, 26, 47, 65]. Most of these transformations are,
however, not unambiguously applicable in the reverse direction and would thus only be useful

'http://xmlmodeling.com/hyperModel/
2A complete description can be found at http://titanium.dstc.edu.au/papers/

xml-schema-profile.pdf

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 60

in an interactive transformation process, requiring a user's knowledge of the XML Schema to be
transformed to UML.

Our solution follows [69] in that it also aims at a one-to-one representation of XML Schemas
in an UML profile. It builds on the existing UML profiles for XML Schema, improving and
extending them where necessary, and also taking into account results of UML to XML Schema
mapping approaches in order to attain the requirements identified above. An overview of the
profile is given in the next section, discussing suitable representations of individual XML Schema
concepts in UML. Relationships to related work as well as example diagrams are included in
the respective subsections. The examples are mostly taken from Standard XML Schemas for
business documents3. Section 5.3 contains a more precise specification of the profile in terms of
the proposed UML metamodel extensions. The paper concludes with a comparison of existing
UML profiles and and outlook to future work.

5.2 Transformation Rules and UML Profile

Three design goals have guided the design of the profile and transformation rules. First, it must be
possible to represent any XML Schema in UML, i.e., there must be a representation for each rel-
evant XML Schema concept, in order to facilitate round-trip engineering without loss of Schema
information. 4, Second, a representation of an XML Schema has to be such that if the profile
specific stereotypes are omitted, the result should - to the extent possible - convey the same
meaning, in order to facilitate understanding by non-XML Schema experts and to support inter-
operability with tools not aware of the profile. This goal is also in line with the capability of UML
stereotypes, which can only extend but not modify the semantics of UML concepts. Finally, the
number of UML constructs necessary to represent a certain XML Schema should be minimal, to
improve readability. This goal can be achieved in some situations where UML concepts are more
expressive than XML Schema concepts, allowing to represent certain patterns of XML Schema
concepts using only one UML concept.

The description of the transformation rules and UML extensions is organized along the major
XML Schema concepts, i.e., schema, complex types, simple types, elements, attributes, model
groups (i.e., complex content), identity constraints, group definitions, annotations, and notations.
The relationships to previous work are considered individually per transformation rule, indicating
whether rules have already been proposed or whether there are alternative proposals. In some
cases, alternative representations are possible, each having different implications. In these cases,
selection criteria and compatibility with other alternatives have to be considered.

The description is given at a level of detail that provides an overview of the proposed profile
and related work. A specification of the individual stereotypes, their properties and constraints
can be found in Section 5.3.

3Open Application Group Integration Specification, OAGIS 8.0; see h t t p : / /www.openappl icat ions .
o r g / o a g i s

4Peculiarities of the XML syntax of XML Schema, such as namespace prefixes, are not considered relevant. The
transformation rules are based on the abstract syntax of XML Schema as specified in [93]

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 61

«xml -schema»
targetNamespace ="http:// www.openapplications.org/oagis
elementForm Default ="qualified"
attribute Form Default ="unqualified"
schemaLocation ="BODs/AddPurchaseOrder.xsd "

«xml -schema»
schemaLocation ="Resources/Verbs/ Add.xs<

«xml -schema»
AddPurchaseOrder

..--•«Import »
«xs-include >

«xml-schema »
Resources::Verbs::Add

«xs-incfude-»--.

«xml -Schema»
schemaLocation =
"Resources/Nouns/ PurchaseOrder.xsd "

«xml-schema »
Resources: :Nouns:: PurchaseOrder

Figure 5.1: Representation of the AddPurchaseOrde r schema and its dependencies

5.2.1 Schema Document

We propose to represent schema documents and dependencies between them (i.e., impor t ,
i n e l ü d e , and r e d e f i n e) as follows:

SC Represent every schema document as a package with stereotype «xml-schema» [11,
14, 24, 69]. Properties of this stereotype are used to represent the target namespace,
version, and location information (cf. Figure 5.1). Schema dependencies are repre-
sented as dependencies [69] with stereotypes «xs-import», «xs-include», and «xs-
redefine». In the context of UML 2.0 we propose to use dependencies P e r m i s s i o n
and Package I m p o r t as stereotype base for representing import and include/redefine,
respectively.

When representing the target namespace as package name, as proposed by [11], it is not
possible to represent multiple schema documents having the same target namespace.

5.2.2 Complex Type Definition

Literature proposes a common and straightforward way to represent complex types in UML,
which we adopt:

CT1 Represent every global complex type as class with the type's name and stereotype
«ComplexType» [14, 65]. See the left side of Figure 5.2 for an example.

CT2 Represent every local complex type as class with stereotype «ComplexType» [24, 69, 65]
nested into its containing class [65]. The class' name is formed by the name of the element
defining the complex type [24]. An alternative approach in [69] encodes the Containment
hierarchy in the class' name, conveying less semantics than the nesting solution.

Complex types have various properties that apply for both global and local ones:

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 62

«complexType»
LingualString

«content» value:xml-schema::string[1..1]
«attribute» lang:xml-schema::language[0..1]

"5 ~~
«extension»

«simpleType»
«primitive»

Date

«simpleType»
«primitive»
DateTime

«complexType»
Description

«attribute» owner:xml-schema::string[0..1]

«memberType»\
{position=1}

,--' «memberType»
{position=2}

«simpleType»
«primitive»

DateTimeAny

Figure 5.2: Representation of the L i n g u a l S t r i n g and D e s c r i p t i o n complex types (left)
and representation of a simple type constructed by u n i o n (right)

• A complex type's content model is represented implicitly, as described by the representa-
tion of simple content below and representation of model groups in Section 5.2.6, except
of mixed content, which is represented as property of stereotype «complexType» [24].

• An abstract complex type is represented as an abstract class.

• Derivation by extension and restriction are represented as generalizations with stereotypes
extension» and «restriction», as common to most approaches [14, 69, 65].«

• Derivation and Substitution constraints are represented as UML constraint, e.g., {fi-
nal="restriction"}.Another option would be to use stereotype properties [69]. However,
since these constraints are also meaningful for platform independent modeis, we favor the
constraint representation.

• Simple content is represented as an attribute with stereotype «content», which has the
type of the simple content and is named value as in the Value design pattern (cf. Fig-
ure 5.2).Although this representation has not yet been proposed in literature, we think it
adheres to semantics and pragmatics of UML as well as of other implementation languages
such as Java and SQL. In [69] it has been proposed to represent simple content as a gen-
eralization relationship to the simple content type, which is not UML conform in case that
simple types are represented as datatype and not as class.

5.2.3 Simple Type Definition

An XML Schema simple type can be naturally represented as an UML datatype. Since UML
distinguishes between enumerations and other kinds of datatypes, two different representations
are proposed:

ST1 Represent every simple type that includes an enumeration constraint as an enumeration
[65] with stereotype «simpleType». For an example see the left part of Figure 5.3.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 63

«simpleType»
«primitive»

string
(from xml-schema)

1
«restriction»

«complexType»
BusinessObjectDocument

«attribute» revisiojrxml-schema^string [1..1]
«attribute» enviroritnent:environment [0..1]="Production'
«attribute» lang:xml:schema::language[0..1]="ervUS"

«simpleType»
«enumeration»

BusinessObjectDocument :environment

Test
Production

{pattern: \p{N}\.\p{N}\.\p{N}
pattern: \p{N}\.\p{N}
pattern: \p{N}\p{N}\.\p{N}\.\p{N}
pattern: \p{N}\p{N}\.\p{N}

Figure 5.3: Representation of a simple type local to B u s i n e s s O b j ec tDocument (left) and
representation of a simple type restriction according to ST3 (right)

ST2 Represent every simple type that does not include an enumeration constraint as primitive
datatype with stereotype «simpleType». In literature such simple types are not repre-
sented as datatypes but as stereotyped classes [14, 24, 69, 65], a solution which is seman-
tically less precise.

Local simple types are represented like local complex types, i.e., nested into the containing
class, with the restriction that nesting into a containing datatype is not possible. The name of the
datatype is formed by the name of the attribute/element defining the simple type, e.g., Business-
ObjectDocument: :revision in Figure 5.3.

Other constraints than enumerations, such as r ä n g e and p a t t e r n , are represented as UML
constraints [69, 65]. An alternative representation would be as properties of stereotypes [14, 24],
however, we consider UML constraints as the more appropriate representation, as the constraints
specify the datatype and Standard UML.

Derivation by restriction in simple type construction is represented by a generalization with
stereotype «restriction», a solution also found in previous work [69, 14, 65]. Note that in a
generalization between two enumerations in UML the Special enumeration is only allowed to
add enumeration values opposed to XML Schema. Therefore the proposed solution is not fully
UML compliant, even if a stereotype is used to point out the difference. A UML compliant but
less readable solution would be to use a stereotyped dependency.

List construction is represented as a dependency with stereotype «itemType» to the list
item datatype. Other Solutions found in literature comprise a stereotype's property which refers
to the list item datatype [24], and a template instantiation of a predefined list template [65].
While he stereotype representation does not carry UML semantics, the template instantiation
representation would be more expressive than our dependency. Nevertheless, the dependency
representation is similar in style to the representation of the union constructor, making it easier
to understand.

Union construction is represented as a dependency with stereotype «memberType», which
has a property position to define the order of member types. This is favorable to Provost [65] who

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 64

proposes to represent a union type by multiple generalizations connected by an {xor} constraint,
which does not conform to UML semantics. An example is given in the right side of Figure 5.2.

In certain cases, representation of local simple types can be further simplified in that it is not
necessary to represent them as an explicit datatype. We have identified two simplification rules
addressing common cases:

ST3 Merge the representation of a local simple type that is the type of a UML attribute, with
that attribute, as follows: a) Merge a restriction type such that the attribute type represents
the restriction's base type, and restriction constraints are directly attached to the attribute.
See the right part of Figure 5.3 for an example. This rule is not applicable to restrictions
deflning enumeration constraints. b) Merge a list type such that the attribute type represents
the list item type, and attribute multiplicity becomes 0..*. c) Merge a restriction type
that restricts a list type such that the attribute type represents the list item type, attribute
multiplicity represents length constraints. This rule is not applicable to restrictions defining
enumeration or pattern constraints. d) Merge a union type such that the attribute becomes a
derived union, and for each union member type introduce an appropriately typed attribute
which subsets the union attribute. ST3 can be applied recursively on the member type
attributes. This rule is specific to UML 2.0. e) Merge a restriction type that restricts a union
type as described in d), with an attached constraint to represent any pattem constraints.
This rule is not applicable to restrictions defining enumeration constraints.

ST4 Merge the representation of a list or union type that is defined local to a restriction type
with the representation of that restriction type, such that the dependencies representing
item type and member type, respectively, are directly attached to the restriction type.

No specific stereotypes need to be introduced to distinguish simplified representations from ST1
and ST2.

5.2.4 Element Declaration and Usage

With XML Schema one can separate an element declaration from its use by using global element
declarations, a possibility not provided by UML.

Therefore we consider the two cases of local and global elements separately. Local elements,
i.e., an element declaration and usage in-place, are commonly represented in two similar ways:

EL1 Represent a local element as an association role with stereotype «element» of an associa-
tion between the class representing the containing model group and the class representing
the element's type, and with appropriate multiplicity. The nesting direction is indicated by
an aggregation [24]. For an example see DataArea in Figure 5.4. To represent nesting
by navigation directions as proposed in [14] is unfavorable, because in XML a nesting is
navigable in both directions.

EL2 Represent a local element as an attribute with stereotype «element» of the class repre-
senting the containing model group, with appropriate type and multiplicity.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 65

«complexType»
BusinessObjectDocument

(from Resources::Meta)

{grammar: (%BusinessObjectDocument, DataArea)}

«extension» «complexType»
AddPurchaseOrder

«documentation»
Is where the L-
information ... I

«element»
1..1 DataArea

«complexType»
AddPurchaseOrderDataArea

{grammar: (%Dat sArea, Add, PurchaseOrder[1..*])}

«extension»

«global»
AddElement

(from Resources::Verbs::Add)

«global»
PurchaseOrderElement

(from Resources::Nouns::PurchaseOrder)

«complexType»
DataArea

(from Resources: :Meta)

Figure 5.4: Declaration of complex types AddPurchaseOrde r and AddPurchase-
Orde rDa taArea

Note that both representations are semantically equivalent in UML, however, we propose to
use EL1 in case of the element's type being a complex type and EL2 in case the element's type
being a simple type for two reasons. First, this is a common UML modelling style, and second,
EL2 supports the representation of a default value, which may be defined for for simple types
but not for complex ones.

For global elements we propose pattern EG:

EG Represent every global element declaration like a local element declaration, i.e., as an
association with a stereotyped role or an attribute, with default multiplicity 0..*. Since
global elements are declared outside the scope of a containing model group, a class with
stereotype «global» is introduced which contains the association or attribute. The class is
named after the element with postfix Element, e.g., AddElement (cf. left of Figure 5.5).

Element usage is represented by a generalization relationship from the using class to the
class containing the representation of the global element. Furthermore, in the using class
the inherited attribute may need to be redefined or the inherited association may need to be
specialized to specify a non-default multiplicity.

We further propose to represent Substitution group participation in EG as a generalization
with stereotype «Substitution» to the class that represents the Substitution group's head element
and redefinition of the attribute or specialization of the association representing the head element
(cf. left part of Figure 5.5). Note that attribute redefinition involves renaming of the attribute,
which is possible in UML 2.0 but not in earlier versions.

Our pattern EG is different from previously proposed global element representations in [69].
There, every global element declaration is represented as a stereotyped class which does not con-
tain any attribute. The type of the element, either simple or complex, is defined via a stereotyped

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 66

«global»
VerbElement

(from VerbBase)

«Substitution»

«global»
AddElement

«element»
Add

{redefines
Verb}

«complexType»
ConfirmableVerb

(from Verb)

«extension»

«complexType»
Add

«documentation»
Allows the user of
OAGIS to extend .

ET

«documentation»
This is is done by
defining the ...

«global»
UserAreaElement

«element»
UserArea

«complexType»
ConfirmableVerb

(from Verb)

«extension»

«complexType»
UserArea

{final="restriction"}
{grammar: (##any*)}

{multiple-classification: any «global» element}

Figure 5.5: Declaration of global element Add (left) and declaration of U s e r A r e a element and
complex type (right)

dependency. An element's membership in a Substitution group is represented by a property of the
class's stereotype. An element usage is represented by a stereotyped attribute with the attribute
name referring to the global attribute and with appropriate multiplicity.

We favor our pattern EG over global element representations in literature, because they do not
conform to UML by expressing an element, a coneept which does not exist in UML, as a class.
Moreover, EG has the advantage that is is consistent with patterns for local element declaration
and usage EL1 and EL2. It comes, however, at the cost of a more verbose representation.

We propose, as literature does, to represent a n i l l a b l e constraint as a constraint [24, 69].
The same holds for other constraints associated with XML Schema elements, i.e., for Substitution
group exclusion and disallowed substitutions.

Regarding the representation of an element wildcard, only one pattern has been proposed in
literature [14, 24, 69]. It represents an element wildcard as a stereotyped class, with stereotype
properties namespace and processContents having the corresponding XML schema values
as default.

Because the representation for element wildcards proposed in literature does not conform to
UML, it is difficult to use its semantics in a PIM. Thus, we propose another representation, which
is based on pattern EG:

EW Represent every element wildcard as a proprietary multiple classification constraint named
{multiple-classification}, indicating that an instance of the class the constraint is attached
to can be an instance of other classes representing global elements as well (cf. right part of
Figure 5.5). Thus the oecurrence of a global element at the instance level is represented in
terms of multiple classification without the need for explicit generalizations at the model
level. This representation can be seen as a shorthand to have generalizations to all classes
in speeified packages representing global elements. The pattern can be used in combination
with MG2, and with MG1 if a dummy class is introduced to hold the multiple classification
constraint.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 67

5.2.5 Attribute Declaration and Usage

Like with elements, we distinguish between the representation of local attributes and of global
attributes. Local attributes map naturally to UML attributes, but some specific considerations
can be taken into account:

AL Represent every local attribute as an attribute with stereotype «attribute» of the class
representing the complex type or group containing the attribute [14, 69, 65, 24], with
multiplicity 0..1 or 1..1 and default value. Fixed value attributes can be represented by
the corresponding UML contraint {read only} [24, 69]5 . Standard datatypes that are in
plural form, i.e., IDREFS, NMTOKENS, and ENTITIES, can be represented in singular
form with multiplicity 0. .* [24]. The pattern cannot distinguish between an empty attribute
and an absent attribute and is therefore not strictly equivalent.

Declaration and use of global attributes is more difficult to represent. We do not know of
any published approach that supports such a representation, therefore we propose the following,
similar in style to EG:

AG Represent every global attribute declaration like a local attribute, i.e., as an attribute with
stereotype «attribute», with default multiplicity 0..1. Since global attributes are declared
outside the scope of a containing complex type, a class with stereotype «global» is in-
troduced which contains the attribute. The class is named after the attribute with postfix
Attribute, e.g., nameAttribute.

Attribute usage is represented by a generalization relationship from the using class to the
class containing the representation of the global attribute. In the using class the inherited
attribute may be redefined to specify non-default multiplicities and a default value.

Regarding the representation of attribute wildcards, only one pattern has been proposed in
literature. It represents an attribute wildcard as a stereotyped dummy attribute [24], a solution
that fails to satisfy the second design goal. Thus, we propose another representation which is
based on pattern AG and follows the style of EW:

AW Represent every attribute wildcard as a proprietary multiple classification constraint, in-
dicating that an instance of the class the constraint is attached to can be an instance of
other classes representing global attributes as well. This representation can be seen as a
shorthand to have generalizations to all classes in specified packages representing global
attributes.

5.2.6 Model Group

In UML there is no concept directly similar to the one of a model group, i.e., s e q u e n c e ,
c h o i c e , or a l l . The following pattern has been proposed in literature:

5 [24] uses proprietary {frozen}

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 68

«complexType,sequence»
Saleslnformation

«particle» {1}
0..1

«element»
SalesPerson

«particle» {2}
0..1

«choice»
Saleslnformation::mg2

«element»{3}
SalesOrganization
0..'

«complexType»
SalesOrganization

(from Resources::Fields)

«particle»

«sequence»
Saleslnformation::mg2.1

t «particle»
1..1

«sequence»
Saleslnformation::mg2.2

«element»{1}
CommissionAmount

0..1
«complexType»

Amount
(from Resources::Fields)

«element»{1}
OrderAmount

0..1

«element»{2}
CommissionQuantity
0..1

«complexType»
Quantity

(from Resources::Fieldsl

«element»{3)

«element»{2} |
OrderQuantity

0..1

PercentQuantity
0..1

Figure 5.6: Complex type S a l e s l n f o r m a t i o n ' s model group representation using MG1

MG1 Represent a model group as a class with one of the stereotypes «sequence», «choice»,
and «all» to represent the respective model group compositor [14,24, 69]. The name of the
class is mg followed by a hierarchical number. A nesting of model groups is represented by
a composition association with appropriate multiplicity, such that the syntax tree of XML
Schema model groups is visually represented (cf. Figure 5.6). Since model groups are
private to their Container, we propose to nest them into the class containing the model group
tree. The order of model group particles, i.e., the order of elements, element wildcards,
element group references, and nested model groups is represented by a stereotype property.

Two simplifications are available for MG1. First, the root model group of a complex type
or group definition can be represented by the class representing the complex type or group def-
inition (cf. Section 5.2.8 for group definitions) [14, 69] An example using this simplification is
Saleslnformation shown in Figure 5.6 into which the root model group has been merged. Sec-
ond, to denote the order of model group particles the order of attributes in the class representing
the model group is used [69]. This approach requires, however, that all kinds of particles are
represented as attributes. Since for some kinds of particles, e.g., group references, an attribute
representation is not available, this simplification is not always applicable.

Representing a model group as stereotyped class by MG1 is well suited if the model group
represents domain semantics. However, often this is not the case, for instance a nested choice
usually does not express an application domain concept but a disjunction constraint. Therefore,
we propose a novel alternative representation which modeis the grammatical structure in a visu-

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 69

{grammar : (SalesPerson ?,
((CommissionAmount ?, CommissionQuantity ?) |
(OrderAmount ?, OrderQuantity ?, PercentQuantity ?))?,
SalesOrganization *, UserArea ?)}

«element»
CommissionAmount«complexType »

Saleslnformation

JL
«global»

SalesPersonElement

«global»
UserAreaElement

(from Resources::Meta)

0..1

«element »
Commiss(onQuantity

«complexType »
Amount

(from Resources::Fields

« element
OrderAmount

0..1

«complexType »
Quantity

(from Resources::Fields

0..1

«element
OrderQuantity
0..1

0..1
«element » PercentQuantity

«element »
SalesOrganization

0..*

«complexType »
SalesOrganization

(from Resources::Fields)

Figure 5.7: Complex type S a l e s l n f o r m a t i o n ' s model group representation using MG2

ally less dominant way:

MG2 Represent the grammar expressed by a model group tree as constraint, using a textual
notation which Covers both hierarchical structuring and ordering (cf. Figure 5.7). We
propose to use the grammar language of DTDs, as it is concise and well known. It is
extended to support user-defined occurrence ranges, wildcards, model group references,
and the a l l compositor, e.g., as in [98]. Different to MG1, nested model groups are not
represented individually but by a Single constraint attached to the class representing the
complex type or group definition containing the model group tree. This also means that
element uses are represented outside their containing model group, directly in the context
of the containing complex type or group definition. Therefore, multiplicities need to be
modified accordingly, e.g., an element use with multiplicity 1..1 contained in a choice
model group with multiplicity 2 results in overall multiplicity 0..2 for the attribute or
association role representing that element use.

Choosing between MG1 and MG2 is a matter of application semantics and is left to the user.
However, assuming that a relevant domain concept is expressed either as an individual complex
type or as a named model group, we strongly propose to use MG2 as the default representation.
For a comparison when the same XML Schema is expressed using the two patterns see Figure 5.6
and Figure 5.7. Note that there are further implications if the resulting class structure is used as
basis for code generation. If MG 1 is chosen, the simplified Version of it should be used whenever
applicable.

5.2.7 Identity Constraint Definition

Representation of identity constraints has not been addressed in previous work. The inverse
of representing an ER identity constraint as an XML Schema key, e.g., as proposed in [69],

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 70

is not sufficient because key constraints in XML Schema are always defined in the context of
an element, the so called "scope". Opposite thereto, approaches such as [69] assume global
identification among all instances of a class. Therefore we propose to represent key constraints
as simplified OCL constraints:

KY1 Represent a key constraint as a constraint in the form of {key "name": for all selectori,
selector2, ...'. fieldi, field2, ...} attached to the class containing the representation of
the element that is the key's scope. In the constraint, name represents the key's name
and selectori represents the key's selector in OCL notation. A selector Starts with the
element that is the key's scope. Multiple selectors represent a union Operation in the origi-
nal XPath expression. We assume proprietary OCL operations all-element-children, all-
element-children-in-namespace(namespace), and all-element-descendants to rep-
resent XPath wildcard Steps " . / / " , "*", and "NCName: : *", respectively. A typical use
of wildcard Steps is to handle elements in Substitution groups, however, in this case the
selector can be represented without the proprietary OCL operations due to use of pattern
EG. Finally, fieldi represent the key's fields in OCL notation. The semantics of the key
constraint is as follows:

context ScopeClass
def: name_keys=se/ector1->collect(Tuple{fi=fte/di, ...})—•
union(selector2 —>collect...)
inv: name_keys—>isUnique()
inv: name_keys—•forAIKfi—>notEmpty() and f2—>notEmpty() and ...)

In situations where scope and selected class are defined in the same context, e.g., as in Fig-
ure 5.8, it is more intuitive to attach the key constraint to the selected class. Such a representation
is only applicable, however, in case the selector unambiguously identifies a class, i.e., it must not
contain union or wildcard Steps. For these cases, we propose the following alternative represen-
tation:

KY2 Represent a key constraint whose selector does not contain union and wildcard Steps as
constraint {key "name": in context selector: fieldi, field2, ...)} attached to the class
selected by the selector. Semantically, this constraint is equivalent to KY1.

Uniqueness constraints can be represented similar to key constraints, using constraint
unique: Semantics is similar to that of the key constraints except that the second invari-
ant requiring that all fields are present is omitted.

Referential integrity constraints (keyref) can also be represented in a similar manner by con-
straint {keyref "name": for all selector, selector2,...: fieldi, field2,... - • keyname} attached
to the class containing the representation of the element that forms the keyref's scope. The rela-
tionship to the key constraint is represented as dependency as well as by keyname.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 71

«global»
SchemaElement

«element»
Schema

{key "element": for all schema.element: name}

«complexType»
SchemaElement::schema

{visibility=private}

alternative key
representations I

«group»
schemaTop
{abstract}

{key "element": in context schema.element: name}

«complexType»
topLevelElement

«attribute» name:NCName[1..1]

«element»
element

«global»
ElementElement

Figure 5.8: Key element (from the schema for XML Schema)

5.2.8 Group Definition and Reference

We distinguish between representation of named element groups and named attribute groups.

GA Represent every attribute group as an abstract class with stereotype «group» containing
attributes represented using AL [69]. References to the attribute group are represented as a
generalization. Note that this has not been proposed in literature yet.

An alternative representation for a group reference as a stereotyped attribute named like the
referenced attribute group has been proposed in [69]. This representation, however, does not
conform to UML semantics.

Because there exist two representations for model groups MG1 and MG2, two variants exist
for the representation of element groups:

GE1 Represent an element group as a class with stereotype «group» and a represent every
reference to the group as a composition according to MG1. Different to MG1, the class is
named after the group and is not nested into a containing class.

GE2 Represent an element group as an abstract class with stereotype «group», named after the
group, and represent the group according to MG2. A reference to the group is represented
as generalization from the class representing the using model group. The latter's class
grammar constraint is modified to define position and occurrence of the used model group.
Therefore, it is necessary that the using model group is also represented using MG1.

5.2.9 Annotations

Representation of annotations is straightforward:

CHAPTER5. REPRESENTING XML SCHEMA WITH UML 72

AN Represent every annotation as a set of comments with stereotypes «applnfo» and
«documentation», distinguishing between application and user information. The com-
ments are associated with the model element representing the annotated XML Schema
artifact.

Previous approaches did not take into account the differentiation between application and
user information and the handling of multiple annotations [69].

5.2.10 Notation

A notation in XML usually specifies a named reference to an application. When an element's
content is defined to have a notation's format by using an attribute with the notation's name as its
value, the application referenced by the notation is usually capable of processing the notation.

NO Represent every notation declaration as a literal with stereotype «notation» in an enu-
meration named Notations with stereotype «notations». The enumeration comprises all
notations of a Schema and all notations of included Schemas via generalizations to their
Notations enumerations. A notation attribute's simple type is derived by restriction from
the Notations enumeration by using ST1.

Previous approaches represented notations as a stereotyped class [24], not considering the
semantics of notations.

5.3 UML Profile Implementation

This section provides implementation details for extending the UML metamodel with a profile
for XML Schema, i.e., the stereotypes defined, the UML metamodel elements they are based on,
the stereotype's properties, and the constraints involved. The stereotypes are mutually exclusive,
i.e., it is not possible to extend the same metamodel element with more than one of the stereotypes
defined by this profile.

Note that both metamodel and model-level constraints are involved. Metamodel constraints
are those imposed by a stereotype on all model elements which carry this stereotype, ensuring
that an UML model conforming to the profile can be mapped to an XML Schema. For instance,
an attribute stereotyped as «element» must not define a default value. Model-level constraints
are constraints that may be attached to individual model elements. The profile does not define
specific constraints but rather which kinds of constraints are supported, e.g., to classes stereo-
typed as «COmplexType», a "key" constraint may be attached.

The description of the stereotypes is organized along the UML concepts extended, i.e., pack-
age, class, property, generalization, datatype, and comment. Regarding terminology, we use the
shorthand "a «foo»" meaning "a metamodel element stereotyped as «foo»".

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 73

5.3.1 Package Stereotypes

The UML Package is extended to support modelling of XML Schema documents. In addition,
the Permission dependency and the Packagelmport relationship are extended to support mod-
elling of interdependencies between XML Schema documents (cf. Fig. 5.9). These extensions
are intended to be used in a package diagram, showing the relationships between one or more
root Schema documents and their component Schema documents.

The stereotype «xml-schema» implements the attributes of the scheraa element. In ad-
dition to these, schemaLocation is also implemented as an attribute of the schema document
rather than as an attribute of the import or redefme dependencies, in order to be able to record
the location of the root Schema document.

«xml-schema» imposes the following restrictions on the use of a package:

• Nesting of packages within the stereotyped package is not allowed.

• Only elements with one of the stereotypes defined in this profile are allowed as contents
of the package, except of Generalization and Constraint, which are also allowed without
stereotype.

«metaclass»
Package

«stereotype»
XML-Schema

attributeFormDefault
blockDefault
elementFormDefault
finalDefault
targetNamespace
version
language
schemaLocation

«metaclass»
Permission

«stereotype»
XS-Import

«metaclass»
Packagelmport

«stereotype»
XS-Redefine

«stereotype»
XS-Include

Figure 5.9: Package and related stereotypes

Regarding schema dependencies, «xs-import» has been implemented as stereotype of the
Permission dependency, since both concepts have the same semantics. «xs-include» and «xs-
redefine» have been implemented a stereotypes of «Packagelmport» with some additional
constraints. Since the difference between «xs-include» and «xs-redefine» is that the first im-
poses some more specific constraints, the stereotypes have been implemented in a generalization
relationship.

The stereotypes place the following constraints on the UML metamodel:

Both client and supplier of an «xs-import» must be an «xml-schema».

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 74

• Both importingNamespace and importedPackage of a «xs-redefine» must be an
«xml-schema».

• The importing package of a «xs-redefine» must not contain an element with the same
name and the same type as the one imported except if that element has a generalization
relationship to the imported element of the same name.

• The importing package of a «xs-include» must not contain an element with the same
name and the same type as the one imported, without exception (refines the precedent
constraint).

5.3.2 Class Stereotypes

Class is extended to support modelling of complex types («complexType»), global properties
(«global»), groups («group»), and attribute groups («attributeGroup»), as shown in Fig. 5.10.

Stereotype «complexType» defines derived boolean attributes describing the kind of com-
plex type represented by the class. Attribute local is true if the complex type is nested within
another complex type, empty is true if the complex type does not define any properties of
stereotype «element» or «simpleContent». simpleContent is true if the complex type de-
fines a property of stereotype «simpleContent». complexContent is true if the complex type
defines some properties of stereotype «element». Note that all of the class' inherited properties
must be considered, too.

«stereotype»
ComplexType

/local
/empty
/simpleContent
/complexContent
mixedContent

«metaclass»
Class

«stereotype»
Global

/globalProperty
/globalAttribute[0..1]
/globalElement[0..1]
/substitutionHead[0..1]

«stereotype»
Group

«stereotype»
AttributeGroup

Figure 5.10: Class stereotypes

Several kinds of constraints may be attached to a class stereotyped as «complexType»:

• A "grammar" constraint, defining the Order and multiplicity of elements as specified in the
previous section. The constraint may redefine the multiplicities of the element's properties
defined in the complex type. However, minimum and maximum multiplicities may only
be lowered.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 75

• A "multiple-classification" constraint, which may optionally define the namespace(s) as
defined in the XML Schema any construct. An instance of a such constrained class may
also be an instance of the classes contained in the namespace(s) as defined in the constraint.
Note that classes with this constraint are the only ones allowing multiple classification. The
constraint specification must be an Expression (explicit syntax tree) with an Operator cor-
responding to the XML Schema wildcards (any, any-except, any-out-of) and with operands
"namespace" and "processing control".

• A "Substitution" constraint defining values for r e s t r i c t i o n F i n a l , e x t e n -
s i o n F i n a l , r e s t r i c t i o n B l o c k , and extensionBlock. If both
r e s t r i c t i o n F i n a l and e x t e n s i o n F i n a l are set to true, then the class must
be defined as leaf.

• Constraints "key", "keyref', and "unique", as specified in the previous section.

The following metamodel constraints apply to classes stereotyped as «COmplexType»:

• The class may only have properties with one of the «xs-property» stereotypes, i.e.,
«attribute», «element», or «simpleContent» (cf. Section 5.3.3).

• The class may have at most one generalization of stereotype «extension» or
«restriction».

• The class may have generalizations without stereotypes, with the general class being
stereotyped as «globalProperty», «group», or «attributeGroup».

• The class may contain nested classes stereotyped «complexType» and nested datatypes
stereotyped «simpleType».

Stereotype «global» extends class to be used as Container for a global property, i.e., a global
element or a global attribute (cf. Section 5.3.3 for elements and attributes). The stereotype
defines some derived attributes supporting access to the global property: globalProperty points
to the property, independent of it being an «element» or «attribute». globalElement points to
that property in case it is an «element», otherwise it is empty. Similarly global Attribute in case
the class defines an «attribute». substitutionHead is a shortcut to the «global» class forming
the root of the Substitution hierarchy, if any.

A «global» class may have these constraints attached:

• A "final" constraint, defining boolean values for extension and/or restriction. If both are
true, the class must be leaf.

• The constraints "key", "keyref, and "unique" can be attached to a class stereotyped as
«global», in the same way as to a «complexType».

The following metamodel constraints restrict usage of classes stereotyped as «global»:

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 76

• The class must define exactly one property, stereotyped either as «element» or as
«attribute». If that property is an «element», its multiplicity must be 0..*, otherwise
0..1.

• The class' name should be constructed from the property's name with 'Property' appended.

• The class may have at most one generalization, stereotyped as «Substitution», imple-
menting Substitution group affiliation. The Special class must redefine the property of the
general class.

Stereotypes «group» and «attributeGroup» extend class with semantics specific to element
and attribute groups, respectively. Some of the constraints defined for «complexType» may also
be attached to a class stereotyped by «group» or «attributeGroup»:

• Constraints "grammar", "key", "keyref', and "unique" may be attached to a «group».

• Both «group» and «attributeGroup» may have a "multiple-classification" constraint at-
tached.

The following metamodel constraints apply to a class with one the group stereotypes:

• The class must be abstract.

• A «group» may define only properties of stereotype «element».

• An «attributeGroup» may define only properties of stereotype «attribute».

5.3.3 Property Stereotypes

Properties are used to represent elements, attributes, and simple content, as defined by the stereo-
types «element», «attribute», and «simpleContent» (cf. Fig. 5.11). Note that in UML 2.0,
properties serve as both attributes and association ends. Therefore the stereotypes implement
both representation patterns EL1 and EL2. The stereotypes' property qualified defines whether
the element is namespace qualified or not.

Properties stereotyped as «element» may have one of the following constraints attached:

• A "nillable" constraint, declaring that the property may hold n i l values.

• A "block" constraint, defining valued for e x t e n s i o n , r e s t r i c t i o n , and
S u b s t i t u t i o n , implementing disallowed substitutions and Substitution group exclu-
sion, respectively.

Properties stereotyped as «attribute» may have restriction constraints attached, as speci-
fied in Section 5.3.5, in order to support representation patterns ST3 and ST4. Furthermore, a
stereotyped property must adhere to the following metamodel constraints:

• An «attribute» property which is read-only must also provide a default value, representing
the XML Schema value constraint "fixed".

• A «simpleContent» property must have multiplicity 0..1 and no default value.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 77

1
«stereotype»

Attribute
qualified

«metaclass»
Property

i

«stereotype»
XS-Property

1
«stereotype»

Element
qualified

1
«stereotype»

SimpleContent

Figure 5.11: Property stereotypes

5.3.4 Generalization Stereotypes

Generalization is extended for defining relationships among complex types («ex-
tension», «restriction»), among simple types («restriction»), and among global elements
(«Substitution»), as illustrated in Fig. 5.12. Furthermore, Generalization, without stereotypes,
is used for specifying usage of global properties and of groups.

«metaclass»
Generalization

«stereotype»
Restriction

I
«stereotype»
Extension

«stereotype»
Substitution

Figure 5.12: Generalization stereotypes

Stereotype «restriction» imposes the following metamodel constraints on the usage of a
generalization:

• The general classifier must be stereotyped either as «complexType» or as «simpleType».

• The Special classifier must be of the same stereotype as the general one.

• If the general classifier is a «complexType» which defines a constraint r e s t -
r i c t i onBlock , then the generalization must be not substitutable.

The following metamodel constraints are imposed by stereotype «extension»:

• Both general and Special classifier must be stereotyped as «complexType».

If the general classifier defines a constraint e x t e n s i o n B l o c k , then the generalization
must be not substitutable.

CHAPTER5. REPRESENTING XML SCHEMA WITH UML 78

The following metamodel constraints apply to a «Substitution» generalization:

• The generalization must be substitutable.

• Both general and Special class must be stereotyped as «global».

5.3.5 Datatype Stereotypes

UML Datatype and its subclasses Primitive and Enumeration are extended (cf. Fig. 5.13)
for usage in four different ways. Primitive datatypes with stereotype «simpleType» are used
to represent XML Schema's built-in datatypes. Enumerations with stereotype «simpleType»
are used to represent simple types with enumeration constraints. Datatypes with stereotype
«simpleType» are used to represent other simple types. Finally, enumerations with stereotype
«notations» are used to represent notation elements. Furthermore, specific dependencies are
introduced to Support representation of local datatypes («local»), and of list («itemType») and
union («memberType») type constructors (cf. Fig. 5.14).

The stereotype «simpleType» defines two derived attributes simplifying access to properties
of XML Schema simple types modelled as datatypes. «variety» denotes the kind of simple type,
which is implied by the way the simple type is constructed. If the simple type has a restriction
generalization, then it's variety is the same as the one of the general simple type. The root of the
restriction hierarchy, which is the XML Schema simple ur-type, has variety "atomic". Otherwise,
it is "list" if the simple type is client of an «itemType» dependency, or "union" if the simple type
is client of a «memberType» dependency. local is true if the simple type a local anonymous
simple type, which can be derived from the datatype being the client of a «local» dependency.

A datatype stereotyped as «simpleType» can be furthermore specified by attaching one of
the following constraints:

• A "final" constraint, defining boolean values for r e s t r i c t i o n , l i s t , and union.

• If the simple type is derived by restriction, then some of the following
restriction constraints may be attached: whiteSpace, p a t t e r n , length ,
minLength, maxLength, min lnc lus ive , maxlnc lus ive , rainExclusive,
maxExclusive, t o t a l D i g i t s , and f r a c t i o n D i g i t s . Each of them defines a
constraint value, and optionally whether that value is fixed or may be overridden in spe-
cialized simple types.

The following metamodel constraints apply to a datatype stereotyped as «simpleType»:

• The datatype must have either exactly one generalization of stereotype «restriction», or
exactly one dependency of stereotype «itemType», or one or more dependencies of stereo-
type «memberType».

• If the datatype is a primitive datatype, then the simple type must be one of the XML
Schema primitives.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 79

«metaclass»
DataType

«enumeration»
Variety

atomic
list
union

«metaclass»
Primitive

«metaclass»
Enumeration

«stereotype»
SimpleType

/variety
/local

«stereotype»
Notations

Figure 5.13: Datatype Stereotypes

1
«stereotype»

Local

«metaclass»
Dependency

i

«stereotype»
MemberType

Position

1
«stereotype»
ItemType

Figure 5.14: Datatype-related dependency stereotypes

• If the datatype is an enumeration, it must have a generalization of stereotype «restriction»
and all enumeration literals of the enumeration must be instance specifications of the gen-
eral data type.

• If a "final" constraint for r e s t r i c t i o n is attached, the datatype mustbe a leaf datatype.

The dependency stereotypes «local», «itemType», and «memberType» imply the follow-
ing metamodel constraints:

• A «local» dependency must have a «simpleType» as both client and supplier.

• An «itemType» dependency must have a client of stereotype «simpleType» with va-
riety="list", and a supplier of stereotype «simpleType» with variety either "atomic" or
"union".

• A «memberType» dependency must have a client of stereotype «simpleType» with va-
riety "union" and a supplier of stereotype «simpleType» (any variety).

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 80

Stereotype «notations» refines enumeration with the semantics and syntactic constraints of
XML Schema notations. The following metamodel constraints apply to an enumeration stereo-
typed as «notations»:

• The enumeration must be named "Notations", and it must be the only one with this stereo-
type contained in an «xml-schema».

• The enumeration must have generalization relationships to all notations enumerations in
all «xml-schema» packages included by the containing package.

• The enumeration literals must all be Expression elements of the form "notation(/?MMc,
System)".

5.3.6 Comment Stereotypes

Comments are extended to Support the different aspects of XML Schema's a n n o t a t i o n con-
cept (cf. Fig. 5.15). In particular, stereotypes are defined supporting representation of user doc-
umentation («documentation»), application data («applnfo»), and for capturing XML names-
pace prefixes («xmlns»).

The properties of stereotypes «documentation» and «applnfo» conform to the attributes of
the corresponding XML Schema elements. Since the contents of these XML elements may con-
tain references to namespace prefixes defined outside these elements, the definition of namespace
prefixes must be captured separately, in order to enable parsing of the comment's contents with-
out the context of the complete XML Schema document. For this purpose, stereotype «xmlns»
is provided. Depending on the model element a comment containing namespace declarations
is attached, different scoping rules apply. An «xmlns» attached to an «xml-schema» pack-
age defines namespace prefixes common to all comments in that package. An «xmlsn» applied
to an element which has also «documentation» and «applnfo» comments attached, defines
the namespace prefixes for these comments. An «xmlns» attached to a «documentation» or
«applnfo» comment defines namespace prefixes for that particular comment.

«metaclass»
Comment

t

«stereotype»
Documentation

source
language

«stereotype»
Applnfo

source

«stereotype»
XMLNS

Figure 5.15: Comment stereotypes

The following metamodel constraints apply:

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 81

• Constraints stereotyped as «documentation» or «applnfo» may be applied to any ele-
ment with a stereotype defined in this profile, including packages, but except of comments.

• «xmlns» may also be applied to any of these elements, but including comments as well.

5.4 Comparison and Outlook

We have shown how to represent XML Schemas in UML, such that the representation expresses
the semantics of XML Schema in terms of UML as far as possible, and such that the representa-
tion is minimized in terms of UML constructs. The representation is based on a UML profile to
convey the semantics of XML Schema's concepts going beyond UML.

A comparison of the features of our approach to existing UML profiles is provided in Ta-
ble 5.1, organized along the various representation patterns as identified in this paper. As can
be seen, the main contributions of our approach are Solutions to represent model groups (MG)
as well as global elements (EG, EW) and global attributes (AG, AW) in a way more compli-
ant to UML semantics, to represent identity constraints (KY), and to represent simple types in a
more concise, UML like way (ST3-4). We further expect that the transformation approach pre-
sented in this paper improves understandability and integration of XML Schemas in UML-based
Software development processes.

Evaluation of the profile transformation rules has been done based on the UML and XML
Schema specifications, and by application to example Schemas. Ongoing work includes the
Implementation of a prototype supporting the transformation rules, based on the XMI represen-
tation of UML, and the use of automatically generated UML modeis as basis for application
development. In particular, we want to extend the UML representation of an XML Schema with
behavior that is capable of performing run time processing, i.e., reading, writing, and verifying
XML instance documents matching the respective XML Schema.

CHAPTER 5. REPRESENTING XML SCHEMA WITH UML 82

Table 5.1: Companson c

[14]
[24]
[69]
[65]
OA

SC
+

+

+

[14]
[24]
[69]
[65]
OA

AL
+
+
+
+
+

C
1
+

+
+
+

T
2

—
—
+
+

1
/
—
/
+
+

)f UML pronles by representation patterns

S
2
—
—
—
—
+

T
3

+

4

+

E
1
—
+
+
+
+

L
2
+
+
+
+
+

EG

/

+

EW
—
—
—

+

AG

+

AW

/

+

M
1
+
+
+
—

+

G
2

+

K
1

+

Y
2

—

+

GA

—

+

G
1

+

+

E
2

+

AN

—

+

NO

—

+

Legend:

space
OA

good support
weak support (incomplete)
violation of UML semantics
not supported
our approach

Chapter 6

Approaches to Extending XML Schema

Tailored Schema languages define domain concepts thus semantics once and for all across
Schemas. For instance, the Active XML Schema approach defines active behavior within XML
Schemas along metadata, and Stores traces of active behavior such as occurred events within
XML documents along data. The semantic expressiveness of XML Schema, the Schema lan-
guage recommended by the W3C, however, is not sufficient to define the active semantics of
Active XML Schema concepts. The contribution of this paper is to identify, explore, and evalu-
ate approaches to implementing the tailored Schema language Active XML Schema with XML
Schema, discussing the trade-off between semantic expressiveness and interoperability. Assum-
ing that Active XML Schema may be seen as representative for tailored Schema languages, the
findings of this paper can be applied for arbitrary tailored Schema languages.

6.1 Introduction

Tailored Schema languages define domain concepts thus semantics once and for all across
Schemas. In relational databases for example, the Schema language defines concepts such as
tables and foreign keys, constituting modelling primitives for database Schemas. Applications
exhibiting event driven, active behavior are another example where the use of a dedicated Schema
language is favorable. Such a tailored Schema language defines the semantics of active concepts
such as event-condition-action (ECA) rules and event types independent of individual application
Schemas.

The UML meets the need for supporting tailored Schema languages through its extension
mechanisms. Profiles are a light-weight approach to extending and refining UML in terms of
constraints and stereotypes. Furthermore, based on MOF, i.e., UML's metamodelling infrastruc-
ture, new languages can be defined independent of UML but based on a common metamodel.
Both of these extension approaches can be used in model driven development. As different trade-
offs regarding expressive power and conformance to UML have to be made, the selection of an
extension approach depends on the requirements of the tailored Schema language [71].

As the usage of XML increases, also the need for tailored XML Schema languages, which go
beyond the semantic expressiveness of XML Schema [93, 94], arises. This goes in parallel with

83

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 84

the emerging practice to define an XML syntax both for Schemas and instances (e.g., as RDF
[88, 95] does).

For instance, the Active XML Schema approach [72] provides an XML syntax both for
Schemas and instances. Its Schema language1 allows to define circumstances having intensional
aspects and/or extensional aspects. While the former refers to circumstances that only affect
a Schema, such as ECA rules, the latter refers to circumstances that only affect instances of a
Schema, such as the structure of occurred events.

Using XML for Schemas and instances instead of using other data formats is beneficial with
respect to interoperability, openness, and Integration. This means that Schemas and instances
described with XML syntax are accessible under various platforms and environments, they can
be extended by employing XML namespaces [87], and they can be integrated with other XML
Standards such as XLink [92], XSLT [90], and RDF. However, defining XML syntaxes for both
Schemas and instances is not advantageous at first, since it adds an extra layer of complexity
when defining metaschemas that needs to be handled properly.

The contribution of this paper is to identify, explore, and evaluate approaches to implement-
ing tailored metaschemas with XML Schema. In particular, four approaches with distinct charac-
teristics are presented. They are explored and applied to Active XML Schema, giving insight into
their respective implications. Furthermore, the approaches are evaluated with respect to criteria
that have been identified to be relevant for the quality of a tailored metaschema's Implementation.

Since Active XML Schema comprises concepts that have intensional and extensional aspects,
it can be assumed to be a representative for tailored metaschemas. Thus the paper generalizes
Statements about Active XML Schema to Statements about tailored metaschemas. However, keep
in mind that the findings presented in this paper, except for the approaches and evaluation criteria
themselves, are based on experiences in implementing the metaschema of Active XML Schema.

The paper is organized as follows. After giving a brief overview of Active XML Schema
in Section 6.2, Section 6.3 defines criteria by which the presented approaches are evaluated.
Section 6.4 presents the four approaches and ranks them according to the criteria. Section 6.5
summarizes the approaches by directly comparing them to each other and discusses examples
from theory and practice. Section 6.6 finally concludes the paper.

6.2 An Overview of Active XML Schema

Active XML Schema and related approaches (e.g., [1,9, 10]) have been proposed for enriching
XML with active behavior as known from active databases [63]. They specify active behavior by
ECA rules, which allow to automatically perform an action as reaction to an occurred event if a
given condition applies. Active XML Schema has several unique features, which are discussed
in the following as far as necessary to understand the examples throughout the paper.

First, active behavior is defined at the Schema level so that it comes with a Schema and is
used for all its instances. Furthermore, a mechanism is provided to define passive behavior, i.e.,

1 For the purpose of readability, we use the term metaschema instead of Schema language throughout the rest of
the paper. If we talk about a Schema expressed in XML Schema, we concisely call it XML Schema.

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 85

operations on documents. Thus a so-called active document type defines instances' structure as
well as passive and active behavior.

Second, events arefirst class objects, which have an event type describing their internal struc-
ture. Event types are classified into different kinds of events. Among them Operation events are
important in this paper's context, they occur upon executions of operations. Per default an Oper-
ation event type is defined for each Operation defined with a document type. Events are collected
in event classes, where each class collects events of an event type, called its member type.

Third, distributed events are provided by employing the publish/subscribe model from event
based Systems. This enables active XML documents to import event classes from remote docu-
ments. The import of an event class is defined at the Schema level, whereby the remote document
from which the event class is imported is represented by a typed/>roxy property, which is bound
to an actual document at the instance level. A remote event is an event that occurs in a remote
document. When imported into a local document it is wrapped in a local, so called imported event
which provides two additional time stamps to keep track when the remote event was published
(called publication time) and when it was delivered to the importing document (called deliv-
ery time). This allows to detect exceptional situations, where event delivery was significantly
delayed.

Example 1. A job agency provides an Active XML Schema defining active document type
j:JobAnnounce and a document academicJobs.xml having that type, which comprises a list of
current job offers. A new job offer is announced by an invocation of Operation announce(j: Job),
which is defined by the active document type. It adds new job offer j at the end of the list. A uni-
versity's science faculty posts, as a courtesy to its staff and students, relevant job offers supplied
by the job agency at its document science.xml of active document type u:Faculty. The latter
imports event class announce, using proxy jobSite to refer to the document from which the
remote event class is imported. The proxy's value is bound in instance science.xml to document
academicJobs.xml. Announced job offers are now locally available within a faculty's page in
the form of events contained in the imported event class.

6.3 Evaluation Criteria

This section presents criteria to determine the quality of the different approaches. These quality
criteria, which we have identified to be relevant in the narrow context of implementing tailored
metaschemas, are related to quality factors proposed in literature [8, 37] to facilitate a better
understanding of their implications. This is only done informally since it is not the focus of this
paper.

Semantic expressiveness describes how much semantics is expressed formally and concisely
by a Schema. Since semantics is defined by the tailored metaschema, a Schema expressed therein
is most expressive. When using XML Schema instead, semantics of the tailored metaschema
need to be mapped to XML Schema. Because usually not all semantics can be mapped, Schemas
expressed in XML Schema are less expressive. The more semantics is explicit in a Schema, the
better the schema can be verified against an explicit metaschema such that errors can be detected
at design time. Semantic expressiveness influences quality factors such as understandability,

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 86

maintainability, testability, and reusability.
Schema interoperability in general describes the ability of a System to exchange Schemas

with other Systems and interpret them. Interoperability also affects design time of a system in
that it allows to reuse schema components from interoperable Schemas and to reuse Software
components implemented for interoperable Schemas and metaschemas. In the paper's specific
case schema interoperability describes the ability of Standard XML Software to process Schemas
that have been created following each of the presented approaches. Thus it directly affects the
extent of reusing Standard XML Software when writing applications that process such Schemas.
This criteria influences quality factors such as interoperability, flexibility, and portability.

Locality of change describes the self-containedness of a schema such that a change in one
schema component does not require subsequent changes in dependent schema components in
the same or other Schemas. It is negatively affected by redundantly modelled schema compo-
nents (i.e., components that model the same circumstance by different concepts) and non-atomic
schema components (i.e., a circumstance is modelled by several dependent components). Local-
ity of change is infiuenced by two aspects: First by the schema's environment (i.e., the employed
metaschema and its imposed usage), and second, by the design of a given schema. Because the
second aspect is application specific and thus independent of the presented approaches, we fo-
cus on the first aspect. Locality of change influences quality factors such as understandability,
maintainability, and integrity.

6.4 Approaches

This section describes four approaches to implementing a tailored metaschema and ranks them
with respect to the evaluation criteria presented in Section 6.3.

To talk about the various levels of tailoring, we adopt a four layer metadata architecture
as for example proposed by OMG's Meta Object Facility [61]. The layers comprise the in-
stance layer (short "MO") for data, the schema layer ("Ml") for metadata describing data, the
metaschema layer ("M2") describing metadata, and the meta-metaschema layer ("M3") describ-
ing meta-metadata. Between elements of the various layers instance-of relationships exist in the
sense that an element of Mi is an instance of an element of M(i+1) with the exception that de-
pending on the underlying conceptual model an element of M3 can be seen as an instance of
itself.

6.4.1 Proprietary Schema Approach

This approach expresses Schemas directly in terms of the tailored metaschema, constituting the
most "natural" approach with respect to schema design. As shown on the left of Figure 6.1,
schema s (an XML document) is created by instantiating tailored metaschema m (e.g., an XML
schema). Instance data in turn is created by proprietarily instantiating schema S.

For intensional aspects, i.e., aspects that apply for all instances but have no corresponding
materialization at the instance level, it is not necessary to consider an XML syntax for MO.

Example 2. The tailored metaschema and the exemplary proprietary schema below show

CHAPTER 6. APPROACHES TO EXTENDING XML SCHEMA 87

T0:I-»XML

m
tailored
metaschema

fM2
| «instance-of*

s
proprietary
schema

* [MI
j «instance-of»

i
XML
document | MQ

Figure 6.1: Proprietary Schema approach

how rules are defined and expressed by element actm:rule. A rule is identified by its name and
is defined upon an event class (attributes name and on), it comprises a condition and an action
(elements condition and action). Since ECA rules only have intensional aspects, no XML syntax
needs to be considered for MO.

(M2) Tailored metaschema with target namespace actm:
<xs:element name="rule" ..> ..

<xs:sequence>
<xs:element name="condition" ../>
<xs:element name="action" ../>

</xs:sequence>
<xs:attribute name="on" type="xs:NMTOKEN" ../> ..
<xs:attribute name="name" type="xs:NMTOKEN" ../> ..

</xs:element>

(M1) Exemplary proprietary schema:
<rule on="jobSite.announce" name="announceJobRule"

<condition>..</condition>
< action >..</action>

</rule>

For extensional aspects it is necessary to define so-called instance transformation function
r0: I^XML. It defines how a proprietary instance is transformed into an XML document. More-
over an inverse function TQ1 must exist to transform an XML document back into a proprietary
instance. Note that TQ is defined at M2, i.e., independent of a particular schema. Therefore it can
be reused across applications.

Example 3. The tailored metaschema below defines the import of an event class by element
actm:importEventClass. The exemplary proprietary schema imports event class announce
from a remote document represented by proxy jobSite. Finally, the imported event class and
events contained therein materialize at the instance level.

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 88

(M2) Tailored metaschema with target namespace actm:
01 <xs:element name="importEventClass" ..>
02 <xs:complexType>
03 <xs:attribute name="name" type="xs:QName" ../>
04 <xs:attribute name="proxy" type="xs:QName" ../>
05 <xs:attribute name="remoteEvtCsName" type="xs:QName" ../>
06 <xs:attribute name="hasMemberType" type="xs:QName" ../> ..
07 </xs:complexType>
08 </xs:element>

(M1) Exemplary proprietary Schema:
09 <actm:importEventClass name="jobSite.announce"
10 proxy="jobSite" remoteEvtCsName="announce".. />

(MO) Exemplary instance:
n <jobSite.announce>
12 <event id="i19" deliveryTime="2003-03-01T12:14.00.00" ..>
13 <remoteEvent id="e47" occurrenceTime="2003-05-01T12:13:14.15".. > ..
14 </remoteEvent>
15 </event>
16 <event id="i20" ..> .. </event> ..
17 </jobSite.announce>

Semantic expressiveness is high because using a tailored metaschema makes all semantics
explicit at the Schema level. However, since these Schemas are expressed in a proprietary for-
mat, schema interoperability is low because Standard XML Software cannot interpret the propri-
etary Schema. This also affects implementation aspects, since Standard XML Software cannot be
reused to validate instance documents against the proprietary schema. Locality ofchange is high,
because the tailored metaschema does not impose redundant or non-atomic schema components.

6.4.2 Side by Side Approach

This approach is similar to the Proprietary Schema approach in that it uses an explicit tailored
metaschema to define Schemas. However, an XML schema is provided in addition, which does
not replace the proprietary one but Stands side by side to it. Likewise, instance transformation
function r0 is still used to serialize instances as XML.

The transformation of a proprietary schema into an XML schema is defined at M2 by so-
called schema transformation function T\\ S^XSD and applied at Ml as depicted in Figure 6.2.
Function T\ can be derived from TQ, since the latter defines the structure of XML documents
implicitly. While r0 is used at runtime, i.e., when documents are processed, T\ is used at design
time, i.e., when Schemas are created. Because only extensional aspects of the proprietary schema
are transformed to an XML schema, rx is partial.

Example 4. The result of transforming extensional aspects of proprietary schema s (cf.
Example 3) to XML schema s' by TX is shown below. It defines the imported event class as
element announce, which contains a sequence of event elements, each representing an imported
event and in turn containing the wrapped remote event as element remoteEvent.

CHAPTER 6. APPROACHES TO EXTENDING XML SCHEMA 89

tailored
metaschema

proprietary
schema

T„:I->XML
T,:S->XSD

A

j «instance-of»

S

S'=T,(S)

A

A

XML Schema

«instance-of»

s'
XML
schema

«instance-of»

[M2

[MT

XML
document ff^n

Figure 6.2: Side by Side approach

.. </xs:element>

(M1) Exemplary XML schema:
01 <xs:element name="jobSite.announce" actm:eventClass="jobSite.announce">
02 <xs:complexTypexxs:sequence>
03 <xs:element name="event" ..>
04 <xs:complexTypexxs:sequence>
05 <xs:element name="remoteEvent" ..
06 </xs:sequencex/xs:complexType>
07 <xs:attribute name="id" type="xs:ID" ../
08 <xs:attribute name="deliveryTime" ../>
09 <xs:attribute name="publicationTime" ..
10 <xs:attribute name="deliveryTime" ../>
n </xs:element>
12 </xs:sequencex/xs:complexType>
13 </xs:element>

Still using a tailored metaschema to model Schemas results in high semantic expressiveness.
But in contrast to the Proprietary Schema Approach, this approach provides an XML schema for
extensional aspects, resulting in higher schema interoperability. Thus Standard XML Software
can be used to validate instance documents at the cost of implementing T\ to transform Schemas.
Implementation of applications is supported by providing explicit links from components in s' to
components in s (cf. attribute actm:eventClass in Example 4). Having two Schemas expressing
the same circumstances redundantly by components in terms of different metaschemas makes it
necessary to keep them synchronized. Thus locality ofchange is low.

6.4.3 Framework Approach

This approach uses only an XML schema that expresses all circumstances formerly modelled
by the proprietary schema as shown in Figure 6.3. Thus it eliminates the need for proprietary
schema S, transformation T\, and synchronization of s with s'.

Since intensional aspects are orthogonal to XML Schema, they can be expressed easily using
XML Schema extension mechanisms (annotations and foreign attributes). Expressing exten-

CHAPTER 6. APPROACHES TO EXTENDING XML SCHEMA 90

«tnherits-from»^—^\

XML Schema

f [M2
1 «instance-of»

XML Schema
framework

XML Schema

1 «instance-of*

XML
document I ^ Q

Figure 6.3: Framework approach

sional aspects is more complicated as they must be expressed solely with concepts provided by
XML Schema.

The framework concept as known from object-oriented programming [40] can help in this
Situation. A framework is a means to provide a base Schema common to all applications, along
with Conventions for its adaption and usage in the design of particular Schemas. XML Schema
provides a set of concepts that can be employed in framework design, such as abstract types,
type derivation, abstract elements, and Substitution groups (see [52] for a brief overview). There-
fore an XML Schema framework comprises a set of reusable and/or specializable elements and
types, which form the base Schema, and a set of informal Conventions describing their reuse and
specialization.

Example 5. The Active XML Schema framework below defines the structure of event classes
which are represented by actf:eventClass elements that are of abstract type actf:TEventClass.
Moreover, abstract type actf:TEventType describes events, which comprise an identifier (at-
tribute id), occurrence time (attribute occurrenceTime), and Status (attribute Status). Type
actf :TEventType is directly or indirectly extended by specialized event types which are provided
by the framework for all kinds of events (e.g., actf:TOperationEvtTp for Operation events and
actf:TlmportedEvtTp for imported events). Finally, in addition to event types, reusable event
classes are provided by the framework (e.g., actf:TEvtCs_lmportedEvtTp is a Special event
class having event elements of type actf:TlmportedEvtTp, a specialized actf:TEventType).

(M1) XML Schema framework with target namespace actf:
01 <! - Abstract base event type and class - >
02 <xs:element name="eventClass" type="actf:TEventClass"/>
03 <xs:complexType name="TEventClass" abstract="true"/>
04 <xs:complexType name="TEventType" abstract="true">
05 <xs:attribute name="id" type="xs:ID" ../>
06 <xs:attribute name="occurrenceTime" type="xs:dateTime" ../>
07 <xs:attribute name="status" type="actf:TEvtStatus" ..>
08 </xs:complexType>
10 <! - Event type and class for Operation events - >
11 <xs:complexType name="TOperationEvtTp" abstract="true"> ..

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 91

12 <xs:extension base="actf :TEventType"xxs:sequence>
13 <xs:element name="return" nillable="true"> .. </xs:element>
14 <xs:element name="diff' nillable="true" minOccurs="0"> .. </xs:element>
15 < /xs :sequencex/xs :ex tens ion>. .
16 </xs:complexType>
17 <xs:complexType name="TEvtCs_Operat ionEvtTp"> ..
18 <xs:extension base="actf :TEventClass"xxs:sequence>
19 <xs:element name="event" type="actf:TOperationEvtTp" ../>
20 < /xs :sequencex/xs :ex tens ion>. .
21 </xs:complexType>
22 < ! - Event type and class for imported events - >
23 <xs:complexType name="TlmportedEvtTp" abstract="true"> ..
24 <xs:extension base="actf :TEventType"xxs:sequence>
25 <xs:element name="remoteEvent" type="actf:TEventType"/>
26 </xs:sequence> .. </xs:extension> ..
27 </xs:complexType>
2 8 <xs:complexType name="TEvtCs_lmportedEvtTp"> ..
2 9 <xs:extension base="actf :TEventClass"xxs:sequence>
3 0 <xs:element name="event" type="actf:TlmportedEvtTp" ../>
31 < /xs :sequencex/xs :ex tens ion>. .
32 </xs:complexType>

To some extent, Conventions defining the reuse and specialization of Schema components
provided by an XML Schema framework can be enforced by mechanisms of XML Schema. For
example, an abstract type must be specialized before it can be used, or an abstract Substitution
group's head has to be substituted by an element of an appropriate type. Unfortunately, in many
cases these mechanisms are not sufficient to enforce a correct usage of the framework. Therefore,
Schema designers must know and follow informal Conventions regarding the use of framework
components.

Example 6. Modelling the exemplary Schema based on the XML frame-
work requires the definition of the following (as shown below). First, event type
j:Tlmported_TExecAnnounceEvtTp is defined for imported events, which is done by ex-
tending event type actf:TlmportedEvtTp. Since element actf:remoteEvent cannot be refined
by the exemplary Schema (because it is not in the framework's namespace), an annotation is
provided that indicates that such elements (which represent remote events) shall be of type
j:TExecAnnounceEvtTp in instance documents. Second, a corresponding event class (ele-
ment j:jobSite.announce) is defined by making it part of the Substitution group headed by
actf:eventClass. The type of the event class's actf:event elements is defined in an annota-
tion as j:Tlmported_TExecAnnounceEvtTp, due to the same reasons as with the event type
for imported events. Proxy j:jobSite, which is an intensional aspect, is defined within an anno-
tation. Note that the use of the annotation as well as the definition of parallel type hierarchies
comprising event types and event classes are informal Conventions, i.e., not enforceable by the
XML Schema framework.

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 92

(M1) Exemplary XML Schema with target namespace u:
01 <! - Imported event type - >
02 <xs:complexType name="Tlmported_TExecAnnounceEvtTp"> ..
03 <xs:extension base="actf:TlmportedEvtTp">
04 <xs:annotationxxs:appinfo>
05 <actm:remoteEvtTp="j:TExecAnnounceEvtTp'7>
06 < /xs:annotationx/xs:appinfo>
07 </xs:extension>..
08 </xs:complexType>
09 <! - Imported event class - >
10 <xs:element name="jobSite.announce"

type="actf:TEvtCs_lmportedEvtTp" substitutionGroup="actf:eventClass">
n <xs:annotationxxs:appinfo>
12 <actm:proxy name="j:jobSite" forDocType="j:JobAnnounce" type="single"/
13 <actm:hasMemberType="j:Tlmported_TExecAnnounceEvtTp"/>
14 </xs:appinfox/xs:annotation>..
15 </xs:element>

Regarding the characteristics of the framework approach, most notably is the lack ofseman-
tic expressiveness of extensional aspects. This is exemplified by comparing the import of an
event class by the proprietary Schema shown in Example 3 with the above Schema. Furthermore,
informal Conventions that must be followed when using a framework severely impact semantic
expressiveness. On the positive side, schema interoperability is high since Schemas (and frame-
works) are expressed solely in XML Schema. Locality ofchange is medium since the framework
may impose modifications of multiple schema components in order to achieve the modification
of a single circumstance.

6.4.4 Specialized XML Schema Approach

This approach extends XML Schema with new concepts of the tailored metaschema as shown
in Figure 6.4 opposed to the framework approach, which expresses new concepts of the tailored
metaschema by XML Schema concepts. To relate new concepts to XML Schema concepts the
mechanisms provided by XML Schema itself are used, because XML Schema at M2 is deflned
by an XML schema, (cf. [93]), which in turn assumes XML Schema at M3 (as one can see, XML
Schema is meta-circularly deflned [51]). Thus plenty of possibilities exist to relate concepts, such
as element composition, type composition, or type derivation. Also redefinition as shown in [66]
is an Option. Note, however, while [66] focusses on restricting XML Schema, this approach
focusses on extending it.

Depending on whether XML Schema is to be extended by intensional or extensional aspects,
different procedures are followed. An extension with intensional aspects is simply a matter of
adding new concepts to XML Schema without the need to relate them to existing concepts. On
the contrary, extensional aspects must be defmed as specializations of existing concepts such as
elements and attributes, in order to inherit the extensional semantics of those concepts. Inten-

CHAPTER 6. APPRO ACRES TO EXTENDING XML SCHEMA 93

«inher

l\

•

ts-from»

speciali
XMLSc

zed
hema

j «instance-of»

specialized
XML Schema

i «instance-of*

|XML
1_ J document

XML Schema

[MT

Figure 6.4: Specialized XML Schema approach

sional aspects thus have no Standard meaning, i.e., they can be safely ignored by Standard XML
Schema validators.

This approach has the advantage that an XML Schema validator can interpret specialized
XML Schemas, because it is possible to derive the basic meaning of a Schema component of
a specialized concept from the XML Schema concept it is based on. Or in different terms, it
is possible to perform a downcast according to the principle of type substitutability. Unfortu-
nately, Standard XML Schema validators currently do not provide for a plug-able XML Schema
necessary for a downcast.

Example 7. In XML Schema, group xs:schemaTop defines the content of element
xs:schema, the document element of every XML Schema. The group defines a choice of el-
ements xs:element, xs:attribute, and others. It is redefined2 by the specialized XML Schema to
include elements actm:rule and actm:importEventClass. Because a rule has only intensional
aspects, element actm:rule can be declared by referencing the respective element declaration of
the tailored metaschema depicted in Example 2. Because an imported event class has extensional
aspects, element actm:importEventClass is indirectly derived from xs:topl_evelElement, the
type of a global element declaration in XML Schema. The two Schema documents with different
namespaces shown below form the specialized XML Schema.

(M2) Specialized XML Schema with targetNamespace xs:
01 <xs:redefine schemaLocation="XMLSchema.xsd">
02 <xs:group name="schemaTop"xxs:choice>
03 <xs:group ref="xs:schemaTop7>
04 <xs:element ref="actm:rule/>
05 <xs:element ref="actm:importedEventClass'7> ..
06 </xs:choicex/xs:group>
07 </xs:redefine>
08 <xs:complexTypename="actm.EventSequence"> ..
09 <xs:restriction base="xs:topLevelElement"> .. </xs:restriction>

2The redefinition of xs:schemaTop is a group redefinition that contains a reference to itself. Thus, it is seman-
tically equivalent to a derivation by extension, being applied to an element group instead of a complex type.

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 94

10 </xs:complexType>

(M2) Specialized XML Schema with targetNamespace actm:
01 <xs:element name="importedEventClass"> ..
02 <xs:extension base="xs:actm.EventSequence'> ..
03 <xs:attribute name="proxy" type="xs:QName" use="required"/>
04 <xs:attribute name="remoteEvtCsName" type="xs:QName" use="required"/>
05 <xs:attribute name="exported" type="xs:boolean" use="required"/>
06 </xs:extension>
07 </xs:element>

On the negative side, the power of a downcast is very limited compared to an explicitly
defined schema transformation T\. In particular, a specialized concept can not arbitrarily modify
extensional semantics of its base concept. For instance, the extensional semantics of a specialized
element is always limited to that of exactly one element. Therefore it is not possible to define a
particular composition of elements by means of one specialized element.

Overall semantic expressiveness is medium, whereby the semantic expressiveness of inten-
sional and extensional aspects differ. It is high for intensional aspects because they are expressed
in terms of their unconstrained metaschema. It is medium for extensional aspects, because their
metaschema is constrained by the concepts of XML Schema. If Standard XML Schema valida-
tors provide for a plug-able XML Schema, schema interoperability will be high since they can
interpret specialized XML Schemas. Unfortunately, in practice this is not yet the case causing
low interoperability. Concerning locality ofchange it is advantageous that only one metaschema
is employed. However, one concept of the tailored metaschema is possibly expressed by several
concepts of XML Schema, producing several dependent schema components. Therefore locality
ofchange is medium.

6.5 Comparison and Related Work

When comparing the approaches' characteristics summarized in Table 6.1, it gets evident that
there is a tradeoffbetween semantic expressiveness and schema interoperability. The Proprietary
Schema approach defines new concepts at M2 not defined by XML Schema and thus imposes
proprietary Schemas at Ml, resulting in high expressiveness but low interoperability. The Side
by Side Approach tries to overcome this by defining a transformation from new concepts to
XML Schema concepts at M2 and applying it to proprietary Schemas at Ml. This increases
interoperability, however, at the cost of locality of change. The Framework approach goes one
Step further by expressing new concepts by XML Schema concepts at Ml, having positive effects
on interoperability and locality of change, but negative effects on expressiveness. Finally, the
Specialized XML Schema approach directly extends XML Schema with the new concepts at
M2. It suffers from the lack of support by existing XML Schema validators and the constraints
of the underlying XML Schema.

Since there is no single best approach, one has to choose the most appropriate one based on
given requirements. In case Schemas will change often, locality ofchange is the primary criterion

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 95

Table 6.1: Characteristics of the presented approaches

Criteria

Semantic expres- high high low med.
siveness
Schema interoper- low med. high high*
ability
Locality of change high low med. med.
t Assuming Standard XML validators provide for a plug-able XML
Schema

with the Proprietary Schema approach being favorable. In case instance documents have to be
shared with other partners, Schema interoperability is the primary criterion with the Proprietary
Schema Approach falling behind. In practice it may be beneficial to use a mixed approach (for
an example see Section 6.6).

Examples for approaches employing the Proprietary Schema approach are RDF and Jav-
aBeans Persistence [77]. The RDF Standard defines RDF's tailored metaschema and a syntax
of RDF instances as XML by an EBNF grammar. This grammar can be seen as a declarative
specification of TQ. In addition, the RDF Schema (RDFS) Standard defines a proprietary Schema
language for RDF. Going beyond XML, JavaBeans Persistence provides for serialization of Jav-
aBean objects as XML documents. It realizes r0 by a dedicated Java class. Here, the Java
language constitutes the tailored metaschema.

Among approaches following the Side by Side approach are [44, 56, 67]. [44] describes
transforming OIL [33] ontologies to XML Schemas by textually describing T\ that transforms
OIL concepts to XML Schema concepts. Independent of XML, Microsoft's ADO.NET DataSet
[56] implements among others a generic mapping between the relational model (constiruting the
tailored metaschema) and XML. It allows to read relational data and to write XML data with
its XML schema and vice versa, thus implementing r0, r l5 and their inverse. The Side by Side
approach has been also extensively explored in [67] recently, yielding an abstract algebra for
model mapping [6] (the notion of "model" in [6] corresponds to "schema" in our approach).

The Framework approach has not been employed in the XML field yet. We suspect that a
major reason for not employing it is that frameworks usually evolve from simple XML Schemas
instead of being created from scratch by implementing a tailored metaschema. Going beyond
XML, an example of fostering the Framework approach is UML with its extension mechanisms
[70]. Thus, instead of extending the UML metaschema at M2 (called metamodel in UML), the
extension mechanisms provide a means to customize UML at Ml. Extension mechanisms are
the main concepts to build reusable frameworks, called profiles in UML. Another example of
providing a new semantic concept at Ml is the role pattern [3, 41]. For example, it has been

CHAPTER6. APPROACHES TO EXTENDING XML SCHEMA 96

implemented in Smalltalk in terms of a predefined framework [30].
The SpecializedXML Schema approach, as the Framework approach, has not been employed

in the XML field yet. A major reason could be not wanting to lose interoperability. However,
tailoring metaschemas is well known in the non-XML literature. So-called open data modeis
have been proposed in the past (e.g., [43, 53]), which consist of a few built-in concepts but
which can be extended by additional modeling concepts at M2 for specific application needs.

6.6 Conclusion

In this paper four different approaches to implementing tailored XML metaschemas in terms
of XML Schema have been discussed and compared concerning the trade-off between semantic
expressiveness and interoperability.

When implementing Active XML Schema we decided to follow a mixed approach, mixing
Side by Side and Framework approach. We employed the Side by Side approach to provide max-
imum semantic expressiveness for human modelers. Extensional aspects of proprietary Schemas
are transformed to XML Schemas adhering to a dedicated framework. Thus we are fully inter-
operable and able to reuse Standard XML Software. Employing both approaches in combination
minimizes the required transformation functionality that has to be provided by T\. Since Ac-
tive XML Schemas are assumed not to change often, low locality of change is not considered a
problem.

After all, we would highly welcome efforts to foster the Specialized XML Schema approach.
Most important, Standard XML validators should provide for a plug-able XML Schema so that
they can perform a downcast, and XML Schema should provide additional mechanisms to define
extensional aspects of new concepts as specializations of XML Schema concepts more easily.

Chapter 7

Outlook

The work presented in this thesis leaves several issues open for further research. First, extension
of the coverage of the profile from the data aspect to also include behavior. Second, imple-
mentation of the profiles, and evaluation of the presented modelling concepts in their practical
application. Third, and most visionary, extensions to the modelling concepts regarding Support
of model synchronization as well as support for integration of heterogeneous workflows.

• The profile developed in Chapter 5 Covers only the data aspect of inter-organizational
workflows. Complete modelling of B2B protocols, however, also requires consideration
of behavior and other aspects, as discussed in chapters 2 and 3. Of particular interest are
UML profiles for platform-specific modelling of B2B protocols supporting the main target
technologies, BPEL and ebXML. Furthermore, to achieve independence of these technolo-
gies, a platform-independent UML profile is needed which abstracts away the peculiarities
of these technologies, thus leading to a higher-level model.

• The practical implementation of profiles and corresponding model transformations is not
as straight forward as it may appear at first. The MDA is not just a matter of modelling
methods and techniques, but essentially of modelling and model management tools. Tool
support for MDA, however, is still immature, providing very basic functionality for the
definition of user-defined profiles and the application of these profiles only. More so-
phisticated features, such as model transformations, consistency checks of modeis, and
code generation are mostly limited to built-in functionality. More open tools are required
supporting the specification of user-defined profiles and transformations such as those pre-
sented in this thesis.

• Evaluation of the modelling techniques and concepts proposed in this thesis in practical ap-
plications is required to determine their suitability. As already noted above, the power of
model driven development lies in it's potential of automation and tool support. Therefore,
an evaluation must consider the different factors in model driven development indepen-
dently, i.e., suitability and expressiveness of modelling concepts, quality and extensibility
of model transformation rules, features and usability of model development tools, etc.

97

CHAPTER 7. OUTLOOK 98

On the other hand, the value of a model driven development approach to realizing inter-
organizational workflows can only be determined from the combination of these factors.

• Considering the relationships between platform-independent and platform-specific mod-
eis, two extensions to the current profiles are suggested. First, based on OMG's forth-
coming model transformation language (cf. [29]), the UML profiles can be extended with
model transformation capabilities, providing for automatic transition between platform-
independent and platform-specific modeis in both directions. Second, in situations where
there are design decisions involved requiring user's expertise, there is a need for support-
ing a kind of loose coupling between platform-independent and platform-specific modeis.
Mapping rules could be used in consistency checks as well as in interactive design sup-
port, providing help in most typical cases. The work on transformation patterns presented
in Chapter 5 is a starting point in defining such mapping rules. Further research needs
to be done considering application of such mapping rules in behavior modelling as well.
Furthermore, an extensible specification formalism for mapping rules is needed, such that
users can extend rules for particular application areas.

• An anticipated advantage of the MDA specifically relevant to development and mainte-
nance of inter-organizational workflows is it's capability to integrate heterogeneous Sys-
tems [57]. It is envisaged that Systems integration is much more feasible on a platform-
independent level than on an implementation technology level, as, first, heterogeneity of
technology is not considered, and second, higher-level modelling concepts are considered
easier to integrate. Integration of B2B protocols and workflows at a conceptual level has
already been tackled in research (cf. [85, 54, 7]). Open issues are the application of
these results in the context of UML, in particular, based on UML extensions for B2B pro-
tocols such as those defined in this thesis, and other extensions intended for modelling
intra-organizational workflows and Systems integration such as OMG's UML profile for
enterprise distributed object Computing (EDOC). Furthermore, it would be interesting to
exploit the MDA capability of automatically generating bridges between heterogeneous
technologies, e.g., for realizing bridges between ebXML and Web Service based Systems.

Chapter 8

Acknowledgements

In acknowledging that I would not have been able to carry out this work on my own, I mention
only the most important people who have contributed to this achievement.

First, I would like to thank Gerti Kappel and Werner Retschitzegger, my advisors. Gerti for
setting high demands and providing room to fulfill them. Werner for being the most encouraging
and motivating teacher I know of.

Also, I would like to thank Martin Bernauer for his inspiring ways of being a working col-
league, office mate, contributor to some parts of this work, and partner for many interesting and
sometimes fruitful discussions.

Finally, I thank Marianne and Karl Kramler, my parents, who have supported me both mate-
rially and morally throughout my studies.

99

List of Figures

1.1 Application of MDA to inter-organizational workflows 4

2.1 Perspectives in Workflow specification 8
2.2 Overview of languages for interorganizational Workflow specification 13
2.3 Suitability of Workflow Specification Languages 17

3.1 Layersofthe conceptual framework and supporting languages 23

4.1 eCo layers and supporting languages 38

5.1 Representation of theAddPurchaseOrder Schema and its dependencies . . . 61
5.2 Representation of the L i n g u a l S t r i n g and D e s c r i p t i o n complex types

(left) and representation ofa simple type constructedby u n i o n (right) 62
5.3 Representation ofa simple type local to Bus inessObjec tDocument (left)

and representation of a simple type restriction according to ST3 (right) 63
5.4 Declaration of complex types AddPurchaseOrder and AddPurchase -

OrderDataArea 65
5.5 Declaration of global element Add (left) and declaration of User Are a element

and complex type (right) 66
5.6 Complex type S a l e s l n f orraat ion 's model group representation using MG1 68
5.7 Complex type S a l e s l n f o rma t ion ' s model group representation using MG2 69
5.8 Key e l emen t (from the Schema for XML Schema) 71
5.9 Package and related stereotypes 73
5.10 Class stereotypes 74
5.11 Property stereotypes 77
5.12 Generalization stereotypes 77
5.13 Datatype Stereotypes 79
5.14 Datatype-related dependency stereotypes 79
5.15 Comment stereotypes 80

6.1 Proprietary Schema approach 87
6.2 Side by Side approach 89
6.3 Framework approach 90
6.4 Specialized XML Schema approach 93

100

List of Tables

2.1 Overview of Evaluation Results 12

3.1 Supported combinations of eCo layers and Workflow aspects 22

3.2 Main distinguishing characteristics ofthe twoapproaches 34

5.1 ComparisonofUML profiles byrepresentationpattems 82

6.1 Characteristics ofthe presented approaches 95

101

Bibliography

[1] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action Language for
XML. In Proceedings ofthe llth International Conference on World Wide Web (WWW11),
Honolulu, USA, pages 486-495. ACM Press, 2002.

[2] A. Basu and A. Kumar. Research Commentary: Workflow Management Issues in e-
Business. Information Systems Research, 13(1): 1-14, March 2002.

[3] D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, and H. Züllighoven. Frame-
work Development for Large Systems. Communications ofthe ACM (CACM), 40(10):52-
59, October 1997.

[4] BEA, IBM, Microsoft, SAP, and Siebel. Business Process Execution Lan-
guage for Web Services, Version 1.1. h t t p : / / i f r . s a p . c o m / b p e l 4 w s /
BPELV1 -lMay52 0 0 3 F i n a l . p d f , May 2003.

[5] M. Bernauer, G. Kappel, G. Kramler, and W. Retschitzegger. Specification of Interorga-
nizational Workflows - A Comparison of Approaches. In Proceedings ofthe 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI 2003), 2003.

[6] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A Vision of Management of Complex
Models. SIGMOD Record, 29(4):55-63, 2000.

[7] P. Bichler, G. Preuner, and M. Schrefl. Workflow Transparency. In A. Olive and J.A.
Pastor, editors, Proceedings ofthe 9th International Conference on Advanced Information
Systems Engineering (CAiSE '97), volume 1250 of Lecture Notes in Computer Science,
pages 423-436. Springer Verlag, June 1997.

[8] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of Software Quality. In
Proceedings ofthe 2nd International Conference on Software Engineering, San Francisco,
United States, pages 592-605, 1976.

[9] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proceedings ofthe I8th
International Conference on Data Engineering (ICDE), San Jose, USA, 2002.

[10] A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML: A New Paradigm for
E-Services. The VLDB Journal, 10(l):39^7, 2001.

102

BIBLIOGRAPHY 103

[11] G. Booch, M. Christerson, M. Fuchs, and J. Koistinen. UML for XML Schema Mapping
Specification. Rational White Paper, December 1999.

[12] C. Bussler. B2B Protocol Standards and their Role in Semantic B2B Integration Engines.
In Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
volume 24, pages 3-11. IEEE, 2001.

[13] C. Bussler. Modeling and Executing Semantic B2B Integration. In Proceedings of the
12th Int'l Workshop on Research Issues in Data Engineering: Enginering e-Commerce/e-
Business Systems (RIDE'02). IEEE, 2002.

[14] D. Carlson. Modeling XML Applications with UML. Addison-Wesley, 2001.

[15] Q. Chen, U. Dayal, and M. Hsu. Conceptual Modeling for Collaborative E-business Pro-
cesses. In Conceptual Modeling - ER 2001, volume 2224 of Lecture Notes in Computer
Science, pages 1-16. Springer, 2001.

[16] Q. Chen and M. Hsu. CPM Revisited - An Architecture Comparison. In On the Move to
Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, volume 2519 of Lecture
Notes in Computer Science, pages 72-90. Springer, 2002.

[17] Workflow Management Coalition. Interface 1: Process Definition Interchange - Process
Model, Doc. No. WfMC TC 1016-P, Version 1.1 (Official Release), October 1999.

[18] R. Conrad, D. Scheffner, and J. C. Freytag. XML Conceptual Modeling Using UML. In
19th International Conference on Conceptual Modeling (ER), Salt Lake City, Utah, USA,
volume 1920 of Springer LNCS, pages 558-571, 2000.

[19] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, October 2003.

[20] A. Dan and F. Parr. An Object Implementation of Network Centric Business Service
Applications (NCBSAs): Conversational Service Transactions, Service Monitor and an
Application Style. In Business Object Workshop, OOPSLA'97, 1997.

[21] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination - State of the Art, Trends,
and Open Issues. In Proc. ofthe 27th VLDB Conference (VLDB2001), pages 3-13, 2001.

[22] J. Dubray. OAGIS Implementation Using the ebXML CPP, CPA, and BPSS specifications
vl.0. Open Applications Group (h t t p : / / w w w . o p e n a p p l i c a t i o n s . org/) ,2001.

[23] A. Dussart, B. Aubert, and M. Party. An Evaluation of Inter-Organizational Workflow
Modelling Formalisms. Centre Interuniversitaire de Recherche en Analyse des Organ-
isations (CIRANO), h t t p : / / i d e a s . r e p e c . O r g / p / c i r / c i r w o r / 2 0 0 2 s - 6 4 .
html, 2002.

BIBLIOGRAPHY 104

[24] R. Eckstein and S. Eckstein. XML und Datenmodellierung, dpunkt.verlag, 2004.

[25] eCo Working Group. eCo Architecture for Electronic Commerce Interoperability. h t t p :
/ / e c o . commerce . n e t / r s r c / e C o S p e c .pdf, June 1999.

[26] R. Elmasri, Y. Wu, B. Hojabri, C. Li, and J. Fu. Conceptual Modeling for Customized
XML Schemas. In 2Ist International Conference on Conceptual Modeling (ER), Tampere,
Finland, volume 2503 of Springer LNCS, pages 429-443. Springer, 2002.

[27] A. Banjeri et al. Web Services Conversation Language (WSCL) 1.0. W3C Note, March
2002.

[28] D.A. Chappel et al. Professional ebXML Foundations. Wrox Press Ltd., UK, 2001.

[29] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG MOF 2.0
Query/View/Transformations Submissions and Recommendations towards the final Stan-
dard.

[30] G. Gottlob, M. Schrefl, and B. Rock. Extending Object-Oriented Systems with Roles.
ACM Transactions on Information Systems (TOIS), 14(3):268-296, 1996.

[31] The Object Management Group. Model Driven Architecture. h t t p : / /www. omg. o r g /
mda, 2004.

[32] B. Haugen and T. Fletcher. Multi-Party Electronic Business Trans-
actions, Version 1.1. h t tp : / /www.supp lycha in l inks . com/
Mul t iPa r tyBus ines sTransac t ions . PDF, December 2002.

[33] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van Harmelen,
M. Klein, S. Staab, R. Studer, and E. Motta. The Ontology Inference Layer OIL. Technical
Report IR-479, Vrije Universiteit Amsterdam, 2000.

[34] C. Huemer. Defining Electronic Data Interchange Transactions with UML. In Proceedings
ofthe 34th Hawaiian International Conference on System Sciences (HICSS-34), January
2001.

[35] IBM. WebSphere Business Integrator, h t tp : / /www-3 . ibm.com/sof tware /
webserver s / b t o b i n t e g r a t o r / , 2002.

[36] IBM, Microsoft, RSA, and VeriSign. Web Services Security Policy Language (WS-
SecurityPolicy). h t t p : //www. v e r i s i g n . com/wss/WS-Securi tyPolicy.
pdf, December 2002.

[37] ISO. International Standard ISO/IEC 9126, Information Technology - Software Product
Evaluation - Quality Characteristics and Guidelines for their Use, 1991.

[38] S. Jablonski. Workflow-Management-Systeme: Modellierung und Architektur. Thomson
Publishing, 1995.

BIBLIOGRAPHY 105

[39] D. E. Jenz. The 'big boys' unite forces - What does it mean for you? h t t p : / /
w w w . w e b s e r v i c e s . o r g / i n d e x . p h p / a r t i c l e / a r t i c l e v i e w / 6 3 3 / 1 / 4 / ,
September 2002.

[40] Ralph E. Johnson. Frameworks = (Components + Patterns). Communications oftheACM
(CACM), 40(10):39-42, 1997.

[41] G. Kappel, W. Retschitzegger, and W. Schwinger. A Comparison of Role Mechanisms in
Object-Oriented Modeling. In Proceedings Modellierung '98, pages 105-109, 1998.

[42] G. Kappel, S. Rausch Schott, and W. Retschitzegger. A Framework for Workflow Man-
agement Systems Based on Objects, Rules and Roles. ACM Computing Surveys Electronic
Symposium on Object-Oriented Application Frameworks, 2000.

[43] W. Klas and M. Schrefl. Metaclasses and Their Applications — Data Model Tailoring and
Database Integration, volume 943 of Springer LNCS. Springer-Verlag, 1995.

[44] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The Relation between Ontologies
and Schema-Languages: Translating OIL-specifications in XML-Schema. In Proceed-
ings ofthe Workshop on Applications of Ontologies and Problem-solving Methods, 14th
European Conference on Artificial Intelligence (ECAI), Berlin, Germany, 2000.

[45] G. Kramler and W. Retschitzegger. Towards Intelligent Support of Workflows. In Pro-
ceedings ofAmericas Conference on Information Systems (AMCIS 2000), pages 581-585.
Online publication, August 2000.

[46] H. Kreger. Web Services Conceptual Architecture (WSCA 1.0). h t t p : //www. ibm.
com/sof tware/solut ions /webservices /pdf /WSCA.pdf , May 2001.

[47] T. Krumbein and T. Kudrass. Rule-Based Generation of XML Schemas from UML Class
Diagrams. In In Proceedings ofthe XML Days at Berlin, Workshop on Web Databases
(WebDB), pages 213-227, 2003.

[48] F. Leymann. Web Services Flow Language (WSFL 1.0). h t t p : //www-4 . ibm. com/
so f tware / so lu t ions /webse rv ices /pd f /WSFL. pdf, May 2001.

[49] F. Leymann and D. Roller. Production Workflow: concepts and techniques. Prentice-Hall,
2000.

[50] F. Lindert and W. Deiters. Modelling inter-organizational processes with process model
fragments. In GI WS Informatik 99, October 1999.

[51] P. Maes. Concepts and Experiments in Computational Reflection. In Proceedings on
the International Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), Orlando, Florida, 1987.

BIBLIOGRAPHY 106

[52] A. Malik. Create Flexible and Extensible XML Schemas, h t tp : / /www-106. ibm.-
com/deve loperworks / l ib ra ry /x - f lexschema/, November 2002.

[53] F. Manola and S. Heiler. A 'RISC Object Model for Object System InterOperation: Con-
cepts and Applications. Technical Report TR-0231-08-93-165, GTE Laboratories Incor-
porated, August 1993.

[54] A. Martens. Verteilte Geschaeftsprozesse - Modellierung und Verifikation mit Hilfe von
Web Services. PhD thesis, Humboldt-Universitaet zu Berlin, 2004.

[55] B. Mehta, M. Levy, G.M.T. Andrews, B. Beckman, J. Klein, and A. Mital. BizTalk Server
2000 Business Process Orchestration. IEEE Data Engineering Bulletin, 24(1), 2001.

[56] Microsoft. XML and the DataSet. h t t p : / /msdn .mic ro so f t . com/
l i b r a r y / d e f a u l t . a s p ? u r l = / l i b r a r y / e n - u s / c p g u i d e / h t m l /
cpconxmldataset . asp, 2001.

[57] J. Miller and J. Mukerji (eds.). The MDA Guide, Version 1.0.1. OMG Document
omg/2003-06-01, http:/ /www.omg.org/docs/omg/03-06-01.pdf,2003.

[58] P. Muth, J. Weissenfeis, and G. Weikum. What Workflow Technology Can Do For Elec-
tronic Commerce. In Proceedings ofthe Euro-Med Net'98 Conference, Electronic Com-
merce Track, March 1998.

[59] OASIS. ebXML Collaboration-Protocol Profile and Agreement Specification, Version
2.0. h t t p : / /www.oasis-open.org/commit tees /download.php/204/
ebcpp- 2 . 0 . pdf, September 2002.

[60] OASIS. ebXML Message Service Specification, Version 2.0. h t t p : //www. ebxml.
org/specs/ebMS2 .pdf, April 2002.

[61] OMG. OMG Meta Object Facility (MOF) Specification. OMG Document formal/2000-
04-03, ht tp: / /www.omg.org/ technology/documents/formal/mof.htm,
March 2000.

[62] OMG. UML Profile for Enterprise Distributed Object Computing Specification.
OMG Adopted Specification ptc/2002-02-05, h t tp : / /www.omg.o rg /cg i -b in /
doc?ptc /2002-02-05, February 2002.

[63] N. Paton and O. Diaz. Active Database Systems. ACM Computing Surveys, 31(l):63-103,
March 1999.

[64] C. Peltz. Web Services orchestration - A review of emerging technologies, tools, and Stan-
dards, h t t p : / / d e v r e s o u r c e . h p . c o m / d r c / t e c h n i c a l _ w h i t e _ p a p e r s /
WSOrch/WS-Orchestra-tion.pdf, January 2003.

BIBLIOGRAPHY 107

[65] W. Provost. UML For W3C XML Schema Design, h t t p : //www. xml. c o m / l p t / a /
2 0 02/08/07/wxs_uml.html,August2002.

[66] W. Provost. Working with a Metaschema. h t t p : / / w w w . x m l . e o m / l p t / a / 2 0 0 2 /
10/02/metaschema. html, October 2002.

[67] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.
VLDB Journal, 10(4):334-350, 2001.

[68] S. Rausch-Schott. TriGSflow - Workflow Management Based on Active Object-Oriented
Database Systems andExtended Transaction Mechanisms. PhD thesis, University of Linz,
1997.

[69] N. Routledge, L. Bird, and A. Goodchild. UML and XML Schema. In 13th Australian
Database Conference (ADC2002), pages 157-166. ACS, 2002.

[70] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

[71] A. Schleicher and B. Westfechtel. Beyond Stereotyping: Metamodeling Approaches for
the UML. In Proc. 34th Annual Hawaii International Conference on System Sciences
(HICSS-34), 2001.

[72] M. Schrefi and M. Bernauer. Active XML Schemas. In Proceedings ofthe Workshop on
Conceptual Modeling Approaches for e-Business (eCOMO) at the International Confer-
ence on Conceptual Modeling (ER), Yokohama, Japan, volume 2465 ofLNCS. Springer,
2001.

[73] R. Shapiro. A Comparison of XPDL, BPML, and BPEL4WS. h t t p : //www. ebpml.
org/A_Comparison_of _XPDL_and_BPML_BPEL . doc, August 2002.

[74] A.P. Shet and J.A. Larson. Federated Database Systems for Managing Distributed, Het-
erogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3), 1990.

[75] A.P. Shet and M. Rusinkiewicz. On Transactional Workfiows. Data Engineering Bulletin,
16(2), 1993.

[76] A. Sladek and A. Wolski. Modeling Inter-Organizational Workfiows. In Proc. Int 7 Sym-
posium on Applied Corporate Computing (ISACC'96), pages 13-22, October 1996.

[77] Sun. JSR 57 Long-Term Persistence for the JavaBeans™ Specification. h t t p : //www.
j c p . o r g / e n / j s r / d e t a i l ? i d = 5 7 , d e c 2002.

[78] S. Thatte. XLANG - Web Services for Business Process Design, Draft
Specification. Microsoft, h t t p : / / w w w . g o d o t n e t . com/ team/xml_wsspecs /
x l a n g - c /de f a u l t . htm, May 2001.

BIBLIOGRAPHY 108

[79] uddi.org. UDDI (Universal Description, Discovery and Integration) Technical White Pa-
per, h t t p : //www.uddi . org, September 2000.

[80] UN/CEFACT. UN/CEFACT Modeling Methodology (N090 of TMWG).
h t tp : / /www.unece .o rg / ce fac t / docum/download /01bp \p ro t ec t \
T l \ t ex tunde r sco ren090 . zip, 2001.

[81] UN/CEFACT. ebXML Core Components Technical Specification, Version 1.90. h t t p :
/ /xml .coverpages .org/CCTSvl90-2 002 . pdf, December 2002.

[82] UN/CEFACT and OASIS. ebXML Business Process Specification Schema, Version 1.01.
h t t p : //www. ebxml. org/specs/ebBPSS .pdf,May 2001.

[83] W. M. P. van der Aalst. Process-Oriented Architectures for Electronic Commerce and
Interorganizational Workflow. Information Systems, 24(8):639-671, 1999.

[84] W. M. P. van der Aalst. Don't go with the flow: Web Services composition Standards
exposed. In IEEE Intelligent Systems. IEEE, 2003.

[85] W. M. P. van der Aalst and M. Weske. The P2P Approach to Interorganizational Work-
flows. In Advanced Information Systems Engineering (CAiSE 2001), volume 2068 of
Lecture Notes in Computer Science. Springer, 2001.

[86] W.M.P. van der Aalst. Loosely Coupled Interorganizational Workflows: Modeling and An-
alyzing Workflows Crossing Organizational Boundaries. Information and Management,
73(2):67-75, March 2000.

[87] W3C. Namespaces in XML, W3C Recommendation. h t t p : //www. w3 . org/TR/-
REC-xml-names, 1999.

[88] W3C. Resource Description Framework (RDF) Model and Syntax Specification, W3C
Recommendation. http:/ /www.w3 . org/TR/REC-rdf -syntax , 1999.

[89] W3C. XML Path Language (XPath), W3C Recommendation. h t t p : //www. w3 . o r g /
TR/xpath, November 1999.

[90] W3C. XSL Transformations (XSLT) Version 1.0, W3C Recommendation. h t t p : / /
www. w3 . o rg /TR/xs l t , November 1999.

[91] W3C. Web Services Description Language (WSDL) 1.1, W3C Note, h t tp : / /www.
w3 . org/TR/200l/NOTE-wsdl-20010315, March 2001.

[92] W3C. XML LinkingLanguage (XLink) Version 1.0, W3C Recommendation. h t t p : / / -
www.w3 .o rg /TR/x l ink / , June 2001.

[93] W3C. XML Schema Part 1: Structures, W3C Recommendation. h t tp : / /www.w3.
org/TR/xmlschema-1, May 2001.

BIBLIOGRAPHY 109

[94] W3C. XML Schema Part 2: Datatypes, W3C Recommendation. h t t p : / / w w w . w 3 .
org/TR/xmlSchema- 2 / , May 2001.

[95] W3C. RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft.
h t t p : //www.w3 .org /TR/rdf-Schema, January 2003.

[96] P. Wegner. Interoperability. ACM CumputingSurvey, 28(l):285-287, 1996.

[97] H. Weigand and A.H.H. Ngu. Flexible specification of interoperable transactions. Data
& Knowledge Engineering, 25, 1998.

[98] E. Wilde. A Compact Syntax for XML Schema, h t t p : //www.xml. com/lpt/a/
2003/08/2 7/xscs. html, 2003.

[99] J.L. Zhao. Interorganizational Workflow and E-Commerce Applications. Presentation at
HICSS-35, h t tp : / / a t t i l a . Stevens-tech. edu/sigpam/publications/
tu t orial/HICSS-3 5/Int erorganizational_Workflow.pdf, January
2002.

[100] M. Zismann. Representation, Specification and Automation of Office Procedures. PhD
thesis, University of Pensylvania, 1977.

Curriculum Vitae

Address

Date of Birth

Education

Gerhard Kramler
Feldsdorf 9
4201 Gramastetten, Austria

kramler@big.tuwien.ac.at

March29th, 1973

July2001 to June 2004
Ph.D. studies in Computer Science
at the Johannes Kepler University Linz
and at the Vienna University of Technology

October 1992 toJuly 2000
M.S. studies in Computer Science
at the Johannes Kepler University Linz

110

CURRICULUM VITAE 111

Job Experience

Publications

Since December 2002
Faculty member of the
Institute of Software Technology and Interactive Systems
at the Vienna University of Technology

July 2001 to December 2002
Faculty member of the
Institute of Applied Computer Science
at the Johannes Kepler University Linz

July 2000 to July 2001
Conducted an industrial project
funded by Siemens Österreich
development of an embedded Workflow management System

Please see:
http://www.big.tuwien.ac.at/research/publications/

