
DISSERTATION

View-based Software Architecture
Reconstruction

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

o.Univ.-Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
Institut für Informationssysteme
Abteilung für Verteilte Systeme

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Dipl.-Ing. Claudio Riva
Claudio.riva@nokia.com

Matrikelnummer: 9725808
Raatetie 7 C

FIN-00730 Helsinki, Finland

Wien, im Oktober 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

KURZFASSUNG

Erfolgreiche Software Projekte legen besonders Wert auf ihre Software Architektur: die
Strukturierung der Bestandteile und die Weise wie diese interagieren. Ohne einem passen-
dem Architektur Design schlägt die Software Entwicklung fehl. Die Architektur Doku-
mentation vermittelt das gemeinsame Verständnis der wichtigen Design Entscheidungen,
die während der Entwicklung getroffen wurden. Meist beschreiben mehrere Viewpoints
die essentiellen archikturellen Belange der Stakeholders. Eine effektive Beschreibung der
Architektur ist gut vermittelbar und wird von den Team-Mitgliedern gut verstanden.

Jedoch ist die Adaptierung eines Architektur-zentralen Entwicklungsansatzes in der Indus-
trie weiter eine Herausforderung, da gute bewhrte Formalismen und Toolunsterstützung
fehlen. So werden Architektur-Beschreibungen nur mittels informellen Notationen skizziert,
so dass in der Praxis das Architektur Design kaum mit der aktuellen Implementierung
übereinstimmt. Dadurch ergibt sich eine Kluft zwischen der konzeptionellen Software Ar-
chitektur, welche in den Köpfen der Entwickler existiert, und der konkreten Architektur,
welche sich in der Implementierung verbirgt. Desto mehr sich diese Kluft ausweitet, desto
weniger wirkungsvoll ist die Software Architektur.

Architecture Reconstruction ist eine Methodik zur Gewinnung der Architektur Beschrei-
bung aus den vorhandenen Hinweisen in der Implementierung. Die dafü am zuverlässigste
Informationsquelle ist das System selbst, unter anderem der Source Code oder Execution
Traces. Andere Quellen schliessen die vorhandenen Design Dokumentation, Domain Wis-
sen und Interviews mit den System Experten mit ein.

Diese Dissertation präsentiert eine Methode zur Rekonstruktion der Architektur, genannt
NlMETA , welche auf der Wiederherstellung von archikturell signifikanten Views beruht.
Der Rekonstruktionsprozess von Nimeta betont die gewissenhafte Selektion (1) der ar-
chitektureilen Konzepte als erstklassige Objekte der Wiederherstellung und (2) der sig-
nifikanten Views der Zielarchitektur, welche die Belange der Stakeholders reflektieren. Der
von NIMETA verwendetet Formalismus basiert auf Binary Relational Algebra zur Definion
der Viewpoints, der Abstraktionsregeln und Automatisierung der Checks fr die Architektur-
Übereinstimmung.

ABSTRACT

Successful software projects pay a careful attention to their software architecture: the struc-
ture of the constituent parts and the ways they interact. Without a properly designed
architecture, the software development is likely to stumble. The architecture documents
the shared understanding of the important design decisions taken during the development.
Multiple viewpoints typically address the essential architectural concerns of the stakehold-
ers. An effective architecture description is well-communicated and well-understood by the
team members.

However, the industrial adoption of an architecture-centric development approach is still
challenged by the lack of a well-established formalism and tool support. Architecture de-
scriptions are sketched with informal notations and, in practice, the architectural designs
are unlikely to conform with the actual implementation. This yields to a chasm between
the conceptual (or intended) software architecture that exists in the minds of the developers
and the concrete (or as-implemented) architecture that is hidden in the implementation. The
more this chasm widens, the less effective the software architecture is.

Architecture reconstruction is the methodology for obtaining a documented architecture
description from the available evidence of the implementation. The most reliable source
of information is the system itself like the source code or execution traces. Other sources
include the existing design documentation, domain knowledge and interviews with system
experts. It is a reverse engineering process whose goal is to recover abstract views of the
fundamental characteristics of the implementation.

This dissertation proposes a method, called NlMETA , for architecture reconstruction based
on the recovery of the architecturally significant views. NlMETA 's reconstruction process
emphasizes the scrupulous selection of (1) the architectural concepts as first-class objects of
the recovery, and (2) the target architecturally significant views that are reflecting the stake-
holders' interests. This results in a well-focused and well-scoped reconstruction method.
NlMETA 's formalism is based on the binary relational algebra for defining the viewpoints,
the abstraction rules and for automating the architectural conformance checking. We also
present the supporting tool environment, NlMETA , and two industrial case studies.

ACKNOWLEDGMENTS

A Tao proverb says: the journey is the reward. Creating this dissertation has been a long
journey that started six years ago. The reward comes from all the people I met along
way. I would like to thank all of them for their help, intriguing discussions and the nice
moments. Since the list would have been too long, I hope you will accept my anonymous
acknowledgements.

First of all, I would like to thank the Nokia Research Center in Helsinki where this work has
been carried out. I am especially grateful to Christian del Rosso, Alessandro Maccari, Yao-
jin Yang, Jianli Xu for their help. Special thanks to Aapo Rautiainen and Heikki Saikkonen
for supporting my research activities in Nokia. I also would like to thank all my colleagues
for providing an excellent research environment.

I would like to thank Professor Mehdi Jazayeri, my supervisor. Without his support and
trust this work would have not been possible. I also would like to thank all the people at the
Vienna University of Technology, especially Renate Weiss for helping me to cope with the
bureaucracy.

I also would like to thank the board of the Nokia Foundation for the scholarship that helped
me to finalize this dissertation.

Thanks to all my friends, especially the "laiset" group in Helsinki. Without them, this
journey would have probably been shorter but definitely less enjoyable.

Finally, I would like to thank my family and my girlfriend for their love and support.

Nessuna umana investigazione si puö dimandare
vera scienza, se essa non passa per le matem-
atiche dimostrazioni; e se tu dirai ehe le scienze,
ehe principiano e finiscono nella mente, abbiano
verità, questo non si concede, ma si nega per
moite ragioni; e prima, ehe in tali discorsi men-
tali non accade esperienza, senza la quale nulla
dà di se certezza.

Trattato délia Pittura

Leonardo da Vinci, 1498.

TABLE OF CONTENTS

Kurzfassung iii

Abstract iv

Acknowledgments v

Table of Contents xii

List of Figures xvii

List of Tables xvii

Abbreviations xviii

1 Introduction 1

1.1 Motivation 1

1.2 Thesis 3

1.3 Approach 4

1.4 Contributions 5

1.5 Organization of the dissertation 6

2 Background 7

2.1 Software artifacts 7

2.2 Software Architecture 8

vu

TABLE OF CONTENTS viii

2.2.1 Informal definition 8

2.2.2 Classical definitions 10

2.2.3 Definition from the ffiEE 1471-2000 Standard 12

2.3 Views and Viewpoints 13

2.4 Product Family Development 15

2.4.1 Software Product Family Architecture 16

2.4.2 Product Family Evolution 18

2.4.3 Issues with the Product Family Evolution 20

2.5 Losing a Software Architecture 22

2.6 Reverse Engineering 23

3 Related Work 25

3.1 Architecture Reconstruction 25

3.2 Formalisms for Architecture Reconstruction 30

3.3 Formalisms for Reverse Engineering 32

3.4 Dynamic Analysis 33

4 Problem Statement 34

4.1 Intrdocution 34

4.2 Software Architecture Reconstruction 35

4.3 Novelty of the approach 38

4.4 Validation 40

5 Binary Relational Algebra 42

5.1 Introduction 42

5.2 Sets 43

5.3 Relations 43

5.4 Hierarchical Typed Graphs 46

5.5 Views and Viewpoints 50

5.6 Levels of precedence 51

TABLE OF CONTENTS ix

6 The NlMETA Formalism 53

6.1 Introduction 53

6.2 Overview of the Viewpoints 53

6.3 The code viewpoint 56

6.4 The FAMIX design viewpoint 56

6.5 The architecture viewpoints 60

6.5.1 The Module Viewtype 62

6.5.2 The Component & Connector Viewtype 63

6.5.3 The Allocation Viewtype 65

6.5.4 The Feature viewpoints 66

7 The NlMETA Architecture Reconstruction Process 68

7.1 Introduction 68

7.2 Source, Target and Hypothetical Views 70

7.3 The Architecture Reconstruction Process 71

7.3.1 Problem Definition 73

7.3.2 Concept Determination 75

7.3.3 Data Gathering 78

7.3.4 Knowledge Inference 81

7.3.5 Presentation 83

7.3.6 Conformance checking 85

7.3.7 Architecture Assessment 86

7.3.8 Re-documentation 87

7.3.9 Iterations 88

7.4 Maturity levels of architecture reconstruction 88

7.5 Example 89

8 The NlMETA Tool Environment 97

8.1 Introduction 97

TABLE OF CONTENTS

8.2 Overview of NlMETA 98

8.3 Extraction tools 101

8.4 Abstraction tools 102

8.4.1 Relational Algebra Engine 102

8.4.2 Prolog 105

8.5 Presentation tools 106

8.5.1 Rigi 106

8.5.2 Hava 108

8.5.3 Rational Rose 109

8.5.4 Web interface 112

8.5.5 SoftVis 113

8.5.6 ART environment 117

9 Case Study 1: NMP product famüy 120

9.1 Introduction 120

9.2 Overview of the system 121

9.3 Summary of the iterations 123

9.4 The actors 124

9.5 The First Iteration 124

9.5.1 Problem Definition 124

9.5.2 Concept Determination 126

9.5.3 Datagathering 127

9.5.4 Knowledge Inference 127

9.5.5 Presentation 127

9.6 The Second Iteration 127

9.6.1 Problem Definition 128

9.6.2 Concept Determination 129

9.6.3 Datagathering 132

9.6.4 Knowledge Inference 133

TABLE OF CONTENTS xi

9.6.5 Presentation 133

9.7 The Third Iteration 137

9.7.1 Problem Definition 137

9.7.2 Concept Determination 137

9.7.3 Data gathering 144

9.7.4 Knowledge Inference 145

9.7.5 Presentation 149

9.7.6 Architecture Conformance Checking 167

9.8 The Dynamic Analysis 173

9.8.1 Problem Definition 174

9.8.2 Concept Determination 174

9.8.3 Datagathering 175

9.8.4 Knowledge Inference 175

9.8.5 Presentation 176
9.9 Conclusions and Lessons Learned 176

10 Case Study 2: NMP platform 181

10.1 Introduction 181

10.2 Overview of the system 182

10.3 Summary of the iterations 182

10.4 The First Iteration 183

10.4.1 Problem Definition 183

10.4.2 Concept Determination 184

10.4.3 Datagathering 187

10.4.4 Knowledge Inference 188

10.4.5 Presentation 188

10.4.6 Architecture Assessment 192

10.5 The Second Iteration 192

10.5.1 Problem Definition 194

TABLE OF CONTENTS xii

10.5.2 Concept Determination 195

10.5.3 Datagathering 195

10.5.4 Knowledge Inference 196

10.5.5 Presentation 197

10.6 The Third Iteration 197

10.6.1 Problem Definition 197

10.6.2 Concept Determination 201

10.6.3 Datagathering 204

10.6.4 Knowledge Inference 204

10.6.5 Presentation 206

10.7 Conclusions and Lessons Learned 206

11 Conclusions 209

11.1 Summary 209

11.2 Recommendations 210

11.3 Conclusion 211

11.4 Future Work 211

A Nimeta scripts 213

A.I Extraction scripts 213

A.I.I snav2nimeta.tcl 213

A.1.2 extract.py 223

A. 1.3 strip-comments-file.pl 225

A.2 Abstraction scripts 226

A.2.1 Nimeta module 226

A.2.2 collapse_classes.rcl 230

A.2.3 collapse_dirs.rcl 230

References 232

LIST OF FIGURES

2.1 Conceptual model of architectural description (source: the IEEE 1471 -2000
Standard) 14

5.1 Directed graph representing the relation R 44

5.2 An example of an hierarchical graph 48

6.1 The framework of viewpoints 55

6.2 The simplified FAMIX meta-model 58

7.1 Views and Viewpoints 71

7.2 The reconstruction process 73

7.3 Intended architecture of Venice 91

7.4 The viewpoints for reconstruction of Venice 91

7.5 The class diagram of Venice 93

7.6 Venice's class diagram with the relation use 94

7.7 The top-level diagram of Venice 94

7.8 The violations of Venice 96

8.1 Overview of the NiMETA pipeline 99

8.2 Overview of the NiMETA tool environment 100

xin

LIST OF FIGURES xiv

8.3 Example of grouping with RlGl 107

8.4 Overview of RlGl within NlMETA 108

8.5 Vertical and horizontal abstractions in HAVA 109

8.6 Scenarios of usage of HAVA 110

8.7 Overview of the web interface 113

8.8 Overview of the web interface 114

8.9 Multiple graph visualization in SoftVis 115

8.10 Different layouts with SoftVis 116

8.11 The stereotype definitions for the components (a) and for the dependencies
(b) 118

8.12 Example of constraint definition for the architectural profile 119

9.1 Simplification of the development process 122

9.2 The summary of the iterations for the case study 1 123

9.3 An example of the manually reconstructed logical view in UML 128

9.4 Excerpt from the reference architecture 129

9.5 The target viewpoint of the second iteration 131

9.6 The source viewpoint for NPF. 131

9.7 The top-level dependencies in the target view 134

9.8 The clients of one server 135

9.9 The context diagram of one component 135

9.10 The clients of one server 136

9.11 The meta-model of the NPF case that shows the architectural concepts. . . 138

9.12 The target viewpoints 140

LIST OF FIGURES xv

9.13 The source viewpoint for programming language concepts and the code
patterns of NPF. 141

9.14 The source viewpoint for the domain knowledge of NPF. 143

9.15 The overview of the web application 152

9.16 Overview of the web interface 153

9.17 The summary of the dependencies 154

9.18 The detailed dependency table 155

9.19 The memory management 156

9.20 The context of memory management 157

9.21 The top-level diagram for NPF. 158

9.22 The top-level diagram showing the content of the packages 159

9.23 The content of the Apps package 161

9.24 The content of the Core package 162

9.25 The content of one package of NPF. 163

9.26 The content of one package of NPF. 164

9.27 The development view for NPF. 164

9.28 The geographical view for NPF. 165

9.29 The organizational view for NPF. 166

9.30 The task view for NPF. 167

9.31 The starting order of tasks for NPF. 168

9.32 The viewpoint and the view for the layering conformance checking 171

9.33 The conformance diagram of one server 173

9.34 The conformance diagram of one server 174

9.35 The elements of the feature viewpoint 175

LIST OF FIGURES xvi

9.36 The top-level feature view for the "call release" feature (static diagram and
sequence diagram) 177

9.37 The expanded component view 178

9.38 The expanded sequence diagram 178

9.39 The details of the call release feature between two applications and one server. 179

10.1 General architecture of the product based on the NNF platform 185

10.2 MSC drawn during the workshop with the experts 186

10.3 The viewpoints for the first iteration of NNP. 187

10.4 Top-level dependencies among the modules of the prodcut based on NNP. . 189

10.5 Dependencies between NNP classes and NOP servers in one module. . . . 190

10.6 Dependencies between NNP modules and NOP servers 191

10.7 Dependencies between NNP modules and NOP servers 191

10.8 The top-level dependencies between the packages under assessment. . . . 193

10.9 Class-level dependencies from the NNP GUI Library to the STD Graphic
Library 193

lO.lOClass-level dependencies from the STD Graphic Library to the NNP GUI

Library 194

10.11 General structure of the NNP platform 195

10.12The top-level structure of the NNP platform 197

10. ̂ Structure of the NNP platform 198

10. HStructure of the NNP platform 199

10.15 Structure of the NNP platform 200

10.16The viewpoints for the third iteration of NNP. 202

10.17 The source viewpoint 203

10.18The context diagram of one subsystem 207

LIST OF TABLES

2.1 The software artifacts and their levels of abstraction 9

5.1 The levels of precedence for the relational algebra operands (from the most
to the less bidding) 52

6.1 The entities and relations of the design viewpoint 59

6.2 The architectural viewpoints from the catalogue 61

6.3 The viewpoints of the module viewtype 63

6.4 The viewpoints of the Component & Connector viewtype 65

6.5 The viewpoints of the allocation viewtype 66

8.1 The set operands in Python 103

8.2 The relational operands in Python 104

8.3 The mapping between the architectural concepts and UML I l l

9.1 The target viewpoints 139

9.2 The relations of the source viewpoint 142

9.3 Summary of the tested presentation tools 151

10.1 The summary of the iterations for the second case study 183

xvn

ABBREVIATIONS

ADL Architecture Description Language
API Application Programming Interface
ASR Architecturally Significant Requirement
CASE Computer Aided Software Engineering
CGI Common Gateway Interface
DLL Dynamic Link Library
DSP Digital Signal Processor
GSM Global System for Mobile communications (Groupe Special Mobile)
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HW Hardware
IDE Integrated Development Environment
LOC Lines of Code
MB Megabyte
MLOC Million Lines of Code
MSC Message Sequence Chart
OS Operating System
PC Personal Computer
PDA Personal Digital Assistant
RAM Random Access Memory
ROM Read Only Memory
SDK Software development kit
SW Software
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
XML Extensible Markup Language

CHAPTER 1

INTRODUCTION

A science is any discipline in which
the fool of this generation can go beyond the point

reached by the genius of the last generation.

- Max Gluckman

This dissertation develops a novel methodology called NIMETA for the reconstruction of
the software architecture of an existing software system. The methodology includes the
formalism for modeling the architectural views and the view-based reconstruction process.
NIMETA 'S main distinguishing characteristic concerns with the careful selection of the
architecturally significant concepts to recover. In this chapter, we motivate its industrial
importance for software development and we summarize our approach.

1.1 MOTIVATION

Successful software projects pay a careful attention to their software architecture: what are
the constituents of the system and how they interact. Without a proper software architecture
the software project is likely to stumble. Many companies have learnt this equation and they
have introduced a proper software architecture design activity in their software development
processes. The motivation for this dissertation originates from our industrial experience
with software architecture modeling within Nokia1.

Nokia is the world's largest mobile phone manufacturer and leading provider of telecom-
munication equipments. Nokia's origins are in the network and terminal equipments (e.g.
switching systems and cellular phones). Although network products contain large amount

'Nokia Group: www.nokia.com

1.1. Motivation

of software, the market is rather mature, consisting of a few big players with well-established
development practises. On the contrary, in the recent years the terminal market underwent
a radical revolution. Within one decade, the cellular terminals have shifted from simple
single-lined devices to full-fledged mobile computing platforms supporting multimedia,
gaming and office applications. The improvements in the hardware technology abruptly
turned the terminals into software intensive systems. Differently from a decade ago when
the intelligence was mainly located only in the telecommunication network, in the next
generation cellular network (UMTS) the services are likely to be software-intensive and
mainly located in the terminals.

This radical shift has revolutionized the product development process for the whole industry
with the software playing a more important role than before. Nowadays, the software part
is not only responsible for the implementation of the telecom protocols but also for the rich
graphical user interfaces, services, games, multimedia and office applications, and third-
party applications. All these software-related extensions represent an important added-
value for creating compelling products. The quality of the software also influences the
overall quality of the product and the end-user can directly perceive it through the user
interface. Moreover, Nokia has become a mobile phone platform provider (e.g. the Nokia
Series 60,80,90) for other phone manufactures. This places Nokia in competition with pure
software companies like Microsoft.

Software architecture plays an important role in Nokia's software-intensive products. The
size and the complexity of software systems requires robust software architectures that are
well-designed in the first place and maintained heavily during the whole life-cycle. Nokia's
products are typically organized in several product families where software assets are shared
across similar products. Variance factors are caused by telecom protocols, operator cus-
tomization, hardware platforms, user interfaces, end-user segment, and so on. Most of the
product variations are handled by software variants derived from complex product family
architectures. An effective architectural orchestration is required not only for achieving the
desired quality levels but also for controlling the software development and evolution (like
the introduction of new features).

In the past, not all the systems have been built with a well-documented architecture or the
architecture documentation has not been maintained up to date. As a result, the devel-
opers often have a scant knowledge of the as-implemented architecture of their systems.
Especially in the highly dynamic mobile phone domain, products are developed quickly to
achieve a fast time-to-market and new features have to be introduced regularly in order to
stay competitive. In just a few years, Nokia has established new software platforms that
have been partly developed from scratch and partly by reusing existing implementations.
To support the architectural control of these activities, software architects are often facing
the challenge of not knowing carefully the real software architecture of the system they
architect. While the software architecture is recognized as an important factor of the sue-

1.2. Thesis

cess of the projects, the practise shows that there is a chasm between the conceptual (or
intended, as-designed) software architecture in the minds of the architects and the concrete
(or as-implemented) architecture that is found in the implementation.

The ultimate goal of this dissertation is to define a reconstruction process that can unveil
the architectural aspects that are considered important by the developers and bridge the
chasm between conceptual and concrete architectures. Over the past years, our team at the
Nokia Research center has supported the Nokia business units on the architecture design of
large software systems. During this period, we have exploited the NlMETA reconstruction
process on several cases from which we have derived the two case studies presented in this
dissertation.

1.2 THESIS

In this dissertation we explore the problem of defining a technique for recovering architec-
turally significant information from the implementation of a software system. Our goal is to
enable the software architects to have a precise, consistent and detailed comprehension of
the system they architect. We propose a methodology, called NIMETA , for software archi-
tecture reconstruction that is based on the recovery of architecturally significant views. It is
a reverse engineering process whose goal is to recover a documented software architecture
by examining the the available artifacts (such as source code, design documents) and by in-
terviewing the domain experts. The reconstructed architecture is presented through a set of
architectural views focused on specific architectural concerns and communicated to the de-
velopers. Our method stresses the importance of the careful selection of what architectural
concepts to recover.

In this dissertation we address the following research problems:

• The description of the software architecture design is often conducted unsystemat-
ically and based on informal notations (textual or graphical). There is no univer-
sally accepted architecture modeling language (ADL) and the industrial support for
an architecting tool is not adequate. This prevents an effective application of an
architecture-centric development process. Although it is not our intention to propose
another ADL, we have to face the problem that there is not a well-accepted formal-
ism for architecture description. Nevertheless, we believe that a formal approach is
required for architecture reconstruction. Our method is based on the binary relational
algebra that has been successfully applied by the reverse engineering community.

• Software architecture documents the design decisions that are considered important
by the architects for the development of the system. In this way, the content of the

1.3. Approach

architecture description is dependent on the domain, on the system or by the interests
of the architects. The main challenge is how to effectively select what useful infor-
mation to recover for the architects. Our reconstruction process can be tailored to the
architecture under reconstruction. We also need to consider how to merge heteroge-
neous sources of information.

A well-designed architecture is futile if it is not well-communicated and well-un-
derstood by all the developers. One problem that we address is how to effectively
communicate the reconstructed architectural views.

The architects need to maintain the architecture description up to date. We must ad-
dress the problem of automating the reconstruction process in order to deliver regular
updates. Typically, the software is regularly built (daily, weekly or biweekly). The
reconstruction process has to be able to deliver the reconstructed views at the same
intervals and handle unfinished (and often un-compilable) code.

The architects need to enforce their design decisions in the implementation of the
system. Architecture reconstruction can automate of checking the conformance of
the implementation against the design decisions. The architects want to avoid to
integrate changes that break the integrity of the system.

1.3 APPROACH

We give a brief overview of the approach that we follow in this dissertation. The approach
consists of a formalism for modeling architectural views, the reconstruction process, the
NlMETA tool environment and two case studies.

First, we define the formalism for defining the viewpoints and the view transformations. We
model the architectural views as hierarchical directed typed graphs. The binary relational
algebra provides the formalism for the graph operations. From the existing literature we
create a list of reference viewpoints that we formalize in terms of relational algebra. In
particular, we select the FAMIX model (Demeyer et al. , 2001) for the design viewpoint
and the architectural viewpoints from the book (Clements et al , 2003).

Then, we define our architecture reconstruction process, called NIMETA . NlMETA follows
a traditional reverse engineering process where the facts about the system are extracted from
the implementation, transformed into abstract models and then presented in a particular
textual or graphical format. NlMETA 's main distinguishing aspects are:

• The architectural concepts play a first-class role in the reconstruction process. The
architectural concepts are the types of building blocks of the architecture. They are

1.4. Contributions

identified in the concept determination activity in conjunction with the architects.
Since every software system built with a unique set of concepts, this operation allows
us to focus the reconstruction and to tailor the process to the particular architecture
of the system.

• NlMETA is based on the reconstruction of well-defined architectural views that have
been agreed with the architects. In this way, the reconstruction is well motivated and
scoped to the interests of the architects.

• The domain knowledge is modeled in the same way as the facts extracted from the
system. This permits a seamless integration during the reconstruction.

NlMETA 's reconstruction process consists of three phases: process design, view recovery
and result interpretation. Each phase consists of several activities. The first five activities
are essential for recovering the software architecture. The objective of the first activity,
problem definition, is to define the goals and the expected results of the reconstruction. The
second activity, concept determination, aims at recovering the architectural concepts and
defining the target viewpoints that are needed to solve the identified problems. The third
activity, data gathering, is focused on extracting the facts from the sources of information
and creating the source view. The goal of the fourth activity, knowledge inference, is to
infer the target architectural views from the source view. The fifth activity, presentation is
about presenting and communicating the architectural views.

Then, we propose the the NlMETA tool environment. It consists of an integrated collection
of tools that can assist the reconstructor during the whole process. It allows the reconstruc-
tor to create a pipeline of tools to automate the whole reconstruction process.

Finally, we validate our reconstruction process with two case studies that have been con-
ducted with two different Nokia business units. The first case study demonstrates the devel-
opment of a complete reconstruction process for a Nokia product family. The reconstruc-
tion process is largely automated and it is currently in use by the business units. The second
case study demonstrates how architecture reconstruction assisted the development of a new
software platform.

1.4 CONTRIBUTIONS

The main contributions of this dissertation are:

1. We provide a general and expressive formalism for modeling the architectural views,
as they are intended by the software architecture practitioners.

1.5. Organization of the dissertation

2. We consider the architectural concepts as first-class elements of the reconstruction.
In this way, we can focus and tailor the reconstruction process to the architecture of
the system.

3. We provide a well-scoped reconstruction process that aims at the reconstruction of
the target viewpoints that are agreed with the architects.

4. We define a set of reference viewpoints in relational algebra to support architecture
reconstruction.

5. We provide the framework for establishing the architecture conformance checking
against the intended design and the architectural rules.

6. We involve the stakeholders and the domain experts in the reconstruction process.

7. We illustrate the reconstruction process on two large case studies.

8. We consider the dynamic analysis at the architectural level for the reconstruction of
the feature implementation.

1.5 ORGANIZATION OF THE DISSERTATION

Chapter 2 summarizes the background information for understanding this dissertation. Be-
sides the general definition of software architecture in Section 2.2, the definition of views
and viewpoints are particularly important for understanding the reconstruction process. Ta-
ble 2.1 clarifies the software artifacts that are involved in the reconstruction. The Sec-
tion 2.4, Section 2.5 and Section 2.6 introduce the main concepts about product family,
architecture decay and reverse engineering. Chapter 3 reviews the existing approaches
for architecture reconstruction (Section 3.1), the formalisms for architecture reconstruction
Section 3.2 and reverse engineering Section 3.3 and the approaches for dynamic analysis
Section 3.4. Chapter 4 introduces the main problem that is addressed by this dissertation
and our approach. Chapter 5 presents the mathematical foundations of the NlMETA ap-
proach: binary relational algebra. Chapter 6 formalize the basic design and architectural
viewpoints that are necessary for the NlMETA approach. This consists of the NlMETA for-
malism. Chapter 7 presents in details the NlMETA reconstruction process, including an
explanatory example. In Section 7.4 we also define six levels of maturity for the recon-
struction process. Chapter 8 gives an overview of the tools that belong to the NlMETA tool
environment. The two Nokia case studies are presented in the Chapter 9 and Chapter 10.
Chapter 11 concludes the dissertation and presents the future work. The appendixes contain
the implementation of various scripts that we have used.

CHAPTER 2

BACKGROUND

Programs, like people, get old.

- David Lorge Parnas

This chapter provides the background on the research topics that are relevant to this dis-
sertation. We start with an overview of the typical software artifacts and, in particular, of
the term software architecture. Then, we introduce the concept of view and viewpoints that
are necessary for defining the architecture views. Then, we introduce the software product
families focusing on their general architecture and evolution patterns. We also discuss the
reasons for losing an architecture description. We define the common terms for reverse
engineering.

2.1 S OFT WARE ARTIFACTS

Forward engineering is the traditional process of moving from high-level abstractions to a
physical implementation of the system. Through this process, an initial requirements are
turned into the system specifications that are ultimately implemented in a programming
language. It is a process where more and more details are added in order to get a soft-
ware program that can be executed. Reverse engineering is the inverse process where the
program-level details are removed in order to unveil the original abstractions. In this sec-
tion, we clarify the different levels of abstractions for the typical software artifacts. (Eden
and Kazman, 2003) have also defined a similar framework as the one that we present here.

We distinguish between the problem domain and the solution domain, the problem domain
is focused on the user's perspective and describes what the software system is supposed to
achieve. The problem domain consists of artifacts concerning the domain model and the
system requirements. The solution domain is focused on the developer's perspective and

2.2. Software Architecture 8

describes how the system achieves its promises. The artifacts concerning the architecture,
the design and the code belong to the solution domain. The features represent the contact
point between the problem and the solution domain. We give a detailed description in the
following Table 2.1.

2.2 SOFTWARE ARCHITECTURE

There is no universally-accepted definition of the term software architecture, even though
there is an IEEE standard definition (PI471, 2000), countless definitions from researchers
and practitioners ' and it is a rather overloaded word. Besides the classical definitions, we
can argue every development team, software organization or research institute has its own
interpretation of what a software architecture represents. In this section we present a brief
overview of software architecture from different perspective.

2.2.1 INFORMAL DEFINITION

We start with an informal definition of software architecture based on a short article of M.
Fowler (Fowler, 2003). Fowler's main point is that software architecture represents what
the expert developers in a team believe to be important for the system design. In other
words, the architecture is the shared understanding of the important matters of the system
design as it is perceived by the expert developers. A particular component is architecturally
significant if the expert developers believe so. Based on this interpretation, the architect is
the expert developer in the team who is "very aware of what's going on in the project, look-
ing out for important issues and tackling them before become a serious problem" (Fowler,
2003). The architect is able to have a broad view on the design from its code to its require-
ments and to communicate with different people (programmers, testers, designers, project
managers and requirements engineers). The architect often represents a bottleneck where
contrasting issues and viewpoints converge. The role of the architect is also to simplify
other's people work, for example, by facilitating the communication, minimizing the dis-
order and controlling the complexity of the design. One interesting point of Fowler is that
the architect's role is to minimize architect's need in the development. In the ideal situation
there is no need for the architect as changes are easy and they can simply happen. In the
real situations, making the software easy to change introduce complexity that the architects
have to minimize. The work that we present in this dissertation represent an effort to re-
cover parts of the shared understanding that the architects believe is important for the life

'The Software Engineering Instituted (SEI) collected tens of definitions from various authors at their
website: http://www.sei.cmu.edu/architecture/definitions.html

2.2. Software Architecture

Ô3

O
Q

O
Q

"o
C/5

Type of Artifact

Domain model

Requirements

Features

Architecture

Design

Code

Description
It models a particular domain of a product family. It typically de-
scribes the commonality and variability of the requirements within
that particular domain. The domain model gives a overview of the
main concepts that are expected by the user and their interrelation-
ships.

The requirements define the users' goals that can be achieved by
using the software system. There are two types of requirements:
functional and non-functional. For a product family, the general
requirements of a product can be based on the domain model.

There are several interpretations of the term "feature" and it is of-
ten domain dependent. We follow the definition of (Turner et al.
, 1999): & feature "is a coherent and identifiable bundle of system
functionality". The features represent the contact point between the
solution and problem domain. In the problem domain, features rep-
resent what the user is willing to pay for, something that can be
concretely marketed and is visible in user interface. At least in the
telecommunication domain, the term "feature" has a clear connota-
tion. Examples are: make a phone call, send a SMS, add a contact
in the phonebook and so on. In the solution domain, features rep-
resent what the developers must implement in order to make the
software system to fulfill its requirements. Features often repre-
sent a common and unifying langauge that is well-understood by
a variety of people: managers, UI specifiers, analysts, architects,
designers, programmers, testers and so on.

The architecture is the collection of design decisions that enable to
implement the features (functional requirements) and to satisfy the
quality requirements of the system. We have given a detailed defini-
tion in Section 2.2. In this context, we want to clarify the distinction
between architecture and design. Quoting (Clements et al., 2003):
"Architecture is design, but not all the the design is architecture".
The architecture establishes certain constraints but does not define
the implementation. Many design decisions are left open and are
judged by the downstream designers. As an example, the architec-
ture defines the interfaces and constraints of the components but it
might not fully define the internal design of those components.

At this level, the designers provide a clear design of the architec-
tural elements using a particular formalism. For example, in the
case of the object oriented design, the architectural elements are
described in terms of classes, methods, abstract data types and their
interactions.

At the lowest level of abstraction, there is the source code that is
implemented with a particular programming language. The source
code is the richest artifact in terms of details.

Table 2.1 : The software artifacts and their levels of abstraction.

2.2. Software Architecture 10

of the system. (Holt, 2001) present a software architecture as a shared mental model about
the important decisions for the development.

2.2.2 CLASSICAL DEFINITIONS

The classical definitions of software architecture include the notions of components, their
external properties, relationships among them and constraints (Bass etal, 1998; Perry and
Wolf, 1992; Booch et al. , 1999; Shaw and Garlan, 1996; Garlan and Perry, 1995; Gacek
et al., 1995; Hofmeister etal., 2000). Some definitions also include the term rationale that
describes the justification for the architecture to exist. Through this dissertation we adopt
the practical definitions that was elaborated during the European project ARES2 (Jazayeri
et al. , 2000).

The description of the software architecture should communicate the essential decisions
that have been taken in the design of the software system. The essential decisions of a
design are the ones that are expensive to change and, therefore, the most critical for the
development and maintenance of a system. (Ran, 2000) gives the following definition:

Software architecture is a set of concepts and design decisions about structure
and texture of software that must be made prior to concurrent engineering to
enable effective satisfaction of architecturally significant explicit functional and
quality requirements, and implicit requirements presented by the the problem
and the solution domains (Ran, 2000).

First, architecture is a set of concepts that we use to think of the software system. The
concepts are used for the design and the implementation of the system. They represent
the bridge between the requirements and the implementation. Second, software systems
are built to perform certain operations (functional requirements) with a certain level of
quality (quality requirements) in a particular environment. The purpose of the software
architecture is to enable the satisfaction of the requirements (although it cannot guarantee
their satisfaction). Not all the requirements are architecturally significant. As a general rule
we can say that the bigger is the impact of a requirement (and related design decisions) on
the system the more architecturally significant it is. As an example, a strict requirement
on performance may affect the design of many parts of the system. This helps to define
the scope between architecture and design. The detailed design of a component is not
as architecturally relevant as component's interaction with its environment. Though such
decisions can influence the satisfaction of important requirements, they do not influence

2The project ARES (Architectural Reasoning for Embedded Systems) was an Esprit framework IV project
(no. 20477) whose main objective was to enable software developers to explicitly describe, assess, and
manage architectures of embedded software families

2.2. Software Architecture 11

the design of other components. Third, some design decisions concern with the software
structure and the texture. We discuss the different types of design decisions in the following
sections.

ARCHITECTURALLY SIGNIFICANT REQUIREMENTS

Not all the requirements play an important role in the architecture of the system but only
a fraction of them. If they are detected early enough, they can be addressed by a properly
designed architecture. Architecturally significant requirements (ASRs) have a major impact
on the design of the system and if they are ignored the system will suffer major deficien-
cies. For example, mobile phones have strict real-time requirements on the communication
activities with the base stations. As they represent the major concern in the architecture, the
ASRs influence the design of the architectural concepts and their properties. Understanding
the ASRs allow us to understand the rationale behind those design decisions.

ARCHITECTURAL CONCEPTS

Before describing the overall structure of the system, we need to define what types of con-
cepts are permitted for the construction of the system. An architectural concept represents
the basic type of building block that provides a well-defined behavior and specific proper-
ties. The conceptual architecture communicates the rules for using the architectural con-
cepts. The architectural types are not derived by the requirements but they are invented
by the architects to simplify the task of bridging the gap between the requirements and the
implementation. Of course, the architectural concepts must be properly designed in order
to permit the implementation of the requirements. Every system has its own set of architec-
tural types, as systems are built according to different architectural styles. For example, in
a distributed software system the architectural concepts may be applications, servers, and
software busses, while in an operating system they may be tasks, processes, queues, shared
memories, etc. In general, the conceptual architecture is a model the important concepts
used for the design of the software, including their properties and relationships. The con-
ceptual architecture also defines how the architectural concepts maps to the implementation
platform.

ARCHITECTURAL STRUCTURE

An architectural structure defines how the software is partitioned into components or units
for a particular architectural domain. There are different architectural domains (or archi-
tectural planes) for the different stages of the software life-cycle (run-time, design-time,
implementation-time, build-time, configuration-time). Architectural domains are not dif-

2.2. Software Architecture 12

ferent views of the same aspect. Rather, they represent different things. Software can be
seen as a set of modules, a set of processes, a set of executable, a set of code files and so
on; Hence, a software architecture consists of multiple structures, each describing a par-
ticular architectural domain. Partitions allow us to separate the various concerns within
a particular structure and good partitions allow us to localize the effects of requirements
changes in a limited set of components. Each domain addresses a particular set of ASRs.
For example, the run-time domain is concerned about the execution structure, hence about
the performance, availability and reliability requirements.

We note that architectural domains are different from architectural views. Architectural do-
mains contain separate entities (a set of modules, a set of processes, a set of exécutables,
a set of source files and so on), even though they are strictly dependent. The architectural
views are abstractions of the architectural structures for describing specific concerns (for
example, subsystem organization, layering, work division). Architectural views are the
means for describing and analyzing various aspects of the underlying architectural struc-
tures. Throughout the dissertation we mostly describe the architectures through their archi-
tectural views, assuming that they represent a projection and an abstraction of a particular
architectural structure.

TEXTURE

The texture represents the recurring and unform microstructure of the software components
like design patterns, policies, coordination, styles, standards, component models, program-
ming languages, naming conventions and so on. Texture contain all those local design
decisions that have an architectural relevance because they are spread in many parts of
the system. Well-designed software has a consistent texture and a mechanism to check its
consistency.

2.2.3 DEFINITION FROM THE IEEE 1471-2000 STANDARD

The IEEE 1471 Standard (P1471, 2000) establishes a conceptual framework of concepts
and terms of references for the architectural description of software systems. Although
there is no reliable consensus on a precise definition of software architecture, the IEEE
1471 is a recommended practice that codifies those elements on which there is a consensus.
Throughout this dissertation, we try to conform to the definitions given in the IEEE 1471.

The diagram in Figure 2.1 shows the conceptual model for the architecture description. The
IEEE 1471 gives the following definition of software architecture:

A software architecture is the fundamental organization of a system embodied

2.3. Views and Viewpoints 13

in its components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution (PI471, 2000).

The environment consists of stakeholders and concerns based on the following definitions:

A system stakeholder is an individual, team, or organization with interests in,
or concerns relative to, a system (P1471, 2000).

A concern is an interest which pertains to the system's development, its op-
eration or any other aspects that are critical or otherwise important to one or
more stakeholders. Concerns include system considerations as performance,
reliability, security, distribution, and evolvability (P1471, 2000).

The IEEE 1471 definition covers a variety of uses for the term architecture. It clearly high-
lights that an architecture embodies the fundamental things about a system; "fundamental
things" must be interpreted in the sense they are fundamental and important for the stake-
holders, and with respect to the system's environment. Similarly to the previous definitions,
it stresses the importance of focusing architecture description on the design aspects that are
perceived significant by the stakeholders. In certain cases, they are the physical components
and their relationships; in other cases, they are the logical relationships. Views and view-
points play an important role in the IEEE 1471 for creating an architectural description. We
discuss them separately in the following Section 2.3.

2.3 VIEWS AND VIEWPOINTS

A software system is a complex entity that cannot be described with one single dimension
but it requires multiple perspectives (Jazayeri et al. , 2000; Clements et al. , 2003) . Archi-
tectural views address particular concerns of the architecture design and explore different
quality attributes of the design. Each view emphasizes certain aspects, while ignoring oth-
ers in the interest of making understandable a complex system.

We follow the definitions from the IEEE 1471 Standard. A software architecture is docu-
mented by a set of architectural descriptions that represent concrete artifacts. Each archi-
tectural description is organized into one or more views, often called architectural views. A
view conforms to a particular viewpoint that describe its content and usage. The standard
definitions are:

A view is a representation of a whole system from the perspective of a related
set of concerns (P1471, 2000).

2.3. Views and Viewpoints 14

Figure 2.1: Conceptual model of architectural description (source: the IEEE 1471-2000
Standard).

2.4. Product Family Development 15

A viewpoint is a specification of the conventions for constructing and using
a views. A pattern or a template from which to develop individual views by
establishing the purposes and audience for a view and the techniques for its
creation and analysis (P1471, 2000).

In our interpretation a viewpoint defines the semantics of the content and usage of a view.
A view is primarily composed of models that provide the specific description of an archi-
tecture. The viewpoint defines the language, the modeling technique and the analytical
methods for the construction of the views. Viewpoints cover the concerns that are consid-
ered fundamental by the stakeholders.

The choice of what views to document depends on the environment and the interests of
the stakeholders, therefore we cannot impose a general collection of views that suit all the
software systems. The history of architectural views goes back to the concept of hierarchi-
cal structure found in the work of (Parnas, 1974) on operating systems. Parnas identified
several types of structures like program hierarchy, process hierarchy, resource allocation
hierarchy, protection hierarchy and module hierarchy. Recently, Perry and Wolf recog-
nized the need for multiple architectural views emphasizing aspects that are important to
the stakeholders (Perry and Wolf, 1992). In 1995, P. Kruchten proposed the "4+1" model
for architecture description (Kruchten, 1995). The model distinguishes four different views:
logical view, process view, development view, physical view. The fifth view, the use cases,
ties together the other four views. (Hofmeister et al. , 2000) also propose four different
architectural views they have observed in the industrial practice: conceptual architecture,
module interconnection architecture, execution architecture and code architecture. The re-
cently published book of (Clements et al. , 2003) about documenting software architecture
contains a collection of well-established architectural views for architectural description.
We take those views as a reference collection for our formalism as presented in Chapter 6.

2.4 PRODUCT FAMILY DEVELOPMENT

The concept of software product family originates from the hardware industry where hard-
ware product lines3 enable the production of numerous variants of products and a signi-
ficative reduction of operational costs by sharing most of the assets. In the recent years
the software has become a dominant part in an increasing number of embedded products
and it is often affecting the quality and the delivery time of the products. We can esti-
mate that most of the delays in the release of embedded products is due to software rather
than hardware faults. To cope with the multitude of software variants required by an in-
dustrial product line, the software assets have been organized in software product families

3In this dissertation software product line and software product family can be considered synonymous.

2.4. Product Family Development 16

and, thus, the paradigm of product line has been transferred to the software embedded in
the products. This paradigm shift has happened for most of industries producing embedded
products (like cars, consumer electronics and mobile phones) where they need to deliver
a customized software system for the various products. The term software product family
indicates a collection of products that share common requirements, features, architectural
concepts, and code, typically in the form of software components. For a detailed definition
of product line we refer to the book of (Bosch, 2002). In the following two sections, we
present a typical example of a Nokia's product family architecture and we discuss the issues
related to its evolution. This section is based on our previous work (Riva and Del Rosso,
2003).

2.4.1 SOFTWARE PRODUCT FAMILY ARCHITECTURE

The main goal of the product family architecture is to describe the commonality and vari-
ability of the family in order to make explicit the variation points of the products. We use a
conceptual hierarchial framework for describing the elements of the product family archi-
tecture. We can identify at least four layers of genericity: the reference family architecture
layer, the family architecture layer, the lead product architecture layer and the copy product
layer.

The reference family architecture describes the global architectural style that is valid for all
the products of the family: architectural significant requirements, architectural rules, pat-
terns, component types, communication infrastructure, runtime issues. The architects can
derive the software architecture for the product families from the reference family architec-
ture.

The mobile phones are grouped into product families according to the UI styles, features,
telecom standards and hardware generations. This represents a first level of variations where
the products are grouped in macro-families (e.g. GSM, TDMA or UMTS). For each product
family, the family architecture describes the services and features that are available in the
platform. They may include the protocol stacks, the OS, the UI kernel, basic applications
and hardware drivers.

Each family contains a reference product implementation that we indicate as lead product
architecture. This product is considered to be the most typical one of the family. It is
derived from the family by copying the common elements from the family architecture
and by instantiating the abstract elements. The purpose of the lead product architecture
is to provide a reference architecture for the other products and to clearly document the
variations points available within the family.

At the bottom of the hierarchy, there is the copy product. This is typically copied from

2.4. Product Family Development 17

the lead product and adapted to the specific product requirements. This represents the final
product architecture and it is the starting point for the development project (mainly focused
on feature configuration, integration and testing).

The reference architecture describes the architectural style of the family and typically con-
tains the information that everyone needs to know about the style, rules, conventions used
in the family. Changes in the reference architecture are costly and happen through a careful
assessment of their architectural impact.

The description of the reference architecture is a vital asset for a product family. A product
family includes products that are built upon the same architectural style. Usually, every
product that belongs to a certain family is built according to similar architectural rules. The
style includes all such rules that are relevant at the architecture level. Examples of such rules
may be "components must be either clients or servers", and "the communication between
clients and servers should happen by means of asynchronous messages that conform to a
certain format". The reference architecture document describes the architectural rules that
hold for every product that is part of a certain family. It can be thought of as the basis for
the architectures of the products. The architecture of every single product of that family
is an instantiation (or a specialisation) of the family reference architecture. The reference
architecture document should contain at least the parts described in the following sections:

Architecturally significant requirements Architecturally significant requirements include
general requirements for the whole family, plus what we call lifetime requirements.
These are requirements that must be satisfied at different stages of the software de-
velopment, and concern different instances of the software. For example, at design
time the software is made of logical components, at write time it is made of modules
and at run-time it is made of tasks and threads. The requirements for all these phases
that concern all the products that are part of a certain family should be described in
the document. We use mostly unstructured English text for this, although we are
experimenting formal notations for specific issues (as the Petri Nets for describing
feature interaction (Lorentsen et al. , 2001)). Usually, architecturally significant re-
quirements are rather stable.

Architectural rules This section of the document contains the system-level rules that all
products in the family must conform to. Rules may describe what types of compo-
nents (modules, entities and subsystems) may exist and what kinds of relationships
are allowed between the different types of components. When implementing a new
feature, developers should create components that conform to the architectural rules
specified in this section. An example of our reference architecture can be found in
(Kuusela, 1999). Currently, we use UML to describe architectural rules, although we
find that this notation has some shortcomings for this purpose (Riva et al. , 2001).

Communication infrastructure The communication infrastructure is the means used by

2.4. Product Family Development 18

the various software components (modules, entities, subsystems) to communicate at
runtime. The description of the infrastructure is crucial, as it fixes the structuring of
interfaces and the communication paradigm. The effort spent on accurate description
of the interfaces seems to pay back during the integration testing phase.

Runtime architecture Runtime architecture concerns with the allocation of processes to
threads; the division of tasks at the operating system level; the interaction of different
features at system level.

2.4.2 PRODUCT FAMILY EVOLUTION

Software product families are rarely created right away but they emerge when the domain
is mature enough to sustain the long-term investments. The typical pattern is to start with
a small set of products (often just one). If the business starts to generate profits or looks
profitable in the future, new products are introduced in the market. New products are typ-
ically copy pasted versions of the existing ones with some additional new features. Most
of the differences are achieved at the software level, while the hardware platform remains
quite unchanged. On the wave of success, the software embedded in the products becomes a
global asset that becomes in use in several sites worldwide at the same time. Many sites em-
bed the same software in their local products and often make their own local modifications
(e.g. customization, updates, patches). As soon as the business becomes more mature, new
investments are needed for consolidating the software assets. At this point, the various set
of products are migrated towards a product family in order to keep all the software variants
under control. The migration process affects the software parts and the organization as well.
The organization needs to adjust its operating procedures to support the global management
of the products lifecycle (from requirements engineering to testing). The software variants
have to turn into a flexible platform where the products of the family can be derived from
in a more flexible way. We can identify five different patterns or approaches that appear at
different stages of the evolution:

copy/paste: the software variants are created by copying and modifying the existing prod-
ucts. It is the fastest approach for creating a new product and it is typically used when
the organization is entering or creating a new business. All the resources are focused
in the implementation of new features without a strict control redundancy that the
variants create. This approach minimizes the risks of development but it maximize
the entropy. This approach gives the highest flexibility for creating new products and
entering in a new market. Verhoef et al. describes this process as software mitosis
(Faust and Verhoef, 2003).

configuration: The variability is embedded in the software with a set of configuration
parameters. The parameters allow to enable/disable parts of the code, to select par-

2.4. Product Family Development 19

ticular algorithms and to configure the modules. Although the method is simple and
allows to create numerous variants from a small set of bases, it has several drawbacks
concerning the maintainability and evolvability of the code.

component-based: the variable functionality of the software is factored into separate soft-
ware components and assigned to different development teams with a clear separation
of concerns. The variants are achieved by plugging different components into a com-
mon software framework. The granularity of the components can range from single
classes to entire subsystems. The correct granularity is often a trade-off between the
flexibility/maintainability: few large components reuse more software but are harder
to compose and maintain, small components might embed too little functionality. The
correct size is often reached after some time. The component-based approach has an
impact on most of the software engineering activities of the organization, especially
for the integration phase of the components in the products. The component-based
approach can be considered a key milestone towards a flexible product family.

platform: the concept of software platform emerges when the organization starts to con-
solidate its experience in a mature domain. The goal is to maximize the reuse of the
software components among the products and the throughput of the family. The plat-
form provides a cohesive set of services, libraries, software components and product
frameworks that are used for building the products. The basic services (e.g. tele-
com protocols, hardware drivers, graphical libraries, common applications) become
globally available in a precise and controlled way. But that's not all. The platform
becomes a well-defined entity in the organization with its release plan, roadmap for
the new features, coding conventions, idioms, testing procedures, architectural docu-
ments, training material. The development teams are organized in a matrix structure.
On one dimension there are the component factories and the platform management
team responsible for the development of the software components and for the main-
tenance of the platform. On the other dimension there is the product development
organization responsible for the development of the products. The crucial phase of
the product development is the integration where the different components have to be
integrated in the coherent way.

optimized platform: the optimized platform tries to overcome with the integration prob-
lems of the platform approach. Most of the resources are spent during the integration
of the platform components when architectural mismatches or bugs have to be care-
fully analyzed and solved by the component owners. The optimized platform solves
this problem by enabling the feature-based derivation of the products. The platform
offers a rich set of configurable features. The product integrator selects and config-
ures the features to be included in the product and the real integration is automatically
achieved by the platform. This has been envisioned in our previous work (Maccari
and Riva, 2001).

2.4. Product Family Development 20

In real product families the five approaches can coexist at different extent. In a highly dy-
namic domain, the product family is more directed in the direction of copy/paste approach
that offers the fastest time-to-marker. In a stable domain, the platform approach is a bet-
ter choice because it maximizes the consolidation of the assets. Verhoef et al. describes
the same concept using the grow and prune model (Faust and Verhoef, 2003). The prod-
uct family is typically oscillating between grow and prune phases. In the grow phase, the
product family is free of exploiting new opportunities without much architectural gover-
nance using the copy/paste approach (this leads to the software mitosis phenomena causing
a large increase of clones and variants). In the prune phase, the weak branches of the fam-
ily are removed and the successful products are re-organized in order to be consolidated in
the family (re-balancing the robustness and the governance that was lost during the mitosis
phase).

(Bosch, 2002) has also proposed a similar structure for the maturity levels of software
product lines: independent products, standardized infrastructure, platform, software prod-
uct line and configurable product base. The different levels represent an evolution of the
management of software variability.

2.4.3 ISSUES WITH THE PRODUCT FAMILY EVOLUTION

In this section, we discuss several problems that typically concern the evolution of a product
family:

• Increasing Bureaucracy

The migration towards a product family is a process that introduces bureaucracy in the
organization. The software process becomes more complex due to the introduction
of new procedures that have to be followed when creating a new product or modi-
fying the platform. Differently from the uncontrolled growing phase, changes have
to be well documented and motivated. It also emerges a new hierarchy of managers,
architects, feature owners, component designers that are responsible for preserving
the integrity of the product family architecture and for approving the changes. En-
forcing the architectural governance requires a certain level of bureaucracy but this
is also a threat for the flexibility of the family. This tendency towards stiffness is
often opposed by practices that increase the flow of communication among different
teams, for example by introducing architects that are responsible for heterogenous
technology areas.

• Slow process of change

There are cases when the change requests for new features have to go through a long
approval process. If we consider the four-layer architecture of the Section 2.4.1, a

2.4. Product Family Development 21

typical scenario is the following. A new feature is detect by the product development
team at the lowest level. If it is a local feature and it does not have an impact on the
family, it is just implemented in the local product. If it has a possible impact on the
family, the feature has to be passed over and over to higher levels where its impact
is carefully assessed. In the worst case a change request may reach the reference
architecture level. This happens when the new feature requires a critical change at
the core of the family (for instance, adding a streaming video functionality might
require changed in the operating system). At some point the change request may be
reject or delayed to avoid the negative impact that its implementation would have on
the architecture. A slow process of change is an inevitable drawback for avoiding
features that could break the architectural integrity of the family.

• Over-designed platform

The design of a new software platform is a long-term activity where considerable
resources are spent for designing a generic-enough platform to support the long-term
evolution of the product family. There is often the risk of designing a platform that is
too generic for what is really needed by the products. There is a sort of auto-inducted
tendency of searching for the best software design that can handle all the possible
situations. This often leads to the creation of far too complex software frameworks
that are very difficult to instantiate. This tendency should be limited and the design
activity should investigate the good-enough architectures rather than the best solu-
tions.

• Spaghetti dependency

A main goal of a product family is to share software among several products. Since
the owners of the software components (i.e. the component factories) and the users
of these components (i.e. the product development teams) are different, for each
product there is an inevitable network of dependencies. Common problems are: the
interfaces of the components change without notice, long queues for the change re-
quest of widely used components, the clients of the components are unknown (the
dependencies are often only visible in the code). Moreover, software dependencies
can be easily mapped to human interactions among different development teams and
in a multi-site geographically distributed environment managing these interactions is
a challenge. Minimizing and controlling the software dependencies of the family is a
key activity for the organization.

• Feature reallocation

In the typical scenario the features of the product family architecture are instantiated
in the specific product architecture. However, during the consolidation phase the
features in the products can be re-allocated to the platform. In this case, it is necessary
to move the implementation of the feature out of the product and integrated it with the
platform. This often happens when a feature that has been exploited in one product

2.5. Losing a Software Architecture 22

has been successful and, thus, other products want to use it. In this process, we need
to ensure that the feature can be supported in the entire family.

• Cross-family reuse

There are cases when it is necessary to share software components among different
product families for reducing development costs (for example, when migrating one
product family to the latest hardware that is already in used by another family). The
first problem is that there can be architectural mismatches among the families (e.g.
different operating systems) and these differences have to be assessed. The second
problem concern the ownership of the common software. In many cases, it is possible
that the product family has little influence on the software development somewhere
else. This situation often leads to a long integration.

• Introduction of new requirements

In a dynamic market it is critical to handle the forthcoming requirement in time.
Even though the problem of incorporating new requirements is not specific to product
family architecture, the process has to accomplish an even more difficult task. The
variability of the products must be considered when evolving the architecture and
it must be carefully verified if a requirement for a product can lead to break the
product family architecture. In the analysis of the forthcoming requirements must be
ascertained how easy is to add them to the current architecture and estimates the work
needed for the implementation.

2.5 LOSING A SOFTWARE ARCHITECTURE

There are a number of factors that contribute to losing a software architecture and conse-
quently the need for an architecture reconstruction. (Parnas, 1994) introduced the concept
of software aging showing how a mathematical product like software can age to the point of
becoming usable. Aging is partly due to architectural problems like: architectural erosion,
architectural drift and architectural mismatch. (Perry and Wolf, 1992) define the architec-
tural erosion as "violations in the architecture that lead to increased system problems and
brittleness". They also define the term architectural drift as "a lack of coherence and clar-
ity of form which may lead to architectural violation and increased inadaptability of the
architecture". (Garlan et al , 1995) have introduced the term architectural mismatch to
indicate the gap that exists between the designer's architectural descriptions and the actual
realizations in the code. Most of these problems are due tot the lack of proper formalization
and tool support for software architectures. Poor design decisions, lack of the conformance
to the architecture, changes with limited architectural understanding can ultimately damage
the integrity of the system. (Jaktman et al , 1999) have created a list of factors indicating
architectural erosion. The relevant ones are summarized below:

2.6. Reverse Engineering 23

• The complexity of the architecture has increased from a previous release

• The architecture is not documented or its structure is not explicitly known.

• The relationship between the architectural representation and the code is unclear or
hard to understand

• Greater resources are required to implement a software change.

• Experience with the software becomes crucial to understanding how to implement a
software change.

• The design principles of the architecture are violated when implementing a product
variant.

One evident characteristic of architectural erosion is the increasingly reliance on a small set
of software experts, "system gurus", for making even trivial modifications to the system.
This situation reveals a lack of documentation of domain knowledge that is mainly in the
experts' minds. Although this situation is acceptable during the infancy of the system, it
represents an utterly dangerous bottleneck for the evolution of the system. When the experts
leave, the bring the domain knowledge away and it is intermediately lost.

2.6 REVERSE ENGINEERING

We introduce the definition of reverse engineering and related concept. It is largely based
on the taxonomy by Chikofsky and Cross (Chikofsky and Cross II, 1990). We start with the
classical definitions of forward and reverse engineering:

Reverse engineering is the process of analysing a subject system to (i) identify
the systems components and their relationships and (ii) create representations
of the system in another form or at a higher level of abstraction. (Chikofsky
and Cross II, 1990)

Forward engineering is the traditional process of moving from high-level ab-
stractions and logical, implementation-independent designs to the physical im-
plementation of a system. (Chikofsky and Cross II, 1990)

The combination of reverse engineering and forward engineering is referred as reengineer-
ing:

2.6. Reverse Engineering 24

Reengineering is the examination and the alteration of a subject system to re-
constitute it in a new form and the subsequent implementation of the new form.
(Chikofsky and Cross II, 1990)

(Casais, 1998) provides a detailed explanation of the concept of reengineering. Reverse
engineering is used to create models of an existing software system for program compre-
hension, re-documentation or problem detection. Conversely, forward engineering is about
moving from high-level views of requirements and models towards concrete implementa-
tions. Reengineering is a combination of the two. As in forward engineering, reengineering
is driven by the need of implementing new requirements. Reengineering is carried out by
reverse engineering the models of the existing system, applying the changes due to the new
requirements and propagating the changes in the implementation with forward engineering
techniques.

CHAPTER 3

RELATED WORK

Science must begin with myths,
and with the criticism of myths.

- Karl Popper

In this chapter we relate our approach with other works in the field of architecture recon-
struction process and formalism, software visualization and dynamic analysis.

3.1 ARCHITECTURE RECONSTRUCTION

In this section we relate our work to the existing approaches for software architecture re-
construction. (Stoermer et al. , 2002) have also conducted a review of the reconstruction
methods and they confirm some of the considerations that we have listed in Section 4.3 .

The reconstruction methods are typically based on an extract-abstract-present cycle, where
sources are analyzed in order to populate a repository, which is queried in order to yield
abstract system representations, which are then presented in a suitable interactive form to
the software engineer. (Tilley et al., 1996) describe the extract-abstract-present approach in
more detail, referring to the steps of data gathering, knowledge inference, and presentation.

(Laine, 2001) presents a manual approach performed at Nokia. To reconstruct the architec-
ture, he generated a high-level system overview and assigned the code to the various parts
of the model. The identification of components was based on manual examination of the
source code using the UNIX utilities EMACS and GREP as well as pen and paper. Data
Gathering and Knowledge Inference were combined together.

Fully automatic approaches are based on different kinds of clustering algorithms: coupling,
file names, concept analysis, type inference.

25

3.1. Architecture Reconstruction 26

RlGI

RlGl is a programmable reverse engineering environment. It contains its own C parser or
it can import other relational data in the Rigi Standard Format (RSF). RlGl can visualize
the data as hierarchical typed graphs and it provides a Tel interpreter for manipulating the
graph data. The reconstruction process is based on grouping the software elements into
cluster by manually selecting the nodes and collapsing them (Müller et al. , 1993). The
reconstruction operations can also be automated with Tel scripts. RlGl also offers various
capabilities for filtering the nodes, navigating the hierarchical models and making layouts.
This features make RlGl the favorite visualization choice for a variety of tools like DALI ,
BAUHAUS and our NIMETA environment. However, the main limitation of RIGI is the lack
of an appropriate formalism for the abstraction operations.

DALI

(Guo et al. , 1999) propose an iterative reconstruction process where the historical design
decisions are unveiled by empirically formulating/validating architectural hypothesis. The
approach is supported by the DALI workbench (Kazman et al. , 2001; Kazman, 1996) that
consists of the RlGl tool and the POSTGRESQL database. DALI allows the user to create
a source code model in a SQL database. The user can then base the abstraction process
(mainly a grouping activity) on a set of queries executed in the database. The results are
visualized in RlGl as hierarchical graphs. They also point out the importance of modelling
not only system information but also a description of the underlying semantics. In our
approach, the first phase aims at clarifying the semantics of the concepts involved in the
reconstruction. The major limitation of DALI is the SQL that we consider less expressive
than the relational algebra.

SAR METHOD

(Krikhaar, 1999) adopts the paradigm extract/abstract/present for architecture reconstruc-
tion and base all the reconstruction operations on the Partition Relation Algebra (Feijs et al.
, 1998). Krikhaar defines a precise process for selecting the sources of information and
creating high-level views of the architecture. However, the work is mainly focused on the
module view of the architecture while in our approach we generalize the reconstruction to
any architectural style. Krikhaar's and our works have very similar industrial motivations.
(Postma, 2003) has also elaborated a module vérification method for the Philips systems
based on the partition relational algebra. The main difference with the NIMETA approach
is that the conformance checking is conducted at the architectural level rather than at the

3.1. Architecture Reconstruction 27

module level.

PBS

(Finnigan et al. , 1997) propose the Software Bookshelf (PBS) that is a collection of tools
for generating software architectures from program sources and presenting them in a Java-
based web user interface. The goal is to keep the architectural documentation up to date.
First, automated tools are combined with human effort to extract system documentation
and store it in a Software Bookshelf. As the systems changes a librarian is responsible
for comparing the documentation with the implementation with the tools and to keep the
documentation updated. The reconstruction process follows the extract-abstract-present
paradigm. The symbolic information is extracted with a C fact extractor and stored in RSF
files. Then, the reconstructors define tree-structure decomposition by assigning files to sub-
systems. Next, the relational calculator GROK determines the high-level relations among
the subsystems and they are visualized as graphs. The abstraction operations are based on
relational algebra. The tool has been used to extract the software architecture of L INUX

file system (Bowman et al , 1999), the APACHE web server (Hassan and Holt, 2000) and
the MOZILLA web browser (Godfrey and Lee, 2000). One key feature is the web interface
that allows the architects to publish the architectural diagrams on the internet. The concept
of publishing the reconstructed models through the web represents a very effective way for
distributing the architectural information that we have reused in out NlMETA environment.

SWAGKIT

S W A G K I T ' is a toolkit developed by the Software Architecture Group at the University of
Waterloo, that can be used to extract, abstract and present Software achitectures. Currently
Swagkit supports the extraction of C/C++ code, the abstraction to the architectural level
and the presentation in a landscape form. Swagkit reuses several components from PBS.
Swagkit has been architected as a pipeline, in which new filters can easily be added to
support alternative design recover activities. The operations are based on the relational
algebra manipulator GROK . NlMETA is also based on a very similar pipeline and on the
relational calculator. The S W A G K I T is mainly used for the reconstruction of the module
view.

'http://www.swag.uwaterloo.ca/swagkit

3.1. Architecture Reconstruction 28

REFLEXION MODELS

(Murphy and Notkin, 1997) propose a reconstruction technique based on the reflexion mod-
els. The user starts with a structural high-level view model that is iteratively refined to
rapidly gain knowledge about the source code. The result is a reflexion model that shows
the differences between the developer's high-level model and the recovered model. The
technique is based on the definition of the mappings between the source code and the high-
level concepts. A formal model is used to calculate the differences. The reflexion model
approach is limited to the module view and to source file mappings. Our method is more
general as we can address different architectural views we can define arbitrary mappings or
transformation of the source code model. (Koschke and Simon, 2003) have extended the
original reflexion model to hierarchical arhictecture models. Our approach inherently sup-
ports hierarchical models because we use hierarchical graphs for representing the software
architectures.

MITRE APPROACH

(Harris et al., 1995) propose a method for architecture reconstruction that combines bottom-
up and top-down reconstruction. The bottom-up analysis visualize the overall file structure
with a bird's eye view and uses a cluster dominance techniques for organizing the files. The
top-down analysis uses the architectural style of the system to guide the recovery process.
Hypothesized architectural styles are defined and searched in the implementation. Once the
style is recognized, the mapping from the style to its realization forms the as-built architec-
ture of the system. The architectural styles to search for are taken from a predefined library
of styles. This approach has many similarities to our work as it tries to create high-level
models considering the architectural styles of the system. One difference is that in our ap-
proach we do explicitly define the architectural style of the system with the stakeholders
before starting the reconstruction and we do not need to recognize the mappings as they are
clearly defined in the concept determination activity. The approach is also limited to the
architectural styles that are defined in the library.

X-RAY

(Mendonça and Kramer, 2001) propose the X-RAY approach for recovering the architecture
of distributed systems. X-RAY follows a top-bottom approach where architectural patterns
(like pipes) are defined in Prolog and matched with the facts extracted from the source code.
The identified instances represent the potential runtime interconnections that are used for
creating the logical architecture of the system. Although the expressiveness of Prolog al-

3.1. Architecture Reconstruction 29

lows them to create precise definitions of the patterns to recover, in our experiments we
found that the performance of Prolog is not adeguate to the analysis of large software sys-
tems and we had to opt for a relational algebra engine. However, Mendonça's work points
out the importance of recovering architectural concepts as it's the main focus of our work
(Mendonça, 1999).

A R E S METHOD

(Eixelsberger et al. , 1998) presents an architecture recovery method for product family
as part of the European Commission ESPRIT project ARES (Architecture Reasoning for
Embedded Systems) (Jazayeri et al. , 2000). The method is based on the identification of
the architectural properties and on the recovery of the architectural description for the the
proposed properties. They developed a language for describing the properties called ADSL
(Architecture Structure Description Language).

REVEALER

Pinzger et al. have proposed a pattern-based approach for architecture recovery (Pinzger
et al. , 2002; Pinzger and Gall, 2002). The distinguishing aspect is the extraction of code
patterns from the code that are specified with XML. This approach permits the reconstruct
to define the architecturally relevant dependencies that have to be recovered from the im-
plementation. The REVEALER can be used in the data gathering activity of NiMETA .

S A R A METHOD

(Girard, 2003) proposes an architecture reconstruction process that centers around semi-
automatic clustering to detect subsystems from which other relevant views are derived.
These views are elicited upfront with the stakeholders. The main steps follow the extract-
abstract-present approach.

SYMPHONY

Symphony is a process model for reconstructing software architecture views. It represents
the result of a joint effort for defining a unified method for architecture reconstruction. The
work in this dissertation has contributed to the definition of the Symphony method (van

3.2. Formalisms for Architecture Reconstruction 30

Deursen et al. , 2004).

SOUL

(Mens, 2000) proposes a method for architecture conformance checking based on logic
meta programming (Prolog). The implementation artifacts are mapped to an ADL for de-
scribing the conceptual architecture. The use of a logic programming is very elegant as it
allows to clearly define the mapping rules and the conformance rules. However, the per-
formance makes it unsuitable for industrial usage. The method supports only the Smalltalk
language though it could be extended to other languages.

CODECRAWLER

(Lanza and Ducasse, 2003) proposes a lightweight visual approach for reverse engineering
that is based on the polymetric view that combines metrics and software visualization. The
method is supported by the tool CODECRAWLER that is a language-independent reverse
engineering tool based on the FAMIX meta-model. The approach is mainly focused on the
comprehension of the structural properties of large object-oriented software, although most
of its innovative ideas could benefit the visualization of software architectures as well.

BOX

(Nentwich et al. , 2000) presents a portable, distributed and interoperable approach for
browsing UML models. BOX is able to transform a UML model in to the VML (Vector
Markup Language) that can be displayed by a web browser. This gives the possibility of
publishing the UML models on the Internet. NIMETA 'S web interface follows a similar
approach for publishing the architectural models in the intranet. Differently from BOX,
NlMETA 'S approach is based on the target architectural views.

3.2 FORMALISMS FOR ARCHITECTURE RECONSTRUCTION

All the reconstruction methods that we have presented in the previous section use a formal-
ism for elaborating or presenting the facts extracted from the implementation. We can note
that the reverse engineering and the software architecture community rely on substantially
different formalisms for describing the software models. The gap originates from the rather

3.2. Formalisms for Architecture Reconstruction 31

opposed activities that are required for reverse engineering and forward architecting.

The software architecture community is mainly focused on the forward architecting activ-
ities and in the literature different Architecture Description Languages (ADLs) have been
proposed. However, the ADLs have not spread in industry. The main reasons are that they
are not generic enough, not standardized and poorly supported by CASE tools. Most of
the ADLs support descriptions for components, connectors, configurations, and/or other
aspects of software architecture. (Medvidovic and Taylor, 2000) have conducted a detailed
comparisons of the available ADLs. Most of the ADLs can only describe one particular
architectural view and have to be augmented with other modeling mechanisms. In general,
ADLs have been successful in demonstrating various research ideas but they have not been
widely accepted by practitioners (except in limited domains). Neither the ADLs have been
widely used in the architecture reconstruction methods.

The Unified Modeling Language (UML), as a general-purpose design notation, is an alter-
native to the current ADLs. UML is a standard now and most of our designers are using
it. UML descriptions of software architecture not only provide a standard definition of the
system structure and system terminology, but also facilitate consistent and broader under-
standing of the architecture and enable more extensive tool support for architecture design.
However, its current semantics fails to meet the needs for architecture description: it is
weak at describing interfaces, the abstractions it provides are not univocal and it provides
little support for modeling architecturally significant information. UML is also not suitable
for modeling reverse engineered architectural models: the notation does not allow to model
the source code, and does not offer other support for typification than extension. (Demeyer
et al. , 1999) describes the problems of using UML for reverse engineering purposes. In
conclusion, UML as such is not an ideal language for describing the basic building blocks
of software architecture (components, connectors and architectural configurations). In or-
der to produce architectural diagrams in UML format, in our work we mainly stereotype
the UML elements (like classifier and package). We can anyway mention attempts to use
UML as an architecture description language.

(Robbins et al. , 1998) map an ADL to UML with an extended UML meta-model and then
use the adapted UML as an ADL. With this approach one can translate the ADL architecture
models into UML models. The problem of this approach is the UML architecture model is
difficult to understand if the reader is not familiar with that particular ADL, and in addition,
the UML architecture model is not as clear and intuitive as the original ADL model and the
model created directly with UML. In (Rumpe et al., 1999) ROOM has been integrated with
UML and the result is used as an ADL (UML-RT) to model software architecture. This ap-
proach has strong case tool support - ROSE RT from Rational/ObjecTime. However it has
the limits of the ROOM approach for architecture modelling, such as asynchronous signal
communication based interfaces (ports and connectors). (Störrle, 1999) tried to embed ar-
chitectural concepts and notations into the conceptual framework of UML by introducing

3.3. Formalisms for Reverse Engineering 32

new classes of UML's meta-model as stereotypes of existing classes. It is the natural way
of extending/adapting UML for architecture modeling. The limitation of this approach is
the standardization of embedded architectural concepts as part of UML and the compliance
with commercial UML modeling tools. (Hofmeister et al. , 1999) present practical guide-
lines on describing architecture views with UML from the authors' experience. They have
explicitly specified the elements of four architecture views (conceptual, module, execution,
and code) (Hofmeister et al. , 2000) and their corresponding UML Meta-model classes and
stereotype names. Their approach can help the architects to achieve clear and consistent
architecture descriptions without extension to the current UML standard.

3.3 FORMALISMS FOR REVERSE ENGINEERING

The reverse engineering community has developed its own techniques for modeling the
reverse engineered data. The research has been focused on the formalism for the model
transformations, the content of the model and the exchange format. Popular formalisms are
the relational algebra (Holt, 1998; Feijs etal., 1998; Berghammer et al. , 2003), SQL (used
in DALI (GUO et al. , 1999)) and Prolog (Mens, 2000; Mendonça, 1999). GReQL is also a
specific language for query graph structures (Kullbach and Winter, 1999). Prolog offers a
the best option for expressiveness while compromising the performance. Relational algebra
has been widely used for analyzing large software systems and has support for the transitive
closure that is missing in SQL.

Concerning the content, there has been an effort to create a basic set of reference meta-
models for various languages. FAMIX2 is an extensible language independent model for
object-oriented programming languages that was originally developed during the FAMOOS
project 3 in order to provide a language independent exchange mechanism between the
reverse engineering tools (Tichelaar, 2001; Demeyer et al. , 2001). The DATRIX schema
has been developed for C/C++/Java languages (Holt et al. , 2000b). The COLUMBUS/CAN
4 tool is based on its own schema for C/C++ (Ferenc et al. , 2002). There has also been
an effort to develop a standard reference schema from (Ferenc et al. , 2001) and the the
Dagstuhl Middle Model (DMM) (Ebert et al. , 2001).

Concerning model format, the reverse engineering community tried to define a unique for-
mat for storing and exchanging the models like the Graph Exchange Language (GXL) (Holt
et al. , 2000a).

2FAMIX 2.0 specification is available at: http://www.iam.unibe.ch/ famoos/FAMIX
3The project FAMOOS (Framework-based Approach for Mastering Objected Oriented Software Evo-

lution) was an Esprit project (no. 21975) that aimed at developing tools and techniques for transforming
object-oriented legacy systems into flexible framework-based applications

4COLUMBUS from FRONTENDART : http://www.frontendart.com

3.4. Dynamic Analysis 33

3.4 DYNAMIC ANALYSIS

The dynamic analysis aims at describing the run time behavior of a software system. Due to
the size and complexity of the dynamic traces that we have to analyze, we are mainly inter-
ested in the possibility of combining the static and dynamic analysis. Most of the methods
and tools are intended to analyst either the static or the dynamic aspects of a system but
not both at the same time. SCED (Koskimies et al. , 1998) and SCENE (Koskimies and
Mössenböck, 1996) are reverse engineering tools that focus on the dynamic analysis tasks.
Some attempts have been done to merge the dynamic information into static views. (Systä,
2000) exploited RlGl and SCED to combine static and dynamic analysis. Her work was
focused on Java source code level and program comprehension. She used the concept of
horizontal and vertical abstractions to reduce the complexity and raise the abstraction level
of the subject software. She also showed how the static information can guide the dynamic
analysis and how to slice the static view using the dynamic data. ISVis (Jerding and Ru-
gaber, 1997) is a tool for analyzing C applications, which offers vertical abstractions and
restricted horizontal abstractions. It only provides a MSC representation, and the horizontal
abstractions are limited without support for static model visualization. Several approaches
use a vertical abstraction to cope with message complexity. SCENE uses limited size sub-
scenarios and hyperlinks to source to aid program understanding. SCED uses algorithmic
constructs to express repetition like loops and subscenarios. In the filed of tools for static
and dynamic reverse engineering there is an attempt based on DALI (Kazman and Carrière,

1998) to support the static and dynamic analysis for object oriented software. (Lange and
Nakamura, 1995) have presented the PROGRAM EXPLORER that supports source code,
class hierarchy, invocation and object graphs. The various views are synchronized but the
tool lacks of abstraction capabilities and is C++ domain dependent. (Richner and Ducasse,
1999) present a method to create views that combine static and dynamic information for
object-oriented software. It is based on a logic programming language (Prolog) to query
the data and on digraphs for the visualization. (Gschwind et al. , 2003; Gschwind and
Oberleitner, 2003) have proposed the method ARE for dynamic analysis that is based on
the tracing the runtime data as parameter and object values. Their approach permits to
analyze the logical dependencies between the software elements. The instrumentation is
achieved with the the use of aspect oriented programming.

The major shortcomings of the current approaches are (1) architectural level is not the pri-
mary focus because most of the tools focus on source-level program understanding, (2) lack
of automation in the extraction and analysis process, (3) lack of complete graphical visual-
ization of software models and (4) the tools are often coupled with a specific programming
language and can be hardly used to handle generic architectural concepts like applications,
servers and subsystems.

CHAPTER 4

PROBLEM STATEMENT

New ideas pass through three periods:
*It can't be done.

Ht probably can be done, but it's not worth doing.
*I knew it was a good idea all along!

- Arthur C. Clarke

In this chapter, we introduce the problem that we address in this dissertation and we give
an overview of our approach.

4.1 INTRDOCUTION

A software system is the result of the design decisions taken by the developers during its
development. Among all the design decisions, the most important are modeled by the
software architecture. They are considered important because they create a shared mental
model of the essence of the implementation that is useful for all the developers. Based on
the classification of design decisions given in sec, we can conclude that the shared mental
model includes:

• a shared terminology that every team member understand when talking about the
system. This includes a clear understanding of the architectural concepts.

• a shared understanding of the structure of the system at different levels: functional,
physical, at run-time, organizational and so on.

• a shared development practise that enables the developers to make modifications to
the software programs without breaking their integrity.

34

4.2. Software Architecture Reconstruction 35

• a shared responsibility of maintaining the system wealthy.

This shared mental model is what enables the developers to communicate, to coordinate
and, in general, to cope with the complexity of large software systems that are concurrently
and distributively developed by a large group of people. Without this model, the develop-
ment would become confused, slow and ultimately collapse.

However, metal models only exists in the minds of people. Design decisions are often based
on intuition, experience, sometimes hype, and, in general, are the result of the human in-
teraction. This makes a software program not only a mathematical construct but also the
creative product of a collaborative human effort. In an ideal situation, the mental models
could be formalized with an architecture description language and linked with the imple-
mentation. But the reality shows that we do not have such a formalism yet. Moreover, to
be effective the mental models have to exist in the people's minds. As a result, there is no
guarantee that the developers' mental models are somewhat consistent with the implemen-
tation. This leads to the main research question that we address in this dissertation: how
can we make the mental models of the architecture as consistent as possible with the real
implementation ?

We can identify a chasm between the concrete (or as-implemented) architecture and the
conceptual (or as-designed, as-indented) architecture (Bowman et al., 1999). The concrete
architecture is embedded in the implementation and mostly unknown, even though it is
available in the source code. The conceptual architecture is the developers' understanding
of the implementation. Our research problem is to make the concrete architecture explicit
and to allow the developers to their conceptual architecture (their mental models) closer
to the real one. Architecture reconstruction is the methodology that we use to reveal the
concrete architecture. Our goal is to create a model of the software architecture that is
conceptually at the same level of the developers' mental models and it rigorously reflects
the facts of the implementation.

4.2 SOFTWARE ARCHITECTURE RECONSTRUCTION

The concept of software architecture has been largely adopted in industry to the point that
it is not only an important factor for the quality of the resulting system but also for the
control and management of the overall software development process. Many companies
are adopting an architecture-centric approach, especially for the development of software
product-lines (Bosch, 2000; Jazayeri et al. , 2000; Clements and Northrop, 2001). The
architecture description plays a central role in the architecture-centered software develop-
ment, even though there is no agreement what information it must convey. Anyway it is
widely accepted that multiple architectural views are needed to describe the software archi-

4.2. Software Architecture Reconstruction 36

tecture as presented by (Kruchten, 1995; Hofmeister et al. , 2000; Clements et al. , 2003).
However, industrial practitioners are still facing big challenges in applying an architecture-
centric approach effectively. Among the reasons, we can mention the lack of a proper
formalism (ADL) suitable for various the domains and the lack of tool support in CASE
tools. The architecture description is often maintained with informal notations (being tex-
tual or graphical) without a systematic support for analysis, controlled modifications and
efficient maintenance. Moreover, even for well-documented architectures there is no guar-
antee that what there is on papers is really reflected in the implementation. We believe that
in most of the cases, the architects have not a systematic control over the most vital, hence
architecturally relevant, aspects of a software system.

In this dissertation, we tackle the research problem of developing a methodology for re-
constructing a documented architecture for a software system from the available evidence
(implementation, documentation and people). In particular, we focus on recovering the
architecturally relevant views that are considered vital by the software architects for the de-
velopment and maintenance of their large software systems. We also address the problem
of automating the conformance checking of the architecture against specific architectural
rules.

Architectural pertinence has been a major concern in our research. We argue that existing
reverse engineering techniques do not to satisfy the needs of the software architects in
practice. The main reason is that the views they deliver are not at the correct level of
abstraction, being too focused on the programming languages aspects rather than on logical
or architecturally relevant concepts. On the other side, the software architecture community
has not provided a proper formalism for architecture modeling. ADLs are too specific
for certain domains and the inaccuracy of UML, a general purpose modeling language,
inhibits a rigorous architecture modeling method. Although basic programming concepts
like class, function, or inheritance are well-understood, there are countless interpretations
for architectural concepts like component, subsystem or interface even within the same
development team. Our position is that a fundamental activity of architecture reconstruction
is to recover (and define) the shared vocabulary of architectural concepts that build the
system. Once this activity is completed, we can focus on the recovery of the architectural
views. In this way the reconstruction process can be tailored around the architectural style
of the system.

Abstraction is a major concern for architecture reconstruction. In short, architecture re-
covery is a process of inferring compact conceptual representations from a wide set of facts
about a software system. Some of these conceptual representations are not visible in the
implementation of the system (e.g. the concept of dependency is no visible in a for loop).
Those are conceptual representations that we need to create in order to simplify complex
concepts. Information hiding (as defined by (Parnas, 1972)) plays an important role here.
For example, the dependency relationship between two subsystem can be mapped to thou-

4.2. Software Architecture Reconstruction 37

sands of function calls. The dependency represents an abstraction because it hides many
details that otherwise would overwhelm our comprehension. Humans' mental faculties can-
not grasp the whole implementation of a software system at once but they need to use sim-
plified mental models, bstraction is an important point for this task of simplification. This
leads to an important point for our thesis. Although abstraction is a fundamental activity for
the design of software system, there is another important aspect: the bridges between our
mental models and the implementation itself. A mental model (like a sw architecture) loses
its effectiveness if it cannot be regularly confronted with the reality. The more the mental
models are far away from the reality, the less useable they are (this relates to the concept of
architectural drift from (Perry and Wolf, 1992)). Concluding, there are two major concerns
in our work:

• to provide the correct abstractions for creating the simplified mental models (i.e. soft-
ware architecture) of a software implementation.

• to maintain the bridges between the mental models and the real implementation.

Industrial applicability is a another major concern in our work. The customers of our
reconstruction projects are involved in multi-million dollars businesses. Their systems rep-
resent a huge investment for the company, they took several years of pure development and
they will stay in the markets for decades. We need to develop a solution that work in an
industrial context and is scalable for software systems containing millions of lines of code.
Moreover, we need to guarantee that the reconstruction process is sufficiently simple to
understand and easy to operate.

Conformance checking is the fourth concern in our research. Software product families
are developed concurrently by different teams. The major preoccupation of the family ar-
chitects is to preserve the architectural integrity of the system over the time. Especially for
a highly dynamic domains like mobile phones, delays in the delivery of required features
or quality levels can cause huge losses for the company. The architects need to ensure that
the implementation conforms with their intended design. Product families are built around
a common architectural style (the family reference architecture) that describes the architec-
tural rules that have to be valid for all the members of the family. The architects need a
method to enforce the rules in the implementation and detect those features or products that
break the architectural integrity. Our aim is to provide the architects with the convenient
information and formalism for conducting the proper conformance checks.

Feature oriented reverse engineering has been a topic of research with the work that we
conducted on the dynamic analysis. In the telecommunication domain, system features
represent concrete artifacts that are shared across various products of the family. They rep-
resent the artifacts at the highest level of abstraction in the solution domain, as we discussed
in Section 2.1. From a feature engineering perspective, the goal of reverse engineering is

4.3. Novelty of the approach 38

to discover how the features are implemented, what are they interactions, or what are the
components are involved by their execution (as initially proposed by (Turner et al. , 1999)).
In a mobile phone product, reverse engineering could be used (1) to identify how the fea-
ture for establishing a phone call is been implemented on various protocols (like GSM or
3G), (2) to discover how the feature for receiving a call interferes with game playing, or
(3) to recover the procedure for setting up a WAP connection with GPRS. Understanding
the implementation of features is a vital activity for product family as features are typically
reused across several products.

4.3 NOVELTY OF THE APPROACH

As discussed in Section 2.2, a software architecture represents a shared understanding of
what is perceived vital by the developers for the life of the system. As software systems are
built in different ways, what is considered important varies from system to system. For this
reason, the architecture reconstruction process must recover what is considered valuable by
the stakeholders of the system. The reconstruction process must be tailored to the archi-
tectural style of the system under reconstruction. Therefore, we propose a method where
the reconstruction is driven by the architectural views and the architectural concepts of the
system. This choice ensures that we deliver models at the correct level of abstraction for
the architects. This argument represents the novel idea that is exploited in this dissertation.
Only few approaches explicitly address the architectural concepts as first-class elements of
the reconstruction. Our work bridges the gap by creating a reverse engineering process that
addresses the requirements of the architects and aims at delivering valuable information to
them. Differently from traditional bottom-up approaches, we select the views to recover
based on the architectural style of the system.

The IEEE (P1471, 2000) also emphasize that the architectural viewpoints are dependent
on what the stakeholders perceives as important to document. This makes architecture re-
construction a peculiar reverse engineering activity where the the process and the goals are
dependent on the architectural style of the system. While the recovery of a class diagram is
a general techniques for any object-oriented programming language, we can only general-
ize the architecture recovery for certain architectural styles. For this reason, in our approach
the selection of the architectural viewpoints play an important role and they are selected by
the stakeholders.

Based on the related work presented in Chapter 3, we can make the following considerations
about the state of the art on architecture reconstruction:

• There is no approach or tool that permits an explicit selection of the architectural
views that can address the specific needs of the stakeholders. Most of the approaches

4.3. Novelty of the approach 39

are focused only on a particular type of view.

• Existing approaches do not select the architectural concepts as first-class entities of
the reconstruction.

• Only few methods ((Mendonça, 1999; Harris et al. , 1995) follow a top-bottom re-
construction approach and explicitly take into consideration the architectural style of
the system.

• Most of the approaches address the case of understanding an unknown software sys-
tem. Although this is an important program understanding activity, in our experience
the reconstruction projects are initiated and driven by the software architects who
have clear expectations on the outcome. In our experience, only few cases of recon-
struction were initiated by the acquisition of an external company1.

• The approaches do not consider how to integrate domain knowledge with information
extracted from heterogeneous sources (such as different language extractor, CASE
tools and documentation).

• Some approaches are not scalable to industrial cases.

• Among the various formalisms the relational algebra seems to be the most powerful
while preserving expressiveness.

• Existing commercial modeling tools are incapable of recovering the architectural in-
formation from the implementation.

We compiled a list of criteria that our reconstruction process and formalism should satisfy:

Adaptability We should be able to tailor the reconstruction method to a wide range of
software systems. It should pose no a priori restriction about the architectural styles,
programming languages, domains, design methods and development tools.

Extensibility The formalism should be flexible and extensible enough so that it is possible
to iteratively define the content of the reconstruction and modify it over the time. The
tool environment should also be extensible in order to integrate the development tools
that are already in place in the organization.

Simplicity The process and the formalism should be simple and intuitive so that it can be
understood by architects and developers, and it can be operated by unexperienced
reconstructors.

'Even in these cases the developers of the external company were legally bound to to facilitate the software
intake for a certain period of time.

4.4. Validation 40

Efficiency The overall approach should be scalable for analyzing systems made of million
lines of code and capable of producing results in a reasonable amount of time.

Generality The formalism should be enough general to describe different architectural
views (class diagram, logical view, component and connector).

Expressiveness The formalism should be sufficiently expressive in order to handle com-
plex architectures, inconsistent data, multiple views. It should provide a clear nota-
tion, which is semantically well defined and easy to understand by all stakeholders.

Repeatability It should be possible to automate the reconstruction process in order to run
it at every build of the system with minimal human effort.

4.4 VALIDATION

To validate our thesis, we proceed in the following way:

1. We develop NIMETA 'S formalism by formalizing the reference viewpoints (design
and architecture) with the binary relational algebra.

2. We define the architecture reconstruction process in terms of five basic activities:
problem definition, concept determination, data gathering, knowledge inference, pre-
sentation. We also define additional activities for conformance checking, architecture
assessment and re-documentation. The process consists of three phases: process de-
sign, view recovery and result interpretation.

3. We develop an integrated tool environment, called NIMETA , that supports our recon-
struction method.

4. We perform two industrial case study with the Nokia business units. The case studies
demonstrate real-life architecture reconstruction experiences in practise. Both the
case studies were carried out by our team at the Nokia Research Center in close
cooperation with the Nokia business units. The reconstruction projects have been
completed and the the technology transfer is still ongoing.

Based on several experiences with the existing approaches (as also documented in (O'Brien,
2002), we made the following decisions for the development of the NlMETA reconstruction
method:

• NIMETA 'S formalism is based on the binary relational algebra. Although a logic
programming language (like Prolog) proved to be well suited for representing ar-
chitecture knowledge (as shown in our work (Riva, 2002)), we opted for the binary

4.4. Validation 41

relational algebra for several reasons. First, we have an efficient implementation of
the algebra engine (especially the expensive transitive closure), while the Prolog im-
plementation could not scale up to large datasets. Second, the algebra is sufficiently
expressive to elegantly formulate the transformations required by our reconstruction
tasks (as confirmed by (Fahmy et al. , 2001).

• We adopt a view-centered reconstruction method. The architects propose the view-
points to recover (either selected or combined from a viewpoint catalogue). The view
recovery phase is guided by the selected viewpoints.

• The architectural views are represented as hierarchical typed directed graphs. The
types of nodes and arcs conform to the viewpoint. The hierarchical structure is used
for defining abstractions and reducing the complexity of the graphs.

• We take the well-accepted viewpoints from the literature ad a reference. For the de-
sign viewpoint we rely on the FAMIX model as it is language independent, it captures
the relevant aspects of object-oriented systems and we contributed to its development
during the FAMOOS project. For the architecture viewpoints, we rely on the recently
published book on documenting software architectures (Clements et al. , 2003)) as it
contains a rich collection of architectural views.

• We base the tool environment on a configurable pipeline of tools and Python scripts.
The data exchange is mainly based on the RSF format from where the other formats
are converted. We plan to rely mainly on commercial or academic tools when possible
(especially for the extraction and the visualization), otherwise we develop our own
tools.

CHAPTER 5

BINARY RELATIONAL ALGEBRA

If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

- John von Neunman

5.1 INTRODUCTION

In this chapter we introduce the calculus of binary relations. The first investigations on
the theory of relations can be found in the article published by (Morgan, 1860) in 1860.
Realizing the limitations of the traditional logic for describing even simple arguments, De
Morgan recognized the full importance of relations and he vaguely attempted to formalize
it. The fundamental laws of the theory of relations were established by C. S. Peirce who
clearly formulated the theory as a calculus with the basic operands (Peirce, 1933). Schröder
extended the calculus with the operations of transitive closure, reflexive transitive closure
and De Morgan duals in 1895 (Schroöder, 1895). For the following half century the subject
has been neglected till 1941, when A. Tarski revitalized the field and create the modern
approach to the calculus of relations (Tarski, 1941). (Schmidt and Ströhlein, 1993) refined
Tarski's calculus and formulated the theory of the relations that has been applied in many
domains . We take their work as a reference for our formalism. A more detailed history of
the calculus of binary relations can be found in the paper of (Pratt, 1992).

Application of the binary relational algebra to the description of software architecture can
be found in the work of (Holt, 1998), (Feijs et al. , 1998; Feijs and Krikhaar, 1999; Feijs
and van Ommering, 1999) and (Berghammer et al. , 2003). In Section 3.2, we gave an
overview of their approaches. The formalism that we use throughout this thesis is based
on the binary relational algebra and is centered around three elements: sets, relations and
graphs. We introduce them and their operations in the following sections. We take the book
of (Schmidt and Ströhlein, 1993) as a basic reference.

42

5.2. Sets 43

5.2 SETS

A set 5 is a collection of well-defined distinct objects called elements(or members). If x
is an element of the set S we write x G S. The symbol 0 denotes the empty set. We can
define a set by enumerating its members. For example, the set containing the elements
a, b, c is denoted by {a, b, c}. The set of all the elements which have the property P(x)
can be written as S = {x\P(x)}. For combining various properties, we use the Boolean
operators V (disjunction, or) and A (conjunction, and). P V Q is true if and only if (denoted
by iff) P is true or Q is true or both P and Q are true. P A Q is true iif P and Q are both
true. We also define the implication operators =>• and <=>. P => Q holds if P is true then Q
is true. P ^ Q holds iif P =*• Q A Q =» P.

Two sets P and Q are equal, denoted by P = Q, iff Vx[a; G P •&• x G Q]. A set P is a
.swfoer of the set Q, denoted by P Ç Q, iff Vz[z e P =» x e <?]. If P Q Q and P ^ Q then
P is a proper subset (or strie* subset) of Q, denoted by P C Q. A set P is a superset of Q,
denoted by P D Q, iff Vzfrr G P <= a; G Q\. The proper superset is denoted by Q D P.
The cardinality of a finite set P, denoted by |P|, is the number of distinct elements in the
set P.

The union of two sets M and N, denoted by M U N or simply M + N, is the set T =
{x\x G M V x G JV}. The intersection of two sets M, N is denoted b y M n i V and is the
set T = {x\x G M Ax G iV}. The difference of two sets M and N, denoted by M \ N
or simply M — N, and is the set T = {x|a; G M A x £ N}. We do not introduce the
complement operator.

The Cartesian product of two sets M, N is denoted by M x N and is the set R = {(x, y) \ x G
XAyeY}.

5.3 RELATIONS

A binary relation R, or simply a relation, from X to y is a subset of the Cartesian product
X x y . The elements a: G X, y G Y are in relation R if (x, y) G Pi. We use several
notations for indicating a binary relation:

• infix notation: xRy

• prefix notation: R(x,y)

• tuple notation: (x, y)

5.3. Relations 44

(s)
Figure 5.1: Directed graph representing the relation i?.

We can define a relation by enumerating its elements. For example, we can define a relation
like: R = {(1,2), (5,6), (7,8)}.

A relation can be represented in a directed graph. Let V be a set of elements, called vertices,
and RÇVxVbea relation. We define G = (V, R) to be the directed graph of R. The pairs
of elements in R are called arcs (or edges) and for the element (x, y) are directed from the
x to y. The Figure 5.1 shows the directed graph for the relation R — {(a, b), (a, c), (d, e)}.

The operations of union, intersection, difference and the equality for the binary relations
are inherited from the operations for the sets:

PUQ = P + Q={(x,y)\(x,y)£PV(x,y)eQ}

PDQ= {(x, y)\(x, y)ePA (x, y) G Q}

P\Q = P-Q = {(x,y)\(x,y) G P V (x,y) <£ Q}

p = Q^V(x,y)[(x,y) G P 4* (x,y) E Q]

The inverse (or transposition) of a relation R, denoted by R~x, is obtained by reversing the
tuples of R:

R-1 = {(x,y)\(y,x)eR}

We define the operations for selecting the domain, range and carrier of a relation R:

domain dom(R) = {x\3(x,y) G R}

range ran(R) = {y\3(x,y) G R}

carrier car(R) = dom(R) U car(R)

Considering the directed graph G = (V, R), we can note that the car(R) is a subset of the
set of vertices V (car(R) D V).

5.3. Relations 45

We define the operations for restricting the domain and range of a relation R to a set S :

domain restrict R\domS = {{x,y)\(x,y) E RAx E S}

range restrict R\ranS = {{x, y)\(x,y) E R Ay E S}
carrier restrict R\CarS =

We define the operations for excluding from the domain and range of a relation R a set S:

domain exclude R \dom S = {(x, y)\(x, y) E R A x £ S}
range exclude R \ran S = {(x, y)\(x, y) E RAy g S}
carrier exclude R \c a r S = (R \dom S) \ran S

We define the operators left projection and right projection for selecting elements of the
relation R with respect to the set 5 and the operators left image and right image for selecting
elements of R with respect to y and x respectively:

left projection R.S = {x\ [x, y) E R A y E S}
right projection S.R = {y\ (x,y) E RAx E S}
left image R.y = {x\(x,y) E R}

right image x.R — {y\{x, y) E R}

We define the top and the bottom of a relation R. Given the directed graph of R, the top
consists of the set of vertices that have no incoming arcs (root vertices). The bottom consists
of the set of vertices that have no outgoing arcs (leaf vertices). The definitions are:

top T(i2) = dom(R) - ran(R)
bottom ±(R) = ran(R) - dom(R)

The relational composition of P, Q, denoted by P o Q, allows us to compose different
relations. Given the directed graph of P U Q, the relation P o Q is the set of all the edges
that can be drawn by following an edge of P and an edge of Q. The definition is:

relational composition P o Q = {(x, y)\3z(x, z) E P A (z, y) E Q}

The composition operator is associative and it is possible to compose a relation n times:
Ro R0R...0R (denoted by Rn). By definition, we have that R° = Id.

5.4. Hierarchical Typed Graphs 46

The identity relation for the set X, denoted by Idx, is the relation:

identity relation Idx = {(x,x)\x e X}

Considering the directed graph G = (V,R), we assume that the identity relation is cal-
culated on the set of vertices V and we simply write Id. The identity relation of a graph
represents the set of all the edges that loop directly back to the nodes. The identify relation
has the following properties:

xldy 4^ x = y

The transitive closure and the reflexive transitive closure of a relation R, denoted by R+

and R*, are denned as:

oo

transitive closure R+ = M R1

i=l

reflexive transitive closure R* = R° + R+ = Id + R+

Given a directed graph G = (V, R), the transitive closure is the set of all the arcs that
connect the vertices that are reachable by following the arcs of R.

Given the directed graph of R, a cycle is a path that starts and ends at the same vertex and
has at least one arc. A relation R is defined acyclic iff Id n R+ = 0. In an acyclic graph
there is no path from any vertex to itself.

The operation of transitive reduction, denoted by R~, removes all the short-cuts from the
relation R. An edge (x,y) is a short-cut iif 3z\(x,z) e R A (z,y) € R. The transitive
reduction is defined as:

transitive reduction R~ = R — (R o R+)

The transitive reduction of R is also called the Hasse diagram of R. The transitive reduction
also removes all the cycles of R.

5.4 HIERARCHICAL TYPED GRAPHS

In the previous section, we have given a definition of a directed graph of a relation R. In
this section, we give other definitions related to graph that will help us for describing the
various views of a software system.

5.4. Hierarchical Typed Graphs 47

From the previous section, we recall that graph is pair of sets (V, R). The elements of the
set V are the vertices of the graph. If the elements of the relation R are ordered pairs (x, y)
then the graph is directed. If the pairs of R are unordered then the graph is undirected.
Throughout the thesis, we only consider directed graphs based on the ordered pairs of a
relation R. The edges are directed from the element x to the element y.

A path is list of vertices of a graph where each vertex has an edge from it to the next vertex.
An undirected graph is a connected graph if there is a path between every pair of vertexes.
A directed graph is a strongly connected graph if there is a path from each vertex to every
other vertex.

A tree is a connected, directed and acyclic graph. The top of the graph is the root of the
tree. A forest is a collection of one or more trees.

A typed graph is a graph where we can distinguish different types of vertices and edges.
Given a set of vertices V, a type relation T for the vertices and the relations R\, R2, ...Rn,
we can define a typed graph as the set G = (V,Ri,R2,.--Rn)- The different types of nodes
and edges are often visualized with different colors or notations (hence the term colored
graphs). For a typed graph we have the following properties:

dom(T) = V

Vi[Ri C V x V]

For simplicity, we often indicate a typed graph as G — (V, R) and we assume that the can
distinguish the various relation R4.

A hierarchical typed graph is a typed graph with a hierarchy. Given a base graph G =
(Vc, RG) and a tree (i.e. a directed acyclic graph) C = (Vc, Ec), we define the hierarchical
typed graph as the set H = (C, G) with the the requirement that ±Ec — VG- The tree C
is called containment tree or containment relation. The type relation T for H is defined as
T = TG + Tc- We can indicate the hierarchical typed graph as H — (C, R\,R2, •••Rn), or
simply H = (C, R), and we assume that:

n

V = {J cariRi)

Figure 5.2 shows the hierarchical graph G = (C, R):

C = {(A, B), (A, D), (B, C), (B, e), (C, /) , (C, g), (D, h), (D, i)}

5.4. Hierarchical Typed Graphs 48

Figure 5.2: An example of an hierarchical graph.

Given a containment tree C, we define several operators for the working on the trees:

parent (part-of) P(C) = RT1

sibling S(C) = P(C) oC-Id

descendant D(C) = C+

reflexive descendant Do(C) = C*

ancestor A(C) = P(C)+

reflexive ancestor Ao(C) = P(C)*

Given a hierarchical graph H = (C, R), we define the operation of lifting, denoted by
R f C, in the following way:

lifting R] C = { { x , y) \ 3 a , b(a, b) e R A {x, a) e C+ A (y, b) G C+ A x + y }

The operator of lifting calculates the set of edges between the nodes of C that are induced
by the relations of R. We also introduced the operations of left lifting, denoted by R] C,
and right lifting, denoted by R \ C:

left lifting R] C = {(x, y)\3a(a, y) G R A {x, a) € C+ A x ^ y)

right lifting R\ C = {(x, y)\3a(x, b) e R A (y, 6) G C+ A x ^ y}

5.4. Hierarchical Typed Graphs 49

We can define the full lifting, denoted by R ft C:

full lifting R ft C = {(x, y)\3a, b(a, b) e R A ({x, a) G C+ V (y, b) E C+) A x =£ y}

The full lifting is equivalent to the union of the normal lifting, left lifting and right lifting.
We use the full lifting mainly in the implementation of the tools for calculating all the
possible lifted edges.

We can also define the lifting operators in relational algebra using the operators on trees
that we have previously defined:

lifting RJ\C = D(C) oRo A(C) -Id- D(C) - A(C)

left lifting R]C = D{C) oR-Id- D(C)

right lifting R \ C = R o A{C) -Id- A(C)

full lifting R^C = R}C + R]C + R\C

= Do(C) oRo Ao{C) -Id- Do(C) - Ao(C) - R

= D(C) oRo A(C) + D{C) oR + Ro A{C) -Id- D(C) - A(C)

The opposite of the lifting is called lowering, denoted by R j C:

lowering R{C = {(x, y)\3a, b(a, b) e R/\ (a, x) e C+ A (6, y) e C+ A x ^ y}

In relational algebra, we have:

lowering R I C = A{C) oRo D(C) -Id- D(C) - A{C)
reflexive lowering R J. C = Ao(C) oRo Do(C)

The lowering operator allow us to calculate the edges of R that induce a lifted edge. Let
P = R t C be the set of the lifted edges and let (x,y) be an edge in P, the set Q = ((x,y) |
C) U R contains the edges of R that induce the lifted edge (x, y).

We provide an example of the various operations on the graph G — (C, R) of Figure 5.2:

5.5. Views and Viewpoints 50

C = {(A,B),(A,D),(B,C),(B,e),(CJ),(C,g),(D,h),(D,i)}
R = {(e,f),(h,g),(i,h),(f,i)}

dom(R) = {e,h,i,f}
car(R) = {e,f,h,g,i}

R\j*m{e,i} =
R.g,h =

i.R = {h}
T(C) = {A}
MC) = {e,f,g,h,i}

IdR = {(e,e),(f,f
P(C) =
S(C) =

D(C) =

R]C =

R]C =

R\C =

RtC = {(B,D),(B,i),(h,C),(h,B),(C,D),(e,C),(D,C),

{(C,D)}IC)UR =

5.5 VIEWS AND VIEWPOINTS

The concepts of views and viewpoint are necessary for describing the software architecture
of a system, as we have discussed in Section 2.3. We give their definitions in terms of binary
relational algebra.

We define a viewpoint Vp = (TE, TR, Tc, P) as the union of all the types of entities, TE

and relations TR that are allowed in the viewpoint, the type of containment relation and the

5.6. Levels of precedence 51

set P of properties (or rules) that are satisfied for the viewpoint:

viewpoint VP = (TE, TR, Tc, P)

TE = {entity types}
TR = {relation types}
Tc = {containment relation type}
P = {properties}

We define a view V = (C, R, T) as an hierarchical typed graph where C is the containment
relationship, R is the of all the relations and T is the type relation for the vertices. A view
conforms to its viewpoint and the properties P must hold. The definition is:

view V = (C,R,T)

C = {containment relation}
R = {relations}
T = {type relation}

5.6 LEVELS OF PRECEDENCE

In Table 5.1 we list below, the levels of precedence from the most bidding to the lowest
bidding. Parentheses can be used to specify the order of operations.

5.6. Levels of precedence 52

Operand
=
C
D
C
D

+, u
-, n
o

Î
1
r
t
i
X

Idx

dom(X)
ran(X)
car(X)
R\dom,X
R\ranX
R\carX
R \dorn X
R \ran X
R \car X
T(X)
±(X)
R.S
S.R
R.y
x.R
+
*

—
i

n

Name
equal
subset
superset
proper subset
proper superset
union

intersection
relational composition
lifting
left lifting
right lifting
full lifting
lowering
cartesian product
identity relation
domain
range
carrier
domain restriction
range restriction
carrier restriction
domain exclusion
range exclusion
carrier exclusion
top
bottom
left projection
right projection
left image
right image
transitive closure
reflexive transitive closure
transitive reduction
inverse
power

Table 5.1: The levels of precedence for the relational algebra operands (from the most to
the less bidding).

CHAPTER 6

THE NIMETA FORMALISM

As far as the laws of mathematics refer to reality, they are not certain;
as far as they are certain, they do not refer to reality.

- Albert Einstein

6.1 INTRODUCTION

Architecture reconstruction is essentially an activity of reconstructing architectural views.
The method method requires a solid formalism for describing the software models at var-
ious levels of abstraction: code, design and architecture. We seek a formalism that is suf-
ficiently expressive, reasonably succinct, fairly natural to comprehend, easily scalable to
describe the software architectures of industrial systems and suitable to fully automate the
reconstruction process. After reviewing and experimenting the existing approaches, we
have decided to base our formalism on the the binary relational algebra that we have in-
troduced in Chapter 5. In Section 5.5 we have also formalized the concept of views and
viewpoints that was introduced in Section 2.3. In this chapter we describe and formalize
the well-accepted viewpoints from the literature. They represent a catalogue of reference
viewpoints for architecture reconstruction.

6.2 OVERVIEW OF THE VIEWPOINTS

Although in the literature a number of architectural views has been proposed, there is no
consensus on what views are commonly needed for forward architecting. Some views from
different authors are actually very similar while other views are focused on very specific

53

6.2. Overview of the Viewpoints 54

concerns. In our experience, every system is a new architecture with its own architectural
styles, rules, codes and policies. As (Perry and Wolf, 1992) noted, even if the system
was designed according to standard architectural styles, the ubiquitous customization of
architectural elements turn the system into an unique creation. Software organizations and
even single teams tend to develop their own set of views that work in their own limited
domain.

An important contribution of our work is that the architecture reconstruction process is
independent of the viewpoints. We are not imposing our own viewpoints but we can tailor
the reconstruction process to the existing ones. Nevertheless, we believe that it is necessary
to define a minimal framework of viewpoints to provide a solid foundation to the method.
The reference viewpoints can be used when no other viewpoints are available or they can
complement the viewpoints that are already in use.

We have organized the viewpoints in three distinct layers: code, design and architecture.
Viewpoints in the higher layers are less detailed and architecturally relevant. The view-
points in the lower layers are rich in details and reflecting the implementation. This di-
vision reflects the levels described in Section 2.1 and the division propose by (Eden and
Kazman, 2003). During the Dagstuhl seminar on the interoperability of reverse engineer-
ing tools we also proposed a similar three-layer framework for the reverse engineering meta
models(Ebert et al. , 2001). The Figure 6.1 shows the three layers of viewpoints and their
mappings. The mappings between the various elements of the layers allow us to to establish
the traceability of the models. We briefly introduce the layers below:

Architecture At the top of the framework, there are the architectural viewpoints that de-
scribes the architecturally relevant aspects of the system. Even if the field is not
mature enough, the recent book of (Clements et al. , 2003) tries to provide a uni-
fied set of architectural viewpoints that we take as a reference set for the architecture
layer.

Design Zooming on details, we have the design viewpoints that captures the essence of the
important design aspects without the overwhelming details of the code viewpoint.
Typically only limited information is available like classes, attributes and method
bodies, method invocations, variable accesses and inheritances. This information
is sufficient for dependency analysis. The approaches in the literature are mainly
focused on supporting particular reverse engineering tools, as we have discussed in
Section 3.3. (Tichelaar, 2001) has elaborated a language independent meta-model
for modeling object-oriented software called FAMIX. We take FAMIX as a reference
viewpoint for the design layer.

Code The code viewpoints give a very detailed representation of the syntactic structure
of the source files. We should interpret the code viewpoint as a precise representa-
tion from where the source files can be regenerated. This is typically modeled with

6.2. Overview of the Viewpoints 55

oa

I
<u

o

Entities: module,
subsystem, component,
team, process, machine

Relations: uses,
generalization, message,
request/reply, invokes

Hierarchy: is-part-of,
allocated-to

"5
Q

C

'55
a

Entities: class, method,
variable, function, file

Relations: invocation,
access, inherit, contain

o
a

Ia)
O
Ü

Entities: programming
language constructs

Relations: syntactic
nesting, links

Abstract Syntax Tree/Graph (AST/ASG)

c

a
E

I N

Programming Language

Figure 6.1 : The framework of viewpoints.

6.3. The code viewpoint 56

the abstract syntax tree (AST) level information. It is normally detailed enough to
regenerate the source code and sufficient for control-flow analysis.

Implementation At the bottom level, we have the implementation of the system that con-
sists of a set of documents like source files, configuration files, build commands, log
files and so on.

6.3 THE CODE VIEWPOINT

The code viewpoint provides a very detailed representation of the source code. We can rep-
resent it with an abstract syntax tree (AST) or an abstract syntax graph (ASG). The purpose
of the AST is to describe the syntactic decomposition of a software program with a tree-
nesting structure. The level of details of the AST is variable and it depends on the intended
use. For example, compilers ignore certain information like comments and brackets that is
required if we are interested in reproducing the original source code. For our purposes, the
AST of the code viewpoint should provide a one-to-one mapping with the source code.

We do not provide an explicit description of the source viewpoint because it is not in the
scope of our dissertation. The reason is that there are extractors for generating the de-
sign views that we can use to create the architectural views. However, we believe that for
completeness and traceability the viewpoints in the higher layers should be based on the
code viewpoint. As a reference viewpoints we take the schémas that we have discussed in
Section 3.3.

6.4 THE FAMIX DESIGN VIEWPOINT

The design viewpoint describes the essence of a software program at an abstract level. We
are interested in a representation that is close to the source code but less detailed. It must
be abstract but authentic in a wait that we can establish a one-to-one mapping between
elements in the code and the elements in the design view.

We take the FAMIX1 meta-model as a reference viewpoint for the design layer. The
FAMIX meta-model models the design aspects of object oriented software in a language-
independent way (Demeyer et al , 2001). It consists of a language-independent core that
captures the common aspects of objected-oriented languages and various language exten-
sions that deal with the specific aspects of the languages. There are extensions for Java,

'FAMIX 2.1 specification is available at: http://www.iam.unibe.ch/famoos/FAMIX

6.4. The FAMIX design viewpoint 57

C++, Smalltalk and Ada. The FAMIX meta-model allows us to capture the design-level
aspects of the implementation.

In our cases we mainly analyze C/C++ and Java code, we have condensed some aspects of
the core and the extensions in a unique meta-model or schema. We have also simplified cer-
tain aspects of the original specification. The FAMIX meta-model is intended for achieving
tool interoperability while it does not need to correspond internal implementation of a re-
verse engineering environment. The differences between our customized version and the
original FAMIX meta-model are minimal and do not break the tool interoperability goal of
FAMIX. Throughout the thesis, we take the FAMIX meta-model as a reference meta-model
for several case studies written with C/C++/Java languages.

We refer to the FAMIX specification for a detailed explanation of the FAMIX meta-model.
In this section, we formalize the FAMIX meta-model in terms of the binary relational alge-
bra. As through this dissertation we only use our relational algebra variant defined below,
we will simply refer to it as FAMIX without any ambiguities. The diagrams in Figure 6.2
show the basic entities and relationships of FAMIX and the Table 6.1 gives a detailed ex-
planation of the entities and relations of the design viewpoint.

For the naming conventions, we use the FAMIX rules:

• Naming of attributes: the name is obtained by concatenating the containing class with
attribute name using a '.' as a separator: e.g. Foo . var .

• Naming of functions: the signature of a function contains the name of the function
followed by the list of parameter types: e.g. foo (i n t , char*).

• Naming of methods: the unique name is obtained by concatenating the name of the
class with the signature of the method: e.g. Foo. p r i n t (cha r*) .

6.4. The FAMIX design viewpoint 58

inherit has class

Class

has method has attribute

A Method Attribute

invocation
invocation

Function

invocation'

Class

Class Method

contain/ i mP l e m e n t

Directory —contain filet File contain"

contain

Macro

contain dir'
include

decl fn c o n t a i n
def fn

GlobalVariable

Function
TypeDef

Figure 6.2: The simplified FAMIX meta-model.

6.4. The FAMIX design viewpoint 59

Entities
Entity

Class
Method

Attribute
Function

Macro

TypeDef
Globalvariable

File
Directory

Description

The definition of the class
The definition of method of a class
The definition of an attribute of a class
The definition of a function or a proce-
dure that has a global visibility
A C++ macro definition with
#de f ine
A C++ type definition with typede f
The definition of a global variable
A source file
A directory in the file system

FAMIX
meta-model
Class
Method
Attribute
Function

TypeDef (C++ plugin)
GlobalVariable

Relations
Relation

hasjnethod

hasMttribute

has-class
inherit

invocation

access

include

expansion

useJype

contain

implement

decLfn
defjh

containjile
containjiir

Description

A class declares a method

A class declares an attribute

A class declares a nested class
A class inherits from another class
A method or a function invokes a
method or a function
A method or a function access an at-
tribute or a global variable
A source or header file includes an
header file
A function or a method expands a
macro
A function or a method use a user's de-
fined type
A file contains the definition of a class,
a macro, a type definition and a global
variable
A file defines the implementation of a
method
A file declares a function
A file defines a function
A directory contains a file
A directory contains another directory

FAMIX
meta-model
inverse of the property
belongsToClass
inverse of the property
belongsToClass

InheritanceDefinition
Invocation

Access

Include (only C++
plugin)

the sourceAnchor
property

Table 6.1: The entities and relations of the design viewpoint.

6.5. The architecture viewpoints 60

We provide an example with the following fragment of Java code:

import java . applet . Applet ;
import java . awt. Graphics ;

public class HelloWorld extends Applet

public void paint (Graphics g) {
g. drawString("Hello world!" , 50, 25);

}

The design view for the Java code is the the following set of relations:

type = { ('Applet'/ Class'),

('HelloWorld','Class'),

('Graphics','Class'),

('HelloWorld.paint(Graphics)',' Method'),

('Graphics.drawString(String, int, int)','Method')}

has-method ={ ('HelloWorld' /HelloWorld.paint(Graphics)'),

('Graphics','Graphics.drawString(String, int, int)')}

inherit = { ('HelloWorld'/Applet')}

invocation = { ('Graphics.drawString(String, int, int)'/Graphics.drawString(String, int, int)')}

6.5 THE ARCHITECTURE VIEWPOINTS

In this section, we formalize the commonly-accepted architectural views with the binary
relational algebra. As a reference catalogue, we take the architectural views described in
the book of (Clements et al. , 2003). In the practical cases, we often need to customize the
views or to create new views. The goal of this section is to provide a reference material
to start with. We point out that the reference viewpoints are rather generic and open to
various interpretation. The interpretation is often dependent on the team or the organiza-
tion. Table 6.2 summarizes the architecture viewpoints that are presented in the following
sections.

6.5. The architecture viewpoints 61

Viewtype Viewpoint Entity Relationship
Module Decomposition

Uses
Generalization
Layered

Component Pipe & Filter
& Connector Shared-Data

Publish-Subscribe

Client-Server

Peer-to-Peer
Communicating-
Processes

Allocation Deployment

Implementation

Work Assignment

module,
subsystem
module
module
layer
filter, pipe
shared-data store,
data-accessor
component
(publisher,
subscriber)
client, server

peer
unit, task,
process, thread

component
physical element
module,
configuration item,
(file, directory)
module,
organizational unit
(a person, a team,
a department,
a subcontractor)

is-part-of

uses
is-a
allowed-to-use
bindings
r/w connector

publish-subscribe,
event bus

request/reply
message
invokes-procedure
data exchange,
message passing,
synchronization,
control
allocated-to

containment
allocated-to

allocated-to

Table 6.2: The architectural viewpoints from the catalogue.

6.5. The architecture viewpoints 62

6.5.1 THE MODULE VIEWTYPE

The category Module Viewtype groups the architectural views that document the modular
structure of system's software. The key concept is the module that represents a software
unit, with a well-defined interface that provides a coherent unit of functionality. The inter-
pretation of a module can vary from system to system and often depends on the developers'
decisions how to modularize the system. Any non-trivial software system is partitioned into
separated software parts that typically consists of functions, files, classes or other compu-
tational elements. An aggregate of modules is often called a subsystem. Beside the general
understanding of the concept of module and subsystem, we assume that its precise defini-
tion is system-dependent and it is discovered during the reconstruction activity.

The Decomposition viewpoint describes the partitioning of modules and subsystems in
their constituents. It shows the hierarchical decomposition of the system in modules and
their responsibilities within the system. The decomposition viewpoint conveys a general
view of the system and is one of the favorite mechanism for communicating the structural
organization of a software system to a variety of shareholders. Especially for large systems,
the decomposition viewpoint provides a condensed view of the main parts of the software.
There are no strict rules for the construction of this viewpoint and often the interpretation
of its semantic can only be found in the design practises of the organization. This viewpoint
is often overlapping with the allocation viewpoints.

The Uses viewpoint shows the interdependencies among the modules and tells developers
what other modules must exist in order for a certain part of the system to work correctly.
A module A uses another module B if the correctness of A depends on the correct imple-
mentation of B. This implies that changes in module B will affect the behavior of A. The
uses relation is a specialization of the depends-on relation and should not be confused with
other depends-on relations (e.g. calls, inherit-from, include-from). A module A can include
a module B but not necessarily use it at runtime. The uses dependencies create constraints
for the whole development process from design to testing (e.g. module A cannot be tested
without module B). The uses viewpoint is an important tool for the planning of the devel-
opment process and assessing the effects of changes in the system. In the next sessions, we
will show that his viewpoint plays a key role in the architecture reconstruction method.

The Generalization viewpoint describes the commonalities and variations among the mod-
ules by defining a generalization relationship among them. A parent module is a more gen-
eral version of the children modules when the parent owns certain aspects that are common
to all the children. The variations (or specializations) are manifest only in the children
modules. The generalization relationship implies the inheritance of the interfaces and, at
some extent, of the implementation. While the generalization viewpoint is derived from the
object-oriented designs where generalization is a widely used mechanism, there are numer-
ous applications for describing the architectures of product families (i.e. the commonalities

6.5. The architecture viewpoints

Viewpoint
Decomposition

Uses

Generalization

Layered

TE

module,
subsystem
module,

subsystem
module

layer

TR

0

uses

generalization,
is-a

allowed-to-use

Tc

is-part-of

0

0

0

63

P
is-part-of
is a tree

0

generalization
is acyclic

allowed-to-use
is acyclic

Table 6.3: The viewpoints of the module viewtype.

and variations of the various components).

The Layered viewpoint describes the organization of the software into units where each
unit belongs to a layer. A layer represents a virtual machine in the sense that it provides a
cohesive set of services through a set of public interfaces. The layered organization of the
units enforce a strict ordering of usage: if the layer A is above the layer B, the units in the
layer A are allowed to use the services provided by the units in the layer B. In practise
we can find several layering schemes that can allow more or less freedom for the allow-to
relation, however one rule must always hold for a layered architecture: lower layers cannot
use without restrictions the facilities of higher layers. The layered viewpoint is commonly
used for partitioning a software and, although it is often not directly documented, it is
implicitly used in other views like the decomposition viewpoint.

Table 6.3 summarizes the various definitions of the module viewpoints, according to the
viewpoint definition in :

viewpoint = (TE,TR,Tc,P)

6.5.2 THE COMPONENT & CONNECTOR VIEWTYPE

The viewpoints in the category Component & Connector viewtype concern with the mod-
eling of elements that have a runtime presence, such as clients, servers, processes and
databases. The key concepts of the viewpoints are the components and connectors. Com-
ponents represent runtime visible processing units or data storage elements. Connectors are
the communication mechanisms that allow the components to interact. There are various
types of components and connectors with different properties that are defined in the specific
viewpoints. Table 6.4 summarizes the various definitions of the component & connector
viewpoints.

6.5. The architecture viewpoints 64

The Pipe-and-Filter viewpoint models a system whose main logic is characterized by a
sequence of transformations of streams of data, e.g. signal processing applications. The
initial filter receive a large amount of data that is processed by a cascade of filters. The
component type is the filter that transforms the data that it receives from the input ports and
deliver it to the output ports. The connector type is the pipe that provides the unidirectional
connection between the pipes.

The Shared-Data viewpoint models a system that is characterized by the exchange of per-
sistent data. One or more shared databases store the data that other components can access.
The main components are the shared-data store and the data accessor that is a compu-
tational unit. The connectors are the data reading and data writing connectors. For this
viewpoint, the connectors are formalized as a binary relation.

The Publish-Subscribe viewpoint models a system where the components can register to
a communication bus where they can publish an event and subscribe for receiving events.
The communication bus is responsible for delivering the events to all the subscribers. The
component types are the publisher and the subscriber. The connector type is the publish-
subscribe relationship, formalized as a binary relation.

The Client-Server viewpoint models a system where the components can request services
of other components. The servers provide a set of services that the clients can request
through their interfaces. The communication is always initiated by the clients and can be
synchronous or asynchronous. The component types are the client and the server. The
connectors are the request and reply messages and are modeled as a binary relation.

The Peer-to-Peer viewpoint models a system where the components, called peers, can
directly interact to exchange services. Any peer can request another peer for services.
The communication mechanism is similar to the request/reply interaction of the Client-
Server viewpoint but the interaction may be initiated by any peer. Systems buit with object
distributed infrastructure like CORBA, COM+ and Java RMI are examples of peer-to-peer
systems. The component type is the peer such as distributed objects and the connector type
is the invokes-procedure.

The Communicating-Processes viewpoint models the concurrency aspects of a system
where the components interact through various mechanisms of communications such as
synchronization, message passing, data exchange and so on. The component type is a
concurrent unit such as tasks, processes and threads. The connector types are the commu-
nication mechanisms and are formalized as binary relations.

6.5. The architecture viewpoints 65

Viewpoint
Pipe-and-Filter

Shared-Data

Publish-Subscribe

Client-Server

Peer-to-Peer
Communicating-
Processes

TE

filter,
pipe

shared-data store,
data accessor

publisher,
subscriber

client,
server
peer

unit, task,
process, thread

TR

bindings

read, write

publish-subscribe

request, reply

invokes-procedure
data exchange,

message passing,
synchronization,

control

Tc

0

0

0

0

0
0

P
0

0

0

0

0
0

Table 6.4: The viewpoints of the Component & Connector viewtype.

6.5.3 THE ALLOCATION VIEWTYPE

The category Allocation viewtype concern with the organizational aspects of a software
system like hardware allocation, development team structure and file system structure. The
viewpoints in this category document how the various modules and components are mapped
to elements in the development environment. The key concepts are the software elements
(e.g. modules and components) and the allocated-to relationship. Table 6.5 summarizes the
various definitions of the allocation viewpoints

The Deployment viewpoint describes the allocation of the runtime elements to the ex-
ecution platforms. The performance requirements are met by the particular constraints
expressed with this viewpoint. There are two categories of elements in this viewpoint: soft-
ware elements and environmental elements. The software elements are the runtime units
typically from Component & Connector viewpoints. The environmental elements corre-
spond to the physical units that store, transmit or compute data such as processor, memory,
disk, network, communication channels and so on. The typical relation for this viewpoint
is the allocated-to that shows how the software elements are allocated to the physical units.
This relation is dynamic because it can the allocation of software elements can change
at runtime. There are also variations of the basic relation: migrates-to, copy-migrates-to
and execution-migrates-to. The topology of the relation is not fixed but in practise we can
interpret the allocated-to relation as a containment relation.

The Implementation viewpoint maps the modules of the module viewpoints to the devel-
opment infrastructure. Modules are implemented with many separate files that are typically
organized in a hierarchy of directories and stored in a configuration management system.

6.5. The architecture viewpoints

Viewpoint
Deployment

Implementation

Work Assignment

TE

component,
physical element

module,
configuration element

module,
organizational element

TR

0

0

0

Tc
allocated-to

containment
allocated-to,

allocated-to

66

P
allocated-to
is a forest

containment,
allocated-to,

is a forest
allocated-to

is acyclic

Table 6.5: The viewpoints of the allocation viewtype.

The files contain the source code, definitions, configuration instructions, build commands
and all the data that are necessary for creating the final exécutables. The elements of this
viewpoints are the module and the configuration elements like a file or a directory. There
are two types of relations: containment and allocated-to. The containment relation spec-
ifies that one configuration element contains another element. The allocated-to relation
describes the allocation of modules to the configuration elements. In relational algebra, the
two containment relations are considered to be forests.

The Work assignment viewpoint describes the allocation of the development work across
the development teams and the organizational structure. The viewpoint documents the map-
ping between the software elements and the groups of humans who are responsible for the
design, development, maintenance and testing activities. The elements of the viewpoint
are the the module and the organizational unit such as a person, a team, a department a
subcontractor and so on. The allocated-to relation maps the software elements to the orga-
nizational units.

6.5.4 THE FEATURE VIEWPOINTS

The previous viewpoints are mainly concerned with the structural aspects of the architec-
ture as they describe the potential interactions among the components. We refer them as
static viewpoints. If we want to describe the behavior of the system at runtime, we have to
introduce a time line. For each viewpoint we can define its related dynamic viewpoint by
associating a time line. We use the dynamic viewpoints to document the behavior of the
architecture. In a dynamic viewpoint only a subset of the potential interactions found in the
static viewpoint are active at a given point in time. Some behavioral characteristics of the
system can only be documented with the run-time descriptions: concurrency, deadlocks,
synchronization, timing, real-time constraints, performance and so on. Documenting the
behavior is as important as documenting the static aspects. (Stewart, 1999) puts the lack of
measurement of execution time in his lists of 30 pitfalls for real-time software developers.

6.5. The architecture viewpoints 67

Architects document the behavior to show how a particular element behaves under certain
circumstances or how it interacts with other elements. There are various notations for the
documentation of the behavior: use cases, sequence diagrams, collaboration diagrams, mes-
sage sequence charts, Statecharts, Petri nets and so on. From our experience with Nokia's
systems, we have found important to recover the feature viewpoints from the system exe-
cution. The feature viewpoint describes the implementation of one or a set of features at
a particular level of abstraction. The purpose of the feature view is to describe how the
elements of a static viewpoints interact in order to accomplish the goals of the feature. For
the representation of the feature view, we use the sequence diagrams. The participants are
the elements of the viewpoint and the messages represent the run-time interactions. We
also support the possibility of grouping participants in abstracted elements as in the static
viewpoints. This allow us to calculate the run-time dependencies. The types of abstractions
are described in the Section 8.5.2.

CHAPTER 7

THE NIMETA ARCHITECTURE

RECONSTRUCTION PROCESS

Design and programming are human activities;
forget that and all is lost.

- Bjarne Stroustrup

Similarly to archeology, architecture reconstruction is the process of analyzing the evidence
of past design decisions for inferring an architectural model of the system. In NIMETA 's
approach the architectural concepts play a key role in the reconstruction. The outcome is a
set of reconstructed architectural views. This chapter presents the NIMETA reconstruction
process. After an introduction, we define the types of views and present the reconstruction
process. We conclude with the description of the maturity levels and an example.

7.1 INTRODUCTION

Software architecture reconstruction is the process of obtaining a documented architecture
for an existing system by inferring the architectural information from the available evidence.
The most reliable source of information is the system itself, either the source code or traces
obtained from its execution. Other sources of information are the design documentation,
the description of supported features, interviews with the system experts. In general, ar-
chitecture reconstruction brings together the reliable data from the system implementation
with less-formalized domain knowledge.

We can define the following goals for architecture reconstruction:

68

7.1. Introduction 69

• To create an architectural model that makes the concrete architecture explicit from
the implementation. By confronting the reconstructed architectural model with the
conceptual models, the developers can increase their understanding of the system.

• To enable the architects to analyze the various structural dependencies among the
software components.

• To enable the architects to check the architectural conformance of the implementa-
tion.

• To enforce the architectural rules as they are formulated by the architects.

As every system as its own architectural style, we tailor the reconstruction process around
the architectural concepts. Together with the architects, we carefully select the architectural
concepts that we need to recover and present in the final views. We also define how the
architectural concepts map to the implementation (following the framework of viewpoints
defined in Chapter 6). This guarantees that we can deliver meaningful abstract models to
the architects.

The outcome of the reconstruction is a set of architectural views. With the stakeholders,
we define what are the significant viewpoints to present and the presentation format. The
content of each viewpoint is carefully defined according to the interests of the stakeholders.
We can either rely on the viewpoints already in use or the standard viewpoints defined in
Section 6.5.

Reconstructing a software architecture requires an active involvement of the experts and
stakeholders such as developers, architects, management, designers and testers. The most
experienced people are often difficult to reach but they are the most valuable especially at
the beginning for setting the goals of the reconstruction. For this reason, there must be a
compelling reason for starting a reconstruction and this reason has to be well-understood
and accepted by the management. The reconstruction of an architecture is an activity that
can last from months to years and it has to be properly financed. The maximum benefits are
obtained when the reconstruction is well-integrated with the forward engineering practise
and there is a continuous exchange of information. For this other reason, it is very important
that the reconstruction is defined and monitored by the most experienced people in the
organization.

We need a flexible approach that can be well customized to the subject system. Differently
from forward engineering where there is a large degree of freedom in the choice of the most
appropriate views to design a system, we have to deal with design practises that are already
in place in the organization and we need to reconstruct them as similar as possible. Our
method for architecture reconstruction consists of the following activities:

1. Problem definition

7.2. Source, Target and Hypothetical Views 70

2. Concept determination

3. Data gathering

4. Knowledge inference

5. Presentation

6. Conformance checking

7. Architecture assessment

8. Re-documentation

The activities are discussed in details in the following sections. In (Riva, 2000) we have
presented an initial study of the reconstruction process that has been formalized in (Riva,
2002). Our initial approaches have been unified in Symphony reconstruction process (van
Deursen et al , 2004).

7.2 SOURCE, TARGET AND HYPOTHETICAL VIEWS

In the Chapter 6 we have defined different categories of viewpoints: code, design and archi-
tecture. The views based on those viewpoints represent the final and intermediate material
of the reconstruction process. We define three types of views that are involved in the recon-
struction process.

The source view is a view of the system that can be extracted from its artifacts such as
source code, build files, configuration information, documentation or traces. The source
view is based on a code viewpoint or a design viewpoint (such as abstract syntax trees or
flow graphs). The source views represent the basic information for creating the architectural
viewpoints.

The target view represents one goal of the reconstruction process that has been agreed
with the stakeholders. The target view describes the as-implemented aspects of a software
system and it is needed to solve the problems or to perform the tasks for which the recon-
struction process was carried out. The target views are typically architectural views.

The hypothetical view is a view of the system that is not so accurate but represents the
current understanding or desires of the developers of the system. The hypothetical view
describes the as-designed or as-intended aspects of the architecture. This view is typically
an architectural view and is created by interviewing the experts or from the existing docu-
mentation. The hypothetical view can be serve two purposes: (1) it can serve as a reference

7.3. The Architecture Reconstruction Process 71

Target Viewpoint

Ä
Linked

with

specifies •

Hypothetical View

Target View

Mapping rules
specifies •

Map

Source Viewpoint
specifies •

À
Derived

from

Source View

Figure 7.1: Views and Viewpoints.

design against which to check the implementation or (2) it can represent the postulated ar-
chitecture and the current understanding of the system. The hypothetical view is used to
guide the reconstruction process.

The mapping rules define the rules for creating the target view from the source view. The
rules can be either formalized with in relational algebra or defined empirically.

The map is the actual mapping between a source view and a target view.

7.3 THE ARCHITECTURE RECONSTRUCTION PROCESS

The goal of the reconstruction process is to recover the architecturally significant views that
satisfy the needs of the stakeholders of the system. The process has been designed to fulfill
this main requirement and the other requirements described in Chapter 4.

The actors of the reconstruction are responsible for conducting the reconstruction process,
interested in the result or represent a source of information. The main actors are:

stakeholders who hold a particular interest in the system and in the result of the recon-
struction.

7.3. The Architecture Reconstruction Process 72

process designer who is responsible for defining the goals of the reconstruction and the
viewpoints to recover. For generality, we assume that the process designer is com-
petent with the reconstruction process but only familiar with the architecture under
analysis.

reconstructor who is responsible of recovering the target views from the implementation.
The reconstructor follows the instructions defined by the process designer.

system experts who represent the main experts and source of information for the various
parts of the system, such as as architects, chief designers and programmers.

The reconstruction process is an iterative incremental process that is divided in three phases:
process design, view recovery and result interpretation. We describe the three phases below.
Each phase consists of several activities. The diagram in Figure 7.2 shows the dataflow and
the three phases of the reconstruction process.

The first phase is the Process design. During this phase, the process designer elicits the
architectural problems from the stakeholders and defines the source and target viewpoints
for the reconstruction. The process designer is also responsible for defining the architec-
turally relevant concepts and their mappings to the implementation. The phase consists of
two activities: problem definition and concept determination. This phase is a conceptual ac-
tivity that is mainly conducted through workshops with the stakeholders and interviewing
the system experts.

During the second phase, View recovery, the reconstructor is responsible for recovering
the target views that have been defined in the process design phase. The reconstructor has
to carefully analyze the available artifacts in order to gather the required data for creating
the target views. This phase can be partly automated with tools and require the help of the
system's experts in order to be conducted efficiently.

The third phase is the Result Interpretation. During this phase, the reconstructor interprets
the results of the reconstruction with the stakeholders. One typical activity is to check the
conformance of the reconstructed views against the hypothetical views or against certain
architectural rules that have to be satisfied in the implementation (architecture conformance
checking). The results of the reconstruction are a reliable source of information for an
assessment of the architecture against future requirements or quality attributes. The archi-
tectural views also used for re-documenting a system that had an outdated or not-existed
architectural documentation.

7.3. The Architecture Reconstruction Process 73

Stakeholders
11 Target Viewpoints

Problem
Definition

Presentation

Architectural
Views

Hypothetical
Views

Problem
Statement,

II
II

Hypothetical
Views A

Concept
Determination

Source Viewpoints
Mapping Rules

\ Target
Views

.".111...2ar?et y. ie.w/p° in ts J Knowledge
• I I nfnr/\rto/\

I Inference

î Catalogue of
viewpoints

Data flow
• -

View definition
— •

Actor in

Source
Viewpoints

Source
Views

I
V.
\

Architecture
Conformance

Checking

Architecture
Assessment

Re-documentation

Data
Gathering

II
System Experts Artifacts Stakeholders

Phase 1 : Process design Phase 2: View recovery Phase 3: Result interpretation

Figure 7.2: The reconstruction process.

7.3.1 PROBLEM DEFINITION

Reconstructing an architecture requires the active involvement of the stakeholders and the
system experts from the very beginning. The first activity, problem definition, concerns with
bringing up the motivations for the architecture recovery. The process designer, playing the
role of a detective, has to investigate what problems in the current development practice
could be solved by a documented architecture description. Typically, the main motivation
is to support an efficient evolution of the software system.

The investigation is conducted by interviewing the stakeholders and by organizing work-
shops with the experts. It is often the case that contrasting perspectives emerge from people
with different interests on the system: (1) the short-term view of the management that is
worried about how quickly new feature can be introduced, how many new products added to
the family, costs and resources, (2) the long-term view of the architects who are concerned
about the quality aspects of the architecture (robustness, performance, reliability, availabil-
ity) and (3) the practical view of the developers who are facing concrete problems with the
architecture (e.g. unclear component dependencies, unclear interfaces, disorder in the code
disorder, database administration). During these discussions, the architects should play an
active role in solving the contrasting views between the programmers and management.

7.3. The Architecture Reconstruction Process 74

During the discussions, the process designer has to collect the requirements for the recon-
struction activity, paying attention the reliability of the different perspectives and validating
them through multiple sources. The process designer should also pay attention to distin-
guish between real facts about the system and the suggestions for future improvements.
People are often reluctant to discuss the shortcomings of their own software, especially
when confronted with other colleagues. Other people often try to move the discussion to-
wards what they believe to be the hot topics, and sometimes they see it as a chance to
propose their own solutions. Although proposal for future changes are important, they
should be avoided at this stage. The goal of the reconstruction is to discover the actual
implementation rather than proposing how it should be. The process designer should act
objectively and abstain from judging the design (he might not even have the competence for
that). The assessment of the architecture is conducted in the third phase when the concrete
architectural model is available.

The process designer also needs to document the architecturally significant requirements
(ASRs) of the system. Understanding the ASRs allow us to understand the motivations
behind certain design decisions and the critical aspects of the system.

Several activities can benefit from an up to date architecture: architecture design, depen-
dency checking, assets management, component reuse, software management, platform
maintenance and test organization. The process designer needs to identify what activities
require an improvement and they can be achieved. For this purpose, it is common to define
a set of key use cases that demonstrate how the reconstructed architecture will be used. In
the next activity, the architectural views will be derived also from the use cases defined at
this point.

There are several techniques that can be used during the problem definition: structured
workshops, checklists, role playing and scenario analysis. At least, one iteration is neces-
sary for defining the requirements or the reconstruction and getting them approved by the
the stakeholders. The most experienced people of the team and from different ares should
be invited to the events.

There are also several organization issues that should be considered. The process designer
needs to know who are the contacts for the technical questions, how they can be reached
and who are the final users of the reconstructed architecture (e.g. only the architects or all
the developers). The process designer and the stakeholders need to define how the people
will be trained to use the models, how the technology transfer will happen, who will be
in charge for the future maintenance of the models, the priorities and the schedule for the
reconstruction. All these aspects must be agreed and approved by the management.

The outcome of this step includes an approved reconstruction plan; a memorandum of the
problem statement with the list of problems and expected results (preferably expressed in a
terminology familiar to all the stakeholders); summaries of interviews, workshop sessions,

7.3. The Architecture Reconstruction Process 75

relevant discussions and use cases; summaries of high-level documentation if available; an
elaboration of the problem statement based on the summaries; the list of documentation,
resources, contacts that are available during the reconstruction.

The duration of this activity depends on the maturity level of the organization. A well-
defined architectural team is the ideal solution because they architects have a broad view on
the system and should know remedies are needed. If the architects are not available, they
should be nominated. The team should at least be at the maturity level 1 (see Section 7.4).

The process designer should preferably be external to the development team in order to
be able to take an objective and independent view on the architectural problems. He or
she should have good communication skills, be an analytic thinker and experienced with
architecture reconstruction.

Below there is a summary of the problem definition activity.

Objective: is to define the problems that a reconstructed architecture description should
solve (the goals of the reconstruction).

Input: discussions with the stakeholders and system experts.

Actors: the process designer who is responsible for conducting the discussions and sum-
marizing the problem statement; the stakeholders who can motivate the needs for
the reconstruction and what are the expected results; the system experts who can be
interviews for the technical aspects.

Techniques: workshops, checklists and scenario analysis.

Output: memorandum of the problem statement, approved reconstruction plan, summaries
of workshops and interviews.

7.3.2 CONCEPT DETERMINATION

Software systems are built according to a particular architectural style that is the unique
result of the design decisions taken over a long period of time. The architectural style com-
prises design decisions about the architectural concepts that are used to build the system:
the types of building blocks that can be used to compose the system (e.g. components,
classes, applications) and the communication infrastructure that enables the components to
interact at runtime (e.g. software busses, remote procedure calls, function calls). The style
can vary as the architecture needs to change and adapt to new scenarios. At a certain point
of time, the architectural style of a system represents the best effort the developers made for
satisfying the architecturally significant requirements. Changes to the concepts are often

7.3. The Architecture Reconstruction Process 76

difficult because they may impact various parts of the the architecture. The architectural
concepts represent the way developers think of a system. Since our intention is to deliver
architectural views that are as close as possible to the mental models of the developers, the
architectural concepts are the first-class entities of the reconstruction and they represent the
terminology of the reconstruction.

The goal of this activity is to recover the architectural concepts and to define the termi-
nology of the reconstruction. The main actor is the process designer who is responsible
for determining the source, target and hypothetical viewpoints and the mappings between
them. The architectural concepts are the elements that populate the viewpoints. We break
this activity in three steps that are described below.

Identification of the architectural concepts. The first step is to recover and clarify the
architectural concepts and to document them. The architectural concepts vary from one
system to another: in a distributed software system the architectural concepts may be appli-
cations, servers, software busses while in an operating system they may be tasks, processes,
queues, shared memories, etc.

We need to recover three aspects: the architectural types, their relationships, and their map-
pings to the implementation (e.g. classes, functions, variables, files). This step is conducted
in collaboration with the system experts and by reading the available documentation. One
technique is to organize a series of workshops and ask the experts to explain the implemen-
tation of a set of key features. By describing those scenarios, we can identify the run-time
elements, hence, the architectural concepts. The process designer should pay a particular
attention to the vocabulary used by the developers i.e. design patterns, design conventions,
micro-architectures).

Define the target viewpoints. The next step is to define the target viewpoints whose in-
stances, the views, have to be reconstructed. The target views are used to solve the problems
stated in the problem definition activity and they should be agreed with the stakeholders.
The viewpoints are taken from the catalogue of well-known viewpoints presented in Sec-
tion 6.5 or, as often happens, ad-hoc viewpoints are created for a specific reconstruction.

The technique that we follow for creating the target viewpoints is based on the Stakehold-
er/Views table described in (Clements et al. , 2003) and refined in (van Deursen et al.
, 2004). The first step is to produce a list of candidate views with an indication of the
stakeholders that can benefit and to what extent it can solve a particular problem. The
stakeholders know which viewpoints will be useful or at least they have an initial idea.
Typically, the module viewpoints (especially the Decomposition viewpoint) are valuable
to the architects, project managers, members of the development team, testers, integrators
and maintainers. The Component & Connector viewpoint addresses the needs of architects,
maintainers and development teams. The Allocation viewpoints addresses the organization
problems and are more important to project managers and architects. The second step is to

7.3. The Architecture Reconstruction Process 77

combine views in order to create a manageable set of consistent views. In our cases, we
often merge the Uses view with a containment view such as the Decomposition viewpoint
or an Allocation viewpoint. The Component & Connector views can also be combined with
an Allocation view. Once the minimal set of viewpoints is defined, the last step is to prior-
itize them depending on the stakeholders' interests and extraction dependencies (one view
might need information from another view before being created).

Define the source viewpoint. The source viewpoint specifies the source view that contains
the basic information for creating the target views. With the help of the system experts, we
can break down the architectural concepts of the target viewpoints into the source elements
(that belong to the design or code viewpoints of Figure 6.1). In old legacy systems, there are
often many inconsistencies and duplicates due to various architectural styles overlayed. We
can ask the experts to explain how the architectural concepts are implemented, configured or
deployed and we can bring together all the various elements needed to identify the concepts.
Once this step is completed for all the architectural concepts, the source viewpoint contains
the basic facts that we need to extract from the implementation.

Define the mapping rules. The mapping rules represent the traceability links between the
target and source viewpoints. They show how the architectural concepts in the target view-
point are mapped to the elements in the source viewpoint (hence in the implementation).
Ideally, it is a formal description how to infer the target view from the source view. Realis-
tically, the description consists of a set of heuristics and guidelines that will be used during
the data gathering activity. The map is an instance of the mapping rules and it maps the
source to the target views.

Define the Hypothetical Views. The last step is to define the hypothetical views that
describe the actual stakeholders' understanding of the target views. The hypothetical views
capture the as-designed or as-intended aspects of the selected target viewpoints. They can
serve the purpose of guiding the reconstruction activity and of being a baseline to compare
with the target views. In the former case, the hypothetical views represent an imperfect or
incomplete instantiation of the target viewpoints. The reconstructor's goal is to create the
complete versions of those viewpoints. In the latter case, the hypothetical views represent
the as-intended design that the stakeholders want to enforce in the implementation. Once
the target views have been recovered they can be checked against the intended design for
conformance and the differences can be reported to the stakeholders.

Depending on the level of maturity of the organization, the information the required in-
formation is easily available in the documentation or it must be recovered. In the case
of product families, the reference architecture should document exactly this aspects and it
should be the primary source of information for this activity.

Below there is a summary of the concept determination activity.

7.3. The Architecture Reconstruction Process 78

Objective: is to recover the architectural concepts and to define the viewpoints.

Input: existing documentation, interviews of the stakeholders and system experts, cata-
logue of reference viewpoints and reference architecture for product families.

Actors: the process designer and the stakeholders.

Techniques: workshops and scenario analysis of key system features.

Output: definition of architectural concepts; source and target viewpoints and their map-
pings; hypothetical views.

7.3.3 DATA GATHERING

Data gathering is the first activity of the view reconstruction phase. The goal is to collect the
data contained in the source viewpoint. The result is the source view that represents the base
knowledge about the system that will be use in the rest of the reconstruction. We can use
any reliable source of information. The source code is the primary source, being the most
reliable. However, there are other artifacts that we have to consider: buildfiles/makefiles,
unit tests, configuration files. In general, at this point we should extract facts that we believe
are trustable and available in a formalized form (e.g. in the source code, in a database, in
a log file). Uncertain or inconsistent knowledge should be analyzed in next activity (e.g.
unclear ownership of the modules). The final data is stored in a repository and processed in
the next activity.

We identify three categories of facts that we extract from the implementation:

Programming language concepts This category contains the concepts from the design
viewpoint (described in Section 6.4). They are implemented in the source files with
a particular programming language. For instance in C/C++ programs, we commonly
need to extract the function definitions, the classes (including methods and attributes),
global variables, macros and their dependencies (variable accesses, function calls,
include dependencies). This information can be formalized using one of the reference
schema described in Section 6.4. For our cases, the FAMIX model provides the
required abstraction level. The extraction of the programming language concepts
relies on well-established techniques. Plenty of academic and commercial tools are
available: SNiFF+ ', SOURCE NAVIGATOR 2, the front-ends from the Edison Design

1SNIFF+ from WindRiver: http://www.windriver.com
2SOURCE NAVIGATOR from Red Hat: http://sources.redhat.com

7.3. The Architecture Reconstruction Process 79

Group 3, COLUMBUS/CAN 4 and CPPX parser 5. Below we discuss the differences
between the various extraction techniques.

Code patterns This category contains those concepts that are implemented with a par-
ticular code pattern and are not adequately identified with the tools of the previous
category. For example, a remote procedure call might consist of several instructions
for setting the various parameters of the call. Their extraction require ad-hoc analysis
based on lexical analysis, manual inspections or island grammars.

Domain concepts Concepts that are required by the knowledge inference activity. They
are not easy to map and require domain knowledge. In this group we have those
concepts that are not directly detectable in the source code but they are required by
the reconstruction process. They represent conceptual information that is required to
increase to level of abstraction in the model. This requires to analyze the existing
documentation (manually or with text analysis tools), the design models stored in
CASE tools or information from databases.

Techniques for data gathering can be divided in static and dynamic analysis. Static analysis
techniques examine the system's artifacts and obtain information that is valid for all possible
executions.

Dynamic techniques collect information from the system's execution. This is typically
done by instrumenting the system, tracing the execution path and analyzing the traces.
Other techniques for extracting the data are debugging, profiling or simulation in a runtime
environment. The interpretation of the traces is limited to that particular execution and it
cannot be generalized to other executions. However, there are techniques for guaranteeing
the coverage of the system.

There are various techniques for statically analyzing the textual artifacts. We briefly review
them:

Manual Inspection the reconstructor can manually inspect the source code and gather the
relevant information. For example, exploring the directory structure and filling a
module-directory table. If the data is not well-structured, this is often the only solu-
tion.

Lexical Analysis aims at searching the textual files for particular text patterns. The most
well-know tool in the UNIX environment is GREP that searches text for strings match-
ing a regular expression. GREP is a popular but primitive reconstruction tools for

3Edison Design Group: http://www.edg.com
4COLUMBUS/CAN from FrontEndART: http://www.frontendart.com
5CPPX from University of Waterloo: http://www.swag.uwaterloo.ca/cppx

7.3. The Architecture Reconstruction Process 80

quickly finding lexical dependencies. More advanced text processing tools (like AWK
, PERL , l ex) allow the user to specify a specific action when the pattern is matched.
Lexical analysis techniques are typically used for extracting the concepts of the code
pattern category. Pinzger et al. have proposed a framework for structuring the pat-
terns to extract with XML (Pinzger and Gall, 2002; Pinzger et al , 2002).

Syntactic Analysis is based on parsers and they can deliver very accurate and detailed in-
formation. Parser-based tools typically build an abstract syntax tree of the input and
allow the user to traverse, query or match the tree for certain patterns. Although they
provide very accurate results, they often require that the source code is compilable.
This technique is used for extracting the concepts in the programming language cate-
gory. Tools like COLUMBUS/CAN , CPPX and the Edison Design Group are based
on this technology.

Fuzzy parsing Fuzzy parsers are an hybrid between lexical and syntactical analysis (Kop-
pler, 1997). They are able to recognize only certain parts of the programs and discard
the un-relevant tokens. They are typically hand-crafted to perform a specific task e.g.
program browsing. Fuzzy parsers are robust against the grammatical errors in the
text files and they can also parse incomplete files. Tools like SNlFF+ and SOURCE
NAVIGATOR are based on fuzzy parsing.

Island grammars are used for generating robust parsers from grammar definitions by
combining the detailed specification of grammars with the liberal behavior of lexi-
cal approaches (Moonen, 2001). Island grammars combine the accuracy of syntactic
parsing with the flexibility and tolerance of lexical analysis.

The output is a relational data set that can be stored in a repository. There are different
options for storing the facts. The simplest format is the RSF format (RlGl 6 Standard For-
mat) where the data are stored as triples (verb sub j e c t obj e c t) in plain ASCII files
where v e r b specifies the type of relationship, s u b j e c t the source entity and o b j e c t
the destination entity. Models in RSF formats can be directly visualized as graphs in several
tools like RlGl and S OFT Vis (Telea et al. , 2002). For exchanging the model among dif-
ferent tools, there is an emerging standard called GXL (Graph Exchange Language) (Holt
et al. , 2000c). The models can also be stored in a relational database.

The data in the source view can be validated with the stakeholders and with random checks
against the implementation.

The summary of the data gathering activity is reported below:

Objective: is to gather the data from the implementation and create the source view.
6RiGi : http://www.rigi.csc.uvic.ca/

7.3. The Architecture Reconstruction Process 81

Input: source code, builfiles/makefiles, configuration files, existing documentation and
databases.

Actors: the reconstructor and system experts.

Techniques: instrumentation and tracing for dynamic analysis; manual inspection, lexical
analysis, syntactic analysis and fuzzy parsing for static analysis.

Output: the populated repository containing the source view.

7.3.4 KNOWLEDGE INFERENCE

The goal of this activity is to infer the target views from the source view. The source view
is typically a large relational data set that is not structured-enough for expressing the high-
level architectural information of the target viewpoints. The reconstructor is responsible
for creating the target views by condensing the low-level details of the source view and
by abstracting them into architectural concepts. The mapping rules formalize (or at least
describe) how the elements in the source viewpoint are mapped to the elements in the target
viewpoint. The map is the actual mapping between a particular source view and a target
view. For instance, if the mapping rules define a rule about using the naming conventions
to combine the classes into modules, the map is the actual list of classes mapped to the
modules. The reconstructor is responsible for creating the map and eventually for refining
the mapping rules. This activity requires to interview the system experts for formalizing
details that have not been considered in the design phase. New information may be required
to complete the map and this may lead to several iterations of the process design phase or
the data gathering activity. The final outcome are the target views.

Depending how well-formalized the mapping rules are, this activity can be fully or partly
automated (hence requiring the manual input of the reconstructor). For instance, the organi-
zational information how the components are allocated to projects may reside in a database
or only informally in project plans. In the first case, the information can be easily extracted
from the database during the data gathering phase; in the second case, we need to reason on
the information in the documents and we need to manually create the map. We can distin-
guish between the information that is easily extractable in an almost fully automated way
and the information that is based on domain knowledge. The first type of information is ex-
tracted during data gathering and the second type is extracted in the knowledge inference.
As the organization and the reconstruction process mature, the domain knowledge becomes
increasingly more formalized. In the ideal situation, all required information is formalized
in the source view and knowledge inference is an operation of model transformation. In
practise, the ideal case requires the domain knowledge to be explicit and this is achieved
after several iterations.

7.3. The Architecture Reconstruction Process 82

The domain knowledge is the means for increasing the level of abstraction. We can extract
it from the interviews with the system experts, from requirements database, feature list
and reference implementation. In general we should expect that the domain knowledge is
available in an informal way. If the hypothetical view has been recovered, this can also be
a useful source of information. The hypothetical view is not a trustable source because it
describes the the intended design of the system and there is no guarantee that it conforms to
the reality. Therefore, the hypothetical view can guide the reconstructor but its facts should
be carefully investigated and validated. Technological, organizational, and often historical
background knowledge is also necessary during this activity. For this reason, in the ideal
situation the reconstructor is one experienced developer of the system.

Two separate steps are part of this activity: (1) the definition of the map and (2) the creation
of the target view. The map can be a relation in the source view, a relation obtained by
composing different relations from the source view or a new relation defined during this
activity. The creation of the target view can be done manually or automatically depending
on the abstraction technique.

Existing techniques can be categorized as manual, automatic or semi-automatic:

Manual approaches are based on the abstraction capability of a reconstruction tool. For
example, RlGl allows to group elements in clusters manually. The map is created
while operating with the tool and it is not explicitly defined.

Semi-automatic approaches help the reconstructor to create architectural views in an in-
teractive or formal way. They typically rely on the manual definition of the map.
Differences among the approaches concern the expressiveness of the language used
for defining the transformations, support for calculating transitive closures of rela-
tions, degree of repeatability of the process, amount of interaction required by the
user, and the types of architectural views that can be generated.

The relational algebra, defined in Chapter 5, allows the reconstructor to define a pre-
cise set of transformations for creating the target view. In Section 3.3 we have shown
that relational algebra is also for the reconstruction of industrial software. Other for-
mal approaches are based on meta logic programming like Prolog (Mens, 2000).

Light-weight approaches are the reflexion models (Murphy et al. , 2001), Tel scripts
for defining graph transformations in RlGl, SQL queries for defining grouping rules
like in DALI , or the ad-hoc graph query language (GReQL) of GUPRO (Kullbach
and Winter, 1999).

Fully automatic approaches are based on different kinds of clustering algorithms: auto-
matic clustering (Mancoridis et al. , 1998), file names (Anquetil and Lethbridge,
1999) and concept analysis (van Deursen and Kuipers, 1999; Eisenbarth and Koschke,
2003).

7.3. The Architecture Reconstruction Process 83

The mapping is often difficult because of hidden dependencies, (van Deursen et al. , 2004)
report about one interesting experience about the identification of "logical" or "hidden"
interfaces. These were not explicitly visible in the source code and were discovered only
by studying the control flow of the application and data sharing between classes that had
no explicit dependencies. The quality of the knowledge inference is dependent on the data
gathering activity.

The summary for this activity:

Objective: is to derive the target views from the source view.

Input: source view, domain knowledge, hypothetical view.

Actors: the reconstructor and system experts.

Techniques: manual abstraction with the help of general-purpose tools; semi-automatic
approaches based on relational algebra or other formalisms; automatic clustering.

Output: the target views.

7.3.5 PRESENTATION

An effective visualization format is necessary for making the architectural views available
to the stakeholders. The goal of this activity is to make the target views physically avail-
able. The target views provide the information for solving the stakeholders' problems but
they have to be properly presented to be effective. Ideally, the target viewpoints have been
carefully designed to address the problems; however, even in the best cases, the stakehold-
ers need to browse the the target views, make queries and understand the implications of
the architectural dependencies in the implementation. With the term presentation, we indi-
cate any means of communicating information to a viewer in a textual or graphical format.
There are several key requirements that should be considered when selecting the presen-
tation format: readability, traceability, availability and interactivity. Readability concerns
with the ease the users can answer particular questions about the architectural views. Trace-
ability concerns with the ability of relating the high-level architectural concepts back to the
implementation. The availability concerns with the variety of users that can be reached with
a particular visualization format. Interactivity concerts with the ability of the end-user to
modify the presentations. The various visualization techniques address different require-
ments.

In the NiMETA environment (see Chapter 8) we rely on three categories of presentation
formats: textual reports, hierarchical relational graphs, hyper-linked web documents and
CASE (Computer Aided Software Engineering) tools:

7.3. The Architecture Reconstruction Process 84

Textual reports are a basic presentation format where the relations of the architectural
views are listed in a textual document. Due to the large amount of the data, it is nec-
essary to structure the document accordingly to the needs of the end-user by filtering
out irrelevant data. Textual reports are simple to search and they are useful a quick
inspection of the data.

Graphs are a natural choice for visualizing architecture elements and their (often binary)
relations as confirmed by two independent surveys (Bassil and Keller, 2001) and
(Koschke, 2003). We are especially interested in the hierarchical graphs because they
can render the containment relationship of the architectural views in a very natural
and intuitive way. The graph-based visualization typically allow the user to interact
like querying, zooming, navigation, selection, hiding and calculating the transitive
closure. In Chapter 8, we have presented three graph based visualization tools based
on hierarchical graphs that we typically use in our reconstruction projects: RlGl ,
SOFTVIS , DOT and Rational Rose for UML graphs. They provide the ability to
navigate the whole architectural views from the top elements to the details. They
do not limit the end-user to a particular view on the data but they allow him/her
to build his/her own views from the data set. One drawback is that graph-based
visualization often lack usability and they require a certain amount of training to
become an efficient user. However, their high flexibility makes them the favorite
choice for reconstructors and advanced users. Graph-based visualization are often
used during the discovery process when the user needs to investigate the recovered
information.

Hyper-linked web documents are an efficient way for publishing the architectural views
to a wide range of users. This visualization format favors the usability and access-
ability of the architectural views while limiting the flexibility of the visualizations.
The textual or graphical visualizations are typically pre-defined and the end-user has
a limited influence on the presentation (e.g. selecting parameters or zoom in/out).
The user can select the content of the documents but the visualization format is fixed.
An architecture-driven development process requires the architecture documentation
to be available to a wide range of stakeholders (architects, programmers, designers,
testers, managers). Web documents are an efficient media for distributing the archi-
tectural knowledge and can maximize the benefits of the reconstruction work. The
documents can be published in the company's intranet and they do not require special
training. Simplicity and ease of use are the key requirements for the design of the web
documents, following the traditional web design guidelines (Krug, 2000). Web docu-
ments also offer the advantage of combining text information (like tables and detailed
text) with graphical diagrams. Hyperlinks allow the user to browse the architectural
views by following the dependencies paths or other model dependencies.

CASE tools are often used by large organizations for creating and maintaining the design
documentation and other artifacts. CASE tools provide a robust environment for de-

7.3. The Architecture Reconstruction Process 85

signing the software, generating code fragments, checking the consistency and so on.
UML (Unified Modeling Language) (Booch et al. , 1999) has become the defacto
standard modeling language for most of the commercial tools. Although its seman-
tic is not considered precise and its use for architecture modeling is not commonly
understood, often it is necessary to present the recovered views in the visualization
format of the CASE tool that is used for forward engineering. The goal is to present
the models in a format that is already familiar and well-understood by the develop-
ment team. This often requires to convert the architectural views to the UML format
or to the formalism used by the CASE tool.

Objective: is to present the target views in a textual or graphical format.

Input: target views.

Actors: the reconstructor and stakeholders.

Techniques: textual reports, hierarchical relational graphs, hyperlinked web documents,
UML format and CASE tools.

Output: the target views rendered with a particular format.

7.3.6 CONFORMANCE CHECKING

The goal of this activity is to check the conformance of the recovered architectural views
against the architectural rules. Enforcing the architectural rules is a method for guaranteed
the integrity of the architecture during its evolution. The enforcement can be loose or
strong. In the case of loose enforcement, the output of the conformance checking is a list
of violations that is reported to the stakeholders who are responsible to take the proper
actions. In the case of a strong enforcement, changes in the architecture are rejected if the
architectural rules are not satisfied. Similarly to compiling where errors make the compiler
to fail, a strong conformance enforcement rejects changes that violates the architectural
integrity.

There are different architectural rules depending on the views. Certain views can be recov-
ered especially for checking the conformance of particular rules:

• We can check the conformance of the target view against the hypothetical view. The
hypothetical view represents the intended design that the architects or designers want
to achieve in the implementation. In this way, we can check that the design has
been followed correctly during the implementation. Violations can lead to rethink
the implementation or, sometimes, the design. We can check either structural (for

7.3. The Architecture Reconstruction Process 86

example, the decomposition view against the intended decomposition) or behavioral
aspects (for example, a particular trace against a use case or against its specification).

• We can also check the conformance of the implementation against the architectural
style of the system. The architectural style defines the interaction patterns and com-
munication protocols that the various elements of the system must follow. We can
enforce that the style is respected in the implementation. For instance, In a layered
architecture we may want to forbid layer bridging (a layer can only use the layer
below). In the case of product family, we need to check the conformance of the im-
plementation against the reference architecture that has to be valid for all the products
of the family.

The automation of the reconstruction process allows us to regularly check the architectural
conformance at every build or major release of the system. The check can be conducted
manually by the stakeholders or it can be completely automated by specifying the architec-
tural rules with the binary relational algebra (or other formalisms like UML as presented by
(Selonen and Xu, 2003)).

This activity is summarized below:

Objective: is to check the conformance of the target views against the architectural rules.

Input: target views.

Actors: the reconstructor and stakeholders.

Techniques: manual conformance check, automatic checking with the rules specified in
binary relational algebra or other formalisms (like UML).

Output: list of violations.

7.3.7 ARCHITECTURE ASSESSMENT

Architecture assessment methods (like SAAM (Kazman et al., 1994) and ATAM (Kazman
et al., 1998)) can benefit of a reconstructed architectural model. The goal of the assessment
is to check that certain quality aspects are satisfied in the software architecture. The recon-
structed views provide up-to-date information for the assessment, for checking the quality
aspects and for calculating the architecture quality metrics.

We summarize this activity below:

7.3. The Architecture Reconstruction Process 87

Objective: is to check that certain quality attributed are satisfied in the software architec-
ture.

Input: target views.

Actors: the stakeholders.

Techniques: techniques for architecture assessment like SAAM and ATAM.

Output: assessment report.

7.3.8 RE-DOCUMENTATION

The re-documentation activity requires to update the existing documentation of the sys-
tem with the reconstructed views. Depending on the maturity of the organization, we can
envision three typical situations that are described below:

• The architects manually update the existing documentation with the new information
extracted from the reconstructed views. The views are examined, compared with
the existing ones and the documentation is up to date. It is the responsibility of
the architects to decide how the information is presented in the final architectural
documentation.

• The architects integrate the existing documentation with the reconstructed views. The
views are already in an acceptable format that is familiar to all the stakeholders. The
views are integrated by simply copying and pasting the diagrams in the architecture
documentation.

• The reconstructed views are the official documentation of the architecture of the sys-
tem. There is no other design documentation for the structural aspects of the archi-
tecture except the views that are recovered with the reconstruction process. This is
an ideal case where the forward and reverse engineering activities are harmonized in
the development process and are based on the same meta-data and format. Since the
reconstructed views are in the same format of the design views, the designers can
carry out their design activities on views that reflect very closely the implementation.

We summarize the re-documentation activity below:

Objective: is to update the existing architecture documentation.

Input: target views.

7.4. Maturity levels of architecture reconstruction 88

Actors: the architects and the stakeholders.

Techniques: manual update, integration and official documentation.

Output: up to date architecture documentation.

7.3.9 ITERATIONS

To produce an adequate architectural model, reconstruction process has to be re-iterated
several times. The initial abstraction rules are based on the conceptual model of the devel-
opers and it can take several iterations to align it with the concrete model. New architectural
concepts become significant while the reconstruction is progressing and have to be intro-
duced in the model. The data-gathering phase can also be refined by increasing the quality
of the extracted information with more powerful analyzers (often the extraction is a trade-
off between the speed/size and the quality of the analysis). Moreover, as the reconstruction
process matures the domain knowledge becomes formalized and the whole reconstruction
pipeline can be automatized.

7.4 MATURITY LEVELS OF ARCHITECTURE RECONSTRUC-

TION

We define different levels of maturity for architecture reconstruction. (Krikhaar, 1999) also
defined five levels of maturity for the SAR reconstruction process: initial (the architecture
not known and the system is hardly documented), described (software architecture is ex-
plicit), redefined (the ideal and concrete architectures are similar), managed (the quality of
the architecture is sustainable) and optimized (the architecture can be extended). We agree
with most of Krikhaar's levels as they can be applied to our reconstruction process as well.
Anyway, we revisit them and extend Krikhaar's list:

0. No architecture There is no control of the software architecture. The architecture is
either unknown or only in the minds of the of the programmers. The development
relies heavily on humans' interaction. This is the typical situation of software systems
that are immature or un-maintained or quickly developed (as it could be the case of
a start-up company that follow an extreme programming practice). A reconstruction
process cannot be started till when the architects have been nominated, that is in the
next level.

1. Responsibilities The organization is aware of the importance of a software architecture.

7.5. Example 89

Architects are nominated and their main job is to preserve the integrity of the system.
A documented architecture does not exist yet but the architects understand the impor-
tance of having one. Although the architects are likely to be selected among the most
experiences developers, with time they increase their power against the management.
Empowered architects are able to acept/reject architectural decisions and features that
might break the integrity of the system. In this level a reconstruction activity can start
and the customers are the architects.

2. Described There is a process in place for recovering an architecture description from the
implementation. The description is reliable and used in the team for communication.
However, the architecture of the system does not conform to the intended architecture
of the architects.

3. Refined Based on the described architecture, the architects took the necessary actions to
align the implementation with their intended design. At this point, the reconstructed
architecture conforms with the desires of the architects. There is no need for the ar-
chitects to keep a separate design documents, as the architecture can be automatically
recovered.

4. Managed An automatic mechanism is in place for checking the conformance of the
implementation against the architectural rules. The architects can enforce that only a
build that passes all the rules can be released. In this way, the architects can guarantee
that all the releases have a desired quality level.

5. Optimized At this level, the architecture can be extended while preserving certain qual-
ity levels. The architecture is able to self-maintain its integrity while it is extended to
support new features.

6. Self-organizing We envision that in the future an expert system will assist the architects
to cope with the complexity of the design. This is described in the future work.

7.5 EXAMPLE

In this section, we demonstrate the reconstruction process on a small Java application called
Venice. Venice is a graphical applications for visualizing software architectures in UML.
It was developed by four students from the University of Helsinki in a period of 3 months
(approximately 7 person months) for a software engineering project. The Venice project
strictly followed the typical waterfall process (requirements definition, architecture design,
implementation and testing). The total source code consists of approximately 28 KLOC.
One third-party graphic library has been used.

7.5. Example 90

PROBLEM DEFINITION

After collecting the requirements, the students proposed an initial architecture for Venice.
The diagram in Figure 7.3 is taken from the architecture description document and shows
the intended design of Venice. Venice consists of four main subsystems:

Application that contains the implementation of the main program as a Java application
and as a Java applet.

ModelStorage that is responsible for reading/writing the graphic files in the GXL format.

Commands that contains the implementation of the various graphical commands for zoom-
ing, panning, filtering, collapsing nodes and so on.

GUI that contains the graphic visualization engine and the user interface.

The diagram also show the two external libraries: Jazz and JFrame.

The goal of the reconstruction is to validate the intended architecture design.

CONCEPT DETERMINATION

The target viewpoint is the decomposition viewpoint that describes the partitioning in sub-
systems. Subsystems are functional clusters of Java classes. Methods and attributes are
logically grouped within the classes where they are defined. We are interested in analyzing
the dependencies among the subsystems. The source view is based on the FAMIX design
viewpoint. The diagrams in Figure 7.4 represent the source and target viewpoints.

We define the following mapping rules:

• The relation classContain groups attributes and methods in their classes. It is based
on the hasjnethod and hasjattribute.

• The relation subContain is a containment relaiton that groups classes in subsystems
and subsystems in top-level subsystems. It is defined by interviewing the developers.

• The relations use and dependency are calculated by lifting the class-level relationships
{inheritance, access and invocation).

7.5. Example 91

controller, me iaea is to nave tnese tnree components so independ
be changed without affecting the other two. Even if that isn't achie
components as separate as they can be.

Application i

Visualisation

JFnsunc

ModelStorage

JAZZ
Commands

command and its subclasses is modeled after the design pattern Comnr
commands, such as grouping, ungrouping, selecting, moving and filt«

Figure 7.3: Intended architecture of Venice.

File

fileContain

inher i t_

— • •

i
Class

has_attribute

Attribute

has

access
4

_method

<

Method
invocation

subContain1 rdependency

Subsystem

subContain

inherit 1 1
I I •—I

1—H Class

-use

classContain
I

Attribute •*
l~

r

Method

invocation

The source viewpoint. The target viewpoint.

Figure 7.4: The viewpoints for reconstruction of Venice.

7.5. Example 92

DATA GATHERING

Since the source viewpoint is based on the FAMIX model, we extract the source view with
SOURCENAVIGATOR and the SNAV2NIMETA script (as described in Chapter 8). The
source view contains 80 classes, 520 methods, 346 attributes, 76 files, 55 inheritances,
2,000 accesses and 1,194 invocations.

KNOWLEDGE INFERENCE

We defined the relation subContain by interviewing the developers. We asked the students
to cluster the files they were responsible for in subsystems according to their functionality.
The subsystem have been ulteriorly clustered in the top-level subsystems.

We calculate the relation usage that represents the low-level dependencies

usage = access + invocation

We lift the relation usage with the relation classContain:

classContain = hasjmethod + has ..attribute

use = usage | classContain

The relation use contains the class-level dependencies induced by the accesses and the
method invocations. The inheritance dependency is already at the class-level. We can now
lift the class-level dependencies to the subsystem level:

dependency = (use + inherit) f subContain

The relation dependency contains the top-level dependencies among the subsystems in-
duced by accesses, method invocations and inheritances.

PRESENTATION

We present the target view with graphs in RlGl and DOT . The Figure 7.5 shows the Venice's
class diagram that has been calculated with the script discussed in Section 8.4.1.

The Figure 7.6 shows the classes of Venice and the dependencies caused by variable ac-
cesses, method invocations and inheritances. The dependencies are shown at the class-level.

7.5. Example 93

•DQQDDQ DD 000000000 DOD•ODD DDDDOOQ DODDaaaOOa DOO OÜDO 000000000000 D Q

\ / \ \

FileFilter VModelElemeni

ZfplolionïhipZGrgup

V

Figure 7.5: The class diagram of Venice.

The two graphs in Figure 7.7 show the top-level diagram of Venice with and without the
subsystem LIBRARY. We hide the subsystem LIBRARY becomes we are mainly interested
in the internal dependencies of Venice rather than with the external environment.

CONFORMANCE CHECKING

We check the conformance of the implementation against its design. Based on the docu-
mentation shown in Figure 7.3, we can define the following relation permit that contains
the permitted dependencies among the subsystems:

permit = { ('Commands',' ModelStorage'),

('Commands'/GUI'),

('Commands',' Visualisation'),

('Application','GUI'),

('Application',' ModelStorage'),

('GUI','Commands'),

('GUI','Visualisation')}

The we calculate the top-level dependencies and we remove the dependencies with the
LIBRARY.

topDeps = depdendency\carTsubContain

topDepsNoLib = topDeps \car {"LIBRARY'}

7.5. Example 94

LoadFileCommand \ ID _,M£
\ MlnSfice

D
VDependoncy

ZoomEvenl5lalt

Figure 7.6: Venice's class diagram with the relation use.

Commands

Application

:ation

ModeiStorage

ModelStorage

The top-level diagram with the LIBRARY. The top-level diagram without the LIBRARY

Figure 7.7: The top-level diagram of Venice.

7.5. Example 95

We calculate the violations with the different between the top-level dependencies and the
permitted dependencies:

violations = topDepsNoLib — permit

The result is shown in the graph Figure 7.8 that shows the forbidden dependencies. We can
make the following considerations:

• The subsystem J a z z V i s u a l i s a t i o n is not present in the design documentation.
It represents a collection of interfaces for using the external Jazz library. The students
confirmed that it should be added to the documentation.

• The subsystem A p p l i c a t i o n depends on V i s u a l i s a t i o n and Commands.
The students knew about this dependency that represents a workaround for a bug
in the web browser. The dependency is caused by variable accesses.

• The subsystem Commands depends on A p p l i c a t i o n . This is an unplanned de-
pendency due to an architectural mismatch of the original design with the Java sand-
box model. The students considered a bad design but they could not find a better
solution than this one. With the help of RlGl we have navigated the graph and we
have discovered the reason for this dependency. The graph in Figure 7.8 shows the
violations: two methods from Commands are accessing the variables of the class
AppModule contained in A p p l i c a t i o n .

Even in this is a simple example based only on 28KLOC of Java code, we have found
several violations that were not documented in the original design. Although the students
were aware of them, they thought they could solve them before the end of the project. Since
this did not happen, after the end of the project the documentation was left in an inconsistent
form compared to the implementation.

7.5. Example 96

Application

GUI

Z
Commands

vi
Jazz Visualisation

Visualisation

Command. setAppModu!e(AppModule)

ÄppModule

Venice's forbidden dependencies. The access violations from the
methods of Coiranands to the variables

of the class AppModule.

Figure 7.8: The violations of Venice.

CHAPTER 8

THE NIMETA TOOL ENVIRONMENT

Basic research is what I'm doing when I don't know what I'm doing.

- John von Neuman

This chapter presents the NIMETA tool environment that supports our reconstruction pro-
cess. The tool environment is designed as a pipeline of tools for extraction, abstraction and
presentation. We present the tools that are part of the pipeline.

8.1 INTRODUCTION

Throughout this thesis, we assume that the organization is adopting an architecture-centric
development process where the maintenance of a robust and well-documented software
architecture plays an important role. Architecture reconstruction is the means for maintain-
ing the software architecture well-documented and to support and efficient evolution of the
system. However, practitioners are still facing big challenging in applying the architecture-
centric development process. One important reason is that there is no universally accepted
architecture description/modelling language (ADL) to support the design activity. Usually
ADLs are either too specific to cover the whole architecture or too generic to model the
details of complex software systems. ADLs may be used for specific purposes but they are
not able to capture the design of the whole system. On the other hand, the practitioners
lack a proper architecting tool. The architecture description is scattered around with infor-
mal notations and heterogenous tools (from spreadsheets to graphical drawing tool). In this
situation it is very difficult to analyze, modify or maintain the architecture descriptions.

In applying the NIMETA process we realized that the existing commercial modeling tools
are incapable of reverse engineering the architectural information from the implementation
in an efficient way. The lack of a proper reverse engineering tool is a critical deficiency for

97

8.2. Overview of NlMETA 98

our approach since we are dealing with very large systems containing millions LOC. The
recovery of the reconstruction results in models with hundreds of thousands relationships.
This information has to be handled efficiently and in a short time. Our customers are in-
volved in highly dynamic business where the time-to-market is a critical factor. Based on
these considerations, we concluded to develop our own reconstruction tool environment,
called NlMETA , that is practical, effective, simple to operate, scalable and adaptable to the
existing tool infrastructure. We summarize the main requirements below:

• Clear separation of the three activities: extraction, abstraction, presentation.

• Support for multiple languages, different architectural styles, relational data extracted
from various sources.

• configurable according to the architectural concepts and views.

• Extensible with new plug-ins and external tools to support the three main activities.

• Simple and human readable format for the representation of the data.

• Scalable to multi-million LOC systems.

• support for the generation of UML diagrams although UML is not the internal for-
malism of the environment.

After experimenting the existing reverse engineering tools, we decided base NlMETA on
existing commercial and academic tools. Our intention is to create a rich environment with
a basic set of tools and the possibility to plug-in new ones with minor effort. We also
need the possibility to connect the various tools in a pipeline in order to automated the
reconstruction process.

8.2 OVERVIEW OF NIMETA

In NIMETA , we represent the data in relational format and we store them in the RlGl
Standard Format (RSF). RSF is a rather simple format for storing relational data in plain
ASCII files. The format consists of triples in the format: < verbsubjectobject > where
verb is the relation, subject is the source entity and object is the destination entity. For
example, the relation call = {(a, b), (c, d)} can be expressed by:

c a l l a b
c a l l c d

8.2. Overview of NlMETA 99

Source
Code

Figure 8.1: Overview of the NlMETA pipeline.

It is possible to specify the type of the entities with the built-in relation type. RSF is suitable
for storing relational graphs as it is main use in RlGl. From RlGl we have also borrowed
the concept of domain. Every RSF file is associated with a particular domain that defines
the relations and entities that are allowed in the RSF file. The choice of RSF is based on the
fact that the format is easy to generate, read, search and concatenate. NlMETA supports also
the GXL format (Graph eXchange Language) mainly for exchanging the graph information
with other reverse engineering tools.

In NlMETA , we make the assumptions that all the names of the entities are unique. This
simplifies the process and avoids the need of unique identifies. This assumption is not an
obstacle when clear naming conventions have been defined. For the object-oriented entities,
we follow the naming convention of the signatures as it is specified by FAMIX (Demeyer
et al. , 2001). We show few examples below:

Entity type
Class

Method
Attribute
Function

Global Variable

signature
CHelloWorld
CHelloWorld.paint(int, char*)
CHelloWorld.text
fooflnt, CHelloWorld*)
foo

The various tools are operated in a pipeline where the intermediate files are typically in RSF.
The diagram in Figure 8.1 shows the typical pipeline consisting of tools for extraction, ab-
straction, view selection, presentation/conformance checking. The input data is the source
code and other architectural artifacts (like spreadsheet, mapping tables, other models). The
source view is union of the relational datasets generated from the extraction tools and is
the input for the abstraction tool. The RE model is an intermediate model that typically
contains all the precalculated relations that are necessary for creating the target views. The
view selection is typically a script that selects a subset of the relations in the RE model and
builds the target view. At the end of the pipeline, the view is presented with a presentation
tool. In NlMETA , the tools are typically operated through Python scripts, allowing us to
completely automated the reconstruction process.

8.2. Overview of NiMETA 100

Abstraction Tool

Relational Algebra Engine

Nimeta
Extension

kjbuckets
Library

Python Interpreter

Prolog
Interpreter

Extraction Tools

Source
Navigator

fsnav2famix.tcl)

Columbus/
CAN

Perl/Python
Scripts

Compiler/
Linker

Presentation Tools

Rigi + Extensions

Uml in Visio

1

• _

I 1
"]

DOT
- = - -.— -* . •*- ' * s

. • " _ . - - ' - • !

Uml in Rational Rose

Web interface

SoftVis

Figure 8.2: Overview of the NIMETA tool environment.

8.3. Extraction tools 101

The Figure 8.2 shows the set of tools that are part of the NlMETA environment. NlMETA
contains a collection of scripts for extracting the data with Source Navigator, creating the
relational algebra transformations and for converting the models to various formats. The
goal of NlMETA is to allow the reconstructor to select the best tool for a certain task and
eventually to integrate new ones in a simple way. NlMETA relies on several formats to store
the data: RSF, GXL and the MySQL1 database. The visualization formats are: hierarchical
graphs (in Rigi and in a proprietary visualization tool (Telea et al , 2002)), UML diagrams
(in Visio2 and Rational Rose 3) and web pages.

The user interface of NlMETA is based on an extension of RlGl and it has been programmed
in Tcl/Tk. The user interface allows to execute the various scripts, visualize intermediate
results and convert the RSF files to other formats. The diagram in Figure 8.2 shows the
various tools that are part of the NlMETA environment. We discuss them in details in the
following sections.

8.3 EXTRACTION TOOLS

The extraction of the data is supported by four different techniques that are selected accord-
ing to the type of information source. All the extraction tools produce one or more RSF
files that can eventually be concatenated.

SOURCE NAVIGATOR 4 is an IDE for a large variety of programming language. It offers
an API for accessing the symbol table generated by a fuzzy parser. We have written a TCL
script, called s n a v 2 n i m e t a . t e l , for extracting the symbolic information and storing in
RSF or GXL. The output conforms to the FAMIX specification. The source code is listed
in the Appendix A. 1.1. Although based on a fuzzy parser, the tool can deliver reasonable
information about the static dependencies, at least for an initial analysis. The parser ig-
nores multiple compilation paths, dynamic bindings and configuration flags that are often
important for C/C++ programs.

C O L U M B U S / C A N is a robust parser front end and it can provide very detailed informa-
tion about the static dependencies. Acting as a compiler and linker, it can overcome the
limitations of SOURCE NAVIGATOR . The tool can generate the RSF and GXL format.

For the extraction of specific architectural concepts, we mainly rely on regular expressions
implemented in Perl or Python scripts. The script e x t r a c t . py (listed in Appendix A. 1.2)

'MySQL: http://www.mysql.org
2Microsoft Visio: http://www.microsoft.com
3Rational Rose: http://www.rational.com
4SOURCE NAVIGATOR from Red Hat: http://sources.redhat.com

8.4. Abstraction tools 102

show an example of an extraction script that was used on the case study 1. The original
script contained about 50 regular expressions. The script s t r i p - c o m m e n t s - f i l e . p i
is a Perl script used for removing the comments from the source files.

The compiler and linker often produce information about the static dependencies. We have
often used the output of the compilers for embedded software (i.e. ARM). This is one
alternative available in the NIMETA environment.

8.4 ABSTRACTION TOOLS

NlMETA contains its own relational algebra engine and at the moment it is the most efficient
supported technique for the abstraction operations. Over the years we have experimented
other techniques (like Prolog and SQL) but they all performed poorly on the transitive
closure. GROK5 appeared to be the best performing implementation (Holt, 1998). NlMETA
's engine, although less-performing than GROK , is accessible from the Python interpreter
and we believe this represents an advantage in terms of extensibility and ease of use.

8.4.1 RELATIONAL ALGEBRA ENGINE

NIMETA 'S relational algebra engine is based on two components: the kjbuckets library
and the NlMETA extension. The kjbuckets6 library is a freely available library which
defines graph and set datatypes for the the Python programming language: kj Set and
kj Graph. The library provides an optimized implementation of various relational algebra
operations (like the transitive closure). More relational operators have been supported with
the NIMETA extension and the possibility of reading/writing RSF file. Table 8.1 and the
Table 8.2 shows the Python syntax for the set and relational operands respectively. The
kjbuckets objects also support the method . i t ems () for converting the sets/graphs to a
Python list. The code listed in Appendix A.2.1 shows the implementation of the NlMETA
extension based on the kjbuckets module.

5GROK is part of the SWAG Toolkit: http://www.swag.uwaterloo.ca/swagkit
6kjbuckets library: http://gadfly.sourceforge.net/kjbuckets.html

8.4. Abstraction tools 103

Operand
S = a,b,c
aeS

\s\
X=Y
XQY
XDY
X + Y,L>
X-Y, n
X xY

Name
assignment
member
cardinality
equal
subset
superset
union
intersection
cartesian product

Python syntax
S=kjSet([' a ' , ' b ' , ' C])
S .member (' a ')
l en (S)
X==Y
X.subse t (Y)
Y.subse t (X)
X + Y
X-Y
cproduct(X,Y)

Table 8.1: The set operands in Python.

The NiMETA relational algebra engine allows us to clearly define the transformations for
creating the target views from the source view. We demonstrate the scripts that implement
the transformation for creating the examples shown in Section 7.5. The following script
implements the operations for creating the class diagram of Venice shown in Figure 7.5.
After selecting all the C la s s elements and the relation inherit, the script generates and
RSF file that can be directly loaded in RlGl for visualization.

from nimeta import *

in = readGraphRSF('venice. r s f)
out = {}

o u t f t y p e '] = ranRest(in [' t y p e '] , [' C l a s s '])
o u t [' i n h e r i t '] = i n [' i n h e r i t ']

writeGraphRSF(out)

8.4. Abstraction tools 104

Operand
R=(a,b),(c,d)
(a, b)£R

\s\
X + Y,U
X-Y,n
XoY
R]C
R] C
R \C
RitC
R[C

Ids
dom(R)
ran(R)
car(R)
R\domS
R\ranS
R\carS
R\dorn S
R \ran &
•fl \car '- '

T(C)
Me)
R.S
S.R
R.y
x.R
R+
R*
R-
R-1

Rn

Name
assignment
member
cardinality
union
intersection
relational composition
lifting
left lifting
right lifting
full lifting
lowering
identity relation
domain
range
carrier
domain restriction
range restriction
carrier restriction
domain exclusion
range exclusion
carrier exclusion
top
bottom
left projection
right projection
left image
right image
transitive closure
reflexive transitive closure
transitive reduction
inverse
power

Python syntax
R = k j G r a p h ([(' a ' , ' b ') , (' C , ' d ')])

R. m e m b e r (' a ' , ' b ')

l e n (S)

X + Y

X-Y

X * Y

l ift(R,C)
lLift(R,C)
rLift(R,C)
fullLift(R,C)
lowering(R,C)
ident(S)
dom(X)
ran(X)
car(X)
domRest(R,S)
ranRest(R,S)
carRest(R,S)
domExcl(R,S)
ranExcl(R,S)
carExcl(R,S)
top(C
bottom(C
lProj(R,S)
rProj(R,S)
limage(R,y)
rImage(R,x)
R. closure()
rtclosure(R)
treduction(R)
~R

power(R,n)

Table 8.2: The relational operands in Python.

8.4. Abstraction tools 105

The transformation for creating the class-level dependencies of Venice (shown in Fig-
ure 7.6) is implemented by the following script:

from nimeta import *

#Read in the graph
in = readGraphRSF('venice.rsf)

out = {}

C a l c u l a t e the class — level dependencies
contain = in ['has_method'] + i n [' h a s _ a t t r i b u t e ']
usage = in [' i nvoca t i on '] + i n [' a c c e s s ']
highUsage = fu 1 ILift (usage , contain)

ftOutput relations
outftype'] = ranRest(in ['type'] , ['Class ' , 'Method' , 'Attribute'])
out ['level'] = contain
out['composite'] = highUsage
out['inherit'] = in['inherit ']
out['invocation'] = in['invocation']
out['invocation'] = in['access']

writeGraphRSF(out)

8.4.2 PROLOG

Although the relational algebra engine is our favorite abstraction tool, we provide also
a Prolog interpreter for specifying the abstraction transformations. NIMETA includes the
SWI PROLOG 7 interpreter and it is integrated in the NIMETA user interface. The user can
easily define a set of Prolog propositions for manipulating a relational graph. Below we
provide an explicative example.

We can transform the relational data from the RSF formta into Prolog facts. Each relation
in the form ' r e l s r c d s t ' is converted to the Prolog fact ' r e l (s r c , d s t) . '. For
example, the following list of facts represents the the source view for one system:
t y p e (' H e l l o W o r l d ' , ' C l a s s ') .
t y p e (' H e l l o W o r l d . p a i n t () ' , ' M e t h o d ') .
h a s _ m e t h o d (' H e l l o W o r l d ' , ' H e l l o W o r l d . p a i n t Q ') .
i n v o c a t i o n (' H e l l o W o r l d . p a i n t () ' , ' G r a p h i c s . p a i n t O ') .

7 S W I P R O L O G : ht tp: / /www.swi-prolog.org

8.5. Presentation tools 106

We can use the Prolog rules to infer new relations. For example, we can implement the
transformation for creating the class-level dependencies of Venice (shown in Figure 7.6) in
Prolog. We define the following containment rule:

contain(X,Y) : - has_method(X,Y).

The, we define the usage relation:

usage(X.Y) : - invocation (X,Y).

We can define the transitive closure in the following way:

t c l o s (R e l , X , Y) : - P = .. [R e l , X , Y] , c a l l (P) .
t c l o s (R e l , X , Y) : - P = . . [R e l , X , L i n k] , c a l l (P) , t c l o s (R e l , L i n k , Y) .

We calculate the class-level dependencies by computing the transitive closure of the relation
contain and lifting the relation usage:

h i g h U s a g e (X , Y) : - t c l o s (g r o u p i n g , X , T 1) , t c l o s (g r o u p i n g , Y , T 2) , u s a g e (T l , T 2) .

8.5 PRESENTATION TOOLS

NIMETA supports various formats for presenting the target views. The purpose has been to
integrate the textual and graphical interfaces that provides the most effective communica-
tion formats.

8.5.1 RIGI

The user interface of NIMETA is based on RIGI and several extensions. Although RlGl
is a proper reverse engineering environment that includes its own C extractor, we can con-
sider it a general-purpose graph visualization tool for visualizing hierarchical directed typed
graphs. Each graph is drawn according to a particular domain that defines the permitted
types (and colors) of nodes and edges. The graphs are drawn in a way that the edges are
directed from the bottom of the source node to the top of the destination node. One of the
key features of RlGl is the possibility to group (to collapse in RlGl 's terminology) nodes
in hierarchies in order to perform abstractions on the basic graph. RlGl takes care of cal-
culating the composite arcs that are induced by the arcs among the grouped nodes. The
reverse operation of expanding is also supported. The possibility of making abstractions
is an important feature for architecture reconstruction when the user typically starts with
a large unstructured data sets that needs to be organized. The three graphs in Figure 8.3
demonstrates RlGl 's grouping feature. RlGl also offers various features for navigating the

8.5. Presentation tools 107

c

A ! L
contain/ \ contain ! . . /

7
90 U.UIU

\
c.m2()

90 -2L j» | cm1()
\ composite '_..
\access

var

C]
A . ivcontam

c.m2()

90
composite

composite \

—A—1

composite • Xaccess

var

var

The original graph The selection of the grouping The final graph

Figure 8.3: Example of grouping with RiGl.

graphs, selecting and filtering the elements according to various criteria. For these reasons,
we decided to rely on RiGl as the main user interface for NIMETA . In this way, the recon-
struct can visualize the intermediate results of the reconstruction as RiGl's graphs. RiGl is
extensible with the TCL scripting language that has been used to create the NlMETA 's spe-
cific extensions. The NlMETA extensions assists the end-user to access the various external
tools for extraction, abstraction and presentation. We have also defined separate plug-ins
for supporting specific reconstruction functions for certain systems (like the case study 1).
The Figure 8.4 shows an overview of the NIMETA 'S user interfaces based on RiGl and
HAVA .

We summarize the main points about the integration of RiGl in NlMETA :

• The domain of the graphs is defined according to the system under analysis and to
the particular viewpoints that have been defined for the reconstruction.

• As input format, we use the partly structured RSF8 format that is a variant of RSF
used for defining the type of the nodes and the hierarchical structure of the graph.
The partly structured RSF contains the built-in relations type (the type relation), level
(the containment relation) and the built-in node Roo t (the top node of the hierarchy).
The partly structured RSF that is generated by NIMETA 'S scripts precalculate also the
composite arcs and can be directly loaded in RiGl.

• The exporters from RiGl to other formats are implemented in TCL. They traverse the
whole graphs and produce the information in the required format.

8RSF File format: http://www.rigi.csc.uvic.cayiist-archives/rigi-developer-archive/2000-02-10-15.26.16-
19165

8.5. Presentation tools 108

61
\ Genen* 1 Hoot «ACTIVE I N MSC

I Flo Pfvtlc*Mnt3 Mnsagn Layout Synctnnteatlon

Figure 8.4: Overview of RlGI within NlMETA .

8.5.2 HAVA

We have extended RlGI with HAVA to support the combined analysis of static and dynamic
data (Riva and Rodriguez, 2002). Dynamic data is extracted by collecting the traces of an
instrumented software system and is typically drawn in a Message Sequence Chart (MSC).
To cope with the complexity of the MSCs, HAVA provides two mechanisms of abstraction:
horizontal and vertical abstractions. Horizontal abstractions allow us to group the partici-
pants of a MSC in order to reduce their number. Vertical abstractions consist with grouping
a set of contiguous messages into one high-level message or scenario. The key feature of
the integration is the possibility of synchronizing the static and the dynamic visualizations.
As the participants are architectural entities in the static view, HAVA links the horizontal
grouping in the MSC with the hierarchical grouping from the static view of RlGI . The
Figure 8.5 shows the vertical and horizontal abstractions. HAVA takes care of synchroniz-
ing the groupings between static and dynamic views. This approach allows us to compress
considerably the MSCs and to reveal the high-level dynamic dependencies between the
subsystems. The Figure 8.6 shows an example of usage of Hava.

8.5. Presentation tools 109

Original MSC

A B

M1
M2*

4 M4

M5 ,

M6

^ M8 . _

M9 (

„ M12

C

' M3

W_>

M10
- - - •

Horizontal abstraction Vertical abstraction

AB

I

i

C

™ •

M7 ^

M10

M11

A B

M1-M4

M5 (

M6 f

* M8

M9-M12

C

M7

Horizontal and Veritcal
abstractions

AB

M1-M4

M7

M9-M12

Figure 8.5: Vertical and horizontal abstractions in HAVA .

8.5.3 RATIONAL ROSE

Rational Rose is a modeling tool based on UML. It is rather popular among the archi-
tects, although it cannot be considered an architecting tool. There are several reasons for
being part of NIMETA . First, it is familiar to the architects that are the end-users of the
reconstructed views. Second, it often contains architectural information required by the
reconstruction process. Third, it allow us to create a proper architecting/rearchitecting
environment. In the section Section 8.5.6 we discuss about the UML-based architecting
environment, called ART, we have proposed.

The main point about Rational Rose's integration is the conversion of the reconstructed
models to UML. The conversion is carried by establishing a mapping between the archi-
tectural concepts and the UML concepts, as explained by (Yang and Xu, 2003). We make
an extensive use of stereotypes in order to express the architectural concepts properly. Ta-
ble 8.3 shows the mapping rules that we typically use for the conversion to UML.

The computational units of the system are modeled using components. We do not use the
UML "component" notation for the component because our definition does not match the
UML definition. In our terminology, a component can be an abstract entity that might not
have physical representation in the source code. UML components find a better use in the
development view than in the logical view. Moreover, the graphical notation for the UML
component is not commonly used by the developers. Services are modeled using interfaces.
A component or a package can offer a service through an interface. An interface describes
the operations that a component can handle.

8.5. Presentation tools 110

némas

j

Node -Resources" (11148580) selected

The high-level static view (a).

Resources

Content of GUI is expanded (c).

WM
se j jwn

aek

activejratl ^

a!l_aciive

setup (

ask_jja$sw

send paosw .

MM Resource«

:onnect

*,

sei pro!

ack

jonngct

ack

iel_prol

lipMessages took 71000 microsecom

The high-level dynamic view(b).

I
sel num

setup

ack

aP „active

setup

ask passw

send passw

sel ptot %

â pk

connect

5el_prol ?

connect

afk

The messages of GUI are visible (d).

•13

ask passw

send passw >

ÏËËË Resources

soljrot

jfk
conned ^

Selection of a sequence of messages (e). The messages are collapsed (f)-

Figure 8.6: Scenarios of usage of HAVA .

8.5. Presentation tools 111

Architectural
concept
Package

Subsystem

Component

Interface

Generalization

Dependency

Realization

UML element

Package

Package

Stereotyped Class

Stereotyped Interface

Generalization

Stereotyped Dependency

Realization

Description

A package contains a set of logically re-
lated elements.
A subsystem contains a set of functionally
related elements.
A component represents a unit of compu-
tation or data storage. The granularity can
vary from the a single procedure to an en-
tire application. The stereotype defines the
type of the component.
An interface represents the interaction
point between a component and the envi-
ronment. A component can offer services
by means of its externally visible inter-
faces and can require services from other
components. The type of the interface in-
dicates the type of interaction that is sup-
ported by the interface (i.e. function call,
asynchronous message).
A generalization is the relationship that
exists between a more general element and
more specific element.
A dependency exists between an element
and the interfaces that is uses. The type
indicates the type of dependency and it has
to be supported by the interface.
A realisation is a relationship between an
entity that implements an interface and the
interface itself.

Table 8.3: The mapping between the architectural concepts and UML.

8.5. Presentation tools 112

Concerning the dependencies, we have limited the notation to three relationships that are
commonly used in architectural descriptions: generalization, dependency and realization.
Generalization is used to show that a component derives some architectural properties from
a more general or abstract component. At the architectural level, dependency is often a
UML usage dependency among the components. Realization is used to show that a com-
ponent implements an interface. In our description, we have not included the composition
relationship because it is already achieved by using the package inclusion.

The conversion from the reconstructed views to the Rational Rose format is achieved by a a
Python script. We have also implemented a set of scripts in Rational Rose for traversing the
model and extracting the information that we need. An example can be seen in Figure 9.26.

8.5.4 WEB INTERFACE

The web interface represents an information system for publishing and distributing the ar-
chitectural views within the organization through the intranet. The main design goal is to
provide a simple-to-use interface not requiring special modeling expertise from the user
expect a general knowledge about the architecture of the software system (end users are ar-
chitects, programmers, managers, testers, designers). In our vision, the content of the web
interface should be regularly updated (weekly or biweekly) in order to reflect the current
implementation and to allow the users to find the latest architectural information. Our goal
has not been to develop a general purpose web interface but rather a set of web components
that we can reuse for creating web interfaces tailored to the particular software system under
analysis. In other words, we want that the web interface speaks the same language of the
developers. In section Section 9.7.5 we have presented the web interface that we designed
for the case study 1. In this section we briefly describe its design.

The web interface consists of an APACHE
 9 web server, a MYSQL database 10 for storing

the architectural views, DOT from GRAPH Viz l l for the generation of graphs and a set of
CGI scripts written in Python. From the RE model, we precalculate all the dependencies
for the architectural views and we store them in the database. The CGI scripts query the
data from the database to generate the HTML pages and to create the graphical diagrams
on the fly. The user can access the information with any web browser. The architecture is
shown in the diagram of Figure 8.7.

9APACHE : http://www.apache.org/
10MySQL: http://www.mysql.org
11 Graph Viz: www.graphviz.org

8.5. Presentation tools 113

User Web Browser

Reconstructed

View generation
(Python script)

Web Interface

Apache Web
Server

CGI scripts
(Python)

GraphViz
(DOT)

Figure 8.7: Overview of the web interface.

8.5.5 SOFTVIS

SOFTVIS , developed with the Eindhoven University of Technology, is an open visualiza-
tion toolkit that we have adapted to support the reverse engineering activities (Telea et al. ,
2002) and for the visualization of architectural views (Sillanpää, 2004). SoftVis's is based
on two concepts: datasets and operations. As in a classical SciViz dataflow, operations can
read and write parts of datasets. The desired functionality is achieved by sequencing sev-
eral operations in a specific order starting from a particular dataset. In our toolkit, we use
a centralized data model where there is a single dataset DS across the whole system. This
dataset is read and written by all the operations that we need to support. The operations can
be initiated by the user or the system, and can be applied in any desired order.

The architecture of the toolkit consists of two major components: the toolkit core and the
user interface. The toolkit core contains the data set DS and the implementation of the
operations for the creating the graphical visualizations. It is implemented as a C++ class
library for performance and it is based on the Open Inventor toolkit12 for the graphical
visualizations (Wernecke, 1993). The user interface and the scripting layer are implemented
in Tcl/Tk for flexibility. All the major functionality offered by the toolkit core is exported
to the user with a Tel API as a set of operations. This approach allows us to optimize the
visualization engine for performance and to quickly prototype different type of visualization
and interactions with the Tcl/Tk GUI. Below we describe the data model, the operations and
the user interface of the toolkit

The basic data model is a typed attributed graph and contains three basic elements: struc-
ture, attributes and selections. The structure is the set of nodes and edges of the graph.
Nodes and edges may have key-value pair attributes. We implement the keys as string liter-
als and the values as primitive types (integer, floating-point, pointer, or string). Each node
and edge has a set of attributes with distinct keys, managed in a hash-table-like fashion. At-

12Open Inventor project: http://oss.sgi.com/projects/inventor

8.5. Presentation tools 114

Operations
mapping selection editing

write
f VIsuaTpbJects)

| Viewing and Interaction

User Interface
and

Scripting

Figure 8.8: Overview of the web interface.

tributes automatically change type if written with a value of another type. Several attribute
planes can coexist in the graph. An attribute plane is defined implicitly as all attributes of a
given set of nodes/edges for a given key. Our attribute model differs from the one used by
most Sei Vis (Schroeder et al. , 1998) and RE applications like RlGl (Wong et al. , March
1993) which choose a fixed set of attributes of fixed types for all nodes/edges. Our choice
is more flexible, since a) certain attributes may not be defined for all nodes, and b) attribute
planes are frequently added and removed in a typical RE session. Selections, defined as sets
of nodes and edges, allow us to execute the toolkit operations on a specific subset of the
whole graph. To make the toolkit flexible, we decouple the definition of the operations from
the selections on which they are executed, similarly to the dataset-algorithm decoupling in
SciViz. Selections are named and stored in variables accessible to the user as key-value
pairs selection-set, similarly to attributes. Overall, our graph and selection data model is
quite similar to the one used by the GVF toolkit (Marshall et al. , 2001). Our graphs are
structurally equivalent to the node-and-cell dataset model in SciViz frameworks, whereas
our selections do not have a direct structural equivalent. Selections are functionally equiv-
alent to SciViz datasets, since they are the operations' inputs and outputs. As pointed out
by (Marshall et al. , 2001), this is one of the main differences between SciViz and graph-
based toolkits which leads to different architectures for the two. The Figure 8.9 shows an
example of graph visualization with SoftVis. The graph in the bottom of the figure shows
the containment structure of the hierarchical graph. The graph on the top-right shows the
high-level dependencies between the top-level elements that have been selected from the
containment tree. The graph in the top-left shows the same selection in a nested diagram
where all the low-level dependencies are also visible.

8.5. Presentation tools 115

Figure 8.9: Multiple graph visualization in SoftVis.

8.5. Presentation tools 116

The operations implement a particular functionality of the toolkit and modify the unique
dataset DS. The operations have three types of inputs and outputs: selections that specify
on which nodes and edges to operate, attribute keys that specify on which attribute plane(s)
of the selection to work, and operation-specific parameters such as thresholds or factors.
We can categories the operations according to their read/write data access: selection oper-
ations, graph editing operations and mapping operations. The toolkit architecture (based
on the dataset-operation paradigm) allows the system to automatically update all compo-
nents that depend on the modified data after the execution of any operation. For example,
the selections are automatically updated after a structure editing operation which deletes
selected nodes or edges. Similarly, the data viewers are updated when the selections that
they monitor change. Although this is largely similar to the SciViz dataflow mechanism, we
do not explicitly construct an operation pipeline. The reason is that, in contrast to SciViz
applications, reverse engineering operations are seldom executed in the same order in dif-
ferent RE sessions. The typical RE task can be summarized as follows: (1) select a subset
of nodes/edges of interest, (2) apply some editing operations on the selection, (3) map the
selection to a particular visual representation.

The stacked layout (a). The nested layout (b).

Figure 8.10: Different layouts with SoftVis.

We treat graph layouts simply as attribute editing operations and thus decouple them com-
pletely from mapping and visualization. This has several benefits. First, we can lay out dif-
ferent subgraphs separately, e.g. using spring embedders for call graphs and tree layouts for
containment hierarchies. Second, we can precompute several layouts e.g. to quickly switch
between them. Finally, we can cascade different layouts on the same position attributes. We
have implemented several custom layouts by cascading simple ones, as follows. Stacked
layouts (show in Figure 8.10-a) lay out a selection spanning several layers of a graph by
applying a given 2D layout (e.g. spring embedder) per layer and then stacking the layers in
3D. Stacked layouts visualize effectively both containment (vertical) and association (hor-
izontal) relations of a software system. Nested layouts (show in Figure 8.10-b) lay out a

8.5. Presentation tools 117

similar selection as above, by recursively laying out the contents of every node separately
and then laying out the bounding boxes of the containing nodes. Nested layouts produce
images similar to UML class diagrams and are very helpful in RE applications. Users can
easily combine any 2D layouts as the building bricks for the stacked and nested layouts For
example, in Figure 8.10-a we use a tree layout, whereas in Figure 8.10-b we use a spring
embedder as basic layout.

8.5.6 ART ENVIRONMENT

In conjunction with the Tampere University of Technology, we have started the development
of an architecting environment, called ART, that is based on UML (Riva et al., 2004b) (Riva
et al. , 2004a). The purpose of ART is to facilitate the architecture design, reconstruction
and maintenance in the entire life cycle of a software product line. The environment consists
of tools for architecture model validation, architecture model analysis and processing, and
for reverse architecting. ART largely reuses the work that has been presented in this thesis
for the reverse architecting part of the environment.

The ART environment is based on three modeling concepts: architecture profiles, architec-
ture design models and recovered architecture models. They allow the architects to carry
out the following operations:

• The architect can specify the architectural profile that defines the fundamental ar-
chitectural concepts, the architectural style and the architectural rules through UML
diagrams.

• The architect can create the architecture design model of the system with UML di-
agrams and validate it against the architectural profile. The architecture design con-
tains the structural design of the system in terms of desired functionality, interfaces,
partitioning and dependencies.

• The architect can reverse architect the architecture design models (the recovered ar-
chitecture model) from the implementation and check their conformance against the
architectural profile and the architectural design. The reconstruction is carried out
according to the architectural profile with the process and the tools presented in this
dissertation.

UML is the basic formalism and ADL for ART. Although UML is a general purpose model-
ing language, the use of the architectural profiles allow us to limit and customize the UML
metamodel. A profile, defined through UML's extension mechanism, is an UML profile that
presents the architectural rules and the legal elements allowed in the UML description of

8.5. Presentation tools 118

the architecture design. The UML diagrams in Figure 8.11 show an example of the stereo-
type definitions for the components and the independencies respectively, (the example is
based on the case study 1). The diagram in Figure 8.12 defines the architectural rules for
the profile. The architecture design model must conform to the rules in the profile in order
to be valid. We can also check the reconverted architecture if the rules are satisfied. We use
xUMLi processing platform for implementing the operations on the UML model (Selonen
and Xu, 2003).

J K 3 r

«stereotype»

«metaclass»
Dependency]

«stereotype»
Logical Dependency

«stereotype»

«stereotype»
-• •] message^ _ I

F n

«stereotype»

<<stereotype»j
invocation !

Figure 8.11: The stereotype definitions for the components (a) and for the dependencies
(b>

8.5. Presentation tools 119

«message»

«Application»
... AnAp plication Delegate F LJ «i^catic«»

«Server»
... Another Server

«message»

< <Co nmonA pp »
... Another Common App _

«Service F » j < < m e s s a a e > > «Delegate» «message»
A Server hterface k---—-5--9---^ ...A Delegate App

«Service F »
... ACommonApp IF

j H

«Server»
...A Server

Figure 8.12: Example of constraint definition for the architectural profile.

CHAPTER 9

CASE STUDY 1: NMP PRODUCT FAMILY

To think is easy. To act is hard.
But the hardest thing in the world is to act

in accordance with your thinking.

- Johann Wolfgang von Goethe

This chapter describes the case study that we have conducted over a period of three years
for assisting the architects of a large Nokia product family. We present an introduction of
the domain and the motivations for the architecture reconstruction. We describe in detail
the three iterations that we have carried out.

9.1 INTRODUCTION

The present case study has been conducted with one department of Nokia Mobile Phones
(NMP)l. NMP is the world's largest mobile phone manufacturer. It develops mobile phones
for all major telecommunication standard (mainly GSM, TDMA, CDMA and 3G) and cus-
tomer segments in 130 countries. It has a comprehensive product portfolio that consists of
several categories for every diverse needs, lifestyle and preferences of customers. More than
hundred millions mobile phones are sold per year. It is characterized by a highly dynamic
domain and fast changing requirements where new features have to be continuously added
to the new products. NMP implements a fast product development in order to launch several
new products every year. The products are organized in several product families that share
common requirements and, consequently, share common features, chuck of functionality,
architectural concepts or code typically in the form of components. Among the various

'Nokia Mobile Phones is part of Nokia Group: www.nokia.com

120

9.2. Overview of the system 121

products the variance factors are: handset category (low-end, high-end and niche prod-
ucts), telecommunication protocol, user interface, operating system and customer/country
customization.

As a case study, we have selected one large product family developed by NMP. Over the last
three years, we have been consulting the architects of the product family and we have de-
veloped an architecture reconstruction process. The duration of the case study is influenced
by two factors. The first one is that our reconstruction method and the related techniques
have been developed concurrently with their application on the case study. The second rea-
son is related to the maturity of the development process. When we started the case study
the product family had only one product in the portfolio. The architects had the long-term
target of increasing the throughput of the family to tens of products every year. The moti-
vation for the reconstruction originates from the need of creating an adequate architectural
governance for the coming years when the product family will be in full operation mode.
During the case study, the family followed the evolution pattern that we have summarized
in Section 2.4.2 and it is currently reaching the fourth maturity level (the maturity levels
are described in Section 7.4). The code base increased from about one MLOC up to three
MLOC. The number of logical components is about hundreds included in each product. The
system is written in a dialect of C where macros are used to support the object orientation.

Throughout the chapter, we will refer to the product family with the acronym NPF (Nokia
Product Family). Nokia sensitive details have been omitted as much as possible and the
diagrams have been simplified, as long as this does not harm the explanation. Due to
the complexity of the NPF's software architecture, we have also left out technical details
that would require a deep understanding of NPF's architecture. We concentrated on those
concepts that required by for understanding the essence of the case study.

9.2 OVERVIEW OF THE SYSTEM

In Section 2.4.1, we have presented the architecture of the product family in this case study.
The mobile phone products are perceived by the users and developers as a set of features.
Features are pieces of functionality that offers some service or benefit to the users. Features
are typically implemented with one or more software components and they can ultimately
need special hardware support.

The diagram in Figure 9.1 sketches the simplified development process of NPF. The re-
quirements for the various products are analyzed and merged in order to define a common
roadmap for the products and the SW/HW platform. The roadmap is globally defined and
the platform's releases are synchronized with the needs of the products. The requirements
are decomposed in a set of features. Features are pieces of functionality that offers some

9.2. Overview of the system 122

Component Factories

Products

Figure 9.1: Simplification of the development process.

service or benefit to the users. Features are typically well perceived by the users who can
recognize a value, by the marketers who can use if for advertising the product, by the de-
velopers for which it represent a concrete functionality to implement and by the testers who
are responsible to test that the functionality is correctly implemented (for the term 'feature'
we refer to the definition in Section 2.1. Features are typically implemented with a com-
bination of hardware and software components. In the NPF, the software components are
developed by the component factories, each factory having the responsibility for a set of
components. The factories have their own roadmap and they regularly release the compo-
nents. A particular release of the NPF platform contains a snapshot of the components that
have been released by the the factories. The creation of the products is responsibility of the
product projects which integrate the various components and create a proper and coherent
user interface for the product.

In a component-based development approach, the work is focused on the development of
generic reusable software components that are shared among the various products. How-
ever, this ideal approach has many organizational implications. The component develop-
ment has to be technically organized by the architecture team for managing the platform and
correctly partitioning the functionality in components. The component factories have to be
able to develop and maintain their components and they are also responsible for assisting
the product projects, correcting the problems and further developing the components.

One critical issue concerns with the integration of the components in the the products.
The integration phase often puts a strong pressure on the project. The feature interaction
(functional or logical dependency between features) is often unavoidable and difficult to
control. To avoid costly delays in the integration phase, we identify and specify the possible
feature interactions as early as possible during the design phase. The the work of (Lorentsen
et al., 2001) proposes a method for modeling the feature interactions in mobile phones with

9.3. Summary of the iterations 123

Iteration Target
viewpoints

1 s t Logical view

2n d Component view,

3 r d Component view,
Development view,
Deployment view,
Task view,
Feature view,
Organizational view,

Data
gathering
manual extraction
with GREP

regular expressions
in Perl scripts

regular expressions
in Python scripts

Knowledge
inference
manual grouping
according to
hypothetical
logical view
manual grouping
according to
hypothetical
logical view

relational algebra,
linker output,
mapping tables

Presentation

UML diagrams

hierarchical graphs
withRigi,

hierarchical graphs,
UML diagrams in
Rational Rose,
hyperlinked
web pages

Figure 9.2: The summary of the iterations for the case study 1.

explicit behavioral models of the features. The approach is based on the Colored Petri Nets
and allows the UI designers to simulate particular features and analyze their behavior with
automatically generated Message Sequence Charts.

The component factories often represent a bottleneck for the change requests made by the
product projects. Change requests are regularly made by the projects that need modifica-
tions or bug fixes to the the components. The change request is forwarded to the factory
that is responsible for prioritizing it and queuing in the change list. It can happen that the
change request is reject and this can lead to lead to a stall in the development of the prod-
uct. This often happens when the roadmaps of the platform and the product are not well
synchronized.

9.3 SUMMARY OF THE ITERATIONS

Table 9.2 shows the summary of the three iterations. The first iteration was focused on
defining the requirements of the reconstruction. The second iteration delivered an initial
component view that we use to get a feedback from the stakeholders. The third iteration
defines a complete process for architecture reconstruction and conformance checking.

9.4. The actors 124

9.4 THE ACTORS

We can identify three types of actors that are involved in the reconstruction process:

Reconstructor is the expert of the reconstruction process and is responsible for designing
and conducting the reconstruction activity. In this case study, the reconstructor played
also the role of the process designer. The reconstructor is also knowledgable of the
domain. We have impersonated the role of the reconstructor.

Architects are the customers and the main stakeholders of the reconstruction activity. The
architects are responsible for the architectural design of the overall product family.
We have reported our results to the chief architect of the architecture team.

Experts have been interviewed for clarifications on specific areas of NPF. The experts have
provided very direct and precise answers to our questions.

9.5 THE FIRST ITERATION

The first iteration is mainly focused on getting acquainted with NPF and collecting the
requirements from the architects. Our team conducted a short manual reconstruction of one
subsystem and we discussed the results with the architects. It was our intention to create
a set of real use cases that could demonstrate how to document the architectural designs.
The use cases were created in UML. At that time, UML was not in use by the development
teams.

9.5.1 PROBLEM DEFINITION

When the first iteration was started, NPF represented the software platform for a new gen-
eration of mobile devices. Only one product was based on NPF and several other products
were in production. Since NPF was designed to be in operation for the next decade, the ar-
chitects were concerned that the architecture of NPF was robust and properly documented.
Two activities were already started to document the reference architecture and the logical
view of NPF.

The reference architecture of NPF was documented by interviewing the architects and the
experts of the various areas (user interface, protocols, OS, core services). The reference
architecture summarizes the main architectural concepts, styles and patterns that are in use.
It is a reference document that we have widely used during the next iterations.

9.5. The First Iteration 125

The logical view was the first attempt to create an overall view of the structural aspects
showing the logical components, the subsystems, their dependencies and the interfaces.
The view was created manually by interviewing the architects and from the existing docu-
mentation. The logical view consists mainly of several UML diagrams showing the various
subsystems grouped in layers and the logical dependencies.

During the initial discussions, the architects had a clear idea of their requirements for the
reconstruction activity. They were lacking of an overall view of the structure of NPF. At that
moment, the logical view was the closest approximation of what they needed. However, the
logical view was imprecise for several reasons: (1) it was based on interviews and guesses
but it did not reflect the real situation in the implementation, (2) the dependencies among the
components were not complete, and (3) its maintenance was laborious and unsystematic.
We can summarize the requirements of the architects in the following points that the logical
view should document:

• what are the components and their interfaces.

• how the components are organized in subsystems and how the subsystems are allo-
cated to the various layers.

• the logical dependencies between the components and the subsystems.

We quote some of the requirements that we noted during the initial meetings:

UI architect: Does ANYONE have 'The Big Picture' of all applications and
how they are all interlinked? How can we create one and maintain it? I think
this might aid our error-corrections, and help making decisions about when and
where to change/create applications/servers.

Chief architect: What I want is an effective, and easy to manage, method of
maintaining the overall design of the system. The simple questions would be
... What components are there? What services do they provide? What services
of other components do they use? You could complicate this with ... How are
they configured? Are they variants etc.?

A system would be one product therefore the method would have to work with
components existing in many systems and therefore many different configura-
tions. Components are being released from many different sites.

From my own point of view the only information I am interested in are the
relationships between the logical components, i.e. application to server, appli-
cation to delegate, server to server. The include information and the directory
tree are not relevant. The OS interfaces are not relevant.

9.5. The First Iteration 126

Ideally what we need is to put some of these entities into packages, so we can
see the relationship between packages at a higher level. I would also like that
we could provide a way for a designer to focus on 'my application' or 'my
server' and see all their relationships.

Architect: We must find the mechanism how we can create models of our
system design / architecture. First step for me is to find a way of reverse engi-
neering the architecture of one just launched mobile phone software. How we
should visualize these architectures? How we describe interactions and rela-
tionships between the components and entities: clients and servers?

In a nutshell: to create architecture description of implemented mobile phone
software and how to describe it.

One way to do that is to explore the code (what are the dependencies between
subsystems) and of course a lot of information can be found from product doc-
umentation but not so exact information like message interactions.

Based on these discussions, our goal was to prepare an initial demonstration of what infor-
mation we can extract from the implementation and how we can present it. We focused on
one single and well documented subsystem to avoid of being overwhelmed by the complex-
ity of NPF. This demonstration would become the base for further discussing the require-
ments of the second iteration with the architects.

9.5.2 CONCEPT DETERMINATION

In the first iteration, the target view is the logical view as it was intended by the archi-
tects. NPF is a distributed systems were the components can interact at runtime with asyn-
chronous messages passed through a software bus. The entities in the logical view are
the logical components: applications, delegates and servers. The logical dependencies are
caused by the asynchronous messages and the function invocations between applications
and delegates. An examination of the code showed that in most of the cases the recipients
of the messages were statically bound, so a static analysis would be a sufficient starting
point. The architects also proposed to group the components in packages in order to show
the high-level dependencies. Therefore, we had to define also a containment relationship in
the logical view.

9.6. The Second Iteration 127

9.5.3 DATAGATHERING

Due to the limited size of the subsystem to analyze, we opted for a quick and simple ap-
proach for extracting the data from the code. We took one release of the only complete
product based on NPF and we used the UNIX tool GREP to find the code patterns rep-
resenting the logical dependencies (asynchronous message and function invocation). The
extracted information was manually added to a set of UML diagrams. The complete size of
the build we analyzed was approximately 0.6 MLOC.

9.5.4 KNOWLEDGE INFERENCE

The containment relationship between packages and components was undefined and not
available in the documentation. We proposed our own decomposition for the subsystem
under analysis. The subsystem was decomposed in several packages, each containing a set
of logical components.

9.5.5 PRESENTATION

We presented the reconstructed logical view using UML diagrams. Although UML was not
commonly used by the developers of NPF, we decided to exploit UML for documenting
the architecture. The Figure 9.3 shows an example of one of the diagrams that we have
delivered in the first iteration.

9.6 THE SECOND ITERATION

Based the comments we got from the first iteration, we started the second iteration. The
main goals were (1) to automate the reconstruction process and (2) to deliver a reconstructed
logical view that could satisfy the architects. In this section we report the second iteration
that has been presented in our work (Riva, 2000) and (Riva, 2002).

In the second iterations, we analyzed several products based on NPF platform. Since the
platform was still rather young, we found many exceptions to the mappings rules that we
define below. We reported those exceptions to the architects who fixed them in the following
builds.

9.6. The Second Iteration 128

«application
B::Comp5

«application

B::Comp6

«application
B::Comp7

«server>
B::Comp8

\
—' \

\
\

Ssrvice3
/

/

A

«server»
A::Comp1

«server»
A::Comp2

«server»
A::Comp3

«server»
A::Comp4

/

«server>
C::Comp9

/
/

Service 2

-

—o>
Service 4

«application>
C::Comp10

«delegate>
D::Comp11

Figure 9.3: An example of the manually reconstructed logical view in UML.

9.6.1 PROBLEM DEFINITION

The manually reconstructed UML diagrams triggered useful discussions with the architects.
This allowed us to clearly define the requirements of the reconstruction. The architects
need an architectural model of the overall structure of the system (in terms of packages,
components and interfaces). The model should allow them to look at the high-level and low-
level logical dependencies among the packaged and components. In particular, it should be
possible to query the model for the clients and suppliers of a particular component. In this
way, the component owners (e.g. the factories) can identify their users and assess the impact
of the changes.

The architects also would like to recover the architecture of the single products, compare
them and analyze how they depend on the software platform of NPF. As discussed in Sec-
tion 2.4.3, the evolution of the product family is mainly driven by two forces: the consoli-
dation of the assets in the platform and the creation of new products. The platform evolves
by incorporating the new architectural requirements, while new products with new features
are added. Activities of the consolidation phase include:

• recovering the concrete product architecture (as opposed to the intended architecture
that was in the minds of the architects)

• monitoring the organization of the components in the platform

• coping with the architectural dependencies within the platform and among products.

• enforcing the conformance to the architectural rules

9.6. The Second Iteration 129

client 1..' Application

caller 1..*

Server

client

Delegate

Application
Service
Delegate

Register/UnRegister

SendMessageToServer

SubscribeEvents

Software
Bus

Figure 9.4: Excerpt from the reference architecture.

The main goal of our architecture reconstruction method is to recover architectural models
that the architects can use to comprehend the actual implementation of the products. The
focus of our reconstruction is mainly on the architectural significant aspects of the products
(e.g. the logical dependencies among the software components).

9.6.2 CONCEPT DETERMINATION

During the second iteration our goal was to prove that we could deliver the architecturally
relevant information required by the architects. Our primary goal was to recreate the logical
view as it was intended by the architects. The logical view shows the logical components
and their logical dependencies. But what did the term logical really mean in the terminol-
ogy of the architects ? What is the granularity of the logical components ? What are the
logical dependencies ? Answering these questions is the core of the second iteration and in
particular of the concept determination activity.

THE ARCHITECTURAL CONCEPTS

The reference architecture document contains the conceptual model of NPF. We use it for
the identification of the architectural concepts at the correct level of granularity. The Fig-
ure 9.4 shows an excerpt that shows the three main building blocks (applications, servers,
delegates) and the communication infrastructure for exchanging the asynchronous mes-
sages and the events. Discussions with programmers, architects, designers, testers and
managers proved that these concepts represented the common terminology when talking
about the architecture of NPF. This fact also confirmed that those concepts play a key role
in the design of NPF and they are the first-class entities of the reconstruction process.

With the help of the system experts we identified how the architectural concepts (applica-
tions, delegates and servers) are mapped to the implementation. Conceptually, they belong

9.6. The Second Iteration 130

to three different layers in the architecture. The servers belong to the low layer that is
responsible for controlling the system resources. The intermediate level contains appli-
cations and delegates implementing reusable functionality. The topmost layer contains
applications implementing the features. Each entity is implemented in one directory in the
file system, though there are exceptions. At runtime, each entity has a unique identifier that
is statically assigned at compile-time. The identifier is contained in a configuration file and
it can be used to create the link directory-identifier-entity.

There are three mechanisms of interaction: asynchronous messages, the events and function
invocations. They are implemented using well-defined patterns that we can easily detect in
the source code.

THE TARGET VIEWPOINT

Our goal is to recreate the logical view. We define the target viewpoint in the following way.
It contains four types of entities: Server , A p p l i c a t i o n , D e l e g a t e and Package.
There are three types of relations: message, event and invocation. The I n t e r f a c e repre-
sents the set of all messages that can handled by one server. Although logically we should
model the interaction of a server through its interface, this was not explicitly required by the
architects during the second iteration. The architects were interested in the logical depen-
dencies among the components without the details of the interface. We also define a con-
tainment relationship that groups an A p p l i c a t i o n / S e r v e r / D e l e g a t e in a Package.
A package A depends on another package B if any of the components of package A has a
relation with a component from package B. This relationship is expresses with the depen-
dency relationship. The Figure 9.5 shows the diagram of the target viewpoint.

THE SOURCE VIEWPOINT

The diagram in Figure 9.6 shows the elements of the source viewpoint. The source view-
point contains all the elements that are necessary to build the target view. We can distinguish
between the elements in gray that represent programming language constructs and the ele-
ments in white that represent architectural concepts (used in the target viewpoint). We use
two different techniques for their extraction from the implementation.

THE MAPPING RULES

We list the rules that map elements from the source viewpoint to elements of the target
viewpoint.

9.6. The Second Iteration 131

pkgContainPkg
Iu r

Pacakge

r
pkgContainComp

Component

invocation- Application

Delegate message,
subscrEvent"1

Interface

implement

Server

-message- t_ message,
subscrEvent

Figure 9.5: The target viewpoint of the second iteration.

Directory

contain file

File

n
Component

-contain dir

r
invocation

Function Ü--- -

-define1

invocation- Application

Delegate

-include
• relation

mapping

message,
subscrEvent"

Interface

implement
I

Server

-message- T L message,
subscrEvent

Figure 9.6: The source viewpoint for NPF.

9.6. The Second Iteration 132

• The Component is directly mapped to a D i r e c t o r y . Although this is not a precise
one-to-one mapping, it delivers a satisfactory level of accuracy for this iteration.

• The invocation between an application and a delegate is mapped to the invocation
between two functions that follows a particular pattern. There is a particular code
pattern for invoking a delegate.

• Componen ts are manually grouped into a P a c k a g e . There is no automatic way
to define this mapping.

9.6.3 DATA GATHERING

We decided to analyze the source files without using existing analyzers or parsers for
C/C++. One reason is that the system is written with a variant of C that makes an extensive
use of macros. We do not have a parser for that variant and we did not have the resources
to write one. The second reason is that we need to extract architectural information that is
not semantically expressed using the programming language constructs (e.g. messages or
events). Our choice was to rely on regular expressions. Each element of the source view-
point is mapped to a code pattern that we can identity with one or more regular expressions.
We wrote several scripts in PERL that can recursively examine all the source files in the file
system and detect the code patterns. The scripts extract the following information:

• file system structure (directories and files)

• function definitions

• identifiers of the components

• interface of the servers

• messages and events

• function calls

We give an example of one regular expression for detecting the asynchronous messages:

/ ~ . * s e n d _ m e s s a g e \ s * \ (\ s * (\ S +) \ s * , . + , . + \) /

The source view is stored in a plain ASCII file in the RlGl Standard Format (RSF). The
size of the build was approximately 3.6MLOC. The source model contained approximately
12,000 files, 200 applications and delegates, 120 servers, 80 invocations, 500 messages,
and 100 events.

9.6. The Second Iteration 133

9.6.4 KNOWLEDGE INFERENCE

In the source view we have all information for creating the logical view, except the re-
lationship of package containment that we created manually. We carried out this activity
manually because it was not possible to automatically map components to packages. The
mapping required a lot of mental reasoning. This was due to the low level of maturity of
the organization during the second iteration. We relied on several indicators or heuristics
for guessing the mapping component-package:

• Directory structure often suggested the package decomposition.

• Naming conventions (e.g. component/directory names with the same prefix).

• The hypothetical logical view that was maintained by the architects.

We grouped manually the components using the collapse functionality of RlGl. We man-
ually selected the nodes and collapsed them in the P a c k a g e nodes. RlGl automatically
calculated the dependency relation among the packages while we grouped the nodes (the
dependency relation is visualized with the composite arcs). The pkgContainComp and pkg-
ContainPkg relation is the level arc in RlGl.

The result was the first reconstructed logical view that we delivered to the architects. We
automated the grouping process with the scripting interface of RlGl. However, this was not
satisfactory because the heuristics were not precise and we had to change the scripts for ev-
ery build that we analyzed. We iterated this activity several times before we could deliver an
adequate mapping. We held frequent meetings with the architects to show the reconstructed
logical views and discuss the mappings. During the second iteration, the implementation
was rapidly changing and this required frequent modifications to our process.

9.6.5 PRESENTATION

We presented the reconstructed views as graphs in RlGl . We created a new RlGl domain
where the nodes are the entities of the target viewpoint and the edges are the relations.
Since the visualization format is rather simple and intuitive, the end-user did not require a
special training to learn how to use the reconstructed views. Since the architectural concepts
are familiar to the developers, they could rapidly grasp the meaning of the diagrams. We
distributed the logical views of several products and we got a positive feedback from the
users. Below we describe several use cases that the end-users found particularly useful.

What are the top-level dependencies ?

9.6. The Second Iteration 134

User Interface"! ^.Interface 2

Testing Support

Figure 9.7: The top-level dependencies in the target view.

This is a typical question for the architects who need to understand he overall view of the
system. The graph is shown in Figure 9.7. The system is decomposed in four main packages
that contain other subpackages and the components. There are two packages containing
the components related to the user interface, one package containing all the servers and
one package containing the testing components. The diagram revealed a suspicious cross
dependency between the two UI packages that was not supposed to exist. This situation was
further analyzed by the architects who browsed the view by opening the various packages
(expanding in RlGI 's terminology).

What are the clients of a particular server ?

This is a typical question for the component factory that owns a server and wants to estimate
the impact of changes in the server. When publishing a new version of the server, all the
clients have to be informed. The graph can be obtained by selecting all the incoming nodes
of the server and by filtering out all the rest, like shown in Figure 9.8.

What are the dependencies of one component ?

This question concerns with the context diagram of one component. The context diagram
shows the clients and suppliers of the component. The graph in Figure 9.9 shows all the
dependencies of the component Apps_A. At the top there are the clients, at the bottom the
suppliers and on the left side there are the two components that have a cross-dependency
with Apps_A.

9.6. The Second Iteration 135

Figure 9.8: The clients of one server.

Userinte:

Figure 9.9: The context diagram of one component.

9.6. The Second Iteration 136

Application
(feature) layer

MainApp

Appl

\

App4

Service layer

Resource layer

ServetB

Figure 9.10: The clients of one server.

How is an application using a server ?

This is a typical situation during debugging or testing. The user wants to find all the pos-
sible paths of execution between two components. In the example, we investigate how an
application implementing one particular feature is using the services from a server. The
graph in Figure 9.10 shows this situation with the application MainApp and the server
ServerB. The application can directly access the server (by sending asynchronous mes-
sages) or indirectly through various delegates (by invoking the function of the delegates).
We can identify six different paths of execution. We can also note that there are three layers
of functionality. At the top layer there is the application MainApp that implements the fea-
ture. We call this layer the application layer or feature layer. The intermediate layer is the
service layer that contains the delegates that are implementing reusable functionality. The
lower layer is the resource layer that contains the servers that are controlling the device's
resources. It is an intention of the architects to enforce this three-layers design style in the
implementation of the products. According to this rule, the direct communication between
MainApp ServerB is forbidden. In the third iteration, we will automate the detection of
these anomalies.

9.7. The Third Iteration 137

9.7 THE THIRD ITERATION

The architects gave us a positive feedback from the results of the second iteration. The
recovered views delivered the architectural information they were interested in. However,
the reconstruction process was still immature and not ready for its integration with the
development process of NPF. This was the goal of the third iteration. We extended the
reconstruction process to the whole platform of NPF, we made the data gathering activity
more precise and we formalized the information required by the knowledge inference phase.
We also defined more viewpoints and supported more presentation formats.

Since the beginning of the case study, NPF underwent profound changes. The platform
increased its size with many new components. The source file system was largely re-
organized and it became easier to map the architectural concepts to the implementation.
NPF served as a platform for tens of products. At this moment, it was the interest of the
architects to enforce a strong architectural governance on NPF that is the goal of this itera-
tion.

9.7.1 PROBLEM DEFINITION

Besides the requirements that we identified in the previous iteration, the stakeholders of
NPF wanted to enforce a strong architectural governance of the platform. This require-
ment involved to a create a precise mapping between the architectural concepts and the
implementation.

9.7.2 CONCEPT DETERMINATION

The architectural concepts that we have identified in the second iteration were satisfactory
for the architects. We included few more concepts (like Library, HW Driver) and other that
we do not mention for simplicity. The Figure 9.11 shows the meta-model of the concepts
that we have identified. The elements in gray represent programming langauge constructs,
while the elements in white represent architectural or organizational concepts.

THE TARGET VIEWPOINTS

The reconstructed logical view addressed most of the questions of the architects and we
believe it is the most valuable view they need. However, we reorganized the output of
the reconstruction in a set of views that address specific architectural concerns. The target

9.7. The Third Iteration 138

Product

-contain dir

Directory

i
contain file

I
prolncludeLib

BuildLibrary

-libContainLib

I
libContainFile

File
compContainFile

define

fileContainClass

call-.

I J
Function

Class call

has method

Method

-calM

integrate

Platform

I
platformContainPkg

Package

1_

Site

siteContainFactory

pkgContainComp

Component

pkgContainPkg

prjContainComp

Factory

factoryContainPrj

I
Project

Library Other

Hw Driver

Task

taskContainComp

Entity U-

subscrEvent

Server

implement

Interface •4
-4

L\

Application

message,
"subscrEvent

Delegate

>

instantiate

message

Figure 9.11: The meta-model of the NPF case that shows the architectural concepts.

9.7. The Third Iteration 139

Viewpoint
Component

Task

Development

Development

Development

Feature

Organizational

dir

lib

comp

Entity (TE)
Component

Package

Task,
Entity

Directory,
File,

BuildLibrary,
File

Component,
File

Application,
Delegate,
Server,

Component,
Project, Site

Factory

Relation (TR)
message + instantiate +

susbcrEvent

message + instantiate +
subscrEvent

fileCallFile2 + include

fileCallFile + include

fileCallFile + include

message +
subscrEvent

message + call +
subscrEvent

Containment (Tc)
platformContainPkg +

pkgContainPkg +
pkgContainComp
taskContainComp

contain_dir +
contain_file +

HbContainLib +
HbContainFile

compContainFile

taskContainComp/
pkgContainPkg +
pkgContainComp
prjContainComp +

factoryContainComp +
siteContainFactory

Table 9.1: The target viewpoints,

views of the third iterations are listed below:

Component viewpoint : is concerned with the logical organization of the components
and their logical dependencies. It describes the components, their interfaces, their
logical relationships, the hierarchical composition of components in packages and
the package-level dependencies.

Task viewpoint : is concerned with task allocation of the architectural entities and their
inter-task communication.

Development viewpoint : describing the organization of the source code files and their
relationships (for example, include dependencies)

Organizational viewpoint : describing the organization of the development activities (projects,
programs, sites).

Feature viewpoint : describing the run-time implementation of a feature at a high level of
abstraction. The feature view is presented in the Section 9.8

Table 9.1 defines the various viewpoints according to the viewpoint definition given in
Section 5.5.

9.7. The Third Iteration 140

compDependency

- siteContainFartory

The component viewpoint.

orgDependency \

factoryContalnPfj

orgDependeacy

prjConlainComp

use •—| i

orgDependency

The organizational viewpoint.

— taskDependency

Task

I
taskContainComp

container dirtDevelDep libDevelDep libContainLib ltbOeye[Dep

\ Directory] • - ' <•-] BulldLibrary~[-l '-•[Component

Interface [^-subacfÊvent message

The task viewpoint. The development viewpoint.

Figure 9.12: The target viewpoints.

9.7. The Third Iteration 141

Task contain dir-

u
taskContainObj

Directory _TlibContainLib

BuildLibrary J
m—

prolncludeüb

objectID
contain file

fileStartObject

libContainFile Product

fileDefineSymbol"

_L
Symbol

Event Request

Response

fileSendMessage
"fileSubscrEvent—

File

include-

fileSendOynMessage

I
fileCallFunction

fileCallMethod

fileContainClass

define

Class

has method-

I
ServerlD

Function
funclnitServerlD

Method

Figure 9.13: The source viewpoint for programming language concepts and the code pat-
terns of NPF.

THE SOURCE VIEWPOINT

We split the source viewpoint in two independent parts that we can recover separately.
The diagram in Figure 9.13 shows the first part of the source viewpoint that contains the
implementation related concepts. It shows the file-level relations that we can extract by
analyzing the source files. Those relations are necessary for inferring the relations in the
target viewpoints. The elements in gray represent programming langauge constructs, while
the elements in white represent architectural or organizational concepts. The diagram in
Figure 9.14 shows the second part of the source viewpoint that contains the concepts from
the domain knowledge. Table 9.2 shows the relations that are part of the source viewpoint.

THE MAPPING RULES

We refined the mapping rules from the second iteration and we list them below.

• A Component is mapped to a group of F i l e elements that represent its implemen-
tation. The relation compContainFile contains the one-to-many mapping between

9.7. The Third Iteration 142

Relation
contain .file
containjdir

UbContainLib
UbContainFile
porlncludeLib

define
fileContainClass

hasjnethod
fileCallMethod

fileCallFunction
include

funcInitServerlD
fileSubscrEvent

fileDefineSymbol
fileSendMessage

fileSendDynMessage
fileStartObject
taskContainObj

pkgContainComp
pkgContainPkg

platformContainPkg
prjContainComp

factoryContainPrj
siteContainFactory

type

Source
Directory
Directory

BuildLibrary
BuildLibrary

Product
File
File
Class

Method
Function

File
Function

File
File
File
File
File
Task

Package
Package
Platform
Project
Factory

Site
element

Destination
File

Directory
BuildLibrary

File
BuildLibrary

Function
Class

Method
Method

Function
File

ServerlD
Event

Event Request|Response
Response|Request

ServerlD
objectID
objectID
Component

Package
Package

Component
Project
Factory

type

Table 9.2: The relations of the source viewpoint.

9.7. The Third Iteration 143

Platform Site

platformContainPkg
siteContainFactory

Package

-pkgContainPkg
Factory

pkgContainComp

Component
prjContainComp

factoryContainPrj

I
Project

Library Other

Hw Driver Entity

Figure 9.14: The source viewpoint for the domain knowledge of NPF.

components and files. The component-directory mapping that we used in the sec-
ond iteration is not enough fine grained because often files that belong to different
components are located in the same directory. The compContainFile allow us to map
elements from the target views to the elements of the source views. The map is cre-
ated during the knowledge inference activity.

• The instantiate relation represents the instantiation of a delegate from an application.
This instantiation is achieved by calling the delegate's initialization function whose
name follows the convention: \w + initialize (expressed as a regular expression).
We can derive the instantiate relation from the fileCallFunction relation.

• The message and subscrEvent relations can be derived from the fileSubscrEvent and
fileSendMessage through the compContainFile relation. The fileSendDynMessage is
also mapped to the message relation for those cases where only the recipient of the
message is known and not the message type (the message type is selected at runtime).

• The I n t e r f a c e elements represent the identifiers of the asynchronous messages
and events. The implement relation is created from the fileDefineSymbol relation.
The mapping can also be refined with the precise naming conventions that have been
used for naming the identifiers.

• The taskContainComp relation is derived from the taskContainObj through the com-
pContainFile relation.

9.7. The Third Iteration 144

9.7.3 DATAGATHERING

In the third iteration we aim at creating a reconstruction process that can be integrated
in the development process. We require an high-level of accuracy for the reconstructed
architectural model. The accuracy of the target views is directly dependent on the accuracy
of the source view, and, therefore, we have largely refined the data gathering activity by
including more concepts and by being more precise than in the second iteration.

We summarize our extraction strategy for each of the three categories (as defined in Sec-
tion 7.3.3):

Programming language concepts This category contains the gray elements in the Fig-
ure 9.13. They represent programming language concepts that can be directly identi-
fied in the source code. D i r e c t o r y and F i l e elements are detected by scanning
the file system. B u i l d L i b r a r y element maps to a group of files and the mapping
relation (HbContainFile) can be recovered from the configuration files used during
the build process. The Class and Method elements are identifiable through partic-
ular macro definitions. The Func t ion elements are the standard C-like functions.
The invocation relation is built by detecting the C function calls and the method in-
vocations (realized through a particular macro).

The relation proIncludeLib is extracted from the output of the linker when the prod-
ucts are built. There are configuration files that are used to include and configure the
various components for the products. Analyzing the output of the linker turned out to
be the simplest solution. The configuration files are rather complex to parse.

For each element, we have defined a set of regular expressions that are searched
through all the source files by a Python script. Since certain parts of the system are
written in plain C, the architects can optionally choose to parse the source code with
SOURCE NAVIGATOR and merge the output with the results of the Python script.
This is the preferable choice for creating a detailed development view. However The
Python script is the standard extraction procedure.

Code patterns The information about the Component elements is extracted by analyzing
particular code patterns in the sources. The type, the name, the runtime identifier and
the task of the components is extracted from the configuration files that are located
in the same directory of the sources (although there can be more than one component
defined in one directory). From the configuration file we also extract the initialization
function of the component.

The I n t e r f a c e element represents the set of asynchronous messages handled by
one server and it is extracted from the message definition table in the main C file of
the server. The implement relation is also extracted in this way.

9.7. The Third Iteration 145

The subscrEvent relation is extracted from the registration table of servers and appli-
cations. The message is identified with the same pattern shown in the second iteration
(see Section 9.6.3).

The code patterns are expressed as a set of regular expressions and they are searched
by the Python script.

The source view is stored in a RSF file that contains the relations show in the Table 9.2.
All the elements in the RSF file have a unique name. The analysis of the source files is
carried out by a Python script that recursively traverse all the the directory tree and search
the source files for the regular expressions. The relations are extracted at the level of files.
This means that the source of the relations is often a F i l e element. The relations for
the source viewpoint can be directly computed from the file level relations through the
relational algebra. This step is done during the knowledge inference activity when the
mapping compContainFile is also available.

NPF is a product family and we are interested in analyzing the whole NPF platform. Since
each product is configured differently, we had to analyze each separate product and merge
the results in a unique model. This has been achieved executing the extraction script on the
various configured products. A typical build consisted of about 4MLOC.

9.7.4 KNOWLEDGE INFERENCE

The knowledge inference activity is carried out in two steps. In the first step we complete
the source view by recovering the domain concepts and the compContainFile relation. Since
it is mainly a reasoning operation, we have located it in the knowledge inference. 3 In the
second step we have generated the target views from the source views and from the mapping
rules defined in Section 9.7.2.

RECOVERY OF THE DOMAIN KNOWLEDGE

The domain concepts of the source view (shown in Figure 9.14) are not directly available
in the source code but they need to be recovered from the domain knowledge. We carried
out this operation with the help of the architects who represent the main domain experts for
this task. We created a component inventory that describes each logical component with
various details like its type, logical interfaces, the organizational and functional ownership.

3It could be argued that the recovery of the domain concepts is a data gathering activity. In the case of
NPF the domain knowledge was not well-formalized and it has been mainly a conceptual process rather than
a simply data gathering operation. In the future we expect that the domain knowledge will be complectly
formalized, hence, it will be possible to extract it during the data gathering activity.

9.7. The Third Iteration 146

Below we describe the various relations in detail.

At first, we created a list of all the logical components. We started with the incomplete list
of the components from the hypothetical logical view that was created during the previous
iterations. We gradually refined the list by adding the missing components that we iden-
tified from the list of B u i l d L i b r a r y elements and by manually inspected the directory
structure. At the same time, we also created the compContainFile relation that maps the
logical components to the source files. The relation UbContainFile gave us a rough parti-
tion of files to build libraries to start with. We manually refined the decomposition to the
level of components. More than 20,000 files were mapped to about 1,000 components.

Once the list of components was completed, we added the type information, the functional
decomposition and the organizational decomposition. For the functional decomposition, we
started with the decomposition that was available in the hypothetical logical view and we
gradually refined it by adding new packages and allocating all the components of the plat-
form to one package. In this way, we created the Package elements, the pkgContainPkg
and pkgContainComp relations. For the organizational decomposition, we relied on the
organizational charts of NPF. We identified the S i t e , F a c t o r y and Pro j e c t elements
and their mappings.

GENERATION OF THE TARGET VIEWS

The source view for NPF is complete and is the basis for creating the target views. We
use the mapping rules defined in Section 9.7.2. The compContainFile relation is the only
mapping relation between the two parts of the source viewpoint: the implementation and
the domain concepts. Below we define the sequence of actions for creating the target views
in binary relational algebra. The relations listed in Table 9.2 represent the initial set of rela-
tions for the source viewpoint. The relations of the target viewpoints are listed in Table 9.1.

We calculate the interface of the components. The interface is represented by the set
functions, asynchronous messages and events that are defined by the components. For
the Server components, we also map the server identifier to the component through the
funtfnitServerlD relation. We can distinguish if a symbol s is an a request or an event with
a regular expression that is based on the naming conventions of the symbols.

compDefineServerlD = compContainFile o define o fund nit S er ver ID
compDefineSymbol = compContainFile o fileDefineSymbol
compDefineRequest = {(c, s) € compDefineSymbol A s is a request}

compDefineEvent = {(c, s) € compDefineSymbol A s is an event}
compDefineFunction = compContainFile o define

9.7. The Third Iteration 147

We calculate the logical dependencies among the components from the file-level dependen-
cies:

implement = compDefineRequest + compDefineEvent

subscrEvent = compContainFile o fileSubscrEvent o compDefineEvent*1

message = compContainFile o (fileSendMessage o compDefineRequest*1 +

fileSendDynMessage o compDefineServerlD*1)

The instantiate relation is calculated by filtering all the function call relations that match
the name of delegate initialization function. The file-level dependencies are lifted to the
level of components through the relation compDefineFunction and compContainFile.

initDelegate = {(file, func) G fileC all F unction A func is like < \w+Jnitialize>}
instantiate = compContainFile o initDelegate o compDefineFunction*1

We calculate the component-level dependencies for the function call by lifting through the
compContainFile.

fileCallFile = fileC all Method o hasjmethod*1 o fileContainClass +

fileCallFunction o define*1

invocation = fileCallFile | compContainFile

We define the use relation among the components as the union of all the logical dependen-
cies.

use = message + invocation + instantiate + subscr Event

We define the containment relationship for the target views according to the list in Table 9.1.

compContain = pkgContainPkg + pkgContainComp + platf ormContainPkg

orgContain = siteContainFactory + factoryContainPrj + prjContainCOmp

taskContain = taskContainComp

We lift the use relation with the containment relations for each view.

compDependency = use f compContain

orgDependency = use] orgContain

task Dependency = use f taskContain

9.7. The Third Iteration 148

Finally, we define the target views as the following graphs:

nt = G(T, use + comp Dependency, compContain)

= G(T, use + or g Dependency, orgContain)

Vrask = G(T, use + task Dependency, taskContain)

where the set T contains the type information.

For the development viewpoint, we define three different containment relationship for the
three types of development views.

dirDevelContain = containjdir + contain-file

UbDevelContain = UbContainLib + UbContainFile

compDevelContain = compContainFile

We lift the function call and include dependencies with the containment relations 4.

develUse = fileCallFile + include

dirDevelDep = develUse f dirDevelContain

UbDevelDep = develUse f UbDevelContain

compDevelDep = develUse Î compDevelContain

We define the development views as the following graphs:

nt = G(T, develUse + dirDevelDep, dirDevelContain)

= G(T, develUse + UbDevelDep, UbDevelContain)

t = G(T, develUse + compDevelDep, compDevelContain)

where the set T contains the type information.

In the environment NlMETA , the operations are implemented with Python scripts. Starting
from the source views, it is possible automatically generate the target views. The target
views are stored in a RSF file and in the component repository.

4We note that in the description of the case study we do not explicitly base the development view on the
call relation among functions and methods as. In practise, we calculate the call relation only for certain parts
of the system and in most of the cases the fileCallFile is satisfactory.

9.7. The Third Iteration 149

9.7.5 PRESENTATION

The goal is to effectively communicate the reconstructed architectural information to the de-
velopment teams. The stakeholders desire that the architectural information becomes easily
accessible to all the developers (managers, programmers, designers, testers). This repre-
sents a wide variety of people with different background, interests and knowledge about
the system. The reconstructed architectural models cover the whole platform, therefore we
expect that they will be queried either by (1) people who have a deep knowledge in a partic-
ular domain and need to find more information, or by (2) people who are just knowledgable
and need to get an overview. The presentation should convey views at different levels of
abstraction and should allow experts to dive into the details.

We extended the scenarios from the second iterations(see Section 9.6.5) to the following
list:

• The chief architects of NPF want to look at the top-level structure of the platform
and to analyze the dependencies by descending the hierarchy through the various
packages to the level of components.

• The project managers want to look at the top-level organizational aspects of the ar-
chitecture in order to keep the coupling among the sites and factories under control.

• The architects of certain functional domain want to look at the design of certain areas
of NPF and how the various components collaborated to implement the features.

• The designers want to look at the design of their and other components' interfaces
and how these interfaces are implemented.

• The testers want to trace the dependencies among the components in order to solve a
bug and they want to know who are the owners of certain parts of NPF.

• The programmers want to look at the low-level dependencies among the components
that they are developing.

The rest of the section is structured in the following way. First we review our experiments
with visualization tools and the we create a list of requirements for the presentation activity.
Second, we describe the presentation approaches that we support for NPF: web interface,
UML models and hierarchical graphs.

QUALITATIVE EXPERIMENTS WITH VISUALIZATION TOOLS

We conducted several usability tests with the stakeholders about the presentation formats.
We focused our tests on the component view. We proposed them various representations

9.7. The Third Iteration 150

based on existing tools. In order to conduct a realistic demonstration, we presented the tools
with the real architectural views for a particular release of the system. We report the results
in the Table 9.3.

From the experiments we observed that the stakeholders found the textual representations
more informative than the graphical representation. In a typical component with about 20
clients/suppliers the graph becomes unreadable (for example the diagram in Figure 9.20)
while a simple table or a list can quickly convey the essential information. However, the
stakeholders agreed that the graphical representation is more intuitive than text if the infor-
mation is properly represented. They also appreciated the hyperlinked pages for the pos-
sibility of navigating through the components and their dependencies. All the approaches
lacked the ability of making direct queries. There was also a remarkable resistance towards
the introduction of new tools (e.g. Rational Rose) who required deployment, training and
support.

Concluding, we defined the following requirements:

Text and graphs Textual representation is the main presentation format that we should use
to convey the architectural views. Graphical diagrams represent an additional format
for presenting selected views on the data.

Navigability Due to the large size of the models, navigability is a main concern for the
presentation. We need to support multiple ways for navigating through the views
(e.g. hyperlinks, navigator bar).

Easy-to-use and intuitive The presentation format should require a minimal training, be
very intuitive and easy to use.

Queryable The presentation format should allow the users to query the views according to
several criteria.

Availability The architectural views are produced biweekly and we need a efficient mech-
anism for managing the various versions and delivering them to the users.

WEB INTERFACE

The architecture of the web interface is described in Section 8.5.4. In this section we focus
on its application for NPF. From the user perspective, the web interface consists of five
parts: the query section, the component summary, the graphical diagrams, the tree menu
and the hierarchical view. The Figure 9.15 shows an overview of the web interface.

The query section allows the user to select the particular build from the database and to
query the components. There are four types of queries: by component's name, by type, by

9.7. The Third Iteration 151

Tool
RlGI

Rational
Rose

Venice a

Web pages

Graphs
with
SVG*
DOT

Soft Vision

SWAG
Toolkitc

Microsoft
Excel

Presentation
Hierarchical typed graphs. The domain is
denned according to the viewpoint.

Graphs in UML.

UML nested graphs

Hyperlinked HTML pages containing sum-
mary of the components and links to the
clients/suppliers. The users can follow the
chain of dependencies through the hyper-
links. Described in (Riva and Yang, 2002).

RlGI -like diagrams rendered in a web
browser through SVG and JavaScript for the
interactivity
Nested graphs

Following RlGI 's philosophy, the tool sup-
ports nested graphs, layout algorithms and
possibility to customize the graphical ap-
pearance of the nodes and arcs.

Web interface and nested graphs

Spreadsheets listing all the components and
dependencies

Strong(+)/Weak(-) points
+ visualization of hierarchical graphs
+ customization of domain of graphs
+ visualization of top-level dependencies
+ interactive navigation/filter of graphs
- visualization of nested graphs
- complex queries
- layout algorithms on large graphs
+ UML conformance of the graphs
+ commercial support
+ usability
+ textual navigation bar
- limited API for accessing the repository
- graph layout
+ nested graphs - prototype - not scalable

+ very informative for components and
dependencies
+ hyperlinks for navigating through the
dependencies
+ web publishing in the intranet
- static pages
+ web publishing

+ layout
+ Compact visualization of nested graphs
+ layout
+ multiple synchronized views of the same
data
+ navigability
+ scalable
- training is required
- no support for UML
+ web publishing
- poor visualization of the graphs
+ compact textual representation
+ queryable
- not navigable

"Venice is a prototype for the visualization of nested diagrams in UML developed with the University of
Helsinki. Our goal was to experiment RIGI 's philosophy of graph visualization with the nested graphs and
UML. Available at http://www.cs.helsinki.fi/group/venice

^Scalable Vector Graphics: http://w3c.org
CSWAG Toolkit

Table 9.3: Summary of the tested presentation tools.

9.7. The Third Iteration 152

Selection of
the build

Selection of
the query

Links to other
presentations

Summary of
the component

0 ; gjr 4J

Component View NOKIA

|l. Select the logical ^1ew ; |

1 Select the <piery type:

_w39JX» _d: and press Jj°j

Î. Please select the element and press Gp|
Component: J

; [by Component^ I Goj

Von can also browse the tree menu or the Idemrchical view.

Summary of thu de

The clients and the suppliers for '

Clients:

Component j. Compel

Development

Si'"
A T . . .:>..•-

Graph
representation

Results of
the query

Figure 9.15: The overview of the web application.

9.7. The Third Iteration 153

. Se lec t the logical view : | Jv_week39j j and p ress ! G o l i

... ' V~\~_'S1 .. i
2. Select the query type: 3 p l e a s e s e i e c t the element and press G u I
i ! , I Component:! 3

j by Component j j Go[

You can also browse the tree menu or the hierarchical view.

Send feedack

Energy Management Server

Hierarchy: NPF --> Component View --> Core --> Energy Management —> Energy Management Server

Type: Server

Object id: ENERGYJ3ERV

Diagrams:

Context diagram: | pne | svg

Context diagram with the dependencies from the parent package: | ßng

Context diagram with all dependencies: | pna | svg

Summary of the depenencies:
The clients and the suppliers for Energy Management Server by component type:

Figure 9.16: Overview of the web interface.

package and by matching a particular pattern. The results of the query are shown in the
drop-down list where the user can select the element to show in the component summary.

The component summary contains a summary of the information about the selected com-
ponent: location in the hierarchy, the type, other information, a list of context diagrams,
a summary of the main dependencies and a list of links to other details about the compo-
nent. The Figure 9.16 show the summary page for one server and the Figure 9.17 shows
the summary of the dependencies. The user can easily look at the clients and suppliers for
the selected component. All the elements are hyperlinked to other components' summary
page. The table in Figure 9.18 shows the detailed information about the interface usage for
the selected component.

From the summary page, the user can automatically generate several diagrams about the

9.7. The Third Iteration 154

' Ü W: XResearchXPhdXmanuscriptVisa-picXenJMrilä .-Inlxl
iFile Edit View Favorites Tools Help

Summary of the depenencies:
The clients and the suppliers for Energy Management Server by component type:

Clients:

Component type!1

Application

Infrastructure

HW Driver

Server

Suppliers:

Component type)!

Protocol

HW Driver

Server

Component

A Application „ . ,. ..
T* . i- .- C Application
B Application

Operating System

A HW Driver

A Server B Server C Server

Component

A Protocol B Protocol

A HW Driver BHW Driver

A Server B Server
_ . .

Detailed infonnation about the dependencies of Energy Management Server:

Dependencies by interface type for Energy Management Server

Source files in Energy Management Server

Source file dependencies for Energy Management Server

Interface provided by Energy Management Server

Si "" ! ' Ï "l 'ÊÉ Local intranet

Figure 9.17: The summary of the dependencies.

9.7. The Third Iteration 155

Energy Management Server

Hierarchy: NPF —> Component View --> Core --> Energy Management — > Energy Management Server

The used mterfaces for Energy Managemen t Server:

The clients:

D_EVT 3

El
D_REQ
E REQ

F REQ

k

Component!! Function >

A

B

Ç
food E]

P'l

Event 1

A_EVT 0

.&_

B EVT ËJ
IW

_ a

A REQ

B REQ
C REQ

Request

G REQ

H_REQ
I REQ

Figure 9.18: The detailed dependency table.

9.7. The Third Iteration 156

B HW Driver

C Library

"*" D HW Driver

Figure 9.19: The memory management.

context of the selected component. The context diagrams show the external relationships
with other components. For example, the graph Figure 9.20 shows the context diagram of
one component with respect to the components from the same package. The arcs represent
any kind of dependency between the components. The graph in Figure 9.20 shows the
entire context diagram for the the same component. The selected component is marked
with a circle and there are 46 external components. The graph is rather complicated and is
an example of the complexity of large systems like NPF.

The hierarchical view allows the user to interactively browse the component view through
the various packages starting from the top-level diagram. The diagram in Figure 9.21 shows
the 5 top-level packages of NPF and the top-level dependencies. The user can click on the
packages or on the components to navigate through the view. For example, by clicking
on the top-level package in Figure 9.21 the user can expand the packages and obtain the
diagram in Figure 9.22. The diagram shows the top-level packages, their contents, the
intra-package and inter-package dependencies. There are two major packages: Apps and
Core. The user can click on them to obtain more detailed diagrams as shown in Figure 9.23
for Apps and in Figure 9.24 for Core. The diagram in Figure 9.25 shows the content of one
package contained in the Apps package.

9.7. The Third Iteration 157

Figure 9.20: The context of memory management.

9.7. The Third Iteration 158

NPF Component View

Figure 9.21 : The top-level diagram for NPF.

9.7. The Third Iteration 159

Figure 9.22: The top-level diagram showing the content of the packages.

9.7. The Third Iteration 160

The stakeholders of NPF appreciated the simplicity of the web interface and the easiness
for retrieving information. At the end of the third iteration, they decided to deploy the web
interface within organization and to integrate it in the development process of NPF.

UML

The architectural views can be converted to a UML model and visualized with Rational
Rose following the indications presented in Section 8.5.3. The result is show in Figure 9.26.
Although the architects are not especially interested in this CASE tool, in the future we
plan to provide a better support for UML. All the packages and components are listed in
the navigation bar on the left. For each package the user can show the context diagram as
shown in the figure.

HIERARCHICAL GRAPHS

We can visualize the reconstructed views as hierarchical graphs with RlGl or DOT from
Graph Viz. The hierarchy of the graphs is defined by the containment relationship of the
particular viewpoint. Using RlGl the end-users can navigate the hierarchical graphs and
extract the details about the dependencies.

The graph in Figure 9.27 is the development view for NPF showing the top-level depen-
dencies (call and include dependencies) among the root directories directories. With the
development view the architects can examine the source code organization. The graph in
Figure 9.28 is the geographical view showing the sites and the cross-site dependencies for
NPF. Each site consists of several component factories. The cross-site dependencies are
lifted from the low-level logical dependencies between the components developed by the
sites. With this view, the managers can look at the geographical distribution of the devel-
opment and analyze the cross-site dependencies (that can cause synchronization and com-
munication problems). The development of NPF is distributed over more than 20 different
sites around the world (not all are shown in the figure). The graph in Figure 9.29 is the
organization view showing the projects and the inter-project dependencies. Each project,
owned by a factory, is responsible for the development of a set of components. With this
view the project managers can check the dependencies among the projects and, they can
plan correctly the schedule of the projects. The task view is show in Figure 9.30. The view
presents the tasks of NPF and the inter-task dependencies (caused by messages exchanged
among components). The inter-task dependencies should be minimized as they can cause
performance problems due task context switch. This view help the architects in their anal-
ysis. The task view allowed us also to validate the task start order for NPF. The graph in
Figure 9.31 shows the task view laid out using RlGl 's reverse tree layout. The reverse tree
layout arranges in a tree layout all the nodes on which a selected node depends. Starting

9.7. The Third Iteration 161

\ - . 7 \ (

Figure 9.23: The content of the Apps package.

9.7. The Third Iteration 162

Figure 9.24: The content of the Core package.

9.7. The Third Iteration 163

Figure 9.25: The content of one package of NPF.

9.7. The Third Iteration 164

fd

Figure 9.26: The content of one package of NPF.

Figure 9.27: The development view for NPF.

9.7. The Third Iteration 165

SittylO

Figure 9.28: The geographical view for NPF.

9.7. The Third Iteration 166

\ä -Bu /id. / wfp'

1
U/\Â

1

Ai".

Lfcs- 1H

Figure 9.29: The organizational view for NPF.

9.7. The Third Iteration 167

r •
n

o/

Figure 9.30: The task view for NPF.

from the tasks with no dependencies we can reversely lay out all the other tasks. The tasks
in the lower part of the graph need to be started before the tasks in the higher part. This
diagram has been used to validate that the booting sequence is correct.

9.7.6 ARCHITECTURE CONFORMANCE CHECKING

The architectural style of NPF defines the architectural rules that have to be enforced in the
implementation of the platform and of the products. The architects must enforce these rules
in order to preserve the architectural integrity of NPF and avoid the architectural decay.
Some of the rules are listed below:

• To check that the implementation conforms to the reference architecture. We have to
check that only the permitted relationships exist between the entities (e.g. an Appli-
cation can only use the services of a server through the message and event interfaces).

• To check that the top-level dependencies conform to the indented design of the archi-
tects.

• Validate that NPF conforms to the there-layer architectural style.

The result of the conformance checking is a detailed report of the violations that is handed
to the architects who can take the proper follow-up actions.

9.7. The Third Iteration 168

To start last

To start first

Figure 9.31: The starting order of tasks for NPF.

9.7. The Third Iteration 169

We have defined about 100 different rules for all the architectural concepts of NPF. For
each concept, the rules define what other components can be used and what dependencies
are allowed. In addition, we have also defined rules for enforcing the layering structure of
NPF. We checked the conformance of one build of NPF and the result showed about 3700
illegal dependencies and 650 layer violations. We investigated the dependencies and we
made the following observations:

1. Some legal dependencies have been detected as illegal because the the reference ar-
chitecture of NPF is not complete. This fact will lead to an update of the reference
architecture

2. Some components have an inappropriate component type. This has to be fixed in data
gathering phase.

3. There are illegal dependencies between components that are implemented by the
same team or that implement the same feature or feature set. For example, some
components illegally share functions with other components. This is often the re-
sult of incomplete refactoring or simply because the components are developed by
the same team. These violations should be fixed because they are against the design
principles of NPF and hinder reusability.

4. Some illegal dependencies represent short-cuts across the layers and have been intro-
duced for special reasons (like performance or other non-functional requirements).
Although against the design principles, they are permitted on limited scale.

5. Illegal function calls are responsible for most of the illegal dependencies. These
represent short-cuts, legacy code, global functions. These violations need to be fixed
and monitored.

Below we present two cases of conformance checking against two types of rules and the
implementation in relational algebra. The work that we present in this section conforms
with the work that we have presented in (Riva et al. , 2004b) on introducing a UML-based
conformance checking method.

CONFORMANCE CHECK AGAINST THE REFERENCE ARCHITECTURE

For each architectural concept we can check if the interfaces are properly used. As an
example, we can consider the servers. The reference architecture defines the following
rules:

• A component can access a server through the asynchronous messaging interface.

9.7. The Third Iteration 170

• A component can subscribe to the events offered by the server.

• A server can invoke the functions of a library, an hardware driver, a protocol and
other infrastructure elements.

We can formalize the rules in binary relational algebra. We can calculate the components
that violate the first and second rule because they are accessing the servers by function calls:

servers = type. {'Server'}

illegalClients = invocation.server s

The illegalClients relation contains all the components that are calling the functions of the
servers. For a build of NPF we calculated that about 200 components are violating this
rule. According to the third rule, we can calculate the illegal suppliers of the servers that
are accessed through function calls:

allowedSuppliers = type. {'Library',' HW Driver',' Protocol'}

server Invocation = invocation\damServers

legal Invocation = server Invocation\TanallowedSupplier s

illegallnvocation = server Invocation — legallnvocation

The illegallnvocation relation contains the list of illegal invocations. We calculated that
there are about 100 illegal dependencies that are caused by 45 components that are supply-
ing their services through functions.

CONFORMANCE CHECKING OF THE LAYERS

At the top-level, NPF is organized in three layers of functionality that are responsible for the
UI applications (App & UI layer), the global services and system resources (S e r v i c e
& Resource layer) and the hardware abstraction layer (HW C o n t r o l layer). Each layer
contains several logical packages and there are precise rules what dependencies are allowed
between the layers. The architects of NPF need to enforce that these rules are respected for
the whole product family.

In conjunction with the architects, we have defined the layered view for NPF. A simpli-
fied version is shown in Figure 9.32 together with the layered viewpoint. The layered
view shows that the App & UI layer is allowed to use components in the S e r v i c e &
R e s o u r c e layer only by sending asynchronous messages or by subscribing to the events.
The S e r v i c e & R e s o u r c e layer can use the components of the HW C o n t r o l layer
only by invoking their functions. The components have also constraints within their own
layers.

9.7. The Third Iteration 171

pkgContainPkg

permitMessage,
permitSubscrEvent.

permitlnstantiate,
permit Invocation

permitMessage,
permitSubscrEvent,
permitlnstantiate,
permitlnvocation

' * j App & Ul Layer —containPkg-w Apps

permitMessage,
permitSubscrEvent.

permitlnvocation

permitMessage,
permitSubscrEvent

1
Service &

Resource Layer

I
permitlnvocation

containPkg

Core

Resource

permitlnvocationi

Other

The layered viewpoint.

I i t
I—*[HW Conlrol Layer —containPkg-M HW

The layered view.

Figure 9.32: The viewpoint and the view for the layering conformance checking.

We have formalized the process of conformance checking with the binary relational alge-
bra. The check is fully automated and it can applied every time a new build is available. The
output is a detailed report of the components and dependencies that are violating the lay-
ering. The report is regularly handed to the architects who can take further actions. Below
we present a simplification of the conformance check.

Each layer contain one or more logical packages. We define the containment relation for
the layers in the following way:

containPkg = { ('App & UI Layer',' Apps'),
('Service & Resource Layer',' Core'),
('Service & Resource Layer7/ Resource'),
('Service & Resource Layer'/ Other'),
('HW Control Layer',' HW Driver')}

The overall containment relation for the layered viewpoint is defined as:

contain = containPkg + compContainPkg

where the compContainPkg is the containment relation for the component view as defined
in Section 9.7.4.

9.7. The Third Iteration 172

The allowed relations for the layered view are defined as:

permitMessage ={ ('App & UI Layer'/Service & Resource Layer'),

('App & UI Layer',' App & UI Layer'),
('Service & Resource Layer7,' Service & Resource Layer')}

permitSubscrEvent = { ('App & UI Layer','Service & Resource Layer'),

('App & UI Layer',' App & UI Layer'),
('Service & Resource Layer',' Service & Resource Layer')}

= { ('App & UI Layer',' App & UI Layer')}
= { ('App & UI Layer',' Service & Resource Layer'),

('Service & Resource Layer',' HW Control Layer'),
('App & UI Layer',' App & UI Layer'),
('Service & Resource Layer7,' Service & Resource Layer'),
('HW Control Layer','HW Control Layer')}

permitlnstantiate

permit Invocation

We can calculate the violations among layers by lifting the component level dependencies
(compDependency) with the contain relation to the level of the layers. The compDepen-
dency is the dependency relation for the component view as defined in Section 9.7.4. In
relational algebra we have:

permittedDependecy = permitMessage + permitsubscrEvent + permit I nstatiate

+permitlnvocation

compDependency j contain

permittedDependency — layer Dependency

layer Dependency

layerViolation

The permittedViolation contains the list of illegal dependencies among the layers. We can
calculate the component level dependencies that are causing the layer violations by lowering
the violations:

compViolation = (layerViolation j contain) n compDependency

We can refine the information about the violations according to the dependency type:

allowedMessage = (permitMessage j contain) n message

f orbiddenM essage = message — allowedM essage

allowedSubscrEvent — (permitSubscrEvent J. contain) Pi subscrEvent

forbiddenSubscr Event = message — allowedSubscr Event

9.8. The Dynamic Analysis 173

M Server

Component

Figure 9.33: The conformance diagram of one server.

allowedlinstantiate = (permitlnstantiate [contain) fl instantiate

forbiddenlnstantiate = message — allow edlnstantiate

allowedlnvocation = (permitlnvocation j contain) n invocation

forbiddenlnvocation = message — allowedlnvocation

The forbidden relations contain the list of dependencies at the level of components.

For a given component, we can create a diagram that shows the illegal dependencies. The
diagram in Figure 9.33 shows the legal (plain arcs) and illegal (dashed arcs) dependencies
for one server. The diagram in Figure 9.34 shows the illegal dependencies for the context
diagram of one server.

9.8 THE DYNAMIC ANALYSIS

We have conducted a dynamic analysis of NPF for calculating the feature view of selected
features. In this section, we present the an overview of the approach that we have followed.

9.8. The Dynamic Analysis 174

B Server

P Server T Server —.

M Library C Object

Figure 9.34: The conformance diagram of one server.

9.8.1 PROBLEM DEFINITION

The goal of the dynamic analysis was to recover the feature views for a selected set of
features from the implementation of the products. There were two major motivations: to
re-document the implementation of key features and to compare the implementation the
same features across various products. Understanding the feature implementation is an
important activity in a product family. The features offered by the platform represent the
assets that are reused among several products. A clear comprehension of these assets is
necessary when deriving new products by combining existing and new features.

9.8.2 CONCEPT DETERMINATION

The architects were mainly interested in the run-time behavior at the same level of abstrac-
tion as the component and task viewpoints defined in the third iteration (Section 9.7.2). Our
task was to recover the run-time interactions among the elements of the component and task
viewpoints, and present them in the feature views.

The target viewpoints are the feature viewpoints of the component and task viewpoint.
The feature viewpoints also include the time line. The source viewpoint is represented
in Figure 9.35. It includes the architecturally relevant interactions for creating the feature
views.

9.8. The Dynamic Analysis 175

message,
subscrEvent

Entity

L

1
Server

Interface ^ s
• *

Application

message,
ubscrEvent

Delegate

instantiate

message

Figure 9.35: The elements of the feature viewpoint.

9.8.3 DATA GATHERING

In order to gather the data for the feature views we instrumented NPF and execute several
scenarios. The instrumentation was done accordingly to the architectural concepts from the
component and target viewpoints. We instrumented the communication bus for tracing the
asynchronous messages (message) and the event registrations (subscrEvent). For tracing
the delegate instantiation, we instrumented the initialization functions of the delegates.

We defined a set of scenarios that cover the features to analyze. We tried to create the
shortest scenario possible for each feature and we tried to avoid the feature interaction.

We executed the scenarios on the instrumented system and we collected the long trace
logs. We had the possibility of executing the scenarios either in a simulator or on the target
hardware. From the trace logs we removed the startup and shutdown traces. Then, we
converted them in order to conform with the source view. We stored the result in a sorted
RSF-like file containing tuples in the format: < timestamp >< relation >< source ><
destination >

9.8.4 KNOWLEDGE INFERENCE

The trace logs contained thousands of traces and hundreds of participants. For this reason it
was important to compress the traces with abstraction. We applied the horizontal abstraction
provided by the tool HAVA (Section 8.5.2). We grouped the participants according to the
relation compContain and taskContain respectively for the component view and the task
view. The result shows the feature views grouped according to the package structure and
according to the task structure. This operation allowed to significantly reduce the size of
the traces.

9.9. Conclusions and Lessons Learned 176

9.8.5 PRESENTATION

The feature views are presented with the HAVA extension of NlMETA . NIMETA allow us
to visualize the static and dynamic views at the same time. The static views are shown
as graphs in RlGl 's windows, while the dynamic views are shown in HAVA 'S sequence
diagrams. HAVA supports the possibility of synchronizing the abstractions in the static and
dynamic views (importing the abstractions from rigi to hava or viceversa), applying the
synchronized collapse/expand commands and slicing the static view based on the content
of the dynamic view.

We have studied the feature "Call release" that is executed when the user terminates a
phone call. We have created a simple scenario where the user initiates a call and terminates
it immediately. The top-level static and sequence diagrams are show in Figure 9.36. The
static diagram (shown as a RlGl's graph) is based on the component view calculated in the
third iteration (see Figure 9.21). The message diagram is based on the dynamic analysis and
the participants have been grouped according to the static view. The messages exchanged
within the collapsed participants are not shown and this allows us to examine the feature
implementation at an high-level of abstraction. In the sequence diagram we can note the
messages "call_create_req" and "call_terminated_event" that are exchanged between one
component in the Apps package and one server in the R e s o u r c e package. They represent
the effect of the user's actions for initiating and terminating the call. We can note that
the main benefit of the HAVA approach is to visualize a trace log consisting of hundreds
messages in a very compact format. This is the main advantage of the HAVA approach.

The analysis can continue by expanding the top-level packages and navigating the details of
the sequence diagram. We expand the package Apps and the result is shown in Figure 9.37
and Figure 9.38 for the static and dynamic views respectively. The sequence diagram shows
another part of the implementation of the "call release" feature.

We can also slice the static view with the participants in the sequence diagram. The Fig-
ure 9.39 shows an example of the slice. In the sequence diagram we have focused on a
particular interaction sequence with only three participants. The static view has been sliced
in order to show the static dependencies among the same participants. This permits us to
conduct a consistent analysis of the dynamic traces and the feature implementation.

9.9 CONCLUSIONS AND LESSONS LEARNED

The third iteration delivered a robust reconstruction process that satisfies most of the re-
quirements set by the stakeholders. They decided to integrate the reconstruction process
with the development process of NPF and we are currently conducting the technology

9.9. Conclusions and Lessons Learned 177

File Participants Messages Layout :hronlsi Help

Command: I

Result \

\ ,

ZJ2
jarch/Phd/manuscrfpt/isa-pic/call.nisc global took 1S72000 n

Figure 9.36: The top-level feature view for the "call release" feature (static diagram and
sequence diagram).

transfer. One architect has been nominated as a reconstructor and is responsible for the
maintenance of the reconstruction process. The target is to make biweekly releases of the
models for the whole NPF family (including the platform and the products). These are the
main tasks for the reconstructor:

• To maintain the reconstruction process up to date with the reference architecture of
NPF (i.e. introducing new architectural concepts, updating the conformance rules)

• To maintain the mapping tables (i.e. introducing the mapping for new components)

• To execute the reconstruction scripts on the build and to publish the models on the
web interface

• To validate the architectural models

• To report the architectural violations to the architects

The overall approach results in a very architecture centric development process that can
guarantee the proper architectural governance to NPF and avoid the architecture decay. In
the long term, we expect that the architectural models will contain precise and reliable archi-
tectural information and the conformance checking will preserve the architectural integrity.
The reconstruction process has been implemented as a pipeline of tools (as described in
Section 8.2 that can be executed automatically on a given build with minor human inter-
action. In this way the reconstructor can easily generate the new architectural models as

9.9. Conclusions and Lessons Learned 178

Pad

Figure 931: The expanded component view.

pne.play „«
one play fa

one play ot
one_event

3*3

jpd event

call properly

gall release

1 release

sssaj

ssat

Figure 9.38: The expanded sequence diagram.

9.9. Conclusions and Lessons Learned 179

Appl

App1

Protocol

App2

call release

calLproperty

c,all_property

resp

reg
:all release

_resp
calLproperty

resp

_req

jesp

The static view. The dynamic view.

Figure 9.39: The details of the call release feature between two applications and one server.

the build become available. In the future, we are planning to integrate the reconstruction
scripts with the build process in order to create the architectural documentation every time
the system is built. At the end of the technology transfer, we can consider NPF at the fourth
level of maturity.

We summarize below the main lessons that we have learned during the case study:

The development of the reconstruction process has to be properly supported by the
organization where the minimum requirement is the awareness of the architectural
problems. The reconstruction process is efficient if it is designed according to the
domain of the system and with clear requirements from the stakeholders. Hence, the
requirement that for starting a reconstruction process the organization or the team has
to be at least at the first maturity level (see Section 7.4).

At least three iterations are required before integrating the reconstruction process
within the organization. The first iteration is focused on the detection of the require-
ments, the second iteration is focused on delivering the initial models and getting the
feedback from the stakeholders and, the third iteration is focused on creating a robust
reconstruction process that can be integrated in the development process.

Run-time dependencies are difficult to trace with the static analysis. This may lead to
systems that are difficult to evolve. If they cannot be avoided, they should be properly
designed in a way that they are easy to recover with static or dynamic analysis. Not
only the systems should be designed for change, but they should also be designed for
the reconstruction.

9.9. Conclusions and Lessons Learned 180

• The visualization of the architectural diagrams is often overwhelming and the textual
representation is preferable.

• The reconstruction process is currently not supported by commercial CASE tools.
The tool environment that we used for NPF is mainly based on loosely integrated
academic or ad-hoc tools.

• Creating and validating the mapping tables took (especially the compContainFile
took a considerable amount of time. Their maintenance is conducted manually by
the reconstructor. An automatic mechanism should be developed.

• NPF is a product family and several components can be considered variants of basic
ones. Components can also be configured according to the products were they are
included. We did not address the problem of variability explicitly, but it is our goal
for the future work.

• Naming conventions were not appropriate at the beginning but they improved with
time. Naming conventions are very important as they facilitate the automatic recon-
struction.

• The architecture views have been used by the architects for conducting various ar-
chitecture assessments of NPF and the results have been used to improve the overall
quality of the platform.

CHAPTER 10

CASE STUDY 2: NMP PLATFORM

/ have not failed 700 times. I have not failed once.
I have succeeded in proving that those 700 ways will not work.

When I have eliminated the ways that will not work,
I will find the way that will work.

- Thomas Edison

This chapter describes the case study that we have conducted to support the migration of a
monolithic product towards a platform for a product family. We introduce the domain, the
motivations and the details of the three iterations that we have carried out.

10.1 INTRODUCTION

The second case study was conducted with a department within Nokia that was in charge of
developing a new platform (Nokia New Platform, NNP) for a new generation of telecom-
munication products. The decision to create a new platform was mainly driven by the trends
in the mobile terminal market The original intention was to build the new platform on top of
a third-party operating system and to reuse the implementation from other Nokia products
for certain telecommunication functionality.

The department adopted the evolutionary approach that we have discussed in Section 2.4.2:
developing a single product with the platform design in mind and, then, creating the new
platform out of the existing product. The approach consists of an initial one-shot develop-
ment phase where the implementation is made according to the desired architectural targets.
While there is no guarantee that the implementation will follow the architectural targets, at
the end of the one-shot phase the software reaches the release quality and the first prod-
uct is released. Most of the time is spent on struggling with the implementation details

181

10.2. Overview of the system 182

rather than with the architectural quality. The second phase concerns with the architecture
evolution and the platform development. The targets are met with frequent release-quality
where new features are slowly introduced and carefully assessed. More effort can be put in
improving the quality of the architecture and checking the conformance between the real
implementation against the architecture.

Over the past four years, our group consulted the NNP department and helped the archi-
tects to recover architectural models from the implementation. The case study presents
the three most significative experiences that we have collected during this time. The three
experiences represent three different moments of the evolutions towards new new platform.

10.2 OVERVIEW OF THE SYSTEM

The NNP platform consists of a specialized operating system, a graphical user interface,
an application framework and the support for a set of telecommunication services. The
various parts have different origins and have been integrated uniquely in the NNP platform.
The OS is a third-party component that has been designed for an efficient use of mem-
ory resources and battery power, and it provides the basic services of an operating system.
The graphical user interface is developed by Nokia and it includes a graphic library and a
comprehensive set of UI elements. The application framework is shipped with the OS and
modified by Nokia. It allows the development of native and third-party applications. The
telecommunication services are integrated from other Nokia's products. There are strict
architecturally significant requirements that have to be considered by the architects: star-
tup/shutdown times, real-time requirements (mainly for the telecommunication protocols),
memory size, power saving measures and the user interface style.

The NNP platform is partitioned into several logical subsystems that are developed by
Nokia or external subcontractors. Each subsystem consists of closely coupled and coherent
components. The integration process requires to guarantee that all the parts work together
and that they conform to NNF's architectural style. The platform runs on proprietary hard-
ware and is developed in C/C++. The programmers follow precise coding rules. The size
of the whole platform exceeds the six millions lines of code.

10.3 SUMMARY OF THE ITERATIONS

Table 10.1 shows the summary of the three iterations that we have conducted. The first
iteration was mainly intended for testing the reconstruction process. The goal of the second

10.4. The

Iteration

1 St

2nd

3 r d

First Iteration

Target
viewpoints
Component view

Component view

Component view

Data
gathering
SourceNavigator and
regular expressions
SourceNavigator
regular expressions

SourceNavigator

Knowledge
inference
SQL

Prolog
according
to reference
architecture
relational algebra
mapping tables

183

Presentation

hierarchical graphs
with RlGl
hierarchical graphs
with R ig i ,
UML diagrams in
Rational Rose
hierarchical graphs,
UML diagrams in
Rational Rose,

Table 10.1: The summary of the iterations for the second case study.

iteration was to support the creation of the reference architecture. The third iteration was
mainly focused on consolidating the reconstruction process in a proper way.

In the third iteration, the build reached the approximative size of 6 MLOC. The source
model contained approximately 28,000 files, 27,000 classes, 231,000 methods, 40,000
functions, 23,000 inheritances, 581,000 invocations and 313,000 accesses.

10.4 THE FIRST ITERATION

The first iteration was executed when the development of the first product based on NNP
technology was almost ended. We analyzed the implementation of various parts of the
product in order to assess the possibility of including them in the NNP platform. Our goal
was also to get familiar with the system.

10.4.1 PROBLEM DEFINITION

The overall goal is to define the new platform based on the implementation of an existing
product. The architects need to define what components to include, the required interfaces,
the offered APIs, the points of extensibility and the owners of the different elements. The
diagram in Figure 10.1 shows the general architecture of the product at the time we started
the iteration. The NNP platform already includes large parts of the original product. NNP
depends on the hardware layer and on the Nokia Old Platform (NOP) for certain telecom-
munication services. NNP also includes a part of the original graphic library. The NNP
GUI Library package contains the new GUI library that needs to be factored out from the

10.4. The First Iteration 184

product and included in the platform. The focus of our analysis is on three gray packages
in the diagram. The architects need to analyze the dependencies of the NNP GUI Library
package and the Nokia Old Platform.

The STD Graphic Library is the outcome of a long evolution. The library evolved in the
direction of satisfying UI products with a wide range of different requirements. The NNP
GUI Library represents a new graphic library for a new generation of products that has been
partly developed using the STD Graphe Library. The assessment aims at understanding the
dependencies between the new library and the STD library. Parts of the STD Library are not
necessary and will be removed, and the rest will be merged with the NNP graphic library.

The Nokia Old Platform contains legacy code that have been reused from previous prod-
ucts mainly concerning telecommunication protocols. Although NPP depends on NOP, the
intention of the architects to define clear interfaces between NPP and NOP because in the
future NOP may be replaced or NPP may run on a different telecommunication hardware.
Therefore, the architects concentrated in NOP the device dependent implementation of the
platform.

The architects also provided us with a large collection of design documents. The product
was surprisingly well documented. Each subsystem had its own design document describ-
ing the its context, the design decisions and its internal design. The architects also had their
own reverse engineering tools for analyzing the static dependencies between the binary files
and creating certain design models. The need for architecture reconstruction originated
from the fact that an understanding of the overall picture was missing. Although the single
parts were well-documented, it was not clear how they all fit together in the product. There
was no guaranteed that the borders and the dependencies shown in Figure 10.1 matched the
reality. A high-level design document existed, but it was not reliable. Understanding the
high-level design was one requirement for the reconstruction activity.

10.4.2 CONCEPT DETERMINATION

We organized a one week workshop with the experts and the customers of the reconstruc-
tion project. In the first day we had a plenary meeting with all the participants in order to
determine the requirements and the architectural concepts. The agenda consisted of a gen-
eral overview of the design goals of the future NPP platform, an overview of the existing
product, a discussion about the goals of the reconstruction and a detailed discussion about
the architectural concepts. We spent the other days analyzing the source code manually
and with the reverse engineering tools. We discussed the problems and the initial results
directly with the experts. In this way we received an immediate feedback on the results and
we precisely focus the direction of the reconstruction work.

10.4. The First Iteration 185

Product Ul
Applications

NNP GUI
Library Non-STD

Library

1
NNP OS

\

A
^

n ̂

lokla New Platfc

1
rri

Plug-ins,
Services,
Libraries

Hardware
Abstraction

Layer • *

n (NNP)

|

A''

STD Graphic
Library

Nokia Old
Platform (NOP)

Figure 10.1 : General architecture of the product based on the NNF platform.

THE ARCHITECTURAL CONCEPTS

In order to start the discussion on the architectural concepts, we asked the experts to briefly
describe the implementation of a typical feature of the product. The diagram in Figure 10.2
shows the original message sequence chart that the experts drew during the workshop . The
MSC shows the participants and the interactions in the implementation of a typical feature.
Below we list the architectural concepts that we identified ' :

Application Applications are the building blocks for implementing the top-level function-
ality and the UL

Engine An engine provides a reusable set of services. It consists of a client interface and
an internal server.

OS API The OS provides its services through a well-defined API that can be accessed by
the applications and engines.

SW BUS There is an internal software bus that connects the NNP OS with the NOP. The
communication happens via asynchronous messages.

Server On the NOP side there are servers that provide access to the NOP functionality.
The NOP servers return the messages through a NOP proxy.

For simplicity and for preserving the confidentiality, we have changed the labels and we omit the details.

10.4. The First Iteration 186

NNPUI NNP , NNP OS „ NOP

NNF
Application

functkJicaB

Engine

Client Server API Sw Bus Proxy NOP
Manager Proxy

API

Open()

Send_msg()

Recv_Msg

Response

Response

Figure 10.2: MSC drawn during the workshop with the experts.

The MSC shows that the current implementation is the result of the integration of elements
originated from different systems having different architectural styles. NOP is implemented
as a distrusted system while NNP follows an object-oriented style. The integration required
to create ad-hoc interfaces in order to make the two architectural styles to coexist (e.g. the
NOP proxy).

THE TARGET AND SOURCE VIEWPOINTS

The diagrams in Figure 10.3 show the target and source viewpoint for the first iteration. The
target viewpoint has been derived from the FAMDC viewpoint presented in Section 6.4 and
shows the concepts that are relevant for the first iteration. Our goal is recover the object-
oriented design, the package hierarchy and the dependencies with the NOP servers. The re-
lation message indicates that a class sends a message to a NOP server. The source viewpoint
shows the elements that we need to gather from the implementation. The I n t e r faceProxy
is a class that represents the messages that can be sent to the NOP servers.

THE MAPPING RULES

We list the rules for mapping the elements from the source viewpoint to the target viewpoint:

10.4. The First Iteration 187

Application

Engine

Other

pkgContainPkg-, —dependency

'—•] Pacakge [*-•

pkgc

Module

I
modContain

inherit 1 A

'—*j Class —message—+\ Interface

L
Attribute Method

The target viewpoint. The source viewpoint.

Figure 10.3: The viewpoints for the first iteration of NNP.

• The Module is mapped to a D i r e c t o r y . For the level of granularity of the first
iteration there is a one-to-one mapping between modules and first-level directories.

• The pkgContain groups module in logical packages. In the first iteration we do not
explicitly calculate this relation.

• The I n t e r f a c e is mapped to an I n t e r f a c e P r o x y .

• The relation message is calculated by abstracting the invocation between the methods
of the class and the sencLmsg method of the class I n t e r f aceProxy.

10.4.3 DATA GATHERING

The source view contains the FAMIX concepts and NPP specific concepts. We decided
to extract the information with two different techniques and to combine the results. NPP
is written in C/C++ and we can extract the FAMIX related concepts with SOURCENAV-

IGATOR and the snav2nimeta script (as described in Chapter 8). For the NPP specific
concepts, we extended the snav2nimeta script with a section that searches for particular
regular expressions with the GREP functionality of SOURCENAVIGATOR . The following
code shows an example of a code pattern that we search with the regular expressions. An
object that instantiates the class CReques tMsg can send the C r e a t e request to the server
0-SERVER.

{
CCreateReqMsg* CCreateReqMsg : :New() {

CCreateReqMsg* msg = new CCreateReqMsg () ;

10.4. The First Iteration 188

msg-> s e t _ s e r v e r (O.SERVER) ;
msg—>set.msg (MCreate) ;

return msg;

10.4.4 KNOWLEDGE INFERENCE

The goal of the first iteration is to show the module-level dependencies. Modules are di-
rectly mapped to directories and all the relations for the target view are available in the
source view. We lift the low-level dependencies (invocation, access, inherit and message)
to the class-level and then to the module-level. We lifted the elements using RlGl and two
RCL scripts. With the script collapse.classes (see Appendix A.2.2) we group the methods
and the attributes of a class in a new class node. With the script collaseAirs (see Ap-
pendix A.2.3) we group all the content of the top-level directories in the module elements.
The dependency is automatically calculated by RlGl while collapsing the nodes.

10.4.5 PRESENTATION

We presented the target views with graphs in RlGl . The graph in Figure 10.4 shows the
high-level dependencies among the modules. It is a highly connected graph that demon-
strates the complex inter-dependencies at this stage of the development. The module on the
top-left represents the NNP GUI L i b r a r y and it is the focus of the next section.

One requirement of the architects is the possibility of analyzing the dependencies between
the NNP and NOP. The graph in Figure 10.5 demonstrate one example of such analysis. We
have selected one module and we have filtered all the classes that are connected to a NOP
server. The unfilled nodes represent classes and the filled nodes represent the NOP servers.
The composite dependencies among the classes are induced by low-level dependencies (like
method invocation, variable access and class inheritance). The composite dependencies
between classes and servers are induced by the exchange of the asynchronous messages.

The graph in Figure 10.6 shows the dependencies between the a set of modules and the
NOP servers. We can note that most of the servers are used by one module (the marked
node) that is actually responsible for managing most of the telecommunication services of
the product.

We can also analyze the what interfaces of the NOP servers are used by NNP. The graph in
Figure 10.7 shows the interfaces that are used by one module.

10.4. The First Iteration 189

Figure 10.4: Top-level dependencies among the modules of the prodcut based on NNP.

10.4. The First Iteration 190

D Servers

• Classes

Figure 10.5: Dependencies between NNP classes and NOP servers in one module.

10.4. The First Iteration 191

Figure 10.6: Dependencies between NNP modules and NOP servers.

Figure 10.7: Dependencies between NNP modules and NOP servers.

10.5. The Second Iteration 192

The architects appreciated the possibility of analyzing the dependencies with old Nokia
platform and this was used for creating NNP's reference architecture in the second iteration.

10.4.6 ARCHITECTURE ASSESSMENT

The main goal of the first iteration was to assess the dependencies of the NNP GUI Library.
As discussed earlier, the graphic library that is used by the product is the result of a long
process of evolution. The graphic library was originally developed in conjunction with the
third party OS and then reengineered several times to adapt it to new scenarios. The current
implementation contains parts that are not in use anymore, parts that are under the control
of a third-party and parts that are developed by Nokia. The goal of the architects was to
re-architect the current implementation in a coherent and comprehensive GUI library for a
new generation of products. The library should provide an high-level API for the products
based on the NNP platform. We conducted an assessment of the current implementation that
resulted in a detailed report that was handed to the architects. The architects considered the
results of the report to base their future actions.

The graph in Figure 10.8 shows the top-level dependencies among the packaged under
assessment. The packages contains selected modules that we grouped manually with RlGl
. The graph shows that the NNP GUI Library package has cross-dependencies with the
the modules from the three other packages. From this view, the architects can inspect the
details of the dependencies.

The graphs in Figure 10.9 and in Figure 10.10 show the details of the dependencies from
the classes of NNP GUI Library to the classes of STD Graphic Library and viceversa.
The graphs can inspect the nature of the dependencies: inheritance, method invocation or
variable access.

10.5 THE SECOND ITERATION

Since the reegnineering work continued, the architects assigned us the task of recovering
the as-implemented structure of the NNP platform. The task lasted about one year and was
conducted by two reconstructors working part-time.

10.5. The Second Iteration 193

Library

NNÇOS

Figure 10.8: The top-level dependencies between the packages under assessment.

D
NNP GUI Library

STD Graphic Library

Figure 10.9: Class-level dependencies from the NNP GUI Library to the STD Graphic
Library.

10.5. The Second Iteration 194

STD Graphic Library

NNP GUI Library

Figure 10.10: Class-level dependencies from the STD Graphic Library to the NNP GUI
Library.

10.5.1 PROBLEM DEFINITION

When we started the second iteration the NNP platform started to assume a more important
role in the organization and more investments were allocated. The reegineering effort was
still progressing. The design of NNP was improved since the first iteration: well-defined
APIs, consistent partition of functionality and clear context of the platforms (in terms of
required/offered interfaces). The architects started the activity of defining the reference
architecture of NNP. The reference architecture should provide an overview of the sys-
tem, a description of the architecturally significant requirements, the rationale of the design
choices, the description of the architectural concepts and overview of the concrete design
(with information on the functionality, interfaces and ownership). Our task was to support
the creation of the reference architecture with the reconstruction activity. In particular our
focus was on the help the creation of the concrete design. Out work should also pave the
way for implementing a strict practise of architecture governance when NNP will enter in
full operational mode and will serve as a basis for a large product family. The goal of the
architects was to provide the platform with a robust reconstruction mechanism that would
allow them to constantly monitor the conformance of the implemented architecture against
their architectural decisions. The diagram in Figure 10.11 shows the general structure of
the NNP platform as it was defined during the second iteration. The NNP platform includes

10.5. The Second Iteration 195

NNP Product

Nokia New Platform (NNP)

Applications NNP GUI
Framework

NNP Platform
Core

Third Party Platform

OS, Services &
Resources

Proprietary
implementation

Proprietary
Specific

Extensions

HAL & HW
Resources

Figure 10.11: General structure of the NNP platform.

the NNP GUI framework, the platform core and a set of basic applications. The platform
depends on the third party OS and on proprietary specific extensions (this includes the
reengineered functionality from NOP). The scope of the second iteration is on the NNP
platform package.

10.5.2 CONCEPT DETERMINATION

In the second iteration we reused the concepts and the viewpoints defined in the first it-
eration with minor changes. Differently from the first iteration, we explicitly define the
relations pkgContainPkg and pkgContain during the knowledge interference activity.

10.5.3 DATA GATHERING

We followed the same extraction procedure like the first iteration. Differently form the first
iteration when we analyzed the build of the product, in the second iteration we analyzed
one build of the platform without any product specific implementation. (We also excluded
the implementation of the OS (except the header files for the interfaces) since it was not the
focus of the analysis).

10.5. The Second Iteration 196

10.5.4 KNOWLEDGE INFERENCE

The architect responsible for the reference architecture activity created a list of all the mod-
ules that belong to" the NNP. The list contained the details about what source directories
belong to the module, the functional location in the package structure and the ownership.
Although this information was still incomplete, it was the base for defining the relations
pkgContainPkg and pkgContain. We manually allocated the remaining modules by exam-
ining the target APIs for the platform and the hypothetical logical structure of NNP. The
servers have also been allocated to one package. The work resulted in about 300 contain-
ment relationships between packaged and modules.

We defined the generation of the target view with the relational algebra. The first operation
is to lift the invocation and access relations to the class level:

classU sage = invocation + access

classContain = hasjmethod + has-attribute

useDep = classU sage | classContain

For the dependencies with the NOP servers, we make a left lift:

msgDep = message] hasjmethod

The relation that contains the complete class-level dependencies is defined as:

classDep = useDep + msgDep + inherit

In the second iteration we maintain the one-to-one mapping between modules and direc-
tories as in the first iteration. Therefore, we can calculate the relation modContain in the
following way:

modContain = contain_file o fileContain

We can define the relation contain as the union of the package containment, the module
containment and the interface realization (the interfaces of the servers are logically grouped
within the servers themselves):

contain = pkgContainPkg + pkgContain + realize

We can calculate the high-level dependencies for the target view by lifting the class-level
dependencies:

dependency = classDep f contain

10.6. The Third Iteration 197

Third Party Platform

OS. Services & Resoiuces •* » Proprietary Implementation

Propriterny Specific Bitensiol

Protocols

C'ommnmcmicm

Devices

Nokia New Platform

NNP Applications
NNP GUI Framework NNP Platform Core

Figure 10.12: The top-level structure of the NNP platform.

10.5.5 PRESENTATION

We presented the final results with graphs generated from RlGl and DOT . The graph in
Figure 10.12 shows the top-level result of the reconstruction. We can compare it with the
intended design shown in Figure 10.11 and we can note that there are several unwanted
dependencies that need to be fixed in the implementation. The graph in Figure 10.13 shows
the internal dependencies among the packages of the NPP platform. This view shows the
information that was requested from the architects. This material has been used also for the
preparation of the reference architecture of NNP.

10.6 THE THIRD ITERATION

NNP has matured into a fully functional platform and it is the base for the development of
several products. The focus of the architects is to establish a proper architectural control of
the platform. The third iteration is focused on this goal.

10.6.1 PROBLEM DEFINITION

The third iteration started when the NNP was well-established and the architects were fo-
cused on improving the overall quality of the architecture. One key requirement is to ensure
that the architectural specifications are properly implemented in the platform.

10.6. The Third Iteration 198

NNP GUI Framework

NNP_Apps 3

NNPComm 2

Figure 10.13: Structure of the NNP platform.

10.6. The Third Iteration 199

«subsystem»
Service

(from Package 1)
+ API3
+ API2
+ API1

«subsystem» «subsystem»
Framework

"7T

«subsystem»

Engine
(from NNP OS)

«subsystem»

Engine
(from Package 2)

+ API4

«subsystem»
Ul Application

«subsystem»
NNP GUI

Framework

«subsystem»

Engine
(from Package 3)

+ API 5

«subsystem»

Engine
(from Package 4)

+ API6

«subsystem»

UlApp
(from Package 5)

+ API7

Figure 10.14: Structure of the NNP platform.

«subsystem»

(from U! App)
App

+ AP110
+ API9

«subsystem»
(from NNP OS)

Apps

«subsystem»

App
(from Ul App)

+ A P i r

The organization established a solid process for the architectural design of NNP. Every ar-
chitect is responsible for the design of one or more subsystems. The design includes the
specicifcation of the context of the subsystem, offered/required interfaces and the internal
design in terms of components/classes. Due to the size of the system and to the subcontract-
ing, the specifications are very strict on what the subsystem must offer and can require. The
whole design activity is based UML and all the design artifacts are stored in Rational Rose.
The UML diagram in Figure 10.14 shows an example of a context diagram for one sub-
system. The diagram clearly specifies what other subsystems and interfaces are required.
The UML diagram in Figure 10.15 shows the internal design of one subsystem in terms of
components and APIs.

We discussed with the architects the requirements for the reconstruction and we concluded
that two views are required: the logical and the build view. The logical view shows the
logical subsystems, the logical components and the interfaces. One typical scenario is that
an architect can select one subsystem and can create subsystem context view at the level of
interfaces. The build view shows the relationship between logical and physical components.
The user should be able to select one subsystem and find what binary files are included and
what source files are included.

10.6. The Third Iteration 200

O

«Servies»
Service 1

(from Packagol)

S APH
{ttom Servies II)

«Serv ice»
Servies 1b

(from Package!)

o
API 2 ^

(from Service 2)

\

«Service »
Service 2

(from Package 1)

«Service»
Service 2b

(fromPackagsi)

«Application»
App1

{from Package 1)

«Application»
App2

(from Package \)

~O
API 3

(from Package 1)

\

«Application»
App3

(from Pcckage 1)

Cf"
API 4

{from Package 1)

« U l Bamant»
Elemont!

(rroiTi Package 2)

o
APJ5

(from Package 1)

« U l Bemanl»
Bemonl2

(fnim Package 1)

API6

(from Package 1)

«Component»
Comp 1

(from Package 1)

API 7
{from Package 1)

«Component»

Comp 2

(from Package l)

• ;;7 A P I s
(from Package 3)

«Component»
Comp 3

(from Package 3}

Figure 10.15: Structure of the NNP platform.

10.6. The Third Iteration 201

The architects already have developed tools for analyzing the static dependencies between
subsystems based on the binary dependencies. The added value of our reconstruction pro-
cess is being able to show the dependencies at the level of interfaces. The dependencies
among the components are only allowed through the well-defined interfaces.

10.6.2 CONCEPT DETERMINATION

We organized a one day workshop with the architects of NNP in order to define the archi-
tectural concepts for the third iteration. We had to redefine most of the concepts that we
used in the previous iterations. The previous iterations were mainly focused on the plat-
formization work while in the third iteration the reconstruction is mainly focused on the
logical aspects of the NNP platform.

We identified the following key architectural concepts:

Component A logical component consists of a set of source files and provides interfaces
to other components. The interfaces are defined in the header files.

Subsystem A subsystem is an aggregate of components that implement a set of related
functionality.

Package Packages are used for organizing the subsystems in logical folders.

Interface An interface is represented by a class declared in a header file.

Binary File A binary file is generated during the build process. A binary configuration file
lists the files that are included in the binary file.

Build Component A binary component is a collection of binary file. In most of the cases
a binary component is directly mapped to one directory.

T H E TARGET VIEWPOINT

The diagram in Figure 10.16 show the target viewpoints for the third iteration. The logical
viewpoint reflects the main interest of the architects on the component/interface dependen-
cies. In this iteration we assume that one interface can only be realized by one and only
component. In the future we may change this assumption.

10.6. The Third Iteration 202

Subsystem

subContainComp

Component

buildContainBin
contain 1:n

Binary file

Build
Component

pkgContainPkg- r dependency

Package

pkgContainSub

1 r-
Subsystem

'dependency

I

libContainFile
I

subContainComp

File

Component

realize

The build viewpoint.

Interface

deplnherit,
deplnvocation,

depAccess

The logical viewpoint.

Figure 10.16: The viewpoints for the third iteration of NNP.

T H E SOURCE VIEWPOINT

The diagram in Figure 10.17 shows the source viewpoint for the third iteration. It includes
the design concepts from FAMIX (in gray) as in the previous iterations and the new concepts
that we need to create the target views.

T H E MAPPING RULES

We list the mapping rules for the third iteration:

• The relations deplnherit, deplnvocation and depAccess are respectively calculated
from the relations inherit, invocation and access among the classes that are contained
in the components.

• The relation realize is calculated from the relations binContainFile and binContain-
Comp.

• The relation subContainComp is available from a spreadsheet that contains detailed
information for each binary file (like the name, the containing subsystem and the
size).

• The relation pkgContainSub and pkgContainPkg are available from the design arti-
facts and can be extracted from Rational Rose.

10.6. The Third Iteration 203

Component

1:1

binContainComp
Binary File

Interface

buildContainBin Build
Component

binContainFile

contain_dir-n

Directory I

containHeaderFile

Header File

Source File

•• r
r

contain file

File

fileContain
decl fn

inherit

Class

has attribute

Function

has_method j n v o c a t i o n i n v o c a t j o n

Attribute Methodiinoa —I

invocation

Figure 10.17: The source viewpoint.

10.6. The Third Iteration 204

• A Component is a logical entity and in this iteration is mapped directly to a binary
file. In the future the mapping will be refined.

• A Bu i ld Component is mapped one-to-one to a D i r e c t o r y .

10.6.3 DATA GATHERING

We followed different strategies for gathering all the data. For the FAMIX concepts (in
gray in Figure 10.17) we relied on Source Navigator as in the first iteration. The output of
Source Navigator has been stored in a RSF file. For the architectural elements we used the
following methods:

• An I n t e r f a c e is mapped to a set of header files through a mapping table. The
table is maintained by the architects in a spreadsheet from where the relation con-
tainHeaderFile is extracted. We stored the relation in a RSF file.

• The relation subContainComp is extracted from the spreadsheet of the binary files
and stored in a RSF file.

• The binContainFile is extracted from the configuration files. A Python script tra-
verses all the file system, parse the configuration files and stores the result in a RSF
file.

• The relation pkgContainSub and pkgContainPkg are available from the design docu-
ments and can be extracted from Rational Rose.

• The relation buildContainBin is based on the configuration files that are contained in
the directory of the build component.

• The relation binContainComp is a one-to-one mapping between logical components
and binary files.

We merged the results from the various sources by concatenating all the RSF files. The
scripts have been implemented using Python.

10.6.4 KNOWLEDGE INFERENCE

We defined the generation of the target view with the relational algebra. In this iteration,
we assume the one-to-one mapping between components and binary files, therefore we can

10.6. The Third Iteration 205

define the relation compContainFile that maps components to files:

compContainFile = binContainFile

We can calculate the interfaces that are realized by the components in the following way:

realize = compContainFile o containHeaderFile~l

The classes and functions that belong to one interface are calculated as:

interfaceContain = containHeaderFile o (fileContain + decLfn)

We can also calculated the classes and functions that belong to the components through
their interfaces:

compContain = realize * inter faceContain

Now we can lift the low-level dependencies to the level of classes and functions that repre-
sent the basic elements of interfaces:

classlnvocation = invocation f hasjmethod

classAccess = access | {has-attribute + hasjmethod)

funclnvocation = invocation] hasjmethod + invocation \ hasjmethod

We can calculate the dependencies between components and interfaces in the following
way:

deplnvocation = compContain o funclnvocation o inter faceContain'1 +

compContain o classlnvocation o inter faceContain*1

depAccess = compContain o classAccess o inter faceContain'1

deplnherit = compContain o inherit o inter faceContain'1

We can define the relation contain as the union of the package containment and subsystem
containment. The interfaces are logically grouped together with their components through
the relation realize. We can do this operation because we assume that an interface can only
be realized by one component. In the future we may loose this constraint and implement a
different grouping for interfaces (in order to support variability):

contain = pkgContainPkg + pkgC ontainSub + subC ontainC omp +
subContainComp o realize

10.7. Conclusions and Lessons Learned 206

We can calculate the high-level dependencies for the target view by lifting the component-
interface dependencies:

usage = deplnvocation + depAccess + deplnherit

dependency — usage j contain

10.6.5 PRESENTATION

Since the architects prefer to store the reconstructed models in the same format as the design
artifacts, we decided to converted the component view to UML. We have converted the
models with the following conventions:

• An I n t e r f a c e is mapped to a UML interface element.

• A Component is mapped to a UML stereotyped classifier called Component.

• The relations deplnvocation, deplnheritance and depAccess have been mapped to
UML stereotyped dependencies.

• A Subsystem and a Package have been mapped to UML stereotyped packages.

• The relation dependency has been mapped to the UML dependency.

The result is a model that can be visualized with Rational Rose. An example is shown in
Figure 10.18. The architects appreciated that the reconstructed models can be integrated
with their architecting tool. In the future, we will focus in achieving a seamless integration
with UML in order to create a unique model for architecting/rearchitecting as we produced
for the case study 1.

10.7 CONCLUSIONS AND LESSONS LEARNED

This case study demonstrated how architecture reconstruction has supported various tasks
of a platformization activity. Initially, we helped the architects with the analysis of the de-
pendencies among the modules of the original product. Successively, we helped them with
the creation of the reference architecture by recovering up to date models of the concrete
structure of the platform. As the one-shot development was completed, in the third iteration
we have helped them to introduce a systematic method for checking the as-implemented ar-
chitecture against the architectural specifications. This work will continue in the future in

10.7. Conclusions and Lessons Learned 207

DOB * HaSl

frù
è-Q <•

51 Ü
è-Q«

je»Me.
ge» Met I
j»>Me, I
*»M.J

Ç3-Û «Component» Medk^J
É Ù « Package» Me*
VQ« Package» Me. '
lâ~Q « Package» Me«
éhd « Package;
HO-CD« Package>
S-CD « Package>

Package» Me*
tComponenl» Medû

Package» Me=
Package>> M&
Package» Md
Package» Mn
Package» MM

S O <<Componem» C
S>C3 «Component»C
[+J C3 <<Con«xinent» C
S - Q <<Component» C
a-C l «Component»C
S Q <<Component>> C
S>Cî <<Component>>C
É C l «Component>> C

..JfllxJ
-181 xi

s i a a

:<Cûmponent»
Component 9

«Component»
Component 8

«Component»
Comp 1 «Component»

Component 4

«Component» [,.-••
Comp 2

<<Component>>
Component 7

«Component»
Component S

<Component>:
Comp 3

<<Component>>
Component 5

[Dela| Language: AnaNs

Figure 10.18: The context diagram of one subsystem.

order to provide a robust and automatic method of architecture conformance checking as
we introduced in the case study 1.

We summarize below the lessons that we have learned during the experience:

• At the beginning of the case study, it took considerable time to generate enough inter-
est for the reconstructed models. We believe that this was caused by the fact that the
architects and developers were overwhelmed by the one-shot development and they
had to carefully allocate their resources. There was a natural resistance against intro-
ducing new methods in their development practise, unless they could see immediate
benefits. For this reason, in the first and second iteration we carefully targeted our
reconstruction efforts on very precise goals. As the one-shot development completed,
we could set long-term goals for supporting the architecture maintenance.

• Our reconstruction method revealed to be flexible against changes in the architectural
concepts and in the reconstruction process. We could easily adapt the process to the
changing goals of the architects over the three iterations.

• We experienced a noticeable resistance against the introduction of new tools. The
choice to deliver the reconstructed models in Rational Rose following UML was

10.7. Conclusions and Lessons Learned 208

largely appreciated by the architects. This fact supports the belief that reverse en-
gineering has to be integrated with the same tools that are used during forward engi-
neering. In the future, we will work on achieving a closer integration with Rational
Rose as we have presented in (Riva et al. , 2004a).

CHAPTER 11

CONCLUSIONS

Quality isn't something you lay on top of subjects and objects
like tinsel on a Christmas tree.

- Robert Pirsig

In this chapter we summarize the results of this dissertation and we discuss the possible
future research topics.

11.1 SUMMARY

In this dissertation we have presented the method NIMETA for reconstructing the software
architecture of large embedded software systems as developed at Nokia. These systems are
typically organized in a product family, consists of millions of lines of code. Since they
represent a considerable long-term investment for Nokia, they require a robust and well-
understood software architecture. NIMETA provides the method and tools to support not
only the recovery of the architecture description but also the conformance check against the
architectural constraints.

In Chapter 2, we introduce the background information about software architecture and re-
verse engineering. In our working definition, a software architecture comprises the impor-
tant design decisions taken for the development of the system. Architecture reconstruction
is the process of creating an architecture description that document those design decisions
that are considered vital by the developers. The overview of the related work (Chapter 3)
shows that the existing reverse engineering approaches are not able to raise the level of
abstraction at the architectural level and they are limited on one or few architectural view-
points. In Chapter 4 we have presented the main problem addressed by this dissertation:

209

11.2. Recommendations 210

developing a methodology for reconstructing a documented architecture from the avail-
able evidence (implementation, documentation and people). In particular, we focus on (1)
recovering the architecturally relevant views that are considered vital by the stakeholders
of the system, and (2) the problem of automating the conformance checking of the archi-
tecture against specific architectural rules. In Chapter 5, we have introduced the mathe-
matical foundations for the NiMETA approach: the binary relational algebra. The algebra
provides us a formal and expressive formalism for modeling the design and architectural
viewpoints, as we have presented in Chapter 6. For the design viewpoint, we have selected
the FAMIX meta-model as it provides a language-independent and abstract representation
of the source code. We selected the architectural viewpoints from the unified catalogue
proposed in (Clements et al. , 2003). In Chapter 7, we introduce the NiMETA architecture
reconstruction process. It consists of three phases: process design, view recovery and result
interpretation. The process design is concerned with the definition of the goal of the re-
construction (problem definition) and the selection of the architectural concepts and views
(concept determination). The view recovery delivers the architectural views and consists of
three activities: data gathering, knowledge inference and presentation. The last phase, result
interpretation, is concerned with making an efficient use of the reconstructed architecture
for architecture conformance checking, architecture assessment and re-documentation. In
Chapter 8, we present the NiMETA tool environment that supports the NiMETA architecture
reconstruction process. The environment consists of an integrated set of reverse engineering
and presentation tools for the three tasks of extraction, abstraction and presentation. Chap-
ter 9 describes the first case study. The three iterations demonstrate the development of an
architecture reconstruction process for a Nokia product family. The case study also show
how we supported the architecture conformance checking with the NiMETA formalism.
Chapter 10 presents the second case study that demonstrates how the architecture recon-
struction has been used to support the migration of monolithic product towards a platform
for a product family.

11.2 RECOMMENDATIONS

We provide several recommendations for applying NiMETA to other systems or to other
domains. The NiMETA process has been designed to be tailored around the particular ar-
chitectural style of the system under analysis. There are two important factors that one
should consider: the architectural concepts and the architectural views.

The correct selection of the architectural concepts guarantees that the recovery is well-
focused on the architecturally relevant aspects and it is coherent with the architectural style.
In a distributed software system, asynchronous messages cause logical dependencies that
are necessary for understanding the overall design of the system. Our recommendation is

11.3. Conclusion 211

that the architectural concepts are first-class elements of the reconstruction.

The architectural views guarantee the correct scoping of the reconstruction. The description
of an architecture consists of multiple views concerned on particular aspects of the system.
Moreover, the software architecture does not capture all the details of the implementation
but only certain aspects that considered important by the architects. Our recommendation
is that the reconstruction process is well focused on the architectural views that have been
defined with the stakeholders, especially the architects. NlMETA 's approach is strongly
centered on the recovery of the architectural views.

As the system evolves, the reconstruction process has to be correctly maintained. Ideally,
the reconstruction process should be embedded in the build process and jointly maintained.
In this way it can deliver the architectural views for every new build. NIMETA has been
designed as a pipeline of tools and script in order to satisfy this requirement. Our rec-
ommendation is that the vendors of architecture modeling tools should enable the users to
easily configure the reconstruction pipeline for a seamless integration with the build pro-
cess.

11.3 CONCLUSION

A properly documented architecture is a vital factor for the success of large software sys-
tems containing millions of lines of code. The architects need to create simplified mental
models of the important design decisions in order to cope with their inherent complexity.
Software architecture reconstruction is a key technique for recovering and maintaining the
architecture description. Maintaining the architectural control is especially vital for large
product families consisting of hundreds different components, developed by hundreds peo-
ple concurrently and located in multiple geographical sites. The architects are particularly
interested in recovering the logical dependencies among the components and in preserving
the integrity of the structural organization of the various software parts. The NIMETA ap-
proach addresses these issues in the first place, providing a configurable, adaptable, scalable
and robust reconstruction technique.

11.4 FUTURE WORK

We conclude this dissertation by summarizing the future research topics:

Architecture evolution. The evolution of the architecture has to be properly supported

11.4. Future Work 212

with techniques for comparing the architectural differences between different re-
leases, calculating the architectural metrics and, in general, monitoring the overall
quality of the architecture.

Design for reconstruction. Our claim is that software systems should be designed not only
for change (in order to anticipate the future changes) but also for reconstruction.
There are architectural styles that facilitate the reconstruction more than others. The
architecture should be properly designed in order to support its own extraction. In the
future, we will concentrate on creating several guidelines for supporting the design
for reconstruction and on integrating those guidelines with NIMETA .

UML conformance. UML is a widely accepted modeling language that has also been pro-
posed as an architecture description language. Our intention is achieve a seamless
integration of UML with NIMETA . In the future, we will exploit how to support a
complete architecting and re-architecting with UML. In the Section 8.5.6 we have
already presented our initial results with the tool ART.

Architect assistant. The increasingly complexity of existing software systems is reaching
the limits of human comprehension. In a recent invited talk, P. Grahm speculated
on what programming language will be like in a hundred years when the hardware
computational power will be much higher than now (Graham, 2003). Our concern
is not only how these systems will be developed but how they will be maintained.
Since their complexity will probably exceeds humans' comprehension, we believe
that artificial intelligence techniques will be required. In the future we will concen-
trate on developing an expert system, called architect assistant, that can help the work
of the architects. The assistant should be able to automatically extract the data, detect
anomalies and prioritize the detected architectural problems.

APPENDIX A

NlMETA SCRIPTS

A.I EXTRACTION SCRIPTS

This appendix lists the source code of various programs that we have discussed during in
other sections.

A. 1.1 SNAV2NIMETA.TCL

#/'/usr/local/apps/source — navigator/latest /bin/hyper
Snav2nimeta.tel
#
Converter from the RedHad SourceNavigator to the FAMIX model
The output is stored in RSF or GXL format
#

Global variable s
project-name " "
projecl.path " "
project.dir ••
ext •*"
cl 0
attr 0
meth 0
meth_imp 0
fl 0
func.decl 0
func-def 0
mac 0
gv 0
tdef 0
inh 0
ace 0
inv 0
incl 0
output stdout
of i le stdout
format "rsf "

GXLIDCounter 0
array IDToName
array NameToID

Is this object a function or method implementation ? Returns I if so, 0
otherwise.
proc îsfun

i f { [s
[s
[s

{objtype} {
ring compare " S o b j t y p e ' - fu") = = 0 j | \
ring compare "Sobjtype* "mi"] = = 0 [| \
ring compare "Sobjtype" "fd"] == 0 } {

return 0
}

213

A.I. Extraction scripts 214

Is this object a global or local variable implementation ? Returns 1 if 50, 0
otherwise.
p r o c i s v a r { o b j t y p c } {

if { (s t r i n g compare - $ o b j t y p e " " g v " | = = 0 | | \
[s t r i n g compare " S o b j t y p e * " i v ' l == 0} {

r e t u r n 1
}
r e t u r n 0

}

A class ?
proc i sc lass {objtypc} {

if { [s t r ing compare "Sobjtype" - c l "] = = 0 } {
return I
}
return 0

A method attribute ?
proc ismacro {objtypc} {

if {[string compare "$objtype" 'ma* 1 == 0} {
return 1
}
return 0

A type definition ?
proc istypedef {objtypc} {

if {[string compare "$objtype' "Cl = 0} {
return 1

return 0

Transform a class /method name into a fully qualified C++ method (ie.
class.method).
proc qualify Function {class method argument} {

set s ignature [c rea teS igna ture Smethod Sargument J
if { [s t r ing compare Sclass * \ l *] =- 0} {

return Ssignaturc

return " S {classÎ . $ {s ignature} " ;# C++ style naming

Tran sform a c/asj/variable name into a fully qua I ifi ed C++ variable { ie.
class, variable) .
proc qualify Variable {class variable} {

if {[string compare Sclass ' \ # " | =»0} {
return Svariable

return *$(class).S{variable}• ;# C++ style naming

Create a complete signature for functions and methods
proc createSignature {routine argument} {

regsub —all " " "${ routine} {$ {argument})" "" signaturcShort

return Ssignatu re Short

printFiles(path)
Print the file system structure of the files in the project
proc p r in tF i les {path} {

global ext

Open the .f f i l e of SNavigator
set filcsDB [dbopen nav_f î le Spath . f RDONLY 0644 btree {caches ize=200000} |

^Extract all the files
s e t f i l e s [S f i l e s D B s e q]

f o r e a c b e n t r y $ f i l e s {
s e t f i l e P a t h [l i n d e x S e n t r y 0]
s e t f i l e T y p e [l i n d e x [l i n d e x S e n t r y 1] 0]

Print only .c* files
if [s t r i n g match $ext SfilcTypel {

set parts [s p l i t SfilcPath /[
set counter [expr [I length Sparts [—2]

UExtract the name of the directory
s e t f i l e D i r [j o i n [I r a n g e S p a r t s 0 S c o u n t e r] /)

i f { S f i l e D i r = = • • } {

A.I. Extraction scripts 215

sel f i l cDir • . / •
prinlNodc Sf i leDir "Directory" {}

set a t t r [l i s t " f i l e $ f i l e P a t h ")

print Node $f i lePath ' F i l e " Sattr
printArc Sfilc Dir $f i lePath " c o n t a i n _ f i l e "

while {$countcr > 0} {
sel element (l index Sparts Scounter |
sel parentDir [jo in [Irange Sparts 0 [expr Scounter—1)] /[
set dirNamc [jo in [Irange Sparts 0 [expr Scountcr] | /)
printNodc SparentDir 'D i r ec to ry" {}
print Node SdirName "Directory" {}
printArc SparcntDir SdirName "con ta in_d i r"
incr counter —1

}
if {{counter == 0} {

printNode Sfi leDir "Directory" {}
}

unset f i les

printFuncDef (path)
Print the functions d efi nit ions
proc printFuncDef { path } {

global functions

Open the .fu f i l e of SNavigator
set funcDefDB Idbopen nav.funcf Spath.fu RDONLY 0644 btree {cachesize=200000 }I

#Extract all the function definitions
set funcDcf [SfuncDefDB seqJ

fore ach entry SfuncDcf {
set name [l index [l index Sentry 0] 0]
set f i le [l index {lindex Sentry 0 | 2]
set argument [l index [l index Sentry t] 3]
set s ignature (c r e a t e S i g n a t u r e Sname Sargument]
set a t t r [l i s t - f i l e $ f i l e "]
printNodc Ssignature "Function" Sattr
printArc Sfilc Ss ignature "de£_fn"

}
unset funcDcf

}

printFuncDecl (path)
Print the functions declarations
proc printFuncDecl { path } {

global functions

Open the .fd f i le of SNavigator
set funcDeclDB [dbopen nav.funcd Späth.fd RDONLY 0644 btree {cachesize=200000}]

#Extract all the function declarations
set funcDecl [SfuncDeclDB seq]

foreach entry SfuncDecl {
set name [l index [l index Sentry 0] 0]
set f i le [l index (l index Sentry 0] 2]
set argument [l index | l index Sentry 1} 3]
set s ignature [c r e a t e S i g n a t u r e Sname Sargument]

set a t t r [l i s t " f i l e $ f i l e "]
printNode Ssignature "Function" Sattr
printArc Sfilc Ssignature "decl_fn"

}
unset funcDecl

}

printClass (path)
ft Print the functions declarations
proc pr in tClass {path} {

Open the .cl f i le of SNavigator
s e t c l a s s D B | d b o p e n n a v . c l a s s S p a t h . c l RDONLY 0 6 4 4 b t r c c { c a c h e s i z e = 2 0 0 0 0 0 } 1

#Extract all the classes
s e t c l a s s [S c l a s s D B s e q]

f o r e a c h e n t r y S c l a s s {
set name (Hndex | lindex Sentry 01 0|
set f i le [l index [l index Sentry 0 | 2 |

A.I. Extraction scripts 216

it This is to remove the spaces
regsub —all " * Sname " " namcShorl
sel a t t r | l i s t " f i l e $ f i l e ")
print Node SnameShort 'C lass* $al l r
prinlArc Sfile SnameShort •concain"

>
unset class

}

printMethod (path)
Print the methods of the classes
proc printMcthodDcf {path} {

Open the .mtl f i le of SNavigator
set mcthDcfDB |dbopen nav.mcthdcf Spath.md RDONLY 0644 btrcc {cachcsizc=200000 }|

^Extract all the methods
set mcthDcf [SmethDefDB seq]

foreach entry SmethDcf {
set className [lind ex [lind ex Sentry 0 | Ü]
set methodName [Hndex [l index Sentry 0] 11
set Tile | lindex [l index Sentry 0) 3 |
set argument [l index [l index Sentry 1) 3]
set s ignature [qualify Function $c I ass Name SmethodName $ argument]

set a t t r [l i s t " f i l e $ f i l e " "belongsTo $className' " s i g n a t u r e SmethodName"|

printNode Ssignature "Method" Sat t r
print Arc SclassName Ssignaturc "has_method"

}
unset mcthDef

}

printMethod (path)
Print the methods of the classes
proc printMethodlmp {path} {

Open the .md file of SNavigator
set methDefDB [dbopen nav.methdef Spath.mi RDONLY 0644 btree {cachesizc = 200000} |

#Extract all the methods
set methDef [SmethDefDB seql

foreach entry SmethDef {
set className [lindex [l index Sentry 0] Oj
set methodName [l index [l index Sentry 0] 1]
set f i le | lindex [l index Sentry 0| 3]
set argument [lindex [l index Sentry I] 3]
set s ignature IqualifyFunction SclassName SmethodName $ argument]

set a t t r (l i s t " f i l e S f i l e " "belongsTo SclassName" " s i g n a t u r e $methodName']

printNode Ssignature "Method" Saltr
printArc Sfile Ssignature "f ilelmplementMethod"

}
unset methDef

}

p r o c p r i n t A t t r i b u t e { p a t h } {
g l o b a l of i l e

Open the .md f i le of SNavigator
set attrDcclDB (dbopen n a v . a t t r i b u t e Spath.iv RDONLY 0644 btree {cachesizes:200000}]

#Extract all the methods
set a t t rDecl | SattrDeclDB seq]

foreach entry SattrDecl {
set className (l index [l index Sentry 0] 0]
set attrName [lindex [l index Sentry 0] I]
set f i le (l index [l index Sentry 0) 3]
set s ignature [qual i fyVariable SclassName SattrName 1

set a t t r (l i s t " f i l e S f i l e ' 'belongsTo SclassName")
printNode Ssignature "At t r i bu t e" Sattr
printArc SclassName Ssignature " h a s _ a t t r i b u t e "

>
unset attrDecl

}

proc printMacro {path} {

Open the .md f i le of SNavigator
set macroDB (dbopen nav.macro Spath.ma RDONLY 0644 btree {cachesize=200000 } 1

A.I. Extraction scripts 217

#Extract all the methods
set macro [SmacroDB scq]

foreach entry Smacro {
set macroName [lindex [l indcx Sentry 01 0)
set f i l e [l index [l index Sentry 0] 2]
#sel signature [qualifyVariable SclassName SattrName]

set a t t r | l i s t - f i l e $ f i l e "]
printNode SmacroNamc "Macro" $ a11 r
pr in tArc Sf i le SmacroNamc * c o n t a i n "

}
unset macro

}

proc printTypcdef {path} {
Open the .md f i l e of SNavigator
set typcdcfDB [dbopen nav.typedef Spath.t RDONLY 0644 btrec {cachesize = 200000}]

^Extract all the methods
set typedefs [StypcdefDB seqî

foreach entry Stypedefs {
set typeName [l index [l index Sentry 0] 0]
set f i l e [l index [l index Sentry 0] 2]

set a t t r [l i s t " f i l e $ f i l e " |
printNode StypeName "TypeDef " S a t t r
pr in tArc Sfjle StypeName " c o n t a i n "

>
unset typedefs

}

proc printGIobalVariable {path} {
Open the .md f i l e of SNavigator
set globalvarDB [dbopen nav_globalvar Spath.gv RDONLY 0644 btree {cachesize=200000}]

#Extract all the methods
set globalvars [SglobalvarDB scq)

foreach entry Sglobalvars {
set varName [lindex [(index Sentry 0] 0]
set file [lindex [lindex Sentry 0] 2|

set attr [l i s t " f i l e $ f i l e "]
printNode SvarNamc "Globalvariable" Sattr
printArc Sfile SvarName "contain"

}
unset globalvars

}

proc p r i n t l n c l u d e {pa th} {
Open the .md f i l e of SNavigator
set inclDB [dbopen nav.include Spath, iu RDONLY 0644 btree {cachesize = 200000}]

#Extract all the methods
set include [SinclDB scq]

foreach entry Sine lüde {
set i n c l u d e d F i l c [l index [l index Sentry 0] 0]
set includeFrom [l index [l index Sentry 0J 2]

pr in tArc S includeFrom Sinc ludedFMe " i n c l u d e "
>
u n s e t i n c l u d e

}

proc p r i n t l n h e r i t a n c e {pa th} {

Open the .md fi 1 e of SNavigator
set inherDB [dbopen n a v . i n h c r i t a n c c Spa th . in RDONLY 0644 b t rec {cachesize =200000}]

#Extract all the methods
se t i n h e r i t a n c e [SinnerDB seq]

foreach entry S i n h e r i t a n c e {
set className [l i ndex [l index Sentry 0 | 0]
set baseCIassName [l index [l index Sentry 0 | 1|

pr in tArc SclassName SbaseClassName " i n h e r i t "
>
u n s e t i n h e r i t a n c e

Print the references

A.I. Extraction scripts 218

proc printRcfTo {path} {
global ofite
global sn.scp
global func.def
global meth

Open t h e . t o f i l e of S N a v i g a t o r (t o r r e f e r e n c e s t o)
set refToDB [dbopcn nav_rcfto Späth.to RDONLY 0644 btree {cachcsizc=200000 }1

if {Smeth} {
#Open the .mi file of SNavigator (for method implementation)
set mcthlmplDB [dbopcn nav.mcthdcf Spath.mi RDONLY 0644 btrce {cachcsizc=200000} |
set met hi m pi [SmethlmplDB set] I

if Print all the references for the methods of the classes
foreach entry Smcthlmpl {

set classNamc [lindex [lindex Sentry 0) 0]
set methodNamc [lindex [lindex Sentry 0) 1]

printlnfoRefTo SclassName SmethodName SrefToDB

if {Sfunc.def} {
set funcDcfDB [dbopen nav.funcf Spath.fu RDONLY 0644 btree {cachesize=200000 })
set funcDef [SfuncDcfDB seq)

#Print all the references for the functions
foreacb entry SfuncDef {

set name [lindex [lindex Sentry 0] 0]

printlnfoRefTo • #* $name SrefToDB

proc printlnfoRefTo {className methodName db} {

globa
globa
globa
globa
globa
globa

o f i l e

ace
mac
tdef

Query only the references of functions {not methods of classes)
append pattern SclassName $sn_sep $met hod Name
set refTo [$db seq Spaltern]

foreach entry SrefTo {
#Extract names and methods of caller and callée

ca l le rClassName [l i n d e x [l i n d e x Sentry 0] 0)
callerMethodName [l i ndex [l index Sentry 0) 1)
cal lerMethodType [l i ndex [l index Sentry 0[2)
cal le rMet hod Argument [l i n d e x [l index Sentry 1] 0]
cal leeClassNamc [l i ndex (l i n d e x Sentry 0] 3}
calleeMethodNamc [l index [l index Sentry 0] 4}
calleeMethodType [l i ndex [l i ndex Sentry 0] 5]
calleeMet hod Argument [l i n d e x [l index Sentry 1) 1]

if { [i s func Scal lerMethodTypel && [isfunc ScalleeMethodType) } {
se t c a l l e r [qua l i fy Func t ion $callcrC lass Name Seal le rMet hod Name Seal le rMet hod Argument]
se t cal lee [qua l i fy Func t ion ScalleeClassName Sea] lee MethodName Seal lee Method Argument]

if {$ inv} { pr in tArc S c a l i e r $ca(lce " i n v o c a t i o n * }

} e l s e i f { [i s func ScallerMethodType 1 && (i svar ScallecMethodType [} {
se t c a l l e r [qua l i fy Funct ion ScallerClassName Seal le rMet hod Name ScallerMethod Argument]
se t accessed (q u a l i f y V a r i a b l e ScalleeClassName ScallccMethodName I

if {$acc} {p r in tArc S c a l i e r Saccessed ' a c c e s s ' }

} e l s e i f { [i s func ScallerMcthodType] && [i s c l a s s ScalleeMethodTypc | } {
set c a l l e r [qual ify Funct ion ScallerClassName Seal le rMet hod Name Seal le rMet hod Argument]
se t accessed ScallecMethodName

if {$acc} {pr in tArc Sca l i e r Saccessed " a c c e s s " }

} e l s e i f { [i s func Scal lerMethodType] && [ismacro ScalleeMethodType] } {

se t c a l l e r [qua l i fy Func t ion ScallerClassName $c alle rMet hod Name Sea I le rMet hod Argument]

if {Smac} {pr in tArc S c a l i e r ScalleeMethodName "expans ion"}

} e l s e i f { [i s func Scal lerMethodType] && [i s typede f ScalleeMethodType 1 } {
se t c a l l e r [qua l i fy Func t ion ScallcrClassName ScallerMethod Name Scal lerMethodArgument]

A.I. Extraction scripts 219

if { Stdef } {priniArc Scalier ScalleeMethodName 'use_ type"}

unset pattern
unset refTo

GXL

proc printGXLHcader {modelName} {

global ofile

puts Sofile "<?xml v e r s i o n = \ " 1 . 0 \ ' ? > '
puts Sofile -<!DOCTYPE gxl SYSTEM \ • gx I .d td \ ->"
puts Sofile "<gxl>'
puts Sofile "\ t<graph id=\"SmodelName* edge ids=\ ' t r u e \ '

proc printGXLFootcr {} {

global of i le

puts Sofile " \ t < / g r a p h > '
puts Sofile "</gxl>"

proc toXML { s t r } {
regsub —all {&} $str {\&} s t r
regsub - a l l {<} $str { \< ;} s t r
regsub - a l l {]]>} $str {]] \> ;} s t r
re tu rn $str

RSF
proc toRSF { s t r } {

regsub —all {\s+} $s t r {} s t r
r e tu rn $s t r

proc printNodc {nodcNamc nodcType at t r} {

global ofile
global format
global GXLIDCountcr
global IDToName
global NamcToID

if {[info exists NameTolD< -$noaeName-)] == 0} {
set IDToName($GXLIDCounter) SnodeName
set NamcToIDCSnodeName") SGXUDCounter
set ID SGXLIDCounter
incr GXLIDCounter

} else {
#Node already exists, so quit
#set ID SNameToIDC$nodeName')
return

switch {format {
•rsf {

set name [toRSF SnodeName]
puts Jofile "type $name SnodeType"
foreach entry Sattr {

set type [lindex Sentry 01
set val [toRSF Ilindfx Sentry 1| |
if {Sval != ••} {

puts Sofile "$type $name $val*
}

}
'gxl- {

puts Sofile "\t\t<node id=\'_SlD\">"
#pnts Sofile "\t\t\t<type xlink:href=\' fam'tx.gxl#$nodeType\' />
puts Sofile " \ c \ t \ t < a t t r name=\' type\">"
puts Sofile "\t\C\t\C<string>SnodeType</string>'
puts Sofile "\t\C\C</atcr>"
puts Jo file " \ t \c \c<actr name=\"name\">"
puts Sofile "\t\c\c\c<string>[coXML $nodeName]</string>"
puts Sofile * \c \ t \ t< /a t t r>"
foreach entry Sattr {

set type [lindex Sentry 0|
set val [lindex Sentry 1|
if {Sval != ••} {

puts Sofile " \ t \ c \ t<ac t r name=\' $type*>"

A.I. Extraction scripts 220

puts Sofile "\t\t\t\t<string>[toXML Sval]</string>"
puts Sofile * \ t \ t \ t < / a t t r > "

puts $of ilc ' \t\t</node>"

proc printArc {srcNamc deslNamc arcTypc} {
global of i le
global format
global GXLIDCounlcr
global IDToName
global NameToID

switch Sformat {
•rsf- {

puts Sofile *$arcType tcoRSF $srcName] [coRSF $destName]"
}
-gxl- {

if {[info exists NameToIDf -$srcName-)1 = 0} {
printNodc SsrcNamc "Unkown" {}

}
if {[info exists NameToID("$destName")] ==0} {

print Node SdestName " Unkown ' {}
}
set srcID $NameToID("$srcName")
set dcstID $NameToID("$destName")
puts Sofilc ' \ t \ t<edge id=\"_$GXLIDCounter\" from=\"_$srcID\" to=\" _$destID\"
#puts So file '\t\t\t<type xl ink: href=\'famix.gxl#$arcType\"/>'

" \ t \ t \ t<attr name=\'fromNodeName\->"
"\t\t\t\t<string>[toXML $srcName]</string>"
•\c\t\t</attr>"
"\t\t\t<attr name=\"toNodeName\">"
"\t\t\t\t<string>[coXML $destName]</string>"
"\t\t\t</attr>"
"\t\t\t<attr name=\"type\">"
"\t\t\t\t<string>$arcType</string>"
•\t\t\t</attr>'
"\t\t</edge>"

incr GXLIDCounter

puts
puts
puts
puts
puts
puts
puts
puts
puts
puts

$ofi
$ofi
$ofi
$ofi
$ofi
$ofi
$ofi
$ofi
Sofi

Ic
le
le
le
le
le
le
le
le

Sofile

#Ma\n function

if { Sarg
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts
puts

< 1 > {
'Snav2Kimeta vl.0 - Converter from RedHad SourceNavigator to Famix model"

"Syntax: hyper snav2gxl.tel <lang> <format> <options> <SNavigator project> <output file>
"\n<lang>:"
*\tJava: language type is Java"
"\tc++: language type is c++"
"\n<format>:"
"\tgxl: output in GXL format"
•\trsf: output in RSF format"
•\n<options>:"
•\tcl+/-: classes"
"\tattr+/-: attributes"
"\tmeth+/-: methods'
"\tmeth_imp+/-: method implementations"
"\tfl+/-: directories, files"
"\tfunc+/-: functions"
"\tgv+/-: global variables"
"\tmac+/-: macros"
"\ttdef+/-: typedefs"

*\tinh+/-: inheritance"
*\tacc+/-: access"
*\tinv+/-: invocation"
"\tincl+/-: include"
*\n by default:"
" c++: +cl +fl +func +gv +inh +acc +inv"
" Java : +cl +f1 +inh +acc +inv"
" tel : f1+ func+ gv+ acc+ inv+"
* none: for no language selection
" format: gxl "
" output on stdout"

•Example: hyper snav2nimeta.icl Java /pro j / tes t \n"

A.I. Extraction scripts 221

p u t s " I f h y p e r d o c s n ' I w o r k , p l e a s e t r y l o i n v o k e i t w i t h f u l l p a t h "
e x i t

Ï

for {set i 0} {$i < $argc) tincr i} {

sec entry I1index $argv $ij

switch $entry {
•Java- {

sec cl 1
set atcr 1
set mech 1
sec £1 1
sec inh 1
set ace 1
set inv 1
set ext "Java"
}

•c++- {
set cl 1
set attr 1
set meth 1
set meth_imp 1
sec fl 1
sec func_decl 1
set func_def 1
sec gv 1
sec inh 1
set ace 1
set inv 1
set ext "c*"

i
• t e l - {

sec fl 1
set func_def 1
set gv 1
set ace 1
sec inv 1
sec ext "tel"
}

"none" {
}

"cl+" { sec cl 1}
"cl—" { set cl 0}
"attr+' { set attr 1J
" attr— " { set atCr 0}
"meth+" { sec meth 1}
•mcth—" (sec meth 0}
•meth_imp+' { sec mech_imp 1}
"meth.imp—" { set meth_imp 0}
"fl+" { sec fl 1}
•fl—• { sec fl 0}
"func_decl+" { set func_decl 1}
"funcdeel—" { set func_decl 0}
•func_dcf+' { set func_def 1)
"func.def—* { sec func_def 0}
"gv+" { set gv 1}
"gv—• { set gv 0}

" mac+" { set mac 1}
"mac—" { set mac 0}
•tdcf+" { set tdef 1}
"tdef-" { set tdef 0}
•inh+" { set inh 1}
"inh—' { set inh 0)
•acc+' { set ace 1)
•ace—" { set ace 0}
"i n v + " { set inv 1}
"inv— " { set inv 0)
"incl+' { set incl 1}
• incl— " { set incl 0}
"gxl" {set format 'gxl"}
"rsf" {set format " rsf ' Î
default {

if {$project_path == ""} {
»Set the project file
set project_path [lindex $argv Si]

regsub -all {\.proj} $project_path {} tmp
set index [expr [string last "/" Stmp] - 1]

set projecC_dir [string range Stmp 0 Sindex]
incr index 2

sec project_name [string range Stmp Sindex end]
} else {

#Set Che output file
sec oucpuc |lindex $argv Si)

A.I. Extraction scripts 222

set ofile [open Soutput w]

Ï
Î

########### Main function tf######ft*###*#lfH

#Set the complete path to the SNavigator project dir
set project_path $project_dir/.snprj/$(project_name}

puts stderr "\nExtracting information from the project: $project_path"

if l$format == "gxl ' j { printGXLHeader $project_name}

«Extract the f i le system st ructure of the source f i l e s
if ($fl) {

puts stderr "Extracting the f i l e s . . . '
pr in tFi les $projecc_path
puts stderr • . . .done."

Ï

flPrint the f i le inclusion
if ($incl} {

puts stderr "Extracting the include re la t ionship . . .*
printlnclude $project_path
puts stderr " ...done."

«Extract Che function definitions
if {$func_def} {

puts stderr 'Extracting the function definitions..

printFuncDef $project_path

puts stderr " . . . done."

«Extract the function declaration
if {$func_decl} {

puts stderr "Extracting the function declarations.

printFuncDecl $project_path
puts stderr " ... done."

#Extract the class, methods and attributes
if {$cl> {

«Extract the classes
puts stderr " Extr acting the classes..."

printClass $project_path
puts stderr • ... done.•

if {$meth} {
«Extract the methods
puts stderr "Extracting the methods...'
printMethodDef $project_path
puts stderr • ...done"

if {$meth_imp) {
#Extract the methods implementation
puts stderr * Extracting the method implementation.
printMethodlmp $project_path
puts stderr " ...done "

if {$attr} {
«Extract the a t t r ibu tes
puts stderr "Extracting the a t t r i bu t e s . . . *
printAttr ibute $project_path
puts stderr * ...done •

flExtract the typedefs
#Be careful when enabling typedefs because there
#can be a problem with uniqueNames. For example,
#a global variable and a typedef can have the same name
if {$tdef} {

puts stderr "Extracting ihe typedefs..."
printTypedef $project_path
puts stderr * ...done"

ï

»Extract the macros
if ($mac> {

A.I. Extraction scripts 223

puts stderr "Extracting the macros..."
printMacro $project_path
puts stderr ' ...done *

#Extract the global variables
if {$gv} {

puts stderr 'Extracting the global variables.
printGlobalVariable $project_path
puts stderr • ...done*

Î

lExtract the inheritances
if {$inh} {

puts stderr "Extracting the inheritances..."
print Inheritance $project_j?ath
puts stderr " ...done *

«Extract the refrences
if {$inv |j $acc || $mac || $tdef} {

puts stderr "Extracting the references.
printRefTo $project_path
puts stderr " ... done.•

if {$format == "gxl"} { printGXLFooter }

ifClose the output file
if {$output != ""} {

close Sofile

A. 1.2 EXTRACT.PY

! / usr / bin / python

U Example of a an extraction script

8 Directory to parse
dir = "/system"

Location of the script for removing the comments
stripCommand = 'strip-comments-file.pl"

import os , re , filcinput , string , shutil , tempfile . sys , time
from fnmatch import fnmatch
from os. path import *

def detect (dir , p a t t e r n s) :
• ' " Functions for t r a v e r s i n g the d i r e c t o r y t r e e "*"

oldDir = os.getcwdO
os. chdir (d i r)

if (not c x i s t s (d i r)) :
print » s y s . s t d e r r , "ERROR: Specify an e x i s t i n g pa th \n"
return

w a l k (" . / " , v i s i t , p a t t e r n s)

os . chdi r (o l d D i r)

def v i s i t (p a t t e r n s , dirname . names) :
pa ren tDi r = normpath (dirname)

for name in names :
fullName = normpath (j o in (parentDir , name))

for pa t t e rn in p a t t e r n s :
pat te rn { parentDir , fullName , name)

def pRSF(rel , sre , dst) :
••" P r i n t t h e t u p l e i n R S F -••

print '%s '%s* "%s" ' %(rel , sre , dst)

def print Dir (parent Dir , fullName , name):

A.I. Extraction scripts 224

• " Print the contain_dir relat ion " "
if (isdir (fullName)):

print 'contain_dir "%s" "%s"' %(parentDir . fullName)
pRSF('type', parcntDir , 'Directory ')
pRSF(' type' , fullName , 'Directory')

return

def p r i n t F i l e (pa rcn tDi r , fullName , name):
"•" P r i n t the c o n t a i n _ f i l e r e l a t i o n •*•

if (not i s f i l e (ful lName)):
re turn

if ((not fnmatch (name , " * . c * ")) & (not fn match (name , " * .h*"))) :
re turn

if (i s f i l e (fullName)) :
pRSF(' con ta in_f i l e ' , parcntDir , fullName)
pRSF(' type ' . parent Dir , ' D i r e c t o r y ')
p R S F f t y p e ' , fullName, ' F i l e ')

re turn

dctectTask = re . compile (* ~ \ s * (\S*_TASK) \ s " ')

def printTask (parcntDir . fullName , name) :
• * ' Detect the OS t a s k s from •""

if (not fnmatch (name , • t a s k s , h")) :
re turn

for line in f i l e i n p u t . input (fullName) :
re su It = re . match (dc tec tTask , l i ne)

if resu l t != None:
task = resu It . groups ()
pr in t ' t y p e "%s" Task' % (t a s k)

else :
continue

de i cc t l n i tFunc = r e . compile (" ~ \ s * \ { \ s * (\w+) \ s " , \ s ' \ d + \ s * , \ s * \ d + \ s * , \ s " (\w+) \ s * \) , ")

def p r i n t I n i t F u n c t i o n (p a r e n t D i r , fullName , name) :
" • • Detect the i n i t i a l i z a t i o n func t ions " ' "

if (not fnmatch (name , * i n i t .h")) :
re turn

for line in f i l e i n p u t . input(fullName):
resu l t = re . match { dc tcc t ln i tFunc , l i ne)

if resu It != None :
(obj , func) = r e s u l t . g r o u p s ()

p R S F C f u n c t i o n l n i t O b j e c t ' . func, obj)
p R S F (' t y p e ' , func , •F unc t i on ')

e l s e :
continue

#################
^Calculate the type from the object name
objectNames = (
(re . compile ("PN__OBj_\s+_APPL"), "Application"),
(re . compile (-PN_OBJ_\S+_DELEG") , "Delegate").
(re . compile <-PN_OBJ_\S+_SERV), "Server"),
(re.compile(*PN_OBJ_\S+_CM"), "CommManager "),
)

def fromObjcctlDToTypc(namc):
for (pattern , objcctType) in objectNames :

result = re . match(pattern , name)
if result != None:

return objectType

return None

#Code patterns

D efi nit ion of pattern Handel rs

m e s s a g c I D = ' "

d e f p r o c e s s S e n d M s g (f u l l N a m e , l i s t) :

p r i n t ' f i l e S e n d M s g " % s " " % s " % (f u l l N a m e , l i s t)

A.I. Extraction scripts 225

d e r p r o c c s s l n i t i a l i z c (f u l l N a m e , l i s t) :
p r i n t ' f i l e l n i t O b j e c t ' % s # " % s " %{fu l lName , l i s t)

d e f p r o c e s s l n c l u d c { f u l l N a m e . l i s l) :
p r i n t ' f i l e l n c l u d e F i l e " % s " " % s " % (f u l l N a m e , l i s t [0 1 >

d e f p r o c c s s D c f F u n c t i o n (f u l l N a m e , l i s t) :
p R S F C f i l e D e f i n e F u n c t i o n ' , f u l l N a m e , l i s t)
p R S F (' t y p e ' , l i s l , ' F u n c t i o n ')

d e f p r o c e s s F u n c t i o n C a l l (f u H N a m c , l i s t) :
p R S F C f i l e C a l l F u n c t i o n ' . f u l l N a m e . l i s t)
p R S F (' t y p e ' , l i s t . ' F u n c t i o n ')

^Definition of the pattern table

codePat tcrns = (

(r e . compi l c{"~[~ ,] *send_msg . * (ID_\w+) \ s * , . * , . * \) ") , processSendToServer) ,
(r e . compi l e{" A [~ ,] *connect_server . * (ID_\w+) *) , processSendToServer) ,
(r e . c o m p i l e (" A [A , J * s e n d _ l a y e r \ s * \ (. *, . *, (ID_\w+) ") . processSendToServer) ,
(r e . c o m p î l e (" " [" ,] (\ w + _ I n i t i a l i z e) \ s * (ID_\w+) •) , p r o c e s s l n i t i a l i z e) ,
(r e . compile C # i n c l u d e \ s * [\ ' | \<] (\SM [\m \ \>] ') , process Include) ,
{ re . compile! "~ \s*void \s+ (\w+) \ s * \ (. * \ (") , processDefFunction) ,
(r e . compi l c (" A \ s * i n t \ s + (\w+) \ s * \ (. *\) ") , processDefFunction) ,
{ r e . compi le{" " \ s * o b j r e f \s+ (\w+) \ s * \ (. *\) ") . processDefFunction) ,
{ r e . c o m p i l e { " \ (\ s*obj re f \ s * \) \ s * (\w+) \ s " \ ([" ;] * ; ") , processFunct ionCal l) ,
)

def de tec tCodePa t t e rns (pa ren tDi r , fullName , name):
" • • Detec t t h e code p a t t e r n s " "

if (not i s f i l e (fullName)) :
re tu rn

if ((not fnmatch(name, " * . c * "))) :
re tu rn

R e m o v e t h e c o m m e n t s f r o m t h e f i l e .
t m p F i l e = t e m p f i l e . m k t c m p O

s h u t i l . copy (f u l l N a m e . t m p F t l e)
os . s p a w n l p (o s . P . W A I T , ' p e r l ' , ' p e r l ' . s t r i p C o m m a n d . i m p F i l e)

f o r l i n e i n f i l e i n p u t . i n p u t (t m p F U e) :
f o r (p a t t e r n , h a n d l e r) i n c o d e P a t t c r n s :

r e s u l t s = r e . f i n d a l l (p a t t e r n , l i n e)
i f r e s u I t s != None :

f o r r e s u l t i n r e s u l t s :
h a n d l e r (f u l l N a m e , r e s u l t)

#Define the list of patterns to execute

pa t t e rns = (
printDtr ,
p r in tF i l c ,
printTask ,
print I nit Funct ion ,
detectCodePat terns ,

Main

if (not ex i s t s (dir)) :
p r in t » s y s . s t d e r r , "ERROR: I n v a l i d p a t h \ n '
exit

if (not ex i s t s (stripCommand)) :
p r in t » s y s . s t d e r r , "ERROR: I n v a l i d s t r i p commandAn"
exit

#Detect the patterns in the directory
detec t (dir , pa t te rns)

A. 1.3 STRIP-COMMENTS-HLE.PL

#/ / usr/bin/perl —w

Name: strip —comments~file 1.0

A.2. Abstraction scripts 226

#
ft Synopsis: strip—comments—file <file>
ft
ft Brief: R e m o v e s a l l t h e c o m m e n t s i n C/C++ f i l e s .
if
ft Description :
ft The script removes all the comments that are in the C/C++ style:
ft —single line comment in the format: // . . .
ft —multiple line comment in the format: /* . . . * /
ft The script removes all the tabulation charades
ft The script also puts all the statements on one line
ft The subdirectories are recurivelly processed.
ft
ft Example:
ft
ft strip—comments—file a.c
ft
ft

if (!($ARGV[0])) {
die •! Syntax: strip-comments-file <fi le name>";

}

$name = $ARGV[O];

$. = $namc;

open {FILE, Snamc) or die • ! unable to open the f i l e $name\n';

undef $/:
$. = <FILE>;

close FILE;

tt remove comment /* . . . * / with minimal match
s / \ / \ * . » ? \ . \ / / / g s x ;

tt remove comment ...
s / \ / \ / . . ? \ n / [] / g s x ;

tt pre-process line extension (\\)
s / C I *#.*?)\\\\\n/$l/g: ft at first line of file

remove tab
s / \ t / / g ;

Add ; to # statements , and remove it later
s/-(#. *)$/$! ;/gm;

Remove the space after;

Put all the statements on one line

Remove the ; at the end of # statements
sf'(#.*);$/$l/gm;

open (FILE, ">$name"} or die "! Unable to open f i l e $name for writing\n"

print FILE;

close FILE;

A.2 ABSTRACTION SCRIPTS

A.2.1 NlMETA MODULE

#.'/usr /bin/perl —w

Name: nimeta . py
#
Brief : Nimeta extension for Python

A.2. Abstraction scripts 227

Description :
// provides several relational algebra operators
that are not available in kjBuckets

import fileinpul , s y s , re , os

from kjbuckcts import *
from string import •

def cproduct(X, Y):
""• Cartesian product of X and Y

X, Y are a kjSet
result is a kjGraph

result = kjGraph {)

for x in X. items ():
for y in Y. items () :

result . add(x ,y)

return result

def setRimage (S, k):
*"• Create a graph with the keys taken from S and the value k

S i s a KjSet
k i s a value
resul t i s a kjGraph

result = kjGraph ()

for node in S . items ():
result.add(node, k)

return resuIt

def setLimage (k, S):
•"• Create a graph with the key k and the values taken from S

k i s a value
S i s a kjSet
resul t i s a kjGraph of size size(S)

resu It = kjGraph ()

for node in S. items ():
result . add(k , node)

return resuIt

def dom(R):
""" Domain of the relat ion R ""•
return kjSet(R.keys()>

def ran(R):

*"" Range of the relation R """

return kjSet(R.values{))

def car(R):

""" Carrier of the re la t ion R ""'

return kjSet(R.keys(>) + kjSet(R. values ())

def ident(R):

*"" identity of the relation R **•

r e t u r n (k j S e t (c a r (R))) . i d e n t ()

def Hmage(R, y):
""" Left image of R

Returns all the keys of R that have value y" -

return kjSet ((R*kjSct (| y])). keys ())

def rlmage (R, x) :
*"' Righ image of R

Returns all the values of R that have the key x"""

return kjSet ((kjSet ((x])*R). values ())

def lProj(R, Y):
""" Left projection of R over Y

Returns all the keys of R that have values in Y"""

A.2. Abstraction scripts 228

return kjSet ((R*kjSet (Y)). IteysO)

def rProj (R, X):
•"" Righ projection of R over X

Returns a l l the values of R that have keys in X"

return kjSct {{ kjSct (X)*R). values ())

def domRest(R. Do):

• ' • Domain r e s t r i c t i o n " "

return kjSet(Do)*R

def ranRest(R, Ra):

"•" Range r e s t r i c t i o n " '

return R*kjSct(Ra)

def carRest(R, S):
""" Carrier res t r ic t ion"""
return kjSct (S)*R*kjSct (S)

def domExcl(R, Do):

""" Domain exclusion"""

return domRest(R, kjSet(R)— kjSct(Do))

def ranExcKR, Ra):

"*" Range exclusion"""

return ranRest(R, kjSet (R. values ()) — Ra)

def carExcKR, S):
""" Carrier exclusion*""
return carRcst (R, car(R)—S)

def powcr(R, n):
• " " P o w e r • " •
if n <= 0:

return ident (R)
result = R
for i in range (n — 1):

result = result * R
return result

def rtclosure (R) :
""" Reflexive t rans i t ive c losure ' ""

return R.tclosure() + power(R, 0)

def top(R):
""• Top of tree R"''
return (dom(R) — ran(R))

def bottom(R):

••• Bottom of tree R"*"

return (ran(R) - dom(R))

def treduction(R):
""• Transitie Reduction""'
return {R — (R * R.telosure ()))

def cycleFree (R) :
""• check if R is cycle free"""
i f l e n (i d e n t (R) & R . t e l o s u r e ()) > 0 :

r e t u r n 0
e l s e :

r e t u r n 1

d e f c y c l e s (R) :
. . . T h e C y C l e S O f R . - .

r e t u r n k j S e t (i d e n t (R) & R . t e l o s u r e ())

d e f l i f t (R , C) :
• ' " L i f t R o v e r C " " "

D = C . t e l o s u r e ()
A = C C) . t e l o s u r e ()
r e s u l t = D*R*A - D —A
r e s u l t = r e s u l t — i d e n t (r e s u 11)

A.2. Abstraction scripts 229

r e t u r n r e s u l t

def l L i f t (R . C) :
""" Lef t l i f t of R over C "

D = C . (c l o s u r e ()
r e s u l t = D*R — D
r e s u i t = r e s u i t — ident (re su It)

su i t

def rLif t (R, C) :
* " " Right l i f t of R over C"""

def f u l l L i f t (R, C) :
•"" Full lift of R over C"""

D = C . t c l o s u r e ()
A = T O . t c l o s u r e {)
r e s u i t = D*R*A + D*R + R*A — D —A
r e s u i t = r e s u i t — i d e n t (r e s u l t)

r e t u r n r e s u l t

d e f l o w e r i n g (R . C) :
•"" L o w e r i n g o f R o v e r C * " "

D = C . t c l o s u r e ()
A = (" C) . t c l o s u r e ()
r e s u 11 = A*R*D — D —A
r e s u i t = r e s u i t — i d e n t (r e s u l t)

r e t u r n r e s u l t

d e f r e a d G r a p h R S F (f i l e L i s t = N o n e) :
" • " R e a d i n t h e RSF f i l e " ' "

r e l s l n = { }

R S F P a t t e r n = r e . c o m p i l e (r ' " \ s * \ " ? ((? : (? < = \ ") [" \ "] +) \ \ S + Ï \ " ? \ s + \ " ? { < ? : (? < = \ ") ["\" 1+) | \ S +) \ " \
? \ s + \ ' ? < < ? : (? < = \ ") E " \ " l +) | \ S + ï \ " ? \ s * S ')

Read lines from input
for l ine in f i l e i n p u t . i n p u t (f i l e L i s t) :

re su It = re . match (RSFPattern , l ine)

if r e s u l t != None :
t r y :

(t y p e , s o u r c e , t a r g e t | = r e s u l t . g r o u p s {) [0:31
except ValueError :

pass
e lse :

continue

if r e l s l n . has,kcy(type):
r e l s l n [t y p e) .add(source , t a r g e t)

else :
re Isl n [type] = kjGraph ([(source , t a rge t)])

return re l s ln

def writeGraphRSF(r, Root = l) :
" " "Pr in t graph r i n RSF format on s tdou t .

r i s an hash tha t conta in the r e l a t i o n s of the graph. The key
i s the r e l a t i o n type . The value i s a kjGraph.

If Root=l i t assumes t h a t the l eve l and type r e l a t i o n s a re
defined and i t p r i n t s an uns t ruc tured RSF f i l e t ha t can be loaded
Rig i . • "

if Root:
if r .has_key(' l e v e l ') :

TopNodes = kjSet (r [' l e v e l '] . keys ()) - kjSet ({~ r [' l e v e l ']) . keys ())
for node in TopNodes. items (>:

r [' l e v e l ' 1 . a d d (' R o o t ' , node)

if r . h a s _ k e y { ' t y p e ') :
OrphanNodes = kjSet {r [' t y p e ']) - kjSet (r [' l e v e l ' 1) - kjSet (~ r [' l e v e l '])
for node in OrphanNodes. items () :

r [' l e v e l '] . a d d (' R o o t ' , node)

pr in t "type Root Syntac t ic"
el i f r .has_key(' t y p e '):

r [' l e v e l ' | = kjGraph()
for node in r [' t y p e ' | . k e y s () :

A.2. Abstraction scripts 230

r I ' l e v e l ' | .add('Root ' , node)

print "type Root Syntactic"

nodcsOut = kjSet ()

Print all relations
f o r { t y p e , r e l a t i o n) in r . i 1 c m s {) :

i f t y p e != ' t y p e ' :
f o r (s o u r c e , t a r g e t) in r e l a t i o n . i t e m s () :

Print type, source and target separated by tabs
nodcsOut. add (source)
n o d e s O u t . a d d (t a r g e t)
print -%s \ " % s \ " \ " % s \ " " % (t y p e , s o u r c e , t a r g e t)

if F . h a s . k e y (' t y p e ') :
for (node) in nodesOut. items () :

t r y :
print " type \ " % s \ ' \ " % s \ " ' % {node, r | ' t y p e '] [n o d e])

except KeyError :
pass

def p r in tRe l (rel , name = * ") :
" " " P r i n t t he r e l a t i o n r e l " " "

for (a , b) in rel . items () :
print name, a, b

A.2 .2 COLLAPSE_CLASSES.RCL

#Group methods and attributes of classes

proc c o l l a p s e _ c l a s s e s { } {
r e l _ s e l e c t _ t y p e Class

set winnodes [r e 1 . s e l e c t - g e t _ 1 i s t]
r c l _ s e l e c t _ n o n e

foreach node $winnodes {

r c l . s e l e c t _ i d $node

set name [rcl_get_node_name $node]

rc l . se t_node_name $node $name+

s e l e c t - n e i g h b o r s has_method out 1
s e l e c t - n e i g h b o r s h a s _ a t t r i b u t e out 1
if { [r c l - c o l l a p s e Class $name] == 0} { return }

A.2 .3 COLLAPSE_DIRS.RCL

Collapse all the selected directories. The parameter stype is the
#target type for the collapsed nodes.

p r o c c o l l a p s e _ d i r s { s t y p e } {

s e t w i n n o d e s [r c l _ s e l e c t _ g e t _ l i s t]

A.2. Abstraction scripts 231

r c l . s e l e c t . n o n e

foreach node $winnodes {
c o l l a p s e . d i r $node $stype

Recursively collapse all the subdirectories

proc c o l l a p s e . d i r {node stype} {

set name [rc l .ge t .node .name $node]

set arcs [r c l . n o d e - g e t . a r c l i s t $node con t a in .d i r out 0 0]

if { [l length $arcs] != 0} {
foreach arc $arcs {

set dstNode [rcl _get_arc_dst $arc]
c o l l a p s e . d i r $dstNode $stype

}
}
c o l l a p s e . a l l - c o n t e n t . i n . d i r $node $stype

}

Collapse all the nodes contained in one directory

proc c o l l a p s e . a l l _ c o n t e n t _ i n _ d i r {node stype} {
rcl_se lec t_none
rc l_se l ec t_ id $node

set name [rcl_get_node.name $node]

#Select all files
s e l e c t . n e i g h b o r s c o n t a i n . f i l e out 1

#Select all the contained nodes
select.neighbors contain out 1

#Select all the functions
select.neighbors def.fn out 1

#Select all methods and attributes of classes
se lec t -ne ighbors has.method out 1
se lec t -ne ighbors h a s . a t t r i b u t e out 1

if { [rc l_co l l apse $stype "$name+"] == 0} { return }

REFERENCES

Anquetil, Nicolas, and Lethbridge, Timothy C. 1999. Recovering software architecture
from the names of source files. Journal of Software Maintenance, 11(3), 201-221.

Bass, L., Clements, P., and Kazman, R. 1998. Software Architecture in Practice. Reading,
MA: Addison-Wesley Longman.

Bassil, S., and Keller, R. K. 2001. Software visualization tools: Survey and analysis. Pages
7-17 of: 9th International Workshop on Program Comprehension (IWPC 2001), 12-13
May 2001, Toronto, Canada. IEEE Computer Society.

Berghammer, R., Schmidt, G., and Winter, M. 2003. RELVffiW and RATH - Two sys-
tems for dealing with relations. Theory and Applications of Relational Structures as
Knowledge Instruments, 1-16.

Booch, Grady, Rumbaugh, Jim, and Jacobson, Ivar. 1999. The Unified Modelling Language
User Guide. Addison-Wesley.

Bosch, Jan. 2000. Design and Use of Software Architectures: Adopting and evolving a
product-line approach. Addison Wesley.

Bosch, Jan. 2002. Maturity and Evolution in Software Product Lines: Approaches, Arte-
facts and Organization. Pages 257-271 of: Proceedings of the Second International
Conference on Software Product Lines. Springer-Verlag.

Bowman, T., Holt, R. C , and Brewster, N. V. 1999. Linux as a Case Study: Its Extracted
Software Architecture. Pages 555-563 of: Proceedings of the 1999 International Con-
ference on Software Engineering, May 16-22, 1999, Los Angeles, CA, USA. IEEE
Computer Society.

Casais, Eduardo. 1998. Re-engineering object-oriented legacy systems. Journal of Object-
Oriented Programming, 10(8), 4552.

Chikofsky, Elliot J., and Cross II, James H. 1990. Reverse Engineering and Design Recov-
ery: A Taxonomy. IEEE Software, January, 13-17.

232

REFERENCES 233

Clements, P., and Northrop, L. 2001. Software Product Lines: Practices and Patterns.
Addison Wesley.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., and Stafford,
J. 2003. Documenting Software Architectures: Views and Beyond. Addison Wesley.

Demeyer, Serge, Ducasse, Stéphane, and Tichelaar, Sander. 1999. Why Unified is not Uni-
versal. UML Shortcomings for Coping with Round-trip Engineering. Pages 630-644
of: France, Robert B., and Rumpe, Bernhard (eds), Proceedings of the UML'99: The
Unified Modeling Language - Beyond the Standard, Second International Conference,
Fort Collins, CO, USA, October 28-30, 1999. Lecture Notes in Computer Science, vol.
1723. Springer-Verlag.

Demeyer, Serge, Tichelaar, Sander, and Ducasse, Stéphane. 2001. FAMIX 2.1 - The
FAMOOS Information Exchange Model. Tech. rept. University of Bern.

Ebert, J., Kontogiannis, K., and Mylopoulos, J. 2001 (jan)- Interoperability of Reengineer-
ing Tools. Seminar 01041. Schloss Dagstuhl.

Eden, Amnon H., and Kazman, Rick. 2003. Architecture, Design, Implementation. Pages
149-159 of: Proceedings of the 25th International Conference on Software Engineer-
ing (ICSE), May 3-10, 2003, Portland, Oregon, USA. IEEE Computer Society Press.

Eisenbarth, Thomas, and Koschke, Rainer. 2003. Locating Features in Source Code. IEEE
Transactions on Software Engineering, 29(3), 210-224.

Eixelsberger, W, Ogris, M., Gall, H., and Bellay, B. 1998. Software architecture recovery
of a program family. Pages 508-511 of: Proceedings of the 20th International Con-
ference on Software Engineering, ICSE 98, April 19-25, 1998, Kyoto, Japan. IEEE
Computer Society Press.

Fahmy, Hoda, Holt, Richard C , and Cordy, James R. 2001. Wins and Losses of Algebraic
Transformations of Software Architectures. Pages 51-62 of: 16th IEEE International
Conference on Automated Software Engineering (ASE 2001), 26-29 November 2001,
Coronado Island, San Diego, CA, USA. IEEE Computer Society.

Faust, D., and Verhoef, C. 2003. Software Product Line Migration and Deployment. Soft-
ware Practice and Experience, to appear.

Feijs, L. M. G., and Krikhaar, R. L. 1999. Relational Algebra with Multi-Relations. Inter-
national Journal of Computer Mathemathics, 70, 57-74.

Feijs, L. M. G., and van Ommering, R.C. 1999. Relation Partition Algebra - Mathematical
Aspects of Uses and Part-Of Relations. Sience of Computer Programming, 33, 163—
212.

REFERENCES 234

Feijs, L. M. G., Krikhaar, R. L., and van Ommering, R.C. 1998. A relational approach to
Software Architecture Analysis. Software Practice and Experience, 28(3), 371-400.

Ferenc, Rudolf, Sim, Susan Elliott, Holt, Richard C , Koschke, Rainer, and Gyimothy,
Tibor. 2001. Towards a Standard Schema for C/C++. Pages 49-58 of: Proceedings
of the Eighth Working Conference on Reverse Engineering (WCRE'01), 2-5 October
2001, Suttgart, Germany. IEEE Computer Society.

Ferenc, Rudolf, Beszedes, Arpad, Tarkiainen, Mikko, and Gyimothy, Tibor. 2002. Colum-
bus - Reverse Engineering Tool and Schema for C++. Pages 172-181 of: Proc. of the
18th International Conference on Software Maintenance (ICSM 2002), Maintaining
Distributed Heterogeneous Systems, 3-6 October 2002, Montreal, Quebec, Canada.
IEEE Computer Society.

Finnigan, P. J., Holt, R. C , I, I. Kalas, Kerr, S., Kontogiannis, K., Müller, H. A., Mylopou-
los, J., Perelgut, S. G., Stanley, M., and Wong, K. 1997. The software bookshelf. IBM
Systems Journal, 36(4), 564-593.

Fowler, Martin. 2003. Who Needs an Architect ? IEEE Software, 20(5), 11-13.

Gacek, Cristina, Abd-Allah, Ahmed, Clark, Bradford, and Boehm, Barry. 1995. On the
Definition of Software System Architecture. In: ICSE 17 Software Architecture Work-
shop.

Garlan, D., and Perry, D. 1995. Introduction to the Special Issue on Software Architecture.
IEEE Transactions on Software Engineering, 21(4).

Garlan, David, Allen, Robert, and Ockerbloom, John. 1995. Architectural Mismatch, or,
Why it's hard to build systems out of existing parts. IEEE Software, 12(6), 17-26.

Girard, J.-F. 2003. SARA: A Semi-automatic Architecture Reconstruction Approach. Ph.D.
Dissertation, Fraunhofer Institute for Experimental Software Engineering.

Godfrey, Michael W., and Lee, Eric H. S. 2000. Secrets from the Monster: Extracting
Mozilla's Software Architecture. In: Proc. of the Second Intl. Symposium on Con-
structing Software Engineering Tools (CoSET'00). IEEE Computer Society Press.

Graham, Paul. 2003 (March). The Hundred-Year Language. Invited talk at the Python
Conference 2003 (PyCon DC 2003), March 26-28 2003, Washington DC.

Gschwind, Thomas, and Oberleitner, Johann. 2003. Improving Dynamic Data Analysis
with Aspect-Oriented Programming. Pages 259-268 of: Proceedings of the 7th Eu-
ropean Conference on Software Maintenance and Reengineering (CSMR 2003), Ben-
evento, Italy, March 2003. IEEE Computer Society.

REFERENCES 235

Gschwind, Thomas, Oberleitner, Johann, and Pinzger, Martin. 2003. Using Run-Time Data
for Program Comprehension. Pages 245-250 of: Proceedings of the 11th International
Workshop on Program Comprehension, May 2003. IEEE Computer Society.

Guo, George Yanbing, Atlee, Joanne M., and Kazman, Rick. 1999. A Software Architecture
Reconstruction Method. Pages 15-34 of: Donohoe, Patrick (ed), Software Architec-
ture, TC2 First Working IFIP Conference on Software Architecture (WICSAl), 22-24
February 1999, San Antonio, Texas, USA, vol. 140. Kluwer Academic Publisher.

Harris, David R., Reubenstein, Howard B., and Yeh, Alexander S. 1995. Reverse engineer-
ing to the architectural level. Pages 186-195 of: Proceedings of the 17 th International
Conference on Software Engineering, April 23-30, 1995, Seattle, Washington, USA.
ACM Press.

Hassan, A. E., and Holt, R. C. 2000. A Reference Architecture for Web Servers. In:
Proceedings of the 7th Working Conference on Reverse Engineering. IEEE Computer
Society Press.

Hofmeister, C, Nord, R. L., and Soni, D. 2000. Applied Software Architecture. Object
Technology Series, Addison Wesley.

Hofmeister, Christine, Nord, Robert L., and Soni, Dilip. 1999. Describing Software Archi-
tecture with UML. Pages 145-160 of: Donohoe, Patrick (ed), Software Architecture,
TC2 First Working IFIP Conference on Software Architecture (WICSAl), 22-24 Febru-
ary 1999, San Antonio, Texas, USA. IFIP Conference Proceedings, vol. 140. Kluwer
Academic Publisher.

Holt, R. C, Winter, A., and Schiirr, A. 2000a. GXL: Toward a Standard Exchange Format.
Pages 162-171 of: Proceedings of the Seventh Working Conference on Reverse En-
gineering (WCRE'00), 23-25 November 2000, Brisbane, Australia. IEEE Computer
Society.

Holt, Ric. 2001 (August). Software Architecture as a Shared Mental Model. In: ASERC
Workhop on Software Architecture. University of Alberta.

Holt, Richard C. 1998. Structural Manipulations of Software Architecture using Tarski
Relational Algebra. Pages 210-219 of: Proc. of the 5th Working Conference on Re-
verse Engineering, WCRE '98, October 12-14, 1998, Honolulu, Hawai, USA. IEEE
Computer Society.

Holt, Richard C, Hassan, Ahmed E., Lague, Bruno, Lapierre, Sebastien, and Leduc,
Charles. 2000b. E/R Schema for the Datrix C/C++/Java Exchange Format. Pages
284-286 of: Proceedings of the Seventh Working Conference on Reverse Engineering
(WCRE'00), 23-25 November 2000, Brisbane, Australia. IEEE Computer Society.

REFERENCES 236

Holt, Richard C , Winter, Andreas, and Schurr, Andy. 2000c. GXL: Towards a Standard Ex-
change Format. Tech. rept. 1-2000. Universität Koblenz-Landau, Universität Koblenz-
Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz.

Jaktman, Catherine Blake, Leaney, John, and Liu, Ming. 1999. Structural Analysis of the
Software Architecture. Pages 455-470 of: Donohoe, Patrick (ed), Software Architec-
ture, TC2 First Working IFIP Conference on Software Architecture (WICSA1), 22-24
February 1999, San Antonio, Texas, USA. IFIP Conference Proceedings, vol. 140.
Kluwer Academic Publisher.

Jazayeri, M., van der Linden, F., and Ran, A. 2000. Software Architecture for Product
Families. Addison Wesley.

Jerding, Dean, and Rugaber, Spencer. 1997. Using Visualization for Architectural Localiza-
tion and Extraction. Pages 56-65 of: Baxter, Ira D., Quilici, Alex, and Verhoef, Chris
(eds), Proceedings of the 4th Working Conference on Reverse Engineering, WCRE '97,
October 6-8, 1997, Amsterdam, The Netherlands. IEEE Computer Society.

Kazman, R., and Carrière, S. J. 1998. View Extraction and View Fusion in Architectural
Understanding. Page 290 of: Proceedings of the 5th International Conference on
Software Reuse. IEEE Computer Society.

Kazman, R., Bass, L., Abowd, G., and Webb, M. 1994. SAAM: A Method for Analyz-
ing the Properties Software Architectures. Pages 81-90 of: Proceedings of the 16th
International Conference on Software Engineering, May 16-21, 1994, Sorrento, Italy.
IEEE Computer Society / ACM Press.

Kazman, R., Klein, M., Barbacci, M., Lipson, H., and T. Longstaf and, S.J. Carrire. 1998.
The Architecture Tradeoff Analysis Method. In: Proceedings of International Con-
ference on Engineering of Complex Computer Systems, August 1998, Monterey, CA.
IEEE Computer Society.

Kazman, R., O'Brien, L., and Verhoef, C. 2001. Architecture Reconstruction Guidelines.
report CMU/SEI-2001-TR-026. Carnegie Mellon University, Software Engineering In-
stitute.

Kazman, Rick. 1996. Tool Support for Architecture Analysis and Design. Pages 94—97 of:
Joint Proceedings of the SIGSOFT '96 Workshops (ISAW-2). ACM.

Koppler, R. 1997. A Systematic Approach to Fuzzy Parsing. Software Practice and Expe-
rience, 27(6), 637-649.

Koschke, R. 2003. Software Visualization in Software Maintenance, Reverse Engineer-
ing, and Reengineering: A Research Survey. Journal on Software Maintenance and
Evolution, 15(2), 87-109.

REFERENCES 237

Koschke, R., and Simon, D. 2003. Hierarchical Reflexion Models. Pages 36-45 of: van
Deursen, Arie, Stroulia, Eleni, and Storey, Margaret-Anne D. (eds), Proc. of the 10th
Working Conference on Reverse Engineering (WCRE 2003), 13-16 November 2003,
Victoria, Canada. IEEE Computer Society Press.

Koskimies, Kai, and Mössenböck, Hanspeter. 1996. Scene: using scenario diagrams and
active text for illustrating object-oriented programs. Pages 366-375 of: Proceedings
of the 18th International Conference on Software Engineering, March 25-29, 1996,
Berlin, Germany. IEEE Computer Society.

Koskimies, Kai, Systä, Tarja, Tuomi, Jyrki, and Männistö, Tatu. 1998. Automated Support
for Modeling 0 0 Software. IEEE Software, 15(1), 87-94.

Krikhaar, Rene. 1999. Software Architecture Reconstruction. Ph.D. thesis, University of
Amsterdam.

Kruchten, P. B. 1995. The 4+1 View Model of architecture. IEEE Software, 6(12), 42-50.

Krug, Steve. 2000. Don't Make Me Think: A Common Sense Approach to Web Usability.
New Riders.

Kullbach, Bernt, and Winter, Andreas. 1999. Querying as an Enabling Technology in Soft-
ware Reengineering. Pages 42-50 of: 3rd European Conference on Software Mainte-
nance and Reengineering (CSMR '99), 3-5 March 1999, Amsterdam, The Netherlands.
IEEE Computer Society.

Kuusela, Juha. 1999. Architectural Evolution. Pages 471-478 of: Donohoe, Patrick (ed),
Software Architecture, TC2 First Working IFIP Conference on Software Architecture
(WICSA1), 22-24 February 1999, San Antonio, Texas, USA. IFIP Conference Proceed-
ings, vol. 140. Kluwer Academic Publisher.

Laine, Petri K. 2001. The Role of SW Architectures in Solving Fundamental Problems
in Object-Oriented Development of Large Embedded SW Systems. Pages 14-23 of:
Proc. of the 2001 Working IEEE/IFIP Conference on Software Architecture (WICSA
2001), 28-31 August 2001, Amsterdam, The Netherlands.

Lange, Danny B., and Nakamura, Yuichi. 1995 (June). Program Explorer: A Program
Visualiser for C++. In: Proceedings of the USENIX Conference on Object-Oriented
Technologies.

Lanza, Michèle, and Ducasse, Stphane. 2003. Polymetric Views-A Lightweight Visual
Approach to Reverse Engineering. IEEE Trans. Softw. Eng., 29(9), 782-795.

Lorentsen, Louise, Tuovinen, Antti-Pekka, and Xu, Jianli. 2001. Modelling Feature Interac-
tion Patterns in Nokia Mobile Phones using Coloured Petri Nets and Design/CPN. In:

REFERENCES 238

Proc. of the 7 th Symposium on Programming Languages and Software Tools, Szeged,
Hungary, June 15-16.

Maccari, A., and Riva, C. 2001. Architectural evolution of legacy product families. Pages
64-69 of: van der Linden, Frank (ed), Software Product-Family Engineering, 4th In-
ternational Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Revised Papers.
Lecture Notes in Computer Science, vol. 2290. Springer.

Mancoridis, S., B.S.Mitchell, C.Rorres, Y.Chen, and E.R.Gansner. 1998. Using Automatic
Clustering to Produce High-Level System Organizations of Source Code. Pages 45-
52 of: Proceedings of the 1998 International Workshop on Program Understanding
(IWPC'98), Ischia, Italy, June 1998.

Marshall, M. S., I., I. Herman, and Melancon, G. 2001. An Object-Oriented Design for
Graph Visualization. Software: Practice & Experience, 31, 439-756.

Medvidovic, N., and Taylor, R.N. 2000. A Classification and Comparison Framework for
Software Architecture Description languages. IEEE Transactions on Software Engi-
neering, 26(1), 70-93.

Mendonça, Nabor C. 1999. Software Architecture Recovering for Distributed Systems.
Ph.D. thesis, University of London.

Mendonça, Nabor C , and Kramer, Jeff. 2001. An Approach for Recovering Distributed
System Architectures. Automated Software Engineering., 8(3-4), 311-354.

Mens, Kim. 2000. Automating architectural conformance checking by means of logic meta
programming. Ph.D. thesis, Departement Informatica, Vrije Universiteit Brüssel.

Moonen, L. 2001. Generating Robust Parsers using Island Grammars. Pages 13-22 of:
Proc. of the Working Conf. on Reverse Engineering (WCRE). IEEE CS.

Morgan, Augustus De. 1860. On the syllogism, no. IV, and on the logic of relations.
Transactions of the Cambridge Philosophical Society, 10, 331-358.

Müller, Hausi A., Orgun, Mehmet A., Tilley, Scott R., and Uhl, James S. 1993. A Re-
verse Engineering Approach to Subsystem Structure Identification. Journal of Soft-
ware Maintenance: Research and Practice, 5(4), 181-204.

Murphy, G. C , and Notkin, D. 1997. Reengineering with Relfextion Models: A Case Study.
IEEE Software.

Murphy, G. C , Notkin, D., and Sullivan, K. J. 2001. Software Reflexion Models: Bridging
the Gap between Design and Implementation. IEEE CS Transactions on Software
Engineering, 27(4), 364-380.

REFERENCES 239

Nentwich, Christian, Emmerich, Wolfgang, Finkelstein, Anthony, and Zisman, Andrea.
2000. BOX: Browsing objects in XML. Software: Practice and Experience, 30(15),
1661-1676.

O'Brien, Liam. 2002. Experiences in Architecture Reconstruction at Nokia. Tech. rept.
CMU/SEI-2002-TN-004. Software Engineering Institute, Carnegie Mellon University.

P1471, IEEE. 2000. IEEE Recommended Practice for Architectural Description of
Software-intensive Systems.

Parnas, David L. 1972. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12), 1053-1058.

Parnas, David L. 1974. On a Buzzword: Hierarchical Structure. IFIP Congress 74, 336-
339.

Parnas, David L. 1994. Software Aging. Pages 279-287 of: Proceedings of the 16th
International Conference on Software Engineering, May 16-21, 1994, Sorrento, Italy.
IEEE Computer Society Press / ACM Press.

Peirce, C. S. 1933. Description of a notation for the logic of relatives, resulting from
an amplification of the conceptions of Boole's calculs of logic. Collected Papers of
Charles Sanders Peirce III Exact Logic.

Perry, Dewayne E., and Wolf, Alexander L. 1992. Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes, 17(4), 40-52.

Pinzger, Martin, and Gall, Harald. 2002. Pattern-Supported Architecture Recovery. Pages
53-64 of: Proc. of the 10th International Workshop on Program Comprehension
(IWPC 2002), 27-29 June 2002, Paris, France. IEEE Computer Society.

Pinzger, Martin, Fischer, Michael, Gall, Harald, and Jazayeri, Mehdi. 2002. Revealer: A
Lexical Pattern Matcher for Architecture Recovery. Pages 170-180 of: van Deursen,
Arie, and Burd, Elizabeth (eds), Proc. of the 9th Working Conference on Reverse En-
gineering (WCRE 2002), 28 October - 1 November 2002, Richmond, VA, USA. IEEE
Computer Society.

Postma, Andre. 2003. A method for module architecture verification and its application on
a large component-based system. Information and Software Technology, 45, 171-194.

Pratt, Vaughan R. 1992. Origins of the Calculus of Binary Relations. Pages 248-254 of:
Proc. IEEE Symposium on Logic in Computer Science, 248-254, Santa Cruz, CA, June,
1992. IEEE Computer Society.

Ran, A. 2000. ARES Conceptual Framework for Software Architecture. Addison-Wesley.
Chap. 1, pages 1-30.

REFERENCES 240

Richner, Tamar, and Ducasse, Stéphane. 1999. Recovering High-Level Views of Object-
Oriented Applications from Static and Dynamic Information. Pages 13-22 of: Pro-
ceedings of the International Conference on Software Maintenance (ICSM'99), 30 Au-
gust - 3 September, 1999, Oxford, England, UK. IEEE Computer Society.

Riva, C , Xu, J., and Maccari, A. 2001. Architecting and reverse architecting in UML.
First International Workshop on Describing Software Architectures with UML, the
3rd International Conference on Software Engineering, ICSE 2001, 12-19 May 2001,
Toronto, Ontario, Canada.

Riva, Claudio. 2000. Reverse Architecting: an Industrial Experience Report. In: Pro-
ceedings of the 7th Working Conference on Reverse Engineering (WCRE2000), 23-25
November 2000, Brisbane, Australia. IEEE Computer Society Press.

Riva, Claudio. 2002. Architecture Reconstruction in Practice. In: Bosch, Jan, Gentleman,
W. Morven, Hofmeister, Christine, and Kuusela, Juha (eds), Software Architecture:
System Design, Development and Maintenance, IFIP 17th World Computer Congress
- TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture (WICSA3), Au-
gust 25-30, 2002, Montrai, Qubec, Canada. IFIP Conference Proceedings, vol. 224.
Kluwer.

Riva, Claudio, and Del Rosso, Christian. 2003. Experiences with Software Product Fam-
ily Evolution. Page 161 of: Proc. of the 6th International Workshop on Principles
of Software Evolution (IWPSE 2003), 1-2 September 2003, Helsinki, Finland. IEEE
Computer Society.

Riva, Claudio, and Rodriguez, Jordi Vidal. 2002. Combining Static and Dynamic Views
for Architecture Reconstruction. In: Proceedings of the Sixth European Conference
on Software Maintenance and Reengineering (CSMR 2002), 11-13 March 2002 in
Budapest, Hungary. IEEE Computer Society Press.

Riva, Claudio, and Yang, Yaojin. 2002. Generation of Architectural Documentation Using
XML. Pages 151-160 of: van Deursen, Arie, and Burd, Elizabeth (eds), Proc. of
the 9th Working Conference on Reverse Engineering (WCRE 2002), 28 October - 1
November 2002, Richmond, VA, USA. IEEE Computer Society.

Riva, Claudio, Selonen, Petri, Systä, Tarja, Tuovinen, Antti-Pekka, Xu, Jianli, and Yang,
Yaojin. 2004a. Establishing a Software Architecting Environment. In: Proc. of 4th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2004), 12-15 June
2004, Oslo, Norway. IEEE Computer Society.

Riva, Claudio, Selonen, Petri, Systä, Tarja, and Xu, Jianli. 2004b. UML-based Reverse
Engineering and Model Analysis Approaches for Software Architecture Maintenance.
In: Proc. of the The 20th IEEE International Conference on Software Maintenance,
Chicago, Illinois, USA, September 11th - 17th 2004. IEEE Computer Society.

REFERENCES 241

Robbins, Jason E., Medvidovic, Nenad, Redmiles, David F., and Rosenblum, David S.
1998. Integrating architecture description languages with a standard design method.
Pages 209-218 of: Proceedings of the 20th International Conference on Software En-
gineering, ICSE 98, April 19-25, 1998, Kyoto, Japan. IEEE Computer Society.

Rumpe, B., Schoenmakers, M., Radermacher, A., and Schiirr, A. 1999. UML + ROOM as
a Standard ADL? In: Titsworth, F. (ed), Proc. ICECCS'99 Fifth IEEE International
Conference on Engineering of Complex Computer Systems. IEEE Computer Society.

Schmidt, G., and Ströhlein, T. 1993. Relations and Graphs. Berlin: Springer-Verlag.

Schroeder, W., Martin, K., and Lorensen. 1998. The Visualization Toolkit, 2nd edition.
Prentice Hall.

Schroöder, E. 1895. Vorlesungen über die Algebra der Logik (Exakte Logik). In: Teubner,
B.G. (ed), Algebra und Logic der Relative, vol. 10. Leipzig.

Selonen, Petri, and Xu, Jianli. 2003. Validating UML models against architectural profiles.
Pages 58-67 of: Proceedings of the 11th ACM SIGSOFT Symposium on Foundations
of Software Engineering 2003 held jointly with 9th European Software Engineering
Conference, ESEC/FSE 2003, Helsinki, Finland, September 1-5, 2003. ACM Press.

Shaw, M., and Garlan, D. 1996. Software Architecture: Perspective on an Emerging Disci-
pline. Prentice Hall.

Sillanpää, Matti. 2004. Visualizing Reverse Architected Software Models with an Open
Visualization Toolkit. M.Phil, thesis, Helsinki University of Technology.

Stewart, David B. 1999. 30 Pitfalls for Real-Time Software Developers - Part 2. Embedded
Systems Programming Magazine, 12(12), 74-86.

Stoermer, C , O'Brien, L., and Verhoef, C. 2002. Practice Patterns for Architecture Recon-
struction. Pages 151-160 of: van Deursen, Arie, and Burd, Elizabeth (eds), Proc. of
the 9th Working Conference on Reverse Engineering (WCRE 2002), 28 October - 1
November 2002, Richmond, VA, USA. IEEE Computer Society.

Störrle, H. 1999. Archtiectural Modelling with the Unified Modelling Language. In: Nordic
Workshop on Software Architecture (NOSA 99).

Systä, Tarja. 2000. Static and Dynamic Reverse Engineering Techniques for Java Software
Systems. Report A-2000-4, University of Tampere, Dept. of Computer and Information
Sciences,.

Tarski, Alfred. 1941. On the calculus of relations. Journal of Symbolic Logic, 6, 73-89.

REFERENCES 242

Telea, Alexandru, Maccari, Alessandro, and Riva, Claudio. 2002. An Open Visualization
Toolkit for Reverse Architecting. Pages 3-10 of: Proc. of the 10th International Work-
shop on Program Comprehension (IWPC 2002), 27-29 June 2002, Paris, France. IEEE
Computer Society.

Tichelaar, Sander. 2001. Modeling Object-Oriented Software for Reverse Engineering and
Refactoring. Ph.D. thesis, University of Berne.

Tilley, S., Paul, S., and Smith, D. B. 1996. Towards a Framework for Program Understand-
ing. Pages 19-28 of: 4th International Workshop on Program Comprehension (IWPC
'96), March 1996, Berlin Germnay. IEEE Computer Society.

Turner, C. Reid, Fuggetta, Alfonso, Lavazza, Luigi, and Wolf, Alexander L. 1999. A
conceptual basis for feature engineering. The Journal of Systems and Software, 49(1),
3-15.

van Deursen, Arie, and Kuipers, Tobias. 1999. Identifying objects using cluster and con-
cept analysis. Pages 246-255 of: Proceedings of the 21st international conference on
Software engineering. IEEE Computer Society Press.

van Deursen, Arie, Hofmeister, Christine, Koschke, Rainer, Moonen, Leon, and Riva, Clau-
dio. 2004. Symphony: View-Driven Software Architecture Reconstruction. Pages
122-132 of: Proc. of 4th Working IEEE / IFIP Conference on Software Architecture
(W1CSA 2004), 12-15 June 2004, Oslo, Norway. IEEE Computer Society.

Wernecke, J. 1993. The Inventor Mentor: Programming Object-Oriented 3D Graphics.
Addison-Wesley.

Wong, Kenny, Corrie, Brian D., Müller, Hausi A., Storey, Margaret-Anne D., Tilley,
Scott R., and Walkowicz, Jacek. March 1993. Rigi User's Manual for Open Look.

Yang, Yaojin, and Xu, Jianli. 2003. Encoding Informal Architectural Descriptions with
UML: an Experience Report. In: Stevens, Perdita, Whittle, Jon, and Booch, Grady
(eds), Proc. of the 6th International Conference on the Unified Modeling Language-
(UML 2003), San Francisco, CA, USA, October 20-24, 2003. Lecture Notes in Com-
puter Science, vol. 2863. Springer.

Claudio Riva
Curriculum vita? et studiorum (9 September 2004)

Name: Claudio Riva
Birth place and date: Merate (Italy), 4 July 1973.
Nationality: Italian

Home address: Raatetie 7 C,
FIN-00730, Helsinki Finland

Work address: Nokia Research Center
Itämerenaktu 11-13, PO Box 407
FIN-00180, Helsinki, Finland

Mobile telephone: +358-50-483-7403
Fax: +358-7180-36308
E-mail: claudio.riva@nokia.com

CURRICULUM \ITJE IN BRIEF

October 1998-
Software Architecture Group of the Software Technology Laboratory at the
Nokia Research Center, Helsinki, Finland.

Senior Research Engineer (October 2000 -)
Research Engineer (October 1998 - October 2000)

June 1997- October 1998
Project assistant at the Distributed Systems Group of the Information Systems
Institute at the Vienna University of Technology, Austria.

September 1992 - June 1997
Student in Telecommunication Engineering at the Politecnico di Milano, Italy.

MAIN EDUCATION

February 1999 -
Enrolled in the postgraduate studies (Ph.D.) at the Vienna University of
Technology, Austria. The topic of the Ph.D. Thesis is software architecture
reconstruction.

8 June 1998
Diploma di Laurea (M.S. equiv.) in Engineering of Telecommunications at the
Politecnico di Milano with the thesis: Visualizing Software Release Histories:
The Use of Color and Third Dimension. Supervisor: Carlo Ghezzi. Final grade:
100/100.

July 1992
Scientific diploma at the Liceo M. G. Agnesi, Merate, 1992.

MAIN PUBLIC ACTIVITY

June 2001 -February 11
Coordinator of the research work of porting the Python programming language on
the Nokia Series 60 platform. The work has been publicly presented at the
Emerging Technology Conference Etecth on 11th February 2004 in San Diego by
the Nokia CTO Pertti Korhonen.

September 2003 - June 2005
Participate in the project FAMILIES, "FAct-based Maturity through
Institutionalisation Lessons-learned and Involved Exploration of System-family
engineering", funded by the ITEA consortium, project number ip02009.

September 2001 - June 2003
Participate in the project CAFE , "from Concept to Application in system-Family
Engineering", funded by the ITEA consortium with the Eureka 2024 Programme.

January 2002 - December 2002
Collaboration with the University of Tampere on the development of a prototype
for modeling software architectures.

June 2001 - September 2002
Coordinator of a research work with the University of Eindhoven for the
development of a reverse engineering environment based on the 3-D graphical
visualizations.

September 2001 - June 2003
Participate in the project CAFE , "from Concept to Application in system-Family
Engineering", funded by the ITEA consortium with the Eureka 2024 Programme.

April 2001 - June 2001
Coordinator of one Software Engineering Project with the University of Helsinki.

October 2000 - September 2001
Collaboration with the Software Engineering Institute (SEI) at the Corniege
Mellon University. The result is published in the CMU/SEI report number:
CMU/SEI-2002-TN-004,
http://www.sei.cmu.edu/publications/documents/02.reports/02tn004.html

January 2000 - December 2001
Collaboration with University of Helsinki in the project MAISA, "Metrics for
Analysis and Improvement of Software Architectures", TEKES funded project.

January 2000 -
Participate in the project MOTION, "Mobile Teamwork Infrastructure for
Organisations Networking" , funded by the European Commission within the
ESPRIT Framework IV (MOTION IST-1999-11400).

September 1999 - September 2001
Participate in the project ESAPS, "Engineering Software Architectures,
Processes and Platforms for System-Families", funded by the ITEA consortium
with the Eureka 2024 Programme.

October 1998 - December 1999
Participate in the project n. 21975 FAMOOS, "Framework-based Approach for
Mastering Object-Oriented Software Evolution", funded by the European
Commission within the ESPRIT Framework IV.

5 June 1998
Achieved the Diploma di Laurea (M.S. equiv) in Engineering of
Telecommunications at the Politecnico di Milano. Final grade: 100/100.

June 1997- October 1998
Participate in the project n. ARES, "Architectural Reasoning for Embedded
Systems", funded by the European Commission within the ESPRIT Framework

rv.
June 1997-October 1998

Project assistant at the Distributed Systems Group (Technical University of
Vienna, Austria) for the development of his Master's Thesis with the title

"Visualizing Software Release Histories: The Use of Color and Third
Dimension". Local coordinators: Mehdi Jazayeri and Harald Gall. Supervisor:
Carlo Ghezzi.

December 1996 - June 1997
Collaboration with Alcatel Italia for the development of a graphical application
for visualizing 3D models of the Italian territory taken from satellites.

September 1992 - June 1997
Courses at the Politecnico di Milano in Telecommunication Engineering. Major
topics: mathematics, physics, numerical analysis, electronics, radio transmission,
data transmission, signal analysis, computer science, telecommunication
networks and computer networks. In total: 29 annual courses.

1987-1992
High school at the Liceo M. G. Agnesi, Merate (Italy).

PROFESSIONAL ACTIVITY

October 1998 -
Software Architecture Group of the Software Technology Laboratory at the
Nokia Research Center, Itämerenkatu 11, 00180, Helsinki, Finland.

Nokia is a worldwide telecommunication company producing mobile phones,
switching systems, radio access networks and broadband communication
systems. Nokia Research Center (NRC) is the central research organisation within
the Nokia group. The major role of the research center is to drive Nokia's
competitiveness and renewal through world leadership in key technology areas.
The funding model is based on public and corporate sources for long-term
research and business units' funding for contracted R&D projects. Within NRC,
the role of the Software Architecture Group (SAG) is to help the Nokia business
units in the creation, development, assessment and maintenance of the software
architecture of Nokia's products and to develop world-class competence on
software architecture. This is achieved by running consultancy projects with
Nokia's business units, participating in international research projects,
collaboration with universities and with presence in international conferences.
During his entire career in NRC, Claudio has consulted the business units in the
area of software architecture and participated in international research project.
The major achievement has been the development of reverse engineering
techniques and practises. Reverse engineering concerns with those activities
aimed at comprehending the implementation of software products and
simplifying their maintenance and evolution. He has personally reverse
engineered large parts of Nokia products, assessed their software architectures
and provided important information for their development. The competence on
reverse engineering has been developed in conjunction with the academic
research and now helps Nokia in managing the software development, keeping
the architecture work grounded and gaining control over purchased software. His
work has become one of the key competences of NRC. Briefly, these are the roles
where Claudio has been active:

Consultancy. He has consulted the business units of Nokia Mobile Phones
(NMP) and Nokia Networks (NET) on the issues of reverse engineering,
architecture reconstruction and architecture assessment. This work
contributed to clarify the architecture of the software products, to identify the
major dependencies among the development teams, to organise the products

in product families and in general to improve the maintenance of the
products.
The main business achievements have been (1) to help NMP in the
organisation of the product families and in the development of the products'
user interface, (2) to help NET in the extraction and analysis of large software
products (developed in house and purchased).
Research. He has actively participated in both academic and applied research:
reporting about the industrial requirements to the academic world, applying
the academic results in practise and developing new techniques. He has been
present in the following research communities: reverse engineering, software
architecture, software engineering, product families and visualisation. The
research activity has been constantly funded by international research
projects (ARES, FAMOOS, ESAPS, CAFÉ). The applied research has been
carried out together with the business units.
Tool development. He has developed a set of tools to support the activity of
architecture reconstruction. The toolset is in use by the business units.
Competence mentor. Architecture reconstruction is one of the key
competences in the SAG group. Claudio has been responsible for managing
the competence in terms of projects, resources, content and dissemination.
Dissemination has been mainly achieved through a competence web site,
internal articles and internal workshops.
Teaching. He has developed a 2-days tutorial on architecture reconstruction.
The tutorial has been taught to the Nokia business units.

Other major contributions at NRC are related to the following topics:
Architecture for product lines. He participated in three international research
projects (ARES, ESPAS, CAFÉ and FAMILIES) focused on the
development and management of software product lines. His main
contributions concern with the techniques for analysing the evolution and
implementation of product families.
Embedded system design.
Evaluation of CASE tool usage in NMP.
UI design
Software assessment
Tools for teamwork
Architecture modelling - contributed to the development of the reference
architectures of NMP core products.
Synchronisation protocol for mobile devices
Scripting languages

Major Nokia wide achievements are listed in chronological order:
June 2004 - The Python language on the Nokia Series 60 becomes a product of
the Forum Nokia offer.
May 2002 - Two venture proposals submitted to the 2002 Nokia wide venture
competition. One has been awarded as best venture proposal together with 20
other ventures. Further development of the venture has started.
January 2001 - Achievement award for the year 2000 from the Software
Technology Laboratory.
November 2000 - Two articles accepted at the Nokia Conference on Research
and Design (NERD 2002). The articles are "Reverse Engineering Software
Systems: Techniques and Experiences" and "Empirical Evaluation of CASE Tool
Usage at Nokia".
May 2000 - The work on reverse engineering has been presented at the NMP
software days 2000 (three days NMP wide exhibition showing the latest software
technologies)

June 1997-October 1998
Project assistant at the Distributed Systems Group of the Information Systems
Institute at the Technical University of Vienna, Argentinierstrasse 8/184-1, A-
1040 Vienna, Austria.

Claudio worked as a project assistant in the European project ARES
(Architectural Reasoning for Embedded Systems). Within the project, he has
developed a technique for an analysing the evolution of the architecture of a large
software system (a key switching system developed by Nokia). The technique is
based on 3-D visualisation of the release history of the system. The work
contributed to the development of his Master's Thesis, "Visualizing the Software
Release Histories: the Use of Color and Third Dimension", that has been
presented at the Politecnico of Milano. The technique is supported by a web
application based on Java and VRML (Virtual Reality Mark-up Language) for the
visualisation of the 3-D models.

RESEARCH ACTIVITY
Nowadays, the importance of software architecture is well recognized by many
companies. The initial interest emerged somewhere between mid seventies and
mid eighties when the complexity of the software built by companies crossed a
critical threshold. The general situation is typically characterized by a loss of
intellectual control over the software that is developed. There are many
symptoms: monotonie growth of the software almost unrelated to the added
functionality, unawareness of what the different parts of the system are doing,
integration failure because of the unknown dependencies among the different
parts of the system, instability due to the fact that solving one problem would
introduce a new one, inability to improve the quality parameters of the system
(e.g. performance). The discipline of software architecture proposes a mechanism
for helping software engineers to re-gain and maintain an intellectual control over
the development of complex software systems. A useful understanding of the
architecture should offer a tool for dealing with complexity of software
development.
Claudio contributed to the research on software architecture by developing an
architecture reconstruction method that combines different reverse engineering
techniques. The reconstruction method allows the software engineers to create a
high level abstract description of a software system that shows the major building
blocks, their dependencies and behaviors. The method emphasises the importance
of selecting the architecturally significant concepts (essential for the architects)
and introducing the domain specific knowledge in the architectural model. A
proper reverse engineering environment supports the static and dynamic analysis
techniques that are necessary. The research has also focused on the notation for
presenting the architectural models (e.g. based on UML) and on different
visualization techniques.

The major research interests concerns the following areas:
Software Engineering
Reverse Engineering
Software Assessment
Software Evolution
Software visualization
User Interface Development
Programming languages

SEMINARS

6 March 2001
Lecture on "SyncML - The New Era in Data Synchronisation", University of
Tampere, Tampere, Finland.

21-26 January 2001
Presentation on "Reverse Engineering Experiences at Nokia" at the Dagstuhl
seminar #01041 on "Interoperability of Reengineering Tools", Germany.

13 December 2000
Lecture on "SyncML - The New Era in Data Synchronisation", Seminar on XML
technologies, Merito Forum, December 13 - 14 2000, Heslinki, Finland.

December 2002
Lecture on "Reverse Engineering and Reengineering", Helsinki University of
Technology, Helsinki, Finland.

2-7 February 2003
Presentation on "Architecture Recovery at Nokia" at the Dagstuhl seminar
#03061 on "Software Architecture: Recovery and Modelling", Germany.

SKILLS
Software competences: product families, use cases, software development, object
oriented techniques, software architecture, design of graphical libraries, user
interface design, feature interaction, testing, 2-D and 3-D graphics.

Telecom competences: GSM and UMTS

Programming competences: Symbian, C, C++, Java, JavaBeans, MS Visual C++,
Visual Basic, Eiffel, Pascal, Matlab, Smalltalk, OpenGL, SQL, Prolog, Perl,
TclTk, Python, HTML, VRML, Java, JavaScript, JDBC-ODBC, XML, PHP,
MFC, Qt library.

Operating Systems: DOS, Unix, Linux, Windows and Symbian.

REVIEWING COMITEE

For the following international conferences and journals

• International workshop on Principles of Software Evolution (IWPSE): 2003,
2004

• International workshop on Program comprehension (IVVPC): 2003, 2004
• IEEE Transactions on Software Engineering (TSE)
• Working Conference on Reverse Engineering, October 28 - November 1,

2002, Richmond, Virginia, USA

PROGRAM CHAIR

For the following international conferences:
• European Conference on Software Maintenance and Reengineering (CSMR),

Tampere, Finlnad, 24-26 March, 2004.

PUBLICATIONS AND WORKS

A. PUBLICATIONS ON INTERNATIONAL JOURNALS

Maccari, Alessandro, Riva, Claudio (2000). Empirical Evaluation of CASE Tools
at Nokia: first results. Presentation at Keele University, April 17-19, 2000,
Published at International Journal of Empirical Software Engineering, vol. 5 n. 3,
November 2000, Kluwer Academic Publishers

B. PUBLICATIONS ON PROCEEDINGS OF INTENRATIONAL CONFERENCES

C. Riva, P. Selonen, T. Systä, A-P. Tuovinen, J. Xu and Y. Yang,, Establishing a
Software Architecting Environment, In: Proc. of 4th Working IEEE/ IFIP
Conference on Software Architecture (WICSA 2004), 12-15 June
2004, Oslo, Norway. IEEE Computer Society.

C. Riva, P. Selonen, T. Systä, and J. Xu, UML-based Reverse
Engineering and Model Analysis Approaches for Software Architecture
Maintenance, In: Proc. of the The 20th IEEE International Conference on
Software Maintenance Chicago, Illinois, USA, September 11th - 17th 2004. IEEE
Computer Society.

M. Pinzger, H. Gall, J. F. Girard, J. Knodel, C. Riva, W. Pasman, Architecture
Recovery for Product Families, Proceedings of the Fifth International Workshop
on Product Family Engineering PFE-5, Springer Computer Notes, November 4-
6, Siena, Italy, 2003.

C. Riva and C. Del Rosso, Experiences with Software Product Family Evolution,
Proceedings of the International Workshop on Principles of Software Evolution
(IWPSE 2003), IEEE Computer Society Press, 1-2 September, Helsinki, Finland,
2003.

C. Riva and Y. Yang, Generation of Architectural Documentation using XML,
Proceedings of the 9th Working Conference on Reverse Engineering (WCRE
2002), IEEE Computer Society Press, 29 Oct - 1 Nov, Richmond, Virginia, 2002.

A. Maccari, F. Maccari and C. Riva, On CASE Tool Usage, Proceedings of the
17th IEEE International Conference Automated Software Engineering (ASE
2002), IEEE Computer Society Press, September 23-27, 2002, Edinburgh,
Scotland.

C. Riva, Architecture Reconstruction in Practice, Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture (WICSA 2002), Kluwer
Academic Publishers, August 25-30, Montreal, Canada, 2002.

A. Maccari, A. Telea, C. Riva, An Open visualisation toolkit for reverse
architecting, Proceedings of the International workshop on Program
comprehension (IWPC-2002), June 27 - 29, Paris, France, 2002.

A. Telea, A. Maccari, C. Riva, An Open Toolkit for Prototyping Reverse
Engineering Visualizations , Proceedings of the Joint Eurographics - IEEE
TCVG Symposium on Visualization (VisSym '02), May 27-29 2002, Barcellona,
Spain.

C. Riva and J. V. Rodriguez, Combining Static and Dynamic Views for
Architecture Reconstruction, Proceedings of the Sixth European Conference on
Software Maintenance and Reengineering (CSMR 2002), IEEE Computer Society
Press, 11-13 March 2002 in Budapest, Hungary.

A. Telea, A. Maccari and C. Riva, An Open Toolkit for Reverse Engineering
Data Visualisation and Exploration, Proc. of the Tools Eastern Europe
Conference 2001, Sofia, Bulgaria, March 13-15, 2002.

A. Maccari and C. Riva, Architectural Evolution of legacy product families, The
Fourth International Workshop on Product Family Engineering PFE-4, Bilbao,
Spain, October 3-5, 2001.

C. Riva, Reverse Architecting: an Industrial Experience Report, Proceedings of
the 7th Working Conference on Reverse Engineering (WCRE2000), Brisbane,
Australia, 23-25 November, 2000.

C. Riva, Visualizing Software Release Histories with 3DSoftVis, Proceedings of
the 22nd International Conference on Software Engineering, (ICSE 2000), June 4-
11, 2000, Limerick, Ireland, ACM, 2000.

Frank van der Linden (Ed.): Software Product-Family Engineering, 4th
International Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Revised
Papers. Lecture Notes in Computer Science 2290 Springer 2002, ISBN 3-540-
43659-6

Mehdi Jazayeri, Claudio Riva, Harald Gall, Visualizing Software Release
Histories: The Use of Color and Third Dimension, Proceedings of the
International Conference on Software Maintenance (ICSM '99), Aug 30-Sep 3,
Oxford, England, 1999, pp. 99-108.

Harald Gall, Mehdi Jazayeri, Claudio Riva, Application of Information
Visualization to the Analysis of Software Release History, Proceedings of the
Joint EUROGRAPHICS - IEEE TCCG Symposium on Visualization (VisSym '99),
May 26-28, Vienna, Austria, 1999.

Claudio Riva, Michael Przybilski, Kai Koskimies: Environment for Software
Assessment. ECOOP Workshops 1999: Ana M. D. Moreira, Serge Demeyer
(Eds.): Object-Oriented Technology, ECOOP99 Workshop Reader, ECOOP99
Workshops, Panels, and Posters, Lisbon, Portugal, June 14-18, 1999,
Proceedings. Lecture Notes in Computer Science 1743 Springer 1999, ISBN 3-
540-66954-X

C. TUTORIAL
A. van Deursen and C. Riva (Nokia), Tutorial on Architecture Reconstruction,
International Conference on Software Engineering, 24th May 2004, Edinburgh,
Scotland.

A. van Deursen and C. Riva (Nokia), Tutorial on Architecture Reconstruction,
European Conference on Software Engineering (ESEC-FSE), 2rd September
2003, Helsinki, Finland (half day).

A. van Deursen and C. Riva (Nokia), Tutorial on Architecture Reconstruction,
International Conference on Software Maintenance, 3rd October 2002, Montréal,
Canada (full day).

D. WORKS PRESENTED IN INTENRATIONAL WORKSHOPS AND
CONFERENCES

C. Riva, Feature Oriented Reverse Engineering, presented at PREA - Panel on
reverse engineering and architectural evolution, located at the Conference on
Software maintenance and reengineering (CSMR 2002) March 11 - 13, 2002
Budapest, Hungary (notes published on Software Engineering Notes September
2002)

Alessandro Maccari and Claudio Riva, Empirical evaluation of CASE tools usage
at Nokia: first results, 4th International Conference on Empirical Assessment &
Evaluation in Software Engineering (EASE 2000), Keele University,
Staffordshire, UK, April 17th - 19th 2000.

C. Riva, Reverse Architecting: suggestions for an exchange format, workshop on
Standard Exchange Format (WoSEF), International Conference on Software
Engineering (ICSE2000), June 6, Limerick, Ireland, 2000.

E. MASTER'S THESIS
Claudio Riva, Visualizing Software Release Histories: The Use of Color and
Third Dimension, Master's Thesis, Politecnico di Milano, Milan, Italy, June 1998.

