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Kurzfassung

DIE MIKROELEKTRONIK hat einen Punkt erreicht, an dem quantenmechanische Ef-
fekte einen wesentlichen Einfluss auf die elektrischen Eigenschaften von Halbleiterbauele-

menten haben. Einer der wichtigsten dieser Effekte ist das quantenmechanische Tunneln von
Ladungsträgern durch Schichten dünner Dielektrika. Einerseits führt dies zu einem erhöhten
Leistungsverbrauch von Halbleiterbauelementen und limitiert dadurch die Dicke des Gatedielek-
trikums. Andererseits werden Tunneleffekte in nichtflüchtigen Speicherbauelementen verwendet
um Ladung auf einen isolierten Speicherknoten zu transferieren.

Der Tunneleffekt basiert auf dem Übergang von Ladungsträgern von einer Elektrode durch eine
klassisch isolierende Region auf eine andere Elektrode. Dieser Prozess wird durch drei Faktoren
beeinflusst: Der energetischen Verteilung der Ladungsträger in beiden Elektroden, dem quan-
tenmechanischen Transmissionskoeffizienten der Energiebarriere, und vorhandenen Störstellen
im Dielektrikum die den Tunnelprozess beeinflussen.

Die energetische Verteilung der Ladungsträger in den Elektroden ist von fundamentaler Bedeu-
tung für den Tunnelstrom. Üblicherweise wird eine FERMI-DIRAC oder MAXWELL-BOLTZMANN

Verteilung angenommen. Diese Verteilungsfunktionen sind jedoch nur nahe des Gleichgewichts-
zustands gültig und scheitern bei der Beschreibung des Verhaltens heisser Ladungsträger. In
dieser Arbeit wird eine neue Verteilungsfunktion verwendet, die auf der Konzentration, Tem-
peratur, und Kurtosis der Ladungsträger basiert. Diese Verteilungsfunktion zeigt gute Überein-
stimmung mit den Ergebnissen von Monte Carlo Simulationen und reproduziert die Verteilung
der hochenergetischen Ladungsträger mit hoher Genauigkeit. Die heisse MAXWELL Verteilung,
die nur auf der Konzentration und Temperatur der Ladungsträger basiert, kann die Verteilung
der hochenergetischen Ladungsträger nicht reproduzieren und führt zu einer stark überhöhten
Tunnelstromdichte.

Der quantenmechanische Transmissionskoeffizient wird durch Lösung der SCHRÖDINGER-Glei-
chung bestimmt und hängt von der Form der Energiebarriere im Dielektrikum ab. Dielektrika
die aus einer einzigen Schicht bestehen zeigen eine lineare Potentialvariation in der Barriere
die zu einem entweder dreieckigen oder trapezförmigen Banddiagramm führt. Für diesen Fall
können analytische Modelle zur Berechnung des Transmissionskoeffizienten hergeleitet werden
die auf der WENTZEL-KRAMERS-BRILLOUIN-Näherung oder der GUNDLACH-Formel beruhen.
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KURZFASSUNG

Der stetige Miniaturisierungsprozess elektronischer Bauelemente führt jedoch zu einer entsprech-
enden Reduzierung der Dicke der Gatedielektrika in MOS Bauelementen, was für das fast aus-
schliesslich verwendete Material SiO2 zu unzulässig hohen Leckströmen führt. Als Abhilfe wur-
den geschichtete Dielektrika aus Materialien mit höheren Dielektrizitätskonstanten vorgeschla-
gen.

In derartigen geschichteten Dielektrika hat das Banddiagramm einen nichtlinearen Verlauf und
Modelle, die auf einer dreieckigen oder trapezförmigen Energiebarriere basieren, sind nicht mehr
gültig. Stattdessen muss die SCHRÖDINGER-Gleichung mit Hilfe der Transfer-Matrix oder der
Quantum Transmitting Boundary Methode gelöst werden. Diese Methoden wurden untersucht,
wobei sich die Quantum Transmitting Boundary Methode auf Grund der höheren numerischen
Stabilität und der Eignung für mehrdimensionale Probleme als vorteilhaft herausgestellt hat.

Nichtflüchtige Speicherbauelemente müssen bis zu 105 Schreib- und Löschvorgänge bei Spannun-
gen in der Höhe von 8-12 V fehlerfrei ausführen. Diese wiederholte Belastung des Dielektrikums
führt zur Bildung von Defekten, die störstellenunterstütztes Tunneln bei niedrigen Feldstärken
ermöglichen. Diese Generation von Störstellen wird als einer der Hauptgründe für die Ver-
schlechterung der Isolationseigenschaften des Dielektrikums angesehen. Störstellenunterstütztes
Tunneln wird in dieser Arbeit als zweistufiger Prozess modelliert, bei dem Energie durch die
Emission von Phononen frei wird. Die Besetzungsdichte der Defekte wird durch eine Ratengle-
ichung beschrieben. Um diese Geichung zu lösen wird ein iteratives Modell verwendet.

Die beschriebenen Modelle wurden in den Bauelementsimulator MlNIMOS-NT implementiert.
Zahlreiche Anwendungen wurden untersucht, wobei eine Unterscheidung zwischen MOS Transis-
toren und nichtflüchtigen Speicherbauelementen gemacht wurde. Die Anwendbarkeit alternativer
Dielektrika wurde untersucht und an Hand eines MOS Kondensators mit ZrO2 Dielektrikum mit
Messungen verglichen. Weiters wurden nichtflüchtige Speicherbauelemente wie EEPROMs und
alternative Strukturen untersucht. Mit Hilfe der implementierten Modelle kann MlNIMOS-NT
für die Modellierung des Tunnelstroms in beliebigen Halbleiterbauelementen verwendet werden.
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Abstract

TV /TICROELECTRONICS has reached a point where quantum effects have a major impact on
.LVJLthe electrical characteristics of semiconductor devices. One of the most important effects
in this regime is the quantum-mechanical tunneling of carriers through thin dielectric layers. On
the one hand, this leads to increased power consumption and thus limits the thickness of the
gate dielectric. On the other hand, tunneling effects are used in non-volatile memory devices to
transfer charge to an isolated floating gate.

The tunneling current is caused by the transition of carriers from one electrode through a
classically isolating region to another electrode. Three major factors influence this process: the
carrier energy distribution at both electrodes, the quantum-mechanical transmission coefficient
of the energy barrier between the electrodes, and the presence of traps in the insulating layer
which may assist in the tunneling process.

The carrier energy distribution is of major importance for the tunneling process. The FERMI-

DIRAC or MAXWELL-BOLTZMANN distribution is frequently used to approximate this distri-
bution. These expressions are, however, only valid near equilibrium and fail to describe the
distribution of hot carriers. In this work an alternative expression for the distribution func-
tion, which is based on the carrier concentration, temperature, and kurtosis, was applied. This
distribution shows good agreement with results from Monte Carlo simulations and accurately re-
produces the high-energy tail of the distribution. The heated MAXWELLian distribution, which
only accounts for the electron concentration and temperature, completely fails to reproduce the
high-energy tail and highly overestimates the tunneling current density.

The quantum-mechanical transmission coefficient is calculated by solving the stationary SCHRÖ-
DINGER equation in the region considered for tunneling. The coefficient depends on the shape
of the energy barrier in the dielectric layer. Dielectrics which consist of a single layer give
rise to a linear potential variation in the barrier, yielding either a trapezoidal or a triangular
band diagram. Analytical models can be derived to approximately calculate the transmission
coefficient in these cases, based on the WENTZEL-KRAMERS-BRILLOUIN approximation or on
GUNDLACH'S formula.
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ABSTRACT

With reduced device dimensions, however, the gate dielectric in MOS devices must be scaled
accordingly which, for the commonly used material SiC>2, leads to an intolerably high gate
current density. To overcome this problem, gate dielectric stacks including high-K dielectrics
have been proposed.

In such dielectric stacks the band profile has a non-linear shape, and models based on triangular
or trapezoidal barriers are no more valid. Instead, SCHRÖDINGER'S equation must be solved using
the transfer-matrix or the quantum transmitting boundary method. These methods have been
studied and the quantum transmitting boundary method was found superior due to its better
numerical stability and the possibility to apply it to two- and three-dimensional problems.

Non-volatile memory devices need to endure up to 105 write and erase cycles at a voltage of
8-12 V. This repeated high-field stress introduces defects in the tunneling dielectric, which give
rise to trap-assisted tunneling current at low electric fields. That trap generation is considered
a major reason for device degradation. In this work trap-assisted tunneling is modeled as a two-
step process during which energy relaxation by phonon emission takes place. The trap occupancy
in the dielectric is described by a time-dependent rate equation. To solve this equation, an
iterative procedure is applied.

Models to describe the outlined processes have been implemented into the general-purpose device
simulator MINIMOS-NT. Several applications are investigated, where a distinction between MOS
transistors and non-volatile memory devices is made. The applicability of alternative dielectric
materials is investigated and, as an example, a MOS capacitor with a ZrO2 dielectric is simulated
and compared with measurements. Non-volatile memory devices such as conventional EEPROM
devices, trap-rich dielectric devices, multi-barrier tunneling devices, and devices which use lay-
ered tunnel barriers to improve the retention time are investigated. With the implemented
models, MINIMOS-NT can be used for the evaluation of tunneling currents in device structures
of arbitrary complexity.
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Lattice temperature
Electron temperature
Transmission coefficient
Velocity
Velocity vector
Velocity component in the tunneling direction
Velocity component perpendicular to the tunneling direction
Voltage drop in the polysilicon
Gate-source voltage
Drain-source voltage
Control gate voltage
Floating gate voltage
Voltage drop in the dielectric
Overlap integral
Potential energy
Capture rate
Emission rate
Trap cube side length

s constant 6.6260755 x 10~34 Js
PLANCK'S constant h/(2n)

BOLTZMANN'S constant 1.380662 x KT23 JK"1

Elementary charge 1.6021892 x 10~19 C
Electron rest mass 9.1093897 x 10~31 kg
Dielectric constant 8.8541878 x 10~12 A s V " ^ " 1
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'... many high barriers exist in this world: Barriers
between nations, races, and creeds. Unfortunately,
some barriers are thick and strong. But I hope, with
determination, we will und a way to tunnel through
these barriers easily and freely, to bring the world
together so that everyone can share in the legacy of

Alfred Nobei' Chapter 1

Leo Esaki

Introduction

THE INCREASING demand for higher computing power, smaller dimensions, and lower
power consumption of electronic devices leads to a pressing need to downscale semicon-

ductor components. This process has already led to length scales where the electrical device
characteristics is dominated by quantum-mechanical effects. One of the most interesting of these
effects is the quantum-mechanical tunneling of charge carriers through classically forbidden re-
gions.

This effect is important for many aspects of microelectronic technology. On the one hand,
tunneling currents are exploited in non-volatile memory cells such as EEPROM (electrically
erasable programmable read-only memory) or Flash devices to transfer charge to an isolated
floating gate by applying high voltages at a capacitively coupled contact. On the other hand,
parasitic tunneling currents through the ultra-thin gate dielectric cause increased power con-
sumption of deep-submicron MOS (metal-oxide-semiconductor) transistors. DRAM (dynamical
random-access memory) and quasi-nonvolatile SRAM (static random-access memory) cells face
reduced retention times due to leakage through the memory node isolation. Resonant tunnel-
ing diodes are based on the tunneling mechanism to achieve a negative differential resistance,
resulting in extraordinarily high operating frequencies.

It is therefore necessary to account for tunneling effects in the design of semiconductor devices.
This can be achieved using numerical simulation. In the field of microelectronics the term TCAD
(technology computer-aided design) is used to describe the numerical simulation of the semicon-
ductor manufacturing process and the prediction of the electrical characteristics of the resulting
devices. Chapter 2 describes the fundamentals of contemporary CMOS (complementary MOS)
technology, gives a brief overview about the crucial topics encountered in device scaling, and
outlines the hierarchy of TCAD simulation approaches.

Several models of varying complexity and accuracy can be derived to describe the tunneling
current density in semiconductor devices. The models depend on two central quantities, namely
the supply function, which describes the supply of available electrons, and the transmission
coefficient, which describes the probability that an electron can tunnel through the barrier. The
supply function is determined by the energy distribution of the electrons. In equilibrium, this
distribution can be approximated by a MAXWELLian distribution.
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However, the electric field in miniaturized devices is so high that non-MAXWELLian models have
to be be considered to accurately describe the shape of the distribution function and especially
the shape of the high-energy tail of the distribution.

To calculate the transmission coefficient of a dielectric layer, SCHRODINGER'S equation must
be solved. One of the most frequently used methods is the WENTZEL-KRAMERS-BRILLOUIN

(WKB) approximation which, however, does not reproduce transmission coefficient oscillations
as observed in thin gate dielectrics. To accurately describe tunneling through dielectric stacks,
it is necessary to resolve the effects of wave function interference. This can be achieved using
the transfer-matrix method with either constant or linear potential segments. However, this
method is numerically stable only for layer thicknesses up to a few nanometers. It is therefore
hardly applicable to the simulation of high-« dielectric stacks, which may have thicknesses of
up to 10 nm. A more promising approach is the quantum transmitting boundary method which
allows a stable and reliable evaluation of the transmission coefficient.

Unlike assumed in idealized models, dielectric layers are not ideal insulators. Caused by electric
stress or processing conditions, defects arise in the dielectric which give rise to trap-assisted
tunneling. This results in increased tunneling current at low bias, which is referred to as SILC
(stress-induced leakage current). The trap-assisted tunneling process is caused by inelastic
transitions of carriers supported by the emission of phonons. As this is a transient process it
is necessary to account for the creation and annihilation of traps in the dielectric based on the
rate equation of the traps.

All these effects are discussed in Chapter 3 which treats the theory of tunneling in semi-
conductors. This comprises modeling of the supply function, the transmission coefficient, and
trap-assisted tunneling.

Modern device simulators are complex software packages and the integration of interfaces to allow
tunneling of charge carriers between arbitrary places in a device is not a straightforward task.
Chapter 4 provides a short description of the device simulator MINIMOS-NT and summarizes
the implementation of the tunneling models. Furthermore, the SCHRÖDINGER solver which is
used for the calculation of the transmission coefficient is briefly sketched.

In Chapter 5 several applications are presented. MINIMOS-NT is used for the simulation of gate
leakage currents in MOS capacitors and MOSFETs (MOS field-effect transistors). Emphasis is
put on the modeling of the different tunneling paths in MOS transistors and on the evaluation
of alternative high-«; dielectric materials. Furthermore, several NVM (non-volatile memory)
devices such as EEPROM devices, trap-rich dielectric, or multi-barrier tunneling based devices
are investigated.

Finally, Chapter 6 briefly summarizes the thesis with some conclusions.



'There is plenty of room at the bottom. '
Richard P. Feynman

Chapter 2

Fundamentals of CMOS Devices

£1 WITCHES are the main building blocks of any hardware logic implementation. Comput-
k_}ers in today's meaning1 have been realized using mechanical and later electromechanical
switches. The main shortcomings of such components are their low speed and their high power
consumption. Vacuum tubes, which are switches without moving parts, have been used as re-
placements, but suffered from poor reliability. The invention of semiconductor switches gave a
fast and reliable alternative. Bipolar transistors allow a high switching speed and a large ampli-
fication, however, current flow into the base contact must be maintained to keep the switch open.
In metal-oxide-semiconductor field-effect transistors the current flow is controlled by a voltage.
Ideally, no power is needed to control the on- and off-state. Complementary MOS technology
is based on complementary-type transistors where current flows only during the switching pro-
cess. These devices allow hardware logic implementations with extremely low standby power,
high speed, and small footprint. Fig. 2.1 shows a schematic and a simplified layout of a CMOS
inverter, the workhorse of all modern computers. An n-type MOS (nMOS) and a p-type MOS
(pMOS) device are fabricated on the same p-doped wafer, with the pMOS device embedded
in an n-doped well. The footprint of these structures is very small and allows high integration
densities.
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Figure 2.1: Schematics of a CMOS inverter and its layout.

early times, the term 'computer' denoted a person who does computations.
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2.1 Historical Overview

The field-effect transistor (FET) was first proposed by LILIENPELD in 1926 and patented in
1930 [1]. However, the practical implementation was impossible due to material-related prob-
lems. On December 23rd 1947, BARDEEN and BRATTAIN, scientists at AT&T Bell Labs who
worked in the group of SHOCKLEY, discovered the transistor effect [2-4], for which they re-
ceived the NOBEL prize in 1956. The first integrated circuit was demonstrated by KlLBY at
Texas Instruments in 1959. In the same year NOYCE and MOORE, who had been working with
SHOCKLEY, founded the company Fairchild Semiconductor, where they introduced the first
commercially used semiconductor transistors2. The first field-effect transistor based on MOS
technology was developed by KAHNG and ATALLA in 1960 [5]. MOORE, NOYCE, and GROVE

left Fairchild Semiconductor and founded the company Intel in 1968. Soon, this company be-
came the leading manufacturer of microprocessors. In 1965, MOORE reckoned that the number
of transistors per integrated circuit approximately doubles every year, and he contributed this
to three main effects: improvements in lithography, increased chip size, and gain from circuit
and design innovation [6]. In 1975 he updated his statement and predicted that the number of
transistors doubles every eighteen months to two years [7]. This statement has become widely
known as MOORE'S law, and it became the main paradigm of the microelectronics industry in
the following decades.
The steady reduction of MOSFET. device dimensions and integration densities found a theo-
retical basis in 1974 when DENNARD presented the constant-field scaling law [8] according to
which the device dimensions can be reduced without altering the electrical characteristics if all
dimensions, voltages, and doping concentrations are scaled in such a way that the electric field
in the device remains constant. Hence, lengths and voltages are reduced by a factor s, while
doping concentrations are increased by the same factor. This is shown schematically in Fig. 2.2
for a scaling factor s = 2 [9]. BACCARANI et al. presented a generalized scaling law [10] which
takes into account that voltages cannot be reduced by the same factor as lengths. Instead, if
voltages are scaled with a factor S2 and lengths with a factor s\, doping concentrations must be
scaled by s\/s2.
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Figure 2.2: Constant-field scaling of MOS devices.

2The word transistor stems from transconductance varistor.
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In 1992, the Semiconductor Industry Association (SIA) published the National Technology
Roadmap for Semiconductors (NTRS) which was later replaced by the International Technology
Roadmap for Semiconductors (ITRS). This document represents a collaborative effort to iden-
tify critical topics in semiconductor development. Every two years, comprehensive forecasts of
the main technological parameters of semiconductor technology are published.
Two of the most important parameters to quantify device scaling are the DRAM (dynamical
random-access memory) half pitch and the MPU (microprocessor unit) half pitch, defined as
half the spacing of two connecting metal lines. Another important parameter is the gate length
of MOSFETs Lg, where a distinction between printed and physical gate length must be made.
Table 2.1 shows the predictions of the 2001 edition of the ITRS [11] compared with the values
of the 1999 and 1997 edition.

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2016

2001
130
115
100
90
80
70
65

45

32

22

DRAM
1/2 pitch

1999
150
130
120
110
100

70

50

35

1997
150

130

100

70

50

MPU
1/2

2001
150
130
107
90
80
70
65

45

32

22

pitch

1999
180
160
145
130
115

80

55

40

MPU
Printed

2001
90
75
65
53
45
40
35

25

18

13

1999
100
85
80
70
65

45

30

20

1997
120

100

70

50

35

MPU
Physical Lg

2001
65
53
45
37
32
28
25

18

13

9

Table 2.1: Predictions of the ITRS 2001 compared with the predictions of 1997 and
1999. Values are in nm. In the ITRS 1999 and 1997 no predictions for the
physical gate length, and in 1997, no MPU half pitch is given.

It can be seen that the predictions of each roadmap exceed the ones of the predecessor, an
observation which has been called roadmap acceleration: While in 1997 the 70 nm DRAM half-
pitch was predicted for the year 2009, it was predicted for 2008 in 1999, and the 2001 roadmap
sees it in the year 2006.
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Figure 2.3: MOSFETs with 60 nm (left) and 10nm (right) gate length [12,13]. The
gate dielectric thicknesses are 1.5 nm and 0.8 nm, respectively.

This continuous scaling has led to the development of transistors with gate lengths as small
as 60 nm or even 10 nm in experimental devices, as shown in Fig. 2.3 [12,13]. However, major
obstacles arise when devices are scaled to such small dimensions.

2.2 Obstacles to Device Miniaturization

Several topics can be identified which represent severe handicaps to a further scaling of CMOS
devices. Fig. 2.4 shows a cut through a typical CMOS inverter which consists of an nMOS and
a pMOS device separated by shallow trench isolation (STI) [13,14]. Crucial topics which must
be taken into account to allow further device shrinkage are highlighted [15]. They will be briefly
discussed in the following sections.

Gate stack:
Dual work function
Low sheet resistance
Boron penetration
Poly depletion

TiSi,

Gate dielectric:
Low EOT
Tunneling current
Defect density
Reliability

Si,N,i3i\,

Source/Drain:
Lightly doped drain (LDD)
Junction depth

Channel:
DIBL and short-channel effect
Energy quantization
Carrier heating

Figure 2.4: Important topics for further miniaturization of CMOS devices [15].
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2.2.1 Channel

In the inversion layer of a MOSFET the strong band bending perpendicular to the channel leads
to energy quantization. While the band edge energy along the channel varies only slightly,
there is a strong gradient perpendicular to the channel. The inversion carriers are confined to
a narrow quantum well beneath the gate dielectric which is called the two-dimensional electron
gas. This is depicted in Fig. 2.5, where the carrier concentration in the channel is shown for a
classical simulation with and without quantum correction.

Classical

Figure 2.5: Carrier concentration without (left) and with (right) quantum correction.
In the classical case the concentration peaks at the interface.

If it is assumed that the carrier wave function is blocked at the gate dielectric — that is, wave
function penetration is neglected — discrete energy levels are formed [16]. The maximum of the
electron concentration, the charge centroid, is not located at the interface to the gate dielectric,
but forms inside the channel as shown in the left part of Fig. 2.6. This effect manifests as a
reduced output current, as shown in the right part of Fig. 2.6, and can be modeled to some
extent as a threshold voltage shift. Furthermore, the gate capacitance is reduced by this effect.

2 .5 |
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Figure 2.6: Carrier concentration in the channel (left) and output characteristics of
a MOSFET (right) calculated with and without quantum correction.
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Additional problems of device scaling are related to hot-carrier effects: When carriers in a
turned-on MOSFET move from the source to the drain, they gain velocity and energy. Near
the drain they have a high temperature which causes increased band-to-band tunneling, gate
dielectric tunneling, and impact ionization (the phenomenon of hot-carrier tunneling will be
reissued in Section 5.1.4.) The additional carriers created by these processes add to the substrate
current, and thus to the leakage of the device. Furthermore, the hot-electron tunneling current
leads to a degradation of the reliability of the gate dielectric.

Punchthrough poses a severe problem for miniaturized devices. It happens when a spurious
path between source and drain of a turned-off MOSFET forms in the bulk region where the gate
has no control over the charge. This results in a strongly increased leakage current. Fig. 2.7
shows the current density in a 90 nm turned-off MOSFET at VGs=0.0V, VDS=1.2V with a
retrograde well (left) and without (right). Due to punchthrough, the current density in the right
device is very high. It can be seen that the current does not flow through the channel but deeply
in the substrate. Measures taken to reduce this effect are retrograde wells, halo implants, or
pocket implants [17].

For devices with very short channels, an additional effect occurs which leads to increased leakage
current. Due to the short distance between source and drain, the potential at the drain contact
reduces the peak value of the energy barrier in the channel. This is shown in the left part of
Fig. 2.8 for gate lengths of 250 nm down to 50 nm. It can be seen that the peak of the energy
barrier near the source contact is strongly reduced, an effect which is called drain-induced
barrier lowering (DIBL). It leads to a decrease of the threshold voltage with reduced channel
length. The resulting values of the threshold voltage for decreasing channel lengths, as shown
in the right part of Fig. 2.8, give the so called 'roll-off' curve.

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21

Figure 2.7: Current density in a 90 nm turned-off MOSFET without (left) and with
a retrograde well implant (right). In the right device punchthrough leads
to a high leakage current which mainly flows in the bulk region.



FUNDAMENTALS OF CMOS DEVICES 2.2 Obstacles to Device Miniaturization

0 -

%

'S

-0.5 -

Ô

i X •.

! \
i i

i i
; \
-, 1

! 1

i I

\
\
x
\
\
\
\

•

\

\

\

', 1
i

L =250 nm

L=180nm

. . . . L=130nm

L =90 nm

Lg=50nm

I
I • 1

0.2 0.3 0.4
Position [jim]

0.5

0.8

0.6 -

; 0.4 -

0.2 -

1 ' 1 " 1
. ' — • - 1 • — • * *

— .

td,d=4 n"1

i

-

0.2 0.4 0.6 0.8
Gate length [|xm]

Figure 2.8: DIBL (left) and roll-off curve (right) for MOSFET devices with decreasing
gate lengths and dielectric thicknesses at a drain bias of 1.2 V.

2.2.2 Gate Stack

For the realization of CMOS circuits it is necessary to integrate nMOS and pMOS devices closely
together. Polysilicon gates allow an adjustment of the work function by doping and are thus
ideally suited for large-scale integration [18], in contrast to metals where it is difficult to find
materials with complementary work functions. However, if a voltage is applied on the polysilicon
gate, a depletion layer forms at the interface to the gate dielectric. Within this layer a voltage
drop occurs which is approximately given by [19]

Vrpoly
cdiel

2q«siA p̂oly '

where K̂ iei and K,S; denote the dielectric permittivity of the gate dielectric and the substrate,
Etfiei is the electric field in the dielectric, and A p̂oiy the doping of the polysilicon. This effect is
called polysilicon depletion. It leads to a reduced electron concentration at the interface and
causes an effective increase of the dielectric thickness and an increase of the threshold voltage.
The polysilicon depletion effect can be avoided by the use of metal gates such as nitrogen-doped
molybdenum [20], which, however, is demanding from a process point of view.

Furthermore, polysilicon gates must be doped, and the material Boron is used as dopant for
pMOS devices. However, during further process steps, the Boron tends to diffuse through
the polysilicon gate and penetrate the dielectric layer and even the channel (Boron penetra-
tion) [21]. This causes a number of problems not only with the quality and reliability of the
dielectric but especially with the device operation: Boron penetration increases the threshold
voltage of MOS devices and degrades the MOSFET transconductance and its subthreshold slope.
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2.2.3 Source and Drain

The doping profile of the source and drain region has an important impact on the device char-
acteristics. On the one hand, it is desirable to have shallow junctions to reduce the influence
of the drain on the channel and to improve the gate control over the inversion charge. On the
other hand, a deep and heavily doped source and drain region reduces the series resistance. One
possibility to achieve both is to introduce lightly doped drain (LDD) regions, where a deep
implant is used at the contact and connected via a shallow implant to the channel. Another
approach is to use raised source/drain contacts which are formed at a higher elevation than
the channel [22].

2.2.4 Gate Dielectric

According to the scaling theory outlined in Section 2.1, the gate dielectric thickness must shrink
with every new device generation, reaching values of 2.2 nm, 1.9 nm, and 1.4 nm for 180 nm,
150 nm, and 100 nm gate length devices [23]. However, the quantum-mechanical tunneling
effect comes into play if the energy barrier between gate and semiconductor becomes to small.
One remedy against this effect is to use dielectric materials which have a higher dielectric
permittivity. These materials allow to achieve a high physical thickness together with a small
effective oxide thickness (EOT). The EOT is defined as the thickness of a SiO2 layer with equal
capacitance. For a layer of SiO2 and a high-« dielectric, the EOT is

E O T = tSiO2 + ihigh-/t •

where tsjO2 and ^high-« denote the thickness of the SiO2 and high-K layer, and KS;O2 and
are the respective permittivities. With high-« dielectrics it is possible to retain good control
over the inversion charge even with physically thick dielectrics to block tunneling currents. This
topic will be investigated in more detail in Section 5.1.5.

However, the gate dielectric reliability is a crucial issue, in particular with new materials.
The parasitic tunneling current which flows through the dielectric gives rise to wear-out which
means that the blocking capability of the dielectric is reduced, and even dielectric breakdown
which is a sudden conductance increase. It is commonly assumed that this breakdown is caused
by the gradual buildup of defects in the dielectric layer which may be caused by anode hole
injection or the release of hydrogen from the Si-SiO2 interface [24]. This is especially critical for
high-« dielectrics which do not form a native layer on silicon.

10
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2.3 Novel Device Concepts

In addition to the ongoing scaling process, novel design concepts have arisen to enable a further
increase in the integration density. These concepts span from strained-silicon MOS devices
where the silicon channel is replaced by strained silicon to improve the mobility, to depleted-
substrate devices such as single-gate or double-gate silicon on insulator (SOI) devices, FinFETs,
vertical transistors, and even carbon nanotubes (CNTs) which represent a completely new device
structure.

2.3.1 Strained-Silicon Devices

The mobility of carriers in silicon is enhanced if biaxial tensile strain is applied [25], because
under tensile strain in (001) silicon, the fourfold-degenerate conduction band ellipsoids with
the higher effective mass are lifted. Thus, more carriers remain in the two-fold degenerate
ellipsoids with lower effective mass. Additionally, inter-valley scattering is reduced. Strained
silicon channels can be realized by growing a thin layer of silicon on a material with a slightly
larger lattice constant, such as silicon-germanium. The silicon layer must be thin enough to
prevent relaxation and strain relief.

2.3.2 Depleted-Substrate Devices

As outlined above, punchthrough is one of the main problems in MOS devices. A straightforward
countermeasure is to use devices where the substrate is partially or fully depleted [13]. Since there
are no free carriers except in the channel, punchthrough cannot happen. Depleted-substrate
devices can be realized using silicon on insulator substrates. The structure and conduction band
edge of a fully-depleted single-gate SOI device is shown in the left part of Fig. 2.9. It consists
of a standard MOSFET with a substrate that is insulated from the wafer by a layer of SiO2- The
gate can have an even better control over the inversion charge if a double-gate SOI transistor
is considered, as shown in the right part of Fig. 2.9. Double- or even triple-gate MOSFETs can
be achieved using a FinFET. This is a device where a small silicon channel — the fin — is
surrounded at two or three sides by the gate electrode [25-27]. Fin thicknesses down to 6.5 nm
have been reported [28] which means that the channel between source and drain consists of only
about 15 atomic layers of silicon.

2.3.3 Vertical Transistors

MOSFETs which are used as access transistors in DRAM cells need a particularly small footprint
to allow high integration densities [29]. The DRAM capacitor, which requires a capacitance of
approximately 50 fF to allow practicable retention times, is usually built as a trench capacitor.
One approach by which the footprint is reduced drastically is to turn the access transistor into
the vertical direction directly above the trench capacitor [30-35].

11
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Figure 2.9: Conduction band edge in a fully-depleted turned-on single-gate (left) and
double-gate SOI transistor (right).

2.3.4 Carbon Nanotube FET

Carbon nanotubes are cylindrical sheets of one ore more concentric layers of carbon atoms.
Experiments have shown that the tubes can either have metallic or semiconducting properties.
Their band structure depends on the position of the carbon atoms forming the tube. Par-
ticularly single-wall carbon nanotubes show superior electrical properties and are considered
promising candidates for future nanoelectronic applications, either as interconnects or active
devices. Semiconducting nanotubes can be used as active elements in field-effect transistor
(FET) designs. Two possible applications of carbon nanotubes as transistor devices are shown
in Fig. 2.10 [36,37]. Single-wall carbon nanotubes are ballistic conductors, so the current is
governed by LANDAUER'S equation. This, however, implies that the minimum resistance of a
metallic nanotube is h/4q2 « 6.5 kO. It is now generally accepted that the transport in the
tubes is dominated by SCHOTTKY barriers at the metal contacts [38].

Gate

Gate

Drain

Source

Source

Figure 2.10: A lateral (left) and an axial (right) carbon nanotube FET.
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2.4 Semiconductor Device Simulation

With the development of large scale integration in the late 1970's it became evident that the
optimization of semiconductor manufacturing processes on a mere experimental basis is ques-
tionable. The numerical simulation of the fabrication process and the electrical characteristics
of semiconductor devices offers a fast and inexpensive way to check device designs and processes.
The tools for numerical simulation efforts can be separated into three categories (see Fig. 2.11):
process simulation, device simulation, and circuit simulation. Process simulation is based on
measurements such as doping profiles provided by SIMS (secondary ion mass spectroscopy),
topography provided by TEM (transmission electron microscopy), the process recipe, and the
lithography masks. Processes such as diffusion, oxidation, etching, lithography, and ion implan-
tation are simulated. Device simulation uses the resulting device geometry and doping profile to
reproduce and predict electrical data such as current-voltage (IV) curves, capacitance-voltage
(CV) curves, or transfer frequencies. The output of device simulators can serve to calibrate
compact models of circuit simulation programs. Integrated simulation packages can be used to
perform these steps automatically. The abbreviation TCAD (technology computer-aided design)
has been established to refer to process and device simulation approaches.

Process Recipe
Mask Information

Poisson Equation
Drift-Diffusion
Energy-Transport

Boltzmann Equation Spherical Harmonics

Monte Carlo

Wigner Equation
Quantum Monte Carlo

Density-Gradient

Schrödinger Equation
Quantum Corrections

Green's Functions

Figure 2.11: Hierarchy of process, device, and circuit simulation.

The simulation of semiconductor devices is either based on semi-classical or quantum-mechanical
formulations. Based on fundamental equations — the POISSON3 , BOLTZMANN4, WIGNER 5 , or
SCHRÖDINGER6 equation — several models can be derived. They will be briefly described in the
next sections.

3SIMÉON DENIS POISSON, French mathematician, 1781-1840.
"LUDWIG BOLTZMANN, Austrian physicist, 1844-1906.
5EUGENE PAUL WIGNER, Hungarian physicist, 1902-1995.
6ERWIN RUDOLF JOSEF ALEXANDER SCHRÖDINGER, Austrian physicist, 1887-1961.
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2.4.1 Hierarchy of Semiconductor Device Simulation Models

Models of increasing sophistication can be derived for the simulation of charge transport in
semiconductor devices, as shown in Fig. 2.11. The most important equation, which all models
have in common, is POISSON'S equation to determine the electrostatic potential

V - ( K V 0 ) = q ( n - p - C ) , (2.1)

where <f> denotes the electrostatic potential, K the dielectric permittivity, n and p the electron
and hole concentration, and C = ND — N\ the net concentration of impurities. The transport
of carriers is described by the BOLTZMANN transport equation (BTE) which is a semi-classical
formulation of charge transport.

Quantum-mechanical effects are described by the SCHRÖDINGER equation. To incorporate
quantum-mechanical effects into classical device simulation, BOLTZMANN's transport equation
can be coupled to the SCHRÖDINGER equation, or the WlGNER equation can be applied [39-42].
Transport models based on solutions of the BOLTZMANN transport equation can be derived using
the method of moments [43-45] which yields the drift-diffusion model [46], the energy-transport
or hydrodynamic model [47], or higher-order transport models [48]. Furthermore, an approx-
imate solution can be obtained by expressing the distribution function as a series expansion
which leads to the spherical harmonics approach [49-53].

2.4.2 Classical Device Simulation

If the quantum-mechanical nature of electrons is neglected, carrier transport in a device can be
described by BOLTZMANN'S transport equation which is a seven-dimensional integro-differential
equation in the phase space [46]. For electrons it reads

§[ + v -V r / -^ -V k /=Q( / ) . (2.2)

Here, /(r, k, t) is the distribution of carriers in space (r), momentum (hk), and time. On the
right-hand side of this partial differential equation stands the collision operator Q(f) which de-
scribes scattering of particles due to phonons, impurities, interfaces, or other scattering sources.
However, the direct solution of this equation is computationally prohibitive7. It is rather solved
by approximate means applying the method of moments or using Monte Carlo methods. In
the method of moments each term of (2.2) is multiplied with a weight function and integrated
over k-space. This yields a set of differential equations in the (r, £)-space. The moments of the
distribution function are defined by [54]

k,t)d3k. (2.3)

7Suppose we are only interested in the static case, we still have 6 solution variables. Considering a coarse mesh
of only 100 grid points in each direction, this would require to solve an equation system with 1012 unknowns,
which is beyond any computational feasibility.
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2.4.2.1 The Drift-Diffusion Model

By multiplying (2.2) with the first two moments of the distribution function 3>o = 1 and $i = Kk,
integration over k space, using a parabolic dispersion relation, and applying the macroscopic
relaxation-time approximation (RTA) for the integral of the collision operator, the following
equation system can be derived

V • J n = qR + q— , (2.4)

V-Jp = - q Ä - q § , (2.5)

qDnVn , (2.6)

J P = qPMpE - q-DpVp . (2.7)

In these equations J denotes the current density, R the net recombination rate, // the mobility, E
the electric field, and D the diffusion coefficient. Together with (2.1), these basic semiconductor
equations form the drift-diffusion model which, due to its simplicity, is widely used for the
simulation of semiconductor devices.

2.4.2.2 The Energy-Transport Model

Taking the first four moments of (2.2) into account yields the hydrodynamic model which,
however, incorporates convective terms difficult to handle in a numerical simulator. If they are
neglected, the following equation system can be derived (the expressions for holes are analogous
and have been omitted)

( (nTn) + ^-En) , (2.8)

(2.9)

V • Jn = q (fl + <9tn) , (2.10)

V • Sn = -lkBdt(nTn) + E • Jn - j jkBnT n ~ TL + G£n . (2.11)

This equation system is commonly known as energy-transport model. Here, S denotes the energy
flux density, Tn the electron temperature, T£, TS, and rm the energy, energy flux, and momentum
relaxation time, and Gsn the net energy generation rate.

2.4.2.3 Monte Carlo Device Simulation

In contrast to moment-based transport equations, the Monte Carlo method solves BOLTZMANN'S

transport equation by statistical means. It has been used extensively for the simulation of
semiconductor devices [55-57]. Full-band Monte Carlo, which takes the correct shape of the
band structure into account, is considered as the most rigorous method for the solution of
BOLTZMANN'S transport equation [58-62].
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2.4.3 Quantum Device Simulation

The approaches described so far solve BOLTZMANN'S transport equation, but do not take quan-
tum effects into account. These effects can be incorporated by several methods: Coupling
a SCHRÖDINGER-POISSON solver to BOLTZMANN'S transport equation, solving WIGNER'S equa-
tion, accounting for quantum effects in Monte Carlo simulations, or applying the non-equilibrium
GREEN'S function8 formalism.

2.4.3.1 SCHRÖDINGER Equation and SCHRÖDINGER-POISSON Solvers

At the heart of quantum device simulation stands SCHRODINGER'S equation [63]

where H_ denotes the HAMlLTONian9 of the system. For the stationary case, the SCHRÖDINGER
equation can be written as [64]

, (2.13)

where W(r) is an external potential energy. The central quantity is the wave function ^(r). It
is related to the probability i\> of finding an electron within a volume V by

i V = /#(r)#(r)*dr = / | # ( r ) 2 | d r = f p(r)dr , (2.14)

V

where p(r) denotes the probability density. The probability to find the electron somewhere must
be unity, so

i* dr = 1 . (2.15)
—oo

From the wave function, the current density can be calculated via

J(r) = ^ (*V<r - **V$) , (2.16)

which obeys the continuity equation

V-J(r) = - q ^ . (2.17)

Common approaches to couple SCHRODINGER'S equation to BOLTZMANN'S transport equation
perform a SCHRÖDINGER-POISSON self-consistent loop: The carrier concentration is calculated
quantum-mechanically and used in POISSON 'S equation to obtain the electrostatic potential
which is again used in SCHRODINGER'S equation until convergence is reached. The resulting
quantum-mechanical carrier concentration is used to derive correction factors for the solution of
BOLTZMANN'S transport equation [65,66].

8GEORGE GREEN, British mathematician, 1793-1841.
9WILLIAM ROWAN HAMILTON, Irish Mathematician, 1805-1865.
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2.4.3.2 WIGNER Equation and the Density-Gradient Model

The WIGNER function is defined as the FOURIER10 transform of the product of wave functions
at two points in space [67-69]

/(r, k, t) = ^3 I *(r - r', *)#*(r + r', t) exp(z2r'k) dr' . (2.18)

Based on the WIGNER function, a transport equation — the BOLTZMANN-WlGNER equation —
can be derived

2 | ± ^ ( | ) , (2.19)

where V denotes an external potential. Considering only the a = 0 term yields the BOLTZMANN
transport equation (2.2). If the a = 1 term is also considered and a parabolic dispersion relation
is assumed, the following transport equation, which is frequently referred to as the density-
gradient model [70-76], is found

From this equation the quantum drift-diffusion or quantum hydrodynamic models can be derived
by the method of moments. The quantum drift-diffusion model, for example, reads [77]

(2.22)

(2.23)

where the correction factors 7 and A are used. Thus, the density-gradient model allows a
local representation of quantum effects. It is therefore more suitable for the implementation in
device simulators than a SCHRÖDINGER-POISSON solver which depends on non-local quantities,
for example the thickness of a dielectric layer. The density-gradient method has been used by
numerous authors [78-86]. However, it was reported that, while the carrier concentration in the
inversion layer of a MOSFET can be modeled correctly, the method fails to reproduce tunneling
currents as predicted by even more rigorous approaches [77].

2.4.3.3 Quantum Monte Carlo Device Simulation

Recently, strong efforts have been undertaken to couple the most accurate classical device sim-
ulation approach, the Monte Carlo technique, with quantum-mechanical formulations. These
approaches are termed quantum Monte Carlo techniques [87-89].

One possibility is to use an effective potential instead of the solution of POISSON'S equation [90,
91] in the Monte Carlo simulation. That can be achieved by convoluting the electrostatic
potential with a GAUSS11 function which leads to a smoothing of the original potential.

10JEAN BAPTISTE JOSEPH FOURIER, French mathematician, 1768-1830.
11 JOHANN CARL FRIEDRICH GAUSS, German mathematician, 1777-1855.
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A more rigorous approach is to solve the WIGNER transport equation (2.20) by means of Monte
Carlo techniques. Unlike classical distribution functions, however, the WIGNER function (2.18)
permits positive and negative values. Therefore, it cannot be interpreted as a probability dis-
tribution function, what is known as the negative sign problem. Instead, the WIGNER function
can be modeled as the difference of two positive functions which describe in-scattering and
out-scattering of particles [89]. This approach has the advantage that it allows for a seamless
transition between classical and quantum-mechanical regions in a device.

2.4.3.4 Non-Equilibrium GREEN'S Function Device Simulation

The non-equilibrium GREEN'S function formalism (NEGF) provides a powerful means to handle
open quantum systems. These are systems which are not confined but connected to reservoirs
and have non-vanishing boundary conditions for the wave functions in SCHRODINGER'S equation
(2.13). The HAMlLTONian of such a reservoir-coupled device can be written as

where H_ and H_R denote the HAMlLTONian of the device and the reservoir and C_ represents a
coupling matrix. In real systems, the dimension of H_R is usually much larger than the dimension
of H_. Note that H_ is not HERMlTian12, like in a closed system, and it therefore admits complex
eigenvalues. The corresponding single-particle GREEN'S function reads

where GDR and G_RD refer to the coupling of the device to the reservoir, and GÄ describes the

reservoir itself. It can be shown that G, the retarded GREEN'S function, becomes

G=(£l-H- S)"1 , (2.25)

where E denotes the self energy matrix which describes the interaction of the reservoir with
the device [92-95]. This has the advantage that the reservoir, which may be of much larger
dimensions than the device, only enters the problem via the self energy matrix which has the
same dimension as the device HAMlLTONian. From the retarded GREEN'S function, the spectral
function A can be derived

A{£) = i{G{£) - G+{£)) , (2.26)

from which the carrier concentration in the device is calculated by

£- ( 2 - 2 7 )

CHARLES HERMITE, French mathematician, 1822-1901.
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'It is quite wrong to try founding a theory on ob-
servable magnitudes alone... It is the theory which
decides what we can observe. '

Albert Einstein

Chapter 3

Tunneling in Semiconductors

THIS CHAPTER outlines the theory of quantum-mechanical tunneling in semiconductor
devices. Different tunneling mechanisms, such as direct-, FOWLER-NORDHEIM, and trap-

assisted tunneling are covered. As a first step, the TSU-ESAKI model is derived. This model
allows to distinguish between the supply function, which describes the supply of carriers for
tunneling, and the transmission coefficient, which characterizes the penetrability of the consid-
ered energy barrier. The supply function depends on the energetic distribution of the carriers,
an important quantity in semiconductor device modeling. Models which describe the shape of
this distribution function are reviewed, namely the MAXWELLian1, heated MAXWELLian, and
non-MAXWELLian model.

The transmission coefficient can be found by a solution of SCHRODINGER'S equation in the
considered region. The WENTZEL-KRAMERS-BRILLOUIN- and GuNDLACH-methods, which are
frequently encountered in the modeling of tunneling current, are shortly reviewed. However,
for the proper simulation of transmission through arbitrary barriers, advanced models must be
considered. Emphasis is put on the description of linear- and constant-potential transfer-matrix
methods as well as on the quantum transmitting boundary method (QTBM).

The TSU-ESAKI tunneling formula finds the tunneling current density by an integration in the
energy domain. In the channel of an inverted MOSFET, however, the strong electric field leads
to the creation of bound and quasi-bound states. While bound states do not contribute to the
tunneling process, tunneling from quasi-bound states can be understood using the concept of
finite life times. Different numerical methods to calculate the life time of a quasi-bound state
are reviewed.

The chapter continues with the description of trap-assisted tunneling and discusses some of the
most frequently used models. Emphasis is put on the adaption of an inelastic trap-assisted
tunneling model which incorporates energy loss by phonon emission and does not rely on the
common assumptions of constant capture cross-sections.

Finally, a short summary and a comparison of the described methods is given.

1 JAMES CLERK MAXWELL, British physicist, 1831-1879.

19



TUNNELING IN SEMICONDUCTORS 3.1 Tunneling Mechanisms

3.1 Tunneling Mechanisms

In the silicon-dielectric-silicon structure sketched in Fig. 3.1 a variety of tunneling processes
can be identified. Considering the shape of the energy barrier alone, FOWLER-NORDHEIM (FN)
tunneling and direct tunneling can be distinguished. However, a more rigorous classification
distinguishes between ECB (electrons from the conduction band), EVB (electrons from the
valence band), HVB (holes from the valence band), and TAT (trap-assisted tunneling) processes.
The EVB process is caused by electrons tunneling from the valence band to the conduction band.
It thus creates free carriers at both sides of the dielectric, which, for MOS transistors, gives rise
to increased substrate current. The TAT process can either be elastic, which means that the
energy of the carrier is conserved, or inelastic, where the carrier loses energy due to the emission
of phonons. Furthermore, in dielectrics with a very high defect density, hopping conduction via
multiple defects may occur.

FN tunneling

Direct tunneling

TAT (elastic)
ECB
TAT (inelastic)

TAT (hopping)

EVB
Ec

Ec

Ef

Ev
|EED

>

HVB

n+ silicon

Ef

p+ silicon

Figure 3.1: Schematic of the tunneling processes in a silicon-dielectric-silicon struc-
ture. The different tunneling processes are indicated by arrows and de-
scribed in the text. The abbreviations EED and HED denote the electron
and hole energy distribution function.
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3.2 The TSU-ESAKI Model

The processes ECB and HVB shown in Fig. 3.1 can be investigated considering an energy barrier
as shown in Fig. 3.2. Two semiconductor or metal regions axe separated by an energy barrier
with barrier height q$B> measured from the FERMI energy to the conduction band edge of the
insulating layer. Electrons tunnel from Electrode 1 to Electrode 2. The distribution functions
at both sides of the barrier are indicated in the figure.

Figure 3.2: Energy barrier with two electrodes which can be used to describe the
ECB or HVB processes.

In the following derivation some assumptions will be made which are necessary to allow an easy
incorporation of the model in a device simulator. These are:

• Effective-mass approximation: The different masses corresponding to the band structure
of the considered material are lumped into a single value for the effective mass. This is
denoted by mefj in the electrodes and m^ i in the dielectric layer.

(3.1)

Parabolic bands: The dispersion relation in semiconductors is approximated by

+ kzez.with the wave vector k = kxex +

• Conservation of parallel momentum: Only transitions in the ^-direction are considered,
the parallel wave vector kp = {kyey + kzez) is not altered by the tunneling process.
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The net tunneling current density from Electrode 1 to Electrode 2 can be written as the net
difference between current flowing from Side 1 to Side 2 and vice versa [96, 97]

J = J!_2 - J2^! . (3.2)

The current density through the two interfaces depends on the perpendicular component of the
wave vector kx, the transmission coefficient TC, the perpendicular velocity vx, the density of
states g, and the distribution function at both sides of the barrier:

dJi^2 = ^TC{kx)vx9l{kx)h{S){\ - h{£)) dkx ,
i = qTC(kx)vxg2(kx)f2(£)(l - ftf)) dkx.

In this expression it is assumed that the transmission coefficient only depends on the momentum
perpendicular to the interface. The density of kx states g(kx) is

oo oo

g(kx) = g(kx,ky,kz)dkydkz , (3.4)
o o

where g(kx,ky,kz) denotes the three-dimensional density of states in the momentum space.
Considering the quantized wave vector components within a cube of side length L

. , 2?r 2n 2TT , „ V

Akx = — , Aky = — , Akz = — , (3.5)

yields for the density of states within the cube

^ i ^ (3-6)
where the factor 2 stems from spin degeneracy. For the parabolic dispersion relation (3.1) the
velocity and energy components in tunneling direction obey

ids hkx &kl l
Sx = Ö vxdkx - -

n

&kl l , >
vx = r-^— = , Sx = Ö ' vxdkx - -d£x . (à.7)

nok m 2m nkx

oo oo

Hence, expressions (3.3) become

\d£xJf h{£) (1 - f2{£)) dky dkz ,
o o
oo oo

i d£x J J f2(£) (1 - h{£)) dky dkz .
°oo°oo (3-8)

J
0 0

Using polar coordinates for the parallel wave vector components

I» / V*2i i \?2à h* — Je r*f~iG i o /1
Kp — \ I n,y -J- fvz , fay — rvp L U S \ J J j

fkz\ (3-9)
7 = arctan I 77 I > kz = kp$m (7) ,
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the current density evaluates to

47rroeffq
•A-2 = fc3 j TC{£X) d£x J h(S) (1 - h(£)) d£p ,

f TC(£x)d£x f MS) (1 - h{£)) d£p .

In these expressions the total energy £ has been split into a longitudinal part £p and a transversal
part £x

£ = _ _
p 2meff 2meff ' " x 2meff

Evaluating the difference J = J\^2 — ̂ 2->i, the net current through the interface equals

£max OO

47rmeffq f ^ ^ ^ f {f^£) _ ^ ) } ^ ( 3 l 2 )
0

This expression is usually written as an integral over the product of two independent parts which
only depend on the energy perpendicular to the interface: the transmission coefficient TC(£X)
and the supply function N(£x):

J =
tmax

J TC(£x)N(£x)d£x , (3.13)

which is the expression known as TSU-ESAKI formula. This model has been proposed by
DUKE [98] and was used by Tsu and ESAKI for the modeling of tunneling current in reso-
nant tunneling devices [99]. The values of £min and £max depend on the considered tunneling
process:

• Electrons tunneling from the conduction band (ECB): £min is the highest conduction band
edge of the two electrodes, £max is the highest conduction band edge of the dielectric.

• Holes tunneling from the valence band (HVB): <fm;n is the absolute value of the lowest
valence band edge of the electrodes, £max is the absolute value of the lowest valence band
edge of the dielectric. The sign of the integration must be changed.

• Electrons tunneling from the valence band (EVB): £mjn is the lowest conduction band edge
of the two electrodes, £max the highest valence band edge of the two electrodes. It must
be checked if £mjn < £max.

The next sections concentrate on the calculation of the supply function and the transmission
coefficient.
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3.3 Supply Function Modeling

The supply function describes the difference in the supply of carriers at the interfaces of the
dielectric layer. Following (3.12), it is given as

£P , (3-14)

where / i and h denote the energy distribution functions near the interfaces. Since the exact
shape of these distributions is usually not known, approximative shapes are commonly used.
Furthermore it is assumed that the distributions are isotropic.

3.3.1 FERMI-DIRAC Distribution

In equilibrium the energy distribution function of electrons or holes is given by the FERMI2-
DIRAC3 statistics

1 (3.15)
1 + exp

which can be derived from statistical thermodynamics [100]. Separating the longitudinal and
transversal energy components £ — £x + £p and splitting the integral in (3.14) N{£x) = ii{£x) -
&(£x) the values of £i and £2 become

00 00

ii= I fi(£) d£p = f f£l+£ -£ \ d£P * = 1,2 . (3.16)
0 0 1 + e x p ' x p fl<»

This expression can be integrated analytically using

AX =l»(V^W)+C, (3.17)
1 + exp(x) \ 1 + exp(—a;)

so expression (3.16) evaluates to

^l+exp( -^# i ' ] ] i = l,2 (3.18)

and the total supply function (3.14) becomes

/ , , / gx-gf ,A\' 1 + exp I - - ' ' *
N(£x)=kBT\n

1 + e x p \—'x
(3.19)

2ENRICO FERMI, Italian physicist, 1901-1954.
3PAUL ADRIEN MAURICE DIRAC, British physicist, 1902-1984.
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3.3.2 MAXWELL-BOLTZMANN Distribution

For non-degenerate semiconductors the FERMI energy is located below the conduction band
edge. Therefore, £min - £ f > kBT holds in expression (3.13) and the FERMI-DIRAC distribution
(3.15) can be approximated by a MAXWELL-BOLTZMANN (or MAXWELLian) distribution

f(S) = exp
St-S (3.20)

This expression is compared to the FERMI-DIRAC distribution in Fig. 3.3. It can be seen that
only for energies well above the FERMI energy the expressions deliver equal results.
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Figure 3.3: Comparison of the FERMI-DIRAC and the MAXWELL-BOLTZMANN dis-
tribution on a linear scale (left) and on a logarithmic scale (right). At
energies above the FERMI energy the expressions yield similar results.

Using this expression, £ in (3.14) becomes

kBT
» = 1,2 (3.21)

which evaluates to

and yields a supply function of

i V ( £ x ) = k B r ( e x p ( - ^ ex - g f |2
k B r

(3.22)

(3.23)
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3.3.3 Non-MAXWELLian Distributions

The FERMI-DIRAC or MAXWELL-BOLTZMANN distribution functions are frequently used to de-
scribe the distribution of carriers in equilibrium since they are the solution of BOLTZMANN'S
transport equation for the case of vanishing applied electric field. In the channel region of a
MOSFET, however, the energy distribution deviates from the ideal shape implied by expressions
(3.15) or (3.20). Carriers gain energy by the electric field in the channel, and they experience
scattering events. Models to describe the distribution function of such hot carriers have been
studied by numerous authors [101-103]. One possibility to describe the distribution of hot
carriers is to use a heated MAXWELLian distribution function

( (3.24)

where Tn denotes the electron temperature and A is a normalization constant. The validity
of this approach, however, is limited. Fig. 3.4 shows in the left part the contour lines of the
heated MAXWELLian distribution function at the Si-SiO2 interface in comparison to Monte
Carlo results4 for a MOSFET with a gate length of Lg = 180 nm and a thickness of the gate
dielectric of 1.8nm at a bias of Vbs = ^GS = IV. It is evident that the heated MAXWELLian
distribution (full lines) yields only poor agreement with the Monte Carlo results (dashed lines).
The distribution function at two points near the middle of the channel (point A) and near the
drain contact (point B) are shown in the right part of this figure. Particularly the high-energy tail
in the middle of the channel is heavily overestimated by the heated MAXWELLian model. This
is unsatisfactory since a correct description of the high energy tail is crucial for the evaluation of
hot-carrier injection at the drain side used for programming and erasing of EEPROM devices.

Source Gate
2ft ~"l "

Monte Carlo
Heated Maxwellian A

^

. :

Drain

r—

B

o.io
x Tumi

O Monte Carlo

Cold Maxwellian

—— Heated Maxwellian

Energy [eV]

Figure 3.4: Comparison of the heated MAXWELLian distribution (full lines) with
the results from a Monte Carlo simulation (dotted lines) in a turned-
on 180 nm MOSFET. Neighboring lines differ by a factor of 10. The
distributions at point A and B are compared with a cold MAXWELLian
distribution in the right figure.

4A Monte Carlo simulator employing analytical non-parabolic bands was used for this simulation.
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To obtain a better prediction of hot-carrier effects, CASSI and Riccö presented an expression
to account for the non-MAXWELLian shape of the electron energy distribution function [101]

(3.25)

with x as fitting parameter and E being the local electric field in the channel. This local-field
dependence was soon questioned by other authors such as FIEGNA et al. [104] who replaced the
electric field with an effective field calculated from the average electron energy to model the
EEPROM writing process. HASNAT et al. used a similar form for the distribution function [105]

• ( 3 ' 2 6 )

They obtained values of £ = 1.3, 77 = 0.265, and u = 0.75 by fitting simulation results to
measured gate currents. However, these values fail to describe the shape of the distribution
function along the channel when compared to Monte Carlo results [106]. A quite generalized
approach for the EED has been proposed by GRASSER et al.

• ( 3 - 2 7 )

In this expression the values of £ref and b are mapped to the solution variables Tn and ßn

of a six moments transport model [107]. Expression (3.27) has been shown to appropriately
reproduce Monte Carlo results in the source and the middle region of the channel of a turned-
on MOSFET. However, this model is still not able to reproduce the high energy tail of the
distribution function near the drain side of the channel because it does not account for the
population of cold carriers coming from the drain. This was already visible in the right part
Fig. 3.4 near the drain side of the channel: The distribution consists of a cold MAXWELLian, a
high-energy tail, and a second cold MAXWELLian at higher energies. Expression (3.27) cannot
reproduce the low-energy MAXWELLian. A distribution function accounting for the cold carrier
population near the drain contact was proposed by SONODA et al. [103], and an improved model
has been suggested by GRASSER et al. [106]:

f{£) = A exp - — Ucexp - - — . (3.28)

Here the pool of cold carriers in the drain region is correctly modeled by an additional cold
MAXWELLian subpopulation. The values of £ref, 6, and c are again derived from the solution
variables of a six moments transport model [106]. Fig. 3.5 shows again the results from Monte
Carlo simulations in comparison to the analytical model. A good match between this non-
MAXWELLian distribution and the Monte Carlo results can be seen.
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Figure 3.5: Comparison of the non-MAXWELLian distribution (full lines) with the re-
sults from a Monte Carlo simulation (dotted lines) in a turned-on 180 nm
MOSFET. Neighboring lines differ by a factor of 10. The distributions
at point A and B are compared with a cold MAXWELLian distribution in
the right figure.

This model for the distribution function, however, requires to calculate the third even moment
of the distribution function, the kurtosis ßn. As an approximation ßn can be calculated by an
expression obtained for a bulk semiconductor where a fixed relationship between ßn, Tn, and
the lattice temperature TL exists:

3 (x ) = ^k + 2— — I 1 - (3.29)

In this expression T£, rg, /zn, and fis are the energy relaxation time, the kurtosis relaxation
time, the electron mobility, and the energy flux mobility, respectively. The value of Tß\xslre[in

can be approximated by a fit to Monte Carlo data [106]. Estimating the kurtosis from (3.29),
the distribution (3.27) can be used within the energy-transport or hydrodynamic model. For a
parabolic band structure, the expressions

/Tl
2 \2bJ £re{

" ~ 3 / 3 A kB
(3.30)

(3.31)

are found [107], where F(x) denotes the Gamma function
oo

F(x) = / exp(—a)^"1 da . (3.32)
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While (3.30) can easily be inverted to obtain £ref(Tn), the inversion of (3.31) to find b(Tn) at
ßn(b) = /?Bulk(Tn) cannot be given in a closed form. Instead, a fit expression

b(Tn) = 1 + b0 (l - ^j * + h ( l - ^ ) 3 (3.33)

with the parameters 60=38.82, b^lOl . l l , b2=3.40, and b3=12.93 can be used. Using £ref(Tn)
and b{Tn) the Monte Carlo distribution can be approximated without knowledge of ßn. Fig. 3.6
shows simulation results for a 500 nm MOSFET using the heated MAXWELLian distribution
(3.24), the non-MAXWELLian distribution (3.28), and the non-MAXWELLian distribution (3.27)
using (3.30) and (3.33) to calculate the values of £ref and b. It can be seen that the fit to the
results from Monte Carlo simulations is good. However, the emerging population of cold carriers
near the drain end of the channel leads to a significant error in the shape of the distribution at
low energy. This is important for certain processes, while in the case of tunneling the high-energy
tail is more crucial.

With expression (3.27) for the distribution function and the assumption of a FERMI-DIRAC

distribution in the polysilicon gate, the supply function (3.14) becomes

( ^ ) ) (3.34)

where Ti(a,ß) denotes the incomplete gamma function

oo

Fi(x, y) = / exp(-a)a:E~1 da .

y

In (3.34) the explicit value of the FERMI energy was replaced by the shift of the two conduction
band edges A£c. Assuming a MAXWELLian distribution in the polysilicon gate, the supply
function can be further simplified to

(£±^) (3.35)

Using the accurate shape of the distribution (3.28), the expressions for the supply function
become

for a FERMI-DIRAC distribution, and

( ^ ) (3.37)

assuming a MAXWELLian distribution in the polysilicon gate.

29



TUNNELING IN SEMICONDUCTORS 3.3 Supply Function Modeling

Monte Carlo
Heated Maxwellian

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Monte Carlo
Non-Maxwellian(T , ß )

0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.6-

0.8'

Source Gate Drain

I
Monte Carlo
Non-Maxwellian (T„)

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f(£)=Aexp{-

f(£) = A exp - —

£ref, b, and c derived from
n, Tn, and /3n.

tret

and b derived from
n and Tn.

Figure 3.6: Different expressions for the energy distribution function in a 500 nm
MOSFET compared with Monte Carlo results.
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3.3.4 Normalization

When implementing the analytical expressions for the distribution function and the supply
function into a device simulator it is necessary to assure consistency: the carrier concentration
defined by the analytical distribution function must match the carrier concentration from the
transport model used. Therefore, the normalization prefactor A has to be evaluated from

. (3.38)

This equation can be transformed to spherical coordinates using k = (k% + ky + fc2)1/2

•K 7T OO

n=~ f da f sin9dû f f(k)k2dk . (3.39)
-7T 0 0

For a parabolic dispersion relation we have dA; = meff/A;ft2d£ which finally leads to

oo

n

o

= f f(£) *h3
 eiïV£d£ , (3.40)

where the integration is performed from the conduction band edge £c = 0. For a MAXWELLian
or heated MAXWELLian distribution (expressions (3.20) or (3.24)), the normalization constant
evaluates to

" * (3.41)

where Tu is either the lattice temperature (for the assumption of a MAXWELLian distribution)
or the carrier temperature (for the assumption of a heated MAXWELLian distribution). Using
the non-MAXWELLian distribution (3.27) the normalization constant evaluates to

A = , 3 v - , (3.42)

while for expression (3.28) it is
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3.4 The Energy Barrier

For the calculation of the transmission coefficient it is necessary to take the shape of the en-
ergy barrier into account. Electrons tunnel from a semiconductor or metal segment through
a dielectric layer to another semiconductor or metal segment. Thus, the band diagram of a
metal-oxide-semiconductor (MOS) capacitor has to be investigated. Furthermore, the image
force, which leads to a reduction of both the electron and hole energy barrier for thin dielectrics,
will be described in this section.

3.4.1 The Metal-Oxide-Semiconductor Capacitor

Fig. 3.7 shows the band diagram and the electrostatic potential in a metal-oxide-semiconductor
structure for different voltages at the metal contact [108-110]. A central quantity is the work
function which is defined as the energy required to extract an electron from the FERMI energy
to the vacuum level. The work function of the semiconductor is

q$S = qxs + Sg-£i + £v + q$f , (3.44)

where Xs denotes the electron affinity of the semiconductor. The work function difference be-
tween the work function in the metal q$M and the work function in the semiconductor q$s
is

q*Ms = q*M - q$s • (3.45)

The values of $M and xs depend on the material, as shown in Table 3.1 [100, 111, 112]. However,
the actual value of the work function of a metal deposited on SiO2 is not exactly the same as
that of the metal in vacuum [112].

As long as BOLTZMANN statistics can be applied, the FERMI potential <frf depends on the doping
concentration of the semiconductor in the following way:

p - type : $ f = — In (—\ > 0 , (3.46)
q V ni /

n - t y p e : $f = - — In ( — \ < 0 . (3.47)
q V ni )

The concentration-independent part of (3.45) is labeled 3>'MS:

£g + £i~£y . (3.48)

The voltage which has to be applied to achieve flat bands is denoted the flatband voltage. If we
deviate from this voltage, a space charge region forms near the interface between the dielectric
and the semiconductor. The total potential drop across this space charge region is the surface
potential (j)SUI{. Due to this potential all energy levels in the conduction and valence bands are
shifted by a constant amount, therefore

£c(x) = £c,o

£v(x) = £v,o -

where £c$ and £v,o are the conduction and valence bands in the flatband case. Note that in the
flatband case <j)(x) = 0 in the whole structure.
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Figure 3.7: Band diagram and electrostatic potential in an nMOS structure (nega-
tive work function difference) in accumulation, under flat band condition,
without bias, and under inversion condition.
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Semiconductor

Si
Ge
GaAs
GaP
GaSb
InAs
InP
InSb

Xs [V]

4.05
4.00
4.07
3.80
4.06
4.90
4.38
4.59

Metal

Al
Pt
W
Mg

Ag
Au
Cu
Cr

q$M [eV]

4.28
5.65
4.63
3.66
4.30
4.80
4.25
4.50

k{ [nm *]

17.52

13.74
12.04
12.06
13.61

Table 3.1: Electron affinity of various semiconductors (left), work function and the
radius of the FERMI sphere of various metals (right) [113,114].

In metals the FERMI energy is located at a higher energy level than the conduction band. The
difference between the conduction band edge in the metal and the FERMI energy in the metal
can be calculated considering the free-electron theory of metals which assumes that the metal
electrons are unaffected by their metallic ions. The sphere of radius k( (the FERMI wave vector)
contains all occupied levels and determines the electron concentration

(3.50)

The values of the metal work function and k( for various metals are summarized in the right
part of Table 3.1 [114]. The value of £( — £c can then directly be calculated from the carrier
concentration assuming a parabolic dispersion relation and a MAXWELLian distribution function.

At the semiconductor side the height of the energy barrier is given by q $ e for electrons and
for holes. Note that in the derivation of the TSU-ESAKI formula the barrier height q<&B> which
denotes the energetic difference between the FERMI energy and the band edge in the dielectric,
is used. Depending on the considered tunneling process, q<&B must be calculated from q$ e or

3.4.2 Image Force Correction

When an electron approaches a dielectric layer, it induces a positive charge on the interface
which acts like an image charge within the layer. This effect leads to a reduction of the barrier
height for both electrons and holes [115-117]: The conduction band bends downward and the
valence band bends upward, respectively. To account for this effect, the band edge energies
(3.49) must be modified

£c(x) = £c,0 -
Sv(x) = £v,o - q</>(x) + fimage(x) ,

where the image force correction in the dielectric with thickness tdiel is calculated as [118]

(fclK2)
J . . h , . . r-r + , . . , (3

\\X\+ J*dil (j + l ) * d l \x\ {j + l j t d id /
> (fclK2) .

167TKdiel ^y \\X
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where x = 0 is at the interface to the dielectric. The symbols k\ and k2 are calculated from the
dielectric permittivities in the neighboring materials

h = , _ ^metal _ _•. (3.53)
+ «si «diel +

Here, &2 accounts for the interface between the insulator and the metal and evaluates to — 1.

In the semiconductor the band edge energies are also altered

9 OO / , ,

Wfr h v ( l 2

4^ \ \x\ + HA\P\ a +1
3

9

l)*diel \ x \

(3.54)

In practice it is sufficient to evaluate the sums in (3.52) and (3.54) up to j = 11 [119]. Fig. 3.8
shows the band edge energies in an MOS structure for a dielectric layer with a thickness of 2 nm
and different dielectric permittivities for an applied bias of 0 V (left) and 2 V (right). A lower
dielectric permittivity leads to a stronger band bending due to the image force and therefore
strongly influences the transmission coefficient.

However, there is still some uncertainty if the image force has to be considered for tunneling
calculations. While it is used in some works [119-122], others neglect it or report only minor
influence on the results [123-127]. For rigorous investigations, however, its necessary to include
it in the simulations. This, however, raises the need for a high spatial resolution along the
dielectric. Simple models like the analytical WKB formula or the GUNDLACH formula are not
valid for this case, as described in the following sections. It may therefore be justified to account
for the image force barrier lowering by correction factors.
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Figure 3.8: Effect of the image force in an nMOS device with a dielectric thickness
of 2nm at a gate bias of 0 V (left) and 2 V (right).
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3.5 Transmission Coefficient Modeling

leads to the transmission coefficient

Now that the shape of the energy barrier has been treated, the calculation of the quantum-
mechanical transmission coefficient of such a barrier can be investigated. The transmission
coefficient TC is defined as the ratio of the quantum-mechanical current density (2.16) due to
an incident wave in Region 1 and a transmitted wave in Region N, see Fig. 3.9. The assumption
of plane waves in both regions5

(3.55)

(3.56)

The wave function amplitudes A\ and An can be found by solving the stationary SCHRODINGER
equation (2.13) in the barrier region. This can be achieved by various methods. The WENTZEL-
KRAMERS-BRILLOUIN approximation can be applied either analytically for a linear barrier, or
numerically for arbitrary barriers. GUNDLACH'S method can be used for a single linear energy
barrier, while the transfer-matrix and quantum transmitting boundary methods are applicable
for arbitrary-shaped barriers. The transfer-matrix method can be applied using either constant
or linear potential segments as shown in Fig. 3.9. The different methods will be described in
this section and a brief comparison at the end summarizes their advantages and shortcomings.

Linear potential approximation

Constant potential approximation

Figure 3.9: The energy barrier of a single-layer dielectric. The potential energy W(x)
may either be the conduction band or the valence band energy, depending
on the tunneling process. The linear and constant potential approxima-
tions refer to the transfer-matrix method described in Section 3.5.3.

sIn the stationary case, the quantum-mechanical current density (2.16) is, of course, equal in Region 1 and
Region N, since the right hand side of (2.17) is zero. Considering only the incident wave in Region 1 and the
transmitted wave in Region N allows to define a transmission coefficient TC < 1.

36



TUNNELING IN SEMICONDUCTORS 3.5 Transmission Coefficient Modeling

3.5.1 The WENTZEL-KRAMERS-BRILLOUIN Approximation

The WENTZEL-KRAMERS-BRILLOUIN6 (WKB) approximation is one of the most frequently en-
countered assumptions for the quantum-mechanical wave function. It is often used for tunneling
simulations and has been implemented in device simulators [96,128,129]. Within the WKB
approximation, the transmission coefficient can be written as (for a detailed derivation see Ap-
pendix B) [130,131]

TC(£) = exp ( - | I v/2mdiei (W(x) -£)dx\ . (3.57)

In this expression the integration is performed only within the classical turning points x\ and
X2, defined by the region where £ < W(x) and the integrand in (3.57) is real. Thus, only the
decaying part of the wave function is considered. For a linear energy barrier the numerical
calculation of the integral in (3.57) can be avoided. Still, it is necessary to distinguish between
regions where direct or FOWLER-NORDHEIM tunneling takes place. For the direct tunneling
regime £ < q$0 holds (see Fig. 3.9). Therefore, the transmission coefficient

( *dicl \

-\ J V^mdie](q^-qEdielx-£)dx J (3.58)
evaluates to

TC{£) = exp f - 4 - ^ § ^ f(q$ - £f/2 - (q$0 - S)3/2)) , (3.59)

with .Ediei being the electric field defined as V îei/tdiel a n d maiei the electron mass in the dielectric.
The symbols <J> and $o denote the upper and lower barrier heights, as shown in Fig. 3.9. The
value of $o is calculated assuming a linear potential in the barrier

$ 0 = $ - £diel£diel . (3.60)

For the FOWLER-NORDHEIM tunneling regime it holds £ > q$o and therefore with x\ defined
by q<& — q-Ediel̂ i = £ the transmission coefficient

TC{£) = exp - | j v^mdiei (q$ _ qEdielx -£)dx\ , (3.61)

evaluates to

TC{£) = exp ( ~ 4 ^ | g (q# - £)3/2) • (3-62)

The WKB tunneling coefficient is frequently multiplied by an oscillating prefactor to reproduce
FowLER-NoRDHElM-induced oscillations [132-136]. However, since no wave function interfer-
ence is taken into account, the general validity of this method is questionable.

6MARCEL LOUIS BRILLOUIN, French physicist, 1854-1948.
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3.5.2 The GUNDLACH Method

The GUNDLACH method [137] provides an analytical solution of SCHRÖDINGER'S equation for
a linear energy barrier. The one-dimensional time-independent ScHRODINGER equation in this
case reads

-r-2 * (a) + -d(£- w(x)) *(^) = o , (3-63)

with the linear potential energy W(x) between the points xo and x\, Wo = W(XQ), and W\ =

W-\ - Wn
W{x) = Wo + (x - x0) — — (3.64)

X\ — XQ

for xo < x < x\. Using the abbreviations

h? x, - xo \ 1/3

2mWi-Wo

and u(x) = A — x/l, expression (3.63) turns into

^ l = 0 . (3.66)

With

* *p ( * * L ) ^(u{x)) (3.67)
dx2 dudx

SCHRÖDINGER'S equation evolves into the AIRY7 differential equation

d2

* ( ( ) ) (aO) = 0 . (3.68)

The solutions of this differential equation are the AlRY functions Ai (u(x)) and Bi (u(x)) [138],
which are depicted in Fig. 3.10 together with their derivatives. The wave functions consist of
linear superpositions of these AlRY functions

(x)) , (3.69)

where the function u{x) is given as

Assuming a constant electron mass in the dielectric, GUNDLACH derives an expression for the
transmission coefficient

7 GEORGE BIDDELL AIRY, British mathematician, 1801-1892.
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Figure 3.10: The AIRY functions Ai and Bi and their derivatives.

where the abbreviations

A = AÏ(zo)BÏ(za)-AÏ(za)BÏ(zo) ,
B = Ai(zo)Bi(zs) - Ai(zs)Bi(z0) ,

C = Ai(zs)Bi'(z0) - Ai'(zo)Bi(zs) ,
D = Ai(2o)Bi'(za) - Ai'(zs)Bi(zo) ,

have been used and the symbols zo, zs, and z' are given by

2/3

ZQ = (q<£>o — £)

and

z' =
a2

4 <diel

1/3

a= -\/2mdiei
n

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

The symbols q$ and q4?o denote the two edges of the energy barrier as shown in Fig. 3.9. The
GUNDLACH method is frequently used in the literature [121,139] and implemented in device
simulators. Numerical problems may occur for flat barriers (3> « $o) due to the exponential
increase of the AIRY functions Bi and Bi' for positive arguments. In practical implementations
the values of ZQ and zs have been bounded to values below « 200 to avoid floating point overflow.
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3.5.3 Transfer-Matrix Method

The use of the transfer-matrix (TM) method for the calculation of the transmission coefficient
of energy barriers is based on the work of Tsu and ESAKI on electron tunneling through one-
dimensional super lattices [99]. It has been used by numerous authors to describe tunneling
processes in semiconductor devices [140-144]. The basic principle of the transfer-matrix method
is the approximation of an arbitrary-shaped energy barrier by a series of piece-wise constant or
piece-wise linear functions. Since the wave function in such barriers can easily be calculated,
the total transfer matrix can be derived by a number of subsequent matrix computations. Prom
the transfer matrix, the transmission coefficient can easily be derived.

3.5.3.1 Piece wise-Constant Potential

If an arbitrary potential barrier is segmented into N regions with constant potentials (see Fig. 3.9)
the wave function in each region can be written as the sum of an incident and a reflected wave [93]
$j(x) = Aj exp{ikjx) + Bj exp(-tkjx) with the wave number kj = y/2m,j(£ — Wj)/h. The wave
amplitudes Aj, Bj, the carrier mass rrij, and the potential energy Wj are assumed constant for
each region j . With the interface conditions for energy and momentum conservation

*j(x-) = *j+1(x+), (3.78)

1 d ^ ( x - ) _ 1 d*j+1(x+)
dxvtij ax mj+\ dx

the outgoing wave of a layer relates to the incident wave by a complex transfer matrix:

2 < j < N . (3.80)

The transfer matrices are of the form

T, = i 2 < j < N , (3.81)
2

\ V Ki J \ Ki J I

with the phase factor 7 = exp(zA(j — 2)). The transmitted wave in Region N can then be
calculated from the incident wave by subsequent multiplication of transfer matrices:

(3.82)

If it is assumed that there is no reflected wave in Region N and the amplitude of the incident
wave is unity, (3.82) simplifies to

and the transmission coefficient can be calculated from (3.56). The transfer-matrix method
based on constant potential segments has the obvious shortcoming that, for practical barriers,
the accuracy of the resulting matrix strongly depends on the chosen resolution. A more rigorous
approach is to use linear potential segments.
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3.5.3.2 Piecewise-Linear Potential

A general barrier may consist of several segments with linear potential sandwiched between
contact segments where the potential is constant, as depicted in Fig. 3.11. The wave functions
within these four regions can be written as (confer (3.69) and (3.70) for a linear potential)

(3.84)
(3.85)
(3.86)
(3.87)

= A2Ai(u2(x)) +B2Bi(u2(x)) ,

*3(z) = A3Ai(u3(x)) +B3Bi(u3(x)) ,

\I>4(z) = A4exp(ifc4x)+ß4exp(-ifc4x) ,

with u(x) from (3.70) and the x-independent derivative

1/3, _ du(x) _ _ (2m\
dx \ h2 ) \ x2 -

1/3

(3.88)

The conditions for continuity of the wave functions and their derivatives yield the following
equation system, where abbreviations for the left and right value of u(x) in a layer Uj= Uj(lj-2),
uj— uj{lj-\), a nd their derivatives u'j for 2 < j < N — 1 have been used.

Ai exp(ikilo)

,42Ai(u2)
A2Ai'(u2)u'2

A3AÏ(u3)u'3

B\iki exp(-ikilo) =
B2Bi(u2)
B2B\'(u2)u2

B3Bi(u3)
B3Bi'(u3)u3

= A4 exp(il2k4)

53Bi(n3) ,

B4 exp(—zl2)

J-JQ LrbQ C A U I

(3.89)

W A 1

0 '0

Figure 3.11: An energy barrier consisting of constant and linear potential segments.
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The transfer matrices between adjacent layers are again calculated from (3.80). Using the first
two equations of (3.89) and the WRONSKlan8 [138)

Wr{Ai(z), Bi(z)} = Ai(z)Bi'{z) - Ai'(z)Bi(z) = TT1 , (3.90)

the matrix T_x can be simplified to

exp(zA;iZo) (—Ai'(?I2) + Ai(w2)—— I exp(—ik\lo) (—Ai'(tt2) — Ai(w2)—— I .

Using the next two lines of (3.89) yields

Ai(u2)Bi'(u3) ^Bi(u3)Ai'(iz2) Bi(u2)Bi'(>u3) —
u3 %

\«3

and the last two equations yield with the phase factor 7 = ex

While being more accurate than the constant potential approach this method is computationally
more expensive. This drawback, however, is offset by the fact that a lower resolution and
thus fewer matrix multiplications are necessary to resolve an energy barrier consisting of linear
potential segments.

Simulations using the transfer-matrix method have been reported by several authors [145-148].
Others compared the constant and linear potential approaches and found the constant potential
method more feasible for device simulation [149]. The main advantage of the linear-potential
transfer-matrix method is, that for linear potential segments the accuracy does not depend
on the resolution as it does for the constant-potential transfer-matrix method. However, the
evaluation of the AIRY functions must be carefully implemented to avoid overflow.

Although the transfer-matrix method for constant or linear potential segments is intuitively
easy to understand and implement, the main shortcoming of the method is that it becomes
numerically instable for thick barriers. This has been observed by several authors [149-153].
The reason for the numerical problems is that during the matrix multiplications exponentially
growing and decaying states have to be multiplied, leading to rounding errors which eventually
exceed the amplitude of the wave function itself for thick barriers.

These problems have been overcome by a further segmentation of the barrier into slices with more
accurate transfer matrices [150], the use of scattering matrices instead of transfer matrices [151],
iterative methods [152], or by simply setting the transfer matrix entries to zero if the decay factor
53 kjXj exceeds a certain value of about 20 [149]. In the next section a method will be presented
which avoids this problem and allows a fast and reliable transmission coefficient estimation.

8 JOSEF HOËNÉ DE WRONSKI, Polish mathematician, 1778-1853.
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3.5.4 Quantum Transmitting Boundary Method

An alternative method to solve the ScHRÖDINGER equation has been proposed by FRENSLEY and
EINSPRUCH [154] which is based on the tight-binding quantum transmitting boundary method
(QTBM) introduced by LENT [155]. It has been used to simulate electron transport in resonant
tunneling diodes [153]. The method is based on the finite-difference approximation of the sta-
tionary one-dimensional SCHRÖDINGER equation (3.63) on an equidistant grid with an effective
mass rrij and a grid spacing A

where Sj = h2/(2mjA2) and dj = /i2/(m.,A2) + Wj. For the evaluation of the transmission
coefficient it is necessary to assume open boundary conditions. They are introduced by writing
the wave functions at the boundaries of the simulation domain as

#1 = ai + fci
*N = UN + *>N

and relate them to the wave functions outside of the simulation domain by

tkiA) + bi exp(ikiA) ,

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

eliminates the unknown values of &i and b^ and gives a linear system for the N + 2 complex
values v̂ i

This introduces four unknowns and two equations into the system. Setting

Ci
-si - « 2

di — £ —53

\ / * n \ / a x

0

0

-€ -t

CN \

0
V Ö-N /

. (3.99)

Setting ai = 1 and ON = 0 yields the values of the wave function in the whole simulation domain
for an incident wave from the left side like in the transfer-matrix method. The method is easy
to implement, fast, and more robust than the transfer-matrix method. A further advantage
of this method is its suitability for two- and three-dimensional problems. It thus represents
a much more powerful method than the transfer-matrix based methods which are limited to
one-dimensional problems only. Note that the QTBM is closely linked with the non-equilibrium
GREEN'S function formalism (NEGF, see Section 2.4.3.4): The matrix in expression (3.99) is the
inverse of the retarded GREEN'S function (2.25) for an open system without scattering. However,
the values of C and £ are complex, so the matrix admits complex eigenvalues and complex solving
routines are necessary.
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3.5.5 Comparison

Fig. 3.12 shows the transmission coefficient for the described methods for a triangular energy
barrier (left) and a two-step non-linear energy barrier (right). The inset shows the energy barrier
and the values of |\£|2 for an energy of 2.8 eV on a logarithmic scale. The dotted lines refer to
the constant-potential transfer-matrix method. In the left figure the numerical instability of
the transfer-matrix method leads to an increasing transmission coefficient for energies below
1 eV. These numerical problems occur for both the constant-potential and the linear-potential
approaches.

The GUNDLACH and analytical WKB methods deliver similar results for the triangular barrier.
For the stacked dielectric shown in the right figure, the analytical WKB and GUNDLACH methods
cannot be used. The numerical WKB, transfer-matrix, and QTB methods deliver similar results,
however, the WKB method does not resolve oscillations in the transmission coefficient.

It can be concluded that for a single-layer dielectric, the analytical WKB method yields reason-
able accuracy as compared to the other, computationally more expensive methods. For stacked
dielectrics, however, only the numerical WKB, transfer-matrix, or QTB methods can be used
in the first place. Since transfer-matrix based methods exhibit problems regarding numerical
stability, only the QTBM and the numerical WKB methods remain. Since the numerical WKB
method also needs a numerical integration, its advantage in terms of computational effort is not
high enough to rule out the QTBM. Furthermore, if resonance effects — such as in dielectrics
with quantum wells, see Section 5.2.2.3 — have to be taken into account, the QTBM remains
as the method of choice for a reliable transmission coefficient estimation.
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Figure 3.12: The transmission coefficient using different methods for a dielectric con-
sisting of a single layer (left) and for a dielectric consisting of two layers
(right). The shape of the energy barrier and the wave function at 2.8 eV
is shown in the inset.
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3.6 Bound and Quasi-Bound States

Up to now it has been assumed that all energetic states in the substrate contribute to the
tunneling current. However, the high doping and the high electric field in the channel leads to
a quantum-mechanical quantization of carriers as described in Section 2.2.1 [156,157]. If it is
assumed that the wave function does not penetrate into the gate, discrete energy levels can be
identified. However, it cannot be assumed that electrons tunnel from these energies, since for
the derivation of the levels it was assumed that there is no wave function penetration into the
dielectric. This leads to the paradox which was addressed by MAGNUS and SCHOENMAKER [158]:
How can a bound state, which has vanishing current density, lead to tunneling current?

The answer is that it cannot. Taking a closer look at the conduction band edge of a MOSFET
in inversion reveals that, depending on the boundary conditions, different types of quantized
energy levels must be distinguished [159], see Fig. 3.13: Bound states are formed at energies for
which the wave function decays to zero at both sides. Quasi-bound states (QBS) have closed
boundary conditions at one side and open boundary conditions at the other side. Free states,
finally, are states which do not decay at any side. The total tunnel current density therefore
consists of current from the QBS and from the free states:

n„{£j) 47rmeffq
h3

l- f TC{£)N{£) d£ ,

^•min

(3.100)

where the symbol nu{ßi) denotes the two-dimensional carrier concentration [160]

m k B r . / (Ei-Ei
nv = 5„—zô- In 1 + exp ' (3.101)

the symbol gv is the valley degeneracy, and rq is the life time of the quasi-bound state £j. The
life time is based on GAMOW'S theory of nuclear decay [40] and denotes the time constant with
which an electron leaks through the energy barrier. Since bound and quasi-bound states are
closely related, the computation of bound states will be described first.

Free states

QBS

Bound States

Figure 3.13: Free, bound, and quasi-bound states in a typical MOS inversion layer.
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3.6.1 Eigenvalues of a Triangular Energy Well

To first order the conduction band edge in a MOSFET inversion layer can be approximated
by a linear potential (this is actually done by various authors, see [161-164]). The solution of
ScHRÖDiNGER's equation for a linear potential has been derived in Section 3.5.2 and consists of
a linear superposition of AIRY'S functions. If the triangular energy well is defined as

W(x) = W0 (3.102)

and no wave function penetration for x <= XQ is taken into account, the wave function for x > 0
can be written as [156]

#(a:) = AAi(u(x)) ,

#(z0) = AM(u(x0)) = 0 .

Therefore, U(XQ) must equal one of the zeros of the AIRY function zf.

u(x0) = zi < 0 .

With u(x) from expression (3.70) the energy eigenvalues are found as

£i = Wo - zt —
\2mJ \ x\ - x0 )

(3.103)
(3.104)

(3.105)

(3.106)

The first five zeros of the AlRY function are -2.34, -4.09, -5.52, -6.79, and -7.94. These values
are often used to approximate the quantized carrier concentration in the channel of MOS devices.
The value of the normalizing constant A becomes (the derivation is shown in Appendix C)

/

A =

/2mq£\

I & )
1/3 \ 1/2

Ai'2(A0) - A0Ai2(A0)
(3.107)

where E is the constant electric field in the energy well, and the value of Ao depends on the
energy eigenvalue £, via

Si /2mq£\1/3

(3.108)

This method can be used to get an estimate of the first few eigenvalues of the system, or to find
initial values for the calculation of the eigenvalues described in the next section.
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3.6.2 Eigenvalues of Arbitrary Energy Wells

To calculate the eigenvalues of an arbitrary energy well it is necessary to solve SCHRÖDINGER'S

equation. This can be done using the method of finite differences. It is based on a discretization
of the HAMlLTONian on a spatial grid and given by (3.92) which is repeated here for convenience

While in Section 3.5.4, a constant value of the electron mass in the simulated region was used,
a discretization which allows for a position-dependent carrier mass reads

4 A 2
1

and

h2

Sj ~ 4A2
1

-I- —

(3.109)

(3.110)

The system HAMlLTONian is tridiagonal and, for a six-point example, can be written similar to
(3.99) but without the entries for £ and £:

-S2

\

s2 \

—S3

—S4

'l \ '1 \

(3.111)

The values \&o and ̂ 5 must be 0 in this case, that is closed boundary conditions are assumed.
The system HAMlLTONian is real and symmetric, therefore all eigenvalues are real. While this
matrix equation looks similar to (3.99), there are important differences. Here it is necessary to
solve the eigenvalue equation to get a value for Si and \&i. In (3.99), any value of £ leads to a
valid solution for \&j, and the solution is obtained by solving a complex equation system.

3.6.3 The Life Time of Quasi-Bound States

The tunneling current from quasi-bound states in (3.100) depends on their quantum-mechanical
life time rq: In contrast to electrons in bound states, which have an infinite life time, electrons
in quasi-bound states have a non-zero probability to tunnel through the energy barrier, thus
their life time is finite [165-167]. This can be seen if the time time evolution of the states is
considered [168]

where \&o is the initial wave function and the complex eigenenergy is

p . — F _ op.

(3.112)

(3.113)

47



TUNNELING IN SEMICONDUCTORS 3.6 Bound and Quasi-Bound States

The time-dependent probability becomes

P(t) = *•(*)*(*) = M êxp ( - ^ i ) = *§exp ( - £ ) . (3.114)

Thus, the imaginary component of the eigenenergy £ is related to the decay time constant by

The QBS are frequently used for tunneling current calculations [169-174]. Three methods are
established to compute the life time of a quasi-bound state in MOS inversion layers: Com-
puting the full-width half-maximum (FWHM) of the reflection coefficient resonances, using the
quasi-classical formula based on the WENTZEL-KRAMERS-BRlLLOUlN-method, or from the com-
plex eigenvalues of the non-HERMlTian HAMlLTONian. These methods will be described in the
following.

3.6.3.1 The Reflection Coefficient Resonances

A quasi-bound state forms if one of the system boundary conditions is open ( / 0) and the
other one is closed (= 0). The carrier wave function is reflected at the interface, there is no
transmitted wave. Using the transfer-matrix method described in Section 3.5.3, the system can
be described by

• ( £ £ ) ( £ ) •
where the wave functions are plane waves

^j(x) = Aj exp(ikjx) + Bj exp(-tkjx) . (3.117)

However, no transmission coefficient can be defined for a quasi-bound state: The transmitted
wave amplitude Ajq must vanish to fulfill the assumption of closed boundary conditions. Instead,
a reflection coefficient can be defined which is

RC{£)=T1=-'k- (

It is shown in [165] that for a quasi-bound state, the transfer matrix is not HERMITian9 and its
elements obey

= Tff2 ,

9For free states, which is the kind of application investigated in Section 3.5.3, the transfer matrix is HERMITian:

Tu = T22
T12 = ÏÏi
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Therefore, the reflection coefficient RC{£) can be written as

RC{£) = exp {%&{£)) . (3.119)

The phase &(£) varies only weakly at energies away from the resonance energy of the QBS,
while near the QBS the phase changes strongly. Near the complex energy levels £\ the derivative
of the phase factor ©(£) follows a LoRENTZian10 distribution

^ = (c c%^c2 > (3-120)

where 2£[m is the full-width half-maximum (FWHM) value of d©/d£. Thus, by calculating
the phase of the reflection coefficient as a function of energy, the life times can be determined.
This method has been studied intensely by CASSAN et al. [160,175]. They reported numerical
difficulties in the calculation of the value of d©/d£ which is prone to numerical noise. Similar
problems have been reported by other groups [176].

An alternative approach has been presented by CLERC et al. who noted that the life times can
also be extracted directly from the transfer matrix [144]. For a free state, B^ = 0 in (3.116)
and the transmission coefficient becomes

= ÏOTT5 • (3-121)

For a quasi-bound state, AN = 0. Therefore,

Ax = TnBN , (3.122)

but, since 7\i = T*2, the value of |Tii|~2 may be evaluated as well — even if it cannot be
interpreted as a transmission coefficient. The life time of the QBS is again found from the
resonance peak of the LoRENTZian around the real component of the eigenenergy £re

< 3 ' 1 2 3 )

but no derivative must be calculated this time. As an example of this method the left part of
Fig. 3.14 shows the shape of the conduction band edge of a MOS structure in the substrate,
dielectric, and polysilicon gate. In the substrate a triangular quantum well forms. Considering
closed boundaries, eigenvalues and wave functions can be calculated. The corresponding wave
functions are shown in the figure, where closed boundary conditions have been used at the
boundaries of the simulation domain. Note the wave function penetration into the classically
forbidden region of the dielectric layer. The eigenvalues of the quasi-bound states are located
at 0.27, 0.47, 0.63, 0.76, 0.86, and 0.95 eV. The same information can be found when the value
of |T\ij~2 is investigated, as shown in right part of Fig. 3.14: Every quasi-bound state in the
inversion layer manifests as a peak in the value of |Tii|~2. The width of each peak is directly
related to its life time.

10Hendrik Antoon Lorentz, Dutch physicist, 1853-1928.
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Figure 3.14: Wave function of quasi-bound states. Note the wave function penetra-
tion into classically forbidden regions (left). The respective value of
\Tn I~2 as a function of energy is shown in the right plot. The energy
broadening around the poles is clearly visible.

3.6.3.2 The Quasi-Classical Formula

The calculation of the life times using the approaches shown so far is cumbersome and error-
prone, since a precise value for the FWHM in regions where different QBS overlap is difficult to
obtain. As an approximation the life time of a QBS can be computed from the quasi-classical
formula [176]

(3.124)

where £\ is the resonance energy of the respective bound state and x, the classical turning point
for this energy. The transmission coefficient TC(£\) can be calculated by the transfer-matrix
method or any other method that solves SCHRODINGER'S equation.

3.6.3.3 The Eigenvalues of the Non-HERMlTian HAMlLTONian

For open-boundary conditions, the system is described by a HAMlLTONian which is not HER-
MlTian and admits complex eigenvalues. The most straightforward way to calculate the life
times is to directly find the complex eigenvalues of the system HAMlLTONian. This, however,
is not easily possible because the eigenvalue problem is nonlinear: The matrix elements depend
on the eigenvalue [177]. The numerical implementation of this method will be described in
Section 4.3.3.

The complex eigenvalues have been used to calculate the life times of the structure shown in the
left part of Fig. 3.14. The complex energies and life times found are shown in Table 3.2. The
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values perfectly agree with the values found using the method based on the evaluation of the
reflection-coefficient.

The life times of the first and second QBS have been evaluated as a function of the gate bias
and the thickness of the dielectric layer as shown in the left part of Fig. 3.15. The life time
decreases with increasing gate bias which is due to the higher penetrability of the energy barrier.
The results of the gate current density (3.100) is shown in the right part of Fig. 3.15, where the
TSU-ESAKI tunneling current was not considered.

This method, however, is by far the most computationally demanding one and it has not been
implemented in MINIMOS-NT since problems regarding the stability of the underlying algorithms
have been observed.

[eVj [eV]
' q

1 0.2695 1.503 x 10"20 4.376 x 104

2 0.4695 1.830 x 10~19 3.594 x 103

3 0.6256 5.285 x 10"15 1.244 x 10"1

4 0.7549 2.794 x 10~n 2.354 x 10~4

5 0.8629 4.231 x 10~8 1.555 x 10~8

6 0.9503 2.005 x 10~5 3.281 x 10"11

Table 3.2: Eigenvalues found by using a resonance-finding algorithm based on the
determinant of the open-boundary HAMlLTONian.
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Figure 3.15: The life time of the first and second QBS for different gate dielectric
thicknesses and gate voltages (left) and the resulting gate current density
considering the first three quasi-bound states (right).
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3.7 Compact Tunneling Models

The above presented models for the calculation of tunneling currents require a considerable
computational effort. However, for practical device simulation, it is desirable to use compact
models which do not require large computational resources. That may be necessary for a quick
estimation of the dielectric thickness from IV data or to predict the impact of gate leakage on the
performance of CMOS circuits [178-183]. The most frequently used model to describe tunneling
is the FOWLER-NORDHEIM formula [184]

(3.125)

which was originally used to describe tunneling between metals under intense electric fields. The
parameters A and B have been refined by LENZLINGER and SNOW [185]:

j _ q^eff F2 I V2md iel(q$B)3 \ . ßs
3 - 8.mdiM*B

E^eXP { 3/iqJSUd ) • (3-126)

This expression can be derived from the TSU-ESAKI formula (3.13) by the assumption of zero
temperature, a triangular energy barrier, and equal materials on both sides of the dielectric (the
derivation is shown in Appendix A). Thus, it is not valid for direct tunneling where the barrier
is of trapezoidal shape. Furthermore, q$B denotes the difference between the FERMI energy
in the electrode and the conduction band edge in the dielectric, and not the conduction band
offset, as it is often found in the literature.

SCHUEGRAF and Hu derived correction terms for this expression to make it applicable to the
regime of direct tunneling [186]

\ /

with the correction terms B\ and B<i given as (the derivation can also be found in Appendix A)

B\ = I 1 — I 1 ^—— J I , (3.128)

and

B2 = [ 1 - ( 1 - q £ d ^ d i e l ) ) . (3.129)

For a triangular barrier the correction factors become B\ = B% = 1 and the expression simplifies
to (3.126). Note that using these equations, the minimum tunneling current occurs for 2?diel =
0 V/m which, for a work function difference ^ 0, does not occur at the minimum applied bias.
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3.8 Trap-Assisted Tunneling

Besides direct or FOWLER-NORDHEIM tunneling, which are one-step tunneling processes, defects
in the dielectric layer give rise to tunneling processes based on two or more steps. This tunneling
component is mainly observed after writing-erasing cycles in electrically erasable programmable
read-only-memories (EEPROMs). It is therefore assumed that traps arise in the dielectric
layer due to the repeated high voltage stress. The increased tunneling current at low bias is
called stress-induced leakage current (SILC) and is mainly responsible for the degradation of the
retention time of non-volatile memory devices [187]. It is now generally accepted that it is caused
by inelastic trap-assisted tunnel transitions and that the traps are created by the electric high-
field stress during the writing and erasing processes [187-192]. SILC has been widely studied
and modeled in MOS capacitors [193-195] and EEPROM devices [196].

This section gives a brief overview of trap-assisted tunneling models, describes two frequently
encountered models (CHANG'S and IELMINI'S model) and elaborates on one of the most sophis-
ticated models which was originally proposed by JIMENEZ et ai. The adaption of this model to
allow its inclusion in the device simulator MINIMOS-NT is described in some detail.

3.8.1 Model Overview

Numerous models have been presented to describe trap-assisted tunneling in the gate dielectric
of MOS devices. These models usually share the equation for the current density which is given
by an integration along the gate dielectric [197]:

tdiel

In this expression JVT denotes the trap concentration, and TC and re denote the capture and
emission times of the considered trap. Since both processes - capture and emission - must
happen in sequence, they both determine the current density. However, differences exist in how
the capture and emission times are calculated. Some models use constant capture and emission
cross sections to calculate the respective times. Another important point is the distribution in
space, where the traps are usually assumed to follow a GAUSSian distribution. The distribution
in energy is also crucial. Commonly it is either assumed that traps have a GAUSSian distribution
in energy or that they are located at a certain energy level below the dielectric conduction band.
The assumption of a discrete energy level for specific trap types is backed by spectroscopic
analyses [198]. Additionally, the tunneling process can either be elastic, where the energy of the
tunneling electron is conserved, or inelastic, where the energy of the tunneling electron changes.
Recent studies and experiments have shown strong evidence for the tunneling process being
inelastic [199-201].
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3.8.1.1 CHANG'S Model

A frequently used model is the generalized trap-assisted tunneling model presented by CHANG

et al. [202,203]. The current density reads

where A denotes a fitting constant, NT(X) the spatial trap concentration, and Pi and P2 the
transmission coefficients of electrons captured and emitted by traps. Using rc ~ P1/P2 and
re ~ P2/P1, this expression reduces to (3.130). A similar model was used by GHETTI et al. [169]

*diel

J= ! CTNT(x) J > n J y dx, (3.132)
J "in 1 "'out
0

who assumed a constant capture cross section Op for the traps. The symbols Jm and Jout denote
the capture and emission currents. Essentially the same formula was used by other authors as
well [200,204].

3.8.1.2 iELMINl's Model

Considerable research has been done by IELMINI et al. [205-208] who describe inelastic TAT and
also take hopping conduction into account [209,210]. They derive the trap-assisted current by
an integration along the dielectric thickness and energy

*diel

J = f àx j J(£T,x)d£ ,

where J denotes the net current flowing through the dielectric, given as the difference between
capture and emission currents through either side (left or right), as shown in Fig. 3.16

J ( £ T , X) = Jci - Jel = Jer ~ Jcr =

where / T is the trap occupancy, £T the trap energy, Wc the capture rate, and f\ the energy
distribution function at the left interface. The symbol N^ denotes the trap concentration in
space and energy. IELMINI further develops the model to include transient effects and notes
that in this case, the net difference between current from the left and right interfaces equals the
change in the trap occupancy multiplied by the trap charge

~ Jer) = ̂ T ^ - , (3.133)

an observation that will be revisited in Section 3.8.2.4. The main shortcoming of this model,
despite its sophistication, is the assumption of a constant capture cross-section.
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Jel

Figure 3.16: Schematic capture and emission currents through the left and right in-
terfaces of the dielectric layer.

3.8.1.3 Compact Trap-Assisted Tunneling Models

For application in circuit simulators, or to catch a quick glimpse at the effects of trap-assisted
tunneling, compact models are required. A frequently used expression is based on the work of
Ricco et al. [193]. They describe the trapping- and detrapping processes by

JTAT = JCTTCi{NT - nT) = qvn-YTC-2 , (3.134)

where J is the supply current density at the interface, CT the capture cross section, TC\ and
TC2 the transmission coefficients from the left and right side of the dielectric to the trap, n<p the
concentration of trapped electrons which is smaller or equal than the trap concentration iVr, and
v their escape frequency. The highest contribution comes from traps which have TC\ sa TC2,
therefore the trap-assisted tunnel current becomes

JTAT = qunTTC = qi>CrNT— TC . (3.135)
J C T + qv

A modified version of this expression was used by GHETTI et al. [195,211]. Other more or less
empirical trap-assisted tunneling models based on SILC measurements are presented in [212].
These comprise hopping conduction

J=Ci£ d i e i exp - (3.136)

where $ a is an activation potential, and the frequently applied POOLE-FRENKEL tunneling
formula [212-218]. This model describes the emission of trapped electrons and reads

J = exp (3.137)

where r is the refractive index of the dielectric, £T is the difference between the conduction band
in the dielectric and the trap energy, and the coefficient A depends on the trap concentration.
The main motivation to use this expression is that the trap-assisted gate current density was
found to be a linear function of the square root of the dielectric field, in contrast to the FOWLER-

NORDHEIM tunneling current which is a linear function of the dielectric field. Note, however,
that no trapping-detrapping considerations enter this equation.
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3.8.2 The Model of JIMENEZ et al.

A model for trap-assisted inelastic tunneling has been developed by JIMENEZ et al. [219]. Their
model is based on the theory of non-radiative capture and emission of electrons by multiphonon
processes [220]. The main difference to the models described before is that it does not require
constant capture cross sections as fitting parameters but calculates them for each trap based on
the trap energy level and the shape of the energy barrier.

3.8.2.1 Capture and Emission Probabilities

The tunneling model is based on a two-step tunneling process via traps in the dielectric which
incorporates energy loss by phonon emission [219]. Fig. 3.17 shows the basic two-step process
of an electron tunneling from a region with higher FERMI energy (the cathode) to a region with
lower FERMI energy (the anode). To avoid integration in energy, the initial electron energy is
assumed to be located at the average kinetic energy, which, for the parabolic dispersion relation
(3.1) and the MAXWELLian distribution (3.20), is

= -k B i • (3.138)

/ £f(£)g(£) d£ f £3'2 exp(--ß-)d£
(£) { i V B J

f(£)g(£) d£ J £^ exp (- d£

During the capture process (Wc), the difference in total energy between the initial and final
state is released by means of phonon emission (hu>). An electron captured by a trap can then
be emitted into the anode (We).

The rate with which an electron with energy £ is captured by a trap located at position x and
energy £' is given by [221]

Wc(x, £', £) = j ^ K\2 S ( l - Ç) 2 J P ( 0 exp ( - (2/p + 1) S + ^ ) . (3.139)

Here, S is the HUANG-RHYS factor which characterizes the electron-phonon interaction [222],
Hu is the energy of the phonons involved in the transitions, A£ = £ — £', and P = A£/hui is
the number of phonons emitted due to this energy difference. In the simulations the value of
Sfouj was used as fitting parameter.

The population of phonons /p is given by the BOSEU-EINSTEIN12 statistics

- ( 3 - w o )

"SATYENDRA NATH BOSE, Indian physicist, 1894-1974.
12ALBERT EINSTEIN, German physicist, 1879-1955.
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Anode Cathode

Figure 3.17: The trap-assisted tunneling process.

The function ip(£) is the modified BESSEL13 function of order P, with

= 2-VM/p (3.141)

The term \Ve\ in (3.139) denotes the transition matrix element which is calculated by an inte-
gration over the trap cube [220]

xo+xT/2

-— f |*(z)
iel£T J

(3.142)

xo-xT/2

In this expression XT denotes the side length of the trap cube, estimated as

h / 4 T T \ 1 / 3

(3.143)

The symbol £p denotes the energy difference between the trap energy and the barrier conduction
band edge as shown in Fig. 3.17. For the emission of electrons from the trap to the anode, elastic
tunneling is assumed. Hence, the probability of emission to the anode is equal to the probability
of capture from the anode, which is calculated from (3.139).

FRIEDRICH WILHELM BESSEL, German mathematician, 1784-1846.
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The numerical evaluation of (3.142) requires the calculation of the wave functions in the dielectric
layer, which, however, degrades the computational efficiency of a multi-purpose device simulator
where simulation speed is crucial. To avoid this, the barriers have been transformed to take
advantage of the well known solutions for constant potentials. Two cases must be distinguished,
namely the case of a trapezoidal barrier and the case of a triangular barrier. The two cases are
depicted in Fig. 3.18.

Figure 3.18: The approximate shape of the barrier in the direct (left) and FOWLER-
NORDHEIM regime (right).

For capture processes and for emission processes where the electron faces a trapezoidal barrier,
the barrier is transformed into a step function of height equal to the potential at the middle
point between x = 0 and x — XQ (£m in the left part of Fig. 3.18), XQ being the position of the
trap inside the dielectric. Assuming

(3.144)

(3.145)

fy(x < 0) = Asin(k\x + a) ,
fy(x > 0) = Bexp(-k2x) ,

the wave function at the position of the trap becomes

= 4sin farctan (
\ V meff «2

where m^iei and meff are the electron masses in the dielectric and the neighboring electrode,
respectively. The wave numbers are given by

1
h = ^\/2meff(£ - £c) ,

h = j:\/2mdiei(£m-£) •

(3.146)
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For emission processes in which the barrier is triangular (the electron energy is above the
dielectric conduction band at some point between the trap and the anode), two regions in the
dielectric must be distinguished. The first one, between the interface at x = 0 and the point
x = #FN (see the right part of Fig. 3.18) has the height <?FN- The height of the approximated
barrier in the other region is then the value of the barrier, £m, in the middle point between
x = #FN and the position of the trap x = XQ. With this new barrier and the assumptions for
the wave functions in the three regions

*(z < 0) = A s i n ^ z + ai) , (3.147)

< x < ZFN) = B sm{k2x + a2) , (3.148)

<x <xo) = Cexp(-fc3(z - ZFN)) , (3.149)

the wave function at the position of the trap becomes

. . sinai . . .
W(zJ = A— sin (K2ZFN + a2) exP {~k3(x — ZFN)) > (o.loO)

sina2

with the symbols

a\ = arctan I — tan a2 ) ,

+ (kA
ao = arctan 7— —

The corresponding wave numbers are given as

-£c) ,

(3-152)

1

h

Using expression (3.145) and (3.150), the integration in (3.142) can be performed analytically
which allows the capture and emission probabilities to be calculated without the need for nu-
merical integration.

3.8.2.2 Capture and Emission Times

Once the capture and emission probabilities have been obtained, the corresponding times can
be calculated. The inverse of the capture time is given by [219, 223]

00

r-\x) - J Wc(x,£',£)9c(£)fc(£)d£ , (3.153)

where gc(£) denotes the two-dimensional density of states and fc{£) the electron energy distri-
bution function in the cathode. For the above stated assumption that all electrons are captured
from the same energy level £c + 3/2/csT in the cathode, this expression can be approximated by

Wc (x,£',£c + \kBT\ nc , (3.154)

59



TUNNELING IN SEMICONDUCTORS 3.8 Trap-Assisted Tunneling

where nc is the sheet carrier concentration in the cathode, which is determined by the transport
model used in the device simulator. The inverse of the emission time is [219]

= J We(x,£',£)9li(£) (1 - (3.155)

Assuming fa{£) ~ 0 in the anode and elastic tunneling for the emission process {£ = £'), the
emission time becomes

r-1(x)^We(x,£',£')ga(£
>)hu, (3.156)

where the energy loss is restricted to values less than huj. To check the validity of the approx-
imations for the wave functions, the resulting capture and emission times have been compared
to results using a SCHRÖDINGER-POISSON solver for a MOS capacitor with the parameters
£T—2.8eV, Shu>=1.6 eV, and a trap concentration of NT = 1019cm~3. As can be seen in
Fig. 3.19, the analytical and the numerical results are very close. Electrons are captured from
the right and emitted to the left in this figure. Thus, for traps near the right side of the barrier
the capture time is very low and the emission time is very high. The oscillations in the emission
time for high bias are due to the fact that in this regime, the energy barrier has a triangular
shape which gives rise to an oscillating wave function, in contrast to the decaying wave function
for a trapezoidal barrier.
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Figure 3.19: Comparison of the analytic solution with a numerical solution for the
capture and emission times at a gate bias of 3 V (left) and 7 V (right).
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3.8.2.3 Steady-State Current

The total steady-state tunneling current is derived as the sum of the trap-assisted tunneling
current (3.130) and the direct tunneling current computed from the Tsu-ESAKI formula (3.13)

J = JTAT + JTsu_Esaki . (3.157)

Fig. 3.20 shows the dependence of the gate current density on the model parameters £T (trap
energy level) and Shut for a fixed phonon energy of foj=10meV in an MOS capacitor. For a low
trap energy level traps are located near the conduction band edge in the dielectric, and direct
tunneling prevails. With increasing trap energy level, the trap-assisted component becomes
stronger and exceeds the direct tunneling current for low bias. The current density shows
a peak at low bias which is due to the alignment of the trap energy level with the cathode
conduction band edge. The HUANG-RHYS factor has only a minor influence on the results, as
shown in the right part of Fig. 3.20.
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Figure 3.20: Dependence of the tunneling current on the trap energy level (left) and
on the HUANG-RHYS factor for a fixed phonon energy of 10 meV (right).

3.8.2.4 Transient Current

Models of trap-assisted transitions are commonly employed to calculate steady-state SILC in
MOS capacitors, while transient SILC has hardly been studied [194,205]. However, transient
tunneling current becomes important at high switching speed where the transients of the trap
charging and discharging processes may degrade signal integrity. For the calculation of transient
SILC it is necessary to calculate capture and emission times at each time step. Considering a
spatial trap distribution NT(X) across the dielectric layer, the rate equation for the concentration
of occupied traps at position x reads

NT(x)
dt

= NT(x) (1 - h(x, t)) r~\x, t) - NT(x)fT(x, t)r~l(x,t) (3.158)
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where fx(x, t) is the trap occupancy function and TC(X, t) and Te(x, i) are the inverse capture and
emission times of electrons by a trap placed at position x. In the static case capture and emission
processes are in equilibrium and d/r(x,t)/di = 0. In the transient case, however, capture and
emission times include transitions from the cathode and the anode (compare Section 3.8.1.2 and
Fig. 3.16)

T~l(x, t) = T£(X, t) + T~l(x, t) ,
(3.159)

where rca and rcc are the capture times to the anode and to the cathode, and rea and r^ the
corresponding emission times. To calculate the local trap occupancy, the differential equation
(3.158) must be solved. If the capture and emission times r~l and T'1 are constant over time,
like in a discharging process with a constant potential distribution, the solution of (3.158) can
be given in a closed form

(3,60)

w i t h r * = rr
ï . - l

A more general approach is to look at the change of the trap distribution at discrete time steps.
Integration of (3.158) in time between t, and ij+i and changing to discrete time steps yields

where the abbreviations Aij = U — £j_i and /; = (fT(x,U) + / T ( 2 ; ) ^ - I ) ) / 2 have been used.

Thus it is possible to write the trap distribution over time in the following recursive manner:

,*i-i), (3-161)

where the symbols Ai, Bi, and Cj are calculated from

c '

(3.162)

Once the time-dependent occupancy function in the dielectric is known, the tunnel current
through each of the interfaces is

•/TAT,Anode(*) = q J Nr(x) {r^{x,t) - fr(x, t) (T~\X, t) + T - 1 ^ , t))) dx , (3.163)

0

JrAT,Cathode(*) = <l J NT{x) {r^{x, t) - fy(X, t) (r'^X, t) + T~l(x, t))) dx . (3.164)

62



TUNNELING IN SEMICONDUCTORS 3.9 Model Comparison

3.9 Model Comparison

This chapter outlined a number of tunneling models useful for the simulation of tunneling in
semiconductor devices. For practical device simulation, however, it is often not clear which model
to select for the application at hand. Therefore, Table 3.3 summarizes the main model features
and also gives the approximate computational effort. The following points can be concluded:

• Especially the FOWLER-NORDHEIM, SCHUEGRAF, and FRENKEL-POOLE models have a
very low computational effort since they are compact models. However, they do not
correctly reproduce the device physics and can only be used after careful calibration.

• The TSU-ESAKI formula with the analytical WKB or GUNDLACH method for the transmis-
sion coefficient combines moderate computational effort with reasonable accuracy. This
approach can be used for the simulation of tunneling in devices with single-layer dielectrics.

• The inelastic TAT model allows simulation of all effects related with traps in the dielectric
and, due to the analytical calculation of the overlap integral, poses only moderate com-
putational effort. This model can be used for the simulation of leakage in EEPROMs or
trap-rich dielectric devices (see Section 5.2.2.1).

• The TSU-ESAKI model with the numerical WKB, transfer-matrix, or QTB method to
calculate the transmission coefficient represents the most accurate method usable for the
simulation of tunneling through dielectric stacks, however, with high computational effort.
The transfer-matrix method should not be used due to its poor numerical stability.

rSr'

jy

4?

FN tunneling / /
Direct tunneling /
EVB tunneling process
QM current oscillations
Dielectric stacks
Numerical stability
Trap-assisted tunneling
Trap occupancy modeling
Transient TAT
Computational effort low low

/
/
/

high high high low

Table 3.3: A hierarchy of tunneling models and their properties.
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'If programming in Pascal is like being put in a
straight jacket, then programming in C is like play-
ing with knives, and programming in C++ is like
juggling chain saws. '

Anonymous

Chapter 4

Implementation

FOR A RIGOROUS STUDY of tunneling effects in modern semiconductor devices it is
mandatory to consider arbitrary device geometries, which is only possible using a general-

purpose device simulator. This chapter describes the implementation of the outlined tunneling
models into the device simulator MINIMOS-NT. First, a brief description of MlNlMOS-NT is
given. Then, the discretization of the tunneling current density in dielectrics is described, cov-
ering tunneling through single segments and stacked segments and followed by the trap-assisted
tunneling interface. Finally, the developed closed- and open-boundary SCHRÖDINGER solver is
briefly explained.

4.1 The Device Simulator MINIMOS-NT

The general-purpose device simulator MlNlMOS-NT [224] is the successor of the highly successful
device simulator MINIMOS 6 [225]. The project was started in 1992 by FISCHER [226] and
SlMLINGER [227]. In contrast to its predecessor, MlNIMOS-NT is able to analyze arbitrary-
shaped devices with the number of grid points being limited only by the available memory. It
solves the drift-diffusion or energy-transport equations using the box-integration method and the
direct, BiCGStab, or GMRES numerical solving routines. It was extended to allow the solution of
the lattice heat-flow equation by KNAIPP in 1998 [228] and the simulation of mixed-mode circuits
by GRASSER in 1999 [229]. It was further improved by a comprehensive material database
including a wide range of alloy semiconductors by PALANKOVSKI in 2000 [230], AC small-signal
analysis and complex solver routines by WAGNER in 2001 [231], and an advanced input deck
language and the extension to three dimensional device simulation by KLIMA in 2002 [232].
For the solving process the user can choose among several iteration schemes to speed-up and
improve the convergence of the simulation. MINIMOS-NT uses the PIF (PROFILE INTERCHANGE

FORMAT) file format for device description which has been introduced by DUVALL in 1988 [233].
Several grid types such as ortho-product or triangular grids can be supplied. Ongoing work is
concentrated on the coupling of MINIMOS-NT to the WAFER-STATE SERVER (WSS) [234,235],
the development of advanced gridding routines, and on the coupling of MlNlMOS-NT to multi-
dimensional SCHRÖDINGER and Monte Carlo modules.

64



IMPLEMENTATION 4.2 The Tunneling Model

4.2 The Tunneling Model

The main problem for the integration of tunneling current models in a device simulator such as
MINIMOS-NT is that tunneling is a non-local effect. In contrast to the current density described
by the drift-diffusion (2.4) or energy-transport model (2.8), the current density at a certain point
does not only depend on quantities at the same point, but on geometrical properties such as
the thickness of the segment considered for tunneling. Thus, the tunneling current contribution
cannot be simply derived from local quantities alone. In MlNlMOS-NT the tunneling current
is calculated between two boundaries of insulator or semiconductor segments. The boundaries
are either specified by the user (see Appendix D) or found automatically. In the latter case
the tunneling boundaries are identified as the first two boundaries of the specified segment to
neighboring non-insulating materials which have the smallest distance1. For each grid node at
the specified boundary, the node on the other boundary with minimum distance is selected as
partner node. It may happen that some nodes share their partner nodes, such as the nodes i,
and i + 1 in Fig. 4.1. Thus, this implementation is valid for non-orthogonal grids, too.

o o

Gate

•<?• o o <

i+1 i+2
Substrate

c
• 1—4a

Figure 4.1: Boundary node - partner node pairs,
indicated by bold lines.

The considered boundaries are

The physical quantities at the neighboring segments, such as the carrier concentration, the
electrostatic potential, and the carrier temperature, are passed to the tunneling model which is
evaluated for each boundary grid point. Then, the tunneling current density is calculated by
one of the models described in Section 3 and the total tunneling current is found by summation
of the current density along the boundary and multiplication with the area of the grid element.
A projection factor a* is calculated for every node i to account for pair nodes which do not lie
directly opposite to each other:

xi -x2 = |cos(7i)| (4.1)

1Note that, especially in the three-dimensional version of MINIMOS-NT, there may be several boundaries
with equal minimum distance. Furthermore, the boundaries with the minimum distance are not necessarily the
boundaries with the highest tunnel current density. A manual specification of the boundaries may be necessary
to avoid ambiguities.

65



IMPLEMENTATION 4.2 The Tunneling Model

where Xi points from the boundary node to the partner node and X2 to the next node on the
boundary. In Fig. 4.1, for example, the tunneling current is calculated for the boundary nodes
i and % + 1 with respect to the partner node j .

The total tunneling current is calculated by a summation along the boundary with length L
which consists of N segments

h

= w J{x) dx w cos(7i) , (4.2)

i=l..N

where w is the gate width, J{ the local tunneling current density, and Az; the interface length
associated with the node i. The local tunneling current density Ji is added self-consistently to
the continuity equation of the neighboring segments by means of an additional recombination
term i?tUn = Jt

dn
V • J n = qR + q— 4- q#tun,n ,

ôp
V • J p = -qfi - q— - qfitun,p

(4.3)

In MiNlMOS-NT the NEWTON2 method is used to calculate the solution vector consisting of n,
p, and (f> at step k + 1 from the matrix equation

d

dn

dn
d

\ dé dn dp )

f<t>(<]>k,nk,Pk)
(4.4)

where /^, /„, and fp denote the control equations determining the electrostatic potential, the
electron concentration, and the hole concentration. Since J?tun modifies all solution variables, the
JACOBlan3 J must be modified to achieve better convergence of the NEWTON solver. Therefore,
the derivatives of the additional recombination term with respect to the potential, electron
concentration, and hole concentration

dR•tun dR•tun
dé dn dp

have to be calculated. For the FOWLBR-NORDHEIM, SCHUEGRAP, and FRENKEL-POOLE model,
the derivatives are calculated analytically while for all other models they are calculated numer-
ically.

2Sir ISAAC NEWTON, English mathematician and physicist, 1643-1727.
3CARL GUSTAV JACOB JACOBI, German mathematician, 1804-1851.
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4.2.1 Single Segment Tunneling

In MlNIMOS-NT the tunneling current density is calculated between two boundaries of a segment
which has been specified by the user (see the description of the user interface in Appendix D).
Unlike other models, however, the tunneling current density formulae outlined in Section 3 de-
pend on physical quantities from neighboring segments. Therefore, the concept of neighbor
quantities has been introduced: First, the segment where tunneling is calculated is — arbitrar-
ily — assigned a reference and an opposite boundary, see Fig. 4.2. Interface models are called
which transfer the necessary quantities of the reference and opposite segment to the tunneling
segment. This is done by additional equations in the system matrix. The neighbor quantities
are

• the electrostatic potential,

• the electron and hole concentration,

• the conduction and valence band edge,

• the lattice temperature,

• the electron and hole temperature (for energy-transport simulation),

• the electron and hole effective density of states, and

• the dielectric permittivity (for calculation of the image force correction energy).

In the tunneling model the tunneling current density is calculated by one of the models presented
above for all points along a boundary node - partner node pair. The resulting current density
is added as a generation or recombination term to the continuity equations of the reference and
opposite segments as described above. For neighboring metal segments, the tunneling current
is directly added to the contact current. Again, this step is achieved by means of additional
matrix entries.

Reference
boundary

Opposite
boundary

Reference segment

V///////////////////////////////A

Neighbor
' quantities

Energy barrier

Opposite segment

Figure 4.2: Tunneling through a single segment. After identifying the reference and
opposite boundary, neighbor quantities are handed over to the tunneling
model.
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4.2.2 Stacked Segment Tunneling

As outlined in Section 2 advanced CMOS devices apply stacks of alternative dielectric materials
and silicon dioxide to achieve a large physical, but small electrical thickness of gate dielectrics.
Furthermore, non-volatile memories rely on stacked gate dielectrics to achieve asymmetry be-
tween the on- and off-state (see Section 5.2.2.3). Tunneling through such dielectric stacks requires
models such as the numerical WKB method, the transfer-matrix method, or the QTBM, since
the energy barrier has a non-linear shape.

MINIMOS-NT allows the definition of rectangular dielectric stacks consisting of an arbitrary
number of independent segments, as shown in Fig. 4.3 (see also the user interface in Appendix D).
The tunneling model, however, must only be evaluated once. Therefore, the segment with the
highest index in the stack is chosen as master segment. As in the single-segment case, a reference
and an opposite boundary is assigned to the stack. Only at these boundaries, the neighbor
quantities are transferred to the master segment.

Further quantities which are necessary for tunneling, such as the conduction and valence band
edge, the distance from the reference boundary, or the trap concentration, are transferred from
each stack member segment to the master segment. A two-dimensional array is built up which
describes the quantities in the whole stack region. In the master segment finally the chosen
tunneling current model is evaluated and the calculated tunneling current is transferred back
to the boundary node and partner node located at the reference and opposite boundary. There
it is added to the continuity equation of the neighboring segments or to the contact current in
case of metal contacts as described above.

Outer stack reference segment

Reference bounda

Neighbor quantities

Opposite boundary

////////Â

Inner stack reference segment

Master segment

Inner stack opposite segment

^ Energy barrier
Distance
Trap concentration

Trap charge state
Trap occupancy
Trap energy level

Energy barrier

Outer stack opposite segment

Figure 4.3: A stack consisting of five segments. The neighbor quantities are trans-
ferred from the outer stack reference and opposite segment to the master
segment. Furthermore, the energy barrier, distance, trap concentration,
trap charge state, and trap occupancy is transferred from each stack
member segment to the master segment.
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4.2.3 Trap-Assisted Tunneling

For the calculation of trap-assisted tunneling, several additional quantities are necessary. These
are

• the trap charge state,

• the trap concentration,

• the trap energy level, and

• the trap occupancy.

The trap charge state is constant — either positive, neutral, or negative. The trap concentration
and the trap energy level are also constant and can be specified by the user (see Appendix D).
These quantities are initialized at startup and do not change.

The trap occupancy /T is also initialized at startup. In each iteration the charge of occupied
traps is included in the right hand side of the POISSON equation according to

= q(n - p - C) + (4.5)

where NT is the trap concentration, /T the trap occupancy, and QT the trap charge state. If
a trap-assisted tunneling model is evaluated in a transient simulation, the values of the trap
occupancy change according to (3.158). For electron tunneling occupied neutral or positive
traps become negative or neutral. For hole tunneling occupied neutral or negative traps become
positive or neutral. This mechanism is shown in Fig. 4.4. However, a trap is only allowed
to capture one carrier, so a negative trap cannot become positive and vice versa. For stacked
segments, the trap occupancy and the trap charge state are transferred back to their segments
after the evaluation of the tunneling model.

Capture of an electron Capture of an electron

Capture of a hole Capture of a hole

Figure 4.4: Positive, neutral, and negative trap charge states. Positive traps cannot
become negative and vice versa.

A flow chart of the tunneling model in MINIMOS-NT is shown in Fig. 4.5. The functionality
has been implemented in several steps. First, the tunneling segments, stacks, boundaries, and
master segments are identified. Then, the neighbor quantities are transferred to the master
segment, which is done by special interface models.
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After this step the tunneling model is evaluated for all boundary node - partner node pairs.
Interface routines transfer the calculated tunnel current density to the continuity equation of
the neighboring segments, or directly add it to the contact current if the neighboring segment
is a metal.

Set up interfaces and stacks

Transfer
neighbor
quantities

I Identify boundary
I p a r t n e r node pair

Transfer neighbor quantities
(metal or semiconductor)

(identify tunneling segments and stacks!

Identify reference and opposite boundaries,
master segment and stack members

f Transfer stack member ^
[ quantities to master segment!

(identify boundary - partner node pai)

( Calculate projection factor j

Evaluate tunneling model

Model server

[Write out tunneling currei
^ and tunneling current density

Write out trap charge state |
and trap occupancy J

fltRniiTl
»sity J

Transfer
tunneling
current

Identify boundary -
partner node pair

I End of tunneling model

Figure 4.5: Flowchart of the tunneling model in MlNlMOS-NT.
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4.3 The SCHRÖDINGER Solver

For the calculation of the transmission coefficient of non-linear energy barriers, the stationary
one-dimensional SCHRÖDINGER equation must be solved. To allow an easy extension to two-
or three-dimensional problems, a multi-dimensional SCHRÖDINGER solver based on the finite-
difference discretization has been developed. For the calculation of the transmission coefficient
using the QTBM (see Section 3.5.4) it is necessary to solve SCHRÖDINGER'S equation with open
boundary conditions, while for the evaluation of tunneling from quasi-bound states as described
in Section 3.6.3 it is necessary to solve the same problem with closed boundary conditions.
Therefore, a solver which allows flexible treatment of both cases has been developed.

4.3.1 Open and Closed Boundary conditions

First, the closed-boundary matrix equation (3.111) is set up, as indicated by the one-dimensional
energy barrier W(x) in Fig. 4.6. There are closed boundary conditions at the points 0 and 9,
respectively. If the system is coupled to a reservoir at so called connection points, injection
points must be given which determine the values ofW, £{, and m at the reservoir. As described
in Section 3.5.4, the coupling entries are calculated by expressions such as (3.95) and (3.96),
where the values of the wave vector are

Wj) . (4.6)

Note that these values may be complex. Injection points are stored in a table which holds
the information about the electrostatic potential, the electron mass, and the FERMI level at
the injection point. If the transmission coefficient has to be calculated, the points which are
considered for tunneling — the boundary nodes and their partner nodes — are used to set up
these injection and connection points. The transmission coefficient is then calculated from the
wave functions entering and leaving the simulation domain.

W

Injection point

Connection
point

0 1 2 3 4 5 6 7 8 9 l
Injection point

Figure 4.6: One-dimensional energy barrier: Injection points are coupled to connec-
tion points.
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4.3.2 System HAMILTONian

The HAMILTONian for a system consisting of n grid points coupled to a reservoir at m of these
points is described by the following matrix equation, where a simple one-dimensional finite-
difference discretization was performed. The lines indicate non-zero elements.

0
0

0

0

. J

\

\

\

\

\

\

\

\

J

rn+l

0
an+l

H - 81

Figure 4.7: Matrix equation for the system HAMILTONian.

The applicability of this solver is therefore not limited to the calculation of transmission coeffi-
cients or the calculation of eigenvalues and life times, but can perform both operations based on
the same data. If the right hand side of one of the points is set to a value ^ 0, the transmission
coefficient can be calculated according to the value of the wave function at the corresponding
node. Furthermore, the module allows to calculate the wave function and the carrier concentra-
tion for both open- and closed-boundary cases.

Fig. 4.8 shows a flowchart of a possible application of the Schrödinger solver module where
optional modules are indicated by dotted boxes. At the beginning the constructor is invoked
to initialize the variables and the memory for the barrier is allocated. In the next step the
closed-boundary HAMILTONian is set up. This step has an interface to read the energy barrier
from MINIMOS-NT, but it is also possible to specify the barrier manually. Optionally the values
in the barrier can be checked and printed to a file. By means of the open flag the open- and
closed-boundary solver is distinguished.

If injection points are added, the equation system is solved by means of a complex solver. Other-
wise the eigenvalues of the closed system are found using an eigenvalue solver (see Section 4.3.3).
Both solvers are part of the numerical library of MINIMOS-NT. In both cases the carrier concen-
tration and the wave function can be calculated, while the transmission coefficient can only be
calculated for the open system and is directly returned to the tunneling model in MINIMOS-NT.
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The output of the program consists of eigenvalues, wave functions, the transmission coefficient,
and the carrier concentration. It can either be written in CRV-format (one-dimensional, for use in
the program XCRV [224]), in PiF-format (two-dimensional, for use in the program XPIP2D [224]),
in DX-format (three-dimensional, for use in the program DATA EXPLORER [236]), or in wss-
format (three-dimensional, for use in the program SMARTVIEW [237]).

Minimos-NT

f Initialization J

Set up closed system )

Set up injection points

No X \ Yes
.open system ?

Calculate with closed
boundary conditions

Calculate with open
boundary conditions

| Calculate wavefunction

I
1 Calculate carrier concentration

Calculate wavefunction

I
i Calculate carrier concentration

Calculate transmission coefficient V
Transferrmat_rix QTBM_ ,'

Minimos-NT

i \
i
i

! CRV P I F DX WSS !

Write output

Figure 4.8: Flow chart of the SCHRÖDINGER solver. Optional modules are indicated
by dotted boxes.
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4.3.3 The Eigenvalue Solver

For closed boundary conditions (3.111), which represents an eigenvalue equation, must be solved.
Such matrix eigenvalue problems arise in many applications of science and engineering. They
are given by the matrix equation [177,238]

Ax = Ax , (4.7)

where A is a square n x n matrix, x a non-zero n by 1 vector, and A a scalar. The polynomial

m(A) = det(A7 - A) , (4.8)

where 7 is the unity matrix, is the characteristical polynomial of A. The roots Aj of the equation

m(A) = 0 (4.9)

are the eigenvalues of A. Since the degree of m(X) is n, the characteristical polynomial has n
roots, and so A has n eigenvalues. A vector x* that satisfies

Axi = XiXi (4.10)

is called an eigenvector of A. The matrix A is positive definite, if all eigenvalues are positive,
positive semidefinite, if A, > 0, negative definite, if all eigenvalues are negative, and negative
semidefinite, if Aj < 0. If both positive and negative eigenvalues occur, the matrix is indefinite.

Based on the properties of the matrix A, several cases can be distinguished. The matrix A can
be HERMlTian

A = A+ : Aij = A*ji (4.11)

or non-HERMlTian. Furthermore, the matrix elements can be real or complex. A real HERMlTian
matrix is also denoted a symmetric matrix. A HERMlTian matrix has only real eigenvalues,
while a non-HERMlTian matrix also permits complex eigenvalues. Based on the different cases,
different numerical solvers have been used for the solution. Table 4.1 summarizes the different
cases.

Matrix elements Symmetry Eigenvalues Eigenvectors Solver Reference

real
real

complex
complex

HERMlTian
non-HERMlTian
HERMlTian
non-HERMlTian

real
complex
real
complex

real
complex
complex
complex

CEPHES

E I G C O M

Q R I H R M

E I G C O M

[239]
[240]
[240]
[240]

Table 4.1: Eigenvalues and eigenvectors of matrices with different properties and the
numerical solvers used.
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As described in Section 3.6.3.3, calculation of the life times of quasi-bound states requires to
find the eigenvalues of the inverse retarded GREEN'S function G"1 (3.99). Since the coupling
entries Ç and £ are in general complex, the matrix is complex too. Furthermore, the matrix
is not HERMITian. However, it is not possible to straightforwardly calculate the eigenvalues of
G"1 because the eigenvalue problem is nonlinear [177]: The values of the matrix elements £ and
£ depend on the eigenvalue £.

Sophisticated methods have been developed to allow an easy solution of this matrix so that the
life times can be calculated [241-244]. First, the closed-boundary HAMlLTONian is constructed
and the eigenvalues are calculated. In the one-dimensional case the matrix is tridiagonal. It
is shown in [245] that in this case, the LU algorithm is advantageous for the calculation of
eigenvalues compared to the commonly used QR algorithm which transforms the matrix into an
upper HESSENBERG matrix [246]. This is also done by the CEPHES solver. However, since the
solver will be used for two- and three-dimensional problems as well, where the LU algorithm
shows no advantages, the QR algorithm was applied.

Then, the eigenvalues are filtered so that only the values remain which are located in the
considered energy range. These values are then used as initial values for a NEWTON search
around the closed-boundary eigenvalue [242,244]. This is motivated by the fact that for Si
being an eigenvalue of H_, the determinant

m{£i) = det(ff - £d) = 0 (4.12)

must be zero. To find the roots of this equation, a NEWTON search around the closed-boundary
eigenvalues £, is used

where m'(£) denotes the derivative of the determinant

»V) = ^ • (4.14,

For a tridiagonal matrix, it is possible to find an analytical expression for m'{£) [247,248]. For
general situations, however, the derivative can only be found numerically by

( 4 1 5 )

This has the advantage that it is not limited to one-dimensional problems but can be applied
to any shape of the HAMlLTONian.
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'A crude model of the future is more valuable than
an accurate model of the past. '

Michael Duane

Chapter 5

Applications

GATE LEAKAGE is one of the most important issues for contemporary CMOS devices.
Based on the tunneling models outlined in Section 3 two different application areas will be

investigated in this section. First, gate leakage in contemporary MOS transistors will be studied
and compared to measurements. Emphasis is put on the distinction between the different sources
of the tunneling current, namely the region below the gate and the region near the drain and
source extensions.

Device engineers commonly rely on gate leakage measurements of turned-off devices to evaluate
the power consumption of CMOS circuits. This may lead to erroneous results since for turned-
on devices, hot-carrier tunneling prevails which may exceed the turned-off tunneling current.
Models which are based on simplified assumptions of the carrier energy distribution function
fail to predict gate leakage in such cases.

Advanced CMOS devices will use alternative dielectric materials as gate dielectrics. However,
a pronounced trade-off between the height of the energy barrier and the dielectric permittivity
exists. This makes the use of optimization necessary to find the optimum layer composition.
Furthermore, alternative dielectrics are not ideal insulators but contain defects which give rise to
trap-assisted tunneling. As a state-of-the-art example, tunneling in ZrO2-based MOS capacitors
will be studied and compared to measurements.

As a second important application area, non-volatile memories will be studied. Unlike MOS
transistors, non-volatile memory devices represent an application where tunneling is not a spu-
rious effect, but crucial for the device functionality. After a short review of non-volatile memory
technology, the tunneling current of conventional EEPROMs and advanced structures will be
studied. In contrast to these devices SONOS (silicon-oxide-nitride-oxide-silicon) EEPROM de-
vices store the charge not on an isolated contact, but in a layer of trap-rich dielectric.

Recent efforts to reduce the charging time of non-volatile memory devices resulted in multi-
barrier tunneling devices and EEPROMs with asymmetrically layered tunnel dielectrics. The
operation of these devices will briefly be described at the end of this chapter.
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APPLICATIONS 5.1 Tunneling in MOS Transistors

5.1 Tunneling in MOS Transistors

The gate leakage current in contemporary MOS transistors poses a major problem for further
device scaling. This section describes simulation results of MOS transistors, outlines the effect of
various device parameters, shows how to account for hot-carrier tunneling in turned-on devices,
and elaborates on the use of alternative dielectric materials to replace S1O2 as a gate dielectric.
First, however, the tunneling paths in MOS transistor structures will be reviewed.

5.1.1 Tunneling Paths in MOS Transistors

Tunneling in an MOS transistor, as shown in the left part of Fig. 5.1, basically can be separated
into a path between the gate and the channel, and a path between the gate and the the source
and drain extension areas [249]. Tunneling in the source and drain extension areas can exceed
tunneling in the channel by orders of magnitude. This is related to two effects: First, instead
of n-p or p-n tunneling, n-n or p-p tunneling prevails. Second, the potential difference and
thus the bending of the energy barrier is high. This increased tunneling current in the source
and drain extension areas can be a serious problem if measurements are performed on long-
channel MOSFETs to characterize their short-channel pendants, because the edge tunneling
currents exceed the channel tunneling current by orders of magnitude. Furthermore, there is a
fundamental difference between tunneling in MOS transistors and MOS capacitors [96,250]. In
contrast to MOS transistors, MOS capacitors which are biased in strong inversion cannot supply
the amount of carriers as predicted by the tunneling model. This effect is termed substrate-limited
tunneling, because the tunneling current is limited by the generation rate in the substrate. In
the channel of an inverted MOS transistor, on the other hand, carriers can always be supplied
by the source and drain contacts. This effect is depicted in the right part of Fig. 5.1.

&
Source/Drain

Extension Tunneling

7 • *
Channel Tunneling

Figure 5.1: The different tunneling paths (channel tunneling, source and drain exten-
sion tunneling) in an MOS transistor (left). In an MOS transistor biased
in inversion (right), tunneling electrons are supplied from the source and
drain reservoirs, which is not possible in an MOS capacitor.
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APPLICATIONS 5.1 Tunneling in MOS Transistors

5.1.2 Channel Tunneling

In this section the effects of various device parameters on the gate leakage of MOS capacitors
are studied. This is equivalent to tunneling in MOS transistors, if only channel tunneling (n-p
or p-n) is considered and the source, drain, and bulk contacts are grounded. The parameters
investigated are

• the doping of the polysilicon gate contact,

• the doping of the substrate,

• the thickness of the dielectric layer,

• the barrier height of the dielectric,

• the carrier mass in the dielectric,

• the dielectric permittivity, and

• the lattice temperature.

The typical shape of the gate current density in turned-off nMOS and pMOS devices is depicted
in Fig. 5.2. A SiO2 gate dielectric thickness of 2nm and an acceptor or donor doping of 5 x
1017 cm"3 and polysilicon gates was chosen. In the nMOS device the majority electron tunneling
current always exceeds the hole tunneling current due to the lower electron mass and barrier
height (3.2eV instead of 4.65eV for holes). In the pMOS capacitor, however, the majority hole
tunneling exceeds electron tunneling only for negative and low positive bias. For positive bias
the conduction band electron current again dominates due to its much lower barrier height [251].

i/irir-10

10

""if ir\
-3 -2 -1 0 1

Gate bias IVI
-1 0 1

Gate bias IV1

Figure 5.2: Channel tunneling regions in an nMOS (left) and a pMOS (right). The
insets show the approximate shape of the band edge energies.
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APPLICATIONS 5.1 Tunneling in MOS Transistors

5.1.2.1 Effect of the Polysilicon Gate Doping on the Channel Tunneling

As outlined in Section 2.2.2, heavily doped polysilicon is used as material for the gate contact
to allow adjustable work functions and realize CMOS circuits. Fig. 5.3 shows the electron and
hole tunneling current density for different doping of the polysilicon gate contact. In the nMOS
gate leakage generally increases with increasing doping of the polysilicon gate because tunneling
current is dominated by electrons. In the pMOS a higher polysilicon doping leads to reduced
electron tunneling current and increased hole tunneling current. The effect on the overall leakage
depends on the doping and the gate bias.
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Figure 5.3: Electron (left) and hole (right) current density in an nMOS (top) and a
pMOS (bottom) with different doping of the polysilicon gate. Substrate
doping is 1018 cm"3, dielectric thickness is 2 nm.

79



APPLICATIONS 5.1 Tunneling in MOS Transistors

5.1.2.2 Effect of the Substrate Doping on the Channel Tunneling

Fig. 5.4 shows the electron and hole tunneling current density for different doping of the sub-
strate. With increasing substrate doping, the majority tunneling component (electrons in the
nMOS, holes in the pMOS) is reduced in both the nMOS and pMOS devices, while the minority
component increases.
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Figure 5.4: Electron (left) and hole (right) current density in an nMOS (top) and a
pMOS (bottom) with different doping of the substrate. Gate polysilicon
doping is 5 x 1020cm~3, dielectric thickness is 2nm.
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APPLICATIONS 5.1 Tunneling in MOS Transistors

5.1.2.3 Effect of the Dielectric Thickness on the Channel Tunneling

The physical thickness of the dielectric has the largest impact on the gate current density, as
shown in Fig. 5.5. Increasing the gate dielectric thickness by 0.4 nm leads to a decrease of all
tunneling current components by several orders of magnitude.
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Figure 5.5: Electron (left) and hole (right) current density in an nMOS (top) and
a pMOS (bottom) with different thickness of the dielectric layer. Gate
polysilicon doping is 5 x 1020cm~3, substrate doping is 5 x IO18 cm"3.
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5.1.2.4 Effect of the Barrier Height on the Channel Tunneling

The main parameter, besides the thickness of the dielectric, influencing tunneling current is the
height of the energy barrier. The influence of this parameter is depicted in Fig. 5.6. Differ-
ent dielectric materials strongly differ in their work function difference to silicon. It must be
distinguished between the barrier height for electrons and for holes. The most frequently used
dielectric material SiC-2 has an electron barrier height of about 3.2 eV and a hole barrier height
of approximately 4.6 eV. The measurement of these material parameters is difficult and values
in the available literature vary widely (see Section 5.1.5).
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Figure 5.6: Effect of the electron and hole barrier height on electron tunneling current
(left) and hole tunneling current (right) in an nMOS (top) and a pMOS
(bottom) with 2 nm dielectric thickness, IO20 cm"3 polysilicon and 5 x
IO18 cm"3 substrate doping.
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5.1.2.5 Effect of the Carrier Mass on the Channel Tunneling

Being the parameter with the highest uncertainty, the electron and hole mass in the dielectric
is commonly used as a fitting parameter to reproduce measurements. Its influence on the gate
current density is shown in Fig. 5.7. An increase in the carrier mass by O.lrno leads to a reduction
in the gate current density by about a factor of 10. It must, of course, be held in mind that with
the approaches described in Section 3, tunneling is described by a single value for the carrier
mass. Its use as a fitting parameter may thus well be justified. Recent investigations, however,
report an increase of the electron mass with reducing thickness of the dielectric layer, which is
backed by measurements and tight-binding band structure calculations [252-254].
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Figure 5.7: Effect of the carrier mass on electron tunneling current (left) and hole
tunneling current (right) in an nMOS (top) and a pMOS (bottom) with
2nm dielectric thickness, 102Ocm~3 polysilicon and 5 x 1018cm~3 sub-
strate doping.
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5.1.2.6 Effect of the Dielectric Permittivity on the Channel Tunneling

The permittivity of the dielectric layer influences the tunneling current density in two ways:
First, the shape of the energy barrier — and thus the transmission coefficient — changes.
Second, the inversion charge — and thus the band edge energy — in the channel is affected.
The effect of varying dielectric permittivity is shown in Fig. 5.8. Especially in the low-bias
regime, a higher permittivity strongly increases the gate current density.
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5.1.2.7 Effect of the Lattice Temperature on the Channel Tunneling

The lattice temperature enters the gate tunneling current via the electron energy distribution
functions in the polysilicon gate and in the channel. The transmission coefficient, being based
on quantum-mechanical reasoning alone, is not affected by the lattice temperature. However,
the supply function depends on the lattice temperature. The impact on the gate current density
is shown in Fig. 5.9. Rising temperature increases the tunneling current density in all cases.
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5.1.2.8 Comparison to Measurements

Since almost all available measurements of gate leakage in MOS devices are performed on turned-
off MOS transistors, a comparison with measurements will be given before turned-on devices
are investigated in Section 5.1.4. The TSU-ESAKI model with an analytical WKB transmission
coefficient is in good agreement with recently reported data for devices with different gate
lengths and bulk doping [96,249] as shown in Fig. 5.10 for nMOS (left) and pMOS devices
(right) [255]. It can be seen that the gate current density can be reproduced over a wide range
of dielectric thicknesses with a single set of physical parameters. Additional measurements have
been performed on MOSFETs with a gate dielectric thickness of 1.5 nm (see the lower part of
Fig. 5.10) and compared with the results of other simulators (UTQUANT [256] and MEDICI [257]).
Under inversion condition the fit is not perfect while under accumulation the measurements
can be reproduced well. Note that with UTQUANT, the low-bias tunneling current cannot be
reproduced and MEDICI completely failed for the pMOS device.
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Figure 5.10: Comparison of simulations using different simulators with measurements
of nMOS (left) and pMOS (right) devices [96,249,255].
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5.1.2.9 Validity of Compact Models

Since the computational effort for the numerical integration in TSU-ESAKI'S formula or the
evaluation of the quasi-bound states is numerically expensive, it is reasonable to ask if com-
pact models can describe tunneling, at least for single-layer dielectrics. The compact tunneling
models outlined in Section 3.7 are compared in Fig. 5.11 for a symmetrical metal-dielectric-
metal structure (left) and for an nMOS structure with 3nm dielectric thickness (right). For
the metal-dielectric-metal structure, SCHUEGRAF'S model yields almost the same results as the
computationally much more expensive TSU-ESAKI model. The FOWLER-NORDHEIM model de-
livers correct values only for high bias. It is thus only applicable to describe high-field transport
through gate dielectrics, like program and erase cycles in EEPROM devices. For the MOS struc-
ture in the right part of Fig. 5.11, the SCHUEGRAF model fails to describe the tunneling current
density at low bias. For high bias, however, it may be used to provide an estimation of the
gate current. The FOWLER-NORDHEIM model totally fails for this application. Furthermore,
the FOWLER-NORDHEIM model shows the minimum gate current at minimum electric field in
the dielectric, and not for the minimum gate bias.
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Figure 5.11: Compact models for a metal-dielectric-metal structure (left) and an
nMOS structure (right, literature values from [249]).

5.1.3 Source and Drain Extension Tunneling

In the following examples the same devices as in Section 5.1.1 are investigated, but this time
only the tunneling current in the source and drain extension areas (n-n or p-p) is taken into
account. Since the barrier height, carrier mass, and dielectric thickness shows the same impact
on the gate current density as for the case of channel tunneling, the corresponding figures are
omitted.
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5.1.3.1 Effect of the Polysilicon Gate Doping on the Source and Drain Extension
Tunneling

Fig. 5.12 shows the effect of the doping concentration in the polysilicon gate on the extension
region gate current density. Increasing the polysilicon doping leads to a slight increase of the
main tunneling component and to a strong decrease of the minority tunneling component in
both nMOS and pMOS devices.
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Figure 5.12: Effect of the polysilicon doping on the electron tunneling current (left)
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region of an nMOS (top) and a pMOS (bottom) with 2nm dielectric
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5.1.3.2 Effect of the Substrate Doping on the Source and Drain Extension Tunneling

Fig. 5.13 shows the effect of the substrate doping concentration on the extension region gate
current density. Similar to the polysilicon gate doping, a higher substrate doping leads to
increased majority and decreased minority tunneling current.
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Figure 5.13: Effect of the substrate doping on the electron tunneling current (left)
and the hole tunneling current (right) in the source and drain extension
region of an nMOS (top) and a pMOS (bottom) with 2nm dielectric
thickness and 5 x 1020 cm"3 polysilicon doping.
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5.1.3.3 Effect of the Dielectric Permittivity on the Source and Drain Extension
Tunneling

Fig. 5.14 shows the effect of the dielectric permittivity on the extension region gate current
density. In contrast to the channel-tunneling case, the low-bias regime is not influenced by the
permittivity. Furthermore, the influence on the majority tunneling current component depends
on the bias: The electron tunneling component in the nMOS decreases for negative bias and
increases for positive bias. The hole tunneling component in the pMOS shows exactly the inverse
trend.
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Figure 5.14: Effect of the dielectric permittivity K/KQ on the electron tunneling cur-
rent (left) and the hole tunneling current (right) in the source and drain
extension region of an nMOS (top) and a pMOS (bottom) with 2 nm
dielectric thickness and 5 x 1018 cm""3 substrate doping.
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5.1.3.4 Effect of the Lattice Temperature on the Source and Drain Extension
Tunneling

Fig. 5.15 shows the effect of the temperature on the extension region gate current density.
Especially the minority carriers (holes in the nMOS, electrons in the pMOS) show strongly
increased tunneling current with higher temperature. Unlike in the channel tunneling case, the
majority tunneling component is hardly influenced by the temperature.
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Figure 5.15: Effect of the lattice temperature on the electron tunneling current (left)
and the hole tunneling current (right) in the source and drain extension
region of an nMOS (top) and a pMOS (bottom) with 2nm dielectric
thickness and 5 x 1018 cm"3 substrate doping.
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5.1.4 Hot-Carrier Tunneling in MOS Transistors

It has been shown in Section 3.3 that the distribution function in the channel of a turned-on
MOS transistor heavily deviates from the shape implied by a FERMI-DIRAC or MAXWELLian
distribution. A model for the non-MAXWELLian shape of the distribution function was presented
which accurately reproduced the carrier energy distribution along the channel.

To check the impact of this wrong high-energy behavior, the integrand of the TSU-ESAKI formula,
namely the expression TC(£)N(£) has been evaluated for a standard device, as shown in the left
part of Fig. 5.16, and compared to Monte Carlo results. The simulated device had a gate length
of 100 nm and a gate dielectric thickness of 3nm. While at low energies the difference between
the non-MAXWELLian distribution function (3.28) and the heated MAXWELLian distribution
(3.24) seems to be negligible, the amount of overestimation of the incremental gate current
density for the heated MAXWELLian distribution reaches several orders of magnitude at 1 eV
and peaks when the electron energy exceeds the barrier height. This spurious effect is clearly
more pronounced for points at the drain end of the channel where the electron temperature
is high. The non-MAXWELLian shape of the distribution function, indicated by the full line,
reproduces the Monte Carlo results very well.

The region of high electron temperature is confined to only a small area near the drain contact,
as shown in the right part of Fig. 5.16, where the gate current density along the channel is
compared to Monte Carlo results. At the point of the peak electron temperature, which is
located at approximately x = 0.8Lg, the heated MAXWELLian approximation overestimates the
gate current density by a factor of almost 106. It will therefore have a large impact on the total
gate current density. The cold MAXWELLian approximation underestimates the gate current
density in this region, while the non-MAXWELLian distribution correctly reproduces the Monte
Carlo results.

10

O Monte Carlo
Non-Maxwellian
Heated Maxwellian

Near Drain

Middle" "

\ Near Source

/ \

10'

10

10

O Monte Carlo
Cold Maxwellian

Heated Maxwellian
Non-Maxwellian

Energy [eV]
0.2 0.4 0.6 0.8

Normalized distance x/L

Figure 5.16: Integrand of TSU-ESAKI'S equation (left) and gate current density along
the channel (right) of a MOSFET with 100 nm gate length and 3 nm gate
dielectric thickness.
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The non-MAXWELLian shape yields excellent agreement, while the heated MAXWELLian ap-
proximation substantially overestimates the gate current density especially near the drain re-
gion. Instead of the heated MAXWELLian distribution it appears to be better to use a cold
MAXWELLian distribution in that regime since it leads to a comparably low underestimation of
the gate current density.

The effect of hot-carrier tunneling on the total gate current of the devices is shown in Fig. 5.17.
In the left part of this figure the gate current density for a 0.5 ̂ m turned-on MOSFET with a
dielectric thickness of 4 nm is shown as a function of the gate bias. Results from Monte Carlo
simulations are also shown in this figure. For low gate voltages (VGS<^DS) the peak electric
field in the channel increases with increasing gate bias. The electron temperature is high and
the heated MAXWELLian approximation massively overestimates the total gate current. If the
gate bias exceeds the drain-source voltage, however, the peak electric field in the channel is
reduced [258]. Therefore, for VQS > Vbs the electron temperature reduces with increasing gate
bias and the heated MAXWELLian approximation delivers correct results. The non-MAXWELLian
model (3.28) delivers correct results for all gate voltages.

The question remains if the hot-carrier tunneling current strongly depends on the gate length of
the device. In the right part of Fig. 5.17 the gate current is given as a function of the gate length
for different gate dielectric thicknesses (2.2nm - 3.0 nm). Again, Monte Carlo simulation results
are used as reference. It can be seen that the heated MAXWELLian distribution delivers correct
results only for large gate lengths, while it totally fails for smaller devices. The use of a cold
MAXWELLian distribution, on the other hand, underestimates the gate current only slightly and
seems to be the better choice if accurate modeling of the device physics is not that important
or only a quick estimation is asked for. The non-MAXWELLian model correctly reproduces the
Monte Carlo results for all gate lengths and gate dielectric thicknesses.
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5.1.5 Alternative Dielectrics for MOS Transistors

It has been outlined in Section 2.2.4 that the further reduction of device dimensions makes the
introduction of alternative dielectric materials necessary. Since none of the possible materials
forms a native oxide on silicon, a thin interfacial layer of SiO2 can hardly be avoided. Thus,
a two-layer band edge diagram is commonly assumed, as depicted in Fig. 5.18 [259]. A wide

Figure 5.18: Band energy diagram of a stacked dielectric consisting of a thin under-
lying interface layer and a thick layer of a high-K material with higher
dielectric permittivity, but lower barrier height.

variety of high-« materials can be considered as alternative dielectrics. However, several points
must be considered when evaluating these materials:

1. The dielectric permittivity K.

2. The barrier height for electrons q<&e
 a n d holes q$h on silicon. These values are equivalent

to the band edge offsets A£c and A£v.

3. The thermodynamic stability of the dielectric material on silicon: The material must
withstand all following processing steps.

4. The quality of the interfaces: High interface roughness may cause increased scattering
which reduces the carrier mobility in the channel.

5. The trap concentration which leads to trap-assisted tunneling.

6. The feasibility and integrability of the deposition method in the fabrication process.

Only the permittivity, the trap concentration, and the barrier heights influence the tunneling
current. When looking at the barrier height and permittivity of various dielectrics in Table 5.1,
one notices a strong trade-off between the barrier height and the dielectric permittivity: di-
electrics with a high energy barrier have a low permittivity and vice versa, see Fig. 5.19. Hence,
optimization becomes necessary to find the optimum material.
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SiO2

Si3N4

Ta2O5

TiO2

A12O3

ZrO2

HfO2

Y2O3

ZrSiO4

Table 5.

[1]
3.9
3.9
3.9
3.9

3.9
7.5
7.6
7.9
7.0

7.5
25.0
23.0 - 25.0
25.0
26.0

40.0
39.0-110.0
80.0-170.0
80.0

9.0
8.0 - 9.0
9.5-12.0

10.0
23.0
25.0
22.0 - 25.0
12.0-16.0

25.0
22.0 - 40.0
16.0-30.0

20.0
15.0
11.3 - 18.0
4.4
15.0
12.6

3.8

1: Band gap

Band gap £g

[eV]

9.00
9.00
9.00
8.90
9.00
9.00
5.00
5.00 - 5.30
5.30
5.10
5.30
5.00
4.40
4.40
4.40
4.50
4.40
3.50
3.00-3.27
3.05
3.50
3.05
8.70
8.8-9.00
8.8
8.80
8.80
5.80
7.80
5.00 - 5.80
5.70-5.80
5.80
5.70
6.00
4.50-6.00
6.00
6.00
5.60
5.50-6.00
6.00
6.00
6.00
4.50
6.00
6.00

5.1 Tunneling in

Conduction band Valence band
offset A£c

[eV]

3.00
3.50
3.15
3.20
3.50
3.00
2.00
2.40
2.40
2.00
2.40
2.00
1.40
0.30
0.36
1.00-1.50
0.36
1.10
0.00
0.00
1.20
0.00
2.80
2.78-2.80
2.80
2.80
2.80
1.40
1.40
1.40
1.40-1.50
2.50
1.50
1.50
1.50
1.50
1.50
2.30
1.30
1.30
2.30
1.50
0.70
1.50
1.50

offset
[eV]

4.90
4.40
4.75
4.60
4.40
4.90
1.90
1.50-
1.80
2.00
1.80
1.90
1.90
3.00
2.94
1.90-
2.94
1.30
1.90-
1.95
1.20
1.95
4.80
4 .92-
4.90
4.90
4.90
3.30
5.30
2 .50-
3.10-
2.20
3.10
3.50
1.90-
3.40
3.40
2.20
3.10-
3.60
2.60
3.40
2.70
3.40
3.40

energy and conduction band offset of various

A£v

1.80

2.40

1.97

5.10

3.30
3.30

3.40

3.60

MOS Transistors

Reference

[260]
[261]
[22]
[262]
[25,263]
[136]
[260]
[261]
[22]
[262]
[25,263]
[136]
[136,260]
[261]
[22,25]
[262]
[263]
[136,260]
[261]
[22]
[262]
[263]
[262]
[261]
[22]
[263]
[25]
[25]
[260,262]
[261]
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[263]
[260,262]
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[263]
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> dielectric materials.
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Figure 5.19: Trade-off between electron barrier height (left) or hole barrier height
(right) and the permittivity of various dielectric materials.
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Choosing the highlighted material parameters from Table 5.1 the gate current density can be
computed as a function of the gate bias. It is commonly assumed that an underlying layer of
SiC>2 cannot be avoided — or is even deliberately introduced to achieve a lower trap density at
the interface to silicon. Thus, an underlying SiC"2 layer with a thickness of 0.5 nm was assumed.
The thickness of the high-« layer was adjusted so that the effective oxide thickness (EOT)
remains unchanged at 1 nm. The gate current density is shown in the left part of Fig. 5.21 as
a function of the gate bias for different material combinations. The commonly assumed limit
of lAcm~2 gate leakage is also indicated. Both SiÛ2 and SißN4 show a much too high leakage,
while Ta2O5, ZrO2, and HfO2 stay below 1 AcmT2 at VGS=1 V. Due to the low conduction band
offset, TiO2 shows an especially pronounced current increase for positive gate bias.

To assess the material parameters necessary to reach a specific maximum gate current density
the gate current has been calculated as a function of the conduction band offset and dielectric
permittivity as shown in the right part of Fig. 5.21. Since it is often not possible to vary the
thickness of the underlying SiO2 layer it was again fixed at 0.5 nm and the high-K thickness was
adjusted to reach an EOT of 1.5 nm. The gate current density was evaluated at a fixed bias point
°f VGS=1-5V and Vbs=0V. The current density decreases strongly with increasing conduction
band offset. Increasing the value of the dielectric permittivity K also strongly reduces the leakage
current due to the higher physical stack thickness. However, materials with a conduction band
offset below 1 eV never reach acceptable gate current densities.
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Figure 5.21: Gate current density as a function of the gate voltage for different ma-
terials. The dielectric stack consists of a 0.5 nm SiO2 layer and a high-K
layer with a total EOT of 1.0 nm (left). Dependence of the gate current
on the high-« conduction band offset and dielectric permittivity of a
stack with E0T=1.5nm, a 0.5 nm SiO2 interface layer at a gate bias of
1.5 V (right).
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It may be asked which thickness of the high-K layer is necessary to achieve a certain gate current
density. In the left part of Fig. 5.22 the gate current density is shown for an effective oxide
thickness ranging from 0.5 nm to 2.0 nm as a function of the high-K layer thickness. Again, the
stack consists of an underlying 0.5 nm layer of SiC>2 and the simulations are performed at a fixed
bias point of VGS=1-5V and Vbs=0V. In this plot the curves are only drawn for an EOT of
0.5 nm - 2.0 nm, and conduction band offsets of q$e = 1 eV to q<&e = 3 eV have been considered.
For a conduction band offset of 1 eV, large high-Ac thicknesses are necessary to reduce the leakage.
Such large stacks may pose problems due to fringing fields from the drain contact which reduce
the threshold voltage of the device.

The tradeoff between the dielectric permittivity and the conduction band offset gives rise to
further effects as shown in the right part of Fig. 5.22. If the EOT has to be held at a fixed
value, an increase of the SiO2 layer thickness causes a reduced thickness of the high-K layer.
This is shown for different values of the permittivity (K = 8.0 - K = 24.0). So, the total stack
thickness may be larger than 8 nm for K = 24, or as small as 1.5 nm if only S1O2 is used. Such a
reduction of the total stack thickness, however, has no clear effect on the leakage. It may cause
the gate current density at a specific bias point to stay constant, increase, or even decrease
depending on the material parameters. For example, the gate leakage for a material with K = 24
and a conduction band offset of 1 eV shows the maximum leakage at a SiO2 layer thickness of
approximately 0.8 nm. Therefore, a clear statement about the optimum thickness of the interface
layer obviously depends on the material parameters.

10

1 2 3 4 5 6 7
High-K layer thickness [nm]

0.5 0.75 1
SiO2 layer thickness [nm]

1.25

Figure 5.22: Dependence of the gate current on the high-« layer thickness, conduction
band offset, and permittivity of a stack with EOT=2.0 nm and a 0.5 nm
SiO2 interface layer at a gate bias of 1.5V (left). Dependence of the
gate current on the interface layer thickness, conduction band offset,
and permittivity of a stack with EOT=1.5nm at a gate bias of 1.5 V
(right).
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5.1.6 Trap-Assisted Tunneling in ZrC>2 Dielectrics

Since ZrO2 offers good material parameters, it was further investigated by means of experiments
and numerous results were published [264, 265]. ZrO2 pMOS capacitors have been fabricated
by MOCVD (metal-organic chemical vapor deposition) on p-type (100) silicon wafers with an
acceptor doping of 1.5 x 1018cm~3 and Al gate electrodes [265]. The overall thicknesses of
the dielectric layers have been evaluated by spectroscopic ellipsometry. Employing a dielectric
permittivity of the high-K material of K/«O=18, which has been found for thicker films, the com-
parison of optical measurements and the results of CV characterization implicates the presence
of an interfacial layer with a permittivity in the range of 4 to 8. Table 5.2 summarizes the
thicknesses of the high-« films and interfacial layers. Also given is the effective oxide thickness
EOT. The values i;nt and <high-« denote the thicknesses of the interface and the high-K layer.

Layer thickness t-mt ^high-« EOT

6.

12

9

.7

0.

0

75

.3

-2.0
-1.0

6.15-
12.4-

4.9

11.7

2.0

3.0

Table 5.2: Layer thicknesses and EOT of MOCVD-deposited ZrO2 layers in nm, after
HARASEK [265].

In the left part of Fig. 5.23 the measured gate current is shown for the two dielectric layers
with the approximate shape of the energy barrier sketched in the insets. As reference the figure
also shows the gate current for a 2nm and a 3nm SiO2 layer (dotted lines). As expected, the
measured current density is lower than for the SiO2 counterparts. However, the TSU-ESAKI

model cannot reproduce the measurements as it yields tunneling currents orders of magnitude
lower than the measurements. This indicates the presence of strong trap-assisted tunneling
due to a high trap concentration in the dielectric layer. By assuming a FRENKEL-POOLE like
conduction through the dielectric layer the measurements could be reproduced (full lines). Note
that in previous studies [264] tunneling through ZrO2 layers fabricated by magnetron sputtering
could be reproduced without considering trap-assisted tunneling. That indicates the presence
of a high trap concentration due to the MOCVD process, in contrast to the sputtering process.

To clarify the trap energy level and concentration, the step response of the MOS capacitors
has been measured as shown in the right part of Fig. 5.23 for the 12.7 nm ZrO2 layer annealed
in reducing conditions (forming gas) and the 6.9 nm layer annealed under oxidizing conditions.
The gate voltage is turned off after being fixed at a value of 2.5 V and the resulting gate current
is measured over time. The transient gate current exceeds the static gate current by orders
of magnitude and decays very slowly. This behavior can be explained assuming defects in
the dielectric layer [266]. Using the trap-assisted tunneling model outlined in Section 3.8.2,
a trap energy level of 1.3 eV below the ZrO2 conduction band edge, a trap concentration of
4.5 x 1018cm~3 and an energy loss of 1.5 eV have been found. For the dielectric layer annealed
under oxidizing conditions a trap concentration of 4 x 1017 cm"3 was found.

To predict the performance of devices based on ZrO2 dielectrics a well-tempered MOSFET as
described in [267] with an effective channel length of 50 nm has been simulated. EOT thicknesses
of 2 nm and 3 nm SiO2 and respective ZrO2 layers have been considered. The left part of Fig. 5.24
depicts the conduction band edge in the channel for different gate-source voltages. It can be seen
that the barrier is slightly lower for the ZrO2 layer at VGS=1-2V, while it is strongly reduced at
VQS=0.1 V, which is due to the pronounced fringing fields from the drain contact.
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An additional topic of interest for high-« dielectrics is the influence of trapped charges in the
high-« layer on the threshold voltage of the device. The trap concentration in the ZrÛ2 layer
was increased from 1015 cm""3 to 1019 cm""3 with full trap occupancy in the dielectric layer. It
can be seen in the right part of Fig. 5.24 that the threshold voltage strongly increases with rising
trap concentration. This effect is therefore contrary to the decrease of the threshold voltage due
to fringing fields described above.
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Figure 5.23: Stationary (left) and transient (right) gate current measurements of the
ZrOj layers performed by HARASEK [265], compared with simulations.
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Figure 5.24: Well-tempered MOSFET conduction band edge along the channel for
SiC>2 and ZrC>2 dielectrics (left). Influence of the dielectric trap concen-
tration on the MOSFET threshold voltage (right).
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5.2 Tunneling in Non-Volatile Memory Devices

Tunneling effects are crucial not only for MOS transistors but also for non-volatile semiconductor
memory devices. In contrast to volatile memory devices they retain the stored information
without external power supply. NVM devices can be read and programmed like random-access
memory (RAM) devices, have a low power consumption, are mechanically robust, and offer the
possibility of large-scale integration. They constitute about 10% of the total semiconductor
memory market [268]. However, simulation of such devices is often carried out using simplified
compact models [269-274]. For the case of stacked gate dielectrics or hot electron injection such
models do not capture the device physics and can reproduce measured data only on a fit-formula
level. In this section some examples of conventional EEPROM and alternative devices will be
studied using the tunneling models described above.

5.2.1 Conventional EEPROM Devices

The basic operating principle of an EEPROM has been presented by KAHN G and SZE in 1967
at Bell Laboratories [275]. The device consists of a control gate and a floating gate on top of
a conventional MOS transistor, see Fig. 5.25. A thin tunnel dielectric separates the floating
gate from the channel. It must be thick enough to allow up to 105 writing and erasing cycles
without breakdown — common thicknesses are 6-8 nm. Applying a high positive voltage (about
8-12 V) on the control gate raises the potential of the floating gate by capacitive coupling. The
high electric field in the tunnel dielectric (« 109 V/m) leads to FOWLER-NORDHEIM tunneling
of electrons from the substrate to the floating gate. The charge on the floating gate changes
the threshold voltage of the underlying MOS transistor and is retained even if the control gate
voltage is removed. A retention time of 10 years is required for consumer applications like
memory cards. While EEPROM cells offer random access for writing and erasing of individual
bits, Flash cells can be programmed selectively but erased only at once. This has the advantage
of lower cell size. Due to the high electric field in the dielectric, degradation or even breakdown
of the dielectric is a major concern. A comprehensive survey of NVM technology is given in
[276] and [277].

Tunnel dielectric

p Substrate

Figure 5.25: The standard EEPROM device.
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5.2.1.1 Static SILC in EEPROMs

The speed of the programming and erasing process is one of the main figures of merit of an
EEPROM cell. Therefore, strong electric fields are applied at the control gate to allow FOWLER-

NORDHEIM tunneling of carriers during programming and erasing cycles. However, due to this
repeated high-field stress, trap centers in the dielectric are formed which allow trap-assisted
tunneling at low fields and thus reduce the retention time of the devices. This additional current
at low bias is known as stress-induced leakage current (SILC) and represents one of the major
reliability concerns in contemporary EEPROM devices [196,219]. In the left part of Fig. 5.26
measured SILC after different stress times for a MOS capacitor with a dielectric thickness of
5.5 nm is shown [189]. The trap-assisted tunneling model outlined in Section 3.8.2 yields excellent
agreement with the measured data if the trap concentration is used as a fitting parameter
dependent on the stressing time (the model parameters are stated in the figure caption). The
transition from the region of mainly trap-assisted tunneling for VQS < 5V to the region of
FOWLER-NORDHEIM tunneling for VQS > 5 V is clearly visible. The right part of Fig. 5.26 shows
the trap occupancy / T across the gate dielectric of a MOS capacitor using the gate voltage as
parameter. The regions near the gate (right) and near the substrate (left) are only sparsely
occupied. Near the gate, the emission time is much smaller than the capture time, and near the
substrate, the trap energy lies above the electron energy in the cathode. Some of the trapped
electrons face a triangular barrier for the emission process, giving rise to an additional peak in
the trap occupancy near the gate side (the anode) of the dielectric. This is due to the wave
function interference in the FOWLER-NORDHEIM region (the oscillations are also observed in the
emission time of the traps shown in Fig. 3.19).
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Figure 5.26: Comparison of simulations with measurements of an MOS capacitor
with a dielectric thickness of 5.5 nm (left) [189]. The trap energy
is 2.7 eV, the phonon energy 130 meV and the HUANG-RHYS factor
10. The trap concentration was set to 9 x 1017cm~3, 1017cm~3,
3 x 1016cm~3, and 3 x 1015cm~3 to fit the measurements (from top
to bottom). The trap occupancy across the gate dielectric at different
gate voltages (right).
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5.2.1.2 Transient SILC in EEPROMs

It has been shown that the transient trap-assisted tunneling current can be described by a rate
equation which gives rise to an exponential behavior of the tunneling current over time, see
Section 3.8.2.4. The left part of Fig. 5.27 shows measurements-of the gate current density of
MOS capacitors as a function of time with dielectric thicknesses of 8.5 nm and 13.0 nm, compared
to simulations [188]. Initially, the traps are empty which can be achieved by applying flat band
conditions. At t = 0 s, the gate voltage is turned on (-5.8 V and -8.3 V for the thinner and the
thicker dielectric, respectively) and the traps are filled according to their specific capture and
emission time constants. This charging current consists of an emission and a capture current,
which may exceed the steady-state current by orders of magnitude. A good fit to the measured
data can be achieved using the trap parameters indicated in the figure caption.

The right part of Fig. 5.27 shows the gate current of an MOS capacitor for an applied rectangular
pulse with a frequency of 100 kHz assuming initial flat band conditions. It can be seen that the
time constants of the trap filling and emptying processes are not equal but depend on the applied
voltage, since different voltages lead to different capture and emission times. The spikes in this
figure are due to the sudden voltage change while the trap concentration remains constant: In
the transition from 3.0 V to 3.5 V the barrier shape changes suddenly, and traps are rapidly
emptied. Traps near the cathode are filled and it takes several micro seconds until the new
steady state is reached. Thus, dielectric materials which have such a high trap concentration
may lead to considerable problems for high-frequency applications.
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Figure 5.27: Transient capture and emission currents (left) of MOS capacitors at a
gate bias of -5.8 V and -8.3 V. For the thinner dielectric, a trap energy
of 2.5 eV and a trap concentration of 3 x 1018 cm'3 was used, while for
the thicker dielectric, a trap concentration of 1018 cm""3 was found. The
right figure shows transient simulation results of a MOS capacitor with
a gate dielectric thickness of 3 nm and a trap energy level of 3 eV.
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For EEPROM devices the charging and discharging characteristics are crucial: Programming and
erasing should happen as fast as possible, therefore, high voltages are applied. The discharging
current over time, on the other hand, determines the retention time and must be very low. To
allow the simulation of these characteristics, the contact condition Floating was implemented
in MINIMOS-NT. For floating contacts, the electrostatics in the device is acquired in the initial
time step. Then, the current contact condition at the floating gate contact is set to zero (no
out-flowing contact current) [226]. The tunneling current to or from the floating gate changes
the charge and thus the voltage on the contact. For the simulation of the programming or
erasing processes, first all voltages are set to zero (the voltage which is assumed to represent the
empty state). Then, the charge at the floating gate is used as charge contact condition and the
programming voltage is applied at the control gate. Fig. 5.28 shows the control gate voltage,
floating gate voltage, floating gate charge, and tunneling current for the programming, storing,
and erasing processes. It can be seen that the programming and erasing pulses must be carefully
optimized to avoid over-erase, since the tunnel current density for positive and negative voltages
on the floating gate is not equal. This is frequently addressed in the literature [278,279].

10
> 5

~8 °
> -5

-10
r- 5h

8

S 4

2 o
-4

IE

L Programming Storing

-

-

-

"

-

r
• i

i

n -
Erasing "

h i •

L -

0 5 10
Time [ms]

15

Figure 5.28: Discharging curve of an EEPROM. The floating gate is charged at a
control gate voltage of -10 V and is then left floating at a control gate
voltage of 0 V. Since the gate current density is not equal for positive
and negative voltages, the program and erase pulses must be carefully
chosen to avoid over-erase. Due to the low storing time in this example
almost no charge is lost during the storing period.
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5.2.2 Alternative Non-Volatile Memory Devices

Strong efforts are undertaken to improve the standard floating-gate EEPROM cell shown in
Fig. 5.25 in terms of integration density, endurance, reliability, program time, erase time, and
retention time. Some of these approaches are depicted schematically in Fig. 5.29 and Fig. 5.30.
EEPROM devices with a tunnel window near the drain contact have been introduced to reduce
the charge loss from the floating gate and thus reach higher retention time. However, due to the
small area of the tunnel window high voltages have to be used at the drain contact which again
reduces cell reliability.

Recently, CAYWOOD et al. proposed a device structure where non-selected cells are isolated
from the drain and source contacts by two additional side gates [280]. In this device electrons
tunnel from the inverted channel to the floating gate. The large area reduces programming and
erasing time. Furthermore, the capacitive coupling between the control gate and the floating
gate is higher than in the standard EEPROM cell which allows to use lower programming and
erasing voltages. No drain-source bias is applied for charging, thus the power consumption is
low and the injected electrons are less likely to cause degradation of the dielectric. The control
gate functions as a select transistor which isolates unselected cells from the high voltages at the
shared source and drain contacts during read and write access of neighboring cells.

Tunnel window

Figure 5.29: Alternative NVM structures: EEPROM with tunnel window (left),
CAYWOOD memory device (right).

In contrast to the reduction of the cell footprint, integration density can also be increased by
storing more than one bit on a standard EEPROM cell. This can be achieved by tailoring the
programming and erasing pulses in such a way that the threshold voltage falls into one of 4, 8, or
16 voltage ranges. The different threshold voltages can be distinguished by the sensing circuits,
resulting in two, three, or four bits which can be stored in the cell. However, charge loss must
be extremely low over time and the threshold voltages have to be detected very precisely.
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Single-poly devices as shown in the left part of Fig. 5.30 have been proposed to integrate NVM
devices in standard CMOS logic processes, thus enabling an embedded memory. The control
gate lies next to the floating gate and capacitive coupling is achieved by a layer of highly doped
silicon. While such devices can readily be integrated into existing CMOS process flows, they
come at the cost of a large footprint.

A different approach to store more than one bit in a single memory cell is to split the floating
gate into two separate segments. If a non-uniform doping in the source and drain side of the
channel is used, different amounts of charge can be stored in each floating gate. Such device
structures are either achieved using separate metallic floating gates like the contacts FGl and
FG2 in the right part of Fig. 5.30 [182], or using a layer of trap-rich dielectric [281].

Source

Figure 5.30: Alternative NVM structures: Single-poly EEPROM (left), split-gate
EEPROM (right).

In the following sections three of the most promising alternative EEPROM devices will be
studied in detail. These are

• Quantum dot and trap-rich dielectric based devices. In these devices, charging and
discharging is achieved by tunneling of electrons to and from localized trapping centers in
the dielectric.

• Multi-barrier tunneling devices consist of a floating gate — or memory node — which
is separated from the control gate by several thin dielectric layers. By the use of a side
gate, the tunneling current through these barriers can be controlled selectively. In contrast
to EEPROMs the tunneling current flows from the floating gate to the control gate and
not to the channel. Extremely high Ion/Ioü ratios can be achieved because the tunneling
current is controlled by a separate side gate contact.

• Devices where the tunnel dielectric consists of stacked dielectrics which are engineered
in such a way that they block tunneling in the off-state, but allow strong tunneling in the
on-state.
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5.2.2.1 Non-Volatile Memory Devices Based on Trap-Rich Dielectrics

A SONOS (silicon-oxide-nitride-oxide-silicon) device is a non-volatile memory where the charge
is stored in a layer of trap-rich dielectric material instead of a floating gate as in an EEPROM.
Fig. 5.31 shows an example where a layer of S13N4 is sandwiched between two layers of SiC>2.
Electrons tunneling from the substrate are trapped and redistribute themselves in separate
trapping centers. This has the advantage that the charge is stored independently in the traps. A
leaky path in the tunnel dielectric cannot lead to full charge loss, as it is the case in conventional
EEPROM devices. Therefore, reliability and retention time is increased [168, 209,282-291].

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5

Figure 5.31: SONOS device structure. A layer of trap-rich dielectric, such as highly
defective S13N4, is sandwiched between two S1O2 layers.

The band diagram along the dielectric of such a device is shown in Fig. 5.32 for the programming,
storing, and erasing processes. By applying a positive voltage at the gate contact, electrons
tunnel through the tunnel dielectric into the trap region. The traps are filled with electrons
and become negatively charged. Because of the tunnel dielectric this charge is stored even if the
bias is removed. To erase the memory cell, a negative voltage is applied on the gate contact,
leading to a reduced potential barrier and a high tunneling current of electrons out of the traps.
Important device parameters are the charging and discharging current through the dielectric,
the drain current in the on- and off-state, and the retention time.

The trap-assisted tunneling model can be applied to simulate device characteristics of this device,
where three layers of SiO2 have been used and the trap concentration and trap energy level in
the middle layer was chosen to resemble a layer of silicon nitride. The transient trap occupancy
for a discharging process starting from an initial condition of 2 V at the gate contact is shown in
Fig. 5.33. Initially the traps are filled. Over time, the electrons leak through the lower dielectric
into the channel. After 109 s almost no more charge is stored in the trap-rich dielectric.
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Figure 5.32: Conduction band edge in a SONOS device for the programming, storing,
and erasing process.

0.1B 0.21 0.24 0.27 0.30 0.33 0.36 0.39 0.42

0.18 0.21 0.24 0.27 0.30 0.33 0.36 0.39 0.42 0.18 0.21 0.24 0.27 0.30 0.33 0.36 0.39 0.42

Figure 5.33: Transient trap occupancy in the trap-rich dielectric layer of a SONOS
device which is discharged from t =0 s to t = 109 s.
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5.2.2.2 Multi-Barrier Tunneling Devices

One of the main shortcomings of conventional EEPROM devices is that the current in the on-
state and off-state — the programming and leakage currents — flow through the same tunnel
dielectric and face the same energy barrier. They cannot be optimized independently: Increasing
the thickness of the tunnel dielectric reduces the leakage, but also reduces the on-state current
and thus increases the programming time. Multi-barrier tunneling devices offer a solution to
this problem. Planar localized-electron device memory (PLEDM) cells have been presented by
NAKAZATO et al. in [292], and promising results have been reported [293-296]. The principle
of a PLEDM is to put a PLED transistor (PLEDTR) on top of the gate of a conventional
MOSFET, as shown in Fig. 5.34. The charge on the memory node, which acts as a floating gate,
is provided by tunneling of carriers through the PLED transistor which consists of a stack of
SÎ3N4 barriers sandwiched between layers of intrinsic silicon. Upper and lower barriers prevent
diffusion from the polysilicon contacts, while the middle barrier — the central shutter barrier
(CSB) — blocks the tunneling current in the off-state. The PLED transistor has two side gates
which are separated by a thin dielectric layer. In the on-state the energy barriers are heavily
reduced by the voltage on the side gates, causing a strong tunneling current to flow at the
interface to the side gate dielectric. In the off-state, however, the side gates are turned off and
the energy barrier blocks the leakage current. As in a conventional EEPROM, the charge on the
memory node is used to control the underlying MOS transistor. Only a small amount of charge
has to be added to or removed from the memory node to change the state of the memory cell.
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Figure 5.34: Conduction band edge energy in the PLEDM device.
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Figure 5.35: PLEDM calibration of the tunneling current density for a single
layer with 1.5 nm and 2nm thickness.

For the simulation of such devices measurement results for a single SÎ3N4 barrier diode [296]
have been used to calibrate the model, as shown in Fig. 5.35. For calibration the carrier mass
in the dielectric was used as a fit parameter. Electron and hole masses of 0.5 mo and 0.8 mo
where found to reproduce the data. The SiaN4 barrier was modeled with a barrier height of
5 eV and a conduction band offset of 2 eV to the silicon conduction band edge with the relative
dielectric permittivity being 7.5. Fig. 5.36 shows in the left part the conduction band edge along
the PLEDTR and in the right part the electron wave function for the case of a top contact bias
of 1V and a side gate bias of 2 V. The wave function has been acquired using the QTB method
described in Section 3.5.4.
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Figure 5.36: PLEDM conduction band edge (left) and electron wave function (right)
for a top contact bias of 1V and a side gate bias of 2 V.
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The effect of the position and size of the central shutter barrier as well as the effect of shrinking
the stack width have been investigated. Two cell states have been assumed: an on-state with
3 V applied on the top contact and the side gate, and an off-state with 0.8 V applied on the
memory node and 0 V on the side gate. In both states the charging and discharging current
was extracted. The PLEDTR had a stack width of 180 nm and a stack height of 100 nm. The
thickness of the upper and lower barriers was set to 2 nm. The left part of Fig. 5.37 shows the
effect of different CSB thicknesses on the on- and off-current of the device. While the on-current
is hardly influenced by the different thicknesses, the off-current is very sensitive to it. Also, the
position of the CSB is critical, because for a CSB located near the memory node, the energy
barrier will be reduced in the off-state by the charge on the memory node. If, on the other hand,
the CSB is placed near the top contact, the energy barrier is not suppressed in the off-state and
the off-current is much lower. The on-current is also reduced by this effect, but the amount
of reduction is much lower as compared to the off-current, due to the fact that the on-current
mainly depends on the voltage of the side gate. Thus, the Ion/Iott ratio increases with the
thickness of the central shutter barrier and is highest for a CSB located near the top contact.
Such an asymmetry in the IV characteristics depending on the position of the central shutter
barrier has already been observed experimentally [296].

In [297] the feasibility of very narrow silicon-insulator stacks is shown. This encourages the
assumption that a reduction of the stack width is possible. Fig. 5.37 shows the on- and off-
currents of the device with a CSB thickness of 10 nm for a stack width of 140 nm down to 20 nm.
It can be seen that a reduction of the stack width leads to increasing on-currents and decreasing
off-currents. The reason is that the current in the on-state, which mainly flows as a surface
current near the side gate, is not reduced by the decreased width of the stack. It even increases
for very low stack widths which may be due to the fact that the energy barriers at the side
of the stack merge for very low stack widths. The off-current, on the other hand, is directly
proportional to the stack area and can thus be directly downscaled by shrinking the stack width.
For a stack width of 20 nm, /On/̂ off ratios of more than 1032 can be reached.
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Figure 5.37: On-current density and off-current density as a function of the thickness
of the central shutter barrier (left) and the stack width (right).
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5.2.2.3 Non-Volatile Memory Devices Based on Crested Barriers

As shown in Section 5.2.2.2, one of the most important figures of merit of a non-volatile memory
cell is its /on/^off-ratio: A high on-current leads to low programming and erasing times, and a low
off-current increases the retention time of the device. This ratio can be increased if, for a given
device, the tunneling current in the on-state (the charging/discharging current) is increased or,
in the off-state (during the retention time), decreased. With a single-layer dielectric it is not
possible to tune on- and off-current independently. However, if the tunnel dielectric is replaced
by a dielectric stack of varying barrier height as shown in Fig. 5.38, it becomes possible. In this
figure the device structure and the conduction band edge in the on- and off-state are shown.
The device consists of a standard EEPROM structure, where the tunnel dielectric is composed
of three layers. The middle layer has a higher energy barrier than the inner and outer layers.
The flat-band case is indicated by the dotted lines.

In the on-state a high voltage is applied on the top contact. The middle energy barrier is
strongly reduced and gives rise to a high tunneling current. If the dielectric would consist of a
single layer, the peak of the energy barrier would not be reduced. Thus, the on-current is much
higher for the layered dielectric. In the off-state a low negative voltage — due to charge stored
on the memory node — is applied. The middle barrier is only slightly suppressed and blocks
tunneling. The off-current is only slightly lower than for a single-layer dielectric. This behavior
results in a high IOn/Iofl ratio. A high suppression of the middle barrier in the on-state requires
a low permittivity of the outer layers so that the potential drop in the outer layers is high [261].
This device design was first proposed by CAPASSO et al. in 1988 [298] based on AlGaAs-GaAs
devices and later used by several authors [299, 300], where it became popular as crested-barrier
memory or VARIOT (varying oxide thickness device).
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Figure 5.38: Device structure and operating principle of a non-volatile memory based
on crested barriers.
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The gate current density of the device depicted in Fig. 5.38 is shown as a function of the gate
bias in the left part of Fig. 5.39. A stack thickness of 5nm was chosen. Since the middle layers
must have a high band gap, only few material combinations are possible. For the simulations
middle layers of AI2O3 and SiC>2 have been chosen, with outer layers of Y2O3, SisN4, and ZrC>2.
For comparison full SiC>2 and SisN4 stacks have also been simulated (the dotted and dash-dotted
lines). While Y2O3 shows a very high off-current, stacks with outer layers of S13N4 or ZrC>2 and
AI2O3 as middle layer show good ratios between the on-state (positive gate bias) current density
and the off-state (negative gate bias) current density.

The important figure of merit, however, is the /On/^off-ratio. In the right part of Fig. 5.39
the ion/-foff-ratio is shown for Si3N4 and ZrC>2 stacks with SiC>2 and AI2O3 middle layers as a
function of the thickness of the middle layer. Also shown is the ratio for a layer of SiC>2 and
SÎ3N4 alone. It is obvious that the ratio strongly depends on the thickness of the middle layer,
and both minima and maxima can be observed. Only outer layers of SisN4 lead to a significantly
increased performance as compared to full layers of SiO2 or SisN4. A middle layer thickness
around 1-2 nm for the assumed 6 nm stack gives optimum performance.
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Figure 5.39: Gate current density as a function of the gate bias for different materials
of the middle layer, compared to full SiO2 and SisN4 layers (left). Ratio
between the on-current and the off-current as a function of the middle
layer thickness for different materials of the outer layers (SisN4 and
ZrO2) and middle layers (AI2O3 and SiO2), compared to the resulting
current density using full layers of SiO2 and SisN4 (right).
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'At least some knowledge of the average pattern
is the beginning of wisdom, and although we have
not learnt as much as might be hoped, it is always
worth remembering how little we knew when we were
started. '

Jonathan Temple ^ - > , •• . ^ >

Chapter 6

Summary and Conclusions

TUNNELING EFFECTS in semiconductor devices were investigated and simulated with
MINIMOS-NT. Starting with an introduction to CMOS technology and semiconductor de-

vice simulation, a hierarchy of tunneling models was outlined. Three main properties were
identified to influence the tunneling process: The carrier energy distribution function, the trans-
mission coefficient, and the presence of traps in the dielectric layer.

The energetic distribution of carriers was investigated using different approximations, such as
the frequently applied FERMI-DIRAC or MAXWELL-BOLTZMANN statistics. However, these ap-
proximations are only valid near equilibrium. Comparisons with the results from Monte Carlo
simulations showed that in turned-on devices the distribution function strongly deviates from
the ideal shape. Some non-MAXWBLLian models were reviewed and it was found that a model
which is based on the solution variables of a six-moments transport model accurately reproduces
the Monte Carlo results.

The quantum-mechanical transmission coefficient can be computed from the solution of the
stationary SCHRODINGER equation. Several approximations and analytical formulae were out-
lined. For a single-layer dielectric the analytical WKB approximation or GUNDLACH'S formula
can be used. For arbitrary-shaped energy barriers the numerical WKB, the transfer-matrix, or
the quantum transmitting boundary method can be applied. It was found that the transfer-
matrix method is prone to numerical problems due to the repeated matrix multiplications. The
quantum transmitting boundary method turned out to be more robust.

Defects in the dielectric layer give rise to trap-assisted tunneling which leads to an additional
tunneling current at low bias. After reviewing several models from the literature a recently
presented inelastic trap-assisted tunneling model was adapted to avoid the numerical calculation
of the overlap integral in the dielectric layer. This yielded a fully analytical model which was
further developed to include transient trap charging and discharging effects.

All methods were implemented into the general-purpose device simulator MINIMOS-NT. The
implementation was shortly described. Furthermore, a multi-dimensional SCHRODINGER solver
was implemented to calculate the transmission coefficient and the energy eigenvalues of arbitrary
energy barriers. This solver was designed in such a way that both open and closed boundary
conditions can be applied on the same band diagram.
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SUMMARY AND CONCLUSIONS

Several examples were studied where a general distinction between tunneling in MOS transistors,
where it is a parasitic effect, and tunneling in non-volatile memory devices, where it is crucial
for the device functionality, was made. Tunneling in MOS transistors was investigated, where
special attention was paid on the investigation of the different tunneling paths from the gate to
the channel and from the gate to the source and drain extension regions.

Furthermore, the importance of the carrier distribution functions for modeling of gate leakage
in turned-on devices was shown. If a heated MAXWELLian approximation was used for the
description of hot-carrier tunneling, the gate current density was heavily overestimated. This
effect was found to be especially pronounced for devices with short gate lengths.

In future CMOS devices the use of alternative dielectric materials instead of SiÛ2 will make
the reduction of the effective oxide thickness possible. Several candidate materials were studied
and it was found that they show a pronounced correlation between the barrier height and
the permittivity. This makes optimization necessary to find the optimum layer composition.
Furthermore, the investigation of a MOS capacitor with a ZrO2 dielectric showed that the
strong defect density makes the use of trap-assisted tunneling models a sine qua non for these
materials.

In addition to MOS transistors non-volatile memory devices were studied. A general overview
of non-volatile memory technology was followed by an investigation of three selected device
structures: devices where the floating gate contact is replaced by a layer of trap-rich dielectric,
multi-barrier tunneling devices, and devices which are based on crested barriers. Especially the
multi-barrier tunneling devices allow an extremely high Ion/^off ratio. The trap-rich dielectric
devices, on the other hand, are easier to fabricate and have a smaller footprint. Devices which are
based on crested barriers allow to tune the on- and off-current density independently. However,
the /on//off-ratio heavily depends on the thicknesses of the dielectric layers and simulation is
necessary to find the optimum values. The investigated non-volatile memory applications are
expected to show high performance, however, the bad quality of the interface between the
dielectric layers may offset the advantage in the /on/Ioff-ratio.

The implementation of these direct and trap-assisted tunneling models allows the simulation
and analysis of semiconductor devices where tunneling is either a parasitic effect or deliberately
used as a part of the device functionality. Future work will concentrate on the coupling of the
developed multi-dimensional SCHRÖDINGER solver to MINIMOS-NT to simulate quantization ef-
fects in MOSFET inversion layers and for the characterization of alternative dielectric materials.
The numerical methods to calculate tunneling from quasi-bound states will be investigated in
more detail. Finally, the developed tunneling models will be applied to the simulation of gate
dielectric reliability issues.

115



Appendix A

The FOWLER-NORDHEIM Formula

The TSU-ESAKI expression (3.12) for the tunnel current density reads

J =
47rqmef f

/*3 I TC(£x)d£x ! {h{£) - h(£)) d£p ,J J
(A.I)

where the total energy is split into a longitudinal and a transversal energy

£ = £x + Sp . (A.2)

The goal is to find a simple approximation of (A.I) which avoids numerical integration. As a
first approximation, T —> 0 is assumed [96]. This allows to replace the FERMI function f(x)
by the step function

h(£) = f(£ - £ft2) =

1 for £ < %

0 for £ > %

1 for £ < £i<2

0 for £ > £{t2

(A.3)

Without loss of generality it can be assumed that £f)1 > £i2 (see Fig. A.I). The innermost
integral can then be evaluated analytically for three distinct regions

oo

•I - £r o for £x :J(f(£-£iA)-f(£-£{,2)) d£p =

= 0
for £f,2 <

for £x >

(A.4)

This leads to the following expression for the current density:

J = J TC(£x)(£t,i - £t,2) d£x + J TC(£X)(£U1 - £x) d£x (A.5)
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The left integral represents tunneling current from electron states that are low in energy and face
a high energy barrier. Hence, as a second approximation, the left integral is neglected. Still
it is necessary to insert an expression for the transmission coefficient in the right integral. For
a single-layer dielectric, two shapes are possible: triangular and trapezoidal. First, the formula
will be derived assuming a triangular shape.

q(V+A«Dw)

|q(V+A<Dw)

Figure A.I: Energy barrier in the FOWLER-NORDHEIM tunneling (left) and direct
tunneling (right) regime.

A.I Original FOWLER-NORDHEIM Formula

The original FOWLER-NORDHEIM formula assumes a triangular shape of the energy barrier.
This is motivated by the fact that only tunneling at strong electric fields was studied. The
WKB-approximation (3.57) for the transmission coefficient reads

TC{SX) = exp I - | I ^2mdiei(£c-£x) dx

The classical turning point xx is (see the left part of Fig. A.I)

£fl + q$! - £x

and the dielectric conduction band edge for a triangular barrier
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where the electric field in the dielectric i?diei is caused by the different Fermi levels and the work
function difference

The third approximation is to assume equal materials for both electrodes, so that A$w = 0.
The WKB-based transmission coefficient can then be applied and yields

/ XI

TC{EX) = exp _ 2 ^ p i î J ^ (A.6)

(A.7)

(A.8)

(A.9)

Using this expression in (A.5) the current density becomes

J =
47rqmeff 4v/2mdiel (A.10)

This integral cannot be solved analytically. Hence, the fourth approximation is to expand
the square root into a first order TAYLOR1 series around $i:

- ( ^ - ^ i ) ) 3 / 2 « ( q * 0 3 / 2

Inserting this expression into (A. 10) and setting e = £x — £^i yields

o

•expf — m d ' e l /

(All)

J =

With

/ eexp(Ae) de = —̂  exp(Ae)(Ae — 1)

and

_
4N/2mdie| 3 / 2 A =

(A.13)

(A.14)

TAYLOR, British mathematician, 1685-1731.
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the current density becomes

o

)^ex

The fifth assumption is now that £f5i ^$> £ft2, leading to

47rqmeff 1
= —Ü3—exP(a)"r^ >

or

4v /2m d i e i (q$ 1) 3 \

which is the equation commonly known as the FOWLER-NORDHEIM formula. Note that there is
a difference between the effective electron mass in the electrode (meff) and the effective electron
mass in the dielectric

A.2 Correction for Direct Tunneling

The equation derived above is only valid for triangular barriers, that is the case of high applied
voltages. In [19] SCHUEGRAF proposed a correction to the FOWLER-NORDHEIM formula to
account for tunneling in the direct tunneling regime. In this case the transmission coefficient is

( «diel

where tdie\ is the dielectric thickness. The conduction band edge is again approximated by a
linear shape

£c{x) = £f)1

The band edges q<& and q$o are given by (see the right part of Fig. A.I)

As for the triangular energy barrier, it is assumed that the electrodes have equal work functions:
= 0. Using these expressions, the transmission coefficient becomes

«diel \

_2V2mdiei J ^q$_qEd.elX_£xdx (A 19)
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The exponent can be approximated using a first order TAYLOR series expansion around q$i and
- qfîdieltdiel, respectively:

(q* - £xf
2 = (€fil + q*! - £xf

/2 (A.22)
3/2 (A.23)

\ (A.24)

(q$0 - Sx?12 = (£f,i + q*i - q^dieltdiel - £xf
2 (A.25)

3 / 2 (A.26)

| (A.27)

With the temporary variable rj

r, = (q$ - Sxf
2 - (q$0 - 5X)3/2 (A.28)

With the abbreviations

o =

6 = - i l r P ^ ((q*i)3/2 - (q*i - q^ie.tdiei)
3/2) , (A.32)

c = ~

With e = £x — £[ti this yields

0

the tunnel current density becomes

_ 47rqmeff j _

the tunnel current density can be written as

£f,2

J = aexp(fr) / exp (c(£x - £f,i)) (^f,i — 5X) d£x . (A.34)

J = —aexp(6) / exp(ce)ede . (A.35)
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Using (A. 13) this integral becomes

which, for £^\ » £{t2, simplifies to

J = "-^ß , (A.37)

or, inserting the expressions for a, b, and c

J = ^ j EleX (A.38)
Sh ( ( $ ) V 2 ( $ Vy/2)2

which is the equation used in [19]. In some publications, the equation is rewritten to make it
more similar to the FOWLER-NORDHEIM formula:

with the additional correction terms B\,Bi given as

(A.41)
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The WKB Approximation

The WENTZEL-KRAMERS-BRILLOUIN approximation is one of the most frequently applied ap-
proximations to solve SCHRÖDINGER'S equation [127,130,131]. Starting from the time-inde-
pendent SCHRÖDINGER equation (2.13), the one-dimensional case reads

If the following Ansatz is used for the wave function

^f{x) = R(x)exp(i^] , (B.2)

the equations

and

dx2 dx dx

for the real and imaginary part of (B.I) can be found. Equation (B.4) can be solved by

dx2 dx dx

where C is a constant. With (B.5) equation (B.3) becomes

dS\2 2m(£~W(x))
) + = 0

With the approximation

dS\2
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we can write

S(x) « I y/2m{£-W(x))dx ,

and the wave function becomes

= fi(x)exp (^ f y/2m{£- W(x))dx\ .

(B.8)

(B.9)

Now we consider an energy barrier between the classical turning points x\ and x? with an
incoming wave \I>i and a transmitted wave \&2, and x<i > x\

*i(ar < xi) ~ exp f %- \ y/2m(S - W(x')) dx' ,

- o o
X2

> x2) ~ exp I %- dx'

(B.10)

The transmission probability TC(£) is proportional to

TC =

I X2

exp [ l- f y/2m(£ - W(x')) dx'

exp

= exp

( XI

y
—oo

X2

If,

exp
(% 7
T / \/2'

\ x\

\
7i{£ — ^(x ')) da;'

/

2

(B.ll)

(B.12)

This expression can be evaluated for arbitrary barriers as shown in Section 3.5.1. In [130],
however, it is shown that the WKB-approximation is only valid for

dx
J\2m(W(x)-£)\3 . (B.13)

This inequality is fulfilled for points where the variation of the energy barrier is small. The
WKB approximation is therefore not valid in the close vicinity of the classical turning points.
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Appendix C

Wave Function Normalization for a
Triangular Potential

For the assumption of a triangular energy well, the wave function is approximately given as (see
Section 3.6.1)

*(x) = AAi(u(x)) , (C.I)

with

The square of the wave function is a probability, therefore the normalization can be written
as [156]

oo

J Mu(x))\2 dx = 1 , (C.3)
0

oo

(|AAi(u(x))|2dx = l , (C.4)

/ A i 2 [ - [ — )
J \ \h2 J

o

0

where an infinite barrier is assumed for x < 0. With XQ = 0, Wo = 0, and the electric field

E = q S ' (C-6)
the integral becomes

1/3
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WAVE FUNCTION NORMALIZATION FOR A TRIANGULAR POTENTIAL

Substituting

1/3

( ^ 2 )

yields

A(0)

Using the expression [157]

OO

f Ai2(x)dx = -zAi2{z) + Ai'2(z)
z

and A(0) = An the normalization constant becomes

{2mç\E\ ' *

Ai'2(A0) - A0Ai2(A0)

(C.8)

(C.9)

(CIO)

(C.ll)

(C.12)

125



Appendix D

User Interface

This chapter describes the user interface for the tunneling models implemented in MlNlMOS-
NT. Several models can be chosen: The FOWLER-NORDHEIM model, the SCHUEGRAF model,
the FRENKEL-POOLE model, and the TSU-ESAKI model with different methods to calculate the
transmission coefficient. Additionally, a trap-assisted tunneling model accounting for inelastic
tunneling of electrons via traps is available.

Tunneling is allowed for all dielectric - semiconductor or dielectric - ideal conductor interfaces.
The keyword tunnel must be given in the Phys section to specify the dielectric segment where the
tunneling model should be evaluated. Since the tunneling current is always evaluated between
two boundaries, these boundaries have to be stated in the tunnel keyword. If the two boundaries
considered for tunneling are the nearest non-touching two boundaries of the respective segment,
the function addNearestlnterf acesO can be used. This function returns the two boundaries
of the segment that are nearest but do not touch each other.

D.I Direct Tunneling

The segments and boundaries for which tunneling is calculated must be registered in the tunnel
string located in the Phys section of the input deck. This can be performed in several ways.
The first possibility is to state the segment and its boundaries manually like in the following
example:

Phys

{ tunnel = "Gatelnsulator.Semiconductor.Gatelnsulator.Gatelnsulator.Gate";

+Gatelnsulator

{ Electron

{

tunnel = "FNPure";
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Here, tunneling is turned on in the segment Gate Insulator for the boundaries to the segments
Semiconductor and Gate. Additionally, a tunneling model must be given for the respective
segment. In the example above the model FNPure is used for electrons in the Gatelnsulator
section, while hole tunneling is neglected.

In most cases tunneling will have to be evaluated for boundaries which are very close. If they
are nearer than any other two non-adjacent boundaries of the considered segment, the function
addNearestlnterf aces can be used to find the respective tunneling boundaries:

Phys

{ tunnel = addNearestlnterfaces("Device", "Gatelnsulator");

+Gatelnsulator

{ Electron

{ tunnel = "FNPure"";

Note that for all models, the electron and hole tunneling mechanisms can be stated separately.
All tunneling models share a keyword consistent which can be used to turn self-consistent
simulation on or off. If it is set to no, the additional electron and hole current is ignored in the
continuity equation. This can be of use if only the order of magnitude of the tunneling current is
of interest, since convergence is usually better when the continuity equation remains unchanged.

D.I.I The Model FNPure

The tunnel current density is computed via expression (3.125) where A and B are fitting pa-
rameters. The model keywords are stated in Table D.I.

Symbol Keyword Type Unit
A a Q u a n t i t y AV~2

B b Quantity mV" 1

consistent Boolean

Table D.I: FNPure tunneling model keywords.
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An example input deck is

Phys

tunnel = addNearestlnterfaces("Device", "Gatelnsulator");
+Gatelnsulator
•C

Electron

tunnel = "FNPure";

Tunnel

FNPure

a = 9.946316e-7 "A/V~2";

b = 2.635706el0 "V/m";

consistent = no;

Hole

tunnel = "FNPure";
Tunnel
•C

FNPure
{

a = 4.013e-7 "A/V~2";
b = 6.4216el2 "V/m";

where electron and hole tunneling is turned on. The values of a and b can be chosen to fit
measurement results. The electron tunnel current is not entered into the continuity equation of
the neighboring segments using the consistent keyword.
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D.1.2 The Model FNLenzlingerSnow

This model is a generalization of the FOWLER-NORDHEIM model by giving the electron mass
in the dielectric as a physically-based fitting parameter. The current density is calculated by
expression (3.126). Since the electron mass in the dielectric m^iei is usually given in terms of
the free electron mass mo, the fitting parameters is now the ratio m^ei/mo- Table D.2 shows
the model keywords.

Symbol Keyword Type

Real
consistent Boolean

Table D.2: FNLenzlingerSnow tunneling model keywords.

The electron or hole barrier height q$e or q$h is calculated from the band edge energies and
cannot be given in the input deck.

D.1.3 The Model DTSchuegraf

While the FOWLER-NORDHEIM and the LENZLINGER-SNOW models are only valid in the case of
a triangular barrier (high bias), the SCHUEGRAF model can be used for direct tunneling through
a trapezoidal barriers (valid for low bias). It only differs from the LENZLINGER-SNOW model by
two correction factors, see (3.127). For triangular barriers the FNLenzlingerSnow model is used
per default, i.e. B\ = B2 = 1. The DTSchuegraf model has the same input deck parameters as
the FNLenzlingerSnow model.

D.I.4 The Model FrenkelPoole

The FRENKEL-POOLE model can be used to describe trap-assisted tunneling for a highly defec-
tive dielectric. The tunneling current is given as a generalization of expression (3.137):

. (D.I)

In this expression &? is the trap energy level below the dielectric conduction band, and the
values a and 6 can be used as fitting parameters. Table D.3 summarizes the model keywords.

Symbol Keyword Type Unit

a a Real
b b Real
<fx trapNrg Quantity eV

consistent Boolean

Table D.3: FrenkelPoole tunneling model keywords.

Note that the simple analytic models FNPure, FNLenzlingerSnow, DTSchuegraf, and Frenkel-
Poole should not be used for the case of a work function difference between the two materials
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regarded for tunneling. In the case of a work function difference, the electrostatic field in the
dielectric does not vanish for zero bias but only at the flat-band voltage. Hence, these models
will show the minimum tunneling current if the flat band voltage is applied. The TsuEsaki
model, however, takes the work function difference into account and should be used in that case.

D.I .5 The Model TsuEsaki

The tunneling current density is calculated by expression (3.13) which involves a numerical
integration in the energy domain. The values <?mjn and £max are found automatically for the
ECB, HVB, and EVB processes. If the keyword dfType is set to f ermi, the supply function
is calculated using (3.14). Alternatively, the supply function can be calculated by numerical
integration of the distribution function as described in Section 3.3 if the keyword dfType is set
to general. With this model it is possible to simulate electron tunneling from the conduction
band and hole tunneling from the valence band. The transmission coefficient can be calculated
using numerical integration of the WKB expression (3.57) by setting tcType to numericalWKB,
by the analytical expression for a linear energy barrier (see Section 3.5.1) by setting the keyword
tcType to analytical WKB, or using a SCHRÖDINGER solver based on the quantum transmitting-
boundary method qtbm, see Section 3.5.4. If the keyword imageForce is set to yes, the energy
barrier is corrected using the image force correction term described in Section 3.4.2. For the
numerical integration, the step width can be given in the keyword dNrg. If the keywords ta t
and direct are set to yes, both direct and trap-assisted tunneling is calculated. The model
keywords are summarized in Table D.4.

Symbol Keyword Type Unit
direct Boolean

tat Boolean

consistent Boolean

imageForce Boolean

dNrg Quantity eV

hu> phononNrg Quantity eV

S huangRhys Real

mOx Real

Table D.4: TsuEsaki tunneling model keywords.

The keywords which are related to trap-assisted tunneling are only relevant if tat=yes and are
described in Section D.4. The possible values of the keywords tcType and dfType are given in
Table D.5.

Keyword Type Description

tcType String analyticalWKB, numericalWKB, qtbm
dfType String fermi, general

Table D.5: TsuEsaki transmission coefficient and supply function keywords.
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D.2 Stacked Segments

If the tunneling current through stacked segments is of interest, the explicit specification of all
tunneling boundaries of the stack member segments may be quite cumbersome. Therefore, the
input deck function registerStack was implemented which finds all boundaries for a number of
given stack member segments. In the following example a stack is defined which consists of the
two segments SecondOxide and GateOxide. The respective boundaries are found automatically
by the registerStack function.

Phys

{ tunnel = registerStackO'Device", "SecondOxide, GateOxide");

+GateOxide { Electron { tunnel = "FNPure";}}

+SecondOxide : GateOxide;

All stack member segments must share the same tunneling model. This can easily be done using
the inheritance mechanism of the input deck: in the above input deck, the tunneling model in
the SecondOxide segment is simply inherited from the GateOxide section. Note that it is also
possible to evaluate tunneling in several independent stacks and segments simultaneously by
concatenating the respective tunnel strings together:

Phys

{ tunnel = registerStackO'Device", "LeftStackUpperOxide,

LeftStackMiddleOxide,

LeftStackLowerOxide") +

registerStackO'Device", "RightStackUpperOxide,

RightStackMiddleOxide,

RightStackLowerOxide") +

"GateOxide,GateOxide_Semiconductor,GateOxide_FloatingGate";

+GateOxide { Electron { tunnel = "TsuEsaki"; > }

+LeftStackLowerOxide : GateOxide;

+LeftStackMiddleOxide : GateOxide;

+LeftStackUpperOxide : GateOxide;

+RightStackLowerOxide : GateOxide;

+RightStackMiddleOxide : GateOxide;

+RightStackUpperOxide : GateOxide;

}}

Log

{ currentComponents = yes;

tunnel = yes;

In the Log section of the input deck the keywords currentComponents and tunnel can be set
to print logging information to the standard output. If the keyword currentComponents in
the Log section is set to yes, the electron, hole, and total tunneling currents are printed in the
output as IE, IH and I t .
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If the tunnel keyword is set in the Log section of the input deck, some information about the
chosen tunneling segments, boundaries, and the respective stacks is printed to stdout before
the simulation is started:

Tunneling Information for "Device"

Tunneling segment:
Using boundary:
Using boundary:

Tunneling segment:
Using boundary:
Using boundary:

Tunneling segment:
Using boundary:
Using boundary:

Tunneling segment:
Using boundary:
Using boundary:

Tunneling segment :
Using boundary:
Using boundary:

LowerBarrier
Gate_LowerBarrier
LowerBarrier_LowerSemi
LowerSemi
LowerBarrier_LowerSemi

LowerSemi_MiddleBarrier

MiddleBarrier

LowerSemi_MiddleBarrier

MiddleBarrier_UpperSemi

UpperSemi

MiddleBarrier_UpperSemi
UpperSemi_UpperBarrier
UpperBarrier
UpperSemi_UpperBarrier
TopContact_UpperBarrier

member of stack #0

member of stack #0

member of stack #0

member of stack #0

member of stack #0

Stack 0

Member Master

LowerBarrier UpperBarrier

LowerSemi UpperBarrier

MiddleBarrier UpperBarrier

UpperSemi UpperBarrier

UpperBarrier UpperBarrier

Inner stack reference segment

Inner stack opposite segment

Outer stack reference segment

Outer stack opposite segment

Reference Nbr

Gate

LowerBarrier

LowerSemi

MiddleBarrier

UpperSemi

: LowerBarrier

: UpperBarrier

: Gate

: TopContact

Opposite Nbr

LowerSemi

MiddleBarrier

UpperSemi

UpperBarrier

TopContact

Points

47 x 2

47 x 8

47 x 2

47 x 9

47 x 2

In the upper part of this logging information all tunneling segments with their tunneling bound-
aries are listed and it is stated, if they belong to a stack. In the lower part the stack members are
listed for each stack. Each stack has a master segment (UpperBarrier in this case) and inner
and outer reference and opposite segments which denote the direct neighbors of the stack. Also,
each segment in a stack has a reference neighbor segment and an opposite neighbor segment.
Furthermore, the number of grid points is given for each segment.
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D.3 Oxide Traps

Trapped charge in insulator segments can be simulated using the model oxideTrap which must
be specified in the Phys section of the input deck. In the following example the oxide trap model
is evaluated in the segment GateOxide for a concentration of negative traps of NT = 1019 cm"3

at an energy level of 2eV below the conduction band edge in the dielectric and an occupancy
of 0.1%. The model keywords are summarized in Table D.6.

Phys

•C

+GateOxide

{

oxideTrap = "Pure";

OxideTrap

Pure

Nt = Iel9 "cnT-3"; // trap concentration

type = "negative"; // charge state

occupancy = 0.001; // trap occupancy

energy = 2 "eV"; // trap energy level

+Gate

Contact { Ohmic { Ew = -0.5 eV; }}

A charge state of - 1 ("negative"), 0 ("neutral"), and +1 ("positive") can be chosen. The
trap charge is self-consistently considered in the POISSON equation. The possible keyword values
are shown in Table D.7.

Symbol Keyword Type Unit
JVT
h
£T

Nt
occupancy

energy

Quantity

Real

Quantity

cm"3

eV

Table D.6: OxideTrap model keywords.

Keyword Type Values
type String "negative", "neutral", "positive"

Table D.7: OxideTrap model trap charge state.
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D.4 Trap-Assisted Tunneling

If the keyword ta t is set in the TsuEsaki tunneling model, an additional trap-assisted tunneling
current is calculated. The oxideTrap model must be used to specify the trap properties. Input
deck parameters of this model are the electron mass in the dielectric, the emitted phonon energy
hu, and the Huang-Rhys factor S which can be used as a fitting parameter. The following code
shows an example input deck. The model keywords are listed in Table D.4.

Phys
•C

tunnel = addNearestlnterfaces("Device", "GateOxide");

+GateOxide

•C

oxideTrap = "Pure";

OxideTrap

Pure

Nt = le 19 "cnT-3";

type = "negative";

occupancy =0.0;

energy = 3 "eV";

trap concentration

charge state

trap occupancy

trap energy level

Electron

{

tunnel = "TsuEsaki

Tunnel

TsuEsaki

•C

direct

tat

mOx

consistent

tcType

dfType

dNrg

huangRhys

phononNrg

imageForce

= no;

= yes;

=0.5;

yes;

"qtbm";

"fermi";

10 "meV";

65;

0.03 "eV

no;

// consider direct tunneling

// consider trap-assisted tunneling

// electron mass in the dielectric

// self-consistency

// "analyticalWKB,qtbm"

// "general"

// energy step for integration

// for trap-assisted tunneling

// for trap-assisted tunneling

// image force correction
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