
DISSERTATION

Internet-Scale Push Systems for
Information Distribution—Architecture,

Components, and Communication

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

o.Univ.Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri
E 184-1

Institut für Informationssysteme

eingereicht an der

Technischen Universität Wien
Technisch-Naturwissenschaftliche Fakultät

von

Dipl.-Ing. Manfred Hauswirth
Matr. Nr. 8420623

Kunzgasse 7/15, 1200 Wien

Wien, im August 1999

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Diese Dissertation pr¨asentiert ein architekturelles Modell und eine Referenzimplementierung f¨ur
Push-Systeme. Push-Systeme kehren das auf Client-Initiative basierende Kommunikationspara-
digma (Pull-Modell) des World-Wide Web und der meisten anderen verteilten Systeme um –
damit wird Informationsverteilung und Informationsauffindung f¨ur den Anwender erleichtert.
Im Pull-Modell obliegt es dem Benutzer bzw. dem Client eine Anforderung zu stellen, wenn
neue Information ben¨otigt wird. Push-Systeme hingegen erm¨oglichen asynchrone Verteilung
von Information: Sobald dem Benutzerprofil entsprechende Information verf¨ugbar wird, wird
sie verteilt. Im Push-Kommunikationsmodell k¨undigt ein Informationsproduzent die Verf¨ugbar-
keit bestimmter Klassen von Information an, interessierte Konsumenten subskribieren bestimmte
Informationsklassen und der Informationsproduzent ver¨offentlicht in regelmäßigen Abst¨anden
seine Informationen (d.h., verteilt sie an die Konsumenten). Dadurch wird das Auffinden von
Information erleichtert und die Information wird zeitgerecht verteilt. Durch dieses Kommunika-
tionsmuster entstehen komplexe Problemstellungen, die f¨ur eine breite Anwendung von Push-
Systemen bew¨altigt werden m¨ussen: Das System muß in bezug auf hohe Benutzerzahlen und
die dafür benötigte Netzwerkbandbreite skalieren und zufriedenstellende Verz¨ogerungszeiten
für zeitgerechte Benachrichtigung ¨uber die Verfügbarkeit von neuer Information besitzen; die
verteilte Information muß authentifiziert werden k¨onnen und ihre Integrit¨at muß gew¨ahrleistet
sein; des weiteren sollten elektronische Zahlungsmethoden und Gesch¨aftsmodelle unterst¨utzt
werden. Derzeit verf¨ugbare Systeme bieten nur teilweise L¨osungen f¨ur diese Bereiche: Die mei-
sten verfügbaren Push-Systeme basieren intern auf dem Pull-Modell und fragen in regelm¨aßigen
Abständen die ihnen bekannten Informationsproduzenten nach neuer Information ab, wodurch
das Push-Konzept ad absurdum gef¨uhrt wird; häufig ist die Skalierbarkeit der Systeme begrenzt;
nur wenige stellen die M¨oglichkeit einer Authentifizierung und Integrit¨atsprüfung der verteil-
ten Information zur Verf¨ugung; und von keinem der derzeitigen Systeme werden elektronische
Zahlungsmethoden und Gesch¨aftsmodelle ad¨aquat unterst¨utzt.
Diese Dissertation definiert und beschreibt ein Kommunikations- und Komponentenmodell f¨ur
Push-Systeme. Das Kommunikationsmodell wird dem Client-Server-Modell und ereignis-basier-
ten Systemen gegen¨ubergestellt und als gleichwertiges Kommunikationsmodell f¨ur eine Klasse
verteilter Systeme identifiziert. Das Komponentenmodell bietet einen Rahmen f¨ur den Vergleich
und die Bewertung von Push-Systemen und den ihnen zugrunde liegenden Designentscheidun-
gen. Das Komponentenmodell besteht aus folgenden Komponenten: Produzent, Konsument, Ver-
sender, Kanal und Transportsystem. Dieses Modell kann auch als Ausgangsbasis f¨ur die Ent-
wicklung einer Push-System-Referenzimplementierung verwendet werden. Der zweite Teil die-
ser Dissertation pr¨asentiert eine solche Referenzimplementierung mit Namen Minstrel, die das
Komponentenmodell als Architektur f¨ur die Entwicklung austauschbarer Komponenten verwen-
det und eine offene Protokoll-Suite zur Informationsverteilung auf Internet-Gr¨oßenordnung de-
finiert.
Minstrel ist eine vollst¨andig auf Java basierende “Proof-of-Concept”-Implementierung unter be-
sonderer Ber¨ucksichtigung der Problembereiche Skalierbarkeit, Authentifizierung und Bezah-
lung. Skalierbarkeit wird durch ein hierarchisches Transportsystem erreicht, das f¨ur Produzenten
und Konsumenten konzeptuell transparent ist. Um Konsumenten zeitgerecht ¨uber die Verfügbar-

keit neuer Information zu benachrichtigen, wird eine aktive, hybride Verteilungsstrategie ver-
wendet, die sich nicht auf spezielle Multicasting-Infrastrukturen st¨utzt. Die Verteilungsstrategie
und die dabei verwendeten Protokolle werden im Detail pr¨asentiert und evaluiert. Erste Aus-
wertungen der Verteilungsstrategie in bezug auf Skalierbarkeit und Verz¨ogerungen sind vielver-
sprechend. F¨ur die Unterst¨utzung von elektronischen Bezahlungsmethoden und Gesch¨aftsmo-
dellen stellt Minstrel ein flexibles und generisches Modell zur Verf¨ugung, das die verwende-
ten Gesch¨aftsmodelle von den darunterliegenden elektronischen Bezahlungsmethoden entkop-
pelt. Dadurch unterst¨utzt Minstrel eine große Bandbreite unterschiedlicher Gesch¨aftsmodelle mit
(theoretisch) beliebigen elektronischen Bezahlungsmethoden. Des weiteren bietet Minstrel eine
auf dem Konzept der digitalen Unterschrift basierende, verteilte Authentifizierungsinfrastruktur,
die dieÜberprüfung des Ursprungs einer Information erm¨oglicht und die Integrit¨at der verteilten
Informationen gew¨ahrleistet. Diese Infrastruktur bietet außerdem einfach zu verwendende Ab-
straktionen der darunterliegenden, komplexen Sicherheitskonzepte. Minstrel unterst¨utzt sowohl
die Verteilung von statischer Information, als auch von ausf¨uhrbaren Programmen (mobile Java-
Programme). Um den Konsumenten vor m¨oglichen Sicherheitsrisiken durch diese Programme
zu schützen, stellt Minstrel ein flexibles und weitreichend konfigurierbares Sicherheitsmodul zur
Verfügung, das fortschrittliche Funktionalit¨aten wie die Definition subtraktiver Sicherheitsstra-
tegien und Verhandlung von Sicherheitsaspekten zur Programmlaufzeit bietet.

Abstract

This dissertation presents an architectural model and a reference implementation for push sys-
tems. Push systems reverse the pull-based communication paradigm on the world-wide web
and in most other distributed systems to support easier information dissemination and discovery
for users. The pull model requires the user to issue a request whenever information is needed,
whereas push systems support asynchronous information distribution: Whenever information of
the user’s choice becomes available, it gets distributed. In the push communication model, an
information producer announces the availability of certain types of information, an interested
consumer subscribes to this information, and the producer periodically publishes the information
(pushes it to the consumer). This simplifies the discovery of information and provides timely
information dissemination but introduces complex problems that challenge the widespread de-
ployment of push systems: scalability to large numbers of users in terms of network bandwidth,
timely notification of information availability, authenticity and integrity of information, and sup-
port for payment methods and business models. Current systems fall short in addressing these
issues. Most available push systems actually use a pull-based distribution approach where clients
check for new information at configurable intervals; frequently scalability is limited, many sys-
tems lack services to provide information authenticity and integrity, and moreover, the important
issue of payment models is not adequately addressed by any existing system.
This thesis defines and presents a communication and component model for push systems: The
communication model contrasts push systems with client-server and event-based systems; the
component model provides a framework for comparison and evaluation of different push sys-
tems and their design alternatives. The component model consists of producers and consumers,
broadcasters and channels, and a transport system. It can also be used as basis for developing
a reference implementation for push systems. The second part of the thesis presents such a ref-
erence implementation called Minstrel where the component model is used as an architecture
for developing plug-compatible components and to devise an open protocol suite for Internet-
scale content distribution. Minstrel is designed as a Java-based proof-of-concept implementation
of the architectural model and addresses the issues of scalability, notification, authenticity, and
payment highlighted above. To provide scalability, Minstrel uses a hierarchical transport system
transparent to both producers and consumers. For timely notification of information availability
it employs an active, hybrid broadcasting strategy that does not rely on special multicast infras-
tructures. Minstrel’s distribution process and protocols are presented and evaluated in detail.
First evaluations of the broadcasting strategy are promising in terms of scalability and delays. To
support payment and business models, Minstrel provides a flexible and generic payment model
which decouples the business model employed from the underlying payment method(s), so that
it can be used for a variety of business models with (theoretically) arbitrary payment methods.
Minstrel includes a distributed authentication infrastructure that facilitates authentication of in-
formation origin and integrity checks through digital signatures and offers high-level security ab-
stractions. Minstrel supports the distribution of static and executable content (mobile Java code).
To protect consumers from malicious mobile code, Minstrel provides a highly configurable Java
secure execution framework that offers advanced features such as subtractive security policies
and runtime security negotiation.

Acknowledgments

Several people have helped and supported me in writing this dissertation.

First of all I would like to thank my girl-friend Sabrina for her patience and mental support.

Thanks to Mehdi Jazayeri who has encouraged me to pursue this work.

Thanks to Wolfgang Lugmayr for our fruitful discussions on business cases and data structures.

Thanks to Harald Gall for our discussions on several central aspects of this work.

Thanks to� who read the central parts of this dissertation and provided valuable comments.

Special thanks to the Minstrel team (Michael Fischer, Stefan Jakl, Clemens Kerer, Roman Kur-
manowytsch, Michael P¨uhrerfellner, Gerald Spernbauer, Martina Umlauft) for their help in the
implementation and our fruitful discussions.

Thanks to Pedrick Moore who proof-read this dissertation and improved my style of writing.

Thanks to all my colleagues at the Distributed Systems Group who took over a lot of my teach-
ing duties and administrative work-load in the last semester. This gave me time to finish this
dissertation.

And—last, but not least—thanks to Jethro Tull and their music which has accompanied me since
my teenager days. Their songMinstrel in the Gallery is one of my favorites and partly inspired
the name of the Minstrel system.

MINSTREL IN THE GALLERY

The minstrel in the gallery looked down upon the
smiling faces.

He met the gazes – observed the spaces between the
old men’s cackle.

He brewed a song of love and hatred – oblique
suggestions – and he waited.

He polarized the pumpkin-eaters – static-humming
panel-beaters – freshly day-glow’d factory cheaters
(salaried and collar-scrubbing).

He titillated men-of-action – belly warming, hands
still rubbing on the parts they never mention.

He pacified the nappy-suffering, infant-bleating
one-line jokers – T.V. documentary makers
(overfed and undertakers).

Sunday paper backgammon players – family-scarred
and women-haters.

Then he called the band down to the stage and he
looked at all the friends he’d made.

The minstrel in the gallery looked down on the
rabbit-run.

And threw away his looking-glass – saw his face in
everyone.

IAN ANDERSON (JETHRO TULL)

Contents

1 Introduction 1
1.1 A Scenario 2
1.2 Key Issues and Application Domains 4
1.3 Pedigree of Push Systems 6
1.4 Contribution of the Thesis 8
1.5 Organization of the Thesis 9

2 A Communication and Component Model for Push Systems 10
2.1 A Comparison of Distributed Communication Models. 10
2.2 A Component Model for Push Systems 13

2.2.1 Channel . .. 13
2.2.2 Broadcaster. 16

2.2.2.1 The Notion of Broadcasting. 17
2.2.2.2 The Notion of Subscription. 18

2.2.3 Receiver .. 19
2.2.4 Transport System 19

2.3 Requirements for widespread Use 20
2.4 Summary of the Model 23

3 Related Work 25
3.1 Multicast Infrastructures and Protocols 25

3.1.1 MBone . .. 26
3.1.2 Systems based on Multicast 27
3.1.3 Real-Time Transport Protocol 28
3.1.4 Reliable Multicast Protocols 29

3.1.4.1 Scalable Reliable Multicast. 29
3.1.4.2 SRRTP 29
3.1.4.3 Reliable Multicast Protocol. 29
3.1.4.4 Light-weight Reliable Multicast Protocol 30
3.1.4.5 Multicast File Transfer Protocol 30

3.2 Alternative Approaches 31
3.2.1 Electronic Mail 31
3.2.2 Usenet News 34
3.2.3 World-wide Web and Mail combined. 36

i

CONTENTS ii

3.3 Representative Push Systems . .. 37
3.3.1 Castanet . .. 38
3.3.2 BackWeb .. 39
3.3.3 Webcasting. 40
3.3.4 PointCast .. 41
3.3.5 WebCanal .. 42
3.3.6 Intermind .. 43
3.3.7 Minstrel . 44

3.4 Other Push Systems. 45
3.5 Related Paradigms. 47

3.5.1 Event-based Systems . .. 47
3.5.1.1 TIB/Rendezvous 49
3.5.1.2 Keryx 50
3.5.1.3 Java Event-based Distributed Infrastructure 51
3.5.1.4 CORBA Event Service 52
3.5.1.5 Notification Service Transfer Protocol 53

3.5.2 Mobile Code 54

4 The Minstrel Push System: Broadcast Communication 55
4.1 Architecture and Overview 57
4.2 Minstrel Broadcasting 58

4.2.1 An Example Broadcast .. 59
4.2.2 A generalized Picture . .. 61

4.3 Channel Subscription 63
4.4 Data Structures used in Protocols. 64

4.4.1 Sample . .. 64
4.4.1.1 Offer 65
4.4.1.2 Cargo 66
4.4.1.3 Agent 67

4.4.2 Shipment .. 68
4.5 Processing of Shipments 69
4.6 Discussion of the Broadcasting Strategy 71

4.6.1 Design Issues of the Broadcasting Strategy 71
4.6.2 Analysis of a concrete Scenario 72
4.6.3 MADP Worst-case Delay. 74
4.6.4 Collocation of Repeaters with Internet Service Providers 78
4.6.5 MRRP and implicit Caching 78

4.7 Broadcasting Protocols 79
4.7.1 Design Issues of the Protocols 79
4.7.2 Minstrel Active Distribution Protocol. 80

4.7.2.1 Recipient-initiated Sample Distribution 83
4.7.3 Minstrel Receiver Request Protocol 83
4.7.4 Discussion of the Protocols 86
4.7.5 Possible Improvements .. 86

CONTENTS iii

5 The Minstrel Push System: Components 88
5.1 Receiver 88

5.1.1 Minstrel Receiver Control Unit 90
5.1.2 Presentation Unit 90

5.1.2.1 Netscape Remote Control Facility 91
5.1.2.2 NRCF Security 94

5.1.3 Data Store Unit 95
5.1.3.1 Data Storage .. 96
5.1.3.2 Indices and Searching 98
5.1.3.3 Content Expiration 100

5.2 Broadcaster 101
5.2.1 Minstrel Broadcaster Control Unit 102
5.2.2 Data Store Unit 103
5.2.3 Source Update Facility .. 103
5.2.4 Subscription Management Unit 105

5.3 Base Distribution Component . .. 105

6 The Minstrel Push System: Security and E-Commerce 108
6.1 Security 109

6.1.1 Authenticity of Information 109
6.1.1.1 Architecture of the Authentication Infrastructure. 110
6.1.1.2 The Minstrel Authentication Process 111

6.1.2 Confidentiality of Information 113
6.1.3 Mobile Code Security .. 115

6.1.3.1 Java Security .. 116
6.1.3.2 Java Secure Execution Framework vs. Java Security Model . . 117
6.1.3.3 The JSEF Policy Concept 119
6.1.3.4 The JSEF Process 122

6.2 Electronic Commerce and Payment 123
6.2.1 Millicent Distilled . 126
6.2.2 Using Millicent for Payment in Minstrel 128

7 Evaluation and Future Work 132
7.1 Evaluation 133

7.1.1 Scalability of the Broadcasting Process 134
7.1.2 Content Selection, Content Types, and Executable Content. 136
7.1.3 Security . .. 137
7.1.4 Payment . .. 138

7.2 Future Work 138

Bibliography 140

List of Figures

1.1 Pull vs. push 1
1.2 News agency scenario 2

2.1 Degree of coupling vs. degree of scalability 12
2.2 Components of a push system .. 14
2.3 Content distribution via a channel 14
2.4 Filtered data-stream view of a channel 15
2.5 Pay-per-view in Minstrel 22

3.1 MBone architecture (islands and tunnels) [40]. 27
3.2 A simplified news network [59] .. 35
3.3 Intermind channel architecture [180] 43
3.4 A Keryx event specification 51

4.1 Minstrel’s architecture 57
4.2 Minstrel hybrid broadcasting . .. 59
4.3 A typical broadcasting configuration 62
4.4 UML class diagram for a Sample. 65
4.5 UML class diagram for a Shipment 68
4.6 Processing of Shipments 69
4.7 A concrete MADP scenario 72
4.8 Minstrel distribution delays 75
4.9 Minstrel distribution delay for sequential distribution by 1 BDC 76
4.10 Distribution of delays in Minstrel. 76
4.11 Serial distribution delays vs. Minstrel distribution delays 77
4.12 Minstrel Active Distribution Protocol (MADP) – Broadcaster side. 81
4.13 Minstrel Active Distribution Protocol (MADP) – Receiver side 82
4.14 Minstrel Receiver Request Protocol (MRRP) – Receiver side 84
4.15 Minstrel Receiver Request Protocol (MRRP) – Broadcaster side 85

5.1 Architecture of the Minstrel Receiver 89
5.2 Operation of the NRCF (UML sequence diagram) 93
5.3 UML Class diagram of NRCF .. 94
5.4 A stored channel .. 96

iv

LIST OF FIGURES v

5.5 The file system as physical storage for the DSU 98
5.6 DSU indices 98
5.7 Partitioning of the search space and assignment to buckets 100
5.8 The grid directory .. 100
5.9 Declaration of expiration rules .. 101
5.10 Architecture of the Minstrel Broadcaster 102
5.11 SUF interfaces . .. 104
5.12 Definition of a new Sample 104
5.13 Local SUF interface. 105
5.14 Architecture of the Minstrel BDC 106

6.1 MDL layered architecture 110
6.2 MDL components and their interactions during verification 111
6.3 Verifying of information (UML sequence diagram) 112
6.4 Signing of information (UML sequence diagram) 113
6.5 SSL runs above TCP/IP and below higher-level application protocols [128] . . . 115
6.6 A sample local policy definition in JSEF [70]. 119
6.7 Mapping of a user to groups in JSEF (group policy) [70] 120
6.8 Some sample group definitions in JSEF [70] 120
6.9 Processing of an access request in JSEF (UML sequence diagram). 121
6.10 The JSEF Process .. 122
6.11 Minstrel interaction without payment 124
6.12 Minstrel interaction with payment 124
6.13 Minstrel interaction with payment at the context level (UML sequence diagram) . 125
6.14 The Millicent payment model (UML collaboration diagram) 127
6.15 Minstrel interaction with payment using Millicent 128
6.16 Pay-per-view payment using Millicent (UML sequence diagram) 129

List of Tables

2.1 Comparison of communication models 12

3.1 Comparison of push systems based on the component model 38
3.2 Comparison of push systems based on features 38
3.3 Push systems vs. event-based systems 48

4.1 Bandwidth consumption and sample transfer rates 73
4.2 Roles of entities . .. 79

vi

Chapter 1

Introduction

The dominant paradigm of communication on the world-wide web and in most distributed sys-
tems is the request-reply model. In this model of distributed information systems, a client actively
“pulls” information from the server. Ever since the early days of the Internet, systems such as
electronic mail and Usenet News have attempted to overcome the deficiencies of this pull model
by allowing producers of information to “push” their information closer to the clients. In the push
model, an information producer announces the availability of certain types of information, an in-
terested consumer subscribes to this information, and the producer periodically publishes the
information (pushes it to the consumer). The pull and push models are contrasted in Figure 1.1.

Infrastructure

Producer

Push

Request

Publish

Reply
Consumer

Consumer ProducerReceive

Subscribe

Unsubscribe

Announce

Figure 1.1: Pull vs. push

Several reasons motivate the need for push systems. The most important one is that the WWW is
based on a simple request/reply scheme [11, 42] that requires the user to issue a request whenever
he/she needs information. This imposes a “synchronous” interaction scheme, whereas push sys-
tems allow asynchronous information distribution: Ideally, whenever information of the user’s
choice becomes available it gets distributed.

1

CHAPTER 1. INTRODUCTION 2

1.1 A Scenario

To illustrate the applicability of the push approach and show the various issues and requirements
of a push system, this section presents the example of a news agency information system. This
scenario exhibits all essential properties of a push system and demonstrates the practical rele-
vance of the issues and requirements discussed in the following sections of this thesis.
Figure 1.2 depicts a typical news agency scenario.

Information Sources

News Agency
(Broadcaster)

Receivers
(Subscribers)

Channels
• optional payment
• optional security

Customers

Figure 1.2: News agency scenario

A news agency buys or receives information from various sources, such as reporters, newspapers,
databases, libraries, and stock exchanges. It can edit the information, combine it with other
information, and classify it. For example, it can combine the stock quotes of a company, which
it receives from the stock exchange, with financial analyses or background information about the
company. The result of this process is categorized units of information.
These units of information can then be disseminated (“broadcast”) via push channels according
to their categorizations. Every channel is associated with a defined set of categories so that
customers can choose and subscribe channels they are interested in. Typical categories would
be local news, national news, financial news, weather, and sports. Every unit of information can
be associated with several of these categories, so that the data may get distributed via multiple
channels.
At the customer end, users run a special receiver software that facilitates access to the news

CHAPTER 1. INTRODUCTION 3

agency’s channels. The receiver software manages the customer’s subscriptions to channels and
user profile, and interacts with the news agency’s “broadcaster” on behalf of the user. It receives
the information sent over the subscribed channels and provides a user interface that allows the
customer to access this information.
Because the news agency offers many different channels and feeds information to many cus-
tomers, its distribution infrastructure must scale well to large numbers of users and provide for
timely delivery while imposing only minimal additional constraints. Specifically, this infras-
tructure must be as transparent as possible towards broadcasters and receivers. While this is a
major component of every Internet-scale push system, it is omitted in Figure 1.2 for reasons of
simplicity, but will of course be discussed in detail in later sections.
It is important to note another simplification in the scenario of Figure 1.2: Receivers interact
with only one broadcaster. In a real world setting, however, receivers can subscribe to multiple
channels from multiple broadcasters (news agencies or other push providers).
So far the scenario provides for the timely, topic-based dissemination of news. A news agency,
however, has to fulfill additional constraints because its business depends upon a high level of
data confidentiality. Receivers want to be able to rely on the information and possibly use it as a
basis for business decisions, so proof of origin (data authenticity) and proof that the information
has not been tampered with (data integrity) are very important. These proofs also provide the
foundation for limitation of legal liability and must be provided by the underlying infrastructure.
Since the news agency wants to make revenue out of its business, it must charge for the informa-
tion it disseminates over the channels (a minor fraction of information/channels will, however,
be free of charge). Thus the push system must support a range of payment methods and business
models, such as flat fees or pay-by-view.
If the news agency wants to protect intellectual property rights or simply prohibit unauthorized
access, channels must be encrypted (“locked”). However, only important channels will be se-
cured in this way, since encryption always leads to additional delays and higher costs.
The news agency is an information distributor rather than an information generator. It must either
convert the data it collects from different sources to a few standard types or else leave it to the
receivers to deal with the various data formats. The first option is unnecessary and infeasible
for the rapidly growing number of Internet content types. Therefore the underlying push system
must support the dissemination of arbitrary content types in a way similar to the world-wide
web. This is referred to as being “transparent” towards the transported information. The receiver
software, however, must be able to deal with the received data in a meaningful way.
Content types fall into one of three categories:

Static: static, immutable data like HTML text, pictures, audio files, etc.

Executable: code (plus accompanying data) that is intended for execution at the receiver’s site

Streaming: data that exhibits real-time characteristics, for example real-time audio or video;
streaming content is not received as a whole before it is “played” or “visualized”; instead
a continuous data stream requiring real-time distribution is established between the sender
and the receiver, and the receiver processes the received data continuously (e.g., plays a
piece of music)

CHAPTER 1. INTRODUCTION 4

The news agency would use a push system to distribute static and executable data. Like the
world-wide web, push systems do not support streaming data. This content type is beyond their
application domains and requires specialized infrastructures, such as [141].
Executable content can be used in several ways: to provide client-side processing (for example,
an interactive questionnaire) or to enhance the capabilities of the receiver (for example, software
updates of the receiver or code to support new content types). This, however, raises additional
security issues for the receiver software. Received code must be authenticated and verified and
be executed in an environment that protects the receiver’s site from malicious code.
The issues presented in the above scenario define the main requirements that must be fulfilled by
every Internet-scale push system: scalability to large numbers of users without affecting timely
distribution, provision of authenticated and secure information, support for a wide range of con-
tent types, support for mobile code (including an infrastructure that deals with the security issues
involved), and support for e-commerce by facilitating the use and implementation of flexible
payment methods and business models.
This thesis will address all these problem areas in detail.

1.2 Key Issues and Application Domains

Some of the problems of distributed information systems that can be solved with the push model
are:

Discovery of information: With the vast amount of data available on the Web, users have dif-
ficulty finding the desired information. Even though good search engines exist, the qual-
ity of information found is still proportional to the user’s knowledge and skills (keyword
selection, intuition). With push systems, special channels can be used to announce the
availability of information.

Timeliness of data: With web-based systems, the client must continually poll to ensure that its
data is up to date. With push systems, the client may be notified as soon as data is updated
on the server. In such a scheme, a push system may use the services of an event-based
infrastructure.

Authentication of information: Validating the identity of the information provider and the iden-
tity and integrity of the information itself is simplified in push systems because of the sub-
scription phase of the interaction. At this point, encryption keys may be exchanged that
will later be used to authenticate the server.

User customization: With push systems the user can state his/her preferences explicitly. Thus
it is easy to provide information that is focused on the user’s interests. The user’s require-
ments on the data and its properties, e.g., data format, priority, keywords, can be enforced
before the data is delivered.

Provider-side information tailoring: Not only the user can customize the data and its proper-
ties but also the provider. The provider can control when the user sees which information.

CHAPTER 1. INTRODUCTION 5

This decision can be based on user profiles provided by subscription information, interest
analysis, etc., and allows information to be tailored to the user’s interests. This functional-
ity can also be exploited for advertising if allowed by the user.

Traffic reduction: Push systems may facilitate reduction of network traffic. Users trying to lo-
cate information may cause heavy traffic, but since push systems can tailor data to users’
profiles, unnecessary requests and thus traffic may be decreased considerably. Addition-
ally, an appropriate transport infrastructure can further cut down on network bandwidth,
for example, by using repeaters that are collocated with Internet service providers.

Detached and mobile operations:Recently Personal Digital Assistants (PDAs) have become
very popular and gained widespread use. PDAs raise new challenges for distributed infor-
mation systems, since they are mobile and not always connected. By default, push systems
address most of these issues. With push systems, PDAs can be loaded with (channel)
information, be used offline, and at a later time be updated when connected again.

Numerous application domains have already been devised for push systems [61]. To show the
wide applicability of the push model as a paradigm for building distributed applications, here
several distinct applications are outlined whose design can be decomposed in terms of push
concepts.

Intra-company employee information systems:Many organizations have proprietary and ad
hoc systems for keeping their employees informed about their organizational news. This
is sometimes viewed as one of an organization’s most important and most difficult tasks.
Such a system may be built as a standard push system.

Electronic maintenance manuals:Companies that produce appliances have maintenance man-
uals that are carried by their maintenance workers when they are called to repair appliances
on site. The updating of such printed manuals is costly and tedious. With a push system,
each product line could be associated with one channel and maintenance workers could
subscribe to whatever channels needed.

Stock ticker system: This is a classic example of event-based and push systems.

Electronic newspapers: Currently electronic newspapers are typically provided as web sites
which users visit at regular intervals. A push system more closely resembles the real-world
newspaper model by allowing the user to subscribe to a set of topic-based information
channels (weather, sports, local news, world news, etc.) and receive the information at
his/her computer as soon as it gets distributed. This is in effect a personalized newspaper.

Tourism information systems: Travel agencies and other tourism-related businesses depend on
fast, wide-reaching announcement facilities to advertise destinations, hotels, tours, special
offers, and other tourism products. A web site may be too “passive” for this purpose. A
push system could be used to support active advertisement with booking functionalities.
Every group of offers or products, such as last minute bookings, could be associated with
a channel, and customers could subscribe to these channels according to their interests.

CHAPTER 1. INTRODUCTION 6

Distance education: With a push system, every course offered is associated with a channel
through which course material is distributed. Students subscribe to the courses they want
to take and automatically receive the course material as soon as it becomes available.

Software distribution: A push system can send subscribers new software or an update as soon
as it becomes available. If supported by an appropriate software deployment infrastructure
at the client site, installation and maintenance of software can be automated.

News agency information systems:News agencies sell various kinds of information. Timeli-
ness of dissemination and authenticity of information are prime issues. Powerful classi-
fication and filtering mechanisms are needed that allow customers to select information
of interest from the huge amounts of data a news agency offers. Such a system can be
modeled as a standard push system.

The existence of such diverse applications, all of which can be designed as specific instances
of push-based systems, speaks for the inherent utility of the push model and concepts. In all of
these systems, one can easily identify distinct producers and consumers, and also the necessity
of a subscription phase.

1.3 Pedigree of Push Systems

A look at the historical development of the software around the Internet provides a good un-
derstanding of the roots and rationale of push systems. Almost immediately after the introduc-
tion of the ARPANET, the predecessor to the Internet which provided a hardware link among a
dozen computers, its potential as a medium for communication among people was recognized.
Electronic mail and Usenet News were the first two attempts to address this challenge. The
world-wide web has grown from these basic forms of communication.
The differences between these communication tools are the number of participants involved,
whether the sender needs to know the identity of the receiver(s), and the amount of structure
in the interaction. With email, the sender actively sends (pushes) the information to known
participants who are notified of the arrival of the data. With News, the sender posts the data to
a common area and anonymous readers are expected to check the common area regularly for
new information. The messages sent by email and News remain unchanged once posted. In web
communication, the data passively waits at the sender’s home site to be “pulled” by receivers.
While it waits, it may undergo changes: The document is said to be “live.”
The essential problems to communication among the users of such distributed systems are the
discovery of the availability of information, the notification of the existence of new or updated
information, the maintenance of consistent state among senders and receivers, the limitations
on forms of supported interaction patterns, limited security and authentication, and most impor-
tantly, the scalability of the system. Many systems have emerged around the Internet to solve
one or more of these problems.
The first solutions for coping with the huge amount of information available on the world-wide
web were bookmarks, hot-lists, and user-maintained “jump-stations.” But these tools failed to

CHAPTER 1. INTRODUCTION 7

keep pace with the rate of information expansion on the web. An automated scheme for gathering
index information and providing search facilities became necessary. This led to the introduction
of search engines: Usually stationaryrobots gather index information by recursively retrieving
documents and indexing them.1 This index data can then be searched via a user interface. At
present there are several competing search engines, e.g., AltaVista [2], Excite [41]. This ap-
proach, however, has its problems: Robots can cause high server and network loads, indexes are
not exchanged between the search engines, which leads to inefficient multiple indexing runs for
the same data, and there is still much information that cannot conveniently be found by average
users because the data is not or only poorly structured.
Thusportal sites like Yahoo! [183] orNetscape Netcenter [126] were introduced as a supplement
to search engines.2 Portals try to give a structured view on the data available and allow the user
a certain degree of freedom to get a customized view on the data. Typical examples here areMy
Yahoo! [182] andMy Netscape3 [123]. The issue of notification, however, still remains open.
The combination of electronic mail and the world-wide web offered by several portal sites, such
as Netscape’s In-Box Direct service [122], provides an interesting push-system-like approach:
Users sign up with a mailing list and receive mails in regular intervals; these mails typically
contain an HTML document that is displayed as in a browser when read with an appropriate
mail tool. The HTML document contains links that the user can click on to retrieve the corre-
sponding documents. This approach is discussed further and contrasted with the push approach
in Section 3.2.3.
Growing demand for solutions to the issues listed above created a big rush towardspush systems
in late 1996. Push systems reverse the communication pattern of Internet-scale information
systems by actively disseminating information to consumers. Consumers, instead of having to
check for new information repeatedly, subscribe to information channels and receive updated
information as soon as it becomes available. Sections 3.3 and 3.4 examine and compare available
push systems. Interestingly, the first push system approach was introduced as early as 1992 by
thedynamic document concept of Netscape Navigator 1.1 [121]. Its basic ideas wereserver push
andclient pull. With server push, the server sends data which is displayed by the browser, but
the connection between server and client remains open. Later the server may continue to send
other pieces of data to the client. Client pull automates reloads: The server sends data which
includes aRefresh directive specifying a time delay and a URL in the HTTP response or in
the document header. After the given delay, the client loads the document specified by the URL.
Nearly at the same time that push systems were coming into use, Internet-scaleevent-based
systemswere introduced in academia. They are closely related to push systems but have not
yet gained widespread use in industry. In contrast to push systems they focus on notification
and event distribution aspects. A comparison between push systems and event-based systems to
clearly identify their relationship is given in Section 3.5.1.

1A few systems allow sites to provide their own index data, e.g., Harvest [12].
2Actually they partly evolved in parallel. Now many portal sites have an integrated search engine, and vice versa,

many search engines also offer a web portal.
3Recently Netscape extended the customization options: Users can setup a Rich Site Summary (RSS) file that

facilitates the definition of an additional customized information aggregation (“channel”) beyond the predefined
categories [124]. Its capabilities, however, are rudimentary.

CHAPTER 1. INTRODUCTION 8

1.4 Contribution of the Thesis

This thesis describes and analyzes the concepts and issues of Internet-scale content distribu-
tion with respect to push systems. It defines and presents thefirst general communication and
component model for push systems. The model, which consists of producers and consumers,
broadcasters and channels, and a transport system, can be used to accurately describe the struc-
ture of existing push systems. Furthermore it provides a classification framework for analyzing
and comparing the important design decisions in those systems and it compares prominent push
systems according to this framework.
The model can also be used as basis for developing a reference implementation for push systems.
The Minstrel push system presented in the second part of this thesis is such areference imple-
mentation where the component model is used as an architecture for developing plug-compatible
components and to devise anopen protocol suite for Internet-scale content distribution. It is de-
signed as a Java-based proof-of-concept implementation of the architectural model and serves as
anextensible platform for further research in the push area. Minstrel’s main goals arescalability,
active push, authenticity and integrity of content, andflexible support for payment methods and
business models.
In Minstrel the interacting parties—information producers and consumers—are clearly separated
by a hierarchical transport system that is transparent to both parties. This transport system
facilitatesscalability to large numbers of users while minimizing resource consumption and
network traffic, and distributing computational load.
In contrast to other Internet-scale push systems that use client-side polling at configurable inter-
vals, Minstrel employs anactive, hybrid broadcasting strategy. This provides timely notification
of information availability and requires no special multicast infrastructure. First analyses of the
broadcasting strategy are promising in terms of scalability and delays.
A main goal of Minstrel is to offer aplatform for information commerce over the Internet. The
two main requirements Minstrel must address to be applicable in a business environment are au-
thenticity and integrity of information, and support for payment methods and business models.
Minstrel’s distributed client-server authentication infrastructure facilitates authentication of in-
formation origin and integrity checks through digital signatures (based on public key encryption
and certificates). The infrastructure also provideshigh-level security abstractions that simplify
its usability by encapsulating the low-level security details.
To support payment and business models, Minstrel offers aflexible and generic payment model
that can be used for a variety of business models, such as pay-per-view or volume-based. It
decouples the business model employed from the underlying payment method(s), so that (the-
oretically) arbitrary payment methods can be used. The model is evaluated using the Millicent
micro-payment protocol.
Minstrel supports the distribution ofstatic and executable content. Executable content, i.e.,
mobile code, is executed at the receiving site and can also be used for extending the capabilities
of client-side Minstrel components. Since mobile code can threaten the security and system
integrity of the client, Minstrel includes ahighly configurable secure execution framework for
Java code, which offers advanced features such as subtractive security policies and (interactive)
runtime security negotiation.

CHAPTER 1. INTRODUCTION 9

1.5 Organization of the Thesis

This thesis is structured as follows. Chapter 2 presents the Communication and Component
Model for Push Systems. Although several push systems have gained widespread use on the
Internet, no such model exists so far. Based on this model, several prominent push systems
are compared in Chapter 3. A structural classification is given that compares these systems
in terms of the main features described in the previous chapter. To adequately set the field,
related paradigms, such as event-based systems and mobile code, are also addressed. Chapter 3
also discusses other push approaches that have not gained widespread application, and multicast
infrastructures as a related base technology.
Chapters 4 through 6 present the Minstrel push system in detail. Chapter 4 provides an overview
of Minstrel’s architecture and describes the distribution strategy it employs. Its protocols are pre-
sented in detail and evaluated on the basis of a representative scenario. Chapter 5 then describes
the core components of the Minstrel system. These are derived from the component model in
Section 2.2 by using it as an architecture for developing plug-compatible components for push
systems. Chapter 6 rounds out the description of Minstrel by explaining how Minstrel addresses
the issues of information authentication and integrity, mobile code security, and electronic com-
merce and payment. The problems in these domains are presented, Minstrel’s proposed solutions
are discussed, and their implementations in Minstrel are showcased.
Chapter 7 gives an evaluation of the Minstrel push system as an instantiation of the model of
Chapter 2 and summarizes the previous chapters. An overview of future work rounds out the
thesis.

Chapter 2

A Communication and Component Model
for Push Systems

This chapter presents a communication and component model for push systems. Surprisingly,
despite the widespread use of many push services on the Internet, no such models exist. The
communication model in Section 2.1 contrasts push systems with client-server and event-based
systems and analyzes their impact on scalability, network load, and state maintenance. The
component model presented in Section 2.2 provides a basis for comparison and evaluation of
different push systems and their design alternatives. The component model consists of producers
and consumers, broadcasters and channels, and a transport system. The concerns of each of
these components are explored in detail. Several prominent push systems will be compared in
the next chapter using this component model. Section 2.3 discusses a number of open issues that
challenge the widespread deployment of push or any other systems on an Internet-wide scale.
Payment models are the most important among these, as they are not adequately addressed by
any existing system. Thus a preview of the payment approach of the Minstrel system is also given
which will be described in detail a later chapter. Finally, we summarize and give our conclusions
in Section 2.4.
The described model was presented at the European Software Engineering Conference (ESEC)
[69].

2.1 A Comparison of Distributed Communication Models

A distributed system consists of several computing nodes connected by a computer network that
provides for communication among the nodes. When applied in a distributed environment, the
traditional task of software decomposition must also deal with allocating (or mapping) software
modules to the different nodes. One of the performance goals of distributed software design is to
minimize the amount of communication needed among the nodes. Less communication leads to
higher scalability, that is, the ability of the system to support more nodes or more users.
Theclient-server model provides an architectural approach for organizing the software for dis-
tributed platforms. The model assumes a small number of servers (say, 10) and a moderate

10

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 11

number of clients (say, 1000). The basic scheme is that clients interact with (human) users and
contact the servers to ask for (computationally-intensive or data-intensive) services. The com-
munication model of client-server systems may be calledsession-based (or stateful). During
a session a client and a server share a state, which is modified through one or more of their
interactions.
The popularity of this model has led to its standardization in software environments such as
DCE and CORBA, which define standard components to ease the building of such client-server
software [175]. Currently popular N-tier architectures are extensions of this basic model that
attempt to remedy some of its shortcomings.
The emergence of the Internet and its use as a platform for distributed applications, however, ex-
posed the weaknesses of the session-based communication model in terms of scalability. Internet
applications must scale to millions of nodes and users. The primary impediment to scalability is
the participants’ need to maintain a shared state. Consequently, in the interest of scalability, the
world-wide web adopts astateless approach to client-server communication (web-based model).
In this scheme, each interaction between the client and the server is independent of the other
interactions. No “permanent” connection is established between the client and the server and the
server maintains no state information about the clients. While this scheme helps scalability, it
becomes difficult to maintain a state: The client, the server, or both must maintain the state and
ensure its coherence [9]. Web-based applications scale to 1000s of servers and 1,000,000s of
clients. Depending on the requirements of an application, the application designer may choose
between these two models in client-server computing. The primary tradeoffs are between loose
or tight coupling and maintaining state at the client or the server.
The client-server model deals with two participants in the communication. In thepeer-to-peer
model, the application is decomposed among many peer nodes instead of clients and servers. For
this reason, the nodes here are referred to as producers and consumers rather than clients and
servers. In the peer-to-peer model, communication begins with a subscription phase in which
a consumer registers its interest with a producer. At this point, the peer-to-peer model may be
divided also into two subclasses: the event-based and the push-based models.
In theevent-based model, nodes are loosely-connected and behave symmetrically: Any node may
produce events and any node may consume events. This model scales to many producers and
many consumers because there is no coupling between them. This model has recently received
considerable attention [179].
The communication model of push-based systems, on the other hand, is tightly coupled and
asymmetric: Certain nodes are designated as producers and others as consumers. In contrast
with the event-based model, push-based systems scale to fewer producers but more consumers.
They may be viewed as a specialization of the event-based systems with designated producers
and consumers and channels to connect each producer with interested consumers. Dissemina-
tion in push-based systems is done on the basis of particular channels rather than event classes
as in event-based systems. The use of channels for information classification is a major distinc-
tion from event-based systems. Channels increase the coupling but improve the performance in
certain situations.
Table 2.1 contrasts the four communication models described above in terms of the primary
tradeoff between coupling and scalability.

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 12

Client-server Peer-to-peer
Session-based Web-based Event-based Push-based

Coupling tight loose very loose medium

of clients moderate (1000) high (1,000,000) many (100,000) many (100,000)

of servers few (10) many (100,000) many (100,000) few (100)

Table 2.1: Comparison of communication models

The four communication models of distributed systems occupy four areas in the design space of
distributed systems. Figure 2.1 gives a rough view of the design space plotted along coupling
and scalability axes.

C
ou

pl
in

g

event-based

Scalability

session-based

web-based

push-based

Figure 2.1: Degree of coupling vs. degree of scalability

Session-based and web-based models have been the subject to many studies. Event-based sys-
tems on the Internet-scale have also recently been subject of intensive analysis [144, 179]. Push
systems, on the other hand, seem to have had a short time in the limelight and then fallen out
of favor in the academic world. They are, however, heavily used in practical applications on
the web. The purpose of this chapter is to establish the push-based model as a viable model of
distributed applications.

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 13

2.2 A Component Model for Push Systems

This section presents a component model for push systems which has been derived from an
analysis of existing push systems.
In its simplest form, a push system consists of producers and consumers of information that are
connected through channels. A consumer (receiver) subscribes to a channel and receives any
information that a producer (information source) sends through it. Thus the connection phase of
client-server systems is replaced by an early subscription phase.
In practice, a broadcaster component is used to separate the concerns of channel handling from
the information source. A broadcaster is responsible for managing channels and sending infor-
mation along them. Thus the broadcaster controls and schedules the dissemination process and
distributes data via a set of channels to the consumers.
An information source feeds information to a broadcaster together with rules on how and where
(on which channel) to distribute this data. The broadcaster may apply filters to the data before
disseminating the data (via channels) to consumers that have subscribed to receive the content of
certain channels. Receivers may apply filters, too, and accept content only if it passes through
them. To provide scalability to large numbers of users, the distribution process involves a trans-
port system which is conceptually transparent for broadcasters, receivers, and channels.
The transport system consists of caches, repeaters, and proxies. These components can cooperate
via specialized transport system protocols that are internal to the transport system and not visible
outside. Caches and repeaters are useful for conserving network bandwidth by reducing the
load on broadcasters and bringing channel data “closer” to the receivers. In the case of a cache,
this is done on demand, whereas a repeater is preloaded. Proxies model situations where no
direct connection to a push system component is possible, e.g., for security reasons or to control
network traffic. The proxy component thus acts on behalf of some other components.
Figure 2.2 depicts the component model of a push system and Figure 2.3 shows a sample collab-
oration (UML sequence diagram) between the components of the model.
The information source provides new data for a specific channel to the broadcaster. The broad-
caster applies filters to the data to limit data transfers and sends the data (in parallel or iteratively)
to the set of repeaters (for scalability reasons) for which the filters succeeded. The repeaters then
redistribute the data to the actual subscribers (receivers). For higher scalability, additional levels
of repeaters may be necessary.
Every broadcaster can send to multiple channels and every receiver can receive from multiple
channels. In Figure 2.2 some of the arcs representing channels and backchannels cut through
components of the transport system to show that these components are necessary for scalability
purposes but are transparent to the channels and the dissemination process.
Having decomposed a push system into the components in Figure 2.2, we will now take a detailed
look at the concerns of each component of the component model.

2.2.1 Channel

A channel is a (logical) connector between a broadcaster and a receiver. It determines the pro-
tocols between these components. The most important of these protocols are the channel access

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 14

Proxy

Legend

Receiver Receiver Receiver

Transport System

Internal Transport System CommunicationBackchannel

Source UpdateChannel

Broadcaster Broadcaster Broadcaster

Source
Information

Source
Information

Source
Information

Repeater

Cache

Cache
Repeater

Proxy

Figure 2.2: Components of a push system

* sendContent(channel, data,

Repeater Receiver

receivers)

Broadcaster
Information

Source

contentUpdate(channel, data)

repeaters)

[passed filters]
* sendContent(channel, data,

Figure 2.3: Content distribution via a channel

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 15

protocol and the subscription protocol. Channels provide for many-to-many connections among
broadcasters and receivers: Each broadcaster provides a set of channels that receivers can sub-
scribe to; each receiver subscribes to a set of channels. Channels are a major distinction between
event-based systems and push systems. The channel concept of push systems already provides
a coarse level of information classification that event-based systems usually lack. When data
is grouped according to information type, the total amount of data transfers can easily be easily
because data (events) need only be distributed to channel subscribers. Additionally, finer filtering
can be applied to the contents of a channel (as in event-based systems).
A channel determines several properties of the data to be disseminated and the supported func-
tionalities:
Type of information: the focus of the data that is distributed in a channel (e.g., financial news,
weather forecasts, software updates).
Data format: the formats (e.g., HTML) and semantics (e.g., static, executable) of a channel’s
data. Static data means text files, pictures, data, etc., whereas dynamic content refers to exe-
cutable programs, etc.
Personalizing/filtering: This property determines the extent of user customization that is possi-
ble (e.g., content selection, operation modes, payment).
Content expiration: Channel content can be transient or persistent. An expiration strategy for
the channel must exist to prevent using up the consumer’s resources.
Update strategy: This defines how updates of the channel’s contents are done. Possible strate-
gies are replacement, incremental, or differential updates (depending greatly on the type of infor-
mation and the data format). The timing of updates has impact on data accuracy, network traffic,
and scalability.
Scheduling strategy:The main scheduling options are time-scheduled versus content-scheduled.
Time-scheduled channels deliver “unrepeatable,” “live” content depending on the access time of
a channel (comparable to TV or radio). Content-scheduled channels deliver content independent
of real time.
Operation mode: Consumers may not be online all the time. Support for offline/mobile opera-
tion with feasible synchronization protocols is necessary.
Payment: Certain channels (support channels, special contents, etc.) may involve payment. The
channel configuration determines which business model to use: pay-per-view, content-based,
time-based, flat fee, etc.
Some of the properties described above can be modeled by viewing a channel as a data stream
that is directed through a set of configurable filter components, as shown in Figure 2.4. Filtering
can be done at both the producer end and the consumer end.

Content
Selection

Receiver

Channel

Broadcaster

Analysis
Interaction Billing Billing

Figure 2.4: Filtered data-stream view of a channel

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 16

Channels model a 1:n relationship between a producer and its consumers. Additionally, a con-
sumer can communicate information back to a broadcaster or information source via a backchan-
nel. This“up-stream” communication is a 1:1 relationship between a consumer and a producer.
It is usually done in a client-server style and thus is conceptually “outside” of push systems.
Frequently a lighter version of the communication facilities or a different medium is used; a
software update channel, for example, may have an HTTP-based backchannel. Nevertheless, the
more closely and seamlessly a channel and backchannel are integrated, the better. Backchannels
can exist on a per-channel basis, for a set of related channels, or for the full set of channels
available from one producer.
Additional channel properties are given in [180].

2.2.2 Broadcaster

A push system has at least one broadcaster component that offers channels and distributes data to
the subscribers of the channels. For small-scale intranet applications, one dedicated broadcaster
may suffice. For large-scale applications that provide channels to thousands of subscribers a
single component will not do. Scalability requires a specialized broadcasting infrastructure.
The broadcaster itself may be distributed. A set of broadcasters may provide the channels and
exchange updates among themselves to stay in sync. The broadcaster may be organized accord-
ing to a standard distributed data management scheme such as primary copy replication or data
partitioning [22].
Typical configurations include:
Primary broadcaster: One broadcaster is the single source of the channel data and distributes
information to a hierarchically organized set of other broadcasters (repeaters). Repeaters do
not add information to a channel. They serve solely as a means of bringing data “closer” to
consumers and achieving scalability.
Partitioned broadcasters: A set of active broadcasters provides parts of the data and function-
ality. To the consumers, however, this system provides the illusion of a single entity. Internally, a
synchronization strategy must be used. Such architectures can vary considerably in the type and
degree of distribution and add another magnitude of complexity.
Simple broadcasting: The broadcasting system does not actively manage the transport and
distribution of channel contents but relies fully on functionalities of the transport system. The
simplest pattern is a single broadcaster that relies on a caching infrastructure inside the trans-
port system. Most currently available products follow this approach. Although it may seem
unrealistic, it has already been applied successfully by other systems like the world-wide web.
Real systems may be combinations of these approaches. The primary goal is to enable receivers
to access channels from a broadcasting component that is “close” to them in some respect (band-
width, delay, etc.) to minimize network traffic, reduce delays, and allow scalable systems.
See [26] for additional discussions on strategies of distributed event dispatching that can also be
mapped to push systems.

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 17

2.2.2.1 The Notion of Broadcasting

So far the notion of broadcasting in the context of push systems has only been used informally.
Broadcasting in a large-scale push system cannot rely on a medium that offers broadcasting
per se (e.g., an Ethernet LAN). For Internet-scale push systems there is no broadcast address
concept that could be exploited. Yet the scalability of a push system is in fact determined by the
broadcasting strategy. The broadcasting strategy tries to balance the tradeoffs between reducing
network load and reducing user response time: The broadcaster can reduce user response time if
it pushes the data to the receiver node before the user accesses the data, but if the user does not
access the data, network bandwidth has been lost. Several standard techniques may be used to
implement a broadcasting strategy.
Multicast. Push systems can exploit existing multicast infrastructures (e.g., MBone [87]) and
protocols (e.g., RTP [150], NSTP [30]). This greatly simplifies the architecture and implementa-
tion of push systems and has several efficiency benefits. However, these resources are accessible
by only a limited number of end users.
Client pull. At regular, user-definable intervals, the receiver checks with the broadcaster whether
the receiver’s view of the channel is still consistent or needs to be updated. This pattern turns the
concept of broadcasting upside-down: The initiative changes from producer-side to consumer-
side, which is an apparent contradiction to the notion of push systems. However, most of the
availablepush systems actuallypull at the dissemination infrastructure level. With the client
pull scheme, complete data accuracy cannot be achieved. High data accuracy and data freshness
(“immediate” notification) can only be achieved at the cost of high pulling frequencies, which
produce high network traffic and possibly a large number of unnecessary messages if the channel
data does not change frequently. Consistency requirements of some channels, on the other hand,
may be rather relaxed, and pulling interval of anywhere from 10 minutes to a day may suffice.
Additionally, messages that are pulled may be rather small (some 100 bytes). The remaining
drawback of client-pull techniques is notification (timeliness of data): How can the receiver
be notified of high-priority changes that occur during its pulling interval or of situations which
require immediate attention? Despite these shortcomings, pulling is frequently used in push
systems since it is robust, simple to implement, allows for off-line operation, and scales well to
large numbers of subscribers.
Server push.The broadcaster actively sends content to its subscribed receivers. This solves the
freshness problem of pulling but opens up new problems. The main issue that appears in several
ways is scalability: Contacting receivers sequentially does not scale even for moderate numbers
of subscribers. It would be too time-consuming and would leave receivers with different views
of channel information depending on their ordinal number in the pushing process. Therefore a
specialized transport infrastructure must be used. For example, organizations can announce a
dedicated host that receives data from channels and handles further distribution inside the or-
ganization’s network. Server push broadcasting also requires a directory of subscribers to be
contacted. That imposes additional administration since it must be maintained and kept con-
sistent, and it is a single point of failure. For client pull broadcasting, such a directory is only
optional. Moreover, receivers may not be online all the time. This coherence problem must
be compensated by re-broadcasts, which adds considerably to the broadcaster’s load and com-

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 18

plexity. Compared to client pull, the scalability of server push is lower—or requires much more
effort in the transport system to achieve similar scalability—but provides better consistency and
timeliness of the channel data.
Hybrid approaches. Hybrid approaches combine the advantages of server push (freshness,
consistency) and client pull (scalability): Consumers are notified of the availability of new data
via a push mechanism (small messages) while the client pulls to transfer the actual data (possibly
large amounts of data). This approach is taken in the Minstrel project [67] which is described
in Chapter 4: The broadcaster pushes a “sample” (description of the available data, a small-size
sample of the real data, and administrative data) to the subscribers of a channel; based on this
information the consumers may request the actual data as a “shipment” from the broadcaster.
A similar approach is already used by several portal sites (such as Netscape’s In-Box Direct
service [122]): Users sign up with a mailing list and receive mails at regular intervals (push
part); these mails typically hold an HTML document that is displayed as in a browser when read
with an appropriate mail tool. The HTML document holds links that the user can click on to
retrieve the corresponding documents (pull part).
An issue that is closely connected with the broadcasting algorithm is the channel update strategy.
The question is how changes in the data are transmitted to the receiver. A plain replacement
strategy would cause high network traffic in the face of possibly minimal changes in the data. A
better way to deal with updates is the use of a differential/incremental strategy. This conserves
network and computing resources and remedies the problems of network partitions and offline
operation.

2.2.2.2 The Notion of Subscription

To receive a channel the client usually has to run through a subscription process beforehand.
Thus the connection phase of client-server systems is replaced by a subscription phase.
The subscription process usually requires the user to look up a channel directory (channels +
descriptions) to select channels, give some personal information, and provide a profile of inter-
ests. The channel directory can be made available as a default channel of a push system. Besides
content selection the broadcaster may need subscription information to learn about the receiver’s
destination address, type of network connection, etc.
The subscription may include a negotiation phase to determine the receiver’s access point to
channels. If only a single broadcaster without a transport system exists, this is accomplished
easily. In all other cases, however, the receiver should be directed to its “closest,” “fastest,” or
“best” access point. In a hierarchical transport system, for example, this could be the nearest
repeater or cache. This decision can be made dynamically or based on static configurations.
Existing protocols, such as the Service Discovery Protocol [75], can also be exploited for this
purpose.
Apart from such details as the distribution address, information about the subscriber is not neces-
sary for any technical reasons. Channel suppliers and broadcasters, however, frequently require
subscription information for economic purposes. They want to establish long-lasting relation-
ships with their customers and need to fund their channels. This frequently means carrying
advertising, as done, for example, by PointCast (see Section 3.3.4). Since pricing of advertise-

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 19

ments depends heavily on the range and readership of a medium, such information is important
for the information supplier. Whether a push system can provide support for advertising, may
determine its commercial success.
Nevertheless, privacy and security of subscribers must be guaranteed in such a setting. Users
must be able to specify which parts of their private subscription information can be used or
forwarded to other companies. Additionally, it is important to store user information securely by
employing appropriate encryption methods.

2.2.3 Receiver

If we disregard the transport medium, the broadcaster and receiver interact directly. The receiver
has two main components: channel access and user interface. The receiver is the interface that fa-
cilitates interaction between users and channels. A receiver can subscribe to and receive multiple
channels from multiple broadcasters. It obtains channel data from broadcasters and presents it to
the user (the user could be human or an application). It allows the user to manipulate, control,
and customize the user profile, the received information, and the channels. Depending on a chan-
nel’s defaults and the user’s settings, the receiver is responsible for updating (received/requested)
channel content, expiring channel data, and freeing disk space on demand.
Finding of channels can be implemented in several ways. The receiver can query a channel
directory or a specialized directory channel that is automatically subscribed. Besides standard
channels, there can be specialized maintenance channels that fulfill functions such as maintaining
and updating the push system’s software components themselves, such as the receiver. Updates
of the receiver software are pushed automatically as soon as new versions become available
and are installed on the basis of the user profile. Thus users would only have to do an initial
setup and could use new software versions immediately. This possibility relates push systems to
configuration management approaches like [62] and [63].
Push systems are also related to mobile code systems since channels can distribute executable
code. In analogy to applets the notion of apushlet is introduced: executable code and data which
is intended for execution at the receiver. Pushlets should execute inside a user-configurable envi-
ronment provided by the receiver. This imposes new requirements for the receiver. Code must be
authenticated (code signatures), the receiving system must be protected from malfunctioning or
malicious code that could endanger the receiving system’s integrity, and the receiver must sup-
ply a user-configurable authorization scheme that can be tailored to the user’s requirements and
a specific pushlet’s needs. Problems and techniques in this area are currently being investigated
[55, 108].

2.2.4 Transport System

So far we have completely disregarded the transport system. In a large-scale setting, however, a
dedicated transport system is necessary to make a push system scalable and operational, i.e. re-
sulting in decreased network bandwidth consumption and increased availability and responsive-
ness.

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 20

A key design issue for the transport system is access transparency and scaling transparency to-
wards the components and connectors described in the previous sections. Transparency, how-
ever, can only be achieved to a certain extent. Both the broadcaster and the receiver need certain
knowledge of the transport system to be able to use it. For example, they must know about the
concept of repeaters, so that the broadcaster can feed them and the client can connect to a “close”
one. This influence, however, should be minimized.
The main protocols in a push system can be derived from the previous sections: subscription
protocol, channel protocol (differential updates), backchannel protocol. The transport system
should be as transparent as possible towards these connectors.
The components of the transport system can be modeled by a so-calledbase distribution compo-
nent (BDC). A BDC is a generic component that acts as a broadcaster towards receivers and as a
receiver towards broadcasters. This includes understanding the protocols concerned.
A BDC can exist in several configurations:
Repeater. A repeater is preloaded with the channels’ contents and offers the same data as the
broadcaster but is “closer” (in terms of network properties or some other metrics) to the receiver.
Cache. A cache is like a repeater which is loaded dynamically rather than being preloaded
(on-demand repeater). A cache loads data only after it has been requested by one of its clients.
Proxy. A proxy facilitates access to channels where broadcasters and receivers cannot com-
municate directly, e.g., receivers may be located behind a firewall. Every proxy has a domain
translator sub-component that translates back and forth between the generic proxy functional-
ity and the application domain functionality. In the case of a firewall, for example, it translates
between the firewall requirements and the push system requirements.
BDCs are organized according to some pattern inside the transport system, for example in a
hierarchical structure like a tree. There may be specialized protocols for data exchange between
the BDCs to further improve scalability and responsiveness. These protocols depend on the
concrete architecture of the transport system and are invisible outside.

2.3 Requirements for widespread Use

The push paradigm has been presented as a programming or architectural model for distributed
systems and applications. Such a treatment identifies a number of interesting and important
issues for further investigation, including: system-level design and integration issues, business-
oriented issues, and multidisciplinary issues that reach beyond computer science and software
engineering.
This section presents the main issues that should be addressed in order for push systems to
become usable on a wide scale. These issues are also relevant to any architectural model to be
used on an Internet scale.
The essential underlying design goal for any distributed system isscalability. One of the key
issues for a push system is how to manage a large number of subscribers and satisfy their require-
ments in terms of freshness of information, customization, tailoring, etc. The transport system
must minimize resource consumption and network traffic, and distribute computational load. A
key requirement for achieving this is cooperation among the transport system components and

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 21

between the different organizations running them. As an example of such an organizational
structure, repeaters and caches could be collocated with Internet service providers.
The component model of Section 2.2 supports scalability by clearly separating producers from
receivers by an intermediate transport system. A standard structure for the transport system
based on caching and replication was shown. As will be shown in Section 3.3, the model can
be used to accurately describe the structure of existing push systems and to analyze and com-
pare the important design decisions in those systems. But analyzing the scalability of a push
system is far from straightforward because it depends on many criteria and many design goals:
number of broadcasters, receivers, channels; amount of data on channels; frequency of updates;
network latency and bandwidth; and the amount of common subscriptions to certain channels.
The component model of Section 2.2 can be used as a basis for developing a scalability model
and reference implementations for push systems.
The goal of the Minstrel project (see Chapters 4 through 6) is to develop such a reference imple-
mentation using the component model as an architecture for developing plug-compatible com-
ponents for push systems. Preliminary analysis of the benefits are promising. For example, the
worst case for sending a 3.5kB message to 10,000 receivers over a typical mixed-bandwidth net-
work is around 41 seconds, while with standard, non-optimized email this would take over 1
hour. The average delay would be around 13 seconds (see Section 4.6). These figures only take
into account bandwidth delays, since the processing load that contributes to the delay can only be
estimated (and for Minstrel would be distributed within the transport infrastructure). They still
provide a good indication towards performance figures, however, because bandwidth is currently
the most limiting resource.
Another key performance issue at the design level involves the choice of locations for repeaters.
Sometimes one has no control over this choice, but in many cases it can be influenced. For
example, on private (intra-) networks the network provider has complete control over the choice.
More interestingly, on the Internet, using Internet service provider sites as repeaters seems to be
a promising choice. But this issue, as in many other Internet-related systems, raises the question
of payment for services.
Indeed,payment methods and business models have to be addressed by any commercial Internet
system. This implies that push systems must be able to integrate supporting payment models.
Because of the existence of the subscription phase, standard solutions such as macro-payments
or flat fee systems (e.g., monthly charge to credit card) may be used. But just as push systems
completely reverse the pull model, they also change the traditional payment assumptions. The
sender may be interested in charging for all the data it sends out, especially since the receiver
has subscribed to the information explicitly, but the receiver is only interested in paying for what
is actually read. A standard push architecture supports the investigation of different payment
schemes such as micro-payments and pay-per-use. Minstrel includes a generic payment model
and standard components for payment schemes (see Section 6.2). Figure 2.5 gives the model for
a pay-per-view interaction in Minstrel.

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 22

8 1

3

Control Unit

Legend

Minstrel Receiver

Payment

Control and data

6b

Receiver Wallet

Pay for information

9

10

Presentation Unit

Payment Server

5

7

4

Offer (oid)

price
6a

Push Vendor

2

Receiver

Broadcaster

Figure 2.5: Pay-per-view in Minstrel

Say the push vendor has offered some information the user is willing to pay for (1–2). Then the
following steps are taken: the user issues a request for the offered information which includes a
payment handle, for example, the unique ID of the offer (3). This handle is given to the user’s
wallet which is instructed to pay (4–5). If the payment succeeds, the payment server sends a
receipt to the wallet which in turn notifies the component that processes the user’s request (6a,
7). Concurrently, the push vendor is notified and registers the receipt (6b). Now the original
user request together with the receipt is sent to the push vendor which checks the receipt and
returns the requested data (8–9). Finally, the received data is presented to the user (10). This
payment model, which is composed around the notion of a receipt, can also be applied for the
implementation of other payment schemes, including time-based or flat fee schemes. A detailed
description of Minstrel’s support for payment is given in Section 6.2.
Another business-related issue issecurity and authentication. If high-quality information pro-
vi-ders want to charge users that receive data via a push system, users must be sure that the
information they get is authentic, i.e. fresh, unmodified, and from an identifiable source. This
issue is important in typical push application domains like news agencies, financial information
services, and other businesses for whom reliability of data is paramount. Technically, it requires
the availability of authentication frameworks and certificate authorities on a large scale (X.500,
LDAP). For confidentiality of the data itself, the push systems must support encryption meth-
ods. Full integration into push systems and “chain of trust” infrastructures—for example, all
sites running repeaters must also be trustworthy—still await Internet-scale deployment. Push-
lets raise another security problem: How can executable content received from network sources
be executed in a safe yet “useful” way, i.e., what accesses to local resources are allowed? The

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 23

receiver must provide a flexible security architecture to protect the client from malicious code,
i.e. prohibiting intrusion, eavesdropping, or other damages.
As event-based systems, push systems can also facilitate software release management [168],
and software deployment and configuration management [62, 63]. Deployment and maintenance
of software raises similar security issues as it adds another magnitude of difficulty to the security
problems that must be considered by a push system. These problems are similar to the ones that
must be addressed by mobile code systems [83].
An interesting research issue involves the application ofsoftware configuration management
techniques toinformation configuration management. A problem that concerns the business
community in moving from traditional publishing businesses to push-based publishing on the
world-wide web is the packaging and versioning of information. When data may be changed
dynamically by sporadic updates, the receiver needs to be able to refer to specific versions of the
“documents.” With documents that are published at discrete time intervals, such as newspapers,
the version numbers can be easily assigned. But versioning of live documents poses many open
problems that are currently being addressed in business-oriented research.
For widespread use of push on the Internet,standard protocols will be necessary. In particular,
protocols and interfaces for channel definition, subscription, and access will be needed. At the
moment, the available push systems are incompatible and cannot interact. Thus users and infor-
mation providers have to install dedicated software for each system, and information needs to be
tailored and structured explicitly for every system supported. A unified framework/standard as
exists for the Web is necessary to make push systems a successful technology.
Moreover, aquality of service (QoS) concept for push systems is needed to provide qualitative as-
sessment of such systems. This would support qualitative comparison of push systems and allow
a user to choose a push system that fits his/her requirements. The model defined in this chapter
provides a basis for comparing push systems structurally—as will be done in Section 3.3—but
does not define the QoS. However, it provides a good starting point for a QoS model, since a
wide range of QoS properties can directly be inferred from it.

2.4 Summary of the Model

Even though there are many documents on the world-wide web and in electronic magazines about
push systems, these are mostly at the user and application level, with little systematic treatment
of the design and research issues. This chapter has presented push systems as an architectural
model for distributed systems and interactions and has positioned it with respect to client-server
and event-based architectures. The subscription phase of the interaction model is the key to the
scalability of the push model and is applicable to many distributed applications for which client-
server computing is deficient. This chapter has presented a communication and component model
for push systems that may be used to study, analyze, and contrast different implementations of
push systems (which will be done for six prominent push systems in the next chapter). Using
the concepts of information source, receiver, broadcaster, and transport system, the component
model separates the issues of content management, channel management, scalability, and user-
interface management into different components. The component model may also be used as a

CHAPTER 2. A COMM. AND COMP. MODEL FOR PUSH SYSTEMS 24

basis for a reference implementation of push systems. Moreover, the main issues were presented
that need to be tackled by push systems: scalability, network traffic, security, authentication, and
electronic commerce. The Minstrel system described in the second part of this thesis addresses
all of these issues and is a proof-of-concept implementation of the architectural model.

Chapter 3

Related Work

The concept of actively disseminating information is not new and not restricted to the push area.
On the contrary, it has always been one of the premier goals of distributed computing systems.
Since the early days of the Internet, services like electronic mail and Usenet news have been used
for this purpose. With the development of the Internet and its underlying network infrastructure,
many additional approaches for this application domain have been devised. The most prominent
and recent of these that are related to push systems are multicast infrastructures such as the
MBone [40], event-based systems, and mobile code systems.
This section presents concepts and approaches related to push systems and in particular to the
Minstrel approach described in Chapters 4 through 6. It starts with a brief description of existing
multicast infrastructures and protocols that can be exploited by push systems or have been de-
vised as push-like systems themselves in Section 3.1. Section 3.2 then considers electronic mail
and Usenet news as still valid and widely used alternatives to the push approach. In Section 3.3
six prominent push systems are presented and classified on the basis of the communication and
component model of Chapter 2. Since a great variety of push systems exists, this comparison
has been restricted to the most relevant ones. Section 3.4 briefly overviews other interesting push
systems. Closely related to push systems are event-based systems, which received much atten-
tion in the research community recently. Section 3.5 compares event-based systems with push
systems and overviews event-based systems to define the design space of such systems. The final
section briefly addresses the relations between push systems and mobile code systems.

3.1 Multicast Infrastructures and Protocols

Multicast infrastructures aim at a communication pattern similar to push systems. In contrast to
standard networking information infrastructures that exhibit a 1:1 relation between sender and
receiver, they target a 1:n or even m:n (bi-directional) relation between sender(s) and receivers.
The availability of such communication primitives at the networking level greatly simplifies the
dissemination problem at the application level (e.g, for a push system). Push systems can ex-
ploit multicast infrastructures to notify consumers of the availability of new data or distribute the
data itself via multicast. Several approaches which exploit multicast infrastructures, for exam-

25

CHAPTER 3. RELATED WORK 26

ple, WebCanal (see Section 3.3.5) or Keryx (see Section 3.5.1.2), will be described later in this
chapter.
Multicast simplifies the architecture and implementation of push systems and has several effi-
ciency benefits. Many of the issues which must be addressed by the broadcasting process and the
transport system can be delegated to the networking level if multicasting is available. Multicast
protocols for the Internet scale reasonably well and if used with a push system may even make
the push system’s transport system obsolete. Many multicast protocols include real-time facil-
ities that can be exploited to guarantee timeliness of data and allow for streaming multi-media
contents of channels. At present, however, only a limited number of users have access to such
resources.

3.1.1 MBone

The multicast backbone (MBone) [40, 87, 99] is a world-wide virtual network that implements
multicasting. Multicasting means that one host sends to a group of hosts. The following descrip-
tion is based mainly on [40] and includes some excerpts that are not explicitly marked.
Multicast groups are modeled by special IP addresses: On the Internet, the IPv4 address range
from 224.0.0.0 to 239.255.255.255 is reserved for multicast addresses. When a host wishes to
join a multicast group represented by one of the IP addresses in this range, it issues anInternet
Group Management Protocol (IGMP) request. If a host joins a multicast group, this means
that it wishes to receive from and/or send to that group. A specializedmulticast router which is
responsible for the host’s subnet will then inform other multicast routers so that multicast packets
are sent to and received from the host’s subnet.
This can be viewed as a “subscription phase” for multicast packets. However, this notion of
subscription is different from a subscription in a push system. With multicasts over MBone, the
sender does not know who will receive its packets. The sender simply sends to an address, and it
is up to the receivers to join that group (i.e., the multicast address).
MBone is composed of networks (calledislands) that support multicast [40]. An example could
be Ethernet LANs that support multicast because they use broadcast packet distribution, which
also comprises multicast. Each island has a dedicated host that runs the multicast routing daemon
mrouted. These daemons that virtually represent islands are connected with one another via
unicasttunnels (1:1 relation). Figure 3.1 depicts this configuration.
Each island consists of a number ofclient hosts (C) that are connected via a local network and
onegateway host (M1, M2, M3) runningmrouted. The gateway hosts are connected via point-
to-point tunnels. Sending a packet via this infrastructure works as follows. A client sends a
packet to a multicast address. Via the local network this packet is delivered to the gateway host
that is responsible for this subnet.mrouted will consult its routing tables and decide over which
tunnel(s) to send this packet in order to reach all members of the multicast group. Themrouted
at the receiving end of a tunnel will check whether clients on its subnet are subscribed to the
packet’s multicast group (multicast address) and if clients are indeed subscribed,mrouted will
forward the packet to the local subnet. It also decides whether the packet has to be forwarded to
any other tunnels.

CHAPTER 3. RELATED WORK 27

C

C

C

C

C

M3

C

M2

C

C

Internet

M1

Figure 3.1: MBone architecture (islands and tunnels) [40]

To summarize, MBone provides multicasting by connecting multicast subnets via point-to-point
connections and offering a routing facility that handles the distribution of packets to all receivers.
MBone’s islands are not managed centrally but coordinated via mailing lists. All traffic in MBone
uses the User Datagram Protocol (UDP), though most MBone applications are based on the Real-
Time Transport Protocol (RTP) [150] which is built on top of UDP. These protocols mainly target
streaming data like audio and video, where occasional packet losses can be compensated. For
the transmission of data that requires accuracy, such as web pages or program code, one needs
additional protocols such as LRMP (see Section 3.3.5) that provide reliable and ordered packet
delivery services.

3.1.2 Systems based on Multicast

Many tools exploiting MBone’s functionality exist, including audio and video conferencing tools,
real-time audio and video, whiteboards, group messaging tools, image multicasting facilities, and
push-like applications. Among these areliveCaster [98], a tool to multicast MP3 audio but also
short textual messages (receiver software is available, too), andmultikit [100], a distributed mul-
ticast directory browser, that can be used for announcements.multikit provides an interactive
program guide for Internet multicast services that also allows the user to create own announce-
ments and organize them.
Several systems similar to push systems use MBone for real-time distribution of HTML pages.
webcast [117] enables a group of Mosaic web browsers [119] to share a set of web documents
via the MBone. It exploits Mosaic’s Common Client Interface (CCI) [118] and uses the Reliable
Multicast Protocol (RMP) [157, 177] for distribution.
mMosaic [29] is a tool for sharing web pages over the MBone. It allows transmission and in-
teractive use of web pages based on a version of XMosaic that is extended with multicasting
functionality. This extended version is used as both receiver and sender.
mWeb [133] is a framework for distributed real-time web presentations via the MBone: First,
a set of web pages is multicast to clients via the Scalable Reliable File Distribution Protocol

CHAPTER 3. RELATED WORK 28

(SRFDP); then, when the presenter steps through this list of pages, all clients are synchronized
via the WebDesk Control Bus to display the relevant page that is already available at the client’s
site.
MultiCast Mosaic [165] is a tool for multicasting HTML slides over the MBone. It is based on a
client-server model: A master repeatedly multicasts a package of slides to its clients in the hope
that at least one error-free copy is received by all remote sites. Later, when the master loads
one of the pages in the package, the relevant URL is multicast to the clients. On receipt of this
notification, the clients display the corresponding page from their received package.
An interesting approach is suggested in [143]. It takes a different view of the notion of push
and suggests that popular and frequently changing web documents should be distributed using
continuous multicast push (CMP). The authors argue that popular web sites create “hot spots”
on the Internet where the same data is transmitted over the same links again and again. While
for rather static data this problem can be remedied with caches, this is not possible for frequently
changing data. Therefore, short-lived information such as stock market data should be delivered
directly to consumers using CMP.
Several push systems directly or indirectly rely on multicasting facilities, since it alleviates the
requirements the push system has to fulfill in the broadcasting process. One such push system is
WebCanal [95, 96], which is described in Section 3.3.5.

3.1.3 Real-Time Transport Protocol

The Real-time Transport Protocol (RTP) [150] provides end-to-end transport services for trans-
ferring real-time data over multicast or unicast networks. If the underlying network supports
multicast, RTP can exploit this functionality to provide data transmission to multiple destina-
tions. RTP is independent of the underlying network. It typically runs on top of UDP and
exploits UDP’s multiplexing and checksum services, but can be used on any packet-switching
network such as ISDN or ATM networks. Many MBone applications use RTP and it is also used
indirectly by many push systems and event notification services that are based on the MBone.
RTP mainly targets streaming data like (interactive) audio and video where occasional packet
losses can be compensated.
RTP’s services include payload identification, sequence numbering, timestamping, and deliv-
ery monitoring. It does not ensure timely delivery and does not provide quality-of-service-
guarantees. RTP provides “best effort” transmission where packets can be lost without re-
transmission and packets can be delivered out of sequence. These drawbacks, however, can
be compensated by higher-level protocols that exploit RTP’s packet sequence numbering and
other services.
The RTP RFC [150] actually defines two closely related protocols: RTP to carry the payload
information and the RTP Control Protocol (RTCP) that conveys meta-information about an on-
going session, such as information about the participants and how well they receive the data. On
the basis of this information, senders can be requested to adapt their transmission rates to the
current packet loss.
Because of its best-effort approach, RTP cannot be used directly for push or event-based systems.
For transmission of data that requires accuracy, such as web pages, program code or events,

CHAPTER 3. RELATED WORK 29

higher-level protocols are necessary that provide reliable and ordered packet delivery services.
However, RTP can be used as a substrate for such higher-level protocols.

3.1.4 Reliable Multicast Protocols

For push and event-based systems, reliability is a key issue. Unlike with continuous data, or-
dered and reliable delivery matters. Packet losses cannot be compensated. This section presents
some reliable multicast protocol approaches that have been devised for push systems and similar
services or can be exploited for this purpose.

3.1.4.1 Scalable Reliable Multicast

Scalable Reliable Multicast [45] is a reliable multicast framework for application-level framing
and light-weight sessions. SRM is robust and efficient and scales well to large networks and
large sessions. The framework offers packet loss detection and repair and can thus be used for
applications that require a reliable data delivery service.
SRM relies on three main concepts to provide a reliable multicast service:heartbeats, negative
acknowledgments (NACKs), andrepairs. Each member periodically sends out a heartbeat with
the sequence number of the latest packet. This information can be used to detect packet loss. If
a packet loss is detected, a NACK packet is sent to report the packet loss to all participants. If a
participant receives a NACK, it sends the lost packet to the group as a repair. To accomplish this
each participant caches the latest packets. To avoid NACK and repair “explosions,” the algorithm
uses random timers at every participant.
SRM has been prototyped in a distributed whiteboard application. It scales well and has been
extensively tested on a global scale with sessions of up to 1,000 participants.

3.1.4.2 SRRTP

The Scalable Reliable Real-time Transport Protocol [132] (SRRTP) incorporates parts of the
SRM framework into RTP by extending both the RTP and RTCP protocols. Its intention is to
provide a scalable and reliable multicast data transmission facility for transporting a data flow
reliably over the transport protocols supported by RTP.
SRRTP is based on packets. To support distribution of higher-level aggregations of packets
such as files, which is the typical granularity for distributing information via push-like systems,
an additional protocol, the Scalable Reliable File Distribution Protocol (SRFDP) is proposed.
SFRDP exploits SRRTP and can reliably send files, groups of files, and meta-information about
these files.
SRRTP and SRFDP have been deployed in the mWeb application [133] described in Section 3.1.2.

3.1.4.3 Reliable Multicast Protocol

The Reliable Multicast Protocol [157, 177] (RMP) provides a totally ordered, reliable, atomic
multicast service on top of an unreliable multicast service such as IP multicasting. It offers a

CHAPTER 3. RELATED WORK 30

wide range of delivery guarantees, including agreed and safe delivery, that are scalable on a per
packet basis. Both a publisher/subscriber and a client/server model are supported for message
delivery.
RMP provides an implicit naming service that maps textual group names into communication
groups. To increase scalability it allows processes that are not members of a group to send mes-
sages to and receive messages from the multicast group (multi-RPC mechanism). RMP is based
on a token ring technique which makes it not well-suited for wide area network applications. It
is used in thewebcast system [117] described in Section 3.1.2.

3.1.4.4 Light-weight Reliable Multicast Protocol

The Light-weight Reliable Multicast Protocol [94] (LRMP) is a general purpose reliable transport
protocol over unreliable underlying network protocols. It is based on RTP and a modified version
of SRM. The main features it offers are loss repair, ordered packet delivery, and adapted rate-
based flow control.
To provide better scalability, the loss-repair algorithm of LRMP uses local loss repair: Only
the sender is allowed to send repair packets. This contrasts with SRM, where all participants
are involved in the repair process. To provide in-order packet delivery, out-of-order packets are
retained in the cache until the correct sequence has been re-established (repair packets). The flow
control feature of LRMP allows it to keep an acceptable speed for the majority of receivers and
tries to satisfy slower receivers when possible. The transmission rate is dynamically adapted to
suit the available network bandwidth.
LRMP is deployed in the WebCanal [95, 96] system that is described in Section 3.3.5.

3.1.4.5 Multicast File Transfer Protocol

StarBurst’s Multicast File Transfer Protocol [113] (MFTP) is intended to provide an efficient and
reliable transfer facility for data organized as files from a sender to multiple receivers. It has
been optimized for file delivery rather than providing a generalized multicast transport layer and
is not intended for real-time or streaming data. This goal makes it well-suited for the applica-
tion domain of push systems, where the typical distribution units are files rather than packets.
Additional design goals are simplicity to increase reliability and scalability to high numbers of
users.
MFTP is based on UDP and consists of two parts: an administrative protocol for group and
session maintenance (Multicast Control Protocol) and a data transfer protocol (Multicast Data
Protocol) that is in charge of sending files simultaneously to members of a group. MFTP can
operate with networks that support broadcast or multicast at the data link layer such as LANs and
multicast IP networks. If multicasting is not available, “application layer multicast” is employed.
This means that broadcasting is used where available (e.g., in a LAN) and sequential unicast
where it is not (after an MFTP host has applied filters so that messages get sent only to the
members of a defined group).
The sender (server) in an MFTP setting continuously sends data without waiting for responses
from receivers (clients). Clients only send responses for data transmission units (DTUs) that they

CHAPTER 3. RELATED WORK 31

did not receive. MFTP supports checkpoint/restart functionality so that an interrupted transfer
can be resumed without having to retransmit the previous data. A maximum server transfer rate
can be specified that allows limitation of the bandwidth used by MFTP, so that other applications
can use the remaining bandwidth.
MFTP is deployed in StarBurst’s OmniCast content distribution application and is used by sev-
eral push systems, such as BackWeb (Section 3.3.2) and Microsoft Webcasting (Section 3.3.3),
as a multicast transport medium. .

3.2 Alternative Approaches

With a relaxed definition that focuses on the underlying publish/subscribe model, there are sev-
eral systems the can actually be viewed as “push systems.” This section briefly contrasts such
systems with true push systems.

3.2.1 Electronic Mail

The primary functionality of push systems is information dissemination. Electronic mail [24]
was one of the first services on the Internet that was deployed on a large scale for this purpose. It
is still one of the basic and most important services of the Internet. Initially, email was intended
for the transmission of limited-length text messages to one or a few recipients. In the meantime,
email has been enhanced in many respects, so that it can now be viewed as an approach worth
comparing with push systems.
The introduction of mailing lists, which was a simple improvement to the original design, pro-
vided a powerful tool for establishing bi-directional, one-to-many relations. Efficient tools for
creating and automating the maintenance of mailing lists, such as Majordomo [19], have since
become available. These tools typically facilitate the subscription to and unsubscription from
mailing lists which previously had to be done manually by the list administrator (Some moder-
ated mailing lists are still managed in this way).
Majordomo, as a representative example of such tools, also provides further administrative func-
tions to minimize human intervention in the maintenance of a mailing list. It allows users to
perform some typical administrative operations by sending mail with the according commands
to a special, typically list-specific, mail address. Besides subscription and unsubscription re-
quests, these functions include automatic responses to common user requests such as the topic
of a certain mailing list, a “directory” of mailing lists served by a specific Majordomo site, infor-
mation on the subscriptions a user already has, or simply automatic help messages which explain
the commands and functionalities of Majordomo. Additionally, Majordomo provides functions
that help the list administrator (list owner) to monitor his/her mailing list(s) or approve the opera-
tions requested by the users (e.g., subscription). This setup provides the typical publish/subscribe
interaction pattern of a push system.
As noted above, mail was originally intended for text messages of limited length (e.g., 1,000
characters or less as specified in [137]). This forced users to convert non-textual content into a
7bit US-ASCII text representation and split the content over several mails. Such drawbacks were

CHAPTER 3. RELATED WORK 32

overcome with the introduction of the Multipurpose Internet Mail Extensions [46, 47, 48, 49,
114] (MIME). MIME mails can transport arbitrary content of (conceptually) arbitrary size.
MIME mail can be exploited to make electronic mail look even more similar to a push system.
Via appropriate MIME types, executable content can be transported to a receiver, unpacked there,
and executed at the receiver’s site. Several approaches have been devised to accomplish this, for
example D’Agent [57] (formerly known as AgentTcl).
Email can also provide authentication and security as available in many push systems. Based on
the MIME standard, the S/MIME standard [31, 37, 38, 73, 74, 139, 140] defines MIME docu-
ment types and a set of security services to provide message authentication, message integrity,
and non-repudiation (using digital signatures) and privacy and data security (using asymmetric
encryption).
For authentication purposes mails can be signed: The sender runs a cryptographic hash function
over the content to be signed, encrypts the result using his/her private key and attaches the re-
sulting signature to the mail. The receiver can then run the same hash function over the received
content and compare it with the attached signature that s/he first decrypted using the sender’s
public key. To get the sender’s public key, the receiver queries a repository (e.g., a web site), that
provides public keys. To provide privacy and data security the content of the message can also
be encrypted (using an asymmetric encryption method). This framework can be used not only
with mail but also with other systems. It works with traditional mail user agents, provided that
both the sender and the receiver have an adequate cryptography tool, such as PGP [52].
The capabilities of email can be summarized as follows: Email in conjunction with appropriate
tools provides a 1:n bi-directional publish/subscribe infrastructure that is available on an Internet
scale, can transport arbitrary data, and has authentication and security services. Users can select
topics they are interested in by choosing and subscribing to an appropriate mailing list. Mailing
lists can be viewed as “channels”. Additional filtering can be applied with mail processing tools
like procmail [167]. This raises the question why people devised push systems instead of simply
using email—an existing technology already implemented on a global scale. The answer to this
question is not simple.
Most importantly, it is a matter of resources. While mailing lists facilitate the sending of mail
to any number of users, this can have serious impacts on resource consumption if the number
of subscribers is high. The typical mail distribution method [21] duplicates every single mail
sent to a mailing list for every receiver on the list. Suppose a 300kB image file is to be sent
to 1,000 receivers. Then this mail is duplicated 1,000 times and the resulting mails use up
300MB of disk space on the sender’s machine. This is the figure for one (!) mail. It may
get even worse if the mail frequency is high enough. Since the delivery of mails depends on
the reachability of the receivers, figures may add up rapidly. Additionally the processing load
and network bandwidth consumption for delivering the mails is placed solely on the sender’s
machine and network connection. As 300MB of disk space are required, 300MB of network
bandwidth will be needed to deliver all mails in the previous example. It may even be that a mail
is delivered multiple times to the same mail relay host if this host is in charge of handling the
mail exchange for several receivers. This shows another drawback of mail: Mail transport agents
such as sendmail [21] communicate directly without an intermediate distribution infrastructure,
which means that the mail server of the sender communicates directly with the mail server of

CHAPTER 3. RELATED WORK 33

the receiver. Figures provided in [86] for a 2,000-subscriber mailing list and 200 messages a day
show a total of 400,000 messages a day, which causes considerable computing load and delivery
delays of up to 5 days.
To overcome these problems, several strategies have been suggested. [86] proposes complex
configuration, tuning, and load balancing strategies with a high degree of parallelism—both in
terms of parallel sendmail processes and distribution of the queuing load over several machines—
and splitting large mailing lists into smaller ones based on delivery delays. This can cut the time
to deliver 95% of the mail queue from 5 hours to 3.5 minutes for the mailing list mentioned in the
example above. This solution was developed only after thorough analysis with newly developed
tools.
Similar techniques are suggested in [18]. Many operating system configuration and tuning mea-
sures were applied in this approach using newly developed analysis tools. Specialized load-
balancing and mail queue post-processing software had to be developed. It is interesting to note
that MX record optimization did not prove very helpful. MX record optimization means that
receivers are sorted according to their mail relay host. Thus only one copy of the mail is sent to
a relay host, with all the receivers serviced by this host listed in the address field. Unfortunately
it turned out that out of 5,000 individual subscription addresses, 4,000 were unrelated by host,
domain, or MX record.
Both [18] and [86] also include comprehensive analyses of the problems of large mailing lists.
However, it is unclear whether the suggested techniques can be generalized and deployed on a
large scale and be applied to other operating systems.
Additional problems are introduced by mail bounces and “spam” mails. A mail bounce means
that a mail was not deliverable and has “bounced back” to the sender. This may cause additional
loads on the mailing system. “Spam” mail means unsolicited mails that are sent to a mailing list.
To prevent such mails, sender addresses have to be checked before a mail is accepted for delivery,
which is not typically done by default. Even this precaution is not totally effective, since mail
headers are very easy to forge.
Forging mail headers connects to the issue of authenticity. While content can be signed and
secured, mail headers are not protected in any way. A mail message that has been received and
contains authentic data can easily be redistributed by anyone else. This is especially a problem
if data (e.g., stock data) is replayed, at a later time and with a forged sender’s identity (e.g., with
the identity of the original sender).
Also the mail transport system needs very proper configuration to be immune to attacks like de-
nial of service. Without a properly configured sendmail mail transfer agent, which, for example,
restricts relaying, “spammers” could use an unprotected mail relay host to distribute their mails
at the expense of the mail host’s owner.
A fully featured mail system as described above that would closely resemble a push system
depends on many individual components that all need to be configured very carefully. These
components must also work together properly to provide all needed functionality. Due to the
loosely coupled architecture that lacks integration of the components, this is fairly difficult to
achieve and may open severe security holes if not done with great care.
A functionality that is currently missing completely from electronic mail is support for payment
and e-commerce. So far no technology or system has been devised that would support payment

CHAPTER 3. RELATED WORK 34

by means of email. It is difficult to envision such a system in any case, because of the problem
of loose coupling mentioned above.
To summarize, electronic mail has most of the characteristics necessary for the implementation
of a push system on top of it but has severe drawbacks due to its decoupled architecture.

3.2.2 Usenet News

Usenet news [90] offers a worldwide distributed blackboard on top of other networks. It is di-
vided into hierarchical discussion forums, callednewsgroups, which are dedicated to defined
topics. Newsgroup topics span a wide range, from recreational activities to scientific issues or
computer-related topics. A rudimentary navigation facility among the available newsgroups is
provided by the hierarchical dot notation of newsgroups. For example, thecomp newsgroup
hierarchy deals with computer related topics,comp.lang narrows the focus of newsgroups to
programming languages, and the specific newsgroupcomp.lang.java focuses on the Java pro-
gramming language.
Users can access Usenet news, commonly denoted as news, via a news reader (client) which
provides the user interface and manages the interaction with the news server. Users cansubscribe
to a set of newsgroups based on their interests. After selecting a specific newsgroup, the user can
read contributions (articles, postings). The user may submit replies to articles or submit (post)
new ones. The news infrastructure then takes care of the worldwide distribution of the postings.
For focused discussions inside a newsgroup, postings can refer to each other by using article
identifiers provided by the news system. News reader programs exploit these relations for conve-
niently grouping the articles when presenting the contents of a newsgroup to the user (threading).
To reach a wider audience, articles can also be posted to a set of newsgroups (cross-posting)
which, however, should be used economically to avoid additional traffic and keep discussions fo-
cused to one newsgroup. For focusing replies to an article to a dedicated newsgroup, a so-called
follow-up newsgroup can be specified. This means, for example, that a user can post an article to
20 newsgroups and define a follow-up in the posting that news reader programs would recognize
and direct replies to that newsgroup only. Currently about 55,000 newsgroups are available and
news traffic and the number of newsgroups are growing steadily.
Inside the news system, news articles are distributed using the Network News Transfer Proto-
col [82] (NNTP). Figure 3.2 shows a simplified news network.
The news network consists of two classes of software: news readers (news clients in Figure 3.2)
and news servers. News readers provide the user interface to the news infrastructure, with which
the user can subscribe to newsgroups, read and post articles, etc. News reader programs interact
with the news infrastructure (consisting of news servers) via the Network News Reader Protocol1

(NNRP). Each news reader communicates with exactly one news server. Larger organizations
such as companies, universities, or Internet service providers typically run one centralized news
server for their users.

1NNRP is actually a subset of NNTP which is used by news clients. It is commonly referred to as NNRP and is
not a protocol of its own.

CHAPTER 3. RELATED WORK 35

Legend

News Client 4.1News Client 3.1 News Client 3.2

News Client 4.2

News Server 1

NNRP

News Server 2

News Server 4News Server 3

News Client 1.4

News Client 1.3

News Client 1.2News Client 1.1

News Client 2.3

News Client 2.2

News Client 2.1

NNTP

Figure 3.2: A simplified news network [59]

The worldwide virtual network (the so-called Usenet) of cooperating news servers is the distri-
bution infrastructure of the news system. The Network News Transfer Protocol [82] (NNTP) is
used to propagate articles among news servers. News servers receive articles from their clients
and other news servers. Propagation of articles is commonly referred to asnews feeding. Each
news server defines which newsgroups it wants to hold, i.e. which newsgroups its clients can
access, and has a statically configured set of servers that constitute its news feed.
An article posted by a client is transferred via NNRP to its dedicated news server, which is
the client’s access point to the news infrastructure. Each news server then keeps a copy of this
article and propagates it to its neighboring news servers. This propagation finally results in a
copy of each article on each news server in the infrastructure. Since no restriction exists on the
topology and distribution paths of the news system, servers may receive an article multiple times.
However, each article carries a globally unique identifier that allows the news servers to identify
such duplicates. Causal ordering of articles is not provided: The different distribution paths of
articles may cause that a reply reaches a news server before the article it refers to.
Through the setup described above, Usenet news exhibits several properties of a push system. It
offers topic-based subscriptions to newsgroups, which models the concept of channels in some
respect; it has an n:m relationship model that supports bi-directional communication of data to
a large number of users; and it is deployed and available on a world-wide scale. However, news
has several drawbacks, if it is considered as a push system.
The biggest problem of Usenet news is that it is no longer scalable without substantial re-
designs [59]. The increased amount of data that needs to be transferred by the news infrastructure
causes severe problems. An enormous redundancy is caused by copying each article of a news-
group to all the news servers holding this newsgroup, with only a small fraction of the articles
actually being read. A full newsfeed currently requires ˜400kBit/sec of bandwidth (2.5GB/day).

CHAPTER 3. RELATED WORK 36

This means that 27% of the bandwidth of a T1 link (1.5 MBit/s), which is the typical Internet
link for many sites, is dedicated to the news service. A further description of the infrastructural
problems of news and possible solutions are given in [59] and [60].
The consideration of other properties of push systems, such as security and authentication, ren-
ders news a problematic candidate. Although news readers could be enhanced with authentica-
tion and security services based on the S/MIME standard [31, 37, 38, 73, 74, 139, 140], this is
not being deployed. As with mail, forging the origin of a posting is simple since NNTP headers
are not protected and are not verified by the news system. Thus, if a trustworthy information
flow is required (stock data, news agencies, etc.), news cannot be used.
As electronic mail, Usenet news has no integrated concept for payment and e-commerce. So far,
no technology or system has been devised that would support payment for news. It is hard to
envision such a system in any case because of the decoupled design of news. The statements in
Section 3.2.1 concerning loose coupling also apply to news. Unlike email, no approaches exist
for the support of mobile code. However, news has been used for many years as the primary
medium for distributing free software.
No restrictions exist on who is allowed to post to a newsgroup (except for a few moderated
newsgroups where a human user decides what gets posted to the newsgroup). This opens the
door for “spamming.”
Moreover, news does not support timely and ordered delivery of data. First, the distribution
process itself has no upper limit for the distribution delay, and second, users have to check the
newsgroups they are interested in for articles regularly. Additional filtering and customization is
not available.
This list of deficiencies is not comprehensive but explains why Usenet news is no viable basis
for a push system.

3.2.3 World-wide Web and Mail combined

The combination of the world-wide web and electronic mail provides an interesting push-system-
like approach. Such combined services offered by several portal sites such as Netscape Netcen-
ter [126] rely on a hybrid “broadcasting” scheme similar to the hybrid broadcasting approach
described in Section 2.2.2.1.
First, the user visits a web site, such as Netscape’s In-Box Direct service [122], where he/she
can select from a set of “publications” on a variety of topics (“channels”). This selection pro-
cess actually means the user is subscribed on a number of mailing lists corresponding to his/her
selections (subscription phase). Now the user will receive mails from the subscribed channels at
regular intervals.
The received mails typically hold an HTML document that is displayed as in a browser when
read with an appropriate mail tool such as Netscape Communicator (push part). The HTML
document typically looks like the frontpage of a newspaper and holds links the user can click on
to retrieve the corresponding documents (pull part).
This approach resembles the sample-shipment-based hybrid broadcasting scheme used in Min-
strel (Chapter 4) but is less integrated. However, it addresses several of the problems described
in Section 3.2.1: The HTML documents that are distributed are rather small (around 15–20kB)

CHAPTER 3. RELATED WORK 37

since they hold only the pure HTML part of the page, while images and other content referred to
on the page are loaded when the page is displayed (this, however, requires the user to be online).
Thus the displayed page looks like a normal web page, the only difference being that it was not
loaded from a web server but delivered directly to the user. Even such relatively small mails,
however, can cause scalability problems for the sender’s mail system, as is described in [18] and
[86].
A major drawback of electronic mail is its lack of support for payment and e-commerce. This
problem can be circumvented by this hybrid setting, in which mail only serves as the notification
medium. By clicking on a link in the delivered page, the user typically loads the selected web
page in a standard web browser window and can use all functionality available from web sites,
including support for electronic payment. Most current electronic micro-payment and macro-
payment systems, such as Millicent [54] or SET [151, 152, 153, 154], are targeted at web sites.
Thus feasible infrastructures are already available and await large-scale deployment with web
servers.
Another security related problem described in Section 3.2.1 is alleviated by this setting: Forging
the sender’s email address has less impact on the system and the user, since the user typically
has to go to a web site for further information and can recognize whether received information
is authentic. It is also very likely that the companies running such services only allow messages
from a very restricted number of sites, which almost completely eliminates the problems of
forgery and “spam.”
This combined configuration offers several advantages: The underlying technology is accessible
to many users; users can specify their interests in a reasonable way; pre-selected, presumably
high-quality content is distributed; and the infrastructure can also be offered as a publishing
infrastructure to content providers. Such systems are the most relevant competitors of push sys-
tems. Despite their weaknesses, such as lack of integration, limited support of mobile code,
limited customization and filtering, underlying protocols (SMTP, HTTP) that were not designed
to support the push system application domain, and scalability problems of the distribution in-
frastructure, they are a viable approach and have gained widespread deployment.

3.3 Representative Push Systems

Since 1996, a number of commercial systems have appeared that classify themselves as push
systems. In this section six prominent examples of such systems are surveyed. Table 3.1 com-
pares the systems with respect to components and Table 3.2 classifies them in terms of the main
features that were described in Chapter 2. Providing such a comparison is surprisingly difficult
due to the paucity of technical documentation on these systems. It was not possible to find the
answers for some of the entries in the tables. In the following, each system is examined briefly.

CHAPTER 3. RELATED WORK 38

Push System Channel Broadcaster Comm. Paradigm Transport System
Castanet

p p
pull repeater, cache, proxy

PointCast
p

CBF pull & limited push cache
BackWeb

p p
pull & push cache

Webcasting
p

– pull –
WebCanal

p p
push –

Intermind
p

– pull –

Table 3.1: Comparison of push systems based on the component model

Push Back- Update Receiver Data
System channel Pushlets Strategy Filtering Scalability Update Sec.
Castanet plugin

p
diff. (byte) – high

p
high

PointCast – limited ? limited low-medium
p

–
BackWeb

p p
diff. (byte)

p
medium-high – high

Webcasting external
p

diff. (file) – high
p

low
WebCanal R = B browser-like diff. (file) – low-medium – –
Intermind external browser-like ? limited medium-high – –

Table 3.2: Comparison of push systems based on features

3.3.1 Castanet

Castanet [105, 106, 107] is an advanced push system for distributing content with specific em-
phasis on software deployment over the Internet. Software can be downloaded and installed and
kept up to date. Obsolete versions are removed automatically. This functionality is based on the
Open Software Description Format [170] (OSD), a joint effort of Marimba, the manufacturer of
Castanet, and Microsoft. The goal of OSD is to provide an XML-based vocabulary for describing
software packages and their dependencies. OSD supports the specification of software packages
as a directed graph indicating software dependencies (one package requires another) and thus
allows for free modularization of software package descriptions with software packages being
the nodes of the graph. This dependency graph is mapped onto an XML [14] description that is
sent to a consumer which then can determine what packages it may need.
Castanet supports several types of channels:file collections, HTML, presentation, applet, and
application channels or combinations of these. A file collection is simply a set of files that can
hold arbitrary content types and are to be distributed to consumers. An HTML channel is a
collection of web pages under a common directory. The other three channels types are so-called
executable channels, meaning that they hold executable program code. A presentation channel is
a Java application with a graphical user interface and optional scripts based on Marimba’s Bongo
presentation builder. An applet channel is a Java applet and an application channel comprises
various application types such as Java applications and Visual Basic applications.
Castanet’s broadcasting paradigm is pull-based: The client pulls at intervals configurable down
to 15 minutes to download newly available channel content, or the user may issue a pull request.
An update schedule for a channel can be defined by the provider. Updates are differential on a

CHAPTER 3. RELATED WORK 39

byte granularity, i.e., only updated parts of data in a channel are sent to the receivers. Updating is
done via the Distribution and Replication Protocol [169] (DRP) which has been submitted to the
World-wide Web Consortium (W3C). It has been designed to efficiently replicate a hierarchical
set of files to a large number of clients. To determine whether a client has an up-to-date view
of a channel’s content, Castanet uses hash sums. This makes the checking process very fast and
supports short online periods for dial-up users.
A limited backchannel functionality is provided byplugins: one plugin per channel allows pro-
cessing of feedback data, e.g., return language-specific data based on the user’s configuration.
Additional backchannel functionality is available through appropriate functionality that can be
provided inside the executable channels. This, however, is outside Castanet’s framework. No
explicit means of filtering exists, but a limited degree is possible via user configurations.
Castanet’s transport system provides for high scalability due to its transport system infrastructure,
which has repeaters, calledtransmitters (the broadcaster is calledprimary transmitter), caches
(calledproxies), and proxies (calledgateways) that allow channel access behind firewalls. When
a primary transmitter receives a subscription request, it can automatically assign the receiver to
a specific repeater. A strategy for this has to be provided by the maintainer of a channel. The
information source is modeled by thepublisher software component. It supports the creation of
channels and provides the necessary functionality to publish a channel via a transmitter.
Transmission of data is efficient because of Castanet’s differential update strategy and the fact
that multiple modified files are sent over a single network connection. The Castanet receiver
(called tuner) is a channel itself and can be automatically updated. Castanet supports two se-
curity concepts:Channel signing guarantees the integrity and authenticity of channel data, and
SSL [128] provides encrypted transmission. Channel signing can be exploited to create trusted
channels that have special access rights at the receiver’s site.
For announcement of channels, specialized channels and other infrastructures exists. Notifica-
tions of new data can be done with respect to user profiles and user groups. A version of Castanet
is part of the Netscape browser (Netcaster).

3.3.2 BackWeb

BackWeb [6, 7] is a highly configurable framework for information distribution. It comes
with a rich set of supporting applications and authoring tools, including a specialized author-
ing language—BackWeb Authoring Language Interface [5] (BALI). Like Castanet, BackWeb
can be used for software deployment, but it has less powerful concepts and tools than Castanet.
BALI is a scripting language for authoring animated and multimediaInfoPaks. Simple “pro-
grams” (scripts) can be written in BALI that describe and control the behavior of an InfoPak.
Scripts typically define multimedia animations. BALI supports parallel execution by itssprite
concept. A sprite is a simple form of a “process” (or “thread”).
An InfoPak is a logical collection of files that forms the unit of information distribution in Back-
Web. An InfoPak consists of the data to be distributed and a description file that holds administra-
tive information for the InfoPak. This information comprises identifiers; versioning information;
requirements for the InfoPak such as platform, hardware, and language; scheduling data, and
other administrative information that describes how the InfoPak is to be processed.

CHAPTER 3. RELATED WORK 40

BackWeb supports four channel types: BackWeb channels, web channels, file distribution chan-
nels, and CDF [39] channels. Each broadcaster (BackWeb Polite Server) can host one BackWeb
channel, that can offer all of the functionalities available in BackWeb, and an unlimited number
of the other channel types.
BackWeb supports pull distribution—via HTTP and the proprietaryBackWeb Transfer Proto-
col—and push distribution, based on StarBurst’sMulticast File Transfer Protocol [113] (see
Section 3.1.4.5). The BackWeb Transfer Protocol (also denoted as BackWeb Polite Protocol) is
based on UDP and is optimized for background communication. It tries to use network band-
width economically and when not needed by other applications. It supports a checkpoint/restart
functionality so that interrupted transfers can be resumed at the point of interruption.
Pull-based channels are queried every 5 minutes for updates by default (configurable). Push-
lets can be executable files, Java applets, Java applications, and Netscape plugins. Differential
updates are supported at a byte granularity and are transparent towards network disconnects.
Backchannels are available by the concept ofup-stream data, which supports the building of
two-way push applications to interact with users. BackWeb clients can collect data from the user
and send it to the server, which processes the data and can react accordingly. Users can filter
channel data by type and content based on a wide range of available options.
Scalability ranges from medium to high depending on the distribution protocols and transport
infrastructure used. BackWeb’s transport system uses chained caches (calledproxy servers).
Receiver software has to be maintained manually, but upgrades are distributed by BackWeb Inc.
as special InfoPaks to dedicated BackWeb servers. Certificates, digital signatures, and encryption
are supported to ensure authenticated information and secure transmission.

3.3.3 Webcasting

Webcasting [112] is Microsoft’s push technology. The receiver for channels is Microsoft’s In-
ternet Explorer (IE). Three types of Webcasting exist:basic, managed, and“true”. Basic web-
casting means that IE performs a scheduled “sitecrawl” of a web site and checks whether new
content is available. After having “subscribed” to a web site in this way, IE periodically checks
the web site. If updates are encountered, IE notifies the user of the changes, or downloads the
modified pages, and notifies the user (this depends on the user’s configuration).
Managed webcasting is based on the Channel Definition Format [39] (CDF). CDF is based on
XML [14] and allows the author of a channel to define the contents of a channel, its hierarchical
structure, and an update schedule. The content of the channel is defined by a list of URLs. The
structural description provided in a CDF file supports the hierarchical structuring of these URLs
independent of their real structure on web servers. Thus CDF allows the author of a channel
to define what parts of a web server are “webcast” and how they are logically grouped. The
update schedule defines when the client should check for new content. The user can configure
IE whether as to he/she wants to be notified about updates or the updates should be downloaded
prior to a notification. Subscribing to a CDF channel means that IE downloads a CDF file from
a web server and then acts according to the definitions given in the CDF file.
True webcasting means that CDF-based channels are actively “pushed” to subscribers. This
relies on the integration of third-party software, for example StarBurst’sMulticast File Trans-

CHAPTER 3. RELATED WORK 41

fer Protocol [113] (see Section 3.1.4.5). Without third-party products the main communication
paradigm of webcasting is to pull at user-configurable intervals (calledsmart scheduled pull).
Since IE is used as the receiver, all supported web formats can be used. Thus pushlets can be
any executable content that IE can deal with (Java, JavaScript, ActiveX, Windows applications,
etc.). The update strategy is differential at the granularity of files. The user can choose between
monitoring and downloading content changes and is notified of changes via IE (gleam on updated
favorites) or via email (email HTML content). No explicit backchannels exist, but they can
be implemented “outside” by means of Java, ActiveX, DynamicHTML, etc. The same applies
to filtering of channel content. Users can choose the (parts of) channels they want to receive.
Further filtering and personalizing can be made available by the channel provider.
Webcasting does not have a dedicated broadcaster or a transport system since it relies completely
on the web infrastructure (web servers, caches, etc.). Thus it is scalable to the degree of the web
itself. The receiver can be automatically updated via a specialsoftware update channel. Software
update channels rely on OSD [170], which is a vocabulary to describe software components and
their dependencies for deployment and has been submitted to the World-wide Web Consortium
(W3C) to become a standard. OSD (see also Section 3.3.1) is a common standard of Microsoft
and Marimba. Software update channels facilitate the automatic downloading and installation of
software. Software packages sent via a software update channel can be authenticated. Other data
is neither authenticated nor secured.

3.3.4 PointCast

PointCast [135, 136] is both a push system and an information provider. Only content coming
from registered information providers can be broadcast via the so-calledBusiness Network. The
Central Broadcast Facility (CBF) is the central repository for PointCast network information.
Three classes of channels exist: thebusiness network that comprises the channels broadcast by
CBFs, a freely configurableintranet channel, and aconnections superchannel.
The intranet channel resembles the channels of the business network but can be freely configured
and used by a company or organization as a local information channel. The intranet channel con-
sists of configuration files, CDF [39] files that describe the content (groups) and its structure, and
the actual channel content. The content distributed via the intranet channel consists of HTML
files and ScreenPlay animations. Additionally, functionality similar to that of the business net-
work channels, such as a screensaver or a ticker, can also be included.
The connections superchannel consists of connections, which are independent channels that can
be created by anyone with a publicly accessible web site. A connection is defined by a CDF [39]
file and is similar to a managed webcasting channel of Microsoft webcasting (see Section 3.3.3).
Thus, basically any managed webcasting channel could be turned into a PointCast connection.
Channel data consists of web data formats and animations written in theScreenPlay language,
which can be considered a rather limited version of pushlets. Limited filtering of channel content
is possible in that users can select predefined content classes and types within channels.
PointCast is highly commercial. Commercials can be attached to channel content and displayed
by the receiver. They consist of animations that continuously run in the upper right corner of the

CHAPTER 3. RELATED WORK 42

receiver and can only be filtered to a certain degree. It also includes a screensaver (smartscreen)
and a ticker that can both be used for displaying information and advertisements.
Pull is PointCast’s main distribution paradigm. The default pulling interval of clients is one
hour but can be configured by the user. Push distribution (alerts) is available for intranets only
(through multicast). PointCast has no dedicated broadcaster. The administrative and channel
data are retrieved from web servers. Maintenance of this data is supported by a set of tools.
Additionally, several publishing tools exist. No explicit information was found on the update
strategy. PointCast has no backchannel concept.
A cache (calledcache manager) is the only transport system infrastructure. An organization can
have a primary caching manager (CM) and a set of second-level CMs. If multicasting is available
the CM can act as a broadcaster and actively distribute notifications. The scalability of Point-
Cast is mainly limited by the number of available CBFs, of which currently only a few exist.
CBFs have limited support for load balancing: Requests to the data center can be forwarded to a
PointRouter that redirects them to anPointServers. Receiver software can be updated automati-
cally. Distributed data is neither authenticated nor secured.

3.3.5 WebCanal

WebCanal [95, 96] is a platform forglobal information broadcast on the Internet. It uses mul-
ticast push distribution based on the Light-weight Reliable Multicast Protocol [94] (LRMP) and
the MBone [87]. LRMP is based on RTP [150] and a modified version of SRM [45] and was
already described briefly in Section 3.1.4.4.
WebCanal consists of aWebCaster, aWebTuner, and several other tools. WebCanal is not only a
push system but can also be used as a conferencing and presentation platform. It interacts with
a web browser for displaying content, thus supporting pushlets on the basis of the executable
content supported by the web browser used (Java, JavaScript, etc.). No explicit backchannels
exist, but they can be implemented “outside” by means of Java, JavaScript, etc., depending on
the web browser’s capabilities. The same applies to filtering of channel content. However, a
rather coarse topic-based classification of channels is supported. Updates are differential at a file
granularity. The lack of explicit backchannels is partially compensated by the fact that WebCanal
can also be used for symmetric two-way communication: Every receiver can act as a broadcaster.
Since WebCanal relies on the MBone as its transport infrastructure, it has no special transport
system. Its scalability therefore depends on MBone. This means that its scalability is currently
low to medium but will grow as the scalability of MBone grows. Receiver software cannot be
updated automatically, although WebCanal supports software distribution channels. Distributed
data is neither authenticated nor secured.
WebCanal also is trying to establish open standards for push systems [96]. LRMP [94] provides
a reliable multicast transport protocol on top of underlying connectionless networking protocols.
WebCanal uses the Session Announcement Protocol (SAP) and the Session Description Proto-
col (SDP) for announcement of channels. WebCanal’s version of SDP allows the description of
channel properties and SAP announces channels via periodic multicast of channel properties. Its
Multipoint Information Distribution Protocol (MIDP) provides the notion ofinformation chan-
nels, which are a high-level abstraction of multicast sessions. Applications can build on MIDP

CHAPTER 3. RELATED WORK 43

to provide guaranteed delivery to multiple users. Additional functionality to cope with network
disconnects and “late-joined” users is also included.

3.3.6 Intermind

Intermind [180] is a pull-based push system without a dedicated broadcaster. Channels (admin-
istrative and content data) are available via web servers. Receivers (Intermind communicator)
regularly check whether new content is available for a channel. A web browser is used for dis-
playing channel content. Thus pushlets are supported on the basis of the executable content
supported by the web browser used (Java, JavaScript, etc.).
[180] defines a framework for data and metadata exchange, i.e., exchange ofchannel objects,
based on XML [14] and the Resource Description Framework [89] (RDF), betweencommunica-
tion nodes as depicted in Figure 3.3.

Data Store

Channel
Object

(XML/RDF)

Channel
Processor

Communications Node

Metadata Store
(Channel Object

Definitions)

Data Store

Channel
Processor

Communications Node

Metadata Store
(Channel Object

Definitions)

Figure 3.3: Intermind channel architecture [180]

Intermind owns a patent on push-like communication [78] that covers the following interaction
scheme: Two nodes (the sender and the receiver) have persistent storage, communicate over
a network, and exchange a control structure—the so-calledchannel object—which describes
how to transfer updated information from the sender to the receiver, how to transfer feedback
information from the receiver to the sender, and how to process the exchanged information.
A channel object encapsulatesdata, metadata, methods, andrules. Data refers to content that
is to be sent over a channel. Metadata encapsulates profile elements for controlling channel
processing.Profile elements are metadata attributes that describe what information to update, the
data that is exchanged via a channel, how the data is transferred, and how to process the received
data. Aprofile is the collection of channel metadata which describes a subscriber, a publisher,
a subscriber, a channel, or a channel update. Methods define scripts or embedded objects for
controlling channel processing and rules specify event-triggered rules for controlling channel
processing. Methods and rules are optional.

CHAPTER 3. RELATED WORK 44

Basically, channel objects are a higher-level concept to describe the information exchange be-
tween two nodes. Every node involved in a communication has achannel processor component
that can process channel objects and act accordingly to receive and process data. Channel proces-
sors can store data and metadata and retrieve it from the persistent store of every communication
node.
The channel object concept describes a flexible infrastructure for information exchange. How-
ever, it lacks exact definitions and specifications, and it is unclear to what extent this concept has
been implemented in the Intermind software.
Channels (also denominated as persistent relationships in Intermind) can be defined with the
channel publishing tool. The resulting descriptions and the data are placed on a web server
where receivers can access it. No explicit information on the update strategy has been found.
It is also unclear how backchannels are supported. Backchannels could be implemented using
features offered by the web browser (Java, JavaScript, etc.).
Limited filtering is available at two levels: First, inside a channel the user can select topics to
receive from predefined per-channel topics, and second, channels can be categorized according
to user-defined categories. Intermind does not have a dedicated broadcaster or a transport system
since it fully relies on the web infrastructure (web servers, caches, etc.). Thus it is scalable to the
same degree as the web itself. Receiver software cannot be updated automatically. Distributed
data is neither authenticated nor secured.
Intermind also offers aGlobal Directory for available channels. However, this directory only
provides an alphabetically sorted list of channels without further functionality.

3.3.7 Minstrel

The component model of Chapter 2 can be used not only for comparison of push systems, but
also as a basis for developing reference implementations for such systems. The Minstrel push
system project described in Chapters 4 through 6 is such a reference implementation where the
component model is used as an architecture for developing plug-compatible components for push
systems and to devise an open protocol suite for Internet-scale content distribution. Minstrel
is designed as a proof-of-concept implementation of the architectural model and serves as an
extensible software platform for further investigations in the push area.
Minstrel uses the hybrid broadcasting paradigm that supports timely notification while requir-
ing no special multicast infrastructure. The broadcaster pushes a “sample” (description of the
available data, a small-size sample of the real data, and administrative data) to the subscribers
of a channel; based on this information the subscribers may request the actual data as a “ship-
ment” from the broadcaster. Besides the standard web data types, it supports arbitrary content
types by its concept of agents that can be attached to the data and know how to process it.
Minstrel supports pushlets, which are executed in a highly configurable Java Secure Execution
Framework (JSEF) that supports definition of subtractive security policies and interactive secu-
rity negotiation. Shipments define the granularity of updates and can either hold large archives
or just the piece of data to be updated. The decision what granularity level to use is up to the
user. Minstrel’s update strategy is equivalent to differential updates at a file granularity. Limited
backchannel functionality is available by the use of Netscape Communicator as part of the re-

CHAPTER 3. RELATED WORK 45

ceiver: It can be configured to use simple proxies that can communicate information back to the
broadcaster.
Filtering can be done by exploiting the information that comes with every sample and shipment
(description, keywords, administrative data). One of the main goals of Minstrel is high scalabil-
ity, which is achieved by its transport system infrastructure. The transport infrastructure consists
of repeaters, caches, and proxies. Minstrel’s receiver supports flexible data access via its flexi-
ble data store unit. For displaying channel content it uses an off-the-shelf version of Netscape
Communicator that is controlled via Minstrel’s Netscape Remote Control Facility (NRCF).2

In Minstrel all transmitted information is authenticated before it is delivered. Encryption is not
included as a dedicated package. However, SSL [128] can be used to provide encrypted and
secure transmission. Additionally, Minstrel includes a flexible payment model that can be used
for a variety of payment methods and business models, such as pay-per-view, volume-based, or
flat fee.
Minstrel is implemented in Java and the protocols are based on RMI [66]. An open question
is whether these paradigms will be competitive with socket-based communication in terms of
efficiency and scalability.

3.4 Other Push Systems

A vast diversity of “push systems” exists. Many of them, however, do not exhibit the properties
defined and described in Chapter 2 as the systems discussed in Section 3.3. This section gives
a concise overview of other push-like systems and approaches. They may differ considerably in
terms of functionality, completeness, and application domain. Although they are not described
in detail, they are mentioned here to provide a more complete picture of the “push market.”
The first rudimentary push approach was devised in 1992 in Netscape Navigator 1.1 with its
dynamic documentconcept. Its basic ideas areserver push andclient pull. With server push
the server sends data which is displayed by the browser, but the connection between server and
client remains open. Later the server may continue to send other pieces of data to the client.
Client pull automates reloads: The server sends data including aRefresh directive specifying
a time delay and a URL in the HTTP response or in the document header. After the given delay
the client loads the document specified by the URL.
Salamander [104] is a push substrate for real-time data distribution over the Internet. It in-
tends to provide a push infrastructure for applications. The distribution infrastructure consists
of collaborating servers, organized in an arbitrary topology, that receive and forward channel
data (servers are so-called distribution points). Salamander’s communication paradigm is push.
Clients, which can both act as publishers and consumers, connect to a specific server in the
infrastructure to publish or receive data. Salamander distinguishes two types of subscriptions:
anonymous push and negotiated push.

2The implementation of NRCF actually can be adapted easily to work with other web browsers, too. Basically,
any web browser that supports a certain extent of “remote control” functionality via Java applets, such as Microsoft’s
Internet Explorer, which was also evaluated, could be used as Minstrel’s display unit. Netscape Communicator was
given the preference, however, and used in Minstrel, since it also is available for non-Microsoft platforms.

CHAPTER 3. RELATED WORK 46

With anonymous push, clients register persistent queries (lists of text attribute expressions) with
a server. These queries determine the kind of data the client wants to receive and provide a
powerful filtering mechanism. Since every client can receive a data flow tailored to its interests,
channels are called virtual channels in Salamander. Data that is distributed via Salamander is
described by text attribute lists. The data itself is opaque to the system (this is closely related to
Minstrel’s approach). The unique property of client queries is that they are matched against both
future objects and objects that already are in the lightweight temporal database that is part of the
system. The update strategy of this database can be viewed as incremental at the granularity of
objects. The database provides lightweight persistency.
Negotiated push provides a backchannel functionality: Subscribers can contact publishers and
provide feedback, for example, by asking them to begin data distribution or to modify a supplier’s
data flow at the source. Additionally, a notification service exists to propagate various system
events among clients (group membership, etc.).
Salamander also supports application-level quality of service policies. These policies are a way
to tailor the available resources to best fit the user and application by exploiting application do-
main knowledge. Typical policies define data degradation, data conversion, or synchronization.
Salamander provides good scalability and throughput and has been deployed in two big research
projects that needed push functionality. However, Salamander does not support pushlets and does
not address security issues. Only a limited authorization scheme for accessing the infrastructure
exists. Receiver software has to be updated manually.
Common Datacast Architecture [72] (CDA) is not a push system per-se but an approach to
developing a general architecture for customized information subscription, publication and dis-
semination. It aims to integrate existing push systems into a uniform distribution platform that
can be used by information providers. The so-called channel builder allows providers to define
subject-based information channels which it the transmits via various channel transmitters (push
systems). CDA exists as a proof-of-concept prototype.
Java Message Service[65] (JMS) provides an API for accessing enterprise messaging systems
from Java programs. JMS supports point-to-point and publish-subscribe communication models
and can work over different transport providers such as TIB/Rendezvous (see Section 3.5.1.1).
Several JMS implementations from different vendors are available.
Web Transporter [156] is a toolset for software deployment and maintenance. It offers user-
initiated pull and scheduled push. Web Transporter Agent allows administrators to deliver files
on a predefined schedule. Web Transporter Server provides software maintenance functionality,
authentication, and management functions. Users are authenticated prior to software delivery.
Access limitations based on user name and group membership are possible. Secure communica-
tion is supported based on SSL [128].
BusinessWare[172] provides a communication platform for transparent application integration
at the business level. It offers event-driven, publish-subscribe messaging via channels that com-
municate related data to a common set of subscribers. BusinessWare includes infrastructure
components to support scalability and fault tolerance (cache channels, replica channels). Secure
and authenticated communication is supported. Sophisticated analysis tools are available that
provide real-time decision support based on the received information.
TheBasic Lightweight Information Protocol [81] (BLIP) is a proposed protocol that aims at

CHAPTER 3. RELATED WORK 47

providing a language- and platform-independent wire protocol for high-speed, large-scale, reli-
able, topic-based messaging. It is designed around message queues: Clients subscribe to servers
that hold message queues on their behalf. Whenever the client connects to the server it receives
its queued messages. While connected to the server, the client gets its messages immediately.
This proposal is in a very early stage and closely resembles the mailbox functionality known
from electronic mail servers. It is unclear whether it will be pursued further.
Section 3.3 provided a structural classification of representative push systems. An application-
oriented classification is suggested in [15]. Push systems are classified as application distributors,
content aggregators, platform providers, or business-dedicated content aggregators. An applica-
tion distributer provides a distribution platform for software deployment. A typical example
is Castanet (see Section 3.3.1). Content aggregators are news and information sources. They
gather content, convert it to a specific presentation format, and deliver it to subscribers. A typ-
ical example is PointCast (see Section 3.3.4). Platform providers provide platforms for content
providers to deliver their content to users. They differ from content aggregators in that control of
the distribution is in the hands of the content provider. A typical example is BackWeb (see Sec-
tion 3.3.2). Business-dedicated content aggregators do not provide services to individual users,
but concentrate on business and enterprise-wide implementations of push.

3.5 Related Paradigms

The diffusion of the Internet has given rise to a number of novel distributed programming
paradigms. Among these, push systems, mobile code, and event-based systems are closely re-
lated. This section discusses the relationships between these three systems, their commonalities
and distinguishing properties.

3.5.1 Event-based Systems

Event-based systems define a new style for the construction of (distributed) applications based on
the notion of events. In such systems, components interact by generating and receiving events.
Components declare interest in receiving specific events and are notified on occurrence of those
events. This pattern supports a highly flexible interaction between loosely-coupled components
[26].
The architectural model is well-developed for local area networks. In a large-scale, heteroge-
neous setting like the Internet, however, new and adapted technologies are needed since many
of the premises of a LAN do not hold at the Internet-scale. A design framework for Internet-
scale event-based systems is presented in [144] that suggests a seven-dimensional design space:
object model, event model, naming model, observation model, time model, observation model,
and resource model. Some classifications of event-based approaches are given in [26]. Design
issues of event-based architectures are discussed in [16]. The special problems of Internet-scale
event observation and notification are overviewed in [145]. [179] presents recent developments
and approaches in the area of event-based systems.

CHAPTER 3. RELATED WORK 48

Push systems and event-based systems are closely related. In fact, it is not always clear where to
draw the dividing line. Distinctive properties exist, however. Table 3.3 lists the main differences
between the two paradigms.

Push Systems Event-based Systems

Purpose timely data distribution event notification

Participant roles asymmetric symmetric

Advertisement
policy

simple advertisement (channel) expressive advertisement lan-
guage

Subscription policy simple subscription (channel) expressive subscription lan-
guage

Frequency of events low to medium high

Number of events low to medium high

Payload size large small

Producer/consumer
interconnection

static channels and static produc-
ers

dynamic binding to producers

Event grouping channel event patterns

Filtering reduce data transmission re-
quirements

reduce number of events

Table 3.3: Push systems vs. event-based systems

Whereas the purpose of push systems is the timely distribution of data to consumers, event-
based systems focus on notification of events. The roles of participants differ considerably:
Push systems have two distinct groups—event producers (broadcasters) and event consumers
(receivers)—while in event-based systems anyone can produce and consume events. The an-
nouncement and subscription of new information is simplified in push systems since they can
rely on the channel concept that provides a tighter coupling between producers and consumers
while still providing some flexibility. Event-based systems, on the other hand, have only a very
loose coupling between producers and consumers and therefore must have powerful mechanisms
for event selection (both for the provider and for the consumer).
The number and frequency of events in push systems will be limited by content transmission rates
and thus be at a moderate level. Event-based systems in contrast are targeted at possibly very
high event rates. Closely connected with this are the payload sizes: While the size of the payloads
transmitted in push systems can be quite large (since they are information-oriented), an important
design criterion in many event-based systems is to minimize the size of events. Due to the
channel concept, the interconnection of producers and consumers in push systems is rather static.
Consumers are likely to receive a fixed set of channels from a set of producers with little change.
Though consumers are notified of new channels, for example via a meta-channel, subscription
and unsubscription will occur infrequently once a satisfying profile of interests exists.

CHAPTER 3. RELATED WORK 49

Channels also provide an implicit mechanism for event grouping. A channel will offer “events”
of a certain quality only (e.g., weather forecast channel). Loose coupling in event-based sys-
tems will lead to more dynamic interconnections. Event producers can be mobile and change
frequently. For example, in a distributed system one can imagine a network administration
mobile agent that travels among networking components and generates administrative events.
Event-based systems are intended to have sophisticated event grouping mechanisms called event
patterns. Consumers are able to group events by patterns, e.g.,XY*Z, meaning eventX fol-
lowed by zero or any number of eventsY followed by eventZ, and receive a single notification
upon occurrence of a pattern. Though the usefulness of this mechanism is undoubtedly high it
adds considerable complexity to the implementation of such services. Ordering (timely, causal,
etc.) of distributed events is a highly complex research area that still needs further investigation.
Patterns operate on the level of events, while filters operate on content-specific information to
select events for notification. In push systems, filters help to reduce data transmissions, while in
event-based systems the goal is to cut down on the number of events.
While other authors have argued in favor of regarding push technology as a special case of
a more generalInternet Notification Service (INS) [13], this comparison shows that, despite
their similarities, event-based and push systems are distinctly different models of distributed
information systems because of their differences in foci, requirements, and applied concepts.
The following sections briefly showcase some event-based systems to demonstrate the variety of
approaches in this area.

3.5.1.1 TIB/Rendezvous

TIB/Rendezvous [164] is a commercial infrastructure for creating and maintaining large, dis-
tributed event-based applications [26]. It is based on TIBCO’sinformation bus (IB) technol-
ogy and supports a publish/subscribe communication pattern between producers and consumers.
Publish/subscribe interactions are event-driven, in producer-consumer direction only and mostly
one-to-many. Consumers place a standing request for data by subscribing.
TIB/Rendezvous utilizes so-called subject-based addressing and subject-based multicasting. In-
formation is published (sent) on a subject name and interested consumers can subscribe to these
subjects and receive the according messages. This approach differs from other approaches that
usually use addresses such as IP addresses to send information to, which do not carry informa-
tion on the data transmitted. TIB/Rendezvous thus facilitates a content-based addressing scheme
which is very attractive for push systems and event-based systems. Additionally, data is multi-
cast to conserve network bandwidth and support efficient delivery to high numbers of consumers.
TIB/Rendezvous’ multicast communication is reliable.
Applications receive messages bylistening, which associates a callback functions with a cer-
tain subject name. Upon receipt of an appropriate message TIB/Rendezvous sends it to the sub-
scribed party by dispatching it to the appropriate callback function. The concept of subject-based
addressing also supports location transparency, since messages do not hold physical addresses
but subjects. Thus producers and consumers can be freely migrated or reconfigured.
Besides the publish/subscribe communication model, which is the most interesting one for push
systems, two other models are supported: standard request/reply interactions that involve one

CHAPTER 3. RELATED WORK 50

producer and one consumer, and broadcast request/reply interactions where multiple producers
receive a request and send responses.
The event-dispatching in TIB/Rendezvous is done in a three-level hierarchy. Every participat-
ing site runs the TIB/Rendezvous daemon that is in charge of sending, receiving, and filter-
ing messages for consumers running on that site. This daemon also delivers messages to any
TIB/Rendezvous application on the same network via broadcast messages.
The TIB/Rendezvous routing daemons are responsible for delivery between networks. Two spe-
cialized routing daemons exist: The wide-area routing daemons link distant sites, whereas the
subnet routing daemons connect collocated networks, e.g., multiple subnets of a single organiza-
tion.
TIB/Rendezvous offers a powerful substrate for push systems to build on. Under a broad def-
inition of push systems, it could even be called a push system itself. It supports subject-based
addressing which allows the consumer to state its interest in a meaningful way. Its distribu-
tion protocols are efficient and reliable. However, it is unclear whether its infrastructure would
scale to Internet size and it lacks several properties of push systems as defined in Chapter 2.
Additionally, its protocols and specifications are proprietary and not open to third-party soft-
ware developers. Nevertheless it is a leading commercial platform and has gained widespread
deployment.

3.5.1.2 Keryx

Keryx [13] is a notification system which tries to set up a general, standardizedInternet Notifi-
cation Service based on a language- and platform-independent event distribution infrastructure.
Keryx’s distribution infrastructure consists of so-called Event Distributors (EDs) to decouple
event producers and consumers. EDs can be organized in an arbitrary topology. Parties inter-
ested in notifications subscribe with an ED and provide a filter that only succeeds for events that
the party is interested in. An ED matches every event it receives against the registered filters
and conditionally forwards notifications to the interested parties. It also forwards events to other
EDs. This configuration provides an infrastructure that supports routing by event content.
Notifications do not include content themselves. For content distribution a hybrid push-pull
scheme is suggested: Clients describe events they want to be notified of; when such an event
occurs, clients are actively notified (push); a notification can hold information where the client
can retrieve the actual content (pull). This is related to the hybrid approach the Minstrel system
takes (see Chapter 4).
Notifications are delivered via the so-called Event Transfer Protocol (ETP). ETP is based on
TCP. Alternatively notifications can be delivered via SMTP [137]. At present, multicasting is not
supported; notifications are delivered individually to each subscriber.
Keryx focuses especially on the description and filtering of events. A notification is structured
information that describes an event. It contains a description of the type of the event together
with qualifying information. Notifications are represented in a self-describing, human-readable,
textual data syntax called Transfer Syntax (TS), which is also submitted as an Internet Draft
under the name Self-Describing Data Representation [101] (SDR). It is designed as a transfer
syntax for loosely-coupled distributed applications that do not share a schema for the exchanged

CHAPTER 3. RELATED WORK 51

data. TS’s data model supports the representation of structured information using atomic values,
lists, and maps as its basic data types. Every TS value is associated with a tag. Figure 3.4 shows
an example event definition in TS.

�

�

�

�

event: {
type (emit),
content {
type (stock-price price-change),
stock-symbol "HWP",
stock-price "$65",
exchange-name "NYSE"

},
system {
message-id 4711

}
}

Figure 3.4: A Keryx event specification

Keryx supports the definition of event filters through its Default Filtering Language (DFL),
which provides a language-independent mechanism to express simple predicates over TS val-
ues. Clients can include such predicates in their subscriptions to specify the kind of events they
are interested in and want to receive notifications of. DFL supports equality and relational tests,
logical operators, and quantifying filters over lists. It consists entirely of expressions. For ex-
ample, the predicate(test (content stock-symbol) (equal "HWP")) defines a
filter that matches the event specified in Figure 3.4.
Keryx is an interesting approach that provides powerful content-based event delivery and expres-
sive event filtering mechanisms. Its distribution infrastructure, however, seems to need improve-
ment before it can scale to large numbers of subscribers over the Internet. Keryx is used as the
communication infrastructure in a Distributed Virtual Environment (DVE) system [181].

3.5.1.3 Java Event-based Distributed Infrastructure

The Java Event-based Distributed Infrastructure [25, 26] (JEDI) is an object-oriented infrastruc-
ture for event-based systems. JEDI is based on the notion ofactive object (AO), which denotes
an autonomous computational unit performing an application-specific task and interacting with
other AOs by means of events. A JEDI event is an ordered set of strings: an event name followed
by event parameters. AOs subscribe to anevent dispatcher (ED), which is in charge of dissemi-
nating events to AOs. In the subscription the AOs declare the classes of events they are interested
in. AOs can also subscribe toevent patterns, which are a simple form of regular expressions over
events. JEDI guarantees a partial order among events: it ensures that events generated by a given
source are delivered to all recipients in the order in which they have been generated.
A reactive object is a special form of an AO: An object registers with the ED and waits for events;
upon receipt of an event it performs some computation and waits again. JEDI also supports
mobility of such objects: A reactive object can decide autonomously to move to a different host.

CHAPTER 3. RELATED WORK 52

This migration is transparent towards event delivery; even though the object has moved, it will
continue to receive events, and no events are lost during the migration.
To support scalability the event dispatcher is available in a distributed version consisting of co-
operatingdispatching servers (DS). DSs are organized in a tree topology and use a hierarchic
strategy for subscription and event distribution: Subscriptions are propagated up in the tree, so
that all ancestors of the DS, which has accepted the subscription, receive it; conversely, when
a DS receives an event it only needs to dispatch the event to its parent, its decendant DSs that
have subscribed to this event (pattern), and its directly connected AOs. This strategy efficiently
operates for a variety of scenarios and tries to balance the number of required messages.
Distributed software components frequently need to interact by generating and consuming events.
The event-based architectural style has been proven viable for a wide range of applications due
to its highly flexible interaction pattern between loosely-coupled components. JEDI provides a
substrate that facilitates the implementation of such systems. It has been successfully used as
underlying infrastructure in the implementation of the OPSS workflow management system [26]
which is part of the ORCHESTRA system [32]. [26] also presents a classification framework
for event-based systems and compares representative event-based infrastructures based on this
framework.

3.5.1.4 CORBA Event Service

Also industry standard architectures like the Common Object Request Broker Architecture [130,
155] (CORBA) are starting to incorporate support for the event-based paradigm. CORBA is a
standard software architecture from the Object Management Group (OMG) for the component-
based development and deployment of applications in distributed, heterogeneous environments
using the object-oriented paradigm.
The CORBA Event Service [131] (ES), which is based on the event service described in [1],
defines a set of interfaces and an underlying infrastructure that allow objects to communicate
events to each other via so-calledevent channels which provide the distribution infrastructure for
events.Suppliers connect to an event channel to send events to it andconsumers connect to an
event channel to receive events from it. The concept of an event channel decouples communi-
cation between suppliers and consumers. To suppliers an event channel acts as a consumer; to
consumers it acts as a supplier. All events sent from a supplier to an event channel are transmitted
to every consumer of that event channel. Multiple event channels can be used in parallel so that
objects can group events. Consumers only connect to the channels they are interested in (this is
similar to the channel concept of push systems).
The ES supports two communication models for suppliers and consumers:push andpull. In the
push model the suppliers control the flow of data by pushing it to consumers; in the pull model
the consumers are in control of the data flow by pulling data from the suppliers. A push supplier
actively sends events to the event channel, while a pull supplier is requested for new events by
the event channel at regular intervals. A push consumer passively waits for events from the event
channel, while a pull consumer must check with the event channel at regular intervals whether
new events have arrived. Since suppliers and consumers are decoupled these communication
models can be mixed; for example, a push supplier can have both push consumers and pull

CHAPTER 3. RELATED WORK 53

consumers. How events are distributed is not specified in the CORBA Event Service standard.
So far, broadcasting/multicasting of events is not standardized.
This architecture provides a basic infrastructure for event-based applications. However, it is
not complete and lacks many of the aspects of event observation and notification defined in
[144]. [145] argues that the CORBA Event Service has several shortcomings: Its object model
is constrained by CORBA’s model, an event is only a message passed from one object to another
as a parameter of an interface method, and the content of an event message is not defined, so
receiving objects must “know” the event message structure to process it in a meaningful way.
Standard semantics and protocols for event channels are lacking. With this view of an event, a
naming mechanism and an observation mechanism are unnecessary (though these mechanisms
are important properties if addressing the full problem space of the event-based paradigm) and the
identification of event patterns is up to the consumers and not available from the infrastructure.
It is not possible for a consumer to specifiy interesting events at a fine granularity by means
of detailed specification of parameters and wildcards [103]. Only very limited event filtering is
supported. In summary, several important abstractions and services, such as locating, advertising,
and filtering of events or matching event patterns, are not available from this model. Applications
based on this model have to provide their own solutions for these issues.
Nevertheless, several higher-level services, such as the TINA Notification Service [163], have
been implemented on top of the CORBA Event Service. The COrba-Based Event Architec-
ture [103] (COBEA) attempts to remedy many of the problems described above. COBEA is
based on the Cambridge Event Paradigm [8] and extends the CORBA Event Service with the
publish-register-notify mode; fine-grain, parameterized event filtering; fault-tolerance; access
control; support for composite events; direct/indirect notification of events and dynamic addition
of user-defined event types.

3.5.1.5 Notification Service Transfer Protocol

Though not providing a true event-based infrastructure, the Notification Service Transfer Proto-
col [30] (NSTP) is included here to demonstrate that event-based concepts are inherently present
in many applications and systems that do not define themselves as being event-based. This speaks
for the widespread applicability of the event-based architectural style.
NSTP is an infrastructure for building synchronous groupware. In such systems two or more
parties collaborate at geographically dispersed locations. Participants must share a consistent
state to promote the illusion of working together “at the same time.” In terms of an event-based
system this state consistency problem means that changes to the shared state must be delivered
to all participants in a timely manner, i.e., participants must receive notifications of events and
update their view of the shared state accordingly.
In NSTP the state of a collaboration is stored at anotification server and can be changed by the
participants. Changes are communicated to all participants. The shared state is modeled in terms
of Things andPlaces. Things consist of a mutable value and immutable attributes. An event
in this model can be viewed as the modification of a Thing’s value. A Place is a container for
Things. Places are described by Facades. A Facade allows a client to decide whether a Place
is of interest and provides the client with means to interpret the Place, for example, Java code

CHAPTER 3. RELATED WORK 54

that allows the client to interact with the Place in a meaningful way (comparable to pushlets or
agents).
Each Thing is in exactly one Place and cannot move between Places. Clients can associate
themselves with one or more Places, i.e. become participants. If a client changes a Thing or
creates a new Thing, all clients in this Place receive a notification and can react accordingly.
This interaction pattern implements a simple event observation facility (a very limited version of
JEDI’s reactive objects as described in Section 3.5.1.3).
The advantage of NSTP is that it models notification in terms of a protocol. This means that
it focuses on the coordination machinery rather than particular applications. Every entity that
understands the protocol can interact with the system. The notification server is rather flexible
and simple to implement, since it does not have knowledge about the semantics of the Things it
handles. It simply treats them as chunks of uninterpreted bits and delivers notifications if they
change. However, NSTP does not exhibit any further properties that are required for a fully-
fledged event-based system.

3.5.2 Mobile Code

Program code used to be bound to a certain processor/architecture/computer. In contrast to this,
the intention of the mobile code paradigm is to have code travel around networks and computers.
So-called mobile agents [178] are an interesting approach for addressing information discovery,
brokering, and scalability problems of information systems.
Channel content in a push system can consist of executable code that is to be executed at the re-
ceiver. Thus push systems must address similar issues as pure mobile code systems, although on
a simpler scale, since some of the problems in mobile code systems do not arise for push systems
(routing of agents, intelligent agents, protection against tampering of agent data, etc.). The main
intersection of issues is in protecting host systems against malicious code and controlling access
to host system resources.
A push system can be seen as a mobile code system and vice versa: A push system that distributes
pushlets is a special case of a mobile code system. If a push system distributes pushlets and
every receiver in the push system is also a broadcaster to route and forward pushlets, then this
is similar to a mobile agent system. A mobile code system, on the other hand, can be used to
actively transport information to users and thus can serve as a push system. One such approach
is described in [51]. The essential difference between the two systems is in intent of use: Push
systems are data-centric, focusing on efficient dissemination of information, whereas mobile
code systems are functionality-centric, dealing with the distribution of computation to reach a
defined goal.
Good overviews of existing mobile code technologies and paradigms are given in [102] and
[171].

Chapter 4

The Push System: Broadcast
Communication

Minstrel is a push system that adheres to the component and communication model described in
Chapter 2. It is intended to meet the following goals:

Scalability. Minstrel is designed to scale to large numbers of users while trying to keep network
traffic at a reasonably low level. The Minstrel dissemination infrastructure and protocols
are designed to support this major design issue.

Real push. The majority of the systems described in Chapter 3 do not use an active broadcast-
ing strategy but require the receiver to poll at regular, configurable intervals (see 2.2.2.1
for techniques used to implement a broadcasting strategy). This strategy scales well to
large numbers of users and can be employed without changes to the current standard In-
ternet infrastructure, but solves only part of the problems described in previous sections.
The remaining systems apply active broadcasting strategies but require specialized multi-
casting infrastructures, like MBone [40], TIB/Rendezvous [164], or StarBurst’s Multicast
File Transfer Protocol (MFTP) [113, 158], which currently lack wide-spread deployment.
Minstrel uses a hybrid broadcasting strategy (see Section 4.2) that actively distributes in-
formation via MADP (Minstrel Active Distribution Protocol). MADP disseminates small-
size records (samples) that inform the receiver about the availability of information and its
attributes. The attributes define the content type, size, price, etc. of a piece of informa-
tion. On the basis of these attributes, the receiver (user) can decide whether to request the
information (via MRRP) or ignore it.

Authenticity and integrity of information. For deployment of push systems in commercial en-
vironments this is of premier importance, especially if the information received is to form
the basis of business decisions. Receivers must be guaranteed that the information they
receive comes from an authenticated source, and has not been tampered with, while broad-
casters may want to ensure that only authenticated receivers access their channels. Minstrel
supports information authenticity and integrity by its Minstrel Data Lock (MDL) subsys-

55

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 56

tem (see Section 6.1.1). Every piece of information that is transferred via a Minstrel chan-
nel is digitally signed.

E-commerce. While currently most information available via the Internet is free of charge, this
will change dramatically as soon as the “electronic marketplace” becomes reality. Adding
e-commerce facilities to existing systems is complicated and not always possible. Thus
Minstrel is designed to support e-commerce from its initial stage and to provide support
for various payment methods and business models. As a proof of concept, Minstrel sup-
ports apay-per-view business model using the Millicent micro-payment protocol [54] (see
Section 6.2) as the payment method.

Executable content.Minstrel supports the dissemination of executable content that is intended
for execution at the receiver (pushlets). Pushlets are Java [4] applications that run inside
a secure execution environment to protect the receiver from malicious code. This secure
environment—Minstrel’s Java Secure Execution Framework (JSEF)—is described in Sec-
tion 6.1.3. Like all other Minstrel information, pushlets are authenticated.

Open protocols and interfaces.One of the key problems of many other push systems is that
they cannot interoperate, since their specifications and standards frequently are not pub-
licly available. Accessingn push systems—regardless whether as a content provider or an
end user—typically requiresn incompatible broadcaster/receiver/transport platforms that
transport possibly identical data inn incompatible formats with incompatible protocols.
Standardization, however, is important to support wide-scale usage and third-party prod-
ucts. Thus Minstrel’s protocols and interfaces are open to the public.

Open and extensible architecture.Minstrel is designed to support quick adoption of new tech-
nology in a flexible way.

This chapter is organized as follows: Section 4.1 starts with an overview of Minstrel’s architec-
ture and is followed in Section 4.2 by a general description of Minstrel’s broadcasting strategy.
Section 4.3 then presents the details of channel subscription and Section 4.4 describes the key
data structures used in MADP and MRRP. Section 4.5 overviews how received channel content
is processed. Section 4.6 gives a detailed analysis and discussion of Minstrel’s broadcasting
strategy based on a concrete scenario. Finally, Section 4.7 presents the main protocols—MADP
and MRRP—in detail.
Subsequent chapters present other main aspects of the Minstrel system and how it addresses
those goals that are not discussed in this chapter. Chapter 5 gives detailed descriptions of Min-
strel’s main components (receiver, broadcaster, and BDC) and Chapter 6 continues with security
issues (authentic information, confidentiality, and mobile code security) and describes Minstrel’s
support for business models and electronic payment.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 57

4.1 Architecture and Overview

Minstrel’s architecture follows the component and communication model for push systems de-
scribed in Chapter 2. Figure 4.1 depicts Minstrel’s architecture at a coarse level:

(R)

Broadcaster
(B)

BDC

Receiver

MRRP

BDC
Base Distribution
Component (BDC)

Authority (CA)

(MDL)
Minstrel Data Lock

Certification

E
-C

o
m

m
er

ce

pay

pay
sign

verify

verify

MADP

Figure 4.1: Minstrel’s architecture

Minstrel combines theprimary broadcaster and simple broadcasting approaches described in
Section 2.2.2: it has a primary broadcaster and relies on functionalities of the transport system
for the distribution of channel content to large numbers of users. Broadcasters provide a flexible
interface forinformation sources to supply channel content that is to be distributed. Broadcasters
can offer multiple channels that they disseminate via a hierarchical transport system consisting
of base distribution components (BDCs). This is Minstrel’s approach to the design goal of scala-
bility. BDCs can operate as repeaters, caches, or proxies (see Section 2.2.4), depending on their
configuration and the structure of a specific transport system instance.
Receivers are the software components at the client side that allow human users to access chan-
nels and interact with the Minstrel system. If we abstract from the transport system that is
designed to be transparent towards broadcasters and receivers, broadcasters and receivers are
the parties that interact in the Minstrel system. However, if we do consider the transport sys-
tem, BDCs can also be modeled in terms of broadcasters and receivers: Towards their feeding
entity—a broadcaster or another BDC at a higher stratum in the hierarchy—they operate in much
the same way as a receiver (subscriber of a channel); downstream, towards other BDCs or re-
ceivers, on the other hand, BDCs act similarly to broadcasters.
Minstrel uses a hybrid broadcasting strategy as described in Section 2.2.2.1: the broadcaster
pushes asample (description of the available data, a small-size sample of the real data, and
administrative information) to the subscribers of a channel; on the basis of this information,
the subscribers may request the actual data as ashipment from the broadcaster.Samples are
distributed using the Minstrel Active Distribution Protocol (MADP); receivers request channel

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 58

content via the Minstrel Receiver Request Protocol (MRRP). Both protocols are based on Java
RMI [66].
To support payment and business models, Minstrel offers a flexible and generic framework which
decouples business models from underlying payment methods. At the moment Minstrel supports
a pay-per-view business model using the Millicent micro-payment protocol [54] as payment
method.
The Minstrel Data Lock (MDL) is Minstrel’s infrastructure to provide authentication and in-
tegrity of channel content. MDL assures that circulated information comes from an authentic
source and has not been tampered with.
As noted above Minstrel follows the component and communication model described in Chap-
ter 2. Figure 4.1, however, deviates slightly from the model depicted in Figure 2.2:

� Figure 4.1 shows only one broadcaster and one receiver. This does not truly reflect Min-
strel’s architecture. Minstrel supports an arbitrary number of broadcasters and receivers,
broadcasters can transmit an arbitrary number of channels, and receivers can obtain an
arbitrary number of channels from an arbitrary number of broadcasters. The simplified
architecture as shown in Figure 4.1 was only introduced to streamline the presentation of
Minstrel and its concepts (without constraining generality).

� Figure 2.2 uses the notion of channels while Figure 4.1 shows the conceptually lower level
of broadcasting protocols. This was done intentionally since the interesting problems of
channel transmission must be solved at this lower level.

� Minstrel’s standard transport system topology is a tree.

� Figure 4.1 shows supporting infrastructures (E-Commerce, MDL, CA) that were only im-
plicitly described in Chapter 2. These components, however, must be addressed explicitly
in the description of Minstrel since they are necessary to meet some of the requirements
listed in Chapter 2.

4.2 Minstrel Broadcasting

Minstrel uses a two-step hybrid broadcasting algorithm:
Step 1 (push part)
Whenever new channel content becomes available, the broadcaster sends out a description of
it. This is called asample. A sample holds a description of the data, possibly a small-size
version of the real data,1 and administrative data. The broadcaster sends the sample to its directly
connected BDCs, which further propagate the sample to their directly connected BDCs until the
sample reaches the receivers that have subscribed to the channel holding the sample. This step is
handled by the Minstrel Active Distribution Protocol (MADP).

1For example, if the offered data is an image, this could be a low-quality, small-size “thumbnail” of the image.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 59

Step 2 (pull part)
On the basis of the information in the received sample, the receiver decides whether it is in-
terested in the actual content. This decision can be made automatically if the user has defined
appropriate rules for the receiver software or may require user interaction. For example, the user
may want to receive weather maps from a weather channel automatically if the maps are free
of charge and smaller than 200KB; if the user would have to pay for a map s/he could config-
ure his/her receiver not to request it; if the map is bigger than 200KB, the user can require the
receiver to ask explicitly whether the map should be requested. If the decision to request the
content is positive, the receiver requests it from itsservice agent (SA). An SA is a conceptual
role and denotes an access point of a receiver to the Minstrel infrastructure. BDCs serve as SAs
for receivers. All communication between the receiver and the Minstrel system is carried out via
an SA (channel subscription, sample distribution, content request, etc.), which interacts with the
Minstrel system on behalf of the receiver and vice versa. Upon receipt of the receiver’s request,
the SA tries to fulfill it. If the SA can find the requested content (the so-calledshipment) locally,
it immediately sends it to the receiver. Otherwise the request is propagated to the SA’s service
agent, which can be either another BDC or a broadcaster. This continues until an SA can satisfy
the request, resulting in the distribution of the content to the receiver as the initiating requester.
This step is handled by the Minstrel Receiver Request Protocol (MRRP).

4.2.1 An Example Broadcast

Figure 4.2 shows an example of the interactions during a broadcast:

(Repeater)

2

BDC
(Repeater)

2

MADP

MRRP

Miss

Receiver
(R)

1 4

3

Broadcaster

Base Distribution
Component (BDC)1

3 3

(B)

Hit

BDC
(Repeater)

Store

5

Information Source

6

7

5

8

3

9

BDC3

BDC
(Cache)

4

(I)

Figure 4.2: Minstrel hybrid broadcasting

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 60

Given that for a certain channelC, a new piece of information becomes available, the information
sourceI sends the new content and its description to the broadcasterB and requestsB to distribute
it via channelC. On the basis of the information provided by the information source,B creates a
sampleS. To find out where to distributeS to, B consults its subscription database for a list of its
subscribers to channelC.
It is important to note, thatB’s subscription database only holds its local (directly connected)
subscribers for channelC. Minstrel has no centralized subscription database. Instead, the sub-
scription database is distributed among the disseminating nodes (broadcasters and BDCs). A
node wishing to receive a certain channel subscribes to its SA (broadcaster or BDC) for this
channel and the SA enters this subscription into its local database. The subscription is not for-
warded to other nodes. Section 4.3 describes the notion of subscription in detail.
Thus in the case of Figure 4.2,B will find out that for channelC two subscribers exist:BDC�

andBDC�. Conversely,B is the SA of these two BDCs regarding channelC. As the first step in
the broadcasting processB sendsS to these BDCs (steps 1–2). This can be done iteratively by
contacting each subscriber separately or via multicast. In the current implementation Minstrel
uses the first strategy. Though it is an advantage, multicast is not a requirement for this step
since samples should be rather small (a few kB) and only a limited number of direct subscribers
may exist. If this number exceeds a configured threshold (e.g., 30), an additional layer should be
introduced.
After having receivedS, BDC� andBDC� in turn distribute it to their subscribers in the same way
described forB (step 3): Find the subscribers and sendS. This step is repeated for every layer
in the transport system. All steps described so far are done via the Minstrel Active Distribution
Protocol (MADP).
Step 4 may occur concurrently to step 3:BDC� is a repeater and thus immediately requests
and stores the actual contentS was referring to. By doing so repeaters are preloaded with the
channels’ contents and offer the same data as the broadcaster but are “closer” (in terms of network
properties) to the receiver. Thus a repeater has similar broadcasting capabilities as a broadcaster
but cannot insert new content into a channel. The request for the content and its transmission to
BDC� are done via the Minstrel Receiver Request Protocol (MRRP).
As in MADP, the two communication partners of MRRP are at adjacent layers of the transport
hierarchy. These layers are defined by the subscription relation (see Section 4.3). For example,
B would not sendS to BDC� sinceBDC� is not subscribed atB und thus is not adjacent toB.
BDC� on the other hand is a repeater likeBDC�, but would not request the content described by
S from B. Instead it would request it from an adjacent component, in this caseBDC�, since it is
subscribed to this component (in other words,BDC� is BDC�’s SA).
BDC� offers the same functionality asBDC� but is configured as a cache. Therefore it does not
automatically request the contentS describes, but of course actively distributes samples like a
repeater. Concurrently to step 4, the further distribution ofS continues until it actually arrives
at a receiver (step 5). This is the end of the active distribution step of Minstrel’s broadcasting
algorithm.
Now the receiverR can decide whether it is interested in the contentS describes. To allow a
reasonable decision,S must carry sufficient information, which must be ensured by the informa-
tion source. This decision can be made automatically on the basis of user-defined rules or may

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 61

require user interaction.
If R decides to obtain the content (ashipment in Minstrel’s terminology), phase 2 of the broad-
casting cycle starts.R requests the shipment from its Service Agent (SA) in step 6. In this
exampleR’s SA—its access point to the transport system regarding channelC—is BDC�. Gen-
erally speaking, SAs model the concept of an access point to a higher layer in the Minstrel
infrastructure. For example,BDC� is BDC�’s SA andB is BDC�’s SA.
BDC� is configured as a cache and does not yet have the requested shipment (Miss). To fulfill R’s
request it in turn propagates the request to its SA (step 7).BDC� is configured as a repeater and
has thus already requested the shipment from its SA in a previous step (step 4). If the transmission
of the shipment toBDC� is already finished (Hit), BDC� can immediately send it toBDC� (step
8). OtherwiseBDC�’s request would be blocked until the end of the shipment transmission to
BDC�. After BDC� has received the shipment, it stores it to satisfy further requests on the same
shipment immediately (Store) and then sends it toR (step 9).R can now inform the user about
the availability of new content in channelC.
The Minstrel broadcasting algorithm can be summarized as follows: A broadcasterB distributes
reference information (samples) using MADP to the transport system. The transport system
consists of hierarchical layers of BDCs that further distribute the samples to receivers. Regarding
MADP, all BDC configurations actively disseminate samples. With respect to MRRP, a BDC can
be viewed as a generalized cache. It can exist in three configurations:

� Repeater: a “pre-loaded cache” that immediately requests the shipments corresponding
to the received samples; brings shipments “closer” to the receiverR; this causes slightly
higher traffic but facilitates faster responses

� Cache: the usual caching functionality; can also be viewed as an “on-demand” repeater

� Proxy: facilitates access to channels where receivers cannot gain direct access

R can request a shipment corresponding to a received sample from its SA via MRRP. The request
is propagated up the transport system—possibly until it reachesB—until it can be satisfied by a
component, i.e., the shipment is transferred toR.
A detailed description of the broadcasting protocols is given in Section 4.7.

4.2.2 A generalized Picture

Section 4.2.1 has provided a slightly simplified view of Minstrel’s broadcasting strategy: It con-
sidered only one information source, one channel, one broadcaster, and one receiver. To provide
a complete picture, this section briefly gives a generalized view of broadcasting in Minstrel.
Figure 4.3 shows a typical real-word configuration:

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 62

R

1

Broadcaster

1(R)
Receiver

(B)

3R

1

I5

3

I6

2B

BDC

B

I3

BDC5

(I)

BDC2

2

Component (BDC)
Base Distribution

1

BDC4

Information Source

I2

BDC6

I4

3

Figure 4.3: A typical broadcasting configuration

In the general case a broadcaster can have several information sources, which provide content
that the broadcaster distributes via a number of channels. For example,B� is fed byI�, I�, andI�.
A broadcaster can feed several BDCs which in turn feed other BDCs or receivers. For example,
B� feedsBDC�, which in turn feedsBDC�, BDC�, andBDC�. Receivers on the other hand
can receive multiple channels from multiple SAs. For example,R� has two SAs—BDC� and
BDC�—and receives channels from them, which in turn means that it can receive channels from
all broadcasters and thus content from all information sources shown in Figure 4.3.
A Minstrel broadcaster separates the concerns of channel handling from the information source.
Likewise the transport system frees broadcasters from the issues of scalability and efficient dis-
tribution. An additional benefit of delegating the distribution to a separate transport system is
that the transport system infrastructure can be reused. This means that broadcasters can use an
existing distribution infrastructure and need not set up a new one. For example,BDC� and its
downstream infrastructure are reused byB� andB�. With this conceptual separation it is also
possible that a transport infrastructure is run by a dedicated transport service provider, which
sells this service to companies running broadcasters. The same applies to information sources
and broadcasters.
In a small setting (e.g., inside the Intranet of a company) with a limited number of receivers, the
transport infrastructure (BDCs) may not be necessary, andB could directly contact the receivers.
This special case, however, is implicitly covered and is not considered further in the following
descriptions.
The configuration shown in Figure 4.3 can be reduced to the setup depicted in Figure 4.2 without
constraining generality. Thus Figure 4.2 will be used as basis for discussing the issues of Min-
strel’s broadcasting concepts in the following sections, since it simplifies the presentation and
makes the concepts easier to understand.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 63

4.3 Channel Subscription

From a conceptual point of view, receivers subscribe to channels that they want to receive from
broadcasters. At the infrastructure level, however, they subscribe a channel at a service agent
(SA). The same applies to BDCs. For example, in Figure 4.3,BDC� is the SA ofR� for channels
from B� andB�, andBDC� is its SA for channels fromB�. Likewise,BDC� has two SAs:BDC�

for channels fromB� and B�, andBDC� for channels fromB�. This concept of subscribing
a channel not directly at its source but at a “closer” node (in terms of network properties) is
Minstrel’s approach to support scalability.
Generally speaking, aservice agent (SA) is a broadcaster or BDC and denotes a node’s (BDC
or receiver) access point to the Minstrel infrastructure. All communication between a receiver
or BDC and the Minstrel infrastructure is carried out via a SA (channel subscription, sample
distribution, content request, etc.). The SA interacts with the Minstrel system on behalf of the
receiver or BDC and vice versa. Each receiver or BDC has a small set of SAs and receives
a specific channel from exactly one SA. SAs arerelative to a channel. For example, ifB�
would broadcast the channelsC�–C��, andB� would broadcast the channelsC��–C��, R� would
subscribeC� at BDC� andC�� at BDC�.
To support scalability, a “close” node (in terms of network properties) that offers a channel of
interest must be used as SA. This must be enforced by local configurations and organizational
rules. BDCs and broadcasters must decide how many and what type of subscriptions (from BDCs
and/or receivers) they accept. For example,BDC� may be configured to accept a maximum of
20 subscriptions from other BDCs but reject subscription requests from receivers.R� andR� on
the other hand may be required by their channel service provider to useBDC� as their SA.
Each SA stores information about its subscribers in its subscription database. Subscriptions only
have a local scope and are not forwarded to other parties by default. This design supports the
highest possible level of privacy for the subscribers. Only their SA knows their private data, and
subscribers can choose their SA depending on the level of privacy it guarantees.
However, it may be necessary or intended that data of the subscribers be made available to other
parties. For example, to tailor the content of a channel to the users’ needs, an SAs could send
such data up the distribution hierarchy to the broadcaster. This is outside the scope of Minstrel
and depends on the business models of the participating parties.
Minstrel’s subscription model can be formalized in terms of a subscription relation and subscrip-
tion distance. Thesubscription relation is defined as follows: An entityA is subscribed to an
entityB for channelC (denoted asS�A�B�C�), if

S�A�B�C� � SD�A�B�C� � SI�A�B�C� (4.1)

SD�A�B�C� � A is B’s SA for channelC (4.2)

SI�A�B�C� � �X � SD�A�X�C� � SI�X�B�C� (4.3)

This means thatA is subscribed toB for channelC, either ifA is B’s SA for C, i.e., (4.2) is true, or
there exists a sequence of entities fromA to B for which (4.2) is always true (4.3). (4.2) describes
a direct subscription (SD), whereas (4.3) denotes anindirect subscription (SI). In Figure 4.3

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 64

S�B�� BDC�� C�� (direct subscription) andS�B�� BDC�� C�� (indirect subscription) would be
true, whereasS�BDC�� BDC�� C�� would be false.
Thesubscription distance �S�A�B�C� between two entities is defined as:

�S�A�B�C� �

���
��

� � SD�A�B�C�
� � �S�X�B�C� � SD�A�X�C� � SI�X�B�C�
� otherwise

(4.4)

According to (4.4),�S � � for direct subscriptions and�S � � for indirect subscriptions. In
Figure 4.3, for example,�S�B�� BDC�� C�� equals 1 and�S�B�� BDC�� C�� equals 2.
Two entitiesA andB can communicate via MADP or MRRP only if�S � �:

MADP �A�B�C� � �S�A�B�C� � � (4.5)

MRRP �A�B�C� � �S�A�B�C� � � (4.6)

Thus theS and�S implicitly define the layers in the Minstrel infrastructure.

4.4 Data Structures used in Protocols

The Minstrel protocols use two key data structures—samples and shipments. Samples are dis-
tributed to recipients (BDCs, receivers) via MADP and those in turn request shipments via MRRP
based on the information in the samples. This section describes the relevant details of these data
structures.

4.4.1 Sample

A Sample models the commercial concept ofpromotion through product samples. To gain the
customer’s interest, a producer sends a sample of his goods to the customer together with an
offer that defines the business terms under which he is willing to conclude a deal. If the customer
is indeed interested by the promotion, s/he can order a shipment of the goods according to the
defined business terms.
In the case of the Minstrel push system this is translated as follows: a broadcaster sends in-
formation about new content that is available in a channel to the channel’s subscribers. This
information consists of a product sample and the business terms and must be detailed enough to
allow the recipient to decide whether to request a Shipment. For example, in a channel that offers
high-quality images (several megabytes), a Sample would hold a rather small, very low-quality
“thumbnail” of a newly available image as well as the information on its price, size, image for-
mat, etc. On the basis of this information, a recipient may decide to order a shipment of the
high-quality image.
Figure 4.4 shows the UML [147] class diagram for a Sample.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 65

1*

1

*

oid : UniqueId
timestamp : Date
vendor : String
channel : String
validFrom : Date
validTo : Date
description : String

price : double
paymentMethod : String

quantity : int

Offer

properties : OrderedMap

properties

*

sample can provide a concrete
agent that must subclass this

implemenation. No concrete

implementation and an

class can be given since the
number of implementations

Only provides a partial

interface. A provider of a

is unlimited.

class and provide an

getState()

*cid : UniqueId
mimeType : String
packing : String
description : String
content : byte[]

Cargo

sid : UniqueId
timestamp : Date
priority : int

Sample

pid : UniqueId
name : String
version : int
mimeType : String

expires : Date

ProductInfo

size : int

0..1

0..1

*

{abstract}

codebaseURL : String

version : String
expires : Date
mimeTypes : String[]

accessRights : OrderedMap

init()

Agent

aid : UniqueId

start()
stop()
destroy()

Figure 4.4: UML class diagram for a Sample

In terms of the implementation, aSample is uniquely identified by a globally unique sample ID,
is timestamped and priorized, and holds anOffer, someCargo, and anAgent.

4.4.1.1 Offer

An Offer models the business terms. It has a globally unique ID which must be specified when
ordering a Shipment: The requester must specify the ID of an Offer that defines the respective
business conditions and indirectly identifies the “product” to be shipped. An Offer gives a short
description of the “product,” defines whatquantity of the “product” is offered and itsprice.2 If
payment is necessary, the Offer defines thepaymentMethod and possible parameters (which are
not shown in Figure 4.4). For example, this could be a payment server’s URL, that allows the
recipient to commit a payment transaction for a Shipment it requests. Minstrel provides a generic
payment model that supports various payment methods and business models, such as pay-per-
view and flat fees. The current version of Minstrel includes an implementation of the Millicent
[54] micro-payment protocol as payment method for a pay-per-view business model. A detailed
description of e-commerce in the Minstrel system is given in Section 6.2.
Each Offer comes from a specificvendor and may only be valid for a certain period which
is defined by thevalidFrom andvalidTo fields. Offers (and thus Samples) are always relative
to achannel. If a product is to be announced via multiple channels a dedicated Offer for every
channel is required. The channel identifier allows all components of the Minstrel system to relate
Samples (via the contained Offer) to channels. This is important since every Minstrel component

2A currency for the price can also be specified, but is not shown in Figure 4.4.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 66

(BDCs, receivers) that receives Samples has only one interface for receiving them (a dedicated
receiving interface for every channel would be inefficient). The division into channels is done
after the reception of a Sample and thus requires such an identifier. The channel names are textual
and human-readable to make them meaningful to users and easier to understand. Nevertheless,
channel names must be unique which is provided by a simple hierarchical naming scheme. If
Minstrel is successful, it is planned to apply for a global namespace for channel names at the
Internet Assigned Numbers Authority (IANA).
To relate an Offer to other objects (other Offers, Samples, etc.), every Offer can hold a list
of name-value pairs in itsproperties. For example, an Offer could announce the availability
of some Java software contained in a single JAR file (Java Archive), and this JAR file could
replace older versions of software, say three other JAR files. Then this Offer could specify the
following properties (pseudo notation):(("replaces", (oid1, oid2, oid3))). A
list of keywords and their semantics is predefined in Minstrel. However, this list can easily be
extended and tailored to the needs of particular applications.
Each Offer is related to a specific product that is described in theProductInfo of the Offer. The
product is identified by a globally unique ID. Itsname, version information, and expiry date are
given as well. ThemimeType andsize fields provide criteria for determining whether to request
a Shipment. For example, a user configuration could require to request onlyimage/jpeg of
a size less than 100kB. Additional criteria for the request decision are provided by the Sample’s
Cargo.

4.4.1.2 Cargo

TheCargo object of a Sample holds the actual product sample (e.g., a low-quality “thumbnail” of
a high-quality image). Generally speaking, Cargo objects hold “content”, whatever this may be:
a “thumbnail” (Sample), a small HTML document (Sample), a high-quality image (Shipment),
a JAR file (Shipment), or a pushlet (Shipment). Since Minstrel does not constrain the size of
Samples (although it can be configured to accept only Samples up to a maximum size), the Cargo
and its size must be chosen very carefully. Too large Samples make the dissemination protocols
slow and inefficient; too little information may not support the recipient in his/her decision to
request a Shipment or drop the Sample. As a rule of thumb, Samples should not exceed a size of
5–10kB.
Some channels can have empty Cargo fields in their Offers: For example, a channel for soft-
ware distribution would require only a short human-readable description of the software to be
distributed. Another special case is the distribution of small amounts of information. If the infor-
mation is small enough, for example, some stock quotes that require only a short textual message
that easily fits into a Sample, Minstrel can be configured to include this content—which actually
is the shipment—into the Sample and its Cargo. This concept can further cut down on network
bandwidth consumption, since it makes a followup-Shipment superfluous. However, this must
be stated explicitly in the Sample and is not always possible or desirable. For example, in the
case of a pay-channel the recipient gets the “product” before it was payed. This tradeoff should
be considered carefully before setting up such a configuration.
To make Cargo a general-purpose container,content is defined to be a sequence of bytes—the

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 67

most general data type. Its remaining fields—mimeType andpacking—provide information that
is necessary for the decoding and processing of Cargo’scontent.

4.4.1.3 Agent

Minstrel includes content handlers for the most frequently used MIME [46, 47, 48, 49, 114] types
on the Internet. Some Cargo objects, however, may hold content types that cannot be handled by
Minstrel’s standard handlers. In these cases the provider of the Cargo can supply a specialized
Agent to process thecontent of the Cargo object (if the Cargo, however, holds a MIME type that
Minstrel can process, no Agent needs to be supplied with the Sample). The agent concept can
also be exploited for other purposes.
Again, an Agent is identified by a globally unique ID, holdsversion information, and an ex-
piry date. It defines a list ofmimeTypes it can handle and theaccessRights it requires on the
user’s machine (a discussion of security issues related to mobile code in Minstrel is given in
Section 6.1.3).
Agent is anabstract class. Abstract classes cannot be instantiated, as they only provide a partial
implementation. They can specify a set of data fields, some methods that they implement, and
an interface that derived classes must provide in their implementations [53]. A concrete Agent
provided by a supplier of a Sample—and sent as part of a Sample object—must subclass Agent
and provide implementations for theinit(), start(), stop(), anddestroy() methods (note that the
getState() method is not abstract; however, it can also be redefined by subclasses of Agent). This
design was chosen to provide a uniform interface to agents that Minstrel can rely on.init() is
called directly after instantiation of the Agent,start() to actually start its execution,stop() to
stop the execution of the Agent, anddestroy() to dispose the Agent, and free all the resources it
consumed (memory, connections, files, etc.).
getState() is used by Minstrel to request information on the execution state of the Agent. For
example, if the Agent performs a computation-intensive task, Minstrel must be able to check the
progress of this task or whether an Agent has terminated after a call to itsstop() method. Agents
execute as separate threads. In Java 2—the implementation platform of Minstrel—stopping of
threads via theirstop() method is no longer possible. Instead, the recommended method is to have
the thread repeatedly check a variable whether it should terminate [161]. An Agent’s implemen-
tation must follow this rule:stop() should be used to indicate Minstrel’s request for termination,
and upon termination the Agent should make its termination status available viagetState().
Since Samples are required to be rather small Agents can have only a very limited size. Thus
Minstrel uses a two-level design. If the Agent that comes with a Sample is small enough, it
comes with all its required code and data. This, however, will seldom be the case. If the Agent
object exceeds a certain size, it comes as alight-weight Agent. It only contains the minimal
mandatory code for the required methods and a minimal amount of data; the code providing the
full functionality of the Agent resides at the location specified by thecodebaseURL field. When
the Agent is instantiated, Minstrel creates a dedicatedclassloader [55] for the Agent that allows
it to dynamically load required code on demand. This implementation technique is comparable
to standard bootstrapping techniques. For further optimization, Agents that have already been
used, i.e., have been loaded in the way described above, can be stored locally. Since Agents are

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 68

uniquely identified by their attributes (aid, version, expires, etc.) consecutive requests for the
same Agent can be satisfied by this local copy. This further cuts down on the transmission costs
and delays and allows to dynamically extend the functionality of the receiver software.

4.4.2 Shipment

The counterpart of a Sample is aShipment that is requested if the data provided in the Sample
sparks a positive decision to issue such a request. Figure 4.5 shows the UML [147] class diagram
for a Shipment.

1

*

oid : UniqueId
timestamp : Date
vendor : String
channel : String
validFrom : Date
validTo : Date
description : String

price : double
paymentMethod : String

quantity : int

Offer

properties : OrderedMap

properties

*

{abstract}

codebaseURL : String

version : String
expires : Date
mimeTypes : String[]

accessRights : OrderedMap

init()

Agent

aid : UniqueId

start()
stop()
destroy()
getState()

related to this shipment

oid (offer id) uniquely
identifies the offer

sample can provide a concrete
agent that must subclass this

implemenation. No concrete

implementation and an

class can be given since the

0..1

number of implementations

Only provides a partial

interface. A provider of a

is unlimited.

class and provide an

cid : UniqueId
mimeType : String
packing : String
description : String
content : byte[]

Cargo

sid : UniqueId

Shipment

oid : UniqueId
timestamp : Date
numParts : int
part : int
cids : UniqueId[]

*

pid : UniqueId
name : String
version : int
mimeType : String

expires : Date

ProductInfo

1
oid

size : int

1

*

Figure 4.5: UML class diagram for a Shipment

As a Sample, any Shipment is timestamped and identified by a unique ID (sid). It carries the
unique ID of the Offer (oid) it corresponds to. This ID was given as a parameter in the MRRP
request the client issued to obtain the Shipment. It can be used to relate the Shipment to the Offer
that defines the business terms and which already resides at the client (having been received with
the corresponding Sample). The ProductInfo for this Shipment can be accessed indirectly via the
Offer. Offer and ProductInfo are included in Figure 4.5 to show explicitly how a Shipment relates
to an Offer. However, since they arenot part of a Shipment (this would require an inefficient
retransmission), they are shown in gray.
As already mentioned, Shipments can be rather large—up to several megabytes. For an efficient
transmission and to make the transmission process more fault-tolerant, a large Shipment can be
split into several smaller ones.numparts defines the total number of parts andcids holds a list of
all the Cargo IDs the full Shipment consists of.part defines the sequence number of the Cargo
contained in the current Shipment in relation to the other parts of the complete shipment. If a

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 69

Shipment has been divided into several partial Shipments, the receiver waits until it has received
all parts before it notifies the user.
The Cargo of a Shipment holds the actual content. If necessary an Agent to process the Cargo
can be included in the Shipment. The Cargo and Agent objects of a Shipment are identical to
those described above for a Sample. However, it is important to note that a Samplecan include
a Cargo object while a Shipmentmust include one for obvious reasons.

4.5 Processing of Shipments

After a Shipment has been received the user is notified and the Shipment can be accessed. In the
case of a multi-part Shipment, all parts must have been received before notifying the user. Prior
to processing, a multi-part Shipment is assembled into a single-part Shipment.
The processing of a Shipment works as depicted in Figure 4.6.

Execution Framework

Unit

Cargo

Data Store

Agent

Control Unit

Pushlet

Minstrel Receiver

Cargo

Agent

e

Cargo

d

Cargo’

Netscape Remote

Control Facility

Agent

Cargo

aCargo

Cargo

Agent

Presentation Unit

Receiver

Broadcaster

Shipment

b c

Java Secure

Figure 4.6: Processing of Shipments

The Minstrel Receiver receives a Shipment containing a Cargo and possibly an Agent. After

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 70

the reception is completed by the protocol components of the Receiver, theMinstrel Receiver
Control Unit (MRCU) is notified. The MRCU (see Section 5.1.1) is the central component of
the Receiver. It directly or indirectly controls and manages all other Receiver components. It
controls theData Store Unit (DSU) and thePresentation Unit of the Receiver and interacts with
the transport system via MADP and MRRP. The user can interact with the MRCU via a graphical
user interface.
The first step taken by the MRCU is to store the newly arrived Shipment in the DSU according to
the information contained and referenced in the Shipment. This means that the MRCU retrieves
the Offer corresponding to the Shipment from the DSU and stores the Shipment in the DSU
according to the channel defined in the Offer. The DSU (see Section 5.1.3) is a persistent storage
that can store all Minstrel data objects (Sample, Shipment, Offer) and provides flexible and fast
retrieval methods.
After the Shipment has been stored, the user is notified of the newly available content. If the user
decides to view the newly arrived Shipment, the MRCU retrieves the Shipment from the DSU. If
the Shipment’s Cargo contains content of a MIME type known toNetscape Communicator [125]
and which requires no further processing, it is given to theNetscape Remote Control Facility
(NRCF) of the Presentation Unit which instructs Netscape Communicator to display it (case
(a) in Figure 4.6). If feasible links inside the Cargo are available and Netscape Communicator
uses the Receiver as its proxy, then the user can also interact with the Cargo, for example, by
requesting further shipments referenced in it.
Netscape Communicator (or its free version Mozilla [115]) was included into the Presentation
Unit since it supports a wide range of MIME types.3 This greatly simplifies the implementation
of the Receiver, since it can rely on the capabilities of Netscape Communicator for displaying
most existing MIME types. Moreover, support for new MIME types is likely to be included
quickly into Netscape Communicator.
The integration of Netscape Communicator (Mozilla) is done by exploiting its remote control
interfaces. The Netscape Remote Control Facility (NRCF) relies on these interfaces and offers
services to conveniently control the operation of Netscape Communicator (Mozilla). NRCF
works with an out-of-the-box version of Netscape Communicator (Mozilla) and theJava Plug-
in [159] provided by Sun Microsystems. A description of the NRCF is given in Section 5.1.2.
In the case that the MIME type is not supported, the Shipment must include an Agent which
can process the Cargo. In this case the Agent is instantiated, started, and provided with the
Cargo for further processing. If the Agent converts the Cargo into a MIME type known to
Netscape Communicator, the converted Cargo is given to the NRCF for displaying it (case (b)
in Figure 4.6). For example, the Cargo could hold a GIF image which was compressed using
an unsupported compression scheme. The Agent uncompresses the GIF and then hands the GIF
to the NRCF. However, it may also be possible that only the Agent can process and display the
Cargo (case (c) in Figure 4.6).
If the Cargo holds a pushlet (case (d) in Figure 4.6), it is instantiated and started. To protect
the Receiver from malicious code all agents and pushlets are executed inside Minstrel’sJava

3Microsoft’s Internet Explorer was also evaluated for this purpose. Netscape Communicator was given the
preference, however, since it is also available for non-Microsoft platforms.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 71

Secure Execution Framework (see Section 6.1.3). In the case that the pushlet comes in a special
format, it may also be necessary to process it with an Agent before it can be executed (case (e)
in Figure 4.6).
Descriptions of the Receiver and its main components—MRCU, DSU, and NRCF—are given in
Section 5.1. JSEF is described in Section 6.1.3.

4.6 Discussion of the Broadcasting Strategy

Minstrel’s broadcasting strategy was designed to support efficient and timely information dis-
semination while providing a high degree of scalability. The scalability issues Minstrel needed
to address were:

� Server load

� Network bandwidth consumption

� Delay.

Minstrel uses a hybrid broadcasting strategy on top of two protocols: MADP to actively dissem-
inate samples of small size and MRRP for requesting large shipments.
This section gives a detailed discussion of Minstrel’s broadcasting strategy.

4.6.1 Design Issues of the Broadcasting Strategy

The most fundamental question is, why a hybrid broadcasting scheme was chosen. The answer is
straightforward and can be deduced directly from the design goals of Minstrel. The broadcasting
process was designed to be as efficient and scalable as possible while not relying on special
multicasting infrastructures. To reach this goal only small amounts of information (samples) are
distributed in an iterative process to a small number of direct recipients in an adjacent lower layer.
This facilitates low bandwidth consumption due to the small size of samples (some kilobytes) and
the limited number of recipients. To support high numbers of recipients this scheme is replicated
in hierarchical layers in a tree structure, which also distributes the broadcasting load among the
disseminating components. Recipients are informed quickly and efficiently via samples while
network bandwidth is conserved, since the much larger shipments (up to several megabytes)
are requested only if a recipient really wants them. This means that shipments which are not
explicitly requested are not disseminated. For faster availability, repeaters automatically mirror
shipments and bring them closer to the final recipients.
The additional latency introduced by Minstrel’s transport system is outweighed by its excellent
scalability. As long as data need not be disseminated in real-time, this latency is acceptable
because it is rather small and the transport system has only a small number of levels. Minstrel
addresses only non-real-time information distribution, since most information to be disseminated
over the Internet will be of that type. For real-time data dissemination, highly optimized protocols
are necessary that are beyond Minstrel’s scope.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 72

4.6.2 Analysis of a concrete Scenario

The key scalability issue in Minstrel’s hybrid broadcasting strategy is the efficient distribution of
samples via MADP (push part). While pulling protocols such as HTTP [11, 42] and MRRP are
well analyzed and have proven their scalability, only few analyses exist for push protocols such
as MADP. This section analyzes the push part of Minstrel’s broadcasting strategy on the basis of
the concrete scenario shown in Figure 4.7:

1

(Repeater)
10BDC

10,1BDC

100

10,10

1.5MBit/s

128kBit/s

BDC

R81R

(Repeater)

Broadcaster
(B)

(Repeater)

BDC
(Repeater)

1

64kBit/s

56kBit/s

33kBit/s

R41 R60R40 R61R20 R21 R80 R

Figure 4.7: A concrete MADP scenario

� A broadcaster distributes samples via MADP to 10 first-level repeaters.

� Each first-level repeater feeds 10 second-level repeaters.

� Each second-level repeater feeds 100 receivers.

� The broadcaster and the first-level repeaters are connected via T1 (1.5MBit/s = 192kB/s)
links.

� The first-level and the second-level repeaters are connected via T1 (1.5MBit/s = 192kB/s)
links.

� The receivers are connected to the second-level repeaters via 33kBit/s (= 4.125kB/s) and
56kBit/s (= 7kB/s) modem lines, 64kBit/s (= 8kB/s) and 128kBit/s (= 16kB/s) ISDN lines,
or T1 (1.5MBit/s = 192kB/s) links.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 73

� Each second-level repeater serves 20% 33kBit/s receivers, 20% 56kBit/s receivers, 20%
64kBit/s receivers, 20% 128kBit/s receivers, and 20% T1 receivers.

The total number of receiversreceiverstotal that can be reached in this scenario can be computed
as follows:

receiverstotal � jBDCij � jBDCi�jj � jRkj

� �� � �� � ��� (4.7)

� �����

Let us assume the broadcaster obtains a weather satellite GIF image as new channel content from
its information source and constructs a sample to disseminate via MADP. Assuming a typical
sample size of 3.5kB4 the relative bandwidth consumption and maximum sample transfer rates
for the network connections of Figure 4.7 are:

Bandwidth Bandwidth/Sample Samples/Minute

1.5MBit/s 0.23% 3291

128kBit/s 2.73% 274

64kBit/s 5.47% 137

56kBit/s 6.25% 120

33kBit/s 10.61% 70

Table 4.1: Bandwidth consumption and sample transfer rates

Sending a 3.5kB sample to all repeaters in the scenario of Figure 4.7 requires the following
network bandwidth in the transport system (B � BDCi + BDCi � BDCi�j):

bandwidthtransport �
�
jBDCij� jBDCi�jj

�
� 	�

� ��� � ���� � 	�
 (4.8)

� 	�
 �kB

Sending this sample to all receivers then requires a total network bandwidth of:

bandwidthtotal � bandwidthtransport � receiverstotal � 	�

� 	�
 � ����� � 	�
 (4.9)

� 	
	�
 �kB

4This number is based on tests.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 74

Without the transport system 385kB less would have been needed. This overhead, however,
is small compared to the huge delay that would have been introduced by sending the sample
sequentially to every receiver (see Section 4.6.3). In the sequential case, the computing and
network resources of only a single server would be used and all the costs of sending 35MB
would be charged to the authority running this server. It must be kept in mind that these are the
costs of asingle sample transmission.
With a transport system as given in Figure 4.7, the enormous bandwidth of 35MB is divided up
betweenB (35kB), theBDCi (35kB each), and theBDCi�j (350kB each). The consumption of
computing resources is distributed alike and the delay also is significantly lower than in the case
of sequential distribution.

4.6.3 MADP Worst-case Delay

Without constraining generality, let us further assume that broadcasters and repeaters order their
subscribers according to the network bandwidth of the connection to the subscriber. Thus the
subscriber with the fastest connection would be the first to receive a sample. If two subscribers
have an equally fast network link, then the one with the lower ordinal number ist chosen first.
Then the maximum delay in the scenario of Figure 4.7 occurs for the receiver which is last to be
fed by its repeater and every repeater on the path to the receiver is last to get the sample from
its feeding repeater (or broadcaster). Under this assumption,RBDC����� ���� would then be the
receiver with the maximum delay in Figure 4.7.
Let delay�source� destination� size� denote the time necessary to transfersize kB from node
source to nodedestination. The worst-case (maximum) delay for the scenario of Figure 4.7
can then be calculated as:

delay�B�RBDC���������� 	�
� �
��X
i��

delay�B�BDCi� 	�
� �
��X
j��

delay�B��� BDC���j� 	�
�

� �� �
�
delay�BDC������ RBDC�������� 	�
�

� delay�BDC������ RBDC����� ���� 	�
�

� delay�BDC������ RBDC����� ���� 	�
�

� delay�BDC������ RBDC����� ���� 	�
�

� delay�BDC������ RBDC����� �	�� 	�
�
�

(4.10)

� �� �
	�

���
� �� �

	�

���

� �� �

�
	�

���
�

	�

��
�

	�

�
�

	�

�
�

	�

����

�

� �� � �����������

� �� � ������������ � ������
 � ���	�
 � ��
 � �����

� �����	��� �s

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 75

This also means that all receivers could be notified within 1 minute. Figure 4.8 shows the delays
for every receiver in Figure 4.7.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
el

ay
 [s

]

Ordinal number of receiver

Figure 4.8: Minstrel distribution delays

This figure should be interpreted as follows: The distribution delay is approximately equally
distributed over the 100BDCi�j which are shown by the 100 “spikes” in Figure 4.8. The spikes
start slightly over 0, which is due to the distribution delays introduced by sending the sample
from B to the 10BDCi and then propagating this sample to the 100BDCi�j. Since B, theBDCi,
and theBDCi�j are connected with fast T1 links and the sample is rather small, this causes only
very small delays, ranging from 0.036458333 seconds forBDC��� to 0.36458333 seconds for
BDC�����. Because these delays are negligible compared to the delays of sending the sample
from theBDCi�j to the receivers, they are hard to identify in Figure 4.8.
Every BDCi�j sends the sample sequentially to 100 receivers. Thus the delay depends on the
ordinal number of the receiver relative to theBDCi�j it is connected to. The delay for every
receiverRi must take into account the delays of the receiversR�–Ri�� connected to the same
BDC. Since the receivers connected to different BDCs are fed in parallel, the delays of these
receivers only differ according the delays introduced by sending the sample to the relevant BDCs.
For example,delay�B�RBDC������ 	�
� anddelay�B�RBDC������ 	�
�, only differ in the additional
delay caused by sending the sample toBDC���, which is 0.018229167 seconds higher than the
delay for BDC���. The same applies to all BDCs and receivers and also explains the parallel
“spikes” and the direct proportionality of the delay to the ordinal number (relative to the feeding
BDC). However, the upper limit for all delays is 40.823864 seconds.
Each individual “spike” in Figure 4.8 resembles the one shown in Figure 4.9.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 76

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
 [s

]

Ordinal number of receiver

Figure 4.9: Minstrel distribution delay for sequential distribution by 1 BDC

The distribution of the delays as depicted in Figure 4.10 shows that most receivers will get the
sample rather fast and that only 100 receivers are in the the interval with the maximum delay.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

N
um

be
r

of
 r

ec
ei

ve
rs

Delay [s] - x meaning [x, x+1[

avg. (12.87)median (9.48)

Figure 4.10: Distribution of delays in Minstrel

The average delay is 12.87 seconds and the median (50% of the delays higher and 50% lower) is
9.48 seconds. 72% of the receivers have a delay of less than 20 seconds (50% of the worst-case
delay) and approximately 58% have a delay that is less than the average delay.
The maximum delay for distributing a 3.5kB sample serially to 10,000 receivers with the same
links for the receivers as in Figure 4.7 and the receivers being sorted according to their network
connection toB (fastest first) can be computed as:

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 77

delay�B�R������ 	�
� �
�����X
i��

delay�B�Ri� 	�
�

� ���� �
�
delay�B�R�� 	�
� � delay�B�R����� 	�
�

� delay�B�R����� 	�
� � delay�B�R����� 	�
�

� delay�B�R	���� 	�
�
�

(4.11)

� ���� �

�
	�

���
�

	�

��
�

	�

�
�

	�

�
�

	�

����

�

� ���� � ������������ � ������
 � ���	�
 � ��
 � �����

� ���
���� �s

This means that the last receiver gets the sample with a delay of 4045.928 seconds (1 hour 7
minutes 25.928 seconds). It is considerably higher than the maximum delay of the Minstrel
distribution algorithm (besides the very inefficient resource utilization of one machine and its
network connection). Minstrel has only 1.0090111% of the serial distribution delay in the worst
case. Serial distribution, however, is still used, for example, by mailing lists (see Section 3.2.1).
Figure 4.11 compares the delays for serial distribution with the delays of Minstrel.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
el

ay
 [s

]

Ordinal number of receiver

Minstrel
Serial

Figure 4.11: Serial distribution delays vs. Minstrel distribution delays

As stated before the figures above provide only an approximation of the actual system behav-
ior and take into account only bandwidth. They do not take into account other factors such
as processing load on the broadcaster, repeaters and receivers, delays introduced by processing

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 78

of received information and dispatching to recipients, or queuing delays. However, this model
seems justified, since bandwidth is still the most limiting resource. Bandwidth is so predominat-
ing in this setting that the other factors have only minor influence (if some other resource had
a bigger impact this could be compensated by a faster machine, more memory, etc.). Another
implicit assumption is that all components are online all the time, so that queuing delays need
not be considered.

4.6.4 Collocation of Repeaters with Internet Service Providers

The rather fast T1 links between the broadcaster and the repeaters in Figure 4.7 have only mi-
nor influence on the distribution delays of Minstrel. If the broadcaster and the repeaters were
connected via 128kBit/s links, then the maximum delay would only increase by 9.82% to 44.83
seconds.
Moreover, the assumption of T1 links is justified. The broadcaster and the repeaters would
normally be set up at sites with fast network connections. A reasonable choice would be Internet
Service Providers (ISPs) that are needed in any case by every site connected to the Internet. ISPs
typically have high-speed connections to the Internet and other ISPs. By this collocation strategy
a reasonably fast push-backbone would be available by organizational measures on top of an
existing infrastructure.

4.6.5 MRRP and implicit Caching

So far only efficient sample distribution has been considered. The sample distribution process
is done via the Minstrel Active Distribution Protocol (MADP). If the receiver decides to request
the actual data (the shipment) described by the sample, the shipment is requested and transferred
via the Minstrel Receiver Request Protocol (MRRP). Shipments can be rather large, up to sev-
eral megabytes. Therefore efficiency, meaning low network bandwidth consumption and fast
response time, is an important issue here as well.
Due to the structure of the Minstrel transport system MRRP efficiency comes at rather low cost.
Receivers can send their MRRP requests only to one of their SAs. The SA can either satisfy the
request, if it already has the shipment, or it requests the shipment from its SA. Since most of
the SAs will be BDCs which are configured either as caches or repeaters (that also do caching)
this builds up an implicit caching infrastructure that satisfies the requirements of low bandwidth
consumption and reasonably fast response time. In contrast to systems like the WWW or Usenet
news, where caching had to be introduced as a second-level concept to ensure scalability and
efficiency, Minstrel already includes caching as a first-level concept.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 79

4.7 Broadcasting Protocols

This section gives a detailed presentation of Minstrel’s MADP and MRRP protocols. The proto-
cols are described using UML state charts [147]. State charts were favored over other protocol
notation techniques such as Petri nets because they support easy comprehension. However, they
are not a formal definition that can be directly mapped into an implementation, but suffice for
our purpose.
Since the state charts involve some parallelism, an additional notation convention was used to
support readability of the diagrams: Actions that generate events and trigger state transitions in
other (parallel) sections of the state charts are shown as white text on black background; the same
notation is used for the according events.
Both MADP and MRRP are defined as a combination of two state charts: one for the receiving
side and one for the sending side. The terms receiver and broadcaster are used in the following
to indicate the communication role of an entity and do not necessarily denote broadcaster and
receiver components. By convention every entity can have a receiver and a broadcaster role. For
example, a BDC is an MADP receiver towards its SA and an MADP broadcaster towards the
entities it feeds. It is also an MRRP broadcaster since it is an SA and thus receives shipment
requests that it can either satisfy immediately or by sending an MRRP request to its SA, which
means that it takes the role of an MRRP receiver. Table 4.2 lists the possible roles of entities.

Entity Role
broadcaster receiver

Broadcaster MADP, MRRP

Receiver MADP, MRRP

BDC MADP, MRRP MADP, MRRP

Table 4.2: Roles of entities

MADP and MRRP are both based on Java’s Remote Method Invocation (RMI) [66] paradigm.
Thus all communication between Minstrel components (broadcaster, BDC, receiver) in the pro-
tocols is done via remote method calls.

4.7.1 Design Issues of the Protocols

In the previous descriptions of the broadcasting strategy it was implicitly assumed that all com-
ponents are permanently connected to the Internet and online. This assumption, however, does
not hold. For example, network disconnects can occur and many users access the Internet via
modem dial-in. Thus MADP and MRRP must account for such situations. For MRRP the solu-
tion is straightforward since it is initiated by receiving party: Requests for shipments are delayed
until network connectivity is available again or the requests initiate a dial-in process.
For MADP the problem is more complicated. If a subscriber cannot be reached by a distributing
component (broadcaster or BDC), the relevant sample must be retained (queued) until the recipi-

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 80

ent becomes available again. The problems regarding the queuing strategy are similar to the ones
faced by Internet mail transfer agents (MTAs) such assendmail [21]. Some of the questions to
be solved by any queuing system are, how long to retain a request, when to check whether the
recipient is available, and the maximum amount of resources allocated to one recipient (number
of samples, total size of samples, etc.). Minstrel supports a user-configurable queuing strategy to
address these issues.
Content expiry is another problem to be considered in MADP and MRRP. Both samples and
shipments have a certain lifetime after which they are no longer valid and are discarded. In
the case of MADP, the distribution of a sample to a recipient may fail if the sample expires
during the distribution process. This may be reasonable, if a recipient is not reachable for a long
time. In other cases, for example, if samples expire for a certain recipient, despite the recipient’s
availability, measures may be necessary: The expiry period of samples can be increased; the
network connection may be upgraded; a lower sample transmission rate can be tried, etc. For
MRRP the situation is simpler. The expiry problem only occurs upon request of a shipment
which has expired. In this case the requester is notified and no additional measures are required.
It is important to note that for the reasons presented above, the delivery of samples and shipments
cannot be guaranteed.
For reasons of simplicity, but without constraining generality, the following protocol descriptions
show a non-parallel picture of the protocols, apart from some parallelism inside the protocol
automatons. To ensure optimized protocol behavior, implementations must be highly parallel,
however. For example, in the case of the MADP broadcaster, a set of concurrent worker threads
(a so-called thread pool [91]) accesses a global pool of distribution jobs. The same concept
is implemented in the MRRP receiver, where worker threads (also organized as a thread pool)
access a global pool of retrieval requests to support efficient, parallel shipment retrieval. The
receiver side of MADP on the other hand also applies multi-threading, otherwise the receiver
could receive only one sample at a time while all other sample transmissions would be blocked.
Also the broadcaster side of MRRP applies multi-threading, otherwise an SA could only satisfy
one request at a time while all others would be blocked.
Multicast infrastructures or other specialized distribution substrates are not considered explicitly,
since such infrastructures can be used without having to change the basic algorithms.

4.7.2 Minstrel Active Distribution Protocol

Figure 4.12 shows the UML state chart for the broadcaster side of the Minstrel Active Distribu-
tion Protocol (MADP).
The broadcaster side of MADP has two main threads of execution: the sender, which is respon-
sible for distributing the samples to the subscribers, and the queue, which is in charge of queuing
undeliverable samples, when the recipients cannot be reached.
As soon as a new sample becomes available, a list of tentative recipients is generated based on
the subscription database. This list holds all local subscribers of the channel the sample belongs
to. If this list is non-empty, filters are applied to determine the recipients that actually will get
the sample. This filtering process serves two purposes. First, it is used to enforce protocol
constraints such as the expiration of samples (expired samples need not be distributed). Second,

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 81

recipients

AVAILABLE
RETRY STATUS

get next recipient and test
recipient connectivity

Transmission successful
[more recipients available]

[more recipients available]
queue request, get next
recipient and test

Retry

recipient connectivity

[no more recipients]
queue request and
wait for new requests

Retry

[no more recipients]
wait for new requests

Transmission successful

reachable
apply retry rules
and get status

Recipient not

generate list of tentative

Tentative recipients available [# > 0]

Timeout [queue non-empty]
generate list of queued
recipients

New sample available

Tentative recipients available

Queued recipients available

[no more recipients]
wait for new requests

No retry

IDLE

CHANNEL
IDLE

No recipients
wait for new request

No recipients
wait for new request

CONNECTIVITY
STATUS AVAIL.

Filtered recipients available [# > 0]

connectivity

SAMPLE

and get status

Transmission failed
apply retry rules

 recipients available]

connectivity

No retry [more

get next recipient
and test recipient

Recipient reachable

apply broadcaster-side filters
(expire, etc.)

get first recipient and test recipient

RECIPIENTS
TENTATIVE

SENT

RECIPIENTS
FILTERED

RECIPIENTS
LISTED

for this recipient
send specific sample

QUEUE

Figure 4.12: Minstrel Active Distribution Protocol (MADP) – Broadcaster side

every MADP broadcaster can apply application level filters to enforce its local distribution policy.
For example, some sites may want to filter out advertisements or content not suitable for children
(on the basis of subscriber information, content of the sample, policy rules, etc.).
Once the filters have been applied the final list of recipients is available and the distribution
process can start. The first recipient is taken from the list and its connectivity status is checked.
If it is reachable, then the sample is sent to it. If the transmission is successful, this procedure is
repeated for the next recipient until the list is empty and the protocol engine goes into idle mode,
waiting for new samples to distribute.
This distribution process may fail for various reasons. The two main cases of error are when:

� the connectivity test for the recipient fails, or

� the connectivity test for the recipient succeeds but the transmission of the sample fails.

In any case of failure the retry rules are applied. These rules take into account the local retry
policy and configuration settings such as the maximum number of retries, the maximum num-

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 82

ber of samples queued for a specific receiver, the maximum total size of queued samples for a
specific receiver, the maximum queue length, the maximum size of the queue, and the system
load. Depending on the result, the job (“send samplex to receivery”) is either queued for retry
or abandoned. If there are more recipients to be processed the distribution process continues.
Otherwise the protocol engine goes into idle mode and waits for new samples to distribute.
The MADP queue operates in parallel to the distribution process described above. Its operation
is based on regular intervals: A timeout occurs after a configurable amount of time and the queue
generates a list of tentative recipients. This list does not necessarily include all queued recipients
but can contain only a subset which is determined by protocol constraints, such as expiry date
and priority of the sample, and the queue’s configuration, such as channel-specific retry settings.
When the list is available, an event is generated that triggers a distribution attempt by the sender
component.
Figure 4.13 shows the UML state chart for the receiver side of MADP, which is rather simple
compared to the broadcaster side.

Incoming sample
apply user filter

User interaction required
[interactive filter]
display query window

User accepts sample
store sample
notify MRRP component
wait for new request

wait for new request
Filters reject sample

User rejects sample
wait for new request

wait for new request

CHANNEL
IDLE

FILTERS
APPLIED

USER
INTERACTION

Filters accept sample
store sample
notify MRRP component

Figure 4.13: Minstrel Active Distribution Protocol (MADP) – Receiver side

As soon as a sample becomes available in a channel, the filters for that channel defined by the user
(if any) are applied. If the sample passes the filters it is stored and the Minstrel Receiver Request
Protocol (MRRP) component of the receiver is notified to take further action, i.e., request the
corresponding shipment.
For some filters the user may want to make an automatic decision, when to accept a sample. For
example, weather satellite images that are smaller than 50kB, come in three times a day and are
free of charge are accepted while others violating any of these conditions are rejected.
For other samples the user may want to be asked. For example, a sample may announce special
analysis data on stock markets at a price that is higher than the threshold configured for automatic
acceptance. In this case the user’s configuration may require user interaction to make the deci-
sion. Of course, this user interaction is not done synchronously as Figure 4.13 implies. Actually
such jobs that require user interaction are queued and can be decided by the user at the time s/he
wishes. But that would be an implementation view of the protocol engine, while Figure 4.13
gives the conceptual view.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 83

4.7.2.1 Recipient-initiated Sample Distribution

For some receivers retries may be necessary frequently since they may not be reachable all the
time. The most probable reasons for unavailability are:

� the receiving entity is not running (as a process at the receiving site)

� the receiver’s site is not online all the time (dial-in users)

� network partitions

To improve support for such situations the concept ofreceiver-initiated sample distribution was
included: A recipient can contact the MADP broadcaster via a special method call and request its
queued samples. This triggers an extra user-specific queue run. The queue collects the samples
queued for the requesting recipient and forwards them to the sender part which sends it to the
requester.
This concept is similar to the mailbox functionality known from email where a user can retrieve
his/her email from a mail server via the POP [116] protocol. It remedies several problems:

� It may occur that a recipient is online generally, but never exactly at the times when a
sample distribution is attempted.

� Support for dial-in users is improved. If they are online infrequently, they can decide when
to receive samples. However, this scheme no longer guarantees timely notification.

� The load on the MADP sender is lowered because it gets a request from a recipient and
the triggered distribution attempt is likely to succeed because the recipient has explicitly
announced its availability.

4.7.3 Minstrel Receiver Request Protocol

Figure 4.14 shows the receiver side of the Minstrel Receiver Request Protocol (MRRP).
The receiver side of MRRP has two main threads of execution: the requester that is responsible
for requesting shipments and the queue which is in charge of queuing open shipment requests,
i.e., when the retrieval was delayed by the user or because the supplier of the shipment (SA)
could not be reached or could not supply the shipment when requested.
The requester starts off when it receives a notification from the MADP receiver that a new sample
is available whose corresponding shipment is to be requested. In order to control retrievals the
user may define a policy when and under what conditions a shipment is actually requested from
the SA. For example, for some shipments it may suffice to be requested at some later time when
the network is less loaded or rates for dial-in accounts are cheaper. If the application of the
policy evaluates to “later retrieval” the request is queued. If the policy evaluates to “immediate
retrieval” or no policy is defined, the shipment is requested immediately.
First the protocol engine tests whether the SA is reachable. If so, it requests the shipment from
it. Upon successful receipt of the shipment, it is stored and the user is notified of the availability
of new data. However, the retrieval of the shipment from the SA may fail for various reasons:

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 84

Queued requests available
get first request and generate

receiver
Notification from MADP

PROCESSED
REQUEST

No more requests
queue was processed

CONNECTIVITY
STATUS AVAIL.

and get status

Transmission failed
apply retry rules

not reachable
apply retry rules
and get status

Broadcaster
wait for new requests

REQUESTS
LISTED

Timeout [queue non-empty]
generate list of queued
requestsQUEUE

IDLE

get next request and generate
Queued requests available [# > 0]

Notification from MADP receiver

test broadcaster connectivity

APPLIED
POLICYpolicy

apply user scheduling

Immediate retrieval

receiver
Notification from MADP

REQUESTS
WAITING FOR

SHIPMENT
RETRIEVED

Broadcaster reachable
retrieve shipment

AVAILABLE
RETRY STATUS

No retry
wait for new requests

Retry
queue request

Later retrieval
queue requestTransmission successful

store shipment
signal new shipment

Figure 4.14: Minstrel Receiver Request Protocol (MRRP) – Receiver side

� low-level failures such as network disconnects, or

� application level policies and failures.

The second case indicates that the retrieval was refused or interrupted intentionally. For example,
the SA may be a cache that does not already hold the requested shipment. In the case of a large
shipment over a slow connection, the SA may decide to instruct the requester to abandon the
retrieval and try again at a later time (the SA can supply an estimated delay to the requester) in
order not to block the requester too long. In the meantime the SA could retrieve the shipment, so
that it is available when the client issues a new request for that shipment. Other administrative
decisions may be communicated in a similar way.
In any case of failure the retry rules are applied. These rules take into account variables, such as
shipment expiry, and configuration settings, such as the maximum number of retries. Depending
on the result, the retrieval is either queued or discarded.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 85

The MRRP queue operates in parallel to the requester protocol automaton. Its operation is based
on regular intervals: A timeout occurs after a configurable amount of time and the queue gener-
ates a list of retrieval requests. For every entry in this list, a notification is generated that triggers
the retrieval process in the same way as if a notification from the MADP receiver were received
after reception of a sample whose corresponding shipment is to be retrieved.
The generation of the list of retrieval requests is not fixed and can be extended in several ways.
For example, every retrieval request can have a special delay attached that defines the delay for
the retries instead of using a fixed interval. Such enhancements, however, do not change the
queuing semantics, but only provide runtime optimizations.
Figure 4.15 shows the UML state chart for the broadcaster side of MRRP.

Invalid request
signal error
wait for new requests

Incoming request
check validity of request VALIDITY

CHECKED

Transmission successful
wait for new requests

Transmission failed
wait for new requests

BROADCASTER

REQUEST
COMPLETED

SHIPMENT
SENT

IDLE

Valid request
check shipment availability

CHECKED
AVAILABILITY

send shipment

send shipment
Shipment available

Request failed
wait for new requests

Retrieval successful

request shipment
Shipment not available

Figure 4.15: Minstrel Receiver Request Protocol (MRRP) – Broadcaster side

Every incoming shipment retrieval request is first checked for its validity, e.g., whether the re-
quested shipment has expired. If this check fails, an error is signaled to the requester. Otherwise
the availability of the shipment at the processing site is checked. In the case of a Minstrel Broad-
caster, this check will always succeed. For a BDC, however, it may be necessary to request the
shipment from its SA first. For example, if the BDC is a cache, a shipment will be available only
after the first successful retrieval request.
If the shipment is not available at the processing site, it is requested from the site’s SA. This may
be signaled to the original requester as described above, for example, to instruct it to request
the shipment at a later time when it is available. If the retrieval fails at all, the problem and its
description are signaled to the original requester. Otherwise, if the shipment has been retrieved
successfully or is already available, it is sent to the requester.
The interaction scheme of Figure 4.15 resembles very much the operation of a standard web
server or of a web proxy server in combination with a web server.

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 86

4.7.4 Discussion of the Protocols

The main goal in the design of the Minstrel protocols was to support efficient operation while still
keeping the protocols reasonably simple. Sophisticated protocols that maintain a high degree of
data coherence and transmission security usually have very complicated protocol automatons that
require a high volume of administrative data to be exchanged. They also tend to suffer severely
from elaborate error recovery procedures in the case of failures. Thus the design rationale for
MADP and MRRP follows the tradition of many successful Internet protocols and carefully
trades powerful capabilities for conceptual simplicity. More features could have been added to
the protocols (and actually were tested), but the gain would have been to low compared to the
complexity introduced. The capabilities of MADP and MRRP seem reasonably complete for
their domain.
As noted above, MADP and MRRP are based on RMI [66]. The ease of use and the excellent
integration of RMI into Java come at the cost of lower efficiency. Compared to plain socket
connections, less control over the timing and volume of data transmissions is available for RMI.
For MADP this means that the typical sample size of 3.5kB as used in the examples splits into
approximately 1kB of raw data and approximately 2.5kB of RMI overhead (administration data,
serialization information, etc.). This overhead is mainly due to the sophisticated structure of
samples that requires much class information to be transmitted with every call while the actual
data tends to be rather small. The overhead/data ratio is not very good because samples try to
be as concise as possible and thus are in a range, where administrative data has a higher impact
on the total transmitted data volume. With larger sample sizes—which are undesirable—the
overhead/data ratio would be far better. For MADP, however, the overhead seems to be tolerable
due to the advantages of RMI.
An early implementation of the protocols tried to cut down on the reachability checks. In an
early version of MADP, for example, receivers registered with their SA. The intention was that
the SA would know what receivers were online and thus be able to decide quickly to whom
to send a sample (without further connectivity checks) while queuing the sample for currently
offline receivers. This assumption, however, was proven wrong since the concept of registration
introduced the problem that a state was shared between several parties and needed to be kept
consistent. For example, a receiver could crash or intentionally be stopped without de-registering
at its SA. The same problem arose if the receiver was unreachable due to network problems.
Maintenance of state information in the presence of such error conditions that frequently occur
in the networking area had a far lower gain than what would have been won. Thus this concept
was abandoned.

4.7.5 Possible Improvements

This sections briefly discusses some possible improvements for future implementations of the
protocols.
A problem of RMI is that data objects sent via RMI must be built up in memory before they can
be sent, received, or used. This is not a problem for samples that are rather small, but may be
one for large shipments. If a shipment of, say 3MB, is requested by 10 users in parallel from one

CHAPTER 4. THE MINSTREL PUSH SYSTEM: BROADCAST COMMUNICATION 87

SA, this may lower the performance of the SA. A solution may be to distribute shipments in a
different way: The actual shipment class would hold only the administrative data and a pointer
(a URL) where the cargo of the shipment could be retrieved. If a simple socket-based protocol
were used for the cargo transfers, it would also allow recovery of interrupted transmissions. An
interrupted transmission could restart at the point of interruption without everything’s being re-
transferred, as necessary with RMI.
For further optimization, connections could be reused for the transmission of multiple objects.
This strategy, however, has to be applied carefully to prevent starvation effects. For MRRP
the application of connection reuse is simple and comes at low cost. Shipment requests can
be sorted according to SA and the connections can be reused. For MADP it can have dramatic
impact and require complex scheduling strategies. If an MADP broadcaster sends all samples for
one receiver in bulk over a reused connection, it may easily lead to starvation of other receivers
if the sample rate is high enough. To prevent starvation effects, specialized scheduling strategies
must be applied. At the moment, however, it is not clear whether this would pay off.

Chapter 5

The Push System:
Components

Minstrel follows the component and communication model presented in Chapter 2. This chap-
ter describes the main components of the Minstrel system in detail. Section 5.1 describes the
receiver, Section 5.2 presents the broadcaster, and finally, Section 5.3 gives a description of the
base distribution component (BDC).

5.1 Receiver

The Minstrel receiver allows the user to access the Minstrel system. It offers a graphical user
interface that allows the user to access channels (store, retrieve, display, and search shipments,
samples, and offers) and manage his/her channel subscriptions. Via the receiver the user can ma-
nipulate, control, and customize his/her user profile, the received information, and the channels
as well as update the configuration. Based on a channel’s defaults and the user’s settings the re-
ceiver is responsible for updating channel content, deleting expired data, and freeing disk space
if necessary. This section gives an overview of the receiver and describes its main components
in detail. Figure 5.1 shows the architecture of the Minstrel receiver.
The main components of the receiver are the Presentation Unit, which is in charge of displaying
shipments, the Data Store Unit (DSU), which stores all channel content and associated adminis-
trative information, and the Minstrel Receiver Control Unit (MRCU) that manages the receiver’s
operation, controls the Presentation Unit and the DSU and interacts with the Minstrel infrastruc-
ture via MADP and MRRP.
Intentionally, Figure 5.1 does not show the e-commerce components, the Minstrel Data Lock
(MDL) authentication infrastructure, and the graphical user interface.
The e-commerce and MDL components are conceptually outside the the Minstrel core compo-
nents (receiver, broadcaster, BDC) as can be seen from Figure 4.1. The Minstrel receiver is a
client of the e-commerce infrastructure to effect payment transactions and therefore is only aware
of the e-commerce infrastructure’s interfaces and some of its components which can be accessed
from the outside. For example, the receiver knows how to issue apay request to the e-commerce

88

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 89

MRRP MADP

Netscape Remote

Control Facility

Unit

Data Store

Execution Framework

Minstrel Receiver

Control Unit

Receiver

Presentation Unit

Java Secure

Figure 5.1: Architecture of the Minstrel Receiver

infrastructure or can retrieve the user’s account information from it (thewallet which holds the
user’s “money”). This separation of concerns allows the receiver to work without the payment
infrastructure if payment is not required. The infrastructure has a flexible payment interface that
allows multiple business models and payment methods to co-exist. As a proof of concept, the
current implementation of Minstrel supports a pay-per-view business model using the Millicent
micro-payment protocol [54] as payment method. Minstrel’s generic payment model and its
payment infrastructure are described in Section 6.2. In-depth descriptions of micro-payments in
Minstrel based on Millicent are given in [71] and [138].
Similar arguments apply for the relation between the receiver and MDL. Actually, MDL is in-
tended to be invisible for the receiver and the other Minstrel components. Each sample or ship-
ment is guaranteed to be authenticated and checked for tampering before being made available
to a receiver or BDC. MDL and the Authentication and Verification Environment (AVE), which
provides an high-level interface to MDL’s functionalities, are integral parts of the Minstrel dis-
tribution infrastructure. The receivers, broadcasters, and BDCs are application-level users of this
infrastructure and do not have to concern themselves with the low-level security details. Min-
strel’s security architecture and MDL are described in Section 6.1. A detailed presentation of
MDL is is given in [43] and [44].

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 90

The graphical user interface of the receiver on the other hand is not shown in Figure 5.1 because
it focuses on user interaction rather than Minstrel functionality. Though it interacts with all of
the above components directly or indirectly, it “only” provides a means for the user to access
functionalities of Minstrel components. Thus it is not described further.

5.1.1 Minstrel Receiver Control Unit

The Minstrel Receiver Control Unit (MRCU) manages the receiver’s operation and interacts with
the Minstrel transport system. It receives samples and can request the corresponding shipments
from an SA. This means that the MRCU includes the implementations of the MADP and MRRP
protocols described in Section 4.7.
Samples and shipments along with administrative data are stored in the receiver’s DSU. Upon
request of the user the MRCU can retrieve the data stored in the DSU and instruct other receiver
components to operate upon it, e.g., instruct the presentation unit to display it.
Conceptually the MRCU is the main “contact partner” and dispatcher of information, both for the
user and for the Minstrel infrastructure. It mediates between the user’s requests and the Minstrel
system’s functionalities. If the receiver were an operating system the MRCU would analogously
be its scheduler. The user interacts with the MRCU via the graphical user interface.

5.1.2 Presentation Unit

The presentation unit is in charge of presenting channel content to the user, e.g., by display-
ing text or graphics, playing audio content, or executing pushlets and agents, as described in
Section 4.5.
The main requirement for the presentation unit is that it must be able to handle a wide range
of different content (MIME) types. An abundance of such MIME types already exists on the
Internet and new ones are emerging rapidly. This makes it nearly impossible to offer support
for all of them. However, Minstrel was intended not to constrain users in their choice of content
formats. Thus the compromise for Minstrel’s receiver was to choose an existing component-off-
the-shelf (COTS), integrate it into the receiver, and let it handle the displaying of MIME types.
A search for such components revealed that the most powerful and versatile components for this
purpose were web browsers themselves. Compared to other components, like SUN’s HotJava
component, browsers like Netscape Communicator [125] (or Mozilla [115]) or Microsoft Internet
Explorer [111] have four major advantages:

� they are free of charge,

� they quickly incorporate functionality for handling new MIME types,

� many plug-ins for highly specialized MIME types, such as Apple’s QuickTime [3] video
format or RealAudio’s [141] streaming audio format, are available, and

� most Internet users have them and are familiar with them.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 91

The disadvantage, however, is that the integration of browsers into applications is difficult and
usually cannot be very tight. Nevertheless the browser strategy was chosen for its undoubted
benefits.
The presentation unit uses an off-the-shelf version of Netscape Communicator to display stan-
dard MIME content. In the integration process two directions of information and control flow
between the receiver and Netscape Communicator must be considered:

To Netscape Communicator: For example, if the user wants to view a shipment, the MRCU
first has to retrieve the shipment from the DSU and then instruct Netscape Communicator
to display it. For this type of control and information flow, the Netscape Remote Control
Facility (NRCF) [68] was developed.

From Netscape Communicator: Less frequently, the user will interact with Netscape Commu-
nicator and may want to initiate an action by the Minstrel system. For example, Netscape
Communicator displays a list of channels and the user wants to subscribe to one by clicking
on a hyperlink. This must be communicated back to the MRCU by using the receiver as
Netscape Communicator’s proxy. With appropriate configuration settings Netscape Com-
municator can tunnel all user requests through the receiver which then can decide what
action to take (trigger a Minstrel operation or forward the request).

Minstrel channels can also hold executable (mobile) code in two manifestations: agents and
pushlets. An agent is a specialized program for processing the content of Cargo objects (see
Sections 4.4 and 4.5). A pushlet is mobile code (and possibly some attached data) that is sent
as a shipment. “Displaying” a shipment that holds a pushlet actually means that the pushlet
is executed at the receiver. For both types of mobile code a special runtime environment must
be provided that protects the receiver from erroneous or malicious code and ensures the user’s
privacy. The Java Secure Execution Framework (JSEF) of Minstrel offers such a runtime envi-
ronment and allows the user to protect his/her local resources. The user and system administrator
can define access rights and a security policy that is enforced by JSEF whenever an agent or a
pushlet executes. The security issues concerning execution of pushlets and agents and Minstrel’s
Java Secure Execution Framework are presented in Section 6.1.3 and detailed descriptions of
JSEF and its underlying concepts are provided in [70] and [84]. Thus the following description
focuses on the integration of Netscape Communicator via NRCF.

5.1.2.1 Netscape Remote Control Facility

Several possibilities exist to control Netscape Communicator remotely:

� Platform-dependent

– Write a new plug-in to control the browser (similar to the plug-ins available for PDF
files, RealAudio, etc.); a specialized plug-in must be written for every supported
platform.

– UNIX: the -remote parameter

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 92

– MS Windows: NCAPI (DDE and OLE)

– MS Windows:shelexec.exe andurl.dll

– Apple: Macintosh remote control

� Platform-independent

– LiveConnect: supports access from Java to JavaScript [127] (and vice versa) that
provides a high degree of control over the browser

– Java applet: the browser loads an applet that can in turn control it

After careful consideration the Java applet approach was chosen since it is platform-independent
and does not impose further requirements. NRCF works as follows:

1. A special Java applet is loaded by Netscape Communicator.

2. This applet can instruct Netscape Communicator to load a certain URL via the standard
methodshowDocument() of java.applet.AppletContext (this is the context
every applet executes in).

3. To allow remote control, the applet registers with a remote controller that can send display
requests (URLs) to the applet, which in turn instructs Netscape Communicator to display
the URLs.

Figure 5.2 shows an example to demonstrate the interaction patterns.
First anNRCFController is created. This includes anNRCFServerObject that is in
charge of managing subscriptions of clients (i.e., web browsers, remotely controllable via the
NRCFApplet) and sending commands to the subscribers. Once anNRCFController server
is running it can be contacted via RMI and clients (NRCFApplet) can register themselves
(subscribe()). If the browser is to display something, a “SHOW URL” command is sent
to the server that asynchronously sends the request to all subscribed applets, which in turn in-
struct their associated browser to display the data. Remote control of the browser can be enabled
or disabled at any time (ENABLE and DISABLE commands in Figure 5.2). If the controlling
server exits (OFF) all clients are notified asynchronously (serverExit()).
Servers (likeNRCFController) that want to control Netscape Communicator remotely im-
plement theRemoteController interface, while applets (likeNRCFApplet) that want to
register with a server and are in charge of receiving requests and controlling their associated
Netscape Communicator implement theRemoteControllable interface. Both interfaces
extendjava.rmi.Remote and thus bothNRCFController andNRCFApplet are RMI
servers (see Figure 5.3).
When anNRCFApplet registers withNRCFController, it actually registers itself as an
object of typeRemoteControllable. This in turn requires that it implements this interface
and specifies that it can be called via RMI. For example, theshowURL() andserverExit()
methods ofNRCFApplet in Figure 5.2 are called via RMI.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 93

subscribe()
subscribe()

OFF

* showURL()

all done?

ENABLE

NRCFController

unsubscribeAll()

new()

new()

NRCFServerObject
initialize()

SHOW URL

showDocument()

DISABLE

new()

NRCFApplet

initialize()

showURL()
[getClientCount > 0]

unsubscribe()
unsubscribe()

subscribe()
subscribe()

* serverExit()

[getClientCount > 0]

Figure 5.2: Operation of the NRCF (UML sequence diagram)

Actually, all communication betweenNRCFController andNRCFApplet is done via RMI.
This was a main goal of the implementation of NRCF, in order to support a higher-level commu-
nication paradigm than plain sockets, which are used by most applets. However, this introduced
some severe difficulties since Netscape Communicator does not include a bug-free and up-to-date
Java Virtual Machine (JVM) that supports RMI as specified by SUN. Thus NRCF relies on the
Java plug-in [159] supplied by SUN (free of charge) that can replace Netscape Communicator’s
JVM.
When Netscape Communicator encounters anAPPLET HTML tag, such as,
�

�

�

�

<APPLET
CODE="NRCFApplet.class"
WIDTH="320" HEIGHT="100">
<PARAM NAME="URL" VALUE="//:2020/RemoteControl">

</APPLET>

the applet uses Netscape Communicator’s JVM, even if the Java plug-in is installed. However, if
Netscape Communicator reads the followingEMBED HTML tag,

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 94

unsubscribe()
getClientCount()
showURL()
unsubscribeAll()

NRCFController

unsubscribe()
subscribe()

<<interface>>
java.rmi.Remote

<<interface>>

subscribe()

java.rmi.Remote

<<interface>>
RemoteController

<<interface>>

NRCFServerObject

clients : Vector
exitCount : int

serverExit()
showURL()

NRCFApplet
1

RemoteControllable

Figure 5.3: UML Class diagram of NRCF

�

�

�

�

<EMBED
TYPE="application/x-java-applet;version=1.2"
PLUGINSPAGE="http://java.sun.com/products/plugin/1.2/plugin-install.html"
CODE="NRCFApplet.class"
WIDTH="320" HEIGHT="100"
URL="//:2020/RemoteControl">

</EMBED>

the applet uses the JVM from SUN instead. This allows applets to be written, that can use the
newest version of SUN’s JVM.
NRCF is also available as a separate package independent of Minstrel. It can efficiently be used
in teaching systems, for example, where a teacher guides students through material by remotely
controlling the students’ browsers.
The implementation of NRCF can be adapted easily to work with other web browsers, too. Ba-
sically, any web browser that supports “remote control” via Java applets, such as Microsoft’s
Internet Explorer, which was also evaluated, could be used. Netscape Communicator was given
the preference, however, and used in Minstrel, since it also is available for non-Microsoft plat-
forms.
A further description of NRCF is given in [68].

5.1.2.2 NRCF Security

Remote control of an application, as NRCF can control Netscape Communicator, always intro-
duces security problems. This is especially true in this case, since NRCF like all similar applets
can be accessed and distributed over the network. This potentially allows anyone familiar with
the applet’s interface to control the browser of a user and indirectly access the user’s machine
with the user’s access rights.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 95

Such a security hole cannot be tolerated—though most implementations simply ignore it—and
must be handled by a feasible authentication and authorization scheme. The first approach during
the implementation of NRCF was that the applet started up an RMI server that implemented the
RMI methods to be called to remote control the browser. By the use of certificates/passwords and
session keys, only dedicated programs would gain access to the remote control methods. This
was a rather heavy-weight concept for a very simple and frequently used functionality. Thus a
better and much simpler solution was sought and is now implemented in NRCF.
Actually NRCF’s approach does not require authentication and authorization at all, because of a
very simple trick. Instead of letting the applet start a publicly available RMI server, it creates a
private RMI server object and registers a reference to this object at the party that is allowed to
control the browser. The remote control methods are only callable via this RMI server object.
Thus, only the party which has explicitly been contacted by the applet can call its RMI methods,
obviating the need for authentication and authorization.

5.1.3 Data Store Unit

The receiver’s Data Store Unit (DSU) is the central database for storing channel content and
administrative information (e.g., subscriptions). It implements efficient and flexible storage and
retrieval strategies.
The important requirements for the DSU are:

Scalability. The DSU must be able to handle large amounts of data. For some channels, for
example, image or movie channels, or software distribution channels, shipments can be
huge.

Powerful searching. A simple yet scalable searching facility is required. Users want to find the
information they have received in channels quickly and in an associative way regardless of
the amount of data in the DSU.

Expiration. In order not to consume unlimited amounts of disk space the DSU must have a
configurable and intelligent expiration facility that prevents the user’s harddisk from filling
up.

The DSU also must be adaptable to a wide range of application scenarios like periodicals, news
tickers, or high-priority information channels. Typical scenarios for the DSU are:

Periodicals. Periodic magazines typically have several articles in each issue which can have
references to other articles in earlier issues. References to future issues are also possible
(announcements). Besides these, other relations exist: Depending on the publication inter-
val a certain number of issues forms a volume, or there may be errata that correct errors in
previous issues. While the publication interval may be rather long and thus easy to handle
the important issue here is the relations among the objects which must be supported by the
DSU.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 96

News tickers. News ticker services are the other side of the spectrum: only tiny bits of informa-
tion with a high publication rate whereas relations/dependencies between the information
units are rare.

Replacing Updates.Some channels will hold content that outdates as soon as new content be-
comes available. New content will always override old ones and only one up-to-date copy
of content exists at any given time.

The DSU must have a flexible design to support all these application scenarios. The following
sections describe the design decisions taken to fulfill these requirements. The DSU is described
in detail in [166].

5.1.3.1 Data Storage

Inside the DSU data is stored on a per-channel basis. Each stored channel consists of an index
to support efficient access to the stored data, and a physical storage that holds the channel’s
administrative data and content (samples, shipments, etc.). Figure 5.4 depicts this design.

URL

URL

URL

URL

na
tiv

e
JD

B
C

del

U
R

L
co

nv
er

te
r

Physical
Storage

Index

Figure 5.4: A stored channel

The index contains URLs that uniquely identify the data objects stored in the physical storage.
They provide a uniform way to access the stored data, both for the human user and for other re-
ceiver components that need to access the DSU. URLs were also chosen to support bookmarking
and provide a meaningful direct access method to human users. The use of URLs addition-
ally would allow the user to access several physical storages—be it local or accessible via the
network—and view those as one integrated entity.
For accessing the storage, the URLs are translated by theURL converter into calls to the physical
data storage (native calls or via JDBC). Typical URLs have the following form:
�

�

�

�
minstrel://channel?attr=value?attr=value ...

In addition to native access methods to physical storage structures, JDBC [64] was taken into the
design to provide a further layer of abstraction that supports the easy exchange of the physical
data storage.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 97

While this high-level design is straightforward, the question of what physical storage to use
requires some discussion. The experimentation with database access via JDBC showed that
access via the native interface of a physical storage component must also be supported, for the
following reasons:

� At the moment JDBC is only offered by databases (although it is not restricted to data-
bases). Thus if a JDBC interface were required, this would exclude other physical storages,
such as plain file systems which are well-suited in many settings.

� Many databases have problems with Binary Large Objects (BLOBS). However, BLOBS,
such as images or software, are a very common data type in push systems which must be
supported well.

Tests with several JDBC drivers and public domain databases like MySQL and mSQL [184]
showed that neither JDBC nor the databases worked well with BLOBS. Commercial databases
like Oracle, Informix, or MS Access were not considered because they either are too costly (e.g.,
Oracle) or tie the storage to one architecture (e.g., MS Access). Thus a file-system-based solution
was developed. JDBC, however, was kept in the design to be open to further developments in the
database area.
Actually, the file system is well-suited for the DSU’s purpose. The file system can store large
binary data and provides fast and efficient retrieval mechanisms. Many other systems that re-
quire similar functionality as Minstrel rely on the plain file system, for example, the Squid web
proxy [176] or Usenet News [90]. The main issue in all such systems is that information must be
able to be found quickly and stored efficiently whereas database-like manipulations like joins or
set operations should be very rare.
If the file system is used as physical storage, two requirements must be considered: (1) not too
many objects, i.e., files, must be stored in a single directory and (2) a separate index must exist
to search and retrieve the data objects efficiently. (1) is necessary because directory access is
rather slow for large directories. However, it can easily be achieved by a hierarchic scheme as
shown in Figure 5.5. (2) requires the implementation of an index structure that supports efficient
searching. For Minstrel it is also necessary that this index supports searching for many different
attributes and provides fast insertion and deletion of entries.
Figure 5.5 shows the structure used in the DSU for storing a large number of data objects in the
file system.
This physical storage structure meets the above requirements and thus provides reasonably fast
access to the data objects. It consists of a 3-level hierarchy of directories with the leaf directories
holding the actual data objects, and has an efficient index that provides fast access and manip-
ulation operations. With this 3-level architecture of the DSU’s physical storage and a typical
maximum of 1024 directory entries in each directory (e.g., in most UNIX file systems),�����

leave directories can hold up to����� � ���� � �� ����
��� ���� ��� data objects. This is more
than can possibly be used by a single user. However, this design is generic so that the number of
directory levels can be increased to support even higher numbers of data objects.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 98

Index topdir

topdir/2/2

topdir/2

Figure 5.5: The file system as physical storage for the DSU

5.1.3.2 Indices and Searching

The index of the DSU actually consists of several specialized index objects. The two primary
ones are a time-based index that lists data objects in the order in which they were received and
an attribute-based index that allows quick search operations on many attribute values. Additional
higher-level indices can be built on these two basic indices, for example, to support bookmarking
of search results and relations between data objects. Figure 5.6 shows the basic design of the
indices.

URL URL URL

URL URL URL URL

URL URL URL URL

URL URL URL URL

URL URL URL URL

attri
bute c

URL

URL

URL

URL

URL

del

Time Index

t

0
Attribute Index

View

temporal order

logical order

attribute a

at
tr

ib
ut

e
b

Figure 5.6: DSU indices

The time-based index supports queries like “list all data objects received between timex and time
y.” Besides this temporal order, data objects can be related in other ways. For example, issues

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 99

of a periodic electronic magazine can be related to form a volume. This is shown by the logical
order in Figure 5.6. The attribute index (depicted only for 3 dimensions in Figure 5.6) provides
access based on (combinations of) attribute values or attribute ranges. Views represent results of
queries as references to one of the primary indices.
While the implementation of the time-based index and the higher-level indices is straightforward,
the implementation of the attribute index is worth further discussion. The attribute index must
support fast and efficient search access on many attribute values in parallel, its performance must
be reasonable even in the presence of a constantly growing amount of data to be indexed, and it
must not consume very high amounts of storage.
The requirements for the attribute index are:

� fast access time (constant if possible)

� adding of new objects in constant time

� reorganization (deletion, restructuring) must scale well

� symmetric multi-key access, i.e., there are no primary or secondary keys and fast searching
for all key attributes is supported

� efficient interval search.

For a symmetricn-dimensional multi-key search space, ann-dimensional bitmap theoretically
would be necessary, each “point” denoting a possible combination of attribute values. The size
of the bitmap is the product of the cardinalities of the attribute domains. Since the attribute
domains of samples and shipments are large, the bitmap would require a huge amount of space.
Fortunately the bitmap is sparse and can be compressed to a reasonable size by the use of special
data structures.
A search for existing data structures reveals that not many data structures exist that can fulfill the
above requirements. Even commercial databases use rather “old-fashioned” data structures. The
ones considered were K-D-B trees, splay trees, several other trees, and Grid files. Grid files [129]
fulfill the above requirements and were chosen for the implementation of the attribute index. The
assumptions for the application of the Grid file concept hold for the receiver’s DSU: the indexed
objects (shipments, samples) have a small number of attributes (�10), each attribute has a large
domain, attribute values can be linearly ordered, and the attributes are independent of each other.
Grid files compress the search space by partitioning it intogrid partitions depending on the
clustering of data points. Grid partitions are mapped ontogrid blocks that are assigned tobuckets
which hold the actual data records. Figure 5.7 shows this for a 2-dimensional search space.
Inside one bucket records are stored in linear order. The DSU uses 8kB buckets. A record in a
bucket holds administrative information about the indexed data and a reference into the physical
storage where the data object is stored, i.e., a URL. The mapping between grid blocks and buckets
is done via the so-calledgrid directory. Figure 5.8 shows a grid directory for a 2-dimensional
record space.
The access strategies of Grid files operate upon these base concepts. Grid files are a highly
complex but very efficient data structure. Their application in the implementation of the attribute

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 100

Record Space with Grid Partition

Buckets

Grid Block

Figure 5.7: Partitioning of the search space and assignment to buckets

Grid Array

Grid Directory

Record Space

Buckets

X-Scale

Y-
Sc

al
e

Grid Blocks

Figure 5.8: The grid directory

index of the DSU is described in [166] along with a detailed description of Grid files and their
access algorithms.
By the use of an attribute index based on Grid files, efficient and powerful search capabilities
are available. Part of the DSU’s user-friendliness depends on these capabilities because searches
will occur frequently. All interesting attributes of the Minstrel data objects are indexed. Search
operations are done via filling out a form in a Query-By-Example (QBE) manner. This allows the
user to specify search conditions in an intuitive yet powerful way. Other access types (insertion,
deletion) are done in a similar way. Further details are provided in [166].

5.1.3.3 Content Expiration

Minstrel—like any other push system—may have transported huge amounts of data to every
receiver after being in operation for some time. The user’s harddisk will steadily fill up with
channel content if no administrative procedures are applied. The strategy for deleting unwanted
or expired data chosen by most push systems is to make the user responsible for deleting such
information and ensuring that not too much disk space is consumed.
Minstrel’s DSU takes a more user-friendly approach by supporting the definition of an expiration
strategy enforced by the DSU. On basis of the validity information contained in samples, ship-

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 101

ments, orders, etc., and a channel’s configuration, the DSU can expire content. Additionally, the
user can define customized expiration rules that override these system rules. For example, the
user may not want content to expire even if it is outdated, if it was expensive or is still of interest.
The definition of expiration rules works in an intuitive way as shown in Figure 5.9.

Figure 5.9: Declaration of expiration rules

Expiration rules can be tagged with a name and given a priority. In Figure 5.9, for example, the
user defines a tag EXPENSIVE that marks all channel content that was expensive and defines that
it should be kept. The second rule OLD defines what the user considers old content which could
be deleted. When an expiry run is performed, all EXPENSIVE content will be kept even if it is
OLD, whereas other OLD content will be expired.
The implementation of the expiration strategy is described in detail in [166].

5.2 Broadcaster

Minstrel employs a combination of theprimary broadcaster andsimple broadcasting approaches
described in Section 2.2.2: The broadcaster is the primary source of channels and relies on
the transport infrastructure consisting of BDCs for the distribution of channel content to large
numbers of users.
Figure 5.10 depicts the architecture of the Minstrel broadcaster.
The architecture consists of the following main components:

� the Source Update Facility (SUF) which is in charge of interacting with information sources
and feeding channel content received from the data sources into the channels,

� the Subscription Management Unit (SMU) which handles subscription requests and man-
ages the subscription database,

� the Data Store Unit which stores all channel content and management information such as
administrative data of channels, subscriptions, or receipts for payments, and

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 102

Source Update

Facility

Unit

Data Store

(Un-)SubscribeMRRP

Broadcaster

MADP

Minstrel Broadcaster

Control Unit

Subscription

Management Unit

Figure 5.10: Architecture of the Minstrel Broadcaster

� the Minstrel Broadcaster Control Unit (MBCU) that manages the broadcasters operation,
controls the other broadcaster components, and interacts with the Minstrel transport system
via MRRP and MADP.

Figure 5.10 intentionally does not show the e-commerce components, the Minstrel Data Lock
(MDL) authentication infrastructure, and the management interface (and its GUI). The reasons
for this are the same as given for the Minstrel Receiver in Section 5.1.

5.2.1 Minstrel Broadcaster Control Unit

The Minstrel Broadcaster Control Unit (MBCU) manages the broadcaster’s operation and inter-
acts with the Minstrel transport system. Via MADP it sends samples to subscribers and satisfies
incoming shipment requests via MRRP. The samples and shipments it handles are stored in the
DSU along with related administrative data.
Besides distributing channel information, the MBCU also supplies the administrative interfaces
that are necessary for managing the operation of the broadcaster. It collects statistical data that
allows monitoring of the broadcaster’s operation. Logging data is provided to support traceability
of the broadcaster’s operation and serve as the basis for problem analysis. On the basis of this
information the administrator can tune the broadcaster’s operation or take action if problems
occur.
The MBCU also supports monitoring of MADP and MRRP and enables the administrator to
manually influence the protocols’ operation. For example, the administrator can view the queued
samples or initiate a sample distribution attempt. Via the MBCU the administrator can also

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 103

change protocol parameters such as timeouts, retrial intervals, or the queuing policy. Additionally
the MBCU provides an interface to startup and shutdown the broadcaster.

5.2.2 Data Store Unit

The broadcaster’s DSU is the central database for storing samples, shipments, administrative
data of channels, subscriptions, etc. Its architecture is similar to that of the receiver’s DSU but
simpler. While the receiver’s DSU is tuned towards flexibility and user-friendliness (searching,
expiration), the broadcaster’s DSU is targeted at information maintenance and speed.
The basic design is identical to the receiver’s DSU as described in Section 5.1.3. However, due
to the different requirements, the broadcaster’s DSU does not need as powerful indexing and
searching mechanisms as the receiver’s DSU, which simplifies its architecture and implemen-
tation. The broadcaster trades sophisticated searching capabilities for fast storage manipulation
and retrieval.
The requests the broadcaster has to satisfy all bear unique identifiers that uniquely denote the
information requested (samples, offers, and shipments), which facilitates direct access via one
designated attribute (similar to a primary index in a database). Indices on other attributes are
only necessary as far as administration is concerned. Thus only a few attributes, such as the
validity fields of the data, require fast access and are indexed. Additionally, a time-based index
is maintained which is simple to implement and comes at nearly no cost. These side conditions
make the indexing for the broadcaster’s DSU much less elaborate and require much simpler data
structures than those necessary for the receiver’s DSU.
Content expiration is an even more important issue for the broadcaster than it is for the receiver
since it has to handle higher amounts of data. While the receiver may subscribe only some of the
channels a broadcaster offers and thus only needs to deal with that data, the broadcaster stores
information for all its channels. The expiration strategies for the broadcaster’s DSU thus are more
focused on the professional, administrative user who typically requires less sophisticated but
more powerful interfaces which also support highly-configurable and fully automated operation.

5.2.3 Source Update Facility

The Source Update Facility (SUF) is the broadcaster’s interface to data sources. Data sources
provide content which they want to have distributed via one or more of the channels that the
broadcaster distributes. In order to support flexible data injection, the SUF has a flexible, modu-
lar, and extensible architecture that can mediate between data sources and the broadcaster.
The SUF has a generic RMI interface that provides all functionality necessary to inject content
into channels. This interface can be used directly or may serve as the basis for domain-specific
interfaces that facilitate content exchange with data sources such as databases or web servers. For
a database, for example, a small database-specific interface can be implemented and added to the
SUF, which then can receive content and accompanying administrative data from the database
and feed it into channels via the RMI methods of the generic SUF interface as shown in Fig-
ure 5.11.

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 104

Database

DB protocol

Source Update Facility

G
en

er
ic

 R
M

I I
nt

er
fa

ce

DB

Figure 5.11: SUF interfaces

The generic SUF interface can be used from programs but also supports content injection via
a graphical user interface. The GUI allows the user to specify the new content and define the
required administrative information such as description, validity, or price. Part of such a dialog
to insert new content into a channel is shown in Figure 5.12.

Figure 5.12: Definition of a new Sample

In this example, the user is defining a new offer as part of a sample which is to be sent over
a channel. Later in this dialog the user will have to provide the content for the corresponding
shipment. This is usually done by providing the URL where the SUF can retrieve the content.
Making the generic interface of the SUF available via RMI has several advantages. It can be used
locally but also from remote data sources which is the standard case. At the site of the data source

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 105

a specialized graphical user interface may be available and transfer all necessary information
to the SUF via RMI calls. Additionally, data sources can implement local components that
mediate between the data source’s requirements and the SUF interface as shown in Figure 5.13,
which means that the data-source-specific interface runs at the data source’s site instead of the
broadcaster’s site.

Database
DB

Source Update Facility

RMI protocol

G
en

er
ic

 R
M

I I
nt

er
fa

ce

Database Site

Figure 5.13: Local SUF interface

5.2.4 Subscription Management Unit

The Subscription Management Unit (SMU) handles (un-)subscription requests for channels and
maintains the subscription database. Parties that want to subscribe to a channel interact with the
SMU, where they can specify the channels they want to receive, provide their profiles if wanted,
and define the level of privacy they require. At some later time this information can be modified,
for example, changes to a party’s profile can be made. The SMU likewise handles unsubscription
requests.
The SMU maintains subscriptions in an area of the DSU where the MBCU can access it. The
MBCU must be able to access this data to build up its distribution tables for MADP (see Sec-
tion 4.7.2).
For reasons of privacy, subscriptions are maintained locally and not forwarded. Thus no party
knows all subscribers and their profiles. Every subscriber—be it a human user via his/her receiver
or a BDC—can specify a privacy policy that defines which information is private and which may
be publicly accessed on request. If a party wanted this data, it would be possible to collect it, but
only according to the policies defined by the subscribers. For example, if a broadcaster wanted to
collect data about all receivers subscribed to one of its channels, it could issue a recursive request
to its direct subscribers (�S � �), ask for their subscriber lists, and instruct them to reissue the
same request to their direct subscribers. According to the policies defined by the subscribers the
broadcaster may or may not get the data requested or only part of it.

5.3 Base Distribution Component

The Minstrel Base Distribution Components (BDCs) build up the Minstrel distribution infras-
tructure (see Chapter 4) which makes Minstrel’s broadcasting strategy scalable to large numbers
of subscribers. By using BDCs to build up a hierarchical broadcasting infrastructure, Minstrel

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 106

can guarantee timely deliverance (see Section 4.6.3) and lower the load and network bandwidth
consumption of every node participating in the broadcasting process. Without BDCs, Minstrel
would only be usable in small-scale settings.
A BDC can be viewed as a cross between a broadcaster and a receiver: It acts like a receiver
towards its SA and as broadcaster towards its subscribers. Thus its architecture combines com-
ponents of both worlds, as depicted in Figure 5.14.

Control Unit

BDC Broadcaster

BDC Receiver

Control Unit

Receivers

Unit

Data Store

M
in

st
re

l B
D

C
 C

o
n

tr
o

l U
n

it
Subscription

Management Unit

(Un-)Subscribe

Component

Base Distribution

MADP

MADP MRRP

Broadcasters

MRRP

Figure 5.14: Architecture of the Minstrel BDC

From its broadcaster pedigree it inherits the Subscription Management Unit (SMU) to handle
and maintain subscriptions and the DSU to store channel data and administrative information.
The requirements for a BDC’s DSU are identical to those of a broadcaster (see Section 5.2.2).
Since it acts like a broadcaster towards its subscribers (other BDCs or receivers), its SMU also is
identical to a broadcaster’s SMU.
The control unit of a BDC, however, is hybrid. It consists of a receiver control unit and a broad-
caster control unit that cooperate with one another and control the SMU and DSU. Basically the

CHAPTER 5. THE MINSTREL PUSH SYSTEM: COMPONENTS 107

MRCU and MBCU components can be reused but need to be extended to support collaboration
between them. This, however, can be achieved easily.
Unlike the other components discussed so far, a BDC can be configured in three possible ways:
as a repeater (“pre-loaded” cache), a cache, or a proxy. These configurations try to meet typical
requirements in a network and mainly differ in their characteristics regarding the request time of
a shipment via MRRP.
If the BDC is configured as arepeater then it immediately requests shipments whose correspond-
ing samples it has received. This means that the receipt of a sample via MADP triggers two
actions: (1) the sample is redistributed using MADP and (2) a request for the the corresponding
shipment is issued via MRRP to the BDC’s SA, after completion of which the shipment is stored
locally. This interaction scheme implies that most shipment requests from one of the BDC’s
subscribers can be satisfied almost immediately (provided that the transmission of the relevant
shipment to the BDC is completed before the shipment is requested). The repeater configuration
targets environments where fast delivery is important. Thus shipments are cached at repeaters
without waiting for a relevant client request.
However, automatic request of shipments may not always be necessary. In this case the BDC can
be configured as acache. Upon receipt via MADP, samples are redistributed but the correspond-
ing shipments are not requested by the BDC. A shipment is only requested if an MRRP request
is received from one of the BDC’s subscribers. In this case the shipment is requested from the
BDC’s SA, stored locally and then sent to the requester. Further requests for the same shipment
can be satisfied from the local copy. The cache configuration of a BDC targets environments
where a certain delay is tolerable, while network bandwidth or disk space are limited, or user
requests are not so predictable that a repeater would be justified.
A BDC configured asproxy facilitates access to channels and the Minstrel infrastructure where
receivers cannot gain direct access, e.g., when receivers are located behind a firewall. Every
proxy has a domain translator component that translates back and forth between the functional-
ities Minstrel requires and the application domain functionality. For example, in the case of a
firewall it translates between the firewall requirements and MADP and MRRP, respectively.
By the use of BDCs the Minstrel distribution infrastructure facilitates caching implicitly as de-
scribed in Section 4.6.5. This is in contrast to the world-wide web where a caching infrastructure
had to be introduced in a second run, while it comes at nearly no additional cost in the case of
Minstrel.

Chapter 6

The Push System: Security
and E-Commerce

Minstrel is intended to offer a platform for information commerce over the Internet. The two
main requirements for Minstrel to be usable in such a business environment are authenticity and
integrity of information, and support for payment methods and business models. Recipients of
information want to be able to rely on the received information and possibly use it as a basis for
business decisions. This is especially important in typical push application domains like news
agencies, financial information services, and other businesses for whom reliability of data is
paramount. Thus proof of origin (data authenticity) and proof that the information has not been
tampered with (data integrity) must be provided. These proofs also provide the foundation for
limitation of legal liability.
Section 6.1 presents Minstrel’s authentication infrastructure which facilitates authentication of
information origin and integrity checks through digital signatures. Moreover, Section 6.1 also
addresses mobile code security, since Minstrel supports the distribution of pushlets and agents,
which are executed at a receiving site and can threaten the security and integrity of a system. Thus
Minstrel includes a highly configurable secure execution framework for Java code which protects
a system from erroneous or malicious code and ensures its integrity, security, and privacy.
Chapter 1 has already mentioned a number of application domains for push systems, such as
news agency information systems or electronic newspapers. In several of these domains the
information provider will want to make revenue out of its business, and will charge for the infor-
mation it disseminates over a push system. Thus push systems must support payment methods
and business models to be applicable in such environments. Surprisingly, the issues of payment
and e-commerce are not addressed by any existing push system so far.
To remedy this obvious shortcoming, payment facilities have been included in Minstrel. Minstrel
offers a flexible and generic payment model that can be used to implement a variety of business
models, such as pay-per-view or volume-based. The payment model decouples the business
model employed from the underlying payment method(s), so that (theoretically) arbitrary pay-
ment methods can be used. Section 6.2 describes Minstrel’s support for e-commerce. Its generic
payment model is presented and an instantiation of this model using a micro-payment scheme is
described.

108

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 109

6.1 Security

Security is relevant in several respects for push systems:

Authenticity and integrity of information
Information that comes over push channels should be authenticated. The receivers of the
information must be sure that the information they get comes from the source it claims to
and that it was not changed on its way from the sender to the receiver. This is especially
important if information is to be charged for or must be especially reliable (for example,
stock quotes or financial analyses).

Confidentiality of information
Channels can transport confidential information which must not be disclosed, for exam-
ple, descriptions or analyses only for receivers who are known to the originator of the
information. A similar problem exists with copyrighted content that is charged for.

Mobile code security
If the push system supports the delivery of code that is to be executed at the receiver’s site,
strict precautions are required to ensure the integrity of the receiver’s site. The code must
come from an authentic source (e.g., for reasons of liability), be prevented from spying out
the receiver’s private information, and be restricted from unlimited access to the receiver’s
resources.

The following sections describe how Minstrel addresses these issues.

6.1.1 Authenticity of Information

Minstrel Data Lock (MDL) is the basis of Minstrel’s authentication infrastructure. It ensures that
the information distributed over push channels comes from authenticated sources and has not
been changed on its way from the sender to the receivers. Broadcasters and BDCs on the other
hand can be sure that the requests they get come from authenticated clients, i.e., their channels
are accessed by authorized receivers. MDL provides the following features:

� authenticated message origin (sender)

� integrity of messages.

These features are realized through digital signatures, a security mechanism based on public key
encryption and certificates [148]. This protects Minstrel users against the two most problematic
security attacks that endanger push systems:

Message tampering: interception and alteration of messages before they reach their intended
recipients

Masquerading: sending/receiving messages using somebody else’s identity.

The following sections give an overview of the architecture and concepts of Minstrel’s authenti-
cation infrastructure. Detailed descriptions are provided in [43] and [44].

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 110

6.1.1.1 Architecture of the Authentication Infrastructure

Minstrel’s authentication infrastructure has a layered architecture as shown in Figure 6.1.

Abstraction

AVE

Security

RMI LMI

Java Cryptography Extension

LMI RMI

Server Interface

MDL Server

IAIK, Cryptix, ...

Server-Side

Component

Interaction

Application

Transport

Direct
Access

Transport Interface

MDL Client

MDL Security Interface

Client-Side

Minstrel

Figure 6.1: MDL layered architecture

From an architectural point of view the Minstrel components (broadcasters, BDCs, and receivers)
are clients of the authentication framework (which of course is an integral part of the Minstrel
system). Applications (clients) that want to use the infrastructure will primarily access it via the
Authentication and Verification Environment (AVE) layer. AVE provides a specialized, easy-to-
use, high-level interface to the infrastructure that does not require knowledge of the underlying
concepts.
The functionality of AVE is composed around the concept of aGuarantee: by use of a Guarantee,
objects can be digitally signed and verified (authenticated). A Guarantee can take any Java object,
sign it and return the signed object as aGuaranteedObject, i.e., as an object whose origin and
integrity can be proven. A GuaranteedObject holds all information necessary for later verification
of the object; the receiver of the GuaranteedObject can easily do this by feeding it into its local
Guarantee. The main design goal of AVE was to provide an interface that makes authentication
as simple as generating a dedicated object (Guarantee) and calling some of its methods so that the
whole process of authentication can be done in a few lines of Java code (from the application’s
point of view).
If the application wants to have more detailed control of the signing and verification processes,
it can also directly access the Minstrel Data Lock (MDL) layer, which provides the necessary
security abstractions (MDL must be trusted by all parties). Clients access this layer through
the Minstrel Data Lock Client (MDL Client). MDL provides a client-server infrastructure for
authentication: All signing and verification requests of higher layers are managed and directed to
a MDL Server that provides the requested functionalities. Conceptually this means that the MDL
Server is a specialized application server that implements the actual signing and verification
processes.
This client-server architecture makes MDL very flexible and allows the user to choose a configu-
ration that best fits the local requirements. The two most common configurations will be that (1)
users have an MDL Client that uses a local MDL Server or (2) a set of MDL Clients access an

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 111

MDL Server that runs on a dedicated host (e.g., one per LAN). These configurations are hidden
from the MDL layer through the Transport Interface and the Server Interface, respectively. In
case (1), requests are satisfied via library-like Local Method Invocation (LMI) calls; in case (2),
Remote Method Invocation (RMI) is employed.
The signing and verification functionalities of the MDL Server are implemented on the basis of
the Java Cryptography Extension [85] and rely on the X.509 certificate standard [79]. For ful-
filling its task the MDL Server also needs a Certification Authority (CA). A CA is a trusted third
party that guarantees the identity of certificate bearers (like a passport guarantees the identity of
a person). CAs, however, are outside Minstrel.

6.1.1.2 The Minstrel Authentication Process

This section gives an overview of the authentication process in Minstrel, the parties involved, and
their interaction patterns. Detailed descriptions of this complicated process—both technically
and organizationally—are provided in [43] and [44].
As described above, all communication in Minstrel is authenticated. For example, samples and
shipments are digitally signed and their integrity, authenticity, and freshness (via the timestamps
of the authenticated objects) can be checked by any involved party. Figure 6.2 gives an overview
of the parties in this process and their interactions when a piece of information is beingverified.

Server

Network

4. CertificateRequest

Certification
Authority

Application

Service
Directory TCP/RMI

RMI

3. DN-CA Mapping

1. SignedMessage

2. VerifyRequest

TCP/RMI

LMI

(e.g., IAIK)
JCE Library

Client

MDL Server

Secure Network
Connection

MDL Client

AVE

5. VerifyResultRMI

RMI

Figure 6.2: MDL components and their interactions during verification

Verification means that an application, e.g., a Minstrel component, has received a piece of
information—amessage, or in terms of the implementation, a GuaranteedObject—and now
wants to check whether it is authentic, has not been changed and is fresh. First the message
is handed over to AVE, which generates feasible requests to its underlying MDL Client layer to
request verification. If the configuration uses a local MDL Server (see Section 6.1.1.1) a local
library call is issued to the MDL Server library. If a remote MDL Server is employed, these calls

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 112

are made to the server site via RMI. This communication must use a secure network connec-
tion, e.g., by employing one of the transport mechanisms mentioned in Section 6.1.2, to return a
meaningful and reliable result.
The MDL Server must then retrieve the certificate of the message’s (GuaranteedObject’s) signer,
which holds the signer’s public key required for the verification procedure. Thus the server first
has to contact a Directory Service to find the Certification Authority (CA) that holds and guaran-
tees the signer’s certificate. This CA is then contacted and the signer’s certificate is requested.
Now the MDL Server can verify the message and return the result of this verification process to
the client, which hands it over to the requesting party. Figure 6.3 depicts this process in terms of
the implementation, showing the collaboration of the various objects.

new()

initialize()

getInstance()

Guarantee

MdlClient MdlProtocolFactory

initialize()

MdlClientLMI

MdlServerLMI

verify()

initialize()

new()

fetchSubjectCertificate()

new()

fetchSubjectCertificate()

verify()

initialize()

verify()

new()

getObject(GuaranteedObject)

Figure 6.3: Verifying of information (UML sequence diagram)

The signing process works in a similar way, as shown by the sequence diagram of Figure 6.4.
The only major difference to the verification process is that the party requesting the signing
process needs a public and private key pair and a certificate from a certification authority.
In the model of Figure 6.2 the directory service and the CA were viewed as two distinguishable
parties. However, if feasible systems are available, these two roles can be unified. One such
system that could satisfy both requirements is X.500 [17], which is likely to be employed for
this purpose after the widespread acceptance of its Lightweight Directory Access Protocol [173]
(LDAP). To be prepared for such developments, MDL uses a flexible, easily adaptable interface
for accessing directory services and CAs based on the Java Naming and Directory Interface [160]
(JNDI).

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 113

createSignedObject()

MdlServerLMI

MdlClientLMI

MdlProtocolFactory MdlClient

Guarantee

new()
initialize()

initialize()

createGuaranteedObject()

setIssuer()

setSubjectDN()

setSubjectPW()

createSignedObject()

new()

fetchPrivateKey()

createSignedObject()

getInstance()

new()

initialize()

initialize()

new()

fetchPrivateKey()

Figure 6.4: Signing of information (UML sequence diagram)

6.1.2 Confidentiality of Information

Confidentiality of information can be highly important depending on the application domain of a
push system. For example, channels could hold confidential data or, in the case of a pay channel,
the provider would want to prevent access from users who were not charged.
The standard technical concept for ensuring confidentiality is the application of encryption meth-
ods. For a push system this means that all channel content and administrative data is encrypted
before being distributed. Minstrel, however, does not include means to ensure confidentiality,
i.e., an encryption package, by default. This decision was taken, after much discussion and
careful consideration of the advantages and disadvantages, for the following reasons:

Redistribution
Redistribution of information that was legally acquired, e.g., by a user who paid for it,
cannot be prevented efficiently. Such a user has necessarily been supplied with means
(keys, etc.) to decrypt the information and can easily redistribute the decrypted informa-
tion. This is the same problem that challenges copyright owners in general (compare this
to video cassettes, software, etc.). It can only be solved by digitally watermarking all the
information that is distributed and by suing redistributors. Checking all information that is
distributed places extreme demands on the provider in terms of time and money which far
outweigh the benefit of copyright protection.

Tapping
The current Internet protocols (HTTP, TCP/IP, etc.) are not secure. Any data transmitted
over such protocols can be tapped and run through a brute-force code-breaking attack.

Man in the middle
To be scalable, any push system’s transport system includes concepts like caches or re-

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 114

peaters. Frequently such components are run by third parties, such as Internet service
providers, which in turn then have full access to all the data.

Dedicated lines
Traffic between Internet service providers, on the other hand, is mostly run over dedicated,
rather secure networks that are hard to attack (except by a provider’s staff). A similar
argument holds for receivers: Dedicated lines run by telecommunication companies are not
easy to attack. For other access media like satellite or cable TV, which are broadcast media
that can be received by non-authorized persons rather easily, protection can be effected
with special encryption hardware. Special hardware for such access types is needed in any
case, so encryption hardware could be included from the beginning.

Broken chain
Information that is transmitted encrypted must also be encrypted when stored at the re-
ceiver’s site. Currently this is only supported by a small fraction of sites and depends on
a site’s configuration and operating system. In a world of PCs running simple Windows-
style operating systems, this cannot be guaranteed at all. Such systems typically are a very
easy target for intruders.

Pre-paid information
If receivers have to pay for channel information, it frequently means that they pay in ad-
vance (for example, a flat fee). Once they have paid for the information, i.e., they have
acquired the right to get/use it, why should it be encrypted?

Mass media
Push systems are mass media. The financial damage from unauthorized access will be low
compared to the effort put into investigation and protection. Compare this to the policy of
many European countries, where consumers are required to pay a license fee to the public
TV broadcasters if they own TV sets. Most people pay the fee, some do not, but the system
works.

Despite these arguments, encryption cannot be ignored. For some application domains it will
be necessary to support encryption techniques. Nevertheless it is likely that the decision of not
including a dedicated encryption package into Minstrel will not have a major impact. Many
components-off-the-shelf (COTS) to provide secure, encrypted communication can be used with
Minstrel. Such components typically provide a secure communication substrate that can be used
transparently with existing applications.
For example, Netscape’s Secure Sockets Layer protocol [128] (SSL) which is the de-facto stan-
dard for secure Internet communication or its successor, the Transport Layer Security proto-
col [33] (TLS), can be integrated into Minstrel at nearly no cost. Since SSL supports any higher-
level protocol that uses standard socket-based communication, a simple strategy would be to run
all Minstrel protocols over SSL connections if secure communication is required (see Figure 6.5).

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 115

HTTP

Secure Sockets Layer

Network Layer

LDAP RMI

TCP/IP Layer

Application Layer

Figure 6.5: SSL runs above TCP/IP and below higher-level application protocols [128]

This is possible although MADP and MRRP are RMI protocols because RMI is built upon sock-
ets and allows control of its socket layer via special factory classes.1 Java implementations of
SSL which can be used for Minstrel are available, for example, iSaSiLk [77], JCP SSL-Pro [80],
or SSLeay [76].
Another advantage of using industry standard COTS over a proprietary Minstrel encryption im-
plementation is the benefit of being able to use up-to-date implementations which can cope with
most recent security threats, without the additional cost of code maintenance.

6.1.3 Mobile Code Security

Minstrel supports two types of mobile code [171, 178] that are closely related: pushlets and
agents. An agent is specialized Java code for handling the content of Cargo objects (see Sec-
tions 4.4 and 4.5). A pushlet is mobile code (and possibly some attached data) that comes as
content of a channel, i.e., as a shipment. Displaying a shipment that holds a pushlet actually
means that the pushlet is executed at the receiver.
Though agents and pushlets add a high degree of flexibility to Minstrel and are an important part
of modern distributed applications, they also introduce far-reaching security problems for the
site that executes them. In both cases code that comes from an outside source is executed on the
receiver’s site, has the receiver’s access permissions and possibly can harm the site’s integrity,
security, and privacy.
Agents and pushlets introduce four basic categories of potential security threats [23, 58, 109,
110]:

Leakage: unauthorized attempts to obtain information belonging to or intended for someone
else

Tampering: unauthorized changing (including deleting) of information

Resource stealing:unauthorized use of resources or facilities (e.g., memory, disk space)

Antagonism: interactions not resulting in a gain for the intruder but annoying for the attacked
party.

1java.rmi.server.RMIClientSocketFactoryand
java.rmi.server.RMIServerSocketFactory.

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 116

Thus a special runtime environment must be provided that protects the receiver from erroneous
or malicious code—be it intentional or unintentional—and ensures the receiver’s integrity, se-
curity, and privacy. Such a runtime environment is offered by Minstrel’s Java Secure Execution
Framework [70, 84] (JSEF), which is based on Java’s security model. It allows the user to pro-
tect his/her local resources. The user and the system administrator can define access rights and a
security policy that is enforced by JSEF whenever an agent or a pushlet executes.
The following sections discuss Java security issues, compare JSEF with the standard Java secu-
rity model and give an overview of JSEF’s architecture, concepts, and functionalities. In-depth
descriptions of JSEF and its underlying concepts are provided in [70] and [84].

6.1.3.1 Java Security

Several approaches have been devised to cope with the security implications of mobile code.
According to [146] four practical techniques for securing mobile code exist:

Sandbox model: This model restricts the privileges of the code to a limited set of operations.

Code signing: Code that comes from trusted sources is trusted and granted full access.

Firewalling: When code enters a trusted domain it is examined; the decision whether and how
to run it is based on specific code properties.

Proof-carrying code: The mobile code carries a proof that it satisfies certain properties; this is
a promising new technique that can currently be applied only in very limited settings.

Since Minstrel is implemented in Java and all agents and pushlets are restricted to Java code,
the Java security model [50, 55, 56, 162] is the basis for all code security issues in Minstrel.
Minstrel’s security features can only work inside this general model.
Java uses a hybrid approach that combines sandboxes and code signatures. It is important to note
that Java code signatures and the signatures used for information authentication in Minstrel (see
Section 6.1.1) are similar but strictly separated concepts. Although in Minstrel all information
(including agents and pushlets) is authenticated, i.e., has not been tampered with and comes from
an authentic source, Java requires a specialized code signature and its verification as defined
below. This may be overhead but cannot be eliminated due to the restrictions imposed by the
Java security model. Every time the Java Virtual Machine [97] (JVM) runs a piece of code—a
class file in Java’s terminology—the following steps occur [55]:

1. The Java virtual machine obtains a class file and accepts it if the file passes preliminary
bytecode verification [185].

2. The Java virtual machine determines the class’s code source. This step includes signature
verification, if the code appears to be signed.

3. The Java virtual machine consults the security policy and composes the set of permissions
to grant to this class. In this step, the policy object will be constructed, if it has not been
already.

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 117

4. The Java virtual machine loads and defines the class, and marks the class as having been
granted the set of permissions.

5. The Java virtual machine instantiates the class into objects and executes their methods.
Runtime type-safety check continues.

6. If at least one method of a class is in the call chain when a security check is invoked,
the access control code examines the class’s set of granted permissions. It does this to
see if there is sufficient permission for the requested access. If yes, the execution contin-
ues. If no, a security exception occurs. When a security exception—which is a runtime
exception—occurs and is not caught, the Java virtual machine aborts.

7. When the class file and the instantiated objects are no longer in use, they are garbage-
collected.

On the basis of these concepts and processes, Java and thus Minstrel can prevent many security
attacks but not all. As already mentioned the Java security model can only be applied to Java
code. Security threats that are outside the Java environment cannot be controlled or even noticed
by Java’s security mechanisms. Only local (to the executing site) resources can be protected by
these mechanisms, and security misconfigurations by the user that open security holes cannot be
prevented.
Aside from these problems Java does quite a good job. It provides good protection against the
two most dangerous threats of leakage and tampering, while the less dangerous ones of resource
stealing and antagonism cannot be fully prevented. This, however, is due to the fact that it is hard
to distinguish automatically between legitimate and malicious actions.

6.1.3.2 The Java Secure Execution Framework vs. the Standard Java Security Model

Though Java’s security model provides strong mechanisms to protect the user from security
threats introduced by agents and pushlets, it falls short when it comes to higher-level security
configuration and its management.
Java’s current security model only supports explicit specification of accesses that are permitted.
This enables the user to specify all that is necessary to secure his/her site. It is not very practical,
however, if the user wants to permit many different types of accesses. Instead of specifying what
is permitted, frequently the opposite semantic is required, i.e., to specify what isnot permitted.
JSEF supports both ways of specification by its so-called additive and subtractive permissions.
The current security model of Java uses a two-level configuration approach. A global policy
file holds the default permissions for any user on a specific site and a user’s local policy file
can specify additional permissions. Since Java’s security model only supports additive policies,
only two extremes for the security configuration exist: Either each user must have and maintain
a private security policy file, or a global policy is specified and user-specific configurations are
ignored. Either way has its shortcomings. With the first strategy users can easily introduce
security holes—regardless whether a global policy file exists or not since the user’s local policy
can extend the global policy in any way—but can have a personalized configuration. In the

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 118

second case the administrator has total control over the security policy but cannot tailor it to
specific users’ needs.
JSEF overcomes these problems by providing a hierarchic security policy scheme that supports
both local, user-specific security policies and a global security policy defined by the administrator
that takes precedence over user policies. At runtime of a Java program, a user’s actual policy is
defined by merging the user’s local policy with the global policy. The user’s policy, however,
cannot circumvent restrictions imposed by the administrator in the global policy. This scheme
improves the management of security policies in a secure yet flexible way.
Moreover, the Java security model lacks support for user groups. JSEF on the other hand supports
the definition of hierarchic user groups with assigned security policies. A user can be member
of a set of groups that have different security profiles. With user groups being supported, an
administrator can easily define a set of profiles in terms of groups and assign these profiles to
users depending on the users’ requirements. Additionally these groups can be freely structured
into a hierarchy, which further supports maintenance and tailoring of the security policy.
JSEF supports the retrieval of policy definitions from arbitrary sources: JSEF currently uses
XML files [14] but can easily be tailored to load policy definitions from other sources such
as databases or remote locations. This can be accomplished by the use of specialized handler
classes provided by the user of JSEF. Mobile code that is to be executed can also be loaded from
arbitrary sources. A prototype blueprint for loading class files and JAR files from any location
in the file system (not only from within the defined Java classpath!) is included in JSEF. This
concept supports storing of mobile code in arbitrary locations and formats, for example, in a
database.
In the standard Java security model the requester of an operation receives a security exception
whenever an access is denied by the user’s security policy. This typically terminates the execu-
tion. If this was not intended, the user has to exit the program that wanted to perform the access,
set the appropriate permissions, restart the program and retry its execution. This can be tedious
and time-consuming.
JSEF therefore provides a powerful and flexible security negotiation facility. If a forbidden
operation is attempted, JSEF intercepts itbefore the actual access and starts a negotiation process.
Currently this means that the user is asked via a GUI whether the access should be denied,
permitted once, for the current session, or always and thus be entered into the user’s security
policy. This supports runtime management of the security policy while still ensuring that the
existing policy settings are not violated. The interactive negotiation scheme can be used as a
blueprint for other (semi-) automatic negotiation schemes.
JSEF is based on the Java security framework and extends it with the mechanisms listed above.
The following sections provide a more detailed look on the main concepts and components of
JSEF. A detailed description of JSEF, the definition of JSEF security policies, and implementa-
tion details are given in [70] and [84].

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 119

6.1.3.3 The JSEF Policy Concept

JSEF’s policy concept is a subclass of the Java policy concept. Applications that rely on JSEF
ignore the settings defined in the Java policy of a user (in the system policy and user policy
files) and rely solely on the policy defined for JSEF. As already mentioned above, policy handler
classes are used to abstract from physical storage and support the loading of policy definitions
from arbitrary locations using arbitrary protocols.
JSEF introduces the notions ofadditive andsubtractive permissions. Additive permissions are
the class of permissions as used by the Java security model: They grant permission to access a
resource. Subtractive permissions on the other hand are an extension to this, allowing specifica-
tion of what resources are not permitted to be accessed. The collection of additive permissions
makes the user’sadditive security policy and the collection of subtractive permissions defines
his/hersubtractive security policy. The subtractive policy always overrules the additive policy.
For Java code to be allowed to access a resource, the following conditions must hold: (1) the ac-
cess to the resource is not forbidden by the subtractive policy and (2) the access to the resource is
explicitly allowed by the additive policy. If an action is neither forbidden nor explicitly allowed,
it is prohibited.
The policy concept of JSEF distinguishes between aglobal (defined by the administrator) and
a local policy (defined by the user) which both can hold additive and subtractive permissions.
Global settings always overrule local ones. Thus a user cannot break the security policy defined
by the administrator. The format for defining permissions is given in [84]. Figure 6.6 shows a
sample local policy definition that grants all permissions to all code fromwww.sun.com signed
by CK, but forbids write and execute access to the user’s home directory hierarchy for such code.

�

�

�

�

<?xml version="1.0"?>
<!DOCTYPE localPolicy SYSTEM "localPolicy.dtd">

<localPolicy userName = "Charly Brown" lastChanged="03/21/1999">
<addItems>

<policyItem signedBy="CK" codeBase="http://www.sun.com/-">
<permission class="java.io.AllPermission">
</permission>

</policyItem>
</addItems>
<subItems>

<policyItem signedBy="CK" codeBase="http://www.sun.com/-">
<permission class="java.io.FilePermission">

<permissionName name="/home/-"/>
<actions name="write execute"/>

</permission>
</policyItem>

</subItems>
</localPolicy>

Figure 6.6: A sample local policy definition in JSEF [70]

As already mentioned, JSEF supports the definition of hierarchical groups. Each group can be
assigned a set of permissions. Users then can be declared to be members of a set of groups

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 120

and thus have the permissions defined by the groups. Groups, their hierarchy, and their access
rights are typically defined by the system administrator. Figure 6.7 shows some sample group
definitions by the administrator for a userCharly Brown who inherits the permissions defined by
groupUser and has the restrictions defined in groupDeveloper.

�

�

�

�

<?xml version="1.0"?>
<!DOCTYPE usergroups SYSTEM "usergroups.dtd">

<usergroups lastChanged="03/21/1999" changedBy="CK">
<user username = "Charly Brown">

<addgroups>
<group groupname = "User" />

</addgroups>
<subgroups>
<group groupname = "Developer" />

</subgroups>
</user>

</usergroups>

Figure 6.7: Mapping of a user to groups in JSEF (group policy) [70]

JSEF strictly separates additive and subtractive groups and their hierarchies to support clear and
intuitive configurations. This, however, does not constrain the power and applicability of this
concept. Additive subgroups always extend the permissions defined in their parent group while
subtractive subgroups further restrict them. Each group can have exactly one parent group of the
respective (additive or subtractive) type. Figure 6.8 shows some sample group definitions that
define a groupAdmin and a subgroupDeveloper of Admin.

�

�

�

�

<?xml version="1.0"?>
<!DOCTYPE groupHierarchy SYSTEM "groupHierarchy.dtd">

<groupHierarchy lastChanged="03/21/1999" changedBy="Clemens">
<group groupName="Admin">

<policyItem codeBase="http://www.sun.com/-">
<permission class="java.io.FilePermission">

<permissionName name="/tmp/-"/>
<actions name="read"/>

</permission>
</policyItem>

</group>
<group groupName="Developer" parentGroup="Admin">

<policyItem signedBy="CK" codeBase="http://www.sun.com/-">
<permission class="java.io.FilePermission">

<permissionName name="/projects/-"/>
<actions name="read write execute"/>

</permission>
</policyItem>

</group>
</groupHierarchy>

Figure 6.8: Some sample group definitions in JSEF [70]

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 121

Admin defines that unsigned code fromwww.sun.com may only read the/tmp directory hierarchy.
GroupDeveloper inherits this permission and extends it by additionally granting full access to
the/projects directory hierarchy to all code fromwww.sun.com if it was signed byCK.
The definition of the group hierarchy and the assignment of permissions to groups is part of
the global policy specification which also defines the mappings between users and groups. At
runtime JSEF merges the local and global definitions to determine the current access permissions,
which are then enforced by the JSEF security manager. The processing of an access request is
shown in Figure 6.9.

ProtectionDomain

checkPermission()

*[for all acesses denied by local policy]

JSEFSecurityManager AccessController

[denied by global policy]
Exception

checkXXX()

getProtectionDomain()
*[for all objects on the Stack]

implies(permission)

AccessControlException
[implies() = false]

Exception
[user denies]

JSEFPolicy

askUser()

Object on Stack

Figure 6.9: Processing of an access request in JSEF (UML sequence diagram)

In this process global definitions overrule local ones and restrictions are always stronger than
explicit permissions. JSEF’s security manager asks Java’sAccessController to check a
certain permission. This object in turn iteratively requests the protection domain of every object
on the stack (stack inspection). The protection domain of a Java object is a collection of per-
missions associated with this object and holds a specializedJSEFPermissionCollection
object that knows how to deal with the JSEF policy concept (additive and subtractive permissions,
local and global policy, groups). Then the access controller tests whether the access is allowed,
and if this check is positive the stack inspection continues. If not, an exception is raised. JSEF’s
security manager checks whether the access denial was due to a rule in the global policy. If yes,
the access cannot be allowed and an exception is raised. If a local policy rule was the reason for
the denial, the security manager records this and instructs the access controller to continue with
the stack inspection. This continues until the access controller has processed all objects on the
stack or the violation of a global policy rule aborts it. Now the security manager has a list of
permissions that were not yet granted and were not forbidden by a global policy rule. If the list is
empty the access is granted. Otherwise the user will be asked to decide whether to grant or deny
the required permissions. If the user denies, an exception is raised; otherwise the access can be
performed.
In-depth descriptions of the JSEF policy concepts are given in [70] and [84]. The processing of
access requests is presented in detail in [84].

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 122

6.1.3.4 The JSEF Process

Figure 6.10 shows the main steps of the process every piece of mobile code has to run through
until it may be executed. At runtime the accesses of the executing code are monitored by JSEF.

Verify code properties

Install policy

Execute code

Load code

Figure 6.10: The JSEF Process

At the moment mobile code in Minstrel is either a pushlet or an agent and is restricted to Java
classes contained in Java Archive (JAR) files. After such a piece of code, which is to be executed,
has been downloaded, a secure environment in which this code will execute must be set up as
a first step. This environment consists of a user-defined policy, a global policy defined by the
administrator that overrules a user’s settings, and a security manager that cooperates with an
access controller to enforce the security policy.
This means that the actual permissions the mobile code will have at runtime must be determined
in this step. The process merges the security policy defined by the user with the general security
guidelines set up by the administrator as described in Section 6.1.3.3. The result of this process
is a policy object that represents the combined additive and subtractive policy settings of the
user-defined and the system-wide policies. The merging process is described in detail in [70]
and [84].
This policy now has to be enforced by the security manager. Since JSEF includes concepts that
extend the standard Java security policy, a specialized JSEF security manager is used. The JSEF
security manager is implemented as a subclass of the standard security manager. It is instantiated
and installed for the mobile code execution environment with the above security policy settings.
At runtime the JSEF security manager will check every access of the executing mobile code (see
Figure 6.9). It is interesting to note that in JDK 1.2 the security manager is included mainly
for compatibility reasons with earlier versions. The actual checks are performed by the access
controller (see Figure 6.9).
At this point a secure execution environment has been created and the second step of the process
can start. In this step the properties of the mobile code must be checked and verified. This
introduces some difficulties since in Minstrel all information is loaded from the receiver’s SA,
which is not the source of the information. Since the source of mobile code determines what

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 123

access permissions a piece of code has, the origin of the code must be explicitly stated in the
administrative information of the code (the JAR file’s manifest). Additionally, the administrative
information must include the signer of the JAR file and the issuer of the signer’s certificate.
With all this information the origin of the code can be proven (in cooperation with MDL) and the
signature of the JAR file can be verified (this is required by Java’s class loading mechanism [55]).
The manifest also explicitly names the “main” class that is to be used to start the code in the JAR
file.
Their properties having been proven, the classes in the JAR file can be loaded in step three. The
loading is performed by a special JSEF class loader that extends the capabilities of the standard
Java class loader [55] with functionalities needed by Minstrel such as loading of classes from
arbitrary locations.
Finally, in step four, the mobile code can be started by calling the standardized start method of its
“main” class. During its execution, the mobile code will be monitored by the security manager
and access controller that were set up for the execution environment in step one. Every access to
resources will be intercepted and checked as shown in Figure 6.9.
In some cases, when a forbidden access is detected, the user will be asked whether to allow the
access. The user can deny it, allow it once, for the current session, or always. In the last case the
new permission is added to the existing ones and stored in the user’s configuration. If the user
denies the access or the access was denied by the global policy settings, the executing code will
receive an exception indicating a security violation.
Further details on the concepts used in JSEF and the problems encountered during its implemen-
tation are given in [70] and [84].

6.2 Electronic Commerce and Payment

One of Minstrel’s goals is to create a substrate for information commerce over the Internet.
Indeed,payment methods andbusiness models have to be addressed by any commercial Internet
system. Because of the existence of the subscription phase in Minstrel, standard solutions such
as macro-payments or flat fee systems (e.g., monthly charge to credit card) may be used. But
just as push systems completely reverse the pull model, they also change the traditional payment
assumptions. The sender may be interested in charging for all the data it sends out, especially
since the receiver has subscribed to the information explicitly, but the receiver is only interested
in paying for what is actually read (micro-payments, pay-per-view).
Figure 6.11 shows a simplified scheme for a Minstrel interaction if no payment is involved.
The broadcaster sends an offer (actually a sample including an offer) to the receiver (step 1).
If the receiver is interested it requests the offered content (step 2) which the broadcaster then
delivers (step 3).

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 124

3

Offer (oid)

2 1

Broadcaster

Receiver

Figure 6.11: Minstrel interaction without payment

When payment is integrated into this communication model the interaction becomes more com-
plicated. Figure 6.12 depicts the general payment model applied in Minstrel.

8 1

3

Control Unit

Legend

Minstrel Receiver

Payment

Control and data

6b

Receiver Wallet

Pay for information

9

10

Presentation Unit

Payment Server

5

7

4

Offer (oid)

price
6a

Push Vendor

2

Receiver

Broadcaster

Figure 6.12: Minstrel interaction with payment

Again the broadcaster offers some information to the receiver (steps 1–2). But here the offer
also includes a price and administrative information on how the payment can be effected. If
the user is willing to accept—this can include user interaction or be done semi-automatically
depending on the price and the offer—the following steps are taken. The user issues a request
for the offered information which includes a payment handle. The payment handle identifies the
offer and in turn the requested product (e.g., by including the unique ID of the offer), and holds

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 125

some administrative information (taken from the offer) that describes the payment process (step
3).
This handle is given to the user’s wallet and the wallet is instructed to pay (step 4). On the basis
of the payment process description included in the request, the wallet contacts a payment server
and effects the payment according to the requested payment scheme/protocol (step 5). If the
payment succeeds, the payment server issues a receipt that confirms the payment and is a proof
of the transaction. This receipt is simultaneously sent to the wallet and registered with the push
vendor (steps 6a–6b).
When the wallet gets the receipt, it returns it to the component that processes the user’s request
(step 7). Now the original request together with the receipt is sent to the push vendor (step 8). The
vendor checks whether the receipt is valid, registered, and consistent with the requested product
(i.e., the payment concerns the requested product). If this check is successful, the product is sent
to the requester (step 9), which stores it and notifies the user of the completed operation (step
10).
Figure 6.13 depicts this payment model at the context level in terms of a UML sequence diagram.

return receipt

return receipt

pay

send sample (Offer, oid, price, ...)

request payment (oid, price)

Receiver Wallet PaymentServerPush Vendor

register receipt (rid, oid)

request shipment (oid, rid)

check receipt

deliver shipment
[receipt is OK]

Figure 6.13: Minstrel interaction with payment at the context level (UML sequence diagram)

Figure 6.12 and Figure 6.13 show only the components that are relevant to the payment process.
The transport system is not shown explicitly since it does not contribute to this process. The
components of the transport system are transparent towards the payment process and merely
have to forward the according requests.
Minstrel’s payment model as described above is composed around the notion of a receipt, which
makes it flexible and generally applicable for a variety of payment profiles. As presented, it
can be mapped directly onto apay-per-view business model using a micro-payment protocol,
such as Millicent [54] or MicroMint [142]. However, the model is generic and can easily be
tailored to other business models like time-based, volume-based, or flat fee schemes by adjusting
or skipping part of the process defined above.
For example, a time-based scheme can be implemented by making an initial macro-payment for
a specific vendor which would return a special (signed) receipt that also holds a time interval. If

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 126

the receiver (on behalf of the user) interacts with the vendor and is to be charged for that on a
time basis, this is accomplished by sending the receipt with every user request for content. The
vendor then checks whether there is time left on the receipt and, if so, decreases the time counter,
registers the new receipt, invalidates the old one, and returns the changed receipt and requested
information to the user. If the time counter is “empty,” requests are denied and the user has to
buy a new time ticket. This time-based scheme simply leaves out the individual payment with
each access as shown in Figure 6.12.
Other business models can be implemented as well. If the counter is mapped to accesses instead
of time, then it implements a pre-paidn-access scheme. If the receipt keeps track of the amount
of data transferred, this models a volume-based scheme. A flat fee scheme would work in a
similar way.
Moreover, micro-payment protocols and standards like DigiCash’s ecash [34, 35, 36, 149] or
CyberCash [27, 28], or payment standards like SET [151, 152, 153, 154], can be used under
the abstraction of the Minstrel payment model by supplying feasible software components that
conform to Minstrel’s abstract payment interface which implements the payment model.
Due to the composition of the Minstrel payment model around the notion of a receipt, the busi-
ness models, payment methods, and payment instruments do not exclude each other but can also
co-exist and be used according to the user’s configuration or requirements imposed by vendors.
As a proof of concept of the generic payment model described above, Minstrel includes an im-
plementation of the Millicent [54] micro-payment protocol to support business models based on
micro-payments such as pay-per-view.

6.2.1 Millicent Distilled

Minstrel uses the Millicent micro-payment protocol [54] to demonstrate a pay-per-view business
model. Millicent is a micro-payment protocol developed by Digital Equipment Corporation
(DEC) and is designed to support electronic payment on the Internet. Millicent is intended for
small purchases (several cents to a few dollars), for example, to pay for a WWW page or buy a
piece of information from a push channel.
This section provides an overview of Millicent and its main concepts. Further discussion, analy-
sis, and details can be found in [54], [71], and [138].
Millicent is designed around the following concepts and roles: scrip (digital cash), broker, cus-
tomer, and vendor.Scrip models an account a customer has established with a vendor or a broker.
It represents digital money that is valid only for a specific vendor or broker and can be spent only
once. The account balance is encoded in the scrip itself together with a proof of correctness for
that value (digital signature) to prevent anyone from modifying the scrip’s value.
A broker handles real-money transactions with vendors and customers and serves as an account-
ing intermediary between them. It takes care of account management, billing, and connection
maintenance. Brokers buy and sell broker scrip and vendor scrip. Brokers establish long-standing
accounts with vendors.
A customer establishes an account with a broker. Using brokers instead of vendors supports the
splitting of a customer-vendor account into two accounts: one between the customer and broker,

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 127

and another between the broker and the vendor. Instead of many separate accounts for every
customer-vendor combination, each customer has only a few accounts with a couple of brokers.
A vendor sells products and accepts its vendor-specific scrip as payment. A vendor establishes
long-standing accounts with just a few brokers. The vendor can locally validate the scrip it
receives to prevent customer fraud.
Figure 6.14 shows how the above entities cooperate in the Millicent payment process.

Customer

Broker

3: B
uy v

endor s
cri

p (p
ay w

ith
 broke

r s
cri

p)

Vendor4: Pay with vendor scrip

1: Buy vendor scrip (large amount)2: B
uy b

roke
r s

cri
p (p

ay w
ith

 re
al m

oney)

Figure 6.14: The Millicent payment model (UML collaboration diagram)

If a customer wants to purchase something from a specific vendor, it first checks whether it has
enough vendor scrip (scrip for this specific vendor) to effect payment. If yes, it sends the vendor
scrip to the vendor, the vendor locally checks the validity of the received scrip, deducts the cost
of the purchase from the scrip’s value, and returns new scrip with the new balance as change to
the customer (4).
If the customer does not have enough vendor scrip, it first needs to buy the specific vendor
scrip from the broker. Vendor scrip must be paid with broker scrip. If the customer does not
have enough broker scrip, it first must buy the broker scrip from the broker with a real-money
transaction which is outside the scope of Millicent. This payment is effected by some other
payment method such as credit card or an electronic payment system with a higher-level of
security (2). Broker scrip serves as a common currency for customers to use when buying vendor
scrip, and for vendors to give as a refund for unspent scrip.
To be able to sell vendor scrip, the broker in an earlier step has established an account with every
vendor it brokers for and bought a larger amount of vendor scrip from each vendor. This payment
involves real money and is outside the scope of the Millicent protocol. It could be made with a
credit card transaction or an electronic payment system with a higher-level of security (1).
Once the customer has broker scrip, it sends a request for the required vendor scrip to the broker
together with some broker scrip to pay for it. The broker locally checks the validity of the
received scrip, deducts the cost of the vendor scrip from the value of the broker scrip sent by the
customer, and returns the requested vendor scrip and new broker scrip with the reduced balance
to the customer (3). Now the customer can make the purchase as described above (4).
Micro-payment protocols generally trade security issues for lower transaction costs. This is
important since the transaction costs must be considerably lower than the amount transferred

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 128

to be commercially reasonable. Since only small amounts of money are involved, “stealing”
it would not pay off. Thus micro-payment protocols usually come with light-weight security
compared to macro-payment protocols.
Millicent can employ different levels of security in its protocols depending on the intended ap-
plication area. Different implementations of scrip serve as the basis for this.Scrip in the clear
is the simplest but most efficient protocol. Scrip is sent without encryption or protection and an
eavesdropping third party can intercept scrip being returned as change and use it. The amounts
that would be lost, however, are rather small. An outside administrative process must then be run
to identify the eavesdropping third party and sue it.
Private and secure employs a symmetric encryption method, such as DES [120] or IDEA [88],
to setup a secure communications channel. This provides good privacy and protection against
eavesdropping and theft but comes at additional cost.
Secure without encryption lies between these two extremes: it is secure but trades privacy for
higher efficiency. It does not employ a full-blown encrypted channel but uses signed requests to
prevent theft.

6.2.2 Using Millicent for Payment in Minstrel

The Millicent protocol is used in Minstrel in a concrete instantiation of the payment model of
Figure 6.12. The model as shown in Figure 6.12, however, must be extended slightly to meet
Millicent’s special requirements. Figure 6.15 depicts the Millicent instantiation of the Minstrel
payment model.

Legend

Payment

Control and data

6b

Broker

Receiver Wallet

a

Control Unit

Minstrel Receiver
b

Pay for information

8 1

10 3

9

Presentation Unit

Payment Server

5

7

4

Offer (oid)

price
6a

Push Vendor

2

Receiver

Broadcaster

Figure 6.15: Minstrel interaction with payment using Millicent

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 129

In addition to the standard Minstrel payment model, the Millicent payment model includes bro-
kers. Occasionally the broker buys vendor scrip from vendors (step a) and the receiver must
buy broker scrip and vendor scrips from the broker (step b). These steps, however, occur in-
frequently and do not change the payment model itself. The other steps in the payment model
remain unchanged.
The Millicent payment model shown in Figure 6.15 is included in Minstrel as a proof-of-concept
implementation. The Millicent protocol is used for the realization of a pay-per-view business
model. A detailed description of the implementation is given in [138]. Figure 6.16 shows the
UML sequence diagram of a payment in Minstrel using the Millicent protocol.

startRMIServer()

deliverBrokerScrip()

pay()

startRMIServer()

[vendorscrip < price and

Broker PaymentServerWallet

startRMIServer()

[vendorscrip < price and

requestGuidelines()

paymentGuidelines()

deliverVendorScrip()

pay()
[vendorscrip > price]

pay()
[vendorscrip > price]

registerReceipt()

returnReceipt()
returnReceipt()

not enough brokerscrip]
[vendorscrip < price and

enough brokerscrip]
buyVendorScrip()

getBrokerScrip()
[paid for brokerscrip]

buyVendorScrip()
enough brokerscrip]

Figure 6.16: Pay-per-view payment using Millicent (UML sequence diagram)

All components in Figure 6.16 are accessible via RMI, so they initialize their RMI server com-
ponents when starting. After this startup phase they are ready to serve payment requests. When
the user issues a payment request, this request is forwarded to the wallet. The request includes
all administrative information necessary to effect the requested payment. The wallet holds the
user’s scrips, keeps track of all on-going payment operations and provides status information on
them. Having received a payment request, the wallet first checks whether the user has enough
vendor scrip for the specific vendor to commence the payment.
If not, two situations can occur: The user either does or does not have enough broker scrip to
buy vendor scrip from his/her broker for the payment. In the second case the wallet requests
guidelines for buying broker scrip from the broker. This step is necessary since this interaction
involves real money and is outside the scope of the Millicent protocol. The Millicent implemen-
tation in Minstrel expects an appropriate guideline object from the broker that allows the wallet
to pay for the broker scrip using a higher-security electronic payment system (e.g., SET). On
the basis of these guidelines the wallet buys broker scrip (possibly after an additional query to

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 130

the user whether s/he agrees to this payment). The modeling of payments outside Millicent as
guideline objects facilitates abstraction from the concrete payment instrument used.
If the wallet has enough broker scrip or a suitable amount has been purchased as described above,
it buys vendor scrip from the broker in order to accomplish the original payment request by the
user. For this purpose the wallet sends broker scrip to the broker. The broker locally checks the
validity of the received scrip, deducts the cost of the vendor scrip from the value of the broker
scrip sent by the wallet, and returns the requested vendor scrip and new broker scrip with the
reduced balance to the wallet. Now the wallet proceeds with paying the vendor.
For paying the vendor the wallet sends an appropriate amount of vendor scrip and administrative
data to identify the purchase to the payment server. The payment server either is the vendor
(in Millicent terminology) or acts on behalf of it, i.e., is a specialized component that offers a
payment service to a number of vendors. Upon receipt of the request the payment server locally
checks the validity of the received scrip and deducts the cost of the purchase from the scrip’s
value. Then it registers a receipt describing the purchase and the buyer with the (push) vendor.
The receipt is also returned to the receiver as a proof of purchase together with the user’s change
in the form of new scrip with a reduced balance.
Now the wallet can notify the component of the Minstrel receiver that forwarded the original
payment request and return the received receipt. The purchased shipment can now be requested
from the vendor by including the receipt as a proof of payment in the request. The vendor checks
the validity of the receipt and, upon positive evaluation, returns the requested shipment.
It is important to note thatall interactions in the Millicent payment process shown in Figure 6.16
are done asynchronously, which provides a very high degree of parallelism. This requirement
stems from the special nature of the payment process. As with graphical user interfaces the user
can asynchronously issue requests and wants to continue working while the system tries to fulfill
the request. For payment this means that the user will not want to wait until a payment transaction
has been completed when s/he in the meantime can interact with Minstrel in a meaningful way,
for example, by checking other channels. Moreover, the user may want to initiate a number
of simultaneous payment operations. Thus the Millicent implementation in Minstrel is fully
asynchronous and supports these requirements. Nevertheless, the user can monitor the status of
ongoing payment processes at any time. After a payment succeeds or fails, the user receives a
notification and can proceed as desired (depending on the result).
The above argument for asynchronous operations is also applicable to interactions between the
internal components. The wallet, for example, should not be blocked, when waiting for the
processing of a payment by a broker or a payment server. This goal could be accomplished by
generating a new thread for each request, but that would not be very economical in terms of
resources when a client carries out many parallel payment operations. With the asynchronous
scheduling scheme of Minstrel’s Millicent implementation, it is possible to “re-use” threads that
cannot proceed because they are waiting for an answer from another party. This approach is
similar to process or thread scheduling of operating systems and provides a very high degree of
parallelism and efficient resource usage. Since a high payment load is envisioned for Minstrel
with the further development of e-commerce, this approach was chosen.
The implementation uses a thread pool based on theutil.concurrent library [92] to limit the
maximum number of active threads. Minstrel’s Millicent implementation also has to tackle or-

CHAPTER 6. THE MINSTREL PUSH SYSTEM: SECURITY AND E-COMMERCE 131

ganizational problems inherent to the Millicent approach. An important issue is how the total
amount of scrip for a specific vendor is divided into smaller scrips. This is important because it
directly influences the possible number of concurrent payments. If only one piece of scrip were
available, no concurrent payments would be possible since the wallet would have to wait for the
completion of the payment involving the scrip (it actually has to wait for the change scrip). This
constraint is due to the fact that Millicent is based not on the concept of coins but on accounts:
Scrip holds the value that it represents like an account. A simple approach to remedy this is to
buy new vendor scrip whenever not enough is available. However, this strategy will possibly
result in many scrips for the same vendor and leave the user with a very high account for every
single vendor. This strategy is comparable to paying for every real-live purchase with a new
high-value bill, without using any of the bills received as change. Additionally it is possible that
the user has the amount to pay for a purchase but not as a single piece of vendor scrip. In real life
this is not a problem, since the bills or coins used for payment do not influence the payment itself
as long as the total amount is high enough. For Millicent, however, this is a problem since only
one piece of scrip can be used for each purchase. Therefore the vendor scrip has to be cashed in
and converted to a higher-value scrip. In answer to these and similar problems, Minstrel’s Mil-
licent implementation includes a complex model to support convenient strategies for concurrent
payments. For example, in Minstrel the user can effect a payment with a number of scrips whose
sum is the required amount.
A comprehensive description of Minstrel’s Millicent implementation that provides further details
is given in [138].

Chapter 7

Evaluation and Future Work

Even though there are many documents on the world-wide web and in electronic magazines about
push systems, these are mostly at the user and application level, with little systematic treatment
of the design and research issues. This thesis has presented push systems as an architectural
model for distributed systems and interactions and has positioned it with respect to client-server
and event-based architectures. The subscription phase of the interaction model is the key to the
scalability of the push model and is applicable to many distributed applications for which client-
server computing is deficient. A component model for push systems has been presented that can
be used to study, analyze, and contrast different implementations of push systems, and this has
been done for six prominent push systems. Using the concepts of broadcaster, transport system,
receiver, and information source, the described component model separates the issues of content
management, channel management, scalability, and user-interface management into different
components. This component model may be used as a basis for a reference implementation of
push systems.
Push systems have been contrasted with the closely related paradigm of event-based systems,
the distinguishing features have been pointed out, and the connection with mobile code systems
have been shown. Also the main issues that need to be addressed by push systems have been
presented: scalability, network traffic, security, authentication, and electronic commerce. The
Minstrel project covers all these issues. It uses the component model of Section 2.2 as an ar-
chitecture for developing plug-compatible components for push systems and to devise an open
protocol suite for Internet-scale content distribution.
Minstrel is a Java-based proof-of-concept implementation of the architectural model and serves
as an extensible software platform for further research. The main design goals of Minstrel are
scalability to a large number of users with simultaneous minimization of network traffic, a hybrid
broadcasting paradigm that supports timely notification via real push without requiring special
multicast infrastructures, a distributed model for simplifying information authentication, inte-
grated support for the implementation of common payment schemes, and support for pushlets
that are executed in a highly configurable Java secure execution framework (additive and sub-
tractive security policies, hierarchical user groups, security negotiation). The protocols deployed
are based on RMI and open to the public and can serve as a basis for discussion of a push protocol
standard.

132

CHAPTER 7. EVALUATION AND FUTURE WORK 133

7.1 Evaluation

In the currently dominant “pull” paradigm on the Internet, consumers actively “pull” informa-
tion from an information source. This imposes a “synchronous” interaction scheme that requires
consumers to check for new information repeatedly. The “push” model attempts to overcome the
deficiencies of the “pull” model by putting the information provider in control of the data flow
and allowing it to actively transport information closer to its consumers. This provides “asyn-
chronous” information distribution: Whenever information of the consumer’s choice becomes
available it gets distributed. In the “push” model producers announce the availability of certain
types of information, an interested consumer subscribes to this information, and the producer
publishes the new information whenever it becomes available (pushes it to the consumer).
The main challenges a push system faces are:

� Scalability

– Timeliness of information despite large numbers of consumers

– Reasonable bandwidth requirements in the presence of large numbers of consumers

– Limited computational load for the distribution

� Active, asynchronous information distribution to meet the requirement of information
freshness

� Flexible support for a wide range of content types including mobile code

� Security

– Authenticity and integrity of information

– Confidentiality of information

– Mobile code security

� Support for e-commerce with flexible support of various payment methods and business
models

The Minstrel push systems addresses all these issues. It is based on the component and commu-
nication model for push systems presented in Chapter 2.
Scalability is supported by clearly separating producers and consumers by an intermediate trans-
port system. The transport system is hierarchical, consists of repeaters, caches, and proxies and
is transparent towards producers, consumers, and channels. Because of Minstrel’s transport sys-
tem the maximum distribution delay grows logarithmically with an order ofO�f � l � f� �
O�f � �l���� � O�f � logf �n��.

1 This is considerably lower than for the serial distribution case

1Without loss of generality it is assumed that every component in every layer in the transport system has a fan-out
of f , recipients are equally distributed among the disseminating components, andl layers are used. Thus the total
number of receivers isn � f l��. Additionally it is assumed that all network connections have the same bandwidth.
This setup is similar to the one shown in Figure 4.7.

CHAPTER 7. EVALUATION AND FUTURE WORK 134

(e.g., email) where the maximum delay grows with an order ofO�n�. Minstrel’s hybrid broad-
casting approach further supports scalability by actively distributing small notification messages
(push part) that allow the receiver to decide whether it is interested in the announced informa-
tion and will retrieve it (pull part). In business terms this strategy could be termed aspromotion
through product samples. This approach distributes the dissemination load, avoids unnecessary
deliveries, and cuts down on bandwidth consumption and computational load. Additionally, it
meets the goal of active information distribution to support information freshness.
The types of content transported by Minstrel channels are not constrained in any respect. By de-
fault the standard web content types are supported. Additional or user-defined content types can
easily be integrated by means of Minstrel’s concept of agents, which provide freely customizable
content handling facilities.
Authenticity and integrity of information is supported by Minstrel’s distributed authentication
infrastructure (Minstrel Data Lock). All system data and content information is signed by the
sender and is authenticated by the receiver before delivery. For provision of confidentiality Min-
strel does not offer a specialized component but can rely on industry-standard infrastructures
such as TLS [33] (SSL [128]) which can easily be integrated. The design decision to base on
existing standards already in widespread use was taken deliberately.
Since mobile code is an essential and first-class content type in Minstrel (agents, pushlets), a
flexible and highly configurable secure execution environment is included. The Java Secure
Execution Framework (JSEF) goes beyond Java’s standard security model and supports additive
and subtractive security policies, local and global security policies, and (interactive) runtime
security negotiation. XML is used for the definition of the policies.
For the implementation of payment methods and business models, Minstrel offers a flexible
and generic payment model that can be used for a variety of business models, such as pay-per-
view, volume-based, or flat fee. It is composed around the concept of a receipt which allows
the employed business model to be decoupled from the underlying payment method(s). No
constraints on the semantics of a receipt and the supported business model exist.
In the following sections I will expand on these arguments.

7.1.1 Scalability of the Broadcasting Process

In assessing and evaluating the scalability of the broadcasting process, the first question was,
which evaluation strategy to choose. Available strategies fall into three main categories: case
studies, simulation, and analytical approaches.
Case studies provide reasonable results for a defined test environment. A set of typical configura-
tions can be defined and evaluated. This approach, however, has some deficiencies for evaluating
Internet-scale systems such as a push system: The case studies must be of reasonable size and
components must be distributed over a large number of nodes with a variety of different network
connections in order to yield plausible results. For a push system such as Minstrel this would
mean a setup with several thousand users that are geographically dispersed and are connected to
the Internet with representative network connections. Such a setting is very difficult to achieve
and still leaves open the question whether it is representative. The experience with case studies

CHAPTER 7. EVALUATION AND FUTURE WORK 135

of similar size and environment has shown that it is frequently not possible to generalize the
results [10, 18, 20, 86, 93, 134].
In such a situation the usual alternative is simulation. But simulation is not effective either, be-
cause the results cannot be realistic. For example, no authoritative standards for simulating user
or application behavior exist and it is difficult to separate the computational components from
the communication delays in a test environment that is only distributed over a limited number
of nodes. Moreover, simulations can hardly take into account all variables that affect the simu-
lated system in such a highly dynamic environment as the Internet, where hundreds of possible
influences exist and can change considerably over time in an arbitrary way. Two representa-
tive examples that can have major impact on a system running on the Internet and are difficult
to simulate are Domain Name Service (DNS) lookups and networks disconnects. On the one
hand, a slow or overloaded DNS server can dramatically decrease the performance and scalabil-
ity of any Internet-scale system. On the other, network disconnects can have significant impact
on the queuing system of a push system (similar to electronic mail) and introduce considerable
computing loads that affect the overall system performance.
This leaves us with the analytical approach, which is also not ideal but at least feasible. If the
assumptions are reduced to measurable quantities, the analytical approach provides reasonable
estimates. Additionally, the assumptions can be changed easily to include further experience
which supports an iterative approximation of the behavior of a system. The results can then be
compared to related systems to support assessment of the system under consideration.
For evaluating the scalability and characteristics of the broadcasting process of Minstrel, the
analytic approach was chosen. It takes into account bandwidth to provide an approximation of
the actual system behavior. Other factors such as processing load on the nodes, delays introduced
by the processing and dispatching of messages, and the queuing delays are not taken into account.
This, however, seems justified since bandwidth is still the resource with such a significant impact
that other factors have only minor influence. Moreover, the other factors have less impact on
Minstrel’s broadcasting process than they have on comparable systems such as electronic mail or
the world-wide web, since Minstrel has a distributed dissemination infrastructure that distributes
the broadcasting load. Thus the figures provided in the evaluation of Minstrel’s broadcasting
process can be viewed as upper limits.
The key design issues that support the scalability of Minstrel’s broadcasting process are the use
of small notification messages and the hierarchical transport system. In Minstrel only a limited
number of recipients is connected to one feeding node. If this number grows over a certain
threshold then an additional layer is introduced and the recipients are distributed among a number
of nodes. This builds up a directed acyclic graph. Without loss of generality a tree structure for
the transport system can be assumed. As was shown in Section 4.6 this has major impact on
the distribution delay of a message. With electronic mail the delays grow linearly according to
the number of receivers of a message with an order ofO�n� while in Minstrel the delays grow
logarithmically with an order ofO�f � logf �n�� as described above.
As was shown in Section 4.6 the worst-case delay in Minstrel for an example configuration of
10,000 receivers would be only 1% of the worst-case serial distribution delay of electronic mail.
Email is a good candidate for comparison since it is the most widespread system with a similar
dissemination strategy. For the example configuration Minstrel has an average delay of 12.87

CHAPTER 7. EVALUATION AND FUTURE WORK 136

seconds and the median of the delays is 9.48 seconds. 72% of the receivers have a delay of less
than 20 seconds (50% of the worst-case delay) and 58% have a delay that is less than the average
delay. After having processed 2019 of 10,000 recipients (approximately 20%), electronic mail
is considerably slower than Minstrel, provided that the queuing strategies are similar. Other
advantages of Minstrel’s strategy are that no single point of failure exists and resources are used
more efficiently since not only one machine’s computing power and network connection are
exploited.
The above figures shows that the active (push) part of the broadcasting strategy is efficient. Due
to the structure of the Minstrel transport system and its components, the pull part is efficient
as well. The content information that is described by the small messages distributed in the
push part of the dissemination strategy can only be requested from the feeding component (the
component in the hierarchy that pushed the description to the recipient). Since most of the
transport system components are caches and repeaters (which also cache), this builds up an
implicit caching infrastructure that is comparable to the caching infrastructure of the world-wide
web. This satisfies the requirements of low bandwidth consumption and reasonably fast response
times. Minstrel includes caching as a first-class concept.
Two problems were encountered in the process of implementing Minstrel’s broadcasting strat-
egy. The first is the currently limited performance of Java applications. Minstrel is implemented
entirely in Java and the limited performance characteristics of Java have a severe impact on the
performance of the broadcasting process. The second stems from the use of RMI-based distribu-
tion protocols. Although the push part of the distribution protocol has reasonable performance,
the pull part falls short in this area. This is due to the very different sizes of objects that are
transported. The push part uses small objects to support scalability while the actual content re-
trieved in the pull part can be quite large. This severely affects the performance of RMI, since
objects that are to be transferred via RMI must be instantiated and available in memory before
they can be used in an RMI call. Unlike socket connections RMI does not support a chunked
read-and-transfer mode.

7.1.2 Content Selection, Content Types, and Executable Content

Minstrel as a push system does not have as powerful and expressive filtering capabilities as many
event-based systems do. Nevertheless, Minstrel includes enough information in its “samples”
(the small messages actively distributed to the recipients) to support receivers in selecting con-
tent of interest. On the basis of the information provided in a sample the receiver may request
the announced content or discard it. Samples have two types of attributes: system-defined and
user-defined. The system-defined attributes include a textual description, a version, validity in-
formation, content type, price, etc., that may already provide enough information for selection.
Additionally, the user-defined attributes can be exploited to communicate arbitrary information
(key-value pairs). The receiver must be able to interpret this information in a meaningful way,
however.
The content types sent in samples or retrieved in “shipments” are not constrained in any way.
By default, the standard web content types are supported. If other content types are to be dis-
tributed the provider of the information can supply a specialized agent that knows how to deal

CHAPTER 7. EVALUATION AND FUTURE WORK 137

with a specific content type and attach it to samples and shipments. Thus agents can dynami-
cally extend the capabilities of receivers and render updates of the receiver software to support
new content types unnecessary. Furthermore, the content itself can hold executable code with
arbitrary functionality that is intended for execution at the receiver site (pushlet). This supports
the transportation of arbitrary functionality inside a channel and can be used for a wide range
of applications. In this respect the Minstrel push system resembles the functionality of a mobile
agent system.

7.1.3 Security

Security in Minstrel is supported in two respects: authentication and mobile code. To guarantee
authenticity and integrity of information, Minstrel includes a distributed, layered, high-level au-
thentication infrastructure which provides authentication as a first-class concept. Authentication
of information is of premier importance for push system users in high-confidence businesses,
such as news agencies or financial information services.
Only so-calledGuaranteedObjects are exchanged between Minstrel components, which ensure
authentic and unchanged content. Both system information and information content are signed
and can be verified by the receiver. The authentication infrastructure is component-based and
layered to support separation of concerns in terms of specialized authentication servers and users
of the infrastructure. The implementation already provides the necessary infrastructure and func-
tionality for authentication purposes. However, it does not yet work with standard certification
authorities and the robustness against brute-force security attacks has to be further investigated.
Mobile code is an important concept in Minstrel. Agents can dynamically extend receiver soft-
ware with new capabilities and pushlets model arbitrary executable content sent in a channel.
Both types of mobile code must be implemented in Java. Minstrel’s mobile code security is
based on Java’s security model, which provides strong mechanisms to protect a system from
security threats. Java’s security model falls short, however, in terms of flexibility and security
configuration management.
The Java Secure Execution Framework (JSEF) of Minstrel was built on top of the Java security
model and provides powerful additional features. Java uses a security policy in which permitted
accesses have to be explicitly stated. JSEF enhances this with the possibility to specify what is
forbidden (subtractive policy). Java has a single-layer security model, while in JSEF security
policies can be grouped and organized hierarchically. A global policy can be defined to state
system-wide security standards. Users can tailor this policy towards their needs but cannot break
it. The system-wide or so-called global policy overrules the user-defined local policies. Thus
JSEF supports easier maintenance of mobile code security and helps to avoid the introduction
of security holes by erroneous configurations. Security policies are specified using XML. Addi-
tionally, JSEF offers the possibility to negotiate security interactively at runtime. In the standard
Java security model, a forbidden access typically terminates the execution; with JSEF, forbidden
accesses are intercepted and the user (or a system component) can negotiate with the relevant
Java code what accesses to permit.
The third aspect of security—confidentiality of information—is not supported by explicit means.
Minstrel’s design choice is to rely on components-off-the-shelf, that provide confidentiality by

CHAPTER 7. EVALUATION AND FUTURE WORK 138

means of encryption. Protocols like TLS [33] (SSL [128]) can be used transparently underneath
Minstrel’s infrastructure for this purpose.

7.1.4 Payment

Minstrel has integrated support for electronic payment and offers a generic payment model which
is composed around the notion of a receipt. The semantics of concrete payment models are
encapsulated in receipts. No constraints on the semantics of a receipt and the supported business
models exist. The receipt concept supports the decoupling of the employed business models from
the underlying payment methods. Thus Minstrel’s payment model is not tied to specific payment
methods and makes a variety of business models possible, such as pay-per-view, volume-based,
or flat fee, but also more complex models including special offers or discount systems.
Before electronic “goods” that require payment are delivered in Minstrel, the payment model is
executed. Regardless of the payment instrument used (micro-payment or macro-payment proto-
cols) the buyer gets a receipt for an effected payment that can hold a description of the semantics
of the payment. The vendor also gets this receipt and registers it. When the buyer then requests
the goods from the vendor s/he encloses the receipt with the request. This allows the vendor to
check the validity of the request before delivering the shipment. This model and the notion of
a receipt are flexible and can be deployed for the implementation of various payment schemes
depending on the semantics assigned to the receipt.
Besides the general framework, Minstrel includes a proof-of-concept implementation for a pay-
per-view scheme based on the Millicent micro-payment protocol. The Millicent implementation
was done as part of the Minstrel project.
Although Minstrel’s payment model is generic and flexible, it requires some knowledge at the
provider and the consumer to interpret the semantics of the employed business model. Support
for the standard models is easy to provide, while complex models require more powerful and
expressive mechanisms that are not currently included in Minstrel. An XML-based mechanism
for automating the business logic between business partners is desirable and could be supported
by a future version of Minstrel.

7.2 Future Work

The experiences in the course of the Minstrel project have pointed out several areas for future
work and further investigation. The evaluation of the implementation of the Minstrel broadcast-
ing strategy has shown that Java and RMI introduce overheads that require optimizations (out-
lined in Section 4.7.5). A new version of the distribution protocols will use a mixed RMI/socket
implementation for the distribution of shipments to support a more efficient stream-oriented
transfer mode. Additionally, the applicability of multicast RMI in MADP will be investigated.
Besides these system-level optimizations, improvements at the user-level, such as more powerful
personalizing und filtering capabilities, will be added.
Special focus will be put on extending Minstrel’s e-commerce facilities. The current version does
not include runtime negotiation of business model and payment method. For this, XML [14]

CHAPTER 7. EVALUATION AND FUTURE WORK 139

could be exploited to develop a definition language for business models and payment to fa-
cilitate dynamic configurations. This would improve Minstrel’s usability as a platform for in-
formation commerce over the Internet. Furthermore, the addition of other micro-payment and
macro-payment protocols is planned.
Finally, recent attempts at standardization in the areas of information dissemination and busi-
ness relationships over the Internet, such as the Information and Content Exchange (ICE) proto-
col [174], will be evaluated as to whether their concepts and formats can be applied to or used in
Minstrel.

Bibliography

[1] Y. Aahlad, B. Martin, M. Maratbe, and C. Le. Asynchronous notifications among dis-
tributed objects.Proceedings of the USENIX 1996 Conference on Object-Oriented Tech-
nologies (COOTS) (Toronto, Ontario, Canada). USENIX Association, June 1996.

[2] AltaVista Corporation.AltaVista website, 1999. http://www.altavista.com/.

[3] Apple Computer Incorporated.QuickTime, 1999. http://www.apple.com/quicktime/.

[4] K. Arnold and J. Gosling.The Java programming language. Addison-Wesley, Reading,
Mass. and London, 1996.

[5] BackWeb Technologies.BackWeb creative guide, 1999. http://support.backweb.com/
public/Version5.01/CREATIVE/INDEX.HTM.

[6] BackWeb Technologies.BackWeb Polite Server, 1999. http://support.backweb.com/public/
Version5.01/SERVER/INDEX.HTM.

[7] BackWeb Technologies.BackWeb—a cooperative architecture for a flexible push-pull
broadcasting solution, March 1997. http://www.backweb.com/pd/whitepaper.html.

[8] J. M. Bacon, J. Bates, R. J. Hayton, and K. Moody. Using events to build distributed
applications.Proceedings of the Second International Workshop on Services in Distributed
Networked Environments, pages 148–55. IEEE Computer Society Press, June 1995.

[9] R. A. Barta and M. Hauswirth. Interface-parasite gateways.Fourth International World
Wide Web Conference (December 11–14, 1995, Boston, Massachusetts, USA). Published
asWorld Wide Web Journal, 1(1):277–90. O’Reilly & Associates, Incorporated, November
1995. http://www.infosys.tuwien.ac.at/Staff/pooh/papers/BIBOS/.

[10] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in Software Engineering.
IEEE Transactions on Software Engineering, 12(7):733–43, July 1986.

[11] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0.
Network Working Group, May 1996. RFC 1945. http://www.ietf.org/rfc/rfc1945.txt.

140

BIBLIOGRAPHY 141

[12] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The Harvest in-
formation discovery and access system.Second International World Wide Web Conference
(Chicago, USA, October 17–20, 1994). Published as I. Goldstein and J. Hardin, editors,
Computer Networks and ISDN Systems, 28(1&2):119–25. Elsevier Science B.V., December
1995.

[13] S. Brandt and A. Kristensen. Web push as an Internet notification service. Technical
report. Hewlett-Packard Laboratories, Bristol, UK, 1997. http://keryxsoft.hpl.hp.com/doc/
ins.html.

[14] T. Bray, J. Paoli, and C. M. Sperberg. Extensible Markup Language (XML) 1.0. World
Wide Web Consortium (W3C), 10 February 1998. W3C Recommendation. http://www.w3.
org/TR/1998/REC-xml-19980210.html.

[15] B. Calandra. So ya wanna be a pusher?developer.com journal, 29 July 1998. de-
veloper.com journal: staff picks, http://www.developer.com/news/staffpicks/072998picks.
html.

[16] A. Carzaniga, E. Di Nitto, D. S. Rosenblum, and A. L. Wolf. Issues in Supporting Event-
based Architectural Styles.Proceedings of the third international workshop on software
architecture, pages 17–20. Association for Computing Machinery, 1998. http://www.acm.
org/pubs/articles/proceedings/soft/288408/p17-carzaniga/p17-carzaniga.pdf.

[17] D. W. Chadwick.Understanding X.500 – The Directory. Chapman & Hall, 1996.

[18] S. R. Chalup, C. Hogan, G. Kulosa, B. McDonald, and B. Stansell. Drinking from the
fire(walls) hose: another approach to very large mailing lists.Proceedings of the Twelfth
Systems Administration Conference (LISA ’98) (Boston, MA, December 6–11, 1998), pages
317–26. USENIX Association, December 1998.

[19] D. B. Chapman. Majordomo: how I manage 17 mailing lists without answering “-request”
mail. Proceedings of the Sixth Systems Administration Conference (LISA ’92) (Long Beach,
CA, October 19–23, 1992), pages 135–44. USENIX Association, 1992.

[20] N. Christenson, D. Beckemeyer, and T. Baker. A scalable news architecture on a single
spool.;login:, 22(3):41–5, June 1997.

[21] B. Costales and E. Allman.sendmail. O’Reilly & Associates, Incorporated, January 1997.

[22] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed systems – concepts and design,
International Computer Science Series, 2nd edition. Addison-Wesley, Reading, Mass. and
London, 1994.

[23] G. Coulouris, J. Dollimore, and T. Kindberg. Security. InDistributed systems – concepts
and design, International Computer Science Series, pages 477–516, 2nd edition. Addison-
Wesley, Reading, Mass. and London, 1994.

BIBLIOGRAPHY 142

[24] D. H. Crocker. Standard for the format of ARPA Internet text messages, August 1982. RFC
822. http://www.ietf.org/rfc/rfc0822.txt.

[25] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems.Proceedings of the 20th International Conference on Software
Engineering (ICSE 98) (Kyoto, Japan), April 1998.

[26] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its appli-
cation to the development of the OPSS WFMS. Technical report. CEFRIEL, Politecnico
di Milano, Via Fucini, 2, 20133 Milano, Italy, August 1998.

[27] CyberCash, Incorporated.CyberCash Documentation, 1999. http://www.cybercash.com/
cybercash/merchants/support/doclib.html.

[28] CyberCash, Incorporated.CyberCash website, 1999. http://www.cybercash.com/.

[29] G. Dauphin. mMosaic: Yet Another Tool Bringing Multicast to the Web.W3C Workshop
“Real Time Multimedia and the Web” (RTMW ’96) (INRIA, Sophia Antipolis, France,
October 24–25, 1996). World Wide Web Consortium (W3C), October 1996. http://www.
w3.org/AudioVideo/9610Workshop/paper05/paper05.html.

[30] M. Day, J. F. Patterson, and D. Mitchel. The Notification Service Transfer Protocol (NSTP):
infrastructure for synchronous groupware.Sixth International World Wide Web Conference
(Santa Clara, California, USA, April 6–11, 1997). Published asComputer Networks and
ISDN Systems, 29(8–13):905–15. Elsevier Science B.V., September 1997. http://www.
lotus.com/research.

[31] T. Dean and W. Ottaway. Domain Security Services using S/MIME, November 1998.
Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-smime-domsec-01.txt.

[32] M. Decina, E. Di Nitto, A. Fuggetta, V. Trecordi, and J. Wojtowicz. ORCHESTRA: a
retailing infrastructure for network-wide services. Technical report. CEFRIEL, Politecnico
di Milano, Via Fucini, 2, 20133 Milano, Italy, February 1998.

[33] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Network Working Group, January
1999. RFC 2246. http://www.ietf.org/rfc/rfc2246.txt.

[34] DigiCash, Incorporated.An introduction to how ecash works, 1997. http://digicash.com/
ecash/docs/Works(23G).pdf.

[35] DigiCash, Incorporated.Setting up a shop to accept ecash, 1997. http://digicash.com/
ecash/docs/ShopSet(23G).pdf.

[36] DigiCash, Incorporated.DigiCash website, 1999. http://digicash.com/.

[37] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. S/MIME Version 2
Message Specification. Network Working Group, March 1998. RFC 2311. http://www.ietf.
org/rfc/rfc2311.txt.

BIBLIOGRAPHY 143

[38] S. Dusse, P. Hoffman, B. Ramsdell, and J. Weinstein. S/MIME Version 2 Certificate Han-
dling. Network Working Group, March 1998. RFC 2312. http://www.ietf.org/rfc/rfc2312.
txt.

[39] C. Ellerman. Channel Definition Format (CDF). World Wide Web Consortium (W3C), 10
March 1997. W3C Note. http://www.w3.org/TR/NOTE-CDFsubmit.html.

[40] H. Eriksson. MBone: The Multicast Backbone.Communications of the ACM, 37:54–60,
August 1994.

[41] Excite Incorporated.Excite website, 1999. http://www.excite.com/.

[42] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Trans-
fer Protocol – HTTP/1.1. Network Working Group, January 1997. RFC 2068. http:
//www.ietf.org/rfc/rfc2068.txt.

[43] M. Fischer. A component-based substrate for secure and authenticated communication.
Master’s Thesis. Distributed Systems Group, Technical University of Vienna, Austria,
2000. To be published.

[44] M. Fischer and M. Hauswirth. Minstrel Security Architecture. Distributed Systems Group,
Technical University of Vienna, Austria, 1999. http://www.infosys.tuwien.ac.at/Minstrel/
Security/.

[45] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang. A reliable multicast frame-
work for light-weight sessions and application level framing.Proceedings of the 1995
ACM SIGCOMM Conference (Cambridge, MA, August 1995), pages 342–56, August 1995.
ftp://ftp.ee.lbl.gov/papers/srm1.tech.ps.Z.

[46] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples. Network Working Group, November 1996. RFC
2049. http://www.ietf.org/rfc/rfc2049.txt.

[47] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. Network Working Group, November 1996. RFC
2045. http://www.ietf.org/rfc/rfc2045.txt.

[48] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types. Network Working Group, November 1996. RFC 2046. http://www.ietf.org/
rfc/rfc2046.txt.

[49] N. Freed, J. Klensin, and J. Postel. Multipurpose Internet Mail Extensions (MIME) Part
Four: Registration Procedures. Network Working Group, November 1996. RFC 2048.
http://www.ietf.org/rfc/rfc2048.txt.

[50] S. Fritzinger and M. Mueller. Java security. Sun Microsystems, Incorporated, 1996. White
Paper. http://java.sun.com/security/whitepaper.txt.

BIBLIOGRAPHY 144

[51] FTP Software. World-class push technology from FTP Software, 1997. http://www.ftp.
com/product/whitepapers/push.html.

[52] S. Garfinkel.PGP: Pretty Good Privacy. O’Reilly & Associates, Incorporated, December
1994.

[53] C. Ghezzi and M. Jazayeri. Pure virtual functions for specification. InProgramming lan-
guage concepts, page 305, 3rd edition. John Wiley, New York, 1998.

[54] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The Millicent Protocol
for Inexpensive Electronic Commerce.Fourth International World Wide Web Conference
(Boston, Massachusetts, USA). Published asWorld Wide Web Journal, 1(1). O’Reilly
& Associates, Incorporated, November 1995. http://www.w3.org/Conferences/WWW4/
Papers/246/.

[55] L. Gong. Secure Java Class Loading.IEEE Internet Computing, 2(6):56–61, Novem-
ber/December 1998.

[56] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the sandbox:
an overview of the new security features in the Java Development Kit 1.2.Proceedings
of the USENIX Symposium on Internet Technologies and Systems (Monterey, California,
December 1997). USENIX Association, 1997.

[57] R. S. Gray. Agent Tcl: A transportable agent system.Fourth International Conference
on Information and Knowledge Management (CIKM 95) (Baltimore, Maryland, December
1995), J. Mayfield and T. Finin, editors, November 1995.

[58] S. Gritzalis and D. Spinellis. Addressing threats and security issues in world wide web
technology. Proceedings of CMS’97, 3rd IFIP TC6/TC11 International Joint Working
Conference on Communications and Multimedia Security (Athens, Greece), pages 33–46,
September 1997.

[59] T. Gschwind and M. Hauswirth. A Cache Architecture for Modernizing the Usenet Infras-
tructure. 32nd Hawaii International Conference on System Sciences (HICSS-32) (Maui,
Hawaii, USA, January 5–8, 1999), January 1999. http://www.infosys.tuwien.ac.at/Staff/
pooh/papers/NewsCache/.

[60] T. Gschwind and M. Hauswirth. NewsCache – A High Performance Cache Implemen-
tation for Usenet News.USENIX Annual Technical Conference (Monterey, California,
USA, June 6–11, 1999), June 1999. http://www.infosys.tuwien.ac.at/Staff/pooh/papers/
NewsCacheHP/.

[61] R. Hackathorn. Publish or Perish.BYTE, 22(9):65–72, September 1997.

[62] R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf. An Architecture for Post-
Development Configuration Management in a Wide-Area Network.17th International

BIBLIOGRAPHY 145

Conference on Distributed Computing Systems (Baltimore, SA, May 1997), pages 269–78,
May 1997. ftp://ftp.cs.colorado.edu/users/andre/papers/ICDCS97.ps.

[63] R. S. Hall, D. Heimbigner, and A. L. Wolf. A Cooperative Approach to Support Software
Deployment Using the Software Dock.Proceedings of the 21st International Conference
on Software Engineering (Los Angeles, CA, USA, May 16–22, 1999), pages 174–83, May
1999.

[64] G. Hamilton, R. Cattell, and M. Fisher.JDBC database access with Java: a tutorial and
annotated reference, The Java series. Addison-Wesley, Reading, Mass. and London, 1997.

[65] M. Hapner, R. Burridge, and R. Sharma. Java Message Service. Sun Microsystems, Incor-
porated, 5 October 1998. http://java.sun.com/products/jms/jms-101-spec.pdf.

[66] E. R. Harold. Remote Method Invocation. InJava Network Programming, The Java Series,
pages 347–74. O’Reilly & Associates, Incorporated, February 1997.

[67] M. Hauswirth. The Minstrel Push System Project website. Distributed Systems Group,
Technical University of Vienna, 1999. http://www.infosys.tuwien.ac.at/Minstrel/.

[68] M. Hauswirth and S. Jakl. Netscape Remote Control Facility. Distributed Systems Group,
Technical University of Vienna, Austria, 1999. http://www.infosys.tuwien.ac.at/Minstrel/
Receiver/NRCF/.

[69] M. Hauswirth and M. Jazayeri. A Component and Communication Model for Push Sys-
tems.Proceedings of the ESEC/FSE 99 – Joint 7th European Software Engineering Confer-
ence (ESEC) and 7th ACM SIGSOFT International Symposium on the Foundations of Soft-
ware Engineering (FSE-7) (Toulouse, France, September 6–10, 1999), September 1999.
http://www.infosys.tuwien.ac.at/Staff/pooh/papers/PushIssues/.

[70] M. Hauswirth, C. Kerer, and R. Kurmanowytsch. Minstrel Client Security Framework.
Distributed Systems Group, Technical University of Vienna, Austria, 1999. http://www.
infosys.tuwien.ac.at/Minstrel/Receiver/CSF/.

[71] M. Hauswirth and M. P¨uhrerfellner. Minstrel E-Commerce. Distributed Systems Group,
Technical University of Vienna, Austria, 1999. http://www.infosys.tuwien.ac.at/Minstrel/
E-Commerce/ and http://www.infosys.tuwien.ac.at/Minstrel/E-Commerce/Millicent/.

[72] M. Hebert. A push in the web direction. The MITRE Corporation, July 1997. Common
Datacast Architecture (CDA). http://www.mitre.org/pubs/edge/july97/fourth.htm.

[73] P. Hoffman. Examples of CMS Message Bodies, February 1999. Internet Draft. http:
//www.ietf.org/internet-drafts/draft-ietf-smime-examples-00.txt.

[74] P. Hoffman. Enhanced Security Services for S/MIME, March 1999. Internet Draft. http:
//www.ietf.org/internet-drafts/draft-ietf-smime-ess-12.txt.

BIBLIOGRAPHY 146

[75] C. Honton. Service Discovery Protocol, December 1997. Internet Draft. http://www.ietf.
org/internet-drafts/draft-honton-sdp-02.txt.

[76] T. J. Hudson and E. A. Young. SSLeay and SSLapps FAQ, September 1998. http://www.
psy.uq.edu.au:8080/�ftp/Crypto/.

[77] Institute for Applied Information Processing and Communications (IAIK).iSaSiLk Toolkit,
1999. http://jcewww.iaik.tu-graz.ac.at/iSaSiLk/iSaSiLk.htm.

[78] Intermind Corporation.About Intermind’s Communications Patents, 1999. http://www.
intermind.com/materials/patentdesc.html.

[79] International Telecommunication Union (ITU).Telecommunication Standardization Sector
(ITU-T), Information Technology – Open Systems Interconnection – The Directory: Au-
thentication Framework, June 1997. ITU-T Recommendation X.509.

[80] JCP Computer Services.JCP SSL-Pro, 1999. http://www.jcp.co.uk/secProduct/security
ssl index.htm.

[81] M. Jensen. BLIP Protocol – Draft 0.006. BLIP.org, 10 August 1998. http://www.blip.org/
protocol.htm.

[82] B. Kantor and P. Lapsley. Network News Transfer Protocol: A Proposed Standard for the
Stream-Based Transmission of News. Network Working Group, February 1986. RFC 977.
http://www.ietf.org/rfc/rfc0977.txt.

[83] G. Karjoth, D. B. Lange, and M. Oshima. A Security Model for Aglets.IEEE Internet
Computing, 1(4), July 1997. http://computer.org/internet/ic1997/w4068abs.htm.

[84] C. Kerer. A flexible and extensible security framework for Java code. Master’s Thesis.
Distributed Systems Group, Technical University of Vienna, Austria, October 1999.

[85] J. Knudsen.Java Cryptography, The Java Series. O’Reilly & Associates, Incorporated,
1998.

[86] R. Kolstad. Tuning sendmail for large mailing lists.Proceedings of the Eleventh Systems
Administration Conference (LISA ’97) (San Diego, California, October 1997), pages 195–
204. USENIX Association, October 1997.

[87] V. Kumar. MBone: Interactive Multimedia On The Internet. Macmillan Publishing,
November 1995.

[88] X. Lai. On the design and security of block ciphers.ETH Series in Information Processing,
1. Hartung-Gorre Verlag, Konstanz, 1992. Institute for Signal and Information Processing,
ETH Zentrum, Zürich, Switzerland.

BIBLIOGRAPHY 147

[89] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. World Wide Web Consortium (W3C), 22 February 1999. W3C Recommen-
dation. http://www.w3.org/TR/REC-rdf-syntax/.

[90] D. Lawrence and H. Spencer.Managing USENET. O’Reilly & Associates, Incorporated,
January 1998.

[91] D. Lea.Concurrent programming in Java: design principles and patterns. Addison-Wesley,
Reading, Mass. and London, 1997.

[92] D. Lea. Overview of package util.concurrent, 1999. http://gee.cs.oswego.edu/dl/classes/
EDU/oswego/cs/dl/util/concurrent/intro.html.

[93] A. S. Lee. A Scientific Methodology for MIS Case Studies.MIS Quaterly, pages 33–50,
March 1989.

[94] T. Liao. Light-weight Reliable Multicast Protocol Specification, 13 October 1998. Internet
Draft. http://www.ietf.org/internet-drafts/draft-liao-lrmp-00.txt.

[95] T. Liao. WebCanal White Paper. INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex,
France, 31 December 1997. http://webcanal.inria.fr/white/index.html.

[96] T. Liao. WebCanal: a multicast web application.Sixth International World Wide Web
Conference (Santa Clara, California, USA, April 6–11, 1997). Published asComputer
Networks and ISDN Systems, 29(8–13):1091–102. Elsevier Science B.V., September 1997.
http://webcanal.inria.fr/webcanal/www6.html.

[97] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
Reading, Mass. and London, 1997.

[98] Live Networks, Incorporated.liveCaster, 1999. http://www.live.com/liveCaster/.

[99] Live Networks, Incorporated.LIVE.COM, 1999. http://www.mbone.com/ or http://www.
live.com/.

[100] Live Networks, Incorporated.multikit, 1999. http://www.live.com/multikit/.

[101] C. Low, J. Randell, and M. Wray. Self-Describing Data Representation (SDR), October
1997. Internet Draft. http://www.ietf.org/internet-drafts/draft-low-sdr-00.txt.

[102] W. Lugmayr.Gypsy: A Component-oriented Mobile Agent System. PhD thesis. Technical
University of Vienna, December 1999. To be published.

[103] C. Ma and J. Bacon. COBEA: a CORBA-based event architecture.4th USENIX Con-
ference on Object-Oriented Technologies and Systems (COOTS) (Santa Fe, New Mexico,
April 27–30, 1998). USENIX Association, April 1998.

BIBLIOGRAPHY 148

[104] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: a push-based distribution
substrate for Internet applications.Proceedings of the USENIX Symposium on Internet
Technologies and Systems (Monterey, California). USENIX Association, December 1997.

[105] Marimba, Incorporated.The Castanet product family, 1997. http://www.marimba.com/
doc/general/current/introducing/introducing.html.

[106] Marimba, Incorporated.Developing Castanet channels, 1997. http://www.marimba.com/
doc/CastanetDeveloperDocs/current/index.html.

[107] Marimba, Incorporated.Introducing Castanet, 1999. http://www.marimba.com/doc/40/
intro/intro-castanet.fm.html.

[108] G. McGraw and E. Felten. Java security and type safety.Byte, 22(1):63–4, January 1997.

[109] G. McGraw and E. W. Felten.Java security: hostile applets, holes, and antidotes. John
Wiley, New York, 1997.

[110] G. McGraw and E. W. Felten.Securing Java: getting down to business with mobile code.
John Wiley, New York, 1999.

[111] Microsoft Corporation.Microsoft Internet Explorer, 1999. http://www.microsoft.com/ie/.

[112] Microsoft Corporation. Webcasting in Microsoft Internet Explorer 4.0 White Paper,
September 1997. http://www.microsoft.com/ie/press/whitepaper/pushwp.htm.

[113] K. Miller, K. Robertson, A. Tweedly, and M. White. StarBurst Multicast File Transfer Pro-
tocol (MFTP) Specification, April 1998. Internet Draft. http://www.ietf.org/internet-drafts/
draft-miller-mftp-spec-03.txt.

[114] K. Moore. MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header
Extensions for Non-ASCII Text. Network Working Group, November 1996. RFC 2047.
http://www.ietf.org/rfc/rfc2047.txt.

[115] Mozilla Organization.Mozilla.org website, 1999. http://www.mozilla.org/.

[116] J. Myers and M. Rose. Post Office Protocol – Version 3. Network Working Group, May
1996. RFC 1939. http://www.ietf.org/rfc/rfc1939.txt.

[117] National Center for Supercomputing Applications, University of Illinois at Urbana Cham-
paign. webcast: collaborative document sharing via the MBone, 1995. http://www.ncsa.
uiuc.edu/SDG/Software/XMosaic/CCI/webcast.html.

[118] National Center for Supercomputing Applications, University of Illinois at Urbana Cham-
paign. NCSA Mosaic Common Client Interface, March 1995. http://www.ncsa.uiuc.edu/
SDG/Software/XMosaic/CCI/cci-spec.html.

BIBLIOGRAPHY 149

[119] National Center for Supercomputing Applications, University of Illinois in Urbana-
Champaign. NCSA Mosaic for the X Window System, January 1997. http://www.ncsa.
uiuc.edu/SDG/Software/XMosaic/.

[120] National Institute for Standards and Technology (NIST).Data Encryption Standard
(DES), December 1993. Federal Information Processing Standards Publication 46-2.
http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[121] Netscape Communications Corporation.An exploration of dynamic documents, 1995.
http://home.netscape.com/assist/netsites/pushpull.html.

[122] Netscape Communications Corporation.In-Box Direct, 1999. http://home.netscape.com/
ibd/.

[123] Netscape Communications Corporation.My Netscape, 1999. http://my.netscape.com/.

[124] Netscape Communications Corporation.My Netscape Network: Quick Start Guide,
1999. http://my.netscape.com/publish/help/mnn20/quickstart.html and http://my.netscape.
com/publish/help/quickstart.html.

[125] Netscape Communications Corporation.Netscape Communicator, 1999. http://home.
netscape.com/download/index.html.

[126] Netscape Communications Corporation.Netscape Netcenter, 1999. http://www.netscape.
com/.

[127] Netscape Communications Corporation.JavaScript Guide, November 1997. http:
//developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm.

[128] Netscape Communications Corporation.Introduction to SSL, October 1998. http:
//developer.netscape.com:80/docs/manuals/security/sslin/contents.htm.

[129] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid file: an adaptable, symmetric
multikey file structure.ACM Transactions on Database Systems, 9(1):38–71, 1984.

[130] Object Management Group.The Common Object Request Broker: Architecture and Spec-
ification, July 1995. Revision 2.0.

[131] Object Management Group.CORBAservices: Common Object Services Specification,
July 1997. formal/97-07-04.

[132] P. Parnes. RTP extension for Scalable Reliable Multicast, November 1996. http://www.
cdt.luth.se/�peppar/docs/rtpsrm/draft-parnes-rtp-ext-srm-01.txt.

[133] P. Parnes, M. Mattsson, K. Synnes, and D. Schefstr¨om. The mWeb presentation frame-
work. Sixth International World Wide Web Conference. Published asComputer Networks
and ISDN Systems, 29(8–13):1083–90. Elsevier Science B.V., September 1997.

BIBLIOGRAPHY 150

[134] D. E. Perry, A. A. Porter, and L. G. Votta. A Primer on Empirical Studies.Proceedings
of the 19th International Conference on Software Engineering (ICSE 97) (Boston, Mas-
sachusetts, USA, May 17–23, 1997), pages 657–8, May 1997.

[135] PointCast. Product documentation, 1999. http://www.pointcast.com/products/intranet/
techresources/documentation.html?ibttechp.

[136] PointCast. Technical papers, 1999. http://www.pointcast.com/products/intranet/
techresources/techp.html?ibtdoc.

[137] J. B. Postel. Simple Mail Transfer Protocol, August 1982. RFC 821. http://www.ietf.org/
rfc/rfc0821.txt.

[138] M. Pührerfellner. An implementation of the Millicent micro-payment protocol and its
application in a pay-per-view business model. Master’s Thesis. Distributed Systems Group,
Technical University of Vienna, Austria, December 1999. To be published.

[139] B. Ramsdell. S/MIME Version 3 Certificate Handling, April 1999. Internet Draft. http:
//www.ietf.org/internet-drafts/draft-ietf-smime-cert-08.txt.

[140] B. Ramsdell. S/MIME Version 3 Message Specification, April 1999. Internet Draft.
http://www.ietf.org/internet-drafts/draft-ietf-smime-msg-08.txt.

[141] RealNetworks.RealNetworks – The Home of Streaming Media, 1999. http://www.real.
com/.

[142] R. L. Rivest and A. Shamir. PayWord and MicroMint – Two Simple Micropayment
Schemes. CryptoBytes, 2(1):7–11. RSA Laboratories, 1996. http://theory.lcs.mit.edu/
�rivest/RivestShamir-mpay.ps.

[143] P. Rodriguez and E. W. Biersack. Continuous multicast push of web documents over the
Internet.IEEE Network, pages 18–31, March/April 1998.

[144] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation
and notification.Proceedings of the ESEC/FSE ’97 – 6th European Software Engineering
Conference held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (Zurich, Switzerland, September 22–25, 1997). Published as Mehdi
Jazayeri and Helmut Schauer, editors,Lecture Notes in Computer Science, pages 344–60.
Springer Verlag, Berlin, September 1997.

[145] D. S. Rosenblum, A. L. Wolf, and A. Carzaniga. Critical Considerations and Designs
for Internet-Scale, Event-Based Compositional Architectures.Digest of the OMG-DARPA-
MCC Workshop on Compositional Software Architectures (Monterey, CA), January 1998.

[146] A. D. Rubin and D. E. Geer. Mobile Code Security.IEEE Internet Computing, 2(6):30–4,
November/December 1998.

BIBLIOGRAPHY 151

[147] J. Rumbaugh, I. Jacobson, and G. Booch.Unified Modeling Language Reference Manual,
Object Technology Series. Addison-Wesley, Reading, Mass. and London, 1999.

[148] B. Schneier. Applied cryptography: protocols, algorithms and source code in C, 2nd
edition. John Wiley, New York, 1996.

[149] B. Schoenmakers. Basic security of the ecash payment system.Computer Security and
Industrial Cryptography: State of the Art and Evolution, ESAT Course (Leuven, Belgium,
June 3–6, 1997). Published as Bart Preneel, editor,Lecture Notes in Computer Science.
Springer Verlag, Berlin, 1997. http://digicash.com/ecash/docs/cosic.pdf.

[150] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol
for Real-Time Applications. Network Working Group, January 1996. RFC 1889. http:
//www.ietf.org/rfc/rfc1889.txt.

[151] SET Secure Electronic Transaction LLC.SET Secure Electronic Transaction Specification
– Book 1: Business Description, May 1997. Version 1.0. http://www.setco.org/download/
setbk1.pdf.

[152] SET Secure Electronic Transaction LLC.SET Secure Electronic Transaction Specification
– Book 2: Programmer’s Guide, May 1997. Version 1.0. http://www.setco.org/download/
setbk2.pdf.

[153] SET Secure Electronic Transaction LLC.SET Secure Electronic Transaction Specifica-
tion – Book 3: Formal Protocol Definition, May 1997. Version 1.0. http://www.setco.org/
download/setbk3.pdf.

[154] SET Secure Electronic Transaction LLC.External Interface Guide to SET Secure Elec-
tronic Transaction, September 1997. http://www.setco.org/download/seteig.pdf.

[155] J. Siegel.CORBA fundamentals and programming. John Wiley, New York, 1996.

[156] Silverspan Corporation.Web Transporter, 1999. http://www.silverspan.com/wtoverview.
html.

[157] Software Research Laboratory.Reliable Multicast Protocol, August 1997. http://research.
ivv.nasa.gov/RMP/index.html.

[158] StarBurst Software.StarBurst MFTP – An Efficient, Scalable Method for Distributing
Information Using IP Multicast, 1997. http://www.starburstcom.com/white.htm.

[159] Sun Microsystems, Incorporated.Java Plug-in Product, 1999. http://java.sun.com/
products/plugin/.

[160] Sun Microsystems, Incorporated.The JNDI Tutorial, 1999. http://java.sun.com/products/
jndi/tutorial/index.html.

BIBLIOGRAPHY 152

[161] Sun Microsystems, Incorporated.Why Are Thread.stop, Thread.suspend, Thread.resume
and Runtime.runFinalizersOnExit Deprecated?, April 1999. http://java.sun.com/products/
jdk/1.2/docs/guide/misc/threadPrimitiveDeprecation.html.

[162] Sun Microsystems, Incorporated.Secure computing with Java: now and the future,
September 1998. White Paper. http://java.sun.com/marketing/collateral/security.html.

[163] Telecommunications Information Networking Architecture Consortium.TINA Notifica-
tion Service Description, July 1996. telecom/96-07-02.

[164] TIBCO Corporation.TIB/Rendezvous, 1999. http://www.rv.tibco.com/whitepaper.html.

[165] J.-C. Touvet. MultiCast Mosaic, May 1996. http://WWW.edelweb.fr/EdelStuff/
EdelContrib/jctmcm.html.

[166] M. Umlauft. A data store JavaBean for the Minstrel push system. Master’s Thesis. Dis-
tributed Systems Group, Technical University of Vienna, Austria, 2000. To be published.

[167] S. R. van den Berg. procmail mail processing package, 29 October 1995. ftp://ftp.
informatik.rwth-aachen.de/pub/packages/procmail/procmail.tar.gz.

[168] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf. Software release manage-
ment.Proceedings of the ESEC/FSE ’97 – 6th European Software Engineering Conference
held jointly with the 5th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (Zurich, Switzerland, September 22–25, 1997). Published as Mehdi Jazayeri
and Helmut Schauer, editors,Lecture Notes in Computer Science, pages 159–75. Springer
Verlag, Berlin, September 1997.

[169] A. van Hoff, J. Giannandrea, M. Hapner, S. Carter, and M. Medin. The HTTP Distribution
and Replication Protocol. World Wide Web Consortium (W3C), 25 August 1997. W3C
Note. http://www.w3.org/TR/NOTE-drp-19970825.html.

[170] A. van Hoff, H. Partovi, and T. Thai. The Open Software Description Format (OSD).
World Wide Web Consortium (W3C), 13 August 1997. W3C Note. http://www.w3.org/
TR/NOTE-OSD.html.

[171] G. Vigna.Mobile Code Technologies, Paradigms, and Applications. PhD thesis. Politec-
nico di Milano, Italy, 1997.

[172] Vitria Technology, Incorporated.BusinessWare, 1999. http://www.vitria.com/.

[173] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). Network
Working Group, December 1997. RFC 2251. http://www.ietf.org/rfc/rfc2251.txt.

[174] N. Webber, C. O’Connell, B. Hunt, R. Levine, L. Popkin, and G. Larose. The Information
and Content Exchange (ICE) Protocol. World Wide Web Consortium (W3C), 26 October
1998. W3C Note. http://www.w3.org/TR/1998/NOTE-ice-19981026.

BIBLIOGRAPHY 153

[175] M. Weiss, A. Johnson, and J. Kiniry. Distributed Computing: Java, CORBA and DCE.
Open Software Foundation Research Institute, February 1996. Version 1.2. http://www.
informatik.uni-essen.de/Dokumente/java/corba.htm.

[176] D. Wessels and K. Claffy. ICP and the Squid Web Cache.IEEE Journal on Selected Areas
in Communication, 16(3):345–57, April 1998. http://ircache.nlanr.net/�wessels/Papers/
icp-squid.ps.gz.

[177] B. Whetten, T. Montgomery, and S. Kaplan. A high performance totally ordered multicast
protocol. Theory and Practice in Distributed Systems, International Workshop (Dagstuhl
Castle, Germany, September 5–9, 1994). Published as K. P. Birman, F. Mattern, and
A. Schiper, editors,Lecture Notes in Computer Science, 938:33–57. Springer Verlag,
Berlin, 1995. http://research.ivv.nasa.gov/RMP/Docs/RMPdagstuhl.ps.

[178] J. E. White. Mobile Agents. In I. Bradshaw and M. Jeffrey, editors,Software Agents. MIT
Press and American Association for Artificial Intelligence, 1997.

[179] WISEN: Workshop on Internet Scale Event Notification, July 13–14, 1998. Irvine Re-
search Unit on Software (IRUS), Irvine (CA), USA, July 1998. http://www.ics.uci.edu/
IRUS/wisen/.

[180] D. Reed and K. Jones,Pushing push: advancing the features of channel communication,
W3C Workshop on Push Technology (Boston, USA, September 8-9, 1997). World Wide
Web Consortium (W3C), September 1997. http://www.intermind.com/materials/pushing
push.doc.

[181] M. Wray and R. Hawkes. Distributed Virtual Environments and VRML: an event-based
architecture.Seventh International World Wide Web Conference (April 14–18, 1998, Bris-
bane, Australia). Published asComputer Networks, 30(1–7):43–51. Elsevier Science B.V.,
April 1998.

[182] Yahoo! Incorporated.My Yahoo!, 1999. http://my.yahoo.com/.

[183] Yahoo! Incorporated.Yahoo! website, 1999. http://www.yahoo.com/.

[184] R. J. Yarger, G. Reese, and T. King.MySQL & mSQL. O’Reilly & Associates, Incorpo-
rated, July 1999.

[185] F. Yellin. Low level security in Java.Fourth International World Wide Web Conference
(Boston, Massachusetts, USA, December 11–14, 1995). Published asWorld Wide Web
Journal, 1(1). O’Reilly & Associates, Incorporated, November 1995. http://www.w3.org/
pub/Conferences/WWW4/Papers/197/40.html.

Curriculum Vitae
Personal Details

February 8, 1966 Born in St. Johann/Pg., Salzburg, Austria

1972 – 1976 Primary school in St. Johann/Pg., Salzburg, Austria

1976 – 1984 Gymnasium (natural science track) in St. Johann/Pg., Salzburg,
Austria. Graduated with distinction.

1984 – 1985 Study musicology and art history at University of Salzburg,
Austria

1985 – 1986 Study computer science and psychology at University of Vienna,
Austria

1986 – 1994 Study computer science at Technical University of Vienna,
Austria (system software track) and worked part-time in indus-
try. Graduated cum laude.
Master thesis:Companion – An object-oriented graphical user
interface for TUNet services

June 1995 – May 1996 Community service as an alternative to military service in a hos-
pital.

March 1994 to date Ph.D. student (Prof. Mehdi Jazayeri), teaching and research as-
sistant at Distributed Systems Group, Technical University of
Vienna, Austria.

Special Interests

� Push systems
� Java
� Mobile code
� E-commerce
� World-Wide Web
� Internet/Intranet
� Programming languages
� Distributed systems

Memberships

� Association for Computing Machinery (ACM)
� Institute of Electrical and Electronics Engineers (IEEE)

Publications

http://www.infosys.tuwien.ac.at/Staff/pooh/

BIBLIOGRAPHY 155

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

