Dissertation

Molecular Surface Comparison.
A Versatile Drug Discovery Tool

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

Prof. Dr. Hans Lohninger
164
Institut fiir Chemische Technologien und Analytik

eingereicht an der Technischen Universitit Wien
Technisch-Naturwissenschaftliche Fakultit

von

Dipl.-Ing. Christian Hofbauer
Matr. Nr. 94 09 824

Gentzgasse 15/11/28
A-1180 WIEN

Wien, am 31. August 2004 M %‘\




Zusammenfassung

Im modernen Entwicklungsprozess fiir neue Medikamente spielt der Einsatz von
theoretischen und graphischen Methoden eine immer bedeutendere Rolle. Vor allem bei
der Suche nach potentiellen Wirkstoffen flir spezifische Proteine ist eine umfassende
Kenntnis der Struktur des Proteinrezeptors von entscheidender Bedeutung. Neben der
dreidimensionalen atomaren Zusammensetzung, wie sie von Rontgenstrukturanalyse
und NMR Spektroskopie ermittelt werden kann, sind Oberflichendarstellungen
besonders dazu geeignet, die Form und rdumliche Ausdehnung eines Molekiils
wiederzugeben. Zusitzlich ldsst sich die Verteilung verschiedener chemischer und
physikalischer Eigenschaften auf Molekiiloberflichen sehr intuitiv darstellen und fiir
optische Vergleiche verschiedener Strukturen einsetzen. Um die Analyse grofler
Substanzdatenbanken zu erleichtern, ist es allerdings notwendig die Suche nach
dhnlichen Motiven auf Molekiiloberflichen zu automatisieren. In der vorliegenden
Arbeit wird das Computerprogramm SURFCOMP vorgestellt, das in der Lage ist, die
Oberflachen verschiedener chemischer Verbindungen miteinander zu vergleichen und
die gemeinsamen oder auch unterschiedlichen Eigenschaften zu ermitteln.

Da die Anzahl der Elemente, aus denen sich die Oberfliche eines Molekiils
zusammensetzt, um ein Vielfaches hoher ist als die Anzahl seiner Atome und
Bindungen, ist es notwendig eine Darstellung zu wihlen, die mit wenigen Elementen
die charakteristischen Eigenschaften der Molekiiloberfliche ausreichend beschreibt. In
SURFCOMP werden dazu alle kritischen Punkte auf den beiden Oberfldchen
verwendet. Diese liegen entweder an der Spitze einer konvexen Region (Hiigel) oder am
Boden einer konkaven Region (Tal). Mit diesen Punkten wird nun ein
Assoziationsgraph gebildet, der alle potentiell dhnlichen kritischen Punktpaare beider
Oberfldchen enthélt. Dieser wird mit Hilfe von mehreren Filtern, die jene Paare
eliminieren, die entweder aus chemischer oder geometrischer Sicht nicht
zusammenpassen, soweit vereinfacht, dass gemeinsame Motive mit Hilfe einer
Cliquensuche erkannt werden konnen. Die dabei detektierten Ahnlichkeiten sind
iiberwiegend lokaler Natur. Um ein umfassendes Bild aller mdglichen
Gemeinsamkeiten auf beiden Oberflichen zu erhalten wird abschliefend eine
hierarchische Clusteranalyse aller gefundenen lokalen Ahnlichkeiten durchgefiihrt.

Mit dem vorliegenden Programm konnte zunichst die relative Orientierung von
acht verschiedenen Inhibitoren im Rezeptor von Thermolysin erfolgreich reproduziert
werden, was durch den Vergleich mit bereits publizierten Programmen belegt wurde. In
weiterer Folge wurden die Auswirkungen von unterschiedlichen Algorithmen zur
Generierung von Molekiiloberflichen auf die Ergebnisse untersucht und die Flexibilitit
der hier vorgestellten Methode auf Konformationsdnderungen der Molekiile getestet.
Schlussendlich konnte SURFCOMP erfolgreich zum Vergleich von Proteinoberfldchen
eingesetzt werden. Bei einer Gegeniiberstellung zweier SH2 Domaénen (SAP und EAT-
2), die beide an dasselbe Signalpeptid gebunden waren, konnte eine Reihe von
oberflichlichen Unterschieden auf Differenzen in der Aminosduresequenz
zuriickgefiihrt werden. Der Nachweis von dhnlichen Motiven auf den Oberflachen der
reaktiven Zentren von SAP und der Phosphatase PTP1B konnte die in biologischen
Experimenten entdeckte Aktivitit von SAP zur Dephosphorylierung von
Phosphotyrosin bestétigen.




Abstract

Analysis of the distributions of physicochemical properties mapped onto molecular
surfaces can highlight important similarities or differences between compound classes,
contributing to rational drug design efforts [131]. This thesis will present a method that
uses a combination of graph theory, computer vision and computational chemistry to
detect local surface similarities between small and medium sized molecules. The present
approach is based on 3D structure search where maximal common subgraph
isomorphism is used to detect local similarities between the pharmacophoric feature
points of different molecules [91]. The extension of this principle to molecular surfaces
is cumbersome, because treatment of the complete set of surface points instead of just a
few feature points with NP-hard graph algorithms is not feasible. In order to perform a
reliable and fast detection of local surface similarities it is necessary to reduce the
complexity of the problem by a set of filters that implement various geometric and
physico-chemical heuristics.

To achieve this, a simplified representation of the surfaces is generated first
consisting only of a set of critical points (corresponding to “hills” and “valleys” on the
surface), augmented by their surrounding surface patches. Among all possible point
pairs those are selected first that show sufficient chemical similarity, judged by means
of a fuzzy dissimilarity index [48] between physicochemical properties mapped onto the
surface points. Then the curvature patterns around all remaining point pairs are
compared by harmonic shape image matching [145] to discard points that are not
embedded in a similar shape. Finally the distances and angles between combinations of
similar pairs are checked to be within certain boundaries to form an association graph
that is simple enough for the clique detection. The cliques represent the local surface
similarities and an alignment between the two molecular surfaces can be calculated
based on the corresponding points. Finally the alignments can be clustered to reveal a
picture of the total surface similarity between the two molecules.

The method was tested with a dataset of eight thermolysin inhibitors and recovered
the correct alignments of the compounds bound in the active sites. The results were in
good agreement with another surface-based comparison carried out on the same dataset
[37]. Furthermore SURFCOMP was successfully applied to the comparison of protein
active sites by means of spherical site selection and a scoring scheme that allows a fast
identification of similar surface regions. A similarity search between the binding area of
two similar SH2 domains (SAP and EAT-2) revealed interesting differences between
their molecular surfaces, which could be assigned to the corresponding structural
differences. Finally the surface similarities between SAP and tyrosine phosphatase
PTP1B, which have been detected by SURFCOMP, support the idea that biological
functions are strongly related to surface features, since SAP and PTP1B do not show
any significant structural similarity.
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1. Introduction

Since Emil Fischer at the end of the 19" century recognized the “lock and key”
principle for the interaction of small organic compounds and large biomolecules the
research for new remedies has been focused on the non-covalent interactions between
organic keys and protein locks. Until X-ray spectroscopy provided a first insight into the
3D structure of DNA [136], proteins [104] and protein/ligand complexes in the second
half of the last century, new agents could only be detected by random trial, chemical
intuition and the stepwise modification of already known active compounds. With the
3D pictures of the locks and keys it was, for the first time, possible to study the
interactions between the ligands and their receptors at the molecular level. From now on
the chemical mechanism of a certain pharmacological process could be investigated and
better methods to find more efficient or new agents could be implemented.

Fischer’s model was later refined by Koshland [75;76] who introduced the concept
of “induced fit”, which takes the flexibility of the ligand and the receptor into account.
Thus, substrates and proteins initially do not fit into each other but are transformed into
matching counterparts by conformational changes during the complexation process.
Only after the substrate is bound, the partners have complementary shapes and form a
lock and key pair. This model describes a process of dynamic recognition which
enhances the selectivity of the protein. Nuclear magnetic resonance spectroscopy
(NMR) can help to elucidate the flexibility of protein structures because it is able to
reveal the atomic structure of a protein in solution [139]. Measurement of the nuclear
Overhauser effect (NOE) allows the relative localization of atoms to each other in the
three dimensional atomic structure. This technique is incorporated in nuclear
Overhauser enhancement spectroscopy (NOESY), which - together with distance
geometry - produces a set of possible 3D structures of the protein that can be interpreted
as alternative conformations of the flexible protein [58;98].

Together with the evolution of protein theory the development of quantum
chemistry [9] provided a basis for the theoretical investigation of the electronic structure
of small molecules. With the advent of new computational chemistry methodologies the
calculation and prediction of molecular properties of physically unavailable compounds
became possible. But limited computer power and the enormous amount of
computations that is necessary to perform ab initio quantum mechanical calculations
prevented for decades the widespread use of theoretical methods in bioorganic
chemistry. However, because of the dramatic increase in hardware performance in
combination with less-demanding computational methods like semi-empirical quantum
mechanics [40] or force field-based molecular mechanics [22], molecular modeling has
become an integral part of the drug discovery process.

Since the end of the 20™ century molecular modeling [79] has been defined as the
collection of all theoretical methods that facilitate the prediction of molecular properties
and activities by means of 3D atomic models. Superposition of 3D structures, alignment
of molecular fields, docking of ligands into their receptors, de novo design and 3D-
QSAR are typical tasks in a molecular modeling process. Together with modemn
computer graphics, now available in every commodity desktop computer, these methods
can provide a detailed and very intuitive insight into macromolecular systems.
Furthermore, molecular modeling in combination with distributed computing seems to
be one of the few feasible approaches to investigate the vast amount of data that is
created by the activities of the genome project [94;130].
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Figure 1-1: ATP binding site of the PDB entry 1BOU (ABC transporter protein).
The protein is represented by its surface, color-coded with the electrostatic potential (red=positive,
blue=negative) and the ATP ligand is represented with balls & sticks in a CPK color scheme.

An important aspect in molecular modeling is the characterization of the non-
covalent interactions between receptors and ligands which are mainly driven by
hydrogen bonding, van der Waals forces and electrostatic fields. A sufficient
complementary match between these features is necessary for two molecules to interact
in a biochemical process: The teeth of the key must fit into the lock. Usually these
interactions are analyzed by means of force field-based molecular mechanics methods
[18] which can be very time consuming. However, it is evident that the physicochemical
features at the surface of the molecules are more important than the properties of atoms
buried deep inside a structure. Especially for large macromolecules the activities and
properties are dominated by the features of their molecular surface [131], which can be
illustrated very intuitively by color-coding the surface involved in binding with the
relevant physicochemical properties (see Figure 1-1). Thus we can argue that the
molecular surface augmented by physicochemical properties is a useful descriptor of the
intermolecular non-covalent interactions. The affinity between two molecules can thus
be understood by analyzing the complementarity of their surfaces involved in the
binding process. By the same token, the ability of a compound to mimic the behavior of
another one can be correlated to the similarity of their surfaces. But one should keep in
mind, that molecular surfaces reflect only Fischer’s lock and key model and cannot
predict effects caused by induced fit. Therefore, investigations that involve surfaces are
restricted to systems with a fixed geometry (e.g. already formed protein/ligand
complexes).

1.1. Previous work

When Chothia and Janin showed that the complementarity of molecular surfaces
plays a major role in the selectivity of protein/protein recognition [31], a proof of
concept was established. Since then a large number of methods for the comparison of
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protein or ligand surfaces have been developed which can be grouped into two main
categories: the search for complementarity or similarity. Surface complementarity is one
of the key aspects in molecular docking [34;102] and practically all docking methods
include some sort of assessment of complementarity in their scoring functions. Surface
similarity, on the other hand, is a valuable tool for the detection of common chemical
features and is related to e.g. the active analog approach of Marshall et. al. [90]. Both
complementarity and similarity-based methods can further be subdivided into
algorithms that search either for global or local matches between the surfaces.

Some of the earlier methods were based on gnomonic projection or spherical
parameter surfaces [15;17;30]. The common principle behind these methods is the
mapping of the molecular surface onto a highly symmetric geometric object, such as a
sphere or a platonic body. The similarities between different surfaces can then be
examined by comparing the geometric objects instead of correlating the irregular
original surfaces. Another way to globally compare the shape of two molecules is the
use of Fourier shape descriptors [81;113]. In this case the surfaces are approximated by
a series of spherical harmonic functions and represented by the corresponding
coefficients. Both methodologies, the gnomonic projection and the Fourier analysis are
inferior to other methods if the molecules are markedly non-spherical (i.e. have large
and deep cavities). Correlation techniques, another kind of global methods, can deal
with such shapes [72].

Especially in the field of molecular docking there is a need for local surface
comparison, because the surface of a ligand, be it large or small, hardly ever fits into the
complete site of a receptor molecule. For this purpose detection of local
complementarity between two surfaces is essential. In a first attempt Connolly [34]
searched for complementary groups of geometric features between two protein surfaces.
He identified critical points — knobs and holes — on both surfaces and selected possible
matches by a set of heuristics that checked the size and shape correlation between all
knob-hole pairs. The initial implementation had the drawback that at least four positive
matches were necessary to generate an alignment between the two surfaces. This issue
was later solved by Wang [133] and Connolly [35]. The research group of Ruth
Nussinov has refined the concept of critical points by the technique of geometric
hashing [77] to enable a fast screening of the large set of possible matches in a
protein/protein or protein/ligand docking run [51;86].

The innovations of Connolly and Nussinov et. al. represent important milestones in
the development of surface comparison techniques. The idea to represent a complex
surface by a small set of localized features lays the foundation of a new generation of
molecular surface similarity or complementarity search algorithms. The concept is
always the same: Reduced representations of the necessary surface features are
compared by some heuristics and the matches are assembled to alignments by computer
vision and graph-theoretical techniques, such as geometric hashing or maximum
common subgraph isomorphism. Cosgrove et. al. introduced a shape based method that
separates the surfaces into patches of approximately constant curvature and retrieves the
surface similarities by clique detection [37]. Goldman and Wipke use quadratic shape
descriptors (QSD) to represent the surfaces which are compared by their parameters.
The matches are thereafter assembled by expansion of single QSD alignments [56].
Their method has also been adapted for docking [55]. Another remarkable approach is
the surface segmentation of Heiden and Brickmann [60] where a molecular surface is
divided into segments of similar chemical or geometrical character by means of fuzzy
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logic [142]. Exner et. al. are using this principle for the identification of surface patterns
[48] and docking purposes [49].

Besides the publications mentioned above many others have investigated the
possibilities of molecular surface comparison (e.g. [10;96;105]). Good reviews on the
topic have been published by Masek [92] and Via et. al. [131].

1.2. Concept

As described above, the investigation of molecular interactions by means of their
surfaces can provide an important contribution to the understanding and prediction of
chemical and biological activities. Surface similarity can help to identify compounds
that have the same properties while surface complementarity can be used as a powerful
tool for the prediction of protein/protein and protein/ligand interactions. In previous
studies it has been shown that both tasks are strongly related to each other and a large
number of methods provide both possibilities either explicitly or implicitly. It is also
evident from the literature that local similarity is usually more important than global
resemblance.

In the pharmaceutical industry one of the most important tasks is the fast screening
of large compound libraries against biological targets to find possible lead candidates.
In addition to the established experimental techniques, such as high throughput
screening [7;47;69;95], molecular modeling becomes more and more important. Several
papers have been published recently that investigate the possibility of high throughput
docking in combination with protein structure prediction as a computational alternative
to the expensive experimental screening techniques [5;42;43;50;129]. In this context
molecular surface comparison could serve as an alternative or refinement of the
pharmacophore screening of compound databases or the docking of small ligands into
protein sites.

In the present doctoral project the primary aim was the development and
implementation of an algorithm for the detection of local surface similarities based on
shape and surface-mapped molecular properties. The approach, presented in this thesis,
is based on graph theory and a computer vision technique called Harmonic Shape Image
Matching [145] augmented by a sequence of filters to identify groups of corresponding
points on two different molecular surfaces. Rigid-body alignment of the chemically
similar surface regions can then be used to generate hypotheses about the common
binding modes of a set of molecules. To deal with large datasets and result tables a
scoring mechanism was implemented to enable the ranking of different molecules
against a template.
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2. Theory

2.1. Molecular Surfaces

2.1.1. Background

Since the days of Friedrich August Kekule graphical descriptions of molecular
structures are widely used: Structural formulas just describe the topology of the
molecule’s atoms, which is important for the reactivity and can explain most reaction
mechanisms. With the development of stereochemistry the combination of topology and
3D atomic coordinates gained importance. In a usual 3D structural formula of a
molecule atoms are represented by dimensionless points and bonds are described by
simple lines between these points. But molecules definitely have a spatial extension that
can be described in various ways, and that extension is in many cases important for the
outcome of a reaction or biochemical process.

Since molecules and especially atoms are very small objects, they fall into the
realm of quantum mechanics where an absolute description of a molecule is not possible
because of the uncertainty principle. Thus a border that defines what is inside and
outside of a molecule is not as easily defined as e.g. for a rubber duck. Nevertheless
since the work of Johannes Diderik van der Waals who investigated the influence of
atomic and molecular volumes on the behavior of real gases [128], a large number of
theories and definitions for the volumetric extension of atoms and molecules have been
described. In this context the molecular surface can be defined as the boundary outside
of which the molecule shows only weak non-covalent interactions with another
molecule. The following subsections will describe the most important definitions for a
molecular surface.

2.1.2. Van der Waals Surface

The deviation of real gases from the ideal behavior, as expressed in the van der
Waals equation for real gases [127], is perhaps the first indication of a molecular and
atomic volume:

(p—-V%—y(V—b):R'T eq. 2-1

where p is the pressure of the gas, a is a measure of the attraction between the particles,
V is the volume of the gas per mol, b is the total volume of a mol particles, R is the ideal
gas constant and 7 is the absolute temperature. A second evidence is X-ray
crystallography of rare gas crystals. According to these results, each class of atoms
(elements) can be modeled as a hard-sphere with a well defined radius, the so called van
der Waals radius.

At short distances the repulsion between two atoms increases rapidly. This is due to
the partial overlap of their electron clouds which causes a conflict with the Pauli
principle. At medium distances fluctuations in the electron clouds are inducing dipoles
in neighboring clouds which lead to a minimum in the potential energy. The van der
Waals radius can be interpreted as the half of the distance between two atoms (of the
same chemical element type) where the attractive mid-range forces are exactly balanced
by the short-range repulsion. The radii can be determined experimentally from
neighbor-neighbor interactions in crystals and from gas critical volumes [20]. In
molecular mechanics calculations the van der Waals energy is usually described by the
Lennard-Jones potential:
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E(r) = 4¢- [(gjz _(ir’.ﬂ eq. 2-2

where r is the interatomic distance and € as well as ¢ are experimental fitting constants.

If each atom in a molecule is represented by its van der Waals sphere the space
around a molecule can be divided into regions of mainly covalent and non-covalent
interactions respectively. The interface between these two regions is the set union of all
sphere surfaces that are not within any other atom’s van der Waals sphere. This surface
is called the van der Waals surface. It consists of a set of calotte faces around the atoms
which are connected by circles that are located over the bonds.

The van der Waals surface is the simplest definition of a molecular surface and can
be very useful when one investigates the effects of non-covalent interactions such as
electrostatics or sterical clashes between two molecules in close contact. Its simple
representation by a set of spheres provides the means for a fast decision if a point has to
be considered inside or outside of a molecule. But more complex forms are also
possible. Whitley, for example, developed a van der Waals surface graph, where
vertices represent calottes, and edges between two vertices correspond to a circle
connecting two calottes [138]. This graph can be used to study and describe molecular
shape.

A disadvantage of this kind of surface is that it does not provide much more
information than a 3D molecular structure. It just gives the single atoms in the molecule
a volume. Other definition of molecular surfaces, as described in the sections below,
provide additional information like the location of a specific electron density level or
the volume that is excluded by a solvent molecule.

2.1.3. Isodensity Surface

From the quantum mechanical point of view a molecule is a set of bare nuclei
surrounded by a fleet of electrons that are placed in specific molecular spin orbitals.
Because of the uncertainty principle it is not possible to localize each single electron
exactly, so an orbital is just a probability distribution over space that specifies where it
is most likely to find an electron that is associated with it. The probability is expressed
as the square of the function that mathematically describes the spin orbital. This square
is normalized, so that the probability to find the electron in the complete space is equal
to one:

pi(r)= ﬂ}(ilz -dr =1 eq. 2-3

where p;(t) is the probability to find an electron of orbital i at the position r and ; is the
spin orbital function. According to the Born interpretation of the wavefunction, the
electron density distribution, p(r), of the whole molecule can be interpreted as the
probability to find an electron at any given point around the nuclei. This probability is
the sum of squares of all spin orbitals that form the wave function of the molecule:

N/2
pr)=23 |1, o[ eq. 2-4

The summation is over all N/2 doubly occupied spin orbitals and has to be counted
twice because of the double occupancy. The spin orbitals and electronic wavefunction
are usually calculated by ab initio or semi empirical calculations.
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The electron density is highest near the nuclei and decreases with increasing
distance. If we take a low threshold level of the density, the interface between regions
that have more and less electron density than this threshold are separated by a smooth
surface that encloses all atoms of the molecule. This is the most fundamental form of a
molecular surface definition because it is directly based on quantum chemistry. Figure
2-1 shows the shape of the isodensity levels in 2D on a plane through the adenosine-
triphosphate molecule.

The analogy between the van der Waals and the isodensity surface can be found in
the definition of the van der Waals radius as the half-distance between two atoms where
the repulsion and attraction of the van der Waals interactions is equal. The repulsion, as
mentioned above, is caused by a violation of the Pauli principle due to overlapping
electron clouds. Considering that a certain amount of electron density is necessary to
make this effect significant, the isodensity surface can be seen as an extension to the van
der Waals surface which describes that barrier for the molecule as a whole and not by
means of a sum of hard-sphere atoms.

In addition to the complete electron density map, isodensity surfaces can also be
generated for the probability distributions of single molecular orbitals or combinations
of those orbitals. Of particularly interest for the reactivity of a molecule are the shapes
of its HOMO and LUMO. However single orbitals are not representing the total shape
of the molecule and their isodensity representations should not be considered as
molecular surfaces.

A big disadvantage of the isodensity surface is its dependence to quantum
mechanical calculations which are in general very time consuming and often restricted
to small problems. The calculation of a large biomolecule is not feasible by most
quantum chemical methods and electron density surfaces are thus available for small
molecules only. Brickmann and coworkers have therefore implemented a fast
calculation for electron density into their MOLCAD package [24]. The electron density
of the molecule is approximated in the following way:

The electron densities are described by exponential functions placed on the center

Figure 2-1: Electron density plots parallel to the adenosine ring plane in ATP.
(a) 1.0 A below, (b) at and (c) 1.0 A above the ring plane.
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of the atoms (see eq. 2-5). The function parameters ¢ and « are determined for each
element in the periodic system. The total molecular electron density is then the sum of
all atomic functions and can be evaluated for every point x in the space:

p,(r)y=c, - eq. 2-5

p(x) = Zpi(ru) . €q. 2-6

To make this procedure efficient a cutoff distance can be introduced, so that only
those atoms that are in the proximity of a particular point contribute to its electron
density. However, this fast approximation of the electron density can only give a
qualitative picture of the real situation. For highly accurate solutions, electron structure
calculations are necessary.

2.1.4. Solvent-Excluded and Solvent-Accessible Surfaces

Interaction with the solvent (usually water) is of crucial importance for the
activities of biomolecules. The stability, reactivity and structural conformation of
proteins and protein complexes is often influenced by effects that involve — directly or
indirectly — water molecules. E.g. the stability of a protein/protein complex may be
determined by the number of apolar amino acid residues that are hidden from the
solvent upon binding, or an inhibitor molecule has to compete with water molecules that
occupy the active site. It is therefore extremely important to identify the regions in the
molecule that are exposed to or hidden from the solvent.

The surface definitions we know so far do not provide us with this information,
because they consider only the volumetric extension and size of the molecule itself and
do not take any other interacting particle into account. Neither the van der Waals nor the
isodensity surface can tell us if, for example, the small and narrow entrance of a deep
cavity can be penetrated by water molecules. The general goal is thus to determine the
volume of the molecule that is not available (excluded) for solvent molecules. The
border of this volume would then be the molecular surface that is accessible to the
solvent.

The general idea behind the solution to this problem is described as follows: A
solvent particle is represented by a probe — a sphere of the size of the solvent. This
probe is then rolled over the van der Waals surface of the molecule. Lee and Richards
[80] defined the solvent accessible surface as the trace of the center of the sphere. This
is obtained by simply extending the van der Waals radii of all atoms by the radius of the
probe and assembling the surface in a similar way as the van der Waals surface. The
disadvantage is that the surface is not smooth and does not represent the real interface
between the molecule and the solvent.

A better interpretation of the probe-sphere principle is the solvent excluded surface
(aka molecular surface) that considers the interface between the probe and the
molecule: Not the trace of the center of the probe surface but rather the contact points
between the molecule and the probe are combined to form the surface. The surface is
thus divided into contact surfaces which consist of exposed van der Waals spheres, and
reentrant surfaces that are formed when the probe is in contact with more than one atom
at the same time. The volume circumscribed by this surface is the real solvent excluded
volume. This kind of surface was made popular by Connolly’s MS program [33].

The advantage of the solvent excluded surface is that it combines the benefits of
both the van der Waals and isodensity surfaces. Since it is based on the hard-sphere
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(a) (b) solvent-accessible surface
van der Waals surface

re-entrant
surface

solvent-excluded
surface

contact surface probe sphere

van der Waals sphere

©

van der Waals
volume

Figure 2-2: Creation of solvent accessible and solvent excluded surfaces.
(a) van der Waals surface (b) creation of the solvent accessible and solvent excluded surface and (c)
comparison of the van der Waals and solvent excluded volume. Picture (b) is redrawn from [79].

solvent-excluded
volume

model it can be calculated quickly also for very large systems. It is smooth which makes
it possible to calculate curvatures for every point on the surface and it comprises a
model that provides more information than the simple 3D hard-sphere arrangement of
the van der Waals Surface. Therefore the solvent excluded surfaces have not only
become a valuable tool for the calculation and prediction of certain molecular properties
but also a popular instrument for the visualization of large proteins and complex
systems (see Figure 1-1 on p. 2).

2.1.5. Representation of Molecular Surfaces

Molecular surfaces are very complex geometric objects and in general cannot be
assembled from a simple set of sufficiently large building blocks. Depending on the
type of the surface different forms of representations are possible:

Analytical description. In special cases it is possible to describe a molecular
surface in a closed form: Van der Waals surfaces can be represented by a set of
intersecting spheres and solvent excluded surfaces consist of intersecting spheres and
torii. The advantage of analytical descriptions is their infinite accuracy and relative
compact representation. A disadvantage is the difficulty to extract arbitrary patches
from the surface and the calculation of the crossings between the different pieces.

Grid representation. The space around a molecule can be divided into small
volumetric elements. Either the centers or the corners of these elements form a 3D grid.
Such grids are commonly used when a 3D distribution or property has to be described
(e.g. in the finite difference solution of the Poisson-Boltzmann equations or a 3D
electron density map). In the same manner it is possible to classify the points on a grid
into those which are inside the molecular surface and those which are outside. If a skin,
a surface with 3D extension, is considered it 1s possible to use a three-class model that
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(©) (d)

Figure 2-3: Different molecular surfaces of ATP.
(a) Van der Waals surface, (b) isodensity surface (at level 0.03), (c) Connolly, or Molecular surface and
(d) the solvent accessible surface. (scale and orientation of all four pictures is the same)

denotes if a point is outside, on or inside the molecular surface [72]. Unfortunately a
grid has a fixed resolution and scales with the third power of the size of the molecule.

Triangulated mesh. Triangulated meshes are widely used in the fields of computer
vision and computer-aided design (CAD). They consist of distinct points on the surface
which are grouped into a mesh of triangles to form a continuous surface. Unlike the
grid, the mesh does not consider the complete space around an object but has also a
finite resolution, although by using a large number of small enough triangles it is
possible to generate meshes that are comparable in accuracy to analytical surface
descriptions. Furthermore these meshes enable the calculation of any surface property
by triangular interpolation. Triangle meshes are a suitable way to represent any arbitrary
shape by a set of simple graphic primitives, but triangulation is sometimes difficult and
not unique.

2.2. Molecular Surface Properties

The different types of molecular surfaces, described in the section above, represent
a well defined interface between the molecule and the rest of the system, but they do not
provide any additional information about the physicochemical character of that
boundary. However, in molecular modeling it is often of great interest to know more
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about the molecular potentials and properties at the position of the surface points. It is
also very useful to calculate some characteristic properties of the surface itself, namely
curvatures or surface normals. Many different methods are available in the literature,
which enable the mapping of molecular or surface properties onto the surface elements
(points and triangles).

2.2.1. Molecular Potentials

In computational chemistry a molecular potential is usually a scalar property that
changes with the distance to some distinct feature points. Molecular potentials are in
general analytically defined for every point outside and sometimes even inside the
molecule. Commonly used and well understood are the electrostatic and lipophilic
potential or the hydrogen donor/acceptor density and mapping them onto surface points
is straightforward.

Electrostatic potential (ESP). The ESP describes the potential energy of a unit
charge in a field of one or several point charges and as such it is a potential in the strict
physical sense. In a molecule the electron cloud around each atom has a density that is
different from that of the isclated atom due to electron donating and withdrawing
groups. Thus every atom can be considered to have a partial charge that reflects the
difference between the molecular and isolated environment. The electrostatic field that
is built by these charges has an important contribution to the properties and reactivities
of the molecule.

Although the ESP for every point on the surface (p;) can be calculated by means of
the electronic wave function, it is more convenient to calculate it classically by
Coulomb's law if appropriate atomic charges, g;, are available (eq. 2-7, with r; denoting
the position of the atoms). The best approximation is achieved if atomic point charges
are used that were fitted to reproduce the real electrostatic potential, calculated from the
wave-function. In the present work charges were calculated by the semi-empirical
program MOPAC [40] on the AMI level.

N

- 4;
ESP(p;) = 12:1‘ HP; _rj” . eq. 2-7

Lipophilic Potential (LP). The hydrophobic effect plays an important role in drug-
receptor interactions. Diffusion through membranes, solubility of potential drug
candidates or propagation within the cellular system are all influenced by the affinity of
a molecule to either polar or apolar environments. While not a molecular property itself,
lipophilicity can be described empirically by, for example, the n-octanol/water partition
coefficient (logP). This value is very important for the estimation of many
pharmacokinetic properties, but it is difficult to measure. Therefore Ghose and Crippen
[54] assembled a table of fragmental JogP values to calculate this property.

Using these tables we can assign a fragmental lipophilicity value for each atom, f;,
and assign a “lipophilic potential”, LPym(V;), to every point p; on the surface similar to
the ESP [59]:
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ifj g(lp. —rj])
LP,,(p;,) =1 with g(x) =
Zg('pi _rjl)

where r; is the position of atom j, C; and C; are experimental constants. Note that LP, in
contrast to ESP, is not a potential in the strict physical sense.

e 9% 41
ecl(x_cl) +1

eq. 2-8

Hydrogen Donor/Acceptor Density. The location and density of hydrogen bond
acceptor and donor sites is important for the investigation and analysis of proteins and
ligand/protein interactions. The concept of hydrogen donor and/or acceptor densities as
introduced by Matthias Keil in his PhD thesis [73] is a suitable instrument for the
visualization of their distribution on molecular surfaces: For every surface point p; a
sphere with a given cutoff radius is defined and the number of hydrogen acceptors
and/or donors n,; on the molecular surface inside this sphere are counted. This number
is divided by the surface area 4 enclosed by the sphere. Hydrogen donors or acceptors at
the border of the cutoff sphere are only counted by the surface part that is located inside
the sphere:

A/D

znad ()

- ) . 1 if site( j)e sphere eq. 2-9
pad(pi)=_j—TW1th nad(.])={ 4

0 < n<1if partof site(j)e sphere

Besides this approach there exist other methods to describe the distribution of

hydrogen bond acceptors and donors over the molecule or molecular surface (Raevsky
et. al. [110;111] or Exner et. al. [48]).

2.2.2. Atomic Properties

In addition to potentials which are usually a feature of the complete molecule,
atomic properties can also be of certain interest in some situations. Especially molecular
graphics packages like Sybyl [2], VMD [66] or the SWISS PDB [57] use the mapping
of atomic properties to display information about the molecular configuration on the
surface.

Mapping of these properties onto the surface points is not as straightforward as for
the molecular potentials because the atomic properties are only defined for the positions
of the atoms and not for all points in space. The usual strategy is to determine the
nearest atom for each point on the surface and assign the value of that atom’s property
to the point. This is a simple technique that has the drawback that the final property
distribution on the surface is not smooth. A smooth property distribution can be
achieved by means of interpolation techniques, or by the construction of a molecular
potential based on that specific atomic property according to the approach used for the
lipophilic potential above.

In general different kinds of atomic properties can be mapped onto the surface by
one of these methods. Among the most common are the residue number in the
sequence, crystallographic B-factors, a color coded residue type, secondary structure
types and the partial charge.

2.2.3. Surface Characteristics

Every surface — not only a molecular surface —- has certain geometric properties that
describe the local shape of the object around a distinct point. These are the different
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local curvatures and the surface normal. Together with the coordinates of the surface
points these quantities provide a full description of an arbitrary 3D surface.

Surface Normals. If we look onto a part of a large surface object that is
represented by a triangulated mesh we cannot decide a priori which face of a triangle
marks the outside and which the inside. This is a considerable problem in surface
visualization, comparison or even creation. When a surface is built an outside and an
inside direction has to be defined, according to the particular problem. For the triangles,
this definition can be stored in the sequence order of the edge points, so that if viewed
from the outside, the three points are arranged in counter-clock-wise order.

Points on the other hand do not have an inside and an outside face, but it is
nevertheless necessary to define a vector for each position that indicates the direction
away from the surface into the surrounding system. This direction can be defined as the
normal vector of the tangent plane to the surface at that particular point with the base at
the position of the point and the tip pointing outwards. For each triangle around this
point, the tangent planes are trivial, and the normal vectors can be calculated by the
cross product

n(t) =—¢,xb, eq. 2-10

of the negative of one side vector (¢;) with the vector of its clockwise neighbor (b)).
Surface point normals can then be calculated as the average of the face normals of all
triangles adjacent to this point:

triangles

n(p) = Z—c,xbt. eq. 2-11

t=1

Normal vectors are usually set to unit length.

Canonical Curvatures. The geometric interpretation of the second derivative of a
function is the curvature of its graph. In 3D space a surface object can be expressed or
approximated by a function in two variables (S,(%,v)). The second order derivative of
such a function is the Hessian matrix H (eq. 2-12).

9* S, (u,v) 9’ S, (u,v)

— ou’ Judv
H= eq. 2-12
9’ S, (u,v) 9’ S, (u,v)
ovou o

To accurately describe the shape of the surface we can define canonical curvatures
for each point on the surface: A second-order surface (paraboloid) is fitted in a least
squares sense to the point and its neighbors within a curvature cut-off range ccg. This
paraboloid is the parametrical approximation S,(u,v) of the surface around the point p,
where u and v are parameters along the principal axes of the paraboloid. The first and
second canonical curvatures (cc;,cc;) are then obtained as the first and second
eigenvalue of the Hessian matrix H respectively [141]:

H-d =cc-d, and H-d, =cc, -d, eq. 2-13
where d;; are the directions of the canonical curvatures.

Surface Topology Index (STI). The two canonical curvatures (cc;, ccy) cannot be
used if an univariate representation of the local curvature is needed. In this case the
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surface topography index (S77) of the MOLCAD [23] program is appropriate (eq.
2-14). Other univariate measures of the local curvature are the mean curvature as
described by Desbrun et. al. [39] or the Gaussian curvature (cg). The latter is the
deviation of the sum of the triangle angles () at the point from 27 (eq. 2-15).

ST = ce, —cc, if cec;>0 and cc,>0 or

cG if (CC[>O and CCZSO) and |CC1|>|CC‘2|

+3 eq. 2-14
STI =972 if ce/<0 and cc2<0 or

cc

? if (cc;>0 and ¢c;<0) and [cc/[<|ec)).
Triangles

cg(p)=2m- Y ¢, eq. 2-15

i=]

2.3. Feature Radius and Auto Correlation

Every surface can be characterized not only by its shape and properties but also hy
a set of distinct features on it. Surface features are locations on the surface where either
the shape or a mapped property belongs to a predefined class. Convex, concave,
electrostatic positive or hydrophobic are common feature classes. The difference
between the property values at each point within a feature should thus be much smaller
than the difference between points of different features.

Features are a form of classification. They can be used to divide a surface into
patches of approximately one feature [60] or it may be useful to know how many
features are covered by patches of a certain size on average over the surface. The latter
can be expressed in terms of the mean feature size or radius which is a characteristic
length for a specific surface property. For the calculation of the feature radius one can
take the autocorrelation function, as defined by Wagner et. al., who used a spatial
autocorrelation of molecular surface properties as molecular descriptors for QSAR
calculations [132].

An autocorrelation function AF(d) describes the average of the correlations of all
property values that are separated by a distance d:

1 N
AF(d)=—A72p,.pj . €q. 2-16
i

where N is the number of property (p;, p;) values that are separated by the distance d.
The properties have to be autoscaled to zero average and unit variance in order to give
valid results. For molecular surfaces the p; and p; are properties at surface points i and j
and the autocorrelation function must be evaluated for ranges of distances, because of
the discrete character of the surface points.

If a triangulated mesh represents the surface each point is surrounded by shells of
neighbors that are separated by one, two or more edges. We can now apply eq. 2-16 to
all possible paths from length 1 up to a length of n,, edges. This will give us the
autocorrelation function for a hypothetical shift of all points into their first, second or n™
shell. To transform the function from the shell into the distance domain we use the
average edge length based on the fact that the value of the autocorrelation function is an
average per se.
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Figure 2-4: Surface autocorrelation function.

Considering that a surface property varies continuously (there are no sharp "peaks”
or "edges"), one can expect that points in the immediate neighborhood have similar
values and AF(d) is thus positive at small distances. Moving farther away the chance
that we encounter a region with a completely different property value increases and
correspondingly AF(d) tends to zero. The distance dy where AF(d) becomes zero for the
first time is taken as the average distance from any point within a specific feature to its
border — that is the radius of the feature (Figure 2-4).

In practice the correlation function may not cross the abscissa but come only close
to it because of the averaging that is implicit in the autocorrelation. In these cases a
statistical t-test was used to check if the AF(d) is significant from zero or not.

2.4. Fuzzy Logic

The major task of this work was to detect similarities between molecular surfaces
and properties on molecular surfaces. These entities and features are never exactly the
same in practice except for an identity comparison. Thus it was necessary to use the
right methodology to find similar but not identical properties. Fuzzy logic and harmonic
shape images, described below, provide the means for the flexible comparison of
molecular surfaces and their properties.

Chemists often use words like “highly negative”, “strongly hydrophobic” or
“neutral” to describe the chemical nature of molecular surface regions. These qualitative
terms are often accurate enough to distinguish between similarity and dissimilarity
among different species in personal discussions or research publications. Unfortunately
for computations quality is much more difficult to handle than quantity because
classical set theory built upon Boolean logic is restricted to “no membership” or
“complete membership” of an object to a specific class. Crisp borders and decision rules
are therefore needed for common classification methods. Fuzzy logic, introduced by
Lotfi A. Zadeh in 1965 [142], provides a solution for that problem.

A fuzzy set A, in contrast to its classical counterpart, does not strictly distinguish
between members and non-members (0 or 1) but defines a membership function p,(x)
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over the definition space (X) that specifies how strongly a value belongs to the set. The
value of the membership function is usually normalized toO<p _(x)<1:

A={(x,pa(x))|xe X}. eq. 2-17

If we interpret a fuzzy set as a qualitative term like “highly negative” the value of
Uq(x) defines how well x is described by the term. A linguistic variable LV is a group of
fuzzy sets (A4;...A,) with overlapping membership functions each representing a
linguistic term. Therefore it is possible to classify values of x by a scale of terms (e.g.
negative, neutral, positive). A linguistic variable LV is defined as

LV ={4,4,...4;} or

LV = {(x,1, () (x, 1, (), ..., (18, ()| x€ X}

where p;(x) is the membership function of the i™ fuzzy set (see also Figure 2-5).

eq. 2-18

Based on these variables Heiden and Brickmann [59] introduced a partitioning
function that transforms the qualitative discrimination into a crisp quantitative

A assssaesan

-5 Wilui(x)_ui(y)l
DLV(x,y)—;wi(”i(xﬁu,-(y))

where x and y are two values of the observed variable, p(x) is the i™ membership
function and w; is the weight for the fuzzy set i. The range of D,y is between 0 and 1
with 0 indicating identity and 1 complete dissimilarity. This fast and simple
discrimination function can thus be used to define a qualitative similarity criterion for a
quantitative property value.

eq. 2-19

Since its invention in the 1960-s fuzzy logic has been utilized in many different fields of
computational chemistry and cheminformatics. A good overview of the different
applications in chemistry can be found in [6].

high negative == = negative

neutral == == positive

high positive

0

-3 -2 -1 0 1 2 3

Figure 2-5: Shape of the membership functions in a linguistic variable.

The sets can be used to describe the electrostatic potential on a molecular surface. The variable x
represents the autoscaled property values on the surface points and the five classes represent the highly
minus, minus, neutral, positive, and highly positive areas of the surface proceeding from left to right.
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2.5. Harmonic Images

The preceding section described how properties can be compared in a non-crisp
manner by fuzzy logic. This technique is well suited for scalar properties that have been
mapped onto the surface. However, the shape of a free molecular surface cannot be
expressed by a single scalar value for each point. The topology of the surface and the
3D arrangement of its elements have to be considered as well as the curvature at each
point. Moreover the comparison should also remain local, because global similarity
comparisons always involve averaging over local features and can thus hide important
details. A method for the detection of shape similarity should therefore be able to detect
similar features among local regions of the surface, hereinafter called patches, and to
define correspondences between points on two surfaces based on patch wise similarity.

2.51. Concept

Harmonic images [145] provide a methodology to compare patches and to define a
relative orientation. They act as 2D representations of 3D surface domains (manifolds)
and comparing a complex 3D patch is thus reduced to a rather simple 2D image
comparison. The images are generated by using the harmonic mapping method first
published by Eells and Sampson [46]. The mapping can be considered as “flattening
out” a 3D surface patch P onto a 2D plane D so that an appropriate criterion measuring
the distortion is minimized. In the case of harmonic maps and in particular if we
consider the approximation introduced by Eck et. al. [44], this minimal distortion
criterion can be formulated using a physical analogy:

Let us assume that the edges in the triangulated surface mesh in 3D correspond to
ideal springs resting at their equilibrium length. One can assign a “potential energy”
level of zero to this undistorted 3D conformation. Mapping onto a flat 2D surface
involves stretching and/or shortening of at least some of these imaginary springs and
consequently the “potential energy” of the system will increase according to Hooke's
law. The harmonic image of the original 3D patch is defined by the arrangement in 2D
where this increase in potential energy is minimal.

It can be shown [46] that given a certain boundary there is always a unique
harmonic mapping between P and D that constructs a one-to-one correspondence
between points on P and vertices on D. Due to this correspondence, any property
associated with the points in the original 3D patch can be transferred directly to the
corresponding vertices in the 2D harmonic image.

2.5.2. Border Mapping

To obtain comparable harmonic images it is necessary to constrain them to a
certain shape, i.e. a unit disk D. This can be achieved by mapping the boundary of the
patch directly onto the boundary of the 2D domain. Starting at an arbitrary point at the
border of the patch all border vertices of the image are placed at distinct angles of the
unit circle using

, :
border ) 27[ WIth ai = é(pi’pc’pi—l ) * eq 2_20
pA '
b

6, =6,_+

1
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where 6; and 6., are the angle of the actual and previous border vertex, v;, v;.; and v, are
the actual, previous and central points of the patch, ¢; is the angle formed by these
points and @ stands for every angle between two border points on the patch.

2.5.3. Interior Mapping

The key step in the generation of the harmonic maps is the solution of an
optimization problem. The goal is to minimize the energy function E(¢), where ¢ and ¢
are the mappings of surface points p; and p; respectively, k;; is the "spring constant” for
all possible pairs of points pp; and N is the number of surface points in the interior of
the patch:

E(p)= %ik,, "(ﬁ, ‘¢j||2 : eq. 2-21
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Figure 2-6: A surface patch, its harmonic map and harmonic shape image.

The pictures are redrawn from [144] and show a surface patch of a human face in shaded (a) and
wireframe (b) representation. From that patch a harmonic map can be generated (c) which is
subsequently resampled into a harmonic shape image (d).
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circle centre

(b)

Figure 2-7: Border mapping.
v, is the central vertex of the patch v; and v, ; are adjacent vertices on the border, & is the 3D angle and 6,
and @_; are the 2D angles of v; and v;_; on the map.

In order to find a stationary point of the energy function we have to compute the
first derivative of eq. 2-21 with respect to each @. The gradient of eq. 2-21 (eq. 2-22)
yields eq. 2-23 as the components of a linear equation system.

JE() |9E(s) OF .
8;,.@ = - a;i?) , 8¢('_?):| =0 for1<i<N and eq. 2-22
. . N T
20| Sk br-0) Sl o)

The solutions for the x and y components are independent from each other and can
be computed separately. Hence the problem is reduced to the solving of two systems of
linear equations. These systems are determined by the "spring constants" k; that
describe whether the imaginary spring connecting the points p; and p; is stretched easily
(ki is small) or not (k; is large). In the method, described in this thesis, the spring
constants were defined to be inversely proportional to the corresponding edge length in
the triangulated mesh of the 3D patch, so that long links between patch vertices could
be distorted easily [144]. If the points p; and p; are not connected by an edge in the
triangulated mesh then the constant 4; is set to zero:

N
Q%:;ky-(@“—ﬁ):o. eq. 2-24

Taking a single row of the linear system, representing the energy function of a
distinct mapping @ eq. 2-24 is the first derivative of the energy function of ¢/ with
respect to a component a (either x or y). In each equation the sum over all possible pairs
(i.j) can be reduced to the sum over all direct neighbors (the one-ring) of @:

one-ring

>k, {pr -97)=0. eq. 2-25

That sum can be split into the sum over all neighbors on the border of the patch
(because of the different mapping strategy applied to them) and the sum over all
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neighbors in the interior region (eq. 2-26). Reordering of the terms by coefficients
forg’, ¢; and ¢, leads to eq. 2-27, which is suitable for the matrix representation of

the equation system (eq. 2-28).

interior border
Zky"(¢ia‘¢;)+ Zka- '(¢,~a ‘¢;)=0 eq. 2-26
J b
one-ring interior border
Zki/ 9+ Z-kg'%‘-’ = zku"%" eq. 2-27
j J b
Hence the systems of linear equations are
A-¢"=b" and A-¢’ =b” eq. 2-28
with
(one—ring . ) )
Z[:kij if i=j
A, =2 —k‘.j if  je one-ring(i) eq. 2-20
0 if je one-ring(i)
0 if i not next to the border
ba = border ] 2_30
,- Z k, & otherwise <q.
b

where A is the system matrix defined by the spring constants between all » interior
points and b” and b” are describing the contribution of the border vertices.

2.5.4. Generation and Comparison of Harmonic Shape Images

Generation. Harmonic shape images are a specialization of harmonic images
augmented by information about the shape of the original patch. This is achieved by
assigning the value of an univariate shape descriptor such as the STI (see section 2.2.3
p. 12) of every point on the 3D patch P to the corresponding vertices on the 2D
harmonic image D. As the vertex topology of two harmonic images is almost always
different any comparison must be based on a regular grid scheme that is identical for

N

5/Y;.< ;

Figure 2-8: Interpolation scheme for the generation of harmonic shape images
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both patches.

Hence it is appropriate to replace the original harmonic map with a quadratic nxn
grid where the lateral resolution 7 is equal to the square root of the number of points n,
in the patch (Figure 2-8). This resampling is done by a triangular interpolation. The
triangle beneath every grid point is selected, and the position of the grid point is
expressed in its barycentric coordinates, reflecting the influence of each vertex in the
triangle to the grid point. Barycentric coordinates for any point within a triangle can be
computed with the equations in eq. 2-31 and the interpolated value for the grid point v¢
at (x,y) is calculated by triangular interpolation with these coordinates:

X, X x\(a X

Yo » nml|B|=|y eq. 2-31
1 1 1)ly) 1

Vo=V + vy, eq. 2-32

where vy, v; and v, are the values of the adjacent vertices on the map with the

nnnnnn

grid point in the triangle formed by vy, v; and v;,

The standard resampling scheme by means of a quadratic grid has the disadvantage
that only about 75% of the grid points are within the map's range (hence reducing the
resolution of the image by approximately 25%). This problem can be solved by a
circular grid where all points lie within the unit disk (Figure 2-9). The coordinate
transformation was described by Mukundan and Ramakrishnan [101] and can be
computed as follows:

r=—-2—]\—};-, 0=Z—f’ with }/=max(|x|,ly|) eq. 2-33
x| =7: 5:2{y-x)l+fy-]
Ay eq. 2-34
=7 £=2y-2
4

A circular grid also has a higher symmetry than a rectangular grid which allows a
faster computation of the relative rotations. The trade-off is that the points are no longer
uniformly distributed, but this has practically no effect on the quality of the results.

The harmonic shape images are stored as vectors of pixels on the circular grid so
that each index represents the same grid point in every image of the same resolution.

Comparison. The similarity of two harmonic images can be expressed by the
normalized correlation coefficient R of their N-dimensional vectors of pixels p and q:

N N N
N-2p4;=2.p 24
i=1 i=1 i=l
N N 2 N N 2
N'zpi —.(zpi) N'qu' _(Z‘L‘)
i=1 i=] i=1 i=l

eq. 2-35
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Figure 2-9: Grid transformation.
A rectangular grid (a) can be transformed into a circular oriented raster (b) by the transformation given
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Because of the arbitrary selection of the first border vertex in the mapping of the
patch boundary onto the unit circle (see section 2.5.2 on p. 17), two harmonic images
can be rotated against each other. The correlation coefficient is thus a function of the
rotation angle @, and the similarity is defined as the maximum of the correlation
function R that is obtained when one image q is consecutively rotated against the fixed
image p:

S= max R(p(0),q(9)). eq. 2-36

The first idea in the course of this project was a straight application of the harmonic
shape image methodology as proposed by the doctoral thesis of Zhang [144]. Although
this approach worked quite well for computer vision problems it did not succeed with
molecular surfaces. Zhang used a two step procedure with coarse and fine level searches
to detect common features between a template patch and a query surface. The coarse
level is an arbitrary sampling of patches uniformly distributed over the query object. In
the fine level all points around the best matching patches are used as centers of new
patches to find the exact match for the template. The test objects in this work were
surfaces of macroscopic items like faces, animals or tools. These objects usually have
very distinct but few features and the harmonic images do not change dramatically
between two overlapping patches. Molecular surfaces on the other hand have a high
feature frequency but the single features are not so significant like a nose in a face.
Therefore two overlapping patches can be very different and a coarse level search that is
arbitrarily sampling from the molecule’s surface will most probably fail in finding the
closest matches for a template patch.

Because of this all possible patches on the query surface have to be tested against
the template patch which means that a patch is needed for every surface point; but the
problem is even more complex. In contrast to the computer vision experts a molecular
modeler does not only want to check a single template patch against a query surface but
a complete template against a complete query surface. This means that one has to run a
harmonic shape image search for every possible patch on one surface against all patches
on the other surface. This is a very time consuming operation that scales with the square
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of the surface sizes and produces a very large amount of result data. Furthermore the
results contain a lot of garbage that has to be filtered out. Altogether these problems
prohibit a direct usage of Zhang’s surface comparison procedure.

In the final procedure that is implemented by SURFCOMP harmonic shape images
are still kept as the key elements for shape comparison, but they are applied only to a
selected and prefiltered set of patchpairs. However, their comparison remains the time
critical step, because for every patchpair the program has to do several resamplings
from the map to the circular grid to cover the rotation variance of the harmonic images.
To speed up this process a rotation invariant description of the images was tested which
was based on Zernike moments [14;143]. These descriptors are following the general
moment theorem and are based on radial and angular Zernike polynomials. This
technique has been successfully applied to shape analysis and pattern recognition
[11;19;62;63;74;87;89]. Because of its rotation invariance the method generates a single
representation for each image that can be compared to the moments of other images and
can reveal the similarity of the two images and their displacement against each other.
Unfortunately this approach failed when applied to molecular surface patches. Although
the calculation of the image similarity data was done in a fraction of the time that was
needed for the rotation variant approach, the data did neither correlate with the Pearson
correlation coefficients nor did it find the correct matches. The reason for this is maybe
caused by the less pronounced features of the molecular surfaces which lead to smooth
but fuzzy borders between i.e. concave and convex or positive and negative regions. In
the literature Zernike moments are usually applied for binary images and applications
for gray-scale pictures are rare.

2.6. Maximum Common Subgraph Isomorphism

When one is looking for local similarities between geometric objects such as
surfaces sooner or later it will be necessary to combine the similar but local pieces of
the puzzle into a complete picture of the global similarity. This is not a trivial task,

1)

A, ®B1

(a) (b) (©)

Figure 2-10: Pharmacophore match by maximum common subgraph isomorphism.

The pharmacophoric points on each molecule (a) are transformed into completely connected graphs (b).
In the association graph (c) that is formed by the combination of all similar nodes in both graphs only
those pairs are connected that have similar edges (c). The triangle (A;|A;), (B1/B;) and (C,|C;) form the
only clique in this example and thus represent the match between the two pharmacophores. Example
taken from [79]
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because not all pieces will fit together and there will be a potentially large number of
possible solutions.

One can find some analogies between the combination of matching
pharmacophoric points or atoms and the assembling of local surface similarities to a
picture of the total resemblance [25;91]. In both cases corresponding features — with a
specific location in space — are tested against other local matches to decide whether they
represent similar geometrical arrangements. The problem is thus transformed into the
detection of similar constellations of points in 3D space which can be solved by means
of maximal common subgraph isomorphism. A widely-used method for this is the
algorithm of Barrow and Burstall [12] which builds up an association graph followed by
clique detection to find the maximum common subgraphs between two query graphs.

Let us consider, for example, a set of pharmacophoric feature points. In this case it
is not immediately obvious to see the graph, because usually the points are not
connected to each other (Figure 2-10a). However if we consider the steps of the
algorithm, as described below, it can be shown that the point sets must be transformed
into completely connected graphs (i.e. every point must be connected with every other
potnt 1n ine same sei). This indicates that aii the points in one set are in a fixed distance
to each other which is stored together with the edges (Figure 2-10b).

In a first step one can construct a list that contains all single features of one
molecule which are similar or equal to features of the other molecule. Two pairs in this
list can only match together if their corresponding features in both molecules are
separated by approximately the same distance. This condition holds also for three or
more pairs. So eventually only those pairs can contribute to a particular match, which
are formed by features that are more or less equidistant to each other on both molecules.
If the pairs of similar features are represented by the nodes of a so called association
graph an edge can be drawn between all approximately equidistant pairs and the feature
sets which form matches between the two molecules can be identified as maximal
complete subgraphs or cliques (Figure 2-10c).

The final step of the isomorphism algorithm is thus a clique detection to find all the
possible matches explicitly. This is an NP-hard problem [71] and in general we have to
resort to approximate solutions. The most commonly used algorithm is due to Bron and
Kerbosch [26], an efficient method that uses backtracking and branch-and-bound
techniques to perform an exhaustive search for maximal complete subgraphs.
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3. Methods

Molecular surfaces are usually represented by triangle meshes containing up to
several thousand points. The comparison task is thus to find associations between the
point sets of two different surfaces where similarity or complementarity is usually
defined by the spatial arrangement of one or more equally defined properties. In this
process it is not sufficient to associate every point on surface A with the point on B that
gives the best match but it is necessary to consider also the similarities of the
corresponding neighbors of A and B. Finally the spatial arrangement of the elements of
the detected associations must also be taken into account. The problem of detecting
similarities between 3D point sets is well known in cheminformatics. It has been shown
earlier that it is equivalent to the maximum common subgraph problem and can be
solved efficiently by maximum subgraph isomorphism detection [25;91] (see section
2.6). Unfortunately this is an NP-complete problem [71] which is not a critical
limitation for the comparison of small molecular structures with some dozens of atoms,
but which makes it inappropriate for the large point sets of complex surface objects.
Consequently, if one wants to apply this algorithm to molecular surfaces the number of
poiiits has 1o be reduced and addiiional information about the chemicai and geometrical
environment should be represented in a way that is appropriate to dramatically simplify
the association graph. In the following sections several heuristics will be discussed that
can accomplish this simplification.

The initial point set usually contains a lot of redundant information. The situation
around a particular surface element is not really different compared to the environment
of its neighbors. But removing all the redundant points does not solve the problem,
because it would not be a smooth and accurate representation of the molecule’s shape
which is needed in the evaluation and refinement process. It is therefore necessary to
compare molecular surfaces on at least two different levels of detail: A coarse, non-
redundant, representation may be used for the detection of general features that should
be matched, and the detection of the correct alignment may be done on a high resolution
basis.

Recently, several publications on molecular surface comparison reported successful
applications of this idea [37;56]. In particular, Cosgrove et. al. [37] reported a graph-
based method that utilizes this two-level approach. On the coarse level, they described
the surfaces by patches of the same shape type (convex, concave, saddle shaped,
cylindrical and flat). Local geometry parameters are used to decide which patches could
overlap and to form an association graph. Matches between the surfaces are then
established by clique detection and confirmed by a rigid body alignment at the high
resolution level of the corresponding surface points. Their program, called SPAt, gives
good results in reasonable time, but they do not consider the chemical environment of
points on the surface.
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Figure 3-1: Overview of the surface similarity detection algorithm, developed in this thesis.

Starting from two molecular surfaces the critical points are identified (a) and an initial association graph
is built (b), which is then further simplified by the fuzzy and harmonic shape image filter (c), the
distance filter (d) and the overlap filter (e). From the final association graph the cliques are detected
(green, orange, blue and grey regions) and merged (clique II and III in this example) to yield the
maximal surface similarity (f).

—

3.1. General Concept

The general approach, which has been implemented in the SURFCOMP program,
is to generate a representation of the surfaces using slightly overlapping circular patces
and keep track only of a set of shape critical points (CP, coarse level) corresponding to
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process step section® pointsb A pointsb B  nodes edges

at the beginning - 1131 1265 1.47x10°  2.04x10"
After

- critical point detection 3.2 27 29 553 274,841
- fuzzy property filter 3.5 24 27 162 17,982
- harmonic shape image filter 3.6 18 25 63 1,260
- distance filter 3.7 18 25 63 359
- overlap filter 3.8 18 25 60 93

Table 3-1: Complexity of the association graph

The number of graph nodes and edges is given for different steps of the filtering process shown for the
comparison of ITHL (A) and 4TMN (B).

Mthe section of the text where the step is described

®)the number of distinct surface points left in the nodes of the association graph

the centers of those patches. The idea of critical points was explored by Connolly’s
docking algorithm [35] which was later improved by Lin et. al. [86] and Wang [133]. It
reduces the number of possible point pairs and associations by several orders of
magnitude, so that it is possible to build an initial association graph. This graph is
further simplified by several filters that compare the physicochemical properties,
surrounding shape and local arrangement of the critical points on both surfaces. (Table
3-1 illustrates the complexity of the association graph at the initial stage and after every
step of the algorithm.) In the final graph the similarities are then retrieved by clique
detection and rigid body alignments are produced on a point-based (high resolution)
level for every match. (see Figure 3-1)

For efficiency reasons SURFCOMP emphasizes the simplification of the
association graph which results in a set of smaller cliques that represent only local
surface similarities. Therefore, to get a picture of the total similarity between two
surfaces, the cliques must be combined to reproduce the complete, global match. For
that a hierarchical clustering was used to finally combine those cliques that represent the
same geometrical transformation of one molecule onto the other. The final result can be
a long list of possible alignments. To provide a faster access to the most promising
matches a ranking mechanism was developed and several scoring functions were
implemented to sort the results by significance. The alignments can be scored by their
size, the root mean square deviation, and the correlations of property values on
corresponding points. A ranking is then established by a consensus scoring similar to
the methods used in molecular docking.

In a multi step filtering protocol, such as SURFCOMP, several heuristics are used
to separate the significant from the insignificant similarities or complementarities.
These heuristics are usually controlled by a set of parameters which demand a lot of
experience and patience to be tuned properly. The SURFCOMP method needs 7
filtering parameters not including the variables that are involved in the generation of the
surfaces and the surface patches. Some of these parameters have proper default values
that can be applied to most of the problems, but some other values can have a big
influence on the outcome of the calculations. This is not an unsolvable problem and
multi step filtering procedures can produce good results (including this thesis), but it
should be mentioned that there are alternative methods that have the potential to avoid
at least some of these heuristics.
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The first heuristic introduced into 3D object comparison is the selection of the
coarse and fine representation of the surface. The use of shape critical points is a well
understood technique which has been applied to many similarity- and docking-problems
but it introduces an arbitrary resolution level that cannot be varied easily. Multi
resolution analysis is a computer vision technique that allows the free specification of
an object’s resolution by means of regular triangulation meshes and wavelet
decomposition [45;97]. This approach allows the automatic adjustment of an object’s
resolution for visualization or storage purposes. The resolution can always be increased
or decreased if more or less wavelet coefficients are used. This technique or a similar
approach could be used to perform a comparison between two molecular surfaces at a
very low resolution, identify the best matching areas, increase the resolution and
continue until the match cannot be improved anymore. The iterative procedure would
reduce the number of heuristics to the absolute minimum and it would provide an
automatic convergence criterion.

The remaining part of this section describes each stage of the method in detail and
the steps that are necessary to prepare the input data and evaluate the output. The
implementation aspects for each step are given. For the theoretical and algorithmic
details the reader is referred to Chapter 2 (Theory). At the end of this chapter a
description is given how the application of this method can be extended to the
comparison of protein surfaces.

3.2. Definition of Critical Points

The shape of a surface is mainly determined by the location of convex, concave and
saddle shaped features. If two objects match, the features of their surfaces have to be
similar and should be aligned by the same rigid body transformation. A single feature is
usually formed by many surface points which have similar curvature patterns. Hence it
is reasonable to take the feature level as the low and the point level as the high
resolution for the comparison process. To get an appropriate representation of the
surface features a subset of so called shape critical points is extracted from the initial
complete set of points. Shape critical points are characteristic points where the
properties that define the feature are a maximum.

Shape features can be identified by the signs of the canonical curvatures (cc;, cc;; p.

(b)

Figure 3-2: Surface of the thermolysin inhibitor L-valyl-L-tryptophan
(a) all points, (b) distribution of peak (blue) and valley (yellow) critical points over the surface (PDB
entry 3TMN).
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12): convex regions have two negative, concave two positive and saddle shaped ones
display one positive and one negative curvature. Hence two classes of critical points can
be defined: A point p is a peak, if it is a convex point with maximum negative curvature
and a valley, if it is a concave point with maximum positive curvature in a certain
neighborhood N(p, r.,) defined by the on-surface radius r.,. This corresponds to a “dip”
or “cleft” on the surface (eq. 3-1). To keep the initial set of critical points as small as
possible do not consider saddle points are not considered.

p=peak if Vqe N(p,r,,)
p=valley if Vqe N(p,r,,)

At the beginning of a comparison process, before the initial association graph is
formed, the peaks and valleys of both surfaces are determinated. The CP algorithm
investigates every convex or concave point on the surface and adds it to the peaks or
valleys if it meets the appropriate criteria. Figure 3-2b shows the peak and valley critical
points of a thermolysin inhibitor molecule. It can be seen that there are many more
convex than concave CPs. This is due to the fact that most “valleys” are not concave but

cadAla chanad racinnc
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eq. 3-1
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3.3. The Association Graph

An initial version of the association graph is formed from the critical points of both
surfaces. In this graph the vertices correspond to pairs of critical points, pp; = (CPy,,
CPjp), from the two surfaces that are compared. Hence all the convex and concave
critical points of the first surface are paired with the convex and concave CPs of the
second surface to form the initial set of vertices. This means that at this stage all the
critical points with the same curvature attribute are considered similar.

According to the definition of an association graph, edges should be drawn between
every two pairs that do not have a critical point in common (see Figure 3-1b), but for
computational reasons no edges are considered before the application of the distance
filter described below.

3.4. Generation of Surface Patches

Since SURFCOMP’s coarse level representation of molecular surfaces is the set of
their critical points together with their neighborhoods, it is necessary to have a
consistent definition of the vicinity of a surface point also known as the patch. A patch
is a continuous piece of the surface centered on a point ¢ that includes all points around
that center within a certain on-surface distance, henceforth called the patch radius. (An
on-surface distance of two points is the shortest path between them over the surface, not
straight through 3D space).

In this work patches, like surfaces, are represented by triangulated meshes (p. 9).
But unlike surfaces which are completely closed objects with no boundaries, a patch has
a border that should be defined by an unambiguous sequence of triangle edges. For the
harmonic image construction (p. 17) all the points on the border must be passed exactly
once before the point where the walk was started is reached again. In such a traversal
the iteration from one border point to the other is controlled by the counter clockwise
order of the triangle points: In all triangles that contain the active point its successors
are examined to find a border point that has not yet been reached. To make this
mechanism work, every triangle must not have more than one border edge (because then
there would be more than one unvisited border point among the successors, and the
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O marginpoints O central point — patchradius 4 dangling triangle

Figure 3-3: Illustration of the patch generation process.

In the first steps the points within and in close contact to the patch radius are selected (a) and extracted
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ensure consistency.

walk could end up in a loop, a shortcut or a dead end). Therefore triangles with two or
three edges exposed to the border (dangling triangles) should be removed.

Holes in surface patches present another problem. They are formed if a molecular
surface contains “pillar-like” cylindrical areas in the close vicinity to the central point.
In this case, only the base of the pillar lies within the patch radius and the upper part or
the head is not included. Automatically including all the points in the hole is not
appropriate, because if the pillar is a bridge to the rest of the surface, all the other points
would be included and the patch would be equal to the complete surface. Fortunately
the harmonic shape images are robust with respect to holes and missing parts in patches
[144], therefore it was decided not to fill them.

According to the considerations above, the patch around a central point ¢ is created
as follows (see also Figure 3-3):

1. A subset of the surface points which have an Euclidean distance to ¢ that is less than
the patch radius is preselected to avoid on-surface distance calculation on the
complete surface.

2. The on-surface distances between ¢ and all the points in the subset are calculated by
the Dijkstra shortest path algorithm [41] with the edge-weights set to the Euclidean
distances between neighboring points.

3. All points around ¢ within the patch radius are extracted plus any points connected
to them that lie within a 5% margin off this radius.

4. Every triangle on the surface that contains three selected points is copied to the
patch.

5. To preserve a correct clockwise or counter clockwise walk, all triangles in the patch
with more than one border edge (dangling triangles) are removed.

6. If there are any points that do not belong to a triangle, they are removed and step 5.
is repeated until consistency is achieved.

7. For each remaining point a reference to the original point in the surface is stored.
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3.5. Fuzzy Filter

In order to reduce the complexity of the problem, it is necessary to remove those
critical point pairs from the association graph that do not have a similar chemical
environment. Each vertex of the graph must thus be checked by a chemical filter to
ensure that the corresponding critical points have similar chemical properties. Fuzzy
sets and linguistic variables [142] were used to express the similarity between chemical
properties mapped onto the surface, and applied a defuzzification function, introduced
by Exner et. al. [48] as a similarity measure (p. 15).

According to Figure 2-5 five fuzzy sets were defined for each physicochemical
property in the experiments that correspond to common classifications (Table 3-2). An
important issue in the application of that technique is the scaling of the compared
properties. For every possible value of the property the contribution to each of the
predefined fuzzy sets must be specified in advance (see also eq. 2-18 on p. 16). But
many quantities that can be mapped onto the molecular surface vary too much to apply
fixed boundaries and relations between these sets. Especially the electrostatic potential
depends strongly on the total charge of the molecule and consequently it is meaningless
to compare surface FSP patterns directly between molecules with different total net
charges unless an appropriate normalization is carried out. For instance the absolute
difference between the ESP around the adenosine 3-H in ATP™* and ATP? is about 50
kcal/mol while the relative difference between the ESP over the center of the adenosine
6-ring and the 3-H in the 3 and 4 minus species is only 10 kcal/mol. For a general
interpretation of the membership functions it will therefore be necessary to use
normalized (mean-centered or autoscaled) surface properties. In the fuzzy filtering
autoscaled functions were used. The rationale behind this is that in surface similarity
searches, the aim is to find the region on one surface that fits most likely to a patch on
the other one. Hence the most positive or negative values will fit best to each other
regardless of their absolute difference. Furthermore an autoscaled property provides
natural classifications for the membership functions.

property high - — neutral + high +
ESP hlgh!y negative neutral Positive hlg'h'ly
negative positive
highly s L . highly

LP hydrophilic hydrophilic =~ amphiphilic Hydrophobic hydrophobic

Table 3-2: Definition of fuzzy qualitative classes
These classes are used as fuzzy sets in the linguistic variables of the fuzzy filter.

The fuzzy filter is the first filtering step in the surface comparison process. It takes
every vertex of the initial association graph, and calculates the fuzzy dissimilarity
function for a certain chemical property of its points according to eq. 2-19 (p. 16). Every
vertex whose points are more dissimilar than a certain fuzzy threshold F is then
removed from the graph and its points are considered to be chemically dissimilar. By

this filter, the number of the associations can be reduced by approximately 80% (see
also Table 3-1).

3.6. Harmonic Shape Image Filter

The fuzzy chemical filtering checks for similar physicochemical properties between
both surfaces, but it does not consider the shape of the molecules around the critical
points. It is important, however, to consider the surface-patches around the critical
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points and compare them with each other to establish whether two CPs are embedded in
similar regions and how their neighborhoods are best oriented relative to each other. In
the present surface comparison process harmonic shape images (HSI) [145] (p. 17)
provide the methodology to compare the patches and to define a relative orientation
between them.

Harmonic shape images compare surface patches by a local shape descriptor
mapped onto their points. Several such descriptors were introduced in section 2.2.3. In
the present work the surface topology index (STI) [23] was used to compare the shape
of two surface patches, but any other scalar shape descriptor could be applied as well.
While in general possible, multiple scalar values, such as the canonical curvatures, are
not used in the HSI comparison because the Pearson correlation function is susceptible
to leverage effects. Such effects can be easily introduced, if two variables do not occupy
the same space or if the dissimilarities of one type neutralize the similarities of the other
or vice versa.

HSI generation. The transformation of a surface patch into a harmonic shape
image is a multi-step process that involves (i) the detection and mapping of the patch
border, (i1) the correct mapping of the patch’s interior points, and (iii) the sampling of
the shape descriptors from the point-based mesh to a regular grid (see also p. 17).
Especially the sampling step is computationally intensive and special techniques must
be applied to improve its speed.

The detection of the patch’s border is done by the patch generation algorithm
(section 3.4) when removing the dangling triangles. For the mapping of the border
points a continuous, counterclockwise walk along this border will provide us with the
correct sequence for the determination of the position angles 6; on the unit circle (eq.
2-20). The traversal is done by following the triangle edges from one border point to its
successor at the boundary. The positions of the border points are obtained in polar form
with the radius r=1 and the angles 0; and must be transformed into Cartesian coordinates
for the interior mapping (p. 17).

After the position of the border is fixed, the interior points can be mapped into the
unit disk. According to section 2.5.3, these positions are defined by a pair of systems of
linear equations (eq. 2-28). The matrices A and bsb, must be assembled according to eq.
2-29 and eq. 2-30 with the spring constants k;; set to

1

"Pi _pj" eq. 3-2

and the actual positions of the border points on the unit circle (p. 17). The fact that the
systems use the same coefficient matrix A and different constrain vectors by and by for

the x and y position, makes it suitable to solve the equations by LU-decomposition
[108].

The last step is the generation of the shape image by resampling of the descriptors
from the mapped points to a regular grid. To perform the sampling it is necessary to
identify the triangle beneath every position at the grid. The actual value for the grid
point is then calculated by an interpolation of the triangle’s vertices (p. 20, eq. 2-32).
The search for the active triangles is of order O(N°) where N is the number of grid
points which is equal to the number of points in the patch. Hence the resampling is the
rate determining step of the HSI generation. The process can be accelerated if a
geometric hashing algorithm is used to investigate only the triangles in the vicinity of a
grid point. To this end the whole image is divided into fields in a way that each field
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contains approximately 5 triangles. All triangles are assigned to those fields, where at
least a part of the triangle is present. Later, during the resampling, only those triangles
of the field of the current grid point are considered.

Image comparison. As discussed in section 2.5.4 the images can be rotated against
each other. It is thus necessary to perform a full angular scan when determining the
similarity between two harmonic shape images. Usually one of the images is fixed, and
the other one is rotated by a predefined angular increment & (usually 2°) and resampled
for each rotated position around the circle. To avoid unnecessary sampling the grids for
the flexible image are precompiled for every possible angular position and persistently
stored with the harmonic map data.

The harmonic shape image filter is invoked for every critical point pair in the
association graph that is left after the fuzzy filtering step. In this filter step the patches
around the critical points are computed, if they are not yet available, and transformed
into the corresponding harmonic images. Then the two images of the CPs of the
associated point pair are compared as described above and on p. 21. If the detected
similarity is better than the shape threshold R the point pair passes the filter otherwise it
1s removed from the association graph.

3.7. Distance Filter

Up to this point only single pairs of critical points (pp) have been considered which
are represented by the vertices of the association graph. However, the aim is to find
groups of CP pairs which represent a similarity between the compared surfaces. Thus it
is necessary to form edges between the point pairs in the association graph, to identify
those which can overlap at the same time.

A simple but effective criterion is the difference of the distances of two point pairs
on surface A and B. Considering two point pairs pp; = (CP4;, CPp;) and pp, = (CP,;,
CPg;) with the positions of their critical points p4,, pss and p4z, paz, the distances J,
and Op are

O, = ”pAl —pA2|| (A)
Oy = "pBl ~Ps2 " (B)
the Euclidean distances between the two critical points on surfaces A and B (see also

Figure 3-4). Martin et. al. used the same criterion for the identification of
pharmacophore patterns [91].

eq. 3-3

Two pairs are connected in the association graph only if the distances d4 and Jp are
within a certain distance tolerance 12| - d5| and &4, Jp are larger than the minimum

Figure 3-4: Distance filter
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distance Oy;,. The minimum distance is introduced to avoid connections between very
close critical point pairs which represent essentially the same regions. It should also be
noticed, that no connections must be drawn between critical point pairs that share the
same point on either of the two surfaces (i.e. CP4;# CP4; and CPg;# CPp;).

3.8. Overlap Filter

The distance filter checks if two pairs are at an appropriate distance for
simultaneous overlap, but harmonic image matching provides additional information
about the optimal orientation of each CP patch pair. Using this information the number
of connections in the association graph can be further reduced.

The idea is to check the simultaneous overlap of both pairs via the relative
orientations of the connecting axes on surface A and B. In Figure 3-5 the axes between
the two critical points on each surface are projected onto the harmonic maps of the
patches and the closest points on the borders of the patches are determined. o, o and
B, > denote the angles between the optimum orientation (alignment axis) and the
closest points to the CP axes on surface A and B respectively. The «r and S angles thus
descrive ihe licading {rom one criilcal poini paicn to the oiner with respect o ihe
alignment axis.

The filter computes the heading differences ¢;, ¢, for both CP patch pairs and
removes the connection between them, if none of them is within a certain angular
tolerance @y,

o= ':Bl —& |
eq. 3-4
¢, = |:62 - azl
surface A surface B
PP P
B, ; ---------------- CP axes
O — patch projection
of the CP axes
————p alignment axes
PP

Figure 3-5: Illustration of the overlap filter.

The axes between the two patches on both surfaces (black stippled lines) are projected onto the
harmonic map of the surface patch, and the angles between that projections and the axes that define
“north” (0°) in the optimal alignment of the patchpairs pp; and pp; are determined as the bearing from
one patch to the other patch on the same surface.
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3.9. Clique Detection and Clustering

Having applied all the filters, the size of the association graph is reduced so that it
is possible to search for cliques in it. The algorithm of Bron and Kerbosch [26] was
used to find all cliques which are present in the association graph. This usually results in
a large set of cliques consisting of two to four critical point pairs. They only represent
partial similarities and must be combined to get the largest possible local surface
alignment between the two molecules. Therefore, these small primary cliques are
combined into larger clusters that represent different sets of corresponding points on
both surfaces.

For each cluster a rigid body transformation was generated based on all the
correspondences detected by the harmonic shape image matching for the patches around
the critical points. The transformation matrices T are calculated by a least squares fit
[93] of the two point sets superimposed over their centers of gravity. The root mean
square deviation (RMSD) of this transformation serves as a quality criterion for the
cluster:

eq. 3-5

where p; is one of the N fixed and q; is one of the N transformed corresponding points.
From the large set of initial small clusters, those with high RMSD values are eliminated
(above 4.0 A) and the remaining clusters are subject to a stepwise hierarchical-linkage
clustering as follows.

For all pairs of clusters in the list that can be combined, the RMS deviations for the
transformation of cluster A with the transformation matrix of cluster B and vice versa
are calculated; the smaller value (single linkage) is stored as the distance between A and
B. Two clusters A, B cannot be combined if a critical point is paired with a different CP
in A and B. At each step the algorithm takes the two closest clusters and merges them
into a new one while updating the distances to the remaining clusters. The new one
replaces the merged clusters in the list and the algorithm is repeated until no more
clusters can be merged. The result is a set of possible local surface alignments.

Besides single linkage complete and average linkage were examined too, but they
did not cause any differences in the quality of the results. Because single-linkage can be
implemented more efficiently than complete and average linkage, it was used in all
experiments.

3.10. Scoring and Ranking

The hierarchical clustering provides the results of a surface comparison as a tree,
where the largest alignments are found in the elements closest to the root and the
original cliques are placed in the leaves. This representation can be very useful when
one wants to examine how the larger alignments are composed and how strong the
different elements of the clusters are related to each other. However, in most of the
cases the primary question is which alignment is the best in respect to percentage of the
covered surface, quality of the rigid body fit and chemical similarity. Especially when
the molecules are large and the comparison produces a number of possible top-level
alignments, this task is difficult to do by visual inspection of the alignments even
though the pure RMSD value of the rigid body fit provides a good initial guess of the
quality of the clusters.
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Another problem lies in the nature of the hierarchical clustering: The algorithm
subsequently combines two clusters into a new one either until only one cluster is left or
the new one cannot be combined with another one because of ambiguous critical point
combinations. Thus the top-level clusters often represent poor alignments if two clusters
that practically do not fit together are combined because all their CP pairs are correct.
The consequence is that the best alignments are often placed in the levels beneath the
top. It will therefore be necessary to find an alternative ranking that will sort out the
promising alignments by a combination of patch-size, geometrical and chemical
similarity criteria.

Ranking is a well known problem in molecular docking, where the large lists of
possible ligand/receptor conformations must be scored and sorted to simplify and speed
up the manual search for the best structure. The usual strategy is to improve the energy
score, which is by far the most important criterion, with several other heuristics [29].
Wang and Wang [135] identified three different classes of consensus scoring
methodologies: “rank-by-number” (eq. 3-6) uses the average scoring value, “rank-by-
rank” (eq. 3-7) takes the average rank and “rank-by-vote” (eq. 3-8) counts how often an
entry is sorted into the top x% by each scoring function:

1 N

v =_ZSFj(xi) eq. 3-6
N4
1 N

r, =— > rank(SF;(x,)) eq. 3-7
N4
N

r, = top(n,SF,(x,)) eq. 3-8
=l

where r; is the rank of the docking result x;, SF; is the jth scoring function. rank(SFj(x;))
returns the rank of x; and top(n, SFj(x;)) yields true if x; is among the top n% according
to SF; or false otherwise.

A consensus scoring algorithm was implemented in SURFCOMP based on the
rank-by-rank scheme. The algorithm calculates the average ranks determined by (a) the
RMSD value of the rigid body fit, (b) the number of corresponding surface points that
build the alignment and (c) the chemical correlation of these points. Thereafter it sorts
the results in a way that places the most promising clusters at the top of the list. All
clusters are evaluated and ranked independently of their position in the hierarchy.

ad a. The RMSD value is provided by the clustering algorithm eq. 3-5. The
clusters are ranked in ascending order because the quality of a rigid body transformation
is inversely proportional to the RMSD value.

ad b. The number of corresponding points (V,einss) reflects the size of the detected
surface similarity. The larger the common surface area the better the cluster is ranked by
this quantity. It is somehow complementary to the RMSD because larger point sets are
more likely to produce larger RMSD values so combining the RMSD and size of the
similarity reflects a kind of trade off between accuracy and size.

ad c. RMSD and the number of corresponding points are responsible for the
evaluation of the geometric fit. Besides that a check of the chemical similarity should
not be neglected. This can be easily performed by the calculation of a Pearson
correlation coefficient Resem (€9. 2-35 on p. 21) between the physicochemical properties
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of the corresponding points. For the ranking all the clusters are sorted by descending
order.

The final ranking value is the weighted average rank over all terms (eq. 3-9) and a
sort in ascending order will bring the must promising clusters to the top of the list.
Usually the three contributions are weighted equally and the weights are set to 1. Once a
good cluster is identified in that list its hierarchical position can be examined to check
whether its parent or one of its children may provide a better representation of that
particular surface similarity.

consensusrank = %[rank(RMSD) +rank(V .. ) +rank(R . )] eq. 3-9

points

3.11. Treatment of Protein Surfaces

The first goal of this project was to establish a surface comparison algorithm for
low molecular weight compounds. However, in the course of the studies the ability of
the program to compare surfaces of large biomolecules such as proteins was
investigated too. The main problem with large molecules is that even at a lower level of
resolution the number of points is approximately one order of magnitude greater than
for small compounds. Because most of the algorithms in the comparison process scale
approximately quadratically with the number of surface points, this implies a massive
increase in computational time, memory and the number of candidate alignments that
have to be evaluated.

In molecular modeling and drug discovery the functionally most interesting part of
a protein surface is where a substrate is converted catalytically (active sites of enzymes),
a cofactor is bound or a signal molecule is recognized. Fortunately, such functional sites

Figure 3-6: Surface of a bacterial ABC transporter protein (PDB: 1L2T).

The protein binds an ATP molecule in the pocket on the upper left comer. A site-sphere (represented by
the yellow circle) was defined and the surface within this sphere (colored by the lipophilic potential) was
used for the surface comparison.
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usually cover only a small fraction of the total protein surface. Therefore the
comparison of two proteins can be reduced in many cases to the comparison of their
binding sites. This will allow the investigation of the relevant parts of the proteins’
surfaces at the same resolution as low molecular weight compounds. A potential
drawback of this approach is that information about the location of the functional site is
needed, but that is usually available together with the 3D structure of the protein.

There are several ways to select the region of interest around a functional site.
SURFCOMP applies one of the most popular strategies. A spherical region is defined
such that it encompasses all amino acid residues that are known to be part of the site.
Note that in the case of elongated binding pockets other choices (such as a union of
overlapping spheres) would be possible. To restrict the surface comparison to the area
around a site the initial association graph is built only from those critical points, which
are included in the site-spheres. The rest of the process is performed as described above.

ESP Calculation. For the calculation of the electrostatic potential on the surface of
a protein (see also section 2.2.1 on p. 11) it is usually not practical to use ab initio or
semi-empirical calculations due to the large size of the systems. One viable compromise
1s 10 assign poini charges derived from proiein force fieids. In ihe preseni invesiigaiions
the charges of the AMBER force field [36] were used.

3.12. Implementation Details

The following section gives a general overview about the programming techniques,
software and libraries that have been used for the various surface comparison
experiments. If any experiment required different or additional tools it is described in
the corresponding section of chapter 4, “Computations and Results”.

3.12.1. Software

The complete surface comparison process, as described in the sections above, was
implemented in the computer program SURFCOMP. The main program and all
necessary libraries were written in C++ and binaries were compiled for Linux with the
GNU compiler suite [53]. All matrix and vector manipulations have been coded with
the RazorBack 2.0 library [8] and all graph operations were implemented using the
Boost graph library [123].

The molecular surfaces were calculated by the MOLCAD module [24] in Sybyl 6.9
[2] or alternatively the molecular surface program MSMS by Michael Sanner [114;115].
All the surface properties were calculated by the MOLCAD module. For the
electrostatic potential appropriate atomic point charges were either calculated at a semi-
empirical level with MOPAC [40] or at the Hartree-Fock level with JAGUAR [119].

For the evaluation of the results a plug-in for the Geomview [1] software was
developed that allows a real-time 3D visualization of the surface alignments, scoring
and browsing of the ranking and preparation of several output formats for publishing the
results. Pictures of the surfaces and surface alignment were prepared and computed
using the rendering software POV-Ray [3].

3.12.2. Hardware and Computation
The actual surface comparisons were performed on a Linux cluster consisting of 22
nodes with two 2.4 GHz Intel Xeon processors and 2 GB of RAM. The generation of

the surfaces and the calculation of semi-empirical atomic point charges were carried out
on a four CPU SGI Origin 200 server with 4GB of RAM running under IRIX 6.5. HF
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calculations and the evaluation of the results were executed on a Linux workstation with
two 1.0 GHz Intel Pentium III processors with 512 MB of RAM.

Depending of the size of the problem a single surface comparison usually takes
from about 75 s for low molecular weight compounds up to 2 hours for the comparison
of large protein active sites. The calculation of the surfaces and their properties can take
from 10 up to 120 seconds except for the calculation of atomic point charges which
depend heavily on the computational level (HF, semi-empiric or force-field charges).
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4. Computations and Results

The primary aim of this project was the investigation of surfaces of small molecules.
The method described in chapter 3 has been explicitly designed for that purpose. As a
proof of concept 8 thermolysin inhibitors were investigated that were subject to an earlier
surface similarity search performed by Cosgrove et. al. [37] with their SPAt program.
This dataset was also used to validate the scoring algorithm against the ranking of a
flexible alignment [82]. In addition another set of structures was assembled, which
contains known active ligands of dihydrofolate reductase, to test the performance of
different kinds of molecular surfaces. The effects of conformational flexibility were also
tested with different conformations of ATP* and of a dihydrofolate reductase inhibitor.

During the project it was possible to apply the program to protein/protein and in
particular to ligand binding site comparisons. With only little adjustments SURFCOMP
achieved successful and illustrative alignments between the active site surfaces of
different SH2-domains and phosphatases. These alignments helped elucidating important
aspects in the differences and similarities between the binding sites of these proteins.

In the following sections the experimental details and results of the aforementioned
experiments are presented. Unless otherwise noted the experiments were performed
according to the methodologies described in the previous chapters.

4.1. Ligand Surfaces

4.1.1. Preparation of the Input Structures and Experimental Design

All the molecular surfaces investigated for the experiments described in this section
were calculated from 3D atomic data. The 3D structures were extracted from
crystallographic data of protein/ligand complexes available in the Brookhaven Protein
Data Bank (PDB) [13]. To compare the overlays generated by the present method with
the experimental alignments of the different ligands in the proteins' active sites, the
complexes in the PDB were superimposed by the backbone atoms of corresponding
amino acids in the binding sites, which was always possible with a very small RMS
deviation. The structures of the ligands were extracted and hydrogen atoms were added
with Sybyl 6.9 [2].

For each structure the solvent excluded surfaces (section 2.1.4) were computed.
Electrostatic potential based on semi-empirical calculations (section 3.12), lipophilic
potential (section 2.2.1) and two sets of canonical curvatures together with shape type
indices for a cutoff range of 1.0 and 2.0 A (section 2.2.3) were mapped onto the
molecular surfaces. For proteins the cutoff ranges were 2.0, 4.0 and 6.0 A.

41.2. SURFCOMP Validation: Comparison of 8 Thermolysin Inhibitors

Thermolysin (TLN, EC-number 3.4.24.27) is a thermostable extracellular
metalloendopeptidase containing four calcium ions from Bacillus thermoproteolyticus.
[70]. The active site of the enzyme (see Figure 4-1) consists of two subsites: a zinc ion
complexed by two histidine residues and one glutamic acid representing the catalytic
reaction center, and a hydrophobic cleft, formed between two a-helices, that contains the
selective part of the site. The crystals of thermolysin contain a lysine-valine dipeptide in
this pocket that seems to be the product of the cleavage of the C-terminus of another
thermolysin molecule.
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Chart 4-1: 2D structures of eight thermolysin inhibitors:
The structures are identified by the PDB entry name of the corresponding protein/ligand complex. The
given resolution is for the complete protein/ligand complex in the X-ray data.

Several structures of TLN cocrystalized with different inhibitor compounds are
available from the PDB. Cosgrove et. al. used a subset of 8 inhibitor structures to
demonstrate the abilities of their molecular comparison software SPAt [37]. The same set
was used to perform an exhaustive pairwise similarity search between the molecular
surfaces and the results were compared with the results of the aforementioned publication
to validate the program SURFCOMP.

The structures of the eight thermolysin inhibitors in Chart 4-1 were extracted from
the PDB. All molecules except 3TMN and STLN are complexed via a negatively charged
carboxyl- or phosphate-like group to the zinc ion in the active site of the protein. Thus a
single negative formal charge was placed at these positions. STLN is also complexed to
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Figure 4-1: The 3D structure of thermolysin (TLN).

The 8 ligand structures of the set are superimposed in the active site. Ligands of the tryptophan class are
colored in blue while the structures belonging to the valine and alanine class are shown in red. 5STLN,
which does not belong to any class, is left grey. The metallic sphere represents the position of the
complexed Zn ion.

the zinc ion but via a charged hydroxamic acid group. 3TMN does not show any complex
binding to the ion at all and was left uncharged.

Two different experiments were performed, one with the electrostatic and one with
the lipophilic potential mapped onto the molecular surfaces. The experimental details can
be found in Table 4-1. Using the ESP the program could find good overlays for all
structures, except for STLN, which is quite different in shape, especially in the most
interesting region around the complex-building part. The rest of the molecules can be
divided into two classes: structures with tryptophan (blue boxes in Chart 4-1) and
structures with an aliphatic (alanine, leucine; red boxes in Chart 4-1) residue at the C-

filter parameter symbol section® value propertyb
curvature cut-off range CCcr 223 2.0 A

neighbourhood radius rcp 32 20 A

fuzzy threshold F 3.5 0.3 ESP or LP
shape threshold R 3.6 0.6 STI
distance tolerance T 3.7 1.0 A

minimum distance Ohnin 3.7 0.5 A

angular tolerance Brol 3.8 15.0 °

Table 4-1: Experimental conditions used in the thermolysin experiments.

Dthe section in the text where the filter is described

®the molecular surface property applied to the specific filter (ESP, electrostatic potential and LP,
lipophilic potential).
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terminal end.

The tryptophan structures could be overlaid with an RMS deviation between the
experimental and calculated alignment of less than 0.6 A. The only exception is 3TMN
aligned to 1TMN which shows a slightly worse RMSD of 1.0 A mainly due to
differences in their electrostatic potential and to a different angle between the indole ring
and the peptide backbone. The three structures with aliphatic residues show comparable,
good overlays with RMSD all below 0.6 A A special case is the comparison of STMN
and 6TMN because the molecules are almost the same except for one group.
Consequently their shapes and electrostatic potential are also very similar which is

RMSD? RMSD? RMSD? RMSD?
Molecules ESP LP Molecules ESP . LP
[A] [A] [A] [A]

3 s, @ g B » %

AL B ZE ZE R E|A B ZE ZI|ERG

ITHL 1TLP 580 1.950.40|441 1.60 1.04 ITMN 4TMN 446 1.05 1.03|417 1.44 0.80
ITMN 711 1.77 0.40|554 1.55 0.31 STLN 145 0.99 5.14{205 1.61 6.25
3TMN 366 1.04 0.33|368 1.12 0.55 5TMN 464 1.21 0.93 (222 0.71 0.84
4TMN 431 1.07 1.18|349 0.98 0.95 6TMN 610 1.26 0.99(426 1.49 0.86

STLN 227 1.93 5.68 (181 1.78 5.11 3TMN 4TMN 255 1.36 1.42|339 2.07 5.45
5TMN 336 1.04 1.20(169 0.98 7.08 STLN 252 1.992.90(116 0.58 6.91
6TMN 439 1.00 0.63|228 0.89 0.73 STMN 254 1.18 1.51|363 1.68 1.18
ITLP 1TMN 630 1.73 0.53(309 1.35 1.39 6TMN 180 1.26 4.28|283 1.39 0.67
3TMN 471 1.26 0.46|{424 1.52 1.20 4TMN 5TLN 383 3.52 5.83|169 1.17 6.22
4TMN 446 2.16 1.29188 1.51 6.01 STMN 320 0.75 0.43{168 0.52 0.54
STLN 342 2.13 7.00(335 2.50 1.27 6TMN 409 0.83 0.58|312 1.90 0.49
STMN 454 0.93 0.63{165 0.63 1.22|STLN 5TMN 175 1.342.31|176 1.44 3.37
6TMN 409 1.12 0.59|282 0.79 1.04 6TMN 153 1.77 5.78 (188 1.55 1.18
ITMN 3TMN 193 0.93 1.00|393 2.50 0.75 {STMN 6TMN 975 0.51 0.08965 0.55 0.05

Table 4-2: Surface overlays of different thermolysin inhibitors
The surface comparisons were performed with electrostatic potential (ESP) and lipophilic potential (LP)
®root mean square deviation
bspecifies the number of all surface points in the patches that were used to calculate the surface alignment.

This number indicates the size of the similar surface region (higher number: larger region).

reflected by the small RMS deviation of 0.05 A and the nearly one-to-one match of the

surfaces.

As expected, the overlays between the two classes were not as good as the within-

class results but the general orientation and the important similar surface regions were
detected correctly with RMSD values around 1.0 A. The only exception is again 3TMN
which shows rather poor alignments with the structures of the second group. This is due
to the different total charge which shifts the ESP values and to the fact that 3TMN does
not have the complexing group and the latter do not have the indole ring system.
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(b)

(d)

Figure 4-3: Surface alignment of 1THL (blue) and 1TMN (red).

(a) and (b) display the alignment of the molecular surfaces and structures respectively based on the
detected surface similarity. (¢) and (d) show the similar surface regions of 1”THL and 1TMN color coded
by the electrostatic potential to illustrate their size and physicochemical similarity.

(©) (d)

Figure 4-2: Surface alignment of 1TLP (blue) and 6TMN (red).

(a) and (b) display the alignment of the molecular surfaces and structures respectively based on the
detected surface similarity. (c) and (d) show the similar surface regions of 1TLP and 6TMN color coded
by the electrostatic potential to illustrate their size and physicochemical similarity.
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The overlays found by the surface matching conducted with the lipophilic potential
as the chemical filter were in general not as good as the results obtained with ESP. The
main reason is that regions of the molecules that are quite close to each other in the active
site, like the fructose residue of 1TLP and the phenyl ring of 1THL or 1TMN, show
different lipophilicities. However the fact that the LP overlays of 3TMN on 1TMN,
5TMN and 6TMN are significantly better than the ESP overlays is due to the strong
hydrophobic similarity between the alanine, tryptophan and leucine side chains. The
results of both experiments are presented in Table 4-2 and example alignments are
displayed in Figures 4-2 and 4-3. These results together with a description of the method
have been published [65].

Besides the structure alignment based on the surfaces, the SURFCOMP program also
provides a detailed picture of the surface similarities that were found between the
molecules. If the results of the comparison between 1THL and the rest of the dataset are
lined up (excluding STLN which does not show any reasonable surface similarity), one
can see that the similar surface regions contain some recurring patterns (see Figure 4-4
and Figure 4-3 for 1TMN). The most common motif between them seems to be the

_assmuniiin.
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Figure 4-4: continued on p. 46
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Figure 4-4: Similar surface regions between 1 THL (left) and other molecules (right).
The similar patches are color-coded by their electrostatic potential, where blue represents negative and
red positive patches.

negatively charged surface region around the phosphate or carboxyl groups in the center
of the molecules. The only exception is 3TMN, where that group is not present. In
ITMN, 4TMN and 6TMN the valley between this group and the C-terminal carboxylic
acid is included, while in 1I'TMN, 1TLP and STMN the terminal carboxylic group itself is
part of the similarity region. A strong similarity is also detected between the indole ring
systems of 1THL, 1TLP, ITMN and 3TMN where the center of that pattern is located
around the nitrogen atom. Another interesting, but rather small pattern can be identified
around the aliphatic sidechains upstream of the C-terminal end of the molecules. It was
detected in all comparisons except for STMN.

The results agree with the alignments published earlier by Cosgrove et al [37] for the
same dataset. The result of their SPAt program is an overlap graph, an acyclic graph that
describes the best way to produce a consensus overlay between the surfaces of the
dataset. In the case of the thermolysin structures, this graph consists of two connected
components, which can be considered as some kind of arbitrary classification, although
this is not the intention of the SPAt software. The dataset is divided into one large group
containing 1THL, 1TLP, 1TMN, 3TMN, 4TMN and STLN and a smaller group that
consists of STMN and 6TMN. The edges of the graph are weighted by the fraction of
points of one surface that are placed within 1.0 A of any point of the other surface by the
given alignment. This evaluation of the surface similarities is different to the one used in
the present experiment, because it is sensitive to differences in the size of the two
compared molecules, while SURFCOMP considers only the RMSD of the similar
patches. However, if the results are compared with all the data published for the SPAt
calculation of the thermolysin dataset, it can be demonstrated that SURFCOMP produces
comparable alignments and performs better if the size of the similar surface patches is
small compared to the rest of the surfaces.
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4.1.3. Ranking of Surface Alignments

If one takes a look at the number of possible alignments that are found by the
SURFCOMP program in the thermolysin example (Table 4-3, below), it is obvious that a
fast evaluation of the results is necessary to process a large set of surface similarity
searches. In the case of the thermolysin data set the RMSD between the alignments found
by the SURFCOMP program and the actual positions in the X-ray data provides a good
basis for the selection of the best surface similarities. This is possible because all the
structures are complexed to the same protein conformation. If, as described above, the
different crystal structures are superimposed according to the backbone atoms of the
thermolysin protein, the ligand molecules are brought into a natural alignment. Any
superposition of two molecular structures that is based on their surface similarity can be
compared to that alignment.

However, one does not always have this opportunity, especially if the 3D structures
are taken from different contexts. In section 3.10 a consensus scoring scheme is described
that was designed to enable a fast filtering of a native SURFCOMP result list. It produces
a scoring based on the goodness of the shape fit, the size of the surface similarity and the
chemical correlation, and it should be able to distinguish between promising and poor
surface similarity clusters. Two different kinds of ranking are of particular interest:

(1) the identification of promising clusters within a single surface comparison and
(2) the ranking of a set of surfaces based on their similarity to a template surface.

In the first case the similarity, which reproduces the natural alignment best, should
be close to or at the top of the ranking. This would guarantee that only a few clusters
need to be inspected manually to find the optimal solution. The latter ranking type, also
known as comparative scoring, must ensure that among the combined clusters of different
experiments those surfaces are scored best that show the closest similarity to the
template.

Identification of Promising Clusters. To find out, if the comparative scoring
scheme is appropriate or not, the rankings produced for the similarity searches of the
thermolysin data set were investigated. In Table 4-4 the ranks of the alignments which
are closest to the experimental situations (I, closest cluster) compared with the ranks of
the best scored clusters when ordered by the RMSD to the natural alignments (I, top
cluster). The detailed results of this investigation revealed that the difference in the
RMSD between the top clusters and the closest clusters were small for almost all cases
where a reasonable similarity between the two surfaces exists. If no similarities could be
established, the difference in the rankings and RMSD became larger. This was the case in
the comparisons of STLN with all the members of the set, because of the totally divergent
shape of its surface, and in some of the pairwise comparisons of 3TMN, particularly with
6TMN, where no satisfying similarity between the surfaces could be established.

In two cases the top cluster was the closest cluster (1TMN-3TMN, and 3TMN-
4TMN). It is interesting to point out that these comparisons detected only weak or small
alignments with an RMSD to the X-ray data above 1 A. It is possible, that there are only
a few acceptable alignments in such situations and the closest cluster does not face much
competition from other candidate clusters. For instance the program produced only 44
different clusters when comparing 1TMN and 3TMN which is the third-lowest number
among the calculations of the thermolysin dataset.
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(a) (b)

(d

Figure 4-5: Comparison between the top and closest clusters for 1THL and 1TLP.

The left column shows the closest and the right the top cluster of ITHL (blue) and 1TLP (red). (a) and (b)
line up the actual similar surface patches to focus on the difference between them and (c) and (d) give a
snapshot of the atomic superposition viewed from the top of the molecules.

The bad ranking of the closest cluster in the comparison between 1THL and 1TLP
also deserves attention. Although the difference between the top and the closest cluster is
within the range of many other pairs (0.18 A), it was ranked only at position 42 by the
consensus scoring method. The main reason for that is a rather bad alignment between
the corresponding surface points which is expressed by the high RMSD value of 1.94 A.
The cause of this bad alignment is a single patch pair between both molecules that could
only be superimposed with a relatively large gap (see also emphasized region in Figure
4-5). The top cluster, however, does not include this patch pair and the superposition
between its corresponding points is much better, although it is only the fifth best
reproduction of the natural alignment (but with a very small difference). Further
investigation reveals that the top cluster is a subset of the closest cluster except for the
single bad matching patch pair.
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Molecule Molecule

A B top-level  total A B top-level total
1THL 1TLP 19 205 | ITMN 4TMN 18 132
1TMN 15 101 STLN 9 48

3TMN 11 71 STMN 14 90

4ATMN 16 131 6TMN 14 106

STLN 13 83 | 3STMN 4TMN 12 94

STMN 10 60 STLN 10 64

6TMN 10 76 STMN 7 39

ITLP 1TMN 17 137 6TMN 9 35
3TMN 14 92 | 4TMN 5TLN 18 126

4ATMN 25 201 STMN 17 151

STLN 15 99 6TMN 18 160

5TMN 16 138 1 STLN  STMN 18 32

6TMN 22 162 6TMN 17 64

ITMN  3TMN 10 44 | STMN 6TMN 18 190

Table 4-3: The number of top level and total alignments
These clusters were found by the SURFCOMP program during the surface similarity searches in the

thermolysin dataset.

Molecule Molecule

A B | I ARMSD A B I II ARMSD

ITHL 1TLP 42 5 0.18 | ITMN 4TMN 2 16 0.76
1TMN 5 6 0.14 STLN 9 46 6.60
3TMN 2 0.04 STMN 8 0.36
4TMN 16 22 1.21 6TMN 10 0.88
STLN 84 80 475 | 3TMN 4TMN 1 0.00
STMN 10 2 0.30 STLN 61 24 4.29
6TMN 8 4 0.12 5STMN 3 4 0.43

ITLP 1TMN 7 10 0.21 6TMN 21 3 1.13
3TMN 8 5 0.15 | 4TMN STLN 46 62 3.93
4TMN 11 6 0.52 STMN 4 4 0.20
STLN 80 75 3.63 6TMN 5 3 0.20
STMN 7 7 0.15§ STLN 5TMN 19 6.16
6TMN 4 6 0.07 6TMN 33 5.94

1TMN 3TMN 1 1 0.00 | STMN 6TMN 15 3 0.00

Table 4-4: Comparison of closest and top clusters.
A comparison between the ranks of the clusters that are closest to the natural alignment sorted by
consensus scoring method (I) and the best scoring clusters when sorted by the RMSD to the natural
alignment based on the binding site (II). In addition, the ARMSD between the two clusters is shown in

the third column.




®

Computations and Results 50

(c) (d)

Figure 4-6: Comparison between the top and closest clusters of 1THL and 4TMN.

The left column shows the closest and the right the top cluster of 1THL (blue) and 4TMN (red). (a) and
(b) line up the actual similar surface patches to focus on the difference between them and (c) and (d) give
a snapshot of the atomic superposition viewed from the top of the molecules.

(©) (d)

Figure 4-7: Comparison between the top and closest clusters of 1'TMN and 4TMN.

The left column shows the closest and the right the top cluster of 1ITMN (blue) and 4TMN (red). (a) and
(b) line up the actual similar surface patches to focus on the difference between them and (c) and (d) give
a snapshot of the atomic superposition viewed from the top of the molecules.
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Two calculations resulted in a very large ARMSD between the top and the closest
cluster. These were the comparisons between 1THL and 4TMN as well as ITMN and
4TMN. All three molecules have a phenyl ring attached via a two atom bridge to the core
of the structure. This resulted in a very similar surface region at that end of the
molecules, which was detected by the program and used to create the atomic
superpositions. Unfortunately these rings are not aligned in the active site of the proteins,
which causes a displacement that is emphasized even more by the fact that the rings are
placed at the perimeter of the molecules. The superpositions of the X-ray structures, the
top and the closest clusters are shown in Figure 4-6 and Figure 4-7.

Finally it should be mentioned that the ARMSD between the top and closest clusters
as well as the RMSD values between the natural alignment and the closest clusters are
well below the resolution of the X-ray structures for those cases where surface similarity
could be established.

Comparative Scoring. The second scoring task is the identification or ranking of the
most similar surfaces compared to a template. This is similar to the evaluation of docking
results, where the docked conformations of the ligand dataset are ranked to identify the

Ae Ta 1
most promising compounds. To accomplish this not only the alternative clusters of a

single surface comparison, but the complete results of all comparisons between a set of
surfaces and the given template surface are ranked by the scoring algorithm. The single
surfaces of the dataset are finally sorted according to their best ranked cluster in that
evaluation.

The proof of concept for that procedure can be provided by any other technique that
can rank different surfaces according to their similarity to a specific template.
Unfortunately, to the author’s best knowledge, there is no method available that can rank
molecules according to their surface similarity. Therefore the software FlexS [82] was
used to validate the comparative scoring scheme of SURFCOMP, because it uses a
volumetric technique to generate good flexible alignments between different molecules.

FlexS is closely related to the flexible docking program FlexX [112]. It uses various
forms of possible intermolecular interactions as well as different property distributions
(such as partial atomic charges or the H-bonding potential) to generate a flexible
superposition between a template and a query molecule. Interaction centers and
geometries or pairwise intermolecular interactions are used to evaluate the coincidence of
H-bonds, salt bridges or lipophilic interactions in an alignment between the two
structures. To check the similarity between certain molecular properties, Gaussian

filter parameter symbol section® value propertyb
curvature cut-off range CCR 223 2.0 A

neighbourhood radius rep 3.2 2.0 A

fuzzy threshold F 3.5 0.4 ESP
shape threshold R 3.6 0.5 STI
distance tolerance T 3.7 1.0 A

minimum distance O 3.7 05 A

angular tolerance Brol 3.8 15.0 °

Table 4-5: Experimental conditions used in the comparative ranking experiments.
Ithe section in the text where the filter is described
®the molecular surface property applied to the specific filter (ESP, electrostatic potential).
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Figure 4-8: Results of the comparative ranking

(left) Mapping between the SURFCOMP consensus ranking and the FlexS ranks of all comparative
ranking experiments. Each circle represents a distinct mapping between the two rankings that occurs
at least once in the calculations. All correct matches appear in the diagonal of the graph. (right) A
histogram of the mismatches (0 indicates a correct match).

functions that model the respective densities are used.

The experiment was designed as follows: For each structure in the thermolysin
dataset, a flexible alignment with all the other structures in the set was generated. The
conformations that produced the best alignment with the current template structure were
taken to form the data for the surface similarity searches. Solvent excluded surfaces were
generated for all structures in that set and compared to the surface of the template
molecule with SURFCOMP. The resulting tables of alternative clusters were combined
into one table for each template molecule and ranked by the consensus scoring approach.
From this cluster scoring a ranking of the molecules of the data set was assembled based
on the first occurrence of the best cluster of each molecule. The parameters for these
experiments are summarized in Table 4-5.

In Figure 4-8 the results of all 8§ comparative ranking experiments are summarized
and the details are given in Table 4-6. Overall the agreement between the ranking based
on FlexS’ total score and the consensus scoring of the SURFCOMP program is very
good. More than 65% of the structures were assigned the same rank by both methods and
another 20% showed only a ranking difference of 1. Furthermore, many of the
mismatches are still in a correct relative order. For example, the flexible superposition
against I THL ranks the molecule 3TMN at the next to last position, because it can only
cover a part of the template molecule. The surface similarity ranking, however, does not
take that into account, because it considers only the local similarities and does not
consider the fraction of the covered template surface. Therefore 3TMN is ranked much
higher by SURFCOMP because the absolute size of the similar patches is comparable to
other similar molecules like 1TLP and 1TMN. It should also be mentioned that the
agreement between the two scoring methods is in general better for the high and low
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Figure 4-9: The superposition of 1TLP (blue) and 5STMN (red).

(a) The FlexS program aligns the C-terminal residues as well as the fructose and phenyl residues
respectively. The SURFCOMP cluster that covers most of the surface similarities (b) has a very large
surface RMSD although it represents the original superposition best. In general the two surfaces look very
similar, but they have nevertheless a different ESP distribution (¢ and d).

ranks. While the top ranking molecules are the same for all experiments the ranks 4 and 5
are most dispersed while the exact matches increase again at the bottom of the list.

The larger differences were mainly caused by the comparative scoring experiments
against I”TLP and STLN. As mentioned before, STLN does not have any significant
surface similarities with any of the other molecules, which makes a reasonable ranking
based on that criterion most unlikely. The situation with 1TLP is more difficult to
explain, but the main reason for the bad correlation between the FlexS and SURFCOMP
rankings is the fructose residue of 1TLP and the way the rest of the molecules are
superimposed to that structural feature. A good example for these effects is the behavior
of STMN in that experiment: The superposition algorithm aligned the phenyl ring of
5TMN with the fructose moiety of 1TLP and the valine side chain with the indole ring
system (Figure 4-9a). These conformational changes make the surfaces of both molecules
look very similar (Figure 4-9c, d). However, a surface similarity, which is in a good
agreement with the superposition found by FlexS, can only be established with a high
RMSD of approx. 2.7 A between the surface patches due to the large differences between
the valine and tryptophan surface and the fructose and phenyl residues (Figure 4-9b). The
best ranking cluster is a subset of the closest one, where these different parts are
excluded, but it is smaller and therefore ranked after the best clusters of other molecules
which are sufficiently larger (e.g. 1”TMN or 4TMN).
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molecules SURFCOMP consensus scoring FlexS
first total
A B rank. cluster score rank score
ITHL 1THL 1 1 154.67 1 -1171.90
ITMN 2 18  313.67 2 -1129.50
ITLP 3 749 1037.67 3 -969.10
3TMN 4 1170 1573.67 7 -717.10
5TMN 5 1495 2125.33 4 -928.50
6TMN 6 1512 2163.67 5 -872.00
4TMN 7 1593 2376.67 6 -869.40
STLN 8 1677 2585.33 8 -656.00
ITLP ITLP 1 1 227.00 1 -1425.01
1TMN 2 18  399.67 4 -1116.86
6TMN 3 95  603.00 5 -991.06
4TMN 4 99  605.33 3 -1146.32
iTHL 5 270 1122.67 0 -565.55
5TMN 6 424 1614.67 2 -1263.97
3TMN 7 678 2275.67 7 -618.78
STNL 8 733  2398.67 8 -605.56
ITMN 1TMN 1 1 215.67 1 -1206.58
ITLP 2 1008 1104.00 2 -1049.43
1THL 3 1137 1257.67 3 -1039.12
STMN 4 1327 1514.33 4 -1021.14
6TMN 5 1737 2347.33 5 -964.34
4TMN 6 1785 2442.33 6 -908.82
3TMN 7 2061 3067.33 7 -678.71
STLN 8 2326 3559.33 8 -654.66
3TMN 3TMN 1 1 22.67 1 -861.91
ITMN 2 92  131.00 2 -773.78
ITHL 3 111 184.67 3 -758.26
STLN 4 157  323.67 5 -603.77
6TMN 5 162 339.00 4 -614.55
STMN 6 190  402.67 6 -586.36
4TMN 4TMN 1 1 135.67 1 -1425.60
5STMN 2 307  539.00 2 -1264.84
6TMN 3 583 6693.33 3 -1123.36
ITLP 4 803 1830.67 4 -991.51
1TMN 5 1013  2471.67 5 -824.99
STLN 6 1034 2547.67 7 -702.75
3TMN 7 1118 2791.00 8 -557.61
1THL 8 1140 2846.67 6 -735.21
5TLN  STLN 1 1 93.67 1 -739.67
6TMN 2 13 177.33 4 -632.14
3TMN 3 24 279.33 5 -486.10
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molecules SURFCOMP consensus scoring FlexS
first total
A B rank. cluster score rank score
ITLP 4 38 359.67 2 -680.51
1THL 5 47  383.67 3 -676.75
5STMN 5TMN 1 1 167.00 1 -1499.36
4TMN 2 262  681.33 2 -1289.80
6TMN 3 814 1205.33 3 -1225.49
1TMN 4 1154 1539.33 5 -938.25
ITLP 5 1521 1999.67 4 -1157.74
1THL 6 2384 3658.33 6 -873.37
STLN 7 2394 3676.67 7 -577.19
3TMN 8 3023 4875.33 8 -547.60
6TMN 5TMN 1 1 436.67 1 -1466.22
6TMN 2 218  693.00 2 -1304.29
4TMN 3 1531  1746.33 3 -124¥.28
1TLP 4 2380 2589.67 4 -1099.71
1TMN 5 2687 3187.33 5 -883.13
ITHL 6 3016 3983.67 6 -847.09
3TMN 7 3079 4125.67 8 -517.30
5TLN 8 3121 4643.33 7 -568.19

Table 4-6: Comparative rankings of all molecules of the thermolysin dataset.

For the SURFCOMP ranking the comparative rank, the appearance of the first cluster of
that molecule and the consensus scoring value are given. The FlexS rankings are
described by the comparative rank and the total score.

4.1.4. Evaluation of Different Surface Types: Comparing DHFR ligands

The enzyme dihydrofolate reductase (DHFR, EC 1.5.1.3) plays a key role in the
folate metabolism of eukaryotic and prokaryotic cells [16]. It is responsible for the
NADPH-dependent reduction of dihydrofolate to tetrahydrofolate which is required for
DNA, RNA and protein synthesis. Inhibition of DHFR has been a target in drug
discovery since many years and different antagonists have been developed. Methotrexate
(MTX) has been successfully applied in cancer therapy and trimethoprim (TMP) is a
useful drug for the treatment of various infections [121]. The triazine WR99210 is an
inhibitor of malarial DHFR but shows some side effects [61]. Because of the presence of
DHFR in almost any species selective dihydrofolate antagonists can be antibiotic agents
as described by Li et. al. [84] for Mycobacterium tuberculosis. Partly because of its
pharmaceutical relevance DHFR and the various folate antagonists have become a
reference system for molecular modeling. Especially the DHFR/methotrexate complex is

a common  standard for the  validation of docking  algorithms
[27;51;106;122;134;137;140].

For the present investigation, a set of three folate antagonists together with
dihydrofolate (Chart 4-2) was assembled. All data were taken from X-ray structures of
complexes with the DHFR enzyme, which were published by Li et. al. [84] (MTX, TMP
and Br-WR99210, a derivative of WR99210, henceforth referred to as WRB) and Davies
et. al. [38] (folic acid, abbreviated FOL in the sequel) and involved DHFR from
Mpycobacterium tuberculosis and human cells respectively. The antagonists (MTX, TMP
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Chart 4-2: DHFR inhibitors

2D structures of folic acid (FOL), methotrexate (MTX) | trimethoprim (TOP) and Rr-WR99210 (WRR).
The codes in parentheses are the identifiers of the corresponding DHFR/ligand complex structures in
the PDB database. The given resolution is for the complete protein/ligand complex in the X-ray data.

and WRB) were measured in a ternary complex with the enzyme and one molecule of
NADPH bound to its natural binding site, which is not present in the complex of FOL
with DHFR. The backbone atoms of the three complexes with the enzyme from M.
tuberculosis (containing MTX, TMP and WRB) were aligned with an excellent RMSD of
about 0.3 A and the human protein complex with FOL could also be matched to the other
protein structures with an error of about 1.0 A. Hence the four structures could be
superimposed within the binding sites of the proteins by the procedure given in section
4.1.1 on page 40.

The common feature of all four structures is a nitrogen-containing heterocycle
(pyrimidine, pteridine or triazine) substituted with either one amino and one hydroxyl
group or two amino groups. The remaining parts of the molecules are rather different
except for MTX and FOL which have the same skeleton. When bound to the proteins the
heterocycles are buried in the cleft of the active site. Several hydrogen bonds are formed

(b)

Figure 4-10: Alignment of methotrexate and dihydrofolate in the pocket of DHFR.

On the left side it can be seen clearly that the two pteridine ring systems are not in perfect superposition
but are rotated against each other by 60°. The right side displays the two molecules in CPK colors to
show which groups are in close contact.
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Figure 4-11: Four different molecular surfaces of the folic acid. .
Fast-Connolly surfaces generated with MOLCAD with (a) 3 points per A” and (b) 6 points per A%
r}lg)lecular surface generated by Connolly’s MS program with (c) 3 points per A? and (d) 6 points per
A”

between the nitrogen atoms in the ring systems, the amino or hydroxyl groups of the
ligands and different residues of the protein (especially ASP 27 ILE 5) or the NADPH
molecule. The other molecules are forming different hydrophobic interactions with
various amino acids of DHFR. An interesting difference in the binding modes can be
observed between methotrexate and dihydrofolate. Although these two molecules have
only two different functional groups (one amine is replaced by a hydroxyl group and a
methyl group is added to the nitrogen that connects the pteridine with the phenyl ring),
the orientation of their heterocycles is completely different. The two pteridine rings are
aligned in a way that the 4-amino group of MTX is aligned with the 2-amino group of
FOL. The consequence of this is that the fused rings are rotated by approximately 60
degrees against each other, while the central phenyl rings and the glutamic acids are still
in a good superposition (Figure 4-10). One would not expect this constellation by
comparing just the 2D molecular structures and it is a challenge for the program not to
get confused by the similar looking shapes of the heterocycles.

The three different nitrogen heterocycles that form the common basis of the dataset
are posing another problem to surface comparison: due to the planar character of the
aromatic or conjugated systems the molecular surfaces around those parts of the
compounds have only a few features that can be used as critical points in the
SURFCOMP algorithm. In the case of dihydrofolate, only the amino or hydroxyl groups
are responsible for a few clear peaks (see Figure 4-11a) and in the other molecules those
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features are even symmetric and can lead to upside-down alignments. Consequently the
first preliminary experiments did not perform very well (see below). To improve the
results for this dataset the features had to be enhanced, especially around the
heterocycles.

One possible solution to that problem is to increase the number of points that
describe the molecular surface. Increasing the point density will decrease the triangle
sizes and will allow the identification of smaller features on the surface. Usually the
surfaces were created with 3 points per A?, which corresponds to an average triangle area
of 0.18 A2, To obtain a finer representation a set of surfaces with a point density of 6
points per A? was created. Other factors that control the resolution of a surface are the
placement of the surface points and the triangulation process. These parameters are
usually fixed for a specific surface generation algorithm, therefore not only MOLCAD’s
Fast-Connolly surfaces [24] but also the output of Connolly’s original MS program [32]
was used, which takes longer to compute, but produces a better feature resolution.

To investigate the influence of the different surface types and resolutions on the
results of the experiments four different surfaces for each molecule in the DHFR dataset
were created: Fast-Connclly surfaces with (2) 3°and (b} 6 points per A? and original
Connolly surfaces with (c) 3 and (d) 6 points per A’ In Figure 4-11 the different surfaces
of dihydrofolate are given as an example for the complete sets. The experimental
parameters are summarized in Table 4-7. The results, which are summarized in Table
4-8, show that a significant improvement in the surface alignments as well as in the
reproduction of the experimental situations can be obtained if the resolution is increased

from 3 to 6 points per A’ or if a Connolly surface is used instead of the Fast-Connolly
type.

In the initial setup, 3 points per A? Fast-Connolly surfaces, FOL could only be
aligned properly with MTX and WRB especially around the heterocycles, but the
alignment with TMP was poorer although the amino groups at the heterocycles were
aligned correctly. The detected similarities between MTX, TMP and WRB did not cover
everything that could be compared and the MTX vs. WRB alignment was completely
wrong because the surface of the 2-amino group of MTX was assigned to the surface of
the 4-amino group of WRB and vice versa. The surface similarity between TMP and
WRB was correct but could not reproduce the experimental data well because of a rather

unsimilar critical point pair that was positioned over a methoxy group of TMP and the
ether bridge of WRB.

The same calculations performed with high resolution Fast-Connolly surfaces lead to

filter parameter symbol section® value propertyb
Curvature cut-off range CCR 223 1.0 A

neighbourhood radius rep 3.2 20 A

fuzzy threshold F 3.5 0.3 ESP
shape threshold R 3.6 0.6 STI
distance tolerance T 3.7 1.0 A

Minimum distance Snin 3.7 0.5 A

angular tolerance Brol 3.8 150 °

Table 4-7: Experimental conditions used in the DHFR ligand dataset experiments.
Ithe section in the text where the filter is described
Ythe molecular surface property applied to the specific filter (ESP, electrostatic potential).
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Molecules RMSD [A] Molecules RMSD [A]
A B  points surf. struct. | A B points  surf.  struct.
(a) MOLCAD surface 3 points per A’ (c) Connolly surface 3 points per A’
FOL MTX 449 1.36 1.23 | FOL MTX 372 0.85 0.73

T™MP 215 1.32 1.90 T™MP 359 1.69 0.68
WRB 257 0.99 1.26 WRB 337 0.99 1.46
MTX TMP 216 0.64 1.63 |[MTX TMP 273 1.14 0.97
WRB 181 1.11 5.82 WRB 199 0.69 1.56

TMP WRB 312 1.28 1.74 | TMP WRB 318 0.72 0.51
(b) MOLCAD surface 6 points per A (d) Connolly surface 6 points per A?

FOL MTX 890 0.76 1.61 | FOL MTX 954 0.99 1.13

TMP 377 0.8 0.97 TMP 624 1.83 0.88
WRB 629 1.02 1.36 WRB 721 0.84 1.58
MTX TMP 595 1.04 0.87 |[MTX TMP 3581 0.53 1.37
WRB 885 1.54 0.74 WRB 739 1.13 0.98

TMP WRB 396 0.55 0.53 |TMP WRB 470 0.64 0.7

Table 4-8: Results obtained for the surface comparison with different surface types.
Under a-d are the best alignments, ideroltiﬁed by visual inspection, for the MOLCAD and
Connolly surfaces with 3 and 6 points per A,

better results. For every pair except FOL and WRB, which gave the same quality, either
the surface RMSD values or the displacements from the X-ray data dropped significantly.
The algorithm could now find a correct alignment between MTX and WRB and the
similarities between MTX and TMP were detected more completely. This usually
increases the RMSD of the surface superposition, because more points are involved, but
improves the fit to the experimental data. For other pairs like TMP and WRB or FOL and
TMP the size of the detected surface similarities decreased because the higher resolution
supported a better distinction between unsimilar pairs and therefore the representation of
the X-Ray data also improved. A drawback of the increased resolution was that the
calculation took up to four times longer because of the larger point sets and produced
much more alternative clusters than the smaller 3 points per A’ surfaces of the initial
setup.

An alternative solution, which does not necessarily increase the number points, is the
use of a more accurate surface type. The results obtained by the set of Connolly surfaces
with 3 points per A? revealed surface similarities comparable to the high resolution Fast-
Connolly surfaces. In this surface type the points are placed more carefully to give a
better representation of small surface features with the same number of primitives. All
pairs were aligned correctly and the symmetry of the amino groups attached to the
heterocycles did not cause any problems, as opposed to the case with the low resolution
Fast-Connolly surfaces. The quality of the surface superposition and experimental
alignment was similar to the high resolution comparisons but the patches were usually
larger. Therefore some of the RMSD increased but were nevertheless of the same quality
because of the increase in patch size.
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FOL/MTX, Fast Connolly, 3 points per A” FOL/MTX, Connolly, 3 points per A’

MTX/WRB, Fast Connolly, 6 points per A

TMP/WRB, Fast Connolly, 3 points per A’ TMP/WRB, Connolly, 3 points per A’

Figure 4-12: Line ups between comparisons performed by different surface types.

The standard surface set (Fast Connolly with 3 points per A?) is given on the left and the improved surface
sets on the right.

top: The alignment on the right side is based on a much better surface similarity that contains almost the
complete area around the heterocyclic ring systems.

middle: only the alignment based on the improved surface set (right) is correct. Watch the orientation of
the red structure on the left image.

bottom: presents a similar situation as in the top row; the surface alignment of the improved set is much
better due to more precise surface similarities.
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The last group of calculations was performed with high resolution Connolly surfaces
that had a point density of 6 points per A% The size of the surface similarities were
slightly larger or equal to the low resolution Connolly surfaces and the computational
effort was comparable to the high resolution Fast Connolly calculations. In this case the
RMSD between the detected surface alignments and the fit to the X-ray data did not
differ significantly from the other two improved calculations. Only MTX and TMP
showed a much better surface alignment while at the same time the fit to the X-Ray data
was worse than in the low resolution Fast-Connolly experiments (see Table 4-8d),
because only the regions around the heterocycles were considered to be similar. The
opposite was the case in the comparison of MTX and WRB. Here the higher resolution
surface allowed a better identification of the similarities in the surface regions over the
phenyl ring systems in both structures. Three examples that compare the results obtained
by the initial setup with those of the improved surface sets are given in Figure 4-12.

Comparing the results of group 2 and 3 (Table 4-8b and Table 4-8c) leads to the
conclusion that in case of featureless surfaces an increase of the surface resolution has
almost the same effects as a better placement of surface points and triangles. Increasing
the point density is done easily and every surface generation algorithm provides a
parameter to adjust that property. But a better point placement or a more sophisticated
triangulation algorithm can usually be achieved only by a change of the generation
algorithm which may not be possible in certain situations.

4.1.5. Testing different conformations

Real molecules are flexible and their actual shape can vary between many
configurations that correspond to minima on the potential energy surface. The
conformational flexibility of a molecule depends on several parameters including the
number of rotatable bonds, the presence of rings and large groups and the environment
(whether the compound is docked into an active site of a protein or is in solution). A
fixed 3D structure is therefore not always a sufficient representation of a molecule but it
provides all the information that is necessary to take flexibility into account. If all the
atoms and bonds of a compound are known it is possible to search for new low-energy
configurations on the potential energy surface using molecular or quantum mechanics.

Molecular surfaces do not provide information that is necessary to deal with
flexibility. They can be seen as a view on a specific conformation that hides any
information about the internal structure of the molecule. Therefore it can be difficult, if
not impossible, to reproduce a surface similarity between two molecules if different
conformations are used for the generation of their surfaces. To what extend the structures
can vary to show still the same similarities depends on the surface comparison
methodology.

The performance of the SURFCOMP program was tested on different conformations

0O o o
1 | I NH
R X
o fe} o 0 /=N NH N7 N,O\/\/O
N\%\‘/ 2 )\\
S N H,N N”/ Br
HO OH 7
ATP* WRB

Chart 4-3: 2D structures of adenosine triphosphate and Br-WR99210 (WBR).
The rotatable bonds considered for the conformational search are printed in red.
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(a) (b)

Figure 4-13: Alignment of the generated conformations for ATP*.

(a) Stretched (natural) structure of ATP* when bound as a ligand to a protein and (b) alignment of the
14 different conformations as found by the random search. The conformations have been superimposed
on the coordinates of the adenosine atoms. The conformations are colored according to their relative
energy: blue represents the lowest energies and brown corresponds to high energy structures.

of ATP* and the DHFR antagonist Br-WR99210 (see Chart 4-3). For both molecules a
set of conformations was calculated and the molecular surface of each conformation was
compared with a template conformation. The detected similarities were evaluated by the
result of a self-match of the template conformation, which in both cases represented an
identical one-to-one association between all surface points.

ATP*. Adenosine triphosphate has usually four negative charges when bound to a
protein. Therefore the three dimensional structure of ATP received four negative formal
charges at the terminal oxygens of the three phosphate groups. This structure was used to
generate a set of different conformations. Because of the large number of rotatable bonds
a systematic search in the space of possible torsions was not possible and the random
search facility of Sybyl 6.9 [2] was applied with a subset of the free bonds that includes
the bond between the ribose and the adenosine, all the C-C and C-O bonds of the ribose,
the connection between the ribose and the triphosphate and all the P-O bonds of the
triphosphate (see Chart 4-3). The search returned 14 different conformations which were
all more compact than the original conformation taken from a protein complex (see
Figure 4-13). The energies of these structures varied from 28.83 kcal/mol to 32.56
kcal/mol.

With a random search the completeness of the set of conformations can be assessed
by the number of times each conformation was detected by the algorithm. According to
Saunders [116] the probability that a set is complete increases with the number # of hits
for each conformation with (1-(0.5)"). Thus, if each conformation has been found five
times there is a 96.9% chance that all possible conformations have been found. In the
search for the ATP* molecule some clusters where only detected once in 1000 steps of
the algorithm. The set is therefore not a representative sample of the available
conformational space. Fortunately, for the purposes of the investigation no exhaustive list
of low-energy conformers was needed, only a selection of sufficiently different shapes of
the molecule.

The lowest energy conformation was taken as a template and compared with all other
conformations. The comparisons were performed with Connolly surfaces at a resolution
of 3 points/A2 and the corresponding electrostatic potentials mapped to the points (for the
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RMSD  RMSD conf.

Conformation  count® E [l CPs° points surf. [A]* [A]°
1 2 32.35 4 317 1.69 2.82
2 1 32.56 11 397 0.84 2.06
3 1 32.27 6 361 0.83 1.90
4 1 32.27 6 344 1.28 2.76
6 6 30.15 16 646 1.32 1.65
7 7 28.88 21 707 0.71 0.44
8 4 30.47 15 545 0.68 1.18
9 4 31.77 9 424 1.28 1.61
10 2 31.52 12 451 0.71 0.95
11 3 31.48 15 519 0.74 0.77
12 5 29.57 6 433 1.51 2.51
13 3 31.1 12 532 0.79 1.32
14 3 31.73 10 433 1.04 1.45

Table 4-9: Results of the surface comparison of ATP* conformations
The tests were performed with the lowest energy conformation No. 5 and all other conformations of

ATP*.

2 number of times this conformation was detected in the random search
® total energy of the conformation calculated as calculated during the random search

9

number of critical points that form the similar regions

9 RMSD between the similar surface regions and © between the conformations

experimental details see Table 4-10). For each pairwise similarity search the top ranking
cluster was selected by means of the consensus scoring method and the structural RMSD
between the template and the test structure was evaluated as a measure of the

conformational difference.

The results, summarized in Table 4-9, reveal that the size of the detected surface
similarities decreases with increasing RMSD between the compared conformations. This
trend is rather qualitative but it agrees with the expectations. The same trend cannot be

observed between the conformational RMSD of the structures and the RMSD of the

similar surface areas. For the four most similar conformations (compared to the template)
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Figure 4-14: Surface similarity vs. conformational difference.
Relations between the conformational difference of the structures and (a) the size of the similar patches
or (b) the goodness of the similar surface fit.
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the quality of the surface fit is almost equal, and even the similar surface regions of most
of the other conformations can be aligned quite well. This is because different 3D
structures can nevertheless have common patches on their molecular surfaces. These
regions will most probably get smaller and smaller but those parts that match can still fit
very well.

Figure 4-15 shows the results of surface comparisons between two similar and two
different conformations (4 and 13 in Table 4-9). It is remarkable how well parts of the
molecular surfaces match each other even if the RMSD value between the corresponding
structures is as large as 2.76 A. Only the size of the patches for the less similar
conformations is significantly smaller compared to the better matching structures.
Furthermore, the search between the template and conformation 4 (Figure 4-15 a and b)
is a good example for the case that two different structural elements can have a common
molecular surface. On the other hand, the second example, comparing conformation 13
with the template, shows that although most of the structure and surface is almost
identical, a single difference between the two structures, the position of the third
phosphate group, prohibits the recognition of a large patch at the top of both surfaces.

(d)

Figure 4-15: Surface alignments of the template and two calc. conformers of ATP*,

(a) and (b) contain the template (blue) together with a bad matching conformation (red, see 4 in Table
4-9), while (c) and (d) display the alignment of the template with a well matching conformer (see 13 in
Table 4-9). The surfaces are color coded by the electrostatic potential, where blue corresponds to a
negative and red to a positive charge. One can see that the surfaces that match in the first example do
not cover corresponding parts of the molecular structure. E.g. the positive patch on the upper left
corners belongs to the ribose in (a) and to the adenosine residue in (b).
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(2) (b)

Figure 4-16: Alignment of the generated conformations for WRB.

The conformations are colored according to their relative energy: blue represents the lowest energies
and brown corresponds to high energy structures. (a) Shows the relative orientation of all conformations
when the structures are superimposed by the triazine rings and (b) gives the same situation for an
alignment via the bromo-phenyl residues.

WRB. To investigate the actual influence of distinct conformational changes the
DHFR ligand Br-WR99210 (WBR) was taken from the protein structure 1DG7. The
molecule consists of two rather inflexible parts, a substituted triazine ring, which is
responsible for the protein binding and a bromo-phenyl residue on the opposite end.
These two parts have a very characteristic molecular surface which should be recognized
easily between different conformations. The flexibility of the compound is mainly due to
the ether bridge that connects the two rigid parts. Hence large changes in the 3D structure
and thus in the surface can only happen in this region of the molecule. If the
conformational search is focused on this area one should obtain a set of structures that
will have a surface match over the rigid parts but no similarity in between. The question
is to what extent these two similarities can be detected by a single surface alignment.

In this experiment a systematic search was used to generate a set of conformations.
For that the two central bonds of the ether bridge were selected to rotate freely. The
torsions around these bonds were changed in steps of 60 degrees which after
minimization resulted in 36 different conformations having energies between 5.63 and
16.87 kcal/mol and RMSD to the original structures of 0.84 to 3.06 A. A subset of 12
conformations is shown in Figure 4-16. From this picture one can see that the main
conformational differences are the relative orientations of the triazine and bromo-phenyl
residues.

With each molecule in that subset a surface comparison against the original 3D
structure from the PDB structure 1DG7 was performed. The surface type and the
calculation of the physicochemical properties were equal to the ATP* tests and the
experimental details are given in Table 4-10. To detect how much of the surface is
preserved by each conformation the results of the SURFCOMP program were searched
for the clusters that included the patches around the triazine and the bromo-phenyl ring.
They could be found more easily when the alignments based on the surface similarities
were compared against the two different structural superpositions shown in Figure 4-16.
The consensus scoring was then used to rank the clusters according to one of these
RMSD differences, the size of the similar patches and the chemical correlation. This
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triazine bromo-phenyl

Conf. E[*¥..]> RMSD conf.[A]’® points RMSD [A]° points RMSD [A]°
2 8.79 1.67 452 1.19 505 0.76
9 11.36 1.15 462 0.66 378 0.56
10 6.24 1.85 485 0.63 337 0.83
13 16.87 0.84 494 0.74 395 0.69
21 10.97 2.65 436 0.68 402 0.69
23 10.75 221 457 0.66 392 0.89
24 6.66 1.84 483 1.17 432 1.11
25 16.27 2.79 448 0.92 377 0.97
26 10.25 2.94 330 0.53 428 0.75
27 15.65 3.06 382 0.61 373 0.62
30 10.55 2.65 392 0.79 394 0.82
32 5.63 2.65 362 0.85 437 0.79

Table 4-10: Results of the surface comparison between the conformations of WRB.
2 iotal eieigy of the conformation calculated as caloulated during the random scarch
® difference between the calculated conformation and the original structure

% goodness of fit of the similar surface regions.

variation to the usual scoring procedure identified in all cases the largest possible surface
similarities that were centered on one of the rigid areas in the molecules.

The results show that the correlation between the size of the similar patches and the
RMSD of the conformations is still similar to the relationship detected by the ATP*
example and that the matches between the single rigid parts are found in every
comparison. However, in almost any case — even with very small differences in the 3D
structure — the two rigid areas could not be detected by a single cluster. Only if features
in the ether bridge were similar they were included into the clusters that represented the
conserved areas.

These results, from the ATB and WRB tests, emphasize the fact that conformational
changes are a critical perturbation when two different molecules are compared. However,
individual features that do not change their conformation easily are most likely detected
as similar even if the total 3D structures are very dissimilar.

filter parameter symbol section® value propertyb
Curvature cut-off range CCR 223 1.0 A

neighbourhood radius rep 3.2 20 A

fuzzy threshold F 3.5 0.4 ESP
shape threshold R 3.6 0.5 STI
distance tolerance T 3.7 1.0 A

Minimum distance Ormin 3.7 0.5 A

angular tolerance Brol 3.8 150 °

Table 4-11: Experimental conditions used in the conformation tests.
% the section in the text where the filter is described
® the molecular surface property applied to the specific filter (ESP, electrostatic potential).
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(a) (b)

Figure 4-17: Separated surface similarities between WRB conformers.

In the top row the similar regions that matches the triazine areas are displayed (a, b), in the middle the
similarity between the surfaces around the bromo-phenyl part are shown (c, d) and the bottom lines up
the corresponding alignments between the two molecules based on the triazine (e) and bromo-phenyl (f)
similarity.

4.2. Comparing Proteins: Surface Differences between SAP
and EAT-2

SAP and EAT-2 are both representatives of SRC homology 2 (SH2) domains, which
are key elements in tyrosine kinase regulation of cellular processes. The mechanism is
usually triggered by the binding to peptide sequences that contain phosphorylated
tyrosine residues (pTyr). SH2 domains consist of approximately 100 amino acids and can
be found in a large number of proteins. Normally they can be found in higher eukaryotic
cells but some evidence exists that they are also present in yeast [88]. The common fold
of SH2 domains consists of a central } sheet core and a separate, small antiparallel B
sheet which are flanked by two o helices, one on each side (see Figure 4-18). The
phosphorylated tyrosine residue of a cognate ligand binds orthogonal to the 3 sheet core
and residues from one side of the core and of the N-terminal o helix are forming
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SAP (1D4W) resolution = 1.80 A EAT-2 (113Z)  resolution=2.15 A

Figure 4-18: Structure of the SAP-pSLAM and EAT-2 pSLAM complexes.

In both pictures the ligand peptide is displayed in bold, dark balls and sticks together with the amino
acids of the protein in capped sticks that are located within 4.0 A of a ligand atom. The PDB codes are
given in the individual image captions together with the X-ray resolutions.

coordinative bonds to the ligand. The loops that connect the different structural elements
can vary between the different members of the SH2 family and the affinity of a SH2
domain to a ligand peptide depends strongly on the first three amino acids that follow
downstream of the pTyr [117].

When coordinated to pTyr-containing signal peptides, SH2 domains can form
various protein/protein interactions with catalytic domains like tyrosine kinases or
adaptor proteins like CRK or GRB2 [118]. Thereby they serve as an additional regulation
mechanism in the orchestration of signal transduction that supplements the
phosphorylation/dephosphorylation mediation via kinases and phosphatases. Hence, their
function makes SH2 domains very interesting targets from the drug discovery point of
view. Blocking SH2 domain dependent protein-protein interactions is a promising
strategy for a variety of different diseases from cancer and osteoporosis to allergy and
inflammatory diseases [21]. For the same reasons, selectivity between different SH2
domains is a very important factor. To avoid side effects it is absolutely necessary to
target only one member of the SH2 family by an inhibitor. Therefore, the studies on the
surfaces of SAP and EAT-2 concentrated on the differences of their cognate ligand
binding sites.

SAP is a free SH2 domain that inhibits signal transduction events induced by a series
of receptors on the surface of T lymphocytes and natural killer cells (NK). A mutation in
the gene encoding SAP (SH2DIA) is involved in the X-linked lymphoproliferative
disease (XLP), a rare immune disorder that renders the immune system unable to respond
effectively to the Epstein-Barr virus [100]. SAP interacts with the consensus motif in the
cytoplasmic tail of SLAM (CD150) in the phosphorylated and also in the
dephosphorylated form, thereby blocking the recruitment of the SHP-2 phosphatase to
that position in the receptor. Recently two groups independently discovered that the
interaction of SAP with the SH3 domain of the SRC-family kinase FynT couples this
kinase to SLAM [28;78].



Computations and Results 69

SLAM
(CD150)

Inactive FynT

Figure 4-19: A mechanism for SLAM-induced recruitment and activation of Fyn.
The inactivated form is shown on the left cide and the SAP-activated form ic given on the right side.

(figure taken from Chan et. al. 2003 [28]).

In an experimental study, Li et. al. discovered [85] that SAP has interesting relative
binding affinities to variations of the native SLAM peptide. They tested the relative
dissociation constants of parts of the signaling peptide of pSLAM against the full and
dephosphorylated sequence (SLAM). It was found that the N-terminal part of pSLAM is
more important for the binding than the C-terminal part which is unique among the
members of the SH2 family (see also Figure 4-20).

EAT-2 is a very similar SH2 domain that is expressed in macrophages and b-
lymphocytes [99]. EAT-2 too can be associated to SLAM and acts as a SHP-2 blocker
but no interactions with the SH3 domain of FynT are reported. Analogously to SAP, it
binds to the phosphorylated cytoplasmic tail but unlike SAP it does not bind to the
dephosphorylated receptor. Therefore, in contrast to SAP the binding of EAT-2 to SLAM
is significantly more dependent on the tyrosine phosphorylation. This selectivity towards
pTyr and the different locations of SAP and EAT-2 make the system an interesting target
for a selective blocking of the SH2 signal peptide interactions.

Several protein structures for SAP and EAT-2 in the native form and in complex
with the phosphorylated and dephosphorylated SLAM-tail peptide (SLTI-(p)T-AQVQK)
are available. An overview is given in Table 4-12. In this study X-ray structures of both
proteins in complex with the phosphorylated SLAM were used to determine the

Structure PDB Technique resolution ref.
unliganded SAP ID1Z  X-ray 140 A [107]
SAP in complex with p-SLAM 1D4W  X-ray 1.80 A [107]
SAP in complex with SLAM 1D4T  X-ray 1.10 A [107]
SAP bound to the N-Y-C peptide 1IKA7 NMR [68]
SAP bound to the N-pY peptide IKA6 NMR [68]
SAP/FynSH3/SLAM ternary complex IM27 NMR [28]
EAT-2 in complex with p-SLAM 1132 X-ray 2.15 A [107]

Table 4-12: Available protein structures for SAP and EAT-2.
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Figure 4-20: Relative binding affinities between SAP and different SLAM peptides.
The figure is taken from Li et. al. [85] and compares the relative binding affinities of different SLAM
peptides with the binding sites of the SH2 domain SAP.

differences on the surface regions that are involved in the ligand binding (1D4W and
113Z). Sketches of both protein/ligand complexes are given in Figure 4-18 and the result
of a sequence alignment is displayed in Figure 4-21.

Earlier studies revealed that the consensus sequence motive T/S-x-pY/Y-x-x-V/I is
responsible for the SLAM recognition in SAP [83;85], where x represents any amino
acid, and pY/Y (phospho-tyrosine or tyrosine) can be replaced by other amino acids. The
three fixed residues of this motif are bound to three well formed cavities on the surface of
SAP and corresponding binding pockets can be found in EAT-2. It was now of particular
interest to investigate the cavities and to detect any differences in the molecular surfaces
around those regions. If such differences are based on structural variations, they may
highlight positions where a selective binding to SAP but not to EAT-2 could be
successful. Differences due to different conformations will probably disappear if a new
ligand induces a conformational change.

4.2.1. Surface Comparison

The investigation was focused on the molecular surface that was in close contact with
the pSLAM peptide. Close contact was defined by selecting only those critical points
on the surface which were located within 8.0 A of the following atoms on the
pSLAM peptide:

1. the carbon atom of the closer methyl group in the side chain of leucine 278 (CD1),

2. the oxygen of the hydroxyl group of threonine 279 (OG1),

SAP 1 MDAVAVYHGKI SRETGEKLLLATGLDGSYLLRDSESVPGVYCLCVLYHGYIYTYRVSQTE
R R R e T
EAT2 1 MD LPYYHGCLTKRECEALLLKGGVDGNFLIRDSESVPGALCLCVSFKKLVYSYRIFREK

SAP 61 TGSWSAETAPGVHKRYFRKIKNLISAFQK PDQGIVI PLQYPVEK

EAT2 60 HGYYRIETDAHTPRTT FPNLQELVSKYGK PGQGLVVHLSNPIMR
pSLAM 276 SLTI-pT-AQVQK
SLAM 276 SLTI-T-AQVQK

Figure 4-21: Sequence alignment between SAP and EAT-2.
The residues that are in close contact (6.0 A) to the ligand peptide are displayed in blue (SAP) and red
(EAT-2). A | means residue identity and :, « strong and weak chemical similarity.
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Figure 4-22: Surface regions considered in the comparison of the SAP and EAT-2.

To detect differences in the molecular surface beneath the ligand peptide, the areas on both molecules
around the N-terminal residue (N), the threonine 279 (T), the phospho-tyrosine 281 (pY) and the valine
284 (V) of pPSLAM were compared with each other. The yellow spheres indicate the atoms that served
as central points of these regions and the blue patch defines the selected surface area.

3. the oxygen connecting the phosphate group with the sidechain of p-tyrosine 281 (OH)
and

4. the B carbon in the sidechain of valine 284 (CB).

The first center represents the N-terminal part of the ligand peptide and the last three
atoms are placed within the three binding cavities of the proteins that bind the fixed
residues of the consensus sequence motif. Figure 4-22 shows the molecular surface of
SAP with the considered regions highlighted.

A surface similarity search with SURFCOMP was performed for each of the four
corresponding centers on SAP and EAT-2. To work out all the possible differences the
parameters were tuned in a way to retrieve only the most significant surface similarities
(Table 4-13). For the physicochemical property used in the fuzzy filtering the
electrostatic potential of the protein was selected, which was calculated as described in
section 3.11 (p. 37). Initially the results of each comparison highlighted only the
differences in one region. To get the overall view of the complete binding area the best
clusters of all four computations were combined into one picture that gives a good
overview of the surface differences of SAP and EAT-2 binding to pSLAM.

Figure 4-23 and Figure 4-24 show that differences between the binding surfaces are
located at the N-terminal part, at the threonine binding pocket, around the pTyr-281
location and inside of the valine-284 cavity. The central pTyr-284 binding pocket seems
to be different on the upper rim and on the left side where it flanks the threonine cavity.
The latter difference is mainly due to a single surface feature that corresponds to the side
chain of Lys-12 in EAT-2 and the guanidine group of Arg-13 in SAP which do not show
any strong interaction with the residues of the ligand. The other difference in that part,
covering the binding pocket from the upper left corner is caused by different
conformations of the sidechains of the glutamic acids 34 (EAT-2) and 35 (SAP). It is
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unlikely that these differences can serve as a starting point for a selective SAP/SLAM
blocking.

Of more interest are the differences in the threonine binding pocket and the valine
cavity because they cover two of the three structural motifs that seem to be responsible
for the recognition of the ligand. The threonine cavity in EAT-2 is wider than but not as
deep as the corresponding feature on the SAP surface. Furthermore the entrance to the
cavity from the right (in Figure 4-23 and Figure 4-24) is steeper in SAP than in EAT-2.
The situation around the valine pockets is even more interesting, because the differences
there are larger and more complex. The finger that encloses the cavity from above the
surface is much more negatively charged in EAT-2 than in SAP and the shape of that
region is also quite divergent. The most important differences are found at the bottom of
the pocket. There SAP has two little extra cavities that are separated by a small ridge. On
EAT-2 the bottom of the valine pocket is rather flat and has no pronounced hole or ridge.

It is noteworthy that the corresponding surface patches of the proteins, which are in
contact with variable parts of the consensus sequence motif T/S-x-pY/Y-x-x-V/I, are
highly conserved. Neither the region beneath the Ile-280 nor the patch close to Ala-282
nnd (3ha 0D chawvr anu aionifinant diffarancac althaniah thoov Aa nat hava o lat Af faatiirac
UiV JJLUT L UL DMV Y uu.y oxsl;;;xvouu. MALIVE VIIWWD, QLU WALL WIV Yy UV LUUL WYY @4 1V VL avditu o,
These findings support the consensus motif from the perspective of the surfaces, because
a flat and featureless region does not provide many anchor points which are necessary for

discrimination.

4.2.2. Structural Investigations

To evaluate the potential of the differences to serve as starting points for
SAP/EAT-2 selectivity the structural configurations that lead to the dissimilarities in the
binding surfaces have to be examined. Therefore the clusters that represented the best
picture of the surface differences at each of the four sites were exported into the
molecular modeling package SYBYL 6.9 [2] together with the corresponding structural
and surface data. In the molecular viewer the residues that are responsible for the
differences in that area could be identified easily and the surface was regenerated only for
those amino acids to focus the eye of the observer on the relevant parts.

filter parameter symbol section® value propertyb
curvature cut-off range Ccr 223 20 A

neighbourhood radius rcp 3.2 20 A

fuzzy threshold F 3.5 0.3 ESP
shape threshold R 3.6 0.6 STI
distance tolerance T 3.7 1.0 A

minimum distance Srin 3.7 05 A

angular tolerance Brol 3.8 15.0 °

Table 4-13: Experimental conditions used in the SAP/EAT-2 comparisons.
Ythe section in the text where the filter is described
®the molecular surface property applied to the specific filter (ESP, electrostatic potential).
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EAT-2

Figure 4-23: Surface differences between SAP (above) and EAT-2 (below).

The figure shows the differences in the surface areas that are involved in the pSLAM binding in
intensive colors. The similar surface is highlighted with less intensive colors while the surface areas that
were not compared are displayed in gray. The colors are encoding the electrostatic potential (ESP) of
the surfaces, where blue indicates negative and red positive areas. The yellow circles indicate the
dissimilarities that have been investigated in more detail on a structural level (see text).
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SAP

EAT-2

Figure 4-24: Surface differences between SAP and EAT-2 with structures.
The figure shows the surfaces in the same way as Figure 4-23 but in combination with the structure of
the pSLAM peptide.
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The residues that form the threonine cavity in SAP and EAT-2 are very similar and
the relative conformations of the residues in each pocket are also highly conserved
(Figure 4-25). But the surfaces are nevertheless divergent at several points which are
related to the differences in the amino acid sequence. As mentioned above a significant
dissimilarity is caused by the patches that are placed around Arg-13 in SAP and Lys-12
in EAT-2. The most important difference, however, is located right at the center of the
cavities where a glycine residue in SAP (Gly-16) is exchanged against a cysteine residue
in EAT-2 (Cys-15). The missing side chain causes the pocket of SAP to extend deeper
into the protein than in EAT-2, where the side chain of the cysteine is blocking the way.
In the crystal structure of SAP the larger cavity is occupied by two water molecules
which seem to be tightly bound to the protein as judged by their low B-factors of
15.25 A% for the inner and 17.89 A? for the outer water respectively. In EAT-2 the
corresponding pocket holds only one molecule of water which is much more mobile
(B-factor of 39.07 A?).

Similarly to the situation of the threonine cavity, the pocket that binds the Val-284
residue of the pSLAM ligand consists of some conserved and some divergent residues
both in SAP and EAT-2. In contrast to the threonine cavity, the shapes of these valine
cavities differ not only at the center but also at the peripheral sections. However the most

Figure 4-25: Structural conformation of the threonine cavity in SAP and EAT-2.

All four images are presenting the inside of the cavities’ surfaces of SAP (left) and EAT-2 (right). In the
top pictures (a + b) the different depth of the pockets is illustrated and in the bottom row (c + d) the
effect of the cysteine sidechain is shown. From these pictures one can figure out easily how the
mercapto-methyl group is limiting the extension of the cavity.
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interesting part is again the central pocket. In the middle of the valine cave EAT-2 has
only a single shallow hole that is enclosed by a leucine (Leu-93) and isoleucine (Ile-65)
residue. SAP has two deeper but smaller cavities at the same position which share a
common entrance similar to the entrance of the single EAT-2 hole. These two cavities are
encircled by two phenylalanine residues (Phe-77 and Phe-87), one alanine (Ala-66) and
one leucine (Leu-43). In contrast to the threonine binding site the valine pockets in SAP
and EAT-2 do not contain bound water molecules in the crystal which is due to the
hydrophobic character of the residues involved. To illustrate how different the depth of
the two pockets actually is, consider that the bottom of the cavity in SAP is formed by
Leu-43. This residue corresponds to Leu-42 in EAT-2 which is buried deep inside the
protein and does not have any contact to solvent molecules.

o

Figure 4-26: Structural conformation of the valine cavity in SAP and EAT-2.

All four images are presenting the inside of the cavities’ surfaces of SAP (left) and EAT-2 (right). The
top row shows which residues in both molecules are defining the borders of the cavities. The bottom
row shows how Ile-65 and Leu-93 prevent the further extension of the pocket into the inner parts of
EAT-2 (d) while the same hole reaches to Leu-43 in SAP (¢).
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4.3. Elucidating the Phosphatase Activity of SAP

As mentioned in the preceding section the SH2 domain SAP has some unique
properties compared to other members of that family. Its binding affinities to signaling
peptides of the phosphorylated/dephosphorylated SLAM type are more dependent on the
residues upstream of the pTyr than on the C-terminal amino acids [85]. Furthermore SAP
is known to block the activity of the SHP-2 phosphatase. Recently, a series of biological
experiments by Schweighoffer et. al. [120] discovered that SAP shows a phosphatase
activity which cannot be found for other representatives of the SH2 family (such as EAT-
2, SHIP, SRC or FYN). This functional similarity to protein-tyrosine phosphatases
cannot be verified by a corresponding match of the protein sequences (see Figure 4-27).
The problem is thus an interesting test case for the theory that similar protein functions
are reflected by similar molecular surfaces [131].

As a reference protein for the similarity searches PTP1, a member of the protein-
tyrosine phosphatases (PTPases) family, was selected. These enzymes, in concert with
protein-tyrosine kinases, regulate a large number of cellular events, including
proliferation and differentiation, metabolism, cytoskeletal organization, neuronal
development, and the immune response [67]. PTP1B consists of a single domain which
has its active site located at the bottom of a shallow cleft. This site is formed by a
sequence of eleven amino acids that represents a common motif of the PTP family and
includes the catalytic cysteine and arginine residues. This cysteine residue acts as a
nucleophilic agent in the catalytic dephosphorylation reaction.

To elucidate the molecular features that cause the phosphatase activity of SAP the
3D structures of SAP in contact with the peptide fragment SLAM (PDB identifier 1D4W)
was compared to an inactive mutant of tyrosine phosphatase PTP1B complexed with
bis(para-phosphophenyl)methane, Bppm (PDB identifier 1AAX, see also Figure 4-28)
[109]. As can be expected from the low sequence similarity of the two proteins, a direct
match between the two structures could not be established by means of the alpha carbon
atoms or the protein backbone. However, although the structural features of the two
proteins are rather different, the corresponding molecular surfaces around the active sites
seem to have similar motifs. Hence a series of surface comparisons between the crystal
structures of PTP1B, SAP and EAT-2 (1AAX, 1D4W and 1I3Z respectively) were
performed. In these experiments the protein surfaces were restricted to the active sites by
selecting only those surface points that were located within 8 A of the ligands’ phosphate
groups. For the similarity search these points were then augmented by the ESP of the
proteins and the experimental details of that setup are given in Table 4-14. For the sake of
simplicity let us assume that the residue 215 in the crystal structure 1AAX is still the

SAP 1 -MDAVAVYHGKISRETGEK------ LLLATGLDGSYLLRD----—-—--—-~—-—-—-—- SESV

PTP1B 46 YRDVSPFDHSRIKLHQEDNDYINASLIKMEEAQRSYILTQGPLPNTCGHFWEMVWEQKS
SAP 38 PGVYCL---------- CVLYHG------ YIYT--—---———-————-— YRVSQTETGSW

PTP1B 105 RGVVMLNRVMEKGSLKCAQYWPQKEEKEMIFEDTNLKLTLISEDIKSYYTVRQLELENL
SAP 65 SAETAPGVHKRYFRKIKNLIS---------- AFQKPDQGIVIPLQYPVEK------~--

PTP1B 164 TTQETREILHFHYTTWPDFGVPESPASFLNFLFKVRESGSLSPEHGPVVVHCSAGIGRS

Figure 4-27: Sequence alignment between SAP and PTPIB.
The residues that are in close contact (6.0 A) to the ligand peptide are highlighted in blue (SAP) and red
(PTP1B). A | means residue identity and :, - strong and weak chemical similarity.
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Figure 4-28: Crystal structure of the C215S mutant of PTP1B (1AAX).

The residues of the protein that are within 6.0 A from the ligand are shown as small ball & sticks. The
ligand that is reaching into the active site is rendered with bold ball & sticks. The mutated serine residue
is highlighted in red.

natural cysteine.

The investigations discovered a significant surface similarity between the active sites
of SAP and PTP1B (see Figure 4-29); it consists of one ridge on one side of the ligands’
phenyl rings and two concave patches in the cavity around the phosphate groups of the
ligands. In both molecules the phenyl ring of the ligands are surrounded by these similar
features and the rest of the cleft that holds them is very well aligned in the superposition
of the similar patches. It is interesting to note, that the result of the surface similarity

. search comes close to an alignment obtained by the plain superposition of the ligands’
phenyl rings. No corresponding surface similarity could be detected between the active
sites of PTP1B and EAT-2 which correlates well with the biological data.

With the established alignment, one can now look for similar constellations of amino

filter parameter symbol section® value propertyb
curvature cut-off range CCR 223 20 A

neighbourhood radius rcp 3.2 20 A

fuzzy threshold F 3.5 0.6 ESP
shape threshold R 3.6 0.5 STI
distance tolerance T 3.7 20 A

minimum distance Omin 3.7 05 A

angular tolerance Brol 3.8 15.0 °

Table 4-14: Experimental conditions used in the SAP/PTP1B comparisons.
Athe section in the text where the filter is described
®the molecular surface property applied to the specific filter (ESP, electrostatic potential).
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Figure 4-29: Similar surface areas in the active site of PTP1B and SAP.

The similar surfaces in PTP1B (left) and SAP (right) are highlighted in strong colors while the different
parts are indicated by less intensive colors. The gray areas are not considered in the surface comparison.
The colors are coding the electrostatic potential on the surface; blue represents negative and red positive
regions. In both pictures the ligands (Bppm left and pSLAM right) are displayed in balls and sticks with
CPK color codes for the elements.

acid residues within the active sites. In both cavities a cysteine and at least one arginine
residue are present. These two side chains are involved in the catalytic cleavage of the
phosphate group in PTP1B and it is suggested that they are also responsible for the
phosphatase activity of SAP. The triangles formed between the cysteine sulfur atom, the
central carbon atom of the arginine’s guanidine group and the phosphor atom of the
ligand are very similar (see Figure 4-30 and Figure 4-31 on page 80). Distances between
two atoms in these triangles do not differ by more than 0.5 A, but the triangles do not
coincide in the alignment. However, aligning the triangles would bring the ligands out of
a position so that they would not fit into the other active site.

It is suggested that the similar surface regions in both active sites are necessary for
the molecular recognition of the ligand structures. In both cases the phenyl ring fits well
into the shape of the similar ridge and cleft motif. These structural features may be
necessary to bring the substrate in close contact with the catalytic residues. Surface
comparison alone cannot answer the question whether the reaction is indeed controlled
by the cysteine/arginine residue pairs that are located at different parts of the cleft,
because it is a static method that does not consider any dynamic processes. Further
structural studies are needed to elucidate the mechanism of the catalytic reaction.
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PTP1B

Figure 4-30: Orientation of the catalytic residues in the active sites.

The residues are displayed to show their orientation with respect to the phosphate groups of the ligands
(CPK ball and sticks). The yellow triangle indicates the distances between the ligands’ phosphor and
the cysteine sulfur and the central carbon of the arginine’s guanidine group. The picture clearly shows
that the residues in PTP1B (below) are rotated by approximately 180° compared to their counterparts in
SAP (above).




Computations and Results 81

Figure 4-31: Orientation of the catalytic residues and the ligand’s phosphate groups

The alignment is based on the surface similarity found between the active sites of SAP and PTP1B. The
triangles describe the distances between the important residues and the phosphor atom of the ligands:
The distances between the phosphor atoms and the cysteine sulfurs are 3.39 A (SAP) and 3.89 A
(PTP1B). The carbon atoms of the guanidine group in the arginine residues are placed at distances of
4.46 A and 4.29 A and the distance between the two residues is 5.67 A and 5.65 A, respectively. The
residues of SAP are represented by red and that of PTP1B by blue lines, the phosphate groups and
phenyl rings of the ligands are displayed in CPK colors. Top view (above) and side view (below).
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5. Conclusion and Outlook

This thesis demonstrates that the comparison of molecular surfaces of small
molecules and of protein active sites can be performed by a stepwise filtering algorithm.
The relative alignments of several inhibitors in the active site of thermolysin could be
reconstructed successfully with a quality comparable to other methods. Furthermore a
scoring scheme could be established that allows the fast screening of a large result set
and the comparative ranking of different surface comparison experiments. The same
procedure is also applicable to the comparison of proteins if the search is restricted to
specific regions of the surfaces. This allows the identification of differences in the
binding modes of two SH2 domains to a phospho-tyrosine signaling peptide and to
create a plausible alignment of two structurally unrelated but functionally related
proteins.

5.1. The Advantages of SURFCOMP

All the experiments were possible because the implementation of the algorithm
(SURFCOMP) did not only calculate a superposition based on surface similarity but
allowed a much more detailed investigation of the matching regions on the different
molecular surfaces. The ability to extract and display similar surface areas provides the
means to check the reliability of the matches, to extend the similar surface patches and
to correlate these to the molecular structure ultimately defining the similarities or
differences between two molecules. Together with the local character of the search an
overall picture can be build, which contains all possible combinations of local surface
similarities between two molecular shapes. With this detailed information it is possible
to perform different experiments such as searching for similarities and dissimilarities or
aligning two molecules based on their similar surface patches. This detailed
investigation of molecular surfaces, however, is slower than other methods like the
quadratic shape descriptors (QSD) [56] or SPAt [37]. On the other hand the consensus
scoring methodology supports a fast screening of the results which is useful for the
examination of large sets of alternative surface alignments that can be produced by the
comparison of proteins.

The filter based procedure of SURFCOMP also provides a flexible framework that
can be adapted to a large variety of surface similarity problems. It is possible to arrange
the tests that are performed by the fuzzy, harmonic map, distance and overlap filters in a
different way. For example, more than one chemical property can be checked by the
fuzzy similarity function or the harmonic maps can be used for the shape and the
chemical properties. The system can also be extended very easily. If additional checks
seem to be necessary or further modification of the input and output data should be
applied, one can add new filters and processing steps to the framework.

In contrast to other surface comparison methods like the QSD [56], SPAt [37] or
the surface segmentation of Exner et. al. [48] SURFCOMP does not rely on a specific
representation of the local surface patches. In the present experiments only circular
patches were used but all the different filters that are applied do not rely on that concept.
It is possible to use different surface patches such as the segmented surfaces or patches
that are based on functional groups. The same is true for the selection of the critical
points. The program uses only “peaks” and “valleys” as centers of the surface patches
but the selection procedure can be extended to choose also saddle points or extreme
values of various physicochemical properties.
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SURFCOMP is also applicable to the comparison of at least parts of protein
surfaces. Although the comparison of parts of molecular surfaces can possibly be
performed by various other programs this thesis shows for the first time that a detailed
investigation of similar and dissimilar patches on a protein surface can lead to
interesting results for drug discovery and function prediction.

5.2. Discussion

Although surface comparison can be very illustrative, the simplicity and beauty of
the pictures can blind the observer. A molecular surface is a very simplified model of a
chemical compound and therefore provides only a limited view of biochemical
processes. The German language has the right words to illustrate that restriction: The
corresponding adverb for superficial, “oberflichlich” has the same roots as
“Oberflache” which means surface. A surface is always only a reduced representation
model of the corresponding object. An old building, for example, might have some nice
balconies and a fresh painting which make it look beautiful and well preserved but you
can only confirm that impression if you check the rooms inside, the electric installations
or the plumbing. The same is true for molecular surfaces. A large negative patch might
indicate the presence of a nucleophilic agent, but you can never be sure until you look
behind the surface at the structure of the molecule.

The flexibility of molecules makes the situation even more complicated because the
shape of a compound can vary dynamically when adopting different conformations as
illustrated in section 4.1.5. Already minor changes in the 3D conformation are sufficient
to change the surface considerably. The surface does not contain the information any
more that would be necessary to track the rotations, bending and stretching that cause
these effects. For that it is again necessary to look beneath the surface at the atoms and
bonds which provide the right model for that purpose.

Nevertheless, superficiality has also some advantages that make surface-only
comparison of objects extremely useful. In 1984, many of the scenes in the famous
motion picture Amadeus by Milos Forman [52] were taken in Prague, although most of
the story was located in Vienna. To give the audience an impression of Mozart’s life,
the director had to find a place that looked like the capital of Austria in the second half
of the 18" century. He could not film in Vienna itself because too much had changed in
the last 200 years. But some parts of Prague still had the typical buildings and streets of
the time and similar facades or surfaces were sufficient to reconstruct the sight of
Mozart’s neighborhood. Similarly, when designing pharmaceutical compounds,
reproducing the shape and the physicochemical properties of the original ligand is often
a very successful strategy.

Most of the surface comparison experiments in this thesis followed this look-alike
principle. Good examples are the common surface patches that were identified during
the comparisons of different inhibitors and substrates for the thermolysin and
dihydrofolate reductase. Those that have been found between all molecules of a set are
likely to contain the necessary shape and electrostatic features that are recognized by the
receptor. It is possible that these features are due to different functional groups, like the
carboxylic and phospho-groups in the thermolysin inhibitors or the different
heterocyclic rings in the DHFR ligands. These differences in the underlying structure
will not influence the result of the comparisons as long as they manifest themselves in
similar shapes and physicochemical properties.

Obviously the surface comparison methodology presented in this thesis can be
successful only if the chemically relevant properties are mapped onto the surface. For
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instance in thermolysin a Zn- ion is a key element of the active site and all known
inhibitors are blocking this ion via a chelate complex. If a molecule has a functional
group that generates a negative ESP patch similar to a negative patch due to a
carboxylic group, but does not form a chelate, the surface comparison based on ESP
may identify the compound as similar but it might not be active at all. Nevertheless, if a
good model of the function of the active site is available and the physicochemical
details of the ligand-receptor interaction are known, then a surface comparison can be
more successful than a simple structure similarity search. In the latter case it would be
difficult to figure out all possible combination of functional groups that cause these
effects in advance.

The SURFCOMP program could find similarities between the surfaces of different
SH2 domains and between the protein SAP and a tyrosine phosphatase (PTP1B) that
have similar activities. The conclusion of these experiments is that common
physicochemical surface patterns seem to be necessary for different active sites to show
the same biological function. Like in the comparison of surfaces of small molecules
different functional groups or residues can give rise to similar patches. Sometimes these
residues are different but closely related to each other and sometimes they are totally
unrelated. This is important, because it underlines the necessity of structural or surface
studies between proteins. The question that remains is whether common surface motifs
are not only necessary but also sufficient for similar functions of different proteins? For
enzymes, surface similarities in the active site are certainly not sufficient because the
mechanism of the catalysis requires well-defined side chains that are usually extremely
conserved across a given enzyme family. For receptors, where non-covalent interactions
between receptor and ligand dominate the recognition process, the actual chemical
nature of the functional groups in the binding site is less important. In these cases it is
sufficient if the surface of the binding site shows the physicochemical surface pattern
necessary for specific ligand binding.

The comparison of SAP and EAT-2 showed that it can be rewarding to look for
dissimilarities between the surfaces of active sites with similar functions in order to find
ways to selectively influence one target molecule over the other which is often a very
important problem in rational drug design. With a sequence or structural alignment only
the differences in the amino acid sequences or the atomic positions can be detected.
Molecular surface comparison can make the influence of these variations on the
interface between the receptor and the ligand visible. One can then focus on those
dissimilarities in the sequences that are responsible for the significant differences
detected between the binding site surfaces.

Another benefit of protein surface comparison is the alignment of similar surface
patches that is automatically created by SURFCOMP and can be used to establish a
superposition of the complete protein structure and surface. In the comparison of SAP
and PTP1B it was shown that a meaningful alignment could be constructed based on
active site surface similarities, whereas the sequences and the 3D structures of the two
molecules could not be aligned properly. In that particular case the surface alignment
was reasonable because it resulted in a similar relative orientation between the active
sites and the corresponding ligands. In general such an alignment is complementary to
sequence and structural alignments. It does not focus on atomic and residue coordinates
but on the physicochemical features of the surface points and can thus highlight
functionally important similarities.

In summary, the power of a surface comparison lies in the highlighting of
molecular properties closely associated with intermolecular interactions. The most
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important limitation of surface comparisons is their lack of predictive power if
molecular flexibility or chemical reactions play an important role.

5.3. Outlook

Molecular surface comparison is a rather new topic and only a few applications in
drug discovery or molecular modeling have been established so far. In the present
doctoral project no time was left to discover and tune all the possibilities of the new
methods although several extensions and improvements are conceivable.

In section 2.2 different molecular and atomic properties were discussed that can be
mapped on the points of a molecular surface. In the experiments mainly the electrostatic
potential was used, but surface comparisons are not restricted to the ESP nor to the
properties mentioned before. Different problems usually require different surface
properties and one should select them carefully to meet the current requirements and
models. Furthermore, as mentioned above, it is possible to use them not only in the
fuzzy filter but also in the harmonic image step. This would provide information about
the physicochemical similarity not only at the critical points, which was sufficient
enough for the nresent experiments, hut in the entire neighhorhood of the CP. When
applying that modification, one should keep in mind that the fuzzy filter is much faster
than the harmonic images.

In the literature many docking algorithms that use surface complementarity are
known [34;49;51;55;103;134]. Hence SURFCOMP should be applicable to docking
tasks as well. Unfortunately, some preliminary tests, where the inverted surface of the
DHFR receptor was compared with methotrexate, did not find any positive hits. The
author believes that various steps in the framework, especially the harmonic shape
image and distance filters, could not cope with the different sizes between the negative
receptor and positive ligand surface. A possible solution to this problem could be to
scale one of the surfaces so that the gap disappears or is reduced. In that case the
distances would become comparable and a proper docking of the ligand into the
receptor could be achieved by SURFCOMP. Scaling could be achieved by simple rigid
body transformation or by the use of larger van der Waals radii in the generation of the
ligand surface. It is conceivable that with these and similar modifications SURFCOMP
could be adapted to function as a scoring component in a docking program.

One of the most interesting applications for drug discovery would be the
comparison of compound databases against a set of known ligands to find possible
antagonists and inhibitors. For that purpose it is necessary to perform and evaluate a
large number of surface comparisons and to consider conformational flexibility. It is
assumed that the method is fast enough to cope with a large amount of similarity
searches. Such high-throughput applications can be “parallelized” easily on a large
Linux cluster or on a distributed metaprocessor system such as United Devices [4]
without any modifications of the system because each comparison is a single
independent run of the SURFCOMP program. The evaluation of the results can be
performed very rapidly by the consensus scoring method as described in section 3.10
which enables a fast screening and ranking of many compounds.

Incorporation of conformational flexibility is more difficult but not impossible.
Although the method is only applicable to rigid 3D structures it is possible to combine it
with a conformational analysis and to scan a set of low energy conformations of each
molecule as expected from a complete 3D molecular similarity analysis. For that
purpose one has to generate a database that contains molecular surfaces of several
representative conformations of every entry in the original set of compounds and
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compare this database against the template surface. This will increase the number of
similarity searches linearly by the number of coordinate sets that are stored for each
molecule. A simpler but less reliable alternative would be to generate a set of
conformations for the template molecule and compare it against a set of rigid query
compounds. In this case any positive hit must be checked against the natural
conformation of the template to ensure that a low energy conformation of the hit
structure matches the binding conformation.

Another interesting application would be the mapping of an unknown binding site
by means of investigating known binders. If a set of compounds is known to be
substrates or antagonists of a specific protein one can try to find common surface motifs
on these molecules that may reveal pharmacophoric features which are necessary for the
molecular recognition in that system. SURFCOMP provides the methodology to detect
common patches between pairs of surfaces. By comparing one surface of a set with
every other surface it is not difficult to select those patches that are similar between all
molecules (see also Figure 4-4 on p. 46). These patches can then serve as negative
images of the features that are present in the active site (e.g. a concave, electrostatic
positive patch will most probably be matched by a convex, negative surface patch in the
receptor). For such experiments conformational flexibility is essential because it will
not be possible to determine the correct ligand conformations in the active site. It can be
incorporated in the same way as described in the last paragraph, but in that particular
case a comparison between all conformations of all molecules in the set will be
necessary causing a quadratic increase of the pairwise comparisons.

According to Via et. al. [131], it should be possible to identify proteins with
common functions by common surface motifs. Finding similar surface patches on
structurally unrelated proteins was one of the motivations to start this project.
Unfortunately, the task proved to be more difficult than initially expected. The main
difficulty is the identification of the relevant sites on the protein surfaces because a
complete comparison would be too time consuming and would produce too many
results. Furthermore it must be clarified for each protein structure which crystal water
should be considered as part of the structure and whether the sidechains of the amino
acids should be relaxed or not. This process involves a lot of manual interaction and
chemical intuition which is a rather time consuming process for the whole set of solved
protein structures. But if all these problems can be solved SURFCOMP will be able to
identify common motifs on all or some surfaces of the known protein structures which
may reveal functional connections between unrelated protein families.
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A The SURFCOMP Program Suite

The SURFCOMP program suite consists of about 30.000 lines of code and
performs the heuristic filtering process described in Figure 3-1 together with the
preparations of the surfaces and the analysis of the search results. The main program is
sur fcomp which calculates the surface similarities and the functions for the consensus
scoring (3.10). The generation and preparation of the molecular surfaces can be
performed either via Sybyl 6.91 [2] and MOLCAD [24] or via the MSMS program
[114] and a property calculator written in C++. All binary programs developed in this
project are available for Linux via source archives or package files in the RPM package
manager file format [126]. The evaluation of the results, the ranking, visualization and
generation of alignment data, is done by the graphical user interface surfcomp-
monitor which acts as a plug-in for the geometry viewer Geomview [1].

The input data (the molecular surface objects and data files) and the fundamental
comparison parameters are stored and managed by a local or remote MySQL database
and scripts are provided that automatically setup and fill the experiment-databases. For
the preparation of the surfaces by Sybyl and MOLCAD a suite of SPL scripts is
available that provides convenient tools especially for the setup of protein active site
comparisons. The suite can handle a series of other surface file formats and is able to
calculate basic surface properties like canonical curvatures [141] and the electrostatic
potential (section 2.2.1) via the auxiliary program propgenerator.

The calls to surfcomp are usually invoked via a shell script which is generated
from a template by the script preparesurfcomp. One can take any user-defined
template for that script and it is thereby possible to distribute the single jobs by a
scheduler to a Linux cluster or to other high performance computer systems.

A.1 Requirements
The following additional libraries are required
e the Linux operating system
e the Xerces-c XML library (version 2.1 or higher) [124]
e the MySQL client libraries (versions 3.23 or higher)
e Geomview (version 1.8 or higher)
e Perl (version 5.6 or higher) [125]

e A MySQL database server (versions 3.23 or higher) with read/write access
for the user.

A.2 Availability

The source code is published under the Novartis open-source license and is
available from the web [64] or the attached CD-ROM together with the binary packages
for various Linux distributions. Binary executables for other platforms must be created
from the source code. Especially compilation for other UNIX compliant systems should
be possible with the provided installation tools.
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Abstract. Analysis of the distributions of physicochemical properties mapped onto
molecular surfaces can highlight important similarities or differences between
compound classes, contributing to rational drug design efforts. Here we present an
approach that uses maximal common subgraph comparison and harmonic shape image
matching to detect locally similar regions between two molecular surfaces augmented
with properties such as the electrostatic potential or lipophilicity. The complexity of the
problem is reduced by a set of filters that implement various geometric and
physicochemical heuristics. The approach was tested on dihydrofolate reductase and
thermolysin inhibitors and was shown to recover the correct alignments of the
compounds bound in the active sites.
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Molecular surface comparison with SURFCOMP: A novel graph-based
approach

Christian Hofbauer, Hans Lohninger, and Andras Aszodi
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Abstract. Analysis of the distributions of physicochemical properties mapped onto
molecular surfaces can highlight important similarities or differences between
compound classes, contributing to rational drug design efforts [131]. We have
developed a method that uses a combination of graph theory, computer vision and
computational chemistry to detect local surface similarities between small and medium
sized molecules. Our approach is based on 3D structure search where maximal common
subgraph isomorphism is used to detect local similarities between the pharmacophoric
feature points of different molecules [91]. The extension of this principle to molecular
surfaces is cumbersome, because treatment of the complete set of surface points instead
of just a few feature points with NP-hard graph algorithms is not feasible. In order to
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perform a reliable and fast detection of local surface similarities it is necessary to reduce
the complexity of the problem by a set of filters that implement various geometric and
physicochemical heuristics.

To achieve this we first generate a simplified representation of the surfaces
consisting only of a set of critical points (corresponding to “hills” and “valleys” on the
surface), augmented by their surrounding surface patches. Among all possible point
pairs we first select those that show sufficient chemical similarity, judged by means of a
fuzzy dissimilarity index [48] between physicochemical properties mapped onto the
surface points. Then the curvature patterns around all remaining point pairs are
compared by harmonic shape image matching [145] to discard points that are not
embedded in a similar shape. Finally the distances and angles between combinations of
similar pairs are checked to be within certain bounds to form an association graph that is
simple enough for the clique detection. The cliques represent the local surface
similarities and an alignment between the two molecular surfaces can be calculated
based on the corresponding points. Finally the alignments can be clustered to reveal a
picture of the total surface similarity between the two molecules.

We tested our method with a dataset of eight thermolysin inhibitors and recovered
the correct alignments of the compounds bound in the active sites. The results were in
good agreement with another surface-based comparison carried out on the same dataset
[37]. We are now directing our efforts to the comparison of protein/protein surfaces and

the incorporation of conformational flexibility.
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C Abbreviations

ALA
ARG
ASP
ATP
Bppm
CP
CPU
CRK
CYS
DHFR
DNA
EAT-2
EC
ESP
FOL
GLU
GLY
GRB2
HF
HOMO
HSI
ILE

LP
LUMO
LYS
MTX
NADP(H)
NMR
NOE
NOESY
PDB
PHE
PTP1B
PTPases
pTyr
QSAR
QSD
RAM
RMS

alanine

arginine

aspartic acid

adenosine triphosphate
bis(para-phosphophenyl)methane
critical point

central processing unit
proto-oncogene C

cysteine

dihydrofolate reductase
deoxyribonucleic acid

ews/flil activated transcript 2
Enzyme Commission

electrostatic potential

folic acid

glutamic acid

glycine

growth factor receptor-bound protein 2
Hartree Fock

highest occupied molecular orbital
harmonic shape image

isoleucine

lipophilic potential

lowest unoccupied molecular orbital
lysine

methotrexate

nicotinamide adenine dinucleotide phosphate

nuclear magnetic resonance
nuclear Overhauser effect

nuclear Overhauser enhancement Spectroscopy

Protein Data Bank
phenylalanine

protein tyrosine phosphatase 1B
protein tyrosine phosphatases
phosphorylated tyrosine

quantitative structure activity relationship

quadratic shape descriptors
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STI
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SLAM¢« associated protein
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