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Kurzfassung

Digitale Signal Prozessoren (DSPs) spielen im Marktsegment der Eingebetteten
Computer Systeme eine wichtige Rolle. Die Einsatzgebiete reichen von Mobiltelefonie,
digitaler Bildverarbeitung bis hin zur Motorsteuerung. Die Anforderungen an die Si-
gnalprozessoren sind dabei meist hohe Rechenleistung bei niedrigem Stromverbrauch.
Bis vor wenigen Jahren wurden DSPs in Assemblercode programmiert, da sonst die
Anforderungen nicht zu erfüllen gewesen wären. Mittlerweile haben sowohl die Ap-
plikationen wie auch die Prozessorarchitekturen einen derart hohen Komplexitäts-
grad erreicht, dass der Einsatz automatischer Übersetzer notwendig ist. Ein Überset-
zer erzeugt aus einem Hochsprachenprogramm ein Maschinenprogramm, das auf dem
DSP ausgeführt wird. Durch die Verwendung einer Hochsprache können die Software-
Entwicklungskosten erheblich verringert werden. Entscheidend ist jedoch, dass der
Übersetzer eine Code-Qualität erzeugt, die mit dem handoptimierten Assemblercode
vergleichbar ist.

Die Übersetzer-Technologie wurde hauptsächlich für reguläre Prozessorarchitektu-
ren entwickelt. Da DSP Architekturen viele Irregularitäten und applikationsspezifische
Funktionalitäten aufweisen, können konventionelle Optimierungsmethoden des Über-
setzerbaues nicht ohne weiteres für DSP-Übersetzer eingesetzt werden.

In dieser Dissertation werden Algorithmen vorgestellt, die drei wesentliche Pro-
blemstellungen im Übersetzerbau abdecken: Code-Generierung, Auswahl von Adres-
sierungsmodi und Register-Allokation. Alle drei Algorithmen werden mit Hilfe von
Partitionierten Boolschen Quadratischen Problemen (PBQP) beschrieben. Ein PBQP
ist eine Art von quadratischem Zuordnungsproblem, das im Allgemeinen NP-voll-
ständig ist und daher sehr schwierig zu lösen ist. Die Darstellung eines PBQP erfolgt
als Kostenfunktion oder als PBQP-Graph, der mit Kostenvektoren und Kostenmatri-
zen annotiert ist. Es wird ein Lösungsverfahren präsentiert, das eine optimale Lösung
berechnen kann, sofern der PBQP-Graph mit Hilfe von definierten Reduktionsregeln
reduzierbar ist. Falls der Graph nicht reduzierbar ist, muss auf eine Heuristik zurück-
gegriffen werden. Da der Berechnungsaufwand nur linear mit der Anzahl der Knoten
steigt, liefert der Lösungsalgorithmus meist sehr schnell ein Ergebnis.

In der Code-Generierung eines Übersetzers werden aus der Zwischendarstellung des
zu übersetzenden Programms Instruktionen für die Zielarchitektur generiert. Traditio-
nelle Algorithmen gehen dabei von einer baumartig strukturierten Zwischendarstellung
aus. Durch einen gerichteten zyklischen Graphen kann der Datenfluss einer Funktion
genauer beschrieben werden als durch einen Baum. Der vorgestellte Algorithmus bil-
det das Code-Generierungsproblem auf ein PBQP ab. Da die meisten PBQP-Graphen
reduzierbar sind, findet der Lösungsalgorithmus in vielen Fällen die optimale Instruk-
tionsreihenfolge.



Viele DSP-Architekturen besitzen spezielle Funktionseinheiten zur Adressgenerie-
rung. Die Aufgabe des Übersetzers ist es, die Adressierungsmodi so auszuwählen, dass
die Codegröße oder die Ausführungszeit des Programms minimiert wird. Die Beschrei-
bung als PBQP erlaubt es verschiedenartige und irreguläre Adressierungsmodi zu
modellieren. Aufgrund der Beschaffenheit der PBQP-Graphen kann für das Adres-
sierungsmodi Problem in fast allen Fällen eine optimale Lösung berechnet werden.

Die Register-Allokation bildet eine meist große Anzahl von Programmvariablen auf
eine beschränkte Anzahl von Prozessor-Registern ab. Die meisten Register-Allokations-
Algorithmen basieren auf der Methode des Färbens von Interferenz-Graphen. Obwohl
diese Methode für reguläre Architekturen sehr gute Ergebnisse liefert, hat sie den
Nachteil, dass andere Optimierungsparameter, außer Register-Interferenzen, nur be-
dingt einfließen können, Mithilfe eines PBQPs ist es möglich irreguläre Optirnierungs-
parameter genau zu beschreiben. Da jedoch die resultierenden PBQP-Graphen meist
nicht reduzierbar sind, baut die Heuristik im PBQP-Lösungsalgorithmus auf einen
Graph-Färbungsalgorithmus auf um die Vorteile beider Methoden zu vereinen.

Alle vorgestellten Algorithmen wurden in einen Übersetzer für einen kommerziellen
DSP integriert. Anhand von typischen DSP Applikationen wurden sie mit existieren-
den Methoden verglichen. Dabei zeigte sich, dass durch die Verwendung des PBQP-
Lösungsansatzes erhebliche Verbesserungen in allen drei Optimierungsbereichen erzielt
wurden.



Abstract

Digital Signal Processors (DSPs) play an important role in the embedded Systems
market. The application areas ränge from mobile telecommunication, digital image
processing to engine control. The requirements for signal processors are often high per-
formance at low power consumption. In the past years DSPs were merely programmed
in assembly language to meet the hard requirements. In recent times the complexity
of both the DSP applications and the DSP architectures have increased dramatically.
Therefore the use of Compilers became necessary. A Compiler translates a high level
language into machine code, which can be executed on a DSP. The use of a high level
language reduces the Software development times significantly. The Compiler has to
generate a code quality which is comparable to hand-optimized assembly code.

Compiler technology was mainly developed for regulär processor architectures. As
DSP architectures contain many irregularities and application specific functions, con-
ventional optimization methods can not be directly applied to DSP Compilers.

In this work, algorithms are presented which cover three important compilation
Problems: code generation, addressing mode selection and register allocation. All
three algorithms are described with the help of partitioned boolean quadratic problems
(PBQPs). A PBQP is a kind of quadratic assignment problem, which is NP-complete
in general and therefore it is hard to solve. A PBQP can be formulated as a cost
function or as a PBQP-graph, which is annotated with cost vectors and cost matrices.
The presented solver is able to calculate a optimal solution if the PBQP-graph is
reducible with defined reduction rules. If the graph is not reducible, heuristics are
used to obtain a solution. The computational complexity is linear with the number of
nodes in the PBQP-graph. Therefore the solver yields a solution in short time.

The code generation phase in a Compiler translates the intermediate representation
of a program to instructions for the target architecture. Traditional methods assume a
tree-like intermediate representation. But cyclic directed graphs can describe the data
flow of a function more precisely. The presented algorithm maps the code generation
problem to a PBQP. As most of the PBQP-graphs are reducible, the solver can find
an optimal instruction selection in many cases.

Many DSP architectures provide functional units for generating addresses. The
task of the Compiler is to select addressing modes so that the execution time or code
size of the program is minimized. The formulation as a PBQP allows modeling of var-
ious irregulär addressing modes. The PBQP-graphs of the addressing mode selection
problem are reducible in almost all cases, enabling the calculation of optimal results.

Register allocation maps a large number of program variables to a limited number
of processor registers. Most register allocation algorithms are based on the method
of coloring an interference graph. This method yields good results for regulär ar-

111



chitectures, but it is difficult to model register constraints other than interferences.
The PBQP enables the exact formulation of all kinds of irregulär register constraints.
As the resulting PBQP-graph are not reducible in many cases, the graph coloring
heuristics are integrated into the PBQP solver. This combines the advantages of both
methods.

All presented algorithms were integrated into a Compiler for a commercial DSP.
Typical DSP applications were used to compare the algorithms with existing methods.
The results have shown that the PBQP method achieved significant improvements for
all three optimization problems.

IV
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1. Introduction

1.1. Overview

In recent yeaxs embedded Systems have become very populär in the electronics indus-
try. An embedded System is a Computer System, consisting of hardware and Software,
which is part of a larger device.

The requirements of an embedded System are different from a general-purpose
Computer System, like a Workstation or Server. Many embedded Systems operate inside
a mobile device. Therefore low power consumption is an important aspect. On the
other hand embedded Systems often have to meet real-time constraints. Often the
design of embedded Systems is driven by the goal of reducing manufacturing costs,
because they are produced in large quantities.

As a result. embedded Systems usually have smaller memory sizes and run at a
lower clock rate than general-purpose Computers.

Digital signal processors (DSPs) play an important role in the embedded System
market. DSPs evolved from custom digital hardware Solutions which replaced analog
signal processing circuits. The custom hardware was too error-prone and too inflex-
ible. At this point DSPs provided a programmable alternative to expensive custom
hardware. The application area of DSPs is computationally intensive signal processing
algorithms. Since DSPs are often used in mobile devices they provide high computa-
tional Performance with very low power consumption.

DSPs are used in many embedded devices like cellular phones, digital cameras,
video game consoles, engine controls, medical equipments, network devices and many
more. Two of the most prominent signal processing applications are GSM speech
coding and decoding, and MP3 decoding.

1.2. DSP Architectures

Nearly all architectural features in a DSP arise from the needs of signal processing
algorithms. In this sense DSPs are application specific processors. As in the early days
of digital signal processing DSPs were exclusively used for numerical signal processing,
today's architectures are more general. The borders between micro-controllers and
signal processors are diminishing. New DSP architectures include micro-controller
functions and vice versa.

Although there are many different DSPs on the market today, they have some
properties and features in common:

• fixed point arithmetic: Most DSPs do not have floating point units. Values are
represented as fixed point values in the ränge from -1 to 1. Fixed point arithmetic
is very similar to integer arithmetic. Minor differences are encountered with
multiplications and divisions.



1.2. DSP Architectures

• 40 bit accumulator registers: With the help of 40 bit registers the fixed point
value ränge of -1 to 1 is extended by 8 bits to -256 to 256. It is used to hold the
overflow when performing accumulation loops.

• explidt instruction level parallelism (VLIW): To increase computational Perfor-
mance without having to push up the clock frequency, DSP architectures allow
the execution of multiple instructions in parallel.

• Single instruction, multiple data support (SIMD): To overcome the problem of
large codes sizes in VLIW architectures, instructions are provided which can
manipulate multiple data with a Single instruction.

• multiply-accumulate support: The vector dot product is a very common Op-
eration in DSP applications. Therefore all DSP architectures incorporate a
multiply-accumulate function, which enables the execution of a multiplication
and addition in minimal time.

• high memory bandwidth: To cope with the high computational ability of a DSP
it is necessary to fetch many operands from memory in short time.

• memory Spaces: Many DSPs solve the memory-bandwidth-problem by imple-
menting multiple memory spaces, which can be accessed in parallel.

• addressing modes: Some addressing modes allow the address registers to be up-
dated and modified without any overhead. Therefore no explicit address arith-
metic is necessary when accessing memory in a loop.

• modulo addressing: This kind of addressing mode allows implementation of cir-
cular buffers without any overhead.

• bit reverse addressing: For efficient implementations of fast Fourier transforma-
tions (FFT), which are very important in signal processing algorithms, DSPs
provide an addressing mode for accessing buffers in a butterfly pattern. This is
achieved by reversing the bit order of an incrementing address pointer.

• zero overhead loops: Most DSPs provide facilities to implement loops without
any branching overhead. In most architectures Special loop instructions perform
this task.

• application specific functions: Dedicated instructions and registers are used to
implement often used signal processing operations. An example is a decision
back-trace register to implement Viterbi decoders.

• user responsible restrictions: Usually DSP hardware does not provide checks
on the validity of instructions and operands. All hardware restrictions must be
ensured by the user, this means by the assembler programmer or the Compiler.
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Figure 1.1.: Functional units of a DSP core

Figure 1.1 shows a block diagram of the functional units of a typical DSP. The
instructions are fetched from the instruction bus and dispatched to the functional
units. In this example the core contains two arithmetic units (ALU), two multiply-
accumulate units (MAC) and two address generation units (AGU). The instruction
stream contains one instruction for each unit (VLIW-architecture) so the units can
operate in parallel. The units have access to the register files. The accumulator
register file contains accumulators (e.g. 40 bits wide) to hold the calculation results.
The address register file contains registers for generating addresses on the data busses.
There are multiple data busses, e.g. one bus for each memory space, to increase the
memory bandwidth of the System.

A DSP core is packed together with memory components, input-output (10) corn-
ponents and other peripheral components on an integrated circuit. Large "system
on a chip" designs may include multiple DSP cores together with other cores, like
micro-controllers.

1.3. Code Generation

Code generation for DSPs started by programming applications in assembler. Early
DSPs had very limited resources and good Compilers were not available. Even today
the heavily executed loop kerneis are implemented in assembly language to achieve
the required Performance.

Nowadays most of signal processing Software development is done with a high level
language, in particular the C-language. The change from assembly language to C
happened because of the following reasons: (1) DSP architectures got too complex for
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hand coding, (2) the signal processing applications got very large, (3) time to market
is reduced by using a high level language, (4) migration to a different architecture is
eased with a high level language.

Compiler technology was mainly developed for RISC Systems, which are very or-
thogonal. However, Compilers for signal processors have to cope with irregularities:

• Fixed point arithmetic is not naturally expressible in C. Therefore C programs
emulate fixed point calculations with integer arithmetic. The Compiler must
match the integer operations to the 40 bit fixed point arithmetic of the DSP.

• The Compiler must handle all hardware restrictions of the DSP. The restrictions
must be mapped to the optimization modeis in the Compiler.

• Irregulär instruction sets and register sets require flexible and configurable cost
modeis in the Compiler.

• DSP specific functions are not expressible in C, for example complex addressing
modes, explicit memory Spaces or application specific functions.

In addition to this requirements, the Compiler must produce a code quality which
is near to hand coded assembly language. Otherwise the code will not meet the
constraints imposed by limited hardware resources.

Another aspect where code generation for embedded Systems differs from RISC
code generation is that code size is an important factor. The code size directly relates
to the size of the Silicon and to the power consumption, which is important for mobile
devices. For this reason it must be possible to configure the Compiler optimizations to
either optimize for minimal execution time or to optimize for minimal code size. In
signal processing applications the heavily executed loop kerneis must be optimized for
minimal execution time, the remaining code must be optimized for minimal code size.

1.4. Contribution of this Work

This work presents an optimization framework to overcome the difficulties in code
generation for DSP architectures. It allows us to generate exact modeis for irregulär
optimization problems. Although most of the problems are NP-complete we present
an algorithm, which yields near optimal results. It is based on partitioned boolean
quadratic problems (PBQPs).

The PBQP is an optimization problem which is similax to quadratic assignment
problems used in operations research. We present a solver for the PBQP which runs
in near linear time for a certain subclass of problems. For general general PBQPs a
solver based on heuristics is used.
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In this work we introduce three optimization problems where we employ the PBQP
solver: code selection, addressing mode selection and register allocation. We show the
mapping of the optimization problems to the PBQP and demonstrate how to model
architecture specific constraints. The optimizers based on PBQP were implemented
into an DSP production Compiler which was used to obtain experimental results. The
experiments show that the optimizers based on PBQP yield better results than tradi-
tional approaches.

In Chapter 2 we present the problems of code selection, addressing mode selection
and register allocation. A survey of existing work on these optimization problems and
quadratic assignment problems is given.

In Chapter 3 we introduce the PBQP and show that it is NP-complete. The
PBQP can either be formulated as a quadratic equation or as a graph - the PBQP-
graph. We present an optimal solver, which can derive a solution for the subclass
of reducible PBQP-graphs. For non-reducible PBQP-graphs a general solver is used,
which implements a heuristic.

The code selection problem is addressed in Chapter 4. Code selection is performed
by matching a graph, which represents the Statements of the input program. The
PBQP approach allows matching of a SSA-graph (which can be directly used as PBQP-
graph), which includes all Statements of a function. Even cyclic dependencies in the
SSA-graph can be handled by the PBQP matcher. It is shown how to generate the
PBQP formulation out of the grammar definition used by traditional tree pattern
matchers.

In Chapter 5 the problem of addressing mode selection (AMS) is presented. The
goal of AMS is to select addressing modes in the code instructions. Examples of widely
used addressing modes are listed and it is demonstrated how to model them in the
PBQP. With AMS, the PBQP-graph is derived from the control fiow graph (CFG) of
the input program.

The third optimization based on PBQP is introduced in Chapter 6. Various kinds
of constraints are introduced, which are imposed by the register allocation problem in
general and by irregulär architecture features. The constraints are formulated as cost
functions which are used to define the PBQP. The PBQP-graph is derived from the
interference graph by adding edges which describe additional constraints.

Finally Chapter 7 concludes this work by comparing the three PBQP based opti-
mization algorithms.
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2.1. Overview

This work presents three applications of optimizations based on PBQP: SSA-graph
matching, addressing mode selection and register allocation. They were first pre-
sented in [16, 18, 60]. All three applications can be assigned to the class of back-end
optimizations.

In a Compiler, the back-end optimizations are performed after high level optimiza-
tions to generate machine code from the high level intermediate representation (IR) of
the program. High level optimizations [3, 51] are important for improving the result
of the generated code. They include dead code elimination, constant propagation,
function inlining, common subexpression elimination, arithmetic simplifications and
strength reduction. An important class of high level optimizations is loop transfor-
mations [4], which are often used in DSP Compilers to optimize numerical code. Loop
transformations can rearrange the Statements in a loop nest to improve the parallelism
of the code.

Traditionally there are three major building blocks in a Compiler back-end: (1)
the code generator, (2) the scheduler and (3) the register allocator. As this work is
focused on back-end optimizations for embedded Systems and especially for DSPs, we
add a fourth important building part to the Compiler back-end - the addressing code
optimization (see Figure 2.1).

The execution order of the back-end optimizations may vary. Only the code gen-
erator is always performed first, because it represents the interface from the high level
intermediate language to the low level intermediate language. The order of schedul-
ing, addressing code optimization and register allocation imposes a phase ordering
problem. In highly optimizing Compilers these phases are performed multiple times.

In this work no attention is given to the scheduling part of the back-end optimiza-
tions. We used existing scheduling algorithms [28, 41, 58] and it turned out that they
work well for our DSP Compiler back-end. Therefore we did not investigate using a
PBQP method for the scheduling optimizations in the Compiler.

In the following sections we describe existing approaches to code generation, ad-

high levei intermediate language j

high level

optimizations

code

generator

low level intermediate language

scheduler
register

allocator

addressing

code

optimization

Figure 2.1.: Overview of a Compiler



2.2. Code Generation

dressing code optimization and register allocation, and the relation to our work.

2.2. Code Generation

The code generator is the interface between the high level IR and the low level IR. It
maps the high level IR Statements to low level IR Statements, which are strongly related
to the machine instructions of the target architecture. Therefore code generation is also
referred to as instruction selection. There are several approaches for code generation.
Most approaches rely on a tree-like high level IR. The tree may be explicitly available as
a graph structure or linearized in a string of Symbols. Usually the unit of translation
is a Statement which represents a Single data flow tree (DFT). The program to be
compiled consists of many Statements, so it is a collection of multiple DFTs. The
nodes of a DFT are called Operators and represent the expressions of the program.

Modern code generators are built automatically from a machine description. The
path from the machine description to the generated code involves two abstraction
layers, which are shown in Figure 2.2. The code generator-generator builds the code
generator from the machine description. This happens at compile-compile Urne, i.e.
when the Compiler is built. The code generator itself reads the input program and
generates the code. This process runs at compile Urne.

Graham and Glanville [30] first identified the needs of a systematic method for
building code generators. The method should have the same properties as methods
for table-driven syntax analysis: modular, provable correct and easy to use. Graham
and Glanville introduced a method which is very similar to a LR(1) parser. The
differences are that the grammar for code generation is ambiguous and that a parse
error would indicate a Compiler bug. The format of the IR is a parenthesis-free prefix
notation, which expresses the data flow trees.

A shift-reduce algorithm is used to parse the IR. The parser consists of a State S,
a stack q and two tables. The NEXT-table is the State transition table, which selects

Machine Description

Input
Program *

Code Generator

Generator

Code

Generator

Compile-Compile Time

Compile Time

• Code

Figure 2.2.: Abstraction layers of code generation
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a parser State depending on the current State and the next input symbol from the IR.
The ACTION-table selects the action shift, reduce, accept or error depending on the
State and the next input symbol. The shifi-acüon pushes the next input symbol and
the State onto the stack, whereas the raZuce-action removes a whole right side of a
grammar rule from the Stack. At the neduce-actions, the code generation template of
the reduced rule is emitted. The accept- and error-actions are the final states of the
parser.

As the grammar is ambiguous conflicts may occur, which are solved by using a
simple heuristic. For shift-reduce conflicts the parser performs the shift. This prefers
"powerful" instructions, which map to larger parts of the IR. Reduce-reduce conflicts
are either resolved by additional semantic constraints or by sorting the instructions
according to a. certain cost criteria,

A Graham-Glanville style code generator already has significant advantages com-
pared to hand-crafted code generators: it produces good code, it is fast and it is
automatically generated from a machine description - the grammar. Unfortunately
the results are not optimal, because heuristics are used to resolve the ambiguities of
the grammar. In addition the parsing is done in a left-to-right fashion. Therefore the
selection for a left Operand of an Operator is always independent of the selection for
the right Operand.

Tree pattern matchers, based on the BURS (bottom-up rewrite Systems) theory
overcome the limitations of the Graham-Glanville style code generators. They were
first introduced by Pelegri-Llopart and Graham [54].

A tree pattern matcher is defined by an ambiguous tree grammar. A reduction
rule in the grammar describes a tree which is matched with a subtree in the DFT and
replaced with the resulting non-terminal. Such rules are called pattern mies and are
of the form nt —* pattern, where the pattern contains a tree with non-terminals and
terminals. The terminals are Operators in the DFT. In addition to pattern rules, a
grammar may contain chain rules (of the form n t l —> nt2) which allow transitions
between non-terminals. Both types of rules have an associated cost value and a code
generation action. For each reduction the code generation action inserts low level
code in the Output IR. The cost value represents the execution time or code size of the
inserted code. As the grammar is ambiguous, there may be many possible matches
for a tree. The task of the matcher is to select an optimal match, which is the cover
of the IR tree so that the sum of all applied rule costs is a minimum.

A BURS-based code generator contains a State automaton and works in two phases:
labeling and reducing. In the labeling phase the DFT is traversed bottom-up and
the Operators are labeled with the states. In the second phase the code is emitted
in a top-down walk by using the State information. The BURS automaton is built
by constructing all possible states from the grammar using dynamic programming
at compile-compile time. A State corresponds to a set of items, containing three
pieces of information: the derived non-terminal, the relative costs and the rule, which
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generated the non-terminal. In an implementation an itemset is an array of {rule, cost}
pairs, indexed by the non-terminal. The relative costs are the costs normalized to the
minimum cost value in the itemset. Therefore each itemset contains at least one cost
value of zero. In the State construction algorithm all State transitions for each State
and Operator combination are generated. This process is repeated until no more new
states are derived.

The advantage of a BURS-based code generator is that it is very fast, because the
hard work of building the State transition table is done at compile-compile time and
not at compile time. But there are two problems which must be addressed. First
the state transition table can get very large. If the number of states is n, a direct
encoding of the state transition table of a binary Operator would contain n2 entries.
As the number of states can be large (e.g. up to 1000 on a CISC machine [56]), this
leads to large table sizes. Proebsting proposed several methods to reduce the table
sizes [56, 57].

The second problem is that the cost values in the grammar must be available at
compile-compile time. Therefore it is not possible to compute them dynamically in
the code generator. For example a cost value could be depend on a constant value in
an Operator. In some cases this problem can be avoided by Splitting rules into separate
rules for each distinct cost value.

A populär example for a BURS-based matcher generator is BURG, which was pre-
sented by Fräser et al. [24]. It generates a code generator from machine specification,
which is similar to the rule syntax of YACC [34]. Fräser et al. also proposed a modifi-
cation of BURG, called IBURG, which performs the dynamic programming at compile
time (in contrast to compile-compile time). This eliminates the two drawbacks of the
BURS code generators at the expense of a sightly higher runtime.

In the labeling phase of the IBURG code generator the minimum costs are cal-
culated for each node and each non-terminal combination and stored in cost vectors
in the nodes. This is done by traversing the DFT bottom-up. A cost vector element
represents the reduction with minimal cost for this node and non-terminal. For each
node first all applicable base rules are checked. Then all chain rules are applied for a
node until the cost vector does not change any more. In the second phase, the reduc-
tion phase, the DFT is traversed top-down, starting at the root node while selecting
the non-terminal with minimal cost. The rule, which led to the selected non-terminal
is identified at each node and its code generation action is applied.

The matcher generators IBURG [23] and BEG [19] use this technique. The time
consumed for each node of the DFT is n2 where n is the number of non-terminals
in the grammar. Obviously this is slower than the constant time needed for a State
transition in a BURS-based code generator. But the advantage is that no large state
transition table is needed and the rule costs can be selected at compile time.

The drawback of all techniques outlined above is that they can only be performed
on trees. This is a considerable limitation, because even if IRs are tree-like they contain
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DAG structures in some ways. DAGs are either introduced by common subexpressions
or by multiple def-use relations. If the computational flow inside the IR is taken into
account, the input graphs for code generation are even directed graphs, which may
contain cycles.

Unfortunately pattern matching on DAGs or directed graphs is NP-complete [55].
Several approaches have been proposed to overcome this problem. Many code gen-
erators simply split the DAG into trees and perform the pattern matching on the
trees [2, 22, 19]. In our experiments we compare our SSA-graph matcher with this
approach. It is shown that Splitting the DAG into trees yields suboptimal results in
many cases. The Performance difference is up to 83%.

In the work of Anton Ertl [20] an approach is presented, which modifies the tree
pattern matcher algorithm so that, it can be used on DAGs. The tree traversa! algo-
rithm is extended by a visited flag so that it can be used on DAGs. Apart from that
change, the labeling and reduction phase work like in the tree pattern matcher. The
question arises if this straight forward extension also yields optimal results for DAGs.
Ertl shows that this depends on the grammar. A checker, called DBURG, analyzes the
grammar and reports if the grammar, applied on DAGs, does not yield optimal results.
The checker constructs an inductive proof over all DAGs. For all ways of sharing a
subgraph it is checked if all derivations are optimal. This approach differs from our
approach in some points: First, for a shared node, code may be duplicated, because
for each share a different non-terminal may be selected and code is generated for all
selected non-terminals. Second, it is not possible to perform the algorithm on a graph
containing cycles, because it still relies on the bottom-up and top-down phases of the
tree pattern matcher. Cycles occur in the SSA-graph for example if the input program
contains loops. As loops are important to optimize, the code generator should be able
to handle cycles.

Liao et al. [46] formulate DAG pattern matching as binate covering problem. The
algorithm works in three steps. First all matches of rules in the subject DAG are
identified. A boolean variable represents the successful match of a rule for a node
in the DAG. In the second step a covering matrix is built. The matrix expresses
the conditions for a legal cover of the DAG. For each match, i.e. boolean variable,
there is a column in the matrix. The rows represent disjunctive clauses where each
variable appears with its true and complement form (therefore the problem is called
binate covering problem). There are rows for each node which describe the possible
matches for the nodes. In addition there are rows which are needed to formulate the
dependencies — that means the connections — between the matches.

In the third step a cover with minimum cost is generated, where the cost of a match
(column) is the cost of the corresponding pattern. A set of columns is selected with
minimum total cost by not violating the clauses represented by the rows. A branch
and bound algorithm is used to obtain the cover.

In addition to the DAG pattern matching problem, this approach also allows the
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inclusion of other code generation tasks in the problem formulation. Liao et al. for-
mulate DAG pattern matching, scheduling and spill code generation for a Single ac-
cumulator architecture. Unfortunately exact Solutions can only be found for small to
medium sized basic blocks because of the exponential complexity of the binate cover-
ing problem. In addition this approach still does not consider the computational flow
of functions.

Leupers introduced code generation to utilize SIMD instructions, based on integer
linear programming (ILP) [42]. The difficulty of SIMD instruction selection is that
a single SIMD instruction represents operations in different data flow trees. Leupers
uses an algorithm which first performs tree pattern matching for each data flow tree
separately. But the matcher is modified so that it gives the set of all optimal matches
instead of one optimal match. The second part of the algorithm selects between the
optimal matches to maximize SIMD instructions. This selection is formulated as an
ILP problem.

2.3. Addressing Code Optimization

Addressing code optimization is a rather new topic in the field of back-end optimiza-
tions. An overview of current research work can be found in [1]. The goal of addressing
code optimization is to utilize the address generation units (AGUs) of the target CPU.
DSPs feature AGUs to efficiently generate memory addresses in numerical algorithms.
But AGUs can also be found in micro Controllers and CISC architectures (like the
Motorola 68K) AGUs can be found. The main purpose of AGUs is to perform address
calculations in parallel with other units of the processor. The most prominent Opera-
tion of an AGU is to automatically increment or decrement an address register after
accessing the memory.

Addressing code optimization is a collection of different optimization techniques.
It mainly consists of three separate optimization domains:

• Offset assignment: allocating memory locations (offsets) for local variables to
utilize the auto-increment addressing modes.

• Address register assignment: assigning address registers to access data for which
the memory layout has been already defined.

• Addressing Mode Selection (AMS): selecting the best addressing modes for the
instructions. AMS is used in offset assignment and address register assignment
to generate the resulting code.

Much work has been done in the field of offset assignment and address register
assignment. On the other hand there is little work concerning addressing mode se-
lection. Although AMS is used in offset assignment and address register assignment
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algorithms, the AMS problem was first formulated as a separate problem in [18]. The
AMS problem is independent from offset assignment and address register assignment
and this work focuses only on addressing mode selection. Nevertheless offset assign-
ment and address register assignment can be used to improve the result of AMS.

Offset assignment is the problem of assigning a frame-relative offset to each of the
local variables of a function to minimize the number of address-arithmetic instructions
required to execute a basic block. Bartlay [8] was the first to address the offset
assignment problem and presented an approach based on finding a Hamiltonian path
of maximum weight on the graph.

Liao [47, 48] et al. formulated the simple offset assignment problem (SOA) which
is an offset assignment problem with a Single address register. They modeled the
problem as a graph theoretic optimization problem similar to Bartlay and showed
that the SOA problem is equivalent to the maximum weighted path covering (MWPC)
problem and proved that it is NP-complete. In addition they extended the SOA to the
general offset assignment (GOA) problem, which can handle multiple address registers.
They proposed a heuristic algorithm to solve both the SOA and GOA problems. The
work of Liao et al. built the base for a set of extensions. Leupers and Marwedel [44]
proposed a tie-breaking heuristic and a variable partitioning strategy to improve the
SOA and GOA result. They also used modify registers to reduce the solution costs.
Sudarsanam et al. [62] extended the SOA and GOA problems by allowing an auto-
increment/decrement addressing mode within a ränge from — l to +/.

In [48] Liao also deals with the generation of auto-increment values for a given
access sequence, which in fact is a basic form of addressing mode selection. The
calculation of auto-increment values is trivial within a linear sequence of accesses,
i.e. a basic block: the increment value is the difference between the offset of two
consecutive accesses. The calculation of auto-increment values for a whole control flow
graph (CFG) is more complicated. Liao proposes an algorithm which first identifies
equivalence classes of edges. Two edges are in the same class if they have the same
predecessor or successor node. An edge class represents an zig-zag pattern in the CFG.
This method of identifying edge classes is also used in our approach for building the
PBQP-graph for AMS. Liao argues that the number of edges in a class is limited to a
small number. The problem is to find the places and values for update instructions for
an edge class so that the execution time penalty is minimal. Due to the small number of
possibilities, Liao's algorithm enumerates all variants and selects the one with smallest
costs. The limitation of this approach is that every basic block must contain at least
one access and only post modification addressing modes can be handled. Only these
assumptions allow the use of the local solution within the adjacent basic blocks of a
Single edge class. As soon as a basic block contains no accesses or - for example -
indirect-with-offset addressing modes are available, information can flow across basic
block boundaries and the local solution is not guaranteed to be optimal.

In [17] we already described the problem of selecting post modifications, with the
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possibility of basic blocks containing no memory accesses. But the proposed algorithm
uses a heuristic and therefore it can not yield the optimal solution in many cases.

Address register assignment is used to assign address registers to variable accesses
for which the offsets have been already determined. The goal is to reduce update
instructions by using a minimal set of address registers to access arrays or variables
inside a loop. The problem of assigning address registers to array references inside a
single basic block was first described by Araujo [6] and Leupers [43]. They introduced
the local reference allocation (LRA) problem which is solved by formulating a path
covering problem on an indexing graph (IG). The nodes of the IG represent array
references in the basic block. For each possibility for an auto-increment or auto-
decrement addressing mode between two accesses, the IG contains an edge. So a path
in the IG represents a sequence of accesses which can be addressed by a single address
register with exclusively using auto-increment or auto-decrement.

Cintra et al. [14] and Ottoni et al. [52] extended the LRA problem to the global
reference allocation (GRA) which can handle multiple basic blocks rather than a single
basic block. In the GRA algorithm, live ränge merging tries to utilize all available
address registers to minimize update instructions in a loop. The used technique is
called live ränge growth (LRG) which repeatedly merges pairs of address register live
ranges. The algorithm Starts by assigning a ränge to each reference in the loop.
Then ranges are merged pairwise until the number of live ranges is no greater than
the number of available address registers. The key point of the algorithm is a merge
Operator which determines the costs of merging. It yields the number of explicit update
instruction which is imposed by merging two live ranges.

For evaluating the merge Operator Ottoni et al. construct a ^-dependence graph
(DG,),), which is derived from a static single assignment form (SSA) of the program.
The DG<j, represents an equation System where the unknowns are Virtual references.
Each <j) term forms an equation which imposes a decision of update values between
the Virtual references of the (f> term arguments and the Virtual reference of the <p term
result. The problem of solving the equation System is NP-complete. A 0-Solution
graph (SG,j,) is derived from the DG$ which represents all possible Solutions. If the
DG(f, is a tree an optimal solution can be found using an algorithm based on dynamic
Programming which operates on the SG$. Otherwise heuristics are used to calculate
a solution.

The evaluation of the merge Operator is very similar to the definition of addressing
mode selection, because the merge Operator minimizes the number of update instruc-
tions needed for a live ränge merge. Compared to our approach for addressing mode
selection, the merge Operator algorithm has some significant limitations:

• Only auto-increment, auto-decrement and update instructions are considered. It
is not possible to define other addressing modes with a flexible cost model.

• The algorithm works for a single loop. It is not obvious how to handle the control
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flow graph of a whole procedure.

• In many cases the DGj, is not a tree and heuristics are used to obtain a solution.
In contrast our solver for the AMS problem yields an optimal solution in almost
all cases, even if the DG^ is not a tree.

2.4. Register Allocation

Register allocation is an essential part in a Compiler back-end. It maps live ranges
to physical registers. A live ränge is the collection of program points where a data
value (e.g. a local variable or temporary) is live. Before register allocation the input
program may contain a large number of live ranges which have to be mapped to a
- for most embedded architectures - small number of CPU registers. If no mapping
can be found for a live ränge, it is spilled to memory and additional load and störe
instructions are inserted.
Register allocation algorithms can be classified by the scope they operate on.

• Local register allocation is performed on a linear sequence of instructions, i.e. a
basic block. It is often used as a pre-pass to global register allocation.

• Global register allocation allocates registers for a procedüre. All basic blocks of
the control flow graph are taken into account. The main focus in research has
been put on global register allocation and many commercial Compilers implement
only this kind of register allocation. If not explicitly stated otherwise, the term
"register allocation" refers to global register allocation.

• Inter-procedural register allocation selects which registers are available for each
procedure in the program. The register allocator decides which registers must
be saved during a function call.

In the following we concentrate on global register allocation and use the term "register
allocation" for this allocation method. For details on local and inter-procedural register
allocation the reader may refer to [21] and [40], respectively.

The commonly used technique for register allocation is graph coloring. It was first
introduced by Chaitin et al. [12]. In the graph coloring approach an interference graph
is first built. The nodes of this graph represent live ranges and the edges represent
interferences, i.e. there is an edge between two live ranges if they are both live at
some point in the program. Coloring the interference graph with k colors modeis the
allocation problem if k CPU registers are available.

Figure 2.3 shows the phases of Chaitin's algorithm. The renumber phase identifies
the live ranges in the program and in the build phase the interference graph is built.
Coalescing tries to allocate two live ranges, which are in a copy relation, to the same
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Figure 2.3.: The phases of Chaitin's register allocator

CPU register to minimize copy instructions. The simplify and select phases actually
perform the graph coloring.

A node of degree less than k is trivial to color. Therefore the simplify phase
eliminates nodes of degree less than k (low-degree node) from the graph and pushes
them onto a Stack. Eventually the graph is empty or all remaining nodes have a degree
of at least k (significant-degree nodes). In the latter case a significant-degree node is
marked as spilled, removed from the graph and simplification continues. Finally the
select phase assigns colors, i.e. CPU registers, to the live ranges by popping nodes
from the Stack. For each popped node a color is selected which is distinct from the
adjacent node colors. The simplify-select heuristics for solying graph coloring proved
to be very efficient.

Chow and Hennessy proposed the priority-based coloring algorithm [13]. It has
several significant differences to Chaitin's algorithm. First the register allocation runs
before code generation on the high level IR. This means that temporary registers
introduced by the code generator are not handled by register allocation. Instead of
this, a fixed number of CPU registers are reserved for being used as temporaries (Chow
and Hennessy propose to reserve four registers). This strategy might be a problem
on embedded architectures, which typically have a small number of CPU registers.
The priority-based allocator does not need to handle coalescing constraints, because
it leaves this task to high level optimizations, which run earlier.

The second important difference to Chaitin's allocator is the coloring algorithm.
In Chaitin's algorithm the starting point is that all live ranges are assumed to be
in registers. During the algorithm some live ranges may be allocated in memory, i.e.
spilled. In the priority-based algorithm at the starting point all live ranges are assumed
to be in memory. Live ranges are assigned to registers in an order determined by a
priority function. The algorithm stops if no more registers are available. Therefore
there is no need to iterate the register allocator, like in Chaitin's model.

Another difference between the register allocation algorithms is the unit of allo-
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cation. Chaitin's allocator takes an instruction as smallest unit whereas the priority-
based allocator works on whole basic blocks. This makes the register allocator faster
at the expense of a coarser granularity of allocation.

Chow and Hennessy also proposed a technique, called live ränge Splitting to improve
the coloring. If no color can be found for a live ränge, the live ränge is split so that
at least a part of the original live ränge can be allocated to a register. The Splitting
algorithm Starts with a basic block, preferably a definition at the entry point of the
live ränge. Then all successor blocks are added where a CPU register is available for
the live ränge. This is repeated in a breath-first traversal of the CFG. The so created
new live ränge can be colored. If the remaining live ränge can also be colored the
Splitting algorithm terminates. Otherwise it is applied on the remaining live ränge
again. The second possibility for termination is that the remaining live ränge can not
be split anymore. In this case it is allocated to memory.

Ahnost all work on register allocation is based on Chaitin's or on Chow and Hen-
nessy's approaches. Briggs et al. [10] improved Chaitin's coloring algorithm by a
method called optimistic coloring. If only significant-degree nodes are left, such a
node is pushed onto the Stack instead of spilling it (it is called potential spül). In the
select phase it is popped from the stack and tried to color. If still no color is available,
it is spilled (actual spül). By delaying the spill decision to the select phase there is a
chance that some significant-degree nodes can still be colored.

In their work, Briggs et al. also proposed an extension called rematerialization.
For values, which are never killed, it is possible to reconstruct the value where it is
needed instead of Spilling and reloading it. Such values include all kinds of constant
values and addresses in the static data area and in the stack frame. The algorithm for
rematerialization works on the SSA-form of the procedure which in fact is a method
for live ränge Splitting. The values are propagated through the SSA-graph by using a
algorithm similar to Wegman and Zadeck's constant propagation algorithm [64]. Code
generation for </>-nodes is performed by inserting copy instructions. The aggressive co-
alesdng used in Chaitin's register allocator coalesces all copy-related nodes. Therefore
it would also eliminate all these copy instructions and destroy the benefit of split live
ranges. To overcome this problem Briggs et al. proposed conservative coalescing which
coalesces two nodes only if it is guaranteed that the resulting node is not spilled.

George and Appel [26] experienced that in their Compiler aggressive coalescing
produced too many spills, but conservative coalescing left too many copy instructions.
Therefore they proposed iterated coalescing. They integrated conservative coalescing
tightly into a loop together with the simplify step. This increases the chances of
coalescing to identify that the resulting node after coalescing will not be spilled.

But even that missed some optimization opportunities. Park and Moon [53] con-
centrated on the positive aspects of aggressive coalescing. They transfered the idea of
optimistic coloring to optimistic coalescing. In their register allocator first aggressive
coalescing removes all copy-related live ranges. Later if a coalesced live ränge becomes
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an actual spill, then the live ränge is split by undoing the coalescing.
Vegdahl addresses another potential for improvements in register allocation. In

[63] he proposes an algorithm to improve the graph coloring heuristics used inside the
Chaitin style register allocators. Nodes of the interference graphs are merged which
results in a better coloring.

Ambrosch et al. address another problem of interference graph based register allo-
cation in [5]. Usually the interference graph is built from the instruction lists in the
basic blocks of the control flow graph. But as this order is dependent on previous passes
in the Compiler, the number of edges in the interference graph may vary. Ambrosch et
al. introduce a minimal interference graph, which is built from the data dependence
graph. It contains only those interferences which are required to maintain the data
dependencies. They also propose a new coloring method, called dependence-consdous
register selection. It tries to minimize anti-dependencies to improve the scheduling of
the resulting allocation.

The drawback of all the interference graph based coloring methods is that they can
not be extended to irregulär architectures in a straight forward way. It is not possible
to model register constraints other than interferences. Even the coalescing constraint,
which is also very important on regulär architectures, is done in a separate phase.

Beside the traditional graph coloring approaches, which are a success story for
RISC-like architectures, there is some work on allocating registers for irregulär archi-
tectures. Briggs [9] and Smith et al. [61] address the problem of allocating register
pairs. Register pairs can be found on many CPU architectures. For example pairs of
single-precision registers are used to hold double-precision floating point values. Usu-
ally two constraints are imposed by register pairs: First, the registers of the pair must
be adjacent (e.g. register R3, R4) and second, the pair must be aligned on an even
register number (e.g. R2, R3). Both Briggs and Smith et al. concentrate on Computing
the colorability of the interference graph nodes, which is used by the simplify phase
to distinct between low- and significant-degree nodes. Briggs modifies the interference
graph by adding edges to nodes which represent paired registers. The intention is that
the degree of a node always reflects its colorability, regardless of whether the node
represents a Single register or a register pair.

Smith et al. do not add edges to the interference graph but define weights for
all nodes, which represent the pairing constraints. They call the extended graph a
weighted interference graph. The weights of a node and its adjacent nodes are then
used in the simplify phase to compute the colorability of the node.

A similar approach is presented by Runeson and Nyström in [59]. They formulate a
(p, g)-test for Computing the colorability of a node. In contrast to Smith and Holloway's
approach, the (p, g)-test Covers a wider ränge of irregularities and it is shown how to
generate the test automatically from formal architecture descriptions.

The drawback of these approaches is that the computed colorability is a worst
case value. If any of the adjacent and aligned constraints are imposed, the worst case
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value does not reflect the real colorability and potential spills are generated in the
simplify-phase. Moreover these techniques can handle only a small subset of possible
register constraints.

Koseki et al. [38] introduced preference directed grnph coloring for handling irregu-
larities. The idea of this method is that register preferences can be satisfied by choosing
the right order of registers in the select phase. Koseki et al. build a register preference
graph and a color preference graph which are used to determine the coloring order
of nodes in the interference graph. The register preference graph describes register
preferences among live ranges. In their paper they list four types of such preferences:

• Dedicated register usage: a register is dedicated for a Special purpose, like pa-
rameter or return value passing.

• Limited register usage: some instructions can only operate on a limited set of
registers.

• Preferred register usage: registers are preferred for a live ränge, e.g. non-volatile
registers are preferred for live ranges over function calls.

• Dependent register usage: the register selection for a live ränge depends on
another live ränge. Examples are coalescing and paired registers.

In the selection algorithm the color for a live ränge is chosen by honoring the
preferences to already allocated live ranges. Therefore the result of the allocation
highly depends on the order of node selection. The color preference graph represents
all possible Orders which do not destroy the colorability. So the register selector tries to
find the ordering of selection which allows it to honor as many preferences as possible.
No separate coalescing phase is employed in the algorithm. Koseki et al. show in their
experiments that the preference directed algorithm has the same coalescing capabilities
as the optimistic coalescing approach [53]. If the register model has irregulärities,
which are not handled by the optimistic coalescing register allocator, the preference
directed graph coloring yields better results in terms of execution time.

The preference directed register allocator - and all other approaches based on
Chaitin's graph coloring algorithm - perform the register selection for a Single live
ränge at one time. Therefore the solution for a Single live ränge is only a locally optimal
solution, but not a global optimal solution for the whole problem. This seems to be
sufficient for regulär architectures, but leads to suboptimal results if many irregulär
constraints are involved.

Hirnschrott, Krall and Scholz compare two register allocation methods in [32]. The
first is based on Briggs' allocator with aggressive coalescing. In addition Smith and
Holloway's extension for handling irregularities [61] is included. The second method is
based on our first PBQP approach [60], but enabling exhaustive recursive enumeration
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for obtaining optimal results. The comparison shows that the Chaitin-based algorithm
causes significantly more spill costs than the optimal algorithm. The difference is
even larger if only a few registers are available and spills occur often. Because of
the exponential complexity, the optimal algorithm can only find a solution for small
problem sizes in acceptable time.

Beside the graph coloring approaches, a register allocation algorithm based on
integer linear programming (ILP) was introduced by Goodwin and Wilken [31] and
improved by Pu and Wilken [25]. The approach maps the register allocation problem
to an integer linear program which is solved by an NP-complete ILP-solver. Each
allocation decision is mapped to a binary decision variable. It has the value 1 (the
allocation action is performed) or 0 (the allocation action is not performed). Allo-
cation actions include decisions, whether a live ränge should be mapped to a CPU
register, whether the allocation should continue, or whether a spill or restore should
be executed. The decisions have to be made at specific points in the input program. A
0-1 integer program is constructed and solved by a commercial integer program solver.

The work of Goodwin and Wilken was extended by Kong and Wilken [36] for ir-
regulär architectures. As an example, they chose the IA-32 architecture and added
additional features such as address mode selection. The approach can handle irregu-
larities very nicely. However, the algorithms for solving the integer linear programs
have exponential running time and are therefore not used in commercial Compilers.

2.5. Partitioned Boolean Quadratic Problems

Our methods for code generation, addressing mode selection and register allocation
are based on partitioned boolean quadratic problems (PBQPs). The PBQP is a kind
of quadratic assignment problem (QAP) which can be found in the field of operational
research. It was first formulated by Koopmans and Beckmans in [37] for describing
the problem of assigning plants to locations. Burkard et al. give a comprehensive
overview of the QAP and related problems in [11]. They State that the QAP is one of
the hardest optimization problems.

The QAP can be described as the problem of assigning facilities to locations. The
goal of the optimization is to minimize cost. The distance and flow between the
facilities and the cost of a facility assigned to a location contribute to the total cost.
The original formulation of the QAP is as follows: ,

i= l J=l i= l

where n is the number of facilities and locations. The set N = 1, . . . , n and Sn is the
set of all assignments <j> : N —> N. The values /y describe the flow between facility i

21



2. Related Work

and j and du is the distance between the location k and l. The value e^ is the cost
of placing facility % at location k.

The QAP can also be formulated as a quadratic integer program as shown in
Equation 2.2. In this form the boolean variables Xy select the assignment.

n n n n n

min X] X X X fiJdkixikXjl + XI
i= l j= i f e= l /=1 ij=l

n

subject to X Zy = 1, J = 1) 2,.. . , n (2.3)

= l, * = l ,2 , . . . , n (2.4)

a r y e { O , l } , i,j = l,2,...,n (2.5)

Burkard et al. list several algorithms for exact and heuristic Solutions. In addition
they describe a number of similar problems to the QAP. One related problem is the
Quadratic Semi-Assignment problem (QSAP), which can be compared to our definition
of the PBQP. The QSAP was investigated by Malucelli and Pretolani in [49, 50].

The difference between the QSAP and the QAP is that in the QAP there must be
the same number of facilities and locations and in the QSAP there may be n facilities
and m locations. In the QAP the assignment is bijective, i.e. each location gets a Single
facility. This is enforced by equations 2.3 and 2.4. In the QSAP each location can have
zero, one or many facilities assigned. The quadratic integer programming formulation
of the QSAP is equivalent to the QAP formulation, except that the constraint 2.3 is
not included.

An example for the QSAP is the assignment of n processes to m processors [49].
Process i exchanges fcj units of information with process j whereas the flow of one
unit from processor k to processor l takes d^i time. Process i needs e^ time to run on
processor k.

The QSAP formulation can be easily transformed to a PBQP formulation (Defi-
nition 1 in Section 3.3) by setting Cij(k,l) = fy • d^i and 5i(j) = ey. The boolean
vectors in the PBQP correspond to the boolean variables in the QSAP: Xi(j) = Xij.
In contrast to a QSAP, the decision vectors in the PBQP can have different sizes.

Malucelli and Pretolani identify a class of QSAPs which can be solved in polynomial
time. These are problems whose associated communication graph are reducible by
application of three reduction rules: (1) tail reduction, which is applied on nodes with
degree one, (2) series reduction, which is applied to nodes with degree two and (3)
parallel reduction, which is applied to parallel edges between two nodes. The rules
are applied until a Single node remains or all nodes have a degree more than two. In
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the first case the result is exact, in the latter case the QSAP can not be solved in
polynomial time.

This reduction method is also used by our optimal PBQP solver. The PBQP
solver uses reduction rule RI which corresponds to the tail reduction. Rule RII is a
combination of the series and parallel reduction.

Malucelli and Pretolani also propose methods to solve general QSAPs. They use
a brauch and bound algorithm and try to obtain a sharp lower bound for the QSAP.
This differs to our approach, because the general PBQP solver uses heuristics if the
point of non-reducibility is reached. This is fast and it is sufficient for our PBQP
applications. In addition to the QSAP algorithm we employ simplifications on the
PBQP-graph to improve the reducibility.

Beside of the QSAP there are other related problems to the QAP, like the bottle-
neck quadratic assignment problem (BQAP) and the bi-quadratic assignment problem.
However these QAP variants have fewer similarities to the PBQP than the QSAP and
the QAP and are therefore not in the focus of our work.
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3. Partitioned Boolean Quadratic Problems

3.1. Overview

This chapter introduces the partitioned boolean quadratic problem (PBQP). It is used
to formulate the optimization problems presented in this work - SSA-graph matching,
addressing mode selection and register allocation.

The PBQP formulation has two main advantages over conventional approaches.
First, the PBQP provides a unified interface to describe the problems with the help
of cost vectors and cost matrices. So it is easy to formulate irregularities imposed
by the target architecture. Second, there exists a solver which can yield optimal or
near-optimal Solutions for our optimization problems.

A PBQP can be described as a cost function or a graph problem. The cost function
is the formal defmition, whereas the graph representation is rnore descriptive. The
graph representation is used by the solver.

As the complexity of a PBQP is NP it can not be solved optimally in general. But
for a certain subclass of PBQPs an optimal solution can be computed in polynomial
time. We present an optimal solver which computes the optimal solution if it is possi-
ble. If the optimal solver falls, a general solver can be used which employs heuristics
for solving general PBQPs.

3.2. Background

Vectors and Matrices A matrix A is any rectangular array of elements. If a matrix
A has m rows and n columns, we call i a m x n matrix. Let A(i, j) be the ijtfl element
in the ith row and jtfl column. The ith row is denoted by A(i,:) and the j t h column
by A(:,j). A matrix in which all elements are zero is called a zero matrix.

A vector v is a 1 x n matrix with n elements. Let v(i) be the ith element of the
vector and let \v\ = n be the length of a vector. Vector f in which all elements are one
is called a one vector.

Given any m x n matrix A, the transpose for A (written AT) is the n x m matrix
whose ijth element AT(i,j) = A(j,i). Let A and B be two m x n matrices. The
matrix C = A + B is defined to be the m x n matrix whose ijth element is C(i,j) =
A(i, j) + B(i, j). The matrix product C = A-B of A and B is the mxn mat r ix whose
ijth element is determined by C(i,j) = 5̂ fe=i A(i,k)B(k,j) where / is the number of
columns in matrix A and the number of rows in matrix B. The product of two vectors
u and v1", both of length n, is called the dot product. It yields a 1 x 1 matrix - a scalar.

A quadratic form is defined to be a vector-matrix-vector product xAy1', which has
the following properties:

xAf = yATxT (3.1)

xAf + xBf = x{A + B)f (3.2)
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3.2. Background

In this work vector and matrix elements represent cost values. They are defined
over the domain of real numbers including infinity (oo). We define the arithmetic
operations for oo as follows:

oo • X = X • oo = oo V x ^

+ x = x + oo = oo Vx

x < oo Vx

Minimum Operation The minimum over parameter x of function f(x) is defined as
follows,1

min/(x) = /(x) | 3x € D,Vx € D : f(x) < f(x) (3.3)

where D is the domain of x and x is a solution of the minimum Operation.2 The partial
minimum over parameter x of function f(x,y) is defined as follows,

mmf(x,y) = f(x(y),y) | Vy e D,3x(y) e £>,Vx e D : f(x(y),y) < f(x,y)

(3.4)

We use the bar-notation (e.g. x) for Solutions of minimum problems throughout
this work. Note that the minimum function yields a value whereas the partial minimum
function yields a function. One exception is if the partial minimum function defines the
minimum over all parameters. In this case it is equivalent to the minimum function.

min f(x, y) = min f(x, y) (3.5)

The partial minimum Operator has following properties. Let (x, y) be the solution of

min f(x, y) = min min f(x, y) (3.6)
(x,y) x y

min f(x, y) = min f(x, y) = min f(x, y) (3.7)
(x,y) V ^

The minimum of vector v is defined as
xNote that the parameters of the minimum functions may also be n-tuples.
2In this work the domains of the minimum parameters are obvious and well defined. Therefore they

are not explicitly quoted at each min Operator.
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3. Partitioned Boolean Quadratic Problems

min(i;) = min v(i) (3-8)

where 1 < i < \v\, is the smallest element c of vector v such that VI < i < \v\ : c < v(i).
The minimum index imjn (v) of a vector is defined to be the smallest index of minima
and the following must hold: v(imjB (v))) = min(#). If there are more elements where
the equation holds, the element with the smallest index is taken.

Graphs Let G(V,E) be a directed graph, where V is a set and E a relation on V.
The elements of V are called nodes and the ordered pairs in E are called edges. A
graph is undirected if E is Symmetrie, i.e. (u, v) e E <$• (v,u) e E. Removing
edge (u, v) from an undirected graph is denoted by E — (u, v), which is equivalent to
E—{(u, v), (v, u)}. Adding an edge is handled similarly: E+(u, v) = EL){(u, V), (V, U)}.
Let adj(u) = {v\(u,v) £ E} be a set of adjacent nodes of u and deg(u) = | adj(u) \
the degree of node u. A node u is said to be disconnected if deg (u) = 0. To traverse
a directed graph we define the following four funetions. Let u, v G V be a node and
e = (u, v) be an edge.

succ(u) = M {v} source(e) = u
(u,v)€E

pred(v) = |̂ J {u} target(e) = v
(u,v)eE

3.3. PBQP Definition

The PBQP is defined as a cost funetion over a set of boolean decision vectors Xj.
Each element in a decision vector is either zero or one. In addition the dot produet
is exactly one for each vector Si, in other words: exactly one element of a vector is
one, all other elements are zero. This explains the term "decision vector". The goal
of the PBQP solver is to deeide which elements should be selected, i.e. should be one,
to minimize the cost funetion / . The cost funetion is the sum of all vector-matrix-
vector dot produets between the decision vectors and vector-vector dot produets. The
matrices Cij specify the costs between decision vectors and the cost vectors Q specify
the costs for each decision vector separately.

Definition 1. A partitioned boolean quadratic problem (PBQP) is defined over a n-
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3.3. PBQP Definition

tuple of boolean decision vectors X = (x*i,..., xn) as follows:

min f(X) = Yl Xi-Cij-xJ + ^2 Ci-xf (3.9)
l<i<j<n l<i<n

subject to:Vi€l...n:Tr-xi = l (3.10)

where n is the number of decision vectors.

The domain Di of a single decision vector x*j, satisfying constraint 3.10, is the set
of all vectors which have a single one-element: Di = {x | x • TL = 1}. The domain of
the parameter X of the objective function f(X) is the cross product of the decision
vector domains: Dx = D\ x ... x Dn. Note that the decision vectors may have different
lengths. The sizes of vectors Cj and matrices Cij must match with the decision vector
lengths so that the products in Equation 3.9 are defined.

Due to the Symmetrie properties of quadratic forms, the cost function is a triangulär
sum. A solution of the PBQP is formulated as the decision vectors where the objective
function is a minimum. It is denoted as X = (x*i, ...,x*i).

minf(X) = f(X) (3.11)

As the PBQP can have more than one solution, X is just one representative of the
solution space. As the decision vectors must have a single one-element, the solution
X can also be speeified by the index of the one-element in the decision vectors: 5 =
(si,..., sn) where Sj is the index of the one-element in decision vector x*j. Each solution
element Si is in the ränge 1 < Si < |x*j|.

Let us take a closer look at the matrices Cy- in the cost function. The term
Xi • Cij • ä?j selects one element of the matrix, because exactly one element of x*i and
one element of Xj is one. Let Sj be the index of the one-element in x*j and Sj the one-
element in Sj, then the term x*j • Cij • x^ yields Cij(si, Sj). In other words the matrix
element Cij(si,Sj) contributes to the objective function if element S{ is selected in
Si and element Sj is selected in Xj. So matrix Cy speeifies the cost values for each
combination of selected elements in Xi and Xj. Figure 3.1 visualizes the cost matrix
in an alternative way: each matrix element is represented by a line connecting two
adjacent decision vector elements. Therefore a cost matrix element can also be viewed
as the transition costs from one decision vector element to the adjacent decision vector
element.

Similar to the cost matrices, cost vectors c\ contribute to the cost funetions, but
are selected by a single decision vector instead of two decision vectors. The term Ci • x[
selects one element of the cost vector c\ because exactly one element of Xi is one. Let
Si be the index of the one-element in Xi then the term Xj • c\ yields CJ(SJ). Again,
element ci(sj) contributes to the objective function if element Si is selected in Xj.
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3. Partitioned Boolean Quadratic Problems

x

Figure 3.1.: The cost matrix shown as transition costs. Each matrix element is repre-
sented by a line connecting two adjacent decision vector elements. In this
example the matrix element Cjj(2,3) is selected by the decision vectors
Si = (0 1 0) and Sj = (0 0 1).

minf = x\ •

XX2 • C 2 3 • Xl + X2 • C24 • X4 +

^3 " C34 " %4 +

C1 • xj + C2 • X% + C3 • X3 + 5} • Sj =

(6 7)-xf+(5 3)-z£+(5 6 2) • f£ + (9 l) • xj

Figure 3.2.: Example PBQP
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3.3. PBQP Definition

Figure 3.2 shows an example PBQP. It contains four decision vectors: £\, £2 and
£4 have a length of 2 and £3 has a length of 3.

The dimculty of finding a solution to this minimization problem is that the con-
tributing products can not be treated locally (which would be trivial). The decision
vectors make it a global problem which is NP-hard to solve. But if the PBQP is sparse,
this means it contains many zero cost matrices Cij, a solver can yield an optimal or
near optimal solution. In the example matrices, C13 and C14 are zero matrices and
therefore the terms £\ • C\z • x% and £\ • C14 • £\ do not contribute to the objective
function.

3.3.1. The PBQP-Graph

For the solver algorithm we construct an undirected PBQP-graph G{V,E,w), which
is an equivalent representation of the PBQP. In the PBQP-graph decision vector Xj is
represented by a node Vi 6 V (1 < i < n). Nodes Vi € V and Vj G V (1 < i < j < n)
are connected by an edge (vi, Vj) G E if cost matrix Cy- is not zero. The cost function
w maps nodes V{ G V to cost vectors C{ and edges (vi,Vj) G E to cost matrices Cij.

As each undirected edge between nodes Vi and Vj consists of two directed edges
(vi,Vj) and (vj,Vi), the cost function w maps each directed edge to cost matrices Cij
and Cji, respectively. Due to the properties of quadratic forms (see Section 3.2), matrix
Cij is the transposed matrix of Cji, i.e. CijT = Cj%. The row index of Cij relates to
the decision elements of the predecessor node Vi and the column index relates to the
decision element of successor node Vj of the directed edge (vi,Vj).

In the following we denote Cuv as cost matrix of edge (u, v) which is equivalent to
w{u,v). Due to the structure of PBQPs, G has no reflexive edge (vi,Vi) 0 E, since
we have no cost matrices Ca in objective function / and there is at most one edge
between two nodes.

Figure 3.3 shows the PBQP-graph of the example PBQP. The graph contains edges
between two nodes if the corresponding matrix is not a zero matrix. In the example
the matrices C13 and C14 are zero matrices, therefore the graph contains no edges
between nodes v\ - V3 and between nodes v\ - V4.

For convenience we define some graph theoretical terms for the PBQP formulation
as cost function, too. The degree of a decision vector £ is defined as the degree of the
corresponding node Vi in the PBQP-graph. This means the degree of a decision vector
£ is the number of non-zero matrices which are multiplied with £ in the objective
function / .

Definition 2. deg(x~i) = deg(vi)

Similarly the set of adjacent decision vectors of a decision vector £ is defined
as the set of decision vectors which correspond to the set of adjacent nodes of the
corresponding node v^ in the PBQP-graph. This means the set of adjacent decision
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3. Partitioned Boolean Quadratic Problems

Figure 3.3.: The PBQP-graph of the example PBQP

vectors of x is the set of decision vectors which are in the same multipiication term as
x and a non-zero cost matrix in the objective function / .

Definition 3. adj(xi) = {XJ\VJ 6 adj(vi)}

3.3.2. PBQP Complexity

The PBQP is NP-complete.3 To show this we use the PBQP to describe the MAX-
CUT problem. The MAXCUT problem is one of the Karp's original NP-complete
Problems [35]. Given a graph G = (V,E), the cut associated with the node set S is
the set of edges that have one endpoint in S and the other endpoint not in S. For each
edge ei € E the function m(ei) = m* defines the weight for the edge (the weighting
function m of the MAXCUT graph should not be confused with the cost function
w of the PBQP). The weight of a cut is the sum of the weights of the cut edges.
The MAXCUT problem is to find a node set S that maximizes the weight of the cut.
Determining a maximum cut in an arbitrary graph is a NP-complete problem.

We construct PBQP-graph G'(V',E',w) with a cost function, equivalent to the
dual problem of the MAXCUT problem: the PBQP defines the problem of minimizing
the edges, which are not in the cut.

We define V = V, so there is a decision vector for each node v G V of the
MAXCUT problem. The length of all decision vectors is two. A decision vector of a
node indicates if the node is included in S or not.

Definition 4. vt <E S iff xt = ( 1 0 ) , vt $ S iff xt = ( 0 1 )

As for the nodes we define E' = E, so the PBQP-graph is equivalent to the
MAXCUT graph. The cost function w defines a cost matrix C for each edge and a
zero cost vector for each node.

3This can be derived from the fact that it is used to model the three optimization problems, presented
in this work (SSA-graph matching, addressing mode selection and register allocation), which are
themselves NP-complete. Nevertheless we provide a proof for NP-completeness of the PBQP in
this section.
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Definition 5. w(v{) = ( 0 0 ) Vt* € V w(a) =(*!!* ° ] Ve* € E

Each edge ei € E contributes to the objective function by the term

_ frrii 0 \ _T
X3 • n ) ' x k

3 \ 0 mi) k

where xj and Xk are the decision vectors of the adjacent nodes of the edge ê . There
are four possibilities in the decisions of the adjacent nodes.

< • > ) • ( • ? : ) • ( ; ) =

In cases where both adjacent nodes are included in 5 or both adjacent nodes are
not included in S, the term for the edge contributes by a value of m*, otherwise by a
value of 0. So the objective function / yields the sum of the weights of edges which
are not in the cut.

MC =^2 m{ei) - f (3.12)
eteE

Equation 3.12 yields the sum of the weights of edges which are included in the cut.
As the objective function / is minimized, MC is maximized. Therefore the solution
of the PBQP is the maximum cut.

3.4. Optimal Solver

In this section we present a solver which can yield optimal results for a certain class of
PBQPs. For general PBQPs a general solver, which is presented in the next section,
can be used.

The optimal solver is well suited to be applied on a certain subclass of PBQP
Problems: PBQPs which are sparse, i.e. have a sparse PBQP-graph. The solver
works in three phases. In the first phase the PBQP is reduced with defined reduction
rules until the objective function becomes trivial. In the second phase we determine
the solution for the trivial objective function. In the third phase the solution of the
reduced decision vectors is computed. The third phase is called back propagation and
works exactly in the reverse order as the first phase.
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Figure 3.4.: Overview of the PBQP solver

Figure 3.4 gives an overview of the PBQP solver, which is used in an application.
From the input data a PBQP is modeled. Then the solver runs in the three phases.
Finally the Output is generated from the solution.

The limitation of the optimal solver is that it can not yield the result for arbitrary
PBQPs. An optimal solution can only be generated if the PBQP-graph can be reduced
with a certain set of reduction rules. The challenge is to find reduction rules, which can
be performed in polynomial time such that the optimality of PBQP is not destroyed.
In general this is not possible since the underlying problem is NP-complete. In the
following, decision vectors, which can be reduced by the optimal solver, are called
reducible. On the other hand, decision vectors which can only be reduced by the
general solver are called irreducible.

In the following we describe the solver from two different views: first we describe
the solver by looking at the original definition of the PBQP - the objective function
/ . In addition we provide the definitions also for the PBQP-graph. This is the more
intuitive way to look at the solver and it is also used by the algorithm implementation
in Section 3.6.

3.4.1. Phase 1: Reduction

In the reduction phase we eliminate nodes from the PBQP-graph until only nodes
with degree zero remain. As each node represents a decision vector, eliminating a
node from the PBQP-graph means to eliminate a decision vector from the objective
function / . We denote the original objective function as / ° and the consecutive kth

reduced functions as fk. Similarly we denote the original graph as Graph G°. Each
application of a reduction rule transforms some reduced PBQP-graph Gk to Gk+1 until
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all nodes of the resulting graph are disconnected, i.e. have degree zero.
For eliminating the kth reduced decision vector from the n-tuple Xk we introduce

the notation of Xk\x.

Definition 6. Let Xi be the kth reduced decision vector and

Ji. = \xa,..., Xf), ajj, x C ) . . . , X(ij

Then Xk^x is defined as follows.

= (xa,...,xb,xe,...,xd)

We denote the original parameter n-tuple as X° and the parameter of the consecu-
tive kth reduced functions as Xk. Obviously, Xk\x is an equivalent notation to Xk+1.
In addition we denote the solution of the original objective function as X° and Xk

denotes the solution of the kth reduced objective function.4

The optimality of the reduction algorithm of the solver is expressed in Equa-
tion 3.13. It says that the solution of the reduced function is equivalent to the solution
of the original function, excluding the reduced decision vector.

Xk^x = Xk+1 (3.13)

Equation 3.13 is used later to prove the optimality of the solver. In addition
we observe a property of the reductions of the optimal solver, which is expressed in
Equation 3.14. It states that the resulting minimum of the reduced objective function
is equal to the minimum of the original function. This property is is not needed for
the optimality of the solver but it is useful to obtain the total minimum costs of a
PBQP.

minfk(Xk) = minfk+1(Xk+1) (3.14)

In the following we introduce the reduction rules which meet the conditions stated
in Equations 3.13 and 3.14.

The solver employs two reduction rules, which are RI and RII. Rule RI is applied
on nodes with degree one, rule RII is applied on nodes with degree two. If during the
reduction process there are no nodes of degree one or two left, the optimal solver can
not calculate a result.

4Note that from the definition of Xk it does not follow that Xk^x is equivalent to Xk+1. Instead we
state that both terms must be equal to satisfy the optimality of the solver and we have to prove
it.
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Rule Rl In the following, definitions are given for the reduction rule RI which is
applied to a node x of degree one.

Definition 7 is given for applying rule RI on the objective function / . Note that
because there is only one adjacent vector y 6 adj(x), the equation in the following
definition lists all terms which contain x and contribute to the objective function. For
the sake of simplicity we assume that the index of x in X is lower than the index of
y in X: index(z) < index(y). As the Order of decision vectors in X is arbitrary, this
assumption is permissible.5

Definition 7. Let fk(Xk) be the kth reduced objective function. Let x be a decision
vector of degree one and y the adjacent decision vector of x. Then

RI(fk(Xk),x) =» f k + \ X k + 1 ) = fk(Xk) - x . C x y - f - c x * x T + 5 - f

where S is defined as follows:

8(i) = min(Cyx(i,:) + c"x) (3.15)

Vector 5 considers the minimal costs of node x dependent on the decision of y.
It replaces the costs of the reduced node and its adjacent edge. Therefore no cost
terms involving x are present in the reduced function /fc+1. The new costs of 5 are
accumulated to the costs of the adjacent decision vector y. Following definition is
given for reduction rule RI applied on the PBQP-graph:

Definition 8. Let Gk(V,E,w) be the kth reduced PBQP-graph. Let x be a node of
degree one and y the adjacent node of x. Then

RI(Gk(V, E, wk), x) =• Gk+1(V - {x}, E - (x, y), wk+1)

The cost function wk+1 is identical to cost function wk except for node y. The cost
vector Sy is incremented by 6. The reduction rule RI can also be illustrated graphically
as shown in Figure 3.5. Each element of vector By is incremented by the minimum
cost for all possibilities of vector x.

Lemma 2 provides the optimality criteria for reduction rule RI. The proofs for the
following two lemmas are shown in Appendix A.

Lemma 1. Let fk+1 = RI{fk,x). Then minfk{Xk) = minfk+1 (Xk+1) (Equa-
tion 3.14)-

Lemma 2. Let fk+l = RI(fk,x). Then Xk\x = Xk+1 (Equation 3.13).

5The order ensures that function / contains the term x • CXy • y1^ and not y • Cyx • xT.
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Figure 3.5.: Calculation of 5(1): It is the minimum of all possible paths to the reduced
node x (indicated by bold lines).

Rule RII In the foUowing we describe reduction rule RII which follows the same
Schema as rule RI. Rule RII is applied to a node x of degree two.

Definition 9 is given for applying rule RII on the objective function / . Note again
that because there are only two adjacent vectors y, z 6 adj(x), the equation in the
foUowing definition lists all terms which contain x and contribute to the objective
function. As for rule RI we assume an order of the vectors in X: index(x) < index(y) <

Definition 9. Let fk(Xk) be the kth reduced objective function. Let x be a decision
vector of degree two, y and z the adjacent decision vectors of x. Then

where A is defined as follows:

= min(Cyx(i,:) + Czx(j,:) + c"x) (3.16)

Matrix A considers the minimal costs of node x dependent on the decision of y
and z. It replaces the costs of the reduced node and its adjacent edges. This removes
the cost terms involving x in the reduced function fk+1. The new cost matrix A is
added to the cost matrix Cyz between y and z. Now we give the definitions of rule
RII for the PBQP-graph:

Definition 10. Let Gk(V,E,w) be the kth reduced PBQP-graph. Let x be a node of
degree two and y and z adjacent nodes of x. Then

RII(Gk(V,E,wk),x) =• Gk+1(V - {x},E + (y,z) - (x,y) - (x,z)},
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Figure 3.6.: Calculation of A(l,3): it is the minimum of all possible paths to the
reduced node x (indicated by bold lines).

The cost function of the edge (y, z) is determined by the A matrix. If edge (y, z)
already exists in the graph, we add A to cost matrix Cyz. Otherwise, a new edge
(y, z) is inserted and the cost function of edge (y, z) yields the cost matrix A. As with
rule RI, the reduction rule RII can also be illustrated graphically which is shown in
Figure 3.6. Each element of cost matrix Cyz is incremented by the minimum cost for
all possibilities of vector x.

For reduction rule RII the optimality criteria is provided by Lemma 4. The proofs
for the following two lemmas are shown in Appendix A.

Lemma 3. Let fk+1 = RII(fk,x). Then minfk(Xk) = mmfk+1(Xk+1) (Equa-
tion 3.14).

Lemma 4. Let fk+1 = RII(fk,x). Then Xk\x = Xk+1 (Equation 3.13).

3.4.2. Phase 2: Trivial Solution

Reduction rules RI and RII are applied until only nodes with degree zero remain.
This means that all cost matrices in the objective function are zero matrices and the
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objective function / is reduced to

min/= Yl Z-x[ (3.17)

Because each summand in the objective function depends on exactly one decision
vector, the minimum Operator can be specified for each summand separately as shown
in Equation 3.18.

m i n

Ki<n

in[ci-xf] (3.18)min

The Solutions of the decision vectors Xi can be determined by finding the smallest
element of c\ since there is no dependence between decision vectors. Therefore, solution
of Xi is Si = imi„ (ei) where Si is the index of the element in xt whose value is set to
one. So the minimum value of the trivial function / can expressed as follows:

m i n / = 2_] min(ci) (3.19)

3.4.3. Phase 3: Back Propagation

In the third phase we compute Solutions for decision vectors which were eliminated in
the first phase by propagating the solution through the eliminated decision vectors.
The back propagation phase re-inserts decision vectors in the exact reverse order as
they were eliminated in the reduction phase. The solution of each re-inserted decision
vector can be calculated because all other decision vectors of the solution are already
known.

Definition 11. Let fk(Xk) the kth reduced objective function. Lei x be the decision
vector which is eliminated by reduction from fk to fk+1. Further let Xk = mmfk(Xk)
the solution of the kth reduced objective function. Then

BP(Xk+\fk,x) = Xk

So back propagation yields the solution of the kth objective function provided with
the solution of the next reduced objective function. The proof for Lemma 5 is given
in Appendix A.

Lemma 5. Let fk(Xk) thekth reduced objective function. LetBP(Xk+1,fk,x) = Xk.
Given the solution Xk+1 the solution vector x is obtained by following equation

(3.20)
yeadj(x)
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3. Partitioned Boolean Quadratic Problems

where s is the index of the one-element in x.

With back propagation we can put all together and show the optimality of the
solver.

Theorem 1. The solution X of a PBQP ram.f(X) can be obtained by first applying
reduction rules RI and RII until the objective function becomes trivial and then applying
back propagation.

Proof. Theorem 1 is proved by complete induction on the number of decision vectors
n in / . The induction start is n so that deg(x) = 0 Vi in / . For such an objective
function a solution can be calculated from Equation 3.19. Induction step: We show
that the solution Xk for function /* can be ubtained from the soiution X1^'1 for /&+1 ,
if the function /fc+1 is derived from fk by reduction rules RI or RII.

According to Lemma 2 and Lemma 4, the solution Xk+1 is equivalent to Xk\x,
which is the solution of fk without the reduced decision vector. The solution for the
reduced decision vector x can be derived from Xk+1 by applying Equation 3.20. The
complete solution Xk is composed by adding x to Xk\x.

•

3.4.4. Simplifications

There are two simplification steps which are performed: (1) elimination of vectors
which have length one and (2) elimination of independent edges. Both steps reduce
the degree of decision vectors and thus improve the reducibility of the PBQP.

The first simplification step can be performed prior to the reduction phase. It re-
moves decision vectors which have only one element. Since there is only one possibility
for the decision for such a vector, the vector can be removed from the PBQP. This
process is equivalent to Splitting a vector into separate vectors for each adjacent edge,
which are then reduced by RI reductions.

The second simplification step is performed whenever a cost matrix changes. This
is initially done for all cost matrices prior to the reduction phase and after each RII re-
duction. The second simplification eliminates edges with independent transition costs.
Independent transition costs are costs which do not result in a decision dependence
between the two adjacent vectors, i.e. the decision of one adjacent vector does not
depend on the decision of the other adjacent vector. A simple example for independent
transition costs is a zero matrix. In general all matrices which can be reduced to a
zero matrix by subtracting a column vector and a row vector are independent.

Definition 12. Let C be a matrix and u and v be vectors with n and m elements
respectively. The n x m matrix C is independent iff C(i,j) = u(i) + v(j) V i £
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3.5. General Solver

The following theorem allows elimination of an independent matrix from the PBQP
by adding the vectors ü and v to the adjacent cost vectors of the matrix. Vector ü
is added to the predecessor cost vector and vector v is added to the successor ,cost
vector. A proof is given in Appendix A.

Theorem 2. Let C be an n x m independent matrix and x and y boolean decision
vectors. Then x-C-yr = Ü-xT + v*yr

3.5. General Solver

The optimal solver can only be used for PBQPs which are reducible with rules RI and
RII. For general PBQPs we must use a general solver which implements heuristics for
vectors which are irreducible. In this section we describe two strategies to eliminate
irreducible vectors.

3.5.1. Local Minimum

The first method for irreducible vectors is to use an additional rule RN to reduce
such vectors. In contrast to rule RI and RII, a decision is made during reduction for
the eliminated vector. This decision only depends on the adjacent cost vectors and
matrices. Therefore applying rule RN destroys the optimality of the solution. Rule
RN is defined as follows for the objective function:

Definition 13. Let fk(Xk) be the kth reduced objective function. Let x be a decision
vector of degree greater than two. Further let x be the local decision for vector x. Then

RN{fk(Xk),x) => /fc+1(Xfc+1) = fk(Xk) \x = S

Let
min(Cxy(i,:) + cy)

yeadj{x)

Then the local solution sx, which is the index of the one-element in x is defined as

Setting the reduced vector x to the local decision x, the x • Cxy • y1 terms in the
objective function evaluate to cost vector terms for the adjacent vectors 8y • y^\ The
resulting cost vectors 6y are added to the existing cost vectors Cy for all adjacent
vectors y € adj(x).

This means that the decision for vector x is made as if the adjacent vectors would
be disconnected from the remaining PBQP-graph. This wrong assumption leads to a
suboptimal solution.

Finally we give the definition of rule RN for the PBQP-graph:
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3. Partitioned Boolean Quadratic Problems

Definition 14. Let Gk(V,E,w) be the kth reduced PBQP graph. Let x be a node.
Then

RN(Gk(V,E,w),x) => Gk+1{V - {x},E - Uyeadi{x)(x,y),w>)

The cost function wk+1 is identical to cost function wk except for the adjacent
nodes of x.

3.5.2. Recursive Enumeration

To improve the solution of a PBQP containing irreducible vectors, recursive enumer-
ation can be applied* Recursive enumeration has exponentia! complexity. Therefore
it can not be applied to an arbitrary PBQP. But it is possible to limit the number of
permutations. After the number of permutations exceeds the limit, reduction rule RN
can be used. With this method, a trade off between complexity and exactness can be
achieved. In this work we use recursive enumeration for comparing with the optimal
result in the SSA-graph matching application. In the register allocator it is used to
improve the solution of the general solver.

Enumerating a irreducible vector x means that the vector is eliminated and the
remaining PBQP is solved with all possible values of x. So if the solver encounters n
irreducible vectors, recursive enumeration has a complexity of O(mn) where m is the
length of the irreducible vectors.

An improvement to recursive enumeration is to detect connected components in
the PBQP-graph and solve each connected component separately. Eliminating an irre-
ducible vector may disconnect the PBQP-graph into separate connected components.
Therefore the graph Separation must be done after each elimination. An example is
shown in Figure 3.7. The irreducible node x connects three separate components which
also contain one irreducible node each. After eliminating x, recursive enumeration can
be continued for each sub-graph separately. Therefore the complexity reduces from
O(m4) to O(m -(171 + 171 + 171)) = O(m2).

3.6. Implementation

This section shows a pseudo code for the implementation of the general solver.
Figure 3.8 lists the procedure ReduceGraph that is responsible for the first phase

of the solver. The parameter general selects whether the solver works as a general or
an optimal solver. The procedure returns true if a solution can be calculated and false
otherwise (this can only be returned by the optimal solver).

To select reducible nodes in constant time, buckets are used. For each node-degree
there exists a bücket and a node belongs to bücket d if it has a degree of d. Lines 3
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3.6. Implementation

Figure 3.7.: Eliminating irreducible node x splits the graph into three connected com-
ponents.

to 5 of procedure ReduceGraph build up the buckets. After constructing the buckets,
nodes are reduced until all nodes are in bücket 0 and the objective function is trivial.

The procedure ReduceGraph calls the reduction procedures RI, RII and RN, which
are shown in Figure 3.10. Procedure PushVertex(:r) pushes node x onto a Stack, and
removes it from the PBQP-graph. Then, it reorders adjacent nodes in the buckets
according to their degrees.

After reducing all nodes, the objective function is trivial and we can determine a
solution for nodes which are held in bücket 0. Then, we propagate the solution through
the eliminated nodes and reconstruct the graph. The second and the third phase of
the dynamic program are given in Procedure PropagateSolution of Figure 3.9.

In the following we demonstrate the algorithm on the example shown in Figure 3.2.
Figure 3.11 shows the reduction sequence. First node v\ is eliminated by a RI rule.
The additive vector S\ = (7 13) is added to ci which results in a new c2

2 = (12 16).
Then v$ is reduced by a RII rule (the solver could also select V2 or V4 for a RII
reduction). The resulting matrix

10 n

is added to C23 which results in a new matrix

•>3
'23 = f10 1 5Y

~ \n 20,/
Finally V2 is eliminated, again by a RI rule. This adds £2 = (22 27) to C4. The
resulting cost vector is c4

5 = (31 28). Now the PBQP is trivial - the Single node V4
with degree zero remains. The minimum element min(c^) = 28 can be selected to
«4 = 1. In the back-propagation phase first the node V2 is re-inserted into the graph
and the minimum element can be selected to «2 = 0. Then back-propagation re-inserts
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1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
-i r»

io:
14:
15:
16:
17:
18:
19:

procedure ReduceGraph(general)
begin

forall nodes i € 7 d o
insert x into bücket deg (x)

endfor
while nodes lefi (buckets > 1) do

if a nodes x exists in bücket 1 then
RI(x);

elsif a nodes x exists in bücket 2 then
RII(x);

elsif general
select node x
RNT(x);

eise
return false;

endif
endwhile
return true;

end

1:
2:
3:
4:
5:
6:
7
8:
9:
10:
11:
12:
13:
14:

procedure PropagateSolution
begin

forall nodes x in bücket 0 do
*x : = 1min \cx)

endfor
while reducible stack not empty do

pop node x from reducible stack
c:=Cy;
forall nodes y £ adj(x) do

C : = C + L>yx\Syi ')j

endfor
*x = 1min (.Wi

endwhiie
end

Figure 3.8.: Reduction Figure 3.9.: Back propagation

1—
1

2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

procedure RI(x)
begin

{y} := adj(x);
for i:=l to |^| do

6(i) :— min (Cyx(i,:) + cx)\
endfor
Cy . Cy ~J~ Oj

PushVertex(x)
end
procedure RII(x)
begin

{y,z}:=adj{x);
for i := 1 to \cy\ do

for j := 1 to \cz\ do
A(t, j) := min (Cyx{i,:) + Czx(j,:) +

endfor
endfor
if (y, z)eE t h e n

C := Cyz + A
eise

4)

21; add cdyc [y,Z)
22: Cyz := A;
23: endif
24: PushVertex(x)
25: end
26: procedure RN(x)
27: begin
28: for i := 1 to \cx\ do
29: c(i) := 0;
30: forall nodes y e adj (x) do
31: c\i) := c(i)+
32: min(Cx2/(i,:) + Cy)
33: endfor
34: endfor
OO: Sx — 'm/n ̂ Cj;

36: forall nodes y € adj(x) do

38: endfor
39: PushVertex(x)
40: end

Figure 3.10.: Reduction procedures
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3.6. Implementation

Figure 3.11.: Reduction sequence of the example

i>3 and selects the minimum element to «3 = 2. Finally node vi is re-inserted and the
element s\ = 1 is selected. The solution of the example PBQP is S = (1,2,0,1).

3.6.1. Complexity of the Solver

Our algorithm partitions nodes in four subsets of V: (1) a partition VQ of nodes that
are solved trivially in the objective function, (2) a partition V\ of nodes reduced by
rule RI, (3) a partition Vz of nodes reduced by rule RII, and (4) a partition V3 of nodes
reduced by rule RN. All four partitions exhibit a different time complexity. We use
riVi to denote the number of elements in the ith partition, where their sum is equal to
n, i.e. the number of nodes. Then, the time complexity is given by

O(ny0 • m + ny1 • vn? + ny2 • m
3 + ny3 • m

3) (3-21)

where m is the length of the decision vectors. The length can vary for each decision
vector. This depends on the PBQP application. For example in register allocation the
length is the number of CPU registers plus one. This time complexity equation is given
for the basic PBQP solver, which - in this form - is used by the SSA-graph matching
and the register allocation optimizations. Addressing mode selection implements a
sparse matrix representation where the complexity is computed differently. But for all
variants of the PBQP solver the factor m (for addressing mode selection this is not
the length) is small compared to the number of nodes n and bound to an upper limit.
Therefore for large n the complexity is linear with n.
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code generator

SSA-
graph grammar

generated
code

rule
application

model

PBQP
graph

reduction trivial
graph

back

propagation

PBQP solver

Figure 4.1.: SSA-graph matching overview

4.1. Overview

Code generation translates the high level IR to a low level IR. Usually a matching algo-
rithm is employed on the high level IR to find an optimal match (see Section 2.2). Tree
pattern matching is a widely used technique [2, 7, 22, 19], because it is fast and yields
optimal results. Büt most high ievei IRs have DAG structures or cyclic structures.
The general matching problem on DAGs or directed graphs is NP-complete [55].

We introduce a method for mapping the problem of code generation to a PBQP.
With the PBQP we can model pattern matching for DAGs and even for cyclic graphs.
It enables us to take the computational flow of a whole function into account. We
call the matcher a SSA-matcher, because the matching algorithm is performed on the
SSA-graph of a function. For representing the computational flow, the SSA-graph is
used, which combines data flow trees (DFT) and def-use relations of a function.

The SSA-matcher is defined by an ambiguous grammar, just like a tree pattern
matcher. The grammar definition consists of production rules and a set of non-
terminals. A rule is of the form nt —> pattern, where nt is a non-terminal and
pattern describes a tree of terminals and non-terminals. A node in the pattern tree
is either a non-terminal or a terminal P[si , . . . , sn], where s* are the child nodes in the
pattern tree. A terminal may also have no child nodes, i.e. a leaf in the DFT.

In addition, production rules have cost terms and code templates. Cost terms are
used to find the derivation with minimal overall costs.

The basic concept of our SSA-graph matching algorithm is shown in Figure 4.1.
First, the SSA-graph with its ambiguous grammar is mapped to PBQP. Second, the
PBQP solver computes the grammar derivation with minimal costs. Third, based on
the grammar derivation, code is produced.
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4.2. Motivation

int f(short *a, short *b)
{

(1) int s = 0;
loop(i) {

(2) s = abs(s) + a[i] * b[ i ] ;
}

(3) return s;

(a) (b)

Figure 4.2.: Example source code (a) and data flow trees (b)

Note that the PBQP solver consists of two phases: In the first phase the graph
is reduced until a trivial solution remains. In the second phase the solution is back-
propagated. The two phases of the PBQP solver are very similar to the two phases of
the dynamic programming algorithm of tree pattern matchers. In fact, if the PBQP-
graph is a tree, the two algorithms are almost identical. The significant difference is
that a tree pattern matcher decides between non-terminals whereas the PBQP solver
decides between rules.

The quality of the solution, obtained from the PBQP solver, depends on the re-
ducibility of the input graph. We have implemented our approach in a production
DSP Compiler. Our experiments show that the SSA-graph is reducible in most cases,
which makes the PBQP method very suitable for the matching problem. Only for a
negligible number of SSA-graph nodes (see Section 4.6), can no optimal solution be
computed and heuristics must be applied. Consequently, the PBQP solution is nearly
optimal.

Compared to the result of a tree pattern matcher, the SSA-matcher produces
significantly faster code. This shows the importance of matching the whole SSA-graph
of a function rather than the separate data flow trees.

4.2. Motivation

The example in Figure 4.2(a) shows a typical DSP code. The elements of two vectors a
and b are multiplied and the absolute value of the last iteration is added. The example
focuses on the accumulator variable s which occurs in the three Statements (1), (2)
and (3). The loop control code is only shown in pseudo code because it is not relevant
for this example.

Let us assume that the computations for variable s are performed in fixed point
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arithmetic on a DSP processor. In contrast to Standard processors, DSP processors
have multiplication units tha t perform a multiplication by shifting the result by one
bit to the left. However, for Compilers it is difficult to exploit this shift. Wi thout
knowing the context of the computation an additional shift Operation is needed to
re-adjust the multiplication result.

For obtaining faster code, computations inside the loop should be performed with
a shifted result by one bit to the left. Otherwise an additional shift-operation would be
introduced inside the loop and would worsen the runtime. Since the return Statement
requires an un-shifted value, a shift Operation has to be inserted prior to the re turn
statement outside of the loop.

The non-terminals in the grammar describe sub-graphs and the productions de-
scribe how non-terminals are derived and at which costs. The non-terrninals are used
to express architectural computation properties. A non-terminal defines how a value
is stored and how it is interpreted. As the grammar is ambiguous, there are multiple ^ P
ways to derive a sub-graph to different non-terminals. So there are different ways to
störe a value resulting from a sub-graph. The following list contains some examples )- V,;
of non-terminal interpretations. x '

• The non-terminal specifies the register class. For example there are different
non-terminals for accumulator registers and address registers.

• The non-terminal specifies the interpretation of the unused high significant bits in
a register. This is used for values which are smaller than the register size. There
may be non-terminals for sign-extended, zero-extended or garbage-extended val-
ues.

• The non-terminal specifies the location of the value inside the register, if the
value is smaller than the register size. This is used in our example. There may
be non-terminals for values aligned at the least significant bit or values shifted
by a specific number of bits.

• The non-terminal specifies the arithmetic interpretation of the value in a register. ^ fc
There may be non-terminals for negated values or inverted values.

For our running example we define a grammar which is shown in Figure 4.3. A
production has aleft-hand side and a right-hand side, i.e. n t —> pattern, cost, code.

On the left-hand side a non-terminal specifies the result of the computation. On
the right-hand side there is a pattern t ha t consists of terminals and non-terminals. In
addition the matching cost and the code template are given (separated by commas).
Note tha t the code templates are only shown for better understanding of the rules,
but they do not influence the matching algorithm.

In our grammar the shift property of the multiplication is represented by two non-
terminals: r e g and s r e g . Nonterminal r e g represents an un-shifted value whereas
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(1)
(2)
(3)
(4)
(5)
(6)
(7)

reg —>
sreg ->
reg -»
sreg ->
reg -»
sreg ->
sreg ->

const(O) [] , l , r=0
const(0)[] , l , r=0

+[reg,reg],3,r=r+r
+[sreg,sreg],3,r=r+r

abs [reg] , 2, r=dbs (r)
abs[sreg],2,r=abs fr)
*[reg,reg],4,r=r*r

(8)
(9)
(10)
(11)
(12)
(13)

reg ->
top —»
reg -»
sreg —
reg ->
top —>

load[ptr],5,r=*pir
ret[reg] , l . r e i
s r e g , l , r = r » i

» reg, 1, r=r«l
s [ ] ,0
s=[reg] ,0

Figure 4.3.: Production rules

sreg represents a value which is shifted left by one bit. For example the multiplication
rule requires two un-shifted input values and produces a shifted value (Rule 7). Plus
operations and absolute value operations can be performed with un-shifted values
(Rules 3 and 5) or shifted values (Rules 4 and 6). The constant 0 can either be loaded
as shifted or un-shifted value (Rules 1 and 2). The memory load is represented by
Rule 8 and can only produce an un-shifted value. Return Statements require un-shifted
values to preserve program semantics (Rule 9). Rules 10 and 11 are chain-rules that
convert a shifted value to an un-shifted value and vice versa.

In the example three Statements contain the accumulator variable s. Figure 4.2(b)
shows the DFTs of the three Statements which are processed by a typical tree pattern
matcher. Two additional rules are required to match the DFTs: a rule to match vari-
able uses (Rule 12) and a rule to match variable definitions (Rule 13). But these rules
can only exist for a Single non-terminal (either reg or sreg). Otherwise occurrences of
a variable in various places would be interpreted differently. This means that with a
tree pattern matcher the non-terminals for variables must be selected before matching.

4.3. The SSA-Graph

To overcome the limitations of a tree pattern matcher we extend the scope of the
matcher to SSA-graphs [27]. The base for SSA-graphs is the static Single assignment
form [15]. The essential idea behind SSA is that each use has only a Single definition.
If there are multiple definitions for a use in the non-SSA form, in the SSA form a
^-term is inserted. Figure 4.4(a) shows the SSA form of our example program. It
contains a (f>-term for s at the loop head where the definition of the initialization and
the definition of the computation of the last iteration are merged.

A SSA-graph describes the flow of computation for a whole function. Basically,
the data structure combines the data flow trees (DFT) with def-use relations. For our
running example the SSA-graph is shown in Figure 4.4(b).

The SSA-Graph S(V, E) is a graph where set of nodes V contains the Operators in
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in t f(short *a, short *b)
{

(1) int si = 0;
loop(i) {

«2 = <f>{si,S3)
(2) s3 = abs(s2) + a [ i ] *

}
(3) return S2;

(a) (b)

Figure 4.4.: SSA-form (a) and SSA-graph (b) of the running example

the DFTs, including the 0-terms of the SSA form. The edges in the set E represent
the flow of data between the Operators. There is an edge between two Operators if the
result of an Operator is an input Operand of another Operator. So the outgoing edges
from an Operator indicate data dependencies to other nodes which use the result.

Note that SSA-graphs do not contain explicit nodes for variable uses (s) and vari-
able definitions (s=). In contrast to classical approaches which use DAG and tree
representations of the computations, cycles are possible in the SSA-graphs.

For our running example we have several node types in the SSA-graph. E.g.,
plus operations(+), absolute value operations(abs), multiplications(*), element ac-
cess(a[i]), 0-nodes, constant nodes, and a return node(ret) for the return Statement.
The incoming edges specify the inputs of the computation. For example, the multi-
plication node has two incoming edges. One edge is from the Operand a[ i ] the other
edge is from the Operand b [ i ] . In the SSA-graph all nodes, except the return node,
pass their result on to other nodes.

The grammars used for matching SSA-graphs are similar to grammars used by
tree pattern matchers. As the SSA-graph does not contain explicit nodes for variable
uses and variable definitions, no rules are required to match such nodes. Instead a
grammar for SSA-graph matching must contain rules for matching ^>-terms. In the
example grammar the Rules (12) and (13) are no longer needed. Instead we need
following rules to match the 0-term nodes.

(14) reg -> 0[reg, . . . , reg] ,0
(15) sreg -> <£[sreg,...,sreg] ,0

In contrast to matching rules of other nodes, 0-nodes do not emit any code. They
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are only needed to match non-terminals of the same type. Rules 14 and 15 handle
shifted and un-shifted values respectively for 0-nodes. As these rules do not generate
any code, they do not have a code template.

4.4. Mapping to a PBQP

In this section we describe the mapping of the SSA-graph matching problem to a
PBQP. The mapping from the SSA-graph matching problem is done in three steps:
(1) construct the PBQP-graph based on the SSA-graph, (2) determine cost vectors of
nodes, and (3) determine cost matrices of edges.

4.4.1. Normal Form

For performing the mapping, the grammar has to be transformed to normal form [7].
A grammar is in normal form if there are only production rules which are either base
or chain rules. A base rule has the form nto —> P\nt\,... ,ntn] where nti axe non-
terminals and P is a terminal symbol. A chain rule is given by nt\ —» nti where
on the left-hand side and on the right-hand side of the production are non-terminals.
Production rules, which are neither chain rules nor base rules, can be decomposed into
base and chain rules by introducing a new non-terminal.

For each pattern sub-tree (i.e. not the root of a pattern tree) of the form P or
P[S], where P is a terminal and S axe the child nodes, following transformation is
done: A new non-terminal ntp is introduced and a new production rule ntp —> P[S] is
added. The original occurrence of the sub-tree P is replaced by the non-terminal ntp.
The cost term of the new generated rules are set to zero, because the costs are already
counted in the original rule. This process is repeated until all rules in the grammar
are base or chain rules.

For example rule reg —> + [reg, * [reg, reg] ] , 2 is neither a base nor a chain
rule. By introducing a new non-terminal nt we can decompose the rule in reg —>
+ [reg, nt] ,2 and nt —• *[reg, reg] ,0 .

4.4.2. The PBQP-Graph

The main idea is that the PBQP-graph is equivalent to the SSA-graph (step 1). Nodes
in the SSA-graph axe nodes in the PBQP-graph and vice versa. Similarly, edges of the
PBQP-graph axe edges in the SSA-graph.

G(V,E,w) =

where S(V, E) is the SSA-Graph and G(V, E, w) is the PBQP-graph. The weighting
function w describes the cost vectors and matrices, which are determined in step 2
and 3.
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The SSA-matcher can be configured to different optimization goals, e.g. optimize
for minimal execution time or optimize for minimal code size. The parameterization
is done with an execution weighting function ew, which is defined for all nodes of the
PBQP-Graph.

When optimizing for minimal code size the function should yield 1 for all nodes,
because a code size penalty is independent of the point of code insertion. When
optimizing for minimal execution time, the execution weighting function yields the
dynamic execution count, which can be obtained by profiling. In this case the weight
function for nodes describes how often the Operation of the node is executed.

Definition 15. Let v € V be a node in the PBQP-Graph. Then ew(v) is is the
dynamic execution count of the basic block in which the Operation of v is executed or
oo ifv is a (f>-term.

For 0-terms it yields oo, which is necessary for constructing the cost matrices in
Section 4.4.4. With the help of the execution weighting function, the SSA-matcher
prefers to generate code in rarely executed parts instead of heavily executed parts.

For our example we assume that the loop is executed 10 times. This yields an
execution weight value of 10 for all nodes inside the loop, i.e. all nodes except 0 and
ret .

4.4.3. Defining Cost Vectors

For each node in the SSA-graph there are several base rule options. The number of
these alternatives determines the size of the boolean vector for this node. So each
vector element corresponds to a base rule. The cost vector of this node is derived from
the base rule costs of the node.

For each node we enumerate all applicable base rules. The cost vector for the node
is the vector of rule costs scaled by the execution weight function.

Let Ri = {r\,.., rl
k } be the set of matching rules for node V{ and let cost(r) be the

cost of rule r. Then we can construct the cost vector c\ according Equation 4.1.

Si(j) = costir}) • ew(i) Vrj £ Ri • (4.1)

Note that we define 0 • oo = 0. So for 0-terms, where the rule costs are 0 and the
execution weighting function is oo, the cost vector element is 0.

For our example all matching rules for its nodes are listed in Figure 4.5. As we can
see that for some nodes we have only one alternative which maps to a boolean decision
vector with only one element. For others we have two alternatives. Therefore, the size
for their boolean decision vectors is two. The cost vectors of the matching rules are
given in Figure 4.6(a). For nodes inside the loop the cost elements are multiplied by
10 since we assume that the loop is executed 10 times. For nodes outside the loop the
execution weight function yields one.
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Riet = { top -> ret [reg] }
Ro = { reg —» const(O) [], sreg —» const(O) [] }
Ä+ = { reg -> + [reg,reg], sreg -» + [sreg,sreg] }
•Rabs = { reg -> abs [reg], sreg -+ abs [sreg] }
R* = { sreg -»• * [reg,reg] }
Äati] = -Rb[i] = { reg -» load[ptr] }
ify = { reg -> 0[reg, reg], sreg -> <£[sreg, sreg] }

Figure 4.5.: Matching rule sets of the.running example

4.4.4. Defining Cost Matrices

The last step in the PBQP definition is to determine the transition cost matrices for
all edges in the graph, which express the chain rule costs between two Operators.

For convenience we define a function chaincost, which is used to get chain costs
between two rules rather than between two non-terminals.

Definition 16. Letr = ntr
0 —> P[nt[, ..,n££] ands = ntf, —> Q[nt\, ..,ntf] be base rules.

Then, chaincost(r, s, i) — c, where c are minimal costs of all chain rule derivations
from n<Q to ntf. If there is no chain rule derivation from nt^ to ntf, then c = oo.

Function chaincost(r,s,i) yields the chain costs between the result non-terminal
of rule r and the ith source non-terminal of rule s. For chain costs between two iden-
tical non-terminals we have zero costs. The cost between two different non-terminals
depends on whether a derivation with chain rules exists. If there exists at least one
derivation, the chaining costs are determined by the derivation with minimal total
cost. If no derivation exists, the transition is prohibited and the chaining costs are oo.
The minimal cost derivation is computed with the same algorithm as used in tree
pattern matchers [56].

The nodes in the SSA-Graph represent operations which have input operands and a
result. The input operands are represented by the incoming edges of a node. However,
graphs do not define an order for incoming edges which is required for constructing the
cost matrices. To overcome this problem, we define a mapping function opnum({p, s))
that determines the index of the Operand of the edge (p, s) in the expression tree.

Definition 17. Let s 6 V be a node in the PBQP-Graph and (p, s) G E be a predeces-
sor edge of s. Then opnum((p, s)) = i where i is the index of the Operand represented
by (p, s), of the Operator represented by s.

A matrix of an edge contains the costs of a transition between the non-terminals
of two adjacent rules. The matrix Cij defines the costs of applying chain rules from
the result non-terminal of the predecessor rule r* to the source non-terminal of the
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successor rule Tj. The selection of the source non-terminal in the successor rule pattern
is determined by the opnum function for the edge.

Based on functions chaincost and opnum, the cost matrices of edges in the PBQP-
graph are computed. The elements of a cost matrix are given according to Equa-
tion 4.2.

C{p,s)(hj) = chaincost(r?,r?, opnum{(p, s))) • ew(s) (4.2)

Vrf e ß p , r j € Ä s

where {p, s) is the edge between nodes p and s. The matching rules of nodes p and s
are denoted by ff and r|s respeciively.

The chain rule costs are scaled by the execution weight successor node, because
chain rule code is generated at the input operands of Operators. Sometimes it is
advantageous to generate chain rule code for the result of an Operator, e.g. if the result
has multiple uses or if the use is in a basic block which has a higher execution frequency
than the basic block of the Operator. This can simply be achieved by inserting a unary
dummy node after such Operators. Then the chain rule code can be generated at the
input Operand of the dummy node.

Note that for a <£-term node, the function ew yields oo. This disables the generation
of chain rule code before </>-term Statements.

For our example the cost matrices are given in Figure 4.6(b). Matrix C(abS)+)
contains a zero diagonal, the remaining elements are 10. Both the abs and + nodes
have two rules, where the first rules only contain reg non-terminals and the second
rules only contain sreg non-terminals. The transition costs between the first rule of
abs and first rule of + are the chain rule costs of deriving reg from reg. Obviously
this is zero. The same holds for the transition costs between the second rules. All
other transitions need a chain rule from reg to sreg or vice versa. The rule costs for
these chain rules are one, which is weighted by 10 (the execution count of the loop).

4.5. Solving the PBQP

In our example all nodes, which have only one matching rule, can be eliminated by
simplification. These nodes are ret , *, a[i] and b [ i ] . With the first simplification
step the cost vectors of <£-nodes and + change to the following values:

c+ = ( 30 30 ) + ( 10 0 ) = ( 40 30 )

c* = ( 0 0 ) + ( 0 1 ) = ( 0 1 )
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36 = {1 1 ) C<*.*> = ( 1 0

Ckbs = ( 20 20 )

& = ( 40 ) c-<abs,+> = c<+ ,0>
Ca[i] = Cb[i] = ( 50 )

c* = ( 0 0 ) <%ret> = ( ! J
(a) (b)

Figure 4.6.: Cost vectors (a) and transition costs (b) of the example

Figure 4.7 shows the reduction sequence of the example graph. The *, a [ i ] , b[i]
and ret nodes are already eliminated by simplification, because only a Single rule can
be matched on these nodes. The remaining graph contains one node with degree one,
i.e. node 0. In the first step it is eliminated by the HI reduction. This increments the
cost vector of the <̂ >-node to ( 1 2 ). Three nodes with degree 2 remain (<j>, + and
abs). One of them - in this example the abs node - is eliminated by applying the RII
reduction. The resulting edge of the reduction has a cost matrix of

/ 20 30 \
~ V 30 20 /

It is combined with the existing edge between </> and +, which results in a new cost
matrix

20 40
40 20

In the last step the <£-node can be eliminated with the RI reduction which results in
a cost vector of (61 52 ) for the remaining node +. It has degree zero and the second
rule (sreg —» + [sreg, sreg]) can be selected, because the second vector element
(which is 52) is the element with minimal costs. Because no RN reduction had tö be
applied for the example graph, the solution of this PBQP is optimal.

After reduction, only nodes with degree zero remain and the rules can be selected
by finding the index of the minimum vector element. The rules of all other nodes can
be selected by reconstructing the PBQP-graph in the reverse order of reduction. In
each reconstruction step one node is re-inserted into the graph and the rule of this
node is selected. Selecting the rule is done by choosing the rule with minimal costs
for the node. This can be done, because the rules of all adjacent nodes are already
known.
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©

Figure 4.7.: Reduction sequence of the running example

(1) _f:
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

rO = 0
loop {

rl = *ptrl
r2 = *ptr2
r3 = rl * r2
rO = abs(rO)
rO = rO + r3

}
rO = rO » 1
ret

Figure 4.8.: The resulting code
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The back-propagation process for our example graph reconstructs the <f>-node. The
second rule is selected for this node (sreg —• </>[sreg, sreg]). Then the abs and
0 nodes are re-inserted, with a rule selection of sreg —* abs [sreg] and sreg —>
const(O) [], respectively. The nodes ret, *, a[i] and b [i] need not be reconstructed,
because the first (and only) rule has already been selected in the simplification phase
for these nodes.

The solution of the PBQP yields the rule selections for the SSA-graph nodes. The
code is generated by applying the code generation actions of the selected rules. This
works in the same way as the code generation in tree pattern matchers. As the SSA-
graph does not contain any control flow information, the places where the code is
generated must be derived from the input program. So the code for a specific node
is generated in the basic block which contains the Operation of the node. Chain rule
code is inserted at the input operands of the successor Operator. The order of code
generation within a basic block is also defined by the Statement order and Operator
order in the input program. As with tree pattern matchers, the order can be directly
derived by traversing the Statement DFTs.

Figure 4.8 shows the resulting code after register allocation (for sake of clarity the
loop control code and addressing code are not shown in this figure). As we can see
in the generated code, inside the loop the addition Operation and the abs function is
performed with a shifted value. Prior to the return Statement the value of variable s
is converted to an un-shifted value.

4.6. Experimental Results

We have integrated the SSA-matcher into the Atair C-Compiler for the NEC /JPD77050

DSP family. The /LJPD77050 is a low-power DSP for mobile multimedia applications
that has VLIW features [39, 33]. Seven functional units (two MAC, two ALU, two
load/store, one System unit) can execute up to four instructions in parallel. The
register set consists of eight 40 bit general purpose registers and eight 32 bit pointer
registers.

The grammar contains 724 rules and 23 non-terminals. The non-terminals select
between address registers or general purpose registers. For the general purpose regis-
ters, there are separate non-terminals for sign-extended values and non-sign-extended
values and there are various non-terminals which place a smaller value at different
locations inside a 40 bit register.

We have conducted experiments with a number of DSP benchmarks. The first
group of benchmarks contains three complete DSP applications: AAC (advanced au-
dio coder), MPEG, and GSM (gsm half rate). All three benchmarks are real-world
applications that contain some large PBQP-graphs. The second group of benchmarks
are DSP-related algorithms of small size. These kind of benchmarks allow the detailed
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analysis of the algorithm for typical loop kerneis of DSP applications. All benchmarks
are compiled "out-of-the-box", i.e. the benchmark source codes are not rewritten and
tuned for the CC77050 Compiler.

In Table 4.1 the number of the graphs "Graphs num." and the sizes of the graphs
are given. In the "num." columns the accumulated values over the whole benchmark
are shown and in the "max." columns the maximum value over all graphs is given.
The total number of cost vector elements in the graph and the maximum number of
cost vector elements for each node is shown in the last two columns. The number of
cost vector elements is the number of matching rules of a node. These numbers depend
on the used grammar. With our test grammar a maximum of 62 rules per node occurs
in the graphs.

An importa.nt question when using a PBQP solver arises regarding the quality of
the solution. It highly depends on the density of the PBQP-graphs. If a graph can be
reduced with RI and RII rules, the solution is optimal. Figure 4.9 shows the distri-
bution of reductions. 31% of nodes can be eliminated by simplification, because they
are trivial, i.e. only a Single rule can match these nodes. An important observation
is that only a small fraction (less than 1%) of all nodes are RN nodes. Therefore the
Solutions obtained from the PBQP solver are near optimal. The distribution of nodes
in Figure 4.9 also shows the structure of the PBQP-graph: The fraction of degree zero
nodes "RO" indicates the number of independent sub graphs in the SSA-graphs, i.e. a
third of the nodes form own sub-graphs. RI nodes are nodes which are part of a tree,
whereas RII and RN nodes are part of a more complex subgraph. Simplification can
eliminate 37% of all edges, because of independent transition costs.

An effective way to improve the solution is to recursively enumerate the first RN
nodes in a graph. In many graphs only a few RN nodes exist and by moderate enu-
meration an optimal solution can be achieved. We have performed our benchmarks
in three different configurations: (1) reducing all RN nodes with heuristics "H", (2)
enumerate the first 100 permutations before applying heuristics "E 100" and (3) enu-
merate the first two million permutations "E 2M" before applying heuristics. The third
configuration can yield the optimal solution in almost all cases. It is used to compare
the other configurations against the Optimum. Table 4.2 shows the percentages of
optimally solved graphs and optimally reduced nodes in each configuration. The left
columns "gropt" show the percentage of optimally solved graphs in each benchmark,
the right columns "rnopt" show the percentage of RN nodes, which are reduced by
enumeration and do not destroy the optimality of the solution. A value of 100% is
also given if there are no RN nodes in a benchmark. In the first configuration "H", no
enumeration was applied, therefore all RN nodes are reduced with the heuristics (0%
in the "H/rnopt" column or 100% if there are no RN nodes in a benchmark). Even
without enumeration most of the graphs "H/gropt" can be solved optimally. The
results of the second configuration "E 100" show that with a small number of permu-
tations almost all graphs "E 100/gropt" and a majority of RN nodes "E 100/rnopt"
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Figure 4.9.: Reduction statistics

can be solved optimally.
For the Performance evaluation, we compare the SSA-graph matcher with a conven-

tional tree pattern matcher, using the same grammar. For the tree-pattern matcher
we had to make a pre-assignment of non-terminals to local variable definitions and
uses. We assigned the most reasonable non-terminals to local variables, e.g. a pointer
non-terminal to pointer variables, a register low-part non-terminal to 16 bit integer
variables, etc. This is how a typical tree pattern matcher would generate code. It is
equivalent to the approach of Splitting the graph into trees. The Performance improve-
ments for all three configurations is shown in Figure 4.10. The configuration which
enumerates 100 permutations gives a (marginal) improvement in just one benchmark
(AAC). And the near optimal configuration does not improve the result anymore.
This indicates that the heuristic for reducing RN nodes is sufficient for this problem.
The Performance improvement for the small benchmarks is higher than for the large
applications, because the applications contain much control code beside the numerical
loop kerneis.

The compile time overhead for the three DSP applications is shown in Table 4.3
(the compile time overhead for the small DSP algorithms is negligible and therefore not
shown). The table compares the total compile time of two Compilers, the first with
SSA-graph matching, the second with tree pattern matching. The table compares
the compile time overhead of the SSA-graph matching Compiler to the tree matching
Compiler in percent for all three configurations. The overhead of the first two config-
urations ("H" and "E 100") is equivalent. This means that it is feasible to allow a
small number of permutations for RN nodes.
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Figure 4.10.: Performance improvement

Benchmark

mp3
gsm
aac
iirc
iirbiqc
matmult
vadd
vdot
vmin
vmult
vnorm
sum/max

Graphs
num.

60
129
71
1
4
2
2
2
2
2
2

277

Nodes
num.
37197
71376
25875
263
986
640
244
268
306
276
252

137683

max.
8491
24175
13093
263
493
320
122
134
153
138
126

24175

Edges
num.
40321
76884
26886
271
1002
656
242
268
304
274
252

147360

max.
8854
26154
13523
271
501
328
121
134
152
137
126

26154

vec. elements
num.

556819
1138903
405220
4877
17760
12182
4390
4812
5652
4976
4590

2160181

max.

62
62
62
62
62
62
33
62
33
62
62

. 62

Table 4.1.: Problem sizes
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Benchmark
mp3
gsm
aac
iirc
iirbiqc
matmult
vadd
vdot
vmin
vmult
vnorm

H
gropt
83.33
93.02
91.55
0.00

50.00
100.00
100.00
100.00
100.00
100.00
100.00

rnopt
0.00
0.00
0.00
0.00
0.00

100.00
100.00
100.00
100.00
100.00
100.00

E 100
gropt
98.33
99.22
98.59

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

rnopt
54.76
82.35
75.00

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

E 2 M
gropt
98.33

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00

rnopt
73.81

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100,00
100.00
100.00

Table 4.2.: Optimal graph and node reductions in percent

Benchmark
mp3
gsm
aac

H
14
6
3

E 100
14
6
3

E 2 M
4252

7
349

Table 4.3.: Compile time overhead in percent
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5.1. Overview

Embedded CPU architectures, like DSP processors, have addressing generation units
facilitating a variety of addressing modes. In this chapter we introduce a Compiler op-
timization called addressing mode selection (AMS) that selects the optimal addressing
modes for address registers in an input program. AMS is a complementary optimiza-
tion to offset assignment and address register assignment. The AMS is performed
after the offsets and address registers have already been assigned.

The AMS is a representative problem for all kinds of mode optimization problems.
The AMS problem formulation can be easily adapted for other mode optimization
problems, e.g. the problem of optimally setting CPU mode registers. Whereas most
mode optimization problems have to decide between a small number of modes (e.g.
mode is on and mode is off), the additional difficulty of the AMS is that it has to
decide between a large number of values. Therefore the PBQP solver for the AMS
uses a sparse matrix representation, which is not necessary for other mode optimization
problems.

The AMS turns out to be a hard problem mainly for two reasons: First, even if
we assume a very simple architecture, the AMS problem is NP-complete [52]. Second,
in practice the addressing modes of embedded System processors are very diverse and
non-homogeneous. The PBQP allows us to construct a flexible cost model in which
all kinds of addressing modes can be handled. The most important aspect is that the
PBQP solver can yield an optimal result for nearly all input programs.

5.2. Motivation

Consider the pseudo code of our running example in Figure 5.1(a). The goal is to opti-
mize the addressing modes of register arO. The underlying target architecture supports
the indirect addressing mode * (ar), the post modification addressing mode * (arO++),
*(arO—), *(arO+=c),1 and the indirect-with-offset addressing mode *(ar+c).

For sake of simplicity we assume that post modification can be executed without
additional overhead. The indirect-with-offset addressing mode (ar + c) has worse
pipeline characteristics than post modification and a longer instruction encoding as
well. An explicit add instruction for address register arO needs considerably more time
than employing addressing modes and should be avoided in general.

In the example of Figure 5.1(a), the loop is executed 10 times and the condition c is
true in 7 iterations and false in 3 iterations. The optimal Output program for minimal
execution time is shown in Figure 5.1(b). The add instruction can be moved out of
the loop and post modification addressing modes can be used instead of indirect-with-

' in contrast to many programming languages, the += Operator has a post modification semantic in
the context of addressing modes.
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(!) ax0 + = 1

} eise { ,,,.

2 ) <•>
}

(7) arO -= 1

(a) (b)

Figure 5.1.: Running example: the original code (a) and the optimized code (b)

offset addressing modes in line (5) and (6). An explicit add instruction for the address
register must be inserted prior to the loop and in line (4), but this is less expensive
(in terms of execution time) than the original program.

In our experience, which are presented in Section 5.7, we have seen that the AMS
is a very important problem for embedded System processors. We have integrated
AMS into the Atair C-Compiler for the NEC uPD77050 DSP family and used typical
digital signal processing applications as benchmarks. The experiments show that code
size reductions up to 50% and speedups of more than 60% are achievable.

5.3. Modeling of the AMS Problem

The AMS problem is formulated for a Single address register. As a CPU architecture
typically provides a set of address registers, the AMS algorithm is performed for each
address register separately. In the following we refer to the currently optimized address
register as the address register. The input for the AMS algorithm is the control flow
graph (CFG) of a program. Each CFG node represents a Single instruction. This
means that we decompose a basic block, which is a linear sequence of instructions,
into a linear list-type subgraph in the CFG containing a node for each instruction.
For each node in the CFG, the AMS algorithm decides which addressing mode is the
best, based on a cost model. This decision cannot be done locally as demonstrated in
our running example of Figure 5.1.

For a better understanding we give some examples of addressing modes which can
be found on various architectures, especially DSP architectures. An addressing mode
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is the method of generating an address in the address generation unit of the target
architecture. The addressing mode defines how the address is calculated from the
address register value and how the address register is modified when generating the
address.2

5.3.1. Addressing Modes

We distinguish between real addressing modes and pseudo addressing modes. Real
addressing modes generate an address and access the memory with the generated
address. This address is called the access value. In general, the access value is not
known at compile time and may even change for different executions of an instruction,
e.g. a load instruction in a loop.

In the following we list examples of real addressing modes.

• The basic addressing mode is indirect addressing. The memory is accessed at
the address value of the address register and the address register is not modified.
So the access value is the value of the address register. An example is a load
from memory into general purpose register: r l = *arO.

• Post increment and post decrement addressing modes are basically the same as
the indirect addressing mode, except that the address register is incremented
or decremented after the memory access, respectively. Usually the increment or
decrement value is equal to the access size in memory. These addressing modes
are useful for sweeping over an array in a loop. Examples are r l = *arO++
or r l = *arO—. The access value is the value of the address register before
modification.

• A more general form is the post modification addressing mode. In contrast to
the post increment/decrement addressing modes, the modification value can be
specified explicitly within a given ränge, e.g. r l = *(arO+=2). The available
ränge for the modification value depends on the architecture. Usually it is only
a subset of the whole address space. The drawback of this addressing mode
is that it needs more coding space compared to the post increment/decrement
modes. The access value is the value of the address register before modification.

• Some architectures provide an indirect-with-offset addressing mode. The access
value is obtained by adding a constant offset to the address register value, but the
value of the address register is not changed, e.g. r l = *(arO+2). The indirect-
with-offset addressing mode implies an addition before accessing the memory
that may result in pipeline hazards.

We do not consider addressing modes which do not involve address registers, like direct addressing.
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• In many architectures both, the post modification and indirect-with-offset ad-
dressing modes, are also available with an index register instead of an imme-
diate value, as shown in the following example: rl = *(arO+=irO) and rl =
*(arO+rO). The index register variants need some Special treatment in the cost
model by defining pseudo values for the index registers in the value domain.

• Usually DSPs provide modulo and bit-reverse addressing modes for accessing
circular buffers and implementing FFT algorithms. These addressing modes
must be explicitly specified by the programmer, because the source language
(which is C) provides no means of describing bit-reversed and modulo addressing.
Therefore the modulo and bit-reversed modes are not automatically generated
by the AMS optimization.

In contrast to real addressing modes, the pseudo addressing modes do not access
the memory. These are all instructions which use the address register, but not for
memory access. For convenience we define an access value for most of the pseudo
addressing modes, too.

• Instructions which initialize the address register are considered as address regis-
ter definitions. An example is a move instruction from a general purpose register
(axO = rl) which initializes the address register before a loop. The access value
is defined as the value to which the address register is set. Definitions are differ-
ent from all other addressing modes, because the value of the address register is
arbitrary before the definition.

• The counterpart of the the address register definition is the address register read.
Such an instruction reads the address register value — the access value — but
does not access the memory, for example a move to a general purpose register
(rl = arO). For the problem model, this pseudo addressing mode is equivalent
to the indirect addressing mode.

• The definition of an index register is the only addressing mode in which the
address register is not involved directly. But it must be considered by the AMS
because it influences the real addressing modes which use the index register.

• For the AMS problem, explicit address register add instructions have a great
Potential for optimizing the code. First, add instructions might be eliminated by
using addressing modes. For example, the code sequence rO=*ar; ar+=l can be
replaced by rO=*ar++, which saves one instruction. Second, an add instruction
might be inserted by the AMS algorithm to optimize the program at another
place that is executed more frequently. E.g., an add instruction is inserted at
node (4) in Figure 5.1 for obtaining a better code inside the more frequently
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executed then-branch of the if-statement. For add instructions no access value
is defined.

Finally, a node in the CFG, which does not contain address registers, can be
treated as an add instruction with zero increment. If the AMS algorithm selects
a constant different from zero, an explicit add instruction must be inserted.

Now we describe a formal method to express addressing modes. We define an offset
value, which is the offset of the address register value compared to the access value of
an addressing mode. The offset value is either an integer constant or a symbolic value.
The symbolic value p is used for addressing modes which involve an index register. In
this case p denotes the index register value, which is not known at compile time.

For an addressing mode we have two offset values: the entry offset is the offset
before the instruction with the addressing mode is executed, the exit offset is the offset
after the instruction is executed.

Definition 18. Addressing mode am is defined as set of entry- and exit-value pairs.

am — i j ^̂ Ci,Xjyj ^o.i

where n is the number of offset pairs, e\ are the entry offsets and Xi are the exit offsets
of addressing mode am. <

For the most common addressing modes, like the indirect addressing * (ar), the
set am contains a Single value pair, i.e. {(0,0)}. Addressing modes which can encode
a whole set of constant values, like the general post modification *(ar+=c), contain a
value pair for each possible constant value.

For addressing modes, which do not define an access value, like add instructions,
the entry- and exit values are not relative to the access value. The difference between
entry- and exit values define the value which is added to the address register.

The following table lists the sets for the previously introduced addressing modes.
The set D is the domain of offset values. The set C denotes the available constants
in an addressing mode. Usually C is a ränge of integer values [—x, x — 1] where x is a
power of two. This number ränge is normally smaller than the domain D in order to
keep the instruction word small.
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Addressing Mode Syntax am

indirect addressing *ar {(0,0)}

post increment *ar++ {(0,1)}

post decrement *ar—

post modification *(ar+=c)

indirect-with-offset *(ar+c)

post register modification * (ar+=ir)

register indexing * (ar+ir)

register definition ar=x

register read x=ar {(0,0)}

index register definition ir=x

add ar+=c

register add ar+=ir

empty - Ui€Z>{(M)}

5.3.2. Basic Idea

The goal of AMS is to replace addressing modes with other addressing modes, which
are cheaper according to a defined cost model. The principal idea is that we shift the
value of the address register ar between two consecutive instructions. For this purpose
we insert an add instruction before and after each instruction. Each instruction i is
replaced by ar=ar-ei; i ; ar=ar+a:j, where e\ is the entry value and x\ is the exit value
of instruction i. To maintain correct program semantics, the exit and entry values of
two consecutive instructions i and j must match, i.e. Xi = ej. Finally a peephole
optimization can eliminate sequences of add instructions and addressing modes to a
cheaper addressing mode.

In Figure 5.2 the shift of ar is illustrated. Figure 5.2(a) shows the original instruc-
tions. The offset value is zero per definition. Figure 5.2(b) shows the program after
inserting the add instructions. On the right side the offset value is shown.

Memory accesses and address modifications of the input program can be rewritten
by several addressing modes with different costs. Basically, we are interested in choos-
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ar=ar-ei
i

ar=ar+xi
xi = ej

ar=ar-ej
j

ar=ar+xj
xj

(a) (b)

Figure 5.2.: Shift of address register

ing addressing modes for the input programs such that the overall costs are minimal.
Note that the selection of an addressing mode is not a local decision because it induces
offset constraints for the entry and exit offsets. Preceding and succeeding instructions
must have matching offset values - otherwise program semantics is destroyed.

5.4. Mapping to a PBQP

In this section we describe the mapping of the AMS problem to a PBQP. Two steps
are involved: (1) construct the PBQP-graph based on the CFG and (2) determine
cost matrices of edges. The third step of building the cost vectors of the nodes is not
required, because for the AMS problem all cost vectors are zero vectors.

The main idea of the mapping is that the decision vectors in the PBQP correspond
to the set of offset values. Each element corresponds to a specific offset value. As the
domain of offset values D is very large, the implementation of the cost model needs to
be represented in a compact form (see Section 5.6).

5.4.1. The PBQP-Graph

As already shown in Figure 5.2, the exit and entry offset values of two subsequent
instructions must match. For a CFG node, which may have several successors, we can
generalize the previous observation.

xn — Vm G SUCC{n) (5.2)
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Offset values are propagated along CFG edges and enforce a consistent offset value
between two subsequent instructions. This constraint imposes a partitioning of edges.
In a partition, all the entry- and exit-offsets of their associated edges must have the
same offset value. An edge class is given by following definition.

Definition 19. The set L = {h,...,ln} is the set of CFG edge classes. Two edges
et,ej G E are in the same edge class lk iff target(ej) = target(ej) or source(ej) =
source(ej).

The condition above can only be relaxed if a use of an address register can not be
reached on any path starting from a join point in the CFG. Then a consistent offset
value is not needed at the join point. An easy way to handle this exception is to
perform a liveness analysis prior to the AMS algorithm and exclude all CFG nodes
and edges, where the address register is not alive.

For solving the AMS problem we map the original CFG to a new graph, the PBQP-
graph. A node in the PBQP-graph combines all CFG edges which belong to one edge
class and represents this set of edges. An edge in the PBQP-graph represents a CFG
node. For the start and end node in the CFG node we would not have source and
target nodes in the PBQP-graph. Therefore we introduce the artificial nodes _L and
T.

An edge class is the transitive closure of all edges which have common source or
target nodes (an edge class is a zig-zag pattern in the CFG). The PBQP-graph is
constructed from the CFG by exchanging the meaning of edges and nodes. With
Definition 19 the PBQP-graph construction algorithm can be formulated as follows:

1. Group all edges in the CFG into edge classes.

2. Generate a PBQP edge for each CFG node n from PBQP node li to lj, where
Vp G PRED(n) : p € lt and Vs G SUCC(n) : selj.

3. Add entry the node T and the exit node J_.

4. Generate a PBQP edge for the CFG entry node e from PBQP node T to lu,
where Vs G SUCC(e) : s G lu.

5. Generate a PBQP edge for the CFG exit node x from PBQP node lv to J., where
Vp G PRED(x) : p G /J.

Figure 5.3 shows the CFG and the related PBQP-graph of our example. It consists
of three edge classes (a, b, c) and the entry and exit classes (T, _L). As there are
no register definitions in the program, all CFG nodes and edges are included in the
PBQP-graph construction process.

The crucial point is now that for the AMS problem almost all graphs can be
reduced without applying the RN reduction. So the solution is optimal for almost
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(a) (b)

Figure 5.3.: CFG- and PBQP-graph of the example

all graphs. The reason is that the CFGs of the input program are generated from a
structured high level language - in our case C. Almost all control flow which can be
formulated in C result in reducible PBQP-graphs. There are some exceptions, like
the goto Statement and program transformations, which may produce non reducible
CFGs. But even if the CFG is not reducible, the PBQP is reducible in many cases.

5.4.2. Defining the Costs

An edge in the PBQP-graph represents a node in the CFG, which contains a Single
instruction for which an addressing mode has to be selected. We can model the costs
of addressing modes by defining the cost matrices for the edges in the PBQP-graph.

As stated above, no cost vectors have to be defined, because all vectors are zero-
vectors. There is one exception if the address register is forced to an offset value of 0
at the function entry and exit. In this case the cost vector of the T and _L nodes have
a zero element at offset zero and all other elements are infinite.

The AMS model can be configured by a cost function ac(am, i) which yields a cost
value for a specific addressing mode am when used in instruction i. These are the
costs of replacing the sequence ar=ar-ej; i; ar=ar+:cj with the instruction i', where
i' uses the selected addressing mode am. If no addressing mode is available for the
given entry- and exit-values ei and Xi, the adjacent add instructions must remain and
contribute to the cost.

Different optimization goals can be selected with the cost function ac, e.g. optimize
for minimal execution time or optimize for minimal code size. When optimizing for
minimal execution time, the cost function yields the number of cycles for executing
the addressing mode, weighted by the dynamic execution weight ew of the instruction,
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5.4. Mapping to a PBQP

which can be obtained by profiling. When optimizing for minimal code size, the
function yields the number of coding bits for the addressing mode. In this case the
function ac does not depend on i, because a code size penalty is independent of the
point of code insertion.

For each edge ei = (p, s), which relates to instruction i, the cost matrix Cps has to
be defined. First we have to analyze the instruction i and find out the offset pair {u, v)
of the instruction's original addressing mode. For example if the original instruction
contains an address register modification, like *(ar+=3), the offset pair {u, v) is (0,3).
If the original instruction is an add instruction ar=ar+c, then the offset pair (u, v) is
(0, c). The cost matrix Cps can be calculated according to Equation 5.3.

Cps(e,x)= min ac(am,i) (5.3)
(e—u,x—u)£om

An offset pair is associated with an element of a cost matrix, i.e. element C(e, x)
of matrix C gives the costs for the cheapest addressing mode for the offset pair (e, x).
Note that the values of e and x might also be negative. To get positive row and
column indices a mapping function is required, i.e. the minimum negative value in D
is subtracted.

We can now formulate the cost matrices for our example in Section 5.2. Fig-
ure 5.3(a) shows the CFG of the input program. We assign costs of 0 for the post
modification mode and costs of 0.2 for the indirect-with-offset mode, because it has
worse characteristics than post modification (e.g. larger coding). Inserting an add
instruction contributes a cost of one. From the assumed loop iteration count of 10
and the condition evaluation of 7 times true, we get dynamic execution weights for
the CFG nodes of ew{\) = 1, ew(2) = 10, ew(3) = 7, ew(A) = 3, ew{5) = 10, and
ew(6) = 1. Because we want to optimize for minimal execution time, we multiply the
addressing mode costs by the dynamic execution counts of the nodes. For this example
we limit the domain of offset values to the set of {0,1,2} to keep the matrices small.
Of course the real implementation of the algorithm has to take the whole domain of
available values into account. Therefore sparse matrix representations are required.

Let us construct the cost matrix of the empty node (1). Since the node does
not contain an instruction, which accesses memory or modifies the address register,
we treat it is an add instruction with zero increment. For each offset pair in the the
domain we find the cheapest addressing mode. The cost matrix and the corresponding
addressing modes for node (1) are listed below.

am 0
ar+=0 ar+=l ar+=2

ar-=l ar+=0 ar+=l

ar-=2 ar-=l ar+=0
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The matrix C\ represents the costs for all offset pairs. The table on the right-hand
side of the matrix gives the associated addressing modes. Note that the rows relate
to the entry offset values and the columns to the exit offset values. Any transition
from an entry offset value to an exit different offset value needs an add instruction to
be inserted with a cost of 1. If the entry and exit offset values are identical the add
instruction is not necessary since it has a zero increment.

The matrix for node (2), which represents the add instruction ar = ar + 1, and
the associated addressing modes are given as follows:

/ 0 0 0\
C2 = 10 • ( - 1 0 0 ]

\ 0 - 1 0 /

am 0
ar+=l ar+=2 ar+=3
ar+=0 ar+=l ar+~2
ar-=l ar+=0 ar+=l

Node (2) is executed 10 times and therefore the cost matrix is multiplied by a
factor of 10. Moreover, the cost matrix contains two elements whose values are — 1.
The associated addressing modes of those elements eliminate the add instruction. For
all other offset pairs the add instruction remains in the program.

The instruction * (ar) of node (3) imposes a more complex cost matrix and ad-
dressing mode table. For one offset pair there can be more than one choice. For such
a case we have to take the addressing mode with the cheapest costs. In addition some
offset pairs require an additional add instruction to Update the value of the address
register. The cost matrix of node (3) is given by

0
1
1

0
0.2
1

0
1

0.2

where the addressing mode table is listed below

am
*(ar+=2)*(ar) *(ar++)

ar-=l;*(ar) *(ar-l) ar-=i;*
ar-=2;*(ar) ar-=2;*(ar++) *(ar-2)

ar-=l;*(ar+=2)

The zeros in the first row result from the post modification addressing mode and
the elements in the remaining diagonal whose values are 0.2, result from the indirect-
with-offset addressing mode. For all other offset pairs an add instruction must be
inserted.

The cost matrices and addressing mode tables of nodes (4) and (5) are constructed
akin to the previous instructions. The difference to matrix C3 is that the element
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values are shifted by —0.2, because the original nodes (4) and (5) already contain an
indirect-with-offset addressing mode.

0 0.8 0.8
C4 = 3 • -0.2 -0.2 -0.2 C5 = 10

0.8 0.8 0

where the addressing mode of node (4) *(ar0 + 1) is

0 0.8 0.8
0.8 0 0.8

, -0 .2 -0 .2 -0.2>

am 0
*(ar+l)
*(ar--)
ar-=l;*(ar

ar+=l;*(ar)
*(ar)
ar-=l;*(ar)

ar+=l;*(ar++)
*(ar++)
*(ar-l)

and of node (5) *(arO + 2) it is

am 0
*(ar+2)
ar-=l;*(ar-=2)
*(ar-=2);

ar+=2;*(ar-
*(ar+l)
*(ar—)

ar+=2;*(ar)
ar-=l;*(ar)
*(ar)

For node (6) we obtain the same cost matrix as already presented for node (1), i.e.
Ci = C6.

5.5. Solving the PBQP

After generating a PBQP from the AMS problem, the PBQP must be solved. In
the sequel we show the reduction and back-propagation phase of the solver for our
example. The reduction steps are depicted in Figure 5.4. First, we have to combine
edges 3 and 4, because only a single edge is allowed between two nodes. The resulting
matrix is the sum of matrix C$ and CA which yields

C34 =

The first step is the reduction of the degree-one nodes T and J_ which adds two
vectors ( 0 1 1 ) to the node vector a. Note that the cost vectors of T and J.
are infinite, except the first element, because at function entry and exit the address
register must not be changed.

0
6.4
9.4

2
0
9

.4

.8

.4

2.4
6.4
1.4
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0
6.4
9.4

2.4
0.8
9.4

2.4
6.4
1.4

Figure 5.4.: Reduction sequence

The resulting node vector is va = ( 0 2 2 ). The remaining cycle of three nodes
is reduced by reducing (any) node with the RII reduction. In the example we select
node b. The new edge gets a matrix of

C234 =

In the next step we have to combine edges 234 and 5 by adding C234 and

/ 0 8.8 -0.6^
C2345 = - 2 -7.6 -9.6

\4.4 -1.2 -5.6,

The last reduction step is a RI of node a. The only remaining node is c with
vector ( 0 —5.6 —7.6 ) and the offset value can be selected by taking the index of
the minimal element —7.6, i.e. sc = 2. The minimal element —7.6 represents the total
cost of the optimization. It should be negative, because the optimization should bring
a benefit, rather than extra costs. Now the reduction process is reversed and offset
values are selected for all nodes in the order sc = 2, sa = 1, Sb = 0, s± = 0, ST = 0.

The solution of the PBQP problem yields an offset value in each node of the
PBQP-graph. The offset values are then transferred to the CFG. The entry value ei of
instruction i is the PBQP solution of the predecessor edge class of i, the exit value x%
is the PBQP solution of the successor edge class of %. The selection of the addressing
mode for an instruction is done by selecting the am with the minimum cost which
contains the pair (i, j). Add instructions with zero additive constants can be deleted.

In our example, the entry and exit values can be obtained from the predecessor
and successor edge values respectively: e\ = 0, x\ = 1, e2 = 1, £2 = 0, e% = 0, X3 — 2,
e4 = 0, 2:4 = 2, es = 2, £5 = 1, ee = 1, X6 = 0. From these entry and exit values, the
Output program, which is already shown in Section 5.2, can be generated.
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\
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Figure 5.5.: Definition of a matrix region

5.6. Sparse Matrix Implementation

The size of the vectors and matrices used in the PBQP algorithm is the number of
available values which an address register may contain, i.e. \D\. In practice this
number is very large (e.g. 216 or 232). Although the number is constant it is not
possible to implement such large vectors and matrices as arrays of values. To get a
handle on the problem, a sparse vector and matrix representation is required.

Usually a sparse matrix implementation stores Single elements, which are not
zero [29]. In our implementation we störe regions of equal elements, which are not
infinite.

5.6.1. Sparse Matrix Representation

A matrix is expressed by a set of cost regions. Each region defines a six-sided area in
the matrix with a specific cost value.

Definition 20. Let r = {lr, ur, lc, uc, Id, ud, rc) be a cost region. Then

c(r,i,j) = l rc,
oo,

if lr < i < ur
otherwise

A lc< j <uc A Id <i — j <ud

The values lr and ur specify the row-interval. It delimits the region area in the
row-dimension. The values lc and uc specify the column-interval which delimits the
region in the column-dimension. This rectangle shaped area is further delimited by
a diagonal-interval, specified by Id and ud. The cost matrices for many addressing
modes, like add instructions, contain such diagonal oriented cost areas. Therefore it
is very useful to define this kind of six-sided region instead of rectangular regions. It
is also possible that a region is not six-sided, but five-sided or rectangular.This is the
case if Id < lc — ur or ud> lr — uc. A graphical representation of a region is shown in
Figure 5.5
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X 5 J5

r\~\
1 \ \
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Figure 5.6.: The sparse representation of a matrix by three regions. In the region
intersections the regions with the minimum cost values define the resulting
matrix element values.

The function c yields the region value for matrix element i,j. Inside the region
area, the function c yields the cost value rc. Outside the area the value of c is infinite.
Note that it is not required that the lower bound of an interval is less than the upper
bound. If this is not the case for any of the intervals (row-, column-, or diagonal-
interval), — according to the definition — function c is infinite for all values of i and
3-

With the help of cost regions we can now specify the sparse representation of a
matrix.

i, • • • ,rn} be a set of regions. Then the matrix M is

M(i,j) = min c(r,i,j)
r£R

Definition 21. Let RM =
defined by

The definition imposes no constraints on the region's bounds, which allows region
areas to overlap each other. The resulting value of an overlapped area is the minimum
of the region costs. The possibility for overlapped regions minimizes the number of
regions in cases where a small region with less cost is embedded in a larger region with
higher cost. Figure 5.6 shows an example of a matrix consisting of three regions.

5.6.2. Sparse Vector Representation

The sparse vector representation is equivalent to a 1 x n matrix representation. But
for a vector, only the column-interval is required to define a one-dimensional region.
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Therefore we introduce a simplified region definition for the sparse vector representa-
tion.

Definition 22. Let r = {l,u,rc) a cost region. Then

. .. ( rc, if l <i <u
\ oo, otherwise

The region defines only a Single interval with the values l and u. Again, the cost
function c yields the region value for vector element i. The sparse vector representation
is defined similar to the sparse matrix representation.

Definition 23. Let Ry = {r\,..., rn} be a set of regions. Then the vector v is defined
by

v(i) = min c(r, i)

5.6.3. Operations

We have to describe all operations, which are used by the PBQP solver, for the sparse
matrix representation. The operations include vector and matrix addition, the calcu-
lation of the S vector and the A matrix in the reduction rules, matrix transpose, and
the imm (v) Operator on a vector.

Matrix and Vector Addition The matrix and vector additions are equivalent, because
a vector has the same representation as a 1 x N matrix. Let C — A + B be matrices
of size N x M. Matrix C is defined by

C(i,j) = A(i,j) + B(i,j) (5.4)

Inserting the sparse matrix representation we get

C(i,j)= min c(rA,i,j)+ min c(rB,i,j) (5.5)

Combining the minimum operations yields

C(i,j)= min [c{rA,i, j) + c{rB,i,j)] = min c(rc,i,j) (5.6)

where (rA,rß) is the set of all possible combinations of regions in RA and Rß- For
constructing the region set Rc for matrix C we build a region rc for each combination
{TA^B)- For region rc the following equation must hold

c(rc,i,j) = c(rA,i,j) + c(rB,i,j) Vi, j : 1 < i < N, 1 < j < M (5.7)
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The cost function c(rc,i,j) evaluates to oo if one of the Operand cost functions
yields oo. Otherwise it evaluates to rcA + rcB. We can now State the conditions for
c(rc,i,j) not yielding oo.

<i< urA (5.8)

lrB < * < urB (5-9)

ICA <j< ucA (5.10)

lcB<j<UCB (5.11)

ldA<i-j <udA (5.12)

ldB<i-j<udB (5.13)

From these conditions the region TQ can be derived. Inequalities 5.8 and 5.9 de-
scribe the new row-interval. Similarly 5.10 and 5.11 describe the new column-interval
and 5.12 and 5.13 describe the new diagonal-interval. The area of region rc is the
intersection of the region areas of rA and rB.

rc = (max (lrA,lrB),min (urA, urB),

max(lcA, lcB),min(ucA, ucB),

max(ldA, ldB),min(udA, udB),

rcA + rcB)

The worst-case complexity of the addition is O(n • m), where n and m are the
number of regions in matrices A and B, respectively. Before the addition Operation
is performed, the regions are sorted in row order. In practice, many row-intervals are
small and the regions are distributed over the row-dimension. Therefore only a fraction
of all possible region combinations have to be calculated and the actual complexity is
less than quadratic.

Calculation of 6 The S vector is used in the RI reduction rule. It is defined as

<£(») = min [A(i, k) + c(k)}
k

where A and c are the matrix and the vector involved in the RI reduction. Inserting
the sparse matrix representation we get

5{i) = min min c(rA,i,k) + min c(rc,k)\ (5-14)
k \TAeRA rceRc J

Combining the minimum operations yields
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S(i) = min min [c(rA,i, k) + c(rc,k)] (5.15)

As for the matrix addition we build a region rs for each region combination of (TA, rc).
The following equation must hold

c ( r s , i) = m i n [ c ( r A , i, k) + c ( r c , k)] V i : l < i < N (5.16)
k

Again, the cost function c(r§, i) can yield only two values: TCA + rcc and oo. The
conditions for c(rs, i) for not yielding CXD are as follows.

(5-17)

< k < ucA (5.18)

ldA<i-k< udA (5.19)

lc < k < uc (5.20)

For constructing the 5-regions we have to eliminate k. We derive a new inequality
by adding 5.19 and 5.20, which yields 5.21.

uc (5.21)

From these conditions the region rs can be constructed.

, min(urA, udA + uc), TCA + rcc)

Inequalities 5.18 and 5.20 indicate that the resulting rs region is only generated if the
column- and the vector-intervals overlap.

max(lcA,lc) < min(ucA,uc)

The worst case complexity of the 5-computation is O(n • m) where n is the number
of regions in matrix A and m is the number of regions in the vector c. As for the
matrix addition, the actual complexity is less than the worst case complexity.

Calculation of A The calculation of the A matrix in the RII reduction is defined as

A(t, j) = min [A(i, k) + B(j, k) + c{k)}

where A, B and c are the matrices and the vector involved in the RII reduction.
Inserting the sparse matrix representation we get
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A(z,j) = min min c(rA,i, k) + min c(rß,j, k) + min c(rc, k)\ (5.22)
k \rA&RA rB€RB rceRc J

Combining the minimum operations yields

A(i,j) = min min [c(rA, i, k) + c(rB,j, k) + c(rc, k)] (5.23)
k (rrr)eRXliXIt

As for the matrix addition we build a region r^ for each region combination of
(fAffB^c). The following equation must hold

C(TA, i, j) = n i i n [c(rA, i, k) + c(rB,j, k) + c(rc, k)] Vi,j:l<i<N,l<j<M

(5.24)
Again, the cost function c(r&,i, j) can yield only two values: rcA + rcß + rcc and oo.
The conditions for c(rA,i,j) for not yielding oo are as follows.

lrA<i< urA (5.25)

lcA < k < ucA (5.26)

ldA<i-k< udA (5.27)

ITB <j< urB (5.28)

ICB <k< ucB (5.29)

ldB<j~k< udB (5.30)

lc < k < uc (5.31)

For constructing the A-regions we have to eliminate k. First we invert Inequal-
ity 5.30 which results in Equation 5.32

-udB <k-j< -ldB (5.32)

Now we derive five new inequalities. Adding 5.27 and 5.32 yields 5.33, adding 5.27
and 5.29 yields 5.34, adding 5.27 and 5.31 yields 5.35, adding 5.30 and 5.26 yields 5.36
and adding 5.30 and 5.31 yields 5.37.

ldA — udB < i — j < udA — Idß (5.33)

ldA + ICB <i< udA + UCB (5.34)

ldA + lc<i< udA + uc (5.35)

ldB + lcA <j< udB + ucA (5.36)

ldB + lc<j< udB + uc (5.37)
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From these conditions the region r^ can be constructed.

= (max(lrA, ld,A + ICB, MA + lc), min(urA, ud,A + ucß, ud,A + uc),
max(lrB, Idß + ICA, Idß + lc), min(urß, udß + UCA, udß + uc),

- udß, udA - Idß, rcA + rcß + rcc)

Inequalities 5.26, 5.29 and 5.31 indicate that the resulting r& region is only generated
if the column-intervals and the vector-interval overlap.

max(lcA,lcß,lc) < min(ucA,ucß,uc)

The worst case complexity of the A-computation is O(n • m • 6) where n, m and
o are the number of regions in matrices A, B and vector c, respectively. Again, in
practice many regions have small intervals and the regions are distributed. As the
regions are sorted, only those combinations are calculated, where the row-intervals of
the two matrix regions and the interval of the vector region overlap. This is only a
small fraction of all possible combinations and therefore the actual complexity is fax
less than the worst case complexity.

Matrix Transpose Obviously the regions of a transposed matrix CT can be obtained
by swapping column and row parameters of all regions of matrix C. The following
equation describes how a region is transposed.

(Ir, ur, lc, uc, Id, ud, rc)T = {lc, uc, Ir, ur, —ud, —Id, rc)

The complexity of transposing a matrix is O(n).

Minimum Index The index of the smallest vector element imin (v) is calculated by
finding the region with minimum cost. The lower bound of this region yields the
minimum index. The complexity of this Operation is O(n), where n is the number of
regions in the vector.

5.6.4. Complexity

The complexity of the PBQP solver, using the sparse matrix representation, depends
on the number of regions in the matrices and vectors. The critical operations are
matrix addition and the calculation of <5 and A. These operations may produce more
regions in the result than in the operands, which result in a high computational effort.

To overcome the problem of the high computational effort, simplification is per-
formed after each Operation. For each region in a matrix or a vector, the following
simplification steps are performed
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• The region is removed if any of the row-, column- or diagonal-intervals is invalid,
i.e. the lower bound is greater than the upper bound.

• The region is removed if it is completely contained in another region with equal
or less costs.

• The region is shrunken if it is partly covered by another region with equal or less
costs.

• The interval bounds are set to the minimal possible interval without changing
the region area.

Our experiments show that with simplification the overall complexity is acceptable.
It is almost linear with the number of decision vectors in the PBQP.

5.7. Experimental Results

For our experiments we have used the Atair C-Compiler for the NEC uPD77050 DSP
family, which was introduced in Section 4.6. The load/store units of the uPD77050
facilitate various addressing modes for 8 address registers. Most of the addressing
modes of the uPD77050 are discussed in Section 5.3, e.g. indirect addressing, post
increment/decrement, indirect-with-offset, post modification with index register. In
addition, post modification can wrap around a modulo value to implement circular
buffers. Furthermore, a bit reverse addressing mode can be selected for efficiently
accessing FFT buffers. All of these addressing modes can be modeled by the AMS
algorithm. The bit reverse addressing mode and the modulo addressing modes require
the use of functions, known by the Compiler, and are not generated by the AMS
optimization automatically.

Addressing mode related optimizations are performed between register alloca-
tion and scheduling on a low-level intermediate representation that is related to the
uPD77050 assembly language. The addressing mode selection is performed after as-
signing the offsets for the function Stack frames [45]. Because of the enormous com-
plexity, it is not possible to combine all these phases into one overall optimization
problem. Therefore register allocation, offset assignment, AMS and scheduling are
performed in separate steps.

The AMS algorithm runs for each address register separately. Two of the address
registers are used as "floating-frame-pointers". They are used to access two Stack
frames (one address register per Stack frame). As a result of the AMS optimization,
the frame pointers do not point to the beginning of the Stack frames, but may point
to any location within the execution of a function.
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Benchmark

mp3
gsm
aac
trcbk
cfirc
firc
iirc
iirbiqc
lmsc
matmult
vadd
vdot
vmin
vmult
vnorm

# o f
graphs

419
900
487

6
16
44

6
13
15
8
6
4
4
6
3

max
nodes
2009
1930
1509

20
61
58
25
65
70
26
15
8

13
15
8

avg
nodes
134.66
143.07
85.84
15.33
37.62
31.32
16.33
35.00
34.73
18.62
9.67
6.50
8.25
9.67
6.00

compile
overhead

8.90
4.77
7.57
4.65
4.24
4.90
3.69
6.59
5.14
5.69
6.09
5.76
6.54
6.92
5.80

Table 5.1.: Problem size and compile time overhead of the benchmarks

For the AMS experiments we have used the same DSP benchmark suite as for
the SSA-matcher experiments (see Section 4.6). The benchmark programs consists of
three DSP applications and a number of small DSP specific algorithm kerneis.

The benchmarks and the problem sizes of the benchmarks are listed in Table 5.1.
The first column "# of graphs" shows the number of PBQP-graphs that are solved for
the optimizations. The number of graphs is determined by the number of functions
in a program and the number of used address registers (at most 8 for the uPD77050
architecture). The computational complexity of AMS mainly depends on the number
of nodes in a PBQP-graph. The second column "max nodes" of Table 5.1 gives the
number of nodes for the largest graph in the benchmark suite. In the last column "avg
nodes" shows the average number of nodes for a benchmark.

Table 5.1 also shows the compile-time overhead of AMS compared to the overall
compile time in percent. It ranges from 4% to 9%. This is within acceptable bounds for
a production DSP Compiler, taking the high quality code improvements into account.
The table also shows that the overhead for the large applications is not significantly
higher than for the small benchmarks. This indicates that the AMS scales almost
linear with the problem size.

In the following we give some Performance details of the PBQP solver. Almost all
PBQP-graphs can be solved optimally. The most frequent reductions are RI (60.9%),
followed by RII (25.4%), and 13.6% of all nodes have degree zero. Only 8 reductions
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Number of Nodes NumbcrofNoto

(b) Matrix Regions (a) Vector Regions

Figure 5.7.: Maximum number of regions

out of 230481 reductions are RN reductions which are solved by heuristics. One of the
most important observation of our experiments is that the result of the address mode
selection is optimal in almost all benchmarks.

Our PBQP solver employs sparse representation techniques of large vectors and
matrices. Figure 5.7 illustrates the relation between number of nodes in a PBQP-graph
and the maximum number of regions occurring in a vector and matrix respectiveiy.
As in the graph depicted, the maximum number of regions does not correlate with the
number of nodes. In practice, the maximum number of regions is bounded and does
not grow exponentially.

In the sequel we show the Performance results of the AMS optimization. The
baseline for the comparison is obtained by a disabling the AMS optimization in the
Compiler. So the baseline code contains address computations which are originally
inserted by the code generator after performing strength reduction. The address reg-
ister is set up only before the first access, but access and Update instructions are not
combined. All Compiler optimizations are performed in the baseline, except AMS. We
evaluated the achieved code size reduction and runtime improvements for different
parameterizations of the Compiler.

In the best case, our AMS algorithm achieves code size reductions up to 50%
and speedups of more than 60%. Since we have a VLIW architecture, where add
instructions can be scheduled without the penalty of additional execution cycles, we
measured the effect of AMS by emitting VLIW code and by linear code. Moreover, we
conducted experiments with two different cost modeis. The first cost model minimizes
execution time and the second cost model minimizes code size. In Figures 5.8 and 5.9
the code reductions of the benchmark programs with linear and VLIW code are given
whereas Figures 5.10 and 5.11 show the runtime improvement achieved by AMS.
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We used different modeis for execution time and code size optimizations. The
execution time model reflects the execution cycles and delay cycles of the target in-
structions. The costs are weighted with estimated execution counts of the basic blocks.
The execution count estimation is based on the loop structure of the function. It turned
out that the accuracy of the estimation is sufficient for our purpose. The cost model
for code size optimization is derived from the instruction code length of the target
hardware. The costs of addressing modes directly correspond to the code size which
is required by addressing modes. In the code size model the costs are not weighted by
the execution counts of the basic blocks.

The execution time improvements are significantly larger for small benchmarks
than for bigger applications. Nevertheless, there are impressive code size reductions
for bigger applications, e.g. GSM. The reason is that small benchmarks mainly con-
tain kerneis of typical DSP algorithms. The execution time improvements, which
are achieved in the kernel loops, directly affect the overall improvement. For larger
application more "control code" (e.g. function calls) is executed, which gives less op-
portunity for runtime improvements. However, as shown in Figures 5.8 and 5.9, the
code size of larger applications can be significantly reduced. For some small bench-
marks, e.g. trcbk, there is no improvement at all since there is no potential to optimize
the addressing mode selection in this cases.

For our target architecture the Compiler is able to schedule add instructions without
the penalty of additional execution cycles. Even if the AMS optimization is disabled,
the scheduler might find a free VLIW slot for placing an address register add instruc-
tion. In order to simulate a architecture without VLIW capabilities we conducted
Performance experiments on linear code (no VLIW code is generated). The code size
improvements are roughly the same as with VLIW code generation but the execution
time improvements are considerable larger.
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Figure 5.8.: Code size reduction with linear code

70

60

50

40

30

20

10

0

- 11

• optimized for run-time
S optimized for code-size

* * * /

Figure 5.9.: Code size reduction with VLIW code
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Figure 5.10.: Runtime improvement with linear code
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Figure 5.11.: Runtime improvement with VLIW code
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6.1. Overview

Global register allocation is of vital importance for optimizing Compilers. Especially
for embedded CPU architectures, register allocation has to cope with irregulär register
sets and register constraints.

The task of register allocation is to assign CPU registers to live ranges and to spill
live ranges to memory if not enough CPU registers are available. The allocator has
to pursue two goals: (1) the number of expensive spills should be as small as possible
and (2) it should perform copy propagation (coalescing) which is achieved by giving
source and target of a copy instruction the same register whereby the copy instruction
can be removed afterwards [53].

TV9dit.ion9.lly; register allocation abstracts the problem of assigning CPU registers
to live ranges into the problem of coloring nodes in an interference graph [12, 10].
Unfortunately graph coloring cannot be simply adopted for irregulär architectures.

In this chapter we present a new register allocation approach for irregulär architec-
tures using a mapping to a PBQP. The PBQP-graph is an extension to the interference
graph. Beside the interferences, the PBQP-graph includes other types of constraints,
like coalescing relations and constraints imposed by irregularities. The solution of the
PBQP represents the final mapping of CPU registers to live ranges.

The main idea of the PBQP register allocator is that it tries to find a global optimal
solution. In contrast, traditional approaches make a register selection based on a local
decision for each live ränge. Unfortunately the PBQP-graphs for register allocation
are very dense in general. Therefore the PBQP solver has to use the RN reduction
heuristics in many cases. In our first implementation [60] we used the Standard PBQP
solver (with a slightly modified heuristics for the RN rule) and integrated the register
allocator into the C-Compiler for the Carmel DSP, which has a highly irregulär register
model. The problem was that for a considerable number of test cases the graph coloring
allocator based on the work of Smith et al. [61] yielded better results than our PBQP
allocator.

To overcome this problem we make a simple modification to the PBQP solver: the
order for selecting RN nodes during the reduction phase is determined by the selection
order of a traditional graph coloring approach. With this improvement the benefits
of traditional graph coloring and the PBQP method are combined. Our experiments
show that the PBQP register allocator yields at least the same code quality as the
traditional approach or exceeds the result.

In Section 2.4 other approaches are listed, which try to solve the register allocation
problem for irregulär architectures. They are still based on the interference graph or
use ILP. Our method goes beyond previous work in various aspects. First it provides
a unified approach for all types of register constraints which allows precise and easy
modeling of irregularities by means of cost functions. This implies that coalescing is an
integral part of the algorithm, because it is treated like any other constraint. Because
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f l
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Figure 6.1.: Hypothetical CPU architecture

our algorithm combines the benefit of Chaitin-style graph coloring algorithms and
the PBQP method, it yields significantly better results compared to graph coloring
approaches. In contrast to ILP approaches, our solver yields a result in almost linear
time.

6.2. Motivation

In this section we motivate our approach by presenting a hypothetical irregulär archi-
tecture and a running example that computes an inner dot-product of two vectors. The
irregulär architecture has similarities with an embedded CPU architecture, consisting
of various register classes as shown in Figure 6.1. Our hypothetical CPU architecture
has four register classes where some of the registers are paired. Namely, it has four
address registers in the address register bank, two index registers in the index register
bank, and two 64-bit floating point registers. Moreover, each 64-bit floating point
register can either be accessed as one 64-bit register or as two 32-bit floating point
registers.

The addressing unit of our hypothetical CPU architecture supports a register in-
dexed addressing mode that computes the memory address by adding an address
register and an index register. However, index register nO can only be paired with
address registers aO and al - index register nl is similar, which can only be paired
with address registers a2 and a3. The following scheme shows the allowed pairs of
address and index registers:

nO

Figure 6.2(a) lists our running example. In the example we have live ranges for each
register class, i.e. live ranges for address registers are denoted as sai, index register live
ranges as sm, floating point registers as sf i, and long floating point registers as sf li.
Our example consists of a prologue (line 1-5), a loop (line 6-13), and an epilogue
(line 14-15). As shown in line 1-3 we have a mixed argument passing for address
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1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
1 <*•
lo.

14:
15:

saO = stackO
sal = stackl

sa2 = a2

sflO = 0

snO = 0

loop {

snl = snO

sfl = *(saO

sn2 = snO

sf2 = *(sal

sflO += sfl

snO += 1

sn3 = snO

*(sa2 + sn3) =

(a)

+ snl)

+ sn2)

* sf2

sflO

Figure 6.2.:

1:
2:
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4:
5:
6:

==> 7:
8:
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i n.
1U:
11:
12:

Running example

aO = stackO

al = stackl

fll = 0

nO = 0

loop {

fO = *(aO

fl = *(al
fll += fO

nO += 1

J

nl = nO
*(a2 + nl) =

(b)

+ nO)

+ nO)
* fl

= fll

register üve ranges saO, sai, and sa2. Live ränge sa2 is initiaiized by an argument
passed in the CPU register a2, the others are initiaiized from the calling Stack. In
the loop, two floating point values are read from memory locations (line 8 and line
10). For the memory accesses an indexed addressing mode * (sai + snji) is used. Line
11 contains the accumulate instruction of the dot product and line 12 increments the
index register for memory locations. In the epilogue the result is stored in memory by
using the indexed addressing mode.

The move instructions in line 7, 9 and 14 are inserted by the code generator before
allocating registers. This is done because without the move instructions no register
allocation can be found without Spilling. Therefore the code generator should always
insert move instruction at each place where a coupled register is used.

The register allocator should assign CPU registers of our example architecture to
the live ranges so that the spills are minimized. In addition the register allocator
should try to allocate the same CPU register for the sources and targets of the move
instructions. If this is possible, move instructions can be eliminated. While optimizing
for these goals, the register allocator must maintain the constraints imposed by the
architecture. For our example we will see that no spill is necessary but not all move
instructions can be eliminated. Eliminating moves in line 7, 9, and 14 would imply a
pairing of a Single index register to three different address registers (indexed addressing
modes in line 8, 10 and 15). In our architecture we can only pair two address register
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to one index register. Therefore at least one move instruction cannot be eliminated
— preferable the move instruction that is outside of the loop (line 14). Figure 6.2(b)
shows the result of the register allocation.

Our hypothetical architecture exhibits another constraint for register allocation,
called register pairing. Two short floats are paired and can also be used as one long
float. These registers are no longer independent of each other and the register allocator
has to take care of it. E.g., our running example has three floating point register live
ranges (one long and two short floats) and the allocator should pack registers sf 1 and
sf 2 into one long floating point register — otherwise float register live ranges must be
spilled to memory.

6.3. Register Constraints

For register allocation, it is of paramount importance to have an accurate cost model to
obtain a good decision for which live ranges are to be spilled and which live ranges are
stored in CPU registers. In contrast to RISC-like architectures, irregulär architectures
exhibit a non-uniform cost model.

In this section we describe various register constraints, including constraints which
are imposed by all architectures and constraints which can only be found on irregulär
architectures.

Cost functions are used to formalize the constraints. They are an exact model and
are used to map the register allocation problem to a PBQP. The constraints can be
distinguished by their importance.

• Hard constraints must be satisfied to obtain correct code, for example register
interferences. The cost function yields infinity for an unsatisfied constraint.

• Soft constraints specify optimization opportunities. The register allocator can
decide which soft constraints to satisfy. An example is the coalescing constraint.
The cost function just yields a non-infinite penalty for the unsatisfied constraint.

The constraints can also be classified on the number of the dependent registers.

• Constraints on one live ränge. The decision to satisfy the constraint does not
depend on another live ränge. The cost function has a Single parameter.

• Constraints between two live ranges. The decision to satisfy the constraint de-
pends on two live ranges, e.g. the interference between two live ranges. Therefore
the cost function has two parameters.

For real world architectures it is sufficient to describe constraints between two live
ranges at most. Even if there is a dependence between more than two live ranges, it can
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be exactly modeled by multiple constraints between two live ranges. An example is the
coupling of address-, index- and modulo-registers on a DSP architecture when using
the modulo addressing mode. This constellation can be described by two constraints:
one between address- and index-registers and the other between address- and modulo-
registers.

6.3.1. Constraints on one Live Range

Constraints on one live ränge can be described by cost functions which take a Single
location r € A as parameter. The set A is an assignment set and consists of all
allocatable CPU registers and a location for Spilling the live ränge (sp).

Definition 24. Lei s be a live ränge and A = {sp, R\, R2,..., Rm} be an assignment
set. Then fs(a), a £ A is the cost function describing a constraint on live ränge s.

The cost function / s expresses the costs either for assigning live ränge s one of
the CPU registers Ri,...,Rm or for Spilling live ränge s (denoted by sp e A). If
assignment a G A is not valid for s, cost function / s maps assignment a to 00. Usually
there is more than one cost function for a live ränge s and we aggregate them in a set
of cost functions denoted by Fs.

In the following we want to consider some typical kinds of cost functions by looking
at our running example. In our architecture we have 12 CPU registers which constitute
the assignment set, together with the spill assignment sp.

A = {sp, aO,..., a3, nO, nl, f 0, . . . , f 3, f 10, f 11}

Spilling For modeling Spilling costs we introduce function Ss{a):

f spillcost(s), ifa = sp
«SW = < . (6.1)

10, otherwise

If s is spilled(a = sp), function ss(a) maps assignment a to the costs of Spilling the
live ränge. The value spillcost(s) denotes the costs of Spilling live ränge s. If a register
is assigned to s (a 6 {Ri,..., Rm}), function ss(a) has zero costs.

We assume that the loop in our example is performed 10 times and saO is ac-
cessed 11 times. Therefore, we insert ssao into the function set i^ao- The spill-costs
spillcost(saiO) evaluate to 110 by assuming that a read accesses costs 10 units if saO is
spilled.

Register Classes The register allocator must take care which CPU register is a valid
assignment for a live ränge. More formally, a class class(s) is a sub-set of valid CPU
registers for live ränge s and the cost function is given as follows:
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J 0, if a G ckss(s) U {sp},
ds(a) = < . (6.2)

I oo, otherwise
The live ranges of our example also have dedicated register classes. For sake of

simplicity there is a one to one relationship between live ränge classes and CPU register
classes. E.g., live ränge saO can only be assigned one of the registers aO... a3. The
class constraint of saO is expressed as c^ao with class(sa.O) = {aO,al,a2,a3}. The
function ckao is added to FsaL0.

Preferred Register Preferred registers occur when there are move relations between
live ranges and CPU registers. An example is parameter passing when parameters are
passed via registers. In this case one Operand of the copy instruction is a CPU register
rather than a live ränge. The copy instruction can be eliminated if the live ränge is
assigned to the same CPU register. The following cost function modeis the benefit if
the copy instruction can be eliminated:

f -movecost(s), iia = pref(s),
prs{a) = < (."•".)

10, otherwise
where —movecost(s) is the benefit of eliminating the copy instruction between s and
the preferred CPU register pref(s). In line 3 of our example live ränge sa2 is assigned
to a parameter which is passed in a2. If live ränge sa2 is stored in CPU register a2, the
copy instruction can be eliminated. Let us assume that we need 5 cost units for a copy
instruction. Then, the cost function for sa2 is given by prsa2 with movecost(sa2) = 5
and pref(sa2) — a2. It is added to Fsa2.

6.3.2. Constraints on two Live Ranges

Constraints on two live ranges are formulated by cost functions which take two loca-
tions ri,r2 G A as parameters. Again, the set A is an assignment set and consists of
all allocatable CPU registers and a location for spilling the live ränge (sp).

Definition 25. Let ŝ  and Sj be live ranges and A = {sp,Ri,R2,...,Rm} be an
assignment set. Then fSiSj(al,a2), al,a2 G A is the cost function describing a
constraint between live ranges Sj and Sj.

Cost function /S js expresses the costs for two dependent live ranges. If a com-
bination of two register assignments a\,a2 G A for Sj and Sj is not valid, the cost
function maps ai and a.2 to oo. For every pair of live ranges we have a set of cost
functions denoted by FsiSj •

In the following we list typical cost functions for two live ranges and formulate
them for our running example.
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Interference The most prominent constraint in register allocation is the interference
constraint. The interference constraint is represented by a cost function for two live
ranges as follows:

JO, if ai / a 2 Vai = sp
«siBa(ai,O2) = < . (6.4)

I oo, otherwise

The cost function implies that live ranges si and S2 must be assigned to difFerent
CPU registers. In our example all address register live ranges interfere with each
other. Therefore we have cost functions 4a0sai> 4a0sa2, and isaisa2 which are inserted
to the corresponding function sets FsaoSai, -FSa0sa2, and Fs&lsa2.

Coalescing Coalescing is achieved by eliminating a copy instruction if source and tar-
get are assigned to the same CPU register. The costs for eliminating a copy instruction
are expressed as a function of the source and destination registers,

j-movecost(si,s2), if ai = a2 A ai ^ sp
OB, 82(01,02) = <n . (6.5)

IU, otherwise

where — movecost is the benefit of eliminating the copy instruction. In our example
lines 7, 9 and 14 contain copy instructions. We assume that we save 5 cost units
by eliminating a copy instruction, and that the loop is executed 10 times. Then, for
coalescing, the following cost functions are imposed: Csnisno, Csn2Sno> and Csn3Sn0- For
the first two copy instructions we have 50 cost units since the loop is executed 10
times. Therefore movecost(snl, snO) = movecost(sn2, snO) = 50. For eliminating the
copy instruction in the epilogue 5 cost units are saved, yielding movecost(sn3, snO) = 5.
Again, the cost functions need to be added to the corresponding function sets Fsnisn0,

Paired Registers In many architectures paired registers1 are used to implement long
registers by combining two or more short registers. Paired short registers can not be
used at the same time as the corresponding long register. Therefore registers impose an
interference constraint between live ranges, although they belong to difFerent register
classes. For every CPU register a € {Äi,... , Rm} we have a set of shared registers
shared{a). So the paired short registers are in the shared set of the long register and
vice versa. The cost function is given as follows:

if ai e shared(a2) A ai ^ spAa2^ sp
., . (6-6)

otherwise
[36] the term overlapped registers is used for paired registers.
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The cost function pa yields oo if there is an interference between shared live ranges
and none of the live ranges is spilled.

In our architecture, long floating point registers (f 10,f 11) are shared with paired
short floating point registers (fO. ..f3). Therefore, we have an interference between
sflO and sf 1, and an interference between sflO and sf2, which are denoted by

and pOsfiosf2- B o t n a r e added to FsfioSfi and FSfiOsf2 respectively.

Coupled Registers Coupled registers impose a 1-to-l or n-to-1 relationship between
registers of different register classes. If an instruction needs two coupled registers, only
one register has to be encoded in the instruction word. The register of the other class
can be derived from the first register. For example, in many DSP architectures, index-
or modulo-registers are coupled with address registers. We model generic dependencies
of two live ränge operands by the following cost function

if ai 6 couple(a2) V ai = sp V a2 = sp
,, . (6-7)

otnerwise

where couple{a,2) is a set of allowed register combinations for assignment oi. Note that
if a live ränge is spilled g yields zero because in this case the coupling constraint is not
violated.

The indexed addressing accesses of our running example in line 8, 10 and 15 imply
such constraints. In our architecture we can only couple aO and al with nO, and a2 and
a3 with nl. The resulting sets are couple(nO) = {aO, al} and couple(nl) = {a2, a3}.
We have the following cost functions: cpsaOsnl, cpsa l sn2, and cpsa3sn3, which are added
to FSa0sni, ^sai sn2 and F s a 3 s n 3 respectively.

6.4. Mapping to a PBQP

With the help of the cost functions we can now generate a PBQP model of the reg-
ister allocation problem. This is done in three steps: (1) build the PBQP-graph, (2)
construct the cost vectors from the functions for one live ränge and (3) construct the
cost matrices from the functions for two live ranges.

For a live ränge, the allocator has to decide whether it stores the live ränge in one of
the CPU registers R\,..., Rm or it spills the live ränge. The elements of the decision
vectors in the PBQP represent these individual assignments, which are elements of
the assignment set A. So the PBQP describes the problem of deciding between CPU
registers or spilling for each live ränge.
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6.4.1. The PBQP-Graph

Each node of the PBQP-graph represents a live ränge. An edge is inserted between
two live ranges Sj and Sj, if there is at least one constraint between the two live ranges,
i.e. FSiSj^Q.

The PBQP-graph is an extension of the interference graph. Both graphs have the
same sets of nodes, but different set of edges. The interference graph only contains
edges for the interference constraints whereas the PBQP-graph contains edges for all
kind of constraints between two live ranges.

Figure 6.3 shows the PBQP-graph for our example. In the graph, interference
constraints are drawn by straight lines, coalescing constraints by dashed lines, and
coupling constraints by dotted lines. Moreover, the graph shows the interference con-
straints between all floating point register live ranges, although the type of interference
differs: There is an interference of shared registers between short floats sf 1, sf 2 and
the long float sf 10, and a classical interference between sf 1 and sf 2. The interferences
of address register live ranges due to the indexed addressing modes are depicted as
well. Coupling constraints are drawn between address register live ranges (saO... sa2)
and index register live ranges (snl.. . sn3). Coalescing constraints are drawn between
index register live ränge snO and register live ranges snl . . . sn3.

CPsaOsn:

P°sf2sflO

Figure 6.3.: The PBQP-graph of the running example

6.4.2. Defining Cost Vectors

The cost vectors describe the constraints for one live ränge. Each element corresponds
to an assignment of A and contains accumulated costs of all constraints for this as-
signment. To construct a cost vector for live ränge s, the cost functions in Fs are
added and constitute cost vector cs

Va : cs ( (6.8)
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where <j)a is the index of assignment a.
For sake of simplicity, we have an Order of live ranges and we refer to live ranges

with their unique ordinal number. E.g., saO is the first live ranges and the cost vector
of csao is equivalent to x\. We do the same for cost matrices to simplify the notation.

For example the cost vector of live ränge sa2 is composed by its cost functions:

CBa2(</>a) = ^2 /sa2(o) = Ssa2(a) + clsa2(a) + prBa2(a)

The parameters of the cost functions are: spillcost(sa.2) = 110, movecost(sa2) = 5,
class(sa2) = {aO,al,a2,a3} and pref(s&2) = a2. Let us assume that assignment a is
mapped to indices <ßa by the following order: sp, aO, . . . , a3, nO, . . . , n3, f 0, . . . , f 3,
f 10, f 11. Then we obtain the following cost vector for live ränge sa2:

csa2 = (110,0,0, -5,0, oo,.. . , oo)

The first element of vector csa2 represents the spill costs from function sSa2(o)- The
second through the the hth elements indicate an allowed assignment whereas the re-
maining elements are disabled by class constraint c4sa2(a) since address register live
ränge sa2 can only be stored in CPU address registers aO to a3. The forth element of
the cost vector is the cheapest assignment due to cost function prsa2(a) for eliminating
copy instruction in line 3 of our example.

6.4.3. Defining Cost Matrices

The cost matrices describe the constraints between two live ranges. The cost matrix
dj relates to the constraints between live ranges Sj and Sj. Each element dj(k,l)
corresponds to the relation of the assignment k of live ränge i to the assignment /
of live ränge j . Each element contains the accumulated costs for all constraints of
the assignments. The cost functions in FSiSj are added to calculate the accumulated
costs. The cost matrix is computed by function sets as follows:

A \ CSlS2(<t>ai,<t>a*)= 2_/ /siS2(°l)a2) (6.9)

where <f>ai and <pa2 are the indices of assignments ai and 02, respectively.
For example, an interference constraint of saO and sal imposes the following cost

matrix:
/0 0 ... 0 \

c=
•. 0
0 00)
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The cost matrix weights pairs of decision vector elements, which belong to the same
register, with infinite costs. All other pairs of decision vector elements, i.e. for different
registers or Spilling, have zero costs.

6.5. The PBQP Solver for Register AUocation

The PBQP solver is used to get the results from the register allocation PBQP. In
contrast to the SSA-matching and AMS problems, the PBQP-graphs for registeF al-
location are dense. Therefore the general PBQP solver must be used and the RN
reductions may not be neglected.

The quality of the results from the general solver depends highly on the order for
selecting nodes for the RN reduction. Determining this order can be compared to the
simplify-phase of graph coloring algorithms. The RN reduction selects a register for a
live ränge and it can be compared to the select-phase in graph coloring algorithms.

To get a good solution for the PBQP, we first perform a graph coloring algorithm
to obtain a good ordering for RN reductions. In our implementation we perform the
preference directed coloring algorithm [38] prior to the PBQP solver.2 This pre-pass
does not color the live ranges but it just yields a selection order. In the general PBQP
solver this order is used for selecting the RN nodes if no degree-one and degree-two
nodes are available for reduction. In addition we employ the register selection strategy
of the RN reduction (Section 3.5.1) also for selecling a register in the graph coioring
algorithm, because it is based on the exact model for all constraints on a live ränge.

If the RI and RII reductions are disabled in the PBQP solver, i.e. the RN reduction
is also applied to degree-one and degree-two nodes, the result of the PBQP solver is
always equivalent to the result of the graph coloring algorithm. The result of the
PBQP solver (including RI and RII reductions) is equivalent or better than the result
of graph coloring in most cases, because all nodes, which are reduced by RI and RII
reductions, contribute to the global solution. The question is how big is the benefit we
get from the RI and RII reductions. Our experiments have shown that only for about
10% of all graphs the PBQP solver is better than graph coloring. Therefore we allow
recursive enumeration for one RN node. The overhead for the recursive enumeration is
marginal (the execution time for the solver is fax below one second in most cases) but
the percentage of better results is about 70% of all graphs. So we can State that the
PBQP solver is able to yield better results than graph coloring because (1) recursive
enumeration can be applied and (2) the reduction rules RI and RII improve the global
solution instead of selecting a local solution.

Figure 6.4 shows the reduction sequence of the example PBQP-graph. In the first
step (b) nodes with a degree of two are reduced. In the next step (c) sf 2 can be

2Our method does not depend on the preference directed graph coloring algorithm. Any other graph
coloring approach can be used.
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a) b)

c) d) e)

Figure 6.4.: Reduction sequence of the example

eliminated with the RI rule, but for the address register subgraph no nodes are left
with degree one or two. Therefore rule RN is applied to sal . Then snO can be
eliminated (d). By removing sa2 the trivial graph remains (e).

The solution S = (si,...,sn), obtained from the PBQP solver, yields the register
allocation. Live ränge s, is mapped to the the ith assignment in A. This can be either
a CPU register Ri,..., Rm or sp. If the PBQP solver selects sp for some nodes, the
live ranges have to be spilled. Spill code must be inserted and the register allocator
restarts.

The final code with allocated registers for the example is shown in Figure 6.2(b).

6.6. Experimental Results

We have integrated the PBQP register allocator into the Atair C-Compiler for the NEC
uPD77050 DSP family (see Section 4.6). We used the Compiler only for generating the
problem graphs but we didn't use the register model of the uPD77050 architecture.
Instead we defined a synthetic register model which employs all kinds of register con-
straints, presented in this chapter. The register model contains small registers, shared
with large registers. Adjacent small registers are paired and can be used as large reg-
isters, similar to the floating point register in our example. On the other hand, this
2-to-l relationship between small and large registers also imposes coupled constraints,
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6. Register Allocation

nodes
interferences
coalescing
coupling
pairing

min

4
3
0
0
3

max
1230
4739

122
131

4782

avg
81.42

289.60
9.59

10.82
285.55

Table 6.1.: Problem sizes

like the address-index register coupling in the example. Register class constraints are
introduced by interferences with CPU registers, e.g. if a live ränge overlaps a function
call. Register preferences are introduced by copy instructions between live ranges and
CPU registers.

We compare the PBQP register allocation with the preference-directed graph col-
oring approach which represents one of the latest improvements to Chaitin based reg-
ister allocators so fax. We also integrated Smith and Holloway's approach for handling
pairing constraints into the simplification-phase of the preference-directed register al-
locator. In our PBQP register allocator we used exactly the same preference-directed
algorithm for determining the selection Order for RN-reductions. In addition the color
selection strategy of the reference algorithm is equivalent to the local minimum selec-
tion of the RN reduction in the PBQP algorithm.

For evaluation we use the graphs, produced by cornpiling the three DSP applica-
tions which are also used for the code selection and AMS evaluation (see Section 4.6).
There is a total number of 273 graphs in the benchmarks.

In Table 6.1 we show the problem sizes of the graphs. For each quantity the
minimum, maximum and average value is given. The table contains the number of
live ranges ("nodes"), the number of interference constraints ("interferences"), the
number of copy instructions ("coalescing"), the number of instructions resulting in
coupling constraints ("coupling") and the number of pairing constraints ("pairing").

We performed the evaluation in different configurations by changing following pa-
rameters:

• We used two cost modeis. The first model is used to optimize for minimal
execution time ("dynamic"). The costs of spill and reload instructions are three
and the costs for copy instructions are one. The instruction costs are multiplied
by an estimated execution weight of the containing basic block. The second
cost model is used to optimize for minimal code size ("static"). The costs of all
instructions (spill, reload and copy) are one and the costs are not multiplied by
the execution weights.

• Two register set sizes are used. The first set contains 16 small registers or
alternatively 8 large register ("16/8"). The second set contains 32 small register

106



6.6. Experimental Results

Figure 6.5.: Reduction statistics

or 16 large registers ("32/16").

• The PBQP solver was used in one configuration which allows the recursive enu-
meration of one RN node ("enuml") and a second configuration which allows
the enumeration of two RN nodes ("enum2").

First we give the statistics about the distribution of reductions in Figure 6.5. The
distribution is nearly equivalent in all configurations, except that in "enum2" the
number of RN nodes, eliminated by recursive enumeration ("RNopt"), is doubled.
In contrast to the statistics in SSA-graph matching and addressing mode selection,
most öf the reductions are RN reductions. This implies that there is no guarantee of
optimality in most cases.

In the following we present statistics in comparison with the reference graph col-
oring approach. Table 6.2 give an overview of the evaluation results. Each row shows
the result of a different configuration. The column "avg impr" gives the average im-
provement. It is the average ratio of the costs obtained from the preference-directed
allocator and the costs obtained by the PBQP allocator. The next two columns list
the average and maximum solve time of the PBQP solver in seconds. The last three
columns list the number of graphs, where the PBQP result is worse ("-"), equal ("=")
and better ("+") than the result of the reference algorithm.

For all configurations the average improvement is significant (from a factor of 1.53
up to 2.18). As expected, the "enum2" configuration gives better average results
than the "enuml" (about 4% to 8%). But interestingly with "enum2", more results
are worse than with "enuml". This is because recursive enumeration is done at the
beginning in the reduction sequence, and the color selection in both algorithms can
go in different directions - with bad luck it goes in the wrong direction. On the other
hand this difference causes the better results of the PBQP allocator. Note that if there
is no recursive enumeration and no RI and RII rules, both algorithms yield the same
results.
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enum
nodes
enuml

enum2

num
regs
16/8

32/16

16/8

32/16

cost
model
dynamic
static
dynamic
static
dynamic
static
dynamic
static

avg
impr
1.91
1.29
2.18
1.53
2.07
1.34
2.31
1.63

solvetime
avg
0.14
0.16
0.42
0.16
0.76
0.16
5.44
4.55

max
8.72
9.73
11.96
9.73
21.42
9.73
212.83
195.39

graph
-
2
3
2
4
16
5
6
3

=
85
79
78
79
71
78
68
68

+
186
189
193
190
186
190
199
202

Table 6.2.: Evaluation summary

The comparison with different numbers of registers indicates that the PBQP al-
gorithm performs better with a larger number of registers. The reference algorithm is
dominated by the goal of eliminating spills. As with a larger number of registers, the
Spilling problem has less impact and satisfying the other constraints get more impor-
tant. The PBQP algorithm handles all constraints in the same manner and therefore
it can perform better with a larger number of registers.

The dynamic cost model has larger Performance improvements than the static cost
model, because in the presence of loops the dynamic costs can get large. The static
model reflects the number of eliminated spill, restore and copy instructions. The
PBQP allocator produces 23% to 39% less spill, restore and copy instructions than
the reference algorithm.

The runtime of the PBQP solver is very small in most cases because the complexity
is linear with the number of live ranges. As recursive enumeration adds an exponential
complexity, the the solve times for the "enum2" configuration are considerable larger
than for "enuml" in some cases. For a larger number of registers the solve times
increase significantly, because the complexity for Uli reductions is O(n3) where n is
the number of CPU registers.

Four configurations are shown in more detail in Figures 6.6, 6.7, 6.8 and 6.9. Each
unit on the X-axis represents a single graph. The graphs are sorted from worst to best
result so that the functions are monotonic increasing. The Y-axis is the ratio of the
costs from the reference algorithm and the costs of the PBQP algorithm. The green
lines indicate the average improvement. The blue vertical lines ihdicate the borders
between worse, equal and better results.
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Figure 6.9.: Comparison using the configuration "enum2, 16/8, static"
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7. Conclusion

Compilers for embedded Systems have to meet different requirements than Com-
pilers for conventional Computer Systems. First, embedded Systems impose irregulär
architectural features, which must be handled by the Compiler. Second, code size
optimization is as important as Performance optimization. The optimizations in the
Compiler must be configurable in respect to the optimization goal. Third, a Compiler
for an embedded System is expected to generate code quality which is comparable to
hand optimized assembly code. In most cases the resources of an embedded System
are very restricted, so that the overhead caused by automatic code generation is not
acceptable.

Compiler optimization techniques have emerged from regulär RISC architectures.
Unfortunately these techniques can not be efficiently reused for irregulär embedded
architectures. This vvork concentrates on code generation and üptiniisü'riüii for digital
signal processors (DSPs).

A novel approach, which is used for a whole set of Compiler optimization problems,
has been presented. A framework based on partitioned boolean quadratic problems
(PBQP) is used to handle the problems of code selection, addressing mode selection
and register allocation. Although all three problems are NP-complete, the PBQP
solver is able to yield an optimal or near optimal solution in almost linear time. The
quality of the solution depends on the PBQP-graph, which is used to formulate an
optimization problem. If the graph is reducible, using reduction rules of the solver,
the obtained solution is optimal. Qtherwise heuristics are used to apprpximate the
optimal solution.

Code selection For irregulär architectures such as DSPs, the code selection phase
in the Compiler contributes significantly to the Performance of the Compiler. With
traditional tree pattern matchers only separate data flow trees of a function can be
matched, which has a negative impact on the quality of the code. Only if the whole
computational flow of a function is taken into account, the matcher is able to generate
optimal code.

We used the PBQP solver to match the whole SSA-graph of a function. In the
PBQP-model the SSA-graph is equivalent to the PBQP-graph. It turned out that
the PBQP-graphs of real-world DSP benchmark programs are reducible in many cases
and only for a few nodes must the heuristics be applied. So the obtained solution is
near optimal.

Our experiments have shown that the Performance gain of a SSA-graph matcher
compared to a tree pattern matcher is significant (up to 82%) in comparison to classical
tree matching methods. These results were obtained without modifying the grammar.
Though the overhead of the PBQP solver is higher than tree matching methods, the
compile time overhead is within acceptable bounds.
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Addressing Mode Selection The addressing mode selection (AMS) optimization
tries to select the best addressing modes for the instructions of the input program.
With the help of the PBQP formulation, we are able to describe a wide set of possible
addressing modes which can be found on DSP architectures.

In our mapping to the PBQP, we derive the PBQP-graph from the control flow
graph (CFG) of a function. Because CFGs are defined by the control structures of the
high level input language, the resulting PBQP-graphs are reducible in ahnost all cases.
The number of non-reducible nodes is negligible and therefore the resulting solution
is optimal for nearly all input programs.

As the runtime improvements are up to 60% and code size reductions up to 50%, we
can state that the optimization is of vital importance for architectures which provide
complex addressing mode features.

Register Allocation Irregulär architectures impose constraints on the register allo-
cator, which can not be described by traditional graph coloring approaches. We have
formulated the global register allocation problem for irregulär architectures as PBQP.
We are able to formulate any constraints on one or between two live ranges as cost
functions.

The PBQP-graph in this model is an extension to the interference graph. It con-
tains edges between live ranges which are related by a constraint. Because there
may be many constraints between live ranges the nodes of the graph have high de-
grees. Therefore many nodes are not reducible and the reduction rule with heuristics
must be applied in many cases. The reduction sequence is selected by applying the
simplification heuristics used in traditional graph coloring algorithms. Therefore the
PBQP approach can also benefit from good coloring characteristics of graph coloring
algorithms.

In our experiments we have shown that for a DSP with a non orthogonal register
set the generated code is better in many cases than using the graph coloring register
allocator. This is because with the graph coloring approach it is not possible to
describe the register constraints of the architecture.

The main observation from our PBQP optimization implementations is that the
reducibility of the PBQP-graphs is the key to good optimization result. We can state
following order of reducibility:

1. Addressing mode selection and all mode selection problems in general: the
PBQP-graph is derived from the CFG. It is reducible in almost all cases. The
number of non reducible nodes can be neglected. Therefore the PBQP approach
is ideal for this kind of NP-complete problems.
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2. Code selection: There is a small fraction of non-reducible nodes in the SSA-
graphs, but the heuristic used on irreducible nodes still yields near optimal re-
sults. So the PBQP approach is a very good method to solve the code selection
problem.

3. Register allocation: The graphs resulting from various constraints on live ranges
are very dense in general. The heuristics for non-reducible nodes must be applied
often. Therefore the reduction sequence for non-reducible nodes is adopted from
graph coloring algorithms to get a good solution. Although the results are better
than with graph coloring, an optimal solution can not be guaranteed in most
cases.

The possibility of getting optimal or near optimal results for NP-complete opti-
mization problems is the main advantage of the PBQP approach. Beside of this there
are other benefits which contribute to the success of the PBQP optimizers.

As the PBQP modeis work with cost modeis, it is easy to configure the optimizers.
First it is easy to model various architectural irregularities, i.e. it is not necessary to
implement new algorithms to handle irregularities. Second, the optimization goal -
Performance or code size - can be selected simply by adapting the cost model.

As another benefit it turned out that the implementation effort is reduced dra-
matically, because the PBQP solver can be reused for all PBQP applications in the
Compiler. Therefore the implementation task is restricted to defining the model of the
optimization problems. Re-targeting the optimization just needs adapting the cost
model to a new architecture.
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Lemma 1 in Section 3.4.1

Proof. Let x be a decision vector of degree one which is eliminated by rule RI:
RI(fk(Xk),x)) = fk+1(Xk+1). Vector y g adj{x) is the adjacent vector off.

First we introduce the reduced decision vector into Equation 3.15. Because the
multiplications with x select the ith element of the cost vectors, where i is the index of
the one-element in x, the vector minimum can be replaced by a partial minimum. We
also replace the dot product Cyx(i,:) • ä? by the equivalent dot product x • Cxy(:,i).
According to Equation 3.8 we get

5(i) = min [x • Cxy(:, i) + cx • x
T]

X

As 5 • y1 — ö(i) and Cxy(:,i) = Cxy • y
1 if i is the one-element in y, we obtain

Equation A.l.

[x-Cxy-y
r + cx-x

T] Vy € Dy (A.l)

We define a helper function hl as follows:

hl(Xk\x) = f(Xk) -x-Cxy-y
T-cx-x

T (A.2)

Function hl eliminates all contributions of vector x from the objective function / .
Therefore the parameter of hl is Xk^x instead of XK. From the left side of Equa-
tion 3.14 we split the minimum Operator by applying Equations 3.5 and 3.6.

min/fc(Xfc) = min min/*(**)

Next we substitute fk with the helper function hl.

min fk(Xk) = min min \hl(Xk\x) + x • Cxy • f + cx • x
T]

Xk\x x L J

As hl(Xk\x) does not depend on x we obtain

min fk(Xk) = min \hl(Xk\x) + min(x • Cxy • f + cx • x
T)\

xk\* Y s J
According to Equation A.l we get

minfk(Xk) = min \hl(Xk\x) + 5- f]
Xk\x L J

After back Substitution of hl we get

= min \f(Xk) - x • Cxy • f - cx • x
T + 6 • f]
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According to Definition 7 we obtain

min/fc(Xfe) = mi
xk

which is equivalent to

D

Lemma 2 in Section 3.4.1

Proof. Let x be a decision vector of degree one which is eliminated by rule RI:
RI(fk(Xk),x)) = fk+1(Xk+1). Vector y e adj(x) is the adjacent vector of x. Apply-
ing Equation 3.11 to the kth reduced objective function yields

minfk(Xk) = fk(Xk)

We substitute fk with the helper function hl as defined in Equation A.2.

min fk(Xk) = hl(Xk\x) + ~x • Cxy • f + cx • if

Next we introduce a minimum Operator for the reduced vector x according to Equa-
tion 3.7.

min fk(Xk) = mm \hl{Xk\x) + x • Cxy • f + cx • xT]

As hl does not depend on x, we get

min fk(Xk) = hl(Xk\x) + min [x • Cxy • f + cx • xT]

According to Equation A.l we get

m i n / f e ( X f c ) = h l ( X k \ x ) + 6 - f

After back Substitution of hl we obtain

min f [X ) = f{X ) — x • Cxy -y — cx • x + o -y

According to Definition 7 this is equivalent to

The minima of the kth and k + lth reduced functions are equal according to Lemma 1
and we can replace the left side of the equation.
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minfk+1(Xk+1) =

Therefore the solution of the kth reduced function - excluding the reduced vector - is
also a solution to the k + lth reduced function and we can write

vk\x __

D

Lemma 3 in Section 3.4.1

Proof. Let x be a decision vector of degree two which is eliminated by rule RII:
RII{fk(Xk),x)) = fk+1(Xk+1). Vectors y,z € adj(x) are the adjacent vectors of
x.

First we introduce the reduced decision vector into Equation 3.16. Because the
multiplications with x select the ith element of the cost vectors, where i is the index
of the one-element in x, the vector minimum can be replaced by a partial minimum.
We also replace the dot products Cyx(i,:) • x1' and Czx(j,:) • xF by the equivalent dot
products x • Cxy(:,i) and x • Cxz('-,j), respectively. According to Equation 3.8 we get

A(i, j) = mjn [x • Cxy{:, i) + x • Cxz(:,j) + cx • x
T]

As y • A • z1" = A(i,j), Cxy(:,i) - Cxy • y1^ and Cxz(:,j) = Cxz • z1' (i and j are the
indices of the one-elements in y and z, respectively), we obtain Equation A.3.

y-A-f = ram[x • Cxy * f + x-Cxz-z
r + cx-x

T] Vy£Dy,zeDz (A.3)
X

We define a helper function h2 as follows:

h2(Xk\x) = f(Xk) -x-Cxy-f -x-Cxz-f'-cx-x
T (A.4)

Function h2 eliminates all contributions of vector x from the objective function / .
Therefore the parameter of h2 is Xk\x instead of Xk. From the left side of Equa-
tion 3.14 we split the minimum Operator by applying Equations 3.5 and 3.6.

k(Xk) =

Next we substitute fk with the helper function h2.

min fk{Xk) = min min \h2(Xk\x) + x • Cxy • f + x • Cxz • f + cx • x
T\

minfk(Xk) = mi
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As h2(Xk\x) does not depend on x we obtain

min fk(Xk) = min \h2(Xk\x) + min(£ • Cxy • f + x • Cxz • f + cx • xT)]
Xk\* l 2 J

According to Equation A.3 we get

mmfk(Xk) = min \h2{Xk^x) + y-A-zr]
xk\x L J

After back Substitution of h2 we get

minfk(Xk) = min \f(Xk) - x • Cxy • f - x • Cxz • f - cx • xT + y • A • f \

According to Definition 9 we obtain

min/fc(Xfc) = nun fk+\xk\x)

which is equivalent to

D

Lemma 4 in Section 3.4.1

Proof. Let x be a decision vector of degree two which is eliminated by rule RII:
RII(fk(Xk),x)) = fk+1(Xk+1). Vectors y,z € adj(x) are the adjacent vectors of
x. Applying Equation 3.11 to the kth reduced objective function yields

We substitute fk with the helper function h2 as defined in Equation A.4.

min fk{Xk) = f r :r

Next we introduce a minimum Operator for the reduced vector x according to Equa-
tion 3.7.

min fk{Xk) = nun [h2(Xk\x) + x • Cxy • f + x • Cxz • f + cx • fT]

As h2 does not depend on x, we get

min fk(Xk) = h2{Xk\x) + mjn [f • Cxy • f + x • Cxz • f + cx • f
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According to equation A.3 we get

minfk(Xk) =

After back Substitution of h2 we obtain

min/*(**) = f(Xk) - ~x • Cxy • f - ~x • Cxz • f - cx • x* + £• A

According to Definition 7 this is equivalent to

The minima of the kth and k + lttl reduced functions are equal according to Lemma 3
and we can replace the left side of the equation.

Therefore the solution of the kth reduced function - excluding the reduced vector - is
also a solution to the k + lth reduced function and we can write

LJ

Lemma 5 in Section 3.4.3

Proof. We define a helper function hb as follows:

hb{Xk\*) = f(X) - cx • x
T - ^ 2-Cxyf (A-5)

yeadj(x)

The function hb contains all terms of f(X) expect the summands of the reduced
decision vector x. In the first step we substitute / with hb.

yeadj{S)

By introducing a minimum Operator for the reduced vector x according to Equation 3.7
we obtain

f(Xk) = min hb(Xk\x) + c -xT+ V x-C -ü
yeorfj(x)

As hb does not depend on x we get
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cx • x1 + 2_^ x~ Cxy • y
yeadj(x)

According to the properties of quadratic forms (Equation 3.1 and Equation 3.2) we
can apply the distributive law and get

fk(Xk) = hb(Xk\x) + min
yeadj{x)

The multiplication with ä? selects the sth element where s is the index of the one-
element in x. Therefore we can express the solution x with the minimum index of the
minimum argument vector in the previous equation.

cx+

D

Theorem 2 in Section 3.4.4

Proof. Let C = A + B where A(i, j) = ü(i) V j E l...m and B(i,j) = v(j) V i G l...n.
Then C(i,j) = A(i,j) + B(i,j) = ü(i) + v(j). We can write

x - C - f = x - { A + B ) - f

Applying the distributive law (Equation 3.2) we get

x - C - f = x - A - f + x - B - f

The term A • f can be expressed as A(:,j)T where j is the index of the one-element
in y. Matrix A has identical column vectors A(:,j) = « V j G l...m. Similar x • B
can be expressed as B(i,:) where i is the index of the one-element in x. Matrix B has
identical row vectors B(i,:) = v V i e l...n. Therefore we can write

x • C • y — x • u + v • y

According to Equation 3.1 this is equivalent to

x -C -y — u • x +v-y

D
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