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Deutsche Zusammenfassung
dieser Dissertation

Das Thema der vorliegenden Dissertationsschrift ist die Constraint-Verarbeitung für
modellbasierte Applikationen im Engineering. Die zugrunde liegende Methodik ist
hierbei die relationale Aggregation.

Im größeren Kontext ordnet sich diese Dissertation damit ein in Bestrebungen, die
die weitere Automatisierung von Standard- und Nichtstandardaufgaben im Engi-
neering zum Ziel haben. Vor dem Hintergrung ständig wachsender Datenbestände
besteht heute mehr denn je die Notwendigkeit, Wissen automatisch verarbeiten zu
können. Eine Voraussetzung dafür ist, dass dieses Wissen einem entsprechenden
Formalisierungsgrad genügt.
Constraints sind eine besonders formale Fom von Wissen, welches das statische
physikalische Verhalten von einzelnen Bauteilkomponenten mathematisch beschreibt.
Sie ermöglichen somit die mathematische Analyse hierarchisch zusammengesetzter
Systeme, sobald für jede enthaltene Komponente eine hinreichende mathematische
Beschreibung vorliegt.

~Diè~in~dieser 'Dissertation-entwickelte-Methodik^der^relatiojialen^Aggregation er-
laubt es, die wichtigsten Fragen im Bezug auf ein vorgegebenes Constraintproblem
zu beantworten. Der präsentierte Ansatz basiert auf einem abstrakten Constraint-
Begriff: Jeder Constraint wird aufgefasst als Menge von zulässigen Wertzuweisun-
gen oder - äquivalent dazu - Lösungstupeln. (Neben der Menge der eingeschränkten
Variablen spielen bei dieser Betrachtungsweise keine weiteren Merkmale eine Rolle.)
Unter Verwendung der aus der Datenbanktheorie bekannten Operationen join und
project können dann sogenannte Aggregätionsbäume konstruiert werden, deren Blatt-
menge mit der Menge aller Ausgangsconstraints koinzidiert. Der Wurzelknoten des
Aggregationsbaumes hat nur zwei mögliche Ausprägungen. Die eine zeigt die Kon-
sistenz des analysierten Constraintproblems an; die andere dessen Unerfüllbarkeit.
Mithin entscheidet ein Aggregationsbaum die klassische Frage nach der Konsistenz.
Im Falle eines konsistenten Problems kann der konstruierte Aggregationsbaum be-
nutzt werden, um Lösungen für alle Unbekannten zu ermitteln; dies implementiert
einen zweiten konventionellen Dienst.
Weiterhin erlauben Aggregationsbäume auf natürliche Art und Weise die effiziente
Realisierung von Erklärungsmechanismen. Zum einen erlauben sie die Berechnung
minimaler Konflikte im Falle eines inkonsistenten Problems und - im konsisten-
ten Fall - die Ermittlung von minimalen Beweisen für die gefundenen Lösungen.
Insbesondere im Engineering, wo zumeist mehrere hundert Constraints gleichzeitig
durch den Ingenieur in Betracht zu ziehen sind, sind solche Mechanismen unerlässlich,
um die Komplexität der Systeme und die Größe der Probleme beherrschen zu können.
Diese Anforderung wurde in den letzten Jahren deshalb auch verstärkt durch For-
schungsaktivitäten der wissenschaftlichen Community adressiert.
Eine zusätzliche Dimension im Engineering, die in dieser Dissertation vor allem am



Beispiel der modellbasierten Diagnose nachvollzogen wird, ist das effiziente Lösen
nicht nur eines Constraintproblems sondern großer Sequenzen ähnlicher Constraint-
probleme. Hierbei erweisen sich Algorithmen als unverzichtbar, die eine massive
Wiederverwendung früherer Berechnungsschritte erlauben. In der vorgestellten Me-
thodik der relationalen Aggregation wird dies effizient durch die Identifikation wie-
derverwendbarer Unter bäume existierender Aggregationsbäume bewerkstelligt. Mit
der relationalen Aggregation sind also neben konventionellen Diensten auch die
Umsetzung effizienter Erklärungsmechanismen und die multikontextuelle Analyse
möglich.

Die Hauptbeiträge dieser Arbeit sind

• eine Anforderungsanalyse für Constraintprobleme im Engineering,

• die detaillierte Entwicklung der Methodik der relationalen Aggregation (basie-
rend auf der vorausgegangenen gemeinsamen Forschungsarbeit bei der Daim-
lerChrysler AG), speziell

— der Beweis des Theorems zur Berechnung eines minimalen Konflikts,

— die Herleitung eines Algorithmus zur Berechnung aller minimalen Kon-
flikte sowie

— von Algorithmen zum Auffinden eines bzw. aller minimalen Erklärungen,

— eine Darstellung des Zusammenhangs zwischen relationaler Aggregation
und bekannten Dekompositionstechniken für Constraintprobleme und

— die Vorstellung einer (partiellen) Normalform für Constraints in disjunk-
tiver Normalform, die nachfolgende Projektionsschritte trivial macht und
das Lösen der Variablen stark vereinfacht,

• die prototypische Umsetzung aller Algorithmen in der objekt-orientierten Pro-
grammiersprache Java und

• eine empirische Evaluation der zentralen Algorithmen anhand verschiedener
Beispielprobleme.

Die vorliegende Arbeit folgt einer strikten Trennung zwischen Modulen, die die
grundlegenden Operationen join und project realisieren, und - basierend darauf -
einer abstrakteren algorithmischen Schicht, welche Methoden zur Konsistenzprüfung,
zum Lösen der Variablen, zum Erklären bzw. zur multi-kontextuellen Analyse im-
plementiert.
Zum anderen wird streng zwischen dem theoretischen Teil und der praktischen
Umsetzung in einer objekt-orientierten Programmiersprache unterschieden. Hier-
bei kann der letztere Teil als konkrete Implementierungshilfe für den vorgestellten
relationalen Constraintlöser dienen.
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Chapter 1

Introduction

The main goal of this work is to contribute to and support the further automation
of standard and non-standard engineering tasks by proposing a novel concise frame-
work for constraint solving, the so-called Relational Constraint Solver (RCS).1

It supports classical tasks, as deciding consistency, finding all solutions and provid-
ing minimal conflicts, as well as tasks that have not yet gained a similar recognition:
providing explanations for all findings and the efficient analysis of problem spaces
as opposed to single problem instances.

Theoretical Framework 1 1 Practical Implementation

Relational Constraint Solver(f?CS)

Relational Engine

Interface: join & project

Relational Processor

Partially Solved Form (PSF)

• I .

Services:
Deciding Consistency
Finding all Solutions
Providing Minimal Conflicts
Providing Minimal Explanations
Solving Sequences of Problems by Reuse

} • • • •
New
Algorithms

Proves
Practicability of RCS

Concise Framework
with Complete For-
mal Elaboration

Figure 1.1: Overview Over This Dissertation's Major Contributions

throughout this thesis, the distinction between the theoretical framework of RCS and its prac-
tical realisation by means of a computer program shall be made very clear. So the term RCS is to
identify the former, whereas the latter will be noted by "prototype" or "prototypic implementation".

13



14 CHAPTER 1. INTRODUCTION

A special focus is going to be on model-based engineering applications, a field that
has significantly gained in importance over the last decade. The major contributions
of this dissertation, as partly shown in Fig. 1.1, are

• a requirements analysis for constraint solving in engineering applications,

• a thorough theoretical elaboration of a relational framework for solving het-
erogeneous constraint problems, based upon joint work, especially

— the proof of a theorem concerning the computation of one minimal con-
flict, which had been hypothesised in the course of joint work,

— an algorithm for finding all minimal conflicts, and its proof,

— algorithms for finding one and all minimal explanations, respectively, and
their proofs,

— the relationship to decomposition techniques and

— the development of the partially solved form,

• the practical realisation of all theoretical concepts by means of a prototypic
implementation in Java and

• an empirical evaluation on a diverse set of problem instances.

In "our highly~ industrialised world we~are currently witnessirïg~twô~antagoriisti'c™
trends. On the one hand, products as well as processes tend to become more and
more complex. A competitive engineering solution will usually involve a variety
of leading-edge solutions coming from distinct engineering domains. Contrariwise,
engineers and scientists have nowadays become specialists who have been educated
and trained in a particular field of work. This calls for efficient tools that help aid
complex processes and automatise the design, production and maintenance of desir-
able products.
In order to master those increasingly difficult engineering tasks, we need to manage
our knowledge and formalise it so that it can be processed by machines and com-
puters. Seen from this point of view, constraints are a highly formalised form of
knowledge that can be reused, analysed, manipulated, and rearranged by comput-
ers. Constraint solvers are a means of realising this idea.
In this work, a new kind of constraint solver, RCS, is going to be presented, that
incorporates new ideas and those already realised in existing solvers. It has been
implemented in Java and is currently being used as a constraint server in some first
engineering software clients that deploy constraint solving.
The programming language Java has been chosen for different reasons. First of all,
it has nowadays become a popular object-oriented language which suits the modu-
lar structure of MCS. There exist good development environments for distributed
programming based upon shared code repositories. And finally, Java provides useful
facilities for building web-based applications.2

This point is especially interesting when we think of providing web-services, e.g. for diagno-
sis, which will later turn out as an important client that may utilise a suitable software module
implementing RCS, as a server for its constraint solving tasks.
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has been especially designed to meet a certain catalogue of engineering require-
ments, and exploits a characteristic common to many constraint problems arising
from model-based engineering applications, the low density assumption: Each vari-
able appears in only few constraints. This suggests the usage of variable elimination
techniques in order to gradually simplify any given constraint problem.
A line of distinction can be drawn between existing constraint solvers and MCS: Most
existing solvers tend to be applicable only to a certain class of constraint problems,
such as finite domain constraints (for example in scheduling applications) or systems
of linear equations and inequalities. MCS has been built to cover a wider range of
constraint problems, although this may sometimes be at the price of incompleteness.
Those constraints will usually involve finite domain variables, real-valued ones, and
even variables that take as values structured objects. Furthermore, constraints un-
derstood by MCS can be equations, disequations and inequalities. Refering to this
band width, MCS is said to be capable of dealing with heterogeneous constraints.
Concerning arithmetic constraints, MCS allows also for non-linear constraints. As
opposed to other solvers which would basically postpone all non-linear arithmetic
constraints until they have simplified to linear ones, MCS is able to symbolically
manipulate non-linear constraints. This is supported by a special representation for
constraints in disjunctive normal, called partially solved form (PSF), which can be
seen as an extension of known normal forms for arithmetic constraints.
Also, in constrast to most existing implementations, MCS is, to a degree, capable of
dealing with uncertain knowledge. This means the ability to process sets of possi-
ble value assignments rather than just single values. For real-valued variables, the
special instantiation of that notion is interval arithmetic. Important engineering
tasks require us to impose interval bounds on a certain variable since this might be
the only piece of information available. We might come across that situation when
designing a new artifact, where we may want to express certain tolerances of a part,
a subcomponent, a feature or a parameter.
Apart from heterogeneity and uncertainty, MCS addresses conventional basic services
such as deciding consistency of a given problem instance, finding all solutions in case
of consistency, and otherwise providing minimal conflicts. The algorithm used to
extract minimal conflicts in MCS is new. A small extension of it allows also for the
retrieval of minimal proofs for the solutions of a variable computed by MCS. This
function may be used to build explanation services which can help prevent the user
from getting lost in too many details. The need for such explanation facilities has
been stressed for long, and is currently gaining increasing recognition by researchers
of the constraint community.
Another requirement supported by MCS is what may be refered to as multi-context-
uality. In this dissertation, model-based diagnosis will serve as a prominent engi-
neering application in which multi-contextuality plays an important role. Diagnosis
is a special task of system analysis in the context of product maintenance, where
we need to solve large numbers of constraint problems rather than just a single one.
Due to issues of runtime and space consumption, it is hereby essential and inevitable
for any underlying constraint solver, to enable the reuse of previous computations.
Thanks to the similarity of the problem instances to be investigated during diagno-
sis, the potential for reuse is in general very high.
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Whereas other built-in solvers of diagnosis tools make use of truth maintenance
systems (also for deriving explanations), RCS deploys reuse based on so-called ag-
gregation trees. Since constructing a forest of aggregation trees is anyway the initial
step when analysing a constraint problem, RCS has almost no overhead when iden-
tifying reusable computations and generating explanations. Thus, updating effort
for otherwise necessary maintenance modules can be saved.
Aggregation trees constitute the core concept of the Relational Constraint Solver.
Although this concept is not new (cf. [58]), RCS is the first realisation of a constraint
solver that covers all above requirements exclusively by means of constructing ag-
gregation trees. Viewed from a software engineering perspective, MCS consists of
two main layers: the relational engine and the relational processor. Whereas the
latter provides the operators join and project, the former encapsulates all high-level
algorithms that make sole use of those two operators. This strict separation will
ease code management in any object-oriented programming environment. Also, it
provides a good infrastructure for comparing alternative high-level algorithms re-
gardless of the respective realisation of the join and project operators. In other
words, one may examine alternative relational engines modulo the underlying rela-
tional processor.
Aggregation, the process of building an aggregation tree, is controlled by a so-called
aggregation strategy. This might be produced either on the fly, or provided by some
preprocessing strategy module that analyses the respective constraint hypergraph

—using known-decomposition-techniques^andj-based-on-thatj-proposes-acertain-plan^
of aggregation steps. Albeit the latter kind of strategy must - in most cases - stick to
purely topological properties of the constraint hypergraph, any on-the-fly strategy
can also take into account the actual data encoded in the respective constraints. To
a degree, this comparison will also be undertaken in this thesis.
RCS can be seen as a new constraint solver that combines well-known approaches
with new algorithms. It will be shown to have a greater applicability than most
existing solvers. However, when applied to pure problem instances, i.e. to those
that are made up of constraints of one particular type, the figures prove the infe-
riority of RCS, and thus the superiority of tailor-made constraint solvers for the
particular problem class at hand. Nevertheless, the prototypic implementation pro-
duces good results proving the practicability of the relational approach; a fact that
is also supported by ongoing applications of RCS. Beyond the status of implemen-
tation presented in this dissertation, RCS shall be developed further, according to
the requirements that are certainly going to be set by new and more demanding
engineering applications.

Synopsis

Chapter 2 gives an overview over some common, well-known features of model-based
engineering applications, and how constraint solving can contribute to handle them
efficiently. The fundamental ideas of hierarchical system models, components, ports,
and assemblies will be recapitulated. Diagnosis is to serve as an example for model-
based system analysis. Examples of diagnosis applications will be used as well as
other problems to clarify formal work and illustrate algorithms. The derived require-
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ment catalogue for constraint solving in model-based engineering is however mainly
due to diagnosis. Chapter 2 sketches also briefly matters of constraint solving for
system synthesis tasks, such as configuration and reconfiguration, but some of the
corresponding requirements will not be payed attention to in subsequent chapters.
Still, the typical requirements set by diagnosis suffice to show the shortcomings of
existing solvers, and motivate the development of MCS.

In Chap. 3, a formalisation of relational aggregation is presented, starting from basic
concepts and entities, and proceeding to the important high-level algorithms sit-
uated in the relational engine layer of RCS, cf. Fig. 1.1. Here we are also going
to state three theorems concerning the new algorithms for retrieving minimal con-
flicts and explanations. The chapter elaborates furthermore all relevant concepts
for multi-contextual analysis and the reuse facilities of RCS, as well as aggregation
strategies.
Chapter 3 states the main results of this dissertation, and provides detailed proofs
to the respective lemmas and theorems.

The following Chap. 4 is dedicated to the high-level architecture of a concrete imple-
mentation of MCS as it has actually been carried out in Java, in order to verify the
theoretical results of this dissertation. That relational engine assumes serviceable
join and project operators for relations, which are pointed out, by Fig. 1.1, as the
interface to the lower implementational level of a relational processor.
Chapter 4 includes investigations concerning the complexity of most of the presented
pseudo-code.

The thorough elaboration of the two core operators join and project is the subject
of Chap. 5. The corresponding layer of our Java implementation is called relational
processor. It deploys a partially solved form (PSF) for constraints in disjunctive
normal form, cf. Fig. 1.1. Properties of that form which is strongly related to well-
known normal forms, are going to be stated, explained and proved.
The building blocks of arithmetic constraints, as combined by join and affected by
project, are arithmetic terms. Consequently, this chapter also deals with arithmetic
terms and issues of their automated simplification using so-called term rewrites. The
chapter ends with an overview over the constraint language supported and processed
by our prototype.

Empirical results derived with the prototypic implementation of MCS will be pre-
sented in Chap. 6. Their primary goal is to prove the practicability of our prototype
and hence of the framework of MCS. To this end, a real-world problem is going to
be analysed, that arises from a simplified model of a small unmanned spaceship, the
so-called automated transfer vehicle.
Besides those experiments, there are several groups of additional measurements for
evaluating the reuse facilities of RCS, and trading off runtime for computational
accuracy.
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The structural decomposition of RCS into two layers enables us to test alternative
high-level implementations that rely on the same relational processor, see Fig. 1.1.
We will utilise that feature to compare our new algorithms for deriving minimal
conflicts and explanations with naive constraint suspension.

After concluding, items of future work are going to be sketched in Chap. 7.



Chapter 2

Constraint Solving for
Applications in Model-based
Engineering

After explaining hierarchical system models, and showing where - in this frame-
work - constraints enter the scene, light will be thrown on two major engineering
tasks, system synthesis and system analysis. The main focus will however be
on the latter, with diagnosis as a prominent example. As will turn out, one can
identify a certain catalogue of common requirements. Having collected those
requirements, a new kind of constraint solver, the relational constraint solver
(U.CS), will be motivated.

2.1 Hierarchical System Models

2.1.1 Basic Concepts

Nowadays, many software tools used in engineering environments make use of hier-
archical system models as representation of physical artifacts. Engineers think of a
technical device as composed of sub-systems in a recursive manner. The terminal
elements of such a tree-shaped assembly are basic parts which are usually called
components1. This basic concept is captured by the notion of a part-of tree. Many
copies of the same component might occur severalfold in a large number of different
engineered devices.
Figure 2.1 depicts - besides a fotograph - an abstract view of a coolant pump as it is
used in cars. The casing holds subsystems realising drive, suspension and the actual
delivery of the fluid. The below tree shows also the next refinement of the part-of
tree.
Device-specific functions of an assembled physical system are realised by a certain
way of connecting components and subsystems. For this, components are modelled
to have ports, see Fig. 2.1. Those are sometimes also called terminals, cf. [34] which
provides a good overview over the fundamental concepts of model-based diagnosis

1 Unless ambiguous, this term will be used for both the physical component and the digital
component model.
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and introduces most of the terminology also used in this section; see especially [15].
In electrics, ports can be thought of as pins, otherwise they may be sockets, bushings
or the like. A connector, i.e. a wire, hose, pipe, or shaft, will always link exactly two
components by identifying one port of the first component with one of the second.
A component model will usually comprise some specific piece of information mod-
elling the very nature of that component. Sometimes we might also want to attach
information of that sort to a connector, e.g. stating that a pipe may be leaking with
a certain probability, or that an electric wire may be broken. It is however easy to
see that we can get by with "plain" connectors, i.e. those that comprise no additional
information. In order to do that, we just need to introduce one new component for
each non-trivial connector, cf. the model of a non-trivial electric wire in Fig. 2.3.
Being prepared like that, it suffices to use only "plain" connectors to model the
entire physical system.

drive o—o suspension o—c

I
casing coolant pump

< > coolant pump
drive

•O viscd_fan
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-* belt pulley
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Figure 2.1: A Hierarchical System Model of a Coolant Pump

Following the outlined procedure and summarising, modelling a system basically
boils down to modelling all components, and placing "plain" connectors accordingly.
The major advantage is, of course, that components, modelled once and stored in a
component library, can be reused in an arbitrary number of system models, cf. [24].
This will eventually justify the initial modelling effort, and reduce the cost of future
modelling tasks remarkably.

2.1.2 Reusable Components and Constraints

However, in order to guarantee the reusability of a component model, it is crucial
that all information attached to it be context-free. Context-free information attached
to a component representing an electric resistor could for instance be a mathematical
constraint capturing Ohm's law. But in terms of which variables is this constraint
going to be stated?
The answer to this question as well as to how to establish a context-free formulation
lies in the ports of a component. Associated with each port, there will be a set of
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variables; one for each item that needs to be transmitted by any linking connector.
For instance, in an electric circuit one can think of a wire as transmitting an electric
current and propagating a voltage. Thus there should be exactly two variables asso-
ciated with each electric port, as the pairs of variables (ik, Vk), k G {1,2}, in Fig. 2.2.
By attaching additional, component-specific internal variables, as the resistance R,

/, + i2 = 0

v1-v2 = Rii (Ohm's Law)

Figure 2.2: A Simple Model of an Ohmic Resistor with Constraints

we can then state a component's physical behaviour as exemplified in Fig. 2.2.2 In-
ternal variables can be seen as component parameters, thus allowing the modelling
engineer to define a whole class of similar components. It is intuitively clear that
the set of constraints attached to a component model should always be consistent,
and that the set of involved variables will in general be underconstrained, i.e. allow
for more than just one solution, due to the presence of parameters and the intended
degree of freedom of the component's behaviour.
It is easy to check that the constraints in Fig. 2.2 are oblivious to permuting the
port identifiers. We expect this always to be so when a component's behaviour does
not depend on its orientation with respect to the modelled system. An electric diode
is, in that sense, an example for an oriented component. Here, a turn-over would in
general imply a different physical behaviour of the modelled electric circuit.

2.1.3 Mathematical System Descriptions

Let us suppose we are given a library of reusable component models, and that the
physical behaviour of each component has been attached as a set of context-free
constraints in terms of internal variables and port variables.
As an example, Fig. 2.3 presents models of the electric components bulb, ideal
voltage source, wire, ground and Kirchhoff node, including constraints that reflect
their physical behaviour. The bulb model includes a threshold current, C, that
needs to be superceded in order to lit the bulb, i.e. to ensure L = on. Note that the
constraints may also involve disjunctions, modelling alternative possible behaviours
like a nominal and one or even more fault behaviours. In Fig. 2.3, each disjunct
refers to a so-called mode variable, M, that takes its values in a finite domain of
symbols. Here, this domain is the set {ok, broken}. For a detailed discussion of the
pros and cons of modelling behavioural modes, see [34], especially [17] on explicit
models for distinct modes of component failure.
It is then clear how to derive a mathematical description of any system that we
might model using those component models: We simply have to collect, for each
component, an instantiation of its constraints, and add all identification constraints

2Note that a current is a directed value. We should thus commit once and for all to having
directed values always pointing inward with respect to the modelled component.
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imposed by the connections in the system. This is exemplified in Fig. 2.4 which
makes use of the components of Fig. 2.3: The conjunctive constraint in the grey box
is due to the connection between port 2 of node iVl and port 1 of bulb B2. The other
six constraints of that kind, are not presented in the figure. All other constraints

SRC
are instantiations of the constraints in Fig. 2.3. For example, Source0 stands

Node
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Figure 2.3: Some Basic Electric Components with Constraints

for the constraint of an ideal voltage source with each variable top-indexed by the
component's name "SRC", producing -yort^ = yan ,^ Hence, instantiation is done
by renaming all variables. Obviously, the process of collecting all system-relevant
constraints can be automatised.

Figure 2.4: An Electric Circuit and its Mathematical Description

We will thus finally end up with a set of constraints that provide a mathematical
description of our modelled system. The complexity and accuracy of this description
will directly depend on the component models.
Mathematical system descriptions are the starting point that naturally suggests
the use of constraint solving methods in order to automatise and computer-aid the
synthesis and analysis of technical systems.
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2.2 System Synthesis & System Analysis

Along the so-called product life cycle, there are various tasks of model-based engi-
neering. The overall idea, seeked after by the discipline of engineering knowledge
management, is to support all those engineering tasks preferably by the same digital
component and system models.
A great deal of research has been done in the last few years on design-supporting
methods, cf. [21], on software tools, and on enhanced configuration and reconfigura-
tion facilities. See e.g. [48] for a focused view on the connection to constraint solving.
It has become obvious how crucially important the early phases of the product life
cycle are, in order to cut costs for all subsequent phases. This insight also con-
tributed to the push of the emerging subject of engineering knowledge management.
[19] contains a collection of publications concerned with knowledge management for
model-based engineering, and covers a spectrum of relevant tasks ranging from de-
sign to product maintenance issues.
Although engineering knowledge management suggests the overall applicability and
compatibility of digital models, the reality looks somewhat different. For historical
reasons, most tasks along the product life cycle happen to find support in one or
even more specific software tools. In general, the respective data are syntactically
as well as semantically incompatible. Moreover, those tools will usually contain
their own problem-solving and constraint-processing software modules. These will
therefore usually make assumptions about the problem instances at hand. Certain
limitations, concerning the applicability of the solver modules, are the logical con-
sequence.

The next subsection is to give a brief summary of the early phases of the product
life cycle, including tasks as specification-driven design, configuration and reconfigu-
ration. As will become clear, the latter two involve optimisation which is neither in
the scope of MCS, nor of this dissertation.
Secondly, diagnosis is discussed in more detail, which provides in practice valuable
services in the field of product maintenance.

2.2.1 Specification-driven Design,
Configuration and Reconfiguration

There are basically two main ideas when talking about specification-driven design
on the one hand, and (re-)configuration on the other.
Specification-driven design assumes some initial system design, based upon the reuse
of previous, approved designs. It hence deals mainly with parameter adjustments
in order to satisfy a set of user requirements. The typical situation would be that
the designer is provided with a set of parameter tolerances, e.g. given as intervals,
and has to find a consistent parameter instantiation. Additionally, there may exist
preferences for a subset of parameters, often expressed in terms of probabilities.
As to configuration and reconfiguration, the situation is different in that now the
focus is no longer on a parametric yet otherwise fixed assembly, but on the usually
vast space of all possible assemblies. This time, the task encloses an optimisation
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problem, namely to pick an optimal variant of a system, subject to a set of one
or more objective functions.3 The search space relates basically to the cartesian
product of all component alternatives. These are usually organised in so-called tax-
onomies, sometimes also called kind-of trees. Naturally, here is a great similarity to
the object-oriented approach in software engineering.
Most configuration tools will, for reasons of efficiency, decide the consistency of
a candidate system design only during the process of optimisation itself. Obvi-
ously, deciding consistency can be accomplished by similar methods as in the case of
specification-driven design. In the dissertation [48], configuration and reconfigura-
tion are looked at more closely; the most important methodic frameworks and tools
are discussed. It states rule-based, case-based and constraint-based problem solving,
and genetic algorithms as the main approaches to (re-)configuration.
[48, Sect. 5.5] elaborates a method for designing new components, by deriving nec-
essary conditions from the set of constraints that have been imposed for the entire
system.
An additional view on the outlined problem can be found in [3] which also charac-
terises configuration as a necessarily interactive task since requirements may become
explicit only during modelling and actually solving the problem. This work also
stresses the need to provide advanced explanation facilities to guide the user's back-
tracking when approaching an inconsistent system configuration. The proposal is
here a so-called Assumption-based Constraint Satisfaction Problem (A-CSP), based

tion on tasks of system analysis. Furthermore, [3] discusses a précompilation of the
solution space, in order to guarantee acceptable response times in the range of a few
seconds.

The widespread design tool CATIA is used mainly for specification-driven design.
Its built-in constraint,solver addresses, first of all, geometric conditions, and detects
overlapping or interpénétration of parts; see [8]. Here, the designer will strongly
depend on the solver as it is. He is to think of the built-in constraint solving facil-
ities in rather abstract terms, as for instance imposing a hole to be bored "in the
middle of a steel plate". He will not be bothered with mathematical formalisations
of those conditions. On the other hand, and as mentioned before, this puts certain
limitations on the applicability of the built-in constraint solver to other tasks, and
consequently this is also not intended.
Latest versions of CATIA deploy tools, that allow also to model interval bounds
for selected geometric parameters, for example for the width of a car door and the
matching frame in the car body. This is a facility which becomes more and more
important in the context of tolerance management: Decreasing tolerances is a means
to ensure quality but at the same time considered very expensive.
One such supportive tool is 3DCS, [1]. Herein, the user can impose several prominent
probability distributions for each mutable parameter, such as Gaussian, Laplacian
or a triangular distribution. After having modelled several parts in this manner,

3Engineers will in fact often be happy to find just a sub-optimal design, due to the complexity
of the problem.
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3DCS can then compute probability distributions for the entire modelled artifact,
e.g. the total length. In order to do that, 3DCS randomly chooses n system in-
stances, i.e. n situations in the parameter space, according to the given probability
distributions, where n € N is a large number provided by the user. After that, 3DCS
solves all dependent variables in all n situations. The results yield the sought-after
distribution. Additonally, 3DCS provides percentages for each individual parameter
distribution, telling to what degree it affects the overall distribution. Unfortunately,
the interpretation of those data is not clear and turned out illogical for rather small
test cases.
In [54], the collant pump of Fig. 2.1 is used as an illustrating example to point out
requirements of specification-driven design on a less geometric and more functional
level.4 Most of the stated requirements can be mapped to specific requirements for
constraint solving. Among others, those requirements are the ability to add/remove
a set of constraints (in order to investigate alternative component variants), and -
in connection to that - to reuse previous computations and partial solutions corre-
sponding to consistent subsystem designs. Again, the ability to reason with intervals
of parameters, and - more generally - with sets of possible values rather than just
singleton values, is pointed out.
The constraint management in the iViP tool allows for an investigation on the con-
sistency of a design by means of propagation. This introduces difficulties with cyclic
constraint problems, i.e. with problems that have a cyclic constraint hypergraph, see
[55, p. 448] or [2, p. 130]). That well-known problem is exemplified in Fig. 2.5 for a
small example with arithmetic constraints. (The crux is elaborated in the following
subsection.)
Apart from that, the built-in solver of the iViP tool is not incremental in that it
does not deploy reuse as requested above. Nor does it provide a good support for
the processing of parameter intervals.
What seems to be a common characteristic of most built-in solvers in software tools
supporting specification-driven design, is that constraint solving works by propaga-
tion. The application of known constraint solving techniques is hence restricted to
those used in simulation tools, which becomes especially evident in the iViP tool.5

Consequently, when working with multi-state systems in which the topology, the
direction of flows, or other causal dependencies may change due to closing / opening
switches, relay coils, brakes or clutches, propagation-like constraint solvers will only
work if the designer provides one system model for each system state. Clearly, for
complex applications, this will in general fail to be workable.
Another design-supporting software prototype that focusses more on functional de-
pendencies, is the System Design for Reusability (SDR). It stresses the concept of
part-of trees and model-based system design; for a conceptual look at SDR, see [25],
or [4] which uses again the coolant pump in Fig. 2.1 as a pilot application.
In SDR, constraint processing provides conflict detection and solving variables, re-
spectively, by means of the well-known Waltz algorithm. It works by a more so-
phisticated form of propagation. In [27] the reader can find a short description of

4[54] resulted from the German research project "Integrated Virtual Product Creation (iViP)"
with over 40 industrial partners.

5Moreover, not all relevant paths of propagation will necessarily be investigated.
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the Waltzer constraint engine, and its application to some classical problems. The
Waltz algorithm may also encounter difficulties with cyclic constraint problems since
termination conditions are hard to define and will usually be problem-specific. This
becomes even harder to resolve when there are parameter intervals in the constraints:
The algorithm might narrow those intervals. But how to define sensible generic ter-
mination conditions in terms of changes imposed on those intervals? Especially for
the coolant pump application, the built-in Waltzer constraint engine has, due to
those reasons, not consequently been used: For certain layout subtasks, SDR uses
tailor-made, problem-specific computation procedures instead, which need to be re-
run several times in order to adjust and sychronise parameters.
In SDR, the designer may postpone refinements of abstract subsystems. For ex-
ample, the decision which actual realisation of a drive he prefers to use in the new
collant pump, need not be made right away. There are constraints that hold for the
abstract concept of a drive. Reasoning with those generic constraints might already
exclude numerous choices for some of the components. This is a means to prune
the normally very large spaces of design variants. In this respect, SDR goes beyond
specification-driven design, and deploys also simple methods of (re-) configuration.
Once the user specifies an actual drive, for instance by choosing the model of an
electric motor from a taxonomic library, particular constraints describing its physical
behaviour will be added to the pool of active constraints that have to be considered
by SDR.

2.2.2 Tasks of System Analysis

Whereas in design and (re-)configuration the challenge comes - besides optimisation
- from the vast spaces of variants, it comes in analysis tasks, such as diagnosis, from
the numerous potential states in which a system may be. Figure 2.4 already presents
a small system with 23 = 8 states: The wire and both bulbs are modelled to either
work or fail. For a complex diagnosis application with n components each of which
may behave according to m alternative modes, this gives mn system states.

In model-based diagnosis, we are given a system description, sometimes also called
background theory, as for example the set of constraints in Fig. 2.4. Furthermore,
observations can be made, e.g. bulbs found to be lit or not. The task is then to
provide one or more diagnoses, i.e. vectors of behavioural modes for all compo-
nents, consistent with the system description and sufficient to justify all observa-
tions. For instance, the observation that B\ is not lit (in spite of a sufficiently small
threshold CB1) can be justified by the single-fault diagnoses MB1 = broken, and
Mw = broken. The latter suffices also to explain why neither B\ nor B2 is lit,
being the only single-fault diagnosis for that observation. LB1 = LB2 = off may
furthermore be justified by the double-fault diagnosis MBl = MB2 = broken. This
is however, in practice the far less probable situation; hence good diagnosis tools
allow to attach probabilities to a component's behavioural modes, and can produce
diagnoses according to their probabilities rather than their cardinalities.
An exhaustive introduction to the field of diagnosis can be found, for example, in [34].
In [15] a very concise summary of model-based diagnosis and alternative approaches
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to diagnosis are presented. This work especially stresses the advantages of model-
based diagnosis as opposed to diagnostics, fault dictionaries, rule-based systems, and
decision trees. One advantage is that most other approaches owe their ability to the
incorporation of application-specific and problem-specific knowledge. This will have
a negative effect whenever the diagnosed system is altered since underlying know-
ledge bases will need revision. Also, as is especially the case for decision trees and
rule-based systems, other approaches tend to lack transparency, and knowledge re-
vision will become even harder. Maintaining a diagnosis application along all minor
and major system changes is altogether going to cost more.
Another advantage is gained due to the fact that once an artifact had been designed
in a model-based framework, diagnosis happens to be yet another application based
on the digital model of that artifact.6

Prom the very beginning of model-based diagnosis until today, there have been great
achievements. One example is the detection of multiple faults with a causal nature,
see [68]. For instance, reporting a blown fuse will not satisfy the user, since replacing
it will not fix the actual problem in an electric circuit. The user needs to be told
where and why there had been an overcurrent. Such subtle multiple faults can only
be diagnosed with a program that facilitates simulation and computations over a
sequence of time slices.
The Model-based Diagnosis System (MDS), is a software tool that is able to detect
single faults as well as multiple faults which may even be of such a time-causal na-
ture; see [57], and also [62] for the application of MDS to a tram lighting system in
the context of augmented-reality-based service and training. MDS has been proved
applicable to large-scale engineering applications with a few hundred components
and a few thousand variables and constraints. It produces diagnoses based on a
special form of constraint solving. A constraint needs to be modelled as a set of
rules, one of each enabling the computation of one occuring variable provided all
other variables have been assigned a value. The process of constraint processing
itself is then performed in a rule-propagating manner. MDS keeps track of all com-
putational dependencies using an ATMS. It is thus able to detect conflicts, which
can be further minimised, and to reuse all unaffected computations when discarding
previous assumptions. Truth maintenance systems (TMS) have been and are still
very popular in diagnosis tools. In the dissertation thesis [69] relevant aspects of
the application and implementation in MDS of reason maintenance systems, as for
example ATMS, lazy ATMS, and justification-based TMS, are elaborated. A concise
overview over TMS's can be found in [27].
Moreover, due to the variety of systems that have been diagnosed using MDS and,
connected with that, thanks to the continuous development of it, MDS is today able
to process very different sorts of values and constraints. Also, the transformation of
constraints to rules makes user-defined code fit in the framework more easily.
However, MDS reveals problems and sometimes impractical runtimes with mutable
parameters that are only known to lie within some interval. In order to make the
rule-based constraint propagation work, those intervals must sometimes be split into
sufficiently small ones, causing the original problem to branch into a large number

6 Obviously, this fits nicely in the concept of engineering knowledge management that is to
support a product life cycle without gaps.
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of disjuncts. The rule-based approach holds thus the disadvantage that the modeller
of those rules will sometimes have to know a great deal about the built-in constraint
processing.
Figure 2.5 depicts another problem with pure propagation. Suppose, the constraint
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Figure 2.5: A Problem with Propagation

propagator is fed with the constraint rules describing the given electric circuit with
an ideal voltage source of 12F, and two resistors of WOCl and 200H in series. After
propagating those constants as far as possible, a simple propagator would end up
with the rule store shown in Fig. 2.5. The intermediate voltage v^ = ^i is un-
known, and the current can only be fixed after determining that voltage. In MDS
this problem, which will obviously occur rather frequently, is resolved by the use of
current-voltage-pairs and a bit of symbolical manipulation, which will clearly recover
the situation in Fig. 2.5.
The design of MDS allows furthermore to tackle other analysis tasks:

• Failure mode and effects analysis (FMEA): Here, the user can simulate
the effects of faulty or worn components on other components and - more
general - on desired funtions of the modelled system.

• Test Proposal: Given an unknown faulty component and some initial ob-
servations, MDS proposes a "best" measurement with highest discriminating
power (according to costs and probabilities). After entering the measurement
as an additional observation, the process is repeated until the faulty component
can be identified.

• Sensor Placement: Here, MDS computes critical points in the system where
additional measurement facilities would help to increase an otherwise poor or
insufficient discriminating power during troubleshooting.

Mentionable work has been done on diagnosing tree-structured systems. This is
mainly due to the fact that acyclicity seems to guarantee better time and space
complexity than in the general case. ([67] suggests that linear time complexity, as
proved there for single-fault diagnoses, may be preserved even in the case of finding
all double-fault diagnoses.) [23] introduces an efficient algorithm, SAB, that works
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by assigning costs for faulty components. Finding minimal diagnoses coincides then
with minimising the overall cost. This work also compares SAB with MBD2 which
goes back to Reiter and follows the standard approach of assuming a certain vector
of behavioural modes for all components.
In [67] diagnoses are computed according to the algorithms TREE and TREE*, up
to a given size. They work by recursion, seeding in components for which expected
and actual behaviour differ. This work also presents a detailed comparison of TREE
and TREE*, respectively, with SAB.
An interesting combination of the configuration domain and diagnosis can be found
in [26]. Here, diagnosis is adopted to debug knowledge bases: Besides unachievable
requirements, an inconsistent knowledge base, e.g. after alterations, can often be the
reason for a configuration task to fail.

2.3 Common Requirements

This section is going to summarise the requirements for constraint-based specification-
driven design and system analysis, derived from the above remarks and examples.
Although there might be approaches other than constraint solving techniques, it had
been made clear that modelling physical behaviour by constraints comes natural. In
a highly complex engineering environment, it turns out expensive and - seen from the
perspective of engineering knowledge management - disadvantageous to be forced, as

reuse

solutions

explanations

Figure 2.6: Derived Catalogue of Requirements

a modeller, to state a constraint in some tool-specific representation, as for example
by a set of rules. Stating constraints in a more tool-independent, declarative way
will help bridge the gap between an engineer's manner of thinking and the computer
interfaces he needs to deal with. Constraints embody engineering knowledge of a
very formal kind, enabling computers to efficiently aid today's engineering tasks.
In Fig. 2.6 the most relevant top-level requirements and their interrelations are
sketched. The following subsections are going to explain the overall picture and
clarify the respective requirements.

2.3.1 Multi-Contextuality

First of all, the aim is to analyse entire spaces of distinct constraint problems rather
than just single problem instances. It is worth mentioning that most constraint
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solvers do not address this task, but concentrate rather on efficiently solving single
problem instances. In Fig. 2.6, this context space is depicted as a two-dimensional
area of distinct constraint problems called contexts, symbolised by white dots. As
seen above, in design those spaces stem from the many variants one has to handle
when laying out a new product using alternative subcomponents; in diagnosis a
context is a certain state of the modelled system. Indeed, the larger the context
space, the less important become the performance figures for the analysis of each
single context. This argumentation assumes however that the average figures will
remain good-natured which strongly depends on the "density" of the underlying
context space: If one can find, for each context, a "neighbouring" one which differs
in only few constraints, one should be able to cut the effort for the latter by means
of reusing computations carried out for the former; see item "navigation" in Fig. 2.6.
In order to accomplish an efficient analysis of the whole context space, it is thus a
non-trivial task how to traverse it in order to maximise that reuse. However, that
optimisation problem is not addressed in this dissertation.7

2.3.2 Single Context Analysis

A solver supporting model-based applications needs to be capable of accomplishing
the classical tasks of checking consistency, and - in case of consistency - finding
solutions for all variables. Confer to the centre item "single context" in Fig. 2.6.

„Einding^solutionsjwillj-in-the-presented-setup^explicitelyLmean.tO-find-aZLsolutions-
for all variables: For a consistency-enforcing tool that supports specification-driven
design, the designer wishes to survey not only one but numerous consistent layouts
for a new system, if not all.8 As for diagnosis, it is in fact not so important to
find solutions, since producing diagnoses is mainly based on deciding consistency.
But regarding for example FMEA, it should be clear that computing all solutions is
essential in order to treat all possible effects of component failures on the modelled
system. '
Another aspect of single context analysis is the trade-off between computational
accuracy and runtime: In order to arrive at acceptable response times of a solver, it
should be able to gradually sacrifice certain levels of accuracy. Approximations and
incomplete data processing are means to implement such trade-off facilities.

2.3.3 Minimal Conflicts and Explanations

The computation of conflicts, for any given inconsistent context is a rewarding mea-
sure to prune the context space: Other contexts that also refer to the conflicting set
of constraints, can right away be deduced to be also inconsistent; see item "prun-
ing" in Fig. 2.6. Therefore, those contexts need not be considered by the constraint
solver, and their number will in general be the greater, the denser (in the sense of

It should nevertheless be easy to define an appropriate metric, ß, for a context space, considering
- besides maybe other characteristics - the number of differing constraints between two contexts.
The task of maximising overall reuse relates then to computing an //-shortest path that visits each
context.

8The situation changes, of course, when there are cost functions, and the designer looks just for
one (sub-)optimal layout; see Subsect. 2.2.1.
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the above loose definition) the context space is. Considering again the typical size of
a context space, it becomes worthwhile to not only compute small but even minimal
conflicts.
For consistent constraint problem instances, the pendant of a minimal conflict is a
minimal explanation or proof of the value restriction obtained for some variable. As
will become clear, with relational aggregation, both tasks can indeed be tackled by
the same algorithmic idea. The benefit of providing minimal explanations for the
user is that he will be more likely to understand what is going on.
For example, after specifying a set of system parameters of a new coolant pump, the
designer may learn that he can no longer use an electric motor as drive. He might
want to enable this type of drive again by undoing some of his previous parameter
settings. For this, he needs to take a look at an explanation, i.e. a minimised (if not
minimal) set of parameter settings that enforce the exclusion of the electric motor.
This will help him identify the right parameter setting(s) to be suspended, cf. again
the work done in [3].

2.3.4 Rich Constraint Language

Figure 2.3 has already hinted that constraints, in order to express the physical be-
haviours) of a component, may involve disjunctions and conjunctions of equations,
disequations9, and inequalities. The latter kind of binary relation makes sense only
for domains where at least some partial ordering can be imposed. In this work it
will be used exclusively in connection with the set of reals, R. Apart from that,
(dis-)equations can be formulated for terms taking values either in R or in some
finite domain of symbols, see for example the equations in Fig. 2.3 involving the
mode variable M. (It should be clear, however, that variables and terms are not
allowed to take their values in two mutually distinct domains, as for instance in R
and in some finite domain.)
Ohm's law, see Fig. 2.3, is an example for a non-linear arithmetic equation. A solver
that is to serve engineering tasks needs to be able to process such non-linear con-
straints, not to mention linear ones.
Another important requirement in the context of engineering tasks is to enable the
incorporation of procedural constraints. Those are usually provided by a piece of
executable code that will, for a given vector of input values, produce an output
value. Normally, the functional relation captured by such a procedure can, due to
its complexity, not be formulated in terms of other language features provided by
the constraint language. We are going to further clarify this requirement in Chap. 5,
where we also present a possible and practicable approach as realised in our proto-
type.
In what follows, the term heterogeneous constraints will be used to refer to all the
different types of constraints that have been mentioned.

In addition to logic and-or-junctions of atomic constraints, it is often more favourable,
for reasons of clarity, to use implications. For example, in the case of the bulb in

91 will consequently stick to this term for reference to the binary relation / Ç r x V for any set
T / 0, where (a, b) G =£ <=> -.(a = b)
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Fig. 2.3, the implication M = ok A \i\\~> C = > L = on would be more in-
tuitive. In general, the implication c = > d, where c, d are boolean formulas, can be
translated to ->c V d. Thus, implication is a trivial language feature, provided that
the underlying parser module is able to compute a representation of the negation
of any given condition. The parser of RCS "understands" implications, but is able
to produce such negations only for a certain subclass of atomic constraints. This is
going to be discussed in Chap. 5.

In engineering, man-machine-interfaces and communication facilities play a more
and more grave roll. Highly specialised experts from different domains need to com-
bine their work by means of shared digital models. This sets challenging language
requirements for any supporting software tool, including constraint-based tools for
model-based engineering. Therefore, the aspect of a rich constraint language must
not be underestimated.

2.3.5 Uncertain Knowledge

As already pointed out, it will often be the case that certain component parameters
will only be known to lie within some interval. This might be due to fabrication to-
lerances, or - in case those parameters have been measured - to measuring errors. A
well-conditioned constraint solver will yet have to deal with this sort of vage, uncer-
tain, or erroneous data. Little attention has been payed to the constraint problems
that typically arise; see e.g. [76]"for an introduction. [5]^iëâls with uncertaintiës~in~"
the context of configuration, presenting examples with parameter intervals.
As an easy example, regard again the circuit in Fig. 2.4. Suppose the bulbs' resis-
tances have been measured to lie within the interval [1000 — A, 1000 + A] Q, where
A > 0. Determining the electric current that flows to ground, iGND, will depend on
an evaluation of the overall resistance R = (RB1 • Rm)/(RB1 + Rm). This reveals
that managing uncertain parameters can naturally lead to optimisation problems.
In the example, that problem consists of finding the minimum and maximum values
of the function f(x, y) = (x-y)/(x+y) on the square [1000-A, 1000+A]2. Although
it is easy to see that, in the given setting, evaluating R by means of naive interval
arithmetic produces tightest bounds, this method is known to be incomplete and
will in general only yield supersets of the set of values that can actually be attained
by the given arithmetic function. This issue will be discussed in Chap. 5.

More generally, the addressed requirement can be stated as the ability to simultane-
ously process and reason about sets of possible value assignments, rather than just
singleton values. For arithmetic terms, this will, as seen above, often result in hard
optimisation problems. For reasons of efficiency, those need to be avoided.

2.4 Application of Existing Constraint Solvers

2.4.1 General Remarks

The purpose of this section is to motivate and provide good arguments for the de-
velopment of a new kind of constraint solver, namely MCS, in spite of the many
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existing ones. The argumentation will be based on the above requirements. The re-
spective shortcomings of existing solvers shall be pointed out. Before, some general
remarks are worth mentioning.

Today, the constraint community can roughly be divided into researchers working on
constraint satisfaction and constraint solving / constraint programming respectively.
The former focus on problems defined over finite domain variables. The corre-
sponding solvers are characterised by a high degree of maturity, and implement very
efficient algorithms, for example for scheduling, task and job assignment problems,
planning and propositional satisfiability, to name just a few. The methods for solv-
ing are normally composed of procedures from three categories: problem reduction
for breaking a harder problem into a set of hopefully easier ones, search for find-
ing one or all solution tuples of each of the subproblems and solution synthesis for
combining the partial tuples to overall solution tuples. For a detailed yet concise
introduction, see [70], from which also the presented categorisation has been taken.

On the other hand, constraint solving addresses problems that are naturally mod-
elled using variables that take values in infinite domains, as e.g. N, Z, or R. Con-
straint solving is a declarative paradigm that has been merged with logic program-
ming to the field of constraint logic programming (CLP), cf. [45] and [47]. An im-
portant goal in this context is to hide the respective solving methods from the user.
Most arithmetic constraints in this context are linear equations and inequalities.

Although both domains have been subject to remarkable improvements and of
great interest to many researchers, one tends to encounter problems when trying
to model hybrid constraint problems, i.e. those that involve both finite- and infinite-
domain variables. However, most engineering applications, like those arising from
specification-driven design and diagnosis, will in general produce such hybrid prob-
lems. We should therefore recognise engineering applications as a promoter for work-
ing on efficient hybrid solvers. Thereby, we shall be able to combine the approved,
successful concepts of constraint satisfaction and constraint solving.
It has become clear that a great many of hybrid constraint problems may be refor-
mulated to fit in one of the two frameworks mentioned above. But the modelling
effort can be immense and an engineer can, in general, not be expected to be trained
for that task. Moreover, reformulations often tend to approximate or disguise the
actual constraint problem, making the solving sometimes harder in terms of the
complexity of the deployed algorithms. For a detailed discussion of issues concern-
ing modelling vs. solving, see e.g. [20].

Besides the need for efficient hybrid constraint solvers, it is obvious that there are
many applications which depend on good non-hybrid solvers, as for example for
scheduling or linear optimisation. Furthermore, it is clear that a good non-hybrid
solver should outperform any hybrid solver when applied to some non-hybrid con-
straint problem. In that respect, the purpose of this dissertation is not to develop
a solver that is better than most existing ones, but to develop a kind of hybrid
constraint solver with a greater and - seen from an engineer's perspective - more
immediate applicability than most non-hybrid solvers.
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2.4.2 Detailed Discussion

The prototypic implementation of RC§ has been and is currently applied mainly to
problems in which most variables are real-valued. Therefore, this discussion will also
focus on existing solvers, frameworks and methods of constraint solving and CLP.
Most of the following statements can also be found in [45, Sect. 1.3.] in more detail
and with pointers to the respective literature.

CHIP is mentioned to be able to treat linear arithmetic constraints over rational
numbers or finite sets of integers, respectively. Those two domain types can how-
ever not be mixed. Prolog III is, beside linear arithmetic constraints over rational
numbers, also capable of computations over string symbols. Subtle correlations bet-
ween finite domain variables and real-valued ones, like e.g. in the bulb constraint of
Fig. 2.3, are hard to pass through existing CLP language interfaces.
In [38], an example of a hybrid solver is presented, deploying constraint propaga-
tion and linear programming in order to tackle combinatorial optimisation. As in
the framework of mixed logical / linear programming (MLLP) proposed by Hooker
et. al., constraint propagation is therein used to determine the feasible region of a
search tree, the nodes of which are subject to some optimisation task. Each node
comprises a problem instance of linear programming.

A special issue of constraint solving are non-linear arithmetic constraints. Those
are mostly not directly supported by CLP solvers: CLP(R) postpones the treat-
ment of non-linear constraints until they have become linear due to substitutions of
grounded variables. This very common technique is presented e.g. in [9].
CAL is reported to make partial use of non-linear constraints which are equations
relating polynomials. In RISC-CLP(R) however, non-linear constraints are fully
involved in the computation. [37] points out the necessity to be able to treat non-
linear constraints in a complete way. This is proposed based on a simple-minded
CLP interpreter, and deploying partial cylindrical algebraic decomposition (CAD)
and Gröbner bases, i.e. Buchbergers algorithm. The latter is also used as the core
in CAL. Hong's algorithm, as presented in [37], will likewise delay non-linear con-
straints as long as linear subproblems exist. Gröbner bases are used in a loop to
simplify non-linear problems. A final call to CAD produces then the answer to the
query, e.g. consistency check.
[36] is another overview paper dealing with the three important implementations of
CLP; Prolog III, CAL, and CLP(R). There, a problem with CAL is emphasised:
Although being the only of the three implementations to deal with non-linear con-
straints (by means of CAD), satisfiability of a constraint problem is reported only
with respect to the set C of all complex numbers. So even when CAL announces
consistency, real solutions may still be absent.
Filtering algorithms have been considered to handle systems of non-linear arith-
metic constraints. In [53] ideas of and links to filtering algorithms can be found.
The method presented in this work attempts to replace the quadratic terms x2 and
x • y, by linear narrowing constraints. This procedure, called reformulation lineari-
sation technique, produces a linear approximation of the non-linear problem which
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can then be solved by known techniques like the simplex algorithm.

Apart from non-linear constraints, expressing disjunctive constraint problems is in
general not supported by CLP languages. Alternative subproblems need to be stated
and handled individually. This requires the user to provide the relevant sequence of
conjunctive problems manually, resulting in an interactive process.

Similar problems arise when addressing context spaces, and connected to that, reuse
of previous computations. Sequences of constraint problems cannot be specified in
order to automatise the analysis of whole problem spaces; at least not directly in
the above systems. Little has been published about multi-context layers on top of
CLP solvers. Consequently, reuse issues have only been addressed in the context of
special-purpose applications.

Considerable work has been done on mutable parameters, mainly in the context of
interval arithmetic; cf. requirement "uncertain knowledge". Like many other publi-
cations, [71] defines the interval extension to the arithmetic operators +,—,-, and -i-,
and stresses the "dependency problem of interval arithmetics". This is present as
soon as an interval has multiple occurences in an arithmetic term, and is responsi-
ble for the incompleteness of naive interval calculus (see Chap. 5). [71] addresses
polynomial systems and links thus non-linear constraints and interval arithmetic.
There are of course embedded systems that deploy interval arithmetic, and that
support uncertain parameters. Interval constraint satisfaction was concurrently in-
vented by a few research groups in the 1980's, see for example [40]. In summer
1997, the first commercial version of Interval Solver for Microsoft Excel was re-
leased. Interval Solver is the first implementation of interval constraint satisfaction
on a commercial spreadsheet platform. It is capable of evaluating Excel formulas
with interval-valued arguments. By using global interval optimisation algorithms
and cascaded function globalisation (see [39]), the actual value ranges are obtained
without overestimation typical to classical interval arithmetic. Unlike in ordinary
Excel, formula values can be bound with intervals.

The remainder of this subsection takes a closer look at a selection of commercially
available constraint solver systems.

• Optimisation Programming Language (OPL Studio): This leading-
edge modelling tool from ILOG is based in the CPLEX solver, see [41].

• A Modelling Language for Algebraic Programming (AMPL): The
well-known modelling language is able to interact with numerous solvers. For
the investigation undertaken here, a demonstration version was used. The
underlying solver was MINOS.

• General Algebraic Modelling System (GAMS): Here, the modelling
language GAMS was used to deploy once again the CPLEX solver; also in
a demonstration version.
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• Mathematical Mathematica is a famous computer algebra system from Wol-
fram Research.

• UniCalc: This is a system for mathematical programming developed by the
Russian institute for artificial intelligence.

Since modelling hybrid constraint problems in such a way that they can be fed into
a non-hybrid solver turns out difficult in the first place, the listed systems were ap-
plied to some rather simple constraint problems arising from two families of electric
circuits. Those are shown in Fig. 2.7.
Although the presented families of constraint problems mention only real-valued
variables, and are thus in the above sense non-hybrid, they still serve to point out
shortcomings of the applied solvers.
Both families of electric circuits have k G N, k > 0, repetitions of a special box, in
Fig. 2.7 named Bi,i > 0. This box is in the case of the family {Rk}k>o an ag-
gregate of five Ohmic resistors and two Kirchhoff nodes which is not serial-parallel
decomposable. "R" stands for "resistors". For the family {Dk}k>o, two resistors are
replaced by diodes; therefore this time the identifier "D " is used.

Figure 2.7: Two Families of Electric Circuits

Let us take a closer look at the variables and constraints of the two families of
constraint problems. Assigned to each resistor and diode are one current and one
voltage variable per port. Similarly, each Kirchhoff node has three ports yielding six
variables. Ideal voltage source and ground have one unindexed current and voltage
variable each.
Figure 2.8 presents the constraints for Dk,k > 0. From those the constraint model
for Rk, k > 0 is easily obtained, by simply removing the diode block and considering
all five resistors instead of just three. Both Rk and Dk involve 44 • k + 4 real-valued
variables and just as many constraints, counting the disjunction inside a diode model
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as a single constraint.
The modelling may seem somewhat awkward, in that it involves more variables than
actually necessary. But assuming that we instantiate all constraints from prototypes
in an electric component library, this is similar to what one should eventually get.
Note also that for Dk, there will in practise only be one path with a non-zero current:
This is the one that passes, in each box, through the components N2,D\, Ni, R3 and
A/3. However, for any solver, the constraint model of Dk constitutes basically 2-2 = 4
cases of current flow per box, yielding 4fe alternative cases in total that need to be
considered initially.

for each box Bi, 1 < i < k
for each resistor Rj,^

{

7'e{2,3,

UiRjBi — u2RjBi = 100 • j • i\i

for each diode Dj,j G
hDjBi + ^DjBi^O,
( (uiDjBi = u2DjBi

(u-tDjBi < u2DjBi
for each node Nj,l <j

hNjBi + i2NjBi + i3l
u\NjBi = u2NjBi,
u\NjBi = u3NjBi }

wires inside B^ {

«2^2^ + hRiBi = 0,
i3N2Bi + i\R2Bi = 0,
i2N3Bi + i2R3Bi = 0,
i3JV3.Bi + ziJR4JBj = 0,

hNiBi + iiRsBi = 0,
i2N±Bi + i2R2Bi = 0,
hN^Bi + i2R±Bi = 0,

{1,4} {

A iiDj
A i\Dj
Ĉ 4 T

Vj-Bj = 0

uiNiB

u2N1B
u3NiB
u2N2B
u3N2B,
u2N3B,
u3N3B,
U1N4B1
u2N±B%

uzN^B^
source & ground with wires {

«SRC = 12, ÎSAC + «1^2-^1 = 0,

•"GJVD = 0, ÎGJVO + *l-^3Bk = 0,
for each pair of boxes (Bi-i,Bi),

i\N3Bi-i + i\N2Bi = 0, UlN"Bi-

5} {

RjBi }

Bi>0) V
Bi-0) ) }

i = u2R§Bi,

i = u2R§Bi,

= u2RsBi,
= u\R\Bi,
^ u\R2Bi,
= u2R3Bi,
= uiRiBi,
= uiR*,Bi,
= u2R2Bt,
= u2RiBi } }

USRC = uiN2Bi,
UGND = UiN3Bk }

2<i<k {
1 = uiN2Bi } }

Figure 2.8: Constraints for the Problem Dk,k > 0

UniCalc failed to solve any of the two problems. There is evidence that UniCalc has
been designed to solve systems of equations in which each equation is interpreted
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as a rule for determining a variable, provided that values are known for all other
appearing variables. UniCalc can therefore not be expected to undertake symbolic
manipulations, resolve cyclic dependencies or to solve problems by means other than
propagation. It will hence be workable only for a small domain of relevant problems.

Secondly, none of the systems was able to solve any of {-Dfc}fc>o- This is due to the
inability to express the disjunctive constraint in the diode model. Obviously, when
trying to model alternative physical behaviours of a given component, imposing a
disjuntive constraint is the appropriate and rather natural measure.
Although Mathematica computes all variables in the family {Rk}k>o for small k, the
response times become impracticable for k > 5.10 This is a consequence of the time-
consuming symbolic manipulations facilitated by Mathematica. Also, Mathematica
assumes that all variables be non-negative, and the constraints be linear equations.
Besides the runtimes, this is in general a very strong limitation.

OPL, AMPL, and GAMS are all modelling languages, and one should distinguish
between the languages themselves and the power of the underlying solver.
GAMS is the weakest of the three languages, for it just facilitates optimisation and
not constraint solving. Its syntax is rather complicated. Moreover, programs are
not parametrisable, and the error messages are ambiguous.
OPL has a simple syntax. It can handle constraint solving, and proved to be the
fastest among the systems. Unfortunately, OPL will fail when presented non-linear
constraints.- As an-example, suppose the problem- i^-would-be-altered-by-replacing
Ohm's law in the resistor model (see Fig. 2.8) by the two constraints

UiRjBi - u2RjBi = rRjBi • ̂ RjBi, rRjBi = 100 • j ,

i.e. introducing a new resistance variable rRjBi. The new problem R'k is no longer
linear, and OPL will fail to solve it, even though some simple substitutions would
turn R'k into the linear problem i?fc.
AMPL is very similar to OPL, and in fact the syntax of OPL was inspired from
AMPL. It has the advantage that it can be used with many external solvers. Before
solving a system, it applies a presolve stage that deploys some simple transformations
and makes thereby the initial problem easier. This presolve stage also subsumes the
simple substitutions that will turn R'k into Rk, and hence enable AMPL to also solve
the family {-R'fe}fc>0.

Further remarks can be made concerning the requirement of processing uncertain
parameters. In OPL, AMPL, and GAMS, it is possible to set a user-defined accuracy
of all findings. Due to its symbolic reformulations, Mathematica will never reduce
the accuracy of its computations, and it is in this respect not scalable.
However, this kind of accuracy does not address the uncertainty or mutability of ini-
tial parameters. Both problem families could, for instance, be altered by restricting
the resistance of RjBi to lie within the interval [100 • j — A, 100 • j + A], where A
is a small positive number, instead of being exactly 100 • j . The arising families of
constraint problems are much harder to solve, and the above solver systems all fail

10All investigations have been undertaken on an Intel Celeron 550 MHz, running under Microsoft
Windows 98.
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for those. In the case of R^, modelling this kind of uncertain resistance gives R'k,
where there is a extra interval domain constraint for each resistance variable rRjBi.

For the above discussion, we have focussed on the electric circuits depicted in Fig. 2.7.
We made clear that the modelling in terms of constraints consists of disjunctions and
conjunctions of atomic arithmetic constraints; see the diode constraint in Fig. 2.8.
Already for that class of constraints, we were able to point out shortcomings of the
studied solver systems.
Let us conclude this subsection by taking again a look at the bulb constraint in
Fig. 2.3: Clearly, any constraint problem that mentions the presented or similar
heterogeneous constraints, will become even harder to solve than the above discussed
families of circuits. This is due to the mixture of constraints involving finite domain
variables and real-valued ones. Indeed, with this extra difficulty, the application of
the above solvers will be possible only after considerable reformulations. However,
most engineering tasks simply do not allow for the implied additional effort.

2.4.3 Summary & Outlook on ECS

None of the examined constraint solver systems was able to solve the given fam-
ilies {Äfe}fc>o, {-Rfc}fc>o> {Dk}k>o of constraint problems. As to the latter family,
the reason for that was the inablity two express and impose disjunctive constraints.
Most prominent solvers for constraints over real-valued variables are limited to lin-
ear constraints. AMPL deploys a presolve stage to simplify non-linear constraints
by substituting some occuring variables with known values. As already mentioned,
there are other concepts for dealing with non-linear constraints.
Furthermore, none of the systems is prepared to deal with uncertain parameters,
in the sense that imposing interval bounds on some of the variables will basically
increase the algebraic degree of the problem and thus make it non-linear and too
hard to solve.
Another point is that neither of the presented solvers allows for an almost straight-
forward input of heterogeneous constraints, that is, so that the modelling effort for
engineers remains acceptable.
Although not examined above, most solvers do not support multi-contextuality di-
rectly. Still, some systems may reuse previous computations after minor alterations
in the sense of dynamic constraints. The user can however not state a set of contexts
of interest in the first place. In order to investigate a sequence of similar constraint
problems he will have to switch from context to context manually, and leave it to
the solver to maximise computational reuse in each context switch, if supported at
all.
In providing minimal proofs and conflicts respectively, none of the existing systems
meets the challenging demands set by engineering applications. Deriving minimal
explanations is so far commonly considered a service that is to be provided by ad-
ditional implementational layers beyond and based upon the actual solver module.

Summarising, the presented requirements catalogue for specification-driven design
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and model-based system analysis is only partly covered by existing solver systems.

As will turn out, the relational constraint solver, MCS, is a concise framework that
allows for the satisfaction of all those requirements. Before we go in for the formal
development of that framework, we shall give a brief description of it. This is to
give a first idea on how MCS works:

• In order to solve a given constraint problem, MCS will build a so-called aggre-
gation forest, that is, a set of binary aggregation trees. Their leaf nodes are
given by the initial constraints. Any non-leaf node is the result of symbolic
manipulations involving the two successor nodes. Those manipulations also
take care of possible heterogeneous constraints.

• After having built the trees, MCS can immediately decide the consistency of
the initial constraint problem.

• By a subsequent top-down traversal of all aggregation trees, MCS finds all
solutions for all variables. This makes sense only for consistent constraint
problems; otherwise this traversal is going to be omitted.

• Also in case of consistency, shortest proofs for all solutions can be retrieved,
again by directly utilising the generated trees. Note that, with such proofs,

- -... the-requirement to„provide_explanations_can^be_satisfied

• Contrariwise, for inconsistent problem instances, the trees may be used to
provide minimal conflicts to the user.

• A diagnosis client may define a whole sequence of contexts to be analysed.
MCS will then automatically optimise computational reuse, when switching
from one, already analysed context, to the next one. Hereby, reuse can be
implemented by identifying reusable subtrees in the aggregation forest that
had been generated for the previous context. Consequently, RCS is able to
guarantee efficient reuse facilities without the use of TMS's, as mentioned in
Subsect. 2.2.2.

is furthermore able to handle uncertain coefficients in linear constraints
and uncertain parameters in non-linear constraints. As an example, solving the
above problems Rk and R'k in MCS is basically done by the same algorithms,
and even with very similar traces: Common interval extensions to all basic
arithmetic operators have been implemented in our prototype of MCS, making
it treat R'k just as the linear problem R^. The escrow issue of handling R'k
is instead shifted to the task of producing tightest evaluations of arithmetic
terms with mutable parameters. As was argued earlier, this is in general a
hard optimisation problem, and is going to be discussed in Chap. 5.

Finally, Chap. 5 will explain how a concrete implementation of MCS can be
designed to support procedural constraints. Basically, those can be seen as
a special embodiment of a term. Such a term can only be evaluated for a
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given vector of input values, by invoking a piece of (unknown) code. There-
fore, we cannot manipulate it, and it manifests a directed dependency in the
computation scheme of MCS.

The two-layer architecture of MCS allows for an almost fixed implementation at
top level, the so-called relational engine. Improvements in the bottom layer, the
relational processor, may on the other hand increase the power of the entire solver;
cf. Fig. 1.1 for the two-layer architecture.
Those improvements can also lead to the ability to process new classes of constraints
and to support new features of the constraint language understood by RCS. Also for
those reasons, RCS is a promising alternative for model-based engineering applica-
tions, since software developers may initiate desired improvements of RCS according
to ongoing work and driven by the needs of new applications, without affecting the
existing functionality of the system.
For an example of such a gradual, application-driven extension of the supported
constraint language, see App. C.



Chapter 3

A Formal Framework for
Relational Aggregation

This chapter introduces the concept of relational aggregation. Starting with
basic entities and operations, the more complex structures aggregation tree,
aggregation forest, and context space will be defined and related to each other
by some lemmas and the main theorems of this dissertation. These facilitate
the core algorithms for an implementation of RCS, as presented in subsequent
chapters.

3.1 Conventions &: Notation

Throughout this document, the following conventions and notational agreements
shall be observed.

N = {0,1,2,3,...} denotes the set of all natural numbers, in-
cluding 0.

N+ = N \ {0} is the set of all positive natural numbers.
f\v stands for the restriction of a function

/ : M —> M to the set V Ç M.
O i e / T(i) will be used, for any associative operator

0 and any non-empty ordered set of in-
dices I = {h,Î2,-..} to abbreviate the
term T(h) 0 T(i2) © • • •. If |/| = 1, the
term shall be evaluated to T(i\).

0 M. = OmeA-tm 1S a shorthand for the case that the opera-
tor is also commutative, and index set and
set of operands coincide.1

Sets will be denoted by capital letters, sets of assignments (see Def. 1) in calligraphic
style, e.g. A, B, C; lower-case letters stand for the elements of sets. Usually X, Y, Z
and x, y, z will be used for sets of variables and individual variables, respectively.

lrTo be precise, O < € / T(i) has only been defined for ordered index sets. But due to commutativity,
an arbitrary ordering can be chosen, when iterating over m 6 M.

42
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In order to define the central objects of this dissertation, aggregation trees, some
commonly used terms for trees need to be fixed. Normally, a tree A = (V,E) is
a special graph, i.e. a pair of finitely many vertices - also called nodes - and edges
E ÇVxV.V may be retrieved by writing V(A). Let furthermore in this dissertation
any edge in a tree be directed. The edge from n\ € V(A) to ni € V(A) may be
denoted by n\ —• n-i; n\ being a predecessor of n<i and 712 a successor of ni. A path
from node re to node m ^ n exists if and only if there is a non-empty sequence of
nodes no = re, n\,... ,n/. = m, k € N+, such that n* —> Wj+i is an edge for each
i G {0,1, . . . , k — 1}. This path may be written as n —*• m.
The characteristic of a tree is that there exists a single node without predecessor
called root, p(A), and that all other nodes have exactly one predecessor. The nodes
without successors, are called leaf nodes or leaves. Any node that is not a leaf is
named non-leaf node. Let, for any node re in a given tree, A(n) denote the subtree
rooted at n, which may consist just of the single node n, in case re is a leaf. Also,
let A(re) be the set of all leaf nodes of A (re). A tree is termed binary if any non-leaf
node has exactly two successors.2

In order to support the notation of more involved statements concerning trees, let
us define leaf replacements in the following way. Let N Ç V(A) be a non-empty set
of nodes such that

Vni,re2€./V m / n 2 = > A(ni)DA(n2) = 0,

that is, no two subtrees rooted at distinct elements of N share a leaf. Then any
element of

T(N) =f | j A n | A n Ç A(n) A A n / i (3.1)
[ J

is called a leaf replacement of N. By definition, any leaf replacement replaces each
non-leaf node n of N by a non-empty set of leaves (namely An) of the subtree rooted
at re. This implies that |iV'| > |AT| for all N' € r(N).

3.2 Preliminaries

3.2.1 Basic Entities

In order to define constraints and all operators for constraints that are crucial for
relational aggregation, some basic technical terms shall be made clear and fixed. The
definitions include also some phrases that are common in the constraint research
community.

Definition 1 (Variable, Domain, Value, Assignment)
A variable x is a place holder object. Each variable x has a domain, retrieved by
dom{x). Any variable's domain is a non-empty, possibly infinite set of objects called
values.

2I use A because of its resemblance to a depicted tree with its root at the top. A, i.e. Lambda,
denotes the leaves.
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x is said to take or attain its value in dom(x). An assignment to a non-empty
finite set X of variables is a function a, that assigns to each variable x 6 X a value
in dom(x),

a: X —> (JX6X dom(x)
x i—> v E dom{x).

Thinking of assignments as of functions has a rather mathematical flavour. But it
has advantages when defining prominent relational operators, as will become clear
in what follows.
In the framework of constraint satisfaction, assignments as defined above are called
labels, and assigning v\, V2, • • •, vn to xi, £2, • • • > xn, n € N+, respectively, is there
denoted as the label (< xi, v\ >< £2,^2 > • • • < xm vn >)> see e.g. [70].

Classically, a constraint is defined to be a pair of two sets; the variables related by
the constraint, and the set of value tuples allowed by the constraint. The below
definition is a variant of that, facilitating subsequent definitions for relational oper-
ators. However, due to practical issues that arise when implementing MCS, there is
a need for two trivial constraints that do not mention any variable; the empty and
the full constraint, see Def. 3. Any other constraint is therefore non-trivial:

Definition 2 (Non-trivial Constraint)
A non-trivial constraint c is a pair (X, A), where X = {x%, X2, • • •, xn}, n £ N+,
denotes a non-empty, finite set of variables, and A is a set of assignments to X.
The variables of c can be retrieved by vars(c), i.e. vars(c) — X.
c is said to be satisfiable if and only if A^%. Otherwise c is unsatisfiable.
A variable Xi, i € {1,2,... , n}, is called a free variable of c, if A^ 0, and

dom{xi) 3 aW € A : .. .a.^.Uxfo} .= at\x\{Xi}- A

Let free(c) denote the set of all free variables of c. Any variable in vars(c) \ freeze)
is termed restricted by c. c is nonrestrictive if vars(c) = free(c), otherwise c is
called restrictive.

By definition, no unsatisfiable constraint has a free variable; thus any unsatisfiable
constraint is also restrictive.
In the case of a free variable x of some non-trivial constraint c, we may in any
tuple3 belonging to c, replace the value assigned to x by any element of dom(x), and
will still obtain a tuple that belongs to c. Consequently, if c is nonrestrictive, we
may replace any value by any other of the corresponding domain. This yields the
following lemma.

Lemma 1
A non-trivial constraint c = ({xi,X2,-..,xn},A), n G N+ is nonrestrictive if and
only if

The term tuple may sometimes be used as a synonym for assignment, whenever the constraint's
set of variables has been enumerated, and the mapping is thus according to index positions.
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V v\ E dom(x\) V V2 € dom{x2) . . . Vt)ne dom(xn)
3a € A V i G {1,2,... , n} a(xj) = t>j.

The proof of this equivalence, as well as all other proofs omitted in the text, can
be found in the appendix. The lemma states that any non-trivial, nonrestrictive
constraint contains all possible assignments, i.e. that the set of assignments relates
to the cartesian product of the variables' domains.

Example 1: Suppose the variables x,y,z take their values in M. Then writing
x + y = z A z = 1 is a shorthand for the non-trivial constraint

c = ({x, y, z], {a : {x, y, z) —> R3 | a(x) + a(y) = a(z), a(z) = 1}) .

The set of all tuples of c form the intersecting line of two non-parallel planes in
three-dimensional space; thus c is satisfiable. Clearly, for any point on the line,
leaving two coordinates fixed and altering just one, will not yield a point on that
line. Therefore, none of x, y, z is a free variable of c.

d = ({x, y, z}, {a : {x, y, z} —> M3 \ a(x) + a(y) = 1})

looks similar, but the encoded condition x + y = 1 does not mention z. Indeed, z is
a free variable of d which forms this time a plane, perpendicular to the x — y—plane.
Again, neither x nor y is a free variable. Any tuple of c is a tuple of d, since the line
encoded by c is contained in the plane captured by d.
Shifting from c to d eliminates z and abandons the condition z = 1. It adds a degree
of freedom in the z—direction. The next subsection deals, among other issues, with
that loss of information implied by projection, i.e. variable elimination.

Definition 3 (Trivial Constraints 0 and D, Constraints)
0 and D are defined to be trivial constraints. Those have no variable, i.e.
vars{0) = vars(n) = 0.
Extending definitions for constraint attributes, as declared in Def. 2, 0 is unsat-
isfiable and restrictive. Any given variable is restricted by 0 . Contrariwise, D is
satisfiable and nonrestrictive, and no variable is said to be restricted by D.
All non-trivial constraints and the two trivial ones form the set of all constraints.

Summarising by combining Defs. 2 and 3, one now gets for any constraint c, that

• c is either satisfiable or unsatisfiable;

• c is either restrictive or nonrestrictive;

• any given variable is either restricted by c, or a free variable of c; and

• the set of variables of c can be retrieved by vars(c).

Moreover, vars(c) = 0 if and only if c is trivial. Note that the term free variable as
well as the accessor /ree(.) have been defined only for non-trivial constraints.
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Since constraints are basically sets of tuples, or more precisely assignments, and the
following operators are essential in the theory of relational databases, constraints
will in this work also be called relations. Likewise, for the set of variables vars(c)
of a constraint c, the term scope may be used, see e.g. [31].

3.2.2 Operations on Relations

For a more original view on the join of two given relations, and projections of an
arbitrary relation, see e.g. [55] or [2]. Both operators produce new constraints.
The join basically collects all assignments that belong to both operands. Projection
of a non-trivial constraint (X, A) onto a subset Y of X, removes from each tuple
the entries that correspond to the variables in X \ Y.

Definition 4 (Join)
Let c = (X, A) and d — (Y, B) be two non-trivial constraints. The join of c and d
is defined as

ctxid =' , \a:XUY—• \J dom(z) : a\x € A A a\Y € B
I ZEXUY

Set furthermore for any constraint c,

C 1 X 0 = 0 M C = 0

c t x j D = D i x i e = c.

Note that both last defining lines yield identical results for 0cxiD = Dixi0 = 0.
The join operator is well-studied and known to be both commutative and associative:

Lemma 2
cxi is commutative and associative, i. e. for arbitrary constraints a, b, and c, the fol-
lowing conditions hold

a cxi 6 = b cxi a, and

a ixi (b cxi c) = (a IXJ b) cxi a

Definition 5 (Projection)
Let c be any constraint, and Y Ç vars{c) be any subset of variables of c.
In the case that c = (X, A) is non-trivial, the projection of c onto Y is defined
according to

D, Y = 0 A c satisfiable
, > */ I 0, y = 0 A c unsatisfiable

^ C ) ~ < (Y,{ß:Y-^l)yeYdom(y) \

For a trivial constraint c, vars(c) = 0, and so Y = 0 must hold. Define

7T0(0) — 0 , and
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An immediate and simple consequence of Def. 5 is

{c) =c, (3.2)

for any constraint c.
Example 1 has already shown that sometimes, due to free variables, a constraint
may actually be simplified; regard the constraint d. Any efficient implementation
of RCS should prefer such sparse representations, i.e. omitting the variable z in d.
Thereby, any instantiated constraint is going to represent a whole class of equivalent
constraints in the following sense.

Definition 6 (Equivalence of Constraints)
Let c and d be two non-trivial constraints. Those are defined to be equivalent if

m r s ( ( i )^ r e e ( d )(d). (3.3)

Set furthermore, for an arbitrary constraint e,

e ~ 0 •<=>• 0 ~ e -<=̂=>- e unsatisfiable, and

e ~ D <=> D ~ e -<=̂=>- e nonrestrictive.

In the above definition, = has been used to relate two constraints. This will mean,
throughout the entire work, that either both constraints are the same trivial con-
straint, or that they have identical scopes and identical sets of assignments.
The appendix shows that ~ is well-defined, and that it is indeed an equivalence
relation.
For each implementation of constraint solving and constraint programming, the most
important tasks are to determine consistency, and - in case of consistency - to find
all solutions.
The next definition fixes both terms:

Definition 7 (Constraint Problem, Solution, (In-) Consistency)
A non-empty set of non-trivial constraints C is called constraint problem. Writing
CXC as IXC = (X,A), we define

£(C) =f A (3.4)

to be the set of all solutions to C. C is termed consistent if and only ifE(C) ^ 0,
otherwise inconsistent.

Lemma 2 guarantees that IXC is well-defined, since the computation does not de-
pend on the order of all applied binary joins. An immediate consequence of Defs. 2,
6, and 7 is

[ X C ~ 0 <=» £(C) = 0, (3.5)

because IXC is unsatisfiable if and only if A = 0. Hence, a means to prove inconsis-
tency of any given constraint problem C is to show that its combined join IX C may
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be simplified to the empty constraint 0. Finding efficient schemes for computing
M C has been - and still is in practical applications - a main issue in the theory of
relational databases (see [55], [2]) and of the work at hand.
The next lemma provides another intuition to a solution of a constraint problem C:
An assignment a is a solution if and only if, for each c € C there is an appropriate
restriction of a belonging to c:

Lemma 3
Let C be a constraint problem, and let a be an assignment to UceC vars(c). Then

«=» V(X,A)eC a\xeA. (3.6)

Example 2: Figure 3.1 depicts the famous graph colouring problem. A map
with the four contries Germany, Poland, Austria and the Czech Republic is to be
coloured using the three colours red, blue and green such that each country is assigned
exactly one colour and no two neighbouring countries are assigned the same colour.
In Fig. 3.1, neighbouring countries are given as connected nodes. Each edge stands
for an instance of the constraint

c(x,y) = ({x,y}, {a : {x,y} —> {red, blue, green}2 : a(x) # a(y)}) ,

with x,y € {G, P, A, C}. Typically, the intensional condition x / y can be equiva-
lently represented by an extensional enumeration of all allowed pairs of values.
The map is colourable in the given sense, if and only if the constraint problem

defC =' {c(G,P),c(G,C),c(G,A),c(A,C),c(P,C)}

has a solution in the sense of Def. 7. According to (3.5), this isthe case, since based
on the variable ordering (G,P,A,C) (blue, red, red, green) is a tuple in M C .
The problem could for example be solved using the bucket elimination scheme, as

G, P, A, C G {red, blue, green}

Figure 3.1: A Graph Colouring Problem with Four Countries

presented in [18]. Based on the given variable ordering, this scheme would attempt
to eliminate the variable G, and while doing that deduce that A and P must be
assigned the same colour, cf. the right-hand side of Fig. 3.1. This is due to the
fact that G, P, C as well as G, A, C must be assigned mutually distinct colours, and
that there are only three available colours. Bucket elimination guarantees that each
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solution to the reduced problem (excluding Germany) can be extended to a solution
of the initial problem. In other words,

where c(x, y) captures equality, i.e. all those assignments to {x, y} that do not belong
to c(x,y).
Inserting an additional edge in the original graph between A and P turns the graph
into a clique. Then the colouring problem is inconsistent for three colours. However,
using four colours will, in this case, obviously re-establish consistency since there
are only four countries to be coloured.

For large problems, as for example arising from engineering applications, deciding
the predicate in (3.5) turns out not practicable, since subsequent joins will make
the resulting relations large in terms of scopes. However, one may expect for most
hierarchical system models, that their mathematical descriptions - in terms of con-
straints, see Subsect. 2.1.3 - are going to satisfy a low density assumption. That
is, each variable mentioned in an arising constraint problem C appears in only few
ceC.
This dissertation aims thus at replacing the binary operator tx in (3.5) by some
other, more convenient one. This aggregation operator, as denned below, will apply
after each join some appropriate projection, to reduce scopes again. In order to
facilitate aggregation, some useful properties relating join and projection are stated:

Lemma 4
Let c, c\, and c2 be arbitrary constraints, and X{ = vars(ci), for i 6 {1, 2}. Then

0 <É=> c ~ 0, for allX Ç vars(c), (3.7)

Xi n x2 ç x ç x2 =>

^nx2ç7içy2çi2 =>
7Ty2 (Ci M C2) = TTyj (ci X! C2) X 7Ty2 (c 2 ) . (3.9)

The left-hand side term of (3.9) becomes, for Y2 = X2, the portion of c2 that joins
with ci, and is commonly refered to as the semi-join, c2 x c\, see e.g. [55, p. 355].

Definition 8 (Aggregation)
For any two constraints c,d and any set of variables X Ç vars(c) U vars(d), the
aggregation of c and d with respect to (w.r.t.) X is defined as

Example 3: A simple example of an aggregation is presented in Fig. 3.2, which
also makes clear that mathematical aggregation, as definied by Def. 8, is the pen-
dant to aggregation in the sense of engineering: Suppose, we have a mathematical
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system description of some electric circuit involving the depicted series of two Ohmic
resistors. The upper row contains the initial constraints, that is, two instantiations
of Ohm's law. A trivial, local simplification can be made by replacing both resistors
by a single one. This one is going to have the forward slope resistance R + S.
Mathematical aggregation does the same thing on the level of constraints: Joining
vi — v = R • i\ A ii = i with v — vi = S • i A i = %i, and projecting the result onto
{v\, V2, h, «2} produces the constraint shown in the lower row.4 No other constraint

Il

V1

h-o-
v'2

v.,- v = R-i-, / i / , = / v - vs = Si A i = i2

v1 - \is = (R + S / / , A i, = 4,

Figure 3.2: Aggregation of Two Ohmic Resistors

will be affected by this local change. More generally, aggregations typically intend
to eliminate all those variables that are no longer part of the interface of some com-
ponent or already aggregated subsystem. In the example, those variables are v and

The previous example motivates the following definition.

3.3 Solving Single Constraint Problems

3.3.1 Aggregation Trees

Definition 9 (Interface Variables)
Let C be a set of arbitrary constraints, and d be any constraint not belonging to
C, d 0 C. The set of variables

int(d, C) = ; ( ( J vars(c) ) n vars{d)
\c€C J

is called the interface of d with respect to (w.r.t.) C.
For C = 0, the above union is defined to be 0; and thus int(d, 0) = 0.

Obviously, int(d, C) Ç vars(d), and for \C\ > 1, int(d, C) = 0 holds if and only if no
variable of d is mentioned in any constraint of C.
We are now prepared to define aggregation trees:

In this example, R and S are assumed to be numerical parameters. The join will just union
the two equation sets; elimination of the intermediate variable v is accomplished by adding both
Ohmic laws, i can be replaced by either of h and 12.
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Definition 10 (Connectedness, Aggregation Tree &c Forest)
Two non-empty sets M\,M^ of arbitrary constraints are disconnected if they do
not share a variable, i.e. vars(c\) D varsfa) — 0, for any two constraints c\ 6 M\,
C2 E Mi. A non-empty set of constraints M is called connected if it cannot be
split into a pair of disconnected sets, i.e. there exist no two disconnected subsets
0 / Mi C M and 0 / M% c M such that M\ n Mi = 0 and M± U M-2. = M.
Let now C be an arbitrary constraint problem.
An aggregation tree for any connected portion D Ç C is a binary tree, the nodes
of which are constraints, such that the following conditions hold:

1. The set of all leaf nodes equals D.

2. Any non-leaf node d is the predecessor of two constraints d\,d2 with the prop-
erty d — aggx{d\,d2), where X = int(di,C \ A(d)) U int{di, C

An aggregation forest for C is a non-empty set of aggregation trees, the sets of
leaves of which union to C.

iTOP = 0.02 A iB0TT0M = 0.04

600 Q
S, L S {on off};
V . VHIGH' VLOW

'• 'BOTTOM' 'TOP É 7 "

Figure 3.3: An Aggregation Tree for an Electric Circuit

By Def. 10, any non-leaf node d computes a certain projection of the join of its
successors d\ and d^. That projection is onto the interface of d\ M di w.r.t. the set
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of constraints in C that do not appear as a leaf in A(d).5

Note that any given constraint problem C induces a trivial aggregation forest for C:
Just take each c € C to be a trivial aggregation tree with the single node c. The
above definition is clearly satisfied since any singleton set of constraints is connected,
and condition 2. for an aggregation tree, is only triggered when non-leaf nodes exist.

Example 4: The bottom part of Fig. 3.3 depicts a small electric circuit. The seven
leaves of the shown tree, coloured dark grey, are the constraints that correspond to a
mathematical model of the circuit together with the observation that the bulb is lit,
L = on. For the sake of simplicity, connectors are omitted, and the model is thus a
condensed version of what one would obtain when following the modelling procedure
given in Subsect. 2.1.3. Also, constraints are written in an obvious intensional
shorthand, abbreviating the more elaborate pair notation, as introduced by Def. 2.
The presented tree is an aggregation tree in the sense of Def. 10. The bubbles
attached to each non-leaf constraint contain the variables that have been eliminated
during the respective aggregation. For example, L may be eliminated since it does
not lie in the interface to the remaining portion of leaves of the join of L = on with
the neighbouring bulb constraint. Note that the root is the nonrestrictive trivial
constraint D. The below Th. 1 proves that this guarantees consistency of the initial
constraint problem.

Before stating, the first theorem, some properties of aggregation trees shall be listed.

Lemma 5
Let C, \C\ > 2, be a connected constraint problem with at least two constraints; and
let A be an aggregation tree for C. Then

1. For each variable x mentioned in C, i.e. x G UceC vars(c)> there exists a unique
non-leaf node e(x) in A which eliminates x : x G (vars(ri)Uvars(r2))\vars(r),
where ri, r2 are the successors of r = t{x). ' "

2. V c€C (xe vars(c) = 4 c 6 A(e(x))).

3. A satisfies a connectedness condition6: For each variable x mentioned in
C, the set of nodes r of A with x G vars(r) form a subtree rooted at e{x), with
the exception that that root does not mention x.

4- If r\,T2 denote again the successors of any node r in A, then

(Uc6A(n) vars(cf) n (UceA(r2) vars(c^j C vars{n) n vars{r2).

5. For any node r in A,

(a) r =

The above definition avoids the introduction of constraint hypergraphs, see for instance [31] or
[55, p. 448]. Basically, that is a pair (V,E) of vertices and hyperedges such that there is a vertex
for each variable in \Jc€C vars(c), and a hyperedge e = vars(c) € E for each c € C. Connected
subsets of C, as defined in Def. 10, are then just path-connected sets of hyperedges in the constraint
hypergraph associated with C.

6Cf. the "connectedness condition" for join trees, as e.g. defined in [31].
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(b) If r is a non-leaf node, with successors r\,r-2., then

6. For any node r in A with successors r\,r2, and any set M Ç C \ A(r),
CXI (MU{ri,r2}) ~ 0 <=> XI (M U {r}) ~ 0.

7. Lei M be a set of nodes of A such that T{M) is well-defined (see (3.1)). Then
~ 0 = • EXM~0).

Example 4 may be used again, to verify some of the statements made in the above
Lem. 5: There is exactly one bubble, i.e. one eliminating node, for each of the
eight variables in the constraint problem, which establishes statement 1. Regarding,
for instance, all nodes that mention VLOW-, one easily checks the connectedness
condition.

3.3.2 Deciding Consistency

As indicated by the above Ex. 4, arriving at D, as the root of some aggregation
tree, proves consistency of the constraint problem defined by the set of all leaves.
Contrariwise, the root relation 0 signals inconsistency:

Theorem 1 (Deciding Consistency)
Let C, \C\ > 2, be any connected constraint problem with at least two constraints;
and let r be the root of an aggregation tree for C. Then

r E {0,D}; (3.10)

r = 0 -4=>- C inconsistent; and (3-H)

r = D <=> C consistent. (3.12)

The theorem does not elucidate how to actually derive an aggregation tree for any
given constraint problem. That is going to be the subject of Sect. 3.4. In this
section, the existence of an aggregation tree or forest will tacitly be assumed.

Proof:
(3.10)
Consider the final aggregation that produces the root r of the aggregation tree. Con-
dition 2. of Def. 10 and Def. 8 say that r is the projection onto some set of variables
X. However, C = A(r) by condition 1. of Def. 10, and so X involves two interfaces
w.r.t. an empty set of constraints. Thus X = 0, by Def. 9. According to Def. 5, r
is then restricted to be a trivial constraint.

(3.11)
Two proofs can be given for (3.11); a short one that directly applies one of the prop-
erties of aggregation trees as listed in Lem. 5, and an inductive one that emphasises
the fact that an aggregation tree is actually a problem simplification scheme.

The first proof applies statement 5.(a) of Lem. 5 to the root node r of the given
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aggregation tree. Due to vars(r) = 0 and A(r) = C, this provides the condition
r = 7T00X1C). Therefore

r = 0
r ~ 0, by (3.10),
7T0(CXC) ~ 0
I X C ~ 0 , by (3.7),
£(C) = 0, according to (3.5),
C inconsistent, by Def. 7.

For the inductive proof, pick any two leaves di, d% of the given aggregation tree, that
are successors of the same non-leaf constraint d. Then, by Lem. 5, part 6.,

C inconsistent -<=> (C \ {d\, cfe}) U {d} inconsistent.

The argument shows that the initial problem can be reduced to deciding consistency
for a constraint problem that has one less constraint. Visually, this means to chop
off the leaves d\ and efo of the aggregation tree, and make thus d a new leaf node.
The new tree has one less leaf. Repeated application of that argument will finally
reduce the tree to its root node r which is known to be either 0 or D. Therefore, C
is^inconsistent if and only if r = 0 .

(3.12)
Taking (3.10) into account, this is just the negation of (3.11). q.e.d.

3.3.3 Finding all Solutions

This subsection will assume the existence of an aggregation tree for some connected
constraint problem C with at least two constraints. According to Th. 1, consistency
may have already been affirmed.
In this setup, a common query is to derive the tightest restriction for a given variable
x mentioned in C. In other words, this captures the requirement to return all values
in dom(x) that are assigned by at least one of the solutions £(C). Considering again
the circuit description given in Ex. 4, and supposing that the observation L = on is
missing, deriving the tightest restriction for ixop should yield just the two values 0
and 12 -f- 600 = 0.02, according to the unknown switch position. Similarly, i is going
to be either 12 •?• 300 = 0.04 or 12 -r ((600 * 300)/(600 + 300)) = 12 -r 200 = 0.06.
Apart from the plain information as to what the possible values for a variable x are,
there are other motivations for serving the outlined requirement. For example in
the context of specification-driven design, narrowing the domain of x will help the
user to focus on the relevant system setups. He may then choose a certain subset of
feasible values for x, according to some preferences. That subset can be fed back as
an additional unary constraint in x. Thereby, constraint processing will guide the
designer through the space of all system assemblies.
The next definition captures the notion of tightest restriction for some variable:
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Definition 11 (Tightest Restriction)
Let C, \C\ > 2, be a constraint problem with at least two constraints. The constraint

tx
 d~f ({x},{a\{x} : a e S ( C ) } ) = 7r{x}(IXC)

is called the tightest restriction for x € UceC uars(c)> imposed by C.

Obviously, any assignment in tx assigns a value just to x, and can be extended to a
solution of C. Moreover,

(\ 1 ) (3.13)

So, joining all tightest restrictions will give, in general, more solutions than the
original constraint problem has. The intuitive reason for that is that the projections
accomplished when deriving tightest restrictions, "destroy" correlations between the
variables in C. Computing the right-hand side set of assignments in (3.13) involves
joining all tightest restrictions. During this combined join, no partial assignment is
going to be excluded since no two tightest restrictions share a variable.

Example 5: Returning to the graph colouring example in Ex. 2 and Fig. 3.1, one
observes that tx = {x i—• red,x H-> blue,x H-» green}7, for all a; € {G,P, A, C}. The
reason for that is that there exists a solution in the first place, and that, for any
solution, the colours can be permuted in order to produce a new solution. In this
example, the right-hand side set of assignments in (3.13) becomes obviously the set
of all possible assignments to {G, P, A, C}, which is a proper superset of S(C).

To present an example where the set inclusion (3.13) is also proper but the larger set
does not contain all possible assignments, regard again the graph colouring example
with the additional constraint P = red.
Example 2 has already elaborated P = A. And so, assuming the variable order-
ing (G, P, A, C), the set of all solutions can be abbreviated by listing the tuples
{(blue, red, red, green), (green, red, red, blue)}. The left- and right-hand side sets of
assignments in (3.13) contain thus 2 and 2 • 1 • 1 • 2 = 4 assignments, respectively.

After having given some motivation as well as illustrating examples, the question is
now how to actually compute tightest restrictions.
Clearly, a solution by means of aggregation trees shall be favoured. The next defini-
tion assumes an existing aggregation tree, and introduces an additional constraint,
the backward relation, for each non-leaf node, which will help to compute tightest
restrictions:

Definition 12 (Forward &; Backward Relation)
Let C be as in Def. 11, and A be an aggregation tree for C. Any non-leaf node of
A will also be called forward relation.
For the root p = p(A) with successors ri,r2, bw(p) == n txi T<L denotes its backward

7 The string "x t—> v" is a lax way of denoting the assignment that maps x to v.
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relation.
For any other non-leaf node r with predecessor R and successors ri , r2, its backward
relation is defined by

bw{r) = irmrS(r)(bw(R)) M 7*1 M r2.

The reader should note that Def. 12 is a recursive definition. The defining scheme
is top-down, starting at the root p(A) and descending to the lowest non-leaf nodes.
The next chapter presents a bottom-up algorithm for building an aggregation tree A,
given the leaves, i.e. a constraint problem C. The second phase of assigning backward
relations to existing non-leaf nodes is then to take place clearly only afterwards.
Therefore, building an aggregation tree will also be refered to as the forward phase,
whereas the second phase is named backward phase. This gives a clue to the names
forward and backward relation.

Theorem 2 (Deriving Tightest Restrictions)
Let C be a consistent constraint problem with \C\ > 2, and let A be an aggregation
tree for C. Then the following condition holds for any non-leaf node r in A with the
successors r i , r2 .

J3J4)

Furthermore, for each x € Ucec vars(c)>

tx = Hx}(bw(e(x))), (3.15)

where e(x) is the unique node as defined by statement 1. of Lem. 5.

The theorem provides a plan for deriving the tightest restriction for x: .After top-
down-assigning all backward relations from the root p(A) to e(x), the projection
onto {x} of the latter will provide tx.

Proof:
(3.14) (by top-down induction on A)
Assume first that r = p(A) with successors ri ,r2 . Then the left-hand side of the
assertion becomes n ix r2, by Def. 12. According to statement 5.(b) of Lem. 5, and
because of A(r) = C, one obtains the stated equation.

Let now r be any other non-leaf node with predecessor R and successors ri ,r2 , and
let s denote the second successor of R. By induction on A, it may be assumed that
(3.14) is valid for the node R. Then

bw(r) = nVars(r)(bw(R))^n^r2, by Def. 12,
= ^vars(r) (^vars(r)uvars(s) (CXI C)) to ri 03 r2, due to induction,

(r))) 1x1 (MA(r))) txi n ex r2

))
by L e m - 5, 5.(b),
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The last equality results from the application of (3.9) with the bindings
ci = M ( C \ A(r)),C2 = MA(r), Yi = vars(r), and Y<i = vars{r\) U vars{r<i). It
is easy to verify all pre-conditions of (3.9), apart from vars{c\) D varsfa) Ç Yi. To
this end, fix a variable a; € vars(ci) D vars(c2). Then x appears in some leaf of the
subtree rooted at r, and in some leaf outside that subtree. But then the connected-
ness condition, Lem. 5, 3., implies that x must also appear in r, i.e. x € vars(r) = Yi.

(3.15)
Choosing r = e(x) in (3.14), and projecting both sides onto {x} immediately yields

TT{x}(bw{e(x))) = 7T{X}(X1C) = tx,

by Def. 11. q.e.d

3.3.4 Providing Minimal Conflicts

Chapter 2 emphasises the requirement of providing minimal subsets of conflicting
relations, given an inconsistent constraint problem. This subsection addresses that
requirement and presents two theorems which make clear how to derive all mini-
mal conflicts, and one such minimal conflict, respectively. Finding just one minimal
conflict is often sufficient for the user, and therefore explicitely addressed. As will
turn out later, this problem can be solved more efficiently than deriving all minimal
conflicts.
[59] also addresses the task of finding just one minimal conflict, based on aggrega-
tion trees. However, it lacks the formal proof of the correctness of the presented
algorithm. Neither is the problem of deriving all minimal conflicts addressed.

Definition 13 ((Minimal) Conflict)
Suppose C is an inconsistent constraint problem. Then any inconsistent subset
D Ç C,D ^ 0 is called a conflict of C.
Moreover, D is named minimal conflict of C, if any E C D with E ^ D,E ^ 0
is consistent.

Given an aggregation tree A for an inconsistent constraint problem C, the next
definition assigns to each node two sets of sets of nodes of A. The first, coni(.),
is defined following a top-down scheme, and the second, con^(.), in a bottom-up
manner starting at the leaves. According to the below Th. 3, the set assigned last,
coni(p(A)), is basically going to be the set of all minimal conflicts of C.

Definition 14 (cori|(r),
Suppose C is an inconsistent connected constraint problem with \C\ > 2, and A is
an aggregation tree for C. Let r € V(A) be any node with the successors r\,r2 and
define

coni{p{A)) dd {0},

coniixi) = {M e coni(r) \ N(MU {n}) ~ 0}
U{MU{r3_j} | Mecon^r)}, ie{l,2},

conT(A) = {M U {X} \ M e coni(X)} , A € A(p(A)),
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con^(r) = {M G con^{r\) \ r2 g M} U
{M G co7ij(r2) | r\ $ M} U

{M U (Mi \ {r2}) U (M2 \ {n}) | Mi € conT(n) A
M2 G con-|-(r2) A
ri € M2 A
r2 € Mi A

The next lemma provides some properties of the sets of sets of nodes defined by
Def. 14. Those are required to prove the subsequent theorem that relates con-|-(p(A))
to the desired set of all minimal conflicts. Figure 3.4 explains the statements 3. and
4.

L e m m a 6

Let C and A be as in Def. 14, and write p = p(A). Then

1. Vr eV(A) VMe con^r) DX(AfL) {r}) ~ 0;

2. V r € F(A) VMe conT(r) MM ~ 0;

5. V r € V(A) V M G con|(r) V n £ M n is not on p —> r, feuf n is the suc-
cessor of some node m on p —> r
with m ^ r;

4. Vr G V(A) V M e conT(r) M n A(r) ̂  0 A
\/ne M n£ V(A(r)) = ^ u G A(r) A

n ^ V(A(r)) =>• n is not on p ̂ -> r,
but n is the succes-
sor of some node m
on p —> r with
m 7̂  r;

5. V M e conr(p) M ç A(p);

6. If K is a minimal conflict of C, then
Vr€F(A) (KnA(r )^ i ==• 3 M G con^r) K G T(M U {r}))8;

7. / / if is a minimal conflict of C, then
VrGV(A) (JPsTnA(r)^0 = » 3 M G con^r) K G r(M)).

Now, by Lem. 6, 5., any element M G con^{p) contains exclusively leaves, thus
T{M) = {M}. And the application of Lem. 6, 7., to p yields that con^(p) contains
all minimal conflicts of C; see the proof in the appendix. Moreover, we obtain:

Recall once again the definition in (3.1).
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element of M EconM

according to 3.

element of M econjr)

according to 1st / 2 n d

implication of 4.

Figure 3.4: Explanation of Statements 3. and 4. of Lem. 6

Theorem 3 (Providing all Minimal Conflicts )
With the above notations, the set of all minimal conflicts of C equals the set

{M G con^(p) | V N E con^p) N CM = > N = M} .

In other words, con^ (p) contains all minimal conflicts of C and perhaps supersets of
those.

Proof:
Suppose K is a minimal conflict of C. Application of Lem. 6, statement 7, to
p = p(A) implies the existence of an M € con^p) such that K G T(M). Statement
5 of the same lemma ensures that M is a set of leaves, and hence T(M) = {M}. But
this means that K = M. Therefore, K is an element of con^(p).
Lemma 6, 2., ensures furthermore that any element of con^(p) is a conflict of C, and
is thus the superset of some minimal conflict of C.
Consequently, con^(p) contains all minimal conflicts of C and maybe supersets of
those, but no other sets of nodes. Since the containment condition of the set provided
by Th. 3 excludes all proper supersets, that set must coincide with the set of all
minimal conflicts of C. q.e.d

As already mentioned above, very often it suffices to provide just one minimal con-
flict. This task is addressed by the below Th. 4. Again, we first need to define two
auxiliary sets; a top-down set, cÔrî|(.), and a bottom-up set, côn-f(.), for which the
subsequent lemma states some properties. This time, those sets are not going to be
sets of sets of nodes, but simply sets of nodes, since we are just interested in deriving
one minimal conflict and not all.
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It is also noteworthy that this time, the definition of the assigned node sets is not
symmetric as in Def. 14. That is due to the fact that, for each non-leaf node, the
computations in its two subtrees must be carried out in the same order for both
'c5h~i(r) and

Definition 15 (cÔrïj(r),
Suppose C, A,r, r i and r<i are as in Def. 14- Let furthermore * be a special symbol
signaling the undefined status. Suppose that the successors ofr are ordered, and that
r\ denote the first successor and r2 the second. Then define

def

dg

defccmj(r2) =-

CCTOf(A)
def

def

* , i (r) = -k,
i (r) ^ *
i (r) ^ •

U

A \X\(cô~ni(r)U{ri}) ~ 0,
A X(cônj(r)U{ri}) </> 0
A X (cô%(r) U {r2}) ~ 0,
A X (cônj(r) U {ri}) ^ 0
A X (càni (r) U jr2}) ^ 0;

conT(ri)\{r2},

*,
côrîi(A)U{A},

* ^
con^iri),

. cônT(r2),

• A X (con^(r) U {r2}) ~ 0 ,
•k A X (7xmi(r) U {̂ 1}) ~ 0

A ^< (côn|(r) U {r2}) 7̂  0,
• A X(cÔn^(r) U{ri}) 7̂  0

A X (cÔn^(r) U {r2}) 7̂  0;

con (̂A) = * A A € A(p)
^* A AeA(p);

= • A con-|-(7-2) = *,
= * A côn-|-(r2) 7̂  • ,

7̂  * ^ cÔn-]-(r2) = *,
7̂  * A Ô ( )

Note that the definition of conj(r2) involves con-f(ri) under a certain condition
P(r, ri,r2), and so it is ad hoc not clear whether the given definition scheme is
coherent. But a simple inductive argument (over the tree structure) shows that
côri|(.) is well-defined for any first successor r\. Also, whenever P(r, r-i,r2) holds,
côn|(ri) will not equal * and thus cÔn-|-(ri) \ {r2} is well-defined, too. Thereby, the
coherence of the entire definition can easily be verified.

Lemma 7
With C, A and p again as in Def. 14, define the logic predicates

def
A (ccn|(r) U {r} is a minimal conflict ofV(A))),

A (cön-f(r) is a minimal conflict ofV(A))),
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for any r € V(A).9 Whenever r, r i ,r2 are not quantified, let r denote any non-leaf
node of A, andr\,r2 its first and second successor, respectively. Then the following
conditions hold.

1. VrGF(A) côni(r)=* «=*> V s E V(A(r)) cori|(s) = • 4=>
V s G A(r) cônj,(s)=* ^=^ Vs€A(r) cÔrî|(s)=*
V s G V(A(r)) ~con^(s) = • ^=> côn-j-(r) = •;

5. For a// s € V(A) u/rt/i côraj(s) / * ;

(a) œn^s) \ V(A(s)) = œri^s) \ V(A(s)),

(b) œni(s)nV(A(s)) = ®,

(c) cö~ni(s) n V(A(s)) Ç A(s);

4. c5ni(n)^* =

5. (cra^ra)^* A

ff. VAGA(p) (^(A)

7. (cônr^i)^* A c5nT(r2)=*) => (E^n) => Er(r));

8. c5nT(r2)/* = ( )

9. (canari) ^ • A

Theorem 4 (Providing one Minimal Conflict)
Let C, \C\ > 2, &e an inconsistent connected constraint problem, and A be an ag-
gregation tree for C. Then the set of nodes cönj(p(A)) is a minimal conflict of C.

Proof:
Statement 10 of Lemma 7 guarantees that ~con^{p) is a minimal conflict of V(A).
Moreover, due to statement 3(c) of the same lemma, we know that 'œn^(p) con-
sists exclusively of leaves of A, i.e. of constraints in C. Therefore, the assertion
follows. q.e.d

Definition 15 entails a plan for computing con^(p), and the next chapter is going to
present the corresponding algorithm.
Before we shall turn to minimal explanations which make up the remainder of this
chapter, let us have a closer look at an example. It presents an inconsistent con-
nected constraint problem that has exactly two minimal conflicts. All four sets

Clearly, if the first conjunct turns out false, the second shall not be investigated.
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coni(.), con-|-(.), cony{.) and con^(.) will be presented for each node of a correspond-
ing aggregation tree.

Example 6: A prominent constraint satisfaction problem is the so-called n-queens
problem. The task is to place n,n € N+, queens on an n x n chessboard such that
no two queens attack each other. The chess rules state that a queen attacks any
other piece if it is either on the same row, column, or diagonal to that piece. One
easily observes that that problem has no solution for n = 3. Figure 3.5 depicts an
aggregation tree for the 3-queens problem. A popular way of modelling the n-queens
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Figure 3.5: Aggregation Tree for the 3-Queens Problem

problem is to introduce n row variables x^, i € {1,2,. . . , n}, where the ith queen is
to be placed on row Xi, column i. That guarantees that no two queens are on the
same column. In Fig. 3.5, the leaf node Eij captures the constraint that the queens
on the columns i and j must not be on the same row; whereas Dij says that they
are not placed diagonally.

Columns are coloured grey if the respective constraint does not constrain the
queen on that column. The lower case letters present all possible solution tuples in
the corrsponding node. E.g. 3 queens may be placed according to the positions of
the letter d in node Z, i.e. at row 1, column 3, and row 3, column 1, and row 3,
column 2. This placement satisfies both leaf constraints £13 and £23, but not £12.
The table presented in Fig. 3.7 lists all four conflict sets, as defined above, for each
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côni(D13),côn^(D13),côni(D23),côf^{D23),

con^Y),
côni(E12),œn](E12),

COTIEZ),

coftf(W),

côni(D12),cÔn-ï(D12),
cÔn-|-(F).

Figure 3.6: Computation Scheme for Finding One Minimal Conflict in Fig. 3.5
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Figure 3.7: All Four Conflict Sets for each Node in Fig. 3.5
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node in the aggregation tree. By Th. 3, the entry for con^(V) contains all minimal
conflicts, and maybe supersets of those. Obviously, the first two sets in the given
set of sets must be those minimal conflicts. The remaining three sets are proper
supersets. We see thus that there are exactly two minimal conflicts for the 3-queens
problem.
Definition 15 requires the successors of each non-leaf node to be ordered: Let in
our tree in Fig. 3.5, the left successor always come first. Then, the single minimal
conflict found by conT(F) is {D23, E12, E13, E23,D12}. Note that the sets for
finding one minimal conflict are computed in a depth-first manner, i.e. with respect
to the scheme given in Fig. 3.6
It is furthermore easy to verify that, if we swapped the ordering of the successors
of node W from (X,Y) to (Y, X), then côn-|-(V) would result in the other minimal
conflict {£13, D12, £>13, L>23}.

3.3.5 Providing Minimal Explanations

We have already seen an example of a consistent constraint problem, where, for a
certain variable, any solution to the entire problem must assign the same value to
that variable: The tree in Figure 3.3 proves consistency, by Th. 1, and ißOTTOM has
to be assigned the value 0.04, as becomes clear by taking a look at the left successor
of the root. Obviously, that value can already be derived from the three leaves
VHIGH =_12, VLOW-=-9.,-and_VHJGH. —.VLOW- =.iBOTT-OM-.300 JjLother_words, Jhe_
assignment iBOTTOM = 0.04 is independent of the observation concerning the light
L. Neither does the switch position S play a role.
This is a common pattern in engineering, where subsets of the entire set of constraints
often already fix certain variables. However, the user might get lost in too many
details, and not recognise those causal dependencies. Explanations as defined below,
can help resolve that situation by reporting smallest subsets of constraints that
already suffice to deduce the tightest restriction for some variable, as imposed by
the entire set of constraints.

Definition 16 ((Minimal) Explanation)
Let C be a consistent constraint problem, and x be a variable that appears in at
least one c € C. Assume furthermore that there exists at least one exceptional value
v € dom(x) such that (x i—• v) is not an assignment of the tightest restriction tx

for x imposed by C.
Then any non-empty set E Ç C with ir^ (IX E) = tx is called an explanation for
x. Moreover, E is called a minimal explanation if, for any non-empty proper
subset D cE, 7r{;r}(X!£>) ^ tx.

10

Note that the existence of some exceptional value v E dom(x) guarantees that the
domain of x is restricted by C at all. For, if any assignment (v i—• x),v £ dom(x),
belongs to tx, then x may, according to C, still assume any value of its domain.
But that essentially means that x is not constrained, and hence there is nothing to

10Explanations as defined here are very often called minimal supporting sets. In those contexts,
the term explanation is usually reserved for tree-like structures, the leaves of which form the minimal
supporting set.



3.3. SOLVING SINGLE CONSTRAINT PROBLEMS 65

explain.

The main result of this subsection is that, given a consistent constraint problem C,
minimal explanations for a variable x can basically be derived by computing minimal
conflicts for a slightly altered inconsistent constraint problem.
To make this work, we first need an appropriate inconsistent constraint problem Cx.
Secondly, in order to run the machinery for computing minimal conflicts, developed
in the previous subsection, we must have an aggregation tree A^ for Cx. Preferably,
Ax is an alteration of a given aggregation tree A for C.

So, let C denote a consistent connected constraint problem with \C\ > 2. We fix a
variable x G Ucec vars(c) f°r which C excludes at least one value vo € dom(x), and
write its tightest restriction tx = TT^} (XIC) imposed by C, as tx = ({x},A). Then
we can define the constraint

sx = (M, {a : {x} —• dom(x) | a $ A}). (3.16)

By assumption, [x i—> VQ) is not an assignment of tx but hence of sx, and so sx «/ 0 .
Likewise, sx •/ D, since tx / 0 because C is assumed to be consistent. However, by
construction, tx tx] sx ~ 0 , thus consequently

M (Cu{sx})~0. (3.17)

Indeed, we now have the following theorem that relates minimal explanations E Ç C
for x, to minimal conflicts of C U {sx}:

Theorem 5 (Providing Minimal Explanations)
With C, x and sx as above, we have

E minimal explanation of C for x
E U {sx} minimal conflict of C U {sx}.

Proof:
Let, for the entire proof, Cx = C U {sx} and Ex = E U {sx}.

By Def. 16 and assumption, we know that 7T{xy(CXIE) = tx. Since tx M SX ~ 0, this
implies

TT̂ } (M £ ) 1X1 S-r ~ 0

<̂ >̂ CXI^MSJ; ~ 0 , by (3.8) with X = {x},
<=> M ^ x ~ 0,

i.e. j&r Ç Cx is a conflict.

For the proof of minimality, choose any c G Ex and try to suspend it. Obviously,
Sx € Ex cannot be suspended, since Ex \ {sx} = E Ç C is consistent.
So, assume in the following that c 6 E. Then we have the following equivalences

CXI ((E \ {c}) U {sx}) ~ 0 , (*), marked for later reference,
XIE\ {C}) XI sx ~ 0
7r{;r}(CXl(£ \ {c})) tx Sz ~ 0, &y ̂ 5.5j with X = {x}.
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Let A, B and C denote the sets of assignments of ir^xy(J><i(E \ {c})), sx and tx,
respectively. We are trying to show that the first condition (*) in the above chain
is false; so let us assume it were true, in order to produce a contradiction.
Thus, the above argument shows that A C\ B = 0. But then by definition of
8X, AÇC.
Because of E \ {c} Ç C, we know that any assignment of 1X1C is an assignment of
X {E \ {c}), and so we also derive the converse inclusion A 3 C, i.e. A = C.
Summarising, this proves that the set of assignments of T^M (IX] [E \ {c})) coincides
with that of tx, and therefore, E is not a minimal explanation. That clearly contra-
dicts the assumption of the =>-part of the proof, and so (*) must be false, implying
the minimality of Ex.

The equivalence

was already shown in the first part of the proof. Since Ex is now assumed to be a
minimal conflict, both conditions must be true. We obtain thus that no assignment
of n{x}(\XE) is an assignment of sx. In other words, the entire set of assignments
of TT̂ } (tXj E) are subsumed in those of tx. Let us call those A and B, respectively,
then this writes as A Ç B.
Again, since E Ç C, any assignment of CXI C is one of XIE, too. Therefore, B Ç A;
i.e. A = B, which proves~th&t~E is àn'explSEatiorTfor x~. '

It remains to show the minimality of E. Consider again any c G E, and the second
chain of equivalences from the first part of the proof:

X((£\{c})U{Scc})~0 < ^ ir{xy(X(E\{c}))\xi8x~Ç).

The first statement is false due to minimality of Ex. Therefore, the right-hand side
statement is also false. There must hence exist an assignment of 7r/xi(X (E \ {c}))
that is also an assignment of sx. Now, the sets of assignments of sx and tx are
disjoint, and so E \ {c} can no longer be an explanation for x. This proves the
minimality of E, and we are done. q.e.d

Obviously, we would like to apply the above developed conflict-finding procedures,
in order to derive one or all minimal explanations. The remaining question is thus,
how can we alter an aggregation tree A for C, to serve as an aggregation tree Ax

forCx = C7U{sa!}?
We cannot just introduce a new root that has as successors the old root node and sx.
This is because that new tree would violate the connectedness condition introduced
in Lem. 5, 3. But the following procedure generates a new tree Ax that is indeed a
valid aggregation tree for Cx; see Fig. 3.8
Let ni —> 7i2 —* • • • —* nk denote the sequence of edges of A that make up to
the path p(A) —^-> e(x), i.e. n\ = p and n^ = e(x). Note that k = 1 is a possible
scenario; the one in which e(x) = p.
Alteration of A is now done by first altering n^, then njt_i, rik-2, and so forth up to
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ni. Assuming that each n ,̂ i E {k, k — 1,. . . , 1}, has the (possibly already altered)
successors n] and nf, those alterations are according to the replacement

n'i d— irx{n\ tx n,-), where X = vars(rii) U {x}.

This means that we re-introduce the variable x on the path from p(A) downto e(x).
Finally, A^ is obtained as the tree rooted at p* = ir%{p' ixsz), with the altered old
root p' = n\ and sx as successors.
It is easy to check that Ax is indeed an aggregation tree for Cx in the sense of
Def. 10. Therefore, by (3.17) and Th. 1, p* = 0.

A Ax

Figure 3.8: Construction of Ax from A

Example 7: The tree in Fig. 3.3, for the constraint problem C defined by the set
of all leaf nodes, can quickly be altered to serve as an aggregation tree for Cx, where
x = ißOTTOM is the variable to be explained. We just need to replace the root by
the node n = (IBOTTOM — 0.04), and introduce a new root 0 with the successors n
and sx = {IBOTTOM 7e 0.04).
That new tree Ax can be utilised, according to Defs. 14 and 15, to compute all or
just one minimal conflict, respectively. In the example, there is only one minimal
conflict. It consists of the four constraints VHIGH = 12, VLOW = 0,
VHIGH — VLOW = iBOTTOM -300, and IBOTTOM 7̂  0-04. Theorem 5 implies then that
there is hence exactly one minimal explanation for iBOTTOM in C- It consists of the
previously mentioned constraints, except IBOTTOM 7̂  0.04. Indeed, we can deduce
IBOTTOM = 0.04 simply by substituting VHIGH

 a nd VLOW by 12 and 0, respectively,
in the equation VHIGH — VLOW = ^BOTTOM • 300 4=> 12 = IBOTTOM • 300 <*=>
ißOTTOM = 0.04.

3.4 Solving Sequences of Similar Constraint Problems

In the previous section, our concern was to solve any single given constraint prob-
lem, i.e. to decide consistency, derive tightest restrictions for all variables, and find
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minimal conflicts and explanations, respectively. Whereas the underlying set of con-
straints was fixed, we shall now focus on varying sets of constraints.
This means that we will be presented a context space, i.e. a set of mutually distinct
constraint problems rather than just a single problem, a context. However, we can
only then hope to apply incremental solving techniques, in order to tackle the con-
text space, if the contexts at hand facilitate a certain degree of similarity.
The focus of this work is mainly on engineering applications and the arising context
spaces. Chap. 2 already addressed the issue of multi-contextuality, with the promi-
nent examples diagnosis and specification-driven design. A common characteristic
of those engineering tasks is that they decompose into large spaces of very similar
contexts. The size makes clear that incremental solving techniques are inevitable;
the similarity guarantees their applicability.

A high degree of similarity facilitates, moreover, means of pruning a given con-
text space: If one context Co is found to be inconsistent, then all other contexts
that contain a minimal conflict of Co must also be inconsistent, and can therefore
immediately be disregarded.

3.4.1 Contexts and Context Spaces

Let us start with an example, in order to motivate the definition of a context space.

Example J8: _We. go_ back to the electric circuit depicted in Fig. 2.4. There, we
have 7 component constraints that are instantiations of the constraints of Fig. 2.3;
one instance of Source, Wire and Ground, and two instances of Bulb and Node. Ad-
ditionally, there are 7 identifications, due to the 7 pairs of ports. In total, this gives
a system description of 14 constraints, where we count the respective disjunctions
of conjunctions (as in the case of a Bulb or Wire, and the conjunctions (all other
cases) as single constraints.
A diagnosis tool is likely to be supported by additional information that stems from
observations, and that can be expressed in terms of assignments to the variables
LB1 and LB2. It may then try to find assignments to the three behavioural mode
variables Mw, MB1 and MB2, so that the observations can be justified. This results
in the task to determine which mode assumptions are consistent with the system
description and the observations.
So, by collecting all relevant constraint problems, one obtains a context space of
23 = 8 contexts, since each of the three mode variables can take two distinct values.
Clearly, any two contexts have the system description and two observation assign-
ments in common, i.e. 14 + 2 = 16 constraints out of 16 + 3 = 19. That allows us to
speak of a high degree of similarity.
Suppose LBl — on, LB2 — off have been observed, then there is obviously only
one consistent mode assumption; Mw = ok, MB1 = ok, Mm = broken. Consid-
eration of the mode assumption (MW,MB1,MB2) = (broken, ok, ok) should yield
- among other minimal conflicts - the minimal conflict {Mw = broken, Wirew,
LBl = on, BulbB1, LB2 = off, Bulb82, Nodem}.11 That would enable the diagno-

u The first two constraints imply that the current through W is zero. The next two imply that
the current through Fig. 2.4's top branch has a modulus of at least C. The following two constraints
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sis tool to immediately disregard half of all mode assumptions, namely those that
assign broken to Mw. Mw could right away be determined to be ok.

Definition 17 (Context & Context Space, etc.)
Let F be a possibly empty set of non-trivial constraints, and Q = {Gi,G2,---,Gn},
n G N+ , denote a set such that any Gi € G is a non-empty set of non-trivial con-
straints. Then each set of constraints

F U {gi,92,---,9n | Vi€{l,2,...,n} gieGi}

is called a context, and the set of all those constructions form a context space. F
is named the fixed portion of the context space; each G EG is termed one-of and
g £ G is an alternative of the one-of G.

In the above Ex. 8, the fixed portion F consists of 14 constraints that constitute the
system description, and 2 observations, i.e. \F\ = 16. Furthermore,

g = { {Mw = ok, Mw = broken},
{Mm = ok,MB1 = broken},
{Mm = ok, Mm = broken} },

and G contains 3 one-ofs. Choosing a certain context is obviously done by picking
one alternative of each one-of, which motivates the above naming conventions.
Note that Def. 17 allows for an empty fixed portion, i.e. two contexts of a context
space may have no constraint in common. This is however neither intended nor the
typical setup in the engineering applications we are addressing here. Also, since the
set of one-ofs is not permitted to be empty, nor any of those one-ofs, we will end
up with a non-empty context space in which each context is a constraint problem
according to Def. 7.
In order to efficiently analyse a context space with contexts of great similarity, we
need to be able to identify reusable bits of computation. This is the subject of the
next subsection.

3.4.2 Identification of Reusable Aggregation Subtrees

Suppose we are given a context space and have already built an aggregation forest
3>o for some initial context Co- Switching to a next context, Ci, means to stick
to the fixed portion, but also to replace a certain choice of alternatives by another
choice. More generally, we need to remove the subset of constraints Co \ C\ from
Co, and afterwards add the set C\ \ CQ. In the case of a context space as defined by
Def. 17, those two sets will always have the same cardinality. However, the following
argumentation also holds for the case of differing cardinalities.
Note that none of the backward relations that have possibly been assigned to nodes
in $o, m a y D e reused since they result from global knowledge about Co- So, our
concern here is to determine reusable forward relations, only.

concerning B1 give a current through the lower branch with modulus less than C. But then, those
three currents cannot add up to zero, as the final constraint dictates.
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Obviously, any subtree the leaves of which are entirely contained in Co nCi, embod-
ies a valid computation for the new context C\. Fig. 3.9 illustrates how an existing
aggregation tree for the problem depicted in Fig. 3.3 can be repaired in order to serve
as an aggregation tree for the altered problem in which the observation L = on has
been replaced by L = off. The subtrees in the grey area may be reused right away;
only one path needs to be recomputed. Those are the new nodes, marked by stars,
that result from a bottom-up computation.
There is however a second important issue that has to be taken into account: Any

iTCtP =0 09 A /BOTTOM = 0.04

Figure 3.9: Repairing the Aggregation Tree of Fig. 3.3 by Reusing Subtrees

variable x mentioned by any newly-introduced constraint c\ G Ci \ Co may already
have been present in some old constraint CQ € Co- Consequently, it was eliminated
at the unique node e(x) in $o- But if e(x) is not on the path p(Ao) —• CQ, where
Ao denotes the aggregation tree in $o that entails co, then a simple path recom-
putation as shown in Fig. 3.9 will not produce a valid aggregation tree. That is
because, after such a path recomputation, the altered tree will no longer facilitate
the connectedness condition for x; cf. Lern. 5, part 3.
This situtation is exemplified in Fig. 3.10, where each variable may take its val-
ues in R, and "t G M" stands for the non-trivial but non-restrictive constraint
({*}> {(* '—y v) \ v £ M}). Here the leaf x = 1 is being replaced by x = w + 1
which suddenly also mentions w.

Still, both the problem of replaced leaves and the problem of altered scopes can be
taken care of by a single procedure. That procedure assumes an aggregation forest
$o for Co, and produces a valid aggregation forest <3>i for C\\

Step 1: For each abandoned leaf CQ e Co \ C\ in a tree Ao of <J>0) all nodes on the
path P(AQ) —y CQ shall be marked as "to be abandoned". An example is the left
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path in Fig. 3.10.

Step 2: For each newly-introduced leaf c\ € C\ \ Co and each x 6 vars(ci), every
node on the path down to e(x) from the corresponding tree's root, shall be marked,
too. This applies to the right path in the aggregation tree of Fig. 3.10.

Step 3: We collect all maximal subtrees in $o that have unmarked roots; cf. the
grey area in Fig. 3.10. Moreover, the constraints contained in C\ \ Co (in Fig- 3.10:
x = w +1) will be collected, too. The resulting set forms the new aggregation forest

Note that, in Fig. 3.9, the marking according to the above step 2 will not mark any
previously unmarked node, since e(L) lies on the path that has been marked in step
1.

t = u w = u

Figure 3.10: Additional Recomputation due to Altered Scopes

Lemma 8
With the above notations and procedure, we obtain an aggregation forest $i with the
following properties.

1. $i is an aggregation forest for C\ in the sense of Def. 10.

2. If two trees Ai, A2 € $1 share a variable x, i.e. x 6 vars{c\) PI varsfa) for
some ci £ F(Aj), i G {1,2}, then their roots also share that variable, i.e.
x 6 vars(p(Ai)) n vars(p(A2)).

The lemma implies that we may decide consistency for the connected subsets of C\,
according to Th. 1, simply by building aggregation trees from the root nodes in $1.

The natural language algorithm given above is going to be stated as pseudo-code in
the next chapter.
So far, we have always assumed the existence of aggregation trees. For this chapter,
the remaining question concerns the task of actually constructing one from a given
set of constraints.
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3.5 Aggregation Strategies

Figure 3.11 depicts the typical situation during the process of building an aggrega-
tion forest for some constraint problem C, \C\ > 2. We are given a non-empty set of
derived constraints, which form initially just the set C, and have to find two partial
aggregation trees the roots of which are to be aggregated next.
In order to satisfy Def. 10, namely the part that guarantees the set of leaves of any
aggregation tree to form a connected set, the relations ri,T2 in Fig. 3.11 need to
share a variable, i.e. vars(ri)r\vars(r2) / 0; see also Lem. 5, part 4. If no such choice
can be made then no two partial trees share a variable. In this case, the partial trees
are the aggregation trees of the final aggregation forest. Moreover, each root relation
must be a trivial constraint.
Besides this termination criterion which is due to the disconnectedness of C, there

X = M(r1 X r2, C)

f = (varsfrJUvarsfrz)) (1 (JUcyars(c))

partial aggregation tree / \

derived constraint | r |

initial constraint

Figure 3.11: One Aggregation Step While Building an Aggregation Forest

are the following two criteria: The newly-created relation r* may coincide with 0 in
which case a connected component of C and hence C is proved to be inconsistent,
according to Th. 1. Or, there is only one partial aggregation tree left. In that case,
the aggregation forest has just one aggregation tree, and C is a connected constraint
problem.

Figure 3.11 presents again the formula for computing the scope X of the new con-
straint r*. It is clear that different choices of (n, r^) will induce different relations r*
with different scopes X. However, basically any two partial aggregation trees that
share at least one variable, may be chosen for the next aggregation. Consequently,
any strategy that observes that condition, will produce a valid aggregation forest for
C.
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3.5.1 On-The-Fly Strategies

Let us call, in the setting of Fig. 3.11, any method that proposes a pair of partial
aggregation trees for the next aggregation, an on-the-fly aggregation strategy. In or-
der to facilitate subsequent ideas, on-the-fly strategies may, at run-time, not always
be aware of the entire set of partial aggregation trees but only of proper subsets.
In that sense, Fig. 3.11 presents only those partial trees that can be "seen" by the
strategy. More precisely, such a strategy will be

given: a non-empty set of relations that are the roots of partial aggregation
trees, and
a set of protected variables. These variables are known to appear
in other partial aggregation trees which the strategy is not aware
of. Observing the connectedness condition in Lem. 5, 3., protected
variables must not be eliminated during the next aggregation. This
clearly supports the notion of interfaces as defined in Def. 9. The
strategy will then

return: a pair of relations of the given set, that share at least one variable;
unless it announces an

exception: if the given set has just one element, or one of the given relations
equals 0 , or no two given relations share a variable.

Since on-the-fly strategies "see" in general only some partial aggregation trees, and
give a clue only as to what the operands of the imminent aggregation shall be, we
may also call them local aggregation strategies. Diverse local aggregation strategies
have been implemented and tested in our prototypic implementation of RCS in Java.
However, the results have been omitted in this work.

The formalism developed in this chapter defines a rather general framework for
solving constraint problems, based on the two operators join and project. So far, no
problem-specific assumption has been entered in the elaborated train of thoughts.
However, the introduction already emphasised that relational aggregation is likely to
be a practicable concept whenever the constraint problems at hand are characterised
by a low density: If each variable appears only in few initial constraints, then we are
likely to eliminate variables more often, while building an aggregation forest. Figure
3.2 also raises the hope that any new relation r* is of similar scope size as n and r2-
Consequently, on-the-fly strategies may choose a "best" pair of operands for the
next aggregation, by investigating scopes, i.e. sets of variables.

The Minimal Scope and the Maximal Elimination Strategy

The aggregation shown in Fig. 3.12 combines two partial trees, the roots of which
have certain scopes that still interact with the root relations of other partial aggre-
gation trees. With the intuition that each root is the combined join of all leaves,
projected onto an appropriate interface, cf. Lem. 5, 5.(a), we may view each root
relation as a microprocessor with one pin for each of its variables.
Then, Fig. 3.12 illustrates the effect of one aggregation in terms of the involved
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scopes. The aggregation eliminates b variables, leaving a + c variables for the result-
ing new root.
Experiments have been carried out with on-the-fly strategies for choosing the next
pair of operands due for aggregation, that always pick the pair

• which minimises a + c, i.e. the scope size of r*, (minimal scope strategy);
and

• which maximises b, i.e. the number of eliminable variables in accordance with
the protected ones, (maximal elimination strategy).

I l l l l l l l l l l

partial
aggregation trees

Figure 3.12: An Aggregation Step With Scope Sizes

The latter strategy is inspired by the intention to always simplify the remaining
overall constraint problem in terms of involved variables. However, we see that a + c
and b are algebraically independent, and thus both strategies may deploy a very
different behaviour. On the other hand, both could be combined by considering
linear combinations or other functions of a + c and b.

Linearising On-The-Fly Strategies

Clearly, exhaustive local strategies will have to consider and validate any pair of
root relations of all provided partial aggregation trees, in order to propose a best
one. Best here means best according to a certain heuristic, of which we have seen
two above.
Assuming a set of n partial aggregation trees, this means to consider (2) candidates,
i.e. a quadratic amount. The following idea has been introduced in our prototypic
implementation of RCS in order to decrease that effort to linear: We maintain a
sorted list of n root constraints rather than an arbitrary list. Before the ordering
criterion is explained, let us see how a local strategy is deployed utilising the implied
ordering.
Starting at the head of the list, we look for a constraint r± that shares a
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variable with at least one other constraint in the list. Hence, the set
R = R(r{) = { r \ vars{r{) PI vars(r) ^ 0 } is not empty. Then, r<i € R is chosen
according to the respective on-the-fly strategy. Obviously, finding r\ as well as r?
takes only linear time. After having aggregated r\ and r2, both have to be deleted
from the list, and r* has to be placed in the right position. This again takes only
linear time. However, sorting m initial constraints is known to cost O(m • log(m))
but takes place only once, e.g. during the input of all constraints.

By what criterion shall constraints be ordered? In the Java implementation of WCS,
each constraint can provide a measure of its constrainedness. This non-negative
number, which may clearly be used to sort any given set of constraints, is computed
by a heuristic that estimates how many assignments belong to the constraint. E.g. 0
will return 0, whereas D is to return the largest number on the corresponding scale.
Prominent constraints, like for example singleton assignments as x = 1, are consid-
ered highly constraining and return therefore a small estimate, that is, one close to
zero.
Apart from enabling a linear effort for on-the-fly strategies, the introduction of the
given constraint ordering is also a means to incorporate knowledge about the actual
data encoded in the constraints; as opposed to purely structural information con-
cerning scopes. So far, we have not payed attention to the actual data encoded in
constraints, and shall come back to that issue when discussing the implementation
of a relational processor in Chap. 5.

3.5.2 Clustered Aggregation Strategies

Aggregation trees encode a specific ordering in which the given constraints are com-
bined: Before the roots of two subtrees are aggregated, the leaves of both subtrees
need to be combined seperately. The usage of local aggregation strategies will just
produce some aggregation forest, and thereby some specific a posteriori ordering of
aggregations. However, there are situations in which we might want to influence
that ordering a priori.
E.g. when trying to solve a system of linear and non-linear equations in a naive way,
see [9]; it seems a good strategy to consider the linear portion of the problem first.
The resulting restrictions for some of the variables, will possibly simplify the non-
linear portion in a beneficial way. This is an example where additional knowledge
about the actual constraints can suggest a certain ordering of aggregations.
Figure 3.13 shows a clustered aggregation strategy; also called global strategy as op-
posed to the above local strategies. Any cluster, i.e. (sub-)tree rooted at a grey
node, contains s, s > 0, embedded subclusters that are attached as subtrees; and
t, t > 0, constraints of the initial constraint problem, where s + t > 2. Moreover,
all constraints mentioned in a cluster, i.e. the leaves, must form a connected set. A
later subsection will formalise and generalise the concept of clustered aggregation
strategies; so here we shall only give some intuition and informal notion.
Each cluster will, at runtime, be interpreted as a bottom-up plan for producing an
aggregation tree A for the constraint problem given by the set of leaves A(p(A)).
To this end, we need in general a local aggregation strategy a.
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1. All constraints in a terminal cluster, i.e. in a cluster without subclusters, will
be used to build an aggregation subtree according to a.

2. Furthermore, any non-terminal cluster builds a tree from its immediately suc-
ceeding constraints, and the subtrees that result from its subclusters. Again,
this is done according to a.

3. The variable set attached to the root of each cluster lists all protected variables,
i.e. those that must not be eliminated while building the respective aggregation
subtree utilising a.12

{'BOTTOM! h0P> VHIGH> v}

vLOW=0 L-on

VHIGH~ VLOW = 'BOTTOM' 300

1 ~ 'TOP + 'BOTTOM {'TOP> VHIGH>

VHIGH = 12

v-vLOW = iTOP-600 A

•—iTOP-*-0 <*• t = on -

S = off=>iTOP = 0 A

= vHIGH

Figure 3.13: A Clustered Strategy for the Tree in Fig. 3.3

As an example, check that Fig. 3.13 shows indeed a clustered strategy that will,
with an appropriate a, generate the aggregation tree shown in Fig. 3.3.
Note that we shall only then need the local strategy a, if there is a (sub-)cluster
for which s + t > 3, with s and t as above. For otherwise, s + t = 2 for all
(sub-)clusters, and the local strategy a would, at each call, have to "choose" a pair
of subtrees among a set of cardinality 2, and hence do nothing. As opposed to such a
completely specified global strategy, the other extreme is the completely unspecified
one. Here, we just have a root with an empty variable set attached, and as successors
the set of all initial constraints. According to the above procedure, the entire work
will then have to be done by a.

3.5.3 Aggregation Strategies based on Decomposition Methods

Our prototypic implementation of KCS has been equipped with an interface for
exporting constraint problems and importing applicable clustered strategies. This
allows us to deploy all sorts of external strategy modules and utilise their outputs.

12Note that those variable sets can be omitted if each subcluster has, at runtime, complete
information about the entire clustered strategy, and hence about all constraint scopes. However,
in an object-oriented implementation this may not be favourable, and we might instead directly
provide the set of protected variables for each cluster.
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This aspect was also the content of a cooperation between the DaimlerChrysler com-
pany and the "Databases and Artificial Intelligence Group" at the Vienna University
of Technology. The latter has gathered expert knowledge on structural CSP13 de-
composition methods, see e.g. [31] for a detailed overview over the most prominent
decomposition methods and their relationships according to the notion of compara-
bility and predominance defined there. In the following, acyclic and cyclic CSPs will
be mentioned as well as other, related terms. Those shall not be thoroughly defined
in this work; the reader is asked to consult the above references, below pointers and
further links established there.
Decomposition methods first appeared in the context of boolean conjunctive queries
(BCQs) in the theory of relational databases, cf. [55] or [2]. Today, the mapping be-
tween conjunctive database queries and constraint satisfaction is well-understood,
and consequently decomposition techniques have been and are vividly applied to
CSPs.

In the case of an acyclic problem and only then, a so-called join tree can be found;
see [55] or [31] for an exact definition. Yannakakis algorithm, originally developed
for BCQs, can be adapted for finding all solution tuples of any given acyclic CSP;
cf. [75] for the original algorithm. That sequential algorithm takes only polynomial
time, whereas solving cyclic CSPs is known to be NP-complete. Moreover, solving
algorithms based on join trees have been found to be highly parallelisable, [30].
For all those reasons, the goal is, in the case of a cyclic CSP, to generate a structure
that is similar to a join tree. This is the common goal of all decomposition methods,
that is, to provide efficient join schemes also for cyclic CSPs.
[31] proves that, according to the comparison criteria introduced there, hypertree
decomposition turns out superior to all other prominent decomposition methods.
Therefore, we shall concentrate here on that method. In what follows, we give an
overview, and explain how a complete hypertree decomposition may be used to derive
a clustered aggregation strategy for a connected constraint problem.

Complete Hypertree Decompositions

In order to give an example of a hypertree decomposition, let us recall the two families
of electric circuits in Fig. 2.7. The top of Figure 3.14 shows part of the corresponding
constraint hypergraph that captures one box B^. The environment of that box is
represented by the two constraints before and after.
We have already given a loose definition of a constraint hypergraph; see the remark
that follows Def. 10. In Fig. 3.14, capital letters represent variables.14 Grey and
white shapes depict the hyperedges which capture the respective constraints, as
e.g. given in Fig. 2.8 for the family {.Dfc}fc>o-
The bottom part of Fig. 3.14 presents a complete hypertree decomposition for the
above constraint hypergraph, in the so-called atom representation. Again, we shall
not define those terms here; cf. e.g. [32]. Still, the defining properties of a complete
hypertree decomposition shall be given in natural language:

13 Constraint Satisfaction Problem
14 Actually, each capital letter stands for a vector of one current and one voltage variable associated

with the electric ports that have been omitted in the figure.
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1. A hypertree decomposition (HT>) is a tree, the vertices of which are sets of
hyperedges of the constraint hypergraph (CH). Moreover, each variable of a
hyperedge is either explicitely listed or replaced by an extra symbol. (Typi-
cally, the underscore "_" is used.)

2. For each hyperedge in CH (i.e. for each constraint in the initial constraint
problem)), there is a vertex in HV in which it appears with all variables
listed. (This subsumes the completeness condition, cf. [32].)

3. For each variable X, the vertices in which X is listed form a subtree of HT>.
(connectedness condition)

4. If a variable X is listed in some vertex v of HV, then it must not be replaced
by "_" in the predecessor of v.

1

L

r5

K

D h E

"s F

after

ni(C, D, L), n4(H, I, K)

r3(D,E),n4(H,_,_)

I n3(E,F,G),n4(H,_,_.)

Figure 3.14: Hypergraph and Decomposition for the Families in Fig. 2.7

It is easy to verify the validity of all conditions in the example of Fig. 3.14. Note
that the tree has been derived basically by unseaming the constraint hypergraph in
the hyperedge n$. However, n^ needs then to be added to numerous vertices of the
decomposition, in order to maintain the connectedness condition for the variables /
and H. This sort of clustering is the appropriate measure to break cycles in cyclic
hypergraphs. The maximal number of hyperedges clustered in a single vertex is
called the hypertree width of the tree at hand. The minimal number of all those
tree-specific numbers is the hypertree width associated with the original constraint
problem. [32] shows that CSPs with their hypertree width bounded by a constant,
can be solved in polynomial time, re-establishing Yannakakis' result for infinitely
many classes of cyclic instances.
Since only acyclic hypergraphs have a width of 1, and since the hypergraph in
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Fig. 3.14 is cyclic, the problem's width must be at least 2. The given decomposition
shows that 2 can indeed be attained, and thus the width of the problem is deduced
to be 2.

Variables that have been replaced by "_", will be interpreted as being eliminated from
the respective constraint. Therefore, hypertree decompositions will typically involve
not only all initial constraints but also some of their projections. Still, the above
condition 2 ensures that each initial constraint will appear at least once without any
variable eliminated.
The next paragraph shows how a hypertree decomposition, once provided by some
external module, naturally induces a clustered aggregation strategy that can be used
to build an aggregation tree for the initially given constraint problem. The arising
aggregation tree needs to facilitate the connectedness condition of Lem. 5, 3., which
is guaranteed by the above connectedness condition 3 for hypertree decompositions.

Conversion of a Complete Hypertree Decomposition into a Clustered
Aggregation Strategy

Figure 3.15 shows the clustered aggregation strategy that results from the hypertree
decomposition (HV) presented above, in Fig. 3.14. The corresponding algorithm is

rs(D. E) n4(H,_,_)

I{A, B I,J} I | before(A)

n2(A, B, J) n4(_, l ,_

Figure 3.15: Clustered Strategy Derived from the Decomposition in Fig. 3.14

straight-forward and translates HT> in a bottom-up manner. Let 9{n) denote the
translation of a single node n € V(HT>), and 0(n) the translation of the (sub-)tree
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rooted at n. Then the following building blocks define an algorithm for translating
the entire tree TiV.

1. 9(n), n G V(HV): If n hosts just one constraint, then 6(n) is that constraint;
see e.g. r$(K,L) in Fig. 3.15.
Otherwise, if n consists of at least two constraints, then 8(n) is a tree A
with the constraints of n as its successors. (In Fig. 3.15, the roots of those
subtrees are marked with a black dot. For example, the translation of the node
containing n^{E, F, G), n^(H, _, _) is the bottom right subtree.) The root of A
has attached a set of variables which is defined according to 4.

2. 6(A), A € A(p{HV)): We define 6(A) = 6>(A), for each leaf node A of HV.

3. 6(n), n € V(KD) \ K(p(HT>)): For any non-leaf node n, Q(n) is a tree A
that contains O(n') as a subtree, for each successor n' of n. Additionally, A
contains the translation of n itself, i.e. 9(n), as a subtree. Again, p(A) hosts
a set of variables according to 4.

4. Attached to each non-leaf node n is a set of variables. It contains the interface
of the combined join of all leaves in A(A(n)), with respect to the remaining set
of leaves. For example, the variable set {E, H} in the middle of Fig. 3.15, is the
portion.of {E,F, G, Ä} that.also.appears„outside the_corresponding subtree. _

The given translation procedure is relatively simple, still some remarks have to be
made.

Starting from a connected constraint problem C, a hypertree decomposition may
introduce projections of one or more constraints. Therefore, the intial problem may
be replaced by a problem

C'=fCUP, \P\>1,

where P contains projections of some constraints of C. The question is, how can an
aggregation tree built for C' be used to obtain information concerning C?
First, we have equality of the sets of solution tuples, that is

E(C) = E(C"). (3.18)

This follows easily, since (3.9) applied to c\ = D with Fj Ç 72 = X% shows that
c = 7TK(C) XI c, for any proper subset Y c vars(c). Moreover, that implies that C
is consistent if and only if C' is. Therefore, both forward and backward relations
computed for C' are valid also for C.
However, minimal conflicts and minimal explanations, respectively, that will be de-
rived for C" may involve elements of P and thus not directly be usable for C. Clearly,
if we compute all minimal conflicts or explanations for C", those sets will especially
contain all minimal conflicts or explanations, respectively, for C, since C ÇC"'. The
following example throws light on the problem of computing one minimal conflict
for C from one that had been found for C".
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Example 9: Let

C = { c \ = i i ) = l A i = l A j / = 1 ,

C2 = z = x + yAw = 2,

c 3 = z = 3}

be the initial constraint problem which is clearly inconsistent. Each variable takes
its values in M. Let P contain the projections /K{x}{ci)>'K{y}(ci),'K{x,y,z}(c2)i i-e-

P = {x = 1, y = 1, z = x + y}.

Obviously, K' = {c3} U P is a minimal conflict of C" = C U P, but not of C.
The natural approach for deriving a minimal conflict K for C from K' should be
abstraction: We replace each TTX(C) € P n K' by the initial constraint c 6 C. In
our example this yields the constraints C3, c\, ci, C2. The replacement procedure will
hence introduce duplicates. But just cancelling those duplicates will in general not
suffice, as {03,01,02} is still not a minimal conflict of C, because c\ to C2 ~ 0, and
C3 can thus be suspended.
This example illustrates that we need to deploy firstly abstraction, secondly cancel-
lation of duplicates, and thirdly additional suspension, in order to compute K from
K'. Proving that these three steps will indeed produce a minimal conflict for C, is
unproblematic and not carried out here.

3.5.4 Generic Aggregation Strategies

The focus of the previous subsections was on local and global strategies for single
constraint problems. We shall now take a look at strategies which are valid not only
for one problem, but for an entire context space, as denned in Def. 17. Moreover,
the previous ideas of clustered strategies and of introducing projections of initial
constraints, as e.g. done by many decomposition methods, shall be incorporated.
This will guide us to the more general generic aggregation strategies. We will give
a formal definition, and state a translation function that builds an aggregation tree
for any connected constraint problem, that is, for any context of a context space.
The following context space, with the notation as in Def. 17, will serve as a running
example, in order to explain and illustrate generic strategies:

T = {FU{r(x)},FU{s(x,y)},Fu{t(x,y)},{Fl){u(y)}}, where
T = {a(x, z), b(x, z), c(x, z), d(x, z), e{y, z)}.

The set T is hence the fixed portion, whereas {r(x), s(x,y),t(x,y),u(y)} is the sole
one-of of the context space F. The functional notation is intended to make the
relations' scopes explicit, e.g. vars(s(x, y)) = {x, y}.
Figure 3.16 shows a generic strategy for F that incorporates, besides the above
relations, also a projection of an element of J7, namely of e(y,z), and a projection
of the one-of. The graph is a directed, acyclic graph (DAG) with exactly one root,
that is, a node without predecessors.15 The terminal nodes are the elements of JF

15With what has been defined so far, acyclicity means that for any two nodes n, m, at most one
of the paths n —^+ m, m -̂ -> n may exist, but not both.
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and the alternatives of the one-of. In Fig. 3.16, those are white as opposed to the
partly grey, non-terminal ones. There are cluster nodes (labeled "C"), projection
nodes (labeled "TT"), and a one-of node (with the disjunction operator "V" as label).
As in the above subsection about clustered strategies, the embedding of subclusters

c

hp
1

«1
CJfy,z;

— " — * •

{x,z}

Figure 3.16: A Generic Aggregation Strategy for F

is done by attaching succeeding subgraphs. Due to the presence of projections, some
constraints participate more than just once, and so we abandon the use of trees in
favour of DAGs.
Let us fix an accurate definition:

Definition 18 (Generic Aggregation Strategy)
LetT andQ with |.F| + |(?| >2 be the fixed portion and the set of one-ofs, respectively,
of a context space F. A generic aggregation strategy for F is a DAG Y that may
contain four sorts of nodes; cluster nodes, projection nodes, one-of nodes and plain
constraints. The former three sorts of nodes host a set of variables, X(n).16 For the
benefit of convenience let us extend X(.) to nodes n in T that are plain constraints,
by writing X{n) = vars(n). Then T satisfies the following conditions:

1. There is exactly one node p(T) in T that has no predecessor, called the root.

2. The set of nodes without successor, called the leaves, coincide with the plain
constraints in T. They must equal the set T U (J Q.

16In Fig. 3.16, those attached sets of variables coincide with the nodes' actual contents. For the
sake of understanding, the reader should also verify the listed properties of T using that figure.
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3. For any one-of node n, the set N' of successors consists of constraints. More-
over, N' € Q, i.e. N' must form a one-of. X(n) = Un'eiV' -^(nO ^as ^° ̂ ° ^ -
Furthermore, for any one-of G € G and any alternative g G G, g must appear,
that is, must be the successor of some one-of node in T.

4- The sole successor n' of a projection node n must be either a constraint, or a
one-of node. Moreover, X(n) C X(n'), explicitly excluding equality.

5. Each cluster node n has at least two successors and at most one predecessor.
With N' denoting the set of successors of n, and M the set of leaves A of T
for which no path n —*-+ A exists, X(n) = (Ura'eiv ^ ( n O ) ^ (

6. For each variable x assigned to some node in T, a scope condition must hold:
There is a subgraph of T that is a tree A for which the following conditions
are valid:

(a) A constraint nofT belongs to A if and only if x € X(n).

(b) Any one-of node or cluster node n for which x £ X(n), belongs to A.

(c) Conversely, if a cluster node n belongs to A then either x G X(n), or
n = p(A).

(d) A does not contain a projection node o /T .

The scope property is similar to connectedness conditions, as previously defined for
aggregation trees and mentioned for hypertree decompositions. Figure 3.17 illus-

Ï nAj s s(x, y) t(x,y) u(y) I

Figure 3.17: Illustration of the Scope Property for y in Fig. 3.16
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trates that property for the variable y in the strategy of Fig. 3.16. The part of T
that does not belong to the tree A has been faded out.
The following lemma repeats and extends the already given translation scheme, for
obtaining an aggregation tree from a clustered aggregation strategy. Basically, we
just need to add the translations of one-of nodes and projections:

Lemma 9
Let T be a context space as in Def. 18, T a generic aggregation strategy for V, and
C G F be an arbitrary connected context. Suppose furthermore, that a is a local
aggregation strategy.
The following properties define a function ©£., 0 for short, that returns an aggre-
gation tree for any node in Y :

1. For any leaf A of T, set 0(A) = A, i.e. the single-node tree that consists only
of the constraint A.

2. For any one-of node n, let Q{n) == @(n'), where n' is that successor of n that
corresponds to the appropriate alternative, as chosen in the context C.

3. Suppose n is a projection node in Y and n' its sole successor node. Then Q(n')
is, according to 1. and 2. a single-node tree. Letc denote the single constraint,
then define @(n) to be the single-node tree with the constraint TTX(C), where
X = X{n)-C\-vars{c).-- - - - - - - -

4- The remaining case deals with a cluster node n that has the set of successors
N': Let here &(n) be the aggregation tree built from the trees {@(n') \ n! € N'}
according to a and protecting, i.e. not eliminating, the variables in X(n).

Then, O(p(T)) is an aggregation tree for some constraint problem C such that

A brief remark concerning Lem. 9, 3., shall be made. At first sight, one should expect
here the projection of c onto X(n). The intersection of X(n) with vars(c), as stated
above, has a technical reason that becomes clear by taking a look at the one-of node
n' of Fig. 3.16, and its preceeding projection node n: Suppose the context C would
pick the alternative u(y). Then the computation of 0(n) involves projecting u(y)
onto X(n) n {y} = {x} n {y} = 0. This shows why we cannot just project u(y) onto
X{n) — {x} which would in this case be undefined; see Def. 5.
However, most one-ofs in practical context spaces will normally consist of alter-
natives that all have the same scope, being just mutually distinct assignments to
discrete variables modelling behavioural modes, switch positions and the like. In
that case, the intersection X, given in Lem. 9, 3., will coincide with X(n) since then
X(n) Ç vars(c). So, the situation of Fig. 3.16, is rather artificial.

This ends the investigations on local and global aggregation strategies, and closes
the formal framework for relational aggregation.



Chapter 4

Architecture and Algorithms of
a Relational Engine

The previous chapter has paved the way for a concrete implementation of a
relational engine that is based on a generic view on constraints; relations. This
chapter is a guide to the implementation of a relational constraint solver that
assumes serviceable join and project operators for relations. The provision of
those two core methods is going to be the subject of the subsequent chapter.
The following sections will present a class model and pseudo-code for the most
important algorithms, as suggested by the theorems of Chap. 3. We shall also
take a look at their respective complexities, assuming the previously mentioned
low density of constraint problems arising from model-based engineering prob-
lems.
The chapter is moreover dealing with issues of soundness and completeness of
concrete realisations of RC§ and provides the respective formalism.

4.1 Overview

Our prototypic implementation of RCS can be roughly divided into two parts: a
master layer called relational engine and a slave layer named relational processor.
Basically, besides other services provided by the processor, the latter hosts classes
for representing trivial and non-trivial relations and implements the core operators
join and project, as defined in Defs. 4 and 5. In Fig. 4.1, this relational processor
is strongly abstracted in that it is represented by just a single class, Relation. All
other classes shown in the figure belong to the relational engine. Our actual Java
implementation uses some additional classes which shall be omitted in the picture,
for the sake of simplicity.
Figure 4.1 follows the patterns and syntax defined by the object modelling language
UML; see [29]: The top of each box shows the name of the class. The middle section
lists attributes or sometimes called members of each of the class's instances. The
bottom part contains the most important operations implemented for each instance
of the class. A class may be the generalisation of other classes, as e.g. Node being
the superclass of its subclasses Leaf Node and AggNode. Classes may be linked by
so-called associations that can mention roles and multiplicities. For example, any
1 instance of AggNode is going to be the father of exactly 2 subtrees which will be

85
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represented by their root nodes, cf. Fig. 4.1. In our implementation, Node is an
abstract class which means that there cannot exist instances of it, but only of its
two subclasses.

As for the notation of pseudo-code, we shall use a common way of writing that is
inspired by object-oriented programming languages, as for instance Java. Hereby,
the consecutiveness of method calls is noted by connecting them via a dot. So,
e.g. writing obj .methodl (arguments!.) .method2(arguments2) means the applica-
tion of method2 with the arguments arguments2 to the result of applying methodl
with arguments arguments 1 to the initially given object obj. The prefix obj . can
be omitted if obj and the instance for which the respective pseudo-code procedure
is being called are identical. Still, it may ease understanding to explicitely mention
that instance by writing th is .

AggForest
state

collectReusableSubtrees(AggForest)
forwardO
getBestNextAggregationQ

1 1

Heap
leafNodes
oneOfs
projections
strategy

create...(String,...)

AggController

compare(LeafNode, LeafNode)
compare(AggNode, AggNode)

1..00

Engine
state
solutions

reset()
addRelation(String)
removeRelation(String)
forward(Set of LeafNodes)
backward ()
getSolutionsO
setContext(lnteger[ ])
getiConflictO
getAIIConflicts()
get1 Explanation(Variable)
getAIIExplanations(Variable)

1

roots •

Node Kl—
2
subtrees

LeafNode

backward(Relation, Map) 0..°°
2..00

forward relation

Relation
variables

join(Relation)
project (Variables)
isEmptyO
getWeightO

father 1

backward
relation

AggNode
eliminableVariables
freeVariables

isPendingO
backward(Relation, Map)

0..«

0..1
contextSpace

0..°°
subClusters

Cluster
interfaceVariables

T

OneOf
currentLeafNode

setCurrentLeafNode(lnteger)

0..°°

0..0O

Projection
interfaceVariables 0..00

Figure 4.1: UML Diagram of a Relational Engine

Before we take a more thorough look at the classes in Fig. 4.1 and their relationships,
it is important to make some remarks on soundness and completeness:
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4.1.1 Approximation of the Formal Framework

The formal framework developed in Chap. 3 gives rise to statements that support
the decision of consistency, see Th. 1, and the derivation of tightest bounds, see
Th. 2.
However, no concrete implementation is going to realise those theoretical results.
Implementational shortcomings, like e.g. the inability to eliminate a certain variable
in a non-linear system of arithmetic equations, may result in the solver's inability to
actually determine consistency for a given constraint problem. We shall come back
to this point in the next chapter.

First, we shall point out that our prototype is not allowed to leave the problem of con-
sistency unanswered. Consequently, it has to answer that question either poitively
or negatively, even when it does not know for sure. In our Java implementation,
any problem that is too hard to be determined, will be judged consis-
tent. Hereby, the intention is the following: The default for any analysed constraint
problem is its consistency, unless the solver manages to prove the contrary. As long
as the implementation fails to prove inconsistency or has not yet gathered sufficient
evidence for inconsistency, the given problem will be assumed consistent. This can
be seen as inspired by the engineering task of diagnosis; see Chap. 2: When there
is no reason to suspect one or more components to be broken, the entire diagnosed
system will be considered to function.
There is another issue concerning consistency. It concerns the operations imple-
mented at Relation that form the basis for all high-level algorithms of a relational
engine.
Theorem 1 decides consistency purely by syntactical means of distinguishing the two
trivial constraints 0 and D. However, a concrete implementation can be made more
efficient by providing a predicate isEmpty for any Relation; see Fig. 4.1.
A poor implementation of isEmpty will answer true only in the case that the in-
stance of Relation at hand coincides with a representation of 0, re-establishing the
situation in Th. 1. A more advanced version may perform some simple quick checks,
and, e.g., discover that the conjunction t\ = ti A t\ ^ t<i cannot have a solution, no
matter what the terms ti,<2 are. Hence, r.isEmpty() is to answer true, whenever,
for the constraint c represented by r, c ~ 0 can be proved. Otherwise, following a
defensive strategy, false must be returned. Note that this fits nicely in the above
characterisation of our prototype, with consistency as default.
The advantage of a more advanced version of isEmpty is that, during the process of
building an aggregation tree, a conflict may be discovered earlier. As a consequence,
finding one or all minimal conflicts becomes cheaper due to a "smaller" tree upon
which the respective algorithms are based.
However, a more advanced implementation will, at some point, also consume a sig-
nificantly higher amount of runtime; and we end up with a typical trade-off problem.
Interestingly, the purpose of isEmpty is the same as that of the entire solver; to de-
cide consistency, even though on a lower and more immediate level. Therefore, we
should stick to cheap syntactical checks in the implementation of isEmpty.
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Besides being conservative in announcing inconstency, our implementation of the
basic operations join and project compute overestimations of the actual relations.
The term overestimation is going to be used more often in what follows. Thus, let
us capture this notion in a formal definition.

Definition 19 (Implication of Constraints)
Let c = (X, A) and d = (Y, B) be two non-trivial constraints. We say that c implies
d, denoted by c —^ d, if and only if the following two conditions hold.

1. X n Y + 0 = > {a\xnY : a € A} Ç {ß\xnY • ß € B}

2. Y\XQ free(d)

For any constraints c,d, the formulae 0 —*• d and c —*• D are defined to be true.
Furthermore,

c —^ 0 <=>• c ~ 0, and
a -± d 4 4 d ~ D.

// c implies d, we also say that c is more restrictive than d, and d is weaker or
less restrictive than c. Moreover, d is said to be an overestimation of c.

In order to prepare ourselves to prove a further main result of this work, we need
to verify-some-calculation rules for implications. -The-next-lemma-states-that-the
validity of an implication is independent from the representatives of the respective
equivalence classes, (4.1). Furthermore, implication is transitive, (4.3). And, finally,
join and project turn out monotonous with respect to implication: (4.4) and (4.5)
state that both operators yield, for weaker arguments, weaker results.
Note that all formalisations given in this section could have been included in Chap. 3,
where we elaborated the formal framework of ECS. However, Def. 19 and the
consequences listed here address aspects of concrete implementations of RCS that
must handle phenomena as approximated constraints in the sense of overestimations.
Therefore, all those results have been placed here. The connection between the
theoretical conception of RCS and their practical realisations by means of concrete
implementations constitute also the core of Th. 6, below.

Lemma 10
In what follows, all placeholders denote constraints, unless stated otherwise. Then,

c~d A d~d! A c^-d = » c'^d', (4.1)

c-^d A d-^c <^=> c~d, (4 .2)

c —*• d A d —*• e => c —*• e, (4-3)

c i —*• C2 A di —*• cfe = ^ c\ ex] d\ —•*• C2 ixi di and (4-4)

c->-d => ftxnvars(c)(c)-± irXnvars(d)(d), (4.5)

for any set of variables X.

We are now prepared to prove a further main result concerning RCS:
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Theorem 6 (Monotonicity of the RC§ Framework)
Suppose, we are given a concrete implementation I of RCS with operations join
and project that always produce overestimations of the relations defined by Defs. 4
and 5. Be C, \C\ > 2, a constraint problem and assume that T computes all for-
ward relations, backward relations and tightest restrictions according to the formal
framework given in Chap. 3. Then

1. Any forward relation computed by X is an overestimation of the respective
theoretical result.

2. If I computes a forward relation that equals 0, then C is indeed inconsistent.

3. In the case of consistency, I produces overestimations for all backward relations
and for all tightest restrictions.

Proof:
Lemma 10 provides us with the monotonicity of both join and project; cf. (4.4) and
(4.5). The respective implementations of T are assumed to always overestimate the
theoretical result, according to Defs. 4 and 5. A simple inductive argument shows
then that also arbitrary successive invocations of the methods join and project
produce overestimations of all respective theoretical relations.
By taking a look at Def. 10, we note that any forward relation is the result of
successive applications of join and project. Therefore, all forward relations computed
by T must - by the above argument - be overestimations of the theoretical results.
Likewise, by recalling Def. 12 and Th. 2, one observes that the same is true for all
backward relations and tightest restrictions. This proves the items 1. and 3.
Suppose now, T computes 0 as a forward relation. According to item 1., this must
be the overestimation of the correct result r, i.e. r —*• 0. But then Def. 19 yields
r ~ 0. Hence, processing a subset of C by means of join and project as defined in
Defs. 4 and 5, reveals a conflict. Therefore, C must be inconsistent, proving item 2.
This completes the proof of the theorem. q.e.d.

Since, the precondition is true for our prototype (see above), we are going to ob-
tain, for each appearing variable x, an overestimation of its tightest restriction
tx = ({x},Ax). Note that, for poor implementations of join and project, we
may even end up with the trivial overestimation ({x}, {(x (—> v) | v G dom(x)}).
The aim of a good implementation is therefore to approximate tx by some
tx = ({z}) Vx) such that Vx D Ax and Vx \ Ax is as "small" as possible.

4.1.2 Soundness and Completeness

The typical means for capturing approximations as the ones described in the pre-
vious section, are the terms soundness and completeness. However, one must be
careful, since converse definitions exist.
In the sense of Tsang's definition of soundness; see [70]; our implementation of ECS
is not sound since it may overestimate the empty set of solutions and claim that
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there exists a solution although there is actually none. However, with regard to
other common definitions; cf. e.g. [64, p. 131-132]; as usually used in the diagnosis
community, our implementation would be considered sound. This is because when-
ever it claims inconsistency of a constraint problem C, C will indeed be inconsistent
in the sense of Def. 7; cf. Th. 6, 2. Conversely, not all inconsistencies will necessarily
be discovered, implying that our implementation is, in the sense of [64, p. 131-132],
not complete.

[70] also provides a definition of completeness, ensuring that any existing solution
will actually be found by the constraint solver. In that sense, our implementation
of RCS is complete since the computed restriction for a variable x overestimates tx.

Summarising, according to Tsangs definitions, our prototypic implementation of
RCS is not sound but complete. Those definitions focus on the set of solutions to a
constraint problem, whereas other definitions, as used by the diagnosis community,
focus mainly on the problem of deciding consistency. With regard to the latter, our
prototype is sound but not complete.
Other existing frameworks clearly commit themselves to Tsangs definitions; see
e.g. [72, pp. 113-115]. Instead of making a choice, we will avoid the usage of the
terms soundness and completeness and rather speak, for example, of overestimations
as defined in Def. 19.

•4.-1.3 T h e Class Engine

Certainly, the most important class of our relational engine is the class Engine; see
Fig. 4.1. It maintains a pool of active constraints that can be manipulated using
the operations

• reset, for clearing the pool,

• addRelation, for adding, and

• removeRelation, for removing a pre-defined, named constraint from the pool;
see also the subsection concerning the class Heap.

Associated with any instance of Engine is a s ta te that can be either unknown,
inconsistent, consistent or solved, reflecting gathered knowledge as to whether
the constraint problem formed by the pool of active relations is known or not known
to be consistent or not, and whether solutions have already been computed. Of
course, whenever a pool of constraints has been found to be consistent, and we
remove a constraint afterwards, the resulting, decreased pool represents a relaxed
constraint problem that must hence still be consistent. This as well as all other tran-
sitions deploying rese t , addRelation and removeRelation is depicted in Fig. 4.2.
This figure takes the view on an instance of Engine as a finite state machine with
the mentioned transitions.
Figure 4.2 includes, in a lighter grey, the further operations forward and backward,
forward is to determine consistency for any given pool of active constraints by build-
ing an aggregation forest. An Engine will maintain a link to that aggregation forest,
represented by an instance of AggForest. Forward implies a transition to either the
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consistent state or the inconsistent one. As has been explained in a previous sub-
section, the Eninge is not allowed to remain in the unknown state after imposing
forward. We shall come back to the implementation of a consistency check in the
next section.

addRelation,
remove-
Relation

solved

I | state

C 3 action

I ^ transition

Figure 4.2: The Relational Engine seen as a Finite State Machine

Suppose an instance of Engine has detected consistency, then asking for the so-
lutions of the constraint problem at hand makes sense. Deploying the operation
backward will fill the engine's attribute solutions that represents a mapping

x

x
dom(x)),

Vx Ç dom(x),

where X = \JceC vars(c) contains all appearing variables, C is the set of constraints
in the pool.1 As a further consequence of that action, the state will be altered from
consistent to solved which can only be reached from consistent; cf. Fig. 4.2.
Backward will be discussed in more detail in a subsequent section. Clearly, as has
already been stressed, for any appearing variable x, the set of values Vx is to ap-
proximate from above the corresponding values in tx.
After a call of backward, a user may retrieve all approximations at once, via the
method getSolutions which is just an accessor of the attribute solutions. An
additional operation getSolut ion (Variable) is thinkable, retrieving Vx for the
parameter variable x. In Java, solutions will typically be represented by some
implementor of the interface Map which maps so-called keys to values. Good imple-
mentations of Map allow for the retrieval of a value - given its key - in an almost
constant time.

The remaining operations, as listed in Fig. 4.1 are going to be discussed in connection
JAs usual, V(M) — {N \ N Ç M} denotes the powerset of any given set M, i.e. the set of all

subsets of M.
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with providing minimal conflicts and explanations and the handling of aggregation
strategies and context spaces, respectively.

4.1.4 Heap and AggController

Figure 4.1 does not show any direct association connecting the classes Heap and
AggController to any other class in the diagram. Still, they play their part in the
implementation of MC§. So, what is the purpose of those two classes?

First of all, Heap provides an operation for creating a new wrapper for a constraint,
that is, a new instances of Leaf Node. The call for creation will be accompanied by a
String containing the name of the new Leaf Node. Heap maintains a sort of dictio-
nary, from which Leaf Nodes can be retrieved via that given name. This simplifies
the management of the content of an Engine's pool of active constraints. Note
that the corresponding operations, implemented at Engine, expect as parameter a
String.
Likewise, there are other creators for obtaining new named instances of OneOf,
Projection and Cluster which will be explained below. Therefore, Heap can be
seen as the part that keeps track of all known objects that are important for all
activities of a relational engine. Furthermore, it provides appropriate creation and
retrieval services.

We will come across the class AggController again in the next chapter that deals
with issues of a relational processor. There its central role is to maintain user set-
tings and preferences for controlling the processing of relations, which also gave the
class its name.
For a relational engine, it provides static methods for comparing Leaf Nodes and
potential next aggregations, represented by pending instances of AggNode. This
addresses the linearisation of one-the-fly aggregation strategies described in Sub-
sect. 3.5.1. According to the ideas presented there, comparing two instances, of
Leaf Node will basically work by taking a look at their constrainedness. This mea-
sure is provided by getWeight as implemented for any Relation; see Fig. 4.1.
Moreover, AggController implements some static operations for measuring the
quality of existing aggregation trees in view of a possible reuse. In that sense, a
tree may be judged "poor", e.g. due to its extreme unbalancedness: Subsection
3.4.2 suggests that an alteration of a tree in some leaf at the bottom end of a long
path will leave only few and small reusable subtrees. Hence, a relational engine
might, in this situation, prefer to build a new aggregation tree from scratch.

4.1.5 Representation of Aggregation Forests

Obviously we need to be able to represent aggregation forests, trees and all nodes
of a tree. Chapter 3 makes clear that the set of all leaf nodes of an aggregation
forest form the intial constraint problem, whereas all non-leaf nodes will only later
be generated, in order to decide its consistency.
Therefore, leaf nodes and non-leaf nodes play different roles and shall be represented
by two distinct classes. However, both hold a forward relation and also, both may
be roots in an aggregation forest. To avoid redundancies in the code and to capture
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common aspects, there exists thus the abstract superclass Node.
In addition to the forward relation, any instance of AggNode can host a backward
relation. Aggregation trees are binary trees, and so each AggNode is the father of
exactly two subtrees, rooted at two nodes which are again represented by the ap-
propriate subclass of Node.
We have already mentioned above, that potential aggregation tasks will also be rep-
resented by instances of AggNode. Therefore, at runtime there will exist two sorts of
AggNode instances: those for which aggregate had not yet been called and those for
which it already had been. Only in the latter case will the forward relation be valid.
We can distinguish between the two by asking an instance whether it is pending
(former case) or not (latter case), using isPending. If an AggNode is still pending,
it represents a potential, unperformed aggregation task. But then, the set of vari-
ables to be eliminated when imposing aggregate, is known beforehand and will be
stored in the attribute eliminableVariables. At this point, f reeVariables does
not contain any useful information.
After having performed the aggregation, the situation is the other way round:
eliminableVariables is no longer valid; instead, that aggregation may have pro-
duced free variables in the sense of Def. 2 which are going to be stored in
freeVariables.

Obviously, we can keep track of a whole aggregation forest by holding links to all
its root nodes. This is done by AggForest. Each instance of that class has a state,
similar to Engine which facilitates a link to an AggForest. A forest's state will
hence either be unknown, inconsistent, consistent or solved.
As soon as a root node is detected for which the forward relation is unsatisfiable,
according to isEmpty, the state will be set to inconsistent. If this is not the case,
and there exists still a potential aggregation task, the state is unknown. Otherwise,
the forward phase has come to an end, and the analysed constraint problem will be
considered consistent. Depending on whether the backward phase has already been
executed, the state is going to be either consistent or solved. Note again, that
both states here mean only that our prototype failed to prove inconsistency.
Solved can be seen as the substate of consistent in which approximations Vx for
all value sets in the tightest bounds tx have become known. Only then, the backward
relations of AggNodes as well as the solutions attribute of Engine will contain valid
information.

Having full information about all active constraints and their scopes, an AggForest
can compute all reusable subtrees of any other AggForest. We shall see the pseudo-
code, based on the ideas developed in Subsect. 3.4.2, below.
Each aggregation will reduce the number of roots in an aggregation forest by one. For
that, we must know which potential aggregation to perform. That piece of informa-
tion may be provided by a clustered or even generic aggregation strategy, represented
by Cluster; see below. If such information is missing, or in the case where that
strategy is underspecified, a built-in on-the-fly strategy must be used to determine
a good pending AggNode. This is what getBestNextAggregation returns. The lin-
earised implementation of getBestNextAggregation, according to Subsect. 3.5.1,
involves the already mentioned comparators implemented at AggController.
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4.1.6 Representation of Context Spaces and Strategies

The classes Cluster, OneOf, Projection and Leaf Node are responsible for repre-
senting context spaces as well as generic aggregation strategies.
According to Def. 17, in order to represent a context space, a relational engine needs
to represent the fixed portion and a set of oneOfs. The former is just a collection
of Leaf Nodes, one for each constraint of the fixed portion. Likewise, the oneOfs are
represented by a collection of instances of OneOf. Both collections will be wrapped
in an instance of Cluster that does not have a subcluster. Note that in Fig. 4.1, the
possiblity of a Cluster is included that has no OneOf; see multiplicity O..oo. This
is however not allowed for a context space, and thus due to the second role that
Cluster can play, when representing strategies. Note that, for representing con-
text spaces, neither the class Projection nor the attribute interf aceVariables of
Cluster is going to be needed.

The more subtle case is the representation of generic aggregation strategies. This
time, we follow Def. 18, where we had already witnessed four different types of nodes,
that will obviously be represented by instances of the classes Cluster, OneOf,
Projection and Leaf Node. The proof of Lem. 9 revealed that indeed, the root of
any generic aggregation strategy must be a cluster node, provided that the context
space is big enough. Furthermore, Def. 18 implies that Projection has a pointer
to a single LeafNode, and a OneOf is linked to at least two. Also, any instance
of Cluster that participates in the-representation of-a-strategy^-may-be-followed
by some set of subclusters (again represented by Cluster), some Projections,
OneOfs and LeafNodes. Definition 18, 5., imposes an additional constraint that is
not displayed in Fig. 4.1 yet observed by our prototype implementation: The num-
ber of successor objects must be at least two.
The sets of variables X(n) of Def. 18 are going to be stored in the attributes
interf aceVariables of Cluster and Projection, respectively.
Note that the class OneOf allows for specifying a current context via
setCurrentLeafNode which sets the attribute currentLeafNode, i.e. the current
alternative, in the sense of Def. 17. In our prototype, the alternatives of a OneOf
are maintained in an array. Therefore, specifying an alternative can be done by
providing an integer index, as in setCurrentLeaf Node.

4.2 The Forward Phase

Be, in what follows, C the set of active constraints in the pool maintained by some
instance of Engine. In order to assume \C\ > 2, as premised in Th. 1 of Section
3.3, the cases \C\ G {0,1} need to be dealt with: For \C\ = 0 the Engine is con-
fronted with the empty problem and can immediately move to the consistent state,
cf. Fig. 4.2.
If \C\ — {c} has just a single element, the operation isEmptyO, applicable for any
instance of Relation, is used to determine whether c ~ 0 and thus whether or not
C is consistent.
Clearly, utilising Th. 1 shall work by building a bunch of aggregation trees, one for
each connected subset of C. This building process is called forward phase, since it
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generates the forward relations as defined by Def. 12. As already mentioned above,
each element c € C will be wrapped in an instances of Leaf Node. Let us say that its
f orwardRelation is the relation c. Note that this extends the definition of forward
relations, as given by Def. 12, to leaf nodes of aggregation trees. However, this is
not going to cause trouble.
Figure 4.3 shows a pseudo-code variant of the operation forward, implemented at
Engine, that assumes \C\ > 1. Furthermore, r.isEmptyO must yield false, for
any Relation r representing an intial constraint c € C.
It starts with the trivial aggregation forest that has one single-node tree for each
c € C. The forest is then going to be manipulated until a termination criterion
fires, forcing the engine's state to move to either consistent or inconsistent;
cf. Fig. 4.2.
Let us take a brief look at the termination of forward. The only case in which the
implementation at AggForest does not immediately terminate, is the one in which
the method is called recursively; see line (5) in Fig. 4.3. However, in that situation,
the corresponding AggForest has one less root, i.e. one less aggregation tree, due
to the aggregation in line (3) and the subsequent pseudo-code that manipulates the
given forest.

Engine: procedure forward(Set of LeafNodes C)

F<
F.
— n e w AggForest(set of roots: C)

forwardO

state < — F.state

end

AggForest: procedure forwardO

(1)

(2)

(3)

(4)

(5)
end

n < — getBestNextAggregationO

if (previous line threw exception)

state < — consistent

else

n.aggregate()

remove successors of n from this forest

add n as new root to this forest

if (n.f orwardRelation. isEmptyO)

state < — inconsistent

else

forwardO

Figure 4.3: Pseudo-Code for the Forward Phase

So finally, if the execution has not yet terminated for other reasons, there will only
be one root node left in the forest, in which case (1) throws an exception, forcing
termination in line (2). This shows that termination is always guaranteed.
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Line (1) captures the utilisation of an on-the-fly aggregation strategy, as introduced
in Subsect. 3.5.1. There, we listed the three cases in which getBestNextAggregation
is to throw an exception. In the pseudo-code given in Fig. 4.3, an exception can
only be thrown in two of those cases: due to the number of roots being 1, or due
to the fact that no two root nodes share a variable. The third scenario, in which
some root relation is discovered to be unsatisfiable, can never occur. This is because
initially each c € C is satisfiable, at least according to the predicate isEmpty; see
above assumption. And whenever a new root is generated, it is immediately tested
in line (4). This also makes clear, why (2) can always assign the consistent state.

In order to consider the complexity, we note that the worst case, in terms of cost,
happens when we have a connected, consistent constraint problem C. Then, line (4)
will trigger until (1) produces an exception (due to one remaining root node). Then,
the forest has just one tree that has D as its root relation, cf. Th. 1. Clearly, the
algorithm in Fig. 4.3 will then perform the maximal number of aggregations, namely
\C\ — 1. Apart from that observation, one should consider the following facts.

• If the low density assumption holds, newly created root nodes will host a
f orwardRelation that relates, in its structural complexity, to the initial con-
straints in C; see also again Ex. 3. Thus, the effort for the execution of line
(3) does not depend on the number of roots in the current AggForest, and
may be assumed to be O(l).

• Testing a relation for emptyness; line (4); shall only deploy few simple syntac-
tical checks as described above, in Subsect. 4.1.1. Therefore, this can also be
assumed to consume a time of only 0(1).

• An exhaustive implementation of getBestNextAggregation is going to take
time 0(|i?|2), where R is the set of root nodes. Hereby all pairs of root nodes
need to be considered. However, the method may be linearised according
to Subsect. 3.5.1, and as implemented in our prototype. Therefore, let us
calculate here with an effort of

Putting the bits and pieces together, we end up with an effort of <9(|C|2). However,
as our experimental results show, we sometimes get measurements that suggest a
linear time consumption for checking consistency; see Sect. 6.2. On the one hand
this is evidence for the validity of our low density assumption. On the other hand,
choosing a best next aggregation, seems then to take only a negligible period of time,
compared to that for actually performing the aggregations.

If we could ensure a constant bound for getBestNextAggregation, this would re-
sult - according to the above argumentation and still assuming a low density of our
constraint problems - in a linear time complexity for forward. Clearly, this will be
the case, when we provide a global aggregation strategy that is "not too underspec-
ified". This means that the execution of the strategy does not involve too many
calls of a local aggregation strategy, as implemented by getBestNextAggregation;
cf. Lem. 9, part 4.
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4.3 The Backward Phase

Definition 12 presents a recursive definition of an aggregation node's backward re-
lation. Assuming an aggregation tree for a connected constraint problem, for which
the forward phase failed to prove inconsistency, this definition starts by assigning
a relation at the root node, and continues in a top-down manner, stopping at the
lowest non-leaf nodes in the tree. Obviously, it is rather intuitive to capture the
procedure in terms of pseudo-code, see Fig. 4.4.
Theorem 2 proves that, given non-overestimating implementations of join and
project at the class Relation, the presented algorithm will derive tightest re-
strictions for all variables. We have already discussed issues of soundness and com-
pleteness in a previous subsection, and the point has been made that our prototype
computes, at the worst, overestimations. As a consequence, a computed value set
Vx, for a variable x, is always going to subsume the correct set of values as captured
by tx; cf. Th. 6, 3.
Note that the top method in Fig. 4.4 calls backward for each root node; see line
(2). Possibly, those may also be instances of Leaf Node, which happens whenever
there exists a connected subset of the entire constraint problem, that consists of
a single constraint. The respective pseudo-code for backward implemented at the
class Leaf Node is only for those instances actually going to do something, cf. the
test in line (9). However, it will also be called during the top-down recursion for
any other leaf node in the given aggregation forest.
Line (1) resets the map solutions that will be filled during the backward phase
as a side effect of backward. In line (5), the set of variables X is computed, that
have been eliminated during the given Aggnode's aggregation. Speaking in terms of
Lem. 5, 1., that node coincides with e(x), for all x € X. Since there is a unique
e(x) for each variable x that has been eliminated during the forward phase, the map
solutions will be filled monotonously.
The recursion is realised by means of the lines (7) and (8) which call the method
for both successors of the AggNode at hand. Since the aggregation forest consists of
finite trees, this proves termination of the given algorithm.
As already mentioned, there may exist isolated constraints CQ that do not share a
variable with any other constraint. For those, the only possibility to derive tightest
restrictions for a variable x 6 vars(co) is to compute a representation of 7T{X}(CO).

This is accomplished by the bottom method of Fig. 4.4.

Let us consider the complexity of the backward phase, assuming that the initial con-
straint problem C, \C\ > 2, has no isolated constraints and is moreover connected,
and that it has been judged consistent by our prototype.
We have to focus on the lines (3), (4), (6) and (10), since those mention the basic
relational operations join and project. For all other commands, the effort spent
is dominated by that for those lines of pseudo-code.
First of all, it shall be clear that the join computed in line (3) has already been
computed during the forward phase. Hence, the result can be stored in an extra
attribute of AggNode, and we may replace line (3) by an appropriate accessing state-
ment. Concerning line (4), we shall argue again, as in the forward phase, that the



98 CHAPTER 4. RELATIONAL ENGINE

effort does not depend on the instance of AggNode for which the method has been
called. The reason is once more our low density assumption, ensuring that both r l2
and r represent relations with scope sizes bounded by some constant.

Engine: procedure backward()
ful l<— representation of D

(1) solutions<—new Map(entries: none)
F <— AggForest computed during forward phase
for each root node n in F

(2) n.backward(full, solutions)
F . s t a t e , t h i s . s t a t e <— solved

end

AggNode: procedure backward(Relation r, Map s)
nl, n2 « — 1st, 2nd successor of this node
rl, r 2 < — ( n l , n2).forwardRelation

(3) rl2<—rl.join(r2)
Z <— this.forwardRelation.variables
if (this.isRoot)

this.backwardRelation < — rl2
else

(4) this.backwardRelation ̂ ^ rT27jöin~(r.^project(Z))
(5) X < — (rl.variables U r2.variables) \ Z

for each x G X
(6) Vx <—this.backwardRelation.project({x})

s. addMapping (x i—• Vx )
(7) nl.backward(this.backwardRelation, s)
(8) n2.backward(this.backwardRelation, s)
end

LeafNode: procedure backward(Relation r, Map s)
(9) if (this.isRoot)

for each x 6 this.forwardRelation.variables
(10) Vx <—this.forwardRelation.project({x})

s.addMapping(x i—> Vx)
end

Figure 4.4: Pseudo-Code for the Backward Phase

Although a thorough proof will not be given, there is another argument that sup-
ports the hypothesis of a O(l)-cost for line (4): The propagated relation r captures
global knowledge about the entire constraint problem and is hence likely to be highly
constrained. Actually, we expect for most engineering problems arising from tasks
of system analysis, that they have only few solutions: Fig. 3.3 is an example where,
at the top of the tree, some variables have even been fixed to concrete values. Thus,
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computing the join in line (4) is basically done by substituting known values into
rl2, that are propagated from above inside r. Indeed, that join is a semi-join, since
Z is subsumed in the variables of r l2 .
Consequently, all backward relations are expected to represent small finite sets of
tuples. Therefore, the projection in (6) becomes a simple operation. In addition to
that, line (10) will never be approached since, under the above assumption concern-
ing C, the test in (9) will always force the immediate termination of the bottom
method of Fig. 4.4.

Clearly, when all critical commands have indeed a cost of 0(1), then the backward
phase takes a time of O(|C|). This is because each of the \C\ — 1 inner nodes of the
aggregation tree is visited exactly once. The above lax discussion is not to replace
a detailed proof. Still, it raises the hope that the computations undertaken in each
instance of AggNode take a time bounded by some 0(1). The experimental results
in Sect. 6.2 support this hypothesis whenever we analyse problems that have only
few solutions, as is typically the case in engineering tasks of system analysis.

solution Vx, x G X

store: join of successors

store: join of successorsstore: join of successors

Figure 4.5: A Local View on the Forward and the Backward Phase

Before we close this section, let us summarise forward and backward phase. Figure
4.5 shows the computational information flow in the vicinity of an aggregation node
n with successors nl and nl. The grey shapes stand for the two basic relational
operators. As can be seen, three calls of join and three calls of project suffice to
determine all relevant relations. The top projection computes tightest restrictions
for all x € X that have been eliminated by the centre projection, during the for-
ward phase. The helper relation store contains the join of the respective successor
relations and eases the computation of the backward relations for nl and n2.
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4.4 Minimal Conflicts and Explanations

4.4.1 Computing All Minimal Conflicts

Previous pseudocode was formulated in terms of procedures that manipulate one
or several attributes of certain instances of Engine and AggForest. In this sec-
tion, a pseudo implementation for computing minimal conflicts and explanations
will be provided, that returns representations of the desired objects. To distinguish
that from pure manipulation of existing instances, the pseudo-code will speak of
functions instead of procedures.
As in Chap. 3, we shall first focus on computing all minimal conflicts. Figure 4.6
shows the respective pseudo-code which is an immediate translation of Def. 14.
Thanks to Th. 3, we know that the temporary variable treeConf l i c t s is indeed
filled with all minimal conflicts that consist of leaves of the aggregation tree rooted

at n. However, Th. 3 also allows for members of con^(p) that are proper supersets of
minimal conflicts. Those are explicitely removed by an unrefined statement in line
(2).
The function implemented at Engine assumes that the forward phase has already
been run, and that it discovered the inconsistency of the underlying constraint prob-
lem.
We have seen above, as- termination conditionfor the forward-phase,-that it-suffices -
to produce one aggregation node for which the forward relation turns out unsat-
isfiable, according to isEmpty. So, our forward implementation ensures that there
be at most one unsatisfiable forward relation. Hence, the iteration in line (1) will
usually only be over one node.
However, we may alter the forward phase, in order to maximise the number of con-
flicts we can find: We continue to perform aggregations in other connected portions
of the initial problem, even when we have already produced an unsatisfiable for-
ward relation. Thus, we omit the termination condition that is due to inconsistency.
Thereby, we may obtain additional unsatisfiable forward relations. Then the itera-
tion condition in line (1) may hold for more than just one node.
The implementations at AggNode and Leaf Node expect as argument a representa-
tion of the set coni(r), where r is the forward relation of the respective node. They
return the corresponding set con^(r), cf. Def. 14. For the bottom method in Fig. 4.6
this should immediately be clear. The more complicated implementation at AggNode
forms the sets Tl, T2 from the argument set T, makes two recursive calls that pro-
duce T l ' , T2' and builds from those the set T' that is being returned. Again, the
derivations of Tl, T2 and T', respectively, are strictly according to Def. 14.

A more detailed look at the pseudo-code reveals that there are several tests of the
form (tXl M) .isEmptyO, where M is a set of relations. Obviously, this coincides
with investigating whether M is a consistent constraint problem, and can be done by
invoking an appropriate forward phase. This suggests that Fig. 4.6 presents rather
expensive methods, in terms of time consumption.
Here, we shall not go in for analysing that complexity. It is clear that the number
of minimal conflicts is strongly problem-dependent. And since the presented algo-
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Engine: function getAHConflictsO
F <— AggForest computed during forward phase
forestConflicts < — {}

(1) for each root node n in F with n.forwardRelation.isEmptyO
treeConflicts <— n.getAHConflicts({0})

(2) eliminate all proper supersets from treeConflicts
forestConflicts < — forestConflicts U treeConflicts

return forestConflicts
end

AggNode: function getAHConf licts (Set of Sets of Relations T)
nl, n2 <— 1st, 2nd successor of this node
rl, r 2 < — ( n l , n2).forwardRelation
Tl, T2<— {}
for each t G T

if (tX(t U {rl})) .isEmptyO insert t as element in Tl
insert (t U {r2}) as element in Tl
if (IX (t U {r2})) .isEmptyO insert t as element in T2
insert (t U {rl}) as element in T2

Tl' <—nl.getAHConf licts (Tl)
T2> <—nl.getAHConflicts(T2)

T'<—{}
for each tl' G Tl'

if (r2 £ tl') insert tl' as element in T'
for each t2' G T2'

if (rl £ t2') insert t2' as element in T'
for each tl' G Tl' and each t2' G T2'

if (rl G t2' A r2 € tl')
t' ̂ — ((tl' \ {r2}) U (t2' \ {rl}))
if (1X1 t').isEmptyO insert t' as element in T'

return T'
end

Leaf Node: function getAHConf licts (Set of Sets of Relations T)
T'^{}
for each t G T

insert (t U this.forwardRelation) as element in T'
return T'

end

Figure 4.6: Pseudo-Code for Computing All Minimal Conflicts
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rithm is guaranteed to find them all, besides a lot of useless proper supersets, its
complexity will always dominate that number. The more practicable approach is to
ask for just one minimal conflict, which is dealt with in the next subsection.

4.4.2 Computing One Minimal Conflict

Figure 4.7 presents a pseudo-code view of our actual prototype implementation of
RCS, for finding one minimal conflict. Again, as in the previous subsection, that
code is assumed to be run only when the Engine's state is incons is ten t .

Let us make plausible why line (1) will eventually return a minimal conflict, provided
that isEmptyO always returns the correct answer. In that case, we shall verify, for
any node n with forward relation r, the following invariants concerning the invocation
of n.getOneConflict(c) where the argument c represents some relation c:

CXI conj(r) = c, where we set CXI M == D, whenever M = 0. (4-6)

The returned set represents the set of relations 'œn^{r) D A(r). (4-7)

The proof of these two invariants makes use of Def. 15 and the results in Lem. 7. It
can be found in the appendix.
Knowing that (4.7) holds, we conclude that line (1) in Fig. 4.7 returns côn-f (p)C\A(p),
where p be the forward relation of the root node. But then, Th. 4 together with
the fact -that-conf (/o) consists only-of-leaves-of-A-(p), shows-t-hat line (1) returns-
indeed a minimal conflict. Let us once again note that, for this to work, we need an
implementation of isEmpty that always answers correctly.

The definition of the logic predicate E±(.) in Lem. 7 shows that CXI(cônj(r) U {r})
is unsatisfiable. This provides us with a good intention for the above relation c:
According to (4.6), r tx\ c ~ 0 , and c can hence be seen as a conflict relation for the
given node.

Before we discuss the complexity of the implementation in Fig. 4.7, some optimisa-
tions of the code can be made.
First, it should be clear that only the portion of c is needed that joins with the
forward relations of both n l and n2.2 Thus, we may insert an additional first line of
code in the implementation at AggNode that replaces c by c.project(X12), where
X12 represents the unioned set of variables of those two forward relations.
Another effective optimisation removes the explicit computation of CXI SI in line
(5): The recursive call in line (4) will only by and by collect the members of the
set SI by means of its own recursions. We could hence alter getOneConflict(c) so
that it return not only that set SI but additionally also its combined join CXI SI. As
sole consequence, we need to replace line (6) by

re tu rn (SI U S2, s i DXI s2) ,

where s i and s2 denote the combined joins CXI SI and CXJS2, computed during the
recursion in line (4) and (5).

2The proofs for the invariants (4.6) and (4.7) given in the appendix are based on the unmodified
code as presented in Fig. 4.7 but can easily be adjusted to the suggested modifications.
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Concerning complexity in terms of time consumption, the worst case is the one in
which lines (2) and (3) are never approached but the conflict always spreads over
both subtrees. This happens indeed, e.g., when there is only one minimal conflict
that involves all leaves of the subtree rooted at the root node. In other words, no
constraint can be suspended. Moreover we may utilise a low density assumption:
With the above optimisation based on the variable elimination c.project(X12),
the time spent for any one join can again be assumed to take constant time.

Engine: function getOneConflict()
full<— representation of D
F <— AggForest computed during forward phase
n<—root node of F with n.forwardRelation.isEmptyO

(1) return n.getOneConflict(full)
end

AggNode: function getOneConflict(Relation c)
n l , n2 <— 1st, 2nd successor of th i s node
if nl.forwardRelation.join(c).isEmptyO

(2) return nl.getOneConflict(c)
if n2.forwardRelation.join(c).isEmptyO

(3) return n2.getOneConflict(c)
(4) SI<—nl.getOneConflict(n2.forwardRelation.join(c))
(5) S2<—n2.getOneConflict((tX Sl) . join(c))
(6) return SI U S2
end

LeafNode: function getOneConflict(Relation c)
return {this.forwardRelation}

end

Figure 4.7: Pseudo-Code for Computing One Minimal Conflict

Furthermore, the number of joins can easily be counted: There are two joins for
the preconditions of lines (2) and (3). With the above optimisation concerning the
computation of IX! SI, we end up with one further join in line (5). Note that the
one in line (4) has been computed earlier. Finally, the altered version of line (6) -
see above - computes one join.
Assuming a connected inconsistent constraint problem C there are thus, in the
worst case, four joins per aggregation node. This gives a total number of joins to
be performed of 4 • (|C| — 1), since there are exactly |C| — 1 inner nodes in the
aggregation tree. The resulting linear worst case time consumption of O(|C|) has
also been found in [59].

The worst case assumes that any invocation of the middle method in Fig. 4.7 will
approach line (6). Although this will not always be the case, it certainly is after the
initial call in line (1), provided that the root node n is not a leaf node. This is because
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the preconditions of the lines (2) and (3) simplify, in that case, to testing whether
nl.forwardRelation.isEmptyO and n2.forwardRelation.isEmpty(). Neither
should be the case, for otherwise the forward phase should have terminated before
creating a father node for nl and n2.

4.4.3 Providing Minimal Explanations

Chapter 3 traces the problem of computing minimal explanations back to providing
minimal conflicts for a slightly altered constraint problem; see Th. 5. The main
task of this subsection will hence be to provide pseudo-code for the construction of
an aggregation tree for the altered problem. The respective procedure has already
been described in Subsect. 3.3.5, right after the proof of Th. 5. The pseudo-code
can immediately be written down, as presented in Fig. 4.8.
Obviously, the method name in line (5) is intended to be in accordance with the
name of the hosting method of Fig. 4.8. Thereby, we can provide all or just one
minimal explanation, respectively, for the tightest restriction that has been found
for the variable x during the backward phase.

Engine :
(1)
(2)
(3)-

(4)
(5)
end

Vx<-
sx <-

function get[One/All]Explanation[s](Variable x)
— solutions.entryFor(x)
— Vx.complement()

if ~sx. isEmptyO throw exception" ''nothing "to~ explain'"'

F<—
n <—
n' <-

- AggForest computed during forward phase
-node in F representing e(x); see Lem. 5, 1.
— n.alterTree(x)

return nJ.get[One/All]Conflict[s] (sx)

AggNöde:

(6)
(7)
(8)
(9)
end

nl,
rl,
X<—
this
if
else

procedure alterTreë(Variable x)
n2 <— 1st, 2nd successor of this node
r 2 < — ( n l , n2).forwardRelation
- this.forwardRelation.variables U {x}
.forwardRelation-«— rl. join(r2) .project(X)
this.isRootO return this
this.father.alterTree(x)

Figure 4.8: Pseudo-Code for Providing One or All Minimal Explanations

The top method in Fig. 4.8 expects thus the Engine's state to be solved, that is,
both the forward and backward phase have already been performed. In particu-
lar, this implies that the problem at hand could not be proved to be inconsistent.
And the attribute solutions of the given instance of Engine is indeed filled. Conse-
quently, the accessor in line (1) returns the representation Vx of some approximation
Vx of the tightest restriction tx for x.
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sx, as computed in line (2) is supposed to represent sx as defined in (3.16). So, in
order to make this work, we need an operation complement implemented for any
Relation that has the special structure of sx. It is noteworthy that we need not
implement that operation for all instances of Relation.
Line (3) performs the test whether sx is found to be unsatisfiable which is equivalent
to Vx representing a relation that allows for any sensible assignment to x. There
is nothing to explain whenever the test yields true. Only otherwise, the algorithm
continues.
In order to verify that line (5) returns indeed all or one minimal explanation, respec-
tively, we need to take a closer look at line (4) and thus at the alteration procedure
at the bottom of Fig. 4.8.
As has already been described in Subsect. 3.3.5, alterTree starts at the aggrega-
tion node representing the unique node e(x) that eliminates x. Line (6) computes
the new scope that differs from the old one in that it now contains the variable x.
Consequently, line (7) re-performs the aggregation. This process is repeated in a
bottom-up manner - see line (9) - until the root node of the aggregation forest at
hand is reached; line (8). Note that this is the exact translation of the procedure
given in Subsect. 3.3.5. The resulting node n' in line (4) will be a representation of
the altered root, there denoted by p' = n[.
However, here is a little modification. The aggregation tree Cx constructed there
was rooted at some node p* = irq)(p' tx sx) with successors p' and sx. We can omit
that construction here, because invocation of get [One/All] Conflict [s] (full) at
p* would immediately result in the call get [One/All] Conflict [s] (sx) at p'\ see
line (4) of Fig. 4.7. Moreover, line (5) in that figure would assign to S2 the singleton
set {sx} which would have to be excluded from any minimal conflict in order to
provide a minimal explanation, cf. Th. 5.
Therefore, line (5) of Fig. 4.8 is the appropriate measure to derive one or all minimal
explanations, respectively. Furthermore, none of the resulting explanations is going
to contain sx, as desired.
Clearly, the bottom method alterTree will modify all nodes on the path from the
root down to the initial node n. This needs to be taken care of by any subsequent
method that assumes a valid aggregation forest.

As to the time complexity of the given pseudo-code, it is straightforward that the
cost of the top method is the same as that of the respective conflict-computing
method. In order to see that, we argue that the cost for line (4) is dominated by
that of line (5) :
The operations in line (7) can be compared to one aggregation of the forward phase.
The fact that we increase the goal interface by one variable does not matter. So,
alterTree consists basically of k aggregations, where k is in the worst case some
O(|C|), where C denotes the initial constraint problem.3 In other words, line (4)
has a worst case cost that relates to that of the forward phase, i.e. O(|C|).
We have seen that deriving one minimal conflict takes a linear number of joins,
i.e. also at least a linear cost. Therefore, the complexity of line (5) dominates that

3This worst case materialises for an extremely unbalanced tree. Otherwise, we should rather
expect A; = 0(log(|C|)).
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of line (4), as hypothesised above.

4.5 Analysis of Problem Sequences

4.5.1 Context Management

Section 3.4 is dedicated to solving sequences of numerous constraint problems. The
main characteristic of problem sequences for the engineering tasks we are addressing,
is the similarity of neighbouring problem instances, which we also called contexts.
Typically, and as carried out in Subsect. 3.4.1, those multiple problems can be cap-
tured by means of context spaces; see Def. 17.

Even when the distinct contexts are rather different in the sense that they do not
share too many constraints, our prototype implementation of RCS is equipped
with operations that support a quick switch-over from one context to the next.
Those are the operations illustrated in Fig. 4.2 for altering the pool of active con-
straints. Basically, in order to analyse the family of constraint problems {Cjjie/, any
c € Uie/ Ci needs to be made known to the class Heap that is described in a previous
subsection. Afterwards, MCS can be prepared for analysing the constraint problem
Ck by activating all c £ Ck.
As has been pointed out in Sect. 3.4, a switch-over from Ca to C\, comprises the
potential for reusing certain computations. Those basically concern all derivations
based on the'constraints in Ca f) C&. The discussion in Sübsect. 3.4.2 leads to the"
algorithm presented in the next subsection, which collects all reusable subtrees of
an existing aggregation forest.

Although the alteration of the pool of active constraints can always be accomplished
by means of addRelation and removeRelation, we expect our problem sequences
to fit nicely into the structure of a context space as defined by Def. 17. Therefore,
facilities for representing context spaces as well as special methods for a switch-over
from a context Ca to the next, Cb, have been implemented in our prototypic imple-
mentation of RCS.
The appropriate measure for a context switch is the Engine's method setContext;
see Fig. 4.1. That operation expects as argument an array of integers with as
many entries as there are instances of OneOf in the context space maintained by
the Engine. If the ith entry is j , then a call of setContext will set the attribute
currentLeaf Node of the ith OneOf to point to its j t h alternative.
Of course, on a lower level this will again be implemented via appropriate invoca-
tions of addRelation and removeRelation. Also in this scenario, where the Engine
maintains an instance of Cluster that represents a context space, an effective ana-
lysis of the entire space can and must be supported by reusing certain subtrees of
an existing aggregation forest.

4.5.2 Reuse

The situation RCS is facing is the following. A context Ca has been analysed, re-
sulting in some aggregation forest Fa- The solving instance of Engine holds a link
to that forest. Then, in order to analyse the next context Cb, each c G Ca\Cb has
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to be removed from and each c £ Cb\Ca needs to be added to the pool of active
constraints.
Clearly, we need to identify all reusable subtrees of Fa, given the goal context Cb
which is already activated. This is done by the pseudo-code presented in Fig. 4.9.
That code alters the instance of AggForest, which represents Ta before the invoca-
tion, and a valid aggregation forest Tb for C& afterwards. The alteration itself takes
place in line (6), where the set of the forest's trees is modified.

AggForest: procedure reusableSubtrees(Set of LeafNodes newL)
oldL <— set of LeafNodes of th is forest

(1) for each n 6 oldL \ newL
n.markUpwardPath()

(2) X<— U {n.forwardRelation.variables I n € newL \ oldL}
(3) for each x 6 X

n <— node in th is forest representing e(x)
n.markUpwardPath()

(4) newRoots <— newL \ oldL
(5) for each root node n in th is forest

n.collectUnmarkedSubtrees(newRoots)
(6) (set of root nodes of th is forest) <— newRoots
end

Node: procedure markUpwardPath()
mark th i s node
if (this.isRoot) return
else this.father.markUpwardPath()

end

Node: procedure collectUnmarkedSubtrees(Set of Nodes N)
(7) if ( this node i s unmarked) N <— N U {this}
(8) else if ( this i s not a leaf)

n l , n2 <— 1st, 2nd successor of th is node
nl.collectUnmarkedSubtrees(N)
n2.collectUnmarkedSubtrees(N)

end

Figure 4.9: Pseudo-Code for Collecting Reusable Subtrees

The presented pseudo-code is, once again, a direct translation of a procedure that
has already been given in natural language in Subsect. 3.4.2. The iteration in line
(1) captures step 1 of the algorithm stated there. Hence, upward marking affects all
those nodes that are later to be abandoned. Step 2 is realised by means of line (2)
and the iteration in line (3). That is, for any variable x eliminated in the existing
aggregation forest, which is re-introduced by some new constraint, the upward path
from e(x) must be discarded.



108 CHAPTER 4. RELATIONAL ENGINE

The collection of newly introduced constraints as well as of maximal reusable sub-
trees is done by line (4) and the iteration in line (5), respectively, which performs a
call for each aggregation tree in the forest.
The procedure for upward marking is straightforward. Note that a node may be
marked several times. Any node that has been marked at least once is going to be
discarded.
The bottom procedure collectUnmarkedSubtrees traverses an entire aggregation
tree. Whenever a node n is approached which is unmarked, the implementation
of markUpwardPath guarantees that there is no marked node in the subtree A(n)
rooted at n. Thus, line (7) is the only case, in which the traversion of the tree is
stopped. Otherwise we descend - see line (8) - into both subtrees of n, continuing
the traversion.
Lem. 8 states that this algorithm provides us indeed with a valid aggregation forest
for the new context, provided by the argument newL.

Note that we may call forward as depicted in Fig. 4.3, right after reusableSubtrees,
in order to execute the forward phase and to decide whether the new context is con-
sistent. Also in general, none of the backward relations attached to nodes in the
altered forest will be valid any longer. We need thus to re-run the backward phase;
of course only in the case that the new context turned out consistent.

How many root nodes are there going to be in the altered aggregation forest. Obvi-
ously, _:

• For each newly introduced constraint, there is a new root.

• Suppose, we discard a single leaf node À in some tree A and consequently the
entire upward path. Then we obtain I — 1 reusable subtrees, where I is the
length of the path p(A) - % A, i.e. the number of nodes on that path.

• If we discard some eliminating node e{x) and its upward path, we get I + 1
reusable subtrees with I again being the path length.

In the worst case, when A is extremely unbalanced, / relates to the number of leaves,
i.e. at worst I = O(|C|), with C denoting the old context. For a balanced tree, we
expect however I = O(log(|C|)). It is easy to verify that those results will also hold
for context switches that discard more than one but still a small, bounded number
of constraints.
Therefore, assuming a context switch with few changes, we can expect a logarithmic
number of trees in the altered tree. At the worst, it is going to be linear. In our
implementation of RCS, any AggForest can provide a statistic that lists minimal,
maximal and average lengths of all root-leaf paths. This has already been men-
tioned in Subsect. 4.1.4, where AggController was pointed out as the class that
implements the respective static measuring methods. Equipped with information of
that sort, we may prevent the invocation of reusableSubtrees for any instance of
AggForest with a "poor" statistic.

Let us finally take a brief look at the time consumption of the pseudo-code given in
Fig. 4.9. For that, we shall consider only a very simple case. Hereby, the context
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switch changes the currentLeaf Node of only one OneOf. Furthermore, all alterna-
tives ofthat OneOf are assumed to mention the same variable(s).4

Clearly, the loop in line (1) marks a certain root-leaf path in some tree of the given
forest. But any node n in the loop at line (3) is going to lie on the same path. There-
fore, that loop's marking activity will not mark any previously unmarked node. The
collection part in line (5) will take a time of O(l), where I denotes, as above, the
path length of the marked path.
Summarising, in this simple scenario, we end up with a worst case time consumption
of O(|C|), where C denotes the old or the new context. Again, for a well-balanced
tree, we can expect this effort to drop to O(log(|C|)).

This result will similarly hold when the performed context switch modifies not just
one currentLeafNode but a certain number which is bounded by some constant.
Additionally, not all alternatives of the respective OneOf s need to have coinciding
sets of variables, as in the above simple scenario. We just need, again, a constant
bound for the number of newly introduced variables when moving from one alter-
native to the next.
It should be clear that, for most practical applications, the analysis of the respec-
tive context spaces can be organised in such a way that those constant bounds may
indeed be provided.

4.6 Utilisation of Aggregation Strategies

We shall complete this chapter by presenting the pseudo-code for the utilisation of a
generic aggregation strategy. Once again, the code is a straightforward consequence
of previous formalisations as carried out in Chap. 3.
The assumption here is that we are provided with an instance of Cluster that
represents a generic aggregation strategy as defined by Def. 18. Aspects of this rep-
resentation have already been discussed in Subsect. 4.1.6. Lemma 9 gives a clue as
to how to interpret and process the given Cluster. The local aggregation strategy a
is provided by an appropriate implementation of getBestNextAggregation at the
class AggForest. It is going to be needed only in connection with item 4. in Lem. 9.

Figure 4.10 shows, at the top, the operation get AggForest that returns a new
instance of AggForest which is the representation of O(n); see Lem. 9. That method
first collects all immediate Leaf Node successors of the Cluster; see line (1). This
corresponds to item 1. of Lem. 9.
The iteration in (2) reflects item 2. of the same lemma. Likewise, the loop in line
(3) accomplishes the interpretation of all hosted Projections. Note here, that the
bottom method takes also care of the correct computation of X as stated in item
3. of Lem. 9.
The interesting iteration in line (4) involves recursive calls for all subclusters of
the current strategy cluster. In line (5), all partial aggregation trees are known
and collected in the set of root nodes N which is used to form a new instance of

4Note that this is typically the case for a OneOf that captures all positions of a switch or all
possible assignments for some behavioural mode variable in diagnosis.
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AggForest. Finally, line (6) realises the forward phase for that forest according to
the implementation given in Fig. 4.3 with the following minor changes:

Note that we make here, in Fig. 4.10, a parametrised call to the method forward
which was there stated without any argument. Still, that mismatch can easily be
recovered. We can modify the bottom procedure in Fig. 4.3 to make it expect a set
of protected variables that must not be eliminated during the entire forward process.
The only other modification we need to make concerns line (1) in Fig. 4.3: The
local strategy implemented via getBestNextAggregation must also be provided
with that set of variables. As a consequence, the proposed aggregation node n will
contain no protected variable in its set of eliminableVariables; cf. Fig. 4.1. Then,
the aggregation in line (3) of Fig. 4.3 will leave all protected variables uneliminated.

Cluster: function getAggForest()
(1) N <— LeafNodes hosted in th is Cluster
(2) for each OneOf o hosted in th i s Cluster

N <—N U {o.currentLeafNode}
(3) for each Projection p hosted in th i s Cluster

N<—N U {p.getLeafNodeO}
(4) for each (Sub-)Cluster c hosted in t h i s Cluster

F <— c.getAggForest()
N-+-—-N-U-(-set-of-root-nodes-of--F-)

newForest<—new AggForest(roots: N)(5)
(6)

end

newForest.forward(this.interfaceVariables)
return newForest

Projection: function getLeafNodeO
n «-̂ — Leaf Node hosted in this Pro jecion
r < — n.forwardRelation
X<—this.interfaceVariables D r.variables
return new LeafNode(forwardRelation: r.project(X))

end

Figure 4.10: Pseudo-Code for Processing a Generic Aggregation Strategy



Chapter 5

Architecture and Algorithms of
a Relational Processor

The previous chapter presents the high-level algorithms of our relational con-
straint solver, as suggested by definitions, lemmas and theorems proved in
Chap. 3. All of them assume that there be a special module that allows for
the representation of constraints, their efficient pairwise combination according
to a join operator and their manipulation by a project operator. This chapter
shall explain how such a module can be designed and implemented. Constraints
will observe a disjunctive normal form in which each disjunct is in a so-called
partially solved form. That form is inspired by existing canonical forms for the
representation of conjunctive constraints. Also, issues of arithmetic terms and
of values will be discussed.

5.1 Overview

In the previous Chaps. 3 and 4, we devised a separation between the formal foun-
dations of our algorithms and practical aspects of their prototypic realisation. This
was due to the fact that the main focus of this dissertation is indeed on the higher
level that deals with a relational engine.
Still, aspects of the lower level concerning a relational processor are also not to be
underestimated. And since all high level algorithms rest upon the lower level imple-
mentations of our fundamental relational operators, great care needs to be taken.
However, we shall here not follow the above separation of formal and practical is-
sues. Instead, formal investigations will be directly included in the general train of
thought of this chapter, whenever necessary.
We will start with an overview, presenting a class model in UML. Afterwards, the
main services are recapitulated, that must be provided by a relational processor. The
presented class architecture reflects our intention to represent constraints in disjunc-
tive normal form. With respect to this canonical form, so-called atomic relations
constitute the terminal elements. Those always relate two terms. Consequently, our
relational processor facilitates further modules for the representation and manipu-
lation of terms and, as their ground representatives, of values.
In order to implement the desired relational operator project, conjunctions of atomic
constraints are maintained in a so-called partially solved form which is going to be
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treated before the actual realisation of that operation will be discussed.
The chapter ends with more detailed descriptions of the term and value modules
comprised in our relational processor.

Relation

join(Relation)
project (Variables)
isEmptyO
getWeightO
or(Relation)

Factory

makeAtom(Term, RelationType, Term)
makeAnd(Set of Atoms)
makeOr(Set of AbstractAnds)

Abstractor
1

Empty Full

AbstractAnd
ands

2..O)
Or

RelationType

O..00

Atom

complementQ

atoms

2..00 0..00
And

O..°o

Term

variables
Variable

term modulo

Value

value module

Figure 5.1: UML Diagram of a Relational Processor

Figure 5.1 shows a UML view of one possible implementation of a relational proces-
sor. The given architecture corresponds to our actual prototype of RCS.
The classes Empty and Full will only be instantiated once. This means that any two
relations that have been found unsatisfiable or nonrestrictive, respectively, will be
represented by the same instance. Note that this eases the implementation of a very
cheap check for equality, which works via strong object equality. Clearly, we need to
follow the paradigms introduced in Subsect. 4.1.1. Thus, we can only then represent
a relation r by the singleton instance of Empty if we were able to prove r ~ 0, that
is, if the corresponding call of isEmptyO yielded true. Likewise, whenever we are
able to prove r ~ D, r is going to be represented by the singleton instance of Full.
More generally, in order to find a "good" representation for a given constraint c,
our prototype tries to identify a "simple" element d of the equivalence class [c]~, in
the sense of Def. 6, that is, c ~ d. Then, the representation of d serves as repre-
sentation for c. The task of finding an appropriate d, given c, is accomplished by
the class Factory which is depicted at the top right of Fig. 5.1. That class hosts
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a bunch of static methods for creating instances of values, terms and constraints.
Those creation operations will perform certain manipulations with the above goal,
and e.g. return the singleton instance of Empty when asked to instantiate the con-
straint x / x. As in the example, most of the undertaken reformulations will be
triggered by simple syntactical patterns.
Apart from Empty and Full, Fig. 5.1 depicts the class Abstractor, instances of
which represent disjunctive constraints. Each disjunct will be represented by an
instance of AbstractAnd. An Abstractor with at least two disjuncts - thus a true
disjunction - concretises to Or, whereas any single-disjunct disjunction collapses to
an instances of AbstractAnd.
Similarly, an AbstractAnd is to represent a conjunction of atomic constraints. As
long as there are at least two conjuncts in a conjunction, it is going to be repre-
sented by the class And. Again, single-conjunct conjunctions are just single atomic
constraints that are captured by Atom.
In our implementation, an Atom relates exactly two instance of Term, where the sort
of relation, i.e. equality (=), inequality (<, <, >, >) etc., is represented by the class
RelationType. There are only as many instances of that class as there are sorts of
binary relations we intend to represent. For example, two atomic relations capturing
equations will maintain links to a coinciding instance of RelationType, namely the
one that stands for equality (=).
As for terms, Fig. 5.1 indicates, by the light grey box, that there are actually numer-
ous classes for representing terms. All of them are derived from Term, and we shall
have a look at terms later on. Two ground representatives of terms are variables
and values. Also for values, there is a whole value module - in Fig. 5.1 depicted by
the dark grey box - with several classes, that is discussed below.
Any relation either directly maintains its set of variables in an appropriate attribute,
or can provide that set on demand, by means of a retrieval method. Note that
Fig. 5.1 also includes the possibility of relations without variables (cf. multiplicity
O..oo), as is the case of Empty and Full, and only for those.

5.1.1 Services for a Relational Engine

Going back to Fig. 4.1, Fig. 5.1 consequently lists the methods

• join: for computing the representation of two relations' join,

• project: for obtaining projections of a given relation onto subsets of its
variables,

• isEmpty: for determining whether a relation may be regarded unsatisfi-
able,

• get Weight: for providing a measure for "how constraining" a given relation
is. A smaller result means a higher constrainedness.

Definition 4 shows that the join of two relations is reflected in the logical and of
two conditions: We say that the join of r\ and 7-2 contains all tuples, appropriate
projections of which are tuples of r\ and of r%, respectively. Therefore, join is not
only important in connection with the high-level algorithms developed in Chap. 4,
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but is the natural means to produce a representation of the conjunction of two
existing relations.
Likewise, we are going to need an operation for computing their disjunction. This
is the purpose of or, as listed in Fig. 5.1, see class Relation. So, by mentioning
join and or, we intend to address also the aspect of constructing arbitrary and-/or-
junctions of existing relations. Clearly, this covers tasks of instance creation and
should hence also be considered a service for a relational engine.
Let us, for completeness sake, state a formal definition for the disjunction of two
arbitrary constraints.

Definition 20 (Disjunction)
Let c = (X, A) and d = (Y, B) be two non-trivial constraints. By overloading the
symbol 'V " for logical or, we define the disjunction of c and d according to

cVd =f (xuY,\a:XuY—> \J dom{z) : a\x S A V a\Y <E B I ] .
V I zexuY ) )

Set furthermore for any constraint c,

c V 0 = 0 V c = c
cVD = DVc = D.

Note the similarity to Def. 4 for non-trivial constraints; we just replace logical and
by or in the right-hand side set of assignments. The disjunction operator is - just
like xi - commutative and associative. A proof is omitted but can be obtained by
some simple modifications in the proof of Lem. 2; see appendix.

Finally, complement, implemented at Atom, has already been mentioned in Chap. 4.
The provision of minimal explanations, as proposed by the code of Fig. 4.8, requires
that method. Already there, we pointed out that complement needs to be imple-
mented only for a certain category of relations. More concretely, of interest are those
relations that represent tightest bounds for single variables. In our prototype those
are always going to be instances of Atom which relate an instance of Variable and
one of an appropriate subclass of Value; see the description of the value module in
a later section.

Summarising, Fig. 5.1 mentions operations that are essential for constructing more
complex constraints and for the implementation of algorithms of a relational engine.
However, more methods will be needed in the context of actually realising those
important operations. For the sake of clarity, these have been omitted in Fig. 5.1
but will be introduced in subsequent paragraphs.
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5.2 How to Implement the Join Operator

5.2.1 Relations in Disjunctive Normal Form

As already mentioned, in our Java implementation of RCS, any constraint is repre-
sented in the so-called disjunctive normal form (DNF). This means that a constraint
is, at top level, separated into a number of disjuncts. Those, in turn, are conjunc-
tions of atomic constraints. Fig. 5.2 illustrates this structure for the example of
the bulb constraint that was part of a simple component library, in Fig. 2.3, for the
construction of electric circuits. The constraint decomposes into three distinct alter-
natives, depending on whether the mode M equals ok or broken, and - in the former
case - the bulb is lit or not. Moreover, we see that atomic constraints common to
two or all three disjuncts are represented by the same instance of Atom which turns
the naive notion of a tree into the DAG depicted in Fig. 5.2.

M, R, C,L i1+i2=0 A Bulb
7* *T ( ( M = ok A Vf - v2 = R- \f A (

(\if\ zC A L = on) v (\if\ <C A L = off) ) )
v ( M = broken A /, = 0 A L = off) )

Atom

IM * c

Figure 5.2: The Bulb Constraint of Fig. 2.3 in Disjunctive Normal Form

What happens, when there is only one disjunct in a disjunction? Refering to Fig. 5.1,
this is clearly the case, when Abstractor is specialised to the subclass AbstractAnd
and not to Or. Likewise, AbstractAnd may be specialised to Atom instead of And.
Consequently by transitivity, Atom is a specialisation of Abstractor. In that sense,
we may say that instances of AbstractAnd and of Atom, although no disjunctions,
are also in DNF.
It is well-known that any and-/or-junction of logical formulas can be translated into
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DNF. Hence, our choice is not a limitation. Moreover, there are some reasons for
choosing the DNF instead of other common canonical forms.
First of all, when modelling a typical engineering component, there are almost al-
ways a certain set of possible costumisations. In additon, a component typically has
- for the purpose of failure detection and the analysis of failure effects - different
behavioural modes, as the bulb in our electric library. Moreover, many components,
as e.g. a switch, facilitate different behaviours according to different control actions.
All these aspects suggest to view a component as a set of alternative actual embod-
iments which gives rise to modelling components mathematically as disjunctions.
Another argument is provided by the way we intend to decide consistency: Suppose
that the entire constraint problem of interest is represented in a single constraint in
DNF. Then, in order to decide whether there is a solution, we must decide whether
at least one of the disjuncts has a solution. This, in turn, is done by building an
aggregation forest from all atomic constraints in the respective conjunction. Obvi-
ously, the fact that a relation in DNF explicitely contains conjunctions, makes the
forward phase more immediately applicable. Note that in this respect, the conjunc-
tive normal form would be less advantageous.
Apart from the consequent representation of our relations in DNF, we experimented
with a factored-out DNF. This is a DNF, where atomic constraints common to all
disjuncts are separated from the rest of the respective and-/or-junction. In our
example in Fig. 5.2 the equation of currents, i± + 12 — 0, would be identified as
belonging to alLthree disjuncts and factoredout._However,J;he_advantage_of a more
economical representation by means of the factored-out DNF, was in our experi-
ments outweighed by the additional cost for identifying common atomic constraints
and the maintenance of that normal form, especially after applications of the join
and project operators.
On the contrary, facilitating the DNF comes at an exceptable cost. We shall see
below that the operations join and or for combining two relations in DNF can be
implemented relatively straightforwardly.

Before that, we remark that in previous versions of our prototype, there had been
an additional class named Table for representing a special sort of relations. Those
resemble typical tables of a database: An instance captures a matrix of values with
one column for each variable of the relation and finitely many rows. Each table
cell contains a value of the corresponding variable's domain. Then, a row is in-
terpreted as the assignment that maps each variable to the respective value entry.
Furthermore, the entire table captures a set of alternative assignments, and is thus
an extensional representation of a non-trivial constraint in the sense of Def. 2.
Note that any instance of Table is ad hoc in DNF. The removal of the class from
our design took place in a certain stage of consolidation. At that time, the DNF
was introduced and any table could suddenly also be represented by a disjunction
of conjunctions of atoms, where each atom is just an equation relating a variable
and a value. During this phase of consolidation, our intention was mainly to remove
redundant facilities for representing relations.
Today, the prototype is - at the level of relations - relatively stable in its class ar-
chitecture, and we could re-introduce Table. Even though this would clearly also



5.2. HOW TO IMPLEMENT THE JOIN OPERATOR 117

re-introduce redundancy, we could now better exploit the advantageous of a more im-
mediate representation of finite sets of assignments. For instance, by using Tables,
we would ease the handling of constraint problems with a considerable amount of
finite domain constraints as common in constraint satisfaction problems.

5.2.2 Join and Or

Let us now take a look at the implementation of join and or for the combination
of two Relations is DNF. Our implementation has to deal with all possible pairs

Empty: function join(Relation r)
return (sole instance of Empty)

Full: function join(Relation r)
return r

Or: function join(Or/And/Atom r)
result <— sole instance of Empty
for each disjunct d of th is Or

(1) resu l t<—resu l t .o r ( r . jo in (d) )
return result

AbstractAnd: function join(And/Atom r)
(2a) A <— (set of Atoms of th is AbstractAnd)
(2b) A <— AU (set of Atoms of r)
(3) conjuncts*—minimalConjuncts(A)

if |conjuncts1=1 return (the sole conjunct)

else return Factory.makeAnd(Atoms: conjuncts)

Empty: function or(Relation r)

return r

Full: function or(Relation r)
return (sole instance of Full)

Abstractor: function or(Or/And/Atom r)
(4a) A <— (set of AbstractAnds of th i s Abstractor)
(4b) A <— AU (set of AbstractAnds of r)
(5) disjuncts<—minimalDisjuncts(A)

if |disjuncts1=1 return (the sole disjunct)
else return Factory.makeOr(AbstractAnds: disjuncts)

Figure 5.3: Combination of Two Relations via Join and Or

of terminal subclasses of Relation. Since the operations are commutative, we will
need just one implementation for both a pair of subclasses (Si,S2) and its sole
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permutation (52,-51). In our implementation, we introduced the following total
ordering among all subclasses of Relation:

Empty < Full < Abstractor < Or < AbstractAnd < And < Atom.

We made furthermore sure that, e.g., an invocation of myAtom. join(myOr) with
myAtom and myOr being instances of Atom and Or, respectively, is always dispatched
to an appropriately parametrised implementation at the smaller class, i.e. in the
example at the class Or.
The pseudo-code presented in Fig. 5.3 is also to be understood in that sense,
that is, by considering the above ordering and the described dispatching algo-
rithm. So, for example, the pseudo-code does not seem to cover the invocation
myAtom. join (myOr), but this is done by swapping the arguments and invoking
myOr. join (myAtom) which is covered by Fig. 5.3.

Let us clarify the pseudo-code of Fig. 5.3. In lines (2a) and (2b), both th is and
the argument r are expected to be conjunctions of one or more Atoms. Those lines
hence collect all those atomic relations in a single set, namely A.
Likewise, lines (4a) and (4b) collect all disjuncts of th i s and r in the set A. Some
of the given methods' parametrisations do not determine the actual class of the
respective argument. For example, the bottom method just expects an instance of

_ any subclass of_AbstractOr._ So, .in order̂  to collect all x»njuncts.jorjdisjunc;ts.,_w_e__
need to implement appropriate accessors.
We shall also state the purpose of lines (3) and (5) here. Line (3) is to remove all
those atomic constraints from the set A, that are implied by some other member of
A. Implication is here meant according to Def. 19. Thus, the invocation will discard
all overestimations and e.g. simplify the conjunction x = 3 A x € [2,4) to x = 3.
In the bottom implementation of or, the intention of line (5) is analogous: This time,
the weaker constraints will be kept. minimalDisjuncts is to discard all stronger,
that is, implying, relations. As an example, the disjunction x = 3 V x G [2,4) will
collapse to the weaker of both relations, i.e. to x 6 [2,4) which is clearly implied by
x = 3.1

Of course, in order to maintain the DNF also for any newly instantiated relation,
we have to make sure that all returned instances be again in DNF. This is indeed
easy to see by investigating all returning lines of code. Hereby, the only unobvious
exception is the line that immediately follows line (1).
But also here result is going to be in DNF, provided that line (1) always produces
a relation in DNF. This, however, may be assumed by an inductive argument which
will work as long as we can guarantee the termination of join and or invoked for
any pair of relations.

So, let us discuss - as the final issue in this subsection - the termination of the given
pseudo-code. Assuming that neither the execution of line (3) nor that of line (5)

xThe actual implementation of the two static methods minimalConjuncts and minimalDisjuncts
is straightforward. As the basic building block of both methods we will need a boolean function
implemented at Atom that expects a second instance of Atom and decides whether the first atom
implies the second.
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involves invocations of join and or, the only problem with regard to termination,
is again line (1). Here, the hard bit is the embedded invocation r . join(d). Note
that the or part of line (1) is trivial since the implementation of or does not deploy
recursion.
For that embedded call, the worst case materialises for the most complex choice of
r, that is, for r being also an instance of Or. But then, any embedded execution
of line (1) will just call join for a pair of conjunctive constraints, i.e. for a pair of
AbstractAnds. But this invokes the method starting at line (2a) which does not
impose recursive calls.
The entire argument shows that the execution of line (1) will result in a bunch of
invocations of the join method implemented at Abstract And, and will hence always
terminate. Consequently, the implementations of j oin and or are always going to
terminate and produce Empty, Full or a relation in DNF, no matter for what pair
of relations invoked.

5.3 A Partially Solved Form for
Conjunctive Constraints

We have seen above that in our implementation of MCS, we chose the DNF as
canonical form for all relations.
Furthermore, each disjunct, that is, each conjunction of atomic constraints may in
turn be represented in a special form. Clearly, such an additional standardisation
should only then be introduced when we expect advantages for the implementation
of important services.
This is the starting point for the so-called partially solved form (PSF). As will soon
become clear, that form has been tailor-made to support the project operation.
The PSF has a strong correspondence to van Hentenrycks and Imberts solved form
for linear equations, disequations and inequalities; see [43]. However, whereas there
inequalities (<, <, >, >) are translated into equations (=) using slack variables, the
PSF presented here does also allow for explicit inequalities. Moreover, our PSF may
also mention non-linear arithmetic constraints. [43] guarantees that a conjunction
of atomic constraints is satisfiable if and only if it can be transformed into solved
form. Secondly, any system in solved form that imposes a fixed value for some
variable, e.g. x to be 3, will explicitely mention the corresponding assignment, i.e. the
constraint x = 3. We shall below verify a few somewhat weaker but still useful
properties for our PSF.
First, we need to fix some terms by means of exact definitions.

Definition 21 (Arithmetic Term etc.)
Each of the following objects will be called an arithmetic term;

1. any variable x with dom(x) Ç M,

2. any value v e M, and

3. t\ o ti, for any (previously defined) arithmetic terms t\,t2 and each binary
arithmetic operator o e {+,—,-, ^ } .
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Any arithmetic term t has a set of variables, vars(t), which is in the first case
defined to be {x}, in the second 0 and in the third case vars(ti) U varsfa).
Given an assignment a : vars{t) —> \Jxevars(t) dom(x) that maps each x to some
element of dom{x), we can define the evaluation t(a), by replacing in t each variable
by the corresponding value, and ordinarily evaluating the resulting arithmetic term
of real numbers. Note however that this may fail in case of division by zero.
An arithmetic atomic constraint is a binary relation of two arithmetic terms,
ii o t2, where o E {=, ̂ , <, <, >, > } . In the case o ==, we call it an equation, for
o =^ a disequation and otherwise an inequality. For vars(ti)L)vars(t2) ^ 0, t\Ot2
is a shorthand for the non-trivial constraint (X, A), where

X = vars{t\) U vars(t2), and
A = {a : X —> \JxeX dom(x),

x i—y v € dom{x) \ t\(a) 0*2(0)}-

Thereby, the validity of the latter condition t\{a)ot2(a) is to subsume the assertion
that neither of the two evaluations ti(a),t2(a) fails.
If contrariwise, vars(ti) U vars(t2) = 0, then t\ o t2 stands for 0 or D depending on
whether the ordinary evaluation of the variable-free formula t\ o <2 yields false or
true, respectively.

Before an example will be given, we will now define our partially solved form.

Definition 22 ((Partially) Solved Form)
Let c be an arithmetic atomic constraint. Then x € vars(c) is called a basic variable
of c if and only if c = xot, where t is an x-free arithmetic term, that is, x £ vars{t),
and c is not a disequation, i.e. o G {=, < , < , > , > } •
Let now A = a\ A Ü2 A . . . A an, n G N+, denote a conjunction of artihmetic
atomic constraints. A variable x G Ui<i<n vars(ai) is named basic variable of A
if either

1. x € vars(cLi) holds for exactly one i 6 { l , 2 , . . . , n } , a^ is an equation, and x is
a basic variable of ai, or

2.\/i€{l,2,...,n} x G vars{ai) = > (ai is an inequality and x a basic vari-
able of ai).

Let B denote the set of all basic variables of A, and X = (Ji<i<n u a r s (° i ) be all
variables in A. Then, we say that A is in partially solved form (PSF) for Y,
for any Y 7̂  0, Y C\ X Ç. B. Moreover, if B = X, then A is said to be in solved
form (SF).
Finally, an arbitrary disjunction of conjunctions of arithmetic atomic constraints is
in PSF for X / in SF if and only if each of its conjunctions is in PSF for X / in
SF. In this case, any x G X is a basic variable of the disjunction.

Although this section stresses the view on conjunctive constraints, the last part of
Def. 22 actually defines the terms (P)SF also for any arithmetic relation in DNF.
This is due to the necessity to implement project for any relation in our frame-
work and hence for any relation in DNF. Still, the (P)SF is primarily a property of
conjunctions.
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Example 10: The arithmetic term (x + y) — y has, according to the above
Def. 21, the variables {x,y}. Obviously, y cancels out; therefore the arithmetic
atomic constraint z = (x + y) — y with the variables {x, y, z} contains y as a free
variable.
Note however that one must be careful with cancellation in the case of quotients:
x -T- x and 1 must be regarded distinct terms since evaluating the former, given the
assignment (x i—> 0), will fail but not pose a problem for the latter. Consequently,
x is not a free variable in y — x -i- x since this constraint implicitely forbids x to take
the value 0. This point has already been stressed in Def. 21, where we mentioned
the possibility of an evaluation to fail. The validity oit\{pL)oti{a) was there meant
to exclude the failure of either term's evaluation. We will therefore sometimes also
speak of implicit constraints: y = x -=- x implies the implicit constraint x / 0 which
must be observed in order to prevent the evaluation of x -r- x from failing.
The above constraint z = (x + y) — y as well as z = x • y have the basic variable z.
Note that the basic variable of an arithmetic atomic constraint must always appear
isolated on the left-hand side. Therefore, we will - on a syntactical level - distinguish
between the two representations z — x-y and x • y = z of the same constraint. The
latter has, according to Def. 22, no basic variable.
The conjunction2

y z
x=- A z > —1 A w<3-y A w>y + 7 A w > y A y>3 (5.1)

z y

is in PSF for {x,w}, but for no set of variables that intersects with {y, z}. Conse-
quently, the entire conjunction is not in SF. x is basic according to the first criterion
of Def. 22, w according to the second one. Note that y and z may be seen as pa-
rameters for x and w: Once those have become known, all atomic constraints can
immediately be simplified in order to impose tightest restrictions for x and w.
Regard now the algebraic equivalence

z = x-y ~ (x=- V (y = 0 A z = 0)). (5.2)
y

The left-hand side constraint has, as already mentioned, the basic variable z; the
right conjunction is in PSF for {x} (although x does not appear in the second
disjunct; cf. Def. 22). Again, x = | implies the implicit constraint y / 0 which is
therefore not made explicit in (5.2).

How will the PSF be used in the context of our implementation of
Suppose the conjunction (5.1) in Ex. 10 is the result of some join that takes place
during the forward phase. This situation is depicted in Fig. 5.4. Suppose further-
more that the subsequent projection is to eliminate the basic variables x and w.
(We shall soon see that elimination becomes trivial for basic variables.) Clearly, the
remainder of the forward phase will deal with constraints involving y and z. So,
those two variables will be eliminated later, that is, in a node that is closer to the

2When using the shorthand notation for arithmetic constraints, we will usually write "A" instead
of M.
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root of the constructed aggregation tree, cf. Fig. 5.4.
Assuming a consistent problem, the backward phase will compute tightest restric-
tions for z and y before those for x and w; suppose z turns out to be 1 and y = 4. As
already suggested in Sect. 4.3, where we discussed issues of the backward phase, it
becomes now even clearer why storing the forward join is highly beneficial; cf. also
Fig. 5.4: In order to compute tightest restrictions for x and w, we just need to
substitute all known values into the forward join which produces the bottom right
conjunction. From that we can simply read off the desired tightest restrictions:
x = A and we [11,12).

Already this example shows that tightest restrictions may be real intervals instead
of fixed real numbers. Therefore, the proposed substitution of already computed
tightest restrictions into the stored forward join, may actually replace some vari-
ables by intervals. We shall fix that problem when we discuss arithmetic terms in
more detail. Basically, we can stick to the given procedure by implementing all
arithmetic operators also for prominent subsets of R, as e.g. intervals.

forward phase backward phase

eliminates z

eliminates y

computes z = 1

computes y = 4

eliminates x. w computes x, w:

x = 4
WE [11, 12)

Figure 5.4: Advantage of the PSF in the ECS Framework

Example 10 also gives a clue as to how the idea explained in Fig. 5.4 can be ex-
tended to work also when the forward join is a disjunction of conjunctive constraints.
Regard again the equivalence (5.2). MCS may be asked to eliminate x. Then we
should prefer to store the right-hand side conjunction as forward join. Because then,
the computation of x in the backward phase will also work by simply substituting
tightest restrictions for y and z.
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5.4 An Implementation of Projection
Based on the Partially Solved Form

In the previous section, one strong argument for the PSF was explained that has
to do with the simplicity of joins performed during the backward phase: At a given
aggregation node n, we only need to store that representation of the forward join
that mentions as basic variables all the variables eliminated at n; see again Fig. 5.4.

A further advantage shall be explained in the first subsection, below. As will turn
out, the elimination of basic variables becomes very easy. Also, we can guarantee
that the relation returned by our algorithm represents indeed the correct result
according to Def. 5. So, when eliminating a basic variable we will not just obtain
an overestimation, as assumed in Th. 6.

Summarising, once we have managed to find a representation of our relation, in
which all variables that we are going to eliminate are basic, the elimination itself
can be accomplished efficiently and correctly. Moreover, that representation will
significantly support the respective backward join.
The remaining question is then, how to establish that useful representation. This is
going to be addressed in the second subsection, i.e. in Subsect. 5.4.2.

5.4.1 Projection

Let us once more consider the conjunction A of arithmetic atomic constraints in
(5.1). Suppose we were to eliminate x and w from A.
The result of those eliminations will no longer mention x and w, but only y and z.
In order to compute the correct projection, we need to keep all those (y, ,z)-tuples
that can be completed to solution tuples over (y, z, x, w). So, what are those (y, z)-
tuples?
First of all, we need to pay attention to the domains of y and z. Secondly, all atomic
constraints c in A with vars(c) Ç {y, z) must hold, that is, z > — 1 and y > 3.
Thirdly, we are permitted to pick only those values for y and z that observe all
implicit constraints, i.e. that allow for an evaluation of all arithmetic terms in A
without failure. In our example, this excludes the choices z = 0 and y = 0.
Let us now pick an arbitrary (y, z)-tuple that observes the above three conditions,
e.g. y = 3.1 and z = 1. We can then immediately compute x = y-^-z = 3.1-^-1 = 3.1;
thus any (y, z)-tuple can be enlarged to a (y, z, x)-tuple.
For w the task is however more subtle since w and x are basic variables for different
reasons, cf. conditions 1. and 2. of Def. 22. Substituting y = 3.1 and z = 1 gives us
the bunch of inequalities

w< 3-3.1 A w>3.1 + 7 A w> 3 . 1 - 1-^3.1

that must hold for w but do not hold for any element of R.
Obviously, the feasible (y, z)-region defined by the above three conditions is not re-
strictive enough, since it allows for a choice for y that violates constraints in A. It
must hence further be narrowed so that it exclude at least (y, z) — (3.1,1). We can
do so by ensuring that our choice for y satisfy the constraint 3 • y > y + 7 which is
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implied by A, namely by w < 3 • y and w > y + 7. Then the choice y = 3.1 would
be forbidden right from the start.

That kind of fixing the problem is well-known and is subsumed under the ideas re-
lated to Fourier elimination, [28] : For any two inequalities w -< tupper and w >~ tiower

with -<£ {<, <} and y G {>,>}, we just add the implied inequality ticker < tupper,
with -<€ {<, <} appropriately. After that kind of preprocessing our conjunction A,
we can always complete a partial tuple for (y,z) to one over (y, z, x,w), provided
our choices for y and z observe all constraints c with vars(c) Ç {y, z}.

Fourier elimination has been the subject of study in many works. The main prob-
lem here is that we will have to add one implied constraint per pair of inequalities
that provide a lower bound term and an upper bound term for the variable to be
eliminated. In general, Fourier elimination becomes, due to that reason, doubly
exponential in effort and thus impracticle. This is also mentioned in [46] which
also cites work by Lassez, Cernikov and Huynh related to the problem of keeping
the number of added inequalities small; see also [42]. In [46], the identification of
all those additional inequalities that are not implied by other constraints and must
hence indeed be added, is pointed out to be impractical. Interestingly, [46, Sect. 3.2.]
also alludes to the density of coefficient matrices for purely linear problems, with
advantages in the case of a sparse matrix. In MCS, this relates again to our low

'densityassumption in cömpösitiönäTsysteln~models.
Moreover, by adding just very few, namely the most "important", implied inequal-
ities, we may manage to keep Fourier's elimination tractable. Clearly, by omitting
some implied inequalities, we will obtain as projection an overestimation of the exact
relation. But this fits nicely in our implementation of MCS; cf. Th. 6.
Note that the elaboration undertaken here is very similar to that in [46]. See also
[35], in which the first figure presents a projection algorithm that combines Gauss
and Fourier elimination, very much like in our implementation of MCS.
Before we provide the pseudo-code for our projection procedure and state that it
yields the correct relation, let us gather the bits and pieces developed above in a
single chart. Figure 5.5 explaines in detail the actual elimination of x and w from
the conjunctive constraint in (5.1).
Basically, there are three steps. The first one adds all implicit constraints and the in-
equalities that are due to Fourier, that is, one inequality for any pair of lower-bound
and upper-bound inequalities for the basic variable w. The second step discards,
from the enlarged conjunction, all original atoms that mention a basic variable; in
Fig. 5.5 contained in grey boxes. The final step is a call to the previously introduced
method minimalConjuncts; see line (3) in Fig. 5.3. It is to remove as many atoms
as possible that turn out to be implied by some other atom in the set of conjuncts.
Figure 5.5 indicates those implications by arrows. We can drop all atoms to which
an arrow points. The result of the procedure is the conjunctive constraint on the
right.
Figure 5.6 presents the pseudo-code that captures the illustration of Fig. 5.5. The
shown methods eliminate a set of variables X for which the represented relation is
assumed to be in PSF.
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Since we prefer to represent any unsatisfiable relation by the singleton instance of
the class Empty, and similarly any nonrestrictive one by Full, line (1) is obvious.

x =y+z
zz-1
w<3y
wzy+7

w > y - z+y
y>3

make implicit
constraints
explicit

add inequali-
ties due to
Fourier

x = y+z
zz-1
w<3y

wsy+ 7
w> y - z+y

y>3

3y>y+73y
>y-z+y

zs-1
w <3y

wzy + 7
w>y - z+y

y>3

3y>y+7
3y>y-z+y

discard atoms with
basic variables

Z2-1

Figure 5.5: Elimination of Basic Variables from a Conjunction

Apart from trivial constraints, the given pseudo-code deals with relations in DNF,
the atomic building blocks of which are arithmetic atomic constraints. We will not
consider other types of atomic constraints here, but it is straightforward to extend
the respective algorithms to a larger class of constraints, as had been carried out in
our implementation of MCS. An overview over the constraint language accepted by
it will be given in the last section, Sect. 5.6, of this chapter.
Just as the conceptual construction of the PSF as given in Def. 22 suggests, the
implementation at Or is a simple iteration over all disjuncts. The result of that
middle method is thus the disjunction of the set of results for the disjuncts.
The interesting part is the bottom method, that is, the one for conjunctive con-
straints. Following the algorithm depicted in Fig. 5.5, line (2) enlarges A by adding
all implicit constraints. A formal definition of an implicit constraint could easily be
given but is omitted since the term should be intuitively clear: Due to Def. 21, the
only type of implicit constraint arises in connection with division by zero. Therefore,
we will basically obtain one implicit constraint per quotient, stating that the divisor
must not equal zero.3

Whenever the test in line (3) is positively answered, then the variable x E X is basic
due to condition 2. of Def. 22. The loops in lines (4) and (6) will further enlarge A by
inserting implied inequalities due to Fourier. The two remaining steps illustrated in
Fig. 5.5, of discarding certain atoms, are both carried out in line (8). The remainder
of the method deals with the number of resulting atomic constraints and is obvious.

What will be the result when the bottom method is invoked for a single atom in

3In our prototype, we actually allow for further functions like e.g. log, represented by an addi-
tional subclass Log of the class Term. Then, any constraint y = log(a;) implies the implicit constraint
x > 0 that can be requested from the constraint and provided by an appropriate method imple-
mented at Log.
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solved form, for example for x = y • z with the aim to eliminate xl There is no
implicit constraint here, and the if-block starting in line (3) will completely be
skipped. Line (8) leaves A empty, and the sole instance of Full is returned.

Empty/Full: function eliminateBasic(Set of Variables X)
(1) return th i s

Or: function eliminateBasic(Set of Variables X)
result < — sole instance of Empty
for each disjunct d of this Or

result<—result.or(d.eliminateBasic(X D vars(d)))
return result

AbstractAnd : function eliminateBasic(Set of Variables X)
A i— set of atoms in this conjunction

(2) insert all implicit constraints in A
Ax <— {a€i | Xn vars(a) ̂  0}
for each x £ X

(3) if (x appears in an inequality of
T< <— {* | (x > t) E Ax}
T< .— {* | (x>t)eAx}

T > ^ { t | ( x < i ) 6 Ax}
(4) for each (tiower,tupper) ET<xT>

a <— Factory.makeAtom(t2ou)er, <, tupper)
(5) if (a.isEmptyO) return (sole instance of Empty)

else insert a in A
(6) for each (tiotoer,tupper) € ((T< UT<) x (T> UT>)) \ (T< X T>)

a <— Factory .makeAtom(^ower, <, tupper)
(7) if (a.isEmptyO) return (sole instance of Empty)

else insert a in A
(8) A «—minimalConjuncts(A \ Ax)

if \A\ = 0 return (sole instance of Full)
else if |>1| = 1 return (sole atom in A)

(9) else return Factory.makeAnd(atoms: A)

Figure 5.6: Pseudo-Code for Eliminating a Set of Basic Variables

Some words should be said concerning lines (5), (7) and (9). When we briefly in-
troduced the class Factory, we pointed out that its creation methods perform some
simple checks and manipulations. Note that the atom a in the lines (5) and (7)
may have no solution, in which case eliminateBasic will return the sole instance of
Empty. An example is the atomic constraint t +1 < t for any arithmetic term t. Ac-
cording to Lem. 4, (3.7), this means that the original relation was also unsatisfiable.
In that case, our prototype was not able to detect that unsatisfiability before the
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elimination. This is an example where we represented some relation r with r ~ 0
not by the unique instance of Empty.
Likewise, the creation process in line (9) may be left with the set A = {x < y, y < x},
and thus line (9) may also return the sole instance of Empty.
Let us state and prove that the code in Fig. 5.6 returns indeed a representation of
the projection of the original relation:

Lemma 11
Let r be an arbitrary non-trivial constraint in DNF such that the terminal building
blocks are arithmetic atomic constraints. Suppose furthermore that r is in PSF for
some set of variables X.
Then, taking a representation of r and applying to it the pseudo-code in Fig. 5.6
produces a representation of Trvars{r)\x(r) •

Suppose now that we are given an arbitrary arithmetic constraint r in DNF, as in
Lem. 11. How can we implement the project operator as required by the relational
engine?
Assuming a method that turns any given variable in vars(r) into a basic variable,
we can immediately utilise the above procedure. So, if we are to compute a repre-
sentation of ftvars(r)\x(r)> where X Ç vars(r), there is an obvious way to do so: We
pick some variable that is to be eliminated, x G X, make it basic in r and eliminate
it. Afterwards, we proceed with the result ^vars(r)\{x}(,r)l s e e Lem. 11. This imple-
ments a loop over all variables that are to be eliminated.

In our concrete implementation of RCS, we chose an alteration of that straightfor-
ward approach. There, we try in each iteration to make as many variables of X
basic as possible. Then all those are eliminated at once. For completeness sake, we
shall not omit the pseudo-code for the important project operator; see Fig. 5.7.
The set E contains all variables that need to be eliminated, in order to obtain the
projection onto Y. Clearly, we try to apply eliminateBasic, see Fig. 5.6, with E as
parameter. To this end, any element of E needs first to be made basic.
Line (1) captures an obvious termination criterion. If that does not apply, line (2)
calls the method we are investigating in the next subsection. It tries to make basic in
the given relation as many variables of the argument set, that is, of E. Afterwards, F
records the portion of E for which toPSF succeeded. In line (4), we know that none
of the elements of E could be made basic. Furthermore E is certainly not empty.
Since our implementation depends on being able to make a variable basic before it
can be eliminated, we clearly cannot complete the elimination. That is why line (4)
throws an exception.4

Otherwise, that is, in line (5), IFI must be at least 1 and the altered version of r will
have one less variable. Therefore, the recursive call in line (6) will always approach
a simpler task, and the entire method will hence always terminate.

Does the result indeed represent the desired projection? When terminating in line
(1), the set Y must - by construction of E - subsume all variables of the original

4Note however that most high-level implementations at the relational engine, as for instance the
forward phase, would still function even when we could not eliminate all proposed variables.
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Relation, and returning th i s is the right measure.
Termination due to line (3) happens when toPSF discovered that the original relation
is unsatisfiable, and the returned relation is obviously correct.

Empty/Full: function project(Set of Variables

return this

Abstractor: function project(Set of Variables

(1)

(2)
(3)

(4)

(5)
(6)

E < — (variables of this relation) \ Y

if (E = 0) return this

else

r<— this.toPSF(E)

if r.isEmptyO return (sole instance of

F < — (basic variables of r) n E

if (F = 0)

Y)

Y)

Empty)

throw exception ''overestimating projection''

else

r <— r.eliminateBasic(F)

return r.project(Y)

Figure 5/7: Pseudo-Code^forjüqmputing Projections

It remains the case of termination in line (6). Note that, when approaching line (5),
r represents the same constraint as this, since line (2) may alter the representation
but must preserve the represented constraint (up to equivalence), as discussed in
the following subsection. By Lem. 11, line (5) turns r into some projection of the
original relation and eliminates at least one variable. Note however that we only
eliminate elements of E and therefore never of Y. Consequently, each execution of
line (5) during the recursion will produce projections with less and less variables.
Finally, all variables apart from the ones in Y will have been eliminated. This infor-
mal argumentation shows that the code in Fig. 5.7 observes indeed the specification
of project.

The missing building block in our presented implementation of project is the method
toPSF. We shall now turn to that remaining issue.

5.4.2 Establishing the Partially Solved Form

The previous paragraph made clear what the specification of toPSF is:

• The relation for which the method is invoked and the resulting relation must
be equivalent5, and

5 Following the specification of our prototype, we may actually return an overestimation of the
original relation. Then, project, as implemented in Fig. 5.7, would also in general return only an
overestimation of the actual projection.
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• as many variables as possible of the provided argument set should be basic
variables of the returned relation.

As to the second item, it is noteworthy that the pseudo-code given in Fig. 5.7 will
work fine, as long as each invocation of toPSF in line (2) turns at least one variable
into a basic variable.

The algorithm for making a certain set X of so-called goal variables basic in an
arithmetic constraint, is, at least on an abstract level, rather straightforward. Note
that we need to implement toPSF only for all terminal subclasses of Abstractor,
cf. Fig. 5.7. Regard the pseudo-code in Fig. 5.8.

Or: function toPSF(Set of Variables X)
result <— sole instance of Empty
for each disjunct d of th i s Or

(1) result<—result.or(d.toPSF(X D vars(d)))
return result

AbstractAnd: function toPSF(Set of Variables X)
(2) Y <— X D (non-basic variables of th is conjunction)

if Y = 0 return th i s
else

(y, A) «—this.getBestEnrichment(Y, X)

if (previous line threw exception) return this

A' < — {a.solvedFor(y) I a € A}

if (previous line threw exception) return this

C < — (set of atoms of this conjunction)

if (A' = {y = t})

B<—{b.substitute(y, t ) I b £ C \ A}
else

B<—C \ A
r <— [XI A' [xi CXI B
if r.isEmptyO return (sole instance of Empty)

else return r.toPSF(X ("I vars(r))

(3)
(4)

(5)

(6)

(7)

Figure 5.8: Pseudo-Code for Making a Set of Goal Variables Basic

Let us first explain the presented pseudo-code, and then talk about issues of termi-
nation and correctness with respect to the specification of the method. The secion
closes with some remarks concerning the two methods at atomic level, solvedFor
and substitute, see lines (4) and (5), respectively.
A first investigation reveals that any call of toPSF, be it in line (2) of Fig. 5.7 or
in lines (1) and (7) of Fig. 5.8, is parametrised with a set of variables that form a
subset of the respective relation's variables.
The top implementation at Or treats the case of a disjunctive constraint. For that,
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we need to iterate over all disjuncts d and try to accomplish the task of making as
many variables as possible of X n vars(d) basic. Afterwards, the results of those em-
bedded invocations will be consecutively or-ed, in order to produce the final result.
The bottom method is imposed on a single atomic constraint or on a conjunction of
those.6

Line (2) identifies the interesting portion of X, that is, the variables that are not yet
basic but shall be made basic. Clearly, if no such variable exists, the task of toPSF
is performed and there is nothing else to do. Otherwise, a heuristic, encapsulated
in getBestEnrichment is asked to provide a best enrichment with the following
properties:

1. If there is a "good" equation in the conjunction that may be used to provide a
substitution term for some goal variable y € Y, then y and that equation will
serve as the best enrichment.

2. Otherwise, there may exist a goal variable y that appears exclusively in a set
A of inequalities, each of which can be reformulated so that y becomes basic.
In that case, (y, A) is proposed as the best enrichment.

3. Both previous cases propose that best enrichment only when making y basic
will not make any of X \ Y non-basic again. For example, (5.2) illustrates that
turning x into a basic variable makes the previously basic z non-basic again.
This property of getBestEnrichmenirensüres~the Thönötonicity of toPSF.

4. When no best enrichment can be proposed that satisfies the above conditions,
then getBestEnrichment will throw an exception that is going to be caught
and treated by toPSF.

In line (3), when the heuristic failed, we just return th i s . Note that, since Y is not
empty, the returned relation is in PSF only for some proper subset of X.
Addressing 1. and 2. of the above enumeration, we clearly have to reformulate all
atoms provided by A. Depending on the difficulty of that task and on how mature
our implementation is, the class of atomic constraints for which this reformulation
can be accomplished will be smaller or larger. We shall come back to this point
below. However, in order to make the goal variable y basic, we are dependent on
the success of those reformulations. Consequently, in case of failure, the method will
give up and just return th i s once again.
Whereas the previous parts of the procedure apply, regardless of whether y is going
to be basic according to condition 1. or 2. of Def. 22, the following if-statement
distinguishes between the two situations: In line (5), we utilise the single member
of A', y=t, to replace any occurence of y in the remainder of the conjunction by the
term t . Note that, since y is basic in y = t , t does not mention that variable.
Approaching the else part, we know that only the atoms in A mention y; cf. item
2. in the above description of our heuristic. Therefore, none of the elements of B will

Our realisation of the class And facilitates some attributes and fast accessor methods for pro-
viding all basic and non-basic variables of a conjunction. Furthermore, given a basic variable x,
the class And enables us to retrieve all atomic constraints of the conjunction in which x is the basic
variable.



5.4. IMPLEMENTATION OF PROJECTION BASED ON THE PSF 131

mention y.
Assuming that solvedFor as well as substitute will return equivalent relations, it
is easy to verify that line (6) computes a relation that is equivalent to this . More-
over, only the atoms in A' mention y as the basic variable; thus, r is in PSF for
some superset of {y}.

By the above argumentation, we have almost come to concluding that toPSF com-
putes indeed an equivalent relation in PSF for X, unless aborted untimely due to an
exception. As already pointed out, our heuristic captured by getBestEnrichment
guarantees the monotonicity of toPSF. Therefore, the recursive invocation in line
(7) is imposed on a relation r, which is in PSF at least for those variables of X that
are also basic in this . Furthermore, we have just emphasised that r is also in PSF
for some superset of {y}. But y is not a basic variable of this , and so r must have
at least one more basic variable in X than th is . This proves that toPSF always
terminates and makes as many variable of X as possible basic. Clearly the latter
statement must be seen in connection with the maturity of our heuristic and of the
implementation of solvedFor.
Also, we have already explained that r in line (7) will always represent a constraint
equivalent to the one represented by this . Consequently, toPSF always returns a
constraint that is equivalent to the one to which that method was initially applied.

The substitution in line (5) has been implemented at the class Atom by perform-
ing the substitution in both terms and building a new atomic constraint from the
resulting two terms. So, substitution should be seen mainly as an infrastructural
element that needs to be provided by the term module, see Fig. 5.1. Since that mod-
ule maintains symbolic representations of arithmetic terms, the naiv replacement of
a variable by some substitution term will very often produce large instances. Re-
peated substitutions are likely to worsen the situation. The below section of terms
will hence address the issue of term manipulations and simplifications.
Likewise solvedFor can be implemented in the term module. Given an atom f(x)ot
that needs to be solved for x, we just have to provide the implementing term f(x)
with the second term t and the binary relation o represented by RelationType,
cf. Fig. 5.1. The idea here is to apply the inverse of the function / to both terms,
in order to make x basic. However, / need not be invertable or may be an n-ary
function with n > 2 as in the case of arithmetic operators. Moreover, o is allowed to
be one of {<, <, >, >} which makes the reformulation task even more complicated.
Just as applying / - 1 to the left-hand side produces a simpler term, the right-hand
side will usually become more involved. Again, the ability to perform term simpli-
fications turns out inevitable.

The equivalence given in (5.2) shows that making a certain variable basic is not at
all trivial. In general, the symbolic manipulations needed in the case of arithmetic
constraints, set harsh requirements for the underlying manipulator. In our imple-
mentation of a relational processor, also the reformulation presented in (5.2) can be
carried out.
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More generally, our prototype allows for isolating any variable that appears only
once in an arithmetic atomic constraint: Let tx o t be such an atom, that is,
x £ vars(tx) \ vars(t), and tx, written as a flat algebraic expression, mentions x
exactly once. Then, our prototype can produce a relation r such that r is in DNF
and in PSF for {x}, and r ~ txot. The implementation is straightforward and works,
in the case of inequalities, by a case differentiation as examplified in the following
example:

Example 11: Suppose we need to turn x into a basic variable in the atom
(z + x) -y < z. Then this works by applying the appropriate inverse operations until
x is isolated. When dividing by y, we need to differentiate three cases:

(z + x) • y < z \ + y
~ ( l / = 0 A 0 < z ) V ( z + ï < ^ A p O ) V ( z + x > ^ A | / < f l ) \ - z

Note that this process is monotonous in that the right-hand side terms involving x
become simpler and simpler.

The sketched algorithm enables our prototype to also actively manipulate non-linear
constraints, whereas most existing constraint solvers for arithmetic constraints post-
pone, and thereby temporarily unconsider, non-linear constraints until they have
sufficiently simplified.
[9] explains this postponing scheme. Any arithmetic problem is split into a linear
portion L and a non-linear one, N. Then the solving algorithm considers first the
linear subproblem L and solves it. In a second step, the solutions of the first step
are substituted into N. The hope is here that thereby some of the previously non-
linear conditions become linear and can be moved from N to L. The overall solving
scheme performs several iterations of the outlined procedure, in order to finally solve
all variables. .... .. .
An overview over common algorithms and the main ideas concerning non-linear
constraints has already been given in Subsect. 2.4.2.

5.5 Managing Arithmetic Terms and Values

5.5.1 Overview

Chapter 4 of this work developed implementations of the high-level algorithms of
MCS. The presented solutions rest upon a set of services of a relational processor
which are, in turn, elaborated in this chapter.
Following that top-down approach, we have now come to the connecting point bet-
ween relations and terms. Lines (4) and (5) of the pseudo-code in Fig. 5.8 deploy two
very basic operations implemented at Atom, and the above given remarks suggest
that those operations can indeed be seen as issues concerning terms.
In this section, we shall not continue with the strict refinement of the two men-
tioned unrefined operations of Fig. 5.8. Their intention and informal specification
has already been given. Instead, we will end the top-down development of pseudo-
code here. This section presents an overview over arithmetic terms and a possible
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class architecture, as realised in our prototype. The focus will not so much be on
concrete services required by upper layers of our implementation, but on issues of
representing terms and efficiently simplifying them.

Term
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Figure 5.9: UML Diagram with the Architecture of Real-Valued Terms

Moreover, we will, for the sake of conciseness, restrict ourselfes to terms with eval-
uations in R. These terms will form a superset of arithmetic terms as defined by
Def. 21 but still not make up all the objects that are supported by our current
prototypic implementation. A summary of that latter class of all processable terms
will be given in the final section of this chapter on constraint language and control
aspects.
Figure 5.9 presents the term classes with real-valued evaluations that have actually
been implemented. Note that, as already mentioned, there are in fact more classes
in the term module of our prototype. Furthermore, the UML diagram depicts the
most important operations and interrelations between the shown classes.
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The top left class Term is the top-most superclass in the hierarchy. The box entails
methods for arithmetic operations and some additional supportive methods. We are
going to provide brief descriptions for all of them in this section. An extra para-
graph is devoted to issues of automatic term manipulation and simplification. In
this context, the top right class Manipulator will be discussed.

Each Term refers to a possibly empty set of variables and has the structure of a di-
rected acyclic graph (DAG). For the moment, we may just think of that DAG as of a
tree with possibly identical subtrees. The fundamental Terms without substructure,
that is, the leaves of these trees, are Values and Variables. Again, in this section
we shall exclusively focus on values in R and variables x with dom(x) Ç R. Apart
from those terminal elements of the term hierarchy, there are re-ary expressions,
i.e. terms with n subterms, n E N+,. In our code, we distinguish unary terms, for
which n = 1 and n-ary terms with n > 1 but preferable n > 2; see Subsect. 5.5.2.
The most important unary terms for all our current applications, are powers of arith-
metic terms, represented by instances of Power. Note that thereby, the exponent of
a power needs to be a real number, although arithmetic terms with more involved
exponents, like e.g. again arithmetic terms, can easily be defined. Other unary terms
have been implemented (Arcsin, Sin, Exp and Log) in order to test whether our
expressional power can quickly be extended on demand. This requirement is mainly
due to so far unknown future applications of our solver, that may have to deal, for
example, with trigonometric or other conditions.
As to n-ary functions, we mention the classes Product and Sum for the combination
of at least two addends or factors, respectively. An important specialisation of Sum is
WeightedSum which captures all sums that are moreover affine linear combinations
of the form ß + J ^ Aj • Xi. Note that many engineering applications, though poten-
tially non-linear, often simplify, during the course of computation, to purely linear
problems. So, an effort has been made to override the more general implementation
of Sum at WeightedSum, in order to treat linear combinations more efficiently.
Finally, the middle bottom cluster shows the class Function. That part of Fig. 5.9
is the subject of the next subsection.

5.5.2 User-Defined Functions

Our prototype allows for a relatively unproblematic incorporation of user-defined
terms. From an abstract point of view, such terms are to capture a determinis-
tic, functional relationship / , mapping a set of n,n G N+, independent inputs x^,
i G {1, 2 , . . . , n}, to one resulting output f(xi,X2,. •., xn). Note that here, we allow
again for n = 1, although Function is derived from NaryFunction. That is also
why we do not strictly constrain an instance of NaryFunction to have at least two
subterms; cf. Subsect. 5.5.1 and the multiplicity in Fig. 5.9.
There are (at least) two good reasons which make it inevitable to provide a facility
for incorporating user-defined functions:

• The functional relationsship, that is, the mathematical function / , may be
highly complex. Not only can the representation by other classes shown in
Fig. 5.9 be difficult, but simply impossible. The evaluation of / , given all
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input values, may involve numerical methods, as e.g. interpolation or numerical
integration.

• / might only be given implicitely, by means of a piece of code or as a batch pro-
gram or in a dynamic link library. Here, the evaluation of f(xi,X2, • • •, xn) will
normally be accomplished by some connected but otherwise unknown module.
That situation is expected to frequently arise when we try to replace older
solving modules by our constraint solver. The feature of user-defined func-
tions will often enable a gradual migration instead of a far more risky one-step
changeover.

In order to incorporate a user-defined function in our prototypic implementation,
the user has in practice to program a Java class that is derived from Function. In
this class, he has to implement only four methods to make the code work.

Example 12: An example for a user-defined function can be given in the context
of the so-called automated transfer vehicle (ATV, see Chap. 6). The constraint model
processed by our prototype includes a propulsion component that hosts a functional
dependency called chamber pressure. The corresponding class ChamberPressure is
a subclass of Function, and may substitute the bottom right grey box in Fig. 5.9.
Using ChamberPressure, we can represent a function / for computing a resulting
pressure from two inputs. Here, / is the bi-linear interpolation with respect to a
given set of reference points (x, y, z) E R3, for which z = f(x, y) is known to hold.
In this example, the constraint z = f(x,y) is actually not too hard to represent
without user-defined functions. But by introducing ChamberPressure, the modelling
of the propulsion component becomes a lot more obvious and straightforward.

Clearly, each user-defined function introduces a directed term, that is, a term that
can only be evaluated. On the contrary, when provided with the output value, we
can in general not derive information concerning the input vector. Note that this
scenario resembles a simulation setup, in which we can only analyse a modelled
system in a directed, one-way manner; see Subsect. 2.2.1.
The situation might however improve, when we have some more knowledge about
the user-defined function, for instance when / is known to be self inverse. Figure
5.9 shows that further specialisation of Function, Self InverseFunction, with the
succeeding grey box as a placeholder for actual embodiments. A self inverse function
/ is a bijective function with / = f~1. Then, / 2 = / o / is the identity, and
y = f(x) ~ f(y) = f2{x) ~ x = f{y). Obviously, in this scenario, we can retrieve
the input value x, whenever the output value y is given. So here, the user-defined
function is no longer a directed term in the above sense, since there are ways to get
rid of it, at least in the case of equations. For inequalities, the sketched reformulation
can still be accomplished in the case of / being a monotonous function.

5.5.3 The Representation of Arithmetic Terms

Before we shall discuss the set of methods implemented for any term, as listed in
Fig. 5.9, we need to understand how arithmetic terms will actually be represented
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in our prototype. This also includes issues of automatic term manipulation as ex-
plicated in the subsection on computer algebra, see Subsect. 5.5.4.
What we are going to say in this subsection describes a sort of weak normal form
that can gradually be made more and more restrictive by imposing additional term
rewrites.

Note first that no existing instance of (a subclass of) Term may be modified after its
creation. Actually, we also followed this programming paradigm in the implemen-
tation of Relations. We named this paradigm instance locking, since any instance
is, once created, protected against any alteration.
Consequently, if all existing instances are locked, any desired modification when
translating some input stream into the representation of a Term, has to take place
during the creation itself. A valuable side-effect of instance locking is that an in-
stance of Term (and likewise of Relation) may have more than just one owner, that
is, it may have numerous objects pointing to it, that do not have to bother about
modifications.

expiz -xsmly) + -r-=. ,K l l7 / sm2(y)

Figure 5.10: Building a Term by Maximal Reuse of Identical Subterms

In order to construct representations of more complicated arithmetic terms, we need
to start with the terminal embodiments of Term, i.e. instances of the classes Value
and Variable.
Given those, any non-terminal instance must be an n-ary expression of n subterms,
n E N+; cf. Fig. 5.9. The left-hand side graph of Fig. 5.10 depicts an example,

. def ( • f \ , X \

t = explz-x- sin(y) + . 9 .
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Note that the shown directed graph is connected and acyclic but not a tree. The
reason for that is that there are coinciding subterms inside t, namely x and sin(y).
Both have two owners, a situtation that is not critical, due to instance locking, as
explained above.
Figure 5.10 depicts the terminal Value and Variable instances as boxes and all
non-terminal ones as labeled discs. A term is represented by a DAG with exactly
one root, that is, a node without predecessors. Moreover, in the DAG, any succeed-
ing node is the root of a sub-DAG representing a subterm.
Note that the subterms of a term are again instances of subclasses of Term. And so,
instance locking implies, that a subterm can be reused as many times as we please.
This idea is depicted in Fig. 5.10: The application of the function u i—• \og(u)+z —3
produces the term 2 • z — 3 — x • sm{y) + inf, ., of which a representation is shown
on the right-hand side. The dark grey parts can directly be reused, that is, those
subterms are, in practice, going to be represented by the same instances.

When our prototype is asked to generate a representation t of a term
t = f(ti,t2,---,tn) from given representations t l , t 2 , . . . , tn of its subterms
U,l <i <n, it establishes a weak normal form, by observing the following rules:

1. If n = 1 and t\ = /~1(s), for some term s, then the idea is to replace
t = f{ti) — f(f~1(s)) simply by s. This simplification has also been utilised
in Fig. 5.10, when applying log.
But here, we must be careful when / - 1 is denned only on a proper subset
of R. E.g. replacing sin(arcsin(rc)) by x will abandon the implicit constraint
x € [—1,1]; cf. Def. 21. So, in order not to loose information, the method
that imposes the application of / = sin to arcsin(x), needs to take care of
preserving the otherwise lost implicit constraint. For instance, in the context
of solving the atomic constraint arcsin(x) = arcsin(y) for the variable x, we
shall obtain the equivalent constraint x = y A a; € [—1,1] as opposed to the
overestimation x = y.

2. A term t\ — ti is replaced by t\ + ((—1) • t^) which removes the necessity of a
special class for representing differences. Note that this will normally lead to
numerous pointers to the instance representing — 1. Our prototype maintains
three static instances representing the prominent values —1,0 and 1. Every
time an instance of these is required, the implemenation provides the respective
static instance. This clearly eases the recognition of coinciding values, and thus
the decision whether two instances represent the same arithmetic term. That
latter question will also be the subject of Subsect. 5.5.4.

3. t\ •¥ ti is replaced by t\ • t^1. Analogous to the previous rule, this spares us an
additional class for representing quotients.

4. In each Sum, there can be at most one linear addend which is to be found
at the head of the list of subterms. Hence, all addends that are instances of
WeightedSum will be combined to form one instance which is then sorted to
the front. Figure 5.10 illustrates also that rule; regard the addends z and z — 3.
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5. Likewise, there may be at most one factor in a Product that is a Value. Again,
that value factor can be found at the head of the list of subterms. Apart from
the orderings described in the previous and in this item, there is no ordering
imposed on the sets of addends and factors.

6. Additional simplifications can be deployed to support the creation process for
Terms. Obviously, by that, the imposed normal form will be altered. The
below subsection on computer algebra explains how additional rewrites have
been provided in our prototype. Those will e.g. force the prototype to omit a
leading addend 0 in any Sum and a leading factor 1 in Products.

It should be mentioned that the normal form imposed by the above items 1.-5. is
in fact rather weak, as it allows for the coexistence of very many instances that
all represent the same term. For example, none of the rules will prevent us from
constructing two distinct instances for the two terms x • y and y • x which a mathe-
matician would clearly regard equal.
The purpose of a normal form in general is to map alternative mathematical re-
presentations of the same object to the same instance. In our case, a weaker form
will allow for numerous mutually distinct instances that all represent the same arith-
metic term. With such a form, instance creation itself becomes more straightforward
and thus cheaper, but at the price of a more involved mechanism for deciding the
equality of two terms. On the contrary, the latter task becomes easier when using
a stronger normal form. But then the creation task itself is expected to become
considerably harder.

5.5.4 Issues of Computer Algebra

With the last paragraph of the previous subsection we have come up for an interest-
ing discussion that is closely related to computer algebra. Besides other subjects, as
for instance symbolic differentiation, integration and the computation of symbolic
déterminantes, one important matter of this research field is the automated simpli-
fication of arithmetic terms, as also addressed above.
A good overview can be found in [14] which also mentions some well-established
software systems for accomplishing the above tasks. Moreover, in order to explore
important practical issues of software systems, examplified for the representatives
REDUCE, MACSYMA and DERIVE, the reader may also consult [52]. More such
systems can easily be found via internet; follow the links [11] and [10] that also list
MAPLE and MATHEMATICA, to name just a few more well-known systems.

The general goal of computer algebra is the development of efficient algorithms for
nonnumerical mathematics. The outcome of those procedures are symbolic expres-
sions as opposed to numerical approximations. In [63], this aspect is emphasised,
and the simplification of terms is there captured by the section on formula manipu-
lation.
In what follows, we stick to well-known ideas concerning the application of term
simplification rules to a given representation t of a mathematical term t. Each of
those rules will replace some sub-DAG of a given representation by a (hopefully
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simpler) alternative sub-DAG.
Figure 5.11 illustrates the general task for the left-hand side term of Fig. 5.10, after
substituting y = |-: The variable-free sub-DAG representing sin(^) can be replaced
by the leaf representing 1, and afterwards the entire argument of exp by z.

f it x exp(z)

Evaluation: sin — = 1.

Recognition: The argument of exp
is a linear combination.

Computation: That argument, i.e. the
sum of z, (-1)- 1-x and x-1
simplifies to z. J

Figure 5.11: Simplification of the Term in Fig. 5.10 for y = S

Clearly, to this end, we need to know

• how many and which so-called term rewrites we would like to apply, and

• whether a sub-DAG matches a certain pattern for which one of our term
rewrites applies.

As to the second item, the whole problem reveals some relationship to the field of
pattern matching, e.g. in graphs. In this context we have implemented an appropri-
ate method matchesPattern, see the following subsection.

The simplest form of pattern matching is syntactic equality. But due to the relativ
weakness of our normal form, our equality check for two instances t l and t2 of Term
goes beyond this default implementation. However, [63, page 304] states that it has
been show mathematically that there is no implementation which will always answer
correctly whether t l and t2 represent the same mathematical term.7

The first of the two above items, i.e. the one that deals with the set of applied
rewrites, has been addressed in our prototype by the implementation of the class
Manipulator. In it, a set of implemented rewrites is maintained; our prototype is

7Note also, that this fact implies, on the other hand, that there cannot be a strongest normal
form for terms, that is, one that always maps all alternative mathematical representations of the
same term to the same object inside an implementation.
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capable of performing each of them. A user can pick the rewrites he actually wants
to be performed (at any instantiation of a Term) from that pool of known rewrites.
Hence, each rewrite can be switched on and off. Thereby, the user can adjust the
symbolic computational power of our solver and accommodate to the requirements
set by the respective engineering application.

Figure 5.12: A Term Rewrite for the Reformulation of a Quadratic Term

Example 13: Suppose we would like to find all solution tuples (x, y) for which
the quadratic system

y= - • x A x2 + y2 = 25

holds. The rectangular shape in Fig. 5.12 depicts the corresponding geometrical
problem of a line with gradient | , intersecting a circle of radius 5 centred at the
origin.
Our prototype solves the problem by substituting | • x for y in the quadratic circle
equation which gives

(*) = 25.

The left-hand side term of (*) is depicted at the left of Fig. 5.12. In Subsect. 5.4.2,
we stated that, in order to enable our prototype to solve (*) for x, we must not
have more than one occurence of x which is however the case in (*). Consequently
Fig. 5.12 shows not a tree but a DAG in which x has two predecessors.
In this situation, the presented manipulation improves the situation since the result-
ing DAG is a tree, and our prototype is able to map | | • x2 = 25 to the equivalent
x = — 4 V x = 4. So here, we need to switch on a certain set of term rewrites
that accomplish the presented manipulation, in order to be able to derive the set of
(x,y)-tuples, {(-4,-3) , (4,3)}.
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Let us close this subsection by presenting some of the term rewrites that have been
implemented in our prototypic implementation of MCS.

• Before t\ — t<i is replaced by t\ + (—1) • t<i, a rewrite can check whether £2 is
the Value 0. In this case t\ is returned. Likewise t — t may be replaced by 0.

• Similar rewrites exist for division: t -r- 1 becomes t, t -¥• (—1) = (—1) • t and
t -i-1 = 1. In the context of the latter, we must however preserve the implicit
constraint t 7̂  0.

• Several rewrites for addition can be activated: O + t = t + O = t and t + t = 2 •£.
Furthermore, if li,k denote two linear terms, the addition of the Sum h + t
with I2 will be replaced by the result of (h +I2) +1, combining the two simpler
terms first.
Whereas the previous rewrite deploys associativity, there are two rewrites for
distributivity: t + (p • t) becomes t • (1 + p) and (t • p\) + {t • P2) = t • (pi + P2),
where p,pi and P2 may also be more involved products.

• Besides trivial rewrites like 1 -t = t, 0-t = 0 and t-t = t2, more rewrites have
been implemented for collecting common factors in two products that are to
be multiplied. Moreover, for a term t that is not identically 0, we may replace
x~x • (a-x + t) by a +1 • x^1, without discarding any implicit constraint. Note
that this rewrite will decrease the number of occurences of x by 1, without
affecting any other number of occurences.

• The obvious rewrites for powers with exponents equal to 0 or 1 are comple-
mented by (td)e = tde and (h • t2 •.. .)d = tf • 4 • • • ••

Regarding once more Ex. 13, we can now name the rewrites that we need to switch
on, in order to cover the manipulation shown in Fig. 5.12, i.e. x2 + ( | • x)2 = | | • x2.
First, the last of the above listed rewrites yields x2 + ( | • x)2 = x2 + ( | ) 2 • x2 =
x<1 + ïïï ' x2- Next, we need to perform a distributive rewrite for isolating x2. This
will finally rewrite x2 + ^ • x2 as (1 + ^ ) • x2 = f| • x2.
The example illustrates that sometimes, distinct rewrites may apply one after an-
other. Our rewrite scheme implemented at Manipulator is thus recursive. More-
over, there exists an ordering, according to which rewrites are tried. This ensures
determinism in cases where more than one term rewrite is applicable.

5.5.5 Operations on Arithmetic Terms

This subsection will provide brief explanations and some additional remarks con-
cerning the methods implemented for all Terms, as listed in Fig. 5.9.

We shall start with the more obvious arithmetic operations that are listed at the
bottom of the box named Term, that is, the methods p l u s , minus, . . . , exp.
Whenever one of these is applied to some instance(s) of Value, our implementation
in the value module will return the appropriate evaluation, again as an instance of
Value. Otherwise, a new term will be created; and during this process, our prototype
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may apply several term rewrites, in order to simplify the result. This has been dis-
cussed in detail in the previous subsection and illustrated in Figs. 5.10, 5.11 and 5.12.

solvedFor and subst i tute have already been identified as the interface to higher-
level algorithms as elaborated in Subsect. 5.4.2. solvedFor is, in that context,
responsible for isolating a certain "goal" variable in an atomic constraint. This is ba-
sically done by applying inverse operators to both sides of the constraint, cf. Ex. 11.
The implementation of subst i tute is straightforward, taking into account that we
are to replace a variable, i.e. a leaf in a term DAG, by some other DAG. The only
point worth mentioning is that, after the naive replacement, some term rewrites may
apply, as exemplified in Fig. 5.11, where y has been substituted by a Value.

The methods occurencesOf, matchesPattern and equals have to be seen in con-
nection with the application of term rewrites.
The first method in this group simply returns, for each variable in some term DAG,
how many predecessors it has. occurencesOf is used by matchesPattern. More-
over, it is to inform solvedFor whether the "goal" variable has indeed only one
occurence, and whether the solver is hence able to make the reformulation; see the
remarks preceeding Ex. 11 in Subsect. 5.4.2
matchesPattern is a method that answers, for a given Term, whether this has a
certain structure, so that -we-can~apply-a given term rewrite.-Clearly,~this-test-will-
often also have to investigate some or even all subterms of the instance in question.
Therefore, the implementation is recursive.
The recursion ends, in general, with an invocation of equals to check for the equal-
ity of two instances of Term. The default for equals is object identity. Additionally,
for two Sums or Products, that predicate will also check the coincidence of addends
or factors, respectively. This means that it will, for instance, discover that a + b + c
and b -f- c + a have permuted lists of addends, and eventually consider them equal.
The parametrisation of matchesPattern is not trivial and has been omitted in
Fig. 5.9.8

As to the method getValue, suppose we are given a term t and its representaion t .
Then, t.getValue() provides us with a subset of R that contains all evaluations of
t, in the sense of Def. 21. For example for sin(x), where dom(x) = M, we obtain the
interval [—1,1]. In other words, getValue collects all possible values that the given
term may take.
So far, we have failed to give a good motivation for the method, and the purpose of
getValue shall become clear only in the following subsection. There, it is mainly
used to simplify terms that have, due to complicated computations, become too
deep, that is, for which the method depth returns an unacceptably large integer.

Still, it should be mentioned that the method will, besides returning a boolean, provide further
useful information by filling / overriding some of its arguments. That information encodes paths
in the given term DAG leading to the subgraphs which may be replaced by the term rewrite in
question. With that additional knowledge, the subsequent application of the rewrite itself becomes
straightforward.
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Let us thus, for infrastructural reasons, define the depth of a term DAG, as returned
by depth: With the intuition already given, an informal definition is the longest
possible path (counting edges) in a DAG from the root to a leaf. So, the depth
of the left-hand side term in Fig. 5.10 equals 5, and is realised by the path that
descends, starting at the root, always into the right-most successor.
Formally, any instance of Value and Variable is assigned a depth of 0. And for an
expression t = f(t±, t<x,..., tn),n 6 N+, we simply define

depth(t) == 1 + max{depth(ti) | 1 < t < n}.

5.5.6 Interval Algebra

In Subsect. 2.3.5 an important requirement for constraint solving in the context of
engineering tasks was noted, that addresses uncertain or erroneous data.

Value

L}

erSet

1
Number

values
O..00 2..00

1
other

AtomicNumber

I I

FloatNumber
value

Range
min
max
minlncluded
maxlncluded

EmptyNumber

Figure 5.13: UML Diagram of Value Classes for Representing Subsets of •

For the set of real numbers, R, vage knowledge about coefficients or a component's
parameters can be captured by means of intervals: An extra constraint may state
that a variable be contained in some interval, as opposed to be fixed to a certain
value r € R. We have also already seen an example for a constraint problem with
uncertain coefficients in Subsect. 2.4.2, where the problem Rk was modified so that
each resistance RjBi lie in the interval [100-j — A, 100- j+A], for some small A e l .

In order to account for the requirement to be able to represent and process inter-
vals of real numbers, our prototype facilitates a special subclass of Value, Range.
That is depicted in Fig. 5.13, along with the second specialisation of AtomicNumber,
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namely FloatNumber.
A Range has two attributes min and max for storing the boundary points of the
interval, and two boolean flags for storing whether those belong to the represented
subset of R.9 On the other hand, a Floatnumber has one attribute value that re-
presents a real number. Note however, that any FloatNumber represents a singleton
set {r} C R, for some r E R, instead of the real number r itself.
So we should note once more, that each instance of (a terminal subclass of) Value
stands for a subset of M, as opposed to an element of R. Consequently, Fig. 5.13
mentions the class EmptyNumber, the sole instance of which represents the empty set
of real numbers, 0 c l .
Two or more AtomicNumbers may form an instance of Number Set, which stands for
the union of the sets represented by the embedded Ranges and FloatNumbers. An
example is the set (—oo, —2) U {0} U (1, 7]. As is then clearly possible, our imple-
mentation enforces the embedded subsets to be mutually disjoint and that no two
of them union to a single interval. That is, an attempt to instantiate a NumberSet
representing (0,1)U{1} will result in the instance of Range that captures the interval
(0,1].
Fig. 5.13 suggests that our implementation supports, besides subclasses of Number,
other classes that deal e.g. with finite domains of symbols and will become clearer
in the final section of this chapter.

With what hasjust been~noted7we actually needto~revise~e:g; the DAGs inFigr5.12r
in which the reals 3/4 and 25/16 should now be replaced by the singleton sets {3/4}
and {25/16}, respectively. (Still, we may regard 3/4 as an unambiguous shorthand
for {3/4}.)
However, the question remains, what the semantic of the arithmetic operations out-
lined in the above Subsect. 5.5.5 is, e.g. when we apply plus to two subsets of R,
represented by Numbers. That semantic is easily (re-)established by interval alge-
bra, or often also called interval arithmetic. The following definition resembles [72,
Def. 6.2, p. 112], that defines the term set extension for functions and relations on

Definition 23 (Interval Algebra)
Let n € N+, A Ç R, for 1 < i < n, and / : ^ x D 2 x • • • x l ) „ —> R be a
real-valued function that is defined on a subset of W1.
With V(M) (once more) denoting the powerset of M, we can then define an exten-
sion function, f, for f, according to

f: p ^
(xï,X2,...,x£) I • {f(xi,X2,...,Xn)

V i G {1,2, . . . , n } Xi Ex~i}.

The extension functions for the basic arithmetic operators +, —, • : R2 —> R and
T : I X ( R \ {0}) —> R, induce the so-called interval algebra, for combining two
intervals in R.

Via exceptional assignments to min and max, respectively, Range also covers representations of
intervals that are not bounded below or above or that coincide with (—oo, oo) = R.
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We may hence invoke plus, as implemented by our prototype, for the two Numbers
that stand for [1,2] U {3} and (4,5], to obtain a representation of

(4,5] = 5]U(3 = (5,7] U (7,8] = (5,8].10

Note that the invocation of an arithmetic operation for two FloatNumbers will return
the appropriate FloatNumber, and recovers thus the ordinary arithmetic operation.
In other words, we are able to recover the original function / from / .

In Def. 21, we defined the usual shorthand for arithmetic constraints, and clarified
thus, for example, the meaning of the constraint 3 • x + y = 5, by mapping it back
to Def. 2.
Now, we can go even one step further and extend this notation in a natural way, by
allowing for subsets of R instead of real numbers:11

Definition 24 (Extended Arithmetic Constraint)
Let c denote an arbitrary and-or-junction of arithmetic atomic constraints. Suppose
c mentions the finite set of real numbers {qi,q2,... ,qn},n £ N+. By replacing each
qi in c by some subset qi Ç R, we obtain an extended arithmetic constraint c,
defined in the following way: Choose for each qi a new variable Xi with dom(xi) = qj.
Then replace in c each qi by Xi. With c denoting the result of all those replacements,
we let

- àef f M

111111111111111 11

[1, 2]x + [3, 4]y = 12

4y= 12
x + 3y= 12
+ 4y= 12

2x + 3y=12

Figure 5.14: An Extended Arithmetic Constraint that is a Linear Band

Example 14: Figure 5.14 depicts an example of an extended arithmetic constraint
that arises by replacing the real coefficients 1 and 4 in 1-x+A-y = 12 by the intervals
[1,2] and [3,4]. Note that the set of (x, y)-tuples allowed by the constraint, form
no longer a convex set as usual for linear constraints. Moreover, writing down an
equivalent ordinary arithmetic constraint with the solution area as given in grey,

10Obviously, + is monotonous in both arguments which yields the demonstrated method for
computing the sum of two Numbers. There are similar well-known calculation rules for —, • and -s-;
see e.g. [40]

11 Note again the similarity to the notion of natural interval extension in the framework of Nu-
merica, see [72, Def. 6.5, p. 113].
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will be a rather involved and-or-junction of the four presented helper constraints
and the case-differentiating constraints x <0,x >0,y <0 and y > 0.

After that little excursus, let us return to our implementation of MCS. We shall
now exemplify a typical problem arising from interval algebra. After that, it will be
shown how that problem has been addressed in our prototype.

Example 15: Figure 5.15 shows aa aggregation tree that solves the linear con-
straint problem

{x = z, x = y, y =[0,2], z = 2 - y} .

Note that we have four constraints for three variables, all of which have to equal
1. Indeed, the problem would be solved in a correct manner, if the uncertainty
constraint y = [0,2] was discarded.
Consider first the white nodes and the white annotation to the root node. The
latter contains the forward join at the root node, as it results from preceeding
computations. The reason for the overestimation is the aggregation of x = y A
y = [0, 2] with z = 2 — y. Here, following the algorithm in Figs. 5.7 and 5.8, y must
be made basic in order to be eliminated, in Figs. 5.7 and 5.8.

Figure 5.15: A Typical Problem with Interval Algebra

There exists one atom in solved form for y, namely y = [0,2]. Thus, y is going to be
substituted by [0,2], and the correlation z = 2 — x, implied by z = 2 — y A x — y,
will be lost.
The problem can easily be fixed by introducing a parameter p with a domain of [0,2].
The aggregation in question will be replaced by the grey node, this time preserving
the constraint z = 2 — x. Note that this node's forward relation is just a rewritten
version of x = y A z = 2 — y, where y has been replaced by a hidden variable p of
which no class outside the term module will take notice.
At the root node, p will be found to be 1, and thus x and z, too; see grey annotation.

How are we going to represent a hidden variable in our prototype? As suggested
by Fig. 5.9, we may instantiate a Variable for which the method isHidden yields



5.5. MANAGING ARITHMETIC TERMS AND VALUES 147

true. Those instances will serve as parameters in the sense of the above example.

The problem we encountered in Ex. 15 can even be further simplified. When two
intervals / = [1,2] and J = [3,5] are added, and J is later to be subtracted from the
result, we obtain the naive evaluation

whereas a symbolic computation, e.g. aided by hidden variables, yields again I. So,
with naive interval algebra, we lose information, and our framework tends to pro-
duce unreasonable overestimations of the exact constraints.

Replacing uncertain coefficients represented by Range or NumberSet, by hidden
Variables is therefore our means to increase computational accuracy, in the sense
that overestimations are, as far as possible, avoided.
There is however a sweeping drawback: When a term mentions a hidden variable,
it will be treated as any non-Value term, i.e. it is subject to term rewrites. Also,
for large problems with many uncertain coefficients where we can only seldom apply
the activated term rewrites, new instances of Term tend to become very deep, that
is, have a large depth as returned by the method depth introduced in the previous
subsection. This will inevitably have a negative impact on runtimes.
Consequently, our implementation enables the user to set a maximal term depth, m:
Whenever a term is about to be instantiated for which this threshold is exceeded,
then the respective DAG will be simplified. To this end, we identify all sub-DAGs
that are rooted in a distance of m from the DAG's root, and replace them by their
evaluations obtained with getValue; see again the previous subsection.
The adjustable maximal term depth is an important facility of our prototype that
enables the user to trade computational accuracy for runtime.

The trade-off can be studied with the help of Fig. 5.16. All of a, b, c, d are hidden
variables. The top left DAG represents the term a+(b/a) and has a depth of 3: The
fat path is the longest one with 3 edges. The top right DAG will be generated from
the left one, when we enforce a maximal term depth of 2; c denotes a new hidden
variable with the domain 1 -f- dom(a). We have obviously already lost information,
for the DAG has now become a tree.
The left column shows the effect of adding the middle tree of depth 2, that repre-
sents — (b/a). On the right-hand side, the same computation is shown for a maximal
depth of 2. On the left, term rewrites may simplify the temporary instance to the
final result a, which is correct. Contrariwise, on the right, the temporary result of
sum is again a DAG with depth 3; note the fat path. Due to term rewrites, b may
- as on the left-hand side - be factored out, still leaving our prototype with a DAG
of depth 3. Decrementing the depth is then done by introducing the new hidden
variable d with the domain dom(c) — (l/dom(a)). Note that the right computation
flow is not aware of d = 0, and by decreasing the depth, we have sacrificed compu-
tational accuracy and potentially produced overestimating constraints.
On the other hand, in order to deduce the result a in the left column, we need to
apply more rewrites than on the right, which shows that here, the computation will
in general be more expensive.
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We have elaborated the idea of hidden variables, in order to increase the computa-
tional accuracy of relational aggregation and to overcome the natural shortcomings
of interval algebra. Those hidden variables fit obviously nicely in the concept of
term DAGs and their manipulation via term rewrites.

c = 1 +a

term rewriting
term

rewriting

a (

/
b

\
d

Figure 5.16: The Relationship between Term Depth and Overestimation

Let us consider hidden terms, that is, DAGs with leaves consisting exclusively of
Values and hidden Variables: When the forward phase reaches the last aggrega-
tion, i.e. the top-most node in an aggregation tree, we no longer need hidden terms
and they can hence be evaluated using getValue. Therefore, even when the user did
not impose a maximal term depth, hidden terms will eventually need to be reduced
to Values.
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Let us thus finish our investigations on interval algebra by going further into the fol-
lowing question: Is there a sufficient condition that guarantees the naive evaluation
of a hidden term (by means of interval algebra) to produce the tightest Value and
not just some overestimation?
The next lemma shows that the answer is "yes" :

Lemma 12
Let t(xi, X2,.. •, xn) be a rational term12 in the variables X{, 1 < i < n 6 N+, where
each dom(xi) is a bounded, closed interval in R. Suppose furthermore that the DAG
for t is a tree, i.e. each X{ appears exactly once in t.
Then, t takes its extremal values at some corners of the cuboid
K = dom(xi) x dom(x2) x ••• x dom(xn). Furthermore, naive interval algebra
will return the set of all values that t takes on K, and no more.

The assumption concerning the structure of dom(xi) is made only for the sake of
simplicity. It is fairly easy to convince oneself that the lemma can be "lifted" to
arbitrary bounded subsets dom(xi) C M. which can be represented by an instance of
FloatNumber, Range or NumberSet.
It is also easy to give examples of rational terms in which at least one hidden variable
appears more than once, and for which the lemma's conclusion does not hold:

Example 16: Considering again the term a -\- (b/a) of Fig. 5.16, we observe for
a, b > 0:

a+-=(v^-\ /- | +2-Vb>2-Vb.V y

Also, the estimate is sharp, that is, we obtain equality for a = Vb. Thus, for b > 0
fixed, a + (b/a) takes its minimum at a = y/b. Consequently, the minimum is in
general not taken in the corner of dom(a) x dom(b).

Clearly, the lemma's precondition is rather restrictive and will in general not apply
for practical applications. But its proof uses a monotonicity argument, and we cer-
tainly have cases, in which all our hidden terms are known to be monotonous in each
argument: For resistive networks with uncertain (Ohmic) resistances ri, r2, . . . ,rn,
n G N+, as e.g. derived from R^ in Subsect. 2.4.2, it can be shown that all unknowns,
that is, all currents and voltages, are monotonous in each resistance r\. That means
that, if we fix all but one uncertain resistance r^, then all currents as well as voltages
will monotonously change provided r^ is monotonously changed.
So here, each hidden term t(r±, r2 , . . . , rn) will, due to this strong monotonicity, ob-
viously also take its minimum m and maximum M in some corners of the respective
domain cuboid K = dom(r\) x dom{r2) x • • • x dom(rn).
In order to find m and M, we just have to identify the right corners of K and
evaluate t there. This identification can be efficiently done in time O(n):

12!This is to be understood as fixed by Def. 21 and includes thus that t be well-defined.
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1. Start at an arbitrary corner of K and evaluate t there. (Note that this eval-
uation, as well as all following ones, are evaluations of t for n instances of
FloatNumber.)

2. For 1 < i < n do: Move along the edge of K that corresponds to n, to the
neighbouring corner of K and evaluate t there. This changes exactly the ith

argument FloatNumber for which t is evaluated. Afterwards, we will know
whether t increases or decreases, and thus what kind of monotonicity we have
along the r^-edge of K.

3. After the loop, we have identified, for each i, that end of the rj-edge, at which
t becomes smaller and that at which it becomes larger. In other words, we can
directly move to the two corners at which t takes the values m and M.

The outlined algorithm has been implemented in our prototype. In will be used for
the evaluation of hidden terms, whenever the user sets a special static monotonicity
flag situated in the class AggController, see Fig. 4.1.

We have already mentioned [40] which deals with interval constraint reasoning and
addresses the inaccuracy of naive interval algebra. [40, Sect. 4] also points out the
drawback of multiple occurences of interval parameters in arithmetic terms; cf. pre-
condition of Lem. 12.
[60] emphasises-that^--in-generah-we -need-to-complement— symbolic-solving-tech-
niques - as in our prototype - with numerical interval narrowing techniques. The
latter have in our implementation so far been omitted, accepting overestimating
constraints in more involved applications. However, [65] illustrates how far we can
get with purely symbolic techniques in the case of linear constraint problems arising
from electrics applications. Starting from the general Gauss elimination method; see
also [6, pp. 148-159]; it moves to more sophisticated methods that can be applied
when the coefficient matrix is sparsely filled with non-zeros. Note that again, this
relates to the low density assumption which we deployed especially in Chap. 4, to
obtain moderate complexity figures.
In [66], Smit takes up the property of sparseness of the coefficient matrix for resis-
tive network problems. This publication elaborates a way to obtain procedures for
efficiently computing symbolic terms for unknowns, that identify common symbolic
subterms.
Other very useful literature pointers to thorough introductions to the matters of
interval computations and finding extremal values of functions (on bounded n-
dimensional cuboids), are [51] and [61], respectively.

5.6 Constraint Language and Control Aspects

In this section, we shall give an overview over the constraint language supported by
our prototypic implementation of RCS. Before this issue is addressed in full detail,
our facilities for controlling the prototype will be outlined. Those enable the user
to choose particular settings so as to trade, e.g., runtime for accuracy, that is, the
degree of overestimation.
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5.6.1 Control Facilities

We give a complete list of all adjustable control parameters implemented so far.
All those static parameters reside in the class AggController; see Fig. 4.1; and
will be initialised with default settings, at any start-up of the system. There are
methods that enable the user to alter each parameter on-the-fly. The parts of our
implementation that need to pay attention to the settings, will retrieve the respective
parameter(s) via accessor methods, directly from AggController.

• Digits: Any computer provides only finitely many so-called machine numbers
for the approximation of reals. The complex issue of floating point arithmetic
has been payed attention to ever since processes have been automatised us-
ing scientific calculators. The prominent box-consistency approach has been
realised in many solvers, see e.g. [72].
On the one hand, the finite pool of machine numbers enforces a certain clas-
sification of R. On the other hand, the finite mantissa of machine numbers
results in rounding errors: A computation might yield a machine number that
is not the best approximation of the exact result.
Note that this phenomenon is likely to introduce conflicts where there are in
fact none: Suppose £i and £2 are alternative representations of the same mathe-
matical term that evaluate, due to rounding errors, to two distinct machine
numbers mi, 7712- Then the consistent constraint problem {x = t\, x = £2} is
going to be judged inconsistent because mi ̂  m2.
Our prototype is to pronounce inconsistency only when the problem has indeed
no solution. Therefore, we need to implement a notion of tolerance that re-
gards m\ and m.2 as equal, as long as they differ by less than some pre-defined,
small e > 0.
Our control parameter digits maintains an integer d > 1, and 10~d will basi-
cally be used as that e for all comparisons of machine numbers rai and m^-
Obviously, d is the number of leading digits that need to coincide in the man-
tissas of m\ and m-i-
Clearly, any e may eventually be exceeded by an unfortunate chain of rounding
errors. And so, digits is in fact an application-specific setting.

• Inequalities: A user of our prototype is given different ways to represent an
inequality t\ -< £2, where £i,£2 are arbitrary real-valued terms and
-<€{<,<,>,>}. He may use the natural one-to-one representation that main-
tains pointers to the two terms and the static instance of Relationtype that
stands for the binary relation -<; see Fig. 5.1.
Secondly, he can enforce the translation into an equation with a slack pa-
rameter. For example, in the case of t\ < £2, we know that £2 — £1 must be
positive and can hence write equivalently £2 — £1 = s, where s is going to be
a hidden Variable with the domain dom(s) = (0, 00). Compared to the first,
natural representation, this way of writing will eliminate all inequalities. Con-
sequently, our prototype will never have to deploy Fourier's algorithm but pure
Gauss-like substitutions instead. Knowing that Fourier's algorithm is likely to
introduce vast numbers of (redundant) inequalities during each elimination
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step, that approach seems appealing at first sight. However, the drawback is
that we are likely to obtain lots of constraints with hidden variables only, due
to our substitution scheme. Those are however only poorly treated by our
prototype, and often immediately discarded, when they do not immediately
provide a tight restriction for some visible variable.
A third possibility is to represent the above inequality t\ < ti by the extended
arithmetic constraint <2 — *i = (0, oo), i.e. even omitting the slack parameter.
The intention here is to enforce arithmetic terms with a comparatively small
depth to speed up the solving process. Clearly, this comes at the cost of a
reduced accuracy, that is, we are in general going to get looser restrictions for
the unknowns.

• Disequations: There exists a static instance of RelationType that captures
the binary relation 7̂ . Therefore, a user may choose the natural representation
of a disequation.
As in the previous item, we may - for real-valued terms t\,t2 - represent
t1 ^z t<i by the equivalent equation t<i — t\ = s, where this time
dom(s) = (—oo,0) U (0,oo) is represented by a NumberSet. Again, this will
remove all disequations from a given problem, but introduce the outlined dif-
ficulties with hidden constraints, i.e. constraints over hidden variables. Note
that the slack parameters' domains cover E almost entirely, and so these hid-
den constraints will only seldom provide a tight restriction for some term. As a
result, our prototype will almost always simply discard the hidden constraints,
taking poor accuracy into account.
As above, t\ 7̂  t\ may, for real-valued terms, be represented as the extended
arithmetic equation t% — t\ = (—00,0) U (0, 00). The consequences are similar
to those described above.

• Reuse of AggForest: In Subsect. 3.4.2, we developed methods for deploying
the reuse of previous computations. However, along large sequences of similar
constraint problems, the repaired aggregation trees tend to become unbalanced
or otherwise disadvantageous for any further reuse. In that case, it is often
more advisable, to abandon the previous aggregation forest and analyse the
next context from scratch.
Whereas the default setting for reuse is unconditioned reuse, all implemented
reuse facilities can just as well be turned off. A third, heuristic setting captures
a conditioned reuse: Depending on the quality of the underlying aggregation
forest, as computed in the previous context, reuse of reusable subtrees will
automatically be turned on or off.
Such quality parameters are, e.g., the variance of root-leaf path lengths and the
complexity of forward relations of non-leaf nodes. That complexity, in turn,
is a measurement which combines the number of disjuncts and the average
number of conjuncts per disjunct of a given constraint in DNF.

• Term Depth: The previous Sect. 5.5 discussed term DAGs, as used as the
representation of arithmetic terms in our prototypic implementation of RCS.
Also, Fig. 5.16 illustrats the relationship between term depth and computa-
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tional accuracy: The higher the maximal term depth is, the more accurate will
the computations be. That is, fewer relations are going to be approximated
by overestimations. The user can directly set that maximal term depth. By
choosing any negative integer as maximal depth, he allows for arbitrarily deep
term DAGs.

• Separation of Values: This control option may have considerable effect in
the context of problems that involve a large number of sets in M which can be
represented by Number Sets. As we have seen, those sets are unions of single-
ton sets {r}, where r € M, and of real intervals.
Here, the user can choose to allow for the instantiation of appropriate in-
stances of NumberSet, or suppress that instantiation in favour of disjunctive
constraints.
To make that clear, consider the constraint that forces x to take its values in
{3} U (4,5]. Then, this may be represented by the extended arithmetic con-
straint x = {3} U (4,5] or by the disjunction x = 3 V x = (4, 5].13 In the
former case, we allow for instances of NumberSet, in the latter we do not.
Due to our Gauss-like substitution scheme, the former way of writing will in
general imply less accurate results. Suppose for example the computation of
the join x2 = 9 IX x -y > 0 when allowing for NumberSet s :

x2 = 9txix-y>0 ~ x = {-3,3} ix x • y > 0
-^ z = {-3,3} ex {-3 ,3}-y>0
~ x = {-3,3} tx (-3 • y > 0 V 3 • y > 0)
~ x = {-3,3} ix (y < 0 V y > 0).

Note that the implication is not an equivalence, since the surplus solutions
(x, y) — (3, —r) and (—3,r), for r > 0, are introduced. However, this is what
happens inside our prototype which just follows its substitution scheme.
When suppressing instances of NumberSet, we obtain - for this example - the
correct join:

x2 = 9\x\x-y>0 ~ (x = -3\/x = 3)t>4x-y>0
~ ( i = - 3 A r i / > 0 ) V ( i = 3 A i ' i / > 0 )
~ (a; = - 3 A - 3 • y > 0) V (x = 3 A 3 • y > 0)
~ (z = - 3 A y < 0) V (x = 3 A y > 0).

Generally speaking, when allowing for NumberSets, the prototype tends to
lose correlations between certain variables and introduce the corresponding
symmetric solution tuples, as exemplified. By setting this control parameter
to suppress NumberSets, that source of inaccuracy can be removed. The price
is the introduction of additional disjunctions and thereby more involved joins
and projections.

The presented six control options can be changed on-the-fly. Thus, alternative re-
presentations of Values, Terms and Relations may coexist and can be combined

13There are, of course, more possible representations involving hidden variables.
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without trouble.
We shall now come to a concise overview over the constraint language "understood"
by our prototype.

5.6.2 The Constraint Language of our
Prototypic Implementation of MC§

In what follows, almost all language features of the current version of our implemen-
tation are covered. Some features have been omitted for the sake of simplicity. The
corresponding implementational parts can be considered to be in an advanced state
of development.
There are also other language ingredients that focus on additional aspects of our
prototype which have only little to do with what has been formalised and explained
in previous chapters and sections. Therefore we shall also not address those features
here.

Our implementation of RCS has been complemented with a parser for strings of a
special-purpose instance of the extensible markup language (XML); for an introduc-
tion see e.g. [33] or [74]. The strings represent values, variables, terms, relations
and other RCS-related objects. Their correct interpretation is due to a so-called

_djmi,]rLentty]w_(ießniM_on_(DTJ2).JThe_W
context of the development of RCS.
Using that XML interface, entire constraint problems, aggregation strategies and
context spaces can easily be imported by our prototype. We remark that our imple-
mentation also provides, for each relevant object, a method that returns an XML
string representation which observes the underlying DTD. Thereby, the prototype
is fit not only for importing but also for exporting XML representations of RCS-
relevant objects.

We shall neither describe here the structure of the XML files, nor the DTD. For
exhaustive examples of XML strings, see App. B. Instead, an informal description
of the language will be given that allows for an immediate understanding of which
objects can be fed into and processed by our prototype.

Values &: Variables

The following enumeration presents all values that the prototype can handle. Actu-
ally, not values are handled but sets of values. Note that this is a consequence of our
concept of extended (arithmetic) constraints, as defined by Def. 24, which is based
upon extension functions, see Def. 23. We shall see below that a similar lift from
values to sets of values can be accomplished for constraints involving finite domain
variables.

Let, in what follows, M denote the set of machine numbers in R facilitated by the
underlying hard- and software.
Likewise, be S the set of all symbols. Those are going to be used as the elements of
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finite sets of mutually distinct discrete values, as e.g. in the set {red, blue, green} of
Ex. 2.

1. float: We can generate a representation of the singleton set

{m}, where m EM..

2. interval: For any two machine numbers mi,m2 € M with mi < rri2, we can
express the machine number intervals

(mi,
[mi,
(mi,
[mi,

(-00,

(-00,

( m i

[mi

™ 2 ) M

" l 2 ) M

™ 2 ]M

" ^ 2 ] M

TO2JM

, O O ) M

, OO) M

3. reals: The set of all machine

i.e., an approximation

def

def

def

def

def

def

def

{me M
{m€ M

{mem
{me M
{me M
{me M
{me M
{me M

numbers

of R can b(

M,

1 | mi
I | mi

I | mi

I | mi

I | m «

I | m :

I | mi

I | mi

3 represented.

< m <
<m<
<m<
<m<
<m2},
<rn2},
<m},
<m}.

m2},
m2},
m2},
m2},

4. numberSet: For any finite set N of floats fa, 1 < a < k, k £ N, and intervals
h> 1 < b < I, I 6 N, with k + I > 2, our prototype is able to provide a
representation of (J N, that is,

fa U U 16-

That representation is minimised so that it maintain an ordered list of mutually
disjoint floats and intervals such that no two list entries union to an interval.

5. symbols: The set of all symbols
S

can be expressed.

6. symbolSet: We can represent any non-empty finite subset of S,

T c s, |r| e N+.

7. empty Value: There are representations of

0 C M, and
0 C S .

Given one of the above sets of values V, we may generate a variable

x, dom(x) = V.

Obviously, it will in this context only make sense to choose a value V that is not
an empty Value. Otherwise, any constraint problem that mentions the variable will
automatically be inconsistent.
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Terms

The class of more involved representable terms, i.e., those built from the above listed
values and variables, are presented below.
Note that all apart from the last one (function) represent extension functions in the
sense of Def. 23. However, also in the case of function, we shall speak of an extension
function: Indeed, Def. 23 can be altered appropriately to apply also for a function /
that does not evaluate to a real number and that is not defined on a subset of some
Rd,deN+.
In order to recursively cover all representable terms, let U, 1 < % < n, n E N \ {0,1},
denote a set of already given representable terms for which getValue yields a subset
of M.

1. sin, arcsin, exp, log: We can express

sin(ti),
arcsin (ii),

exp(ii) and

log(ii).

Those represent the extension functions of sin, arcsin, exp and log, respec-
tively.14

2. power: For a given machine number m G M, the expression

power{ti,rn)

can be represented which is the extension function of f(x) = xm, imposed for
the argument t\.

3. sqrt: We may generate the square root of a term,

sqrt(t\) = poweriti, 0.5).

4. plus, mult, minus, div: n-ary sum and product, as well as the binary
expressions difference and quotient can be expressed,

t\ — £2

5. function: Suppose, there exists a subclass of Function that implements a
user-defined function / : D\ x Di x • • • x Dn —• D (see Subsect. 5.5.3), where
n e N+ and the DiS and D are representable subsets either of M or of §.
Furthermore, be for each i G {1,2,.. . , n}, Si a representable term for which
getValue produces a set of values that intersects with Di.
Then we can obtain a representation for

f(si,S2,...,Sn).

14We are thus overloading the function symbols here.
Recall that sin, arcsin, exp and log have been implemented as a few first examples for unary terms,
in order to assess the effort for extending the expressional power of our prototype.
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Relations

Most language facilities for constraints in our prototype are due to logical and-or-
combinations and prominent binary relations for arithmetic terms.

1. empty, full: There are expressions for the unsatisfiable and the nonrestrictive
constraint,

0, and
D.

2. and, or: For representable relations r$, 1 < i < n, n € N \ {0,1}, we can
generate representations of the logical combinations

u and

3. linear: Let Xi, 1 < i < n, n € N+, be variables with dom{xi) being repre-
sentable by the above subsets of M. Moreover, be Xi, 0 < i < n, representable
sets of machine numbers. Then, the extended linear arithmetic constraint

Xi • Xi o Ao

\<i<n

can be represented, where o € {=, / , <, <, >, >}.

4. eq, neq: Suppose we are given two arbitrary representable terms £i,*2- We
need to assume that getValue returns for both terms either a subset of M
or a subset of §. Then there are representations for the equation and the
disequation,

t\ = ^2, and
h +12.

5. It, leq: Let ti, ti be as in the previous item. Only this time, we demand that
getValue return in both cases a subset of M. Then the inequalities

t\ < t2, and
h < t2.

can be expressed.

6. implies: Let ri,r2 be two representable relations. Be furthermore r\ an
assignment, that is, an equation relating a variable and a set of values. Then
the implication

r2 = (-1 n) V r2

can be expressed.
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Summary

Before we go on with miscellaneous language features of our prototype, we shall
briefly summarise the set of constraints that can effectively be represented. For that,
we simply expand the recursive definition patterns given in the above paragraphs
on representable terms and relations.

• extended arithmetic terms: There are ways to represent arbitrary arith-
metic terms involving the operations +,—,-, -i-, sin, arcsin, exp, log and powers
with machine number exponents. The leaves of those term DAGs are variables
and values for which getValue returns a set of values in M.

• extended arithmetic constraints: We may express equations, disequations
and inequalities of arbitrary extended arithmetic terms.

« equations and disequations over finite-domain variables: For a finite
domain variable x, we can formulate equations and disequations that relate x
to some finite set of symbols V; x — V and x ^ V.

« and-or-junctions: Arbitrary and-or-junctions of equations, disequations and
inequalities can be expressed.

• 0, n, => : There are representations for the unsatisfiable and the nonrestrictive
constraint, as well as for-implications in which the left-hand constraints. an..
assignment.

Note that the meaning of an extended constraint, according to Def. 24, implies
sometimes rather subtle sets of solution tuples; cf. Fig. 5.14.
For disequations, the usage of value sets with more than one element will often
reduce the constraint to D. This is illustrated by the following example:

Example 17: Be x a variable with dom(x) = {red, blue, green} C S. Then, what
is the restriction for x imposed by the disequation x ^ {red, blue}?
By an appropriate finite-domain version of Def. 24, that constraint equals

7r{x}(":r ¥" v")i where dom(y) = {red, blue}.

Note that x ^ y allows for any possible value that can be assigned to x, simply
because dom(y) has more than one element. Consequently, the projection does not
at all restrict x. Therefore, the initial constraint x ^ {red, blue} does not restrict x
to a proper subset of its domain, and is hence equivalent to D.
This may seem a bit odd at first sight, since we may have expected x ^ {red, blue}
to be equivalent t ox = green, but it is not as the thorough interpretation shows.

Miscellaneous Elements

Our DTD has been designed also for the expression of further MCS-related objects.
Most of those need to reference previously defined objects. The reference works by
name, as any object defined in an XML file can be named in its respective defining
XML phrase.
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• relationTemplate: Sometimes, we happen to have great numbers of similar
constraints, e.g. many Kirchhoff nodes in an electric circuit. In that setting,
it is advantageous to formulate a relation template. The corresponding XML
string resembles a prototypic Kirchhoff node and has a list of template vari-
ables. Each actual Kirchhoff node can then be modelled by a short XML
string that references the template and provides the actual variables that are
to replace the template variables.

• oneOf: The DTD provides a definition pattern for OneOfs. This expects a
list of names of Relations that are to be the alternatives of the OneOf.

• projection: We can instantiate Projections from XML strings that reference
a Relation or a OneOf, and the list of variables onto which to project.

• contextSpace, cluster: Going back to Fig. 4.1, it becomes now obvious, how
XML strings may look like that represent context spaces and clusters.

• leafNode, aggNode, aggForest: Likewise, entire aggregation forests may
be built up from XML strings. For the nodes, we need to provide all relevant
attribute entries, as e.g. the forward relation. An aggregation tree is then just
a reference to a root node; a forest is built from a list of nodes.

For examples of XML strings denning several MCS-related objects, consult App. B.

We shall close this section by pointing out that our prototype's constraint language
can relatively easy be extended. This is, of course, to make it applicable to an
ever greater class of constraints. For a detailed illustration, the reader is pointed to
App. C. There, we present a recent development of our prototype that prepares it
for bus communication problems.



Chapter 6

Experimental Results

In this chapter, a large set of various experimental results derived from our
prototypic Java implementation are presented. Those support the claim made
before, that the theoretical framework of RCS may be implemented so that the
requirements collected in Chap. 2 can efficiently by addressed. A first set of
experiments illustrates these services by means of a simple showcase example
from electrics. Further examples focus on particular aspects such as non-linear
constraints, scalability, explanations, reuse and accuracy.

Unless stated.otherwise, all the following experiments have been undertaken on a
Pentiumlll, 500 MHz PC with 640 MByte RAM.
The Java code is JDK version 1.4.1. Running MCS was accomplished by invoking
the Java engine with an appropriate *. ja r file. Before, all other applications had
been closed, and the computer had been restarted in Windows 2000.

6.1 Proving the Capabilities of the Prototype

6.1.1 A Showcase Example Covering all Services of the Prototype

In order to clarify once again the set of constraint solving services provided by RCS,
we shall start with a simple example from electrics and go through a typical sequence
of experiments.
That small circuit is depicted in Fig. 6.1; App. B.5 provides the corresponding XML
constraint definitions. The entire constraint problem consists of 8 wire constraints
(each being a conjunction of two simple atomic conditions), 6 more involved compo-
nent constraints (representing S, B, R, D, NSRC and NGND) and 4 value settings
(as shown in the top half of Fig. 6.1).

We shall now deploy our prototype to solve the constraint problem given by the
electric circuit in Fig. 6.1. Each of the following steps has been snapshot, and the
resulting images can be found in App. D.I together with more detailed descriptions.

Solving the Problem

After loading the XML-formulation of the circuit, we may let the prototype solve the
problem, that is, determine consistency or inconsistency and - in the former case -

160
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mode_

mode_

pos_S

mode_

light

R

D

B

E {ok, broken}

E {through, blocking}

E {open, closed}

E {ok, broken}

e {on, off}

2s = 32 contexts

Figure 6.1: An Electric Circuit with 32 Contexts

find tightest restrictions for all variables. For our example, the prototype announces
consistency with the following restrictions:

{0} U [0.05666667,0.06368421]
{0} U [0.10818182,0.13444445]
[-0.19812866, -0.16484849] U [-0.13444445, -0.10818182] U . . .
. . . [-0.06368421, -0.05666667] U {0}
{0} U [0.05666667,0.06368421] U [0.10818182,0.13444445] U . . .
...[0.16484849,0.19812866]
{0} U [0.10818182,0.13444445]
{0} U [0.05666667,0.06368421]
[-0.06368421, -0.05666667] U {0}
[-0.13444445, -0.10818182] U {0}
{0} U [0.05666667,0.06368421]
[-0.06368421, -0.05666667] U {0}
[-0.13444445, -0.10818182] U {0}
[-0.06368421, -0.05666667] U {0}
{0} U [0.10818182,0.13444445]
[-0.13444445, -0.10818182] U {0}
{0} U [0.05666667,0.06368421] U [0.10818182,0.13444445] U . . .
. . . [0.16484849,0.19812866]
[-0.19812866, -0.16484849] U [-0.13444445, -0.10818182] U . . .
. . . [-0.06368421, -0.05666667] U {0}
{on, off}
{ok, broken}
{through, blocking}
{ok, broken}
{open, closed}

cl-B
clJ)
cl_NGND

clJfSRC

cl-R
cl.S
c2JB
c2.D
C2.NGND
c2-NSRC
c2.R
c2J5
cS-NGND
cS-NSRC
C-GND

€
G

e

e
e
G

e
6

e
€
e
G
G
G

cSRC

light
mode-B
modeJ)
mode-R
posJS

G
G
G
G
G
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r.B e [190,210]
rJl G [90,110]
vl-B G (—oo,+oo)
vl-D G (-oo,0]
vl-NGND G {0}
vl-NSRC G [11.9,12.1]
vl-R G [11.9,12.1]
vlS G [11.9,12.1]
v2-B e {0}
vÄ_D G {0}
v2-NGND G {0}
vê-NSRC G [11.9,12.1]
ug_Ä € (-oo, 0]
v2S e (-oo, +oo)
vS-NGND G {0}
vS-NSRC G [11.9,12.1]
v_GWZ> G {0}
vJSRC G [11.9,12.1].

Those results are found within 411 milliseconds. It is easy to check that they provide
indeed tightest domain restrictions.

Altering the Problem

With our prototype, we can benefit from powerful reuse facilities, as studied in
Chap. 3, whenever we like to solve a problem similar to the preceeding one. To illus-
trate that, we deploy our prototype as it is after solving the above initial problem.
In our implementation, we can now easily activate an additional constraint bulblsLit
that captures the condition light — on and which had so far been deactivated and
thus ignored. By adding that constraint, we simulate an information feed to the
solver, e.g. the observation that the bulb is lit.
Having made that activation, we enforce the prototype to solve the new, more restric-
tive problem. The runtime drops significantly - somewhere below 100 milliseconds -
since subtrees of the old aggregation tree can be reused. As expected, the findings
for all variables have now also become more restrictive:

[0.05666667,0.06368421]
{0} U [0.10818182,0.13444445]
[-0.19812866, -0.16484849] U [-0.06368421, -0.05666667]
[0.05666667,0.06368421] U [0.16484849,0.19812866]
{0} U [0.10818182,0.13444445]
[0.05666667,0.06368421/
[-0.06368421, -0.05666667]
[-0.13444445, -0.10818182] U {0}
[0.05666667,0.06368421]
[-0.06368421, -0.05666667]
[-0.13444445, -0.10818182] U {0}

clJB
clJ)
cl-NGND
cl-NSRC
clM
clS
c2-B
c2-D
c2-NGND
c2-NSRC
c2-R

G
G
G
G
G
G
G
G
G
G
G
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c2.S
cS-NGND
cS-NSRC
C-GND
cJSRC
light
modt-B
modeJ)
mode_R
posS
r-B
r.R
vl-B
vlJ)
vl-NGND
vlJfSRC
vl-R
vlJS
v2-B
v2.D
v2.NGND
V2.NSRC
v2.R
v2.S
V3.NGND
V3-NSRC
v.GND
vJSRC

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G

[-0.06368421, -0.05666667]
{0} U [0.10818182,0.13444445]
[-0.13444445, -0.10818182] U {0}
[0.05666667,0.06368421] U [0.16484849,0.19812866]
[-0.19812866, -0.16484849] U [-0.06368421, -0.05666667]
{on}
{ok}
{through, blocking}
{ok, broken}
{closed}
[190, 210]
[90,110]
[11.9,12.1]
(-oo,0]
{0}
[11.9,12.1]
[11.9,12.1]
[11.9,12.1]
{0}
{0}
{0}
[11.9,12.1]
(-oo,0]
[11.9,12.1]

{0}
[11.9,12.1]

{0}
[11.9,12.1].

The given solutions are still tightest restrictions.

Obtaining an Explanation

One of the changes with respect to the initial problem is that the restriction for
posS has shrunk to the sole value closed. Though intuitively clear, we can let our
prototype provide us with a minimal explanation for that finding. An appropriate
function of the prototype produces a window with such a minimal explanation within
10 milliseconds; cf. Fig. D.5 in the appendix.
This explanation displays an aggregation tree which proves pos_S = closed. It has
the leaf relations S, B, wireStoB and bulblsLit that stand for the switch and bulb
constraints, the intermediate wire constraint and the newly introduced condition
concerning the bulb. A quick investigation with the help of Fig. 6.1 tells us that no
constraint can be suspended from the explanation which is therefore indeed minimal.
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Solving all 32 Contexts

With only few enhancements concerning the XML formulation of the circuit in
Fig. 6.1, we can make our prototype recognise a context space with 5 OneOf s that
reflect the possible settings for the five discrete variables. We shall not give the
details of these simple enhancements here; they basically deal with the specification
of the five OneOf s.
Once the context space has been recognised, a menu item allows us to solve all
32 contexts at once. Besides performing the consistency check for each context,
this process will also collect all solutions for all variables, in any of the 12 consistent
contexts.1 Note that the problems will be solved one after another, always by reusing
subtrees of the respective preceeding problem.
In our example, all findings produced by the prototype are correct, and again no
tightest restriction is an overestimation. Although the 32 contexts are not solved in
an optimised ordering, the entire process takes only around half a second.

6.1.2 Solving Some Non-Linear Problems

In Sect. 5.5, we have discussed how MCS can be made fit for solving also non-linear
problems; the management and manipulation of arithmetic terms by the help of
term rewrites are here the appropriate meassure. In order to also illustrate those
facilities, we shall have a brief look at some simple non-linear constraint problems.

First, our prototype is used to solve the problem in Ex. 13, where we intersect a
circle and a straight line. Indeed, our implementation returns the two solutions
{xi y) € {(4, 3), (—4, —3)}. Moreover, it also provides - on demand - a window that
lists all applied term rewrites, which are in our case:

t-t = t2,

0 + t. = t,

(a-b-...)e = ae-be-...,and

t + (s-t) = t-(l + s).

Note that the deployed rewrites are exactly the ones that have been discussed in the
context of Fig. 5.12.
A second bunch of experiments has been carried out using quadratic electric resistors.
This is a straightforward approach to increase the algebraic degree of well-known
and well-studied resistive networks. Figure 6.2 shows the quadratic constraint for
such a resistor; here the "consumed" voltage is not proportional to the electric
current but to its second power. The figure also presents the two basic circuits that
may be combined to build arbitrary series-parallel-decomposable quadratic resistive
networks, as e.g. the bottom right one.
Our prototype manages to solve all variables in the two basic quadratic constraint

Why are there 12 consistent contexts? Going back to Fig. 6.1, note that
there are four consistent scenarios for the upper branch: (posJS, mode_B, light) is in
{(open, ok, off), (open, broken, off), ((closed, ok, on)), ((closed, broken, off))}. And in the lower branch
the plausible settings are (modeJt, modeJD) g {(broken, through), (broken, blocking), (ok, through)}.
The upper four and lower three cases then freely combine to 12 consistent scenarios.
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problems. Although most of the rewrites are fairly simple, the complete list already
becomes somewhat longish:
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(See also App. D.2, where a Screenshot with all applied rewrites in the case of the
parallel circuit can be found.)

A v2-v1 =
A y,-ifc =

Figure 6.2: Increasing the Algebraic Degree - Quadratic Resistors

We mention that we encounter problems when trying to solve the bottom right
circuit. But this can be fixed by implementing additional term rewrites. An in-
teresting question which we did not investigate further, is to find a complete set of
rewrites that suffices to solve all series-parallel-decomposable circuits with quadratic
resistors.

6.1.3 Trading Runtime for Accuracy

In Subsect. 5.5.6 we have presented Lem. 12. It states that naive interval calculus
will provide us with exact solution intervals whenever our term DAGs are trees.
The same subsection outlines an algorithm for utilising monotonous dependencies
among the variables in a given constraint problem. Basically, the algorithm traverses
the corners of the cube spanned by the input intervals, in order to find the two
corners for which the respective term attains its minimal and maximal value. Let
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us therefore call it the traversing algorithm, for later reference.

Note that, due to shortcomings in the implemented term simplification methods,
will often arrive at a DAG (which is not a tree) that could actually be replaced

by a tree, only RCS does not notice. In that case, naive interval calculus will in
general not yield narrowest interval solutions.
However, the proof of Lem. 12 shows that the traversing algorithm will still work
and provide us with tightest bounds for all variables.
Already for a problem as simple as the bridge circuit R±, ECS encounters DAGs
(which are not trees) that could actually be replaced by trees. As already pointed
out, the use of naive interval calculus will then no longer yield narrowest interval
solutions. But the user - who is aware of the monotonous character of the functional
dependencies - can tell ECS to switch from naive interval calculus to the traversing
algorithm which produces exact bounds for all unknowns. This extra setting can -
as all other settings - be given via the RCS control pannel.
Appendix D.3 presents Screenshots of RCS after solving R\, first by naive calculus
and then by the traversing algorithm which assumes monotonous dependencies and
produces indeed the exact solution intervals.
As expected, the higher accuracy is reflected in a longer runtime for solving the
problem: In the given example the overall runtime is approximately four times as
long as in the case of naive interval calculus.

6.2 The Runtime Behaviour for
Selected Problem Families

In this section we shall take a look at some experimental results derived for three
families of scalable constraint problems. These are the already introduced circuit
families (Rk)këiï-+i (•̂ fc)fceN+>

 a n d a family of four spacecraft propulsion systems.
The latter have been taken from a diagnosis application in the context of an au-
tomated transfer vehicle (ATV) that has actually been used in space. More details
concerning the ATV shall be given in Subsect. 6.2.3 where we also present the re-
spective experimental results.
Whereas the first two families must clearly be seen as academic examples, the third
is a real-world application that is to support the claim that RCS embodies indeed a
practicable approach to constraint solving for model-based engineering applications.

6.2.1 The Family (Rk)ken+

For the family (-Rfc)fceN+) we investigated the runtime behaviour for
k E {10,20,..., 100}. More concretely, forward times and backward times have
been recorded, together with the portion of forward time that was spent on the
built-in on-the-fly aggregation strategy; cf. Subsect. 3.5.1.
According to our discussion in the Sects. 4.2 and 4.3, the overall computation time
can be expected to be quadratic in the number of boxes, that is, O(k2). The main
precondition for that result to hold is our low density assumption. Moreover, when
the time spent on strategic matters can be neglected, the order should decrease to
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some O(k). Therefore, the runtime figures should in that case present a linear curve.
Figure 6.3 shows the three curves for strategic and non-strategic forward phase as
well as for the backward phase. Note that the curves have been depicted in a stack,
i.e., on top of each other. Consequently, the upper boundary can be read as the total
computation time for each problem instance. We find an "almost" linear curve, as
forecasted by our theoretical discussion. But why is the curve not linear?
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Figure 6.3: Runtimes for the Family (-Rfc)/ce{io,2o,...,ioo}

Obviously and seen in relation to the other two curves, the portion of time spent on
strategic matters during the forward phase can not be neglected. This violates one
of the preconditions that would guarantee a linear runtime. The other reason why
we actually witness a non-linear curve is that the second pre-condition does not hold
either: Figure 6.4 shows that the low density assumption is violated. On average,
we have almost one more variable in our non-leaf relations than in the leaf nodes.
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Appendix E provides some additonal information concerning our experiments, es-
pecially about the structure of leaf and non-leaf relations. As an example, Fig. E.I
proves that non-leaf relations are more complex than the initial leaf relations of the
problem Rk'- We have - on average - half an atom more in the disjunctive normal
form. This illustrates the violation of another notion that we have been emphasis-
ing especially in Ex. 3: Obviously, the result of aggregating two relations does not
remain as simple as each of the two partaking relations, but tends to become more
complex as we move up in the aggregation tree.

6.2.2 The Family (Dfe)feeN+

The picture looks much different for the family (Dk)këH+; see Fig. 6.5. This time,
one obtains exponentially growing time consumptions for both the non-strategic
forward and the backward phase. The strategic time portion has been omitted since
it contributes only to a neglectable degree. Furthermore, this time the analysis was
run for fc <E {1,2,.. . , 10}.

8
(0

tim
e 

[m

IO.UUU

16.000

14.000

12.000 -

10.000 -

8.000 -

6.000 -

4.000 -

2.000 -

0 -

• non-siraiegiu luiwaiu pnase

• backward phase

r —

/

i
/

/
/

/

y

0 1 2 3 4 5 6 7

number of boxes

Figure 6.5: Runtimes for the Family (Dt

10

i 2 10}

The reasons for the different behaviour become obvious by taking a look at the scope
sizes and some structural measurement.
Again, we find approximately one more variable in non-leaf nodes, compared to the
leaves; see Fig. 6.6. This figure also shows that we sometimes even have 10 variables
in a non-leaf relation, whereas the maximal number for leaves is 6. We conclude
that the low density assumption is far from being satisfied. Consequently, we must
not expect a linear runtime.
The more influential factor for the given exponential behaviour lies however in the
complexity of the relations. In the previous family, there was a constant added
complexity of only about half an atom; see again Fig. E.I. This time, we obtain
an ever rising average number of atoms in non-leaf nodes as we move from smaller
constraint problems to bigger ones; see Fig. E.2. For k = 10, there are more than 18



6.2. SELECTED PROBLEM FAMILIES 169

atoms in the average non-leaf node, as opposed to less than 3 for leaves. Moreover,
Figure E.3 shows that the average number of atoms does no longer provide an
appropriate measure since the maximal number of atoms in a non-leaf node of the
computed aggregation tree even exceeds 1400.

•average variables per leaf node a maximal variables per leaf node

• average variables per non-leaf node E3 maximal variables per non-leaf node

1
5 6

number of boxes

9 10

Figure 6.6: Scope Sizes for the Analysis of (-Dfc)fce{i,2,...,io}

It is in the nature of the problem family (Dk)keN+ that there are many potential cases
for the current flow through the entire circuit. (The reader should remember that
each diode accounts for two potential cases, so that we end up with 2d theoretical
possibilities for d diodes.) At computation time, this is reflected by a large number
of disjunctive relations in the aggregation tree. Figure E.4 presents the average
number of disjuncts per aggregation node. It is easy to see that the average node
in the tree becomes more and more complex as we move to bigger instances. Also
here, there exist very "bad" nodes with even more than 120 disjuncts in the case of
k = 10; see Fig. E.5.

6.2.3 ATV: A Real-World Application

As already mentioned above, ATV stands for automated transfer vehicle. This third
problem family in the current Sect. 6.2 consists of four spacecraft propulsion sys-
tems, the largest of which shows reasonable resemblance to real-world propulsion
systems, e.g., to the one that had actually been used in the ATV.
The smaller three problems have been derived from the fourth, by removing redun-
dant paths for the provision of oxidiser and fuel. There exist also redundant pipes
for the helium that pressurises the propellant tanks; see Fig. 6.7.
Apart from the shown components, the system comprises furthermore sensors for
pressure, temperature and valve positions. The pressure regulators are modelled
using piecewise linear constraints. The engine, in which the oxidiser and fuel mix,
react and produce heat and thrust, is represented by a procedurally defined relation
that uses characteristic lines to compute the chamber pressure and temperature as
functions of fuel and oxidiser pressure. In effect, these functions are bilinear inter-
polations based on a set of pre-defined pairs of input vectors and output values.

In order to get thrustworthy measurements, we randomly generated - for each of
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the four propulsion systems - 1000 constraint problem instances. This was done as
follows.

t

0

valve

filter

regulator

tank

_ Figure_6.7_:_Four^Propulsion_Systems withJncreasing_Redundancy

The default setting for each of the four systems was the one in which all components
behave normally and all valves are open. (It should be mentioned that this scenario
is not a realistic one, as in practice not all redundant paths will simultaneously
allow for a flow of helium, fuel or oxidiser, respectively.) Let us call that context
Co. Then, we fixed a set of m valves for which MCS was allowed to modify control
settings (closed or open) and behavioural modes (normal, stuck at closed, stuck at
open). Thus, we spanned a space of 6m contexts.
The first of the 1000 contexts was Co. Next, given Co, the prototype randomly
chose 2 out of the m valves and randomly altered their states within the set of the
6 possible states, to arrive at C\. By repeating this pattern 999 times, a sequence
of 1000 contexts was generated on the fly. Note that thereby any two neighbouring
contexts in the sequence differ by exactly two relations, which made it possible to
utilise the same sequence for a reuse-based, incremental analysis; see Subsect. 6.4.2.2

The results shown in Fig. 6.8 are therefore average measurements over the 1000 con-
texts. The table shows again that the portion of time spent on startegic matters is
not to be underestimated. The upper curve in Fig. 6.16 depicts the total runtimes.
There, each x-coordinate of a black square equals the number of relations in the
constraint problem. This number can also be read off the left-most column of the
table in Fig. 6.8: It must equal the number of aggregations per context plus one.
The curve in Fig. 6.16 suggests an "almost" linear order, as discussed in Sects. 4.2

Also, the given procedure does not ensure that all of the 1000 contexts be mutually different.
However, this does not play a role in the context of the experiments.
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Non-Incremental Analysis (Contexts: 1000)

Systemi
System2
System3
System4

forward phase
aggs/ctxt

121
287
394
597

msec/agg*
0,58
0,70
0,92
1,10

strategy.time*
30,65%
41,05%
40,51%
44,93%

msec*,
100,51
338,66
611,83
1196,65

* Average Measurements
backward phase

joins/ctxt
263
632
868

1315

projs/ctxt
262
631
867

1314

msec*
85,36
229,15
340,48
540,52

total
msec
185,87
567,81
952,30
1737,17

Figure 6.8: Runtimes for Non-Incrementally Solving the ATV Systems

and 4.3. And indeed, the low density assumption seems to hold: Figure E.6 shows
all structural data recorded during the experiment. According to that data, non-leaf
and leaf relations are comparable in both the number of variables and their com-
plexity. We have only about 0.3 to 0.8 more variables in non-leaf nodes. And the
numbers of atoms, conjuncts and disjuncts differ also only very little.

6.3 Minimal Conflicts &; Explanations vs.
Conventional Constraint Suspension

Before we move on to issues of performance and in order to first illustrate the ex-
planatory facilities of RCS we shall mention that RCS is capable of retrieving the
two minimal conflicts for the 3-queens problem; cf. Ex. 6. The interested reader can
find some remarks in App. D.4 which also shows a Screenshot of ECS after it has
successfully dealt with the explanation task.

Apart from the small example of 3-queens, we will in this section only focus on
finding one minimal conflict or explanation, respectively. In fact it is the case for
all investigated problem instances that there is just one minimal conflict or expla-
nation.
To clarify the below experimental results, it is necessary to recall the algorithms
developed in Subsects. 4.4.2 and 4.4.3.
Starting with one minimal explanation, let us once more take a look at Fig. 4.8.
The basic idea is here to alter an existing aggregation tree, so that the method for
retrieving one minimal conflict can be deployed. The most important step in that
alteration is captured in line (7). In our implementation, we do however not alter the
respective aggregation node but instantiate a new one. Consequently, we shall below
report the number of newly-created aggregation nodes instead of altered nodes.

Moreover, also the actual realisation of Fig. 4.7's pseudo-code involves the creation
of new aggregation nodes. Where do new nodes come from when computing one
minimal conflict?
First, we recall an obvious code improvement already introduced in Subsect. 4.4.2:
We may implement the method getOneConf l i c t so that it not only return a set of
relations S, but also their combined join s = IX] S. Line (6) is then to be replaced
by return (SI U S2, s i rxi s2). Now, one can even go a step further: The join
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s i xi s2 may be replaced by its projection onto the set of variables of the given
aggregation node.3 The consequent next measurement is to return not just the ag-
gregation of s i and s2 but to return a new aggregation node with s i and s2 as
successors. Thereby, we obtain in the end not only the minimal set S of conflicting
constraints but also an aggregation tree, the leaves of which form the set S. More-
over, the root of that tree is the empty relation 0; and we can regard the tree as
a proof for the fact X S ~ 0 . This is what has been done in our prototypic Java
implementation. Consequently, our algorithm for computing one minimal conflict
creates a new aggregation node whenever line (4) of the pseudo-code of Fig. 4.7 is
approached. Note that this is the case if and only if the respective minimal conflict
spreads over both subtrees of the given aggregation node.

Apart from the number of newly-created aggregation nodes, we are going to report
the number of visited nodes. This includes leaf nodes as well as aggregation nodes,
and gives an impression for how focussed the computation was.

In Subsects. 4.4.2 and 4.4.3, we have argued that - provided the low density assump-
tion holds - the worst case cost for computing one minimal conflict or explanation
is linear in the size of the original constraint problem instance. In our experiments,
we have not witnessed such a worst case; partly because the aggregation trees were
rather balanced and because of only small minimal conflicts and explanations com-

_pared_to the ̂ total number of relations In_fact,_our experiments have- not-been^
designed to investigate the claim of linear runtimes.
Instead, we are going to compare our new explanation algorithms with constraint
suspension. Constraint suspension is a popular algorithm, e.g. for minimising con-
flicting sets of constraints. The discussion in Sect. 2.4 makes clear that explanatory
facilities are also very rare in existing solvers. Therefore, constraint suspension
is often even the only way to obtain minimal conflicts. This is the more true as
explanatory services tend to be only an afterthought in many constraint solver im-
plementations.
Chapter 3 shows that relational aggregation is a powerful framework in which ex-
planatory services can naturally and straightforwardly be addressed. In what follows
it becomes clear that aggregation trees allow for a focussed search for minimal con-
flicts and explanations, whereas constraint suspension is an unfocussed and far less
efficient method.
The testbed uses the same implementation for join and project for both our new al-
gorithms and constraint suspension. Therefore, the obtained results are very explicit
about the intrinsic characteristics of the high-level algorithms themselves.

6.3.1 Constraint Suspension

The new algorithms for computing minimal conflicts and explanations are based on
existing aggregation trees. In other words, the tree guides the algorithm's search.

It is easy to see that this alteration does not affect the correctness of the algorithm; just as
Subsect. 4.4.2 suggests an additional first line of code that replaces the relation c by an appropriate
projection c.project(X12).
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It is quite the opposite for constraint suspension, which shall briefly be explained
before we come to the experimental results.
Suppose, we are looking for a minimal conflict. Then the idea is to temporarily
suspend a candidate relation r and check whether the remaining set of relations is
still contradictory. If so, the suspension becomes permanent. Otherwise, the relation
r is known to contribute to the minimal conflict. It will hence be re-introduced and
marked as non-suspendable. The iterative process terminates with a minimal conflict
set when all remaining relations have been marked as non-suspendable.

Engine: function getOneConflictO
F <— AggForest computed by forward phase
n<—root node in F with F.forwardRelation.isEmptyO
conflict <— 0

(1) suspension(A(n), conflict)
(2) return conflict
end

Engine: function getOneExplanation(Variable x)
L < — set of leaves in AggForest computed during forward phase
Vx « — solutions.entryFor(x)
sx < — Vx.complement()

(3) if sx.isEmptyO throw exception ''nothing to explain''
conflict < — {sx}

(4) suspension(L, conflict)
(5) return conflict \ {sx}
end

Engine: procedure suspension(Sets of LeafNodes S, C)
(6) if (S = 0) then return

r < — random member of S
(7) S *— S \ {r}

forward(S U C)
if (state = inconsistent)

F « — AggForest computed by forward phase
n<—root node in F with F.forwardRelation.isEmptyO

(8) S <— A(n) \ C
else

(9) C^CU {r}
(10) suspension(S, C)
end

Figure 6.9: Pseudo-Code for Explanatory Services Using Constraint Suspension

Of course, the check for consistency (that determines whether a suspension becomes
permanent) can be accomplished by building an aggregation forest, i.e. by the for-
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ward phase of the relational framework.
Figure 6.9 gives, for completeness sake, pseudo-code formulations of suspension-
based methods for obtaining minimal conflicts and explanations. The core method
at the bottom, suspension, expects two sets of leaf nodes; S, the set of suspendable
relations and C, the set of relations that must belong to the seeked-for conflict. The
invariant of this method is that the union of both sets is contradictory;

(MS) «(IXC) ~0.

It is easy to verify that this condition holds for the invokations in both line (1) and
(4). In line (1) we know that A(n) is inconsistent; in (4) we just take all leaves
together with the complement sx of the finding Vx for variable x.4

In contrast to line (2), we need in line (5) to remove sx from the returned set. (Note
that suspension only adds new members to C and never removes one; thus sx will
still be a member of the set conflict in line (5).)

In order to prove that the above invariant also holds at every recursion in line (10),
regard the bottom method: r is being suspended from S in line (7). Line (9) clearly
establishes the invariant. In the other case - the case of inconsistency - we know
that the leaves "beneath" n form an inconsistent set of constraints. Moreover, A(n)
must even subsume C, as each member c of C has been added because suspending
c led to a consistent set of constraints (see the else branch). Therefore, line (8)
actually säys~Ä"(n)~^S U C. This proves the validity^ thëlnvarïant "inTine" (TO) also"
for the case that the if branch had been processed.

As to termination, the bottom method must clearly eventually end in line (6) as S
shrinks monotonously; see line (7).

Note that the method would also work if the if branch would not contain any
statement. But the given pseudo-code realises a somewhat more efficient version of
- an otherwise completely unfocussed - constraint suspension: Whenever the forward
phase proves inconsistency by building an aggregation forest with more than one tree,
any leaf that does not belong to A(n) can obviously immediately be suspended, too.

6.3.2 Explaining Zero Bridge Currents in Special Instances
of the (Rk)ken+ Family

For our first experiment, let us regard once again the family of bridge circuits
(.Rfc)fceN+; see also the top part of Fig. 2.7. Only this time we replace the resis-
tance for Ü4 by 600 Q. Thereby, the following equation is established:

4Clearly, getOneConf l i c t assumes the inconsistent Engine state; and getOneExplanation the
consistent one.
If the condition for line (3) is satisfied, then this means that Vx represents the full relation D. I.e.,
there is no restriction for x and hence nothing to explain; cf. line (3) in Fig. 4.8.
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It is well-known that in this case, the bridge current, i.e. the current through R5
diminishes.5 Interestingly, as the argumentation suggests, the fact that the bridge
current is zero is independent from the remaining circuit: We are obviously able to
prove that fact only by regarding the respective box of five resistors. Consequently,
a proof consists exactly of 24 relations: the once that capture the 5 resistors, the
5 corresponding resistance settings, the 4 Kirchhoff nodes and the 10 in-box wires.
Note that this result is not affected by the number of boxes k.
In our experiment, both constraint suspension and our new explanation algorithm
yield the outlined smallest explanation of 24 relations. The variable for which the
solution was to be explained is the bridge current in the middle box, that is, in the
box Bm, where m is the rounded-down half of k.
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Figure 6.10: Explaining Zero Bridge Currents

Figure 6.10 presents the runtime results. It illustrates that our new algorithm con-
sumes a portion of time that relates to the explanation size6 rather than to the
number of constraints in the context. This latter causality holds indeed for con-
straint suspension: When there are more constraints (to choose from for random
suspension), then the time for finding all nonsuspendable constraints will increase
accordingly. We can study this increase in Fig. 6.10. The curve's somewhat unsteady
gradient is a consequence of the small number of repetitions for each invocation of
suspension-based getOneExplanation. (Each explanation has been computed 10
times; the given time consumptions are average measurements.)

As mentioned above, we have also recorded the number of visited nodes in the pre-
computed aggregation tree, and the number of newly-created nodes; see Fig. 6.11.
For our new algorithm, the former number is almost constant. The number of new

5An intuitive argumentation runs as follows: The current that runs into N2 equals the current
that leaves N3. Moreover, since the two ratios are - due to the above condition - equal, that current
splits in N3 just in the same way as it splits in JV2. Therefore, the currents through Ri and R3
(and analogously through Ri and At) must be equal. Considering the condition for the Kirchhoff
node iVi (or N4), we conclude that the current through R5 must be zero.

6To be more exact, the explanation time based on Th. 4 relates to the size of that aggregation
subtree which captures the aggregation of the respective box Bm.
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nodes hardly excèdes 100, whereas with suspension more than 400 nodes are be-
ing instantiated. Again, for suspension the number rises as the number of boxes k

increases.
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Figure 6.11: Node Statistics for the Explanation of the Zero Bridge Current

6.3.3 _ Conflicts and Explanations for^the^ATV Family

The results of Subsect. 6.3.2 are not due to specifics of the bridge circuit family.
Rather, we find the same characteristics for appropriate instances in the context of
the four ATV propulsion systems as shown in Fig. 6.7.
In order to apply our new algorithms for computing minimal conflicts and expla-
nations, as well as the suspension versions shown in Fig. 6.9, we constructed four
consistent problem instances. More concretely, for each of the four systems, certain
valve settings were chosen that imply both the oxydizer and the fuel pressure to be
non-zero at one of the engines. In the constraint model, this implication is - roughly
speaking - captured in a variable bothPressuresNonZero. That is the variable for
which we imposed our new explanation algorithm, as well as the suspension-based
one. Both algorithms found the only existing minimal explanation with a size as
presented in the "explanation" column of Fig. 6.13. That column also gives the total
numbers of the four underlying consistent ATV constraint problems.

Conflicts (Data for One Inconsistent Context)

Systemi
System2
System3
System4

conflict
size;

total relations
14; 101
19; 235
31 ; 327
31; 491

* Average Measurements of 100 Runs
new algorithm

created
agg. nodes

13
18
30
30

visited
nodes

41
63
79
77

msec*

27,44
26,34
152,62
148,11

suspension
created

agg. nodes*
318,83
590,00
923,18
904,53

msec*

191,69
420,18

1.013,64
1.020,98

Figure 6.12: Conflict Computation for the Four ATV Systems



6.4. THE EFFECT OF REUSE ALONG SIMILAR CONTEXTS 177

By adding an additional constraint which negates the afore mentioned implication,
we arrive at four inconsistent constraint problems. Those are the instances for which
the algorithms for finding one smallest conflict were invoked. Again, there is only
one minimal conflict, for each of the four scenarios. Note that the conflict size must
be one more than that of the corresponding explanation. This can also be seen in
the "conflict" column of Fig. 6.12, which also reports total problem sizes.

Explanations (Data for One Consistent Context)

Systemi
System2
System3
System4

explanation
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486,67
958,92

1.338,53

Figure 6.13: Explanations for the Four ATV Systems

This time, we recorded 100 runs; the Figs. 6.12 and 6.13 present the resulting av-
erage measurements. Again, as was the trend also in Fig. 6.10, the new algorithms
outperform the suspension-based algorithms by a runtime factor of about 5 to 10.
Moreover, the number of created aggregation nodes is about 3 times as high in the
case of suspension-based explaining and even 30 times as high for suspension-based
conflict retrieval. (Recalling again the discussion in the beginning of this Sect. 6.3, it
is clear that our new algorithm for explaining needs to create some more aggregation
nodes than the one for obtaining a minimal conflict. This explains the remarkable
shift from 30 to 3.)
We shall once more point out that our new algorithms are guided by the given ag-
gregation trees whereas suspension realises a blind search (if we forget about the
enhancement in our suspension routine in Fig. 6.9 which also utilises the structure
of aggregation forests). Due to their mode of functioning, our new algorithms pro-
duce runtimes which relate to subtree sizes (if not even conflict and explanation
sizes themselves), as opposed to the total problem size. This latter order is however
appropriate and logical for suspension-based algorithms.

6.4 The Effect of Reuse along Similar Contexts

Appendix D.5 illustrates with two Screenshots the facilities of our prototype to solve
entire context spaces instead of just a single contraint problem. For smaller context
spaces, this is certainly a practicable way to obtain solutions for all variables in each
of the specified contexts. In the case of larger spaces, it is certainly better to redirect
the results into output files.
This section starts with the results for the 1-bit full adder, as introduced in App. B.I
and the small electric circuit depicted in Fig. 6.1 that gives rise to a space of 32 con-
texts. Clearly, for small context spaces the effect of reuse will not be too dramatic.
This is due to the fact that the gained runtime is almost entirely consumed by cer-
tain one-time effects.
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Therefore, our third example - again undertaken in the context of the ATV propul-
sion system - shall make the benefits of reuse very clear. Here, we have run the
implementation with 1000 contexts, and one-time effects should thus no longer play
a role.

6.4.1 Two Small Context Spaces

Figure 6.14 presents the runtime results for analysing all 16 contexts of the 1-bit full
adder. (Again, the reader is pointed to App. B.I, where a model of the problem is
illustrated. Figures D.10 and D.ll depict Screenshots of our prototype before and
after tackling the given context space.)
Likewise, Fig. 6.15 shows similar results for the space of size 32, spanned by the
electric circuit of Fig. 6.1.

Runtimes in Milliseconds Average Measurements of 10 Runs

forward time: contains:
- built-in strategy
- non-strategic time

backward time
total time

16 contexts by reuse
first context

35.1
3,0

32,1
-1.0,1

45,2

remaining
15 contexts

260.7
25,1

235,6
50,0

310,7

16 contexts
without reuse

502.9
91,1

411,8
79,1
582,0

Figure 6.14: The Effect of Reuse for the 1-Bit Full Adder

Runtimes in Milliseconds

forward time; contains:
- built-in strategy
- non-strategic time

backward time
total time

Average Measurements of 10 Runs
32 contexts by reuse

first context

20.0
2,0
18,0
61,2
81,2

remaining
31 contexts

110.1
18,0
92,1

246,3
356,4

32 contexts
without reuse

302,2
58,0
244,2
333,5
635,7

Figure 6.15: The Effect of Reuse for the Example Circuit in Fig. 6.1

We see that already for as few as 16 contexts there is a saving in runtime when we
deploy the reuse facilities of MCS: The total computation time for all 16 contexts is
45,2 + 310,7 = 355,9 milliseconds versus 582 milliseconds in the case of solving all
16 contexts without reuse. In the second example, the corresponding measurements
are 437,6 versus 635,7 milliseconds.
In order to get an even better understanding of the quality of our reuse facilities,
we shall now turn to much larger context spaces.
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6.4.2 1000 Contexts: The ATV Family

In Subsect. 6.2.3 it has been explained - for each of the four ATV systems - how
a sequence of 1000 contexts can be generated in an on-the-fly fashion, so that any
two neighbouring contexts differ by exactly two relations. Actually, the results in
Fig. 6.8 and those given here have been obtained by running two distinct instances
of Engine in parallel on the produced constraint problems. Of these two instances
one did not and one did deploy reuse. It is therefore legitimate to directly compare
the results of both experiments, in order to emphasise the effects of reuse.7

Incremental Analysis (Context Switches: 999, Altered Relations: 2) " Average Measurements

Systemi
System2
System3
System4

forward phase
aggs/ctxt*

15,82
21,39
20,63
22,83

msec/agg*
0,71
1,32
1,92
2,58

strategy time*
15,93%
9,59%
8,98%
5,73%

msec*
13,31
31,12
43,48
62,36

backward phase
joins/ctxt

263
632
868
1315

projs/ctxt
262
631
867
1314

msec*
85,28
240,18
347,16
537,49

total
msec
98,59

271,30
390,64
599,85

Figure 6.16: Runtimes for Incrementally Solving the ATV Systems

The incremental runtime results are presented in Fig. 6.16. They prove that incre-
mental processing drastically decreases the effort spent on the forward phase. More-
over, the number of forward operations relates to the theoretical result of O(log(n)).
Also, the portion of time spent on strategic matters drops significantly from over
40% to less than 10% in the incremental case. This is not surprising, as repairing
single aggregation paths does not leave RCS much of a choice.
On the other hand, each single aggregation seems to become harder. This is in-
dicated by the rise in time per aggregation: Whereas this parameter approaches
one millisecond for system 4 in the non-incremental case, we witness a rise over 2.5
milliseconds in the incremental case. Obviously, maximal reuse and simplicity of
aggregation may happen to be contrary goals.
The runtimes covering the backward phase do not differ. Note that this is as ex-
pected since we have used the same method in both experiments for solving all
variables.

Figure 6.17 presents a direct comparison of non-incrementally and incrementally
solving the four ATV systems. Here, we see the average runtimes per context. (In
the case of a reuse-based, that is, incremental analysis, this figure comprises also the
initial non-incremental context.) Obviously, incremental analysis saves almost two
thirds of the non-incremental runtime.
Again, as has also been the case for the bridge circuit family, (-Rfc)fceN+> the presented
graphs suggest an "almost linear" runtime, at least for the three larger systems. In

7In the incremental case, i.e. the one in which we deployed the reuse facilities, we implemented
a trigger for abandoning the current aggregation tree and compute the next context from scratch.
This trigger fired whenever the current aggregation tree had become very unbalanced. (Note that
repairing existing aggregation trees over and over again is indeed very likely to make them extremely
unbalanced and hence unsuitable for further computations.) The presented experimental results
are nonetheless valid, as the trigger fired less than 10 times in 1000 contexts.
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Figure 6.17: Comparison of Incremental and Non-Incremental ATV Runtimes

order to deal some more with this aspect, the reader is pointed to the structural data
provided by Fig. E.6. There it can be seen that the number of variables per relation
does indeed not depend on whether the relation is a leaf of the aggregation tree, or
not. Similarly, other features, like the number of atoms, conjuncts or disjuncts, are
almost identical for leaf and non-leaf relations. The only remarkable difference is
the balancedness of the aggregation trees: As expected, in the non-incremental case
-trees tend to be more balanced—On-the-contrary^if-subsequent -contexts are-solved-
by reuse, then longest path and average path differ - at least for systems 3 and 4 -
by more than 20 nodes.

For completeness sake, we shall also give runtimes for the 4 ATV systems that have
been obtained with the Model-based Diagnosis System (MDS), which we already
mentioned in Subsect. 2.2.2. It is the only system that was used to directly com-
pete with our prototype since it also implements reuse facilities (there based on an
ATMS; see Subsect. 2.2.2).

*msec Measurements on a 733 MHz PC with 1024 Mbyte RAM

one non-incremental context*
one incremental context switch*

System 1
= 0
= 0

System 2
840
730

System 3
7.900
3.740

System 4
2.720
2.650

Figure 6.18: ATV Runtimes Acquired by MDS

The runtimes presented in Fig. 6.18 have been measured on a faster computer with
more RAM. Still, MDS was outperformed by our prototypic implementation of MCS.
Apart from the peculiar difference for system 3, the reuse facilities implemented in
MDS do not seem to provide much benefit in the case of the ATV problem instances.
For system 4, MDS takes - despite the better hardware - more than 4 times as long
as our prototype when deploying reuse.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The overall goal of this dissertation is to contribute to and support the further au-
tomation of standard and non-standard engineering tasks.
As available hardware! and software become more and more powerful, we simultane-
ously witness a tremendous increase in information that may or may not be relevant
for the different phases in a product's life cycle. Besides the relevance and quality
of available data, its degree of formalisation decides whether it can be directly de-
ployed in order to reveal hidden dependencies or infer further inexplicit, yet valuable
knowledge.
In this context, constraints can be regarded as a highly formalised type of know-
ledge and therefore almost immediately déployable. This work does not deal with
the problem of condensing informal data to formal knowledge or even constraints.
Instead, we considered the automation of engineering tasks of model-based system
synthesis and analysis, by means of available constraints. In this approach, the con-
straints capture the alternative physical behaviours of the component models which
are used to assemble entire system models. Moreover, the resulting mathematical
system desciptions can be used only for the analysis of static system characteristics;
dynamic system behaviour has not been addressed in this work. The reader should
note that this would involve much more complicated mathematics; we just mention
differential equations which are usually used to capture dynamic system behaviour.

In Sect. 2.3 the common engineering-specific requirements for constraint solving
techniques have been collected. The remainder of Chap. 2 makes clear that existing
constraint solvers are mainly not suited for model-based engineering applications,
as for instance diagnosis. One reason for that to be mentioned is the lack of reuse
facilities in most existing solvers. But this is essential in large diagnosis applica-
tions where we need to solve thousands of similar constraint problem instances in
an acceptable response time. Furthermore, in many solver implementations, the
provision of minimal conflicts and explanations is not addressed or has only been
an afterthought. But in real-world applications with hundreds and thousands of
constraints, engineers will need to be provided with small or even minimal subsets
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of constraints to be able to roll back to a consistent system design, or to understand
a variable's solution.
Considering constraint conferences and workshops of the last few years, it is le-
gitimate to remark that this insight has presently led to an increased interest for
explanation services in the constraint computation community; cf. e.g. [3], [26], [50].
Traditionally, explanation services have been implemented either using truth main-
tenance systems - see [69] and also [16], [27] - or by propagating labeled values; [44].
This work has presented a novel approach to explanation services. This approach
utilises existing aggregation trees, and in the case of linear aggregation trees, that
is, deep and extremely unbalanced trees, we can recognise similarities to the method
presented in [49]. Therefore, the approach presented here is more general and ap-
plicable to a greater class of problems. .

However, the main reason why many existing solvers fail when confronted with engi-
neering problems is the heterogenity of the constraints. This is because these solvers
have been tailer-made to tackle homogeneous problems, that is, problems which are
built of only one type of constraints, e.g. linear ones over real-valued variables or con-
straints over finite-domain variables. But in many engineering applications, we are
faced with heterogeneous problems that are mixed of all sensible types of constraints.

Consequently, the solution proposed in Chap.-3had-to-take a-very-generic-view-
on constraints: Constraints are just sets of assignments, or - equivalently - sets of
solution tuples. The advantage of such an approach is that the basic operators for
manipulating and combining constraints, join and project, can also be concisely be
defined.1 Based upon that very simple abstraction of constraints and the two oper-
ators join and project together with their combination aggregate, Chap. 3 developed
a concise framework for

• deciding the consistency of a given set of constraints,

• solving, in case of consistency, all variables and

• providing one or all minimal explanations for a given variable's solutions,

• producing one or all minimal conflicts, in case of inconsistency,

• facilitating an efficient reuse when switching from one problem instance to a
(similar) next one and

• enabling the import and utilisation of aggregation strategies, as e.g. obtained
from decomposition tools.

Chapters 4 and 5 present an object-oriented implementation of the developed and
proven results. These chapters with their class diagrams and method descriptions

The attentive reader will immediately recognise parallels to operators of the same name and
semantics in database theory. Furthermore, the RCS-related task of determining a good aggregation
strategy has much in common with query optimisation in database theory.
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can be seen as a guideline for an actual implementation of RCS, e.g. in the program-
ming language Java.

Whereas there are no theoretical limitations to the framework of RCS as elaborated
in Chap. 3, limitations do become obvious in the context of its practical realisa-
tion in the Chaps. 4 and 5. Subsection 4.1.1 discusses this issue and shows that
an implementation of RCS can always be only an approximation that will produce
overestimations of the actual results. It shall however be pointed out that one may
implemement additional subclasses of the class Relation in order to push the im-
plementation further towards "smaller" overestimations; see Th. 6. Another means
to this end is the implementation of additional term rewrites; see Sect. 5.5.
Also, an implementation could include, for each method that returns an instance
of Relation, a boolean attribute like isOverestimation. With that it would be
possible to distinguish exact results from overestimations. In the current version of
our prototypic implementation of RCS this has however not been done.

During the course of this dissertation and as its practical part, an implementation
of RCS has been carried out mainly by the author and aided by his collègues at
a DaimlerChrysler research group. The resulting code has been tested in a few
first promising engineering applications. The respective results, together with re-
sults obtained for some more academic problem families have been presented and
discussed in the previous Chap. 6. Those results prove the practicability of the pre-
sented aggregation-based constraint solver RCS.
In the following, we shall give a more concrete list of this dissertation's achievements
and major contributions.

7.2 Major Contributions

Let us repeat the major contributionss of this dissertation, as already listed in the
introduction.

• Requirements Analysis: A thorough requirements analysis for constraint
solving in engineering applications were the starting point for this dissertation.
Apart from the heterogenity of constraints in engineering, aspects of reuse
along large sequences of similar constraint problem instances and explanation
facilities constitute the main difference to already available constraint solvers.

• Concise Theoretical Framework: Based upon viewing constraints as sets
of assignments, we elaborated a thorough and concise theoretical framework,
the relational constraint solver RCS. The core idea - besides the afore men-
tioned abstraction of constraints - is to use only two operators for the manipu-
lation and combination of constraints, join and project. With these it became
possible to efficiently analyse constraint problems by building so-called aggre-
gation trees. Their utilisation addresses conventional tasks, such as deciding
consistency, inevitable tasks, such as reuse along problem sequences, and newly



184 CHAPTER 7. CONCLUSION AND FUTURE WORK

emerged tasks, such as explaining.
In this context, the work at hand also solved the following technical problems.

— Proof- One Minimal Conflict: A detailed proof of a theorem concern-
ing the computation of one minimal conflict, which had been hypothesised
in the course of joint work, could be given.

— All Minimal Conflicts: Likewise, a theorem concerning the provision
of all minimal conflicts based on aggregation trees, and its proof were
given for the first time.

— Explanations: With a small modification of the conflict-related theo-
rems, algorithms for finding one and all minimal explanations, respec-
tively, could be presented. This dissertation also contains proofs for all
hypotheses made in that context.

— Relationship to Decomposition Techniques: Section 3.5 establishes
the link between aggregation strategies and well-known decomposition
techniques. Subsection 3.5.3 shows how hypertree decompositions, ob-
tained from constraint hypergraphs, may be used to generate aggregation
strategies that can be deployed by RCS to build aggregation trees and
thereby to solve a given constraint problem.

— (Partially) Solved Form: Subsection 5.2.1 introduces the concept of a
disjunctive normal form, DNF, for relations. We argued that subsequent
join and projection steps can be supported by an appropriate represen-
tation of a relation in DNF. In Subsect. 5.3, the (partially) solved form,
(P)SF, was introduced as an advantageous DNF variant: By establishing
the (P)SF, the elimination of so-called basic variables becomes a trivial
task. Furthermore, finding solutions for basic variables during the back-
ward phase is simple.
Whereas most normal forms for representing constraints are for good
reasons limited to conjunctive linear constraints, cf. e.g. [43], the (P)SF
is applicable to heterogeneous constraints. Thanks to implemented me-
thods of term manipulation, our prototype is also able to actively refor-
mulate non-linear constraints, as opposed to passive postponing schemes,
as e.g. presented in [9].

• Implementation: All algorithms, which result from the presented and veri-
fied theorems, have been implemented in Java and proven to be practicable in
some first engineering applications.

• Evaluation: Chapter 6 of this dissertation presents a showcase example that
illustrates the different services of our prototypic implementation. Further-
more, several Screenshots have been added, in order to provide the reader with
a better understanding. The most important part of Chap. 6 provides run-
times as well as structural data for the analysis of a few different problems and
problem families.
The very general low density assumption for model-based engineering applica-
tions, i.e. the fact that each variable appears in only few constraints, could be
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shown to hold not only initially but also after several aggregations. (For that
result, consider again the ATV family and see Subsect. 6.4.2.) Based on that
assumption - and as forecasted in Chaps. 4 and 5 - we witnessed an almost
linear dependency between a problem's size and the time consumed to solve
it. However, when an initially low density grows during the forward phase,
we must not expect a linear runtime behaviour, as the example of the diode
circuit family (-Dfc)fceN+ shows; see Subsect. 6.2.2.

7.3 Future Work

We shall close this dissertation thesis by discussing the current status of our pro-
totypic implementation, its shortcomings and the resulting issues that are to be
investigated and dealt with in the future.
The work at hand makes a clear separation between the theoretical framework of
MCS and its practical realisation by means of an actual Java implementation. The
former part as well as the practical implementation as they are now are the starting
point for numerous open research topics.

Concerning the theoretical part, it should be clear that - once we know which pair
of relations to pick for the next aggregation - it is implicitely clear how to buijd
aggregation trees. Likewise, all other presented algorithms which utilise and deploy
existing aggregation trees, will automatically work. So, the foremost question from
a theoretical point of view is not so much how to perform an aggregation but rather
to determine which pair of relations to aggregate next. Note that this question has
to some extend already been discussed in Sect. 3.5.
On the one hand, we have at our disposal local aggregation strategies, as the on-the-
fly strategies in Subsect. 3.5.1. On the other hand, we may use known (hypertree)
decomposition techniques to obtain global aggregation strategies, before the actual
constraint problem is going to be solved.
An interesting problem in practice is then to decide whether precomputing a global
strategy will lead to better aggregation trees2, or whether we will do with a local
strategy for the problem at hand. Note that such decision making will not only
need to consider relations and their scopes, but also the types of relations, their
mathematical structure and their constrainedness. With these attributes we will
clearly leave the simplistic picture in which all constraints look alike and are just
relations, i.e. sets of assignments. Instead, certain characteristics of the constraints
will suddenly play a role.
Furthermore, the decision whether a global strategy will yield better results than a
local one, must include problem specifics - a phenomenon that is very common for
any sort of automated problem solving, and more generally in the field of artificial
intelligence.

Going back again to the relational engine; see Chap. 4; we shall once again point
out that all algorithms implemented there only assume the existence of instances of

2 "Better" means here aggregation trees for which the forward relations are better approximations
of the actual results, i.e. for which the forward relations are smaller overestimations; cf. Th. 6.
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Relation and very few methods; cf. the class Relation in the context of Fig. 4.1.
This offers a natural interface for the incorporation of existing high-performance
modules which implement join and project for certain, well-studied classes of con-
straints. An example here is CLP(R) which may be used to incorporate a very
efficient realisation of linear constraints (including normal forms for conjunctive lin-
ear relations). Likewise, many existing finite-domain solvers that have evolved over
the past two decades are candidates to be included to make our prototype fit for
finite-domain (sub-)problems. For such problems, the current implementation is not
very well conditioned.
The benefit of such incorporations would be that all high-level algorithms imple-
mented at Engine would just as well work and e.g. provide minimal conflicts and
explanations, even though the incorporated special modules do not address such
issues. Clearly, the work to be done here is to implement and ensure the interface
methods join and project on the side of the incorporated special modules. We need
to investigate to what extend this would be possible without sacrificing the advan-
tages of those modules.
Moreover, with the incorporation of existing high-performance modules, we en-
counter other, new problems. E.g. a disjunctive normal form as used in our im-
plementation is not efficient for finite domain or boolean constraints. Here, decision
diagrams, see [7], or other normal forms, see e.g. [13], and finite domain automata,
see [73], offer much more efficient realisations.

- To handle performance problems that are ~due~to~the~usage of the disjunctive normal
form, we may also introduce a new control option that allows for discarding certain
disjuncts in a given disjunction, in order to manage the complexity of an otherwise
unhandable problem. In diagnosis, this approach has already found some realisa-
tions, cf. minimal cardinality diagnosis in [12] and [67].

Another problem with our prototype occurs when it is fed with too many inequal-
ities. The issue here is due to the well-known problem of redundant inequalities
introduced by Fourier's algorithm. A lot of research has been done on that topic,
but so far our current prototype version does only check for the simplest redundant
inequalities, even though good methods are available.
We have pointed out that, in the prototype, we have the possibility to represent
inequalities as equations with a slack variable; see Subsect. 5.6.1. But that will only
shift the problem from redundant inequalities to the insufficient handling of slack
variables: For example, whenever one tries to instantiate a constraint that only re-
lates slack variables, our implementation will immediately replace the constraint by
either 0 or D. This is because to our class Engine, slack variables appear to be
invisible. Therefore, representing inequalities by equations with slack variables is a
potential source of highly overestimating results.
Similarly, when there are too many disequations in a problem, then the results pro-
duced by our prototype tend to be rough overestimations. The reason for that is
that our solving schema is based on Gauss-like variable substitution or Fourier eli-
mination. However, with disequations, both techniques become inapplicable.
Often disequations exclude just one value from a variable's domain. Hence, disequa-
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tions are rather weak constraints, and our prototype often simply discards them.

In our implementation, finding a good substitute for a variable has to do with
the symbolic manipulation of constraints and eventually of (algebraic) terms. One
may increase the accuracy of the implementation by implementing additional term
rewrites. However, this will also have drawbacks, as additional rewrites consume
additional time which is spent to determine whether a given rewrite is applicable.
Another interesting question here is how to find a smallest set of term rewrites that
will solve a given family of constraint problems without any overestimation. In Sub-
sect. 6.1.2 we briefly sketched a model for a quadratic resistor. So far, we have not
been able to determine a smallest set of term rewrites so that any resistive network
which contains only quadratic resistors, can be solved without overestimation.

Certainly, apart from finite-domain problems, integer problems play a major role in
planning scenarios in engineering. Job scheduling and resource allocation problems
are typically modelled using integer variables. With our current implementation,
we cannot constrain a variable to take only integer values. Consequently, constraint
problems of the outlined type cannot be analysed.

A further interesting question is due to floating point arithmetic and rounding er-
rors. Although our prototype allows to constrain a real-valued variable to lie within
a real interval, any computation that initially starts with real numbers will stick to
numbers and never instantiate an interval. As a consequence, elaborate computa-
tions will eventually produce erroneous data. What is worse, two values that must
actually coincide may turn out distinct and thus introduce a conflict where there is
none. Note that this would contradict the result of Th. 6, part 2.
In the prototype, this problem has been fixed as already explained in Subsect. 5.6.1.:
Whenever two numbers are compared, then they are regarded distinct only when
they differ by more than some small e > 0. The problem with this procedure is
however that we can in general not know which e to chose: If it is too small, we may
still introduce a false conflict; too big an e will identify numbers that may actually
be distinct. In the latter case the prototype will tend to produce unnecessary over-
estimations.
An item of future work here would be to utilise or reimplement some prominent box
consistency approach, see e.g. [72].

Most practical problems occur when the relations become more complex, e.g. non-
linear. Our solution schema is based on symbolic variable elimination. But often,
there is simply no good substitute for the variable that we would like to eliminate
next. A simple example is the constraint x = sin(x) with the unique solution x = 0.
We will hardly be able to make that subtle simplification without the application
of numerical methods. Such a method could for instance search all zeros of the
function f(x) = x — sin(x), e.g. by deploying Newton's method.
The given equation is only a very simple example for a cyclic dependency among
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a set of unknowns. Typically, there are some initial bounding boxes for these un-
knowns. Iteration can then help to shrink the bounding boxes and thereby narrow
the solution space. Note that this is - besides symbolic elimination techniques - a
second approach to finding solutions for a set of unknowns. For many engineering
tasks, this alternative path is inevitable. Consequently, we need to incorporate iter-
ation and other numerical techniques into our implementation, and maybe even in
the theoretical framework of RCS.

The final item in the list of future work has been brought to our attention by
another prominent engineering task. For many products engineers need to ensure a
steady gap between a given pair of touching parts. A well-known example is the gap
between a passenger car's door and the frame defined by the car body. Obviously,
the requirement of a steady gap is not necessarily due to a product's functionality,
but may also be due to a product's aesthetic parameters.
The crux with steady gaps is that all of a product's parts, e.g. the car's body and
doors, will inherit from the manufacture a certain deviation from its set dimensions.
Moreover, the car's assembly will introduce even more deviations. Mathematically,
this can be captured by means of a probability distribution for each value, i.e. for
each geometrical dimension of the parts and the relevant manufacture tools. Then,
computing the door gap is basically done by combining all initial distributions to a
final distribution.
Currently, this is typically done by Monte-Carlo-like simulations. Here, one does
not even need to know the type of initial distributions, e.g. Gauss distribution.
Obviously, a simulation could often be replaced by a well-founded computation if
we knew the initial distributions and how they combine. For instance, a linear
combination of Gauss-distributed values is again Gauss-distributed.
Thus, a constraint solver could compute distributions of interest, as opposed to
naively simulate the physical assembly. Also, one could mathematically transpose
the assembly: It would become possible to identify those parts and manufacture
tools that have the greatest impact on the final distribution, i.e. on how the door
gap will look. Currently, this information is often not available which makes it hard
to optimise the production lines. It is very costly to decrease a part's production
tolerance. Therefore it would be helpful to know which parts to improve first.
For our prototype, this complex problem sets a new requirement and the starting
point for future work. One possibility would be to enable our implementation to
attach probability distributions to certain input values and to infer the resulting
distribution whenever two such values are combined.
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Proofs

A.I Lemma 1

Picking a tuple (v\, v-i,..., vn) € dom{x{) x domfa) x • • • x dom(xn), the task is
to show that there is an assignment a* € A that maps x±, X2, • • •, xn to that tuple,
c is nonrestrictive and therefore there must exist some ao £ A, by Def. 2. ao can
gradually be altered to arrive at a*:
For i € {1,2,... ,n} we can define etj E A in the following way: Set ati(xj) = ai-\{xj)
for all j G {1,2,... ,n},j ^ i; and (Xi(xi) = Uj. Since CÜJ_I 6 «4 by construction, and
since X{ is a free variable of c, a:* must also lie in A.
Eventually, an = a*, and a*(xfe) = Vk for all fc € {1, 2 , . . . , n}.

The given condition clearly implies the one given in Def. 2, stating that Xi is a free
variable of c, for each i 6 {1,2,. . . ,n}. Hence c is nonrestrictive by definition. •

A.2 Lemma 2

commutativity
In the case that a or b, or both are trivial constraints, the condition is directly ensured
by Def. 4. If both are non-trivial, commutativity follows from the interchangeability
of X, Y and A, B, respectively, in the resulting non-trivial constraint.

associativity
Again, if at least one of a, b, c is a trivial constraint, both terms a M (6 cxi c) and
(a ixi b) ix c can be evaluated by the computation rules provided by Def. 4, and are
found to be equal for any constellation.
Let us compute a 00 (ft tx c) for the non-trivial constraints a = (X, A),b = (Y, B),
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andc= (Z,C):

a M (b XI c)

- (X,A)>z(YL>Z,{ß:YUZ—+ Ueruz rfom(v) : ß\r e B A ß\z EC})
( {

7|x £ i A J\YUZ € .M } ), where JM denotes the set of ß's,
in the previous line,

= (XUYUZ,{-r.XUYuZ—+\JveXuYüZdom(v) :
7|x G A A 7|y € # A 7z € C } ).

We obtain thus a term symmetric in (X, A), (Y,B) and (Z, C). Similarly, evaluation
of (a 00 b) XI c yields the same result, completing the proof. •

A.3 Definition 6

well-defined
Checking whether the definition is coherent is done by verifying that 0 ~ D, and
D ~ 0 produce each the same results for both last lines of the definition. This is the
case since 0 is unsatisfiable and restrictive, and D is satisfiable and nonrestrictive.
One obtains 0 ^ D and D ^ 0 .

equivalence relation
reflexivity: Considering the definition, obviously c ~ c for any constraint c.
symmetry: This is also obvious from the definition.
transitivity: Let a, b, c be three arbitrary constraints such that a ~ b and b ~ c.
If all three are non-trivial constraints, transitivity follows from (3.3) and the transi-
tivity of = (as defined before the definition). Suppose now, at least one of a, b,c is
either 0 or D. The following complete case differentiation shows that ~ is transitive:

1. b = (Y,B) is non-trivial.

(a) a = 0:
a ~ b, hence b is unsatisfiable, by definition, i.e., B = 0 by Def. 2. If
c = (Z,C) is also non-trivial, then b ~ c and (3.3) force C to be empty,
too. In case, c is a trivial constraint, then b ~ c enforces c = 0. In either
case, c must be unsatisfiable, implying a ~ c.

(b) c = 0:
Symmetric to previous case.

(c) a = D:
This time, a ~ b implies that b is nonrestrictive. Then b ~ c and (3.3)
yield for a non-trivial constraint c = (Z,C) together with Lem. 1, that
C must contain all possible assignments to Z. Likewise, for a trivial
constraint c, c = D can be deduced. In any case, c must be nonrestrictive,
and thus a ~ c.

(d) c = D:
Symmetric to previous case.
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2. b = &.
a ~ b implies that either a is trivial with a = 0, or a has no assignment. This
means that a is unsatisfiable. The same is true for c. Def. 6 gives then a ~ c.

3. 6 = D:
Here, a ~ b enforces that either a = D, or a encodes all possible assignments;
see Lem. 1. Again, deriving the same property for c, the conclusion a ~ c
follows.

This shows that ~ defines indeed an equivalence relation. •

A.4 Lemma 3

Let (Y, B) denote the result of 1X1C. There is nothing to show for \C\ = 1.

Pick some c = (X,A) E C, and write (Z,C) = X(C\{c}). Then

(y, B) = (X, A) M (Z, C), by Lem. 2,
= (X U Z, {ß : X U Z —» U e xuz d o ™( u ) : / % e 4̂ A /?|z E C}) .

Therefore, a € S(C) <̂=̂> a € B = > a | x € A

^ ^ (induction over the size of C)
Let again c = (X, A) G C be any of the given non-trivial constraints, and assume,
for the "^^"-part of the proof, that a\x € A. Furthermore, by writing again
(Z, C) = CXI (C\{c}), induction provides the condition a\z E S(C\{c}), i.e. a\z E C.
Combining both containment conditions, a must be "among the /?'s" in the above
chain of equations. It follows that a 6 B. Thus, a is an assignment of X C ,
i.e. a € £(C). •

A.5 Lemma 4

All three hypotheses can easily be verified in the case where c, and one of c\, ci are
trivial constraints. For this, just recall the computation rules provided by Defs. 4, 5,
and 6. The only exception is (3.8) in the case that c\ = D. But then this assertion
becomes (3.7) which is going to be shown first.
So, in what follows we can safely assume that all constraints be non-trivial.

(3.7)
Let c=(Y,B). Then

{a : X —> \JxeX dom(x) : 3 ß E B ß \ x = a} = 0
TTX(C) unsatisfiable

~ 0.

In order to prove the other direction at (*), it is more obvious to show

BjÊ® = > \a:X—^ U dom{x) : 3 ß E B ß\x = a \ £ 0.
I xex )
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To do that consider that, for any given ß e B, an a : X —> \Jx€X dom(x) can be
constructed such that ß\x = a, just by setting a:=ß\x-

(3.8)
Let q, = (Xi,Ai),i € {1,2}, and a be an assignment belonging to c\ cxi c2. Then,
by Def. 4,

a : Xi U X2 —> ( J dom(x) a\Xl G A , a|x2 € -42-

Define /? := a ^ u x - Then ß\Xl S -4.1- Also, since X Ç X2, /5|x is an assignment of
7i"x(c2). Hence ß must be an assignment of c\ cxi TTX(C2).

For the converse, let a belong to the set of assignments of c\ tx\ ?rx(c2), assigning
values to X\ U X. Then, again by Defs. 4 and 5,

a\Xl eAi A 3(ß:X2 —>• l)xex2 dom{x)) G A2 a\x = ßx-

Now, defining the assignment ß' to X\ U X2 by setting ß'\x2 ==• ß a n d ß'\xi d— a\xx,
is coherent, because ß\x = a\x and I D I i f l X2. Furthermore, ß' satisfies

_ ß'\Xj = a\Xl G Ai A ß'\x% = ßG Ai.

Therefore, ß' is an assignment of c\ tx c2.

Both previous arguments show that there is an assignment of c\ M C2 if and only if
there is one of c\ M TTX(C2), establishing the assertion.

(3.9)
Obviously, the sets of variables coincide on both sides (Y2).
Let a : I2 —• U«el2 dom(y) first be an assignment of the left-hand side constraint.
Then Defs. 4 and 5 imply

3 ß : Xx U X2 —> Ux€XiUXa
 dom(x) ß\xi £Ai A ß\x2 G A2 A /3|y2 = a.

Therefore a = ß\y2 is clearly an assignment of •KY2{
C2)- Also, due to Y\ Ç y2, a and

ß agree on l i , and so a\yx must be an assignment of 7ryx(ci cxi C2). Summarising, a
belongs to the set of assignments of the right-hand side constraint.

If a is in the right-hand side,

3 ß : X1 U X2 —> Uxe^uxa ^om(a;) /3|X l € Ai A /3|x2 e ^2 A ß\Yl = a\Yl

A 3 (7 : X2 —c Uxex2 ^ H ^ ) ) G ̂ 2 l\v2 = a.

Especially, ^|yx = a|yi = 7|yi; since Y\ Ç y2- Since Yî D A"i n X2, this means
that /?' : Xi U I 2 —> U e ^ u x a ^m(x), defined by /3' |X l = ^ and /?'|x2 = ' 7 is
coherent. By construction, ß'\Xi € A , for i 6 {1, 2}, and moreover ß'\y2 = 7|y2 = a,
because I2 Ç X2. This proves that a is an assignment of 7ry2(ci ex C2). •
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A.6 Lemma 5

existence part of statement 1.
Fix a variable x mentioned by some c € C, i.e. x € c. Let the path to c from the
root p of A be denoted by

C = C\ < C2 < • • • < On — p.

Then obviously x $ vars(cn) A x G vars{c\). Therefore the index
&o = min{/c G {2, 3 , . . . ,n} : x 0 vars(ck)} is well-defined. With d denoting
the second successor of Cfc0, this gives x G (vars(cko-i) U vars(d)) \ vars(ck0)- Hence
Cfc0 eliminates x, in the sense of 1. of Lem. 5, proving the existence of such a node.

statement 2.
Cfe0 is the aggregate of Cfco_i and d. And so, by condition 2. of Def. 10,

x 0 mt(cfco_i txj d, C \ A(cfco)).

This implies that, for all c G C \ A(cfe0), x 0 vars(c). Clearly, this is equivalent to
statement 2.

uniqueness part of statement 1.
Suppose there were two distinct nodes €i(x),i G {1,2}, eliminating x. Then 2. im-
plies the condition

But in a tree, this means that, without loss of generality, A(ei(x)) Ç A(e2(a;)); and
because of distinctness of the two nodes even a proper subset relation, C.
Now the defining property of e\ (x) ensures that x appear only "below" e± (x). But as
€2(x) is "above" e\(x), this means that none of the successors of e2(x) must mention
x which clearly contradicts the fact that 62(x) eliminates x. Hence, there cannot be
more than one node in A, eliminating x.

statement 3.
This is a simple consequence of the property of e{x): Starting at each leaf c G C for
which x G vars(c), x has to appear in any node on the path that leads to c from
e(x). Thus, all nodes mentioning x must form a subtree rooted at e(x). Only, that
node does clearly not mention x, by its definition.

statement 4.
Let x be any variable belonging to the left-hand side intersection. Then e(x) cannot
lie "below" r, that is, e(x) must lie somewhere on the path to r from the root of A.
The previous statement 3. ensures then that x appears also in both r\ and TI. This
establishes the claimed set inclusion.

statements 5. (a) and 5.(b) (by bottom-up induction on A)
Suppose first that r is an arbitrary leaf of A. Then 5.(a) simplifies to an instantia-
tion of (3.2). Moreover, in that case, there is nothing to show for 5.(b)
For the induction proof, assume now that r is any non-leaf node. The plan is to
show, for the node r, 5.(b) first. This bit of the proof will assume the validity of
5.(a) for both r\ and r%. The induction step concludes by proving 5.(a) for r. As
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soon as this is done, the induction principle ensures the validity of both 5. (a) and
5.(b) on the entire tree A.

So given n = 7r„arS(r.)(tXA(j-i)),? e {1,2}, 5.(b) will be shown to hold for r. Ob-
viously, variable sets coincide on both sides of the equation; hence the following
argument will just consider assignments.
Write Si = XJA(r,-),Xf = vars(rt),i G {1,2}, and let
a : Xi \J X2 —> U1GX1UX2 dom{x) first be any assignment of

Then, there are assignments ßi,i G {1,2} of Si such that ßi\xt = a\xt, and the
ßi must agree on X\ D X2. Statement 4. ensures that the ßi must hence agree on
vars(si) PI vars(s2). Therefore, defining ß on the set of variables vars(si) U vars(s2),
according to ß\vars(si) = A) is coherent.
By construction, ß is an assignment of si tx s2 = XA(r ) . Moreover, for
i G {1, 2}, ß\xi = AU, = alxj, since Xi Ç vars(sj). So, /? and a: agree on X\ U X2.
Summarising, this proves that a is an assignment of

Let, for the converse, now a be an assignment of
Clearly, by decreasing the set of joined constraints, a must also be an assignment
of TTjsCiUA^C -̂M7 )̂)̂  e {1)2}. Decreasing now the set of variables, one finds that
a\xi is an assignment of T T X ^ I X A ^ ) ) , for i G {1,2}. Hence a has been found to be

-an-assignment of ri-cxi r2. - -
This concludes the induction step concerning 5.(b).

Given the validity of 5.(b) for the non-leaf node r, it is easy to derive that of 5.(a):
Since r is the aggregate of ri and r2, applying the projection onto vars(r) on both
sides of 5.(b) immediately yields 5.(a).

statement 6
Write c\ =tX3M and c2 = r\ M r2, then the goal is to apply (3.8). Choose X accord-
ing to Def. 10, 2., i.e. such that r = aggx(ri,r2). Then obviously,
X D (int(n,M)Uint(r2,M)), due to M ç C \ A(r). And Def. 9 implies
X D vars{c\) n {vars{r{) U varsfo)) — vars(ci) (~l vars(c2). Thus, the precondi-
tion of (3.8) holds indeed, and the assertion follows.

statement 7
Let M' £ T{M) be arbitrary such that \XM' ~ 0 holds. Let

M" M Um6MA(m)

denote the element of T(M) with the most nodes. Then M" D M', and therefore
[XIM" ~ 0. But now we can repeatedly apply statement 6 until all leaves in M"
have been replaced by the appropriate subtree root in M. This proves the condition

A.7 Lemma 6

statement 1 (by top-down induction)
For r = p, the only possible set M is, by Def. 14, the empty set of nodes of A. But due
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to inconsistency of C, Th. 1 provides p = 0, and therefore
XI (M U {r}) = [XI ({0}) = 0, i.e. the assertion.

Let now r be any node with successors ri,r2, and let us assume the assertion be
satisfied for r. Let also Mi G con-ifa) be arbitrary for i G {1,2}.
If CX] (Mi U {n}) ~ 0 (in order to consider the first case of Def. 14), then the asser-
tion holds obviously also for r .̂
If Mi = M U {r3_j}, where M G coni(r), then M(M U {r}) ~ 0 by induction.
According to Lem. 5, 6., this is equivalent to tX](M U {n,r2}) ~ 0, i.e. again
CXI (Mi U {r,}) ~ 0, because {n, r2} = {n, r3_;} for both i = 1 and i = 2.

statement 2 (by bottom-up induction)
Consider first any leaf A G A(p). Here, the assertion follows immediately from
Def. 14 and statement 1.

Assume now the assertion holds for both successors ri,T2 of a non-leaf node r. Let
M G con^(r) be arbitrary.
If M 6 con^(ri) for i = 1 or i = 2 (see Def. 14, then CXI M ~ 0 by induction.
If, otherwise, M is composed of some Mi and M2 as elaborated in Def. 14, then
CXI M ~ 0 is explicitely guaranteed, and there is nothing to show either.

statement 3
This property follows immediately from Def. 14: When defining con^r), only the
brother node r1 of r will be inserted into the respective sets of nodes, (r, r' are
brothers if they have the same predecessor.) Moreover, no successor of r itself will
be inserted.

statement 4 (by bottom-up induction)
Consider first any leaf A. By Def. 14, M G con^(X) implies that A € M, and
hence M D A (A) = {A} 7̂  0. The first implication becomes trivial for leaves since
y(A(A)) = A(A). The second implication is an obvious consequence of Def. 14 and
statement 3.

Let, as above, r be any non-leaf node with successors n,r2; M G con^(r) be arbi-
trary, and assume the validity of the assertion for both n and r2-
Suppose first the case that M € con^ri), for either i = 1 or i = 2, and
r3_i ^ M. M G con-|-(rj) and the induction assumption imply that M n V(A(r))
contains only leaves of A(r^) and maybe r^~i- But the latter node is known not to
lie in M. Thus, M n V(A(r)) consists exclusively of leaves of A(rj).
For any n G M \ V(A(r)) the stated property follows from M G con^rî) and the
fact that the property in question is assumed to hold already for rj.

The remaining case is the one in which M is composed of some M\, Mi as stated
in Def. 14. Here, the argument is similar since the structural properties hold for
Mi,M2 by assumtion. r\ may belong to M2 (from which it is removed in M) but
not to Mi. Likewise, ri may belong to Mi (from which it is removed in M) but not
to M2. Summarising, M n V(A(r)) must be a subset of A(r). For n G M \ V(A(r)),
the assertion follows again from what we already know to hold for Mi and M2.

statement 5
This is the application of statement 4 to the node r = p(A).



196 APPENDIX A. PROOFS

statement 6 (by top-down induction on A)
For p, the assertion follows easily, since the only possible choice M = 0 gives
T(M U {/?}) = r({p}) which contains all non-empty sets of leaves of A(p) and hence
each minimal conflict of C.

Let now r be any non-leaf node, for which the assertion may be assumed by induc-
tion, with successors ri,r2- Note that there is something to show only if K" is a
minimal conflict that meets A(rj), for i = 1 or i = 2 or both. Either way, we have
K n A(r) T̂  0, and so, by induction assumption, there must exist M G coni(r) such
that if Gr(MU{r}).
So let us first consider the case that K n A(rj) ^ 0, for i = 1 or i = 2 but not
for both. Then we need to find Mj G conj^rj) such that K G T(MI U {f~i}). It is
clear that actually K G r (M U {r;}) since If does not contain leaves of A(T"3_Î). By
Def. 13, M if ~ 0 , and thus application of Lem. 5, 7., yields X ( M U ( r j ) ~ 0 .
Now, this property together with M G coraĵ r) show that M € co7i|(ri), by Def. 14.

Hence Mi = M is the set we needed to find.
In the remaining case, K contains leaves of both A(ri) and A(r2), i.e.
K G T(M U {ri,r2}). Defining Mj = M U {^3-i}) * e {1, 2}, produces elements
of conifri), by Def. 14. Moreover, K G r(Mj U {ri}) for both i = 1 and i = 2. This
shows the assertion for both nodes ri, T2-

statement 7 (by bottom-up induction on A)
T-he-induction-begins-with the case of a leaf-A, and-a minimaLconflict-i£4hat contains-
A. Statement 6 implies the existence of M G cor^(A) such that K G T(M U {A}).
But then M U {A} G con^{\) by Def. 14, and we are done.

Let again r be any non-leaf node with successors 7"i,r2, for which the assertion can
be assumed to hold by induction. And be if a minimal conflict that meets A(r).
Consider first the case in which K fl A(rj) / 0 but K n K{rz-i) = 0, for either % = 1
or i = 2. By assumption, there must exist Mj G con-f(rj) with K G r{Mi). Also,
Mj does not contain r3_j for otherwise Ä" would have to contain a leaf of A(r3_j).
Definition 14 implies then that Mi G con^(r).
It remains the case in which K contains leaves of both A(ri) and A(r2). Then, by
induction, there exist sets Mi G cori](ri), i G {1,2}, such that K G r{Mi). More-
over, we must have r\ G M2 and r<i G Mi. Define M =7 (Mi \ {r2}) U (M2 \ {ri});
then we are done if we can show XM" ~ 0, cf. Def. 14.
Due to if G T ( M I ) n r(M2), and the structures of M\,M<i implied by state-
ment 4, we obtain Mx \ V(A(r)) = M2 \ V(A(r)) and both Mi n V(A(r)) and
M2 Pi V(A(r)) consist exclusively of leaves. Together, these observations give
K G r{M). But Def. 13 guarantees IX]K ~ 0 and the application of Lem. 5, 7.,
turns this into 1X1M ~ 0 which was to be shown. •

A.8 Lemma 7

statement 1
All equivalences given in statement 1 are immediate consequences of Def. 15.
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statement 2
Again, this is easily verified by taking a look at Def. 15 and the definition of E±(p).
Note that {p} is indeed a minimal conflict of V(A), since p = 0.

statement 3 (a) (by bottom-up induction on A)
The assumption and statement 1 guarantee, for all parts of the proof concerning
statement 3, that ~con^{s) ^ * and cÖn-j-(s) ^ *.
For any leaf A, Def. 15 says that côn-̂ (A) = cÔnĵ (A) U {A}. Therefore, the assertion
follows.

Let now r be any non-leaf node with successors r\, r2 for which the assertion may
be assumed, by induction. By Def. 15, there are two distinct cases:

case 1: 'œn^ri) — cönj(r) A ~œni(rz-i) — *, for either i = 1 or i = 2. Then, by
mapping *'s according to statement 1, con-|-(r) = 'con^n). By induction, we may
assume 'canari) \ V(A(rj)) = 'œn^(ri) \ V(A(ri)). In this equation, we may replace
V(A(ri)) by the superset V(A(r)). Hence, after furthermore omitting the index i,
due to known equalities, we arrive at the assertion stated for the node r.

case 2: am^ri) — cônĵ (r) U {r^} A cönj(r2) = côn-|-(ri) \ {r^}. In this case, Def. 15
implies ~con^{r) = côn|(r2). Let us refer to those three conditions by (x), (y) and
(z), respectively. Then, we obtain

\ V(A(r)), by (z),
= coni(r2)\V(A(r)), by assumption, and
= V(A(r2))CV(A(r)),
= corcT(ri) \ F(A(r)), due to (y),
= conj(ri) \V(A(r)), again by assumption, and

V(A(ri)) Ç V(A(r)),
= coni(r)\V(A(r)), by (x).

statement 3(b) (by top-down induction on A)
The assertion is true for the root p, due to Def. 15.
Let again r, n , r<i be as above. We need to show 3(b) for both n, r2 assuming that
collar) ^ * and côn^r) D V(A(r)) = 0.

We must either have conj(ri) — 'con^r) or côrî|(ri) = ~coni(r) U fa}, so in either
case cônj(ri) C\ V(A(r)) Ç {r2}. Therefore cÖnj(ri) D V(A(ri)) = 0, and thus the
condition follows for r\.

The argument is a bit more complicated for r2.
case 1: Txmi(r2) — Tän^r). Then ami(r2) n V(A(r2)) Ç côn^r) n F(A(r)) = 0,
and we are done.

case 2: ~coni(r2) — cönf(ri) \ {^2}. This is only then the case if
^ôni(ri) — cônĵ (r) U {r2}; see Def. 15. Since cönĵ (r) does not meet V(A(r)),
we know thus that the only node of cônj(ri) in V(A(r)) is r2. But then, by 3(a),
(cori-|-(ri) \ V(A(n)) C\ V(A(r)) = {r2}. This means that coni(r2) = ~con^(ri) \ {r2}
must not mention a node of A(r2).

statement 3(c) (by bottom-up induction on A)
For any leaf A, we have V(A(X)) = A(A) (= {A}), and there is nothing to show.
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Let now r,ri,r2 be as above. Then we have again two cases, according to Def. 15.

case 1: côn-j-(r) = 'con-\(ri) A cônj(r3_i) = *. Here, recalling the proof of 3(a),
we must have 'con<l(r) = con|(r^). Suppose there were a node n G côn-|-(r) that
also lies in V{A{rz-i)) U {r}. Then n G œn^(ri); and 3(a) implies thus
n € 7xmi(ri) = côrïj_(r). But this clearly contradicts 3(b). Hence, such an n cannot
exist, and cônf(r) n V(A(r)) Ç V(A(ri)). According to 'con^r) = 7xm-\(ri) and the
assumption for n, that intersection can only contain leaves in A(rj) Ç A(r); and we
are done.

case 2: Txm^r) = 'am^fa), and ~œn^{ri) ^ •, for i 6 {1,2}. Then, Def. 15 dictates
cOrï|(ri) = cônj_(r) U {7-2} and ccmjX )̂ = cÔn-f(ri) \ {r2}.
Now, what are the nodes in 'con^(r) D V(A(r))?
Taking cÔn^ri) = corî|(r) U {r2} together with 3(b) applied to r, we obtain
cönj,(ri) n V(A(r)) = {r2}. Consequently, 3(a) and 3(c) applied to r pro-
vide us with the inclusion cörif(ri) n V(A(r)) Ç A(n) U {r"2}. Therefore
cÔnj(r2) = cÔn-|-(ri) \ {72} consists - inside F(A(r)) - exclusively of leaves in A(ri).
3(a) and 3(c), this time applied to 7-2, yield now cönf(r2) fl V(A(r)) Ç A(r). But
this provides us with the claim, because ccrn-j- (r) = côn^ (r2).

statement 4
Suppose côrî|(ri) 7̂  * A Sj.(r). According to Def. 15, there are the two following
cases:

case 1: con^(r\) = conĵ (r) A CXl(corâ (r) U {Vi}) ~ 0. Here, we need to show that
no constraint in cônj(ri) U {ri} can be suspended. Due to E^{r), we know that
Cx]côn^(ri) / 0, and so ri cannot be suspended.
The following argument proves that neither may s € ccmj(ri) be suspended:

M((c5n i ( r ) \ { s} )U{r} ) /0
X^côn^r ) \ {s}) U {ri,r2}) / 0, fa/ 3(b) and Lem. 5, 6.,
[XI ((cônj,(ri) \ {s}) U {r\}) >/> 0, 6y suspending r2.

case S: cônj,(ri) = cÔn^r) U {r2} A DX(côn|(r) U {rj) 7̂  0 , for i € {1,2}. This
time

Et (r) =^- M (cont (r) U {r}) ~ 0
tX(cônj(r) U {ri,T2}) ~ 0, &î/ «9^ and Lem. 5, 6.,

shows that côrîj(ri) U {ri} is inconsistent.
By the two additional conditions that hold in case 2, we know that neither n nor
r2 can be suspended.
Furthermore, suspension of s G cônj^r) can be shown to fail exactly as in case 1;
only this time, the last implication is not due to suspension but due to reformulation
using côn^(ri) = cônjXr) ^ {r2}-

statement 5
The proof is symmetric to that of statement 4, case 1.



A.9. LEMMA 8 199

statement 6
This follows immediately from the definitions of Ei(X),E^(X), and Def. 15.

statement 7
The precondition and Def. 15 imply ~con^(r) = cÔnf(ri). The assertion follows
immediately.

statement 8
Here, we know that ~con^(r) = 'con^r^}, and we are done.

statement 9
The precondition and Def. 15 yield the conditions cön|(r2) = cÖnf(ri) \ -{72} and
T2 € cÖnj(ri). Thus, by 3(a), ri G cönj(ri). Consequently,

r2) U {r2} = (côraT(n) \ {r2}) U {r2} = conT(ri).

This equality shows that E^(r\) implies

statement 10
Let us show, by bottom-up induction on A, that

Then, E^{p) follows from statement 2.

Statement 6 shows the assertion for all leaves.

Let now r,r±,r2 be as before. We need to show the assertion for r and may as-
sume that it holds for r\,T2- We may furthermore constrain ourselves to the case
'cerner) ^ *, for otherwise ~coni{r) = ~con^{r) — *, by statement 1, and there is
nothing to show. Definition 15 implies that then not both of ccrn^ri) and
equal *. So, there remain three cases:

case 1: cön^(ri) ^ * A conjX?*2) 7̂  *• Statement 4 yields the validity of
and so E^(r\) by induction. Now, statement 9 applies, and we obtain £^^2), and
E<\(r2) by induction. Finally, statement 8 produces E-\(r).

case 2: conj^ri) = * A cönjX^) 7̂  *. Statement 5 gives E^fo), and hence E-^fo)
by induction. Again, statement 8 yields E^{r).

case 3: conj(ri) / * A conĵ (r2) = *. Statement 4 yields .Ej(n), and - as above -
E^(r\). We have also côrî|(r2) = *, by statement 1. Therefore, statement 7 applies
to give us Ei (r), and we are done. •

A.9 Lemma 8

statement 1:
It is sufficient to verify that the union of all leaves in $1 equals C\.
Step 1 of the given procedure ensures that no constraint of Co \ C\ is going to belong
to $1. Step 2 does not mark any leaf node. So, steps 1 and 2 guarantee that $1
contain Co D C\. The newly-introduced constraints in C\ \ Co will explicitely be
inserted into $1 in step 3. Hence, the set of leaves in $1 equals C\.
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statement 2:
Suppose two trees Ai, A2 6 $1 mention the same variable x. There are three cases.
case 1: Both A1? A2 are just leaf nodes of C\ \ CQ. Then, there is nothing to show
since those leaf nodes coincide with the two respective root nodes.
case 2: One, say Ai, is just a leaf constraint of C\ \ Co; and A2 is a subtree of $o-
Then, since x appears in Ai, A2 must not contain e(x) due to step 2 of the given
procedure. Therefore, x must also appear in p(A2).
case 3: Both Ai and A2 are subtrees of $o- Then A(p(Aj)), i € {1,2}, are connected
sets, in the sense of Def. 10. Moreover, since x is mentioned in both trees, even
A(p(Ai)) U A(p(A2)) must be connected. Therefore, Ai and A2 must be subtrees
of the same aggregation tree in $o- But then, due to the connectedness condition
for x in $o> e(x) cannot be a node in V(Ai) U VXA2). But that means that x must
neither be eliminated in Ai nor in A2; and x must thus also be mentioned in p(Ai)
and

A. 10 Lemma 9

According to the argumentation around (3.18), it is sufficient to prove that 0(p(T))
is an aggregation tree for some constraint problem CDDUP, where D is empty or
contains copies of some constraints in C and P is a possibly empty set of projections
of constraints in C.

plan of the proof:
The proof first constructs a generic aggregation strategy T' from the DAG T, that
is a tree. The leaves of that tree will be the constraints C and copies D, as above.
Also, O'(.) and X'(.) will be defined for any node of T', such that 0'(n) = 0(n) for
all cluster nodes n. The cluster nodes of T and T' are going to coincide.
In a second step, a tree T" will be obtained by altering T'. A(T") is going to be
C U D U P, where D and P are as above. Again, the cluster nodes of T' and T"
will be identical. Together with a translation function ©", T" will be proved to be
a generic aggregation strategy for C U D U P, and 0"(p(T")) be shown to be an
aggregation tree for that constraint problem. 0" and 0 ' are going to agree for all
cluster nodes.
The prove concludes by showing that p = p(T) is a cluster node that is also the root
of T' and T". Then, we have by construction, 0"(p) = 0'(p) = 0(p). Therefore,
0(p) is shown to be an aggregation tree for C U DU P, and we are done.
Figure A.I depicts the generic aggregation strategies T' and T", derived from T as
presented in Fig. 3.16: Ignoring the "bubble" nodes, we can view T'. T" is the same
as T', except that the "bubble" nodes replace the corresponding subtrees.

construction of T':
Beginning at the leaves, and going bottom-up, we stop at each node n of T that
has more than one predecessor. It can be assumed, by bottom-up induction, that
n together with all nodes m, for which a path n —• m exists, already form a tree.
We attach a copy of that tree to each of the predecessors of n.
Note that no cluster node n of T needs to be copied since n has at most one prede-
cessor, by Def. 18, 5. Moreover, we simply define 0'(n') = 0(n) for n' = n and all
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r(x) s(x, y) | | t(x, y) u(y)

Figure A.I: The Trees T' and T" for the Strategy T in Fig. 3.16

copies of n; likewise X'(n') = X(n). Then, T' has the above properties.

construction of T":
Using T', we can eliminate all one-of nodes and projection nodes, to arrive at T": A
subtree of T' rooted at a one-of node is replaced by the successor that corresponds
to the alternative belonging to the context C.
After that alteration, any projection node n must be the predecessor of a leaf node
c € C U D. We then replace the subtree rooted at n by the constraint TTX(C), where
X = X'(n)C\ vars(c).
Note that these alterations follow the defining properties Lem. 9, 2. and 3. We set
6"(n) = ®'(ri) and X"{n) = X'(n), for all nodes n that have not been altered.
Furthermore, we define 6"(A) = X and X"(\) = vars(X), for all leaves of T". This
yields the tree T" with the above properties.

p(T) is a cluster node:
Definition 18 implies that projection nodes have only one successor which is a con-
straint or a one-of node. Furthermore, any one-of node is succeeded by plain con-
straints. The condition 1̂ 1 + \G\ > 2, as given in Def. 18 and assumed for F, implies
then that there must exist at least one cluster node in T. Consequently, the root of
T must be a cluster node.
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coincidence of root nodes:
Neiter the construction of T' nor that of T" touches cluster nodes. Therefore, the
roots of all three graphs must coincide. Let us call that common root node p.

0"(p) is an aggregation tree for C u D u P :
Let us show by induction that the set of aggregation trees

(e"(n) \ n£N}

forms an aggregation forest for C U D U P, whenever the set of nodes N satisfies

V ni,ri2 E N n\^n-i = > A(rai) D A(ri2) = 0, and
UneivA0) = A(p),

Then, by choosing N = {p}, we conclude that 9"(p) must be an aggregation tree
for C U D U P.
We know that C U D U P is a connected constraint problem, since C is assumed
to be connected, and D and P mention a subset of all variables mentioned in C.
Also, by construction, A(T") = C U DU P, and the set of all leaves form hence an
aggregation forest for C U D U P, by Def. 10. Therefore, the above assertion holds
for iV = A(p).
Suppose now, for a bottom-up induction on T", n is an arbitrary non-leaf node,
and for its set of successors M,... M _C JV_ holds. -Let^us try to. replace. M_ by. .{n}
in N, producing N' = (N \ M) U {n}, and see whether the assertion still holds for
the new set N': Obviously, n must be a cluster node. Therefore by construction,
X"(n) = X(n), and from Def. 18, 5., we know that X"(n) protects those variables
that appear not exclusively in A(n). Due to the connectedness of A(p), the local
strategy a will always propose a pair of operands for the next aggregation, which
will eliminate all unprotected variables. Therefore, 0"(n) will be an aggregation
tree built from the trees {O"(m) | m G M}, such that no variable is eliminated
which appears in A(p) \ A(n). This proves the assertion for the set N', concluding
the induction.

According to the above plan of the proof, this ends the argumentation. •

A. 11 Lemma 10

assertion (4.1)
We assume that the left hand-side of the claimed implication is true. Let us start
with the cases in which one of d, d! is a trivial constraint.

cases d = 0 and d' = D; Here, d —*• d! follows immediately from Def. 19.

case d = D; Due to c ~ d, we obtain that c is either D itself or a non-trivial con-
straint that is non-restrictive. In the former case, c —*• d and Def. 19 yield d ~ D.
In order to see that this also holds in the latter case, regard condition 1. of Def. 19:
According to Lem. 1, the set of assignments on the left-hand side contains all pos-
sible assignments to X n Y"; and consequently also the set on the right. This proves
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that TTxnY(d) ~ •• In addition to that, Def. 19, 2., says that any y G Y \ X must
be a free variable of d which results in d ~ D.
Now, with d ~ d' we obtain d' ~ D. Remembering that d = D, Def. 19 is applicable,
and we arrive at d —*- d!.

case d' = 0 : This time, we get d ~ 0. Thus, we either have d = 0 or d is non-trivial
and has an empty set of assignments. As in the above argumentation, the former
case provides us immediately with c ~ 0 . Let us try to verify that condition also for
the latter case: By Def. 2, d has no free variables and thus Y \ X = 0, by Def. 19, 2.
So, all variables of d must also appear in c. But then, condition 1. of Def. 19 implies
that TCXDY(C) ~ 0 and hence c ~ 0.
Knowing that c ~ 0 and c ~ c', we obtain d ~ 0 . This, together with d' = 0,
yields the assertion d —*• d', according to Def. 19.

In the remainder of this part of the proof, we shall assume that d and d' are non-
trivial constraints. Let us take a look at variables of d that are not free variables.
I.e. be a; € vars(d) \ free(d) arbitrary.
The second condition of Def. 19 implies x € vars(c). Furthermore, if x G free(c),
then there were an assignment to x that could be extended to an assignment
in c but not to one in d. Since that would contradict Def. 19, 1., we conclude
that x 0 free{c). Summarising, that argumentation shows the set inclusion
vars(d) \free(d) Ç vars(c) \free(c). So, together with (3.3) for c ~ d and d ~ d',
respectively, we obtain

Z =' vars(d')\free(d')
= vars(d) \ free(d)
Ç vars(c) \ free(c)
= vars(d)\free(d).

Thereby, we have already shown condition 2. of Def. 19 for d and d', because, obvi-
ously, all variables of d' that do not appear in d can only be free variables of d'.
In order to show also the first condition of Def. 19, regard the projections of c and d
onto Z: By the above chain, Z Ç vars(c) D vars(d). And so Def. 19, 1., interpreted
for c —^ d, tells us that any assignment in TT (̂C) must also be an assignment of irz(d).
By (3.3), ftz{d) = TT (̂C) and irz(d) = Tr^(d'), which implies that any assignment in
irz(d) must belong to the assignments of Tr^(d'). Now, for establishing Def. 19, 1.,
we only need to explain why Z can be replaced by vars(d) D vars(d').
By definition of Z, all variables of (vars(d) n vars(d')) \ Z must be free variables of
d'. And so, replacing Z by vars(d) C\ vars(d!) will clearly preserve the inclusion of
assignments that we derived above.
So finally, also in the case of non-trivial d and d', we obtain d —̂  d1'.

assertion (4.2)
The idea now is to utilise (4.1), by replacing c and d by appropriate lifts: Let d, d'
be constraints that arise from c and d by adding all variables in vars(d) \ vars(c) and
vars(c) \ vars(d), respectively, as free variables. This produces lifts, i.e. constraints
d and d' with coinciding sets of variables and the properties c ~ d and d~ d'.
Now, we apply (4.1) twice and obtain d —̂  d' and d! —*• d. Since d and d' have the
same variables, Def. 19, 1., provides us with the equality of their sets of assignments.
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Hence, d = d', and (3.3) yields TT' Vars(d)\free{d)^) = *' vars(d')\free(d>)(d')• Bu t> by
construction of d, the left-hand side ofthat equality coincides with ^ varsic\\Jree(c) (c) •
Likewise, the right term can be replaced by -n' varsu)\free(d)^)'• ^he n e w e ( lu aüty
proves, again according to (3.3), the assertion c ~ d.

assertion (4.3)
Lifting c, d and e, we obtain d,d' and e' with coinciding sets of variables and
c ~ d,d ~ df and e ~ d. Application of (4.1) produces d ^ d' and d' —̂  e'.
The set inclusions provided by Def. 19, 1., and the transitivity of set inclusion es-
tablish that first condition of Def. 19 also for the two constraints d and d. The
second condition of Def. 19 need not be verified due to coinciding variable sets.
Therefore, d —*• d. Applying once more (4.1) yields c —*• e.

assertion (4.4)
Let again d1 be a lift of cx such that the variables in varsfa) \ vars{c\) are free vari-
ables of d1. Likewise be d2 a lift of c% such that d1 and d2 have coinciding variable
sets.
Also, make this construction for d\ and d2, producing d'x and d'2.
(4.1) provides us with dx —*• ĉ  and d'x -*• d2. Due to coinciding variables and the
first condition of Def. 19, this means that any assignment of dl or d'x belongs also to
d2 or d2, respectively. But then, the definition of join, cf. Def. 4, implies that any
assignment of dx tx d'x must belong to c2 tx d'2. Since both joins must still have the
same variables^ this-can be rewritten as-c^-M d'x —̂  ̂ K l d y

The next step is to show that d± M d[ ~ c\ xi di and ĉ  ixi d2 ~ c2 IX ̂ 2 • Then (4.1)
establishes the claimed implication of constraints. For that, let us consider some
x € free{dx):

case x 0 vars(d[): Here, x must also be a free variable of d1 M d[, see

Def. 2 and Lem. 1. Moreover, with the abbreviation Z = vars{dl) \ {x},

case x G vars(d'1): This time, we can omit x in dx to obtain dx tx d[ = 7rz(dt) txi d^,
where Z is the same set as in the previous case.

In the first case, dx ix d[ ~ ^ ( c i ) ^ d[ follows once more from (3.3). In the second
case, this condition also clearly holds.

The entire argument shows that we can eliminate, from c[ any free variable, without
losing equivalence. Repetitive application proves that we can hence replace dx even
by ci, i.e. c[ tx d[ ~ c\ ix d'x. Of course, by a symmetric argument, also d'x can be
replaced by dx which finally results in dx ex d'x ~ cx ix di.
By symmetry, also ĉ  txi d'2 ~ C2 ix ^2 must hold. As already mentioned above, one
application of (4.1) establishes now the claim cx tx dx —*• C2 ix c?2.

assertion (4.5)
Let us directly verify Def. 19 for the two projections. The first condition follows from
the set inclusion given by c —*• d: We just need to replace the sets of assignments,
i.e., the a's and /3's, by the sets of restrictions of cc's and /?'s to the appropriate
smaller set of variables. Note that this process preserves the given set inclusion.
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For the second part consider

(X n vars(d)) \(XC\ vars(c)) = X C\ (vars(d) \ vars(c))
ç Xnfree(d)
Ç free{irXrwars(d){d)),

where the first set inclusion follows from Def. 19, 2., instantiated for c —*• d. The
second inclusion is also easily verified from Def. 2 and Lem. 1.
This shows the last assertion and finishes the proof of Lem. 10. •

A.12 Invariants (4.6) and (4.7)

Let us assume that the used implementation of isEmpty always yields the correct
answer. The proof concerns the pseudo-code in Fig. 4.7 and is according to the
following plan:

1. (4.7) is valid for the implementation at LeafNode.

2. If (4.6) is valid for a call in AggNode's implementation, then we may assume,
by induction, that (4.7) is valid for that call.

3. (4.6) is valid for line (1).

4. We can conclude that (4.7) is also valid for line(l).

Now we show 1.-3.:

implementation at class LeafNode
We show (4.7): Since Def. 15 includes the leaf relation into cönj(A), we know that
cÔrïj(A) n A(A) = {A}. And this is exactly what the method returns.

implementation at class AggNode
Let r, r\ and r<i be the forward relations associated with the given aggregation node
and its two successors, c denote the relation represented by the method's argument.
By induction, we may assume that (4.6) holds, i.e. CX conĵ (r) = c.

subcase: line (2) approached:
The precondition ensures that r\ tx\ c ~ 0. Then IXcôn^r) = c turns this into
CXI (côn^(r) U{ri}) ~ 0, and consequently Def. 15 implies cOnĵ r) = ccmj(ri). Thus
IXIcönj(ri) = c and (4.6) holds for the recursive call in line (2).
By induction, we may assume that line (2) returns, according to (4.7), the set
cön-j-(ri) n A(ri). In order to serve the above induction, we need to show that this
equals collar) (~l A(r).
There was no recursive call for ri, and so tlm^ir-i) = 'con^fa) = *. Definition 15
gives thus cön-f(r) = cô^-f(ri). Furthermore

0 = côrîj(r) n A(r2), because of Lem. 7, 3(b),
= ~coni(ri) n A(r2)
= cönj(ri) n A(r2), by Lem. 7, 3(a),
= cön-f(r) n A(r2).
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Putting the pieces together, we obtain côn-|-(ri) PI A(ri) = cÔn-f(r) n A(ri) and
côn-|-(r) n A(r2) = 0; e.g. cönj(ri) PI A(ri) = cön-j-(r) n A(r).

subcase: line(3) approached:
This is completely symmetric to the previous subcase.

subcase: processing lines (4) and (5):
Note that none of the preconditions of line (2) and line (3) evaluated to true. Thus
Def. 15 yields ~con^{ri) = cônj(r) U {r2} and côn^(r2) = conf(ri) \ {T^}. Moreover,
cÖn-f(ri) does indeed contain r2, i.e. cönf(ri) = cOn (̂r2) U {72}. But r ^ cÔnj(r)
because of Lem. 7, part 3(b); and so r 0 'cb~ni(r) U {r2J = cön^(ri).
In order to verify (4.6) for the recursive call in line (4), we have to show
CXIcôn^(ri) = r2 cxi c. Taking into account that XlcÔn^(r) = c, we immediately
arrive at that assertion. In the following, we can assume (4.7) for line (4), by induc-
tion, i.e. 51 = cönj(ri) D A(ri).
Next, let us verify (4.6) for the recursive call in line (5). First, note that
côn\(ri) n K(A(r2)) = (coHj(r2) D V(A(r2))) U {r2} = {r2} because of Lem. 7,
3(b). Secondly,

CXI (cônT(n)\ y(A(r))) = \X\(o5ni(n)\V(A(r))), by Lem. 7, 3(a)

= DXcônj,(r), byLem.7,3(b)

Therefore,

|(ri) \ V(A(r))) xi
tX](côn|(ri) n {r}) M
M(cÔnT(Vi) D V(A(ri)))

= c 1x1 D x XI(cÖnf(ri) D V(A(ri)))

Consequently,

{r2})
= c 1x1 IX(côn|(ri)n V(A(ri)))
= c txi Xl(cÔn|(ri) n A(ri)), by Lern. 7, 3(c),
= c txi 1X151,

which proves (4.6) for the recursive call in line (5).
Again, by induction, we know that then (4.7) will hold for the invocation in line (5).
This means that 52 = ctm-f(r2) fl A(r2). Moreover, we have

cönT(r2)\F(A(r2)) = Sm|(r 2 ) \ V(A(r2), by Lem. 7, 3(a),
) \ F(A(r2), since côrî|(r2) = côn-f(ri) \

In particular, this implies that the portions of côrî|(r2) and côn^ri) in A(ri) must
agree, i.e. cÔn-|-(r2) fl A(ri) = côn|(ri) D A(ri).
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The last set coincides with 51 and summarising we obtain

andco7i|(r2) n A(ri)
con-|-(r2) fl A(r2)
cönf(r2) PI A(r)
cônt(r) H A(r)

= 51
= 52
= 51U52
= 51U52, by Def. 15.

This proves the second invariant (4.7) in the last subcase.

(4.6) for line (1)
Taking a look at Def. 15, we see that the root node's associated set côn^(.) is empty.
Thus the join in (4.6) is defined to be D. And indeed, the argument of the call in
line (1) is a representation of that trivial constraint.

The remainder of the proof has to deal only with the two lower implementations of
getOneConf l i c t (c). It is easy to verify that a call of one of those will take place if
and only if both corresponding sets ccmj(.) and con-f (.) are not the special symbol
*; see Def. 15.

The above steps prove the validity of both invariants for any invocation of the
method getOneConf l i c t (c). •

A. 13 Lemma 11

The proof will assume that the static creation methods implemented at Factory
satisfy their specification. That means that they return correct representations and
the sole instance of Empty only when the given relation is indeed unsatisfiable. With
this assumption, we may forget about representations of relations, but rather talk
about the represented relations themselves. See also Fig. 5.5 to follow the details of
the proof.
Let r denote the relation for which eliminateBasic is invoked with the set X of
variables to be eliminated, r is assumed to be in PSF for X. Set Y = vars(r) \X.

implementation at Empty and Full:
If the representation of r is the sole instance of Empty or Full, then r has been
found unsatisfiable or nonrestrictive, respectively. In the first case, (3.7) ensures
that 7ry(r) ~ 0.
In the second case, r ~ D must hold, and all variables of r are hence free variables.
But then (3.3) implies Try(r) ~ D. So, in both cases, the representation of r is also
an appropriate representation of 7ry(r), and line (1) of Fig. 5.6 yields the correct
result.

implementation at Or:
Here, r has the structure Vie/ ^ with some finite index set / and the disjuncts
di being conjunctions of arithmetic atomic constraints. Let us assume that the
implementation at Abstract And always return the result as stated in Lem. 11. (The
proof follows below.) Then the embedded call of eliminateBasic for each di returns
a representation of ^Yr\vars{di){di).
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Obviously, the given pseudo-code produces the correct result if and only if

= \J TYnvars(di)(di)-
iei

But this is easily verified using the definitions of project and or, see Defs. 5 and 20:
We shall first check the equality of the variable sets on both sides of the above claim:
By definition, Y is a subset of vars(r). So, the left-hand side relation is well-defined
and has the variables Y. The right-hand side is clearly well-defined. Moreover, for
any y € Y, there must exist some di in which it appears. And so the set of variables
of the right-hand side constraint is also Y.
In order to show that the sets of assignments on both sides coincide, we are going
to show both set inclusions, Ç and D.

Ç:
Be a an assignment (to Y) of the left-hand side. Then a can be extended to
some assignment a' of \JieIdi. By Def. 20, there must exist some k E I such that
a'\vars(dk) is

 a n assignment of dk. Writing Yfc = Yn vars(dk), this implies that a'\yk

belongs to nyk(dk). But a = a'\y and consequently a and a' agree on Yk. Therefore,
a\yk is an assignment of iryk(dk). Applying once more Def. 20 shows that a must
thus belong to the right-hand side set of assignments.

D : _ • _

Going the other, somewhat more difficult direction, we take an arbitrary assignment
a of the right-hand side. We know already that a is then defined on Y. By Def. 20,
there must exist some k E I such that cx\Ynvars{dk) belongs to 7ryfc(<4), where Y^ is
defined as in the above proof of the other set inclusion.
By the definition of project, we can extend a\yk to some a' that assigns a value to
each variable in varsidk) and that belongs to dk- Extension means that a'\yk = a\yk.
Now define a further assignment a" on Z, where

def Ui€lvars(di),
a \y = a,

a"\(Z\Y)nvars{dk) = a'\{z\Y)nvars(dk)i
a"\(z\Y)\vars(dk) arbitrary.

Obviously, a"\yk = a\yk = a'\yk, since Y& Ç Y. Thus a" and a' agree on the whole
of vars(dk) = Yk U ((Z \ Y) D vars(dit)), see above definition of a". But this means
that a" is an extension of a', and - by Def. 20 - that a" is an assignment of Vie/ ̂ i-
Note also that a"\y = a, and so a must be an assignment of the left-hand side
constraint.

implementation at AbstractAnd:
Let us write r = M^/a j with arithmetic atomic constraints Oj and / again a finite
index set as above. The set A in Fig. 5.6 equals hence {ai \ i G / } .
First note that all lines of code before line (8) add only implied constraints to A. So
1X1A is not at all altered. The result of line (8), in turn, is - due to the removal of
several members of A - an overestimation of that combined join. We conclude that



A. 13. LEMMA 11 209

the bottom implementation of eliminateBasic returns always an overestimation of
r.
Furthermore, the resulting set of atoms in line (8) does not mention any of X any
longer. (See the pseudo-code, and remember that r is in PSF for X.)
Summarising, we obtain, for the returned relation s, that r —*• s and
vars(s) C vars{r) \ X = Y. The application of (4.5) yields

KYnvars{r) ( r) -*• ^Ynvars{s)(8)^ that is,
•KY{r) ->• s.

According to (4.2), the proof can be completed by showing the converse implication.
For technical reasons, we need to consider a lift of s, that is, a constraint s' with
s' ~ s and vars(s') = Y in which the additional variables Y \ vars(s) (if any) are
free variables.
Let us now pick an arbitrary assignment « of s'. Then, a assigns a value to each
element of Y. In what follows, we try to extend a to some assignment of r. In order
to accomplish that, we have to find an extension so that, in addition to s', also each
atomic constraint in Ax is satisfied.
To this end, take x G X, and write Ax Ç Ax for the set of constraints that mention
x as basic variable. Let us extend a to ax defined on Y U {x}, such that ax is also
an assignment for each a € Ax.
There are two cases: Ax is a set of inequalities (the test in line (3), Fig. 5.6, yielded
true), or consists of exactly one equation. In both cases, any atom in Ax has the
form x o t, where x £ vars(t) and o € {=, <, <, >, >}.
In the case of one equation, the constraint x = t determines the value for x, since
vars(t) Ç Y and a assigns values to all elements of Y. So here, the extension of a
to ax is obvious.
Similarly, in the case of inequalities, we consider the sets of terms as defined after
line (3) of Fig. 5.6: Any of these terms can be evaluated to a real number, using
the assignment a. Note that no evaluation will fail since s' takes care of all implicit
constraints of A, as inserted in line (2). Let us denote the sets of evaluated terms
by

To(a) = {t(a) | t G r o } , where o E {<, <, >, >}.

Note that, by the construction of s, we are provided with the two conditions

V Slower, Vupper) € T<(a) X T>(a) Viewer < Vupper,
V (vtover, vupper) € ((T<(a) U T<(a)) x (T>(a) U T>(a))) \ (T<(a) x T>{a))

Vlower < Vupper-

This gives us a clue as to how to extend a to ax : We define ax (x) to be an arbitrary
value with the properties

m < ax(x) < M, if m < M and,
ax(x) = m, if m = M, where

m = max(T<(a)UT<(a)), and
M = min(T>(a;) U T^a)).
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Regarding the above tow conditions, it is straightforward to verify m < M. More-
over, ax is then an assignment of each atom in Ax.

Repeated variable-wise extension of a in the elaborated way will finally produce an
assignment of r. This construction establishes the implication s' —*• 7ry(r). Also,
s ~ s', and so (4.1) gives us the desired converse implication s —*• 7Ty(r).

This finishes the proof of the lemma •

A. 14 Lemma 12

Pick a n y i G {1,2,... ,n} a n d fix t h e var iab les x\,X2,..., £ j - i , Xi+i,..., xn. Let u s
consider t h e funct ion

U : dom(xi) —> R
. . . , Xn).

We will show that £j is monotonous on dom(xi)} For that, we shall examine the
derivative dti/dxi. We may assume that t is well-defined on the whole of K, and
thus - as a rational function - arbitrarily often differentiable. We claim that dU/dxi
never changes sign on dom(xi), which would clearly suffice to establish the stated
(non-strict) monotonicity. Regard the differentiation rules

** ft i J n l / ry* - ( ^^— I tX> n\{ sy* \ *? I • *? Î f T* * l """— *?/ • *7 11 'T* • I

d ^ u d

where w shall not mention x .̂
Remember that t mentions Zj exactly once, and so computing dti/dxi according to
the above rules will yield a product with the factors ±1, u, —u/v(xi)2 and finally
one 1. Consequently, dti/dxi never changes sign on dom(xi) if and only if neither u
nor u/v(xi)2 change sign. But the former term does not mention Xi, and the second
always has a positive divisor.

The above argument shows that t is monotonous in each variable and must hence
take each of its extremal values in some corner of the cuboid K.

For the lemma's final conclusion, note that the naive evaluation of t using interval
algebra, basically evaluates t for every element of K in parallel. Thus, with V
denoting the result of naive interval algebra, m the minimum and M the maximum
of t on K, we obtain V D [m, M].
For the reverse set inclusion regard the well-known calculation rules for +, —, • and -=-
on intervals: Those just combine the boundary points of the two argument intervals
appropriately. Therefore, V will also be an interval, the boundary points of which
are evaluations of t in some corners of K. But this implies that min(F) and max(T )̂
lie in [m, M], resulting in V Ç [m, M].
This shows that the result of naive interval algebra coincides with [m,M], and we
are done. •

however that U need not be strictly increasing or decreasing, as e.g. U(xi) = 0 •
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XML String Representations

B.I The 1-Bit Full Adder

x y z

carry

sum

2carry + sum = x +y + z

Figure B.I: The 1-Bit Full Adder

Figure B.I depicts a 1-bit full adder. The three boolean entries x, y, and z are added
to yield a sum and the overflow carry.
In the following, an XML sheet is listed that models all gate constraints and a few
additional relations for setting up some contexts of interest.

211
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<?xml version='1.0' encoding=UTF-8'?>

<!D0CTYPE objects SYSTEM 'relations_vO.10.dtd'>

<!— based on the relations DTD version 0.10 — >

<!— a 1-bit full adder: 2carry + sum = x + y + z. — >

<objects>

<!— a special variable domain: the two Boolean values — >

<defSet n='Boolean'> <symbol v='F T'/> </defSet>

<!— all variables of the full adder; all are Boolean — >

<defVar n='x y z sum carry nx ny nz

xO xl x2 x3 x4 x5 x6 x7 x9 xlO'>

<setRef n='Boolean'/>

</defVar>

<!— relation template for the NOT gate — >

<defRel n='N0T' v='in out'>

<or>

<and>

<eq> <var n='in'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='T'/> </eq>

</and>

<and>

<eq> <var n='in'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

</or>

</defRel>

<!— relation template for the OR gate — >

<defRel n='0R' v='inl in2 out'>

<or>

<and>

<eq> <var n='inl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n=Jout'/> <symbol v='T'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='T'/> </eq>

</and>

<and>
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<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='T'/> </eq>

</and>

</or>

</defRel>

<!— relation template for the binary AND gate — >

<defRel n=>AND2> v='inl in2 out'>

<or>

<and>

<eq> <var n=Jinl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n=Jinl'/> <symbol v='F'/> </eq>

<eq> <var n=Jin2'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='FJ/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='T'/> </eq>

</and>

</or>

</defRel>

<! — relation template for the 3-ary AND gate — >

<defRel n='AND3' v='inl in2 in3 out'>

<or>

<and>

<eq> <var n='inl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='in3'/> <symbol v='F}/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='in3'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>
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</and>

<and>

<eq> <var n='inl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n='in3'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n=Jinl'/> <symbol v='F'/> </eq>

<eq> <var n='in2'/> <symbol v='T/> </eq>

<eq> <var n='in3'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='F'/> </eq>

<eq> <var n='in3'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/>. </eq>

<eq> <var •n=-'in2'/> <symbol -v-'-F'-/>-</eq>

<eq> <var n='in3V> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n='in3'/> <symbol v='F'/> </eq>

<eq> <var n='out'/> <symbol v='F'/> </eq>

</and>

<and>

<eq> <var n='inl'/> <symbol v='T'/> </eq>

<eq> <var n='in2'/> <symbol v='T'/> </eq>

<eq> <var n='in3'/> <symbol v='T'/> </eq>

<eq> <var n='out'/> <symbol v='T'/> </eq>

</and>

</or>

</defRel>

<!— here come all gates implementing the full adder — >

<!— (we just instantiate the above (named) templates) — >

<rel n='rO' r='AND2' v='x y xO' />

<rel n='rl' r='AND2' v='x z xl} />

<rel n='r2' r='AND2' v='y z x2' />

<rel n='r3' r='AND3' v='x y z x3' />
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<rel n='r4' r='AND3' v='x ny nz x4' />

<rel n='r5' r='AND3' v='nx y nz x5' />

<rel n='r6' r='AND3' v='nx ny z x6' />

<rel n='r7' r='OR' v='xO xl x7> />

<rel n='r8' r='OR' v='x2 x7 carry' />

<rel n='r9' r='OR' v='x3 x4 x9' />

<rel n='rlO' r='OR' v='x5 x6 xlO' />

<rel n='rll' r='OR' v='x9 xlO sum' />

<rel n='rl2' r='NOT' v='x nx' />

<rel n='rl3' r='NOT' v='y ny' />

<rel n='rl4' r='NOT' v='z nz' />

<!— some variable assignments for testing the full adder — >

<eq n='x.T'> <var n='x'/> <symbol v='T'/> </eq>

<eq n='y.T'> <var n='y'/> <symbol v='T'/> </eq>

<eq n='z.T'> <var n='z'/> <symbol v='T'/> </eq>

<eq n='sum.T'> <var n='sum'/> <symbol v='T'/> </eq>

<eq n='x.F'> <var n='x'/> <symbol v='F'/> </eq>

<eq n='y.F'> <var n='y'/> <symbol v='F'/> </eq>

<eq n='z.F'> <var n='z'/> <symbol v='F'/> </eq>

<eq n='sum.F'> <var n='sum'/> <symbol v='F'/> </eq>

</objects>

After loading the above XML file, the prototype will have, in its pool of known
relations, the 15 gate relations rO - r l4 and 8 additional variable assignments.
In order to analyse a certain situation, the user must activate the former 15 con-
straints and some of the latter 8, so that the context of interest is modelled.

B.2 Context Space for the 1-Bit Full Adder

Our implementation is able to sequentially analyse all 16 contexts of the above 1-bit
full adder. Those 24 contexts arise from four OneOf s with two alternatives each.
Those need to be defined (and named) before the context space itself is declared.
The OneOf s and the corresponding context space can be imported from the XML
file given below.

<?xml version='1.0' encoding=UTF-8'?>
<!D0CTYPE objects SYSTEM 'relations_vO.10.dtd'>
<!— This i s an XML f i le containing a context space —>
<!— definition for the 1-bit full adder. —>

<objects>

<!— defining the four oneOfs — >

<oneOf n='x' rel='x.T x.F'/>

<oneOf n='y' rel='y.T y.F'/>

<oneOf n='z' rel='z.T z.F'/>

<oneOf n='sum' rel='sum.T sum.F'/>
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<!— the context space with 16 contexts — >

<contextSpace>

<oneOf n='x'/>

<oneOf n='y'/>

<oneOf n='z'/>

<oneOf n='sum'/>

<rel n='rOV>

<rel n='rl'/>

<rel n='r2'/>

<rel n='r3'/>

<rel n='r4'/>

<rel n=Jr5'/>

<rel n='r6V>

<rel n='r7V>

<rel n='r8V>

<rel n='r9'/>

<rel n='rlO'/>

<rel n='rll'/>

<rel n='rl2'/>

<rel n='rl3V>

<rel n='rl4'/>

. </contextSpace> ..

</objects>

B.3 XML Strings for Modelling Electric Components

The previous sections deal with finite domain variables and constraints. Now we
shall give an idea of how the XML representations of the problems Rk and D^ of
Fig. 2.7 look like; see also Fig. 2.8.
To this end, we just list the relation template declarations. With those, both prob-
lems can easily be stated in XML, simply by making appropriate instantiations.
Note that, as mentioned in Subsect. 2.1.2, currents always point inwards with re-
spect to the modelled component. Besides the simple model of an Ohmic resistor as
utilised in Fig. 2.8, we also give a model with an ok and a broken mode. For later
reference in App. B.5, models for a two-mode bulb and a switch shall be provided,
too.

<!— relat ion template for an electr ic wire —>
<! — i . . . (d i rec ted) current variable —>
<!— v.. .(undirected) voltage variable —>

<defRel n='Wire' v= ' i l i2 vl v2'>
<and>

<eq>
<plus> <var n= ' i l ' /> <var n=' i2 ' /> </plus>
<float v='0.0V>
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</eq>

<eq> <var n='vl'/> <var n='v2'/> </eq>

</and>

</defRel>

<!— relation template for a Kirchhoff node — >

<defRel n='KirchhoffNode' v='il i2 i3 vl v2 v3'>

<and>

<eq>

<plus>

<plus> <var n='il'/> <var n='i2'/> </plus>

<var n='i3'/>

</plus>

<float v='0.0'/>

</eq>

<eq> <var n='vl'/> <var n='v2'/> </eq>

<eq> <var n='vl'/> <var n='v3'/> </eq>

</and>

</defRel>

<!— relation template for a simple Ohmic resistor — >

<defRel n='SimpleOhmicResistor' v='il i2 vl v2 rJ>

<and>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/>

</eq>

<eq>

<minus> <var n='vl'/> <var n='v2'/> </minus>

<mult> <var n='il'/> <var n='r'/> </mult>

</eq>

</and>

</defRel>

<! — an additional finite domain variable for the — >

<! — working modes of an ideal diode — >

<defSet n='workingMode'> <symbol v='through blocking'/> </defSet>

<!— relation template for an ideal diode — >

<defRel n='IdealDiode' v='il i2 vl v2 mode'>

<or>

<and>

<eq> <var n='mode'/> <symbol v='through'/> </eq>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/>

</eq>

<geq> <var n='il'/> <float v='0.0'/> </geq>
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<eq> <var n='vl'/> <var n='v2'/> </eq>

</and>

<and>

<eq> <var n='mode'/> <symbol v='blocking'/> </eq>

<eq> <var n='il'/> <float v='0.0'/> </eq>

<eq> <var n='i2'/> <float v='0.0'/> </eq>

<lt> <var n='vl'/> <var n='v2'/> </lt>

</and>

</or>

</defRel>

<!— an additional finite domain variable for the — >

<!— behavioural modes 'ok' and 'broken' — >

<defSet n='behaviouralMode'> <symbol v='ok broken'/> </defSet>

<!— relation template for a two-mode Ohmic resistor — >

<defRel n='TwoModeOhmicResistor' v='il ±2 vl v2 r m'>

<or>

<and>

<eq> <var n='m'/> <symbol v='ok'/> </eq>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/> - - — . - -

</eq>

<eq>

<minus> <var n='vl'/> <var n='v2'/> </minus>

<mult> <var n='il'/> <var n='r'/> </mult>

</eq>

</and>

<and>

<eq> <var n='m'/> <symbol v='broken'/> </eq>

<eq> <var n='il'/> <float v='0.0'/> </eq>

<eq> <var n='i2'/> <float v='0.0'/> </eq>

</and>

</or>

</defRel>

<!— an additional finite domain variable for the — >

<!— light status of a bulb — >

<defSet n='lightStatus'> <symbol v='on off'/> </defSet>

<!— relation template for a two-mode bulb — >

<defRel n='TwoModeBulb' v='il i2 vl v2 r 1 m'>

<or>

<and>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/>
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</eq>

<eq> <var n='m'/> <symbol v='ok'/> </eq>

<neq> <var n='il'/> <float v='0.0'/> </neq>

<eq>

<minus> <var n='vl'/> <var n='v2'/> </minus>

<mult> <var n='il'/> <var n='r'/> </mult>

</eq>

<eq> <var n='l'/> <symbol v='on'/> </eq>

</and>

<and>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/>

</eq>

<eq> <var n='m}/> <symbol v='ok'/> </eq>

<neq> <var n='il'/> <float v='0.0'/> </neq>

<eq> <var n='vl'/> <var n='v2'/> </eq>

<eq> <var n='l'/> <symbol v='off'/> </eq>

</and>

<and>

<eq>

<plus> <var n='il'/> <var n='i2'/> </plus>

<float v='0.0'/>

</eq>

<eq> <var n=}m'/> <symbol v='broken'/> </eq>

<neq> <var n=)il'/> <float v='0.0J/> </neq>

<eq> <var n='l'/> <symbol v=Joff/> </eq>

</and>

</or>

<!— an additional finite domain variable for the — >

<!— two positions of a switch — >

<defSet n='switchPosition'> <symbol v=Jopen closed'/> </defSet>

<!— relation template for a switch — >

<defRel n='Switch' v='il i2 vl v2 pos'>

<or>

<and>

<eq> <var n='pos'/> <symbol v='closed'/> </eq>

<eq>

<plus> <var n='il'/> <var n='i2V> </plus>

<float v='0.0'/>

</eq>

<eq> <var n='vl'/> <var n='v2'/> </eq>

</and>

<and>

<eq> <var n='pos'/> <symbol v='open'/> </eq>
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<eq> <var n='il'/> <float v='0.0'/> </eq>

<eq> <var n='i2'/> <float v='0.0'/> </eq>

</and>

</or>

B.4 A Small Bus Communication Problem

We list the complete XML file for encoding the bus communication problem depicted
in Fig. C.I and discussed in Sect. C.I.

<?xml version='1.0J encoding='UTF-8'?>
<!D0CTYPE objects SYSTEM 'TestVersion.dtd'>

<objects>

<!— definition of the variables' domains — >

<defSet n='busValues'> <sets/> </defSet>

<!— variable definitions — >

<defVar n='b0in b0outJ> <setRef n='busValues'/> </defVar>

<defVar n='blin blout'> <setRef n='busValues'/> </defVar>

<!— relations — >

<and n='ComputerO;>

<in> <int v='l'/> <var n='b0out'/>

<implies>

<int v='2'/> <var n='b0in'/>

<int v='3'/> <var n=Jb0out'/>

</implies>

<implies>

<int v='3'/> <var n='b0out'/>

<int v=>2'/> <var n='b0in'/>

</implies>

</and>

<and n='Transmission^

<eq n='rel2'> <var n='b0out'/> <var n='blin'/> </eq>

<eq n='rel3'> <var n='b0in'/> <var n='blout'/> </eq>

</and>

<and n='Computerl'>

<implies>

<int v='l'/> <var n='blin'/>

<int v='2'/> <var n='blout'/>

</implies>

<implies>

<int v='2'/> <var n='blout'/>

<int v='l'/> <var n='blin'/>

</implies>

</and>
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</objects>

B.5 An Electric Circuit with 32 Contexts

Below, the XML file for encoding the electric circuit of Fig. 6.1 is presented. All
relation template definitions have been omitted and are the same as in App. B.3.

<?xml version='1.0' encoding='UTF-8'?>
<!D0CTYPE objects SYSTEM 'TestVersion.dtd'>
<objects>

<!— definition of the variables' domain — >

<defSet n='switchPosition'> <symbol v='open closed'/> </defSet>

<defSet n='behaviouralMode'> <symbol v='ok broken'/> </defSet>

<defSet n='workingMode'> <symbol v=>through blocking'/> </defSet>

<defSet n='lightStatus'> <symbol v='on off'/> </defSet>

<!— variable definitions — >

<defVar n='c_SRC v_SRC> <reals/> </defVar>

<defVar n='c_GND v_GND'> <reals/> </defVar>

<defVar n='cl_NSRC c2_NSRC C3JJSRC vl_NSRC v2JJSRC v3_NSRC>

<reals/> </defVar>

<defVar n='cl_NGND c2_NGND c3JIGND vlJJGND v2_NGND v3JFGND'>

<reals/> </defVar>

<defVar n='cl_S c2_S vl_S v2_S'> <reals/> </defVar>

<defVar n='pos_S'> <setRef n='switchPosition'/> </defVar>

<defVar n='cl_B c2_B vl_B v2_B'> <reals/> </defVar>

<defVar n='mode^B'> <setRef n='behaviouralMode'/> </defVar>

<defVar n='cl_R c2_R vl_R v2_R'> <reals/> </defVar>

<defVar n='mode_R'> <setRef n='behaviouralMode'/> </defVar>

<defVar n='clJ) c2_D vl_D v2_D'> <reals/> </defVar>

<defVar n='mode_D'> <setRef n='workingMode'/> </defVar>

<defVar n='light'> <setRef n='ligntStatus'/> </defVar>

<defVar n='r_B'> <reals/> </defVar>

<defVar n='r_R'> <reals/> </defVar>

<!— relation templates — >

...see App. B. 3

<!— relations — >

<eq n='voltageAtSRC>

<var n='v_SRC'/>

<interval b='c'> <!— this is a closed interval — >

<float v='11.9V> <float v='12.1'/>

</interval>

</eq>

<eq n='voltageAtGND'> <var n='v_GND'/> <float v='0.0'/> </eq>

<eq n='resistanceAtR'>
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<var n='r_R'/>

•«interval b='c'> <!— this is a closed interval — >

<float v='90.0'/> <float v='110.0'/>

</interval>

</eq>

<eq n='resistanceAtB'>

<var n='r_B'/>

<interval b='c'> <!— th i s i s a closed in te rva l —>
<float v='190.0'/> <float v='210.0V>

</interval>
</eq>
<rel n='NSRC r='KirchhoffNode'

v='cl_NSRC c2_NSRC c3_NSRC vl_NSRC v2JJSRC v3_NSRC'/>
<rel n='NGND' r='KirchhoffNode'

v='cl_NGND C2JJGND c3_NGND vlJIGND v2_NGND v3JfGND'/>
<rel n='S' r='Switch' v='cl_S c2_S vl_S v2_S pos_S'/>
<rel n='B' r='TwoModeBulb'

v='cl_B c2_B vl_B v2_B r J l ight mode_B'/>
<rel n='R> r='TwoModeOhmicResistor'

v='clJi c2Jl vlJl v2_R r_R modeJl'/>
<rel n='D' r='IdealDiode' v='cl_D c2J) vl_D v2_D mode_D'/>
<rel n='wireSRCtoNSRC r='Wire' v='c_SRGcl_NSRC v_SRC vl_NSRC'/>
<rel n='wireNGNDtoGND' r='Wire' v='cl_NGND c_GND vlJJGND v_GND'/>
<rel n='wireNSRCtoS' r='Wire' v='c2JfSRC cl_S v2_NSRC vl_S'/>
<rel n='wireStoB' r='Wire' v='c2_S cl_B v2_S vl_B'/>
<rel n='wireBtoNGND' r='Wire' v='c2_B c2JJGND v2_B v2_NGND'/>
<rel n='wireNSRCtoR' r='Wire' v='c3_NSRC clJ l v3_NSRC vl_R'/>
<rel n='wireRtoD' r='Wire' v='c2Jl clJ) v2Jl vl_D'/>
<rel n='wireDtoNGND' r='Wire' v='c2_D c3_NGND v2_D v3JIGND'/>

</objects>

B.6 Quadratic Resistors

In the following, we give an XML template definition of a quadratic electric resistor.
This has been used in experiments related to Subsect. 6.1.2.

<!— relation template for a quadratic resistor —>
<!— i. . .(directed) current variable —>
<!— v...(undirected) voltage variable —>

<defRel n='QuadraticResistor' v='il i2 vl v2 q'>
<or>

<and>
<eq>

<plus> <var n='i l ' /> <var n='i2'/> </plus>
<float v='0.0'/>
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</eq>

<leq> <float v='0.0'/> <var n=Ji2'/> </leq>

<eq>

<minus> <var n=Jv2'/> <var n='vl'/> </minus>

<mult>

<var n='q'/>

<mult> <var n='i2'/> <var n='i2'/> </mult>

</mult>

</eq>

</and>

<and>

<eq>

<plus> <var n='il'/> <var n='i2V> </plus>

<float v='0.0'/>

</eq>

<leq> <float v=>0.0'/> <var n='il'/> </leq>

<eq>

<minus> <var n='vl'/> <var n='v2'/> </minus>

<mult>

<var n='q'/>

<mult> <var n='il'/> <var n='il'/> </mult>

</mult>

</eq>

</and>

</or>

</defRel>



Appendix C

Extensions

C.I Extending the Prototype for
Modelling Bus Communication

This section is to emphasise the modular architecture of our prototypic implementa-
tion as explicated in previous chapters. We will give an idea how the implementation
can be extended to equip it for new, previously unaddressed types of constraints.
Naturally, those extensions give rise to new language features that enable the user
to actually exploit the advanced facilities.
In order to describe that process, we take a look at a simple example that deals with
the problem of modelling and handling bus communication in a network of signal
sources. That question has in fact been tackled thoroughly in practice, and latest
versions of our prototype are fit to solve a bunch of first problem instances.

Figure C.I depicts the problem. Two computers may interchange numeric signals
via a bus cable. Each computer possesses an in- and an out-bus. Computer 0 is
known to emit the signal "1", and to answer any received "2" by a "3". Likewise,
computer 1 will answer "1" by "2". These are the constraints stated below the boxes
named "Computer 0" and "Computer 1"; cf. Fig. C.I.
Obviously, after a sequence of send and receive steps, computer 1 will have "1" and
"3" on its out-bus and "2" on its in-bus. For computer 0 the situation is vice versa,
as ensured by the "Transmission" constraint.

How has the problem actually been modelled and solved?
We implemented a new class SetTerm that is derived from NaryExpression; see
Fig. 5.9. Each instance maintains a set of signals, represented by Values, that are
known to be on the bus, in, and a set for those signals that are certainly off, out.
Note that the two sets represent partial knowledge concerning the bus: With 5
denoting the exact set of signals on the bus, we only know that

in Ç S A out n S = 0. (*)

In Fig. C.I, each computer is modelled by two variables that can be assigned
an instance of SetTerm. That class implements the intersection of two bus sets,

224
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simply by unioning the in's and the out's, respectively. Clearly, (*) implies that
in D out = 0, and we may utilise that condition to discover conflicts after the in-
tersection of two bus sets in the outlined manner. One may verify that this is also
the reason why the top-most join in Fig. C.I leaves us with only one conjunction
instead of 2 • 2 = 4.
With that infrastructure, we can easily join two assignments of the form x = si
and x — S2, where si an «2 are represented by instances of SetTerm. Therefore, an
aggregation tree as the one shown in Fig. C.I can easily be built, and the entire
problem can hence be handled according to the MCS framework.

Computer 0
Transmission

b0,n '— 1 b1,n

Oout ^ 1out

- -» 3

Computer 1
forward join D

= {in: 1,3} A

={in:2}

(bOin = {in:2} A bOM = {m:
v (b0ln = {out: 2} A boo« = {in: 1; out: 3} )

Computer 0

(2 ebOin « 31
°0m

v (boc

v (b-t-

. — • —

= {in:

V}1}

—--— '
V
*:1}

A bOin
A boin

* b10ut

= {out:2})

= {in:2})
= {out:2})

1 \Transmission Computer

1 Gb1ln •*> 2 £b1out

Figure C l : Aggregation Tree for Two Computers Exchanging Messages

Actually, SetTerm, as used in the above example, could have been simply derived
from Value. This is because there are neither variables nor more involved terms
stored in the attributes in and out. But due to further improvements not mentioned
here, it is in our implementation actually possible to include variables in those two
sets. This explains why SetTerm has not been derived from Value but from Term.

In order to provide the new capability to the user, we need to extend our constraint
language. Obviously, in order to instantiate SetTerm, we just need to specify the in
and the out set, by providing the respective elements. Appendix B.4 presents the
XML file that encodes the problem depicted in Fig. C.I.



Appendix D

Screenshots of Our Java
Implementation of MC8

This part of the appendix presents some Screenshots of our prototypic Java imple-
mentation of RCS.
Though the implementation is currently used as a hidden module in some first appli-
cations inside the DaimlerChrysler AG, all first versions come with a simple browser
for inspection, code debugging and displaying computational results. Besides menu
items for loading and saving XML problem descriptions, aggregation strategies and
context space definitions, there are tabulars for inspecting aggregation forests, suc-
cessfully parsed constraints, variables and their domains as well as all computed
solutions.

D.I A Showcase Example from Electrics

All Screenshots presented in this section show our prototype dealing with the small
electric example depicted in Fig. 6.1. As also stated there, the corresponding XML
problem description can be found in App. B.5.

D.I.I The Inspection of Relations

Figure D.I depicts a Screenshot taken after loading the XML problem for the small
electric circuit in question. The "Relations" tabulator has been chosen, and so the
user may inspect all parsed constraints. The selected constraint "B", representing
the only bulb in the circuit, is expanded on the right-hand side. This panel shows a
disjunction with three cases.
In total, there are 18 constraints that provide an exhaustive description of the circuit
and enable the prototype to find solutions for all unknowns.

D.I.2 Building an Aggregation Forest

After loading the problem, we may use the appropriate menu item to solve the prob-
lem. This will deploy the machinery developed in this thesis and run the forward

226



D.I. A SHOWCASE EXAMPLE FROM ELECTRICS 227

RCS Problem Command Strategy Context Space Extra

AggTrees ' Relations | Variables j Templates] Domains | Strategy | Context Space 1 Sequence j
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Relation 1

D

NGND

NSRC
R

S
resistanceAtB

resistanceAtR

voltageAtGND

voltageAtSRC

wireBtoNGND

wireDtoNGND

wireNGNDtoGND

wireNSRaoR

wireNSRCtoS

wireRtoD

wireSRCtoNSRC

î"v

Name B
Scope: {mode_B, d _B, v1 _B, light, v2_B, r_B, c2_B}
Body:

OR(
ANDC

0

AND(

)
ANDC

c2_B <
c1_B = (-1)*c2_B
v1_B = (v2_B)+((r_B)sCc2_B)*(-1))
mode_B = {ok}
light = {on}

v1_B = v2_B
d_B = 0
mode_B = {ok}
c2_B = 0
light = {off}

c1_B = 0
mode_B = {broken}
c2_B = 0
light = {off}

I ntf cnntf?^t of 1S testions is con f i en t Ready.

Figure D.l: A Screenshot Taken During the Inspection of Constraints

phase. Additionally, in case of consistence1, all variables will be solved by means of
the backward phase.
The forward phase produces an aggregation forest for the problem. After the back-
ward phase has terminated, the forest's nodes will also hold references to all back-
ward relations. The left-hand side of Fig. D.2 shows the resulting forest in an almost
entirely expanded state.
There is just one tree in the forest: It has a full root and signals thus consistency;
cf. Th. 1. The top line captures a total computation time of 411 milliseconds, which
splits into 50 milliseconds and 361 milliseconds for forward and backward phase, re-
spectively. The leading "10s" is to say that the utilisation of the built-in on-the-fly
aggregation strategy took 10 milliseconds.
By selecting a node, the user may inspect forward and backward relation, as well
as the stored forward join; cf. Fig. 4.5. In Fig. D.2, the right-hand side shows these
relations for the aggregation of the voltage setting at ground and the wire connecting
ground to the Kirchhoff node NGND.

1Remember again that this only means that our prototype failed to detect inconsistency.
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Figure D.2: An Aggregation Forest for the Circuit in Fig. 6.1
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Figure D.3: Solutions for All Unknowns
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D.I.3 Obtaining Tightest Variable Restrictions

Also, after having solved the problem, the "Variables" tabulator will list solutions
for all the variables in the original problem description; see Fig. D.3. The first two
columns show names and domains. The tightest restriction of the domain, as set by
the constraint problem, can be found in the "Solution" column.
Note that this may be a set of numbers and intervals, as in the case of the selected
variable: c_GND, the current "flowing into ground", may be zero or take its values
in one of the three shown intervals.

, V • < • • • "
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Figure D.4: Solutions for the Altered Problem with the Bulb Being Lit
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Figure D.5: A Minimal Explanation of Size 4 for the Switch Being Closed
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D.1.4 Retrieving a Minimal Explanation

Figure D.4 presents a similar Screenshot as Fig. D.3: Here, the problem has been
slightly altered by adding a new constraint (bulblsLit) that captures the observation
that bulb B is lit.
Note that, consequently, mode_B and pos_S have been found to be ok and closed,
respectively; see Fig. 6.1.
Though intuitively clear, we may obtain a minimal explanation for the latter fact,
by deploying the appropriate menu item. This gives us the explanation window
depicted in Fig. D.5. The explanation has been found within 10 milliseconds, and
consists - as expected - of four constraints; the added observation (bulblsLit), the
component constraints for B and S and the connecting wire.

D.2 Term Rewrites for the Basic Parallel Circuit

As mentioned in Subsect. 6.1.2, our Java prototype is able to solve the constraint
problem that captures the basic electric circuit with two parallel quadratic resistors.
After having solved that problem, we may retrieve the set of applied term rewrites,
as shown in Fig. D.6.

~2£|
Since this window was last shown,

the following term rewrites have

been accomplished:

t*t = t~2,
t/l=t,
0+t = t,

""t-o = t,

l*t = t,

v*(w*t) = (v*w)*t,

0*t = 0, •

t-t = 0.

Figure D.6: All Term Rewrites Applied to Solve a Simple Quadratic Circuit

D.3 The Utilisation of Monotonous Terms

In Subsect. 6.1.3., we have explained when and how MCS can utilise extra knowledge
concerning the monotonicity of functional dependencies in the constraint network
to be solved. On the settings panel of RCS the user may mark the next constraint
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problem as one in which all unknowns depend monotonically on the inputs.
A typical example is a resistive network in which all current and voltage variables
happen to be monotonous functions of the input resistances. Figure D.7 and Fig. D.8
display the solutions for the bridge circuit problem R\ with interval values for the
ideal voltage source and for all 5 resistances in the circuit. Consequently, RCS deter-
mines all unknowns to lie within some interval. Figure D.7 shows the results based
on naive interval calculus. With the extra knowledge concerning monotonicity, RCS

M Visual RCS'^ylrsfmli^P^^^^^^S^SiHBHHHHB
RCS Problem Command Strategy Context Space Extra
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[0.018300595 ,0.019837163]
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[0.019605977 ,0.021356747]
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Figure D.7: Non-Monotonous Solutions for the Bridge Circuit with one Box
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Figure D.8: Monotonous Solutions for the Bridge Circuit with one Box

manages to find the exact, that is, narrowest intervals for all unknowns. Cf. Fig. D.8
which lists as solution intervals proper subsets of the findings of Fig. D.7. The cost
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for the higher accuracy amounts to a runtime that is about four times as long as in
the non-monotonous case of naive interval calculus.

D.4 Obtaining both Minimal Conflicts
for the 3-Queens Problem

In Ex. 6 we have had a look at the prominent n-queens problem. Figure 3.5 depicts
an aggregation tree proving that there is no solution for n = 3.
We may use the explanatory facilities of RCS to retrieve all minimal conflicts. Note
that Fig. 3.7 and the subsequent discussion come to the conclusion that there are
exactly two minimal conflicts: As a first possibility, it suffices to join the four rela-
tions (and no less) shown at the top left in Fig. D.9, in order to produce the empty
relation. Secondly, the bottom right window provides us with the other minimal
conflict of size 5.

2 Explanations for confh

distinct leaf nodes:

- _ J Or
Fl-_JOr

• • NotEqualX1X3

- # NotDiagonalXI X2

• - • NotDiagonalXI X3
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'-- _ ] Or
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1 • NotEqualX2X3
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Body:

EMPTY

™ iA,....,.J w l

Figure D.9: Both Minimal Conflicts for the 3-Queens Problem

Note that - despite the suggestion supported by the figure - MCS will at runtime
open only one window. The user can then freely navigate among all minimal con-
flicts by means of the shown combo box. Therein, the conflicts are named by an
ordering number (starting with 0), a separating dot and finally by the size of the
respective conflict. In our example, that naming convention produces the conflict
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identifiers "0.4" and "1.5"; cf. Fig. D.9.

D.5 Solving All Instances in a Context Space

With our prototypic implementation of RCS we are able to specify entire context
spaces of related constraint problems. This can be done either by reading an appro-
priate XML fragement that defines the fixed portion and the one-ofs of the respective
context space; cf. Def. 17. Or the user may deploy some shortcut functionality im-
plemented in the prototype, for recognising a context space. This latter possibility
works whenever the user follows a special naming convention for the relations: All
alternatives of a one-of must start with the same prefix, e.g. with "y". The program
recognises that a relation is an alternative of a one-of, if and only if that prefix is
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Figure D.10: Context Space for the 1-Bit Full Adder in Fig. B.I

followed by a dot ".".
Figure D.10 shows a recognised context space that captures all 16 contexts for the
1-bit full adder shown in Fig. B.I. As the above example says, two relations starting
with "y. " have been identified as the alternatives in a one-of.
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The figure shows furthermore the or-relation rlO which relates the variables x5, x6
and xlO and which has as body a table of four alternative sets of assignments.
By using the appropriate menu item, the prototype will sequentially solve all 16 con-
texts in the problem. Unless turned off, the implementation utilises the discussed
reuse facilities. Solving each context here means to record the runtimes for forward
and backward phase (including an extra measurement for the built-in aggregation
strategy) and all solutions for all variables in all contexts that have not been found
to be inconsistent.

RCS Problem Command Strategy Context Space Extra

AggTreesI Relations) Variables] Templates) Domains 1 Strategy,! Context Space Sequence |

Contexts in sequence time spent on built-in strategy:
time for forward phase. 10msec
time for backward phase. 10 msec •"""'
sum = total time- 30 msec
4 '

uilt-in strategy: 110msJ
•ard phases. 200msei
(ward phases: 81 msf*
!- 391 msec

' >!

Last context of 19 relations is consistent.;!Ready.

Figure D.ll: Solution Table for the Context Space in Fig. D.10

This view is - again for the 1-bit full adder - presented in Fig. D.H. The Screenshot
shows that the user can select each context via a combo box. After the selection,
the lower left table will present all solutions for all variables. The lower right area
provides the user with information as to which alternatives of the one-ofs were ac-
tive in the selected context. In Fig. D.ll these are "x.T", "y.T", "z.F", "sum.F",
capturing the facts that x and y were set to true and z and sum to false. Note
that this implies that carry takes as well the value true which is reflected in the
first row of the lower left table.
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The upper middle panel shows the runtimes for strategy, forward phase (includ-
ing the strategic portion), backward phase and the entire context. On the upper
right sheet, the corresponding cummulative measurements for all 16 contexts are
presented. There, we see that solving all 16 contexts took 391 milliseconds.



Appendix E

Structural Runtime Figures

E.I Structural Data for the Analysis of (Rk)keN+

Figure E.I shows the average numbers of atoms per leaf node and non-leaf node,
measured during the analysis of the problem instances Rio, R20, • • •, -Rioo- The point
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Figure E.I: Number of Atoms per Node; (Rk)ke{io,20,...,wo}

to be made here is that non-leaf relations are more complex than leaf relations:
They contain, in their disjunctive normal form, about half an atom more than leaf
relations. Still, as Fig. 6.3 suggests, that increase in complexity is too small to
negatively affect the scaling behaviour of our prototype for the family (-Rfc)fceN+:

We obtain a runtime that is "almost linear" in k.

E.2 Structural Data for the Analysis of

The analysis of the family (-Dfc)fceN+ reveals significant differences to that of ( ) +
Each circuit D^ captures basically 4fc possibilities for the current to flow through
the system. The reason for tha t are the two diodes per box, each of which opens
two potential scenarios. The practical problem implied by that characteristic is that
any solver will have to deal with 4fc cases, unless it is able to keep the number of

236
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possibly cases small at runtime.
Depending on how RCS builds its aggregation trees, it may or may not be able to
discover inconsistent cases earlier and thus reduce the overall runtime for the prob-
lem instance D^. So far, we have not implemented and studied a special aggregation
startegy that attempts to minimise the number of disjuncts.

20
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10

•average atoms per leal node
ra average atoms per non-leaf node
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Figure E.2: Average Number of Atoms per Node; (-Dfc)fce{i,2,...,io}
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Figure E.3: Maximum Number of Atoms per Non-Leaf Node;

Consequently, Figs. E.2 and E.4 show that our prototype does not behave well for
the family (DIC)IC&^+: Both the total number of atoms and the number of disjuncts
in an average non-leaf node rise when an aggregation tree is built. Therefore, the
complexity of non-leaf relations increases as the tree grows. As a result, we will
normally not observe a runtime linear in k.
Figures E.3 and E.5 show that - along with an increasing average complexity of non-
leaf relations - we get far worse behaviour for the most complex non-leaf relations:
For k = 10, there are even over 1400 atoms or over 120 disjuncts in the "worst"
relation.
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E.3 Structural Data for the Analysis of the ATV Family

By taking a good look at Fig. E.6 we learn that our prototypic implementation of
MCS behaves well for the ATV propulsion system, and as forecasted by our theoret-
ical investigations in Chap. 3.
First of all, there are only minor deviations between the characteristics of leaf and
non-leaf relations. This shows that aggregation can indeed preserve the complexity
of the initial relations, both in terms of variables per relation and in terms of atoms,
conjuncts and disjuncts. Also, the figures for incremental analysis, that is, for reuse-
based analysis are only a little higher than those for an analysis from scratch.
A final observation concerns the balancedness of the evolving aggregation trees: In
the incremental case, trees are being repaired over and over again which inevitably
results in less balanced trees. Figure E.6 shows these parameters in the rows named
"tree depth". (The second value denotes the maximum observation, i.e. the maxi-
mal number of nodes in a root-leaf path.) As has already been pointed out in Sub-
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Structural Analysis

model properties
components

relations
variables

leaf relations (average; max.)
atoms per relation

conjuncts per disjunct
disjuncts per relation
variables per relation

non-leaf relations (*; max.)
atoms per relation

conjuncts per disjunct
disjuncts per relation
variables per relation

tree depth

atoms per relation
canjuncts per disjunct
disjuncts per relation
variables per relation

tree depth

Systenrf

13
122
142

2.71; 14
1.79; 3
1.52; 5
2.42; 6

* Average Measurements of 1000 Runs
System2

31
288
345

2.67; 14
1.79; 3
1.49; 5
2.46; 6

System3

39
395
474

2.81; 14
1.83; 3
1.54; 5
2.50; 6

System4.

62
598
718

2.75; 14
1.81; 3
1.52; 5
2.48; 6

non-incremental case
2.16; 13
1.85; 5
1.16; 4
2.76; 6

12.75; 20

2.02; 13
1.82; 5
1.11; 4
3.06; 7

14.73; 22

2.77; 62
2.26; 8
1.23; 15
3.29; 12
13.41; 26

2.49; 57
2,10; 8
1.18; 10
3.23; 11
14.32; 29

incremental case
2.35; 13
1.93; 5
1.22; 4
2.83; 6

12.90; 22

2.14; 13
1.89; 5
1.14; 4
3.16; 6

16.44; 32

2.83; 75
2.24; 9
1.26; 16
3.29; 12
13.92; 34

2.49; 80
2.08; 9
1.20; 15
3.20; 10
15.86; 39

Figure E.6: Structural Data for the Analysis of the ATV Systems

sect. 6.4.2, the incremental analysis of 1000 ATV contexts included very few (less
than 10) restarts from scratch, due to very unbalanced aggregation trees. Therefore,
the results given in Fig. E.6 need to be interpreted by taking into account a small
number of non-incremental restarts.
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(Wahrscheinlichkeitsrechnung für Lehrer und Höhere
Mathematik 2 für Ingenieure)

Bearbeiter für Systemtechnik im Softwarezentrum des
Büromaschinenwerks Sömmerda, Erstellung von Schu-
lungssoftware in Pascal
Wissenschaftliche Hilfskraft am Max-Planck-Institut
für extraterrestrische Physik - Außenstelle Berlin, Pro-
grammierung in IDL zur Archivierung großer Daten-
mengen aus dem Weltall
Praktikant in einem Softwareunternehmen, Program-
mierer in Visual Basic

Projektbetreuer für Programmieraufgaben in Visual
Basic 5.0 und 6.0 bei der Datenhaus GmbH in Berlin

Schwerpunkte: Client - Server - Kommunikation,
Browser, Anwendungen und
Masken für Access-Datenbanken
unter Visual Basic, schnelle
Graphikroutinen

Doktorand in einer Berliner Forschungsabteilung der
DaimlerChrysler AG



12/2001 - 05/2003

seit 01.06.2003

Thema: Constraint-Verarbeitung mit-
tels relationaler Aggregation
für rnodellbasierte Engineering-
Anwendungen, wie z.B. Diagnose;
Entwicklung des Software-
Moduls "Relational Constraint
Solver" in Java

DaimlerChrysler-seitiger Koordinator einer
Forschungskooperation mit dem Institut "Daten-
banken und Artificial Intelligence" der TU Wien
zur Entwicklung und Evaluierung alternativer
Lösungsstrategien für den "Relational Constraint
Solver"
wissenschaftlicher Mitarbeiter in der DaimlerChrysler
AG und Mitglied der DaimlerChrysler-internen Aus-
tauschgruppe

Kenntnisse und Fähigkeiten

Sprachen
Deutsch
Englisch
Französisch
Russisch

Didaktik

EDV
Programmiersprachen

Anwendungen

Algorithmierung

Wissenschaftliche Arbeit

Konferenzen

Muttersprache
fließend in Wort und Schrift
fortgeschrittene Grundkenntnisse
Grundkenntnisse

sehr gute didaktische Fähigkeiten aufgrund der
Tätigkeiten als Tutor und Lehrbeauftragter, gute
Präsentation komplexer Zusammenhänge

sehr fortgeschrittene Kenntnisse in.Visual Basic, Pas-
cal, Modula, Lisp, Smalltalk; Expertenkenntnisse in
Java
MS Office, diverse relationale Datenbanken, sehr gute
Kenntnisse in SQL
Datenbank-Handling via Programmierumgebungen,
schnelle Routinen für Graphik und numerische Prob-
leme, Constraint-Verarbeitung

Teilnahme an der internationalen Konferenz "Princi-
ples and Practice of Constraint Programming (CP)"
in den Jahren 2000-2002; 2001 und 2002 aktiver
Teilnehmer des Doktorandenprogramms der CP mit
spezieller Förderung



Veröffentlichungen jeweils im Rahmen des Doktorandenprogramms sowie
2002 mit zwei Kollegen der DaimlerChrysler AG in
den Proceedings der CP; kommende Veröffentlichung
im Europäischen Journal "Artificial Intelligence Com-
munications"


