
DISSERTATION

Photorealistic and Hardware Accelerated
Rendering of Complex Scenes

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

Universitätsprofessor Dr. Werner Purgathofer
Institut 186 für Computergraphik und Algorithmen

eingereicht an der Technischen Universität Wien
Technisch-Naturwissenschaftliche Fakultät

von

Dipl.-Ing. Heinrich Hey
9225223

Schwaigergasse 19/3/34
A-1210 Wien

Wien, am 11.5.2002

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung
Diese Arbeit präsentiert neue Methoden zur effizienten fotorealistischen und
Hardware-beschleunigten Bildgenerierung von Szenen die komplexe globale
Beleuchtung aufweisen, und zusätzlich auch groß sein können. Das beinhaltet

� eine Photon Map-basierte Radiance Abschätzungs Methode die die Qualität
der globalen Beleuchtungs Lösung in der Photon Map-globalen Beleuchtungs
Simulation verbessert.

� eine Particle Map-basierte Importance Sampling Technik die die Leistung von
stochastischer Ray Tracing-basierter Bildgenerierung und globaler
Beleuchtungs Simulation verbessert.

� eine Hardware-beschleunigte Bildgenerierungs Methode die das interaktive
Durchschreiten global beleuchteter glänzender Szenen ermöglicht.

� eine Occlusion Culling Technik die das interaktive Durchschreiten auch in
großen Szenen ermöglicht.

Es hat sich erwiesen daß die Photon Map-globale Beleuchtungs Simulation eine
leistungsvolle Methode zur Ray Tracing-basierten Bildgenerierung von global
beleuchteten Szenen mit allgemeinen bidirektionalen Streuungs Verteilungs
Funktionen, und allen dadurch möglichen Beleuchtungseffekten ist. Dennoch,
eine der Schwächen dieser Methode ist bisher gewesen daß sie eine sehr grobe
Radiance-Abschätzung verwendet, die Beleuchtungs-Artefakte in der Nähe von
Kanten und Ecken von Objekten, und auf Oberflächen mit unterschiedlich
orientierten kleinen geometrischen Details verursachen kann. Unsere neue
Photon Map-basierte Radiance-Abschätzungs Methode vermeidet diese
Artefakte. Das wird gemacht indem die tatsächliche Geometrie der beleuchteten
Oberflächen berücksichtigt wird.

In stochastischem Ray Tracing-basierten Bildgenerierungs und globalen
Beleuchtungs Techniken, z.B. in Photon Map-globale Beleuchtungs Simulation,
muß eine sehr große Anzahl an Strahlen in die Szene geschossen werden um die
globale Beleuchtung und/oder das endgültige Bild zu berechnen. Die Leistung
dieser Techniken kann daher wesentlich verbessert werden indem die Strahlen
vorzugsweise in Richtungen geschossen werden wo sie einen hohen Beitrag
liefern. Importance Sampling Techniken versuchen dies zu tun, aber das Problem
dabei ist daß der Beitrag geschätzt werden muß, und das muß freilich effizient
getan werden.

Unsere neue Importance Sampling Technik löst dieses Problem unter
Verwendung einer Particle Map. Die Wahrscheinlichkeits-Dichte Funktion
anhand derer die Schußrichtung eines von einem Punkt ausgehenden Strahls

gewählt wird ist aus adaptiven Abdrücken zusammengesetzt die die nähesten
Nachbar Partikel auf der Hemisphäre über dem Punkt machen. Die Strahlen
können daher präzise in Richtungen mit hohem Beitrag geschossen werden.

Interaktive Durchschreitungen in global beleuchteten statischen Szenen können
realisiert werden indem die berechnungsintensive globale Beleuchtungs
Simulation in einem Vorverarbeitungsschritt getan wird. Das Resultat dieses
Schritts sollte eine Repräsentation der globalen Beleuchtung sein die in einer
folgenden interaktiven Durchschreitung effizient dargestellt werden kann, die
mit Grafik-Hardware dargestellt wird. Ein wesentliches Problem dabei ist die
räumlich und richtungsmäßig variierende globale Beleuchtung auf glänzenden
Oberflächen zu handhaben. Unsere neue Methode für interaktive
Durchschreitungen von leicht glänzenden Szenen lößt dieses Problem mit
richtungsabhängigen Light Maps, die effizient mit konventioneller Grafik-
Hardware dargestellt werden können.

In großen Szenen, z.B. in einem Gebäude, in denen von jedem möglichen
Betrachtungspunkt aus nur ein kleiner Teil sichtbar ist, wäre es ineffizient all
jene Objekte zu zeichnen die von anderen Teilen der Szene verdeckt sind. Um
eine Echtzeit-Bildwiederholrate für interaktive Durchschreitungen zu erreichen
ist es notwendig effizient zu ermitteln welche Objekte verdeckt sind, damit sie
weggelassen werden können. Unsere neue konservative Bildraum-Occlusion
Culling Methode erreicht das unter Verwendung eines Lazy Occlusion Grids das
effizient mit konventioneller Grafik-Hardware funktioniert.

Abstract
This work presents new methods for the efficient photorealistic and hardware
accelerated rendering of scenes which exhibit complex global illumination, and
which additionally also may be large. This includes

� a photon map-based radiance estimation method that improves the quality of
the global illumination solution in photon map global illumination simulation.

� a particle map-based importance sampling technique which improves the
performance of stochastic ray tracing-based rendering and global illumination
simulation.

� a hardware accelerated rendering method which allows to do interactive
walkthroughs in globally illuminated glossy scenes.

� an occlusion culling technique which allows to do interactive walkthroughs
also in large scenes.

Photon map global illumination simulation has proven to be a powerful method
for ray tracing-based photorealistic rendering of globally illuminated scenes with
general bidirectional scattering distribution functions, and all illumination effects
that are possible thereby. Nevertheless, one of the weaknesses of this method has
been that it uses a very coarse radiance estimation which may cause illumination
artifacts in the vicinity of edges or corners of objects, and on surfaces with
differently oriented small geometric details. Our new photon map-based radiance
estimation method avoids these illumination artifacts. This is done by taking the
actual geometry of the illuminated surfaces into consideration.

In stochastic ray tracing-based rendering and global illumination techniques, eg.
in photon map global illumination simulation, a very large number of rays have
to be shot into the scene to compute the global illumination solution and/or the
final image. The performance of these techniques can therefore be considerably
improved by shooting the rays preferably into directions where their contribution
is high. Importance sampling techniques try to do this, but the problem herein is
that the contribution has to be estimated, and this of course has to be done
efficiently.

Our new importance sampling technique solves this problem by utilization of a
particle map. The probability density function according to which the shooting
direction of a ray from a point is selected is composed of adaptive footprints that
the nearest neighbor particles make onto the hemisphere above the point. The
rays can therefore be precisely shot into directions with high contribution.

Interactive walkthroughs in a globally illuminated static scene can be realized by
doing the computationally expensive global illumination simulation in a
preprocessing step. The result of this step should be a representation of the global
illumination that can be efficiently displayed during a following interactive
walkthrough, which is rendered with graphics hardware. A major problem herein
is to handle the spatially and directionally variant global illumination on glossy
surfaces. Our new method for interactive walkthroughs for soft glossy scenes
solves this problem with directional light maps, which are efficiently displayed
with conventional graphics hardware.

In large scenes, eg. in a building, where only a small part is visible from each
possible viewpoint, it would be inefficient to draw all those objects that are
occluded by other parts of the scene. To achieve a real-time frame-rate for
interactive walkthroughs it is necessary to determine efficiently which objects
are occluded, so that they can be culled. Our new conservative image-space
occlusion culling method achieves this by utilization of a lazy occlusion grid that
works efficiently with conventional graphics hardware.

Contents

1 Introduction 1

2 Global illumination simulation with photon maps 3
2.1 Existing methods 3

2.1.1 Photon tracing pass 4
2.1.2 Ray tracing pass 4
2.1.3 Radiance estimation 5

2.2 Geometry based radiance estimation 9
2.2.1 Generation of the octree of polygons 10
2.2.2 Radiance estimation 10

2.3 Results 12

3 Importance sampling with particle maps 14
3.1 Existing methods 14
3.2 Hemispherical particle footprint importance sampling 18

3.2.1 Nearest neighbor particles 19
3.2.2 Directional particle density estimation 20
3.2.3 Footprints 22
3.2.4 Generation of an importance sampled direction 23

3.3 Results 25

4 Interactive walkthroughs in globally illuminated glossy scenes 27
4.1 Existing methods 27
4.2 Directional light maps 28

4.2.1 Generation of directional light maps 29
4.2.2 Interactive rendering 30

4.3 Results 31

CONTENTS

5 Occlusion culling for interactive walkthroughs 33
5.1 Existing methods 33

5.1.1 Visibility from region or from viewpoint 37
5.1.2 Visibility calculations in a preprocessing step or on the fly 39
5.1.3 Visibility calculations in object space or image space 41
5.1.4 Continuous or point sampled visibility 41
5.1.5 Conservatism of visibility 41
5.1.6 Hardware acceleration 43
5.1.7 Occluder selection 44
5.1.8 Occluder fusion 44
5.1.9 Supported scenes 46
5.1.10 Traversal of the scene 47
5.1.11 Supported bounding volumes/spatial subdivision structure 47
5.1.12 Temporal coherence 47

5.2 Lazy occlusion grid 48
5.2.1 Occlusion test 51

5.2.1.1 Occlusion state-version 51
5.2.1.2 Zfar-version 52

5.2.2 Front-to-back traversal in a bounding volume hierarchy 53
5.2.2.1 Occlusion state-version 53
5.2.2.2 Zfar-version 56

5.2.3 Future extensions 58
5.3 Occlusion culling and directional light maps 59
5.4 Results 59

6 Conclusion 63

References 65

1

Chapter 1

Introduction

Photorealistic rendering is needed in all application areas where the accurate
simulation of indirect illumination is important to achieve realistic images, for
example in:

� architecture
� lighting design
� stage design
� film

The scenes that are used in such applications often exhibit complex global
illumination on its surfaces. This global illumination is caused by light that is
reflected and refracted by other objects in the scene. These scenes may contain
surfaces with general reflection properties, and therefore all kinds of illumination
effects that are possible thereby.

For several applications it is also important that interactive walkthroughs can be
done in these globally illuminated scenes. An example application would be to
give customers a realistic impression of their planed new house by walking
around in the virtual model. To achieve this realistic impression it is necessary to
display the scenes with accurate indirect illumination. This also includes that
glossy surfaces have to be supported, because many real materials are non-
diffuse. Without glossy materials these surfaces would look very synthetic,
because highlights would be missing, which are very important for the realistic
perception of the scenes.

Often the scenes in these applications are additionally also large, for example a
whole building with several rooms. The interactive walkthroughs should
nevertheless also be possible in these large globally illuminated scenes. An

CHAPTER 1. INTRODUCTION

2

important property of such large scenes is that usually only a small part of the
scene is visible from each possible viewpoint, because large parts of the scene
are occluded by other parts in front of them. For example a viewer inside a room
will usually be able to see only into few other rooms.

In this work we present new methods for the efficient rendering of photorealistic
images and interactive walkthroughs in such complex scenes. In each chapter we
also give an overview of existing related methods.

The first new method, which is explained in chapter 2, is a photon map-based
radiance estimation for photon map global illumination simulation. The later has
proven to be a powerful technique for ray tracing-based photorealistic rendering
of globally illuminated scenes. It supports surfaces with general bidirectional
scattering distribution functions, and all illumination effects that are possible
thereby. Our new radiance estimation method improves the quality of the
resulting images by avoiding illumination artifacts of the existing method in the
vicinity of edges or corners of objects, and on surfaces with differently oriented
small geometric details. Our new method does this by taking the actual geometry
of the illuminated surfaces into consideration.

Next, we present a new importance sampling method in chapter 3, which
improves the performance of stochastic ray tracing-based rendering and global
illumination techniques, in particular photon map global illumination simulation.
Our new importance sampling method utilizes a particle map to select the
direction into which a path is scattered at a surface. The global illumination
computations are thereby concentrated to those parts of the scene with the
highest contribution.

After that we describe a new technique in chapter 4, which allows to do
interactive walkthroughs in globally illuminated soft glossy scenes. It uses
directional light maps which represent the spatially and directionally variant
global illumination in form of textures at the surfaces. The directional light maps
are generated in a photon tracing preprocessing step. Afterwards during the
interactive walkthrough these directional light maps are efficiently displayed
with conventional graphics hardware.

Finally we show how the interactive walkthroughs can be done in large globally
illuminated scenes. This is achieved with a new conservative image-space
occlusion culling method, which is explained in chapter 5. It is based upon a lazy
occlusion grid, and it works efficiently with conventional graphics hardware. It
determines which parts of the scene are occluded by other parts, so that the
occluded parts can be culled, and that only the potentially visible parts have to be
displayed.

3

Chapter 2

Global illumination simulation with
photon maps

In this chapter we discuss how photon maps can be used to simulate global
illumination. After an overview of existing methods in chapter 2.1, we present
our new method for geometry based radiance estimation by means of the photon
map [HP02b], which improves the quality of the photon map global illumination
simulation.

2.1 Existing methods
Existing photon map global illumination simulation [Jen96b, JCS01] supports
scenes with general bidirectional scattering distribution functions (BSDFs). It
allows to simulate all light transport paths (L(D|S)*E†) and all illumination
effects that are possible thereby [Chr97].

A photon map stores information about the directionally variant indirect
illumination in the scene in form of photons. These photons are distributed into
the scene in a photon tracing pass. During image generation in a following ray
tracing pass this illumination information in the photon map is used in a radiance
estimation to compute the indirect illumination at the displayed surface points.
These steps are described in the following sub-chapters.

In the following we concentrate on global illumination simulation on surfaces.
Nevertheless, photon map global illumination simulation can also be extended to
support participating media [JC98].

† Heckbert's notation of light transport paths [Hec90]. In our context S means a
specular or strong glossy surface, and D means a diffuse or soft glossy surface.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

4

2.1.1 Photon tracing pass

A photon map is generated in a photon tracing pass. The lightsources distribute
their energy into the scene by shooting stochastically distributed light paths. At
each point after the first bounce where a light path hits an object, information
about the incoming indirect light is stored in form of a photon. The photon stores
the hit position, the incoming direction of the light path and the incoming light
power. The photons are organized in a spatial structure, eg. a kd-tree, which
represents the photon map [Jen96a].

Usually a separate caustic photon map is used which contains all photons with
LS+D paths. These photons represent caustics. All other photons are stored in a
second photon map, the global photon map, which represents soft indirect
illumination.

Density control [SW00] can be used to achieve a more uniform photon
distribution, so that a smaller number of photons is sufficient.

2.1.2 Ray tracing pass

After the photon tracing pass the illumination information in the photon map is
used to render the scene in a ray tracing pass. View paths that sample the image
are shot from the camera into the scene. If a view path hits a specular or strong
glossy surface, the view path is continued by shooting a ray from the hit point.
The outgoing direction of the ray is stochastically distributed according to the
BSDF of the surface. Alternatively importance sampling by means of the photon
map [HP02a, Jen95, PP98] can be used to select the outgoing direction.
Otherwise, if the hit surface is diffuse or soft glossy, the view path ends at this
point x, and the radiance at x into the incoming direction of the view path is
computed.

The direct illumination part (LD sub-paths) is conventionally computed by
casting shadow rays from x to the lightsources. The indirect illumination part that
represents caustics (LS+D sub-paths) is computed by using the radiance estimate
at x of the caustic photon map, as described in chapter 2.1.3. Due to this direct
visualization of the radiance estimate, its quality is very important for the quality
of the resulting caustics.

If the surface has a low contribution to the image then the soft indirect
illumination part (LS*D(D|S)*D sub-paths) is computed by using the radiance
estimate at x of the global photon map. Otherwise final gathering is used to
compute the soft indirect illumination. Final gathering shoots additional rays

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

5

from x which gather radiance estimates from the scene. These radiance estimates
are averaged so that the effect of a few wrong estimates is minimized [Dri00].
The final gathering operation can be accelerated by using irradiance gradients
[WH92], and by precalculating irradiance estimates at diffuse surfaces, so that
each of these irradiance estimates has to be calculated only once [Chr99].

2.1.3 Radiance estimation

Existing photon map radiance estimation [Jen96a] expands a sphere around the
given point x until it contains nmax photons, or until the radius r of the sphere is
equal to rmax. This expansion of the sphere corresponds to searching for the nmax
nearest photons to x, up to the maximum distance rmax. nmax and rmax are user
defined constants which control the variance and blurring of the resulting
illumination. More nearest neighbor photons mean less variance, but at the same
photon density it also means more blurring due to their larger distances to x.

This radiance estimation assumes that the nearest neighbor photons lie in the
same plane as x, and that they distribute their power over the circular area Ac=r2π
around x. Ac is the intersection area of the sphere and x’s plane. The radiance L at
x into direction Ψv is therefore estimated as

��
��

��

nn Pp
vpp

Pp
vp

c

p ΨΨxfΦ
r

ΨΨxf
A
Φ

L),,(1),,(2
�

. (2.1)

Pn is the set of photons inside the sphere, Φp is the flux that the nearest neighbor
photon p carries, Ψp is its incoming direction, and f is the BSDF at x from Ψp to
Ψv.

Optionally an ellipsoid can be used instead of the sphere. The ellipsoid is
oriented along the plane of x. This minimizes that photons which lie in different
planes are used in the radiance estimate, thereby reducing light leakage between
different surfaces.

This radiance estimation is incorrect in the vicinity of edges (and corners) of
objects, because those photons which contribute to the illumination of a point in
this region are distributed only at one side of the edge. Therefore the circular
area is an overestimation of the actual area over which the nearest neighbor
photons distribute their energy. The resulting illumination artifact is a dark
region near the edge (see figure 2.1a). If the surface is large and quasi-planar
then adaptive density estimation [Mys97] can be used to avoid this kind of
artifact.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

6

Figure 2.1a (top): Existing radiance estimation causes illumination artifacts
(dark regions) in the vicinity of the object edges. 2.1b (bottom): Our new
geometry based radiance estimation avoids these illumination artifacts for
approximately the same rendering time.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

7

Figure 2.1c (bottom): One of the photon maps which were used for both
radiance estimation methods in figure 2.1a and 2.1b. Hidden photons at the
bottom of the glass egg are shown in blue.

Differential checking [JC95] avoids excessive blurring of caustics. This is done
by including photons into the neighborhood sphere (or ellipsoid) only as long as
it does not significantly increase or decrease the radiance estimate. In general
differential checking does not avoid the illumination artifact in the vicinity of an
edge, because if all nearest neighbor photons lie on one side of the edge then
including them into the sphere does not significantly change the underestimated
radiance.

The radiance estimate is also incorrect on surfaces with differently oriented small
geometric details, as can be seen in figure 2.2a. The neighborhood sphere is
larger than the illuminated small surface detail, therefore many nearest neighbor
photons do not lie in the same plane as x. Using differential checking, or using an
ellipsoid instead of the sphere would not solve this problem, because on such a
small surface detail too few photons lie in x’s plane for a reliable radiance
estimate.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

8

Figure 2.2: Surfaces with geometric details that are larger and smaller than a
neighborhood sphere/cube. Most indirect illumination comes from approximately
45° from top right. 2.2a (top): Existing radiance estimation incorrectly estimates
radiance on the small surfaces. On the left side of the image, where the incoming
direction of the photons is a little bit below 45°, the radiance on the small
surfaces is underestimated. On the right side of the image, where the incoming
direction of the photons is a little bit above 45°, the radiance on the small
surfaces is overestimated. 2.2b (bottom): Our new geometry based radiance
estimation avoids these illumination artifacts for approximately the same
rendering time.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

9

2.2 Geometry based ra diance estimation
As we have seen in chapter 2.1.3, existing photon map radiance estimation
[Jen96a] assumes that the photons in the neighborhood of a requested surface
point x lie in the same plane as x, and that they are distributed in a circular area
around x. Therefore illumination is incorrectly estimated in regions where these
assumptions are not true. In particular this is the case in the vicinity of edges or
corners of objects, and on surfaces with differently oriented small geometric
details.

Our new radiance estimation method is used as replacement for the existing
radiance estimation in photon map global illumination simulation, as described
in chapter 2.1. The most important difference to existing radiance estimation is
that our new method uses the actual geometry in the neighborhood of x to
determine the area over which the nearest neighbor photons distribute their
power. It does not require the previous assumptions about the location and
distribution of the photons in x's neighborhood. Therefore it gives accurate
illumination also in those regions where these assumptions would not be true.
This results in higher image quality for approximately the same rendering time,
as shown in figure 2.1b and 2.2b.

A high quality radiance estimate is especially important for photon map based
rendering of caustics (LS+DS*E paths), which is done by direct visualization of
the photon map. In particular if a caustic is bright, artifacts due to the photon
map radiance estimation are visible.

Our method uses a mesh-representation of the scene for its geometrical
computations, but note that it does not store any illumination information in this
mesh. The part of the mesh that potentially intersects x's neigborhood could
therefore be generated on demand, which could also be combined with an
adaptive triangulation of non-polygonal geometry. This could be efficient for
large scenes where only a part of the geometry is visible.

In this description of our method we use an octree to organize the scene
geometry. This allows us to efficiently find the geometry in the neighborhood of
x. Note that other spatial subdivision structures (eg. kd-trees or hierarchical
grids) or a hierarchy of bounding volumes could be used instead.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

10

2.2.1 Generation of the octree of polygons

Before the photon tracing pass a octree of polygons is generated from the
geometry in the scene. This octree is later on used in the radiance estimation
during the ray tracing pass to efficiently find the geometry in the neighborhood
of x.

The octree encloses the whole scene. Each leaf node of the octree stores
references to all surface polygons that intersect this node or that lie completely
inside this node. Each polygon may therefore be referenced by several leaves.
The octree is generated by recursively subdividing its nodes. The subdivision
starts at the root of the octree which contains the whole scene. A node is
subdivided if it contains more than a user defined number of polygons nP, but
only if the side lengths of the node are larger than a user defined threshold s. s
avoids infinite subdivisions at vertices or edges where more than nP polygons
meet. For each subnode of a subdivided node it is determined which polygons
the subnode contains. This is done by testing which of those polygons that are
contained in the subdivided node intersect or lie completely inside the subnode
[GH95, Voo92]. Only leaves have to store their polygon references. The
intermediate nodes of the finished octree only store references to their subnodes.

2.2.2 Radiance estimation

Our radiance estimation during the ray tracing pass expands a cube, which is
centered at the given point x, and which is axis aligned with the coordinate
system of the photon map and the octree of polygons, until it contains nmax
photons, or until the half side length l of the cube is equal to lmax. This expansion
of the cube corresponds to using the max-distance max(|x|,|y|,|z|) instead of the
euclidean distance when searching for the nmax nearest photons to x, up to the
maximum max-distance lmax. nmax and lmax are user defined constants which
control the variance and blurring of the resulting illumination, similar as in
existing radiance estimation.

Next, we continue expanding the cube as long as the difference of the max-
distance of the next nearest neighbor photon and the current l is less than a user
defined �. After that we add �/2 to l to get the final value of l. These steps
guarantee that a surface which is (nearly) coplanar to the walls of the cube is in
the cube if the photons on the surface are in the cube, and vice versa (due to
numerical inaccuracies the photons may not lie exactly on the surface).

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

11

Figure 2.3: Neighbor polygons and nearest neighbor photons (with incoming
directions) in the neighborhood cube around the requested point x.

In the next step we determine the area of each polygon inside the cube. The
polygons in the cube can be efficiently found by searching for the octree leaves
that intersect the cube. The polygons that are contained in these leaves are
potentially inside the cube. All other surfaces in the scene are completely outside
of the cube. Each potentially-inside polygon is clipped against the cube to
determine the inside part of the polygon. Each potentially-inside polygon has a
flag that shows if it already has been clipped to avoid that a polygon is processed
several times if it is contained in several leaves. In the following we will call the
polygon parts inside the cube neighbor polygons. The area An of a neighbor
polygon is calculated as sum of the areas of the triangles of its triangulation. The
area of a triangle is calculated as

� � � �� �13122
1 PPPPNA ntri ����� . (2.2)

Nn is the polygon’s normal, and Pi are the vertices of the triangle.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

12

Each nearest neighbor photon distributes its power Φp over all neighbor
polygons that are frontfacing (0<ΨpNn) into the photon’s incoming direction Ψp

†.
The power that a frontfacing neighbor polygon receives from the nearest
neighbor photon is proportional to the neighbor polygon’s projected area Anp into
the photon´s incoming direction.

npnnp NΨAA � (2.3)

This yields the photon’s flux area density up on the projected areas of the
frontfacing neighbor polygons.

��
��

n
npn

p

n
np

p
p NΨA

Φ
A
Φ

u (2.4)

The photon’s irradiance at x, which has the surface normal Nx, is

xppp NΨuE � . (2.5)

This finally gives us the estimate for the radiance L at x into direction Ψv. f is the
BSDF at x from Ψp to Ψv.

��
p

vpp ΨΨxfEL),,((2.6)

2.3 Results
We have compared existing nearest neighbor area estimation [Jen96a] and our
new geometry based radiance estimation in a parallel implementation of photon
map global illumination simulation, which ran on a cluster of 10 PCs with dual 1
GHz Pentium3s in a 100 MBit Ethernet network. In this implementation each
CPU generates an individual photon map, and then uses it to render an image
with 1 view path per pixel. The images from all CPUs are then accumulated to
achieve the final image. Using several individual photon maps has the advantage

† Due to the distribution of the nearest neighbor photons' power over the surfaces
in the neighborhood it is possible in any radiance estimation method that light
leakage occurs in the extent of the neighborhood. This may happen even if an
ellipsoid and differential checking is used. Light leakage could be avoided by
determining which photons can contribute to which surfaces. This would require
efficient visibility tests between x, the photons and the geometry.

CHAPTER 2. GLOBAL ILLUMINATION SIMULATION WITH PHOTON MAPS

13

that the variance in the illumination in the final image can be made arbitrarily
low without requiring very large photon maps. The same set of photon maps has
been used for both methods. In the geometry based radiance estimation
implementation is a random rotation used to define the common coordinate
system of the octree of polygons, the photon map, and the neighborhood cubes.
We do this to avoid directionally non-uniform blurring due to the shape of the
neighborhood cubes.

Figure 2.1 shows the quality of the radiance estimate, which is directly visualized
to render the caustic, in the vicinity of object edges and corners. 20 photon maps
have been used. Each map contains 28,585 photons on average. 100 nearest
neighbor photons have been used per radiance estimate. This corresponds to
2,000 photon contributions per final pixel in the caustic. The total rendering time
was 8.7 minutes. In figure 2.1, as well as in figure 2.2, the differences between
the rendering times of both methods were lower than the differences between
several runs of the same method.

Figure 2.2 shows the quality of the radiance estimate at a surface with geometric
details that are smaller than the size of a neighborhood sphere/cube. 20 photon
maps with an average of 13,741 photons per map, and 100 nearest neighbor
photons per radiance estimate have been used, which corresponds to 2,000
photon contributions per final pixel. The total rendering time was 4.6 minutes.

14

Chapter 3

Importance sampling with particle
maps

In this chapter we discuss how importance sampling in stochastic ray tracing-
based rendering and global illumination techniques can be done by means of a
particle map (photon map or importance map). After an overview of existing
methods in chapter 3.1, we present our new importance sampling method which
is based on hemispherical particle footprints [HP02a], and compare it with
existing importance sampling techniques in photon map global illumination
simulation.

3.1 Existing methods
In scenes that are large, or that contain complex illumination settings efficiency
demands to concentrate the computational effort during the global illumination
simulation and rendering to those parts of the scene that contribute most to the
image.

For stochastic ray tracing-based rendering and global illumination methods this
means that paths shall be shot preferably into directions where their effect is
high. Light paths shall be shot preferably into parts of the scene that are visible,
so that as little work as possible is spent into unnecessarily illuminating invisible
parts of the scene. View paths shall be shot preferably into directions where
much light comes from, so that they contribute most to the image.

This problem can be solved with importance sampling, where the outgoing
direction of a ray of a path is selected stochastically distributed according to a
probability density function (PDF) which approximates the contribution of the
path into the outgoing direction.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

15

A simple way to do importance sampling is to select the direction solely by
means of the bidirectional scattering distribution function (BSDF) at the
scattering point [BLS94, DW94, LF97, Lan91, TN+98]. It does not require to
estimate the incoming light or visibility, but this of course makes it less likely
that the PDF corresponds to the actual contribution.

Several methods use meshing to store an approximation of the contribution in the
scene [DW95, NN+96, SCP99, UT97]. Another solution is to generate the PDFs
from incoming radiance which is stored in a 5D tree �LW95�, or to store the
illumination in the scene in a neural gas structure [Bus97]. Alternatively
outgoing directions can also be generated in an evolutionary manner [Bus97,
LB94] instead of stochastically, or they can be generated by mutating already
existing paths with high contributions [VG97].

Photon map based importance sampling �Jen95� uses a photon map, which is
generated in a particle tracing pass, as approximation of the illumination to select
the scattering directions in a subsequent path tracing pass. The number of
photons in the photon map can be controlled with density control [SW00], or
with importance driven photon deposition [KW00]. Photon map based
importance sampling is also used in photon map global illumination simulation
[Jen96b, JCS01] to select the shooting directions of the final gathering rays.

This kind of importance sampling can also be used for selecting scattering
directions of light paths by usage of an importance map [PP98], which is
generated in a preceding pass that distributes importance [PM93, VG94] into the
scene. The importance map is the analogue of a photon map (an importon is the
analogue of a photon).

In these methods, a PDF is generated for a given scattering point in the scene by
inserting the contribution of the kp (typically 50) nearest particles from the
photon map or importance map into a grid that is mapped onto the hemisphere
above the point (see figure 3.1). A grid cell is selected by means of the
accumulated contributions of the cells, and the outgoing direction is selected
randomly within this cell �Shi92�. The targeting precision into important
directions is therefore limited by the fixed grid resolution, which is limited by kp.

Directional importance information can also be represented in a hierarchical data
structure, eg. a kd-tree or a hierarchy of spherical triangles, instead of a grid
[TN+98]. A hierarchical data structure is useful if the PDF that it represents is
estimated by means of a large number of samples, eg. for generating a PDF at a
lightsource by means of the contribution of already shot light paths [DW94]. If
only a small number of nearest neighbor particles is available to estimate the

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

16

PDF, as it is the case in particle map based importance sampling, then inserting
these particles into a hierarchical data structure results in unnecessary blurring of
the borders of highly contributing small regions, as shown in figure 3.2. An
optimal PDF should be able to represent such important directions precisely to
allow precise targeting, as shown in figure 3.3.

Figure 3.1: Grid on hemisphere that is used for the PDF in existing particle map
based importance sampling.

Figure 3.2: Several particles lie in a small solid angle and represent a region of
high contribution (here: the circular area), eg. bright light that comes through a
small opening or from a small reflector. If these particles are inserted into a
hierarchical data structure, eg. a kd-tree, then several particles from this dense
region lie in large low density nodes of the data structure. Therefore the region´s
border is unnecessarily blurred and not the whole highly contributing region can
be precisely targeted.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

17

Figure 3.3: An optimal PDF (here sketched in 1 dimension of the hemisphere)
should be tightly fitting in directions with directionally dense particles, to allow
precise targeting, because the particles provide detailed illumination information
in these directions. On the other hand it should be loosely fitting in sparse
directions, which means that particles in sparse directions should distribute their
contribution to the PDF over a wider solid angle, because the particles provide
only coarse illumination information in these directions.

Figure 3.4: Footprints of a few nearest neighbor particles on the hemisphere.
Each footprint has an adaptive radius that corresponds to the directional particle
density (how many particles come from a nearby direction) at its particle´s
incoming direction. We realize a PDF with the characteristics from figure 3.3 as
sum of these footprints plus a small BSDF based value (not shown here) to avoid
bias in directions without footprints.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

18

3.2 Hemispherical par ticle footprint importance
sampling
We present a new importance sampling method that uses a particle map to
generate the PDF. It supports surfaces with general BSDFs, and needs no
meshing of the scene. The major advantage of our new method is that it features
the desired targeting characteristic from figure 3.3 without increasing the
required number of nearest neighbor particles.

For importance sampling of view paths a photon map [Jen95] is used which is
generated in a preceding photon tracing pass. For importance sampling of light
paths an importance map [PP98] is used which is generated in a preceding
importon tracing pass.

Given a point in the scene, for which an outgoing direction shall be selected, a
PDF is realized by making footprints of the nearest neighbor particles onto the
hemisphere above the point, as shown in figure 3.4. By selecting the radii of the
footprints adaptively according to the directional density of the particles, rays
can be shot precisely into highly contributing regions where several particles
come from a small solid angle.

The contribution of a nearest neighbor particle to the PDF corresponds to the
light power of the photon, or importance of the importon, and the BSDF. This
PDF-contribution of a particle is uniformly distributed in its footprint's area. The
footprint's center is located at the incoming direction of the particle. The
footprint's radius corresponds to how many other particles come from a nearby
direction.

The total PDF, according to which the outgoing direction is selected, is the sum
of these footprints plus a small BSDF based value to avoid bias in directions
without footprints. In comparison to existing particle map based importance
sampling, this has the advantage that, due to the adaptive radii of the footprints,
an outgoing ray can be shot more precisely into highly contributing regions
where several particles come from a small solid angle.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

19

The selection of an importance sampled outgoing direction at the given point is
done in the following sequence:

� Get the nearest neighbor particles of the point from the particle map.
� Make a fast and rough estimation of the directional density of the nearest

neighbor particles.
� Select the outgoing direction with an one-sample model [VG95]. This is done

� by selecting one of the nearest neighbor particles, selecting its footprint
radius according to the directional particle density, and selecting the
outgoing direction in this particle´s footprint,

� or by selecting the outgoing direction solely by means of the BSDF, to
avoid bias in directions that are not covered by footprints.

The decision which of these two methods is used is done stochastically. pBSDF
is the user defined probability of selecting the outgoing direction solely by
means of the BSDF.

� Weight the outgoing direction according to the value of the PDF in this
direction. The PDF value is calculated by means of the footprints of the
nearest neighbor particles and the BSDF.

Note that the PDF value has to be calculated only for this single generated
outgoing direction. Therefore we do not need to calculate the PDF values for the
whole hemisphere (this could be represented eg. with spherical wavelets [SS95]).

In the following sub-chapters we describe these steps in more detail.

3.2.1 Nearest neighbor particles

To perform importance sampling at a given scattering point x, we search for the
kp (user defined, typically 50) nearest neighbor particles to x [Jen95] whose
contribution cq to the given path with the incoming direction Ψi at x is not 0. cq
can be 0 eg. if x lies at the frontside of an opaque surface, and the particle q lies
at the backside. If no kp such particles can be found within a user defined
maximum distance to x, then there is not enough information available for
importance sampling at x with the particle map. In this case we have to fall back
on importance sampling solely by means of the BSDF.

In the case of a photon, cq is equivalent to the photon´s reflected flux. In the case
of an importon, cq is equivalent to the importon´s reflected importance.

� �iqqq ΨΨxfΦc ,,� (3.1)
� �iqqq ΨΨxfWc ,,� (3.2)

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

20

Φq is the flux that the photon q carries, Wq is the importance that the importon q
carries, Ψq is the particle´s incoming direction, and f is the BSDF at x from Ψq to
Ψi. According to Peter and Pietrek [PP98] an importon does not store its Wq,
because it is assumed to be equal for all importons, therefore Wq can be set to 1
in equation 3.2. Extending this definition of an importon so that it stores its Wq
for each color channel can nevertheless be useful in many scenes, eg. if parts of
the scene are seen through a colored glass.

3.1.2 Directional particle density estimation

Next, we perform a fast and rough estimation of the directional particle density at
the hemisphere above x. This estimate is necessary for the selection of the
footprints´ radii in the following steps. We estimate the directional particle
density by splatting the incoming directions of the nearest neighbor particles
onto a grid at the ground plane of the hemisphere (see figure 3.5). The ground
plane coincides with the tangential plane of x.

Figure 3.5: The incoming directions of the nearest neighbor particles are
projected onto the ground plane of the hemisphere (top) where they make splats
(here: 3x3 cells per splat) into a low resolution grid (bottom) to estimate the
directional particle density, which is used to select the radii of the footprints.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

21

The incoming direction of a particle is projected onto the ground plane of the
hemisphere, where it falls into a cell of the grid, and makes a splat that is
centered at this cell. Each splat increases the value g of each cell in its extent by
1, independently of cq. A splat is more than 1 pixel wide to ensure that the
directional particle density is not underestimated in cells at the border of a highly
contributing region, because the cells at the border may contain much fewer
particles than the cells inside the highly contributing region.

For kp=50 we use a grid with kc=32x32 cells, and splats that are 3x3 cells wide.
These values have been experimentally found to give the best overall quality per
computation time in most cases. A higher resolution grid needs more nearest
neighbor particles or larger splats.

This directional particle density estimation method requires that we only use the
particles from the positive hemisphere, or only the particles from the negative
hemisphere, because otherwise the directions from both hemispheres would be
mixed up at the ground plane. Therefore we stochastically select one of both
hemispheres. The probabilities pΩ+ and pΩ- of selecting the positive hemisphere
Ω+ or negative hemisphere Ω- are

�

�

��

�

�

��

�

�

ΩΩi
i

Ωi
i

Ω c

c
p (3.3)

��

�� ΩΩ pp 1 . (3.4)

After all nearest neighbor particles from the selected hemisphere Ω have been
splatted into the grid, the directional particle density estimate δ for a direction Ψ
is calculated as

� �
Ψ

Ψ

z

zg
Ψ

�
� � . (3.5)

zΨ is the cell that corresponds to Ψ, and ωz is the solid angle of cell z projected
onto the hemisphere. ωz is precomputed for each cell z of the grid as

NΨk zc
z

�

�

4
� . (3.6)

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

22

kc is the number of cells in the grid, Ψz is the direction that corresponds to the
center of z, and N is the surface normal at x.

Note that δ does not need to be very exact, because it is only used to select the
radii of the footprints. Even if the footprint radii would be selected arbitrarily,
the resulting PDF would still be correct, but of course it would not feature the
desired characteristic from figure 3.3. Note also that we do not use this grid as
PDF, because it would not have this desired characteristic of fitting tightly in
dense directions, and fitting loosely in sparse directions.

3.1.3 Footprints

Each nearest neighbor particle of the selected hemisphere distributes its
contribution to the PDF uniformly in a directional footprint on the hemisphere
(see figure 3.4). We select the footprint radius (see figure 3.6) of a particle q with
incoming direction Ψq as

)(q

r
q Ψ

kr
�

� (3.7)

with a user defined scaling factor kr. To achieve a valid PDF we have to ensure
that all generated footprints lie completely in the selected hemisphere. For a
particle with an incoming direction at a low angle the r that we get from equation
3.7 results in a footprint that lies partly in the other hemisphere if

qmaxq rr ,� (3.8)

with NΨr qqmax ��, . (3.9)

In such a case we have to resize the footprint so that it fits into the selected
hemisphere by setting rq=rmax,q, as shown in figure 3.7. The footprint´s solid
angle is [Bar89]

qq h�� 2� . (3.10)

Herein the footprint's height, which is shown in figure 3.6, is

211 qq rh ��� . (3.11)

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

23

A direction Ψ is inside the footprint if

qq hΨΨ ��� 1 . (3.12)

Figure 3.6: Footprint radius r and height h.

Figure 3.7: Resizing the radius of a footprint so that it fits into the selected
hemisphere.

3.1.4 Generation of an importance sampled direction

After the directional particle density estimation we decide stochastically
according to pBSDF whether we select the outgoing direction Ψ solely by means of
the BSDF, or with the footprints. If we decide to select it with the footprints then
we stochastically choose one of the nearest neighbor particles of the selected
hemisphere Ω. The probability of selecting particle q is

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

24

�
�

�

Ωi
i

q
q c

c
p . (3.13)

Next, an uniformly distributed direction Ψ is selected in this particle´s footprint.
Let u,v be random numbers u,v�[0,1), then [Shi92]

� � � �� �vuhΨ q ��� 2,1arccos, ��� . (3.14)

(�,�) is given in a local coordinate system relative to Ψq. From equations 3.3, 3.4,
3.13, and from the selection with pBSDF follows that the total probability of
selecting Ψ with q's footprint is

� � � �
�

��
��

����

ΩΩi
i

q
BSDFqΩBSDFqtot c

c
ppppp 11, . (3.15)

From equation 3.15 and the uniform distribution of Ψ in q's footprint follows that
the footprint's contribution to the PDF in direction Ψ is

� �
q

qtotqf pΨp
�

�4
,, � if Ψ is inside the footprint, and

� � 0, �Ψp qf if Ψ is outside the footprint. (3.16)

Let pb be the PDF for selecting Ψ solely by means of the BSDF, then the total
PDF is consequently

� � � � � ��
��

��

��

ΩΩi
ifbBSDF ΨpΨppΨp , . (3.17)

But due to the fact that pf,q(Ψ)=0 for all particles q from the other hemisphere,
this is equal to

� � � � � ��
�

��

Ωi
ifbBSDF ΨpΨppΨp , . (3.18)

After we have generated the outgoing direction Ψ of a ray by means of the
footprints, or solely by means of the BSDF, we finally have to weight the
contribution of the ray with 1/p(Ψ) to avoid bias.

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

25

3.3 Results
We compare our footprint importance sampling technique with classic photon
map based importance sampling [Jen95], and with importance sampling solely
by means of the BSDF. We have applied all 3 methods in photon map global
illumination simulation [Jen96b, JCS01].

Herein importance sampling is used to select the shooting direction of the final
gathering rays. Final gathering rays are shot from a surface point to gather
illumination from the scene to calculate the soft indirect illumination at the
surface point. In our implementation this is done for each point where a view
path hits a surface. Irradiance gradients [WH92] could be used to enhance
performance [Jen96b] by doing the final gathering operation for a reduced set of
points, and interpolating the indirect illumination from these points for other
surface points.

We have done our tests on a cluster of 11 PCs with dual 1 GHz Pentium3s in a
100 MBit Ethernet network. Each PC has a copy of the photon map, and each
CPU renders a part of the final image. Footprint importance sampling and classic
photon map importance sampling use the photon map which is also used for
photon map global illumination.

We have used kp=50 for all 3 importance sampling methods and for the radiance
estimation in the photon map global illumination simulation. We have used
pBSDF=0.3, kc=32x32, 3x3 cells wide splats, and kr=7. These values have been
experimentally found to give the best overall quality per computation time.
However, the resulting quality is not very sensitive to these parameters, and
usually their values can be reused.

The scene in figure 3.8 contains many glossy surfaces, and most parts of the
scene receive only indirect illumination. The photon map that has been used for
figure 3.8a-c, and which is shown in figure 3.8d, contains 862,880 photons. A
more uniform photon distribution, and therefore a smaller number of photons
could be achieved by using density control [SW00].

40 view paths per pixel have been used for figure 3.8a-c. 10 final gathering rays
per surface point have been used in figure 3.8a. In figure 3.8b 11 final gathering
rays per surface point have been used, and in figure 3.8c 17 final gathering rays
per surface point have been used to achieve the same rendering time as for figure
3.8a.

The generation of the photon map took 27 seconds, and the rendering pass with
importance sampling took 12 minutes. Note that the rendering pass can be

CHAPTER 3. IMPORTANCE SAMPLING WITH PARTICLE MAPS

26

accelerated by using irradiance gradients [WH92], and by precalculating
irradiance estimates at diffuse surfaces [Chr99].

As can be seen in figure 3.8a-c, footprint importance sampling results in
considerably reduced noise in the same rendering time. We have compared
figure 3.8a-c with a high quality solution of the BSDF-only importance sampling
method which used 40 view paths per pixel, and 1000 final gathering rays per
surface point. The resulting mean square error of figure 3.8a (footprint
importance sampling) has been 1.6 times lower than the mean square error of
figure 3.8b (classic photon map based importance sampling), and 2.4 times lower
than the mean square error of figure 3.8c (BSDF-only importance sampling).

Figure 3.8: Importance sampled photon map global illumination simulation in a
scene with many glossy surfaces. Figure 3.8a-c took the same rendering time.
3.8a (top left): Hemispherical photon footprint importance sampling. 3.8b (top
right): Classic photon map based importance sampling. 3.8c (bottom left):
Importance sampling solely by means of the BSDF. 3.8d (bottom right): The
photon map that has been used for importance sampling and for photon map
global illumination in figure 3.8a-c.

27

Chapter 4

Interactive walkthroughs in globally
illuminated glossy scenes

In this chapter we discuss how walkthroughs in scenes with globally illuminated
glossy surfaces can be rendered at interactive frame-rates. After an overview of
existing methods in chapter 4.1, we present our new method for hardware
accelerated real-time rendering of globally illuminated soft glossy surfaces with
directional light maps [HP02c].

4.1 Existing methods
The computationally most expensive part of rendering a globally illuminated
scene is the generation of the global illumination solution. If a walkthrough in a
static scene shall be rendered then it is not necessary to perform the expensive
global illumination simulation for each frame separately. Instead, the global
illumination can be computed in a preprocessing step which stores the global
illumination solution in some representation that allows to efficiently render the
illuminated scene later on during the walkthrough.

The illumination on a diffuse surface can be represented with an illumination
map [Arv86], which is a texture map that stores the spatially varying irradiance
on the surface. This information, which is generated in the global illumination
simulation, is enough to correctly display diffuse surfaces from arbitrary view
points, because the outgoing radiance of diffuse surfaces is independent of the
viewing direction.

If globally illuminated glossy surfaces shall be displayed from arbitrary view
points then information about the spatial distribution of the illumination on the
surface is not enough. Here also information about the directional distribution of

CHAPTER 4. INT. WALKTHROUGHS IN GLOBALLY ILL. GLOSSY SCENES

28

the illumination is required. This can be represented in form of the incoming
light that hits the surface, or in form of the outgoing light that is reflected from
the surface.

Light fields [LH96] and lumigraphs [GG+96] store the outgoing radiance of an
object as 4-dimensional function on an image plane (light field), or on a cube
that encloses the object (lumigraph). The outgoing radiance may also be stored
directly at the surfaces of the object with surface light fields [MRP98, WA+00],
with wavelets [SS+00], or with eigen-textures [NSI99].

Graphics hardware light sources may be used to represent the outgoing radiance
by fitting a small number of virtual light sources (usually 8 hardware light
sources are available) for each object individually, so that the resulting phong
lobes represent the glossy highlights on the object as best as possible [WA+97].
Virtual light sources may also be used to display a radiosity solution by placing
them at the positions of the most contributing sending patches to illuminate a
receiving glossy patch [SSS95]. Here the hardware light sources also have to be
set for each glossy patch individually.

The incoming radiance from far away objects may be stored in an environment
map [Hei99, Hei01], which may be prefiltered for the rendering of reflections on
glossy surfaces. Glossy reflections may also be rendered with an on-the-fly
convolution of images of pure specular reflections [BH+99]. The incoming light
may also be stored in a directional irradiance mesh [Stü98], or in a photon map
which can be rendered at nearly interactive frame-rates by drawing splats of the
photons on the surfaces using graphics hardware [SB97].

4.2 Directional light ma ps
Directional light maps support the representation of spatially and directionally
variant illumination on a soft glossy surface by storing the incoming light at the
surface for several incoming light directions. Each directional light map is a
texture that represents the spatially varying incoming light at a surface from one
of these directions. The directional light maps are generated in a global
illumination simulation, eg. photon tracing, in a preprocessing step. Afterwards
in an interactive walkthrough these directional light maps are used for hardware
accelerated rendering of the soft glossy surfaces including their view dependent
global illumination.

By using a global set of incoming light directions for the directional light maps
of all surfaces in the scene, the hardware accelerated rendering can be efficiently

CHAPTER 4. INT. WALKTHROUGHS IN GLOBALLY ILL. GLOSSY SCENES

29

done with only few state switches, which avoids expensive stalls of the hardware
rendering pipeline.

A directional light map ms,Ψ is a texture on a surface s that stores the spatially
varying incoming light that s receives from an incoming light direction Ψ. The
texels' values correspond to the irradiance of this light on a plane perpendicular
to Ψ. For each soft glossy surface s in the scene with surface normal Ns, and for
each direction Ψ�Ω which is frontfacing to s (0<Ns�Ψ), a directional light map
ms,Ψ is stored. Ω is the predefined global set of light directions which is used for
all surfaces. Note that for each surface directional light maps are generated and
processed during rendering for only 50% of the directions of Ω (the frontfacing
ones).

For the efficiency of hardware accelerated rendering, as explained in chapter
4.2.2, it is essential that all surfaces use the same set Ω of light directions. This
global set of light directions also avoids illumination discontinuities at the
borders of adjacent surfaces. Such discontinuities would arise if adjacent
surfaces would be illuminated from different directions, as it would be the case if
each surface would have its individual set of light directions.

4.1.1 Generation of directional light maps

The directional light maps are generated in a preprocessing step. First of all, the
set Ω of light directions has to be defined. This is done by selecting nΩ uniformly
distributed directions on the unit sphere [Shi92]. nΩ is a user defined value, and
determines the directional accuracy of the illumination resulting from the
generated directional light maps. A larger nΩ allows directionally more precise
illumination, but requires more texture memory and rendering time to store and
render the larger number of directional light maps.

Next, the directional light maps are generated with photon tracing. A large
number (typically several millions) of light paths are stochastically shot from the
light sources into the scene. At each hit point x of a light path at a surface s, the
light path's incoming power is splatted into that directional light map of s which
is directionally nearest to the light path's incoming direction Ψl. This is the
directional light map ms,Ψ where Ψl�Ψ is maximum. The splat is centered at that
texel of ms,Ψ which maps to x. The splats' size and shape are user defined, and
determine the resulting spatial blurring and noise in the directional light maps. In
our implementation we have used pyramidal splats which have been 1.5 texels
wide. Alternatively, a more advanced photon density estimation, eg. local linear
density estimation [WH+97], could be used for each directional light map

CHAPTER 4. INT. WALKTHROUGHS IN GLOBALLY ILL. GLOSSY SCENES

30

instead of the splatting. The texture resolution of ms,Ψ is selected proportionally
to the area of the projection of s onto a plane perpendicular to Ψ.

Graphics hardware supports only texel values in the range [0,1], therefore the
irradiance values have to be mapped to texel values. Let k be the directional
hardware light source intensity that corresponds to the texel's irradiance on a
plane perpendicular to Ψ, and let kmax be the directional hardware light source
intensity that corresponds to the user defined maximum representable irradiance.
The texel value is then

��
�

�
��
�

�
� 1,min

maxk
kt . (4.1)

The directional light maps are packed together into large textures. Usually many
(small) directional light maps fit into one of these textures, thereby only needing
few textures. Directional light maps with the same Ψ are preferably put into the
same texture, because the directional light maps are used in the order of their Ψ
during rendering.

4.1.2 Interactive rendering

During an interactive walkthrough the directional light maps of a surface s are
used for hardware accelerated rendering of the view dependent global
illumination on s. Each directional light map ms,Ψ illuminates s by modulating a
directional hardware light source which shines from direction Ψ with intensity
kmax. The view dependent contributions of the directional light maps on s are
accumulated together in the image.

CHAPTER 4. INT. WALKTHROUGHS IN GLOBALLY ILL. GLOSSY SCENES

31

The whole scene is rendered in the following steps:

� Clear the z-buffer and color buffer.
� Draw the scene with correct visibility into the z-buffer, without modifying the

color buffer.
� For each Ψ�Ω:

� Set a single directional light source, with its direction=Ψ, and with its
intensity=kmax.

� For each surface s for which a directional light map ms,Ψ exists (the ms,Ψ of
Ψ are stored in a list for that):
� Set the texture that contains ms,Ψ as current drawing texture if it is not

currently set.
� Set the material of s as current drawing material if it is not currently set.
� Draw s only in those pixels where it is visible according to the z-buffer,

illuminated by the directional light source, and modulated by ms,Ψ, and
add the resulting fragments to the color buffer.

Note that the number of state switches is minimized, because usually many
directional light maps are drawn before the direction of the light source, the
current texture, or the current material has to be changed. This is important for
the performance, because state switches cause expensive stalls of the hardware
rendering pipeline. If each surface would have its individual set of light
directions, then the light source direction would have to be changed for each
directional light map, which would cause very many stalls.

4.2 Results
Figure 4.1 shows a snapshot of an interactive walkthrough that has been rendered
with directional light maps. A large part of the scene consists of soft glossy
surfaces with specular exponent 10 (floor, table, chairs). Only a small part of the
scene (ceiling, back wall, pillars) receives direct illumination, the rest of the
scene is completely indirectly illuminated.

We have used nΩ=14 and kmax=2. The directional light maps have required 9 MB
texture memory. In total 77,000,000 light paths (3,500,000 light paths per CPU)
have been shot in a parallel implementation of the photon tracing preprocessing
step, which took 9.6 minutes on a cluster of 11 PCs with dual 1 GHz Pentium3s
in a 100 MBit Ethernet network. In this parallel implementation each CPU
generates directional light maps for the whole scene. The directional light maps
from all CPUs are then accumulated to achieve the final directional light maps
which are used in the interactive walkthrough.

CHAPTER 4. INT. WALKTHROUGHS IN GLOBALLY ILL. GLOSSY SCENES

32

During the interactive walkthrough the scene has been rendered at a frame-rate
of 41-53 Hz on a PC with a 900 MHz Thunderbird CPU and a GeForce2 GTS
graphics card with 32 MB frame buffer and texture memory under OpenGl.

Figure 4.1: Snapshots of a walkthrough in a globally illuminated soft glossy
scene that has been rendered at interactive frame-rates with directional light
maps.

33

Chapter 5

Occlusion culling for interactive
walkthroughs

In this chapter we discuss how walkthroughs can be rendered at interactive
frame-rates in large scenes, for example in a building, where only a small part is
visible from each possible viewpoint due to occlusion. In chapter 5.1 we review
existing techniques for occlusion culling. After that, we present our new
occlusion culling method with a lazy occlusion grid [HTP01], and we explain
how occlusion culling can be combined with hardware accelerated rendering of
directional light maps. Together these methods allow to render walkthroughs in
large globally illuminated soft glossy scenes at interactive frame-rates.

5.1 Existing methods
In a large scene, for example the interior of a building, or even a whole city,
usually only a small part of the scene is actually visible, as shown in figure 5.1.
Therefore it would be inefficient to simply draw all the geometry of this scene,
because most of the rendering time would be spent into drawing invisible
objects.

This is especially a problem in real-time rendering, because available graphics
hardware usually can not render the whole geometry of the scene at interactive
frame-rates. Although graphics hardware is continuously becoming faster, it will
probably never be fast enough, because the scenes are also becoming more
complex.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

34

Figure 5.1: Only a small part (bottom) of a large scene (top) is potentially
visible from the actual viewing postion and must therefore be drawn. The rest of
the scene is invisible and can therefore be culled. The viewing frustum is
visualized as wireframe.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

35

The number of rendered primitives can be reduced to some extent by usage of
hierarchical view frustum culling and back face culling. View frustum culling
[AM00, Cla76, MH99] determines which parts of the scene are outside of the
viewing frustum. These objects are definitely invisible and can therefore be
culled. This is shown in figure 5.2.

In large scenes view frustum culling is usually applied on a spatial subdivision
structure or on a hierarchy of bounding volumes of the scene, which avoids that
every single primitive has to be tested separately.

Figure 5.2: View frustum culling with bounding volumes: An object is
potentially visible if its bounding volume (here: ellipsoid) is at least partially
inside the viewing frustum. If the bounding volume is completely outside of the
viewing frustum then the object is invisible and can be culled.

Back face culling [MH99] determines which polygons are facing away from the
viewer. These polygons are invisible and can be culled, as shown in figure 5.3.
Back face culling can also be done hierarchically [KM+96] so that not every
single polygon has to be tested separately.

Nevertheless, only with hierarchical view frustum culling and back face culling
in many scenes the number of primitives that would have to be drawn would still
be too high.

partially
visible

invisible

visible

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

36

Figure 5.3: Backface culling: Polygons that are facing away from the viewer are
invisible and can be culled.

Figure 5.4: Occlusion culling with bounding volumes: An object is invisible and
can be culled if its bounding volume (here: ellipsoid) is completely occluded by
other objects in front of it. Otherwise the object is potentially visible and has to
be drawn.

This problem can be solved by usage of occlusion culling methods [HP01] which
try to determine those parts of the scene that are invisible due to occlusion by
other parts. Only those parts of the scene which are potentially visible have to be
rendered. Parts which are identified as occluded are culled so that they do not
have to be processed further. This is shown in figure 5.4.

occluder
occluded

potentially
visible

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

37

Many occlusion culling methods use a hierarchical representation of the scene.
This allows that the occlusion testing and culling can be done for large parts of
the scene at once without having to test all their sub-parts individually. For
example if we already know that a building in a city is occluded from the current
viewpoint then we do not have to test the occlusion of each object inside the
building, because these objects are of course also occluded.

Exact global visibility methods try to solve the visibility problem by determining
all visibility events in the scene for all possible viewpoints [DDP96, DDP97,
PD90], but due to their complexity they are impractical for large scenes.

The high expense of exact global visibility calculations can be avoided by
overestimating the set of visible objects. Most occlusion culling methods do not
solve exact visibility. They return objects which are potentially visible, which
includes not only those primitives that are completely visible, but also objects
that are only partially visible and maybe even some objects that are completely
invisible.

The exact visibility of these potentially visible objects is then calculated with an
additional visibility technique. In most cases the z-buffer of conventional
graphics hardware is used for the exact visibility determination.

Nowadays exist a large number of solutions that realize occlusion culling in
different ways. These occlusion culling methods can be categorized according to
several different criteria. In the following chapters we describe the most
important of these characteristics to give an overview of occlusion culling
methods for real-time rendering.

5.1.1 Visibility from region or from viewpoint

Occlusion culling methods have to determine the set of objects that are
potentially visible (potentially visible set (PVS)) from the current viewpoint.
This can be done for this single viewpoint alone (see figure 5.5), but it can also
be done for a entire region (cell) in space [ARB90] (see figure 5.6).

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

38

Figure 5.5: From-point visibility: Everything in the blue region is visible from
the current viewpoint. The black objects are therefore potentially visible, and the
white objects are occluded.

Figure 5.6: From-region visibility: Everything in the blue region is visible from
at least one viewpoint within the square cell. The black objects are therefore
potentially visible, and the white objects are occluded.

visible

potentially visible

occluded

visible

potentially visible

occluded

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

39

In the latter case the generated potentially visible set consists of all those objects
which are completely or partially visible from at least one viewpoint in the
region. From-region visibility methods use the coherence of visibility of the
viewpoints in a region. They also distribute the computational expense of the
visibility calculations over all the viewpoints in the region.

On the other hand the potentially visible set that is returned from a from-point
visibility method can be noticeably smaller than the one from a from-region
visibility method, because the visibility has to be calculated only for a single
viewpoint.

5.1.2 Visibility calculations in a preprocessing step or on the fly

Occlusion culling methods can do their visibility calculations in a preprocessing
step that precedes the rendering of the images, or it can be done on-the-fly during
rendering.

Methods like for example the technique by Law et al. [LT99], the visibility
octree method [SNB99], or the technique by Wang et al. [WBP98], which use a
preprocessing step for their visibility calculations, subdivide the static scene into
cells. In the preprocessing step these methods calculate the potentially visible set
of each of the cells.

These methods are therefore from-region visibility methods, and the potentially
visible set of a cell consists of all those objects which are completely or partially
visible from at least one viewpoint in the cell.

During the rendering-phase these methods only have to render the objects from
the potentially visible set of the cell in which the current viewpoint is located.
Therefore these methods have the advantage that their rendering-phase is usually
very fast because the potentially visible objects can be rendered without any
further occlusion culling overhead.

But the visibility preprocessing also has some disadvantages:

� The visibility precomputation usually requires between several minutes and
several hours depending on the complexity of the scene. This makes it
impossible to immediately render a scene after it has been modified.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

40

� The memory requirements for the precomputed visibility information can
easily become very large. Compression techniques [PS99] can be used to
minimize this memory consumtion.

� Only static objects can be used as occluders for the generation of the
potentially visible sets in the visibility preprocessing step. Occlusion by
dynamic objects is not taken into consideration in the precomputed visibility
information.

Visibility preprocessing methods are often used in games [Abr96], because the
frame-rate of the released product is the major criterion, and the cost of the time-
expensive visibility precomputation after modeling is only secondary.

The typical scenes of these games consist of a large static environment and
several dynamic objects which are relatively small. Usually the static
environment can be designed in a way that only a very small portion of the scene
is visible from each possible viewpoint. Due to their small size in the image the
dynamic objects usually do not have to be considered as important occluders.
Therefore the visibility preprocessing works quite well.

Most occlusion culling methods that do their visibility calculations on the fly
during rendering have the following advatages:

� No time-expensive visibility precomputation is needed. This makes these
methods suitable for applications where the scene has to be instantly
displayed after it has been modified, for example during modeling, or for
scenes that can be interactively manipulated by the user.

� Dynamic objects can be used as occluders. Apart from using temporal
coherence (see chapter 5.1.13) on-the-fly occlusion culling methods do not
have to distinguish between static and dynamic objects, because visibility is
computed for the entire actual scene at the given point in time of the image.

Exceptions are occlusion culling techniques like virtual occluders [KCC00] or
directional discretized occluders [BKE00] which do a part of their visibility
calculations on the fly during rendering, but which additionally also use a
preprocessing step to generate an intermediate visibility information.

Hierarchical occlusion maps [ZM+97] also use a preprocessing step. They need
it to generate a database of potential occluders. This occluder precomputation
can be avoided with incremental occluder selection as it is used for incremental
occlusion maps [AM01], or by combining hierarchical occlusion maps with
frustum slicing [Bor00].

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

41

The disadvantage of all occlusion culling methods which are done on the fly is
that their visibility calculations produce some overhead during rendering.

5.1.3 Visibility calculations in object space or image space

Occlusion culling methods can do their visibility calculations in object space or
in image space. Image space methods do their visibility calculations typically on-
the-fly during rendering.

Several image-based occlusion culling techniques use a hierarchical
representation of their occlusion information in the image [GKM93, Gre96,
Gre99, HTP01, HW99, ZM+97]. In figure 5.7 this is shown for a hierarchical
occlusion map [ZM+97] as an example. The hierarchical occlusion map consists
of a mipmap pyramid of grayscale images. The intensity of a pixel in this
pyramid represents the percentage of underlying pixels that are occluded in the
full resolution image.

These hierarchical representations allow efficient culling in large occluded image
areas, because occluded objects can be culled with a few accesses to entries in
the high levels of the occlusion information hierarchy instead of having to access
a much larger number of low level entries.

5.1.4 Continuous or point sampled visibility

Continuous visibility methods determine the visibility in all view directions that
pass through the image, which is an infinitely large set of view directions. In
contrast to that are point sampled visibility methods which determine the
visibility only for a limited set of view directions, for example for the centers of
all pixels in the image. Point sampling can also be used for object space
occlusion culling [GSF99].

5.1.5 Conservatism of visib ility

Most occlusion culling methods return conservative visibility information. This
means that their returned set of potentially visible objects contains at least all
objects that are completely or partially visible.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

42

Figure 5.7: The hierarchical occlusion map represents the occlusion in the image
hierarchically at several resolutions.

Several methods support non-conservative occlusion culling, which means that
they do not guarantee that their returned potentially visible set contains all
objects that are completely or partially visible. This increases the performance,
but of course it causes artifacts in the image.

Non-conservative occlusion culling can be done by rendering only those objects
which are most likely to be visible [KS00a], by using stochastic point sampled
visibility in object space [GSF99], by testing only a few of the pixels of a
bounding volume [BMH99], or by culling objects which are visible only in a few
pixels [ZM+97].

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

43

5.1.6 Hardware acceleration

Especially for image space occlusion culling methods it is very important
whether they support some kind of hardware acceleration to enhance the
performance of their visibility calculations.

Hierarchical occlusion maps [ZM+97] read the frame buffer from the graphics
hardware and use it to generate a pyramid of occlusion maps. They also use the
mipmap functionality of the graphics hardware to generate the downsampled
versions of the occlusion map.

An opacity map [HW99] can be used instead of a hierarchical occlusion map.
Whereas the the hierarchical occlusion map resembles a pyramid of mipmaped
textures, the opacity map corresponds to a summed area table which allows to
perform an overlap test in constant time. The generation of the summed area
table has to be done in software.

The hierarchical z-buffer [GKM93] requires a specialized graphics hardware for
full efficiency. A variant of the hierarchical z-buffer for parallel architectures has
been implemented for Pixel-Planes 5 [Geo95]. An optimized version of the
hierarchical z-buffer has been proposed [Gre99] that allows to integrate a
hierarchical z-buffer stage into the rendering pipeline of conventional graphics
hardware.

Adaptive hierarchical visibility [XS99] is a simplified one layer version of the
hierarchical z-buffer where bucket sorted polygon bins are rendered and
occlusion tested. It is simpler to implement in graphics hardware than the
hierarchical z-buffer.

Hierarchical coverage masks [Gre96] are very efficient in comparison to a
software implementation of a conventional scanline rasterizer, but unfortunately
hardware acceleration is very limited because conventional graphics hardware
can only be used for texturing and shading.

Occlusion queries are currently implemented in graphics hardware on a few
systems, for example on Hewlett-Packard's Visualize fx series of graphics
accelerators [Hp00, SOG98, Sev99], on Silicon Graphics Visual Workstations
[BBY99], and on Nvidia's GeForce3 [Nv01].

These occlusion queries test the occlusion of a given bounding volume by
rasterizing it without modifying any buffer. The occlusion query then returns
whether the bounding volume passed the z-test (is visible) in any of its pixels.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

44

The relative cost of such an occlusion query in comparison to the cost of drawing
triangles varies between different hardware [Sev99].

Such an occlusion query is used for example in the conservative prioritized-
layered projection algorithm [KS00b] to cull occluded cells from the set of cells
that are candidates for projection. Hardware accelerated occlusion queries could
also be extended to return additional occlusion information and to work in
parallel [BMH98].

A similar occlusion query can also be implemented on systems where such an
occlusion query is not implemented in the graphics hardware. This can be done
by usage of the stencil buffer [BMH99]. The write access to the color buffer and
the z-buffer is disabled, and then the bounding volume is drawn. For each pixel a
bit in the stencil buffer is set to 0 or 1 corresponding to whether the bounding
volume passed the z-test in that pixel or not.

After that the pixels in the bounding volume's image area must be read from the
stencil buffer, and it must be tested in software if their stencil bits are 0 or 1.
Reading the stencil buffer and testing it in software is of course a significant
performance bottleneck.

5.1.7 Occluder selection

Occlusion culling methods can use all objects as occluders, or they can select a
set of objects and use only these objects as occluders. Using all objects as
occluders has the advantage that it maximizes the occlusion, but several
occlusion culling methods require to use a selected set of occluders.

Such methods [BHS98, CT97, DMA00, HM+97, ZM+97] select the occluders
heuristically based on the assumption that these objects occlude large parts of the
scene. In cases where these heuristics do not work will large parts of the scene
remain unoccluded.

Additionally simplified representations of the occluders can be synthesized, for
example by using sets of boxes that are enclosed by the original geometry of the
occluders [ASN00]. This allows to increase the performance of visibility tests.

5.1.8 Occluder fusion

Not only the number and distribution of the occluders is important, but also the
ability of the occlusion culling method to support occluder fusion. This means

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

45

that several (small) occluders together can occlude parts of the scene that the
single occluders alone would not occlude if they were used independently of
each other, which is illustrated in figure 5.8 and 5.9.

Occluder fusion is supported for example by the directional discretized occluders
method [BKE00], by the extended projections method [DD+00], by the
conservative volumetric visibility method [SD+00], or in the visibility
preprocessing method for urban walkthroughs by Wonka et al. [WWS00].

Point sampled image space occlusion culling methods implicitly support
occluder fusion [GKM93, Gre96, HTP01, HW99, SOG98, ZM+97], because in
their image space occlusion information they do not distinguish between
different occluders. Therefore the occluders are automatically combined without
having to do additional computations for the occluder fusion.

Occluder fusion is very important for occluders like trees, because each single
leaf of a tree usually occludes only very few objects, if any, behind it. But all the
leafs of the tree together can represent an important occluder that occludes many
objects behind it.

Figure 5.8: The single occluders occlude only a small region (blue) of the scene
if they are used independently of each other.

occluder

potentially visible

occluded

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

46

Occlusion culling methods which do not support occluder fusion can usually
only be used efficiently in restricted scenes which contain objects that are large
enough to represent strong occluders [CF+98].

Figure 5.9: Together the same set of occluders as in figure 5.8 occludes a
considerably larger region (blue) of the scene.

5.1.9 Supported scenes

Although it is desirable to support general scenes, many occlusion culling
methods are nevertheless restricted to certain types of scenes. Visibility
precomputation methods are restricted to mainly static scenes. Occlusion culling
methods which use portals for their visibility calculations [ARB90, LG95, TS91]
usually require architectural environments.

Several methods are restricted to terrains [Ste97, ZE01] which are usually based
on a height field, and several other methods are restricted to walkthroughs in
urban environments [WGS99], or to 2½D scenes [ST97, WS99] which are
modeled on a ground plan.

occluder

potentially visible

occluded

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

47

But of course also the (in)ability of a method to use all objects as occluders and
to support occluder fusion decides whether the method is suitable for general
scenes or not.

5.1.10 Traversal of the scene

Many occlusion culling methods require that the scene is traversed in a front to
back order to make efficient occlusion culling possible. This means that objects
which are nearer to the viewpoint are processed before objects that are farther
away, so that the nearer objects can occlude the objects behind them.

It is also important to distinguish whether the method requires a certain front to
back traversal of the scene, or if the scene can be traversed in any approximative
front to back order.

5.1.11 Supported bounding volumes/spatial subdivision
structure

Several occlusion culling methods require that a certain kind of bounding
volumes or spatial subdivision structure is used, for example a regular spatial
grid [YR96]. Several methods use a BSP-tree [FKN80] as spatial subdivision
structure in object space [BHS98, DMA00, Nay95], or also to subdivide the
image [Nay92].

The hierarchical z-buffer [GKM93] has been proposed in combination with an
object space octree, but in principle it can also be used with other space
subdivision structures or with hierarchies of bounding volumes.

5.1.12 Temporal coherence

The successive frames of a walkthrough or an animation usually have a high
temporal coherence. In the context of occlusion culling this means that it is likely
that objects which have been visible/hidden in the previous frame will still be
visible/hidden in the current frame.

Some occlusion culling methods utilize temporal coherence [GP95] to enhance
their efficiency. This can be done for example by caching the objects' occlusion
relations of the previous frame and reusing them in the current frame [CT97].

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

48

The hierarchical z-buffer [GKM93] can be initialized by rendering all visible
objects of the previous frame before the hierarchical z-buffer is used for visibility
testing. After this initialization the hierarchical z-buffer will usually contain most
of the visible objects of the current frame.

Temporal coherence can also be utilized by usage of temporal bounding volumes
[SG96, SG99], as shown in figure 5.10. A temporal bounding volume encloses a
dynamic object not only at a single point in time. Instead it encloses the object at
every position that the object has during a time interval.

Figure 5.10: A temporal bounding volume encloses a dynamic object at every
position during a time interval.

5.2 Lazy occlusion gri d
In this chapter we present a new conservative image-space occlusion culling
method for general scenes that works efficiently on today's available
conventional graphics hardware. It does its occlusion calculations on the fly
during rendering, and it does not require time-expensive visibility-preprocessing.

The image is subdivided into a low-resolution grid of tiles. Each tile stores
occlusion information that shows whether the image area of the tile is occluded
by already drawn objects, and a flag whether this occlusion information is
outdated. This allows to determine efficiently whether an object is occluded by
already drawn objects, or if it is potentially visible by querying the occlusion
information of the few tiles in the object´s image area instead of testing the
content of the underlying hardware z-buffer for every pixel in this image area.
Occlusion testing of an object with the lazy occlusion grid works as follows:

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

49

� Test whether the bounding volume of the object is occluded or potentially
visible.

� If this test decides that the bounding volume is potentially visible then the
object is drawn conventionally with the z-buffer graphics hardware, otherwise
it is culled.

� After an object has been drawn this way all tiles in its bounding volume's
image area are marked as outdated so that the next occlusion test that queries
the occlusion state of one of these tiles knows that it must update the
occlusion state of this tile with a pixel-level occlusion query.

These steps are explained in more detail in chapter 5.2.1.

A major feature that distinguishes our method from related methods like the
hierarchical z-buffer [GKM93] is that we update the occlusion information of a
tile only when it is queried and if it is currently marked as outdated (lazy update)
instead of updating it every time after an object has been drawn in its image area.
This reduces the number of pixels that have to be read from the hardware z-
buffer, because:

� an object is potentially visible if the first unoccluded tile is found in its image
area. Therefore up-to-date tiles are queried first, which reduces the chance
that outdated tiles have to be queried and updated.

� often several objects draw into a tile´s area before the tile is queried and
updated.

We have chosen a flat grid instead of a pyramid [GKM93, Gre96, ZM+97]
because of the low average number of tiles that have to be tested per bounding
volume, as can be seen in our results in chapter 5.4. The optimal number of
pixels per tile that gives the best overall-performance is system-dependent and
can easily be determined by testing typical scenes of the desired application with
different numbers of pixels per tile.

We use this image-space occlusion test on a bounding volume hierarchy that is
traversed in a front-to-back order. If a bouding volume is rated as occluded then
it is culled without having to process its sub-objects and sub-bounding volumes.
This way a large part of the scene can be culled at once if its bounding volume is
rated as occluded.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

50

We propose two different versions of the lazy occlusion grid:

� The occlusion state-version is for systems that provide a pixel-level query
which returns whether all pixels in a given image area are occluded (all their
z-values are less than zmax, zmax corresponds to an unoccluded pixel). This
query is already available on some of today's hardware [Hp00, SOG98]. The
cost of this query compared to the cost of drawing primitives varies between
different hardware [Sev99]. On other systems the query can be implemented
in software if the hardware provides fast reading access to the z-buffer.

Each tile's occlusion information consists of an occlusion state that can be:

� completely unoccluded (nothing has been drawn into the tile's pixels yet).
� partially occluded (something has already been drawn into some of the

tile's pixels).
� completely occluded (something has already been drawn into all of the

tile's pixels).
� outdated (the tile's occlusion state must be determined with a pixel-level

query).

A special front-to-back traversal of the bounding volumes is used so that
objects are occlusion-tested and drawn in an order that guarantees correct
occlusion. If an arbitrary front-to-back traversal would be used then bounding
volumes could be falsely occluded by already drawn objects behind them.
Note that no primitive-wise front-to-back traversal is needed, because the
exact visibility of the primitives is solved by drawing them with the z-buffer
graphics hardware.

� The zfar-version is for systems that provide a pixel-level query which returns
the farthest z-value of all pixels in the z-buffer in a given image area
[BMH98]. On systems where this query is not available in hardware
(unfortunately this is commonly the case today) it can be implemented in
software if the hardware provides fast reading access to the z-buffer.

Each tile's occlusion information consists of the farthest z-value (zfar) of its
pixels rendered so far, and a flag that shows if zfar is outdated. Any
appoximative front-to-back traversal [GKM93] can be used because the zfar-
version allows to test the occlusion of a bounding volume after objects behind
it have been drawn.

In chapter 5.2.1 we describe how the occlusion or potential visibility of objects is
determined. Next, we explain the usage of a bounding volume hierarchy and the

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

51

front-to-back traversal of the scene in chapter 5.2.2. We also present ideas for
future extensions of our method in chapter 5.2.3. After that we explain in chapter
5.3 how occlusion culling can be combined with hardware accelerated rendering
of directional light maps for interactive walkthroughs in large globally
illuminated soft glossy scenes. In chapter 5.4 we present our results, which
includes a comparison of our new method with related occlusion culling
methods.

5.2.1 Occlusion test

When we test whether a bounding volume is occluded we classify the tiles that
intersect the bounding volume into two types, as shown in figure 5.11:

� Internal tiles are those which are completely covered by the bounding
volume.

� Border tiles are those which only partially intersect the bounding volume.

We do this to be able to do a pixel-level query to determine whether the part of
the bounding volume that intersects a border tile is occluded if the tile is only
partially occluded.

Figure 5.11: Border tiles (light gray) and internal tiles (dark gray) of the tested
bounding volume.

5.2.1.1 Occlusion state-version

Initially (before any object is drawn or any bounding volume is tested) the z-
buffer is cleared, and all tiles are set to completely unoccluded-state. The test

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

52

whether a bounding volume is occluded works as follows in the occlusion state-
version:

� Test if one of the bounding volume's up-to-date internal tiles is not in
completely occluded-state. If this is true then the bounding volume is
potentially visible.

� After that, but only if we not already have potential visibility, test if one of the
bounding volume's up-to-date border tiles is in completely unoccluded-state.
If this is true then the bounding volume is potentially visible.

� Next, but only if we not already have potential visibility, test each outdated
internal tile of the bounding volume with a pixel-level query in the tile's
whole area whether the tile is completely occluded or partially occluded, and
set the tile's state. If one of these tiles is partially occluded then the bounding
volume is potentially visible.

� At last, but only if we not already have potential visibility, test each border
tile of the bounding volume which is outdated or in partially occluded-state
with a pixel-level query in the intersection area of the tile and the bounding
volume. If the pixel-level query returns that the intersection area is not
completely occluded then the bounding volume is potentially visible.

The pseudocode of this occlusion test is outlined in figure 5.12. We first try to
determine potential visibility by using solely the tiles' states (in the
…TileIsUnoccludedWithoutPixelquery functions). Only if this does not result in
potential visibility we have to use the more expensive pixel-level occlusion
queries (in the …TileIsUnoccludedWithPixelquery functions). The lazy update
of outdated tiles is done in the …TileIsUnoccludedWithPixelquery functions.

5.2.1.2 Zfar-version

The zfar-version works similar to the occlusion state-version. The pseudocode of
the occlusion test of the zfar-version is outlined in figure 5.13. Initially (before
any object is drawn or any bounding volume is tested) the z-buffer is cleared, all
tiles' zfar are set to zmax, and their outdated-flags are cleared.

In contrast to the occlusion state-version the zfar-version compares whether the
nearest z-value (znear) of the bounding volume is larger than the tile's zfar to
determine if the bounding volume is occluded or potentially visible in the tile´s
area. An outdated tile´s zfar is updated with a pixel-level query that returns the

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

53

farthest z-value of all pixels in the tile´s area. In figure 5.13 this lazy update is
done in the internalTileIsUnoccludedWithPixelquery function.

The zfar-version presented so far needs a query that returns the farthest z-value of
all pixels in the tile´s area [BMH98]. On systems where this kind of query is not
implemented in hardware (unfortunately this is commonly the case today) it is
possible to use another kind of query with a modified version of the zfar-version.
In this modified version the original query for the farthest z-value is replaced
with a function that uses a query whether any pixel of the bounding volume
passes the z-test (is visible) [Hp00, SOG98] in the tile's area (the same kind of
query that is used in the occlusion state-version). If the result of the query is true
the function returns the tile´s old zfar-value, otherwise it returns the bounding
volume´s znear-value.

5.2.2 Front-to-back traversal in a bounding volume hierarchy

In chapter 5.2.1 we have described how to do occlusion culling for single objects
(bounding volumes). What we need is to ensure that objects in the front are
usually drawn first so that they can occlude objects behind them. This is
accomplished by traversing the scene in an approximative front-to-back order.

In a scene that contains a large number of objects it would be inefficient to do the
front-to-back sorting and the occlusion test for each object separately. To avoid
this we use a bounding volume hierarchy for the scene that is traversed
recursively. If a bounding volume is rated as occluded it can be culled without
having to do the occlusion test for its sub-bounding volumes. Therefore a large
occluded part of the scene can be culled at once with a single occlusion test. Any
kind of bounding volume hierarchy can be used, for example an octree, kd-tree,
or a hierarchy of polyhedrons or spheres. In our implementation, which is
described in chapter 5.4, we have used a hierarchy of axis-aligned bounding
boxes.

5.2.2.1 Occlusion state-version

The occlusion state-version of the lazy occlusion grid is used with a special
approximative front-to-back traversal which performs the occlusion test of a
bounding volume before objects are drawn that are not completely in front of the
bounding volume. Otherwise these objects could falsely occlude the bounding
volume or its sub-bounding volumes. The occlusion state-version does not need
an exact front-to-back traversal of the primitives because exact visibility is
solved by drawing the primitives with the z-buffer graphics hardware.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

54

Bool isOccluded(bVol)
 if internalTileIsUnoccludedWithoutPixelquery(bVol,internalPixelqueryList)
 return false
 if borderTileIsUnoccludedWithoutPixelquery(bVol,borderPixelqueryList)
 return false
 if internalTileIsUnoccludedWithPixelquery(internalPixelqueryList)
 return false
 if borderTileIsUnoccludedWithPixelquery(bVol,borderPixelqueryList)
 return false
 return true

Bool internalTileIsUnoccludedWithoutPixelquery(bVol,internalPixelqueryList)
 internalPixelqueryList=empty
 for all internal tiles of bVol
 if not tile.completelyOccluded
 if tile.state=outdated
 add tile to internalPixelqueryList
 else //completelyUnoccluded or partiallyOccluded
 return true
 return false

Bool borderTileIsUnoccludedWithoutPixelquery(bVol,borderPixelqueryList)
 borderPixelqueryList=empty
 for all border tiles of bVol
 if not tile.completelyOccluded
 if tile.state=completelyUnoccluded
 return true
 else //partiallyOccluded or outdated
 add tile to borderPixelqueryList
 return false

Bool internalTileIsUnoccludedWithPixelquery(internalPixelqueryList)
 for all tiles in internalPixelqueryList
 if the z-value of a pixel in the tile's area =zmax
 tile.state=partiallyOccluded
 return true
 else
 tile.completelyOccluded=true
 return false

Bool borderTileIsUnoccludedWithPixelquery(bVol,borderPixelqueryList)
 for all tiles in borderPixelqueryList
 if the z-value of a pixel in the area of (tile ∩ bVol) =zmax
 tile.state=partiallyOccluded
 return true
 return false

Figure 5.12: Pseudocode of test whether a bounding volume is potentially
visible or occluded by already drawn objects inclusive the lazy update of the
tiles' states (occlusion state-version of the grid).

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

55

Bool isOccluded(bVol)
 if internalTileIsUnoccludedWithoutPixelquery(bVol,internalPixelqueryList)
 return false
 if borderTileIsUnoccludedWithoutPixelquery(bVol,borderPixelqueryList)
 return false
 if internalTileIsUnoccludedWithPixelquery(bVol,internalPixelqueryList)
 return false
 if borderTileIsUnoccludedWithPixelquery(bVol,borderPixelqueryList)
 return false
 return true

Bool internalTileIsUnoccludedWithoutPixelquery(bVol,internalPixelqueryList)
 internalPixelqueryList=empty
 for all internal tiles of bVol
 if bVol.znear�tile.zfar
 if tile.outdated
 add tile to internalPixelqueryList
 else
 return true
 return false

Bool borderTileIsUnoccludedWithoutPixelquery(bVol,borderPixelqueryList)
 borderPixelqueryList=empty
 for all border tiles of bVol
 if tile.outdated or bVol.znear�tile.zfar
 add tile to borderPixelqueryList
 else if tile.zfar=zmax
 return true
 return false

Bool internalTileIsUnoccludedWithPixelquery(bVol,internalPixelqueryList)
 for all tiles in internalPixelqueryList
 tile.outdated=false
 tile.zfar=max z-value of all pixels in tile´s area
 if bVol.znear�tile.zfar
 return true
 return false

Bool borderTileIsUnoccludedWithPixelquery(bVol,borderPixelqueryList)
 for all tiles in borderPixelqueryList
 if bVol.znear�max z-value of all pixels in the area of (tile ∩ bVol)
 return true
 return false

Figure 5.13: Pseudocode of test whether a bounding volume is potentially
visible or occluded by already drawn objects inclusive the lazy update of the
tiles' states (zfar-version of the grid).

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

56

This approximative front-to-back order is illustrated in figure 5.14. The front-to-
back traversal that realizes this order is outlined in figure 5.15. It draws the
frontmost object if it is completely in front of all bounding volumes that are not
occlusion-tested yet, and it tests the frontmost bounding volume for occlusion if
no object is completely in front of it. To do this the traversal uses two lists:

� bounding volumes that are not occlusion-tested yet are sorted by their
respective nearest z-value (znear). Initially this test-list contains the root
bounding volume.

� bounding volumes that are already rated as potentially visible and that have
objects as direct children are sorted by their respective farthest z-value (zfar).
Initially this draw-list is empty. In figure 5.14 the objects themselves are
shown instead of the bounding volumes in the draw-list for sake of simplicity
of the illustration.

Figure 5.14: Front-to-back traversal for the occlusion state-version of the grid:
znear-sorted bounding volumes (white) are occlusion-tested before zfar-sorted
potentially visible objects (black) are drawn that are not completely in front of
them. znear/zfar is marked at each bounding volume/object, sub-objects and sub-
bounding volumes of the bounding volumes are not shown.

5.2.2.2 Zfar-version

The zfar-version of the lazy occlusion grid can be used with an arbitrary front-to-
back traversal because this version of the grid allows to draw objects before the
occlusion test of bounding volumes which are (partially) in front of them is done.
A simple front-to-back traversal for the zfar-version is outlined in figure 5.16. It
utilizes a list of bounding volumes which are sorted by their respective nearest z-

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

57

value (znear). Note that a heap could be used as well instead of the list. Note also
that we distinguish between sub-objects (no bounding volumes) and sub-
bounding volumes.

initialize lazy occlusion grid
initialize test-list with root bounding volume if it intersects view frustum,
 else test-list=empty
draw-list=empty
while test-list or draw-list is not empty
 bVol=bounding volume with smallest znear from test-list or
 bounding volume with smallest zfar from draw-list
 (depends on if znear or zfar is smaller), remove it from its list
 if bVol is from test-list
 if isOccluded(bVol)=false
 for each of bVol´s sub-bounding volumes
 if sub-bounding volume intersects view frustum
 sort sub-bounding volume into test-list
 if bVol has objects as direct children
 sort bVol into draw-list
 else //bVol is from draw-list
 draw objects that are direct children of bVol
 mark tiles in bVol´s image area as outdated

Figure 5.15: Pseudocode of front-to-back traversal that incorporates occlusion
culling with the occlusion state-version of the grid and hierarchical view frustum
culling

initialize lazy occlusion grid
initialize list with root bounding volume
while list is not empty
 bVol=frontmost bounding volume in list, remove it from list
 if bVol intersects view frustum
 if isOccluded(bVol)=false
 sort bVol´s sub-bounding volumes (if any) into list
 if bVol has objects as direct children
 draw objects that are direct children of bVol
 mark tiles in bVol´s image area as outdated

Figure 5.16: Pseudocode of a simple front-to-back traversal that incorporates
occlusion culling with the zfar-version of the grid and hierarchical view frustum
culling.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

58

5.2.3 Future extensions

The extensions of our basic method which are sketched in this chapter use
different conservative occlusion tests for special cases to increase the overall-
performance. Heuristics are used to decide if these occlusion tests shall be used
or not. Note that these extensions do not violate conservatism.

� Quickly rate a tile as completely unoccluded (the tested bounding volume is
therefore potentially visible) instead of using a pixel-level query if the
probability that the tile is occluded is smaller than a given threshold. This
probability can be approximated by adding up the size of the image-areas of
the primitives that have been drawn into the tile, which for reason of speed
can be done without considering if these areas are intersecting.

� Test whether a bounding volume's border tile is completely occluded if the
area of intersection of the bounding volume with the tile is larger than a given
threshold. In this case the overhead of querying the whole tile area instead of
querying only the smaller intersection area is not so big and we have the
chance to detect that the tile is completely occluded.

� Treat border tiles as internal tiles if the image area of the bounding volume is
larger than a given threshold, because the image position of such a large
bounding volume's border is often quite different to the image position of the
real object´s border.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

59

5.3 Occlusion culling a nd directional light maps
In combination with occlusion culling the hardware accelerated directional light
map rendering algorithm from chapter 4.2.2 is not applied to the whole scene at
once. Instead, the scene is traversed by the occlusion culling algorithm, and for
each potentially visible bounding volume the following modified version of the
directional light map rendering algorithm is used:

� Draw the surfaces that are contained in the bounding volume with correct
visibility and with black surface color into the z-buffer and color buffer.

� For each Ψ�Ω:
� Set a single directional light source, with its direction=Ψ, and with its

intensity=kmax.
� For each surface s that is contained in the bounding volume, and for which

a DLM ms,Ψ exists (the bounding volume's ms,Ψ of Ψ are stored in a list for
that):
� Set the texture that contains ms,Ψ as current drawing texture if it is not

currently set.
� Set the material of s as current drawing material if it is not currently set.
� Draw s only in those pixels where it is visible according to the z-buffer,

illuminated by the directional light source, and modulated by ms,Ψ, and
add the resulting fragments to the color buffer.

The z-buffer and the color buffer are only cleared once for the whole scene at the
beginning of the rendering of each frame. Directional light maps from the same
bounding volume are preferably put into the same texture to minimize the
number of state switches where the current texture has to be changed.

5.4 Results
We have implemented and tested occlusion culling with the lazy occlusion grid
in combination with directional light maps on a PC with a 900 MHz Thunderbird
CPU and a GeForce2 GTS graphics card with 32 MB frame buffer and texture
memory under OpenGL. We had no access to graphics hardware that supports
pixel-level occlusion queries, therefore we have implemented the pixel-level
queries in software by reading the hardware z-buffer, which is done with the
glReadPixels function.

The size of the grid´s tiles is 32x32 pixels per tile, and has been determined
heuristically as described in chapter 5.2. Of course on other systems the optimal

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

60

tile-size may be different. We have measured that our hardware does 34,783
glReadPixels of 32x32 z-values (35,617,792 pixels) per second without flushing
the rendering pipeline.

The scene in figure 5.17 consists of 4x4 of the rooms which have been used in
figure 4.1. The rooms are connected by doorways. From each possible viewing
position only a small part of the scene is visible due to occlusion. The scene
contains 19,520 triangles. Directional light maps are used to display the globally
illuminated soft glossy scene during an interactive walkthrough. Rendering the
whole scene without occlusion culling is therefore expensive not because of the
geometrical complexity of the scene, but because of the overhead of displaying
the global illumination on the large part of surfaces that are occluded.

We have used nΩ=14 and kmax=2. The directional light maps have required 142
MB texture memory. In total 1,232,000,000 light paths (56,000,000 light paths
per CPU) have been shot in a parallel implementation of the photon tracing
preprocessing step, as described in chapter 4.2, which took 2.6 hours on a cluster
of 11 PCs with dual 1 GHz Pentium3s in a 100 MBit Ethernet network.

Note that the memory size of the directional light maps is considerably larger
than the available on-board texture memory of our used graphics hardware. The
directional light maps therefore had to be transmitted from main memory to the
graphics card on demand. Although there are already systems available with
enough on-board texture memory to store the directional light maps of this scene
locally on the graphics card, it is very likely that there will always be
applications with scenes that require considerably more texture memory than the
available graphics hardware can offer.

We have used axis-aligned bounding boxes, one bounding box for each room.
The image area of a bounding box is approximated by its bounding rectangle in
the image. The bounding boxes are traversed with the front-to-back traversal as
described in chapter 5.2.2.1. Note that this traversal also incorporates
hierarchical view frustum culling of the bounding boxes [MH99], which uses
simple clipping of the bounding boxes' polygons in software.

We have tested the scene with a walkthrough that has been rendered

� with occlusion culling with the occlusion state-version of the lazy occlusion
grid (LOG).

� with occlusion culling with the occlusion state-version of the occlusion grid,
but each tile is immediately updated after an object has been drawn into its

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

61

image area if the tile has not already been marked as completely occluded
(busy occlusion grid (BOG)).

� with occlusion culling with the hierarchical z-buffer (HZB) [GKM93]. After
an object has been drawn the conventional z-buffer in the image area of the
bounding box is read to update the hierarchical z-buffer.

� with occlusion culling solely with a pixel-level query per bounding box (PQ)
that tests all pixels in the image area of the bounding box.

� without occlusion culling (no OC), but still with hierarchical view frustum
culling.

The scene has been rendered at an image resolution of 640x480 as well as
1280x960 pixels to show to what extent image resolution affects the rendering
time. The average rendering time per frame, and the average number of
potentially visible surface triangles per frame are shown in table 5.1. Note that
this number also includes backfacing surfaces, because backface culling is done
by OpenGL. Note also that the number of triangles that are actually sent to
OpenGl is ~8 times higher due to the multi-pass rendering with the directional
light maps.

We have measured that with our hardware 11-18% of the total rendering time is
spent for the glReadPixels calls when we use the lazy occlusion grid and 42-56%
when we use the busy occlusion grid. The average number of tiles that have been
tested per bounding box with the lazy occlusion grid (including those tiles where
no pixel-level query is done) is 23.1 at 640x480. The average frame-rate with the
lazy occlusion grid has been 1.8 to 3.1 times faster than with the busy occlusion
grid, which shows the importance of the lazy update.

640x480 LOG BOG HZB PQ no OC
fps [Hz] 10.2 5.6 3.7 2.4 4.9
no. pot. visible
surf. triangles

4,541 4,541 4,541 4,541 11,902

1280x960 LOG BOG HZB PQ no OC
fps [Hz] 6.8 2.2 1.8 1.3 3.6
no. pot. visible
surf. triangles

4,558 4,558 4,558 4,558 11,902

Table 5.1: Average frame-rate and average number of potentially visible surface
triangles per frame of the walkthrough.

CHAPTER 5. OCCLUSION CULLING FOR INTERACTIVE WALKTHROUGHS

62

Figure 5.17: Snapshots of a walkthrough in a large globally illuminated soft
glossy scene that has been rendered at interactive frame-rates with directional
light maps and occlusion culling with the lazy occlusion grid.

63

Chapter 6

Conclusion

We have presented new methods that improve the quality and performance of
photorealistic rendering of globally illuminated scenes, in particular for photon
map global illumination simulation, and we have presented hardware accelerated
methods that allow to do interactive walkthroughs in large globally illuminated
scenes with soft glossy surfaces.

Our new geometry-based photon map radiance estimation method has improved
the quality of photon map global illumination simulation by avoiding several
illumination artifacts of the existing photon map radiance estimation. This is an
important feature in particular for the high quality rendering of caustics, which is
done by direct visualization of the photon map radiance estimate.

We have also shown that the efficiency of stochastic ray tracing-based rendering
and global illumination techniques, in particular photon map global illumination
simulation, can be improved with our new hemispherical particle footprint
importance sampling method. The advantage of this new method is its ability to
shoot the rays precisely into highly contributing directions, which is caused by
the adaptive selection of the footprint radii according to the directional particle
density.

Our new hardware accelerated method for displaying directional light maps has
allowed to do interactive walkthroughs in globally illuminated soft glossy
scenes. This method makes efficient usage of the graphics hardware by
minimizing the number of state switches that are required to change the active
texture and light source.

Finally we have shown that interactive walkthroughs can also be done in large
globally illuminated glossy scenes. This has been realized by using our
directional light map method in combination with our new occlusion culling

CHAPTER 6. CONCLUSION

64

method. Due to the lazy manner in which the occlusion information in the lazy
occlusion grid is updated, our new occlusion culling method considerably
reduces the number of pixels that have to be read from the hardware z-buffer to
determine occlusion. This results in significantly increased performance.

For very large scenes the memory size of the directional light maps may be
larger than the available main memory of the system. Future work should
therefore include the development of caching techniques that allow to load the
directional light maps on demand from a mass storage device for those parts of
the scene that may be visible in the next frames of the walkthrough.

65

References

[Abr96] Michael Abrash. Inside Quake: Visible Surface Determination.
Ramblings in Real Time. Dr. Dobb’s Sourcebook January/February
1996 pp. 41-45

[AM01] Timo Aila and Ville Miettinen. dPVS Reference Manual. Hybrid
Holding, Ltd. www.renderware.com/dpvs.html, 2001

[ARB90] John M. Airey, John H. Rohlf and Frederick P. Brooks Jr. Towards
Image Realism with Interactive Update Rates in Complex Virtual
Building Environments. Symposium on Interactive 3D Graphics
1990 pp. 41-50

[ASN00] Carlos Andújar, Carlos Sanoa-Vázquez and Isabel Navazo. LOD
Visibility Culling and Occluder Synthesis. Computer-Aided Design
vol. 32 no. 13 2000 pp. 773- 783

[Arv86] J. Arvo. Backward Ray Tracing. Developments in Ray Tracing.
Siggraph 86 course notes

[AM00] Ulf Assarsson and Tomas Möller. Optimized View Frustum Culling
Algorithms for Bounding Boxes. Journal of Graphics Tools vol. 5 no.
1 pp. 9-22, 2000

[Bar89] H.-J. Bartsch. Mathematische Formeln. 22nd ed. p. 246,
Fachbuchverlag Leipzig 1989

[BMH98] Dirk Bartz, Michael Meißner and Tobias Hüttner. Extending
Graphics Hardware For Occlusion Queries In OpenGL. Proceedings
of Eurographics/Siggraph Worshop on graphics hardware 1998 pp.
97-103

[BMH99] Dirk Bartz, Michael Meißner and Tobias Hüttner. OpenGL-assisted
Occlusion Culling for Large Polygonal Models. Computers &
Graphics vol. 23 no. 5 1999 pp. 667-679

REFERENCES

66

[BH+99] R. Bastos, K. Hoff, W. Wynn and A. Lastra. Increased Photorealism
for Interactive Architectural Walkthroughs. Symposium on
Interactive 3D Graphics 1999

[BKE00] Fausto Bernardini, James T. Klosowski and Jihad El-Sana.
Directional Discretized Occluders for Accelerated Occlusion
Culling. Proceedings of Eurographics 2000

[BHS98] Jiří Bittner, Vlastimil Havran and Pavel Slavík. Hierarchical
Visibility Culling with Occlusion Trees. Computer Graphics
International 1998 pp. 207-219

[BLS94] P. Blasi, B. Le Saëc and C. Schlick. An Importance Driven Monte-
Carlo Solution to the Global Illumination Problem. Proceedings of
Eurographics Workshop on rendering 1994 p. 173-183

[Bor00] Karsten Bormann. An Adaptive Occlusion Culling Algorithm for use
in Large VEs. IEEE Virtual Reality 2000 p. 290

[BBY99] Allen Bourgoyne, Renée Bornstein and David Yu. Silicon Graphics
Visual Workstation OpenGL Programming Guide For Windows NT.
Document number 007-3876-001, Silicon Graphics, 1999

[Bus97] E. Bustillo. A neuro-evolutionary unbiased global illumination
algorithm. Proceedings of Eurographics Workshop on rendering
1997

[Chr97] P. H. Christensen. Global Illumination for Professional 3D
Animation, Visualization, and Special Effects. Proceedings of
Eurographics Workshop on rendering 97 p. 321-326

[Chr99] P. H. Christensen. Faster Photon Map Global Illumination. Journal
of graphics tools vol. 4 no. 3 1999 p. 1-10

[Cla76] James H. Clark. Hierarchical Geometric Models for Visible Surface
Algorithms. Communications of the ACM vol. 19 no. 10 1976 pp.
547-554

[CF+98] Daniel Cohen-Or, Gadi Fibich, Dan Halperin and Eyal Zadicario.
Conservative Visibility and Strong Occlusion for Viewspace
Partitioning of Densely Occluded Scenes. Proceedings of
Eurographics 1998 pp. 243-253

[CT96] S. Coorg and S. Teller. A Spatially and Temporally Coherent Object
Space Visibility Algorithm. MIT LCS Technical Report 546, 1996

REFERENCES

67

[CT97] Satyan Coorg and Seth Teller. Real-Time Occlusion Culling for
Models with Large Occluders. ACM symposium on interactive 3D
graphics 1997 pp. 83-90

[DMA00] Pavan K. Desikan, T. M. Murali and Pankaj K. Agarwal. Occlusion
Culling Using Exact Shadow Computations and Ray-Shooting
Queries. Preliminary draft, Duke University, 2000

[Dri00] T. Driemeyer. Rendering with mental ray. Springer-Verlag 2000

[DDP96] Frédo Durand, George Drettakis and Claude Puech. The 3D visibility
complex: a new approach to the problems of accurate visibility.
Proceedings of Eurographics Workshop on Rendering 1996 pp. 245-
256

[DDP97] Frédo Durand, George Drettakis and Claude Puech. The Visibility
Skeleton: A Powerful And Efficient Multi-Purpose Global Visibility
Tool. Proceedings of Siggraph 97 pp. 89-100

[DD+00] Frédo Durand, George Drettakis, Joёlle Thollot and Claude Puech.
Conservative Visibility Preprocessing using Extended Projections.
Proceedings of Siggraph 2000 pp. 239-248

[DW94] P. Dutré and Y. D. Willems. Importance-driven Monte Carlo Light
Tracing. Proceedings of Eurographics Workshop on rendering 1994
p. 185-194

[DW95] P. Dutré and Y. D. Willems. Potential-driven Monte Carlo Particle
Tracing for Diffuse Environments with Adaptive Probability
Functions. Proceedings of Eurographics Workshop on rendering
1995 p. 339-348

[FKN80] Henry Fuchs, Zvi M. Kedem and Bruce F. Naylor. On visible surface
generation by a priori tree structures. Proceedings of Siggraph 80
pp. 124-133

[Geo95] Chris Georges. Obscuration Culling on Parallel Graphics
Architecures. Technical Report TR95-017, UNC-Chapel Hill, 1995

[GG+96] S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen. The
Lumigraph. Proceedings of Siggraph 96 p. 43

[GSF99] Craig Gotsman, Oded Sudarsky and Jeffrey A. Fayman. Optimized
occlusion culling using five-dimensional subdivision. Computers &
Graphics 23 1999 pp. 645-654

REFERENCES

68

[GH95] D. Green and D. Hatch. Fast Polygon-Cube Intersection Testing.
Graphics Gems V p. 375-379, 1995

[GKM93] Ned Greene, Michael Kass and Gavin Miller. Hierarchical Z-Buffer
Visibility. Proceedings of Siggraph 93 pp. 231-238

[GK94] N. Greene and M. Kass. Error-Bounded Antialiased Rendering of
Complex Environments. Proceedings of Siggraph 94 pp. 59-66

[Gre96] Ned Greene. Hierarchical Polygon Tiling with Coverage Masks.
Proceedings of Siggraph 96 pp. 65-74

[Gre99] Ned Greene. Occlusion Culling with Optimized Hierarchical
Buffering. Siggraph 99 Sketches & Applications p. 261

[GP95] Eduard Gröller and Werner Purgathofer. Coherence in Computer
Graphics. Technical report TR-186-2-95-04, Vienna University of
Technology, 1995

[Hec90] P. S. Heckbert. Adaptive Radiosity Textures for Bidirectional Ray
Tracing. Proceedings of Siggraph 90 p. 145-154

[Hei99] W. Heidrich and H.-P. Seidel. Realistic, Hardware-accelerated
Shading and Lighting. Proceedings of Siggraph 99 p. 171

[Hei01] W. Heidrich. Interactive Display of Global Illumination Solutions for
Non-diffuse Environments - A Survey. Computer graphics forum vol.
20 no. 4 p. 225, 2001

[Hp00] Hewlett-Packard. OpenGL Implementation Guide.
www.hp.com/workstations/support/documentation/manuals/
user_guides/graphics/opengl/ImpGuide/
01_Overview.html#OcclusionExtension, 2000

[HTP01] Heinrich Hey, Robert F. Tobler and Werner Purgathofer. Real-Time
Occlusion Culling With A Lazy Occlusion Grid. Proceedings of
Eurographics Workshop on Rendering 2001 pp. 215-220

[HP01] Heinrich Hey and Werner Purgathofer. Occlusion Culling Methods.
Eurographics 2001 State of the Art Reports p. 43

[HP02a] Heinrich Hey and Werner Purgathofer. Importance Sampling with
Hemispherical Particle Footprints. SCCG 2002 p. 99

[HP02b] Heinrich Hey and Werner Purgathofer. Advanced Radiance
Estimation For Photon Map Global Illumination. Proceedings of
Eurographics 2002

REFERENCES

69

[HP02c] Heinrich Hey and Werner Purgathofer. Real-time rendering of
globally illuminated soft glossy scenes with directional light maps.
Vienna University of Technology, Technical Report TR-186-2-02-
05, 2002

[HW99] Poon Chun Ho and Wenping Wang. Occlusion Culling Using
Minimum Occluder Set and Opacity Map. Proceedings of IEEE
International Conference on Information Visualization 1999 pp. 292-
300

[HM+97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff and H. Zhang.
Accelerated Occlusion Culling using Shadow Frusta. ACM
Symposium on Computational Geometry (SCG) 1997

[Jen95] H. W. Jensen. Importance Driven Path Tracing using the Photon
Map. Proceedings of Eurographics Workshop on rendering 1995 p.
359-369

[JC95] H. W. Jensen and N. J. Christensen. Photon Maps in Bidirectional
Monte Carlo Ray Tracing of Complex Objects. Computers &
Graphics vol. 19 no. 2 1995 p. 215-224

[Jen96a] H. W. Jensen. Rendering Caustics on Non-Lambertian Surfaces.
Graphics Interface 1996 p. 116-121

[Jen96b] H. W. Jensen. Global Illumination using Photon Maps. Proceedings
of Eurographics Workshop on rendering 1996 p. 21-30

[JC98] H. W. Jensen and P. H. Christensen. Efficient Simulation of Light
Transport in Scenes with Participating Media using Photon Maps.
Proceedings of Siggraph 98 p. 311-320

[JCS01] H. W. Jensen, P. H. Christensen and F. Suykens. A Practical Guide
to Global Illumination using Photon Mapping. Siggraph 2001 course
notes 38

[KW00] A. Keller and I. Wald. Efficient Importance Sampling Techniques for
the Photon Map. Vision, Modeling, and Visualization 2000 p. 271-
279

[KS00a] James T. Klosowski and Cláudio T. Silva. The Prioritized-Layered
Projection Algorithm for Visible Set Estimation. IEEE transactions
on visualization and computer graphics vol. 6 no. 2 pp. 108-123,
2000

REFERENCES

70

[KS00b] James T. Klosowski and Cláudio T. Silva. Efficient Conservative
Visibility Culling Using The Prioritized-Layered Projection
Algorithm. Siggraph 2000 Course Notes 4

[KCC00] Vladlen Koltun, Yiorgos Chrysanthou and Daniel Cohen-Or. Virtual
Occluders: An Efficient Intermediate PVS representation.
Proceedings of Eurographics Workshop on Rendering 2000 pp. 59-
70

[KM+96] Subodh Kumar, Dinesh Manocha, William Garrett and Ming Lin.
Hierarchical Back-Face Computation. Proceedings of Eurographics
Workshop on Rendering 1996 pp. 235-244

[LW95] E. P. Lafortune and Y. D. Willems. A 5D Tree to Reduce the
Variance of Monte Carlo Ray Tracing. Proceedings of Eurographics
Workshop on rendering 1995 p. 11-20

[LF97] P. Lalonde and A. Fournier. Generating Reflected Directions from
BRDF Data. Proceedings of Eurographics 1997 p. 293-300

[Lan91] B. Lange. The Simulation of Radiant Light Transfer with Stochastic
Ray-Tracing. Proceedings of Eurographics Workshop on rendering
1991

[LB94] B. Lange and M. Beyer. Rayvolution: An Evolutionary Ray Tracing
Algorithm. Proceedings of Eurographics Workshop on rendering
1994

[LT99] Fei-Ah Law and Tiow-Seng Tan. Preprocessing Occlusion For Real-
Time Selective Refinement. Symposium on Interactive 3D Graphics
1999 pp. 47-53

[LH96] M. Levoy and P. Hanrahan. Light Field Rendering. Proceedings of
Siggraph 96 p. 31

[LG95] David Luebke and Chris Georges. Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible Sets. Symposium on Interactive 3D
Graphics 1995 pp. 105-106

[MRP98] G. Miller, S. Rubin and D. Ponceleon. Lazy decompression of
surface light fields for precomputed global illumination. Proceedings
of Eurographics Worshop on rendering 1998 p. 281

[MH99] Tomas Möller and Eric Haines. Real-Time Rendering pp. 192-200,
1999

REFERENCES

71

[Mys97] K. Myszkowski. Lighting Reconstruction Using Fast and Adaptive
Density Estimation Techniques. Proceedings of Eurographics
Workshop on rendering 1997 p. 251-262

[Nay92] Bruce F. Naylor. Partitioning Tree Image Representation and
Generation from 3D Geometric Models. Graphics Interface ´92 pp.
201-212

[Nay95] Bruce F. Naylor. Interactive Playing with Large Synthetic
Environments. Symposium on Interactive 3D Graphics 1995 pp.107-
108

[NN+96] A. Neumann, L. Neumann, P. Bekaert and Y. D. Willems, W.
Purgathofer. Importance-driven Stochastic Ray Radiosity.
Proceedings of Eurographics Workshop on rendering 1996

[NSI99] K. Nishino, Y. Sato and K. Ikeuchi. Eigen-Texture Method. IEEE
Computer Vision and Pattern Recognition 1999 vol. 1 p. 618

[Nv01] NVIDIA. GeForce3: Lightspeed Memory Architecture. Technical
Brief, 2001

[PM93] S. N. Pattanaik and S. P. Mudur. The Potential Equation and
Importance in Illumination Computations. Computer Graphics forum
vol. 12 no. 2 1993 p. 131-136

[PP98] I. Peter and G. Pietrek. Importance Driven Construction of Photon
Maps. Proceedings of Eurographics Workshop on rendering 1998 p.
269-280

[PD90] Harry Plantinga and Charles R. Dyer. Visibility, Occlusion and the
Aspect Graph. International Journal of Computer Vision 5(2) 1990
pp. 137-160

[SNB99] C. Saona-Vázquez, I. Navazo and P. Brunet. The Visibility Octree. A
Data Structure for 3D Navigation. Computers & Graphics 23 pp.
635-643, 1999

[SD+00] Gernot Schaufler, Julie Dorsey, Xavier Decoret and François X.
Sillion. Conservative Volumetric Visibility with Occluder Fusion.
Proceedings of Siggraph 2000 pp. 229-238

[ST97] Dieter Schmalstieg and Robert F. Tobler. Exploiting coherence in
2½D visibility computation. Computers & Graphics vol. 21 no. 1 p.
121, 1997

REFERENCES

72

[SS95] P. Schröder and W. Sweldens. Sherical Wavelets: Efficiently
Representing Functions on the Sphere. Proceedings of Siggraph 95 p.
161-172

[SOG98] Noel D. Scott, Daniel M. Olsen and Ethan W. Gannett. An Overview
of the VISUALIZE fx Graphics Accelerator Hardware. Hewlett-
Packard Journal May 1998 pp. 28-34

[Sev99] Ken Severson. VISUALIZE Workstation Graphics for Windows NT.
Hewlett-Packard product literature, 1999

[Shi92] P. Shirley. Nonuniform Random Point Sets via Warping. Graphics
Gems III p. 80-83, Academic Press 1992

[SSS95] M. Stamminger, P. Slusallek and H.-P. Seidel. Interactive
Walkthroughs and Higher Order Global Illumination. Modeling,
Virtual Worlds, Distributed Grapics p. 121, 1995

[SS+00] M. Stamminger, A. Scheel, X. Granier, F. Perez-Cazorla, G.
Drettakis and F. Sillion. Efficient Glossy Global Illumination with
Interactive Viewing. Computer Graphics Forum vol. 19 no. 1 p. 13,
2000

[Ste97] A. James Stewart. Hierarchical Visibility in Terrains. Proceedings of
Eurographics Workshop on Rendering 1997 pp. 217-228

[SB97] W. Stürzlinger and R. Bastos. Interactive Rendering of Globally
Illuminated Glossy Scenes. Proceedings of Eurographics Worshop on
rendering 1997 p. 93

[Stü98] W. Stürzlinger. Calculating Global Illumination for Glossy Surfaces.
Computers & Graphics vol. 22 no. 2-3 p. 175, 1998

[SG96] Oded Sudarsky and Craig Gotsman. Output-Sensitive Visibility
Algorithms for Dynamic Scenes with Applications to Virtual Reality.
Proceedings of Eurographics 1996 pp. 249-258

[SG99] Oded Sudarsky and Craig Gotsman. Dynamic Scene Occlusion
Culling. IEEE transactions on visualization & computer graphics vol.
5 no. 1 pp. 217-223, 1999

[SW00] F. Suykens and Y. D. Willems. Density Control for Photon Maps.
Proceedings of Eurographics Workshop on rendering 2000 p. 23-34

[SCP99] László Szirmay-Kalos, Balázs Csébfalvi and Werner Purgathofer.
Importance driven quasi-random walk solution of the rendering
equation. Computers & Graphics 23(2) 1999 p. 203-211

REFERENCES

73

[TS91] Seth J. Teller and Carlo H. Séquin. Visibility Preprocessing For
Interactive Walkthroughs. Proceedings of Siggraph 91 pp. 61-69

[TN+98] R. F. Tobler, L. Neumann, M. Sbert and W. Purgathofer. A new
Form Factor Analogy and its Application to Stochastic Global
Illumination Algorithms. Proceedings of Eurographics Workshop on
rendering 1998

[UT97] C. Ureña and J. C. Torres. Improved Irradiance Computation by
Importance Sampling. Proceedings of Eurographics Workshop on
rendering 1997

[PS99] Michiel van de Panne and A. James Stewart. Effective Compression
Techniques for Precomputed Visibility. Proceedings of Eurographics
Workshop on Rendering 1999 pp. 313-324

[VG94] E. Veach and L. Guibas. Bidirectional Estimators for Light
Transport. Proceedings of Eurographics Workshop on rendering
1994 pp. 147-162

[VG95] E. Veach and L. J. Guibas. Optimally Combining Sampling
Techniques for Monte Carlo Rendering. Proceedings of Siggraph 95
p. 419

[VG97] E. Veach and L. J. Guibas. Metropolis Light Transport. Proceedings
of Siggraph 97 p. 65-76

[Voo92] D. Voorhies. Triangle-Cube Intersection. Graphics Gems III p. 236-
239, 1992

�WH+97� B. Walter, P. M. Hubbard, P. Shirley and D. Greenberg. Global
Illumination Using Local Linear Density Estimation. ACM
Transactions on Graphics vol. 16 no. 3 p. 217, 1997

[WA+97] B. Walter, G. Alppay, E. Lafortune, S. Fernandez and D. P.
Greenberg. Fitting Virtual Lights For Non-Diffuse Walkthroughs.
Proceedings of Siggraph 97 p. 45

[WBP98] Yigang Wang, Hujun Bao and Qunsheng Peng. Accelerated
Walkthroughs of Virtual Environments Based on Visibility
Preprocessing and Simplification. Proceedings of Eurographics 1998
pp. 187-194

[WH92] G. J. Ward and P. S. Heckbert. Irradiance Gradients. Proceedings of
Eurographics Workshop on rendering 1992 p. 85-98

REFERENCES

74

[WGS99] Michael Wimmer, Markus Giegl and Dieter Schmalstieg. Fast
Walkthroughs with Image Caches and Ray Casting. Proceedings of
Eurographics Worshop on virtual environments 1999 pp. 73-84

[WS99] Peter Wonka and Dieter Schmalstieg. Occluder Shadows for Fast
Walkthroughs of Urban Environments. Proceedings of Eurographics
1999 pp. 51-60

[WWS00] Peter Wonka, Michael Wimmer and Dieter Schmalstieg. Visibility
Preprocessing with Occluder Fusion for Urban Walkthroughs.
Proceedings of Eurographics Workshop on Rendering 2000 pp. 71-
82

[WA+00] D. N. Wood, D. I. Azuma, K. Aldinger, B. Curless, T. Duchamp, D.
H. Salesin and W. Stuetzle. Surface Light Fields for 3D
Photography. Proceedings of Siggraph 2000 p. 287

[XS99] Feng Xie and Michael Shantz. Adaptive Hierarchical Visibility in a
Tiled Architecture. Proceedings of Eurographics/Siggraph Workshop
on Graphics Hardware 1999 pp. 75-84

[YR96] Roni Yagel and William Ray. Visibility Computation for Efficient
Walkthrough of Complex Environments. Presence vol. 5 no. 1 pp. 45-
60, 1996

[ZE01] Brian Zaugg and Parris K. Egbert. Voxel Column Culling: Occlusion
Culling for Large Terrain Models. Proceedings of the Joint
Eurographics-IEEE TCVG Symposium on Visualization 2001 pp.
85-93

[ZM+97] Hansong Zhang, Dinesh Manocha, Tom Hudson and Kenneth E.
Hoff III. Visibility Culling using Hierarchical Occlusion Maps.
Proceedings of Siggraph 97 pp. 77-88

