
DISSERTATION

Architectures of Web Applications

Design and Implementation of Database backed Information Systems

ausgef�uhrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

o�Univ�Prof� Dipl��Ing� Dr�techn� Richard Eier
Institut f�ur Computertechnik

und

o�Univ�Prof� Dipl��Ing� Dr�techn� Mehdi Jazayeri
Institut f�ur Informationssysteme

eingereicht an der Technischen Universit�at Wien
Fakult�at f�ur Elektrotechnik

von

Dipl��Ing� Karl M� G�oschka
Matrikelnummer� ������	

Karl
Mei�lstra�e ���� ��		 Wien

Wien� August ����

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Abstract

Information processing is the key issue of the ��th Century� Databases are designed to store
information and the World Wide Web has turned out to be the place for the gathering and
distribution of information� Some scientists even consider the Web itself to be a huge world�
wide distributed database� While these two seem to be made for each other� there are inherent
di�culties in linking them together due to almost �� years of separate development resulting
in quite di�erent technologies� Nevertheless� good Web sites are database backed Web sites 	
it turned out that most real�life Web applications need an underlying database to be stable�

exible and scalable� Appropriate design methodologies are hence needed to implement complex
functionality� Moreover� there are already many databases and legacy systems in existence which
people want to connect to the Web with similar functionality as in classic implementations�
Most of them rely on the proven technology of relational databases or on their object relational
successors�

Consequently the main aim of this thesis is the integration of databases and the Web� Based on
a short explanation of the di�erences between databases and the Web� a new design methodol�
ogy is presented� The �nite state machine model well known from static hypertext documents
is remodelled to be suitable for dynamically generated hypertext� Groups of links are mainly
used instead of forms to interact with the database� The key idea is to use an object�based
client�server model to design the user interface layout� the middleware functionality and the
database transactions in a homogenous way� Thereafter� the actual implementation of such a
system is composed of several parts with potentially di�erent techniques� For example� either
a pure HTML interface with full functionality on the server side or a Java applet with greater
functionality on the client side� A toolset has been implemented to automatically generate the
di�erent applications from a design language� The toolset itself is a Web application fostering
unlimited Web collaboration� Using this technique� complete information systems can be built�
including logical page
ow and bidirectional crosslinks� multi lingual support and frames with
di�erent window modes� The design methodology further guarantees stable and robust appli�
cations with sophisticated user interactions� compatibility with almost any browser and
exible
layout design separated from the application functionality�

The usability of Java is compared with the pure HTML approach� investigating di�erent client�
server tradeo�s and persistence frameworks� Object oriented design and implementation has
some drawbacks with typical Web	based information systems� It is� however� shown how Java
can supplement the HTML approach but not supplant it�

In addition to the di�erences in design and implementation� relational databases and the Web
also di�er considerably in the ways they can be searched� Universal relations and natural
language interfaces known from database theory are combined with keyword searches known
from the Web to de�ne a metadata model for searching a database backed Web application�
The key idea here is the separation of structural and contextual meaning of words� Based on
this idea� generic interfaces for both Intelligent Software Agents and robots from search engines
have been implemented�

Evaluation of the proposed methods has been carried out with two real�life applications imple�
mented successfully with both pure HTML and Java� A quantitative analysis of these appli�
cations helps to decide between pure HTML and Java� For less than ������� user interactions
pure HTML typically outperforms Java in terms of network tra�c� A qualitative analysis of
these two applications resulted in the �rst users feedback being encouragingly positive� The
techniques described in this thesis will help to continue to produce such positive results and to
make the design of database backed Web applications faster� easier and less prone to error�

Kurzfassung

Die Beherrschung der Informationstechnologie ist eine der wichtigsten Herausforderungen des
��� Jahrhunderts� Datenbanken dienen der Speicherung von Information und das Web hat sich
als das Medium f�ur Suche und Verteilung von Information herauskristallisiert� In manchen
Publikationen wird sogar das Web selbst als gewaltige� weltweit verteilte Datenbank angesehen�
Obgleich Datenbanken und Web f�ureinander bestimmt zu sein scheinen� sind in fast �� Jahren
getrennter Entwicklung sehr unterschiedliche Technologien herangereift� die nicht so einfach
kombiniert werden k�onnen� Dennoch sind nur Datenbank�basierte Web�Applikationen auch gute
Web�Applikationen� Es hat sich im Laufe der Zeit herausgestellt� da� reale Anwendungen eine
Datenbank ben�otigen� um stabil�
exibel und skalierbar zu sein� Daher werden angepa�te Design�
Methoden ben�otigt� um komplexe Funktionalit�at implementieren zu k�onnen� Zus�atzlich besteht
die Forderung� auch alte Datenbanksysteme an das Web anzubinden� m�oglichst mit der bisher
gewohnten Funktionalit�at� Die meisten dieser Systeme sind relational oder objektrelational�

Die vorliegende Dissertation hat sich daher die Integration von Datenbanken und Web zum
Ziel gesetzt� Aufbauend auf einer kurzen Beschreibung der Unterschiede zwischen Datenbank�
und Web�Technologie wird eine neue Design�Methodik vorgestellt� Dazu wird das Modell des
Zustandsautomaten� welches aus dem Forschungsbereich statischer Hypertext�Dokumente wohl�
bekannt ist� an dynamisch generierten Hypertext angepa�t� Dabei werden Gruppen von Hyper�
Links anstelle der sonst oft vorgeschlagenen Formulare verwendet� Dem liegt der Gedanke zu�
grunde� im Zuge des Designs ein homogenes� objektbasiertes Client�Server�Modell zu verwen�
den� um das User�Interface� die Funktionalit�at und die Datenbank�Transaktionen zu de�nieren�
Die Implementierung eines solchen Systems wird dann aus verschiedenen Teilen zusammenge�
setzt� welche durchaus unterschiedliche Techniken verwenden k�onnen� etwa eine reine HTML	
Ober
�ache ohne Funktionalit�at im Vergleich zu einem Java�Applet mit mehr Funktionalit�at�
Verschiedene Software�Werkzeuge wurden implementiert� um die verschiedenen Applikationen
aus einer gemeinsamen Design�Sprache generieren zu k�onnen� Diese Software�Werkzeuge sind
zudem selbst Web�Applikationen und erm�oglichen somit unbegrenzte Zusammenarbeit �uber
das Web selbst� Mit dieser Technik k�onnen komplette Informationssysteme inklusive logischer
Hyper�Text�Strukturen� bidirektionaler Hyper�Links� Mehrsprachigkeit sowie Frame�Technik
entworfen und implementiert werden� Die spezielle Design�Methodik garantiert zudem stabile
und robuste Applikationen mit fortgeschrittenen User�Interaktionen� Kompatibilit�at zu nahezu
jedem Browser und ein von der Funktionalit�at unabh�angiges�
exibles Layout�Design�

Im Rahmen der Untersuchung verschiedener Client�Server	Strukturen und unterschiedlicher
Persistenz�Frameworks werden die Verwendung von Java und reinem HTML miteinander ver�
glichen� Objektorientierte Methoden zeigen einige Nachteile bei Design und Implementierung
typischer Web	basierter Informationssysteme� Es wird gezeigt� wie Java die HTML�L�osung zwar
unterst�utzen� aber derzeit nicht g�anzlich ersetzen kann�

So verschieden Datenbanken und das Web in bezug auf Design und Implementierung sind� so
unterschiedlich sind auch die M�oglichkeiten der Informationssuche f�ur diese beiden Plattformen�
Universalrelationen und nat�urlichsprachliche Schnittstellen der Datenbank�Technik werden mit
der f�ur das Web typischen Schl�usselwortsuche kombiniert� Daraus wird ein Meta�Datenmodell
f�ur die Suche in Datenbank�basierten Web�Applikationen hergeleitet� wobei die strukturelle von
der inhaltlichen Bedeutung der Suchbegri�e getrennt wird� Basierend auf dieser Idee wurden
Schnittstellen f�ur Software�Agenten und Roboter von Suchmaschinen implementiert�

Die Bewertung der vorgeschlagenen Methoden erfolgte im Rahmen zweier realer Implementie�
rungen� beide sowohl mit HTML als auch mit Java� Ein quantitativer Vergleich dieser Appli�
kationen zeigt� F�ur durchschnittlich weniger als ������� User�Interaktionen verursacht HTML
weniger Netzwerkauslastung als Java� Eine qualitative Analyse der beiden Applikationen brachte
ermutigend positive R�uckmeldungen der Benutzer der Prototypen� �Ahnlich positive Ergebnisse
werden auch f�ur die Zukunft erwartet� wenn die vorgestellten Techniken das Design Datenbank�
basierter Web�Applikationen schneller� einfacher und weniger fehleranf�allig werden lassen�

Preface

Wie wird es sein� wenn wir mit der Schnelligkeit des Blitzes Nachrichten �uber die

ganze Erde werden verbreiten k�onnen� wenn wir selber mit gro�er Geschwindigkeit

und in kurzer Zeit an die verschiedensten Stellen der Erde werden gelangen und wenn

wir mit gleicher Schnelligkeit gro�e Lasten werden bef�ordern k�onnen� Werden die

G�uter der Erde da nicht durch die M�oglichkeit des leichten Austausches gemeinsam

werden� da� allen alles zug�anglich ist� Jetzt kann sich eine kleine Landstadt und ihre

Umgebung mit dem� was sie hat� was sie ist und was sie wei�� absperren� bald wird

es aber nicht mehr so sein� sie wird in den allgemeinen Verkehr gerissen werden�

Dann wird� um der Allber�uhrung gen�ugen zu k�onnen� das� was der Geringste wissen

und k�onnen mu�� um vieles gr�o�er sein als jetzt� Die Staaten� die durch Entwicklung

des Verstandes und durch Bildung sich dieses Wissen zuerst erwerben� werden an

Reichtum� an Macht und Glanz vorausschreiten und die anderen sogar in Frage

stellen k�onnen� Welche Umgestaltungen wird aber erst auch der Geist in seinem

ganzen Wesen erlangen�

Adalbert Stifter� �Der Nachsommer�� ���� �Wal���	

Although the novel �Der Nachsommer� was written in ����� the above quotation from the
Austrian poet Adalbert Stifter is of immediate interest	 It shows the dangers but also
the new opportunities of globalization caused by the world
wide distributed information
networks �Z�ol���	 While some people fear the demand for higher qualication� the nal
question of Stifter gives us an idea of the new potentials of globalization� Even smaller
countries and companies can stride ahead of larger countries or companies � provided they
can retrieve the necessary information and acquire the needed knowledge at rst	 This
was one main motivation for dealing with information technology in my thesis	 Besides�
playing with Web information systems and Web technology in general can be a lot of fun�
too	

Acknowledgements

First of all I would like to thank my thesis advisor Professor Richard Eier for his support
and for always providing the right mixture of �exibility and encouragement	 I will always
remember his �How�s your thesis going��	 I am also grateful to Professor Mehdi Jazayeri�
my second thesis advisor� for his assistance despite the very tight time schedule during the
nal phase	 I owe further thanks to Professor Heinz Zemanek for his interesting historic
insights and valuable discussions about the holistic view of things	

iii

Preface

Many of my students have contributed to my thesis through prototype implementations
during practical work and diploma theses	 I would like to thank them all� especially
J�urgen Falb� Wolfgang Radinger� Christian Halter� and Wolfgang Kampichler for their
diligence and also for their patience with my constant changes to the design	 Thanks
also go to my colleagues Bernd Petrovitsch for his system administrative support� and
Konrad Kratochwil for his hints and suggestions for submitting papers for publication	
Further thanks go to my colleagues Thilo Sauter� Martin Manninger and Michael Kunes
for countless valuable discussions	

Most of all I would like to thank my family� My parents for �always knowing� that I would
get there some day and Caroline for her constant support and understanding	

Finally I would like to thank the whole Internet community � all the people who make
their work available to anybody who wants it	 This great idea of sharing knowledge helps
to promote new ideas quickly and helped me to improve my work	 Many of them I do
not even know � but thanks to all of them anyway	

iv

Contents

� Information Systems �

�	� Historic Overview �

�	� User Interface� HTML� JavaScript and Java � � � � � � � � � � � � � � � � �

�	� State Maintenance� HTTP and JDBC �

�	� Database Connection� CGI� FastCGI and API � � � � � � � � � � � � � � � �

�	� Wide Area Distribution �

� Relational Databases and pure HTML �

�	� State Machine Model �

�	� Abstraction� Passive HTML Controls ��

�	� Design Language ��

�	� Layout Language and Interface ��

�	� Building a Complete Information System � � � � � � � � � � � � � � � � � � ��

Logical Page Flow and Crosslinks ��

Frames and Window Modes ��

Multilingual Support ��

Security and User Rights ��

�	� Implementation ��

Di�erent Implementation Methods � � � � � � � � � � � � � � � � � � ��

Interpreter and Design Repository � � � � � � � � � � � � � � � � � � ��

Generator and Runtime Repository � � � � � � � � � � � � � � � � � � ��

Look
Ahead Link Generation ��

Library Concept and Reusability ��

�	� Limits and Improvements ��

Contents

� Object Oriented Approaches ��

�	� Client
Server and Persistence ��

�	� Object Serialization ��

�	� PHCs go Java ��

�	� Encapsulated Database Access ��

�	� Persistence Frameworks ��

�	� Orthogonal Persistence ��

�	� Comparison ��

� Searching ��

�	� Web versus Relational Databases ��

�	� Natural Language Interface ��

�	� Agent Interface ��

�	� Robots and Search Engines ��

�	� Future Work ��

� Results and Conclusion ��

�	� DEMENET
 The DEMETER Project ��

�	� Web Database Training ��

�	� Quantitative Analysis ��

�	� Related Work ��

�	� Summary ��

�	� Future Work ��

Appendix

A More PHC Examples ��

B PHC Language Syntax De	nition �

B	� Design Language ���

B	� Layout Language ���

List of Figures ���

vi

Contents

Bibliography ��

Publications ��

Curriculum Vitae ���

vii

Abbreviations

AI Articial Intelligence

ANSI American National Standards Institute

API Application Programming Interface

ARPA Advanced Research Projects Agency

ASCII American Standard Code for Information Interchange

CAD Computer Aided Design

CBUI Character Based User Interface

CGI Common Gateway Interface

CIM Computer Integrated Manufacturing

COM Component Object Model

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

DB DataBase

DBMS DataBase Management System

DCOM Distributed Component Object Model

DHTML Dynamic HTML

DNA Distributed interNet Applications

DOM Document Object Model

DSSSL Document Style Semantics and Specication Language

ECMA European association for standardizing information and communication sys

tems �formerly European Computer Manufacturers Association�

ER Entity Relationship

FSM Finite State Machine

FTP File Transfer Protocol

GIF Graphic Interchange Format

GIS Geographic Information System

GUI Graphical User Interface

HTML HyperText Markup Language

viii

Abbreviations

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IDL Interface Denition Language

IETF Internet Engineering Task Force

IIOP Internet Inter ORB Protocol

IP Internet Protocol

JDBC only a trademark � but often thought of as standing for Java DataBase
Connectivity

JDK Java Development Kit

JFC Java Foundation Classes

JPEG Joint Photographic Experts Group

JRE Java Runtime Environment

JVM Java Virtual Machine

KBMS Knowledge Base Management System

KQML Knowledge Query and Manipulation Language

LAN Local Area Network

MAC Medium Access Control

MB MegaByte

MIME Multipurpose Internet Mail Extensions

NC Network Computer

NLI Natural Language Interface

NNTP Network News Transfer Protocol

ODL Open and Distance Learning

ODBC Open DataBase Connectivity

ODMG Object Data Management Group

OMG Object Management Group

OODBMS Object Oriented DataBase Management System

OQL Object Query Language

ORB Object Request Broker

OS Operating System

PC Personal Computer

PDF Portable Document Format

PGP Pretty Good Privacy

PHC Passive HTML Controls

PHC�DL PHC�Design Language

PHC�LL PHC�Layout Language

ix

Abbreviations

PHCI PHC Interface

PL�SQL Procedural Language with embedded SQL

PNG Portable Network Graphic

POP Post O�ce Protocol

PTN PeTri Net

QBE Query By Example

RDF Resource Description Framework

RFC Request For Comments

RMI Remote Method Invocation

RSA Algorithm by R	 Rivest� A	 Shamir and L	 Adleman

SGML Standard Generalized Markup Language

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UI User Interface

UML Unied Modeling Language

URI Uniform Resource Identier

URL Uniform Resource Locator

VRML Virtual Reality Modeling Language

WAIS Wide Area Information Server

WAN Wide Area Network

WIS Web�based Information System

WWW World Wide Web

XLL eXtensible Linking Language

XML eXtensible Markup Language

XSL eXtensible Style Language

x

Chapter �

Information Systems

During the ��th Century� the key technology has been
information gathering� processing� and distribution	

Andrew S	 Tanenbaum �Tan���

This statement concisely motivates the integration of databases and the World Wide Web�
which is the aim of this thesis� Databases are designed to process and store information
and the Web has turned out to be the place for gathering and distributing of informa

tion	 Some scientists even consider the Web itself to be a huge world
wide distributed
database �AM���	 Although these two seem to be made for each other� a short historic
overview explains why they are in fact so di�erent and why this makes integrating them
so di�cult	

��� Historic Overview

Since the commercial usage of computers started in about ���� �SW���� databases and
the Web have had completely di�erent histories� The historic overview of databases is
cited from �Ull����

�The earliest true DBMS�s �Database Management Systems� appeared in
the ����s� and they were based on either the network or the hierarchical data
models	 �� � � � The ����s saw the advent of relational systems �Cod���	 �� � � � A
decade of development was needed� with much of the research devoted to the
techniques of query optimization needed to execute the declarative languages
that are an essential part of the relational idea	 �� � � � We see the ����s as
the decade of object
oriented DBMS�s �OODBMS� in the true sense of the
term� i	 e	� they support both object identity and abstract data types	 These
are the rst systems to provide well
integrated data manipulation and host
languages	 However� in one sense� they represent a retrograde step� they are
not declarative� the way relational systems are	�

�

Information Systems �	� Historic Overview

Je�rey D	 Ullman further predicted that in the ����s true Knowledge Base Management
Systems �KBMS�s� would supplant the OODBMS�s	 However� this has not taken place
up until now	 KBMS�s are mainly used for expert systems� while even OODBMS�s are
not yet widely used	 Furthermore it has turned out that there is currently no system
which can replace the others and each of them has its own application area �HeuS����

Relational Databases� These are still the best choice if huge amounts of simply struc

tured data have to be stored and processed with medium complex short transac

tions	 Di�culties arise from the integration of object oriented applications and
relational databases� hence object relational successors to the relational database
products have currently become popular	

Object Oriented Databases� These o�er the easy integration of object oriented pro

gramming languages and are well suited for medium amounts of highly complex
structured data and long
lasting complex transactions	

Knowledge Base Systems� These are used in expert systems together with deductive
programming languages� e	 g	 Prolog	

Engineering Databases� Successful in the areas of CAD �Computer Aided Design�
and CIM �Computer Integrated Manufacturing� with very heterogenous and highly
complex structured data but usually just a few entities of one type	 The number
of types in such a system is almost always as large as the number of entities	

Workow Management Systems� Support group collaboration and communication	
Need active database concepts and high sophisticated transaction control� the trans

action model is enhanced to allow cooperation instead of the previously required
isolation of transactions	

Spatial Databases� For example for Geographic Information Systems �GIS�	 Geometric
structures and a geometric search are supported	 Special data structures support
geometric queries	

Document Databases� O�ce information systems allow collaborative work on docu

ments	 Special features are a full
text search and check
in�check
out procedures for
documents	

Multimedia Databases� Single entities are very large and unstructured� functions for
the manipulation of multi media data are required	 Real time requirements become
important with video servers	

Temporal Databases� Enhance the relational model to a temporal relational algebra	
Temporal transactions� temporal queries and di�erent aspects of time are some of
the features of this type of databases	 They are typically required to store historic
data in repository systems	

Ideally we would like to access all of them with one single easy
to
use tool to retrieve the
desired information	 Could the Web browser be this interface�

�

Information Systems �	� Historic Overview

The history of the Web has its early roots in the birth of the Internet and can also be
roughly measured in decades� In the ����s scientists started to connect some standalone
computers over telephone lines	 These early experiments were sponsored by the U	S	
Department of Defense under the management of the Advanced Research Projects Agency
�ARPA� with the aim of nding a �exible network which would survive the �big bang� of an
atomic war	 In the ����s di�erent networks were connected with standardized protocols
�TCP��IP�� resulting in the birth of the Internet	 In the ����s TCP�IP was integrated
into the Berkeley UNIX operating system	 Many universities� research institutes of large
companies and government authorities joined the Internet	 Information was gathered
using FTP �File Transfer Protocol� and Telnet which proved to be a user unfriendly way
of searching information	 However� since the majority of people on the net were computer
literate� this did not prove to be too great a problem	

Things became quite di�erent with the Web� Tim Berners
Lee proposed the rst version
of HTML �Hypertext Markup Language� in ������ the rst server and browser prototypes
came into being between ���� and ���� �Con���	 From then on� the Web caused an
exponential growth of the Internet �Rut����RIPE��NW��� In June ���� about ���	���
nodes were recorded world
wide� ��	��� of them in Europe and ���� of them in Austria	
As of June ���� there were about �� millions nodes recorded world
wide� �	�� millions
nodes in Europe and ���	��� of them in Austria	 The monthly growth rate is currently
about � million world
wide� over ���	��� for Europe and over ���� for Austria	 Hence
today�s monthly growth rate far exceeds the total number of nodes only � years ago	

The main reasons for the exponential growth rate the Web causes were the easy to use
point
and
click graphical user interface and the integration of all relevant services �Ftp�
gopher� into one tool � the Web browser	 As more and more Web servers appeared all
over the world� the number of users accessing them also grew	 At this point in time
electronic commerce started to take the Web by storm and companies today are making
and saving money by going online
 up to two million U	S	 dollars per day	 Internet
commerce in goods and services between companies was estimated at US� � billion in
����� according to Forrester Research in Boston	 The International Data Corporation
estimates that business
to
business sales over the Internet will represent US� ��	� billion
by ���� �Cla���	

While all this was happening� surfers were very much still taking the back seat in a
sophisticated slide show	 The user was being driven through a site� as opposed to driving
the session	 This is why information retrieval and user
friendly interactivity have been key
issues in Web design �Cat��� MP��� since the beginnings of the Web	 Using some scripts
�e	 g	 Perl� behind the CGI �Common Gateway Interface�� the rst results were rather
poor	 It soon turned out that most real�life applications need an underlying database on
the server side to deal with large amounts of data and a design methodology to implement
complex functionality	 Moreover� there are already many databases and legacy systems

�Transmission Control Protocol
�Internet Protocol
�Although the term hypertext was initially coined in the �����s� its popularity �rst grew when the

Web was invented�
�Citations containing an arrow ��	 mark a reference to the Web�

�

Information Systems �	� User Interface� HTML� JavaScript and Java

in existence which people want to connect to the Web with similar functionality as in
classic implementations �Adi��c��

�Good Web sites are database backed Web sites	 �� � � � To have a site that
is stable� �exible and scalable� you really need the database advantage	�

Unfortunately almost �� years of separated development have provided quite di�erent
technologies	 The next sections explain why relational databases and the Web are two
di�erent worlds� before the following chapters present solutions to this problem	 However�
no comprehensive overview of all Web technologies is provided
 it would be outdated
within three months	 Instead the mainstreams are categorized with respect to their
usability for database backed Web applications	

��� User Interface� HTML� JavaScript and Java

If the standard user interface of the applications has to work with nearly any browser and
platform and should not depend on proprietary non
standard extensions like Plug�Ins or
Active�X� then the user interface is restricted to the possibilities of pure HTML	 This
concerns the representation� but the user interaction even more so � the only functional
elements are following a link� pressing a submit button of a form or clicking on an image
or imagemap	 They always result in an HTTP �Hypertext Transfer Protocol� connection	
Hence� any functionality resides on the server side	

Of all the di�erent approaches to make the browser more powerful and interactive�
JavaScript �Fla��� �JS� is a way of doing almost anything within a browser	 JavaScript
is emerging as the client
side scripting language of the Web� at least since version �	��
when a serious security model was implemented	 Currently JavaScript is moving to

wards the formal acceptance of it as an international standard	 The European stan

dards body ��ECMA� has approved ECMA����� the language specication derived from
Netscape JavaScript and submitted it to ISO�IEC JTC � for adoption under the fast�
track procedure	

However� the programming language of the Web is Java from Sun ��Java�	 It can be
used on both the client �applets� and the server side �servlets�	 It provides very promising
concepts for the design and implementation of object oriented distributed applications
of nearly unlimited complexity and with few restrictions on the user interface	 Despite
its indisputable benets� there are some drawbacks� to implement servlets e�ciently�
the virtual machine must be integrated with the database kernel	 Only a few database
companies have announced this so far	 Even more importantly� an applet must be down

loaded to the client rst	 This is no problem for intranets	 However the internet has a
smaller bandwidth� especially in Europe	 For typical Internet applications consisting of
just a few client�server interactions� the long download�time at the beginning is often
not worthwhile	

On the other hand� more �intelligence� on the client side can take some load o� the server
and the network� thus making Java applets more e�cient for long lasting transactions	

�

Information Systems �	� State Maintenance� HTTP and JDBC

Moreover� there is additional functionality� especially for the user interface	 This is why
this approach makes use of Java as an alternative implementation technique� but still
keeps the pure HTML interface available	 A quantitative analysis will help to compare
the Java and pure HTML approach with each other based on the use of typical end user
proles observed during the pilot phase of the real�life applications	 Nevertheless� what
can be done with pure HTML without incurring a disadvantage� will be done with pure
HTML	

��� State Maintenance� HTTP and JDBC

Another problem arises due to the di�erent nature of databases and the Web� In a
standard client
server application� both sides have their session state �e	 g	 the current
state of a database transaction on the server side and the current state of the user interface
on the client side� with a connection oriented protocol connecting them	 The Web� on the
other hand� was never designed for client
server applications but rather for a quick and
simple delivery of linked hypertext documents	 Hence the HTTP �Hypertext Transfer
Protocol� is stateless �Iye��� and the browser does not store its user interface state� but
connection orientation is inevitable for real
life database transactions	

To overcome this deciency� two approaches are possible�

Long URL encoding� The complete session state information is passed back and forth
between client and server	 This can be achieved by encoding this information into
each single URL �Uniform Resource Locator� of all the anchors within the page and
into an INPUT eld of the type hidden into every form respectively	 The advantage
is� The server does not have to keep the session state information in its memory
because it gets it back from the client with each new HTTP request	 This technique
is feasible for simple and short state information especially if no database is available
on the server side	

Short URL encoding� Only a short session identier� called a handle� is passed back
and forth between client and server with every HTTP connection using the same
techniques as above	 In this case the complete session state information �database
transaction state and user interface state� of all open sessions is kept on the server
side� usually in a database	 This causes more load on the server but takes some
load o� the network� especially if we use pages with lots of links	

The second approach scales better to complex state information and it even has one
further advantage� If we use frames� the rst method would not work� because if one
frame is reloaded and the session state has changed during this HTTP connection� then
the session state information encoded in all the other pages of a frameset is outdated	

�In fact� it does� otherwise the back button would not work� However� without JavaScript it is not
possible to make use of this information�

�

Information Systems �	� Database Connection� CGI� FastCGI and API

Alternatively Netscape�s Cookies ��KM��� and RFC ���� ��RFC�� Requests For Com

ments� can be used both as long and short Cookies to implement the same two possibilities
of state maintenance	 In this approach� short URL encoding is used for state mainte

nance	 This technique allows even more than one concurrent session stemming from the
same client	

JDBC ��Java� � which is a trademark� but often thought of as standing for �Java
Database Connectivity� � is a Java API �Application Programming Interface� for exe

cuting SQL �Structured Query Language� statements	 It provides a connection
oriented
alternative for database connectivity with Java applets	 Hence with JDBC all the possibil

ities of standard client
server applications become thereby available� The applet contains
its user interface state as object states of the GUI �Graphical User Interface� objects	 As
mentioned above� both approaches will be compared	

��� Database Connection� CGI� FastCGI and API

In general� a pure CGI compliant interface between Web server and database server is
su�cient	 For a sequence of HTTP connections� however� CGI is rather ine�ective	 This
is due to the overhead of spawning a new process each time which� in turn� opens and
closes the connection to the database	 This performance loss is normally overcome by two
approaches �Adi��a�	 A proprietary approach not used here links server programs directly
with the Web server �NSAPI ��NSAPI�� ISAPI ��ISAPI��	 Another approach involves
preforking multiple processes� which communicate with the Web server and which stay
connected to the database	 This is done with FastCGI �Adi����FCGI� by Open Market
and the Web Request Broker �WRB� of the Web Application Server by Oracle �Gre��a�
�Oracle�	 Both approaches improve server performance� but only FastCGI is a non�
proprietary standard with easy migration from CGI	 The Oracle WRB is at least CGI
compatible	

��� Wide Area Distribution

The decentralized structure of many systems causes additional problems	 New informa

tion nodes should be able to join the system but user queries involving more than one
node should also be possible	 Everything is thus put into the database� even informa

tional pages without any control element	 No single static HTML page therefore exists�
each page is generated from the database dynamically	 This allows usage of the various
replication concepts for distributed databases already available	

Another problem of wide area distribution is the latency of the net itself	 This restriction
tells us to use small images� small pages and as few HTTP connections as possible	 The
simple solution is to use structures which are not too deep� in order that the user only
has to follow a few links to receive the desired information	 An optional frame structure
is also provided to group the information into logical units where less information has to
be transferred with each HTTP connection	

�

Information Systems �	� Wide Area Distribution

The next chapter introduces a new approach for the design and implementation of Web
applications based on relational databases with only pure HTML on the client side	 Chap

ter � evaluates alternative implementations with Java using object oriented techniques	
Chapter � investigates possibilities for searching in database backed Web applications �
from search engines to Software Agents	 Chapter � nally presents real
life examples used
for the evaluation of the proposed design and implementation methods	 After a quanti

tative analysis the thesis concludes with references to related work� a short summary and
proposed future work	

�

Chapter �

Relational Databases and pure

HTML

This chapter introduces a new approach of how to design and implement Web applica

tions based on relational databases with only pure HTML on the client side and explains
the key ideas	 The aim is to create a design language to describe the user interface layout�
the functionality and the database transactions in a homogenous way following a virtual
client
server model	 The actual implementation of such a system is then composed of
several parts with potentially di�ering techniques	 For example� either a pure HTML in

terface with full functionality on the server side or a Java applet with greater functionality
on the client side	 A toolset has been implemented to generate the di�erent applications
automatically from the design language� thus implementing complex user interactions on
database information nodes distributed over the Web	

The rst section introduces the theoretical state machine model used for design and
implementation	 Based on this model� a design language is presented and it is shown
how an application is generated from this description using a set of tools and how this
application can be integrated into a complete information system	 A short summary
evaluates the approach� some limits are revealed and further improvements are suggested	

��� State Machine Model

Being limited to an HTML
only user interface� we are confronted with a disadvantage
with HTML forms� no functional dependencies between di�erent input elds of a form
can be implemented	 Therefore input into one eld cannot cause a restriction on the
possible inputs for another input eld	 An HTTP session has to be performed before
functional dependencies or restrictions can a�ect other inputs	 To achieve this HTTP
session� a submit button has to be explicitly pressed	 It is not usually enough to ll in
an input eld or make a selection	

The key idea of this approach therefore is to use links to solicit user input	 Control
elements are thus constructed of sets of links grouped together and called Passive HTML

�

Relational Databases and pure HTML �	� State Machine Model

Controls �PHC�	 The links of a PHC are called elements	 Each element has two parts�
The anchor tag dening the link of the element and the content of the tag dening the
output string of the element	 This approach is reasonable for a typical Web application
where most user interactions consist of browsing� selecting and collecting information
from the database	 The possible values for user input are predened in these cases	 Form
input is only used where user input has to be gathered �e	 g	 name and address for an
online order�	

The linked structures and functionality of hypertext documents are usually modelled with
Finite State Machines �FSM�� Petri Nets �PTN� or colored Petri Nets	 This approach
uses FSMs instead of PTNs because the advantages of petri nets� do not justify the
greater complexity in this specic case	 However� the general idea of modelling hypertext
documents as automata is well proven� one recent work is �SFC�����

�What is required is a particular view of thinking about a document� i	 e	
one must view a document as an abstract automaton that species the process
of browsing within it	 Such a view is easily obtained for the hypertext systems
in use today	 In fact �� � � � the linked structure of a document can usually be
thought of as the state transition diagram of a FSM	�

Hence each document denes a state �i	 e	 the state that this document is displayed in with
only one document being displayed at a time� and the state transitions are provided by
the hyperlinks	 Clearly this describes a FSM with a nite set of pages �states� and a nite
set of links per page	 Before this idea is adopted to database backed Web applications�
here is a short recall of some classic denitions of FSMs �HU���	

De	nition � �Finite State Machine� A non�deterministic Finite State Machine is a
quintuple F �I�O�S�R�F��

� I is a �nite set of input symbols�

� O is a �nite set of output symbols�

� S is a �nite set of states�

� R � S is the set of initial states�

� F � I � S � S � O is the transition relation�

De	nition � �completely speci	ed� F is completely speci�ed� if for all I � I� S � S
there exists at least one S � � S� O � O such that �I� S� S �� O� � F � i� e� if the FSM has
at least one choice of next state�output for each input�present state combination�

�The Petri Net remains manageable in size compared to the growth rates of state machines for the
representation of parallel and composite systems
JH����

�With many references to other work about using formal automata to de�ne and verify hypertext
systems�

�

Relational Databases and pure HTML �	� State Machine Model

De	nition � �deterministic� F is deterministic if R is a singleton and F is a function
F � �I � S� �� �S � O�� i� e� if the FSM has at most one choice of next state�output for
each input�present state combination�

In this approach deterministic FSMs are used� but they are not always completely spec

ied	 The most important di�erence between a database backed Web application and
a static document tree is the number of pages� In the latter case this number is well
dened� whereas in the rst case the number of dynamically generated pages is innite
due to the arbitrary nature of the Turing machine which is formed by the database ap

plication	 Even so� in order to exploit this model a large number � which might even be
innite � of states can be grouped together for purposes of easier analysis� design and
implementation��

Each PHC has its own state machine	 When the user clicks on the link of an element�
a state transition can occur causing di�erent output to be dynamically generated	 The
complete state of a PHC consists of all the values required for the presentation of the
HTML page	 These states can be grouped together to form a small number of explicitly
dened states	 Each state now denes a class of dynamically generated pages with a
very similar appearance	 Hence the complete state of a PHC consists of one state value
and a set of parameters P which dene the slightly di�erent output for all the pages
from the same class �i	 e	 state�	 The parameters are mostly lled with values from the
static database DB during state transitions	 This separation of the database
dependent
appearance of the page from the state value makes the state machine independent of the
arbitrary contents of the database	 Denition � denes a PHC as a deterministic FSM�

De	nition � �PHC State Machine� A PHC State Machine is a quintuple
F �I�H�S� R�F��

� I is a �nite set of links�

� H is a �nite set of output functions H�P�DB� de�ning the HTML output in each
state�

� S is a �nite set of states�

� R � S is the initial state�

� F � �I � S� �� �S � H� is the transition function�

Figure �	� shows the complete transition graph of an example PHC implementing a
hierarchical selection� gure �	� shows the respective browser view during state S�	 The
PHC consists of six elements Overview� OneUp� Province� Region� District and SelList� the
edges of the arrows are labeled with the name of the clicked element� Provinces consist of
regions which in turn consist of districts	 Overview always leads to selection at the highest
level �province�� while extend region level enhances the actual selection by one level	

�A method well known� for example� with protocol machines
Tan����

��

Relational Databases and pure HTML �	� State Machine Model

S0 S3S2S1SelList SelList SelList

OneUp,
Overview

OneUp,
Province

Overview

Overview

OneUp,
Overview

Province Region

Province

OneUp,
Region

Figure �	�� State machine model	

Figure �	�� Browser view of the PHC	

Above the horizontal rule� the actual selection is shown� the province Nieder�osterreich	
The SelList element nally provides a list of the regions of Nieder�osterreich from
which to select	 The selection of Mostviertel for instance causes a transition to state
S� setting the parameter Region to a value which identies the region Mostviertel in
the database	

The HTML output function H � H of a PHC is only determined by the PHC�s actual
state S � S� the contents of the parameter set P and the underlying database DB	 It is
not in�uenced by the last input ��click���

S � H�P�DB�

�S� I�� S �� ��	��

Hence the output H of the state machine is not determined by S � I but only by S�

��

Relational Databases and pure HTML �	� State Machine Model

splitting the function F from denition � into two functions FI � �I � S� �� S and
FO � S �� H	 This strict separation between state transition and output generation is a
key feature of this model to achieve stable and robust Web applications� It is necessary
to guarantee a deterministic generation of the dynamic HTML pages independently from
the last user interaction	 Hence� as long as the a�liated state information is not changed�
a dynamically generated Web page will always look the same� regardless of which user
interactions have taken place in the meantime	 Web applications which ignore this rule
can easily produce unpredictable results and a corrupted output	 Again� the two reasons
for this are the stateless nature of the HTTP protocol and the inability of the browser
to store user interface state information	 Hence� if a user interaction has to produce a
di�erent output� it �rst has to change the session state information� making it possible
to generate the new output from the changed session state information afterwards	

One special property of the PCH state machine is the relation between input and out

put provided by the two parts of the elements� A click on the link of an element is
the input and each output function H�P�DB� is the composite of a set of functions
OE�P�DB� �E � E � one for each element� because the HTML output of a PHC is
apparently the composition of the output of the elements of the PHC	

With this di�erent point of view a click on one of the output elements E from the element
set E can be seen as input to the state machine and can set a new state	 The output O
of each element E � E is still determined by the PHC�s actual state S � S� the contents
of the parameter set P and the underlying database DB�

S � OE�P�DB� �E � E

�S�E�� S �� ��	��

This modies the output function FO to �S � E� �� O while the input function has
become FI � �S � E� �� S replacing I by E as the new input set of the state machine	
Both functions now have equal left sides and can hence be combined again	 The following
is the nal denition of the �delayed output� state machine�

De	nition � �Delayed Output State Machine� A Delayed Output State Machine is
a quintuple F �E �O�S� R�F��

� E is a �nite set elements� a click on an element is an input to the state machine�

� O is a �nite set of output functions O�P�DB� de�ning the HTML output for a
particular element in a particular state�

� S is a �nite set of states�

� R � S is the initial state�

� F � �E � S� �� �S � O� is the transition function�

��

Relational Databases and pure HTML �	� State Machine Model

The delayed output state machine from denition � looks quite similar to the PHC state
machine from denition � but the transition function F has a quite di�erent semantic
meaning� For each state S of the PHC� the transition function F denes the output and
the link for each element E � E in that particular state S	 The output is called delayed�
because for each state transition E�O from one state S to another state S �� O denes
the output of E for the old state S and not for the new state S �	 In other words� the
element E is presented with O in state S and a click on E causes a state transition to S �

�designer�s point of view�	 This model is also the basis for the design language described
in section �	� on page ��	 This is later used in the opposite way for look�ahead link
generation �see section �	� on page ���� To generate the HTML output for a PHC in a
particular state S� all state transitions E�O leaving state S have to be combined� Each
E�O denes output O and link destination S � of one element E in state S	 This allows
it to encode all possible state transitions from that page into the links of the elements in
the generated HTML output in advance �implementation�s point of view�	

Finally� the parameter settings are introduced into the model� A click on an element E �
E in state S can set a new state S � and eventually set some parameters Pk � P� k � K�E�
to their new values pk�E��

S � OE�P�DB� �E � E

�S�E�� S �� Pk � pk �k � K�E�� ��	��

Since HTML is used to implement the state transitions� every possible state transition
has to be translated into the hyperreferences of the output elements	 Thus� the actual
state S� the parameter set P and the database DB determine the element set E � where
each E � E consists of an output function OE�P�DB�� a potential new state S

��E� and
eventually some parameters Pk � P� k � K�E� and their new values pk�E��

�S�P�DB�� OE�P�DB�� S
��E�� fPk� pk�E�jk � K�E�g �E � E � ��	��

While notation ��	�� is the basis for the theoretical client
server model and the design
language� the equivalent notation ��	�� is the basis for the actual implementation of this
model with dynamically generated HTML anchor tags� where S ��E�� Pk and pk�E� are
encoded in the hyperreference URL and where OE�P�DB� is the content of the tag ��	��	
Notation ��	�� shows the nal HTML statement for the element Mostviertel in the
browser view gure �	�	

� a href �� phc�handle h!state S ��E�

!Pk pk�E�
���OE�P�DB�� �a � ��	��

� a href �� S Geo�handle ��!state �

!pRegion ���� � Mostviertel � �a � ��	��

To demonstrate this� let us trace an example of a possible user input as in gure �	�	 The
triangle marks the click while the circles at the bottom show the state transitions with
respect to the state machine in Figure �	�	 The edges of the arrows contain the name of
the clicked element and possibly the name and value of a parameter which is set during

��

Relational Databases and pure HTML �	� Abstraction� Passive HTML Controls

S0 S1 S2 S3 S1

S
el

Li
st

P
ro

vi
nc

e=
47

S
el

Li
st

R
eg

io
n=

17

S
el

Li
st

D
is

tr
ic

t=
8

P
ro

vi
nc

e

Overview

OneUp

Province

Region

District

SelList

Region selection

Figure �	�� Geographic Selection	

the state transition	 At the beginning the province Nieder�osterreich is selected	 The
next state shows Nieder�osterreich in the element Province� while the element SelList
now shows the regions of Nieder�osterreich	 During the next two state transitions� a
region and a district are selected and a click on Nieder�osterreich in state � brings up
the regions of Nieder�osterreich again	 Figure �	� shows the complete transition graph
of this PHC	 The edges of the arrows are labeled with the names of the elements which
re the transition	 The value to which each parameter is set during the state transition
is also marked	

��� Abstraction� Passive HTML Controls

The last section dened a PHC as a set of links grouped together to fulll a common
control task and showed the state machine functionality of a PHC from the user�s point
of view	 Figure �	� shows an object based approach to the complete functionality of a
PHC from the application designer�s point of view�

� A PHC has an internal data structure containing the session state information
including the session parameter set	 This state is private but parts of it can be
made public to other PHCs	

� A PHC consists of a set of interactive user interface elements	 In this model� the
only way a user can interact with a PHC is by �clicking� on an element�	 Each

�This reects the situation on the Web where the only possibility for a user interaction is by clicking
on a link� if forms are not used�

��

Relational Databases and pure HTML �	� Abstraction� Passive HTML Controls

messages

S0 S3S2S1

internal
session

state and
parameters

partial ER
from
database

element §

methods

security:
granted
user
rights

state machine

PHC Passive HTML Control

interactive
UI elements

Figure �	�� Object based approach to Passive HTML Controls	

element contains the following rules�

� A rule for a string and�or an image representation within the user interface	

� A rule indicating what to do if the user selects this element �e	 g	 by clicking
on it�	

These rules usually use the database contents and the session state information	

� The behaviour of a PHC is modelled with a delayed output state machine �see
denition � on page ���	

� A PHC is associated with a particular part of the underlying database	 This part
can easily be described as a part of the complete ER �Entity Relationship� diagram
of the database	

� A PHC may contain additional methods to be called via messages from other PHCs
or from the user interface �click on a link�	 These methods implement more complex
functionality and can also cause state transitions	

� To the user a PHC presents itself as a set of links grouped together to implement
a particular control task	

��

Relational Databases and pure HTML �	� Abstraction� Passive HTML Controls

A PHC does not contain any information about layout or HTML representation	 This
information is completely separated into layout elements �see section �	� on page ���	

Figure �	� shows how these PHCs interact with the user interface and with each other to
produce dynamic HTML pages	 A PHC can be �called� in two di�erent ways�

�	 The functional part �state machine and additional methods� of a PHC is called
from the user interface when the user selects a particular element ��clicks� on it� or
from another PHC�s functional part	

�	 The output part �rules for the presentation of the elements and rules for the action
caused by the selection of each of these elements� is called from an HTML page
containing this PHC	 This sort of call is made via the PHCI �PHC interface� from
a layout description	 Each PHC can have more than one layout �section �	��	

These two calls re�ect the strict separation between state transition and output generation
mentioned earlier� A user interaction may result in a changed session state information�
but the output of a PHC is only dependent on the new session state information but
not on the last user interaction	 This is the key feature to achieve stable and robust
Web applications� As long as the a�liated state information is not changed� a dynam

ically generated Web page will always look the same� regardless what user interactions
have taken place in the meantime	 It is easy for Web applications ignoring this rule to
often produce unpredictable results	 The two reasons for this are� again� the stateless
nature of the HTTP protocol and the inability of the browser to store user interface state
information	

To be callable in these two ways� two methods are mandatory for each PHC� A method
for state manipulation and a method to generate the output of the PHC	 Further methods
are optional	 In gure �	� the user selection of element E of PHC � causes func� of the
PHC � to be called� eventually a method or a state machine action	 This method can
now call another method of any PHC or cause a page output	 The selected page then
calls the output part of the contained PHCs� thus producing the nal HTML page	 In
the special case of the PHC Geo in gure �	� a click on the element Mostviertel of
the list SelList causes the state transition from S� to S� of the same PHC Geo and
also sets the parameter Region to the identier belonging to Mostviertel	 The same
page is then regenerated and all the PHCs contained within this page are called with the
output
method to produce the appropriate HTML code nally delivered to the client� as
shown in gure �	�	 From the user�s point of view the click on Mostviertel has simply
provided him with a list of all the districts located in the region Mostviertel	

So far the inherently parallel nature of the distributed system �CDK��� �Web� has been
ignored� Many almost concurrent requests can make parallel use of one PHC and the
underlying database	 With modern relational database products parallelity is no problem
at all� nor is it a problem with PHCs� From the designer�s point of view� each session has
its own PHCs with their own session state information	 Hence the designer can design the
application as if only one user is connected at a time	 He does not have to worry about
concurrency	 As described later� the state management mechanism holds the session state

��

Relational Databases and pure HTML �	� Abstraction� Passive HTML Controls

P
H

C
 0

P
H

C
 1

fu
nc

1(
a,

b,
c)

pa
ge

 B

P
ag

e
B

pa
ge

ou
tp

ut

D
B

E
LE

M
E

N
T

 E

P
H

C
 2

P
H

C
 3

’C
LI

C
K

’

P
ag

e
A

P
ag

e
B

P
H

C
 4

fu
nc

2(
x,

b)
pa

ge
 B

pa
ge

ou
tp

ut

P
H

C
 2

P
H

C
 3

ou
tp

ut ou
tp

ut

Figure �	�� How PHCs interact with the user interface and with each other	

��

Relational Databases and pure HTML �	� Abstraction� Passive HTML Controls

P
H

C
 G

eo
P

H
C

 G
eo

G
O

T
O

 S
2

S
E

T
 P

A
R

A
M

 R
eg

io
n

P
A

G
E

 P
ro

du
ct

P
ag

e
P

ro
du

ct

pa
ge

ou
tp

ut

D
B

E
LE

M
E

N
T

 S
el

Li
st

P
H

C
 P

ro
d

P
H

C
S

el
ec

tio
n

’C
LI

C
K

’

P
ag

e
P

ro
du

ct

P
ag

e
P

ro
du

ct

P
H

C
 R

es
ul

t

P
H

C

P
H

C

P
H

C

PHC

ou
tp

ut ou
tp

ut

ou
tp

ut

ou
tp

ut

Figure �	�� How the PHC Geo interacts with the user interface� with itself and with the
generated HTML pages	

��

Relational Databases and pure HTML �	� Design Language

information for each state in a special data structure within the database� making the
database itself responsible� in addition� for the concurrency management of the PHCs	

��� Design Language

In classic database design �HeuS��� GR���� following the requirements� analysis� further
development steps are strictly separated into information design and functionality de

sign	 The functionality design starts with the functionality analysis and ends with the
procedural implementation of the application functionality using standard methods of
structured
analysis oriented Software Engineering	 The information design starts with
information analysis� followed by methods of semantic data design such as Entity Re

lationship �Che��� and after normalization �Ull��� of the relational design ends with an
SQL implementation of a relational database	 Though highly dependent on each other�
these two separate paths were often followed by di�erent teams of developers with dif

ferent knowledge	 Only strong organizational e�orts or mature toolsets can bring these
two completely di�erent design methods together� resulting in one nal product	 Despite
these inherent di�culties� which object orientation tries to overcome �see next chap

ter�� a large number of large
scale software systems have been successfully implemented
in this way and many mature design and implementation tools are available from the
major database vendors	 Hence in the area of relational databases the PHC approach
belongs to the functionality design and it is assumed that a relational database is either
already available �legacy systems�� or is designed and implemented at the same time with
standard database design tools for semantic data design	

A design language � PHC�DL � has been developed to describe PHCs on an abstract level
�functionality� database operations� state machine� element representation and action�	
In addition� a layout language � PHC�LL � has been developed to describe how the PHCs�
output is integrated into HTML pages	 Using these two languages� the structural part is
separated from the layout	 An interface �PHCI� is dened between them to make them as
independent from each other as possible	 Hence the abstract description of a PHC follows
a virtual client
server model� whereas with pure HTML the complete implementation is
nally located on the server side	 The developer of an application can thus focus on the
design� while the otherwise error
prone implementation is generated automatically �see
section �	��	

The PHC�DL is a domain specic language designed to describe all aspects of PHCs as
shown in gure �	� on page ��	 The main structure of a PHC consists of three parts as
shown in gure �	��

Interface The interface denition contains the forward declaration of the PHC�s content
�mandatory� and the declaration of the session state information parameter set	 It
also denes the default state of a PHC as the rst state in the forward declaration	

Implementation The implementation of the functional methods �optional�	

��

Relational Databases and pure HTML �	� Design Language

PHC Geo

INTERFACE

// interface definition of the PHC

IMPLEMENTATION

// optional methods

BEGIN

// state machine model including mandatory methods:
// 1. ouput method of the PHC
// 2. state manipulation method of the PHC

END

Figure �	�� Overall structure of a PHC�DL description	

Body The very core of the PHC� The state machine model and the element denitions
implicitly dening the two mandatory methods for state manipulation and output
generation	

Both parts � implementation and body � can contain database transactions	

The complete PHC�DL syntax and semantics fall outside the scope of this thesis� but
the key ideas will be illustrated by examples	 Details can be found in �Fal���� where the
implementation of this language is described in detail	 Figure �	� shows the PHC�DL
description belonging to the example in gures �	� and �	�	

The most important language elements are�

ELEMENT Elements are the base of the body of a PHC�DL description and provide the only
possibility of user interaction with a PHC	 Depending on the current state� they
may or may not be �clickable� and have a well
dened presentation string and�or
image	 In notation ��	�� these are named E � E 	 Every E has a PRINT clause
and�or an IMAGE clause to dene the output OE�P�DB� of the element and a
GOTO clause to dene the state transition S ��E�� fPk� pk�E�jk � K�E�g�E � E �
which a click on this element would trigger	 The clauses STATE� ELEMENT� GOTO
and PRINT together dene the delayed output state machine of denition � on
page ��	 The special clause NULL in combination with GOTO means that no link
is generated �no state transition is possible from this element�	 In combination
with PRINT� it denes an element as invisible �and thus not clickable� in the
corresponding state	 All the PRINT �and IMAGE� clauses of all the elements of
a PHC together implicitly form the output method of the PHC	 All the GOTO
clauses of all the elements of a PHC combined form the state machine and the
state manipulation method of this PHC implicitly	

PARAM A parameter is a data structure belonging to the internal session state infor

mation of a specic PHC and hence persists for a whole series of HTTP con

nections	 The type ROWID denes a parameter to hold the identier for a tuple

��

Relational Databases and pure HTML �	� Design Language

PHC Geo

// geographical selection
// version 1

INTERFACE

PARAM
Province PUBLIC ROWID PRINT tProvinz.aBezeichnung[aProvId];
Region PUBLIC ROWID PRINT tRegion.aBezeichnung[aRegId];
District PUBLIC ROWID PRINT {SELECT aBezeichnung FROM tGemeinde WHERE aGemeinId = PARAM;};

ELEMENT
Overview, OneUp, Province, Region, District;

LIST
SelList;

STATE
S0, //nothing selected, the first state is the start state
S1, //province selected
S2, //region selected
S3; //district selected

IMPLEMENTATION

BEGIN

ELEMENT Overview (
ALWAYS { PRINT ’overview’; GOTO S0; }

)

ELEMENT OneUp (
ALWAYS { PRINT ’higher region level’; }
STATE S0,S1 { GOTO S0; }
STATE S2 { GOTO S1; }
STATE S3 { GOTO S2; }

)

ELEMENT Province (
ALWAYS { GOTO S1; }
STATE S0 { PRINT NULL; }
STATE OTHER { PRINT PARAM Province; }

)

ELEMENT Region (
ALWAYS { GOTO S2; }
STATE S0,S1 { PRINT NULL; }
STATE OTHER { PRINT PARAM Region; }

)

ELEMENT District (
ALWAYS { GOTO NULL; }
STATE S0,S1,S2 { PRINT NULL; }
STATE OTHER { PRINT PARAM District; }

)

LIST SelList (// very concise inline definitions and implicit assumptions
STATE S0 QUERY IS

SELECT aBezeichnung { PRINT; }, aProvId { GOTO S1 SET PARAM Province;}
FROM tProvinz;

STATE S1 QUERY IS
SELECT aBezeichnung { PRINT; }, aRegId { GOTO S2 SET PARAM Region; }

FROM tRegion
WHERE tRegion.aProvId = PARAM Province;

STATE S2 QUERY IS
SELECT aBezeichnung { PRINT; }, aGemeinId { GOTO S3 SET PARAM District;}

FROM tGemeinde
WHERE tGemeinde.aRegId = PARAM Region;

STATE S3 { NULL; };
)

END //Geo

Figure �	�� PHC�DL description	

��

Relational Databases and pure HTML �	� Design Language

of a database table	 The optional PRINT clause denes the output of the pa

rameter which is printed instead of the parameter value if the parameter is
used directly as part of the generated Web page�	 Other possible datatypes are
CHAR� VARCHAR� INT� FLOAT� STRUCT �a structure of other data types� or BAG �a
relation of other datatypes�	 A parameter is implicitly dened as private	 If a
parameter is to be visible for other PHCs� it must be declared as PUBLIC	 In
addition� a default value can be dened as the start value of the parameter until
it is otherwise set	

VAR A variable holds transient local information which is valid during the method
execution within only one single HTTP connection but not the whole session	
It can be of the same datatypes as the parameters	

STATE The state clause is used to dene which branch is valid in which state	 Special
states are ALWAYS which is valid in all states and OTHER which is the default�
if no explicitly named state is set	 The possible combinations of all states and
elements form a two dimensional table Each table cell contains the rules to be
followed for PRINT and GOTO clauses for the respective combination	 Thus in
PHC�DL it is possible to dene either di�erent states nested within an element
or di�erent elements nested within one state	 The rst method has proven to
be more convenient in many cases because di�erent states can more often be
combined to one rule �e	 g	 STATE S��S��S�� than di�erent elements can	 This
results in a shorter and clearer overall description	

LIST A list can contain one or more elements	 It denes a series of tuples� where each
tupel contains an iteration of the element�s� of the list	 The elements have the
same functionality as a standalone element but an element in a list requires rules
for its presentation and functionality within each tupel of the list	 Hence a list
denition always contains a QUERY clause� used as a cursor loop� to dene the
values used in the rules of each element for each tupel iteration	 The parameter
setting is more important for di�erentiating between the element iterations in
the list� It is� however� not mandatory	

QUERY An SQL �Structured Query Language� query �Mis��� operation is needed to
dene a cursor for the values used in the ELEMENT and STATE clauses within a
list	 There are three possibilities for nesting queries� states and elements within
a list� State � query � element if di�erent queries are necessary in di�erent
states	 Query � state � element or Query � element � state if only one query is
used within the list� again with the two possibilities � either nesting states in
elements or elements in states	 The inline denitions of the PRINT and the SET
PARAM clauses are used as a convenient abbreviation in many cases	 The long
form of the denition would include the declaration of a cursor name �directly
after the keyword QUERY� and the explicit usage of the cursor variables within
the cursor loop	 An example of this is given later	 If a query contains only inline
denitions� the query need not be named	 If a list contains just one element�
this elements need not be named� It inherits the name of the list implicitly	

�This is essentially an abbreviation for a common case� The parameter can always be used within a
PRINT expression to produce a di�erent output�

��

Relational Databases and pure HTML �	� Design Language

PRINT The PRINT clause can only be used within an element as described above	 It
can have the following attributes�

� A parameter with the type ROWID� The output has to be dened with the
parameter declaration	

� A parameter or variable of the type CHAR� VARCHAR� INT� FLOAT� The con

tent is implicitly converted to a string	

� An SQL query which has a single result �one attribute� one tupel�	 This can
be thought of as an abbreviation of having rst a query of the type SELECT
��� INTO var FROM ���� which lls a variable with the result and then
a PRINT var statement to use the variable as output of the element	

GOTO The GOTO statement is used within elements to dene the state manipulation
that a user �click� on this element would trigger and the new page delivered to
the client afterwards	 It has the following attributes�

� Directly after the keyword GOTO� the new state is set explicitly	 If no state
is named� the default state is taken instead	

� The optional IN attribute is used to set the state and parameter of another
PHC instead of the current	 The current PHC can be explicitly referred
to as SELF or THIS� all other PHCs are referred to by their names	

� An optional list of parameter settings with the SET attribute determines
which parameter will be set to which expression during the state manip

ulation method	 If some parameters of another PHC have to be set� they
have to be declared as public within this other PHC	 The expression usu

ally contains cursor attributes from the surrounding query	

� The PAGE attribute determines the logical name of the new active page
and is a means of user guidance	 This attribute is optional� the default
causes the same page to be reloaded� which can also be explicitly named
with THIS or SELF	 In a single window mode without frames this simply
means the next page to be delivered to the Web browser	 If frames are
used� the active page has to be displayed in the appropriate frame	 If it
has already been displayed� it has to be refreshed	

� The REFRESH attribute nally can be used to determine� which pages will
change due to the change of the session state information	 This clause is
only necessary with frames and causes the named pages to be reloaded� if
they are currently being displayed	 Hence � with frames � the PAGE and
REFRESH attribute together determine which page is �re
�loaded into which
frame	 This is described in more detail in �	� on page ��	

� Instead of the PAGE attribute an URL can be declared to be loaded into
the current frame after completion of the state manipulation or functional
method	 This allows external pages to be displayed	

� The TARGET attribute can be used to dene a target frame for the page or
URL to be loaded	 It is especially useful for URLs but it can also be used
with pages	 In the latter case this overrides the default frame of the page	

��

Relational Databases and pure HTML �	� Design Language

Embedded into procedural blocks� the GOTO clause may look like a jump state

ment from the old BASIC days	 It is emphasized therefore that the GOTO clause
denes the state transition� caused by a click on the actual element� and the
new page�s� delivered to the client	 It is not a means of control �ow within the
PHC�DL blocks	

MESSAGE A message poses an alternative to the GOTO statement� It denes a message
with parameters� to be sent to a PHC upon user interaction �i	 e	 �click�� on this
element� instead of the built
in method for state manipulation� dened by the
GOTO clause	 The MESSAGE statement can also have a PAGE or an URL� a TARGET
and one or more REFRESH attributes	 Furthermore� the method implementation
itself can also contain a GOTO statement with some of these clauses� PAGE and
URL would override the respective clauses from the MESSAGE call� but REFRESH
pages are not possible	 In contrast to the standard state manipulation method�
a functional method implementation can also send another message to the same
or another PHC	

METHOD To enable a PHC to accept a message� a method has to be dened within the
implementation part of the PHC with the METHOD clause	 There is a tradeo�
between state manipulation and functional methods resulting from the question
of what to store in the local session state information parameters of a PHC�
Either the user�s selection or the result based on a query using these selections	
The answer is� If there are not too many di�erent user selections� it is easier
to use the parameters to store these selections and to use the state manipula

tion methods to change them	 If there are many di�erent user selections �and
especially if their number cannot be determined in advance� for instance as is
the case with a shopping basket�� then it is easier to use a functional method
to incorporate the actual user selection into a new result and store the result
within the session parameters	

CONDITION With this clause� conditions needed for layout purposes can be dened within
PHC�DL and later used within PHC�LL	 Conditions are named and set within
the branch of an IF statement	 They can be used within the PHC�LL to dene
variations of the user interface layout depending on the condition	 Especially
useful if dened in PHC�DL within a list denition� they can be used in PHC�LL
only in combination with an iterator dened from the same list	

More sophisticated examples of the usage of all these clauses are given in appendix A on
page ��	

�Parameters are handed over by name� not by position�
�The state manipulation method can be thought of as a special form of message� However� the implicit

de�nition with all the GOTO clauses of all the elements of a PHC has to be proven to be more e�cient
and convenient than an explicit de�nition of a state manipulation method�

��

Relational Databases and pure HTML �	� Layout Language and Interface

��� Layout Language and Interface

Whereas the PHC�DL describes the PHC itself �functionality and output generation for
each element�� the PHC�LL is a procedural language embedded into HTML and describes
how the PHCs� elements� output is integrated into the surrounding HTML code	 The
PHCI separates the PHC from the layout as far as possible� by allowing the PHC�LL to
make use of the following parts of the PHC�DL only�

� The elements� PRINT and IMAGE methods can be used	

� The lists can be used for loop denitions	

� Predened conditions can be questioned	

� The PHC�s states are available	

It is emphasized that PHC�LL just denes the layout of the surrounding HTML page�
whereas the structure� the string and image representation of the PHCs are already
dened within the PHC�DL	 This separation provides some advantages over the direct
integration with HTML�

� It makes the PHC independent from the layout and thus from future changes to
HTML	

� One PHC can be used a multiple number of times within di�erent pages with
di�erent layouts� e	 g	 to satisfy user�s needs	 An example will show this later	

� The PHC�DL can be developed by application programmers and database experts�
whereas the PHC�LL can be implemented by graphical designers and multimedia
experts �often a more artistic than technical task�	 These two groups� with very
di�erent skills� only have to share a common PHCI instead of working together on
one code	

� Even other frontends instead of HTML �VRML � Virtual Reality Modeling Lan

guage � or Java� are possible because of this strict separation	

Figure �	� shows the PHC�LL description belonging to the PHC�DL in gure �	�	 The
generated browser view� depending on the actual state of the PHC� is shown in gure �	�
on page ��	 In state S� we receive the generated HTML code as shown in gure �	��
resulting in a browser view as shown in gure �	��	

The language example is simple and self�explanatory� the embedding of the PHC�LL into
the HTML code is done via SGML �Standard Generalized Markup Language� comments	

�Of course there are some relations between PHC�DL and PHC�LL� On the one hand PHC�LL is
tailored towards the functional structure of the PHC�DL and on the other hand a di�cult layout may
require additional PHC�DL code� However� the key feature is that this mutual dependency is well de�ned
to a very small amount of information � the PHCI�

��

Relational Databases and pure HTML �	� Layout Language and Interface

<TABLE ALIGN="right" WIDTH=115 BORDER=0>
<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>
<TR><TD>

<!--$PHC PRINT(Geo.Overview); --><DUMMY>Geo.Overview</DUMMY>
</TD></TR><TR><TD>

<!--$PHC PRINT(Geo.OneUp); --><DUMMY>Geo.OneUp</DUMMY>
</TD></TR>
<TR><TD>

<!--$PHC PRINT(Geo.Province); --><DUMMY>Geo.Province</DUMMY>
</TD></TR><TR><TD>

<!--$PHC PRINT(Geo.Region); --><DUMMY>Geo.Region</DUMMY>
</TD></TR><TR><TD>

<!--$PHC PRINT(Geo.District); --><DUMMY>Geo.District</DUMMY>
</TD></TR><TR><TD ALIGN=center><HR></TD></TR>

<!--$PHC FOR item IN Geo.SelList LOOP -->
<TR><TD ALIGN="right">

<!--$PHC PRINT(item); --><DUMMY>Geo.Overview</DUMMY>
</TD></TR>

<!--$PHC END LOOP; -->
</TABLE>

Figure �	�� PHC�LL description	

<TABLE ALIGN="right" WIDTH=115 BORDER=0>
<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>
<TR><TD>overview</TD></TR>
<TR><TD>extend region
level</TD></TR>
<TR><TD>Niederösterreich</TD></TR>
<TR><TD>Mostviertel</TD></TR>
<TR><TD></TD></TR>
<TR><TD ALIGN=center><HR></TD></TR>
<TR><TD ALIGN="right">Aigelsbach</TD></TR>
<TR><TD ALIGN="right">Amstetten</TD></TR>
<TR><TD ALIGN="right">Artstetten</TD></TR>
<TR><TD ALIGN="right">Blindenmarkt</TD></TR>
<TR><TD ALIGN="right">Eschenau</TD></TR>
<TR><TD ALIGN="right">Euratsfeld</TD></TR>
.....
</TABLE>

Figure �	��� Generated HTML code of PHC Geo in state S�	

��

Relational Databases and pure HTML �	� Building a Complete Information System

Figure �	��� Browser view of PHC Geo in state S�	

Thus� any HTML editor can be used to design the surrounding layout without being
confused by the embedded language	 The disadvantage is that a standard HTML editor
or browser would display nothing instead of the elements� output� ending up with an
ugly and unrepresentative layout in most cases	 To solve this problem� the dummy tag
is introduced� A standard HTML browser or editor would ignore this tag and treat
the contents of it as normal text	 The tools on the other hand remove the dummy
tag
including the content	 With this �trick� similar to the NOFRAMES tag for frame
incapable
browsers a representative layout can be achieved with the PHC�LL source code	

The most important language elements of PHC�LL are the PRINT and the IMAGE state

ments� which include the textual or image output of an element into the HTML code	
The FOR loop denes an iterator �item in gure �	�� for a list	 Within this loop all the
element�s� of the list can be named using the iterator and the name of the element	 If the
list contains just one element� the iterator alone is enough	 The naming of the iterator
also allows nested loops	

��� Building a Complete Information System

To build a complete� pure HTML based Web application one has to tackle the following
tasks�

� Design of the functional elements �PHCs and forms�	

� Description of the pages� either static pages or pages containing functional control
elements embedded into HTML	

� Logical arrangement of the pages and overall structure	

��

Relational Databases and pure HTML �	� Building a Complete Information System

� Crosslinks from one page to another �internal or external�	

� Design of the frame layout of the pages� i	 e	 which page has to appear in which
frame	

� Multilingual support	 Although the Web �speaks� mainly English� multilingual
support is necessary as a convenience and courtesy to the end user� especially in
Europe	

� Security and user rights

With the PHC framework these design tasks are solved as follows� Functional Elements
and Database transactions are dened with PHC�DL as shown in the previous sec

tions	 The pages are pure HTML and control elements are embedded via PHC�LL	
Each page has a unique logical name under which it is stored in the database	 Even
static pages without any control element are stored in the database	 This makes the
Web
Management �Beh��� easier� too	

Logical Page Flow and Crosslinks

Links have to be bidirectional to enable maintenance of the complete system	 Within
the PHC framework every anchor tag is either generated dynamically from a PHC func

tion� from a logical page arrangement or from the crosslink database	 The logical page
arrangements include�

� hierarchical document collections

� linear document collections

� nested structures

� table of contents� index pages� full text search� menues

� predened logical page �ows �e	 g	 one or more guided tours�

Crosslinks� on the other hand� are dened within the HTML pages with the PHC�LL
clause GOTO �e	 g	 GOTO PAGE Result�	 Each time a static page in the database is in

serted� modied or deleted� a trigger will cause a parsing of this page and update the
bidirectional logical link database from the GOTO
statements contained in this page	 Hence
it is impossible that internal links can fail	 If a page should be removed but links are
pointing to that page� a warning is generated	 Ignoring this warning results in the re

moval of all the links pointing towards this page	 External links are also dened by the
GOTO clause �e	 g	 GOTO URL ��http���some�where�org�page�html��� and the links are
also stored in the database	 In this case� a Web robot has to check periodically if the
remote links are still valid and sends an email to the webmaster if at least one link fails	

��

Relational Databases and pure HTML �	� Building a Complete Information System

Frames and Window Modes

PHC�LL is used to dene the di�erent framesets and pages� Each page and frameset is
dened with PHC�LL as shown in gure �	�� and each page or frameset has its place in
one �or more� framesets� depending on the actual mode	 Figure �	�� shows an example of
the overall frame structure of an application	 A window repository is extracted from the
PHC�LL denition of the framesets and stored in the database	 Each time a dynamic
HTML page is generated� the anchor tags within that page are provided with the appro

priate target attributes	 Also the REFRESH and the PAGE clauses of the GOTO clause are
resolved at that time� The page from the PAGE clause has to be displayed in the appro

priate frame and may therefore determine which new frameset is to be displayed	 If the
page is already displayed� it has to be refreshed	 All the pages from the REFRESH clause �
but only if displayed in the actual frameset � have to be refreshed �reloaded�	 To reload
more than one frame without JavaScript� the special HTML target values �� parent�� and
�� top�� are used	 Hence� when generating a page� the window repository is used to au

tomatically generate the correct target values from the PAGE and REFRESH denitions of
the respective elements� computing in advance which pages will have to be reloaded into
which frame if the respective element is �clicked�	

The generated button bars for navigating the document collection structure and all inter

nal links are also adapted to the current frame structure� If a page is already displayed
in a frame of the actual frameset� the navigation buttons and links pointing to that page
disappear	 The reason for this is that a user would get no reaction from clicking on such
a link unless named tags are used to jump to a particular position within a page �in this
case the appearance of the links is not suppressed�	

Another nice and useful feature has been implemented into the PHC framework� A page

can be congured to have a full
screen button which enables the user to display
the page in a predened parent frameset as shown in gure �	�� with the page named
�navigation��

�����PHC PAGE navigation MODE Expert IN nav FULLSCREEN main ���

When the page appears in full
screen mode� another button allows the user to switch
back into framed mode	 Both buttons are simply implemented as images with anchors	

Multilingual Support

Multilingual support is �built
in� in the PHC framework	 Everything printed with the
PRINT clause in the PHC�LL description� either user interface strings or element output�
is multilingual from the start	 One language has to be selected as the default language	 In
addition a set of database attributes is usually dened to be multilingual thus replacing
the attribute by a foreign key to the dictionary� which contains the attribute in all the

��

Relational Databases and pure HTML �	� Building a Complete Information System

<!--$PHC
ROOT Demenet;
LANGUAGES English DEFAULT, Deutsch, Suomi;
MODES Beginner, Expert;
-->

<!--$PHC FRAMESET f_overview MODE Beginner, Expert IN ROOT; -->
<HTML>
<TITLE>DEMENET</TITLE>
<FRAMESET ROWS="65,*" border=1>
<FRAME NAME="title" SRC=<!--$PHC FRAME title; --> scrolling="no" marginheight=1
marginwidth=1 noresize>
<FRAME NAME="main" SRC=<!--$PHC FRAME main; --> marginheight=1 marginwidth=1 >
</FRAMESET>
</HTML>

<!--$PHC FRAMESET f_product MODE Expert IN main AS DEFAULT; -->
<HTML>
<TITLE>DEMENET - Farmer Products</TITLE>
<FRAMESET cols="380,*" border=1>
<FRAME name="nav" src=<!--$PHC FRAME nav; --> marginheight=1 marginwidth=1>
<FRAME name="output" src=<!--$PHC FRAME output; --> marginheight=1 marginwidth=1>
</FRAMESET>
</HTML>

<!--$PHC FRAMESET f_results MODE Expert IN output AS DEFAULT; -->
<HTML>
<TITLE>DEMENET - Results</TITLE>
<FRAMESET rows="50%,50%" border=1>
<FRAME name="out" src=<!--$PHC FRAME out; --> marginheight=1 marginwidth=1>
<FRAME name="caddy" src=<!--$PHC FRAME caddy; --> marginheight=1 marginwidth=1>
</FRAMESET>
</HTML>

<!--$PHC FRAMESET f_admin MODE Expert IN main; -->
<HTML>
<TITLE>DEMENET</TITLE>
<FRAMESET cols="320,*" border=1>
<FRAME name="menu" src=<!--$PHC FRAME menu; --> marginheight=1 marginwidth=1>
<FRAME name="edit" src=<!--$PHC FRAME edit; --> marginheight=1 marginwidth=1>
</FRAMESET>
</HTML>

<!--$PHC PAGE welcome IN ROOT AS DEFAULT; -->
<HTML>
...
</HTML>

<!--$PHC PAGE menu MODE Beginner, Expert IN title; -->
<HTML>...</HTML>

<!--$PHC PAGE home MODE Beginner IN main MODE Expert IN out, output; -->
<HTML>...</HTML>

<!--$PHC PAGE product MODE Beginner IN main AS DEFAULT -->
<HTML>...</HTML>

<!--$PHC PAGE navigation MODE Expert IN nav FULLSCREEN main -->
<HTML>...</HTML>

Figure �	��� PHC�LL denition of the various framesets and pages	

��

Relational Databases and pure HTML �	� Implementation

root

frame title

frame main frame
nav

frame
output

frame out

frame
caddy

menu

nav

result

caddy

sample final browser view

frameset f_overview frameset f_product frameset f_results

frame
menu

frame
edit

frameset f_admin

page navigation

page home

page order

page result

page caddy

page menu

page dictionary

page user_dic

page person_formpage vendor_menu

page admin_menu2

page admin_menu1

page tourism_selection

page tourism_result

page welcome
page login

page language

Figure �	��� Overview of frameset and page denitions in the mode �Expert�	

required languages	 For administration purposes a Web interface is provided to edit the
various languages in the dictionary	 This enables Web collaboration for administrative
purposes on the nal application	 Interpreters from di�erent countries can translate the
dictionary entries into the di�erent languages	 The advantage of that structure is� In
order to add a new language� nothing has to be recompiled	 It is only necessary to make
one single entry indicating that the new language is available	 The dictionary has then
to be lled in for that language by interpreters from all over the Web	

Security and User Rights

First users and groups of users have to be dened	 Rights can then be granted to users
or groups	 Rights include system privileges �e	 g	 to edit the dictionary� and object
privileges	 Object privileges can be the right to see a page or frameset or to use a form
or a PHC	 With PHCs the rights can further be distinguished between�

� the right to use the state manipulation method of a PHC

� the right to use a particular functional method of a PHC

� the right to see the output of a PHC

��� Implementation

Whereas the advantages of a client
server model are exploited for design� in the case of
pure HTML the nal implementation of a PHC is done on the server side	 No functional

��

Relational Databases and pure HTML �	� Implementation

elements are needed on the client side	 All �intelligence� is thus located on the server
making the control element passive in this sense	 Every Web page� including all links� is
dynamically generated from the database and the session state of all PHCs within this
page	 The hyperreference URL of every link contains parameters for the global session
handle and state transition and parameter information of the appropriate PHC	

In this current pilot implementation these parameters are passed in clear text� which is
especially useful during development	 For the nal release� all parameters will be encoded
together into one string including a randomly generated authentication identier to avoid
the possibility of misuse	 The lifetime�problem of state information is overcome by a
timeout mechanism	 It purges old state information from the database if the session
was not closed properly� which is typical on the Internet	 The problem with the browser
cache that every URL
based state maintenance mechanism has to face can be overcome
by setting the HTTP response header eld �Expires� to a date in the past �Gra���	

Di�erent Implementation Methods

Considering the way an abstract description of a Web application is nally implement

ed we can di�erentiate the following approaches� Generation and interpretation	 As
with general purpose programming languages� interpretation results in a more �exible
development environment at the cost of a slower runtime system� Modications can be
incorporated into the running system without the need for recompilation	 On the other
hand generation �or compilation� results in a faster nal version at the cost of a more
complex development environment� Each modication demands a recompilation of at
least parts of the system� but nally the compiled code is faster	 Hence a design decision
has to be made primarily as a tradeo� between performance and �exibility	

A straight
forward approach is to generate a static HTML document tree from the ab

stract description of the structure of the logical pages	 This results in the fastest possible
Web interaction � but only as long as no database interaction is required during run

time	 However� this approach is reasonable for information systems whose content does
not often change and where seeing �old� content until a new tree is generated from the
continously changing database is not a hindrance	 Equally importantly� the Web service
causes almost no additional load to the database as the database is only required during
generation	

If database interaction is required during runtime �e	 g	 either because user input into the
database or up
to
date information is required� the generation of a static document tree is
no longer possible	 Hence� with Web applications consisting of static� and dynamic pages
we can further di�erentiate between the following possibilities concerning the runtime
environment of the PHCs� the static pages and the dynamic pages respectively�

PHCs Two possibilities exist for the runtime environment of PHCs�

�In this context �static� means that no database interaction is included within this page� It does not
mean that the page is a pure HTML page within a �le system�

��

Relational Databases and pure HTML �	� Implementation

� After lexical analysis and parsing� the PHC�DL and PHC�LL descriptions are
stored in a design repository within the database	 If a message for a state
manipulation method or a functional method or an output method is received�
the interpreter manipulates the database and constructs the output according
to the appropriate PHC information stored in the design repository	

� Alternatively� a generator generates PL�SQL �Procedural Language with em

bedded SQL� procedures directly implementing the methods for state manip

ulation� functionality and output generation	 In this case� if a message is
received� a compiled procedure is called with the appropriate parameters	

static pages Furthermore� these same two possibilities exist for static pages� Either an
output procedure is generated for each page doing nothing else other than print

ing out static HTML code or the templates are stored in the database containing
meta
information for the logical structure	 During runtime and before a page is
delivered to the client� the meta
information is interpreted and replaced by anchors
for navigation and crosslinks dynamically generated from the meta
tags	 The rst
approach is moderately faster of course� but it is rather in�exible� Even a simple
change to a static page requires the recompilation of at least some parts of the
system	

dynamic pages Dynamic pages can also either be stored as templates with meta

information marking where to insert the PHCs� output� or they can be directly
implemented as compiled PL�SQL procedures printing �calculated� HTML code	

All but the rst approaches have one point in common � a database is required for the
runtime environment	 Hence it is reasonable to put everything into the database� even
static templates	 The database tools for distribution� replication and backup can then
be used in a homogenous way for the whole system	 The following subsections describe
both approaches and further details can be found in �Fal���	

Interpreter and Design Repository

Interpretation and generation can e�ciently be combined to form one approach shown in
gure �	��� The interpreter is used as a design tool and the generator nally compiles the
design repository into procedures� runtime repository and the schema for the dynamic
session state information �see next section� thus building the nal application	

The PHC�DL and PHC�LL source les are rstly lexically analyzed and parsed and a
symbol tree consisting of tokens and their attribute values is built	 This symbol tree is
then stored in the database as relational data structure and called �design repository�	
During interpretation� the current session state information �states and parameter values
of all PHCs of all active sessions� is also stored in the design repository�		 With the
runtime interpreter� this design can now be immediately tested	 Although this works
more slowly than the nal implementation� interactive design tools provide direct access

�	Hence the design repository is also used as runtime repository with the interpreter�

��

Relational Databases and pure HTML �	� Implementation

P
H

C
/D

L
P

H
C

/L
L

H
T

M
L

pa
rs

er
lo

ad
er

de
si

gn
re

po
si

to
ry

in
te

rp
re

te
r

(P
L/

S
Q

L)

ge
ne

ra
to

r

in
te

ra
ct

iv
e

de
si

gn
 to

ol
s

in
te

rm
ed

ia
te

re
pr

es
en

ta
tio

n

ba
ck

en
d

ru
nt

im
e

re
po

si
to

ry

ap
pl

ic
at

io
n

(P
L/

S
Q

L)

W
eb

 s
er

ve
r

da
ta

ba
se

br
ow

se
r

(p
ur

e
H

T
M

L)

se
ss

io
n

st
at

e

ru
nt

im
e

en
vi

ro
nm

en
t

D
es

ig
n

G
en

er
at

io
n

C
lie

nt
S

er
ve

r

da
ta

ba
se

R
un

tim
e

H
T

T
P

ex
tr

ac
to

r
ca

no
ni

ca
l f

or
m

Figure �	��� Design and two di�erent implementation methods� interpretation and gene

ration	

��

Relational Databases and pure HTML �	� Implementation

to the design repository via a graphical user interface� This allows direct manipulation
of the design within the repository and immediate testing of the changes with the in

terpreter	 One of the design tools is an extractor rebuilding canonical PHC�DL and
PHC�LL descriptions of the changed design repository	

It should be mentioned that the design tools themselves are also implemented as a
database backed Web application	 Hence some design teams distributed all over the
world can collaboratively work on the same application by simply using a Web browser
with pure HTML on the client side"

The scenario for a runtime client
server interaction using the interpreter is shown in g

ure �	��� Initially a message is received from the user interface	 The interpreter reads the
appropriate PHC�DL method denition �either state manipulation or functional method�
from the GOTO denition of the �clicked� element in the repository and starts to interpret it	
In the case of a state manipulation method� a simple lookup into the state machine table
� stored explicitly as relation in the design repository as old state�element� new state
� is all that is needed	 This may result in state manipulation and database transactions
and the new state and parameter values are stored in the session state information	

The next output page is then determined and its PHC�LL is interpreted	 This causes
the interpreter to read the PHC�DL output method denitions of all the contained PHCs
with respect to the current session state	 Each SQL statement is rst parsed and the
placeholders for the parameters and variables are replaced by the actual values	 The
SQL statement is then executed with dynamically embedded SQL and the result set is
included in the HTML skeleton	 As a result the complete HTML page has nally been
constructed	

This is the most complex and most time consuming part of the interpretation	 One
main reason for the lacking performance of the interpreter approach is the heavy use
of dynamically embedded SQL instead of statically embedded SQL as is the case with
generation	

Generator and Runtime Repository

The generator leaves the nal choice of what to generate and what to interpret to the
designer�

� For a set of static pages dened solely with PHC�LL a static document tree can be
generated	

� If there is a large number of static and dynamic HTML pages� it is reasonable to
store these pages as templates within the runtime repository with meta
information
for navigation	 Procedures are only generated for the methods of the PHCs �state
manipulation� functional and output�	 This scenario is shown in gure �	��� A
page interpreter reads the template and then calls the output procedures �O�
procedures� of the contained PHCs	 These O�procedures have been generated from
the PHC�DL description alone� while the PHC�LL descriptions are converted into
the page templates	

��

Relational Databases and pure HTML �	� Implementation

P
H

C
 G

eo

In
te

rp
re

te
r

E
LE

M
E

N
T

 S
el

Li
st

’C
LI

C
K

’

P
ag

e
P

ro
du

ct

P
ag

e
P

ro
du

ct

D
B

G
O

T
O

 S
2

S
E

T
 P

A
R

A
M

 R
eg

io
n

P
A

G
E

 P
ro

du
ct

H
T

M
L

P
H

C
/D

L
G

eo

P
H

C
/L

L
P

ag
e

P
ro

du
ct

P
H

C
/D

L
P

ro
d

P
H

C
/D

L
S

el
ec

tio
n

P
H

C
/D

L
R

es
ul

t

Figure �	��� Interpreter and repository	

��

Relational Databases and pure HTML �	� Implementation

� If there are lots of static pages but only a few dynamic pages� the dynamic pages are
also implemented as compiled procedures instead of templates	 These procedures
are generated from the the PHC�LL descriptions of the dynamic pages and incorpo

rate the output methods �PHC�DL� of the contained PHCs resulting in the fastest
possible generation of the dynamic pages	 This scenario is presented in gure �	��
and is used for the prototype implementations described later	

� If there are only a few static pages and performance is crucial on the server side
but �exibility in changing the pages� contents is less so� then the static pages can
also be implemented as compiled PL�SQL procedures	

The generator takes the design repository as input and compiles it into an intermediate
representation	 Di�erent backends nally produce the sourcecode of the methods for
di�erent database systems and di�erent programming languages��	 A runtime repository�
which contains HTML templates for static and dynamic logical pages� images� window
mode and frame denitions� dictionary� user management� rights and security is also
generated	 Finally� the schema for the dynamic session state information has to be
created in the database dictionary	

As mentioned previously� a PHC can be �called� in two di�erent ways� These two abstract
ways now nd their concrete equivalence in two di�erent kinds of procedures used to
implement the PHC functionality�

� The S�procedures implement the structural methods � either the state manipulation
or the functional methods of a particular PHC	 A state manipulating S�procedure
typically takes an element and eventually some parameters as input and then calcu

lates the new state and the new parameter set	 Functional S�procedures typically
take some parameters and perform some database transactions	 At the end of the
S�procedure� the ouput page is determined	 When the page was generated from
which the current message came� the next output page has usually been calculated
from the active page� the refresh pages and the window mode in advance	 This page
has been encoded into the anchor and was hence sent to the current S�procedure as
a parameter	 However� a functional S�procedure can also calculate its own output

page thereby overriding the predened page	 This mechanism has been described
by the MESSAGE clause on page ��	 Finally� the S�procedure calls the appropriate
O�procedure	

� The function of the O�procedures depends on the implementation method used for
dynamic pages� If the dynamic pages are stored as templates� each PHC has its own
O�procedure which prepares the output strings of all elements of the PHC	 If dy

namic pages are implemented as stored procedures� one O�procedure for each page
prepares the output strings of all PHCs within this particular page and combines
them with the surrounding HTML code to generate the complete Web page	 In

��Only PL�SQL for an Oracle database is currently considered� but the separation into generator and
backend allows for future cartridges e� g� Informix� Sybase� MS SQL server or even a generic backend
to generate Perl code for a FastCGI interface connected to an ANSI �American National Standards
Institute� SQL database�

��

Relational Databases and pure HTML �	� Implementation

P
H

C
 G

eo

S
_G

eo

G
O

T
O

 S
2

S
E

T
 P

A
R

A
M

 R
eg

io
n

P
A

G
E

 P
ro

du
ct

P
ag

e
In

te
rp

re
te

r

pa
ge

 (
P

ro
du

ct
)

E
LE

M
E

N
T

 S
el

Li
st

’C
LI

C
K

’

P
ag

e
P

ro
du

ct

H
T

M
L

P
ag

e
P

ro
du

ct

P
ro

du
ct

T
em

pl
at

eP
H

C

P
H

C

P
H

C

PHC

D
B

O
_P

ro
d

O
_S

el
ec

tio
n

O
_R

es
ul

t

ou
tp

ut

ou
tp

ut

ou
tp

ut

O
_G

eo

ou
tp

ut

Figure �	��� Generator and runtime repository with pages implemented as templates	

��

Relational Databases and pure HTML �	� Implementation

P
H

C
 G

eo
S

_G
eo

G
O

T
O

 S
2

S
E

T
 P

A
R

A
M

 R
eg

io
n

P
A

G
E

 P
ro

du
ct

O
_P

ro
du

ct

pa
ge

ou
tp

ut

D
B

E
LE

M
E

N
T

 S
el

Li
st

’C
LI

C
K

’

P
ag

e
P

ro
du

ct

H
T

M
L

P
ag

e
P

ro
du

ct

Figure �	��� Generator and runtime repository with pages implemented as procedures	

��

Relational Databases and pure HTML �	� Implementation

both cases the most important task of the O�procedures is to generate the anchor
tags for all elements of all the PHCs within this page	 From the GOTO clause of an
element� especially from the PAGE and REFRESH attributes� the next output page �
i	 e	 the page to be loaded after a click on this element � is computed in advance and
encoded into the hyperreference of this element as an additional parameter	 If the
page has to be loaded into another frame or more than one page has to be reloaded�
then the appropriate target value also has to be determined and the output page
may be a whole frameset instead of a single page	

Hence the separation into S� and O�procedures re�ects the strict separation into state
transition and output generation mentioned earlier � the S�procedures produce no output
and the O�procedures cannot change the session state	 Among other advantages it allows
a more stable and robust pure HTML interface	 Figure �	�� shows the implementation
model belonging to the design model from gure �	� on page ��	

Look�Ahead Link Generation

Both approaches� interpreter and generator� dynamically generate a sequence of HTML
pages	 In both cases the most important task of the O�procedures is to generate the
anchor tags for all elements of all the PHCs within this page	 There are two possibilities
for generation of the hyperreference URLs of the page�

�	 The rst possibility is quite straightforward� The link of an element contains the
session handle �for state maintenance�� the name of the element and the name of
the PHC the element belongs to��� and the name and value of the parameters to be
set�

�a href���fsm�handle���	phc�Geo	element�SelList	pRegion������Mostviertel�
a�

This information is always sent to the same function fsm implementing the state
machine for the whole system	 From the GOTO or CALL clauses of the PHC�DL
declarations of the appropriate element on the one hand and from the current state
of the corresponding PHC �stored in the current session state information� on the
other hand it can then be determined which function has to be called or which new
state has to be set	 Afterwards� the next output page can be determined from the
PAGE attribute and nally be generated completing one circle	

�	 The other possibility is to compute in advance� what has to be done when an
element is clicked on � and to generate this information into the hyperreferences of
the elements� anchor tags �see denition � on page ���� Which functional or state
manipulation method has to be called� possibly which new state to be set� some
parameters with their values and the name of the next output page	

��Element names are local within a PHC and need not be unique throughout the whole application�

��

Relational Databases and pure HTML �	� Implementation

�a href���S Geo�handle���	state��	pRegion���	pPage�Product���Mostviertel�
a�

Now when an element is clicked� the appropriate functional or state manipulation
method is directly called with the parameters already encoded into the URL	 One
of these parameters is the next output page� explicitly dening which page to be
generated next� completing one circle	 This is in accordance with notation �	� on
page ��	 Figure �	�� shows one circle	 In this case� the O�procedure is enhanced
by some parts of the S�procedure in order to compute the possible new states in
advance	 The S�procedure only takes the parameters and sets the new state	

At a quick glance the rst method seems to be very intuitive for the interpreter
implementation�� because it is easier to resolve only one action after a particular ele

ment has been clicked rather than to compute all possible actions for all elements within
one page in advance and to encode them into the URLs	 The second method� on the
other hand� seems to be more convenient for generation because the appropriate functions
are called directly with their parameters	 Moreover� with generation the time consuming
look
ahead takes place during compile time and hence needs no additional computing
power during runtime	

However� both statements are true as long as we do not use frames	 If we do� the rst
method causes problems� From the GOTO clause of an element� especially from the PAGE
and REFRESH attributes� the next output pages � i	 e	 the pages to be loaded after a click
on this element � have to be computed in advance and encoded into the hyperreference
of this element as an additional parameter	 This is required if the page has to be loaded
into another frame or more than one page has to be reloaded	 The reason for this is that
the appropriate target value also has to be determined and the output page may then be
a whole frameset instead of a single page	

Hence the interpreter has to at least compute in advance which page or frameset to load
into which target frame in order to generate the appropriate target values	 The other
information� such as which action to call or which new state to set can still be determined
after the element has been clicked on� taking some computing load o� the interpreter	
The resulting anchor might then look like this�

�a href���fsm�handle���	phc�Geo	element�SelList	pRegion���	pPage�Product���

Library Concept and Reusability

Though working with PHCs is very e�cient compared to direct PL�SQL implementation�
it is still a method of database programming and needs programming skills	 A library of

��This method has in fact been used on page �� to explain the interpreter because it is the more
intuitive approach� The interpreter can of course also use the other method of link generation�

��

Relational Databases and pure HTML �	� Implementation

P
H

C
 G

eo

E
LE

M
E

N
T

 S
el

Li
st

’C
LI

C
K

’

pr
ev

io
us

 p
ag

e

ne
xt

 p
ag

e

P
ag

e
P

ro
du

ct

<
a

h
r
e
f
=
"
S
_
G
e
o
?
h
a
n
d
l
e
=
1
7
&
s
t
a
t
e
=
2
&
p
R
e
g
i
o
n
=
1
7
&
p
P
a
g
e
=
P
r
o
d
u
c
t
"
>
M
o
s
t
v
i
e
r
t
e
l
<
/
a
>

ge
ne

ra
te

d
hy

pe
rr

ef
er

en
ce

 U
R

L
fo

r
el

em
en

t "
M

os
tv

ie
rt

el
"

in
 S

el
Li

st
:

S
_G

eo

G
O

T
O

 S
2

S
E

T
 P

A
R

A
M

 R
eg

io
n

P
A

G
E

 P
ro

du
ct

O
_P

ro
du

ct

D
B

H
T

M
L

pa
ge

ou
tp

ut

pa
ge

ou
tp

ut
D

B

cu
rr

en
t H

T
T

P
 c

on
ne

ct
io

n

po
ss

ib
le

 n
ex

t H
T

T
P

 c
on

ne
ct

io
n

Figure �	��� Look
ahead link generation	

��

Relational Databases and pure HTML �	� Limits and Improvements

PHC�DL modules can overcome this problem by providing a rich set of ready
to
use PHCs
for many purposes	 This requires the PHCs to abstract from the ER part of the concrete
underlying database to an ER structure with some minimum structural requirements	
The PHC can then later be used with any database � if the structural requirements are
fullled � by simply assigning the appropriate database entity and attribute names to
the parameters	 Applications can hence be built easily by putting together some PHCs
from the library	 This introduces a method of reusability �GJM��� of PHCs	

��	 Limits and Improvements

Firstly this section summarizes the main features and advantages of the PHC approach	
A critical view on PHCs then leads to possible future works�

� Strict separation between the layout and the structure of PHCs	 The functionality�
internal state information and the database transactions are completely indepen

dent from the user interface representation of a PHC	 A PHC is neither assigned
to a single HTML page nor is it limited to HTML as client side user interface
representation	 This is one main di�erence between PHC and other approach

es �BS��� �heitml�	 It allows PHCs to be used in more than one page� in di�erent
HTML layouts or even with di�erent client side implementations �Java� VRML�	

� Compact integration of functionality� database transaction and session state hand

ling	

� PHCs use links instead of form elements to implement user interaction in most
cases	 Forms are only necessary to solicit user data��	

� The sound theoretical model of a state machine is useful for later theoretical and
practical work on design tool support and on automated testing and verication
�correctness proof� of the implemented applications	

� Web applications designed with PHCs are robust and stable despite the stateless
nature of the HTTP protocol and the inability of the browser to store user interface
state information	 This is achieved through the strict separation of state transition
and output generation mentioned earlier� A user interaction may result in a changed
session state information � the output of a PHC is� however� only dependent on the
new session state information but not on the last user interaction	 As long as the
a�liated state information is not changed� a dynamically generated Web page will
always look the same� regardless of the user interactions which have taken place in
the meantime	

� The pure HTML approach guarantees compatibility with almost every browser on
the Web without getting involved in the competition between Netscape ��NS� and

��Of course one could implement a HTML keyboard consisting of links making forms completely
obsolete� However� this would de�nitely not result in a more comfortable user interface�

��

Relational Databases and pure HTML �	� Limits and Improvements

Microsoft ��MS�� while the World Wide Web Consortium ��W�C� tries to nd
a consensus on the standards �RCK���	 A citation from Tim Berners
Lee � the
inventor of the Web himself � says it all ��Any��

�Anyone who slaps a �this page is best viewed with Browser X� label
on a Web page appears to be yearning for the bad old days� before the
Web� when you had very little chance of reading a document written on
another computer� another word processor� or another network	�

The following improvements are planned in future work�

� A graphic version of the design language PHC�DL including tool support	 Methods
used for structured hypermedia design �ISB��� seem to be a good starting point for
further development in this area	

� Enhancement of the generator tools to provide Java �see section �	�� and VRML
�BW��� as alternative user interface implementations	 Especially the integration of
Java and VRML provides new possibilities �Bru���	

� Enhancement of the pure HTML interface with a scripting language as soon as it
becomes clear which one�� will be the major client side scripting language	

� Complete object oriented PHC�DL instead of the current object based approach�
e	 g	 a subset of Java could be used as PHC�DL	 When Java replaces the current
procedural database programming languages and the Java virtual machine is inte

grated with the object relational database kernels �Ros���� this approach starts to
become interesting	

� Object oriented integration of information design and functionality design� ideas
can be found in �BBB#���	

� Object oriented notation also for the PHC�LL � e	 g	 �PHC�Geo�OneUp�PRINT� �
by possibly using the Extensible Markup Language XML �Hol��� or a user dened
SGML �Jel��� Bra��� subset	 Object oriented approaches like �BS����heitml� will
be evaluated with respect to their usability as a PHC�LL replacement	

� In discussing the Internet we have subsequently to talk about security� A security
framework must therefore be integrated into the PHC approach�

� To avoid misuse of the session handle� encoded handles are used	 Di�erently
encoded Cookies�� can be used in addition to URLs
 forming a handle con

sisting of a Cookie and an URL
 to further reduce the possibility of misuse	

��Currently Netscape�s JavaScript and Microsoft�s VBscript have to be taken into account�
��URLs and Cookies can both be modi�ed by a malign user and therefore do not provide full security�

However� the combination of both at least reduces the possibility of erronous user behaviour and makes
it very unlikely that a malign user could guess a correct combination of Cookie and URL�

��

Relational Databases and pure HTML �	� Limits and Improvements

� Sequence numbers �i	 e	 a new encoded session handle for each HTTP connec

tion� would provide even better security� but this method is not compatible
with frames	 However� with frames a pool of URL
Cookie pairs can be used
and each page contains a randomly selected handle from this pool	

� Where user authentication is necessary for database updates� Netscape�s SSL
�Secure Sockets Layer �Smi���� possibly using RSA �BSW���� is used for better
security	

� Integrated SmartCard solutions will be tested as they become available �MS���	

� For authentication purposes a combined method of database authentication
�process based�� Web listener authentication �URL based� and application
authentication �user based� provides the maximum possible security	

� More sophisticated versions of the HTTP �Currently version �	� is under develop

ment ��W�C� though �	� is not yet used in all servers and browsers� promise better
support of connection orientation	 In fact this would avoid the need for a session
handle to be passed back and forth between client and server	 With pure HTML on
the client side� the user interface state would still have to be stored in the database
however	 The look
ahead link generation would also remain unchanged	

��

Chapter �

Object Oriented Approaches

This chapter compares di�erent object oriented approaches with the previous pure HTML
approach and with each other	 After dening some criteria to di�erentiate between these
approaches some of them are discussed in more detail with practical results from prototype
implementations	 Finally� a short comparison concludes this chapter	 Java is the object
oriented implementation language of choice on the Web� therefore this chapter focuses
on Java implementations for the Web	 Whereas some of the tradeo�s described here are
wellknown e	 g	 from C## implementations� Java changes the boundary conditions and
as a result new possibilities arise	

��� Client
Server and Persistence

The rst rough criteria to separate the di�erent approaches is the decision whether to
use

� no Java at all	 The possibilities of pure HTML combined with relational databases
have been described in detail in the previous chapter	

� Java with a relational database	 Di�erent client
server models and di�erent persis

tence approaches will be discussed	

� Java with orthogonal persistence in an object oriented database	

The rst two approaches use relational databases	 The motivation to enable relational
databases for the Web is based on the following reasons�

� Large number of existing legacy database systems� � organizations want to leverage
their investments in relational technology	

�Some of them not even relational� Many network and hierarchical databases are still in use� Nowhere
else it is so important to deal with legacy systems than with the large old database dinosaurs�

��

Object Oriented Approaches �	� Client
Server and Persistence

database
management

application

presentation

database

dumb terminal

thin client

partitioned system

thick client

Figure �	�� Client
server model	

� Relational database products have needed a long time to become mature� whereas
object oriented databases still su�er from some childhood
illnesses	

� There are tasks which can best be solved with relational databases� Typically� large
amounts of simple structured data	

� Sophisticated design tools are available to overcome the inherent deciencies of the
design method �see page ���	

Java makes it possible to implement functionality not only on the server side but also
on the client side	 We therefore have to face the classic client
server tradeo�s� but with
di�erent boundary conditions introduced by the Web and Java	 Figure �	� rst recalls
some possibilities for distributing an application between client and server�

Dumb terminals� Software control remains with a mainframe host� dumb terminals
use a Character Based User Interface �CBUI�	 Whereas this is a very traditional
architecture� a pure HTML interface is not very di�erent�� Some of the presentation
is done by the standard client �Web browser� but most of the presentation logic
lies on the server side� where the HTML page is dynamically generated	 This
architecture is very reliable and easy to upgrade but uses host and network resources
extensively	

Thin clients� The client is now responsible for the presentation logic� It generates re

quests to the server and presents� and eventually stores� the results	 This architec

ture takes some load o� the server and the network but introduces more complexity
due to usual heterogenous environments� Many layers and components have to be
compatible with each other on the network	

�The main di�erence is the rich graphic user interface provided by HTML instead of the CBUI�

��

Object Oriented Approaches �	� Client
Server and Persistence

Partitioned client�server system� Application functionality �or middleware� is dis

tributed between client and server with the aim of achieving optimal performance
�throughput and latency� by minimal resource usage on the client� the server and
the network	

Thick client� The server is reduced to the database management system� the complete
application functionality resides on the client side	 This option becomes reasonable�
if much computing power is available on the client side� Modern PCs allow easily
for thick client software	 In fact it often costs less to put together a system of much
smaller computers which has the equivalent power of a single powerful machine	

Java has changed the boundary conditions of client
server architectures� Java applets
bring the advantages of dumb terminals to even thick clients with rich graphical user
interfaces� A Java applet is platform independent� and located on the server side but is
nally executed on the client side� taking some load o� the server and the network	 As
a result� in order to upgrade such an application� the server only has to be upgraded for
one single platform� The upgraded applet is then downloaded to the client	 To sum this
up� a Java client
server application has all the ease of maintenance and upgrade of a basic
dumb terminal environment but also has the previously mentioned advantages of a much
thicker client
server environment �WM���	 This is also the key idea for the concept of
network computing�	 What looks like the comeback of dumb terminals on the rst glance
is in fact a new way of exploiting the advantages of client
server applications without the
disadvantages formerly experienced	

If we consider the combination of Java and relational databases in addition to the client

server considerations� we also nd ourselves confronted with some well
known persistence
tradeo�s	 ��ODI� recalls a short denition of persistence�

�The lifetime of a persistent object exceeds the life of the application
process that created it	 Persistent object management is the mechanism for
storing the state of objects in a non
volatile place so that when the application
shuts down� the objects continue to exist�

Since object orientation has started to be widely used to implement software� the question
of how to deal with the design discontinuity between object oriented design and semantic
data design has always been present	 We therefore have to di�erentiate between di�erent
persistence approaches	 Figure �	� gives a short overview of the di�erent persistence
approaches with respect to the usual object layers� user interface objects� controller
objects� business objects� database access objects and the relational database itself �the
broken line marks the design break between the object oriented world and the relational
database world��

�	 Object serialization �section �	��	

�as long as a Java capable browser is used on the client side�
�Currently� the question �PC or NC�	 is dominated by marketing considerations rather than technical

requirements
Bor����

��

Object Oriented Approaches �	� Object Serialization

business
objects

controller
objects

GUI objects

database

persistence
framework

business
objects

controller
objects

GUI objects

database

database
access

GUI objects

database

controller
objects

business
objects

controller
objects

GUI objects

database

2b2a 3 4

GUI objects

controller
objects

business
objects

serialization
controller

database

1

Figure �	�� Di�erent persistence approaches	

�	 Each business object connects directly to the database for its own purposes �sec

tion �	��	 A special case ��b� is typical for an informational system with almost no
middleware	

�	 A better approach is to encapsulate the database access within some database access
controller objects �section �	��	

�	 For very large and complex projects a persistence framework is the best solution
�section �	��	

The greatest problem common to all these approaches is the structural discontinuity
between the objects� relations in the class diagram and the entities� relations in the
ER diagram	 Moreover� for more e�ciency it might even be necessary to implement
some parts with procedural SQL on the server side� introducing a further design break	
At least this deciency will be overcome� when the Java virtual machine is integrated
into the database kernels of the object relational successors of the relational databases
currently available	

The di�erent persistence approaches are described in more detail in the following sections�
including reasonable client
server architectures for each model	

��� Object Serialization

One of the easiest ways to achieve a basic form of object persistence is already �built
in�
with Java � object serialization ��Java��

��

Object Oriented Approaches �	� Object Serialization

�Object Serialization supports the encoding of objects� and the objects
reachable from them� into a stream of bytes� and it supports the comple

mentary reconstruction of the object graph from the stream	 Serialization is
used for lightweight persistence and for communication via sockets or Remote
Method Invocation �RMI�	 �� � � � A class may implement its own external en

coding and is then solely responsible for the external format	 �� � � � The key
to storing and retrieving objects in a serialized form is representing the state
of objects su�cient to reconstruct the object�s�	 Objects to be saved in the
stream may support either the Serializable or the Externalizable interface	
For Java�tm� objects� the serialized form must be able to identify and verify
the Java�tm� class from which the contents of the object were saved and to
restore the contents to a new instance	 For serializable objects� the stream in

cludes su�cient information to restore the elds in the stream to a compatible
version of the class	 For Externalizable objects� the class is solely responsible
for the external format of its contents	
Objects to be stored and retrieved frequently refer to other objects	 Those

other objects must be stored and retrieved at the same time to maintain the
relationships between the objects	 When an object is stored� all of the objects
that are reachable from that object are stored as well	�

Designed to transfer objects as streams over the network or to store them in the le
system� it can also be used to store them in a database	 The database has no structure
in this case and simply serves as a repository for serialized objects	 The disadvantage is
that if we want to search a particular object by a key� we rst have to re
instantiate all
the objects from the database	 Moreover� when an object is serialized or instantiated� all
the objects it refers to are too	 Serialization has to read or write entire graphs of objects
at a time	 This is known as the �banana
gorilla� problem� The instantiation of the small
banana causes the instantiation of the large gorilla directly or indirectly referenced by
the banana	 Serialization can be su�cient for applications that operate on small amounts
of data� are not frequently updating these objects and where reliable storage is not an
absolute requirement	

However� serialization is not optimal ���ODI�� for applications that

� manage hundreds of megabytes� of persistent objects� storing and retrieving the
entire graph will be too slow	

� are frequently updating those objects� Again� always the entire graph has to be
written� even if just one attribute of one single object has changed	

� have to ensure that the changes are reliably saved� If the system crashes during
serialization� the contents of the le are lost	

�For relational databases this would still be considered a small amount of data� The world�s largest
databases today already exceed some tens of terabytes of information
ES���� For object oriented databas�
es� however� ���MB are already considered medium or even large�

��

Object Oriented Approaches �	� PHCs go Java

In contrast to serializable objects� in the case of externalizable objects the class is solely
responsible for the external format of its contents	 This allows us� however� to implement
our own method of serialization	 A reasonable approach is to use the implementation of
the externalizable interface to generate a SQL insert or select statement� which is then
forwarded to an open JDBC stream	 With this method one object can be stored as one
entity in the database� key and persistent information can be stored in table attributes
instead of just one character stream and the restoring of the objects can make use of
these keys	 Moreover� object references can be emulated in the database with foreign
keys to other serialized objects	 Secrecy is violated because the object has to know that
it is persistent and has to implement this on its own	 At least reasonable encapsulation
is possible	

��� PHCs go Java

The easiest possibility for dealing with the design discontinuity between object orientation
and semantic data design is to simply ignore it	 This means that each object directly
connects to the database for its own purposes but not just to store or retrieve its own
state	 This approach may still be useful for smaller projects but it introduces a strong
mutual dependency between the whole database and all classes� making maintenance
di�cult and enhancements prone to error	

This method can be used successfully� however� if the object oriented part is almost re

duced to the user interface �thin client�	 This is true for information systems� whose
main task is retrieving� presenting and eventually updating relational database informa

tion with simple application functionality �middleware�	

In this area PHCs implemented as Java objects provide a promising alternative to the
pure HTML interface	 Figure �	� shows a comparison between object oriented design and
implementation� PHC design and PHC implementation	 Whereas PHC implementation
is nally done procedurally on the server side� the PHC design layers are related to the
object oriented layers �marked with dotted lines�	 This similarity encourages the Java
implementation of PHCs�	

To integrate a Java GUI �Graphical User Interface� instead of a pure HTML interface
with the same PHC�DL description� a runtime environment library provides a framework
with controller classes implementing the connectivity between the user interface classes
and the generated PHC classes� the manipulation of the runtime repository and the
database connection via JDBC �gure �	��	 All the functional constructions of PHC�DL
can easily be translated into Java source code� including the functional methods and
the user elements with the methods �print�� �image� and �click�	 Instead of a PHC�LL
description the Java applet implementing the GUI is directly programmed using Java
source code	 A runtime repository � much smaller as in the case of pure HTML � is also
generated� containing images� dictionary� user management� rights and security	

�The name �pure HTML control� looses its context in this case but it is still used for convenience� If
PHCs are mentioned in combination with Java� functionality and structure are meant rather than the
pure HTML characteristic�

��

Object Oriented Approaches �	� PHCs go Java

business
objects

controller
objects

GUI objects

database

database
access

PHC/DL
functionality

HTML
PHC/LL

database

pure HTML

database

PL/SQL

PHC/DL
state machine

object oriented design
and implementation

PHC design PHC implementation

Figure �	�� Similarities between object oriented design and PHC design	

At the beginning of a new session the applet rst has to be loaded from the Web server via
HTTP	 The applet then opens a direct JDBC connection to the database and downloads
the Java runtime repository	 The session state information is implicitly stored as the
PHC objects� internal states	 During the session the GUI objects send messages to the
PHC objects via controller objects	 The PHC objects eventually change their internal
state� call a method or execute a predened SQL statement and nally send a message
back to the controller	

The drawback is that the Java objects are reduced to the limitations of PHCs	 However�
the advantage is that they can be derived from the same design and hence implement the
same functionality as the pure HTML interface	

In principle� there are three di�erent approaches to a Java user interface with PHCs�

�	 One Java GUI applet for the complete application	

�	 Small Java GUI applets embedded into HTML� one for each PHC	

�	 Java GUI applets and HTML PHCs mixed� even on the same page�	 PHC applets
can be used for recurrent tasks� whereas e	 g	 the results of the queries are displayed
with HTML	

Despite the longer download time at the beginning� the rst approach has proven to
be the most convenient� especially from design and implementation but also from user
acceptance� The mixed approaches tend to be confusing to the end user	

�In this case some JavaScript is needed to establish interaction between HTML and Java�

��

Object Oriented Approaches �	� PHCs go Java

P
H

C
/D

L
P

H
C

/L
L

H
T

M
L

pa
rs

er
lo

ad
er

de
si

gn
re

po
si

to
ry

in
te

rp
re

te
r

(P
L/

S
Q

L)

ge
ne

ra
to

r

in
te

ra
ct

iv
e

de
si

gn
 to

ol
s

in
te

rm
ed

ia
te

re
pr

es
en

ta
tio

n

ba
ck

en
d

ru
nt

im
e

re
po

si
to

ry

ap
pl

ic
at

io
n

(P
L/

S
Q

L)

W
eb

 s
er

ve
r

da
ta

ba
se

br
ow

se
r

(p
ur

e
H

T
M

L)

se
ss

io
n

st
at

e

ru
nt

im
e

en
vi

ro
nm

en
t

Ja
va

 c
la

ss
 fo

r
us

er
 in

te
rf

ac
e

Ja
va

 s
ou

rc
e

Ja
va

 L
ib

ra
ry

(r
un

tim
e

en
vi

ro
nm

en
t)

ja
va

c
ap

pl
et

Ja
va

re
po

si
to

ry

br
ow

se
r

(J
av

a)

ap
pl

et

ru
nt

im
e

re
po

si
to

ry
se

ss
io

n
st

at
e

W
eb

 s
er

ve
r

D
es

ig
n

G
en

er
at

io
n

C
lie

nt
S

er
ve

r

da
ta

ba
se

R
un

tim
e

H
T

T
P

JD
B

C

H
T

T
P

H
T

T
P

JD
B

C
do

w
nl

oa
d

ex
tr

ac
to

r
ca

no
ni

ca
l f

or
m

Figure �	�� Design and implementation with alternative Java applet interface	

��

Object Oriented Approaches �	� Encapsulated Database Access

As with pure HTML there are two possibilities for the runtime environment� generation
and interpretation	 With interpretation a generic class from the framework has to inter

pret the runtime repository now containing the state machine and the output denitions	
This makes the applet smaller but the repository larger	 However� interpreting a repos

itory with an interpreted language gives the impression of intentionally slowing things
down	

��� Encapsulated Database Access

Another approach� which is better for applications with a thicker middleware� is to en

capsulate the database access within some controller objects thus focusing the mutual
dependency between classes and database tables on these few objects	 Each of these
objects is now responsible for a well
dened part of the database and set of classes	
These controller objects access the database and instantiate objects with data from the
database	 On the other hand� these controllers have the responsibility of reading the
objects� data and writing it back to the database	 The other objects then know nothing
about persistence and can hence be designed with a pure object oriented design method	
However� the database design still has to be done concurrently using classic semantic
methods and transaction control has to be handled by the controller objects	

This approach has been used to implement a prototype variation of the pure HTML
application	 Java frames �appearing as windows on the user interface� are used instead
of the HTML frames as shown in gure �	�	 Whereas the appearance is very similar to
the pure HTML solution� this implementation is di�erent to the Java implementation of
PHCs described in the previous section because the application functionality has been
designed using object oriented design methods and UML ��OMG� instead of PHC�DL	

Figure �	� shows the roadmap through the object oriented design process as described
in �Ove��� originating from �The Rational Objectory Process� ��Rational�	 Firstly the
goals and actors were identied	 As is typical for information systems� most of the goals
were searching� retrieving or manipulating information from the database	 Afterwards
the use cases have been dened and a rst class diagram	 The sequence diagrams where
used to rene the use cases� resulting in some modications and renement of the class
diagram	 A specication was derived from the nal version of the class diagram and
the sequence diagrams	 Some more complex objects were further specied with state
diagrams	 Finally the database access controllers were added before the implementation
with Java took place	 The detailed design cycle and the implementation are described in
more detail in �Rad���	

The following practical experiences could be derived from this implementation�

� As is usual with object orientation� the modelling was very time consuming but the
nal implementation was easy and straight
forward	

� It turned out that container objects �Boo��� holding search structures for the keys
and references to the extension of one or more classes are crucial for e�cient hand

ling of larger sets of objects� especially for searching	

��

Object Oriented Approaches �	� Encapsulated Database Access

Figure �	�� Geographical Selection with Java	

� Lazy instantiation of objects saves resources on the client side	 Often the container
object can be enhanced to hold one or two attributes of a complete database table	
This often prevents the application from instantiating all the objects of a class for
the mere purpose of user interface representation of one or two attributes	 The
container holds enough information for the user interface objects to enable a user
to browse and select items	 Only the really necessary objects are instantiated
afterwards	 Hence� the container objects are a special form of database access
controllers	

� All database access controllers together encapsulate the relational database access	
In typical information systems this encapsulation provides su�cient secrecy between
the object oriented world and the database world	

� In this case the relational database was already available from the pure HTML
approach but the relational database would normally have to be designed concur

rently using classic semantic data design methods� e	 g	 entity relationship diagrams	
Methods are available to translate an object model into an entity relationship model
and vice
versa using meta
models �BPS���	

To further enhance e�ciency with an intelligent preloading mechanism� di�erent classi

cation methods of data resulting from database queries are rstly introduced�

��

Object Oriented Approaches �	� Encapsulated Database Access

goals, actors

use cases and relations
between them
(external view)

object model
class diagram sequence diagrams

specification

state diagrams for
some objects

persistence objects

implementation

refinement

Figure �	�� Roadmap through the Rational Objectory Design process	

Reuse Data typically often reused �like the geographical selection in previous examples�
versus data needed only once �like a particular search result�	

User Interface Complete object data needed for interaction of business objects versus
partial object data merely used for user interface presentation	

Size Large data versus small data� required to compute a particular result	

Using these classication criteria� a preload mechanism can further reduce the average
response time of the user interface� Initially� the applet loads small data often typically
used for browsing and selecting of information	 During runtime a branch prediction task
using probability observes the user interface actions and makes a prediction of what data
will be needed next	 Divided by the size of data to be preloaded� a rst assessment
is made to determine whether it is worthwile to preload this data	 Furthermore� it is
determined whether this data will be needed more often for other results or just once
for one result	 The expectations for the frequency of usage of this data is multiplied by
the former value	 This value is nally compared to a threshold� to determine if the data
has to be preloaded or not	 All data which is not preloaded can� of course� be loaded on
demand when necessary �like a cache miss in hardware caches�	

��

Object Oriented Approaches �	� Persistence Frameworks

Starting from an algorithmic �causal� denition of branch probability and reuse expecta

tion value� an intelligent mechanism could learn during runtime and modify these values	
This is a typical task for software agents �see chapter ��	 Sending these values back to
the server before termination of the applet could result in a long
term improvement of
this preload method according to the average user	

Usually the applet caching does not introduce the same problems as for instance with
multiprocessor hardware caching� because in the case of typical information systems it
does not matter whether the underlying information changes slightly during browsing
and selecting of information or not	 However� the application must at least be resilient
to such changes and should not result in behaviour which is confusing for the end user	

If an application does require exact caching methods the publisher subscriber pat

tern �Joh��� can be used to implement a bus snooping protocol similar to hardware
caches	 Database triggers �active databases� help to implement such a system	

��� Persistence Frameworks

For large projects a persistence framework can solve the problem	 Persistence frameworks
try to achieve the best possible secrecy� between the business objects and the database�
The idea is that the business objects can be designed with �almost� no knowledge of
persistence	 Some special methods are introduced to instantiate an object from the
database or to commit a transaction	 The database access is now encapsulated within
the framework	

The framework described in �Vio��� has been partly implemented with the same prototype
implementation used for the pure HTML approach	 The key features are mirror objects
that accompany the business objects and handle the database transactions without the
knowledge of the business objects themselves	 The following experiences have been made�

� The implementation is more extensive� because for each business class a mirror class
has to be implemented	 However� this was easily done following the design rules
given in �Vio���	

� Changing the database structure requires a reimplementation of the database ob

jects but leaves the business objects unchanged	 A redesign of the business ob

jects may also result in a reimplementation of the database objects but leaves the
database unchanged	 The encapsulation therefore works	

� Di�culties arise with database queries resulting in more than one tuple	 The frame

work provides no support for such a situation� it has to be implemented manually
within the database objects� methods	

�Secrecy �a means of encapsulation� is one of the most important features in achieving the advantages
of object orientation�

��

Object Oriented Approaches �	� Orthogonal Persistence

� Due to the strict secrecy� it is not possible to just select a list of table attributes
for presentation purposes and forward it to the user interface	 The complete set of
objects always has to be instantiated resulting in far more objects than the approach
in section �	�	

� This is� on the other hand� an advantage� because the application can be designed
with pure object oriented design methods without being disturbed by persistence
consideration	 Persistence is rst introduced during the implementation of the
database objects	

� For Web based applications it is useful to leave the database objects on the server
side �more e�cient for multiple
tuple
operations� while the business objects may
reside on either the client or server side	 A thick client may take some load o� the
network and the server	

� As already mentioned� Java implementation �application or servlets� on the server
side tends to be slow with regards to database connection	 The integration of the
Java Virtual Machine �JVM� into the database kernels will provide better perfor

mance and eventually replace the current procedural database languages	

Java Relational Binding �Gre����O�� is another middleware product especially designed
for Java applications� From the description of a set of classes a relational schema and
methods of reading and writing objects in the database are generated	 This eliminates
the design discontinuity as all the relational parts are generated by the tools	 On the
other hand� this leaves no possibility for applying this method to already existing schemas
of legacy systems	 An object cache is used to improve the otherwise poor performance of
object relational mappings	 This lack in performance is also addressed by ��Persistence�	
The key ideas are to optimize business object mapping and to perform object cache
management	

��� Orthogonal Persistence and Object Oriented

Databases

For object oriented applications the best approach � at least with respect to design �
is orthogonal persistence in object oriented databases	 Literature about object oriented
databases �Heu��� SST��� Sch��� LV��� di�erentiates between three main streams�

�	 Enhancement of object oriented programming languages �GemStone ��GemStone��
ObjectStore ��ODI�� POET ��POET� and others�	

�	 Enhancement of relational database systems �Postgres ��Postgres�� Informix
��Informix� and others�

�	 Completely new �O� ��O��� ITASCA ��IBEX�� Jasmine �with promising multi

media features� �KDM��� HFPH��� and others�	

��

Object Oriented Approaches �	� Comparison

Another possibility to di�erentiate between di�erent object oriented databases is by the
support features for multi media content �Die���	 In order to standardize object oriented
databases and to bring these di�erent approaches together� the Object Data Management
Group has released the ODMG �	� standard ���� ��ODMG� Cat��a�	 The Object Query
Language �OQL� standard also emerges �Eva���	

Client
server distribution of object oriented applications can be done in various ways	
With a pure Java solution the communication between client and server can be imple

mented with a proprietary protocol� or � more e�ciently � with Remote Method Invoca

tion RMI �Mer����Java�� or by using the Common Object Request Broker Architecture
CORBA �Say��� �OMG�	 In both cases objects send messages to remote objects as if
they were local	 RMI is tailored towards Java� as it is smaller and more e�cient� while
there are CORBA IDL �Interface Description Language� mappings available for Java and
many other object oriented programming languages	 Hence RMI is the method chosen in
a pure Java environment while CORBA is the solution for heterogeneous environments	

If a thick client is used �business objects on the client side� at least partially�� a check

out�check
in mechanism has to be used in order to check objects out of the database for a
long
lasting transaction and check them in again later	 This is typical for object oriented
databases	

For Java the most interesting approach in this area is the PJama project ��PJama� at
the University of Glasgow�

�PJama is an experimental persistent programming system for the Java
programming language� that embodies the notion of orthogonal persistence�
an approach to making application objects persist between program execu

tions with the minimum possible e�ort required from the application programs
themselves	
PJama supports the programming environment for Java being developed

by the Forest ��SunLabs� Project	 This project takes the position that the
persistence and tool integration mechanisms of traditional operating systems
are a major limiting factor in the development of powerful� multi
user software
development environments	 The intent is to replace the use of le systems
and ad hoc persistence mechanisms with typed� persistent objects	�

This is the most promising approach for object oriented pure Java applications	

��	 Comparison

Figure �	� concludes this chapter with a comparison of the reasonable combinations of
client
server and persistence tradeo�s from the previous sections	 The main decision
criteria is whether an information system or a processing system has to be designed��

�This is not an exact de�nition� There are systems which fall into both categories and there are
design methods suitable for both categories� However� it has proven to be useful as a rough di�erenti�

��

Object Oriented Approaches �	� Comparison

RDBMS

CGI
PL/SQL

HTML

HTTP

GUI

client-side
functionality

server-side
functionality

network

database RDBMS

(PL/SQL)

Java
SQL

Java

JDBC

RDBMS

Java
SQL

Java

Java

RMI

RDBMS

Java
Persistence

Java

Java

RMI

OODBMS

Java

Java

Java

RMI

HTML solution Java GUI SQL access
to the RDBMS

object persistence
in RDBMS

pure object
oriented solution

• information systems
• simple functionality
• simple data structure
• large amount of data
• semantic data design (ER)

object oriented
relational

• client-server applications
• complex functionality
• complex data structure
• small/medium amount of data
• object oriented design (UML)

1 2 3 4 5

Figure �	�� Comparison of the most reasonable approaches	

processing system� Client
server applications with typically complex structured data�
complex functionality but usually small to medium amount of data �CAD systems�
client
server games� etc	�	 Also� the server can play an active role and trigger
events on the client side �which is not possible in number � and ��	 Object oriented
techniques and UML �Unied Modeling Language� can be used to design these
systems	

information system� Large databases of simply to complex structured data but with
only simple functionality for nding� retrieving and editing the stored data	

The techniques numbers �� � and � show di�erent structures of processing systems	 They
di�er in their database integration� In number � controller objects access the database
directly via SQL� which means a discontinuity in the design between the application
and the database	 The controllers provide a means of separation between database and
business objects but they can also establish interaction between GUI and DB without
business objects inbetween for better performance	 This technique can be used for both
small processing systems and information systems with a thicker middleware	 One as

pect of when to choose this approach to design an information system might be that a
connection to another object oriented application is required via RMI or CORBA	

In number � a relational database is used to make the objects persistent through a
special framework� hence the application design is homogenous object oriented	 These

ation criteria� More recently the term �Web�based Information System� �WIS� has been introduced in
literature
IBV����

��

Object Oriented Approaches �	� Comparison

approaches have their roots in a period of time where object oriented programming and
design were already widely used but object oriented databases were in their early research
stages	 For new applications that do not have to connect to legacy database systems�
object oriented databases nowadays provide a better possibility for orthogonal persistence	
For pure informational systems� on the other hand� the larger design e�ort is often not
worthwhile	 In number �� nally� a pure object oriented approach achieves orthogonal
persistence through an object oriented database	

Of course� HTML is not an option for object oriented client
server applications	 But
this thesis has its focus on information systems	 Numbers �� � and � show di�erent
structures of information systems	 Numbers � and � are passive systems� where the
server cannot trigger events on the client side�		 Number � is the Java alternative of the
pure HTML design� Each object has its own database connection � there is no secrecy
between database and objects	

In numbers � and � Java is used for more �intelligence� on the client side to take some load
o� the server and the network� thus making Java applets more e�cient for long lasting
transactions	 Moreover� there is additional functionality� especially for the user inter

face	 Despite its indisputable benets� there are some drawbacks� to implement servlets
�number �� e�ciently� the virtual machine must be integrated with the database kernel	
Only a few database companies have announced this so far	 Even more importantly� an
applet must be downloaded to the client rst	 This is no problem for intranets	 However�
the internet has a smaller bandwidth� especially in Europe	 For typical Internet appli

cations consisting of just a few client
server interactions� the long download�time at the
beginning is often annoying	

A quantitative analysis in section �	� compares the Java and pure HTML approaches
from � and � with each other based on the use of typical end user proles observed
during the pilot phase of our real�life applications	 A unique design model for both
techniques �number � and �� gives us the possibility to o�er both user interfaces with the
same functionality leaving the last choice to the user	 A qualitative analysis to compare
the Java and the pure HTML approach with each other based on typical end
user proles
observed during the pilot phase of the prototype implementations gives initial results�

User interface� With pure HTML the user interface lacks the possibility of constraints
and event handling� An HTTP session has to be performed before functional de

pendencies or restrictions can a�ect other inputs	 To achieve this HTTP session�
a submit button has to be pressed explicitly	 It does not usually su�ce to ll an
input eld or make a selection	 Thus the user interface cannot react directly on
user input	 JavaScript on the other hand provides one possibility of implementing
constraints and event handling into a HTML user interface� As far as JavaScript
becomes standardized ��JS� �ECMA� and widely implemented this disadvantage
disappears	 On the other hand HTML has the advantage over Java of easy layout
and page design� eg	 with style sheets	 Recently� this advantage has shrunk� The
Java swing classes � part of the Java Foundation Classes �JFC� contained in the

�	Netscape�s proprietary channels provide a possibility for active servers with pure HTML� It is�
however� not encouraged to use such proprietary solutions in general design methods

��

Object Oriented Approaches �	� Comparison

Java Development Kit �JDK� �	� � provide the possibility of a rich user interface
for the rst time	 However� the design of an HTML page remains much easier	

Performance� With pure HTML� each user interaction results in an HTTP interaction
with the server� which in turn has to deliver a whole HTML page	 Less client
server
connections are necessary with Java because menues and other UI elements �like
hierarchical selections� can be downloaded at once and then kept on the client side
�but we have to take care about database updates in the meantime�	 In addition�
less data has to be transmitted with each connection because only the data has to
be transmitted without the HTML code	 Unfortunately the Java applet has to be
downloaded rst� which can be annoying on slow network connections	 We have
observed that with our pilot implementation the download of the Java applet is
not worthwhile �in terms of performance� if less than ���
��� user interactions take
place �see section �	��	 In our pilots most user session have fewer interactions which
is why we keep the pure HTML interface available� It is obviously faster than the
Java version which also requires more computing power on the client side	

Server load� With pure HTML more capacity is required on the server side� the size of
the dynamic session state information � corresponding with the number of concur

rent sessions � adds to the database�s size	 The larger the database compared to
the session state information the less this matters	

Browser compatibility� can easily be achieved with pure HTML	 With Java it has
to be tested carefully but is still possible
 at least as long as the pure HTML
alternative is available for older browsers	

Design methods� In both cases the functionality is designed with PHC�DL thus re

stricting the Java variant to a subset of its possibilities to be compatible with the
pure HTML approach	 PHC�LL and the Java GUI have to be designed separately
based on the same PHC�DL	 The user interface layout can easier be designed with
HTML by designing static pages rst and then enhancing them to PHC�LL	Without
our design tools the direct implementation of the PL�SQL code is error prone and
maintenance is di�cult� The direct implementation of PL�SQL without any tools
is therefore only recommended for medium sized application	

Multi media integration� Images and other Multimedia content can be integrated into
both approaches� The advantage of Java is� There is no need for a proprietary
installation of PlugIns	 Moreover Java objects are available for playing almost any
multimedia format available on the Internet	

File upload� The upload of les from the local le system to the server is not possible
with Java due to the restrictive security model	 A workaround is to build a com

bination of a server side Java listener
application and CGI perl
scripts to integrate
the usage of a small HTML frame with a form upload into the Java applet in an
almost homogenous way	

Server events and collaboration� For collaboration it is necessary that the server can
trigger an event on the client side	 With HTML Netscape has developed some

��

Object Oriented Approaches �	� Comparison

extensions �server push� channels� to implement active servers� but these are pro

prietary and not widely used	 On the other hand� using Java servlets �number �
in gure �	�� an active server can be implemented �remote method invocation over
sockets without HTTP�	

Database transactions� With pure HTML �even with cookies� the connection to the
database is stateless� resulting in complex state handling and timeout mechanisms
which also compromise the security of such a system	 With JDBC or RMI connec

tion orientation can easily be achieved� thus guaranteeing safe and secure transac

tions	 Performance considerations can be found in �Dic���	

��

Chapter �

Searching in Database Backed Web

Applications

As di�erent as they are in design and implementation� relational databases and the Web
also di�er considerably in the ways they can be searched	 This chapter rstly gives
an overview of the current status on searching in these two worlds and then introduces
several approaches for combining these methods to provide e�cient search capabilities
for database backed Web applications	

��� Search on the Web and in Relational Databases

In talking about the Web we cannot ignore the question of how to search and �nd relevant
information	 On the Web itself one can nd a lot of research dealing with this question	
Recent work and a good overview can be found in ��SoS�	 The research on how to nd
relevant information in hypertext systems is in fact far older than the Web	 Recent work
on information retrieval can be found in ��IBIS�	

On the other hand� there is also a long history of research on how to retrieve information
from relational databases	 The classical built
in method are� of course� relational query
languages �Ull��� like SQL �Structured Query Language� or QBE �Query By Example�	
All the major commercially available relational database products implement these� or
similar� query languages	 However� the disadvantage with this is that one has to know
the exact names of the tables and the attributes� the exact relational topology �e	 g	
foreign key structure� and the semanticmeaning of this structure �e	 g	 entity relationship
diagram� to formulate a useful query to the database	

An interesting approach to overcome some of this deciencies are �Universal Relation�
query languages� a short citation from �Ull���� p	���� explains the key ideas�

�A universal relation is an imaginary relation that represents all of the data
in the database	 A query language that lets us refer to the universal relation�
rather than to the actual database scheme� can be much simpler than typical

��

Searching �	� Web versus Relational Databases

relational query languages� because we need to mention only attributes� rather
than attribute
relation pairs	 As an especially important example� a natural

language interface to a database is designed for use by people who understand
little or nothing of the scheme	 All natural
language interfaces e�ciently refer
to the universal relation� and queries about the universal relation must be
translated by the system into queries about the existing scheme	 Interpreting
queries over a universal relation is an admittedly di�cult task	 Yet it is one
that must be performed if we are to have natural language interfaces� � � �

One remaining problem is that of naming� During design great attention has to be paid
to the naming of attributes� Attributes representing the same thing in di�erent relation
schemes have to be given the same name� attributes representing di�erent things have to
be given di�erent names	 This guarantees globally unambigous attribute names	

The supporters and opponents of universal relations ght a constant battle	 Some of the
arguments against universal relations are�

� The universal relation does not always result in a reasonably interpretable repre

sentation of the data	

� The natural join is not always the best solution	

� If the data structure is cyclic�� which path should be taken� Normally the shortest
path is selected� leaving the question open as to whether the user�s intuition matches
that of the system�s designer	 Hence some systems provide an interactive method�
leaving the nal choice of the correct path to the user	

To cite �Ull����p	���� once again� �However� the real counterargument is that there ain�t
nothing better	� However� as will be shown later� universal relations are not the best
solution for searching in database backed Web applications� but the idea of a path through
the database will be used for the approach proposed here	

Whereas universal relations never got further than university research� the rst natural
language interfaces �NLIs� for databases for the English speaking community became
commercially available about �� years ago	 Some of them use universal relations� others
directly translate a subset of a natural language into SQL statements using similar tech

niques	 In the meanwhile NLIs for other languages �including German� have followed	
Common requirements of NLIs include �TB����

� No formal training required to use these systems	

� The acceptable language subset must be large enough to allow for natural commu

nication	

� Handling� Recognition of proper names� automatic spelling correction� e�cient
starting phrase skipper and an abbreviation and pattern recognizer	 Hence the
system needs at least a basic vocabulary of words� patterns and phrases	

�This is the most common case� Almost no real�life design is acyclic�

��

Searching �	� Natural Language Interface

� Accessibility� For every possible formal SQL query there exists at least one natural
language query	

� Habitability� User is able to judge which natural language utterances are acceptable
for the system	

� Portability� With respect to di�erent hardware� operating systems� database man

agement systems� domain knowledge� data models and connectivity to other soft

ware components	

On the Web � and hence also for database backed Web applications � only two methods
of querying are realistic � keywords and NLIs �nobody would expect the average Web
user rst to learn the scheme of the underlying database and then to formulate a proper
query directly with SQL	��

Keywords are the usual method of searching on the Web�s search engines	 Usually
the boolean operators AND� OR and NOT can be used to combine keywords	 Also
inclusion�exclusion methods are usual� where some keywords are marked as required
and others as not allowed	 Interactive iterative renement methods further improve
this sort of querying by including or excluding associated keywords	

Natural Language is rarely seen on the Web nowadays� but would certainly be appre

ciated by the average Web user	

��� A Natural Language Interface for Database

Backed Web Applications

This section introduces a heuristic straight
forward approach� usable with both keyword
search and natural language query	 The key idea is to di�erentiate between the struc

tural and contextual meaning of keywords	 The structural keywords are used to select
a path within the database topology �i	 e	 a particular attribute of a table or a whole
SQL statement�	 A full
text search then detects the occurance of the contents keywords
within the preselected path	 Similar ideas � called �keyword separation� � can also be
found to search static hypertext systems �Zen���	 Other papers suggest rich links �Oin���
or metalevel links �Tak��� for better navigation and queries	 Yet compared with linked
hypertext structures� the structure of a relational database �and especially the seman

tically richer ER description� contains even more information	 With natural language
utterances we use a starting phrase skipper� but then use the same simple method as
with keywords	

The base is a conguration repository �stored as relational data structure� which denes
a semantic metadata model of the database� The database dictionary is the basis for the
metadata model	 In addition to the dictionary it denes which tables� attributes and
relations are visible under what names �implicit renaming� to the search interface	 A list
of uninteresting �lling� words and starting phrases is used to eliminate information not

��

Searching �	� Natural Language Interface

used as keywords	 The core of the model is a table structure� each entry consists of the
following attributes�

� A list of structural keywords	 These keywords are used to select a set of paths	

� A set of SQL statements �called �paths� according to the denition for universal
relations� which take the content keywords as parameters �marked with 		�	 There
can be simple select statements from just one table or complete paths of joins
through a part of the database	

SELECT aNachname
 aBezeichnung

FROM tPerson
 tAnbieter
 tAnbot

WHERE �tPerson�aPersId � tAnbieter�aPersId

AND �tAnbieter�aPersId � tAnbot�aPersId

AND �tAnbot�aProdId � tProdukt�aProdId

AND �tAnbot�aBezeichnung � 		

The usage of the SQL clauses like and sounds can be used to further improve
the search results	 The rules for output and anchor �see next two items� can use
both the found value �		� and the selected attributes from the SQL statement �e	 g	
	aNachname�	

� A denition of how to format the output of the SQL query for the user� This
includes the usage of more descriptive names than the names of the tables and
attributes or the output of additional information from the appropriate path	 This
decouples the names used for design from the names used for querying and result
output and hence� in contrast to universal relations� takes some pressure o� the
naming rules for design	

� A URL� to jump into the application� which takes the name and values of the found
attributes as parameters	 If complex session state information has to be built in
order to reach an appropriate entry point� an additional function may be required
within the database application	

Finally� for each table the following additional information is provided �for an unstruc

tured search�� Which attributes to use for content search and which attributes from those
results to use for presentation purposes and link generation	 A parameterized URL �or
even a set of URLs� is provided to jump into the right entry point of the application	

The algorithm� First� the starting phrase and uninteresting �lling� words are eliminated	
Then the query input is searched for structural keywords	 For each keyword found� the
other keywords are treated as content keywords and the following steps are performed	

�There could also be the necessity for more than one URL� In this case� each result is provided with
both links�

��

Searching �	� Natural Language Interface

�	 The appropriate path� is selected from the repository	 The parametrized SQL
statement is lled with the content attributes and executed as often as necessary	

�	 The results are formatted according to the presentation rules of the respective path	

�	 These results are links	 The anchor tags are built from the URL denitions lled
with the names and values of the attributes found	

�	 A click on one of these results brings the user directly to a point within the database
application that re�ects the query results	

If no structural keyword is found� an unstructured search is performed� All keywords are
treated as content keywords and are searched within all visible attributes	 For each table�
one or more URLs are dened as starting points of the application� which take the name
and value of the found attribute as parameters	 The main di�erence to universal relations
is that there is no need to calculate or guess the right path� All paths are predened and
assigned to their appropriate keywords	

The repository is dened in cooperation with test users in a brainstorming process and
can continously be rened during the operation of the system �e	 g	 from user feedback�	
This is no self
learning� solving
the
problems
of
the
world solution� but it has proven to be
successful in the prototype implementations and it can be applied to any Web application
based on relational databases by simply constructing an appropriate repository	 It is the
author�s opinion that a decent organizational solution on hand is always better than
a wonderful technical solution which is not yet available�	 Moreover� in this case� the
task of the search interface is to bring the user into the right starting point within the
application rather than giving him a perfectly precise search result� The user can then �
with the possibilities of the application itself � proceed further to the desired information	
Hence it is only important to place the user somewhere near the desired results within
the application	

At this point it also becomes clear why universal relations are not the best solution for
searching in database backed Web applications� Even if the �right� path can be found� how
can the appropriate entry point of the application be determined� The query interpreter
would have to know how the application works	 Thus the idea of paths is used� but within
the scope of a xed conguration rather than a runtime interpretation	

Figure �	� shows a user request �I want to buy a �an��	 First the starting phrase �I
want� and the lling words �a� and �to� are eliminated� resulting in two keywords �buy�
and ��an�	 The word �buy� is now detected as a structural keyword	 The respective
statement is called with ��an� as its parameter and delivers some o�ers of �ans from
the database	 Figure �	� shows the answer � the output has been prepared according to
the denition from the repository� Each line refers to a result and the link provides the

�There might also be more than one path for a structural keyword� The algorithm is simply repeated
for each and the results are combined�

�Which of course does not mean that it is not worth working towards the ideal solution� � �

�There is only a german implementation as yet� To be multilingual� one repository has to be set up
for each language provided�

��

Searching �	� Agent Interface

Figure �	�� Sample query for the natural language interface	

Figure �	�� Results from the sample query in gure �	�	

possibility of directly entering the application at a point that re�ects the query results	
Figure �	� nally shows the entry point of the application� The product selection and the
geographical selection are already opened according to the search result and the upper
right
hand frame shows all the o�ers of ��ans�	 The search sentences have to be short of
course� otherwise many structural and content keywords would be combined with each
other out of context in an almost random way	

If we consider a simple keyword search instead� e	 g	 �Torten Nieder�osterreich�� which
means we are searching for �ans or for anything in Nieder�osterreich� no structural words
could be found	 Hence an unstructured search throughout all visible attributes of the
database delivers the search result in gure �	�	 Now we can see di�erent kinds of results�
each of them with its own predened� intuitive link into the database	

��� An Agent Interface for Database Backed Web

Applications

One of the most common �buzz� words of recent years is �Agent�	 Almost everything is
named an agent and agents appear to be almost everywhere	 Despite the fact that it
is an emerging technology� the truth is that � following a more strict denition � there

��

Searching �	� Agent Interface

Figure �	�� Destination point of search result link	

are not very many agents available	 A recent overview is given in �KZ��� � important
research groups are located at ��MIT��UMBC�	 There are also some synonyms� some

times even used with di�erent meanings� �Intelligent agents� is the most general term�
an intelligent agent is not necessarily a piece of software �e	 g	 a smart battery systems�
smart airbags�	 Software agents are software implementations of intelligent agents	 A
very general denition of software agents is provided in �Cho����

�Agents are a new software paradigm	 They are relatively small pieces of
autonomous software that act in various roles on behalf of a specic function
or user	 �� � � � The agent may reside on the user�s machine and be transmitted
to distant computers where it carries out its functions	 Or it may reside
at network nodes	 In the one as in the other case� the artifact will move
autonomously	 This �� � � � is one of the basic characteristics distinguishing an
agent from other chunks of software	
To its end user� or master� the agent is a personal assistant � his corre

spondent within the computer�s communications and software landscape in
which it works	 It is a proactive artefact that can perform fairly sophisticated

��

Searching �	� Agent Interface

Figure �	�� Search result of unstructured keyword search	

tasks and can also exhibit learning abilities	 The agent�

� Knows about the user� his or her wishes and preferred model of operation

� Is informed about other correspondent agents� including their proles
and work patterns

� Is able to collect� handle� and present information to its master�s satis

faction

� Can structure system elements as required to tailor solutions to real
time
users� needs

Should the agent be enriched with articial intelligence �AI�� The majority
of experts in this eld say Yes"�

�Cho��� provides an extensive overview of state
of
the
art agent technology	 A shorter
denition comes from Prof	 Pattie Maes who denes a software agent as �a process that
lives in the world of computers and networks and that can operate autonomously to
fulll a set of tasks	�	 Ergo agents have a task and do not implement an algorithm	 Their
behaviour is often teleological� not causal and hence not predictable	 And they have a
sort of self
awareness ��MIT�	

The key idea in providing an agent interface for a database backed Web application is
to encapsulate the search functionality described in the previous section within an agent
called �database guardian�	 In the rst approach this piece of software is not an agent
in the strict sense� because it is congured with the repository and has no learning ca

pabilities	 It should at least be able to talk to other agents� either with short messages�

��

Searching �	� Agent Interface

visiting
Agent

DB
guardian

Aglet Server
HTTPD

JRE

dialog

database

metadata
repository

JDBC

Web UI

Test UI

Agent UI

visiting
Agent

Figure �	�� Agent environment for database backed Web applications	

or with an intelligent language like KQML �Knowledge Query and Manipulation Lan

guage� �Cho��� CH����UMBC�	 From the other agent�s view this version of the natural
language interface would look as if the guardian knows the database application and can
hence communicate it to others	 A personalized agent with a particular task can now
migrate on its own through the Web and eventually nd our database� communicate with
our guardian and � in the case of success � report back home on what it has found	

Figure �	� shows an example of an agent environment using IBM�s Aglets ��IBM�� The
aglet server is a Java application and hence needs the Java Runtime Environment �JRE�
for execution	 The aglet server now provides a platform for aglets� One aglet is the
database guardian which implements the search functionality	 The other aglet might
be a visiting agent� sent from somewhere� which has a particular question to ask our
guardian	 These two aglets can now communicate with each other	 For testing purposes�
a local user interface to the guardian is provided	 In addition� the Aglet server provides
a Web interface to the guardian� hence users without the possibility to send an agent can
communicate directly with the guardian over the Web	

This approach provides the following advantages over classical client
server applications�

� The agent is self
migrating and might� therefore� eventually meet the database
guardian despite the user not even knowing the database� The agent was just given
a task and was sent away	

� The agent is self
learning and will also learn how to communicate e�ciently with
the database guardian	 The agent will meet other agents and tell them about the
database and what to nd there	

��

Searching �	� Robots and Search Engines

� Agent communication is rather robust� What cannot be understood will simply be
ignored	 No error messages occur like in classical client
server protocols	

� Hence the implementations of both sides are almost decoupled	

� Independent from network protocols� The agent servers care for the travelling of
the agents	

� With IBM�s Aglets even the server itself is platform independent� because it is
implemented with Java	

One obvious enhancement of this agent approach is to allow agents not only to search
for information� but also to provide information	 In this scenario the guardian has to be
extended to be able to insert information into the database	 Finally� the database itself
could send out agents � either to provide the contained information actively� e	 g	 to meet
information seeking agents at virtual marketplaces �GMM���� or to seek new information
to be stored in the database	

��� A Robot Interface to Enable Database Backed

Web Applications for Search Engines

Search engines use programs � called robots� wanderers� spiders or crawlers � to index
the whole Web ��OUC� �IBIS� Tan��� Gra���	 The problem with search engines and
database backed Web applications is that the latter need links with lots of parameters in
their URLs� which the former simply ignore	 Hence we need static pages which the search
engines can bookmark	 The rst straight
forward approach is to generate one large static
page which includes all the keywords both in its META tags and in the contents	 The links
from these keywords then point directly to the application	 Such a page can be directly
generated from the repository described in section �	�	 The disadvantage� however� is
that for a very large database this would mean loading the textual representation of the
whole database over the Web	 Even for a few megabytes �which database experts would
call �small�� this is not reasonable	

The alternative is to repetitively build a static hypertext tree from the database� following
the entity relationship structure	 First� all m�n relations have to be transformed into ��n
relations� possibly introducing new entities �HeuS���	 An HTML page is then generated
for each entity instance and for each ��n relation a list of links to the related entity
instances is included into the page belonging to the entity instance at the �
side of the
relation	

Afterwards the following simple heuristic algorithm determines a reasonable small start
page from which all other pages can be reached�

�	 All entities which are at the n
side of ��n relations� but have no other relations� are
removed including all relations of these entities	

��

Searching �	� Robots and Search Engines

�	 Step � is repeated until there are no more entities with only ��n relations	

�	 Now entities with ��n and other relations are removed one by one	 The entity with
the most ��n relations is always removed rst	

�	 If there are no more ��n relations� the same is continued with the is
a relations
removing all the specialized entities in one step	

�	 Finally� the entities with ��� relations are removed one by one until there are only
entities left but no more relations	

�	 For each entity left� a static page with a list of links to the entities� pages is now
built	

�	 Finally a root page is built� which contains the links to the previously mentioned
lists	

This root page is the starting point for the generated hierarchical hypertext tree	 The
algorithm eliminates in each step only entities that can be reached from another entity�
because it eliminates only entities with relations	 The order of the steps tends to leave
the smallest number of entities at the end� but it is possible to construct ER diagrams
for which this does not hold	

An exact algorithm can be applied using graph theory� First the ER
diagram is converted
into a directed graph	 The entities become nodes and the relations edges	 All the ��n
relations are directed from the �
side to the n
side� all is
a relations are directed from
the general side to the special side and all ��� relations are directed arbitrarily	 Now in
general a cyclic directed graph is built	 The next step is to calculate the condensation
of this graph by reducing the strong �cyclic� components �subgraphs� to nodes	 The
resulting graph is acyclic� hence all the nodes� to which an edge points� can be deleted
because they can be reached from somewhere else	 Finally from each of the remaining
strong components one node is chosen arbitrarily� which gives the entities that can be
reached directly from the root page	 This algorithm is mathematically proven in �Har���	

The root page can now be added manually to a search engine �e	 g	 AltaVista ��Alta���
the rest of the pages will then be retrieved automatically	 For a multilingual system it
is reasonable to build one tree for each language	 The contents of the generated pages
is derived from the same repository as described in section �	�� especially from the part�
where the entry points for single tables are dened	

� What attributes are shown as contents of the anchor tags

� What additional information is displayed

� The URLs pointing into the database application

Within all the pages� the META tags description and keywords are also lled with
attribute values from the database and with keywords associated with the appropriate
tables �dened in the repository�� e	 g	

��

Searching �	� Future Work

�META name���keywords�� content���flan� cake���

A short explanation on each page will prevent the user from following the static link
structure and instead encourage him to use the links pointing into the database applica

tions	 Tricks to hide the misleading static links are strongly discouraged by the providers
of the search engines	 Such tricks could be to use invisible links �using the background
color� or to dene the META tag

�META http�equiv���refresh�� content���� URL�http�

database�entry�point���

to cause an immediate timed refresh to directly jump into the database application	
��Alta� for example does not bookmark pages� which use such tricks	

This method enables the bookmarking of the whole database contents by any search
engine with reasonably small pages and the possibility to jump into the dynamic appli

cation	 This method can also be applied with intelligent agents� that expect a static
hypertext tree to traverse	

��� Future Work

The following ideas may provide hints for future work�

� Better linguistic analysis as in �TB��� with more powerful assignment of the appli

cation entry points	 Usage of associative and related terms including a probability
estimation	 Context grouping for long sentences	

� Semantic description of the application�s entry point to enable a more �exible de

tection of the right entry point from a search result	

� Learning abilities to extend the repository during runtime� e	 g	 what queries belong
to which tables and attributes and � perhaps � which entry points	 The questions
here involve� How can the guardian be trained� How should an e�cient internal
knowledge representation look like� Research results in the areas of AI and expert
systems should be applied to the database guardian	

��

Chapter �

Results and Conclusion

Evaluation of the design and implementation methods has been done by real implemen

tations	 It is the author�s opinion that there is no better way to show that it works	
This chapter presents two successful pilot implementations� A product marketing and
tourism information system for the project DEMETER and a Web accessible interac

tive database training server	 A quantitative comparison between the Java and the pure
HTML versions is provided	 The chapter concludes with references to related work� a
short summary and suggestions for future work	

The development environment of the pilot implementations is an Oracle Server �	�	� on a
Windows NT �	� and on a Sun SPARC Solaris �	� Server	 The implementation language
is PL�SQL �	� �St�u��� at the server side	 For a Web server the Oracle Web Listener �	�
and �	� ��Oracle� are used	 At the client side either pure HTML or Java is used	

��� DEMENET
 The DEMETER Project

The rst pilot implementation is a product marketing and tourism information system for
the DEMETER project	 The project DEMETER� is funded by the European Commission
under the �th Framework Programme TURA�	 It is specically tailored to farmers� needs�
aimed at enhancing their quality of life and nding new sources for additional income	

The project contributes in several ways to rural development and enhancement of living
conditions for farmers throughout Europe	 Currently the �exible technical infrastructure
� called DEMENET � o�ers a framework which provides

� Telematics courses in computer and telecommunications	

� Access to individualized courses in food technology� gardening� new European stan

dards for food processing and other farming specic courses	

�Distance Education� Multimedia Teleservices and Telework for Farmers
�Telematics for Urban and Rural Areas

��

Results and Conclusion �	� DEMENET
 The DEMETER Project

� Information systems for rural areas	

� Database for product marketing �regional� national and international�

� Tourism and village information systems	

� Management guidance and counseling �forms� accounting�			�	

� other farming specic information� according to user needs	

The project also encourages the users to build their own contribution to a decentralized
common European DEMENET structure	 DEMENET is designed as a tool for all inter

ested farmers� an easy to use� low cost system �implementation and participation� that
provides ample possibilities for rural development	 Currently� it is in the pilot phase	

The database for product marketing and tourism information was designed to meet the
following requirements�

� The standard user interface has to work with almost any� inclusing older� browsers
and platforms and should not depend on proprietary nonstandard extensions like
Plug�Ins or Active�X	 Thus the implementation is restricted to pure HTML	

� Decentralized global area distribution	 The decentralized structure of the imple

mentation must be extendable	

� At the moment� especially in Europe� the performance bottleneck of every Web
based application over the Internet is the latency of the net itself	 Despite that�
this application has to run at a reasonable speed over the Internet	

� Multilingual� The system must be available in di�erent languages	 It must be
possible to change the language at any time during use in a transparent way	It
must also be possible� of course� to edit the system on a multilingual base� The
multilingual user interface as well as the content must be editable and translateable
during runtime	

� When speaking of the Internet we cannot ignore problems concerning security�
This is a general problem and standard solutions e	 g	 secure sockets layer �SSL� or
integrated SmartCard �DMG��� MGD��� solutions will be used	

The DEMENET application has been implemented successfully using the techniques de

scribed in this thesis both with pure HTML and with Java	 Details about this application
can be found in �RGR���	 Everyone is invited to visit the pilot server� and to understand
how this actually works	 Its URL is http���land�ict�tuwien�ac�at�� 	 Currently the
system is being evaluated by a group of test users throughout Europe� mainly to improve
the layout and the database structure	 The rst feedback from our users looks promising	

�This serves as a redirection URL to the current implementation�

��

Results and Conclusion �	� Web Database Training

��� Web Accessible Interactive Database Training

Distance education� in most cases now ODL �Open and Distance Learning� has been
proven by modern research to be the most e�cient method to enable growing numbers of
students especially to get engineering education most quickly and to the highest standard
possible �Gas��� FW��� Ren��� Dav���	 Creating interactive simulations and laboratories
further enhances the e�ciency of the learning process signicantly	 As one possible im

plementation of these concepts a Web accessible tutorial for interactive database training
is presented	 First results show that organizational and educational advantages can be
obtained� e	 g	 better student lecturer interaction and personalized access to information
combined with interactive simulation systems	 With this approach to engineering educa

tion we hope to create the most e�cient learning and teaching environments� fostering
creativity and excellence in order to be prepared for the already enhanced international
competition	

If hypertext material is to be successful� it is not enough just to translate the paper
version of the lecture notes to the Web� but it is necessary to take advantage of the full
range of hypertext features	 The main attraction of the Web is interactivity� leading to
the design of an interactive laboratory following the rules of open and distance learning
concepts	 This laboratory accompanies the lecture �Databases on the World Wide Web��
Within the laboratory the students have the following tasks� Design of a small database
with ER and implementation with SQL	 Some queries with SQL	 Design of a small doc

ument collection including a homepage	 Connecting the database to the Web� creating
some dynamic HTML documents from the database on the �y and doing some update
operations in the database using the HTML FORM
interface	

The rst part of the laboratory is an interactive SQL
tutorial� Each group of four students
receives an example where �� queries have to be solved on a given data structure	 On
the welcome screen the data structure is shown� including all base relations and a short
description	 After reading and understanding the data structure� the student can proceed
to the rst query task� where the expected results are also shown	 The rst SQL query
is then entered	

If the try was syntactically correct but not a solution to the given problem� an error
message is obtained	 After entering the correct SQL statement the student receives a
conrmation	 If a syntactically incorrect statement is entered� the error message from
the database is forwarded	 To determine� if the student has entered a correct solution�
the server does not parse the SQL input but rather compares the result of the student�s
SQL request with the result of the predened correct SQL solution statement executed
on the same data	 If the student has already solved the task� the alternative correct
solutions are provided afterwards	

This provides the possibility of misuse� when a student enters an SQL statement which
is tailored towards the expected results but only works on the actual data	 The system
does determine this statement as correct and provides the alternative results� but every
SQL statement which leads to a correct response is saved into a log le which can later
be evaluated� if someone tried to cheat	

��

Results and Conclusion �	� Quantitative Analysis

The second part of the laboratory is to design and implement a small database and to
implement database interaction from the HTML user interface� e	 g	 to insert a form input
into the database or to generate a Web page dynamically from the database contents	
The implementation is done through PL�SQL programs located in the database	 To
complete the second laboratory part another Web interface is provided� which allows the
execution of any SQL statement to create and modify the data structure� the editing of
the student�s database contents� the uploading and compilation of the PL�SQL code and
the uploading of static HTML pages and pictures	 Again� the only thing needed at the
client side is a Web browser	

The outstanding feature of this laboratory is that there is no need to be present at the
institute� which is unusual at the Vienna University of Technology	 Advanced students
�tutors� give assistance mainly through a mailing list	 Once a week the o�ce is open for
personal contact	 Thus the lab can be accessed from anywhere on the Internet� with just
a Web browser at the client side	 For the students this gives the possibility of learning
at their own speed� when and where they want �student centered learning�	

The laboratory itself is implemented as a database backed Web application� using the
techniques described in this thesis to generate the Web interface pages automatically from
the database contents and to compute the user input data	 The only di�erence from the
students� implementation is� that the laboratory implementation uses dynamic embedded
SQL rather than static embedded SQL� since it has to pass the students� SQL statements
to the database and then include the results in dynamically generated HTML pages	
Thus the meta
level of tutorial implementation uses essentially the same technologies as
the students have to use when completing the tutorial	 As an alternative implementation
technique the same functionality for the two parts of the laboratory has been provided
with two Java applets	 The resultant di�erences are described in chapter �	

The complete laboratory is available at http���aki�ict�tuwien�ac�at� in both English
and German� details can be found in �GR��� GRRF��� RGM���	 Only the second part of
the laboratory is restricted to authorized access� the rst part and the demo application
are available without restriction and anyone is invited to visit them	

The feedback of the students was consistently positive� The vast majority of the students
���$� liked the ability to work at the laboratory anytime and anywhere� only �$ felt
insecure and would have prefered a more restrictive course	 However� the prototype
implementation worked satisfactorily and the performance was good	 With �� engineering
students having worked with the application for two months� the implementation method
has gone through its baptism of re	

��� Quantitative Analysis

This section introduces a decision criteria which helps to decide whether a pure HTML or
a Java implementation performs better in terms of network tra�c	 The presented results
are derived from measuring the prototype implementations both in their pure HTML

��

Results and Conclusion �	� Quantitative Analysis

form and in their Java form	 Firstly� the measuring method is shown and the results are
discussed	

There are di�erent methods of measuring the network tra�c of a server application�

� The application itself can be modied to record the data sent to or received from a
client	 The advantage is� that the data can easily be prepared in a useful structure	
However� the disadvantage is� that the application is changed	 This might also a�ect
the measuring itself� but the greatest problem is that for repetitive measuring during
development the measuring has always to be adopted	

� A task is programmed that observes the network connection of the server	 The
application itself is no longer a�ected by the measuring because of this� but the
normal network daemons have to be replaced by tasks that also record the network
data	 This might a�ect the speed of the server�s network connection	

� Another network node is introduced in the form of an observer PC	 The disadvan

tage is� that more resources are needed �additional PC� repeater hardware� and
the reconstruction of the interesting data transfers from the network tra�c is more
complicated	 However� the advantage is� that the measured system is not a�ected�	

For its advantage of not a�ecting the normal operation of the measured server� the third
method has been used	 Figure �	� shows an overview of the measuring environment	
Normally a network card discards all received frames but those addressed to the MAC
�Medium Access Control IEEE ���	� �Tan����p	���� address of the card or to a group the
card belongs to �multicast� or broadcast frames	 Hence the network card of the observer
PC �an Intel EtherExpress Pro ��� in this special case� is switched to promiscuous mode
to record all frames on the network	 The network is not a�ected� because the network
card sends nothing in promiscuous mode	 A sni�ng tool is used to communicate with
the card and to record all the frames into a raw text le	 This le grows rather fast and
can easily reach a size of more than ���MB within an hour	 Of course this depends on
the server tra�c	

Therefore� the raw data le is directly streamed into a lter that eliminates all the frames
not needed	 Perl �WSCP��� has been used as implementation language� because it has
proven to be very useful for the text detection and replacement operations needed	 This
lter eliminates wrong ports� e	 g	 ��� �Post O�ce Protocol POP �� or ��� �NetBios
Session Service� �WE���� reducing the size of the le to typically tens of megabytes	

During the next step a preprocessor loads the data into a database� stripping everything
but the TCP and IP protocol headers and the contained data	 The database size of
one measurement is typically a few megabytes	 The database contains one table for
sockets� each with a unique socket identier as primary key� ordered by the time the
sockets were opened	 This table also contains the number of frames and the complete
amount of data transferred within this socket	 A second table contains all the frames
tagged with a serial number �in the order of their appearance� and a foreign key to the

�Only the repeater may introduce a not recognizeable latency in the network tra�c�

��

Results and Conclusion �	� Quantitative Analysis

switch repeater server

observer

raw data

filter

filtered data

preprocessing

database interactive
analysis

results

Internet

100MBit Ethernet

Figure �	�� Quantitative analysis measurement environment	

socket to which the frame belongs� ordered by the socket identier rst and then by the
frame number within each socket	 Each socket contains at least three frames for the TCP
connection setup at the beginning� then the data and nally typically two frames for the
TCP connection closedown	 The frames for Java and HTML can be di�erentiated by
their port	 Identication of parallel sessions is done with session identiers	

To compare Java and HTML applications with each other we have to face the problem�
that HTML opens a socket for each HTTP connection� whereas Java applications typically
open a small number of sockets for the connection oriented JDBC connections	 What
we nally require to compare is the number of transferred data over the number of
user interactions for the same application implemented both with Java and HTML	 With
HTML each user interaction leads to a HTTP connection and hence the number of sockets
roughly� equals the number of user interactions	 Apparently� this is not true for Java	

Therefore typical use cases observed from user proles of pilot users are taken and syn

chronization points are dened within them� such that the number of user interactions
between two synchronization points is well dened �and equal for both the Java and
HTML implementation� and the synchronization point itself can easily be detected from

�Additional sockets are opened for each image contained in the HTML pages� With the applications
discussed here� almost all images are downloaded at the beginning and stored in the browser cache� If
this does not hold for another application� the number of sockets has to be divided by the average number
of images per page to receive the number of user interactions�

��

Results and Conclusion �	� Quantitative Analysis

sync 0 sync 1 sync 2 sync 3 sync 4

original HTML

original Java

stretched Java

stretchening of the
synchronization
points

data

sockets
user interactions

Figure �	�� Stretching of the Java curve	

data transferred over the network �e	 g	 a typical SQL statement�	 These synchronization
strings are also stored in the database� as pure ASCII text for Java and with encoded
entity references for HTML	 The intent is� to use the synchronization points of the HTML
curve �data over sockets respectively user interactions� to stretch the original Java curve
�data over sockets�� such that the Java synchronization points meet the HTML synchro

nization points	 Hence the strechted Java curve nally shows data over user interactions	
Figure �	� shows this method� The original HTML curve shows data over sockets	 As
previously mentioned� this equals roughly to data over user interactions	 The original
Java curve data over sockets apparently uses far less sockets	 Finally the Java curve is
stretchened with respect to the synchronization points� receiving a Java data over user
interaction curve �interpolation�	

A second run of the preprocessor searches the frame data for the predened synchroniza

tion points and marks the frames where a synchronization point has been detected	 Also
with the second run the cumulative number of transferred bytes so far is stored for each
frame	 Interactive analysis tools can now operate on this database� or the database can
be exported into an MS Excel spreadsheet	

Figure �	� shows the result measurement� Java needed �� sockets� HTML ���	 Hence the
Java curve is stretched with the help of eight synchronization points	 The Java applet is
loaded up until the rst synchronization point as is some data from the database	 With
HTML� due to the image loading� more data is transferred before the rst synchronization
point than afterwards too	 From the rst synchronization point both curves are almost
linear	 HTML shows a higher gradient� because a complete HTML page �approximately
�	�kB� has to be loaded for each user interaction� whereas with Java only a small amount
of data from the database has to be transferred �approximately �	�kB�	 Figure �	� shows
the di�erence between the two curves	 For more than ���
��� user interactions Java typi

��

Results and Conclusion �	� Quantitative Analysis

0 kB

100 kB

200 kB

300 kB

400 kB

500 kB

600 kB

700 kB

800 kB

SOCKETS

SYN

HTML

JAVA

39 87 135 183 231 279 327 369

sockets

da
ta

HTML

Java

Figure �	�� Java versus HTML� Transferred data over user interactions	

-350 kB

-300 kB

-250 kB

-200 kB

-150 kB

-100 kB

-50 kB

0 kB

50 kB

100 kB

SOCKETS

SYN

DIFF

39 87 135 183 231 279 327 369

da
ta

 d
iff

er
en

ce

sockets

Figure �	�� Java versus HTML� Di�erence of transferred data over user interactions	

��

Results and Conclusion �	� Quantitative Analysis

HTML

SYN 0 bis 1

16%

SYN 1 bis 7

84%

JAVA

SYN 0 bis 1

64%

SYN 1 bis 7

36%

image caching
16%

HTML Java

user
interaction
84%

user
interaction
36%

applet download and
data preload 64%

Figure �	�� Java versus HTML� Download at the beginning	

HTML

stretchened Java

data

sockets
user interactions

images

applet

data preload

average data loaded
on demand per user
interaction

average HTML
page size

Figure �	�� Rule whether Java or HTML performs better	

cally performs better than HTML in terms of network tra�c	 Finally� gure �	� shows the
di�erent percentage of data downloaded at the beginning �until the rst synchronization
point� and during the user interactions	

Based on the previous measurement� the following rule of thumb gives a rough criteria
to determine whether Java or HTML is better in terms of network tra�c for a particular
application	 Given an applet size DApplet and a data amount Dpreload to be preloaded�
both in bytes� and an average data amount dJava per user interaction loaded on demand
from the Java applet compared to an average size dHTML of the dynamically generated
HTML page� both in bytes per user interaction� the following formula gives the number
of user interactions U � where Java outperforms HTML �see gure �	���

U
DApplet #Dpreload

dHTML � dJava
��	��

The size of the images does not count because both implementations load them once
and afterwards hold them in the cache	 However� to determine more exactly which

��

Results and Conclusion �	� Related Work

Figure �	�� User interface of the analysis tool	

implementation is better� the presented measurement method has to be applied to the
particular application implemented in both Java and pure HTML observed with typical
user behaviour	 The analysis tools developed for this purpose are described in �Kam���
and gure �	� shows an impression of the user interface	

��� Related Work

The large software companies adopt their powerful design and implementation tools
to generate large scale Web applications� e	 g	 Oracle Designer������ Oracle Devel

oper����� ��Oracle�� Web Objects Framework ��WOF�� SAP%Web ��SAP�� IBM
AS��� �Hub���	 These work well� but they are expensive� not very easy to use� and
mostly oriented towards the needs of the Intranet� not the Internet	 Moreover� they have

��

Results and Conclusion �	� Summary

a long history in the area of classical programming paradigms and are thus not perfectly
suited for designing Web applications	 Some of them lack functionality and have un

necessary restrictions	 However� they can be the best method anyway� if a company is
already running one of these systems	

On the other hand� many freeware solutions exist but they have performance problems
with large scale applications	 Most of them have a short live
span� no technical support�
and are not suitable for commercial products	 Perhaps some solutions based on the Linux
OS will become interesting in the next time� for example PHP�� a scripting language
embedded into HTML with some features for database integration of many di�erent
database types ��PHP�	

A lot of research work is done on static hypertext documents as automatons �SFC��� and
about enhancements of HTML with additional tags and meta
tags to generate large static
document trees from a concise functional description embedded into HTML code �BS���	
These work well � as long as there is no need to integrate a database	

Research on the integration of databases and HTML mainly focuses on forms ��heitml��
whereas this thesis proposes mainly the use of links for interaction with the database	 So
far no research work could be found that uses a systematic model and a design language
for application generation of link based interaction between databases and the Web	

��� Summary

The aim of this thesis was to make the design of database backed Web applications
easier and the implementation less prone to error	 In the opinion of the author this
goal has been reached� as the two real
life applications both of which were implemented
successfully with pure HTML and Java show	 The feedback from the rst users was
positive	 The inherent di�culties of the integration of relational databases and the Web
could be overcome	 This also allows the connection of legacy relational database systems
to the Web with similar functionality as in classic implementations	

The nite state machine model� well known from static hypertext documents� could be
remodelled to suit dynamically generated hypertext	 Groups of links are mainly used
instead of forms to interact with the database	 An object based client
server model
was presented to design the user interface layout� the middleware functionality and the
database transactions in a homogenous way	 The actual implementation of such a system
was then composed from several parts with potentially di�erent techniques� e	 g	 pure
HTML� Java or VRML	 A toolset was implemented to generate the di�erent applica

tions automatically from the PHC�DL and PHC�LL descriptions	 The toolset itself is
a Web application fostering unlimited Web collaboration	 The tools were designed from
scratch� closing the current gap between research theory and the market	 They are es

pecially suited to the needs of the Web without overhead caused by classic programming
paradigms	

By using this technique it was shown how to build complete information systems� includ

ing logical page �ow and bidirectional crosslinks� multi language support and frames with

��

Results and Conclusion �	� Future Work

di�erent window modes	 The design methodology further guarantees stable and robust
applications with sophisticated user interactions� compatible with almost any browser�
and �exible layout design separated from the application functionality	 The approach
is Internet�oriented and deals with the problems of wide area distribution with small
bandwidth connections	 It relies on the proven technology of relational databases	

The usability of Java was compared with the pure HTML approach� investigating dif

ferent client
server tradeo�s and persistence frameworks	 Object oriented design and
implementation has some drawbacks with typical information systems � it was shown
how Java can supplement the HTML approach but not supplant it	 A quantitative anal

ysis showed that pure HTML typically outperforms Java in terms of network tra�c for
less than ���
��� user interactions	

As di�erent as they are in design and implementation� relational databases and the Web
also di�er considerably in the ways they can be searched	 Universal relations and natu

ral language interfaces known from database theory have been combined with keyword
searches known from the Web to dene a metadata model for searching a database backed
Web application	 The key idea here was the separation of structural and content meaning
of words	 Based on this idea generic interfaces for both Intelligent Software Agents and
robots from search engines were implemented	

Despite the limits of pure HTML� a sophisticated user interface could be designed� which
mainly uses links for interaction but no JavaScript� Plug�Ins or Active�X	 With the
framework tools� a novel design and implementation technique for Web based distributed
information systems was implemented	 It is now possible to generate the di�erent imple

mentations automatically from the design language	 With this development framework�
the design and implementation of various database powered Web applications is easier�
faster and less prone to error	

��� Future Work

The following suggestions for future work are summarized from the previous chapters�

� A completely object oriented graphical version of the design language PHC�DL
including tool support �ISB���	

� Object oriented notation� also for the PHC�LL� possibly using the Extensible
Markup Language XML or another subset of SGML	 Object oriented approaches
like �BS��� �heitml� will be evaluated with respect to their usability as PHC�LL
replacement	

� Enhancement of the generator tools to provide Java �see section �	�� and VRML as
alternative user interface implementations	 The object relational successors of the
current relational systems will provide better integration possibilities for Java	

��

Results and Conclusion �	� Future Work

� Enhancement of the pure HTML interface with a scripting language as soon as it
becomes clear which one will be the major client side scripting language on the Web
�Netscape�s JavaScript or Microsoft�s VBscript�	

� Integration of a security framework into the PHC approach	

� Usage of the connection oriented successors of the HTTP as far as they become
widely available	

� With di�erent generator backends� it will be possible to generate PHC applications
for di�erent database management systems because the whole design methodology
is not dependent on a particular product� as long as the database understands
standard SQL	

� Enhancements of the search interface with better linguistic analysis as in �TB���
with more powerful assignment of the application entry points	 Usage of associative
and related terms including a probability estimation	 Context grouping for long
sentences	

� Semantic description of the application�s entry point to enable a more �exible de

tection of the right entry point from a search result	

� Learning abilities for the database guardian agent to extend the search repository
during runtime	

��

Appendix A

More PHC Examples

The following examples show more sophisticated features of both the design and the lay

out language	 The syntax denitions can be found in appendix B	 Figure A	� shows the
PHC�DL description of a more sophisticated version of the geographical selection	 The
enhancements can be found in the three lists where the cursor loops are now explicitly
dened	 Within these cursor loops various IF statements dene di�erent PRINT� IMAGE
and GOTO clauses depending on the boolean value of the respective condition	 This exam

ple also shows the denition of conditions with the CONDITION clause	 Figure A	� shows
the usage of these conditions in PHC�LL in detecting� where a sublist has to be placed
in a list resulting in a browser view similar to a le explorer as shown in gure A	�	

With slight modications �as shown in gure A	�� the rst layout description remains
valid and now generates the same output from the enhanced version of the PHC�DL	
Alternatively� if SelList is kept within the enhanced version of the PHC�DL� the rst
PHC�LL description remains valid even in an unchanged form	 The generated code
becomes slightly larger in this case� but the performance of the nal application is the
same	

To show the possible variations which PHCI enables a third layout is presented for the
same PHC�DL	 Figure A	� shows the PHC�LL description and gure A	� shows an
example of a browser view in state S�	

The PHC �Selection� in gure A	� shows the possibility of more complex local variables� In
this case two temporary tables are built and used for the output of the element �Matches�	
This PHC is also an example for a PHC with just one state and thus declared as �stateless�
with the NOSTATE clause in the interface part	 Thus the programmer can use states� but
he does not have to	

The GOTO clause in the element �Show� gives an example of a state manipulation message
sent to another PHC� The PHC �Result� is set to the state S� and eight public session
state parameters of this PHC are set to the given values	 The PAGE clause denes the
page Result as the new active page	

The PHC �Result� in gure A	�� shows a list containing more than one element within
its query	 The elements refer to the attributes of the query by the cursor name dened

��

More PHC Examples
PH
C
Ge
o

//
 g
eo
gr
ap
hi
ca
l
se
le
ct
io
n

//
 v
er
si
on
 2

IN
TE
RF
AC
E

PA
RA
M Pr
ov
in
ce
 P
UB
LI
C
RO
WI
D

PR
IN
T
tP
ro
vi
nz
.a
Be
ze
ic
hn
un
g[
aP
ro
vI
d]
;

Re
gi
on
 P
UB
LI
C
RO
WI
D

PR
IN
T
tR
eg
io
n.
aB
ez
ei
ch
nu
ng
[a
Re
gI
d]
;

Di
st
ri
ct
 P
UB
LI
C
RO
WI
D

PR
IN
T
{S
EL
EC
T
aB
ez
ei
ch
nu
ng
 F
RO
M
tG
em
ei
nd
e
WH
ER
E
aG
em
ei
nI
d
=
PA
RA
M;
};

EL
EM
EN
T

Ov
er
vi
ew
,
On
eU
p,
 P
ro
vi
nc
e,
 R
eg
io
n,
 D
is
tr
ic
t;

LI
ST
Pr
ov
Li
st
,
Re
gL
is
t,
 D
is
Li
st
;

ST
AT
E S0
,
//
no
th
in
g
se
le
ct
ed
,
th
e
fi
rs
t
st
at
e
is
 t
he
 s
ta
rt
 s
ta
te

S1
,
//
pr
ov
in
ce
 s
el
ec
te
d

S2
,
//
re
gi
on
 s
el
ec
te
d

S3
;
//
di
dt
ri
ct
 s
el
ec
te
d

IM
PL
EM
EN
TA
TI
ON

BE
GI
N

VA
R
An
z
IN
T;

EL
EM
EN
T
Ov
er
vi
ew
 (

AL
WA
YS
 {
 P
RI
NT
 ’
ov
er
vi
ew
’;
 I
MA
GE
 f
ov
er
2;
 G
OT
O
S0
;
};

) EL
EM
EN
T
On
eU
p
(

AL
WA
YS
 {
 P
RI
NT
 ’
hi
gh
er
 r
eg
io
n
le
ve
l’
;
IM
AG
E
fu
p1
;}
;

ST
AT
E
S0
,S
1
{
GO
TO
 S
0;
 }
;

ST
AT
E
S2
 {
 G
OT
O
S1
;
};

ST
AT
E
S3
 {
 G
OT
O
S2
;
};

) EL
EM
EN
T
Pr
ov
in
ce
 (

AL
WA
YS
 {
 G
OT
O
S1
;
};

ST
AT
E
S0
 {
 P
RI
NT
 N
UL
L;
 }
;

ST
AT
E
OT
HE
R
{
PR
IN
T
PA
RA
M
Pr
ov
in
ce
;
};

) EL
EM
EN
T
Re
gi
on
 (

AL
WA
YS
 {
 G
OT
O
S2
;
};

ST
AT
E
S0
,S
1
{
PR
IN
T
NU
LL
;
};

ST
AT
E
OT
HE
R
{
PR
IN
T
PA
RA
M
Re
gi
on
;
};

) EL
EM
EN
T
Di
st
ri
ct
 (

AL
WA
YS
 {
 G
OT
O
NU
LL
;
};

ST
AT
E
S0
,S
1,
S2
 {
 P
RI
NT
 N
UL
L;
 }
;

ST
AT
E
OT
HE
R
{
PR
IN
T
PA
RA
M
Di
st
ri
ct
;
};

) LI
ST
 P
ro
vL
is
t
(

AL
WA
YS QU
ER
Y
Pr
ov
Qu
er
y
IS

SE
LE
CT
 a
Be
ze
ic
hn
un
g
{
PR
IN
T;
 }
,

aP
ro
vI
d
{
SE
T
PA
RA
M
Pr
ov
in
ce
;}

FR
OM
 t
Pr
ov
in
z;

(
EL
EM
EN
T
//
im
pl
ic
it
 n
am
e
is
 "
Pr
ov
Li
st
"

{
SE
LE
CT
 C
OU
NT
(*
)
IN
TO
 A
nz

FR
OM
 t
Re
gi
on

WH
ER
E
aP
ro
vI
d
=
Re
gQ
ue
ry
.a
Pr
ov
Id
;

IF
 (
(P
ro
vQ
ue
ry
.a
Pr
ov
Id
 =
=
PA
RA
M
Pr
ov
in
ce
)
AN
D
(S
TA
TE
 !
=
S0
))
 {

CO
ND
IT
IO
N
se
le
ct
ed
;

GO
TO
 S
0;

IF
 (
An
z
==
 0
)

IM
AG
E
fo
pe
n1
;

EL
SE
 /
/
An
z
!=
 0

IF
 (
ST
AT
E
==
 S
1)

IM
AG
E
fo
pe
n2
;

EL
SE
 /
/
Re
gi
on
 s
el
ec
te
d

IM
AG
E
fc
lo
se
d2
;

}
EL
SE
 {

GO
TO
 S
1;

IF
 (
An
z
==
 0
)

IM
AG
E
fc
lo
se
d1
;

EL
SE
 /
/
An
z
!=
 0

IM
AG
E
fc
lo
se
d3
;

};
}

)
) LI
ST
 R
eg
Li
st
 (

ST
AT
E
S0
 {
 N
UL
L;
 }
;

ST
AT
E
S1
,S
2,
S3

QU
ER
Y
Re
gQ
ue
ry
 I
S

SE
LE
CT
 a
Be
ze
ic
hn
un
g
AS
 N
am
e
{
PR
IN
T;
 }
,

aR
eg
Id
 A
S
Id
 {
 S
ET
 P
AR
AM
 R
eg
io
n;
 }

FR
OM
 t
Re
gi
on

WH
ER
E
tR
eg
io
n.
aP
ro
vI
d
=
PA
RA
M
Pr
ov
in
ce
;

(
EL
EM
EN
T
//
im
pl
ic
it
 n
am
e
is
 "
Re
gL
is
t"

{
SE
LE
CT
 C
OU
NT
(*
)
IN
TO
 A
nz

FR
OM
 t
Ge
me
in
de

WH
ER
E
aR
eg
Id
 =
 R
eg
Qu
er
y.
Id
;

IF
 (
(R
eg
Qu
er
y.
Id
 =
=
PA
RA
M
Re
gi
on
)

AN
D
(S
TA
TE
 !
=
S0
)
AN
D
(S
TA
TE
 !
=
S1
))
 {

CO
ND
IT
IO
N
se
le
ct
ed
;

GO
TO
 S
1;

IF
 (
An
z
==
 0
)

IM
AG
E
fo
pe
n1
;

EL
SE
 /
/
An
z
!=
 0

IF
 (
ST
AT
E
==
 S
2)

IM
AG
E
fo
pe
n2
;

EL
SE
 /
/
Di
st
ri
ct
 s
el
ec
te
d

IM
AG
E
fc
lo
se
d2
;

}
EL
SE
 {

GO
TO
 S
2;

IF
 (
An
z
==
 0
)

IM
AG
E
fc
lo
se
d1
;

EL
SE
 /
/
An
z!
=
0

IM
AG
E
fc
lo
se
d3
;

};
}

)
) LI
ST
 D
is
Li
st
 (

ST
AT
E
S0
,S
1
{
NU
LL
;
};

ST
AT
E
S2
,S
3

QU
ER
Y
Di
sQ
ue
ry
 I
S

SE
LE
CT
 a
Be
ze
ic
hn
un
g
AS
 N
am
e,
 a
Ge
me
in
Id
 A
S
Id

FR
OM
 t
Ge
me
in
de

WH
ER
E
aR
eg
Id
 =
 P
AR
AM
 R
eg
io
n;

(
EL
EM
EN
T
//
im
pl
ic
it
 n
am
e
is
 "
Re
gL
is
t"

{
PR
IN
T
Di
sQ
ue
ry
.N
am
e;

IF
 (
(D
is
Qu
er
y.
Id
 =
=
PA
RA
M
Di
st
ri
ct
)
AN
D
(S
TA
TE
 =
=
S3
))
 {

CO
ND
IT
IO
N
se
le
ct
ed
;

IM
AG
E
fo
pe
n1
;

GO
TO
 S
2;

}
EL
SE
 {

IM
AG
E
fc
lo
se
d1
;

GO
TO
 S
3
SE
T
PA
RA
M
Di
st
ri
ct
 :
=
Di
sQ
ue
ry
.I
d;

}
}

)
) EN
D
//
Ge
o

Figure A	�� Alternative PHC�DL description for PHC Geo with more complex features	

��

More PHC Examples

<TABLE WIDTH=360 BORDER=1>
.....

<TR><TD WIDTH=150 ALIGN=center><CENTER>Region selection</CENTER>
<!--$PHC IMAGE(Geo.OneUp); -->
<!--$PHC PRINT(Geo.OneUp); -->
</TD></TR>

<TR><TD ALIGN=left VALIGN=top><!--$PHC IMAGE(Geo.Overview);-->
<!--$PHC PRINT(Geo.Overview); -->

<!--$PHC FOR prov IN Geo.ProvList LOOP
IMAGE(prov); PRINT(prov); -->

<!--$PHC IF prov.selected BEGIN
FOR reg IN Geo.RegList LOOP -->

<!--$PHC IMAGE(reg); PRINT(reg); -->

<!--$PHC IF reg.selected BEGIN

FOR dis IN Geo.DisList LOOP -->

<!--$PHC IMAGE(dis); PRINT(dis); -->

<!--$PHC END LOOP;
END;

END LOOP;
END;

END LOOP; -->
</TD></TR>

.....
</TABLE>

Figure A	�� PHC�LL description to PHC�DL from gure A	�	

after the keyword QUERY	 The element Caddy of this list shows the usage of a functional
message sent to another PHC	 Figure A	�� shows the respective METHOD declarations as
part of the PHC description of �Basket�	

Also the PAGE attribute determines that the active page will remain the same but the
REFRESH clause determines that the ouput of the page Shopping Basket will eventually
change	 Thus this page has to be reloaded� if currently shown in one frame	 Figures A	��
and A	�� show the PHC�LL description and the resulting browser view belonging to this
PHC	

��

More PHC Examples

Figure A	�� Browser view of PHC Geo version � in state S�	

<TABLE ALIGN="right" WIDTH=115 BORDER=0>
<TR><TD ALIGN="center" VALIGN=top>Region selection</TD></TR>
<TR><TD><!--$PHC PRINT(Geo.Overview); --></TD></TR>
<TR><TD><!--$PHC PRINT(Geo.OneUp); --></TD></TR>
<TR><TD><!--$PHC PRINT(Geo.Province); --></TD></TR>
<TR><TD><!--$PHC PRINT(Geo.Region); --></TD></TR>
<TR><TD><!--$PHC PRINT(Geo.District); --></TD></TR>
<TR><TD ALIGN=center><HR></TD></TR>

<!--$PHC IF (Geo.STATE == S1) BEGIN FOR item IN Geo.ProvList LOOP -->
<TR><TD ALIGN="right"><!--$PHC PRINT(item); --></TD></TR>

<!--$PHC END LOOP; END; -->
<!--$PHC IF (Geo.STATE == S2) BEGIN FOR item IN Geo.RegList LOOP -->

<TR><TD ALIGN="right"><!--$PHC PRINT(item); --></TD></TR>
<!--$PHC END LOOP; END; -->
<!--$PHC IF (Geo.STATE == S3) BEGIN FOR item IN Geo.DisList LOOP -->

<TR><TD ALIGN="right"><!--$PHC PRINT(item); --></TD></TR>
<!--$PHC END LOOP; END; -->
</TABLE>

Figure A	�� PHL�LL for PHC Geo version �� Old layout from new PHC�DL	

��

More PHC Examples

<TABLE ALIGN="left" WIDTH=100% BORDER=3>
<TR><TD COLSPAN=3 ALIGN="center">Region selection

<!--$PHC PRINT(Geo.Overview); -->

<!--$PHC PRINT(Geo.OneUp); --></TD></TR>

<TR><TD WIDTH=33% ALIGN=left VALIGN=top>
<!--$PHC FOR item IN Geo.ProvList LOOP -->
<!--$PHC IF item.selected BEGIN -->
<!--$PHC IF (Geo.STATE == S1) BEGIN -->

<!--$PHC END; -->
<!--$PHC PRINT(item); -->
<!--$PHC IF (Geo.STATE == S1) BEGIN -->

<!--$PHC END; -->

<!--$PHC END ELSE BEGIN -->
<!--$PHC PRINT(item); -->
<!--$PHC END; -->

<!--$PHC END LOOP; -->
</TD><TD WIDTH=33% ALIGN=left VALIGN=top>
<!--$PHC FOR item IN Geo.RegList LOOP -->
<!--$PHC IF item.selected BEGIN -->
<!--$PHC IF (Geo.STATE == S2) BEGIN -->

<!--$PHC END; -->
<!--$PHC PRINT(item); -->
<!--$PHC IF (Geo.STATE == S2) BEGIN -->

<!--$PHC END; -->

<!--$PHC END ELSE BEGIN -->
<!--$PHC PRINT(item); -->
<!--$PHC END; -->

<!--$PHC END LOOP; -->
</TD><TD ALIGN=left VALIGN=top>
<!--$PHC FOR item IN Geo.DisList LOOP -->
<!--$PHC IF item.selected BEGIN -->

<!--$PHC PRINT(item); -->

<!--$PHC END ELSE BEGIN -->
<!--$PHC PRINT(item); -->
<!--$PHC END; -->

<!--$PHC END LOOP; -->
</TD></TR>
</TABLE>

Figure A	�� Yet another PHC�LL to the same PHC�DL for Geo	

��

More PHC Examples

Figure A	�� Browser view of PHC Geo with alternative layout from gure A	� in state
S�	

��

More PHC Examples
PH

C
Se

le
ct

io
n

IN
TE

RF
AC

E

EL
EM

EN
T

Se
ar

ch
Di

s,
 S

ea
rc

hP
ro

d,
 M

at
ch

es
,

Sh
ow

;

NO
ST

AT
E;

IM
PL

EM
EN

TA
TI

ON

BE
GI

N
VA

R
Te

mp
Di

s
BA

G
{

Di
st

ri
ct

 R
OW

ID
 }

;
//

 o
pt

io
na

l
PR

IN
T

SQ
L

st
at

em
en

t
Te

mp
Pr

od
 B

AG
 {

 P
ro

du
ct

 R
OW

ID
 }

;
An

za
hl

 I
NT

;

{
//

 2
 t

em
po

ra
ry

 t
ab

le
s

or
 1

6
di

ff
er

en
t

qu
er

ie
s

(s
wi

tc
h/

ca
se

)

SW
IT

CH
 (

Ge
o.

ST
AT

E)
 {

CA
SE

 S
0

{
//

 n
ot

hi
ng

 s
el

ec
te

d
IN

SE
RT

 I
NT

O
VA

R
Te

mp
Di

s
(D

is
tr

ic
t)

SE
LE

CT
 a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e;

};
CA

SE
 S

1
{

//
 p

ro
vi

nc
e

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
SE

LE
CT

 t
Ge

me
in

de
.a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e,

 t
Re

gi
on

WH
ER

E
tG

em
ei

nd
e.

aR
eg

Id
 =

 t
Re

gi
on

.a
Re

gI
d

AN
D

tR
eg

io
n.

aP
ro

vI
d

=
PA

RA
M

Ge
o.

Pr
ov

in
ce

;
};

CA
SE

 S
2

{
//

 r
eg

io
n

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
SE

LE
CT

 t
Ge

me
in

de
.a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e

WH
ER

E
aR

eg
Id

 =
 P

AR
AM

 G
eo

.R
eg

io
n;

};
CA

SE
 S

3
{

//
 d

is
tr

ic
t

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
VA

LU
ES

 (
PA

RA
M

Ge
o.

Di
st

ri
ct

);
};

}; SW
IT

CH
 (

Pr
od

.S
TA

TE
)

{
CA

SE
 S

0
{

//
 n

ot
hi

ng
 s

el
ec

te
d

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Pr
od

 (
Pr

od
uc

t)
SE

LE
CT

 a
Pr

od
Id

 F
RO

M
tP

ro
du

kt
;

};
CA

SE
 S

1
{

//
 c

at
eg

or
y

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Pr
od

 (
Pr

od
uc

t)
SE

LE
CT

 t
Pr

od
uk

t.
aP

ro
dI

d
FR

OM
 t

Pr
od

uk
t,

 t
Su

bk
at

eg
or

ie
WH

ER
E

tP
ro

du
kt

.a
Su

bk
at

Id
 =

 t
Su

bk
at

eg
or

ie
.a

Su
bk

at
Id

AN
D

tS
ub

ka
te

go
ri

e.
aK

at
Id

 =
 P

AR
AM

 P
ro

d.
Ca

te
go

ry
;

};
CA

SE
 S

2
{

//
 s

ub
ca

te
go

ry
 s

el
ec

te
d

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Pr
od

 (
Pr

od
uc

t)
SE

LE
CT

 t
Pr

od
uk

t.
aP

ro
dI

d
FR

OM
 t

Pr
od

uk
t

WH
ER

E
tP

ro
du

kt
.a

Su
bk

at
Id

 =
 P

AR
AM

 P
ro

d.
Su

bC
at

;
};

CA
SE

 S
3

{
//

 p
ro

du
ct

 s
el

ec
te

d
IN

SE
RT

 I
NT

O
VA

R
Te

mp
Pr

od
 (

Pr
od

uc
t)

VA
LU

ES
 (

PA
RA

M
Pr

od
.P

ro
du

ct
);

};

};
} //

 S
ho

w
ma

tc
he

s

EL
EM

EN
T

Se
ar

ch
Di

s
{

GO
TO

 N
UL

L;
SW

IT
CH

 (
Ge

o.
ST

AT
E)

 {
CA

SE
 S

0
{

PR
IN

T
’a

ny
 r

eg
io

n’
;

};
CA

SE
 S

1
{

PR
IN

T
PA

RA
M

Ge
o.

Pr
ov

in
ce

;
};

CA
SE

 S
2

{
PR

IN
T

PA
RA

M
Ge

o.
Re

gi
on

;
};

CA
SE

 S
3

{
PR

IN
T

PA
RA

M
Ge

o.
Di

st
ri

ct
;

};
};

}

EL
EM

EN
T

Se
ar

ch
Pr

od
{

GO
TO

 N
UL

L;
SW

IT
CH

 (
Pr

od
.S

TA
TE

)
{

CA
SE

 S
0

{
PR

IN
T

’a
ll

’;
 }

;
CA

SE
 S

1
{

PR
IN

T
PA

RA
M

Pr
od

.C
at

eg
or

y;
 }

;
CA

SE
 S

2
{

PR
IN

T
PA

RA
M

Pr
od

.S
ub

Ca
t;

 }
;

CA
SE

 S
3

{
PR

IN
T

PA
RA

M
Pr

od
.P

ro
du

ct
;

};
};

};

EL
EM

EN
T

Ma
tc

he
s

{
SE

LE
CT

 C
OU

NT
(*

)
IN

TO
 A

nz
ah

l
FR

OM
 t

An
bi

et
er

 a
,t

An
bo

t
ab

,
VA

R
Te

mp
Di

s
hg

,
VA

R
Te

mp
Pr

od
 h

p

WH

ER
E

a.
aG

em
ei

nI
d=

hg
.a

Ge
me

in
Id

 A
ND

 a
b.

aP
er

sI
d=

a.
aP

er
sI

d
AN

D
ab

.a
Pr

od
Id

=h
p.

aP
ro

dI
d

AN
D

ab
.a

Ve
rf

ue
gb

ar
ke

it
=1

;
PR

IN
T

An
za

hl
;

GO
TO

 N
UL

L;
};

EL
EM

EN
T

Sh
ow

{
PR

IN
T

’S
ho

w
th

em
’;

GO
TO

 S
1

IN
 R

es
ul

t
SE

T
PA

RA
M

Ge
oS

ta
te

 :
=

Ge
o.

ST
AT

E,
SE

T
PA

RA
M

Di
st

ri
ct

 :
=

PA
RA

M
Ge

o.
Di

st
ri

ct
,

SE
T

PA
RA

M
Re

gi
on

 :
=

PA
RA

M
Ge

o.
Re

gi
on

,
SE

T
PA

RA
M

Pr
ov

in
ce

 :
=

PA
RA

M
Ge

o.
Pr

ov
in

ce
,

SE
T

PA
RA

M
Pr

od
St

at
e

:=
 P

ro
d.

ST
AT

E,
SE

T
PA

RA
M

Pr
od

uc
t

:=
 P

AR
AM

 P
ro

d.
Pr

od
uc

t,
SE

T
PA

RA
M

Su
bC

at
 :

=
PA

RA
M

Pr
od

.S
ub

Ca
t,

SE
T

PA
RA

M
Ca

te
go

ry
 :

=
PA

RA
M

Pr
od

.C
at

eg
or

y
PA

GE
 R

es
ul

t;
};

EN
D

//
Se

le
ct

io
n

Figure A	�� PHC�DL description of PHC Selection	

��

More PHC Examples

<TR><TD COLSPAN=2 HEIGHT=100 ALIGN=center>
You are searching for

<!--$PHC PRINT(Selection.SearchProd); -->
in the region
<!--$PHC PRINT(Selection.SearchDis); -->

The database contains <!--$PHC PRINT(Selection.Matches); --> Matches
<!--$PHC PRINT(Selection.Show); -->
<IMG SRC="show_image?pname=yel_arrow" ALT="Show them" HEIGHT=20 WIDTH=30
BORDER=0 ALIGN=MIDDLE>
</TD></TR>

Figure A	�� PHC�LL description to PHC�DL from gure A	�	

Figure A	�� Browser view of PHC Selection	

��

More PHC Examples
PH

C
Re

su
lt

IN
TE

RF
AC

E

PA
RA

M Ge
oS

ta
te

 S
TA

TE
;

Di
st

ri
ct

 R
OW

ID
;

Re
gi

on
 R

OW
ID

;
Pr

ov
in

ce
 R

OW
ID

;
Pr

od
St

at
e

ST
AT

E;
Pr

od
uc

t
RO

WI
D;

Su
bC

at
 R

OW
ID

;
Ca

te
go

ry
 R

OW
ID

;
EL

EM
EN

T
Ho

me
,

Of
fe

r,
 A

dd
re

ss
,

Co
un

te
r,

 C
ad

dy
;

LI
ST
Re

su
lt

_L
is

t;

ST
AT

E
S0

,
S1

;

IM
PL

EM
EN

TA
TI

ON

BE
GI

N
VA

R
Te

mp
Di

s
BA

G
{

Di
st

ri
ct

 R
OW

ID
 }

;
Te

mp
Pr

od
 B

AG
 {

 P
ro

du
ct

 R
OW

ID
 }

;
pi

ck
 I

NT
;

co
un

t
IN

T;

ST
AT

E
S1

{
//

 2
 t

em
po

ra
ry

 t
ab

le
s

or
 1

6
di

ff
er

en
t

qu
er

ie
s

(s
wi

tc
h/

ca
se

)

SW
IT

CH
 (

Ge
oS

ta
te

)
{

CA
SE

 S
0

{
//

 n
ot

hi
ng

 s
el

ec
te

d
IN

SE
RT

 I
NT

O
VA

R
Te

mp
Di

s
(D

is
tr

ic
t)

SE
LE

CT
 a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e;

};
CA

SE
 S

1
{

//
 p

ro
vi

nc
e

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
SE

LE
CT

 t
Ge

me
in

de
.a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e,

 t
Re

gi
on

WH
ER

E
tG

em
ei

nd
e.

aR
eg

Id
 =

 t
Re

gi
on

.a
Re

gI
d

AN
D

tR
eg

io
n.

aP
ro

vI
d

=
PA

RA
M

Pr
ov

in
ce

;
};

CA
SE

 S
2

{
//

 r
eg

io
n

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
SE

LE
CT

 t
Ge

me
in

de
.a

Ge
me

in
Id

 F
RO

M
tG

em
ei

nd
e

WH
ER

E
aR

eg
Id

 =
 P

AR
AM

 R
eg

io
n;

};
CA

SE
 S

3
{

//
 d

is
tr

ic
t

se
le

ct
ed

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Di
s

(D
is

tr
ic

t)
VA

LU
ES

 (
PA

RA
M

Di
st

ri
ct

);
};

}; SW
IT

CH
 (

Pr
od

St
at

e)
 {

CA
SE

 S
0

{
//

 n
ot

hi
ng

 s
el

ec
te

d
IN

SE
RT

 I
NT

O
VA

R
Te

mp
Pr

od
 (

Pr
od

uc
t)

SE
LE

CT
 a

Pr
od

Id
 F

RO
M

tP
ro

du
kt

;
};

CA
SE

 S
1

{
//

 c
at

eg
or

y
se

le
ct

ed
IN

SE
RT

 I
NT

O
VA

R
Te

mp
Pr

od
 (

Pr
od

uc
t)

SE
LE

CT
 t

Pr
od

uk
t.

aP
ro

dI
d

FR
OM

 t
Pr

od
uk

t,
 t

Su
bk

at
eg

or
ie

WH
ER

E
tP

ro
du

kt
.a

Su
bk

at
Id

 =
 t

Su
bk

at
eg

or
ie

.a
Su

bk
at

Id
AN

D
tS

ub
ka

te
go

ri
e.

aK
at

Id
 =

 P
AR

AM
 C

at
eg

or
y;

};
CA

SE
 S

2
{

//
 s

ub
ca

te
go

ry
 s

el
ec

te
d

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Pr
od

 (
Pr

od
uc

t)
SE

LE
CT

 t
Pr

od
uk

t.
aP

ro
dI

d
FR

OM
 t

Pr
od

uk
t

WH
ER

E
tP

ro
du

kt
.a

Su
bk

at
Id

 =
 P

AR
AM

 S
ub

Ca
t;

};
CA

SE
 S

3
{

//
 p

ro
du

ct
 s

el
ec

te
d

IN
SE

RT
 I

NT
O

VA
R

Te
mp

Pr
od

 (
Pr

od
uc

t)
VA

LU
ES

 (
PA

RA
M

Pr
od

uc
t)

;
};

};
} LI

ST
 R

es
ul

t_
Li

st
 (

 /
/

fr
om

 w
hi

ch
 t

o
se

le
ct

 e
nt

ri
es

 f
or

 t
he

 s
ho

pp
in

g
ba

sk
et

ST
AT

E
S0

 {
 N

UL
L;

 }
;

ST
AT

E
S1

{
co

un
t:

=0
;

}
QU

ER
Y

Re
su

lt
_Q

ue
ry

 I
S

SE
LE

CT
 a

.a
Pe

rs
Id

,
a.

aV
or

na
me

,
a.

aN
ac

hn
am

e,
 a

.a
PL

Z,
 a

.a
St

ra
ss

e,
g.

aB
ez

ei
ch

nu
ng

 A
S

Or
t,

 a
b.

aP
ro

dI
d

,a
b.

aA
nb

ot
Id

,
ab

.a
Be

ze
ic

hn
un

g,
ab

.a
Ve

rf
ue

gb
ar

ke
it

FR
OM

 w
An

bi
et

er
 a

,
tG

em
ei

nd
e

g,
 t

An
bo

t
ab

,
VA

R
Te

mp
Di

s
hg

,
VA

R
Te

mp
Pr

od
 h

p
WH

ER
E

a.
aG

em
ei

nI
d=

hg
.a

Ge
me

in
Id

 A
ND

 a
b.

aP
er

sI
d=

a.
aP

er
sI

d
AN

D
ab

.a
Pr

od
Id

=h
p.

aP
ro

dI
d

AN
D

a.
aG

em
ei

nI
d=

g.
aG

em
ei

nI
d

AN
D

ab
.a

Ve
rf

ue
gb

ar
ke

it
=1

 O
RD

ER
 B

Y
a.

aN
ac

hn
am

e;
(

EL
EM

EN
T

Co
un

te
r

{
co

un
t:

=c
ou

nt
+1

;
PR

IN
T

co
un

t;
GO

TO
 N

UL
L;

} EL
EM

EN
T

Ho
me

 {
PR

IN
T

Re
su

lt
_Q

ue
ry

.a
Vo

rn
am

e|
|’

 ’
||

Re
su

lt
_Q

ue
ry

.a
Na

ch
na

me
;

GO
TO

 I
N

Sh
ow

_H
om

e
SE

T
PA

RA
M

Pe
rs

Id
 :

=
Re

su
lt

_Q
ue

ry
.a

Pe
rs

Id
PA

GE
 H

om
e;

} EL
EM

EN
T

Of
fe

r
{

PR
IN

T
Re

su
lt

_Q
ue

ry
.a

Be
ze

ic
hn

un
g;

GO
TO

 I
N

Sh
ow

_I
nf

o
SE

T
PA

RA
M

An
bo

tI
d

:=
 R

es
ul

t_
Qu

er
y.

aA
nb

ot
Id

PA
GE

 I
nf

o;
} EL

EM
EN

T
Ad

dr
es

s
{

PR
IN

T
Re

su
lt

_Q
ue

ry
.O

rt
;

GO
TO

 N
UL

L;
//

 G
OT

O
S0

 I
N

Vi
ll

ag
eI

nf
o

SE
T

PA
RA

M
Vi

ll
ag

e
:=

 R
es

ul
t_

Qu
er

y.
aP

LZ
;

} EL
EM

EN
T

Ca
dd

y
{

pi
ck

:=
0;

SE
LE

CT
 A

nz
ah

l
IN

TO
 p

ic
k

FR
OM

 P
AR

AM
 B

as
ke

t.
Of

fe
rs

WH
ER

E
An

bo
tI

d
=

Re
su

lt
_Q

ue
ry

.a
An

bo
tI

d;
IF

 (
pi

ck
 =

=
0)

 {
IM

AG
E

ei
nk

au
f;

ME
SS

AG
E

Ba
sk

et
.f

il
l

(p
An

bo
tI

d
=>

 R
es

ul
t_

Qu
er

y.
aA

nb
ot

Id
)

PA
GE

 T
HI

S
RE

FR
ES

H
Sh

op
pi

ng
_B

as
ke

t;
} EL

SE
 { IM
AG

E
ei

nk
au

f2
;

ME
SS

AG
E

Ba
sk

et
.r

em
ov

e
(p

An
bo

tI
d

=>
 R

es
ul

t_
Qu

er
y.

aA
nb

ot
Id

)
PA

GE
 T

HI
S

RE
FR

ES
H

Sh
op

pi
ng

_B
as

ke
t;

} PR
IN

T
NU

LL
;

}
)

) EN
D

//
Re

su
lt

Figure A	��� PHC�DL description of PHC Result	

��

More PHC Examples

<TABLE Border=0>
<!--$PHC FOR row IN Result.Result_List LOOP -->
<TR ALIGN="left">
<TD VALIGN=top >

<!--$PHC PRINT(row.Counter); -->

</TD>
<TD>

<!--$PHC PRINT(row.Offer); -->

<!--$PHC PRINT(row.Home); -->, <!--$PHC PRINT(row.Address); -->

</TD>
<TD>

<!--$PHC PRINT(row.Caddy); -->
</TD>
</TR>
<!--$PHC END LOOP; -->
</TABLE>

Figure A	��� PHC�LL description to PHC�DL from gure A	��	

Figure A	��� Browser view of PHC Result	

��

More PHC Examples

PHC Basket

INTERFACE

PARAM
Waren BAG {aAnbotId ROWID, aAnzahl INT};

...

IMPLEMENTATION

METHOD fill(pAnbotId ROWID DEFAULT NULL)
VAR

check_anz INTEGER;
BEGIN

SELECT COUNT(*) INTO check_anz FROM PARAM Waren WHERE Waren.aAnbotId=pAnbotId;
IF (check_anz == 0) then // not yet contained

INSERT INTO PARAM Waren (aAnbotId,aAnzahl)
VALUES(pAnbotId,1);

END;

METHOD remove(pAnbotId ROWID DEFAULT NULL)
BEGIN

DELETE FROM PARAM Waren WHERE Waren.aAnbotId=pAnbotId;
END;

METHOD change(pAnbotId ROWID DEFAULT NULL, pAnzahl INT DEFAULT 1)
BEGIN

UPDATE PARAM Waren hw SET aAnzahl=pAnzahl WHERE hw.aAnbotId=pAnbotId;
END;

BEGIN
...
END //Basket

Figure A	��� PHC�DL description of PCH Basket� method part	

��

Appendix B

PHC Language Syntax De�nition

This appendix summarizes the grammar rules of PHC�DL and PHC�LL	 A detailed de

scription of both languages and their implementation can be found in �Fal���	 Information
concerning language design� Backus Naur Form �BNF� and compiler implementation can
be found in �Sch��� ASU���	 As a convention the non
terminal symbols consist of lower

case characters and the keywords of upper
case characters	 Identiers have the su�x
name and constants have the su�x const	 The initial symbol is the symbol start in
rule D�	

B�� Design Language

The following rules show the syntax of PHC�DL�

D�

PHC phc_name interface_def implement_def

start

���

PHC Language Syntax Denition B	� Design Language

D�

INTERFACE

element_def

list_def

param_def

var_def

state_def

start_state_def

no_state_def

method_def

interface_def

D�

ELEMENT element_name

,

;

element_def

D�

LIST list_name

,

;

list_def

D�

PARAM param_item

,

;

param_def

D�

param_name

PUBLIC

datatype

DEFAULT literal

param_item

���

PHC Language Syntax Denition B	� Design Language

D�

FLOAT

STATE

INT

CHAR

VARCHAR

BAG { var_item

,

}

ROWID

print_decl

datatype

D�

PRINT
{ select_stmt ; }

table . outattrib_name [keyattrib_name]

print_decl

D�

VAR var_item

;

;

var_def

D�	

var_name datatype

DEFAULT literal

var_item

D��

STATE state_name

;

;

state_def

���

PHC Language Syntax Denition B	� Design Language

D��

START STATE state_name ;

start_state_def

D��

NOSTATE ;

no_state_def

D��

METHOD method_name

,

;

method_def

D��

IMPLEMENTATION method BEGIN

var_def
block

action

list_stmt

END

implement_def

D��

METHOD method_name (var_name datatype

DEFAULT literal

,

) block

method

D��

{ stmt }

;

block

���

PHC Language Syntax Denition B	� Design Language

D��

element

state_action

action

D��

ELEMENT

element_name

block

(state_stmt)

;

block

;

element

D�	

state

block

block

(element_stmt)

;

state_action

D��

ELEMENT

element_name

block

element_stmt

D��

state block

state_stmt

D��

ALWAYS

STATE
state_name

,

OTHER

state

���

PHC Language Syntax Denition B	� Design Language

D��

LIST list_name

block

(

inline_query

block (action) ;

state

block

inline_query

block (element_stmt)

;)

;

list_stmt

D��

query

QUERY
query_name

IS select_stmt ;

inline_query

D��

QUERY query_name IS select_stmt ;

query

D��

print_stmt

set_stmt

goto_set_stmt

image_stmt

if_stmt

switch_stmt

cond_stmt

assign_stmt

message_stmt

select_stmt

delete_stmt

insert_stmt

NULL

stmt

���

PHC Language Syntax Denition B	� Design Language

D��

PRINT

string_expr

NULL

;

print_stmt

D��

string_const

param_ref

var_ref

||

string_expr

D�	

SET PARAM param_name

:= scalar_exp

;

set_stmt

D��

GOTO

state_name

IN

phc_name

SELF

THIS set_stmt

,

PAGE

page_name

SELF

THIS

URL url

TARGET frame_name

REFRESH page_name

NULL
;

goto_set_stmt

D��

IMAGE string_expr ;

image_stmt

D��

IF (compare_exp)
stmt

block

ELSE
stmt

block

if_stmt

���

PHC Language Syntax Denition B	� Design Language

D��

compare_exp OR compare_exp

compare_exp AND compare_exp

NOT compare_exp

(compare_exp)

exp COMPARISON exp

compare_exp

D��

SWITCH (

phc_name .

STATE

var_name
) {

CASE
state_name

literal

DEFAULT

block }

;

switch_stmt

D��

CONDITION condition_name ;

cond_stmt

D��

VAR

var_name := exp ;

assign_stmt

D��

MESSAGE (var_name => var_name

,

)

PAGE

page_name

SELF

THIS

URL url

TARGET frame_name

REFRESH page_name

;

message_stmt

D��

DELETE FROM table

WHERE search_condition

;

delete_stmt

���

PHC Language Syntax Denition B	� Design Language

D�	

INSERT INTO table (attrib_name)
VALUES (scalar_exp)

select_stmt
;

insert_stmt

D��

SELECT

ALL

DISTINCT select_item

block

,

INTO select_item

,

*
table_exp ;

select_stmt

D��

select_exp

AS

alias_name

table_name . *

select_item

D��

from_clause

WHERE search_condition GROUP BY column_ref HAVING search_condition ORDER BY column_ref

table_exp

D��

FROM tableref

,

from_clause

D��

table opt_alias

tableref

���

PHC Language Syntax Denition B	� Design Language

D��

schema_name .

table_name

@ dblink

VAR

PARAM

phc_name .

bag_name

subquery

table

D��

database_name

. domain_name @ connection_name

dblink

D��

schema_name .

table_name .

column_name

column_ref

D��

search_condition OR search_condition

search_condition AND search_condition

NOT search_condition

(search_condition)

comparison_predicate

between_predicate

like_predicate

test_for_null

in_predicate

all_or_any_predicate

existence_test

search_condition

���

PHC Language Syntax Denition B	� Design Language

D�	

scalar_exp COMPARISON
scalar_exp

subquery

comparison_predicate

D��

scalar_exp

NOT

BETWEEN scalar_exp AND scalar_exp

between_predicate

D��

scalar_exp

NOT

LIKE atom

ESCAPE atom

like_predicate

D��

scalar_exp IS

NOT

NULL

test_for_null

D��

scalar_exp

NOT

IN

subquery

(atom

,

)

in_predicate

D��

scalar_exp COMPARISON

ANY

ALL

SOME

subquery

all_or_any_predicate

���

PHC Language Syntax Denition B	� Design Language

D��

EXISTS subquery

existence_test

D��

(subquery_select

UNION

ALL

INTERSECT
subquery_select

)

subquery

D��

SELECT

ALL

DISTINCT select_item

block

,

INTO select_item

,

*
table_exp

subquery_select

D��

scalar_exp + scalar_exp

scalar_exp – scalar_exp

scalar_exp * scalar_exp

scalar_exp / scalar_exp

scalar_exp || scalar_exp

+

–
scalar_exp

atom

column_ref

function_ref

PARAM

param_ref

(scalar_exp)

scalar_exp

���

PHC Language Syntax Denition B	� Design Language

D�	

select_exp + select_exp

select_exp – select_exp

select_exp * select_exp

select_exp / select_exp

select_exp || select_exp

+

–
select_exp

atom

column_ref

function_ref

(scalar_exp)

select_exp

D��

exp + exp

exp – exp

exp * exp

exp / exp

+

–
exp

phc_name .

var_name

param_ref

phc_name .

STATE

literal

(exp)

exp

���

PHC Language Syntax Denition B	� Design Language

D��

literal

USER

atom

D��

PARAM

phc_name .

param_name

param_ref

D��

phc_name .

var_name

var_ref

D��

string_const

int_const

float_const

literal

D��

AMMSC (

*

ALL

DISTINCT

scalar_exp

)

function_ref

D��

proto_name :// host_domain_name

.

/

dir_file_name

/
/ ? param_name = value_name

&

url

���

PHC Language Syntax Denition B	� Layout Language

B�� Layout Language

The following rules show the syntax diagrams of PHC�LL�

L�

statement_list

window_stmt

start

L�

root_stmt

language_stmt

mode_stmt

frameset_stmt

frame_stmt

page_stmt

window_stmt

L�

ROOT application_name ;

root_stmt

L�

LANGUAGES language_name

DEFAULT

,

;

language_stmt

���

PHC Language Syntax Denition B	� Layout Language

L�

MODES mode_name

DEFAULT

,

;

mode_stmt

L�

FRAMESET frameset_name MODE mode_name

,

IN
frame_name

AS DEFAULT

ROOT

,

FULLSCREEN frame_name

;

frameset_stmt

L�

FRAME frame_name ;

frame_stmt

L�

PAGE page_name

MODE mode_name

,

IN
frame_name

AS DEFAULT

ROOT

,

FULLSCREEN frame_name

LANGUAGE language_name

;

page_stmt

L�

BEGIN

statement_list

END

block

L�	

statement

block
;

statement_list

���

PHC Language Syntax Denition B	� Layout Language

L��

print_stmt

for_loop

image_stmt

if_stmt

statement

L��

PRINT (string_exp)

print_stmt

L��

IMAGE (string_exp)

image_stmt

L��

string_const

phc_ref

loopvar_name

||

string_exp

L��

phc_name
.

–>
element_name

phc_ref

L��

FOR loopvar_name IN phc_ref LOOP statement_list END LOOP

for_loop

���

PHC Language Syntax Denition B	� Layout Language

L��

IF
loop_var . condition_name

(exp)
block

ELSE block

if_stmt

L��

state_ref

state_name

==

>

<

>=

<=

!=

<>

state_ref

state_name

exp AND exp

exp OR exp

NOT exp

(exp)

exp

L��

phc_name . STATE

state_ref

���

List of Figures

�	� State machine model ��

�	� Browser view of the PHC ��

�	� Geographic Selection ��

�	� PHC Object ��

�	� PHC interaction ��

�	� PHC interaction ��

�	� PHC�DL structure ��

�	� PHC�DL description ��

�	� PHC�LL description ��

�	�� HTML code of Geo during state S� ��

�	�� Browser view of Geo during state S� ��

�	�� PHC�LL for framesets and pages ��

�	�� �Expert� mode page and frame denition � � � � � � � � � � � � � � � � � � ��

�	�� Design and implementation� interpretation and generation � � � � � � � � ��

�	�� Interpreter and repository ��

�	�� Generator and runtime repository� pages as templates � � � � � � � � � � � ��

�	�� Generator and runtime repository� pages as procedures � � � � � � � � � � ��

�	�� Look
ahead link generation ��

�	� Client
server model ��

�	� Di�erent persistence approaches ��

�	� Object oriented design and PHCs ��

�	� Design and implementation with Java ��

�	� Geographical Selection with Java ��

List of Figures

�	� Rational Objectory Design process ��

�	� Comparison of the most reasonable approaches � � � � � � � � � � � � � � � ��

�	� Sample query for the natural language interface � � � � � � � � � � � � � � ��

�	� Results from the sample query ��

�	� Destination point of search result ��

�	� Unstructured keyword search ��

�	� Agent environment ��

�	� Quantitative analysis measurement environment � � � � � � � � � � � � � � ��

�	� Stretching of the Java curve ��

�	� Transferred data over user interactions ��

�	� Di�erence of transferred data over user interactions � � � � � � � � � � � � ��

�	� Download at the beginning ��

�	� Rule Java versus HTML ��

�	� Tool interface ��

A	� PHC�DL Geo version ��

A	� PHC�LL for PHC Geo version ��

A	� Browser view of Geo version � during state S� � � � � � � � � � � � � � � � ��

A	� Old layout from new PHC�DL �Geo version �� � � � � � � � � � � � � � � � ��

A	� PHC�LL alternative layout ��

A	� Browser view of Geo during state S� ��

A	� PHC�DL Selection ��

A	� PHC�LL for PHC Selection ��

A	� Browser view of PHC Selection ��

A	�� PHC�DL Result ��

A	�� PHC�LL for PHC Result ��

A	�� Browser view of PHC Result ��

A	�� PHC�DL methods of Basket ��

���

Bibliography

�AB��� Atkinson� M	� Bunemann� O	� Types and persistence in database programming
languages� ACM Computing Surveys� Volume ��� Nr	 �� pp	 ���
���� Juni ����	

�Adi��� Adida� B	� It all starts at the server� IEEE Internet Computing� Vol	 �� Nr	 ��
pp	 ��
��� ����	

�Adi��a� Adida� B	� Taking Web clients to the next level� IEEE Internet Computing�
Vol	 �� Nr	 �� pp	 ��
��� ����	

�Adi��c� Adida� B	� Database�backed Web sites� IEEE Internet Computing� Vol	 �� Nr	
�� pp	 ��
��� ����	

�AM��� Atkinson� M	� Morrison� R	� Orthogonally persistent object systems� The VLDB
Journal� Volume �� Nr	 �� pp	 ���
���� Juli ����	

�AM��� Arocena� G	� Mendelzon� A	� Viewing Web Information Systems as Database
Applications� Communications of the ACM� Vol	��� No	�� July ����	

�ASU��� Aho� A	� Sethi� R	� Ullman� J	� Compilerbau� Addison
Wesley� ����	

�BBB#��� Bergner� K	� Bartsch� W	� Braun� P	� Molterer� S	� Teubner� G	� P	egeleicht�
Einbindung relationaler Datenbanken ins Web� iX Mutliuser
Multitasking Magazin�
November ����	

�BDK��� Bancilhon� F	� Delobel� C	� Kanellakis� P	 �Editor�� Building an
Object�Oriented Database System � The Story of O�� Morgan Kaufmann� San
Mateo� CA� ����	

�Beh��� Behme� H	� Hilfe f
ur die Verwaltung von WWW�Inhalten� iX
Mutliuser
Multitasking Magazin� Juni ����	

�Boo��� Booch� G	� Object�oriented Analysis and Design� With Applications�
Benjamin�Cummings Publishing� �nd edition� ����	

�Bor��� Born� A	� Chancenlos� Kein Durchbruch f
ur NCs� iX Mutliuser
Multitasking
Magazin� August ����	

�BPS��� Blaha� M	� Premerlani� W	� Shen� H	� Converting OO Models into RDBMS
Schema� IEEE Software� pp	 ��
��� May ����	

���

Bibliography

�Bra��� Bradley� N	� The concise SGML companion� Addison
Wesley Longman� ����	

�Bru��� Brutzman� D	� The Virtual Reality Modeling Language and Java�
Communications of the ACM� Vol	��� No	�� June ����	

�BS��� Barta� R	A	� Schranz� M	W	� JESSICA� an object�oriented hypermedia
publishing processor� �Proceedings of the �th International World Wide Web
Conference� in Computer Networks and ISDN Systems� Volume ��� Numbers �
��
pp	 ���
���� Elsevier� ����	

�BSW��� Beutelsbacher� A	� Schwenk� J	� Wolfenstetter� K	� Moderne Verfahren der
Kryptographie� vieweg� Braunschweig� �	 Au�age� ����	

�BW��� Behbehani� A	� Wartala� R	� VRML�Welten dynamisch generieren� iX
Mutliuser
Multitasking Magazin� August ����	

�Cat��� Cattell� R	 �Editor�� The Object Database Standard� ODMG��� Morgan
Kaufmann� San Mateo� CA� ����	

�Cat��� Cattell� R	G	G	� Editor� The Object Database Standard� ODMG��� Release
���� Morgan Kaufmann Publishers� San Francisco� CA� ����	

�Cat��a� Cattell� R	G	G	� Editor� The Object Database Standard� ODMG ���� Morgan
Kaufmann Publishers� San Francisco� CA� ����	

�Cat��� Catarci� T	� Interacting with Databases in the Global Information
Infrastructure� IEEE Communications Magazine� Vol	 ��� Nr	 �� pp	 ��
��� ����	

�CDK��� Coulouris� G	� Dollimore� J	� Kindberg� T	� Distributed Systems�
Addison
Wesley� ����	

�CH��� Caglayan� A	� Harrison� C	� Intelligente Software�Agenten� Carl Hanser Verlag
M�unchen Wien� ����	

�Che��� Chen� P	� The Entity�Relationship Model � Toward a Uni�ed View of Data�
ACM Transactions on Database Systems� Volume �� Nr	 �� pp	 �
��� ����	

�Cho��� Chorafas� D	N	� Agent Technology Handbook� McGraw
Hill� ����	

�Cla��� Clark� D	� CISCO connect online� It�s Good for Business� IEEE Internet
Computing� Vol	 �� Nr	 �� pp	 ��
��� ����	

�Cod��� Codd� E	F	� A relational model for large shared data banks� Communications of
the ACM� Volume ��� Nr	 �� pp	���
���� ����	

�Con��� Connolly� D	 �Interview�� Architecture of the Web� IEEE Internet Computing�
Vol	�� No	�� March�April ����	

�DaD��� Date� C	J	� Darwen� H	� A Guide to the SQL Standard� Addison
Wesley�
Reading� MA� �th ed� ����	

���

Bibliography

�Dat��� Date� C	� A Guide to INGRES� Addison
Wesley� Reading� MA� ����	

�Dav��� Davis� N	� Telematics in Education� The UK Case� In� Veen� W	� Collis� B	� et
al	� Telematics in Education� The European Case� Academic Book Centre� ABC�
de Lier� the Netherlands� ����	

�DD��� Demuth� F	� Dierks� J	� Entscheidungskriterien zur Auswahl von
�GL�Systemen� iX Mutliuser
Multitasking Magazin� S	 ��
��� J�anner ����	

�Dic��� Dicken� H	� Formel SQL� Performance von Datenbankabfragen aus Java� iX
Mutliuser
Multitasking Magazin� Dezember ����	

�Die��� Diercks� J	� Am Anfang war das BLOB� Datenbanksysteme mit neuen
F
ahigkeiten	 iX Mutliuser
Multitasking Magazin� August ����	

�EGH#��� Engels� G	� Gogolla� M	� Hohenstein� U	� H�ulsmann� K	� L�ohr
Richter� P	�
Saake� G	� Ehrich� H	
D	� Conceptual modelling of database applications using an
extended ER model� Data ! Knowledge Engineering� North
Holland� Volume �� Nr	
�� pp	 ���
���� ����	

�EN��� Elmasri� R	� Navathe� S	� Fundamentals of Database Systems�
Benjamin�Cummings� Redwood City� CA� �	Au�age� ����	

�ES��� Ensor� D	� Stevenson� I	� Oracle� Design Tips� O�Reilly ����	

�Eva��� Evans� D	� The OQL Standard Emerges� Byte Magazine� March ����	

�Fal��� Falb� J	� A State Machine Based Generator for Database Powered Web
Applications� Diploma Thesis at the Institute of Computer Technology of the
Vienna University of Technology� Vienna ����	

�Fla��� Flanagan� D	� JavaScript� The De�nitive Guide� O�Reilly� �nd edition� ����	

�FW��� Field� M	� Weedon� R	� Professional training in computing� The UK Open
University	s Computing for Commerce and Industry Programme� In� Open and
Distance Learning
 Critical Success Factors� International Conference� Geneva�
��
�� Oct	 ����� Proceedings� Berne ����	

�Gas��� Gastkemper� F	� Pedagogy� In� Open and Distance Learning
 Critical Success
Factors� International Conference� Geneva� ��
�� Oct	����� Proceedings� Berne
����	

�GJM��� Ghezzi� C	� Jazayeri� M	� Mandrioli� D	� Software Engineering� Prentice
Hall�
����	

�GMM��� Guttman� R	� Moukas� G	� Maes� P		� Agent�mediated Electronic Commerce�
A Survey� Knowledge Engineering Review ��MIT�� June ����	

�Gog��� Gogolla� M		� An extended Entity Relationship Model� Fundamentals and
Pragmatics� Lecture Notes in Computer Science� Band ���	 Springer
Verlag�
Berlin� ����	

���

Bibliography

�Gra��� Graham� I	� The HTML Sourcebook�Wiley ! Sons� Inc	� New York� �nd edition
����	

�Gra��� Graham� I	� The HTML Sourcebook� Wiley ! Sons� Inc	� New York� �rd edition
����	

�Gre��� Greenspun� P	� Database Backed Web Sites� Zi�
Davies Press� Macmillan
Computer Publishing� Emeryville� CA� USA� ����	

�Gre��a� Greenwald� R	� Using Oracle Web Application Server � QUE� ����	

�Gre��� Grehan� R	� Object Marries Relational� Byte Magazine� March ����	

�GR��� Gabriel� R	� R�ohrs� H	� Datenbanksysteme� Konzeptionelle Datenmodellierung
und Datenbankarchitekturen� Springer
Verlag� Berlin� ����	

�GSS��� Gottlob� G	� Schre�� M	� Stumptner� M	� Datenbanksysteme� Skriptum zur
Vorlesung� Institut f�ur Informationssysteme� Abteilung f�ur Datenbanken und
Expertensysteme� Technische Universit�at Wien� ����	

�Hal��� Halter� C	� Durchsuchen Datenbank�basierter Web�Applikationen mit Robots
und Agents� Diploma Thesis at the Institute of Computer Technology of the
Vienna University of Technology� Vienna ����	

�Hal��� Hall� B	� Web�Based Training Cookbook� John Wiley ! Sons� ����	

�Har��� Harary� F	� Graphentheorie� R	Oldenburg Verlag M�unchen Wien� ����	

�HE��� Hohenstein� U	� Engels� G	� SQL�EER� Syntax and Semantics of an
Entity�Relationship�Based Query Language� Information Systems� Volume ��� Nr	
�� pp	 ���
���� ����	

�Heu��� Heuer� A	� Objektorientierte Datenbanken � Konzepte� Modelle� Standards und
Systeme� Addison
Wesley� �	� aktualisierte und erweiterte Au�age� ����	

�HeuS��� Heuer� A	� Saake� G	� Datenbanken� Konzepte und Sprachen� International
Thomson Publishing� Bonn� ����	

�HeuS��� Heuer� A	� Saake� G	� Datenbanken� Konzepte und Sprachen� International
Thomson Publishing� Bonn� �	korrigierter Nachdruck� ����	

�HFPH��� Heuer� A	� Flach� G	� Post� K	� Hein� O	� Jasmine� OO�Datenbank f
ur
multimediale Anwendungen� iX Mutliuser
Multitasking Magazin� August ����	

�Hir��� Hirohido� H	� Experimental Analysis of User�s Behaviour in Hypermedia CAI
Systems� In� Liberating the Learner� WCCE ��	 Proceedings� Birmingham ����	

�HNS��� Hohenstein� U	� Neugebauer� L	� Saake� G	� An Extended Entity Relationship
Model for Non�Standard Databases� In� Proc	 Workshop

�
Relationale

Datenbanken�� Bericht Nr	 �
��� S	 ���
���	 Lessach� ����	

���

Bibliography

�HNSE��� Hohenstein� U	� Neugebauer� L	� Saake� G	� Ehrich� H	
D	� Three�Level
Speci�cation of Databases Using an Extended Entity Relationship Model� In� Proc	
GI
Fachtagung

�
Informationsermittlung und
analyse f�ur den Entwurf von

Informationssystemen�� Informatik
Fachberichte� Band ���� S	 ��
��	
Springer
Verlag� Berlin� ����	

�Hoh��� Hohenstein� U	� Formale Semantik eines erweiterten
Entity�Relationship�Modells� Teubner
Verlag� Stuttgart� Leipzig� ����	

�Hol��� Holzner� S	� XML complete� McGraw
Hill� New York� ����	

�HU��� Hopcroft� J	� Ullman� J	� Einf
uhrung in die Automatentheorie� Formale
Sprachen und Komplexit
atstheorie� Addison
Wesley� �	� korrigierte Au�age ���� �
�	� korrigierter Nachdruck� ����	

�Hub��� Hubertz� J	� Ins Allerheiligste� AS��� sicher im Internet� iX
Mutliuser
Multitasking Magazin� J�anner ����	

�IBV��� Isakowitz� T	� Bieber� M	� Vitali� F	 �guest editors�� Web Information Systems�
Special Section in Communications of the ACM� Vol	��� No	�� July ����	

�Int��� International Organization for Standardization �ISO�� Database Language SQL�
Document ISO�IEC ���������� ����	

�Int��� International Organization for Standardization �ISO�� Database Language SQL�
Document ISO�IEC ���������� ����	

�ISB��� Isakowitz� T	� Stohr� E	� Balasubramanian� P	� RMM� A Methodology for
Structured Hypermedia Design� Communications of the ACM� Vol	 ��� Nr	�� pp	
��
�� ����	

�ISO��� International Organization for Standardization �ISO�
 American National
Standards Institute �ANSI�� Working Draft Database Language SQL
�SQL�Foundation SQL�� Part �� X�H�
��
��� and SOU
���� ����	

�Iye��� Iyengar� A	� Dynamic Argument Embedding� Preserving State on the World
Wide Web� IEEE Internet Computing� Vol	 �� Nr	�� pp	 ��
�� ����	

�Jel��� Jelli�e� R	� The XML and SGML Cookbook� Prentice
Hall ����	

�JH��� Jones Jr	� I	R	� Heuring� V	P		� Modeling and simulating optical computing
architectures� Systems Implementation ����� Chapman ! Hall� IFIP ����	

�Joh��� Johnson� R	� Design Patterns � Elements of Reusable Object�Oriented Software�
Addison
Wesley ����	

�Kam��� Kampichler� W	� Performance Analysis of Database Backed Web Applications�
Diploma Thesis at the Institute of Computer Technology of the Vienna University
of Technology� Vienna ����	

���

Bibliography

�KDM��� Khoshaan� S	� Dasananda� S	� Minassian� N	� The Jasmine Object Database�
Morgan Kaufmann Publishers� ����	

�KM��� Kristol� D	� Montulli� L	� HTTP State Management Mechanism�
draft
ietf
http
state
man
mec
��	ps on ��W�C�� ����	

�KZ��� Kiniry� J	� Zimmerman� D	� A Hands�on Look at Java Mobile Agents� IEEE
Internet Computing� Vol	 �� Nr	 �� pp	 ��
��� ����	

�LLOW��� Lamb� C	� Landis� G	� Orenstein� J	� Winreb� D	� The ObjectStore Database
Systems� Communications of the ACM� Volume ��� Nr	 ��� pp	 ��
��� ����	

�LV��� Lausen� G	� Vossen� G	� Objekt�orientierte Datenbanken� Modelle und Sprachen�
Oldenburg� M�unchen� ����	

�Mer��� Merkle� B	� In die Ferne schweifen� Verteilte Java�Objekte mit RMI� iX
Mutliuser
Multitasking Magazin� Dezember ����	

�Mai��� Maier� D	� The Theory of Relational Databases� Computer Science Press�
Rockville� MD� ����	

�MD��� McGoveran� D	� Date� C	J		� A Guide to Sybase and SQL Server�
Addison
Wesley� Reading� MA� ����	

�Mis��� Misgeld� W	� SQL� Einstieg und Anwendung� Carl Hanser Verlag� M�unchen�
����	

�MP��� Musella� D	� Padula� M	� Step by Step Toward the Glovbal Internet Library�
IEEE Communications Magazine� Vol	 ��� Nr	 �� pp	 ��
��� ����	

�MS��� Manninger� M	� Schischka� R	� Adapting an Electronic Purse for Internet
Payments� Information Security and Privacy� Lecture Notes in Computer Science�
Vol	 ����� pp	 ���
���� Springer� Berlin� ����	

�Mus��� Musciano� C	 and Kennedey� B	� HTML� Das umfassende Referenzwerk�
O�Reilly� K�oln ����	

�Obj��� Object Design Inc	� ObjectStore User Guide� Release ��� December ����	

�Oin��� Oinas�Kukkonen� H	� What is Inside a Link� Communications of the ACM�
Vol	��� No	�� July ����	

�Ove��� Overbeck� J	� Objektorientierte Systeme und relationale Datenbanken� Lecture
notes at the Vienna University of Technology� Institute of Information Systems�
����	

�Pet��� Petkovi&c� D	� INFORMIX� Das relationale Datenbanksystem mit INFORMIX
OnLine� Addison
Wesley� Bonn� ����	

�Pet��� Petkovi&c� D	� INGRES� Das relationale Datenbanksystem mit Knowledge�Base
und Object�Base� Addison
Wesley� Bonn� ����	

���

Bibliography

�Rad��� Radinger� W	� Object Oriented Approaches for Database backed Web
Applications Implemented in Java� Diploma Thesis at the Institute of Computer
Technology of the Vienna University of Technology� Vienna ����	

�RCK��� Rada� R	� Cargill� C	� Klensin� J	� Consensus and the Web� Communications
of the ACM� Vol	��� No	�� July ����	

�Ren��� Renwick� W	 L	� Organisational Strategies� Open and Distance Learning

Critical Success Factors� International Conference� Geneva� ��
�� Oct	�����
Proceedings� Berne ����	

�Ros��� Rosenberg� D	� Bringing Java to the Enterprise� Oracle on Its Java Server
Strategy� IEEE Internet Computing� Vol	�� No	�� March�April ����	

�Rut��� Rutkowski	� Dimensioning the Internet� IEEE Internet Computing� Vol	��
No	�� March�April ����	

�Saa��� Saake� G	� Objektorientierte Spezi�kation von Informationssystemen�
Habilitationsschrift� Teubner
Verlag� Stuttgart�Leipzig� ����	

�Sau��� Sauer� H	� Relationale Datenbanken� Theorie und Praxis inklusive SQL��� Band
�	 Addison
Wesley� ����	

�Say��� Sayegh� M	� Corba� Standard� Spezi�kation� Entwicklung� O�Reilly� K�oln� ����	

�Sch��� Schader� M	� Objektorientierte Datenbanken� Die C���Anbindung des
ODMG�Standards Springer
Verlag� Berlin� ����	

�Sch��� Schreiner� A	� Friedman� G	� Compiler bauen mit UNIX � Eine Einf
uhrung�
Carl Hanser Verlag M�unchen Wien� ����

�SFC��� Stotts� D	P	� Furuta� R	� Cabarrus� C	R	� Hyperdocuments as Automata�
Veri�cation of Traces�Based Browsing Properties by Model Checking� ACM
Transactions on Information Systems� Vol	 ��� No	 �� pp	 �
��� January ����	

�Smi��� Smith� R	� Internet�Kryptographie Addison
Wesley Longman� ����	

�SST��� Saake� G	� Schmitt� I	� T�urker� C	� Objektdatenbanken International Thomson
Publishing� Bonn� ����	

�St�u��� St�urner� G	� Oracle �� Die verteilte semantische Datenbank� dbms publishing�
Weissach� �	Au�age� ����	

�St�u��� St�urner� G	� Oracle �� Die verteilte semantische Datenbank� Release ��� dbms
publishing� Weissach� �	Au�age� ����	

�SW��� Steinbuch� K	� Weber� W	� Taschenbuch der Informatik � Band I� Springer
Verlag� �	Au�age� ����	

�Tak��� Takahashi� K	� Metalevel Links� More Power to Your Links� Communications
of the ACM� Vol	��� No	�� July ����	

���

Bibliography

�Tan��� Tanenbaum� A	S	� Computer Networks� Prentice
Hall� �rd edition� ����	

�Tha��� Thalheim� B	� Fundamentals of Entity�Relationship Modeling� Springer
Verlag�
Berlin� ����	

�TB��� Trost� H	� Buchegger� E	� Datanbak�DIALO� how to communicate with your
database in German �and enjoy it�� Austrian Research Institute for Articial
Intelligence� Butterworth
Heinemann� ����	

�Tol��� Tolksdorf� R	� Die Sprache des Web� HTML� dpunkt Verlag� Heidelberg�
�	Au�age ����	

�Ull��� Ullman� J	� Principles of Database and Knowledge�Base Systems� Volume �	
Computer Science Press� Rockville� MD� ����	

�Ull��� Ullman� J	� Principles of Database and Knowledge�Base Systems� Volume �	
Computer Science Press� Rockville� MD� ����	

�Vio��� Viola� J	� Extrovertierte Objekte� Datenbank Fokus� pp	 ��
��� ������	

�Wal��� Walter� I	� Adalbert Stifter � Werke�� Verlagsgruppe Kiesel� Salzburg� ����	

�WE��� Washburn� K	� Evans� J	� TCP�IP � running a successful network�
Addison
Wesley� ����	

�WM��� Williamson� A	� Moran� C	� Java Database Programming� Servlets � JDBC�
Prentice Hall Europe� ����	

�WSCP��� Wall� L	� Schwartz� R	� Christiansen� T	� Potter� S	� Programming Perl
�Nutshell Handbook�� O�Reilly� �nd edition� ����	

�Zen��� Zeng� C	� Using Keyword Separation to Improve Searching on the Web�
Proceedings of the ISCA �International Conference on Computers and Their
Applications�� pp	���
���� Honolulu� Hawaii� USA� Mar ��
��� ����	

�Z�ol��� Z�oller� M	 �Hrsg	�� Informationsgesellschaft � Von der organisierten
Geborgenheit zur unerwarteten Selbst
andigkeit� VI	 Kongre' Junge
Kulturwissenschaft und Praxis� Essen� ��	
��	Mai� Hanns Martin Schleyer
Stiftung
����	

References on the Web �URLs�

References about the Web � with its high momentums and rapid changes � cannot
solely be based on paper material	 The following references thus point to the Web
itself	 However� the URLs are not too detailed and show instead the most
important entry points	 The author�s homepage ��Goeschka� provides more
detailed and up
to
date links to Web references	

��Alta� http���www�altavista�com� Alta Vista search engine	

���

Bibliography

��Any� http���www�anybrowser�org�campaign� Campaign for a Non
Browser
Specic WWW	

��ECMA� http���www�ecma�ch� ECMA � European association for standardizing	

��FCGI� http���www�fastcgi�com Open Market� FastCGI	

��GemStone� http���www�gemstone�com GemStone	

��Goeschka� http���www�ict�tuwien�ac�at�goeschka�� Homepage of Karl M	
Goeschka with references to online ressources	

��heitml� http���www�h�e�i�de�� heitml extends and anhances the functionality of
HTML by deneable tags and full programming features	

��IBEX� http���www�ibex�ch�� ITASCA database system	

��IBIS� http���nestroy�wi�inf�uni�essen�de�Lv�� Internetbasierte
Informationssysteme	

��IBM� http���www�trl�ibm�co�jp�aglets�� IBM Aglets Software Development Kit	

��ICT� http���www�ict�tuwien�ac�at�� Vienna University of Technology� Institute
of Computer Technology	

��Informix� http���www�informix�com�� Illustra	

��ISAPI� http���www�microsoft�com�msdn�sdk�
platforms�doc�sdk�internet�src�

isapimrg�html Microsoft Internet Server API	

��Java� http���java�sun�com�� The original source for information about Java	

��JS� http���developer�netscape�com�
library�documentation�

javascript�html JavaScript	

��MIT� http���agents�www�media�mit�edu�groups�agents� Massachusetts
Institute of Technology� Software Agents Group� Media Laboratory	

��MS� http���www�microsoft�com� Microsoft	

��News� news�comp�infosystems�www��� N ewsgroups dealing with themes related to
the Web	

��NS� http���www�netscape�com� Netscape	

��NSAPI� http���www�netscape�com�
newsref�std�server api�html Netscape Server API	

��NW� http���www�nw�com� Network Wizards	

���

Bibliography

��O�� http���www�o�tech�fr or http���www�o�tech�com O� Technology� Java
Relational Binding	

��ODI� http���www�odi�com Object Design Inc	� ObjectStore PSE�PSE Pro for Java
Tutorial Release �	� from April ����	

��ODMG� http���www�odmg�org Object Data Management Group� The Standard for
Storing Objects �ODMG �	��	

��OMG� http���www�omg�org Object Management Group� CORBA�	� �Feb
�
�����
and UML�	� �Nov
��
�����	

��Oracle� http���www�oracle�com Oracle Web Application Server and Web request
Broker	

��OUC� http���www�ouc�bc�ca�libr�connect���search�htm Okanagan University
College� Library� Workshop about Search Engines on the Web	

��Persistence� http���www�persistence�com Persistence Software Inc	� Architecting
OO applications for high performance with relational databases �White Paper�	

��PHP� http���www�php�net� PHP�	

��PJama� http���www�dcs�gla�ac�uk� University of Glasgow� Department of
Computing Science� The PJama Project	

��POET� http���www�poet�com POET	

��Postgres� http���www�postgresql�org Postgres��	

��Rational� http���www�rational�com Rational Inc	� The Rational Objectory
Process	

��RIPE� http���www�ripe�net R&eseaux IP Europ&eens
 Network Coordination Centre
RIPE NCC� European Hostcount	

��RFC� ftp���ftp�univie�ac�at�netinfo�rfc�� Requests for Comments �RFCs�	

��SAP� http���www�sap�com� SAP� SAP%Web	

��SoS� http���www�sci�ouc�bc�ca�libr�connect���search�htm Sink or Swim�
Internet Search Tools and Techniques	

��SunLabs� http���www�sunlabs�com�research�forest� SunLabs� Project Forest	

��UMBC� http���www�cs�umbc�edu�kqml� University of Maryland� Baltimore
County� Knowledge Sharing E�ort	

��W�C� http���www�w��org�� World Wide Web Consortium� the basic starting point
for everything concering the Web	

��WOF� http���www�apple�com�webobjects�� WebObjects Framework	

���

Publications

�Goe��� G�oschka� K	� Microcompiler Design Language	 Diploma Thesis at the Vienna
University of Technology� Vienna� Austria� ����	

�Goe��a� G�oschka� K	� Generation of �rmwarecompilers	 Presentation at the
���st Euromicro Conference � Design of Hardware�Software Systems�� Como� Italy�
Sept �
�� ����	

�Goe��b� G�oschka� K	� MDL � Microcompiler Design Language� Eine Methode zur
hardwaregesteuerten Generierung von Firmwarecompilern	 Elektrotechnik und
Informationstechnik �ISSN ����
���X EIEIEE ����� Volume ���� Number ������
pp	���
���� published by Springer Verlag� Vienna� Austria� ����	

�Goe��c� G�oschka� K	� Firmware Compiler Generation	 Diploma Thesis at the Vienna
University of Technology� Vienna� Austria� ����	

�DMG��� Dietrich� D	� Manninger� M	� G�oschka� K	� Internet und Smart Card	
Proceedings of the �ASA Konferenz ������ Vienna� Austria� Sep ��� ����	

�Goe��� G�oschka� K	� Generation of �rmwarecompilers	 Journal of Systems
Architecture �ISSN ����
���������
������ Volume ��� Numbers �
�� pp	��
����
published by Elsevier Science� North
Holland� ����	

�RGR��� Riedling� E	� G�oschka� K	� Ramharter� R	� DEMENET � The DEMETER
Project	 Proceedings �ISBN �� ���� ��� �� of the �First European Conference for
Information Technology in Agriculture�� pp	���
���� Copenhagen� Denmark�
June ��
��� ����	

�MGD��� Manninger� M	� G�oschka� K	� Dietrich� D	� Die Smart Card im Internet	
Praxis der Informationsverarbeitung und Kommunikation �ISSN ����
������
Volume ��� Number ����� pp	���
���� published by K	G	Saur Verlag� Munich�
Germany� ����	

�RGM��� Riedling� E	� G�oschka� K	� Manninger� M	� Education at the Vienna
University of Technology� Traditional Lecture Based Education vs� Telematics
Based Education	 Proceedings �ISBN �
������
��
�� of the �International
Conference on Engineering Education� Progress Through Partnerships��
pp	���
���� Chicago� Illinois� USA� August ��
��� ����	

���

Publications

�GR��� G�oschka� K	� Riedling� E	� Development of an Object Oriented Framework for
Design and Implementation of Database Powered Distributed Web Applications
with the DEMETER Project as a Real�Life Example	 Short Contributions
Proceedings �ISBN �
����
����
�� of the ���rd Euromicro Conference � New
Frontiers of Information Technology�� pp	���
���� Budapest� Hungary� Sep �
��
IEEE Computer Society� ����	

�Goe��a� G�oschka� K	� Design and implementation of database powered web systems �
experiences from the DEMETER project	 Proceedings �ISBN �
���
�����
�� of the
IFIP WG�	� �Systems Implementation ���� Conference�� pp	���
���� Berlin�
Germany� Feb ��
��� Chapman ! Hall� ����	

�Goe��b� G�oschka� K	� Internet Software Engineering� Design and Implementation of
Interactive Web Applications	 Proceedings �ISBN �
������
��
�� of the ISCA
�International Conference on Computers and Their Applications�� pp	�
�� Honolulu�
Hawaii� USA� Mar ��
��� ����	

�GF��� G�oschka� K	� Falb� J	� Experiences from Design and Implementation of
Real�Life Database Backed Web Applications	 Proceedings �ISBN �
������
��
�� of
the �IEEE ��th International Conference on Software Engineering�� pp	���
����
Kyoto� Japan� Apr ��
��� IEEE Computer Society� ����	

�GRRF��� G�oschka� K	� Riedling� E	� Radinger� W	� Falb� J	� Using Database Backed
Web Applications for the Implementation of Interactive Tutorials on WWW	
Proceedings of the �International Conference on Engineering Education�� Rio de
Janeiro� Brazil� Aug ��
��� ����	

�GFR��� G�oschka� K	� Falb� J	� Radinger� W	� Database Access with HTML and Java �
A Comparison Based on Practical Experiences	 Proceedings of the �IEEE ��nd
International Computer Software and Applications Conference�� Vienna� Austria�
Aug ��
��� IEEE Computer Society� ����	

�GR��� G�oschka� K	� Riedling� E	� Web Access to Interactive Database Training� New
Approaches to Distance Laboratory Work at the Vienna University of Technology	
Proceedings of the �Teleteaching ��� as part of the ���th IFIP World Computer
Congress�� Vienna� Austria and Budapest� Hungary� Aug ��
Sep �� ����	

�GM��� G�oschka� K	� Manninger� M	� Database Powered Web Applications for Internet
Marketing and Commerce	 Full day workshop at the ���th IFIP World Computer
Congress�� Vienna� Austria� Aug ��� and Budapest� Hungary� Sep �� ����	

�GF��a� G�oschka� K	� Falb� J	� New Architectures for Database Backed Web
Applications	 Proceedings of the �AACE WebNet�� World Conference�� Orlando�
Florida� USA� Nov �
��� ����	

���

Curriculum Vitae

Karl M� G�oschka
Vienna University of Technology
Institute of Computer Technology
Gusshausstrasse ���������
A����� Vienna� Austria
Email� goeschka�ict�tuwien�ac�at

Jan ��� ���� Born in Vienna� Austria
���� 	 ���� Primary School
���� 	 ���� High School
June �� ���� �st prize at the ��th Austrian Mathematical Olympiad
May ��� ���� Graduation from High School with �distinction
June ��� ���� �st prize at the ��th Austrian Mathematical Olympiad
July ��� ���� �rd prize at the ��th International Mathematical Olympiad
���� Software Engineer� Bank Austria
����� 	 ���� Military Service� Austria
����� 	 ���� Diplom�Ingenieur �M�Sc�� in Electrical Engineering with �distinc�

tion� Thesis� �Microcompiler Design Language� awarded by the
annual �GIT�F�orderpreis of the � �Osterreichischer Verein f�ur Elek�
trotechnik on Nov ��� ����

����� 	 ���� Diplom�Ingenieur �M�Sc�� in Computer Science with �distinction�
Thesis� �Firmwarecompiler Generation

�� 	 �� Software Engineer �during vacations�� Siemens Austria� De�
velopment of �rmware� computer architecture� compiler imple�
mentation�

���� 	 present Research Assistant� Institute of Computer Technology� Vienna
University of Technology� Austria�
Main research area� Design and implementation of database
backed Web applications� information engineering and multi me�
dia protocols� security concerns�
Lecturing� Graduate course on �Web databases� Supervision of ��
Masters students in thesis research�
Industry projects� Coordinator of a cooperation with Ericsson
Austria about wireless Intranet communication services� Deve�
lopment of database powered Web applications for the project
DEMETER funded by the European Commission� Several small
projects with Siemens Austria�
Administration� Design and maintenance of the institutes LAN�
Oracle database and Web�Server�

���

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

