
DISSERTATION

Trading Consistency for Availability in a
Replicated System

ausgeführt zurn Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von

O.UNIV.PROF. DR.TECHN. RICHARD EIER
UNIV.LEKTOR DR.TECHN. KARL MICHAEL GÖSCHKA

Institut für Computertechnik, E384

und

o.UNIV.PROF. DR.TECHN. MEHDI JAZAYERI

Institut für Informationssysteme, E184

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

UNIV.Ass. DIPL.-ING. ROBERT SMEIKAL
Matrikelnummer: 9327703

Lederergasse 8/5, 1080 Wien

Wien. Juni 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Rober t Smeikal:
Trading Consistency for Availability in a Replicated System

Faculty of Electrical Engineering and Information Technology
Vienna University of Technology, Austria

This research has been supported by Frequentis GmbH

Abstract

Distributed systems are of unprecedented interest and importance today. Their om-
nipresence pervades many aspects of our daily lives leading to an increasing demand
for dependability of such systems, sometimes very critically as in systems for air traf-
fic control or public safety. As systems are expected to continue functioning even in
the presence of failures, fault-tolerance as one means to enhance dependability is of
particular interest.

It is common to build such systems using distributed objects, which are replicated
to provide the redundancy necessary for fault-tolerance. Furthermore, data integrity
rules called constraints are defined among them. As concurrent access from different
clients is a basic requirement, the isolation necessary to offer a comprehensible view
to clients has to be provided. The system takes care of all those functions.

In this regard, there are three types of consistency to be analyzed, defined, and
compared: Replica consistency, which defines the correctness of replicated data,
concurrency consistency, which defines the correctness of concurrent access to a
single set of replicas, and constraint consistency, which defines the correctness of
the system state with respect to the set of constraint conditions.

Deploying these considerations, this thesis examines a very specific aspect of
fault-tolerant distributed systems: the explicit trade-off between availability and
constraint consistency. The type of replica consistency is used as a means of con-
figuring the trade-off between constraint consistency and replica availability. If
the system faces site crashes or network partitions, less but well controlled con-
straint consistency is accepted to gain higher availability of objects. Furthermore,
a model for enabling this trade-off within a distributed system is introduced, the
fault-tolerant naming service (FTNS). The key idea of the respective system archi-
tecture is to use asynchronous replication of persistent object-states, while operating
on objects synchronously. During normal operation the system is set up like a con-
ventional distributed system, while propagating persistent object-states prepares for
degraded scenarios.

Additionally, a proof of concept implementation is presented, the Distributed
Telecommunication Management System (DTMS): It is an object-oriented, dis-
tributed and highly available software for managing a telecommunication network
to be used in air traffic control.

Kurzfassung

Verteilte Systeme sind heutezutage von großem Interesse und einer noch nie da gewe-
senen Wichtigkeit. Ihre Allgegenwart durchdringt viele Aspekte unseres täglichen
Lebens, und das wiederum führt zu einem steigenden Bedürfnis nach Zuverlässigkeit
solcher Systeme, bisweilen sehr kritisch wie in Systemen zur Flugsicherung oder zur
öffentlichen Sicherheit. Es wird von solchen Systemen erwartet, auch in Gegenwart
von Fehlern weiter korrekt zu funktionieren, und daher ist Fehlertoleranz als ein
wichtiges Mittel zur Steigerung der Zuverlässigkeit von besonderem Interesse.

Es ist üblich, solche Systeme mit Hilfe verteilter Objekte zu bauen, deren Replika-
tion die nötige Fehlertoleranz ermöglicht. Weiters werden Datenintegritätsbeding-
ungen auf diesen Objekten definiert. Da gleichzeitiger Zugriff durch verschiedene
Benutzer eine Basisanforderung darstellt, muß auch für eine Isolation dieser Zugriffe
gesorgt werden, die eine nachvollziehbare Systemsicht für den Benutzer bewirkt.
Das System bietet all diese Funktionalität.

Diesbezüglich müssen drei Typen von Konsistenz analysiert, definiert und ver-
glichen werden: Konsistenz der Replikation, die die Korrektheit der replizierten
Daten definiert. Konsistenz der gleichzeitigen Zugriffe, die die Korrektheit der gleich-
zeitigen Zugriffe auf einen einzelnen Satz an Kopien definiert, und Konsistenz bezüg-
lich der Integritätsbedingungen, die die Korrektheit des Systemzustandes unter
Berücksichtigung der Integritätsbedingungen definiert.

Unter Anwendung dieser Überlegungen untersucht diese Arbeit einen sehr spe-
ziellen Aspekt fehlertoleranter verteilter Systeme: Die explizite gegenseitige Abhäng-
igkeit von Verfügbarkeit und Konsistenz bezüglich der Integritätsbedingungen. Der
Typ der Konsistenz der Replikation wird als Mittel verwendet, um diese gegen-
seitige Abhängigkeit zu konfigurieren. Wird das System mit dem Absturz von
Knoten oder der Trennung des Netzwerkes in Teilbereiche konfrontiert, so wird eine
geringere und kontrollierte Konsistenz bezüglich der Integritätsbedingungen akzep-
tiert, um höhere Verfügbarkeit zu erlangen. Weiters wird ein Model vorgestellt,
das ein Ausnützen dieser gegenseitigen Anhängigkeit in einem verteilten System
ermöglicht: Das "Fault-tolerant Naming Service" (FTNS). Die Schlüsselidee der
zugehörigen Systemarchitektur ist es, asynchrone Replikation von bereits perma-
nent gespeicherten Objekt-Zuständen zu betreiben, während auf den eigentlichen
Objekt-Instanzen synchron gearbeitet wird. Im normalen Betrieb arbeitet das Sys-
tem wie ein konventionelles verteiltes System, während das Verteilen von permanent
gespeicherten Objekt-Zuständen auf Fehlerszenarien vorbereitet.

Zusätzlich wird eine Implementierung des vorgestellten Konzepts präsentiert:
Das "Distributed Telecommunication Management System" (DTMS). Dies ist eine
objekt-orientierte. verteilte und hochverfügbare Software zur Steuerung von einem
Telekommunikations-Netzwerk, das in der Flugsicherung Verwendung findet.

Acknowledgement

Many people deserve my deepest gratitude:

First of all I would like to thank my thesis advisor Professor Richard Eier for
his continued support throughout my work at university. He always helped and
encouraged me to pursue the goal of writing this thesis. I am also grateful to
my second thesis advisor Professor Mehdi Jazayeri for his assistance and valuable
comments in the final phase of my thesis.

I am also very much in debt to Karl Michael Göschka, who taught me how to
write scientific publications and was always willing to contribute with his hints and
discussion.

My colleagues at university provided countless and useful hints: Friedrich Bauer,
Klaus Darilion, Jürgen Falb, Martin Jandl, Wolfgang Kampichler, Christoph Kurth,
Rudolf-Michael Liebhart. Roman Popp, Wolfgang Radinger, Paul Smutny, Alexan-
der Szep.

I developed the basic idea of my thesis within a cooperation of my university
with the companies Frequentis GmbH and PDTS GmbH. The people there were very
willing to help with their hints and background knowledge: Volkmar Hausharter,
Hubert Kiinig, Gerhard Kurz, Dietmar Mittermair, Helmut Reis, Reinhard van Loo.

Most of all I owe many thanks to my friends and family, who supported me
throughout my whole professional career. None of my achievements would have
been possible without their patience, understanding, and advice. Thank you very
much!

Contents

1 Motivation, Objectives, and Technical Baseline 1

1.1 Motivation 1

1.2 Technical Baseline 3

1.2.1 Dependability 3

1.2.2 Replication 5

1.2.3 Unified Modeling Language 5

1.2.4 Component-Based Software Engineering 5

1.3 Potential Applications 6

1.3.1 Distributed Telecommunication Management 6

1.3.2 Ubiquitous and Pervasive Computing 6

1.3.3 Air Traffic Control and Public Safety 6

1.3.4 Health Care System 7

1.3.5 Fleet Management 7

1.3.6 Control Systems in Experimental Physics 7

1.4 Contribution and Publications 8

2 Model and Terminology 10

2.1 Distribution, Persistence, and Replication 10

2.2 Terminology and Clarification of Terms 13

2.2.1 Objects and Persistence 14

2.2.2 Constraints and Consistency 14

2.2.3 Transactions and Consistency 15

2.2.4 Client and Server 16

2.2.5 Transparent Functionality 17

2.2.6 Sites, Network, and Distributed System 17

2.2.7 Safety and Liveness 18

2.2.8 Replication and Consistency 19

2.2.9 Replica Control Protocols 21

2.3 Interrelation of Replica, Constraint, and Concurrency Consistency . . 23

v

3 Trading Consistency for Availability 26

3.1 The Trade-Off 26

3.2 Architectural Concept and Key Idea 27

3.3 Switching between Asynchronous and Synchronous Communication . 27

3.4 Operation in a Healthy System 28

3.5 Operation in a Degraded System 28

3.6 Fault-Tolerant Naming Service 29

3.7 Object-Readiness and Sets of Constraints 31

3.8 System Properties 34

3.9 Reasoning about Correctness 36

4 Use Case and Proof of Concept: The DTMS 37

4.1 Purpose of the DTMS 37

4.2 DTMS Overview 37

4.3 Components of the DTMS 39

4.3.1 Model 39

4.3.2 Client 41

4.3.3 Transaction 41

4.3.4 FTNS 41

4.3.5 Persistence 42

4.3.6 Database 42

4.3.7 Replication 42

4.4 Typical Sequences of Component Interaction 42

4.4.1 Distributed Object Access in a Healthy System 42

4.4.2 Object Access in a Degraded System 44

4.4.3 Replication of Transactions 44

4.5 Post Mortem Analysis and Future Work 44

5 Summary and Conclusion 50

5.1 Summary 50

5.2 Related Work 51

5.2.1 General Related Work for High Availability 51

5.2.2 Related Work about Trading Consistency 51

5.3 Future Work 55

Abbreviations

ACID
ATC
CBSE
CORBA
DTMS
EJB
FTNS
GUI
HDLC
ID
IOR
LAN
OCL
OMG
OSI
QC
ROWA
UML
VCS
WAN

Atomicity Consistency Isolation Durability
Air Traffic Control
Component-Based Software Engineering
Common Object Request Broker Architecture
Distributed Telecommunication Management System
Enterprise Java Beans
Fault-Tolerant Naming Service
Graphical User Interface
High Level Data Link Control
Identifier
Interoperable Object Reference
Local Area Network
Object Constraint Language
Object Management Group
Open Systems Interconnect
Quorum Consensus
Read One Write All
Unified Modeling Language
Voice Communication System
Wide Area Network

vn

Chapter 1

Motivation, Objectives, and
Technical Baseline

"A distributed system is one in which the failure of a computer you
didn't even know existed can render your own computer unusable. "

Leslie Lamport, May 1987

1.1 Motivation

Distributed systems are of unprecedented interest and importance today. Their
common principles and practices underlying the design and implementation are an
aspect for many disciplines in computer science and engineering, such as hardware,
embedded and real-time systems, component-based systems and middleware, soft-
ware agents, distributed databases and replication, communication systems, and
ubiquitous computing. Among others, they serve as means for fault-tolerance, load
balance and increased performance, and for connecting users and services.

The omnipresence of distributed systems pervades many aspects of our daily lives
leading to an increasing demand for dependability of such systems, not only for ap-
parently safety critical applications, as in systems for air traffic control or public
safety, but for many innovative applications of distributed systems in general. How-
ever, often dependability is only taken into consideration for highly specialized safety
critical applications. Unfortunately, the complexity of distributed systems leaves an
undependable system uncontrollable and unmanageable. Therefore, the key element
for achieving scalable and maintainable distributed and complex software systems
is dependability and it needs to be transparently integrated into the application
deployment environment. As systems are expected to continue functioning even in
the presence of failures, fault-tolerance as one means to enhance dependability is of
particular interest.

One important way of introducing fault-tolerance is to add functionality to the
software, which is able to respond to such faulty system conditions [27], where
failures in lower system levels (i.e. hardware failures, failures of driver software) can
be classified as site failures (a particular site is not working) and network failures (in
particular network partitions, where a group of sites cannot be reached but is still

1

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 2

operating). In order to enable reuse and to free déployer and developer from dealing
with such fault-tolerance functionality, it has to be encapsulated in well-defined and
coherent system parts.

However, improving single component availability is insufficient, but rather fault-
tolerance needs to be incorporated into the system architecture itself. Even worse,
there is no such thing like a "fault-tolerance"-module that can be added later on. In
fact, dependability is an aspect of every part of the system. Therefore, availability,
reliability, and fault-tolerance have to be incorporated into design and architecture,
component infrastructure services, and interaction and composition standards.

Replication is well proven to provide fault-tolerance and a plethora of replication
protocols exists. Unfortunately, state-of-the-art distributed component-based soft-
ware systems are not just distributed databases. Therefore, replication cannot be
deployed isolated, but rather only the integration of distribution, persistence, and
replication can provide a dependable distributed system.

When dependability has to be optimized, this can be achieved by trading it
against other non-functional requirements, especially performance and consistency.
The key focus of this thesis is on the explicit trade-off between availability (as
a measure of dependability) and constraint consistency (as opposed to the other,
different types of consistency: replica and concurrency consistency). Furthermore,
this thesis introduces a system model for incorporating this trade-off into a dis-
tributed system, the fault-tolerant naming service (FTNS), along with a real-life
implementation of this model as a proof of concept.

Considering related work, existing frameworks for distributed applications either
deploy strong consistency (infrastructure-controlled) or leave replica management
entirely to the application. Yet, strong consistency is not always desirable, because
it also implies strong limitations of availability. Generally, the trade-off between
replication availability and consistency cannot be configured in such systems. The
presented approach on the other hand introduces an idea and an implementation for
a tuning of this trade-off between availability and constraint consistency in order to
optimize dependability. This contribution exceeds the state of the art in the field of
distributed systems.

The key architectural concept of this approach is to use asynchronous repli-
cation of persistent object-states, while operating on objects synchronously. During
normal operation the system is set up like a conventional distributed system, while
propagating persistent object-states prepares for degraded scenarios.

The key system model for tuning the trade-off is called fault-tolerant naming
service (FTNS) and comprises the fault-tolerant mapping of object identity to object
reference: Since the mapping of object identity to reference is dependent on the
underlying mechanisms instilled to provide fault-tolerance, the naming service has
to be aligned with the replication. The FTNS is locally available at each site. The
major difference to a highly available naming database is the dependency of the
mapping on the current failure scenario.

Putting it together, this thesis aims at a concept for optimizing dependability in
distributed component-based software systems by dealing with failures of nodes and
links in an innovative way. Replication is used as means to provide fault-tolerance,
but with a focus on the trade-off between availability and constraint consistency.

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 3

This is done using a mixture of asynchronous and synchronous replication tech-
niques. The long-term goal is the fine-grained tuning and measuring of this trade-
off to allow an application-specific optimum of availability. Also, a fault-tolerant
naming service is proposed, which is used to implement this trade-off by resolving
object identities based on the current failure scenario and the configured replication
strategy.

1.2 Technical Baseline

The following section briefly recalls the basic terminology in the realm of fault-
tolerance in distributed systems along with relevant technology.

1.2.1 Dependability

The following definition of dependability is quoted from [27]:

Dependability is defined as the trustworthiness of a computer system such
that reliance can justifiably be placed on the service it delivers. The
service delivered by a system is its behavior as it is perceived by its users,
where a user is another system (human or physical) which interacts with
the computer system. Dependability is a general concept, and depending
on the application, different attributes can be emphasized. The most
significant attributes of dependability are reliability, availability, safety,
and security.

According to [32], the attributes of dependability can be gathered into three
main classes: The dependability impairments, the dependability means and the
dependability measures. Their taxonomy is shown in figure 1.1.

• Dependability impairments are undesired (not unexpected) circumstances re-
sulting from or causing un-dependability, whose definition is very simply de-
rived from the definition of dependability: reliance cannot, or will not, be any
more justifiably placed on the service.

• Dependability means are the methods, tools and solutions enabling (a) to
provide with the ability to deliver a service on which reliance can be placed,
and (b) to reach confidence in this ability.

• The dependability measures enable the service quality resulting from the im-
pairments and the means opposing them to be appraised.

With respect to fault-tolerance, reliability and availability are the most signifi-
cant attributes:

Reliability describes the continuity of service. In terms of mathematical def-
initions, reliability is the probability that once a service request is accepted it is
completed successfully. If a service can be completed even after the occurrence of a

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 4

Dependability

Impairments Means Measures

Faults Errors

Failures

Maintainability Availability

Procurement Validation

Reliability

Fault Avoidance Fault Tolerance Error Removal Error Forecasting

Figure 1.1: Dependability.

fault —* error —»• failure fault —*• error —»• failure

to next higher hierarchy

Figure 1.2: Fault/failure chain.

failure (this is typically important if the completion of the service takes much longer
than the classical reliability criterion MTTF — mean time to failure) it is also called
recovery-enhanced reliability [24].

Availability deals with the readiness for usage. A simple measure for avail-
ability is the probability that a system is operational at an arbitrary point in time.
Availability and reliability are independent attributes. For instance, a system spend-
ing a significant amount of time recovering from failures to complete operations in
progress successfully might be highly reliable but due to its recovery time less avail-
able [24].

Summarizing [27], the failure of a system can be defined in the following way: A
system failure occurs when the system behavior is not consistent with its specifi-
cation. An error is an incorrect internal system state. It is that part of the system
state which is liable to lead to subsequent failures. The cause of an error is a fault.
A fault is a system defect that has the potential of generating errors. In addition,
a failure can be seen as a fault on the next higher system layer. This taxonomy
is shown in figure 1.2. Furthermore, a system is fault-tolerant if it can mask the
presence of faults in the system by using redundancy. The goal of fault-tolerance is
to avoid system failures, even if faults are present, i.e. it is the ability of a system
to continue functioning while a failure is still unrepaired or even undetected [24].

Besides the books of Laprie [32] and Jalote [27], Kopetz [28] provides an excellent
treatment of the state of the art in the field of dependability.

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 5

1.2.2 Replication

Replication is the process of maintaining multiple copies of the same entity at differ-
ent sites. Replication protocols and systems achieve high availability by replicating
entities in failure-prone distributed computing environments [24]. Several replica-
tion algorithms can be used to make a system redundant, whereby the aspect of
consistency, which concerns the compliance of the system to well defined rules of
replica synchronization, must be considered. Replication is addressed in detail in
chapter 2.

1.2.3 Unified Modeling Language

The Unified Modeling Language UML is the industry standard for the analysis
and design of object-oriented systems and advanced by the Object Management
Group OMG. The OMG is an international organization, that promotes the theory
and practice of object-oriented technology in software development. UML is used
throughout this work wherever applicable. Details about UML can be found in the
official standard at the OMG internet site http://www.omg.org/ and in numerous
books.

1.2.4 Component-Based Software Engineering

Component-based software engineering is a subdiscipline of software engineering and
primarily concerned with three functions [23]:

• Developing software from preproduced parts.

• The ability to reuse those parts in other applications.

• Easily maintaining and customizing those parts to produce new functions and
features.

Therefore, component-based software engineering is primarily concerned with
software engineering "in the large". In addition to object-orientation as method-
ological framework to develop the individual software components with respect to
their interactions (software engineering "in the small"), the development described in
this work adheres to these principles. Furthermore, the terms related to component-
based software engineering described in and quoted from [23] are used, most notably:

A software component is a software element that conforms to a com-
ponent model and can be independently deployed and composed without
modification according to a composition standard.

A component model defines specific interaction and composition stan-
dards. A component model implementationis the dedicated set of
executable software elements required to support the execution of compo-
nents that conform to the model.

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 6

A software component infrastructure is a set of interaction soft-
ware components designed to ensure that a software system or subsystems
constructed using those components and interfaces will satisfy clearly de-
fined performance specifications.

An interaction standard specifies the type of explicit context depen-
dencies a component may have. It covers both direct and indirect inter-
actions that may exist between components.

A composition standard defines how components can be composed to
create a larger structure and how a producer can substitute one compo-
nent to replace another that already exists within the structure.

1.3 Potential Applications

1.3.1 Distributed Telecommunication Management

As a case study and proof of concept the most important facts on concept, architec-
ture and implementation of a Distributed Telecommunication Management System
(DTMS) are presented in chapter 4. The DTMS controls a networked voice com-
munication system and is developed by the Austrian company Frequentis GmbH.
Major requirements for the DTMS are fault-tolerance against site or network fail-
ures, transactional safety, and reliable persistence. In order to provide distribution
and persistence both transparently and fault-tolerant, a two-layer architecture facil-
itating an asynchronous replication algorithm is introduced.

However, the concepts presented in this thesis aim at a general technique for
increasing the dependability of such applications, which benefit from the increased
availability at the cost of less consistency. In the following, a list of potential fields
of application are enumerated [16].

1.3.2 Ubiquitous and Pervasive Computing

Computer systems and communications networks now are ubiquitous in our daily
lives. Even more so, they will increasingly be integrated into our personal envi-
ronment, also known as "ambient", "pervasive", or "ubiquitous" computing. While
this benefits society, increases our productivity and our personal comfort, it also
makes our life more dependent upon these systems. The concerns of dependability
(e.g. faults, errors, and failures) have been enlarged by the massive connectivity and
fine-grained distribution provided by the Internet and wireless applications.

1.3.3 Air Traffic Control and Public Safety

As stated in the official document concerning transport challenges until 2010, the
European air traffic control (ATC) system is partitioned three times more than a
comparable area in the USA. This demands the creation of the Single European Sky,
one of the European Union's current priorities. Beside a comprehensive cooperation

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 7

of the different national air traffic control systems, distributed intelligence can facil-
itate the implementation of this vision. "Flight Objects" are a form of distributed
intelligence and are currently developed by Eurocontrol. These flight objects are
used to model all data relevant for ATC for a flight, motivated by new requirements
caused by "Free Flight" — ATC without human air traffic controllers. In contrast
to other object-based distributed systems it is not required to provide a consistent
view of each attribute for every user at every location. Instead, some users may use
outdated data, others are only interested in some data of an object. Together with
replication, such requirements allow for higher availability as compared to systems
with strict consistency requirements. Dependability is an inherent requirement in
air traffic management, where the ability of coping with unscheduled events helps to
ensure safety. The same is true for other safety critical applications as for command
and control centers for public safety or public transportation.

1.3.4 Health Care System

Today's Health Care Systems are widely distributed but lack of interaction services.
Data of patients is in most cases used at different independent facilities (e.g. hospital,
family doctor, medical specialists, health insurance companies, etc.) without the
ability to exchange once recorded data like X-ray photographs. This inability stresses
the patient with repeated, unnecessary tests or even worse with wrong diagnosis.
Emergency cases require patient data immediately without putting strong efforts on
consistency of the entire patient log. A distributed set of patient data objects each
having a certain portion of redundant data is capable of minimizing the number of
necessary surveys to a justifiable level. Dependability and fault-tolerance of such a
system are an absolute must.

1.3.5 Fleet Management

Saturation of road traffic is still a serious problem in industrialized urban areas such
as the Ruhr, the Randstad, northern Italy and southern England [11]. Failure to
control road traffic has worsened the situation in the major cities. The stop-start
motoring characteristics of bottlenecks result in higher emissions of pollutants and
greater energy consumption which is of particular importance in valuable nature and
environment. Large dispatch companies having a multitude of transport vehicles
need a sophisticated means for the management of their fleet. In order to avoid
empty trucks and facilitate operation at high capacity, data objects affiliated to the
vehicle can take care in connection with GPS (Global Positioning System) for an
autonomous management of their tasks. The service of delivery in time has to be
as dependable as possible.

1.3.6 Control Systems in Experimental Physics

Control systems of experimental physics facilities (such as particle accelerators and
multi-antenna radio telescopes) need to be fault-tolerant to improve availability
and reliability of the devices within the facility. Any unavailability might hinder

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 8

acquisition of important scientific data or damage the facility or hurt its personnel.
The results of this work can be used to improve the availability of such facilities by
enhancing their control systems with fault-tolerance.

1.4 Contribution and Publications

The contribution of this work is threefold. Foremost, new terms are introduced
and related to established terminology and theory. The focus lies on clarifying the
differences and interrelation of the three types of consistency (chapter 2).

Secondly, presented in chapter 3, the key focus of this thesis is explained: The
trade-off between availability and constraint consistency. Also, the key architec-
tural concept along with the key system model (FTNS) is introduced that is
designed to enable the mentioned trading in a simple way. The result is a flexible,
robust and highly available framework for managing object-oriented software in a
distributed and persistent system.

Thirdly, the Distributed Telecommunication Management System (DTMS) is
presented. It serves as the proof of concept and is an example of how the proposed
conceptual framework can be utilized. Design principles and requirements are out-
lined, followed by an overview of the proposed architecture along with a description
of the system components. The DTMS is described in chapter 4.

Following the presentation of the results, the work concludes with related and
future work.

Publicat ions The following publications are used in parts of this thesis without
being referenced individually.

[47] Smeikal, R.; Göschka, K.: Fault-tolerance in a Distributed Management Sys-
tem: a Case Study. Proceedings (ISBN 0-7695- 1877-X) of the 'IEEE/ACM
International Conference on Software Engineering', pp.478, Portland, Oregon,
USA, May 3-10, IEEE Computer Society/ACM, 2003.

[48] Smeikal, R.; Göschka, K.: Fault-tolerant Distribution and Persistence of Ob-
jects Using Replication. Poster Session at the '23rd IEEE International Con-
ference on Distributed Computing Systems 2003', Providence, Rhode Island,
USA, May 19-22, IEEE Computer Society, 2003.

[17] Göschka, K.; Reis. H.; Smeikal, R.: XML Based Robust Client-Server Com-
munication for a Distributed Telecommunication Management System, (track
best paper award nomination) Proceedings (ISBN 0-7695-1874-5) of the
'Hawaii International Conference On System Sciences HICSS-36', p. 122, Big
Island, Hawaii, USA, Jan 6-9, IEEE Computer Society 2003.

[18] Göschka, K; Smeikal, R.: Using Replication for high Availability of a distributed
Management System. Frequentis GmbH Tech:News, Feb 2003.

CHAPTER 1. MOTIVATION, OBJECTIVES, AND TECHNICAL BASELINE 9

[16] Göschka. K.; Jandl M.; Smeikal, R.; Szep A. (Authors in alphabetical order):
Dependable Distributed Systems. European Union Framework Programm 6
Project Proposal, Strategic Objective 2.3.2.3 "Open development platforms
for software and services", Feb 2004.

Chapter 2

Model and Terminology

"Buying books would be great if we could also buy the time to read
them. "

Arthur Schopenhauer, Parerga und Paralipomena

2.1 Distribution, Persistence, and Replication

As describe in chapter 1, replication for fault-tolerance cannot be deployed isolated
in a distributed component-based software system. It needs to be integrated with
distribution and persistence, which is outlined in the following section.

Reasons for transparently distributed computing are well understood and proven
implementations exist [50], for instance:

• The Common Object Request Broker Architecture CORBA [1] from the OMG
(Object Management Group) without its complementary services.

• Similarly, the core of the Component Object Model COM+ (formerly Dis-
tributed COM) from Microsoft provides transparent distribution.

• The Remote Method Invocation RMI [2] from Sun.

• The Simple Object Access Protocol SOAP [3] from the World Wide Web
Consortium.

The physical location of objects is hidden from the clients (other objects using
them), where objects can be spread over multiple sites, relate to each other via
references and are identified by a system-wide ID. Figure 2.1 illustrates the idea of
location transparency.

Reasons for transparent persistence are well understood, too, and solutions exist
as well, ranging from commercial products (Java Data Objects [2], OMG's Persistent
State Service [1]) to sophisticated, experimental frameworks (THOR [33]). The
persistence of objects is hidden from the clients using them, where objects survive
the client who created them and can be restored from stable memory. Figure 2.2
illustrates the idea of transparent persistence.

10

CHAPTER 2. MODEL AND TERMINOLOGY 11

However, large and complex applications usually demand both transparent dis-
tribution and persistence. A basic setup is depicted in figure 2.3. According frame-
works are state of the art and the major products in the field are:

• Enterprise Java Beans (EJB) and the Java 2 Enterprise Edition (J2EE) ser-
vices: EJB is Sun's answer to the need for component-based distributed busi-
ness applications. The EJB specification defines system services that are avail-
able at EJB platforms: remote method invocation (RMI), persistence, trans-
action, life cycle, and security.

• Component Object Model (COM+) and its services: Microsoft's COM+ pro-
vides distribution along with several system services: security, transactions,
scalability. Enhanced with IPersist objects, it provides persistence. As a suc-
cessor and platform for distributed computing, Microsoft introduced its .Net
platform, which enables distributed and persistent objects completely trans-
parently. It is capable of encapsulating COM+ components.

• CORBA and its services: CORBA provides system and language indepen-
dent distribution. The CORBA services provide transactions, persistence,
and other services. A Persistent State Service (PSS) implementation is a
CORBA-compliant object-oriented database. PSS storage objects can store
any Interface Description Language (IDL) types and can be integrated with
the CORBA Transaction Service.

The mentioned systems provide advantages from both, distribution and per-
sistence, but are only satisfying as long as all parts of the system are available.
However, many applications require fault-tolerance. Improving single component
availability for this purpose is insufficient, but rather fault-tolerance needs to be
incorporated into the system architecture itself, as quoted in [24]:

We must immediately discard the obvious option of composing distributed
systems from ultra-available and ultra-reliable components, whose prop-
erties are so good that they raise the corresponding properties for the
whole system to the desired level. Aside from questions of expense and
feasibility, this approach collapses under the weight of increasing scale.
As the size of the distributed system grows, its components' availabil-
ity and reliability would also have to increase with it, violating a basic
prerequisite for scalability in distributed systems: that its local charac-
teristics be independent of its global size and structure. Therefore, the
distributed system designer needs to instill mechanisms that combat the
effects of failures, into the system architecture itself

Figure 2.4 depicts the proposed system setup, where the persisted object data is
replicated to other sites, in order to provide enough redundant information to replace
any failed object dynamically. In the best case and depending on the particular
replication strategy, the application is available if any site is available, because now
objects can be restored at every site. Hence, the idea here is to provide scalable fault-
tolerance for both distribution and persistence by using only a single mechanism —
replication.

CHAPTER 2. MODEL AND TERMINOLOGY 12

Object Reference

^Aj Object with ID=A

Figure 2.1: Transparent distribution.

Database 1

Figure 2.2: Transparent persistence.

Figure 2.3: Transparent distribution and persistence.

CHAPTER 2. MODEL AND TERMINOLOGY 13

Figure 2.4: Introducing fault-tolerance.

Replication as a means to provide fault-tolerance is well suited and a plethora of
replication protocols exist (refer to [24] for comprehensive and in-depth coverage).
However, the deployment of replication requires the management of the replicated
object data and introduces the new requirement of transparency of the replication.
Moreover, if deployed in an object-oriented, persistent and distributed software sys-
tem, managing multiple physical copies that constitute the state of a single logical
copy poses problems on conventional concepts of such systems, which are usually
designed to operate on a single copy:

• the preservation of consistency among different logical objects

• the concurrent access to logical objects

• the transactional access to logical objects

• handling of object identities, which are unique among logical objects

A number of different concepts and systems solve the mentioned problems and,
in addition, address the trade-off between availability and replica/concurrency con-
sistency. However, none of the existing frameworks explicitly addresses the trade-off
between availability and constraint consistency. The following sections clarify the
established terminology and differentiate the various kinds of consistency. Bases on
this, a detailed reasoning for the proposed trade-off is given in chapter 3 "Trad-
ing Consistency for Availability". A number of related frameworks and respective
details are described in chapter 5 "Related Work".

2.2 Terminology and Clarification of Terms

Throughout this section the necessary terminology is clarified, which provides the
basis for further considerations. Common terms and established theory are briefly
summarized and new terms are introduced and made precise by providing definitions.
This is especially vital to the topic for two reasons: On the one hand, object-oriented
computing and databases use the same terms for different matters, but on the other
hand, replication and transactions in the domain of object-orientation are based on
older research on databases.

CHAPTER 2. MODEL AND TERMINOLOGY 14

2.2.1 Objects and Persistence

An object is a runtime entity and is an instance of a class describing the objects'
data (member variables) and behavior (methods). Together, the values of an object's
member variables make up the object-state. Therefore, the object-state is a struc-
tured value. The object's methods may or may not change the object-state upon
invocation. Every object has a unique runtime identifier. A member variable stor-
ing the identifier of another object is called reference. Other member variables are
called attributes. Several objects running on different sites in a distributed system
make up a distributed application. All object-states which belong to a particular
application make up the application-state, which therefore is a structured value
as well. Note, that object-state and object are not the same. An object-state is a
value and can be part of an object or it can be serialized and stored. If an object-
state is stored to a stable storage, it is called persistent object-state. Together
with its class definition, an object-state can be converted into an object (i.e. an
instance of the class).

2.2.2 Constraints and Consistency

A distributed object-oriented system is in a consistent state, if a set of data
integrity rules called constraints is satisfied. A constraint defines a condition,
which can be evaluated to valid or invalid using an application-state as input.
Therefore, it defines a mapping from the set of possible application-states to either
valid or invalid. A finite number of constraints associated with every application is
assumed. Constraints are labelled C\,C2,cz and so on. The validation vector for all
constraints is a property of the current application-state and is called constraint
consistency.

Different sets of constraints are considered and labelled sn, e.g. S\ = {c\,C2]
(see [15, 34] for comparable approaches). Sets of constraints range from no con-
straint (empty set) to all constraints (set of all constraints). Typically, certain
sets of constraints are made up of strongly related constraints necessary for com-
mon use cases, which the application is able to provide independently. A particu-
lar application-state is called consistent for d if cn evaluates to valid using the
application-state as input, inconsistent for Cn otherwise.

An application-state is called consistent for sn if all constraints in sn evaluate
to valid using the application-state as input, inconsistent for sn otherwise. The
process of identifying constraint violations during runtime is called validation.

Formall}', constraints can be captured using the OMG's Unified Modeling Lan-
guage UML and the Object Constraint Language OCL [1], for example.

Constraints can be static and dynamic. According to the above definition,
constraints are considered static in this work. Dynamic constraints can be ei-
ther event-based or time-based. Event-based constraints are evaluated against an
application-state transition rather than an application-state, e.g. "salaries may only
increase". Time-based constraints span changes of the application-state over time,
e.g. "salaries may increase at most 15 percent within three years". Event-based and

CHAPTER 2. MODEL AND TERMINOLOGY 15

time-based constraints are out of scope but not in contradiction with the concepts
presented in this work.

The following code is an example for a static constraint in OCL.

self.mood = ('good' OR 'bad') (2.1)

An example for an event-based constraint in OCL is a postcondition using the
Opre-postfix:

context Person :: increases alary (sum : Integer) ,„ >
post : salary > salaray@pre

2.2.3 Transactions and Consistency

Transactions group subsequent individual method invocations on objects. They
possess the usual ACID properties [7] and are delimited by invoking a begin and
a commit/rollback method:

Atomicity The transaction is performed entirely or not at all. This property is
ensured using an atomicity control protocol. In a distributed system this
involves a distributed commit operation. Typically, a coordinator forwards
the operations to participants, where the atomicity control protocol ensures,
that all sites agree. A widely used such protocol is the "two-phase commit"
protocol. During phase one — the prepare phase — the coordinator asks the
participants if they are prepared to commit. In phase two — the commit
phase — the coordinator informs the participants of its decision to commit or
to rollback.

Apart from the high communication cost, a fundamental property and problem
is that no such atomic commitment protocol can guarantee the execution of a
transaction to its termination as long as a network partition exists. A detailed
reasoning about properties and pitfalls can be found in [7]. However, commit
protocols have been designed to handle the failure of the coordinator, which
can cause blocking with no participant knowing the outcome until the coordi-
nator is repaired. Three-phase commit is such a protocol. Recent research
deploys fault-tolerant consensus algorithms to reach agreement on the
commit/abort decision without blocking as long as a majority of the partici-
pating sites are working. [19] in particular describes the use of the (infamously
so-called) Paxos algorithm to achieve distributed consensus on commit/abort
and that the two-phase commit is a special case of the general Paxos algorithm
using only one coordinator.

Consistency The transaction takes the system from one consistent state (or valid
state, i.e. a constraint consistent state, see constraints and consistency in the
previous paragraph) to another consistent state. Typically, constraints are
validated in the course of performing a transaction which modifies data.

CHAPTER 2. MODEL AND TERMINOLOGY 16

Isolation The transaction is isolated from ongoing update activities, that is, if two
or more transactions run concurrently and perform their operations in an in-
terleaved fashion, they serve as the unit of isolation from each other. Without
isolation, anomalies can arise, for instance, as presented in [6]: Dirty write,
dirty read, fuzzy read, phantom read, lost update, constraint violation (dis-
cussed below in more detail). At first, an execution of concurrent transactions
is correct, if it is serializable, that is, it is equivalent to some serial execu-
tion of the same transactions. If the system takes care that every operation
interleaving is serializable, none of these anomalies can occur. However, other
weaker degrees of isolation are possible, which essentially define particu-
lar anomalies as being acceptable. Within this work, the type of consistency
which comprises anomalies from concurrent access to the same entities is called
concurrency consistency. A concurrency control protocol restricts
executions to those executions that are correct.

The formalism to denote theorems and prove such protocols involves the con-
cept of "logs" or "histories", which order events belonging to transactions.
A common categorization of such protocols is pessimistic and optimistic. Pes-
simistic protocols prevent situations which potentially lead to non-serializable
situations. A well known such protocol is "two-phase locking", which performs
lock acquisition in a canonical order in phase one and modifies data and re-
leases locks in phase two. On the other hand, optimistic protocols validate at
commit time and resolve conflicts by rollback.

Durability The transaction update is permanently installed. No failure after the
commit can cause the results to be lost or be undone.

Constraint consistency and concurrency consistency are logically in-
dependent criteria. In accordance with the ACID properties however, validation
has to take place before the commit of a transaction is completed in order to enforce
a particular constraint consistency. Furthermore, since validation itself is performing
operations on the data entities it has to be isolated from other ongoing transactions.
Therefore, the transaction concept combines constraint consistency and isolation
and hence, they are often implemented in conjunction with each other. This may
also be a reason, why they are often treated in a synonymous way in literature,
whereas they are in fact different. However, concurrency inconsistency (defi-
cient isolation) may affect constraint consistency.

2.2.4 Client and Server

To avoid confusion due to the overloading of the terms client and server, the following
definition is given. A system entity utilized by another system entity is called server
of that entity. A system entity, which utilizes another system entity, is called client
of that entity. Usually, an entity is both, client and server. A system entity can
be an object or a component, for instance. This is not to be confused with the
GUI-client of the whole system or the client of a client/server-architecture.

CHAPTER 2. MODEL AND TERMINOLOGY 17

2.2.5 Transparent Functionality

Transparency is defined using the above client definition and in respect to a specific
client. Functionality of the system (either implemented in the utilized server or
elsewhere), that

• neither exposes methods to the client

• nor demands callback methods from the client

is called transparent to that client. Thus, a server cannot provide fully transparent
functionality, only some of its functionality can be transparent.

For instance, if the persistence of an object is transparent to a client, it is called
transparent persistence.

2.2.6 Sites, Network, and Distributed System

Sites provide data processing capabilities and stable storage at a particular physical
location. Sites are connected via a network and together, sites and network make
up the distributed system. If site or network failures occur, the distributed system
is called degraded, healthy otherwise. Network failures may only lead to network
partitions [43]. In a partitioned state, any two sites in the same partition can
communicate and any two sites in different partitions cannot communicate. The
number of ways a set of sites with n elements can be partitioned into disjoint, non-
empty subsets is described by the Bell numbers (1, 1, 2, 5, 15, 52, 203, 877, . . .)

fc=l

where S* describes the Stirling numbers of the second kind, which describe the
number of ways a set with n elements can be partitioned into k disjoint, non-empty
subsets.

The Stirling numbers of the second kind can also be defined recursively.

Sk
n = Sh

nZ\ + fcS*_, (2.5)

For example, the set {1,2,3} (n=3, B3 = 5) can be partitioned in the following
ways:

ft = 2, {{1,2},{3}}
ft = 2, {{1,3},{2}} (2.6)
ft = 2, {{1},{
fc = l, {{1,2,3}}

CHAPTER 2. MODEL AND TERMINOLOGY 18

Sites exchange messages. Messages are not guaranteed to be delivered, nor can
the sender determine, if the message was delivered at all1. Thus, network partition is
indistinguishable from site crash. Furthermore, arbitrarily long message delays are
assumed. Sites and network are fail-stop [45, 12, 50], Byzantine failures [40, 12, 50]
are not considered. Reunification is the process of merging network partitions in
a degraded, but originally non-partitioned system.

2.2.7 Safety and Liveness

To give a brief overview of the theory, parts of the good introductory paper by
Gartner [21] are summarized. In addition to [21], [5] provides an excellent coverage
of the topic as well as the main elements of the theory of distributed computing in
general.

An execution of a distributed algorithm is an infinite sequence of global system
configurations. A property of a distributed algorithm is a set of system executions. A
property holds if the set of executions defined by a distributed algorithm is contained
in the property's set of executions [4].

In the field of distributed computing, an algorithm is said to be correct if both
the safety and the liveness property hold. In [29], Lamport first described these
two major classes of properties: Safety informally means that a particular "bad
thing" never happens within a system. Liveness on the other hand means that a
particular "good thing" eventually happens. A traffic light at a road intersection is
an illustrative example: A safety property for this system is the following: "No two
traffic lights shall show green at the same point in time". A liveness property for the
traffic light could be as follows: "A car waiting at a red traffic light must eventually
receive a green signal and be allowed to cross the intersection." Both the safety and
the liveness property restrict the possible system executions to correct executions.
Together, the liveness and safety property make up a problem specification and can
therefore also be considered as a kind of requirement catalogue. Termination is
a common example of liveness in distributed systems. However, liveness properties
must not be discrete: Guaranteed service, which states that every request will
be satisfied, is such a property.

Examining the affection of safety and liveness by the occurrence of faults results
in four possible forms of fault-tolerance depicted in table 2.1:

live not live
safe
not safe

masking fail safe
nonmasking none

Table 2.1: Four forms of fault-tolerance.

'As a matter of fact, message responses can be used to safely conclude that the message did in
fact reach the recipient. This has practical relevance: reliable communication over communication
media which exhibit transient communication failures, e.g. the TCP/IP protocol. However, with-
out response no assumption about deliverance is possible. In addition, message responses cannot
be used to distinguish network partitions from site crash.

CHAPTER 2. MODEL AND TERMINOLOGY 19

However, applications that continuously violate safety are of little practical use
and therefore not considered here. If a system is able to stop in a safe state in the
presence of faults, it is called fail safe. To continue with the traffic light example,
the traffic light would terminate in showing red light in every direction upon a fault.
On the other hand, if a system is still safe and live in the presence of faults, it is
called masking as explained in section 1.2.1 about dependability. Such systems are
in the focus of this work.

To conclude this section, a quote on the importance of liveness compared to
safety is given [32]:

While philosophically important, in practice the liveness property [...]
is not as important as the safety part, [...]. The ultimate purpose of
writing a specification is to avoid errors. Experience shows that most of
the benefit from writing and using a specification comes from the safety
part. On the other hand, the liveness property is usually easy enough
to write. It typically constitutes less than five percent of a specification.
So. you might as well write the liveness part. However, when looking
for errors, most of your effort should be devoted to examining the safety
part.

2.2.8 Replication and Consistency

Replication is the process of maintaining multiple copies of the same entity at
different sites. Replication protocols and systems achieve high availability by repli-
cating entities in failure-prone distributed computing environments [24]. In the
literature different types of entities are considered: un-typed data objects, typed
and complex objects, processes, and messages. In this work, typed and complex
objects are assumed. The logical object is called entity object, where an entity
object's object-state is assembled on a particular site using one or multiple physical
copies of the object-state. An entity object is uniquely identified by an object ID.

Replication can be basically classified as synchronous or asynchronous. Syn-
chronous replication always uses some sort of atomicity control, which ensures
that changes are applied in a simultaneous manner, i.e. operations are committed
at all participating sites or not at all. Since atomicity control can not guarantee
transaction termination as long as network partitions exist, service denial (also
called blocking) must be taken into account. When a process must await the re-
pair of failures at other sites before proceeding, it is called blocked [7]. Generally,
algorithms using synchronous replication focus on systems with strict consistency
requirements at the cost of possibly blocking behavior.

Asynchronous replication works without atomicity control. Changes are
locally committed before they are propagated to participating sites. Therefore, fail-
ure at remote sites cannot block a fully functional site (non-blocking). On the
downside, update conflicts must be taken into account if the same entity object
is altered at different sites or if entity objects are altered in such a way that con-
straints defined among them are violated. Generally, algorithms using asynchronous
replication focus on:

CHAPTER 2. MODEL AND TERMINOLOGY 20

• systems, where denial of service is unacceptable (e.g. CRM - Customer Rela-
tionship Management)

• large scale systems, where network failures occur frequently (e.g. wide area
networks or ubiquitous computing).

• systems, where heavy transaction load is unacceptable (e.g. small bandwidth).
Generally, asynchronous replication is more efficient in terms of communication
cost than synchronous replication.

• systems, where updates can be done in such a way that conflicts are not
possible (e.g. adding an entry to a set).

The classical correctness criterion (or type of replica consistency) for repli-
cated data is termed 1-copy serializability (1SR): The concurrent execution of
a set of transactions on replicated copies must be equivalent to the serial execution
of the same transactions on only one copy of each entity. 1-copy serializability is
ensured when operations performed on an entity object are reflected on the physical
copies of that entity and the system always presents the most current state even
under site and network failures. It is appropriate for applications that cannot tol-
erate any inconsistency of their data. A typical replica inconsistency is stateness.
A detailed description and formalization can be found in the appendix of [7].

However, there exists another strong replica consistency criterion, which does not
take concurrency issues into account: Sequential consistency was first defined by
Lamport [31] and informally means that the same interleaving of operations occurs
at every replica. Any interleaving of operations on a single replica is allowed, but
the same interleaving is observed on the corresponding replicas at every node in
the system. Using this particular type of replica consistency provides a view of the
entity similar as if only a single copy exists, thus decoupling replication consistency
entirely from constraint and concurrency consistency criteria.

To clearly differentiate between concurrency control and replica control, concur-
rency control can be seen as a means to provide the serializability to isolate the
concurrent, interleaving access to a particular set of data items, which may also
be a single set of replicated copies. The access may stem from parts of even dis-
tributed transactions initiated by multiple clients. On the other hand, concurrent
access to different sets of replicated copies is not a concurrency control problem, but
rather a replica control issue. Therefore, replica consistency and concurrency
consistency are logically independent.

Apart from 1SR and sequential consistency, "weaker" types of replica consistency
definitions exist, which can be basically classified as data centric and client cen-
tric [50]. Data centric consistency models are defined with respect to a particular
data object. They aim at providing a system-wide consistent view on the data.
Client centric consistency models are defined with respect to a particular client of
the system and aim at systems which are characterized by a lack of simultaneous up-
dates. They have eventual consistency in common, meaning that if no updates
take place, all replicas will gradually become consistent.

An example for a weaker type of data centric consistency is a correctness criterion
called e-serializability [42]. It allows inconsistent data to be seen, but requires that

CHAPTER 2. MODEL AND TERMINOLOGY 21

data will eventually converge to a consistent 1SR state. Transactions are classified
as query and update transactions (called e-transactions). Update transactions are
propagated to each site asynchronously, therefore replicas of an entity object can
differ at any given moment. This is the source of inconsistency, as query transactions
can be interleaved with update transactions and therefore allow inconsistent data to
be seen. However, the "degree of consistency" (essentially counting the overlapping
of query and update transactions) can be controlled and limited. Valid e-logs are
serializable logs containing only update transactions (i.e. query transactions are
removed).

2.2.9 Replica Control Protocols

Replica control protocols typically guarantee 1-copy serializability, operate in con-
junction with concurrency control and atomicity control, and present a logical view,
that is equivalent to a non-replicated system. A short enumeration of basic replica-
tion techniques is given below.

Read one write all (ROWA): ROWA is the most straightforward type of
protocol. Multiple copies must all be updated, of which anyone can be read. Primary
copy ROWA and true-copy token ROWA designate a particular copy to be required
for writes to succeed, but allow this designation to change dynamically. ROWA
protocols can tolerate site failures, but not link failures.

Quorum consensus or voting: ROWA protocols have two major drawbacks:
They favor read operations and are unable to tolerate link failures. Quorum Con-
sensus or Voting-based protocols on the other hand don't exhibit these drawbacks.
They allow writes to be carried out only on a subset of sites (a so called write quo-
rum). Similarly, reads have to be carried out on a subset of sites {read quorum),
which must be guaranteed to overlap with any given write quorum (this is termed
quorum intersection requirement). Different Quorum Consensus protocols dif-
fer in the way that quorums are formed ranging from simple majority to explicit
enumeration and from static to dynamic quorum assignment.

Simple majority QC and weighted majority QC count the votes of sites
in a specific subset to determine if the subset qualifies as a quorum.

A more interesting and flexible QC algorithm is general QC for abstract
data types (ADT) [25]: Data is encapsulated in ADTs and accessed through the
invocation of a fixed set of operations at instances of the ADTs. Past invocations
relevant to a particular operation are gathered upon invocation of this operation
using initial quorums and results of invocations are applied to copies in final
quorums. Each ADT is assigned a set of quorum intersection relations,
which are determined according to the necessary information flow between successive
operation invocations. The way used to actually form the quorums can be chosen
at will as long as the intersection relations are satisfied. The generality of this
algorithm arises from the use of arbitrary data types (as opposed to read and write
only) and from the use of arbitrary ways to form the quorums.

Quorum consensus on structured networks: This subclass of QC algo-
rithms tries to reduce the number of sites that need to be in quorums to ensure
replica consistency by imposing a logical structure on the sites. An influential

CHAPTER 2. MODEL AND TERMINOLOGY 22

s6
s1s1 ={1,2,3}

s4 = {1,4,5}

s6 = {1,6,7}

s2 = {2,4,6}

s5 = {2,5,7}

s7 = {3,4,7}

S3 = {3,5,6}

Figure 2.5: Example (n=7) of quorum assignment for the v/n-algorithm.

work in this field is the y/n-algorithm [36]. The major contribution is to calculate
the minimal number of sites w^/n in a system with n sites to participate in quorums
in such a way that every quorum overlaps with any other quorum and sites are
evenly distributed among the quorums. A possible quorum assignment is depicted
in Figure 2.5. Note that each site is in its assigned quorum (e.g. site three is in its
quorum {3,5,6}) and participates in quorums as often as any other site (three in
this case). Other protocols using structured networks include the grid protocol, the
tree protocol, and multidimensional weighted majority QC. Voting on structured
networks can be viewed as a way of trading communication cost (larger quorums)
against availability of operations, since the reduced smaller quorums need to be of
a specific constitution and cannot be chosen randomly.

To overcome the drawback of rendering objects inaccessible as a result of failure
situations, either for read or write access or even for both, reconfiguration after
site failure or network partitions is used.

In the case of site failure, the failure must be reliably detected, which essentially
entails that all sites must agree on a new configuration. Furthermore, if any failed
site rejoins the protocol, it must run a recovery protocol to get informed or inform
about the new system configuration and also to get the latest update. One way
of introducing reconfiguration after site failure is the concept of generations to
determine the currency of replicas used in the regenerative QC algorithm.

In the case of network partitions, two major concerns arise: First, entity objects
may not be updated in more than one partition concurrently. Secondly, any future
partition must be able to see updates performed by previous potentially smaller (re-
configured) quorums. An algorithm achieving this is dynamic uniform majority
voting. As opposed to the static uniform majority QC, this algorithm redefines the
majority partition as being one which has a majority of the most current copies of a
data object. This effectively decreases the number of sites necessary to form a valid
quorum.

Conventional voting-based algorithms are restrictive in terms of data consistency
requirements. Weak-consistency algorithms are designed to allow data access
in different partitions in the case of failure by either classifying transactions or by let-
ting transaction be performed unhindered in different partitions (called optimistic

CHAPTER 2. MODEL AND TERMINOLOGY 23

replication) and resolving conflicts after reunification. However, in the worst case
already committed transactions have to be undone later.

Class conflict analysis is an algorithm of the former case. Transactions are
classified as particular application-related transaction types, called classes. Con-
flicts between classes are determined using the read and write set of each class.
Upon partitioning, a class conflict graph is constructed, which provides information
about any potential order dependencies between classes in different partitions. Cy-
cles spanning multiple partitions in this graph denote the potential for conflicting
transaction ordering. Typically, such cycles are removed by deleting certain classes
in the graph, i.e. disallowing the system to perform particular transaction types in
particular partitions.

Partition logs is an algorithm using optimistic replication and partition logs
to record transactions in partitions. After reunification the partition logs are trans-
formed taking semantic properties of transactions into account (e.g. transaction
are commutative T{Tj = 7jTj) in order to reduce conflicts. Remaining conflicts are
removed by undoing committed transactions.

2.3 Interrelation of Replica, Constraint, and Con-
currency Consistency

As set forth in the previous paragraphs, the term consistency is used in different
contexts: replication, concurrency, and constraints. This is known from literature,
but many different terms have been used to denote the types of consistency in general
and especially the distinction between replication consistency on the one hand and
the combination of constraint and concurrency consistency on the other hand. [51]
states, for instance, that

internal consistency depends upon the local consistency assertions
and mutual consistency depends upon how close the replicas are to
each other.

In [42], the following is said about the types of consistency:

/.../ we distinguish replica control from the maintenance of system
internal consistency, termed divergence control. This distinction
is analogous to the distinction between coherence control (replicas of
a single "logical" object) and concurrency control (system internal
consistency).

In the following, the terms replica consistency, concurrency consistency
and constraint consistency are used. Apart from clarifying the confusing mixup
of terms throughout literature, there is a particular reason for reiterating this distinc-
tion here: Even though replica and concurrency consistency are logically different,
it is only in the most restrictive case (strong replica consistency and strong concur-
rency consistency) that they are independent from each other: Replication control

CHAPTER 2. MODEL AND TERMINOLOGY 24

provides sequential consistency and works on top of the local concurrency con-
trol at each site which in turn provides the serializability necessary to achieve
the isolation property of distributed transactions. Together, sequential consistency
and serializability provide 1-copy serializability, a correctness criterion combining
the independent replication and concurrency consistency criteria.

However, if replica control does not work on top of local concurrency control,
concurrency consistency is affected, because replica control now interferes with con-
currency control: Concurrency control (building of dependency graphs, acquiring
locks [20]) relies on exclusive and up to date access to objects. As weaker types
of replica consistency typically don:t provide that, update anomalies can no longer
be detected safely using these unmodified techniques. This leads to uncontrollable
situations in the case of weaker types of replica control. However, even if strong
replica consistency is supported, data access from replication needs to be isolated
from other client access as well, which is not possible in the case of concurrency
control on top of replication control. Therefore, if isolation is needed at all, it has
to have exclusive and sole access to all data items — replicated or not — isolating
data access not only from clients but also from replication control. In other words,
concurrency control is always "closest" to the data items.

As mentioned before, weak types of concurrency control can affect constraint
consistency. Similarly, using strong replica control on top of weak types of concur-
rency control can affect replica consistency. Therefore, the following considerations
are limited to types of systems that support decoupled strong isolation. This
approach was also chosen in the proof of concept implementation DTMS described
in the chapters 3 and 4.

Dependency between replica and constraint consistency arises from the fact that
constraints always limit "entity" objects, but are always evaluated using particular,
replicated copies, whose state may vary from site to site. In an 1SR environment,
this does not make any difference, because all copies reflect the latest changes suffi-
ciently. However, in the case of weaker types of replica consistency, validation might
also use a particular outdated view on the entity objects, which later on changes
through updates from replication control thereby invalidating object states with re-
spect to particular constraints. This is independent from concurrency consistency,
because concurrent access of all clients to a particular set of replicas can be properly
controlled but still use an outdated view. The essential conclusion from the analysis
of replica and constraint consistency is that constraint inconsistency can be a
direct consequence of replica inconsistency.

Figure 2.6 finally illustrates the trading approach. Atomicity, durability, and
isolation (AID) are still at the core of the system. Together, replication control
and constraint consistency control operate on top of them enabling the envisioned
trading.

CHAPTER 2. MODEL AND TERMINOLOGY 25

R A
C

ACID
D

Conventional system R

R

C

AID

~ C

Atomicity
Constraint Consistency
Isolation (Concurrency)
Durability
Replication

AID

Trading approach

Figure 2.6: Replication, concurrency, and constraint consistency.

Chapter 3

Trading Consistency for
Availability

"Don't pay attention to pedantic old farts like me telling you what to
do."

Leslie Lamport in reply to the question "What would you like to convey
to current and future researchers and practitioners?", IEEE Distributed
Systems Online, August 2002

3.1 The Trade-Off

With the intention of optimizing dependability, trading consistency against avail-
ability as one of its attributes is described in the following sections.

Generally, there is a trade-off between availability and all different types of con-
sistency. In a replicated distributed system entity objects are available for access
at different sites. In a healthy system, object access involves multiple sites to keep
the system in a state where it can provide a particular type of replica consistency
observed at all sites. Such object access requires the correct functioning of all re-
spective sites. If some of the sites are down or cannot be reached, other sites can
be contacted instead, depending on the type of replica consistency and the type of
algorithm used to maintain it. However, with the increase of malfunctioning (site
crash) or inaccessibility (network partition) of sites it eventually comes down to the
point where a client must be denied to invoke a particular operation.

This is the point where replica consistency can be "sacrificed" (i.e. switch to a
weaker type of replica consistency) in favor of more replica availability (i.e. invoke
the operation nevertheless). Theoretically, this can be exploited to the "lower"
bound of replica consistency, where all operations at all replicas regardless of failure
scenarios can be conducted. However, since replica inconsistency can be the source of
constraint inconsistency, such an exploitation might also lead to unwanted constraint
inconsistency. Therefore, the type of replica consistency is a means of configuring
the trade-off between constraint consistency and replica availability, which depend
on each other indirectly. This is the trade-off being addressed in this thesis.

26

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 27

3.2 Architectural Concept and Key Idea

The key architectural concept is motivated by the following requirements, which have
initially been derived from the system requirements from the Distributed Telecom-
munication Management System DTMS. The DTMS was developed by Frequentis
GmbH together with researchers at the Vienna University of Technology in the years
from 2000 to 2003.

The initial requirement of having particular entity objects write-available at all
sites despite arbitrary failure scenarios was abandoned as being too complex, even
more so as it turned out to be in contradiction with another requirement: no update
conflicts were acceptable. The solution was to require particular entities to be avail-
able for non-blocking write access at all times at a particular site only and for read
access at all sites despite failures. Quite obviously, a robust asynchronous primary
copy ROWA algorithm satisfies this demand. However, asynchronous replication
entails potential constraint inconsistency, which is detailed in the previous chapter.
Therefore, synchronous operation is used if the system health permits, i.e. during
periods where the respective sites are accessible. The system features a synchronous
and an asynchronous mode depending on the system health. It switches between
asynchronous primary copy ROWA and conventional synchronous operation during
runtime. This way, maximum constraint consistency can be guaranteed during peri-
ods without failures, but also during degraded operation the constraint consistency
demands can be lowered to increase availability.

Therefore, the key idea of the approach is to use asynchronous replication of
persisted object-states, but operate synchronously on objects. This approach allows
for a rather coarse-grained tuning of the trade-off between replication/constraint
consistency and availability, but it is effectively carried out during runtime.

3.3 Switching between Asynchronous and Syn-
chronous Communication

Due to the aforementioned restrictions of distributed consensus (see section 2.2.3),
the switching between synchronous and asynchronous communication has to be au-
tonomous at every site with respect to each other site. No distributed consensus
is intended to reach a decision on the current mode. Furthermore, from the per-
spective of a particular site it is disadvantageous to switch all communication to
asynchronous if a single remote site cannot be accessed. Therefore, every site moni-
tors the accessibility of each remote site in the system and if a particular site becomes
unavailable, only the communication towards this site becomes asynchronous. The
remaining communication to all other accessible sites is kept synchronous. Figure
3.1 depicts a simple example. Site 1 and site 2 are in the same partition, hence they
communicate synchronously. Site 3 is in a different partition, therefore the com-
munication to site 3 is asynchronous. Updates for site 3 are stored and propagated
after reunification.

In the following sections, the operation in a healthy and in a degraded system are
described. The term object-readiness is introduced and it is explained how it helps

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 28

partition

Site 1

synch ronous

Site 2

Site 3

asynchronous via
queues

Figure 3.1: Synchronous and asynchronous communication.

to meet the system requirements. The chapter concludes with a discussion of the
resulting system properties. The following nomenclature facilitates the explanation
throughout the next sections. Within the scope of this work only the replication of
complete object-states is considered.

Ai, B\ Logical entity objects with YD=A\, Bx of class A, B
, A?2, /If3 Replica of Ax at site 1, 2, 3

View of A\ at site 1
Entity object with \T)=Ai is write-/read-available
at site 1

3.4 Operation in a Healthy System

If the system is in a healthy condition, every object runs at a single and pre-defined
site, called primary site of that object. This is illustrated by Figure 3.2. Entity
object A] (Bi) runs at site 1 (2), its primary site, being referenced by Af1 (Bf2). In
such a setup, the location and number of objects does not differ from a conventional
distributed system, where the location of objects is transparent to the client.

Transactions are executed using these objects. During the distributed commit
phase of a transaction, the modified object-states are serialized and passed to the
replication algorithm, which is responsible for coordinating the propagation of the
modified object-states to remote sites by using a replication algorithm. A "Pri-
mary Copy ROWA" algorithm is used. The persistent object-states are read/write-
accessed at their primary site. Replication prepares the database at each site to
provide replicated object-states in case of a degraded system. It propagates per-
sisted object-states asynchronously to remote sites using queues. The objects them-
selves do not have to contain replication-related code. If all queues are empty, all
replicated object-states reflect all latest changes for all clients.

3.5 Operation in a Degraded System

If the system is degraded, an object is provided at every site using the available
replicated object-state as a replacement for the remote object, which is no longer

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 29

objects

persistent,
replicated object-
states

Entity object with id=A-, of class A

AR2J Replicated object-state of A-, at site 2

Figure 3.2: Operation in a healthy system.

available. Therefore, at each site every object is available at all times, either remotely
and available for read/write-access (healthy system or same partition) or locally and
available for read-access (degraded system and different partition). At the primary
site of an object read/write-access is always possible. Figure 3.3 shows an example.
Object Af1 runs at its primary site, it can be read and write accessed. As long as
the partition remains, the changes to Af1 are made persistent at site 1 and stored
in a queue to be propagated to site 2 after reunification. Object Af2 runs at the
remote site 2 to be available for read access at site 2. The two objects Af1 and Af2

are running at different sites but are assigned to the same entity object A\. From
the perspective of a client of the system, not only the location of objects should
be transparent, but also replication. Therefore, it is necessary to map the entity
object ID Ai to an object reference, either Af1 or Af2. This mapping depends on
the current failure scenario and the respective site: At site 1, the primary site of A\,
the mapping always evaluates to .Af1. At site 2, the mapping evaluates to Af1 if
site 1 can be reached and to Af2 if otherwise. The mapping is achieved by using a
fault-tolerant naming service. This naming service is locally queried to obtain
the current object references.

3.6 Fault-Tolerant Naming Service

Obtaining an object reference (i.e. locating an object) given an object identifier is
always of concern if objects are instantiated out of process or even remotely (compare
the CORBA Naming Service [1] or the Java Naming and Directory Interface [2]).
Though such a naming service is already needed for basic distribution, the matter
gets complicated if, as in the proposed architecture, different views of the same
entity objects might run in different places due to a particular degradation scenario.
On the one hand, the naming service maintains information about the references to
objects (where a reference also determines the objects' location), on the other hand,

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 30

partition

•• read only

*• read and write

Figure 3.3: Operation in a degraded system.

the replication functionality determines where and how objects can be instantiated
if degradation occurs. Thus, the mapping of identity to reference is dependent on
the underlying mechanisms instilled to provide fault-tolerance. Furthermore, the
required fault-tolerant naming service has to be available at every site at every
time.

Additionally, the mandatory use of object identifiers to store references (called
"soft references" in the DTMS) introduces the problem of either having to resolve
an identity every time the respective reference is used (which usually yields bad
performance) or to maintain a kind of identity/reference cache within every object.
Within the DTMS this is achieved by using a stereotype <<inter-s i te>>, which
denotes "breakable" references. From this modelling construct special methods are
generated, which implement this cache.

To avoid a single point of failure, in the proposed approach object identifiers are
always resolved using the local FTNS, thereby facilitating a fully distributed FTNS.
It resolves object identifiers using two steps. At first, it acquires the presently
responsible FTNS, which can be either remote or local (itself) depending on the
degradation scenario: If the primary site of an object can be reached, the FTNS
there is queried. Otherwise, the local FTNS resolves the identifier to the locally
available objects itself. Continuing with the examples in figure 3.2 and 3.3, the
naming service at site 1 knows about the references to ^if1 and Bf1. However, if
the system is healthy, the FTNS at the responsible primary site 2 is queried, if a
reference to entity object Bx has to be obtained, which would result in Bf2.

Remote communication of a local FTNS is always performed with other FTNS
components at their respective sites. However, within a site the FTNS communicates
with various other components, which is explained in chapter 4 about the DTMS.

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 31

3.7 Object-Readiness and Sets of Constraints

In the proposed approach replication provides read access to potentially stale copies
in a degraded scenario. Therefore, the system does not provide 1SR. The correctness
criterion established is called eventual consistency as described in chapter 2. In
the absence of site and network failures the replicated object-states will eventually
converge to a consistent 1SR state.

System degradation results in limitations of what the system is currently able to
do. Two mechanism are used to communicate current limitations to a client and,
even more importantly, allow the client to react selectively: object-readiness and
sets of constraints.

Object-Readiness

Object-readiness is a property of every object view at a particular site. It deter-
mines the object's current availability for method invocation and is calculated by
the replication algorithm. Regardless of the particular correctness criteria, replica-
tion algorithms in general limit operations on replicated objects in order to ensure
the desired correctness (see [25], for instance). Object-readiness is calculated de-
pending on the availability of the replicated object-states and the condition of the
distributed system. Consider the primary copy algorithm used in the presented
approach: in presence of a network partition, a write access to a particular object
can only be executed if the entity object's primary site can be contacted. Other-
wise, only read access is possible. Thus, two types of object-readiness are defined:
read-available and write-available. However, with respect to classes, which usually
provide many semantically more complex methods other than read and write, this
classification has to be made more precise: Method invocation at a read-available
object is limited to methods that do not change the object-state. Method invocation
at a write-available object is not limited, arbitrary methods can be used.

Generally, the possible values object-readiness can take are implicitly defined
by the object's class definition. Every particular method of the n methods a class
provides can be either available for invocation or not available, therefore the num-
ber of possible types of object-readiness is at first 2™. However, depending on the
replication algorithm only some of the combinations are of use. If the algorithm
distinguishes between read and write access, only 4 combinations make sense: un-
available, read only (methods reading the object-state), write only (methods writing
the object-state, but don't read), and read/write (methods reading and writing the
object-state). In the proposed architecture, only two states are considered: read only
(called read-available) and read/write (called write-available). However, if method
invocations are recorded rather than the actual changes of data (method invocations
are called events in the original work [25]), the method semantics can be exploited
more efficiently for higher availability and more types of object-readiness become
reasonable. Generally, types of object-readiness range from no readiness (no
method is available for invocation) to full readiness (every method is available for
invocation).

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 32

Site 1 Site 2

c2

s1={d,c2}
intra-site

s2={c3}
1J inter-site

Figure 3.4: Sets of constraints.

Sets of Constraints

Constraints always limit "entity" objects. However, constraints are always evaluated
using particular object views. In an 1SR environment, this does not make any
difference, because all copies reflect the latest changes sufficiently. On the other
hand, 1SR has a drawback: The underlying replication algorithm has to reduce the
object-readiness in presence of system failures significantly.

Therefore, in the proposed approach the offered constraint consistency of the
application-state is not statically defined, but may change depending on the failure
scenario. The current consistency can be communicated to a client using sets
of constraints. Consider the following situation depicted in figure 3.4: Three
constraints are divided into two sets: S\ and S2- S\ is called "intra-site constraints",
because its evaluation is done using constraints which are evaluated using objects
which belong to the same primary site, C\ and c2 in this case. In contrast, s2 is called
"inter-site constraints", because its evaluation is done using constraints which are
evaluated using objects which belong to different primary sites, only c3 in this case.
Entity objects are drawn at their respective primary site: A\ and B\ at site 1 and
C\ at site 2.

As mentioned before, sets of constraints make no claim about concurrent access.
Control of concurrent access to objects is deployed within the transaction isolation.

Combinations

A client of the system requests to start a transaction along with the demand
for a particular object-readiness of particular objects. The system calculates
the possible constraint consistency violations called consistency threats resulting
from conducting the transaction with the demanded object-readiness. The client
can react selectively: The client can either "lower" the demanded object-readiness
to avoid the potential of violating a set of constraints, or it can conduct the operation
if the proposed constraint violation is acceptable. Sometimes the demanded object-
readiness cannot be provided to the client at all regardless of constraint violations.

Continuing with the example in figure 3.4, a client at site 1 wants to start a
transaction. All of the following considerations apply to a client at site 1 (the index

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 33

is omitted), which is indicated by the arrow in figure 3.4. In order to calculate
consistency threats, the system uses the following dependencies:

• Validating Si needs A\(r) and Bi(r).

• Validating s2 needs Bi(r) and C\{r).

If any of the objects needed for validation of a particular set of constraints is
demanded for writing, the according set of constraints needs to be validated at the
end of a transaction. For instance, if B\ is demanded for writing, S\ and s2 need to
be validated and therefore Ai and C\ need to be read.

If the system is healthy, demanding any object-readiness is successful without
any consistency threats. All objects are always write-available.

However, if the system is degraded, particular consistency threats are possible.
The following table 3.1 lists consistency threats depending on particular client de-
mands for object-readiness.

Client
^i(r),
Ai(w)

C,{w)

demands
Bl(r),C1(r)

Consistency threat
No threat
No threat
s2 potentially violated
Not possible

Table 3.1: Consistency threats in a degraded system.

Read-available participation of any particular object in a transaction does not
enforce any additional validation, which results in the first line in table 3.1.

If the system is degraded, S\ can still be normally validated using the write-
available object Ai(w) and read access to -Bi(r). Therefore, the second line identifies
the participation of A\ in a transaction as being no threat.

Validation of s2 is triggered by making B\ write-available, because C\ is at most
read-available (referred to by Cfl at site 1). However, the evaluation of s2 with
this read-available object may use a stale version of it, because C\ could have been
updated at site 2 (referred to by Cf2 at site 2). If the system is reunified later, this
stale object is updated on site 1 with the new object-state from site 2. Since the
stale object could have been used for validation at site 1, this can possibly lead to
an application-state, which is inconsistent regarding s2. Thus, the third line in table
3.1 identifies the write-available participation of B\ as being a consistency threat:
"s2 potentially violated". This constraint inconsistency is a consequence of using a
replication consistency criterion other than 1SR. However, the client can obtain the
inconsistent application-state after reunification and write to the object-states to
correct it, if desired. Alternatively, it can be part of the fault-tolerance strategy to
reunify different object-states automatically. The advantage of this approach
is that B\ can still be written and C\ can still be read while being written
at site 2 even if the system is degraded. Under ISR-conditions this is not
possible.

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 34

Constraint
Consistency

read-available,
no violation 1SR

write-available,
s2 possibly violated

• Object-readiness

Figure 3.5: Trading constraint consistency for availability — the vision.

Finally, if the system is degraded, C\ cannot be written at site 1, which is
specified in the last line in table 3.1.

In addition, please note that the client demands object-readiness of entity object
views and not of particular copies. Therefore, the underlying fault-tolerance strategy
is hidden from the client.

However, the above strategy only allows for a rather coarse-grained trading be-
tween constraint consistency and availability. The long-term goal is depicted in
figure 3.5. In a degraded situation, the system moves along the bold curves in-
creasing availability for consistency and vice versa. For now, only the bold dots are
possible system states as described above.

3.8 System Properties

In the following the relevant system properties are discussed.

• Synchronous replication always requires some atomic commitment protocol. In
a partitioned network, no protocol can guarantee the execution of a transaction
to its termination (either commit or rollback) as long as network partitions
exist [24]. Thus, in some cases the protocol has to block the transaction until
the failure is repaired.

In contrast, asynchronous updates are applied instantly and their propaga-
tion can be delayed until the network is available. The disadvantage lies in
the need to resolve update conflicts, which cannot occur when using primary
copy replication. Generally, the possibility of update conflicts depends on the
deployed replication strategy.

The proposed approach uses synchronous communication to get its advantages
but avoid its drawbacks by switching to asynchronous communication in the
case of degraded scenarios. The disadvantage of asynchronous communication

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 35

is reduced by using a primary copy ROWA. However, due to the distribution
of primary copies across the system, constraint inconsistency can occur.

• A frequent assumption when building replication-based systems is determin-
istic behavior of objects [46]. However, this is also very difficult to achieve as
quoted in [14]:

Determinism implies that if distinct distributed replicas of the ob-
ject, starting from the same initial state, receive and process the
same set of operations in the same order, they will all reach the
same final state. It is this reproducible behavior of the application
that lends itself so well to reliability. Unfortunately, pure deter-
ministic behavior is rather difficult to achieve, except for very sim-
ple applications. Common sources of non-determinism include the
use of local timers, multi-threading, operating system-specific calls,
processor-specific functions, shared memory primitives, etc.

Also, a good treatment of the subject is given in Poledna's book [41], which
is revised from a doctoral dissertation conducted at the Vienna University of
Technology.

In the proposed approach determinism of objects is no prerequisite. The criti-
cal operation with respect to non-determinism is the write operation, because
it changes the object-state persistently. Since write access is only allowed at
the primary site it can be properly managed and synchronized there.

This is contrary to another paradigm of object replication, which received a lot
of scientific attention recently: group communication [9, 14]. Here, at all times
multiple objects assigned to a single "entity" object exist, even if the system is
healthy. The established theory to achieve the necessary update propagations
facilitates communication primitives (Atomic Broadcast, View Synchronous
Broadcast) to keep a group of replicated objects synchronized. The essen-
tial idea of group communication is called "the state-machine approach" [46],
where messages are applied to deterministic processes (i.e. object behavior) in
the same order and entirely or not at all, thus yielding the same results (i.e.
object-states).

• The proposed approach enables the tuning of the trade-off between consistency
and availability in principle. The key to configuring this trade-off lies in the
design of the correctness criteria and the replication strategy to be more or less
restrictive. This ranges from 1SR (along with limited availability) with full
consistency to unlimited availability (write access at all times) with possible
inconsistency.

• As a disadvantage the system does not support a roll-forward mechanism [14]
and therefore does not protect processing. The preservation of consistency is
based on a roll-back mechanism, where all changes are undone if a commit
fails, thus protecting the data.

• As an advantage the approach does not contain common sources of scalability
problems: No centralized services are needed and no centralized data needs to

CHAPTER 3. TRADING CONSISTENCY FOR AVAILABILITY 36

be accessed. Furthermore, asynchronous communication for replicating data
also leverages the wide-area network scalability, because this robust type of
communication is much better suited for less reliable wide-area networks: In
fact, the DTMS implementation uses a wide-area network. On the other hand,
all object-states are replicated to all other sites, which consumes a growing
amount of system resources if the number of sites grows.

3.9 Reasoning about Correctness

An algorithm is said to be correct if both the safety and the liveness property
hold. Here, safety and liveness are described informally. However, they can be
described and proven formally by applying means of temporal logic (as opposed to
propositional logic) to a model of a reactive system (as opposed to transformational
systems).

The central safety criterion for the proposed algorithm is that the system always
allows access to all model objects at a particular fully functional site. In other words,
a client request for accessing model objects is never rejected. However, access may
be partly restricted to read access due to system degradation. A violation of this
property would be a denial of service at a particular site. Since sites are able to
access objects completely autonomously without cooperating with other sites, this
is obviously guaranteed.

Along with guaranteed access, the system also guarantees two constraint consis-
tency types observed at all sites:

Strong intra-site constraint consistency is guaranteed at all sites regardless of
system degradation. A violation of this property would be intra-site inconsistency.
Since intra-site constraints involve only model objects assigned to a particular pri-
mary site, write access is possible only at a single site. Since such access is properly
isolated, constraint inconsistency cannot occur.

Strong inter-site constraint consistency is only guaranteed in a healthy system
before and during system degradation, while inter-site constraint inconsistency may
arise only after reunification. A violation of this property would be inter-site in-
consistency before or during system degradation. Before degradation, inter-site
inconsistency not possible, because sites cooperate synchronously using established
atomicity mechanisms. During degradation, inter-site constraints are evaluated lo-
cally, similar to intra-site constraints. Therefore, inter-site constraint consistency
before and during system degradation is guaranteed.

The central liveness criterion for the proposed algorithm is the guarantee of
eventual replica consistency. Changes of model objects are applied instantly at
the primary site and, depending on the system degradation, might not reach other
sites for some time, but they are guaranteed to reach every other site eventually.
Substantiated by the description in the former sections, this liveness property is
satisfied.

Chapter 4

Use Case and Proof of Concept
The DTMS

4.1 Purpose of the DTMS

Throughout this section the "Distributed Telecommunication Management System
(DTMS)" software architecture is described, which incorporates the proposed ap-
proach. It is an object-oriented, distributed and highly available software for manag-
ing a telecommunication network to be used in air traffic control. The DTMS follows
a logical client/server structure but is implemented as N-tier fully distributed system
by the use of CORBA middleware. Its main features are parametrization, control,
and status monitoring of the telecommunication embedded systems. Also, several
subsidiary tasks are accomplished, most importantly logging of system events and
user activities. Regarding non-functional requirements, high availability and fault-
tolerance are of concern within this work and therefore presented in more detail,
but also performance requirements were part of the overall product specification.

The architecture adheres to the design principles and requirements of component-
based software engineering, especially the encapsulation of coherent functionality
while simultaneously separating different functionality. This leads to a modular,
component-based system with clear, well-defined interfaces, which in turn improves
extensibility (e.g. to incorporate project specific components like different replica-
tion mechanisms for different customers), but also enables a flexible composition of
different components and therefore enables a flexible combination of system proper-
ties. Component names appear using bold typewri ter font.

4.2 DTMS Overview

The DTMS manages a VCS (Voice Communication System) network, where every
VCS is assigned to a DTMS server, as illustrated in figure 4.1. Multiple DTMS
servers are connected via a standard IP-based wide-area network and every DTMS
server configures, controls and monitors its associated VCS devices. The commu-
nication between DTMS and VCS contains proprietary parts and is based on the
OSI (Open Systems Interconnect) layer 2 protocol HDLC (High Level Data Link

37

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 38

DTMS Server "-

DTMS Client

DTMS Client

! I.

|

vcs

VCS V

Site 1

DTMS Server

VCS

Site 2

DTMS Server

DTMS Client

VCS
Site 3

IP-based Wide Area Network
IP-based Local Area Network
HDLC-based Link
Voice Communication Network

DTMS Distributed Telecommunication Management System
VCS Voice Communication System

Figure 4.1: DTMS overview.

Control). Every DTMS stores VCS parameter data. DTMS clients and DTMS
servers are connected via a standard IP-based local area-network. The VCS devices
are connected via a voice communication network, which can be chosen from a wide
variety of communication means like the digital ISDN (Integrated Services Digital
Network).

The following DTMS requirements are relevant for distribution and persistence:

Typically, small write and large read transactions need to be performed fre-
quently. This is due to frequent small changes in VCS parametrization and
reading of whole parameter sets (all model objects) to generate the necessary
binary format for updating the configuration data inside of the VCS hardware.

Access to the VCS parameter data needs to be fault-tolerant. Site and network
failures need to be masked transparently in the following way:

— Read access: All objects need to be available for read access at any avail-
able site at all times despite any system degradation, because parameters
from all sites are needed to update the VCS hardware.

— Write access: For write access the following conditions must hold: Objects
need to be available at all sites during periods of healthy system condition.
Objects need to be available at a particular site (their primary site) during

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 39

Client „.--§ Client

T
Distribution

Persistence

FTNS I Replication

->§Replicationion] I

Database

Figure 4.2: Proposed software architecture.

periods of degraded system condition. This is because VCS data needs
to be changed at all times, even more so in presence of system failures.

4.3 Components of the DTMS

Figure 4.2 illustrates the proposed software architecture using a UML component
diagram (slightly modified, because also deployment aspects are shown). The pic-
ture shows how components use each other either locally or remotely. A single site
consists of the following components: Transaction, Model, Persistence, FTNS,
Replication and Database. Client components do not belong to a site. A client
can be connected to an arbitrary site. To keep the communication flow between
sites organized and comprehensible, the remote communication is established be-
tween components of the same type only, for instance, local Replication and re-
mote Replication. As denoted on the righthand side, the Model and Transaction
components belong to the distribution aspect, the Persistence component to the
persistence aspect and the Replication component to the replication aspect of the
architecture. The FTNS component is depicted as part of the replication aspect but
in fact belongs to the replication and distribution aspect of the architecture.

In the following sections, the DTMS components are described in more detail.
Some aspects of their intercommunication which are selected according to their
relevance for fault-tolerance and replication are explained using sequence diagrams.

4.3.1 Model

The Model component contains the model of the VCS and a number of objects,
which connect the VCS model to the framework. The model of the VCS makes up

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 40

the objects that need to be highly available.

The architecture of the framework and the definition of the interfaces provided
by the framework allow the implementation of a VCS model in a way it can be
generated completely automatically from its UML specification. Additionally, the
"handling" of the model (change and retrieve object data; creation, insertion, and
deletion of objects; queries) has to be done in a generic way, in order to reduce the
effort for adapting the DTMS for each new VCS: An individual VCS is constructed
for each customer depending on his needs. Therefore, the development of the DTMS
for this particular VCS mainly encompasses the modelling of a new VCS model. The
framework can be seen as the "glue" between different VCS model instances deployed
at different sites and the framework services (replication, persistence, distribution).
It provides "docking places", where the VCS model can be "plugged in".

The VCS model

• is complex, i.e. it consists of many classes, small object-states and few object-
states per class.

• requires complex validation, i.e. many algorithmic constraints involving many
object-states.

• requires complex read operations concerning many objects, e.g. assemble in-
formation for configuration of the VCS.

Each entity object has a system wide unique identifier. Objects register at com-
ponent Transaction in order to participate in transactions. Objects store their
serialized object-state at Persistence upon the commit of transactions.

Transactional behavior

Transactional behavior is mandatory for all model objects. Therefore, all model
objects implement the validateO, commitO and rollbackO method. Upon
the invocation of validateO the respective object validates its new object-state.
Upon the invocation of commit 0 the respective object changes its object-state in-
ternally and upon the invocation of rollbackO the respective object discards its
new object-state internally. validateO and commit()/rollbackO are invoked by
Transaction during the commit phase. All model objects' methods are classified
as either read or write method. Read methods

• do not change the object-state and

• do not trigger the registration of the respective object at Transaction (this
has an impact on serialization, see Transaction description in section 4.3.3

Write methods

• do change the object-state,

• do trigger registration of the respective object at Transaction, and

• if a model object cannot register at Transaction, it refuses to execute the
write method.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 41

Persistence of model objects

Persistence is mandatory for all model objects. All model objects implement the
store() method. Upon invocation of store() , the respective object records its
object-state at Persistence providing its ID, type and serialized object-state.

4.3.2 Client

The Client component performs invocations on objects in local or remote Model,
where the physical location of the model object is transparent to Client. An arbi-
trary number of Client components can operate on the model concurrently. The
Client component starts and finishes transactions at Transaction.

4.3.3 Transaction

The Transaction component is responsible for serializing concurrent transactions.
It coordinates the invocation of commit ()/rollback() and validate () on the ob-
jects in the Model, it controls the transaction context at Persistence and it coordi-
nates distributed transactions in cooperation with remote Transaction components.

At the time of writing, the smallest unit of lock granularity is a whole site. Since
write transactions are not expected to last long and validation involves many object-
states from different classes, this is sufficient. Certainly, many applications require
finer lock granularity, which is possible and will be implemented in future versions.
Two transaction types are distinguished requiring that the request type is known
beforehand:

Write transaction: Upon the start of a write transaction, the site is locked for
further operation until the current transaction is finished with commit or roll-
back. During a write transaction no other transaction can be conducted at
this site.

Read transaction: An arbitrary number of clients can perform read transactions
concurrently. Read transactions are prevented from interfering with write
transaction, thus providing read consistency.

4.3.4 FTNS

The FTNS component maintains a list of all sites and and traces their reachabil-
ity. It provides information about the currently responsible site for a particular
object, which is especially important if the primary site of that object cannot be
contacted: If a remote site cannot be reached, the site itself is responsible. This
mapping from primary site to responsible site is part of the fault-tolerant naming
service mechanism. FTNS initializes objects accordingly using either remote Model
(healthy system) or local Persistence (degraded system). FTNS components pro-
vide CORBA Interoperable Object References (IOR, refer to CORBA [1]) pointing
at their associated local or remote objects given an entity object ID. FTNS compo-
nents obtain IORs pointing at remote objects by communicating with remote FTNS
components.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 42

4.3.5 Persistence

The Persistence component stores and retrieves serialized object-states using the
Replication component. Additionally, it provides methods to access object-states
in a transactional way, which are used by Transaction. Persistence does not
distinguish between object-states that belong to the local site and object-states
that belong to a remote site, but always persists to and retrieves from the local
Replication component. Factories always ask their local Persistence component
for retrieving persisted object-states. An object persists itself providing its ID,
its type and its object-state to Persistence, which in turn provides transactional
access to the stable object-store.

4.3.6 Database

The Database component essentially encapsulates the actual stable storage. It pro-
vides function primitives to persist and retrieve data. It may also encapsulate local
database redundancy for even higher availability.

4.3.7 Replication

The Replication component is at the heart of the architecture, as it implements
the replication algorithm described in chapter 3. It performs a replication proto-
col in accordance with Replication at other sites to propagate object-states, to
provide object-states to other components, and to calculate their object-readiness
accordingly. It uses the Database component to persist data locally and it provides
methods to access the stored object-states.

At the time of writing, object-readiness and sets of constraints are supported
implicitly only. That is, clients cannot demand a certain object-readiness and they
experience that only a certain object-readiness can be provided depending on the sys-
tem condition by being refused to write access read-available objects. Also, clients
cannot query the current constraint consistency. Instead, they are possibly con-
fronted with inconsistent data. However, system degradation (i.e. disconnection
from other sites) is visible to clients, since FTNS provides the respective information.

4.4 Typical Sequences of Component Interaction

The following section describes some of the key sequences of component interaction.
SI and S2 denote site IDs, Al an object ID, where the class is A and the ID is 1.
A1_S1 denotes an object reference pointing at an object, which has class A, ID 1,
and is running at site SI.

4.4.1 Distributed Object Access in a Healthy System

Scenario: A client wants to execute a write transaction spanning over two sites, SI
and S2. Figure 4.3 (Part 1: Begin and write method invocation) and 4.4 (Part 2:

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 43

Client

beginTr insaction(S1,S2,write)

Transaction S1 FTNS S1 A1 S1

getActiveSite(S2)

S2

beginTransaction(S2)

getObject(A1_S1)

writeMethodf...)

u
getObject(A2_S2)

Tl
registerObject(A1_S1)

1
getActiveSite(S2)

Site 1 Site 2

Transaction S2 A2 S2

u

writeMethod(.

getObject(A2_S2)

registerObject(A2_S2)

cr

Figure 4.3: Distributed object access in a healthy system. Part 1: Begin and write
method invocation.

Commit) belong together and they depict the sequence diagram of the begin, write
access, and commit phase of a whole transaction.

• Transaction_Sl queries FTNS.Sl for the currently responsible site of primary
site S2. In a healthy system the result is S2.

• Transaction_Sl coordinates the progress of the transaction in cooperation
with Transaction_S2.

• FTNS.S1 is inquired for both. A1.S1 and A2_S2. For the remote object A2_S2,
FTNS_S1 queries the responsible remote FTNS_S2.

Every participating object (A1.S1, A2.S2) registers at its local Transaction.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 44

4.4.2 Object Access in a Degraded System

Scenario: A client wants to execute a read transaction over two sites, SI and S2,
while S2 is down (figure 4.5). The diagram illustrates how the system is still able
to provide the client with the read-available object A2_S1.

• Again, FTNS_S1 determines the responsible site of primary site S2. This time,
S2 cannot be contacted, instead Si is returned. Therefore, FTNS_S1 invokes
loadObjectsCclass A, S2) at Persistence to retrieve the respective object-
states and creates the objects itself. The object-readiness of the newly created
objects is set to read-available.

• The client simply invokes the required read method at object A2.S1, similarly
to the case without system degradation.

4.4.3 Replication of Transactions

Scenario: Persistence uses Replication to store object-states. Replication stores
object-states locally and builds replica transactions to fill replication queues (figure
4.6).

• storeReplicaTransactionO and store replication entry are repeated
for every remote site. These functions fill the replication queues, which are
processes independent from the transaction at a later stage.

• Local object-states and replication queues are committed together. Therefore,
all updates to the primary copy will eventually arrive at all remote sites.

4.5 Post Mortem Analysis and Future Work

In object-oriented terminology, a post mortem analysis is the process of review-
ing the design and development of a completed software project with the intention of
identifying successes and shortcomings to provide starting points for possible future
improvements. Starting with the successes, the following section summarizes such
findings of the post mortem analysis of the DTMS design and implementation.

Component coherence: Persistence, Replication, and Model communicate
over implementation independent interfaces enabling the flexible exchange of
single components.

Fault-tolerance: Clients use the model independently from the system condition as
far as object-readiness and sets of constraints permit. Furthermore, the model
is set up like a conventional distributed system during periods of a healthy
system. Also, the framework is fully distributed and hence not vulnerable to
a single failure.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 45

True distribution: All system components exist on all sites locally, equally sharing
and coordinating their responsibilities.

Transparency: The client does not use Persistence and Replication, and it
does not care about the physical location of model objects. Model objects do
not care about Replication, but they have to implement a externalization
interface and therefore Persistence is not fully transparent to them.

The incorporation of the ideas of object-readiness and sets of constraints pre-
sented in the previous chapter was successful as far as describing and assessing the
system behavior is concerned. However, the system supports these concepts only
implicitly. They are not used to explicitly communicate the system condition. This
is a future goal of the DTMS.

In the following, other shortcomings in the DTMS along with planned action
items are enumerated:

• A rigor investigation of overall system properties depending on component
properties is missing. Especially different algorithms within the replication
are of concern, since invocation of write methods at model objects at all sites
even during system degradation is a future requirement.

• Better exploitation of objects' operation semantics (now read/write opera-
tions) and transaction types (now read/write-available) regarding the trade-off
between availability of object-states and constraint consistency requirements
is desired. However, even though there is a considerable amount of theory
on the subject of exploiting method semantics in order to increase availabil-
ity of methods, implementation of such concepts is not common. Apart from
a increase of implementation complexity (consider a replication mechanism,
which knows about method semantics of every object type and calculates the
objects' availability accordingly) it has the potential of rendering the system
incomprehensible from the users' point of view.

Alternatively, it is under investigation if the model component can be reduced
to a cache and transfer some of its functionality to the underlying database.
Especially transaction isolation is of interest for reasons of performance and
locking granularity, but also constraint consistency can be provided efficiently.
However, it has to be investigated if and how the complex and algorithmic con-
straints of the DTMS model can be implemented using database functionality
only. Furthermore, means and suitability of controlled constraint violation
have to be analyzed in order to facilitate the central requirement of increasing
replica availability for constraint consistency.

• Support for finer granularity of locking to enable better concurrency of model
access for clients. Currently, a site is the unit of lock granularity. Since this
is clearly not sufficient, it is envisaged to use object granularity here as well.
This entails the ability of each object to associate method invocations with a
particular transaction context and to calculate whether a commit is possible or
not. Additionally, more complexity is introduced because of "indirect" write
operations due to object relationships and because of the necessary locking

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 46

of "uninvolved" objects that are used during validation of constraints. It is
planned to generate the necessary code.

• Support for a query engine, that allows descriptive queries using the Object
Data Management Group's OQL (Object Query Language). Currently, two
simple types of query are supported: Get object by ID and get all objects of a
certain type. For efficient user interface implementation purposes, additional
queries for navigation through the object hierarchy are essential, e.g. get the
ancestor or get the descendants of an object where additional conditions on
attributes are fulfilled.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 47

Client Transaction SI A1 S1 Persistence S1 Transaction S2 A2 S2 Persistence S2

commitTransactionO

beginTransactionQ

prepareCommit() Tl
validate))

storeObject(A1

commit()

prepareCommitO

commitTransactionO

m
commitO

beginTransaction()

prepareCommitO Tl
validateO

storeObject(A2_S2)

TJ

commitO

commitTransactionO

Site 1 Site 2

Figure 4.4: Distributed object access in a healthy system. Part 2: Commit.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 48

Client

"getObject(A1_S1)

getObject(A2_S2)

V
readMelhod()

Clients always query
the local FTNS.

—getActiveSite(S2)
I

A1 S1 Persistence S1

51 is returned, because
52 cannot be contacted.

Replicated objects of class A
having primary site 2 are loaded.

loadObjectsfclass A, S2)

readMethod()

A2 S1

Entity object A2 is being
referenced by A2_S1.

Figure 4.5: Object access in a degraded system.

CHAPTER 4. USE CASE AND PROOF OF CONCEPT: THE DTMS 49

Persistence S1 Replication S1 Database SI

beginTransaction()

updateObject()

begin()

getNextTransactionNumberO

11
createReplicaTransactionO

storeReplicaTransaction()

updateObjectData |

V
buildReplicationEntry

storeReplicationEntry

H
commitTransaction() ;

commit()

Conducted for every remote
site. These operations fill the
replication queues.

Figure 4.6: Replication of transactions.

Chapter 5

Summary and Conclusion

5.1 Summary

The aim of this thesis was to introduce the terminology, an architectural concept,
and a system model to facilitate the trading of availability for constraint consistency
of replicated objects in a distributed system.

Three different types of consistency have been analyzed, defined, and compared:

• Replica consistency, which defines the correctness of replicated data or,
informally speaking, how replicas of the same logical object may differ from
each other.

• Concurrency consistency, which defines the correctness of concurrent ac-
cess to a single set of replicas or, informally speaking, how concurrent client
operations may interfere with each other.

• Constraint consistency, which defines the correctness of the system state
with respect to a set of data integrity constraints.

These definitions paved the way for describing the trade-off between availability
as one of the most significant attributes of dependability with respect to fault-
tolerance and constraint consistency: Availability can be increased if a controlled
violation of constraint consistency is acceptable. This trade-off was the key focus
of this work.

As the key architectural concept for incorporation of this trade-off into a dis-
tributed system, a two-layer architecture was introduced: Persistent object-states
are replicated asynchronously using a primary copy ROWA algorithm, while dis-
tributed transactions are carried out in a synchronous manner. During normal
operation the system is set up like a conventional distributed system, while propa-
gating persistent object-states prepares for degraded scenarios.

Within this architecture, a key system model for tuning the trade-off was
introduced: The fault-tolerant naming service (FTNS). It is used to map the object
identity possessed by every entity object to an actual object reference. Since this

50

CHAPTERS. SUMMARY AND CONCLUSION 51

mapping depends on the fault-tolerance strategy, the mode of operation of the fault-
tolerant naming service was aligned with the underlying primary copy ROWA.

As proof of concept, implementation details of the DTMS were presented. Se-
quence diagrams were used to show how the FTNS component of the DTMS is able
to provide a client with operable objects even in the presence of system failures.

5.2 Related Work

5.2.1 General Related Work for High Availability

Clustering is a common solution for high availability, usually facilitating a clus-
tered singleton service, a clustered notification service, and a clustered scheduler
service. A number of servers support this type of setup, called server farms (e.g. the
open-source Enterprise JavaBeans server JBoss). However, such systems are usually
deployed for load-balancing, where it is sufficient to perform the request on a single
instance and changes need not be reflected at other nodes. Even if changes are
propagated, server farms usually operate in a local area network, where the failure
of network partitions is extremely unlikely or even impossible. On the other hand,
providing fault-tolerance among topologically dislocated application servers requires
to handle concurrent access to different servers. This is a major difference between
clustering and the proposed approach in this thesis, since the problem of accessing
objects in different network partitions is explicitly addressed. A citation in the fault-
tolerant CORBA specification, which is the OMG's (Object Management Group)
answer to the need for fault-tolerance, illustrates the need for this functionality:

Network partitioning faults separate the hosts of the system into two or
more sets, the hosts of each set being able to operate and to commu-
nicate within that set but not with hosts of different sets. The current
state-of-the-art does not provide an adequate solution to network parti-
tioning faults. Thus, network partitioning faults are not addressed in this
specification.

5.2.2 Related Work about Trading Consistency

All of the mentioned types of consistency mutually depend on the availability of
objects for method invocation and the performance of such invocations and can
therefore be traded for each other. This is scientifically accepted and regarding
the trading between availability/performance and replica/concurrency consistency,
a large body of mature research exists.

Some of this research is dealing with replica consistency, for instance: [14, 38,
53, 39, 22, 13, 42, 44, 25, 34]. Among the mature research of the trade-off between
availability and replica consistency is the TACT (Tunable Availability and Consis-
tency Tradeoffs) project [54]. So-called consistency units (conit) facilitate a model
of continuous consistency, which is based on a set of three metrics: numerical error,
order error, and staleness:

CHAPTERS. SUMMARY AND CONCLUSION 52

Numerical error limits the total weight of writes on a conit that can
be applied globally across all replicas before being propagated to a given
local replica. Order error limits the number of tentative writes on a
conit (subject to reordering) that can be outstanding at any one replica,
and staleness places a real-time bound on the delay of write propagation
among replicas.

The following enumeration gives examples of other implementations in the field
of dependable distributed systems with various replication consistency properties,
which either support replication or provide fault-tolerance through replication:

• The famous ISIS system [9] was one of the first systems to handle fault-
tolerance above the operating system layer1. As ISIS is a popular system, it
is discussed here more at length.

The key idea in ISIS is to use the concept of process groups and according tools
for group programming. Process groups are distributed groups of cooperating
programs. They facilitate fault-tolerance by transparent adaption to failures
and recoveries. They provide certain properties to enable reliable operation of
applications:

— Group addressing: Group names are used to address and send messages
to the group instead of individual members. Such messages are called
multicast messages.

— Message delivery ordering: Apart from overcoming message loss and du-
plications (messages should be delivered exactly once), which is done at
lower system layers in ISIS, causal dependency [30] of messages has to be
maintained. In ISIS, this is achieved using two multicast communication
primitives, ABCAST and CBCAST. ABCAST has the property of atomic
delivery ordering, meaning that messages are guaranteed to be delivered
in identical order at all processes. However, since ABCAST is costly to
implement and can also involve rather high latency, the "weaker" CB-
CAST is supported. Here, identical message ordering is only guaranteed
for messages which are causally dependent. CBCAST guarantees that
only conflicting multicasts are seen by all recipients in the order of causal
dependency, other multicasts are delivered in any order. CBCAST is
said to be virtually synchronous, since the outcome of the execution is
the same as if atomic delivery had been used. Obviously, the ability to
use CBCAST is highly dependent on the nature of the application.

— Failure atomicity: ISIS uses a protocol to propagate messages that en-
ables "exactly-once delivery" of each message to those destinations that
remain operational in failure scenarios. Since participating processes are
assumed to be fail-stop, delivery to failed processes does not have to be
of concern. ISIS implements the fail-stop model using an agreement pro-
tocol to maintain a system membership list: only processes in this list
are permitted to participate.

'However, the authors state [10] that "kernelizing" some parts of ISIS can reduce the resulting
performance penalty considerably.

CHAPTER 5. SUMMARY AND CONCLUSION 53

- Use of group membership as input: Often, group members need consistent
views of group membership to perform tasks. For instance, this is used
for fault-tolerant services that need a primary member. If the primary
member fails, backups take over in some consecutive order. Unless every
group member sees the same group changes in the same order, undesirable
situations could arise (no primary, several primaries). ISIS uses the idea
of looking at group membership as shared data, which can be "locked"
to prevent interference with multicast messages. However, since locking
is costly, ISIS replicates group membership data among the members of
the group itself. This way, the system takes care that multicast messages
do not interleave with changes of the group membership.

ISIS is a proven and popular system and a milestone in the area of reliable
distributed computing. However, there are also limitations and some of them
are differences to the approach presented in this work:

- Strong replica consistency: ISIS aims at strong replica consistency. Repli-
cas may fail and be dropped from a group and rejoin later and update
their state, but cannot operate independently from the group and accept
replica inconsistency to provide better availability.

- Reduced availability during network partition failures: ISIS only allows
progress in a single majority partition, resuming normal operation only
when normal communication is restored.

- The approach presented in this work aims at transactional serializability,
whereas ISIS supports the model of virtual synchrony, as quoted from [9]:

The relationship between ISIS and transactional systems origi-
nates in the fact that both virtual synchrony and transactional
serializability are order-based execution models. However, where
the "tools" offered by a database system focus on isolation of
concurrent transactions from one another, persistent data and
rollback (abort) mechanisms, those offered in ISIS are concerned
with direct cooperation between members of groups, failure han-
dling, and ensuring that a system can dynamically reconfigure
itself to make forward progress when partial failures occur. Per-
sistency of data is a big issue in database systems, but much less
so in ISIS.

• The Horus system [52] is a successor of the ISIS system and it provides
a general purpose group communication model to application developers. It
supports the virtually synchronous execution model and a runtime configurable
structured framework for protocol composition. The group communication
architecture can be used to introduce reliability or replication transparently.

• The more experimental framework Ensemble distributed communication sys-
tem, which is the next generation of the Horus toolkit. It supports the virtually
synchronous execution model and a runtime configurable structured framework
for protocol composition [8].

CHAPTER 5. SUMMARY AND CONCLUSION 54

• The mature Java Messaging Service (JMS) by Sun Microsystems. Quote
from the documentation: The Java Message Service (JMS) API is a messaging
standard that allows application components [...] to create, send, receive, and
read messages. It enables distributed communication that is loosely coupled,
reliable, and asynchronous.

• The Eternal System [39], which enhances CORBA using interceptions to
provide strong fault-tolerance transparently. No modifications to the Object
Request Broker, the operating system, or the application are necessary. In ad-
dition, non-deterministic multi-threading of objects is possible. Results from
this project contributed significantly to the Fault-tolerant CORBA specifica-
tion.

• Fault-tolerant CORBA specification by the OMG [1]. FT CORBA requires
deterministic behavior of objects and provides either strong infrastructure-
controlled or application-controlled replica consistency through the use of ob-
ject groups.

• Phoenix/APP is a Microsoft research project to enhance Microsoft's mid-
dleware .NET to support transparent recovery of COM+ components.

• Globe (http://www.cs.vu.nl/globe/) is a middleware platform to build wide
area distributed applications. Again, implementing a particular strategy of
replication for fault-tolerance is left to the object provider.

• Fleet [38] is a middleware system implementing a distributed repository for
persistent Java objects. Fleet differs in two issues from the approach pre-
sented in this thesis: At first, a quorum consensus based replication strategy
is deployed to implement a strong consistency model. Using that technique,
consistency can be guaranteed at all times at the price of reduced availabil-
ity. Secondly, fleet uses object groups to enhance performance at the price of
increased complexity. In fact, the Fleet system does not support transactions
over multiple objects. Generally, transactions based on group communication
primitives are still to be researched [44] and not supported.

Other and older research mainly in the field of databases is dealing with con-
currency consistency and how to improve availability by using weaker models than
serializability: [26, 6, 15]. Also, some research looks at replica/concurrency consis-
tency in an integrated way [51, 49].

All of the above mentioned research is done under the presumption of strong
constraint consistency or by ignoring constraint consistency at all. However,
the very specific aspect of partially sacrificing constraint consistency in
a general way to achieve higher availability is very poorly researched. It embodies a
strong potential for improvement of a whole class of applications, that is, such ap-
plications where availability is more critical than transient constraint inconsistency.
As explained, this trade-off cannot be explored isolated from replica/concurrency
consistency.

Regarding other research on fault-tolerant naming and respective ser-
vices, the following articles deal with general concepts:

CHAPTERS. SUMMARY AND CONCLUSION 55

[35], for instance, introduces a replicated naming service using primary backup
replication:

This paper describes the design and implementation of a fault-tolerant
CORBA naming service - CosNamingFT. [...] The name service [...] is
a critical gateway to all objects in a distributed system; to avoid having
a single point of failure, the name service should be made fault-tolerant.
CosNamingFT uses the GroupPac package, a CORBA-compliant suite of
protocols, to replicate the name server. GroupPac services are built from
Common Object Services that function as building blocks to implement
fault-tolerant applications.

[37] also presents a replicated naming service that adheres to the COS specifica-
tion:

High availability of the naming service is important since most CORBA
applications need to access it at least once during their lifetime. Un-
fortunately, the OMG standards do not deal with availability issues; the
naming services of many of the commercially available CORBA object
request brokers introduce single points of failure. [...] Our naming ser-
vice can be replicated at run-time, while many applications are installing
and retrieving object references.

However, all of the mentioned work is related but significantly different, since the
proposed FTNS does not support a highly-available naming database, but instead
supports a mapping from object identity to reference, which is potentially different
on every node because it depends on the view of the current failure scenario at a
particular node and the replication algorithm. The FTNS is not an isolated concept,
but rather a model, which embodies the means of trading constraint consistency for
availability.

5.3 Future Work

Trade-off Availability and Consistency In order to utilize the potential of
the trading of availability for constraint consistency in a systematic, application-
independent, and practical way, the trade-off has to be formalized. This formaliza-
tion has to consider object-typed entities to enable the seamless integration within
standard object-oriented software engineering techniques.

Also, an according syntax or diagrams for denoting the trade-off with respect
to particular classes is needed. Classes, which are to be deployed in the system,
must be described using this syntax. Every class has to be enhanced with such a
configurable profile, which allows the déployer to assign an application-independent,
but deployment-specific behavior. Ideally, the syntax should also include ways of
assigning particular reunification strategies.

CHAPTERS. SUMMARY AND CONCLUSION 56

Metrics In order to be able to assess how efficiently a system can trade avail-
ability for consistency and the impact on performance and other non-functional
requirements, metrics are needed. Standard metrics in distributed systems exist
for availability (probability of being operational etc.) and performance (round-trip
time, fail-over time, communication overhead etc.) and are evaluated to exhibit
particular advantages and shortcomings of distributed algorithms and implementa-
tions. However, to be able to assess the quality of results of future improvements of
the trading with constraint consistency, standard metrics for constraint consistency
are needed here as well. As a major requirement it has to be possible to evaluate
the newly defined metrics independent from a particular approach and implemen-
tation. Furthermore, the overall system consistency has to be taken into account,
since different sets of replica can possibly possess different constraint consistency
simultaneously.

Hybrid Replication Protocols Hybrid replication protocols are designed to
combine the advantages of both synchronous and asynchronous replication mod-
els. Investigation in how such protocols can aid to the system architecture have not
been conducted yet but are of interest.

List of Figures

1.1 Dependability 4

1.2 Fault/failure chain 4

2.1 Transparent distribution 12

2.2 Transparent persistence 12

2.3 Transparent distribution and persistence 12

2.4 Introducing fault-tolerance 13

2.5 Example (n=7) of quorum assignment for the -^n-algorithm 22

2.6 Replication, concurrency, and constraint consistency 25

3.1 Synchronous and asynchronous communication 28

3.2 Operation in a healthy system 29

3.3 Operation in a degraded system 30

3.4 Sets of constraints 32

3.5 Trading constraint consistency for availability — the vision 34

4.1 DTMS overview 38

4.2 Proposed software architecture 39

4.3 Distributed object access in a healthy system. Part 1: Begin and
write method invocation 43

4.4 Distributed object access in a healthy system. Part 2: Commit. . . . 47

4.5 Object access in a degraded system 48

4.6 Replication of transactions 49

57

Bibliography

[1] http://www.omg.org/. The Object Management Group.

[2] http://www.sun.com/. Sun Microsystems.

[3] http://www.w3c.org/. World Wide Web Consortium.

[4] B. Alpern and F.B. Schneider. Defining liveness. Elsevier Information Process-
ing Letters, 21(4):181-185, October 1985.

[5] H. Attiya and J. Welch. Distributed Computing - Fundamentals, Simulations,
and Advanced Topics. Wiley, Hoboken, New Jersey, 2004.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A
critique of ansi sql isolation levels. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 1-10. ACM, May 1995.

[7] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[8] K. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van Renesse,
and W. Vogels. The horus and ensemble projects: Accomplishments and lim-
itations. In Proceedings of the DARPA Information Survivability Conference
and Exposition (DISCEX '00), January 2000.

[9] K.P. Birman. The process group approach to reliable distributed computing.
Communication of ACM, 36(12):37-53, December 1993.

[10] K.P. Birman and R. Cooper. The isis project: real experience with a fault toler-
ant programming system. A CM SIGOPS Operating Systems Review, 25(2): 103-
107, April 1991.

[11] European Commission. European transport policy for 2010: time to decide.
Office for official publications of the European communities, Luxembourg, 2001.

[12] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts
and Designs. Addison-Wesley, 2001.

[13] P. Felber, B. Garbinato, and R. Guerraoui. The design of a corba group com-
munication service. In Proceedings of the 15th IEEE Symposium on Reliable
Distributed Systems. IEEE, October 1996.

58

BIBLIOGRAPHY 59

[14] P. Felber and P. Narasimhan. Reconciling replication and transactions for
the end-to-end reliability of corba applications. In Proceedings of the Inter-
national Symposium on Distributed Objects and Applications (DOA 2002), Oc-
tober 2002.

[15] H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed
database. ACM Transactions on Database Systems, 7(2):209-234, June 1982.

[16] K.M. Goeschka, M. Jandl, R. Smeikal, and A. Szep (Authors in alphabetical
order). Dependable distributed systems. European union framework programm
6 project proposal, strategic objective 2.3.2.3 open development platforms for
software and services, European Union, February 2004.

[17] K.M. Goeschka, H. Reis, and R. Smeikal. Xml-based client-server communi-
cation. In Proceedings of the 36th Hawaii International Conference on System
Sciences (HICSS-36). IEEE, January 2003.

[18] K.M. Goeschka and R. Smeikal. Using replication for high availability of a
distributed management system. Tech:news, Frequentis GmbH, February 2003.

[19] J. Gray and L. Lamport. Consensus on transaction commit. Microsoft Technical
Report MSR-TR-2003-96, January 2004.

[20] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Francisco, California 94104, 1993.

[21] F.C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31(1):1—26, March 1999.

[22] R. Guerraoui, P. Felber, B. Garbinato, and K. Mazouni. System support for
object groups. In Proceedings of the ACM Conference on Object Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA 1998), pages 244-
258. ACM, October 1998.

[23] G.T. Heineman and W.T. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001.

[24] A.A. Helal, A.A. Heddaya, and B.B. Bhargava. Replication Techniques in
Distributed Systems. Kluwer Academic Publishers, Boston/London/Dordrecht,
1995.

[25] M. Herlihy. A quorum consensus replication method for abstract data types.
ACM Transactions on Computer Systems, 4(l):32-53, February 1986.

[26] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, July 1990.

[27] P. Jalote. Fault-tolerance in Distributed Systems. Prentice Hall, Upper Saddle
River, New Jersey 07458, 1998.

[28] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Boston/London/Dordrecht, 1997.

BIBLIOGRAPHY 60

[29] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3(2):125-143, March 1977.

[30] L. Lamport. Time, clocks and ordering of events in a distributed system. Com-
munication of ACM, 21(7):58-65, July 1978.

[31] L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, 28(9):690-691,
September 1979.

[32] J.C. Laprie. Dependability: Basic Concepts and Terminology. Springer Verlag,
Vienna, 1992.

[33] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing persistent objects in
distributed systems. In Proceedings of ECOOP 1999, 1999.

[34] X.S. Liu, A.S. Helal, and W. Du. Multiview access protocols for large-scale
replication. A CM Transactions on Database Systems, 23(2): 158-198, June 1998.

[35] L. C. Lung, J. S. Fraga, J.-M. Farines, M. Ogg, and A. Ricciardi. Cosnam-
ingft - a fault-tolerant corba naming service. In Proceedings of the 18th IEEE
Symposium on Reliable Distributed Systems SRDS99. IEEE, October 1999.

[36] M. Maekawa. A y/n algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems, 3(2):145-159, May 1985.

[37] S. Maffeis. A fault-tolerant corba name server. In Proceedings of the 15th IEEE
Symposium on Reliable Distributed Systems SRDS96. IEEE, October 1996.

[38] D. Malkhi, M.K. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the
fleet system. In Proceedings of the 2nd DARPA Information Survivability Con-
ference and Exposition (DISCEX II), June 2001.

[39] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury, and
V. Kalogeraki. The eternal system: An architecture for enterprise applications.
In Proceedings of the International Enterprise Distributed Object Computing
Conference EDOC 1999, pages 214-222, September 1999.

[40] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228-234, April 1979.

[41] S. Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Deter-
minism. Kluwer Academic Publishers, Boston/London/Dordrecht, 1996.

[42] C. Pu and A. Leff. Replica control in distributed systems: An asynchronous
approach. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 377-386. ACM, April 1991.

[43] S.B.Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned
networks. ACM Computing Surveys, 17(3):342-370, September 1985.

[44] A. Schiper and M. Raynal. From group communication to transactions in
distributed systems. Communication of ACM, 39(4):84-87, April 1996.

BIBLIOGRAPHY 61

[45] R. Schlichting and F.B. Schneider. Fail-stop processors: An approach to de-
signing fault-tolerant computing systems. ACM Transactions on Computer
Systems, l(3):222-238, August 1982.

[46] F.B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Computing Surveys, 22(4):299-319, April 1990.

[47] R. Smeikal and K.M. Goeschka. Fault-tolerance in a distributed management
system: a case study. In Proceedings of the IEEE/ACM International Confer-
ence on Software Engineering, page 478. IEEE/ACM, May 2003.

[48] R. Smeikal and K.M. Goeschka. Fault-tolerant distribution and persistence of
objects using replication. In Poster Session at the 23rd IEEE International
Conference on Distributed Computing Systems 2003. IEEE, May 2003.

[49] M. Stonebraker and E. Neuhold. Concurrency control and consistency of mul-
tiple copies of data in distributed ingres. IEEE Transactions on Software En-
gineering, 3(3): 188-194, May 1979.

[50] A.S. Tanenbaum and M. van Steen. Distributed Systems - Principles and
Paradigms. Prentice Hall, Upper Saddle River, New Jersey 07458, 2002.

[51] R.H. Thomas. A majority consensus approach to concurrency control for mul-
tiple copy databases. ACM Transactions of Database Systems, 4(2):180-209,
June 1979.

[52] R. van Renesse, K.P. Birman, and S. Maffeis. Horus: a flexible group commu-
nication system. Communication of ACM, 39(4):76-83, April 1996.

[53] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Understand-
ing replication in databases and distributed systems. In Proceedings of the 20th
International Conference on Distributed Computing Systems (ICDCS 2000),
pages 264-274. IEEE, April 2000.

[54] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consis-
tency model for replicated services. ACM Transactions on Computer Systems,
20(3):239-282, August 2002.

Curriculum Vitae

Robert Smeikal
Vienna University of Technology
Gußhausstraße 27-29
A-1040 Wien. Austria
Email: smeikal@acm.org

August 19t/l, 1974

09/1980 - 06/1984

09/1984 - 06/1993

1998 - 1999

2000

10/2000

10/2000 - present

Born in Vienna, Austria.

Primary School.

High School, A-Level.

Tutor for software engineering at the Vienna University
of Technology.

Award for accomplishing an extraordinary student
project, received from the faculty of electrical engineer-
ing, Vienna University of Technology.

Diplom-Ingenieur (M.Se.) in electrical engineering, with
distinction, Vienna University of Technology.

Research Assistant at Vienna University of Technology,
Institute of Computer Technology, Austria.
Main research areas: Multi-device applications, web en-
gineering with focus on XML-based solutions and repli-
cation in distributed systems.
Lecturing: Graduate course on microcomputer and soft-
ware engineering for electrical engineers.
Industry projects: Technical consultant for "Frequentis
GmbH" in the field of network management for air traf-
fic control systems. Technical consultant for "Siemens
AG Österreich" in the field of multi-device applications.

62

