Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TECHNISCHE

I UNIVERSITAT
I WIEN

VIENNA

WIEN UNIVERSITY OF

TECHNOLOGY

Diplomarbeit

An Authoring Framework for
Augmented Reality Presentations

ausgefiihrt am
Institut fur Softwaretechnik

der Technischen Universitat Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Dieter Schmalstieg
durch
Florian Ledermann

Matrikelnummer 9426416
Ungargasse 28/1/14, 1030 Wien

Wien, am 12. Mai 2004

Abstract

In this thesis, the design of APRIL, an XML-based language to create con-
tent-rich Augmented Reality (AR) applications and interactive presentations,
is presented. The state of the art of hardware and software for AR systems
is analyzed, to deduce the key concepts and features of APRIL. One central
feature of APRIL is the separation of an application’s content from the de-
scription of the hardware configuration the application should run on. This
will allow users to run the same application with different hardware configu-
rations, either reflecting different target platforms, or to replace the original
target platform by a simulation environment in the development and testing
phase.

While the question of content creation for AR applications has only re-
cently moved into the focus of researchers, for other platforms like interac-
tive CD-ROMs or web applications there is already a number of different
approaches to create complex interactive presentations. These approaches
are analyzed and compared, and the concept of using UML-statecharts as
storyboards for interactive presentations is introduced. For APRIL, the sto-
ryboard, represented by a hierarchical concurrent state machine, will be the
central document around which a presentation’s content is arranged.

A prototype implementation of an APRIL player software, realized by
transforming APRIL files into configuration files for the Studierstube AR
system, is also presented. With this prototype implementation, several pre-
sentations for different AR setups have already been developed. APRIL
allowed the authors of these presentations to realize them with much less
effort than with a conventional approach, while at the same time providing
increased flexibility and debugging possibilities.

Kurzfassung

In dieser Arbeit wird die Spezifikation von APRIL, einer XML-basierten
Sprache zur Erstellung von multimedialen, interaktiven Augmented Reality
(AR) Anwendungen, vorgestellt. Der aktuelle Stand der Technik von Hard-
und Software von AR-Systemen wird analysiert, um daraus die zentralen
Konzepte von APRIL abzuleiten. Ein wesentliches Konzept ist die Tren-
nung des Inhalts einer Prasentation von der Beschreibung der Hardware-
Konfiguration, auf der die Prasentation ausgefithrt werden soll. Dies erlaubt
die Ausfithrung der selben Anwendung auf verschiedenen Hardware-Syste-
men, die entweder unterschiedliche Zielplattformen oder auch Simulation-
sumgebungen zum Entwickeln und Testen darstellen.

Wihrend die Frage der Erstellung komplexer Inhalte fiir AR-Anwen-
dungen erst neulich ins Blickfeld der Forschung riickte, existieren fiir andere
Systeme, wie etwa interaktive CD-ROMs und Web-Anwendungen, bereits
mehrere Ansatze zur Erstellung interaktiver Inhalte. Diese Konzepte wer-
den analysiert und verglichen, und die Verwendung von UML-Zustandsdia-
grammen als Storyboards fiir interaktive Prasentationen wird vorgestellt.
Fir APRIL ist das Storyboard, dargestellt als hierarchisches Zustandsdia-
gramm, das zentrale Dokument zur Anordnung der Inhalte einer Préasen-
tation.

Eine Prototyp-Implementierung einer Abspielsoftware fiir APRIL Pra-
sentationen wird ebenso vorgestellt. Mit diesem Prototyp wurden bereits
einige Anwendungen fiir verschiedene AR Systeme entwickelt. APRIL er-
moglichte die Realisierung dieser Anwendungen mit deutlich geringerem Auf-
wand als mit herkdbmmlichen Ansétzen, wiahrend zugleich die Moglichkeiten
der Autorinnen und die Unterstiitzung der Fehlersuche verbessert wurden.

i

Preface

After many interesting and joyful years as a student, this thesis marks the
end point of a phase in my life that was primarily defined by this role. 1
hope that my meanderings through different disciplines during that time —
architecture, computer science, sociolology and design — have contributed to
a work and an aggregated competence that are solidly founded in the domain
of computer science, but also open up perspectives to other disciplines, and
allow to support and integrate specialists in these areas with their knowledge
and skills. Throughout my studies, I tried to consequently strengthen the
foundations of my own knowledge, while staying in close contact to experts
and students of other disciplines. Only on the basis of such social networks
of expertise we will be able to go beyond the rhetoric of interdisciplinarity
and tackle many of the complex problems that our world is facing.

Being a student is not possible without support. People in generations
before mine have fought for opening up universities, and to allow students
from different social and economic backgrounds to study for free. Although
the achievements of these social visionaries are being partially demolished at
the moment, me and generations of future students are still benefiting from
their vision and their contribution to a free society, and should not forget to
be thankful for that.

I thank my father for supporting me throughout the first phase of my
studies, allowing me to find the subject suited for me without the additional
economic pressure of having to earn money for my living. Thanks to my
mother and grandmother for inspiring discussions, challenging my thoughts
yet always respecting my own opinion and style. A big “thank you” also
goes to Niki, my girlfriend, for encouraging me in weak moments during the
writing of this thesis and always providing a cozy place to hide from the rest
of the world in busy times.

I thank my advisor, Dieter Schmalstieg, for giving me the opportunity
to work as a project assistant in his group at Vienna University of Tech-
nology, despite being still an undergraduate student. Dieter taught me the
fundamentals of scientific work, and he is an endless source of ideas and sug-

il

v

gestions. Gerhard Reitmayr contributed a lot of helpful hints and suggestions
to my work, and I want to thank him for his brilliant analyses of software
design and other problems. Thanks also to all the other members of the
VRGroup team, namely Tamer Fahmy, Joseph Newman, Istvan Barakonyi,
Thomas Psik, Hannes Kaufmann, Thomas Pintaric and Daniel Wagner for
making our group an interesting and enjoyable workplace.

Contents

1 Introduction and problem statement

2 Augmented Reality Systems

2.1

2.2

2.3

24

2.5

Output devices
2.1.1 Head-mounted displays . . .
2.1.2 Projection-based systems . .
2.1.3 Virtual showcases
214 Sound
Integrating the real and the virtual

22.1 Occlusion

2.2.2 Lighting
2.2.3 Surface properties
Input devices
2.3.1 Tracking devices
2.3.2 Other input devices
2.3.3 OpenTracker
User interaction
24.1 Pointing
2.4.2 Gestures
243 Widgets
2.4.4 Widget containers
Software systems
2.5.1 Studierstube

3 Authoring and Storytelling

3.1
3.2
3.3

Modeling software
Authoring solutions
UML story modelling

CONTENTS vi

4 The APRIL language 42
4.1 Requirements of an AR authoring language 42
4.2 XML technologies 45

4.2.1 Defining the language: DTDs and Schemas 46
4.2.2 Mixing dialects: XML Namespaces 47
4.3 Hardware description 47
4.4 Story modelling 49
4.5 APRIL components 49
4.5.1 Component definition 52
4.5.2 Using components 54
4.6 Animation and behaviours00 o7
4.7 Interaction 29
4.8 The APRIL workflow 63

5 Implementation 66
5.1 Transformation and querying: XSLT and XPath 66
5.2 Studierstube configuration 67
5.3 Implementation details 70

5.3.1 XMI to APRIL translation 70
5.3.2 APRIL to Studierstube translation 71
5.3.3 The story engine L. 76

6 Results 79
6.1 Scenario: The Heidentor in the virtual showcase 79
6.2 Scenario: A magic booko 81
6.3 Scenario: Outdoor tourist guide 83

7 Conclusions and Future Work 86

A The annotated graphical APRIL schema 90

B The APRIL language specification 92
B.1 Global Simple Types 92
B.2 Top Level Elements 92
B.3 Hardware Description Types 93
B.4 Hardware Description Elements 93
B.5 Storyboard Elements 97
B.6 Behaviour Types L. 99
B.7 Behaviour Elements 99
B.8 Interaction Types oL 102

B.9 Interaction Elements 102

Chapter 1

Introduction and problem
statement

Over the last years, Augmented Reality (AR) has evolved from a pioneering
niche in Virtual Reality research to a mature, versatile research discipline in
its own right. With this development, interest rises in embedding AR technol-
ogy in real-life scenarios and applications, instead of the mostly experimental
fixtures used for developing the user interfaces or simple application proto-
types of the early days. This raises new, interesting questions that were —
up to now — not in the foreground of ongoing research: How do we model
the detailed, dynamic, real environment of the user of such an AR system?
How can we support multiple users concurrently using such a system? How
can we create content-rich hypermedia applications, that make use of ex-
isting multi-media content and map it into space and time? How do users
interact with such a rich media environment in contrast to classical, tool-like
applications? How can we create standards that support global sharing and
creation of content for these systems?

By asking these questions, we are moving into a new era of AR systems
— in parallel to improvements in hard- and software, AR applications will be
increasingly focused on content, originating from different domains than AR
research itself, created to be consumed by a large, untrained audience like
tourists, students or customers.

To draw an analogy, the internet was available as a networking platform
long before the invention of HTML [15, 56] gave it’s users a language —
a language for the easy creation of information artifacts adequate for the
media. Only when it’s users could use their computers to create, share and
consume ideas in a simple format, the internet would become the global,
ubiquitous, multi-medial marketplace it is today. For Augmented Reality
to be successful as a platform for content-rich applications, presentations

CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT 2

and ubiquitous systems, we need to give users a language to express their
ideas, without having to be programmers for realizing even very simple ideas.
AR systems are complex and heterogenous, and rarely we find two systems
with identical specifications. Therefore, for special needs we will always
need programmers and graphics experts, just as for creating a sophisticated
website one wants a graphics designer and probably a programmer on the
team. Simple things, however, and especially those the given media calls for
(like, in HTML, embedding images in a document on a computer screen),
should be supported on a core level.

To support users in creating content-rich applications for AR systems, we
wanted to create a language especially designed for the needs of this task. To
do so, we first have to have a look of the state of the art of AR systems that
are in use today. An overview of the hardware and software technologies used
in the field is given in chapter 2. Another important point to consider are the
current standards for creating content for VR and multimedia presentations,
and for structuring this content into interactive presentations that can be
explored by the user. Especially the entertainment industry has contributed
a lot to the improvement of these tools over the last years, and we will take
a look at the present status in chapter 3.

After evaluating the state of the art in the relevant fields, the following
chapters 4-6 of this thesis will be devoted to the design and implementation of
an AR authoring language and the presentation of example results, created
with this authoring framework. Chapter 7 will conclude the main part of
this thesis by drawing conclusions and trying to peek into the future of AR
authoring systems.

In the appendix, the reader can find the formal specification of the APRIL
language, in graphical and textual form. As usual, the thesis is concluded by
the bibliography of related work.

Chapter 2

Augmented Reality Systems

As mentioned already, Augmented Reality is rather a paradigm than a con-
crete hardware or software system. According to Ron Azuma’s definition [13],
AR systems have to meet three common criteria:

1. They have to combine “real” and “virtual” (computer generated) con-
tent.

2. They have to be real-time interactive.

3. They have to be registered in three-dimensional space. This means
that the real space around the user defines the context for interaction
and presentation.

Note that this definition does not limit AR systems to graphical applica-
tions — an AR application may also use only sound, as long as it is spatially
positioned and one can interact with it (e.g. by walking around).

As this definition is very broad, there is a wide range of systems to be
classified as AR systems. These systems can be primarily classified by the
used output media, because this defines the user’s impression and therefore to
a wide extent the possible applications. Generally, output and input devices
can be combined in a relatively independent manner.

2.1 Output devices

Most AR systems use graphics as their primary output media. As the defini-
tion cited above requires the registration of an applications content in three
dimensions, a realistic, three-dimensional impression of the generated content
is desirable in most applications. Recent developments in the PC industry
have made powerful 3D-graphics card available to a mass market, but since

CHAPTER 2. AUGMENTED REALITY SYSTEMS 4

we want to blend the virtual content with the real world, pure photorealistic
rendering is not sufficient — the computer generated content has to be mixed
with the optical impression of the real world to reach our goal.

Humans are capable of stereoscopic vision and perceive the world around
them through both eyes simultaneously. The brain merges the two slightly
different images of both eyes to a single image of the world, allowing us
to perceive the plasticity of 3-dimensional objects and judge distances and
spatial relationships with a single gaze. For computer generated content to
blend seamlessly with our view of the world, we have to provide two different
images for our two eyes, matching the viewpoint of each of the viewer’s eyes
onto the scene. When these two images are merged in our brain, they will
result in a truly 3-dimensional impression of the rendered object.

No matter how the image is displayed to the user, the system has to know
the position of the user’s eyes to render the perspectively correct images.
Therefore, all AR systems require some means of eye tracking to be able to
realistically blend the virtual with the real. Usually it is sufficient to track
only a point on the head of the user and add a rigid, constant offset for each
of the eyes. Although this method cannot provide exact measurements, for
most applications and tracking devices it is sufficient. For a discussion of
available tracking devices, see section 2.3.1.

To support the generation and display of stereoscopic content, and to
combine this content with the real world, various systems have been devel-
oped and successfully used. Generally, these can be split into head-worn
systems, providing a single user with special “glasses” to display the infor-
mation, and projection based systems, that are located in the environment
and can theoretically serve multiple users as a display device, with the draw-
back that these devices usually cannot be moved and have to remain at a
static location in space.

2.1.1 Head-mounted displays

Head-mounted displays are worn by the user on her head, and provide two
image generating devices, one for each eye (Fig. 2.1). Since the display surface
is located very close to the eye, additional optics have to be provided to move
the focal point further away from the user, allowing the eyes to focus on the
environment and the overlay at the same time.

For image generation and merging with the real world, two approaches
can be distinguished: Optical see-through systems, which allow the user to
see through the display onto the real world, and video-based systems, that
use video cameras to capture an image of the real world and provide the user
with an augmented video image of her environment.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 5

Optical see-through systems

Optical see-through systems use optical image combiners (such as half-sil-
vered mirrors) in front of the user’s eyes to blend together virtual and real
content. Due to their working principle, not all of the light of the environment
will reach the user’s eye, resulting in a slightly shaded view of the world,
comparable to wearing sunglasses. The computer generated images shown to
the user always appear semi-transparent and cannot fully replace or occlude
the real world (for a discussion of the occlusion problem, see section 2.2.1).

Figure 2.1: The Sony Glasstron, a widely used stereo capable optical see-
through system, as a part of a mobile AR system.

Video see-through systems

Video-based systems, or closed-view systems, do not allow a direct look onto
the real world. Instead, one or two video cameras at the front of the device are
used to capture images of the real world, which are overlayed with the virtual
content and then displayed to the user’s eyes through two monitors inside
the device. By overlaying the video images with the rendered content before
displaying both to the user, virtual objects can, in contrast to optical see-
through solutions, appear fully opaque and occlude the real objects behind
them.

The drawback of video-based systems is that the viewpoint of the video
camera(s) does not completely match the user’s viewpoint. Although the eyes
and brain can adapt to the new situation, for security reasons these systems
cannot be used in applications where the user has to walk around or perform
complex or dangerous tasks, since judgement of distances is distorted.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 6

2.1.2 Projection-based systems

Projection-based systems use stationary display surfaces in the environment
for image generation. These might be ordinary CRT or LCD monitors, or
back- or front-projection systems to cover larger surfaces. To provide the
user with stereoscopic images, in most cases a frame-interleaved approach is
used: The images for both eyes are displayed sequentially, at high update
rates (usually above 100 Hz). The user has to wear shutter glasses, which
are synchronized with the display and block incoming light for each eye in
the same alternating pattern as the display shows the image generated for
the other eye. Therefore, each eye sees only every second frame, effectively
cutting the frame rate of the display in half. Of course, the shutter glasses or
the eyes of the user have to be tracked, to generate the perspectively correct
images for each eye.

When using head-mounted display systems, the image plane is moving
with the user, located at a fixed offset from her eyepoint position. For ren-
dering the virtual content for these displays, usually a simple virtual cam-
era model is used, positioned according to the user’s current head location
(Fig. 2.2a). In projection-based systems, the image plane remains at a con-
stant position in space, while the eyepoint position of the user changes. To
render the images for the user, projection based systems employ an off-axis
camera model (see Fig. 2.2b), keeping the image plane at a constant loca-
tion in space (reflecting the position and size of the real image plane of the
projection device), while moving the eyepoint of the user.

Another use of projectors in AR applications is to project light onto real-
world objects, in contrast to flat display surfaces. This technique can be
used to dynamically illuminate real objects in the scene (see section 2.2.2),
or to simulate alternate surface texture properties (discussed in section 2.2.3).
In both cases, to produce correct results, the geometry of the object(s) to
project on has to be known to be able to correctly render the image that is
sent to the projector.

2.1.3 Virtual showcases

While the head-mounted AR display devices introduced in section 2.1.1
support the blending of real and virtual content sharing the same space,
projector-based systems are generally mutually exclusive: a given region of
space is either populated by real-world objects, or hosts a display surface for
projecting virtual content on. A class of systems called Virtual Showcases [18]
tries to overcome this limitation by introducing external, stationary image
combiners (usually half-silvered planar mirrors) to merge light from a real

CHAPTER 2. AUGMENTED REALITY SYSTEMS 7

Figure 2.2: Conventional (left) and off-axis (right) camera models. While in
the conventional model, a static viewing frustum follows the path of the user,
in the off-axis model the image plane and viewpoint can move independently.
In this example, the image plane remains static, while the viewpoint follows
the user.

object behind the mirror and a computer driven display, which is reflected
from the display (see Fig. 2.3).

Virtual Showcases can provide high-quality robust AR experiences within
a limited region of space. The volume that can be used is defined by the
geometry of the mirrors and the size of the display surface used for image
generation — for small systems, CRT monitors can be used, for larger systems
video projectors have to be used as image generating devices.

While the visual appearance of presentations using a virtual showcase
is usually very good, these systems have an essential drawback: since the
mirrors have to be located between the object and the viewer, it is usually
impossible to reach into the showcase and interact directly with the real
or virtual content. Instead, alternative interaction techniques have to be
developed to allow the user to indirectly interact with the presentation.

2.1.4 Sound

While most AR systems and applications focus on visual aspects, sound can
be an important component of such installations. Like geometry, sound sam-
ples can be placed in the space surrounding the user, and rendered according
to her view— (or better: listening—)point. Few graphics packages, like the

CHAPTER 2. AUGMENTED REALITY SYSTEMS 8

Figure 2.3: Working principle of a virtual showcase system (vertical section).
The real object can be seen by the user, while at the same time the scene can
be augmented with computer imagery reflected from the half-silvered mirror.

Virtual Reality Modeling Language (VRML) [2]), also support spatial audio
with their API, but dedicated packages exist (like OpenAL [7] or FMOD [6])
that can be integrated with a graphics library to perform realtime audio
rendering.

For accurate playback of spatialized audio located in the environment
of the user, surround speaker systems are necessary. For applications with
mobile users it is usually sufficient to use stereo headphones and let the
software change the sound volume as the user move nearer or further away
from the sound source.

2.2 Integrating the real and the virtual

Besides the mere blending of real and virtual images, special techniques can
be applied to improve the realism and therefore the usability and possibilities
of Augmented Reality systems. As already mentioned, the display systems
alone do not provide any means of handling occlusions and intersections
between real and virtual content; lighting of the real world does not auto-
matically match the lighting of the virtual objects, and virtual objects will
not cast shadows — a very important cue for the human perception of spatial
relationships — onto real surfaces. Some software solutions for these problems
have been developed, and will be described in the following sections.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 9

2.2.1 Occlusion

Occlusion or intersections between real and virtual objects will occur in any
AR application with reasonably complex content on both sides. Of course,
this may not be the case if an application is run in an empty real room,
or for very simple applications which only display annotations in front of
the user. For other applications, depending on the display technology used,
an overview of the visual result of different occlusion situations is given in
table 2.1 (after [34], extended).

occlusion order — | virtual object real object
occluding occluding
display system | real object virtual object

See-through HMD | semi-visible® | not supported®*
Video-based HMD inherent not supported**
Projection based impossible inherent

Virtual Showcase | semi-visible™ | not supported**)

Table 2.1: The two possible occlusion orders and the result on various display
devices. Results marked (*) can be improved by occlusion shadows, entries
marked (**) can be improved by using occlusion phantoms.

The two most prominent approaches to improve the visual impression of
occlusion situations are the use of occlusion phantoms or occlusion shadows.
For both methods, the geometry of the real world objects has to be known
to correctly render these effects.

Occlusion Phantoms

Rendering correct occlusion of virtual geometry hidden or intersected by real
objects means simply not rendering the virtual content in those places which
are hidden — since the display device will show the real world in places where
no virtual geometry is rendered, the visual impression for the user will be
correct.

If the geometry of the real object is known, we can simply render an
invisible representation of the real object — an occlusion phantom — into
the depth buffer of the graphics card, and render the virtual object after
that, using the normal depth-testing algorithms provided by the graphics
hardware. The result is the rendered virtual object, minus those parts which
are hidden by the real object represented by its occlusion phantom.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 10

Using this technique for static parts of the real world requires the correct
acquisition of it’s geometry — either by appropriate modeling, using exact
measurements for large objects like walls or furniture, or by laser-scanning
for smaller, more detailed objects. Occlusion phantoms have also been used
to render occlusions between moveable objects or users and application ge-
ometry [34], requiring a more sophisticated approach which uses a kinematic
model of a human body plus trackers mounted to various body parts of the
user to dynamically generate a correct occlusion phantom.

Occlusion Shadows

Simulating occlusion of real world objects by virtual content is a more so-
phisticated problem — we cannot simply “cut away” parts of the real world,
at least not with software only solutions . In video-based systems, virtual
content is always rendered “on top” of the video image of the real world,
therefore we get occlusion support for free — any virtual content will auto-
matically occlude all real content behind it, so we only have to take care
about the correct occlusion of the virtual content. With the optical solutions
— see-through HMDs and virtual showcases — the user will always see the
real world behind the artificial objects as well, since the half-silvered mirrors
used in these devices will always let through some of the light reflected from
the real objects.

One solution to deal with this problem is to control the lighting of the
real objects, so that the parts behind any virtual objects are simply not lit —
and therefore will not reflect any light. While it is not possible to completely
hide real objects with this technique, it is usually sufficient to give the user
a correct impression, given the fact that the darkened part of the object is
replaced by virtual content with much higher brightness and contrast, making
the dark part “behind” it effectively invisible for human perception.

An algorithm to calculate the light pattern to be projected onto the real
world is proposed by Bimber in [17]. The idea of the algorithm is to render
those parts of the real objects dark, that are located behind virtual objects
from the user’s point of view. To be able to project this light pattern, emitted
from a hypothetical “spotlight” mounted on the user’s head, from a projector
at a different location, the light pattern is applied to a virtual proxy of the
real object (the same geometry that is used as an occlusion phantom for the
occlusion of virtual content) using projective textures, and the scene is then
rendered with a virtual camera resembling the projectors optical properties.

! And any hardware solutions one might think of will probably work only one time on
a given object...

CHAPTER 2. AUGMENTED REALITY SYSTEMS 11

2.2.2 Lighting

Mutual occlusion is probably the most important visual cue for the shape
of objects and their spatial relations, but not the only one. Other cues, like
lighting and shadows, are used by human perception to gather information
about a scene. If these cues are missing or inconsistent, our perception of
the scene and therefore the usability of the application will not be optimal.

For the lighting of the virtual content of the application, the application
creator has to take care of resembling the lighting conditions of the real world
for rendering the virtual content. If lighting of the real world can change
dynamically (like, for example, with a light switch or if daylight conditions
change in an outdoor installation), ideally this dynamic behaviour is modelled
in the application to result in consistent overall lighting.

Projector based illumination

For real objects, the idea presented in the previous section as “Occlusion
Shadows” can be taken further and extended to using one or multiple pro-
jectors to illuminate the real world, but not only to darken the hidden parts
of the scene, but also to create dynamic lighting effects on real objects. Bim-
ber [19] introduces several ideas, like letting virtual objects cast shadows on
the real world, or even Augmented Reality radiosity, where the light reflected
from coloured virtual objects illuminates the real word in the corresponding
colour.

2.2.3 Surface properties

In projector-based AR systems, the projection surface is not limited to flat
screens. As we have seen in the projector based illumination approaches,
once the real objects geometry is known, its surface can be covered with
arbitrary light patterns, correctly aligned with the object, independent from
the projectors location.

Raskar et. al. [58] propose an algorithm called shader lamps for using
projectors to control the appearance of a (neutrally coloured) object — colour,
texture and shininess of the object can be controlled by software. With this
method, different alternative surface qualities can be simulated on a real
object.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 12

2.3 Input devices

Well-established standard computer input devices such as the keyboard or
the mouse are practically useless in AR applications — often, users are moving
around freely in space, or even roaming through buildings or outdoor areas.
This leads to the requirement that input devices must either be ubiquitous,
being able to follow the user’s input without a fixed spatial location, or
wearable, so that the user can carry the input devices with her.

Finding out where the user, her hands or some artifact she is handling
is located in space is called tracking and is probably the most important
type of input to be fed into an AR system. While tracking is often used
to determine the context of a user’s action (position of the user within the
world, viewpoint, position of her hands, etc.), additional input is needed
in most cases to trigger an action. Since in most cases a keyboard is not
available to issue commands, actions are dependent on simpler (buttons)
or computationally more complex (speech recognition, gesture recognition)
methods.

2.3.1 Tracking devices

Giving a detailed overview of the state of the art in tracking technology lies
beyond the scope of this work. Interested readers may consult Azuma’s pub-
lications [13, 12] for a broad overview of available technologies and exhausting
further references.

Typically, tracking devices used in AR applications deliver data about
the siz degrees of freedom (6DOF) of a tracked point in space: three position
coordinates and three rotation components. Some devices also support one
or more buttons, whose state information is delivered together with the po-
sitional data. Furthermore, there are several properties of tracking hardware
that are important to consider for AR applications:

e The range of operation. Some devices work only in a given radius from
a central unit, for others the targets must be within the field of view
of a camera.

e The update rate, measured in Hertz (updates per second). For the
primary interaction devices, this should ideally match the frame rate
of the display, but at least about 15 Hz. Additional information, such
as context or environment information, can be delivered with lower
update rates, depending on the application.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 13

e The accuracy of the measurement, measured in relative (percent) or
absolute average or maximum deviations from the correct result.

e The confidence whether a tracking target has correctly been identified.
This applies primarily to optical trackers.

e Whether the tracked target has to be tethered (connected with a cable),
or supplied with electrical power (in this case it is called an active
beacon).

e Finally, also the effort to set up and calibrate the device have to be
taken into account when considering different tracking technologies.
Some products come pre-calibrated, others have to be calibrated after
installation, others even regularly.

Optical Tracking

Optical tracking systems use one or more cameras and advanced computer
vision software to detect targets (often called markers) in the camera image
and calculate their position and orientation information from that camera
image(s). The properties shared by optical tracking solutions are untethered
targets, reasonable update rates, an angle of operation limited by the field of
view of the cameras and the problem of occlusion of the targets by real world
objects (including other targets). All systems have to be calibrated, and
their accuracy and confidence depends on the quality of calibration, lighting
conditions and the cameras and software used.

The most popular tracking technology available today is without doubt
ARToolkit [41, 42]. ARToolkit is an open-source software that uses a single
ordinary “webcam” to track planar, square-shaped markers usually produced
on an ordinary office laser printer. A user-definable pattern inside the marker
allows the software to distinguish between different targets, allowing users
to build complex applications with multiple tracked interaction devices and
artifacts (see Fig. 2.4 for an example setup).

ARToolkit has enabled a whole “generation” of researchers, students and
designers to experiment, often using their private hardware, with systems
that previously cost hundreds of thousands of Euros to set up in a lab envi-
ronment. Some researchers have contributed improvements and additions to
the software, and up to now?, two scientific workshops have been dedicated
to the presentation of research projects using ARToolkit as a base technology.

Of course, a freely available software running on consumer hardware can-
not deliver the results needed in professional lab setups. The accuracy of

2February 2004

CHAPTER 2. AUGMENTED REALITY SYSTEMS 14

Figure 2.4: In this setup, ARToolkit markers are used to track the hands and
an interaction device of the user.

ARToolkit is impressive, yet low compared to commercial solutions, and the
whole system is very sensible to lighting conditions and partial occlusion of
markers. Commercial systems are available which deliver improved results
for more demanding application requirements.

The DynaSight [9] system delivers robust, accurate position-only tracking
information for a single optical target. It uses two cameras enclosed in a box
that contains also the necessary processors and embedded software to perform
the tracking calculation (Fig. 2.5). The box is connected to the computer
with a serial cable, that delivers the tracking data ready to be used by the
application. The DynaSight system is designed to be used as a head-tracking
device for public installations, where no further targets have to be tracked.

A much more complex and powerful optical tracking system is the ART in-
frared tracking system [11]. ART uses static configurations of retro-reflective
balls as markers and tracks them with multiple cameras (Fig. 2.6). The cam-
eras are equipped with infrared emitters, and record the light reflected from
the retro-reflective balls in the camera image. If at least two cameras see a
marker (composed of several balls), it’s position can be calculated.

By using multiple cameras, the ART system is much more robust against
occlusion than the systems mentioned above. Also, the accuracy of the re-
sults is higher: carefully calibrated systems can be accurate to one or two
millimeters. On the other hand, the calibration effort and the cost of an ART
system are much higher than those of the other solutions.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 15

Figure 2.5: The DynaSight optical tracking system. (Image source: Origin
Instruments)

Figure 2.6: A target for the ART tracking system, composed of multiple
retro-reflective balls. Note how the flashlight of the camera is reflected evenly
from the surface of the balls.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 16

Other technologies

One of the older methods used for tracking is electromagnetic tracking. An
emitter generates an electro-magnetic field, which is detected by the electron-
ics in the tracking targets and results in accurate 6DOF tracking information.
The main drawbacks with magnetic tracking are that the targets are teth-
ered, and the whole system is very sensible to metal in the environment. This
has led to whole labs built out of wood, but of course also monitors or video
projectors distort the tracking results.

Ultrasonic tracking devices use measurements of the time that a sonic
signal takes to travel from an emitter to a receiver, to calculate the distance
between emitter and receiver. For three-dimensional tracking information,
three emitters in the environment and one microphone at the target are re-
quired. If 6DOF information is needed, multiple microphones on the target
must be used to calculate the rotational information as well. Although ultra-
sonic devices do not need a cable connection between emitters and receivers,
the targets have to be equipped with electronics and, in case of a wireless
operation, batteries and wireless data transmission facilities. This makes
the targets bulky and expensive, which, besides technical reasons, limits the
number of targets that can be used in an ultrasonic tracking setup.

Inertial trackers are another class of devices, measuring the acceleration
of a sensor in all six (orthogonal and angular) directions. This information
is added up in every time step, resulting in the measurement of the current
position and orientation of the device. While inertial trackers are of little use
on their own (because they accumulate tracking errors rather fast, making
the results unusable after a short period of time), they are an excellent com-
plement to an optical tracking setup, to bridge the gaps in the information
flow if no marker is visible for a small time span.

For outdoor applications, the global positioning system (GPS) can de-
liver rough positional data. For accurate positioning, GPS systems have
to be accompanied by electronic compasses, inertial and/or optical tracking
systems.

2.3.2 Other input devices

As mentioned already, tracking devices are often the most important input
devices of an AR setup, but also often not sufficient to cover all requirements
of user input. Some tracking devices offer buttons or other input devices
such as little joysticks mounted to the tracking targets, but others, especially
optical systems, don’t even support a single button as additional user input.

This additional input is also a problem when it comes to connecting it to

CHAPTER 2. AUGMENTED REALITY SYSTEMS 17

a computer: nobody wants to write a USB driver, just to connect a single
button to the machine. One approach that can support up to eight buttons
is to connect the buttons to the data pins of the parallel port. The status
of these pins is mapped to single bits in the computer’s internal registers,
which can be queried directly without requiring driver software to be written.
Another approach would be to use the keyboard controller of a modified
keyboard to connect the buttons to the keyboard connector.

Of course, in an untethered setup it is not desirable to use cables just
for transmitting button information to the base station. Therefore, wireless
transmission solutions have been developed, with a base station connected to
the parallel port, and wireless buttons that can be carried around by users.
Of course, these devices need power supply in the form of batteries, and,
eventually, facilities for charging them. As one can see, although sophisti-
cated solutions exist for tracking the position of objects, a simple button
click can require quite an effort to be supported in an AR application.

For some applications and user interfaces it is desirable to get 2-dimen-
sional input from the user, mainly used to point at objects or operate 2-
dimensional user interfaces based on widgets or menus (see section 2.4.3).
The mouse, used in conventional desktop interfaces as a pointing device, is
not so well-suited for this task in an AR application, since it relies on a static
planar surface to operate — something that will not be available for AR users
who move around in the environment. Instead, “trackpads” like the ones
used in laptop computers have been used successfully for 2-dimensional user
input. They can be mounted in fixed places in the environment or even worn
at the user’s wrist for mobile applications (see figure 2.8b for an example).

The third basic input data needed in applications is text. Again, the
device used in desktop applications — the keyboard — is not at all suitable
for the needs of AR settings. However, it is hard to find alternative input
solutions, especially ones that are suitable for entering large amounts of text.
Speech recognition systems are not (yet) capable to replace keyboard input,
at least not without intensive training for a distinctive speaker. Speech recog-
nition systems have been used successfully for issuing short commands out
of a limited set of instructions.

Other projects have used gesture-based text input methods, similar to
the graffiti system known from Palm PDA devices. While this is a useable
method to enter letters with a 2-dimensional input device, it is also not
suitable for longer texts.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 18

2.3.3 OpenTracker

With the wealth of different tracking systems and input devices available, it
is impossible for application developers to deal with the details necessary to
support each and every technology natively in their applications. Instead,
it is desirable to add another level of abstraction, and try to encapsulate
the details of the necessary software support for various tracking technolo-
gies in a tracking middleware, serving tracking (and other input) data to the
application independent from the underlying hard- and software systems.
Support for new devices can then be added to the middleware layer trans-
parently, and all applications using a specific middleware can immediately
benefit from improvements or additions made to the tracking subsystem.
Several middleware systems for tracking devices have been developed [72,
69, 68]. One of them is OpenTracker [61, 8], a freely available, research-based
open-source system that supports the most common hardware and fulfills the
basic requirements of a dynamically configurable tracking subsystem.
OpenTracker is configured by describing a tracker tree in an XML configu-
ration file — the tree contains tracking sources (such as markers for an optical
tracking system or the electronic sensors of a magnetic tracking system) as
it’s leaf nodes, and possibly multiple data sinks as top-level elements. Ele-
ments between leaf and sink nodes can transform or filter the data. The tree
is represented in-memory as a DOM representation of the XML configuration

file.
<OpenTracker> ARToolKitSouree
<ConscleSink comment="pi"> apatt
<Merge>

<MergeDefault>
<EventTransform translation="0 0 0.5">
<ARToolKitSource tag-file="a.patt"/>

StbKeyboardSource
0

</EventTransform>
</MergeDefault>
<MergeButton> [Default | Button | |
<StbKeyboardSource number="0" /> Merge
</MergeButton>

</Merge>
</ConsolesSink> ConsolcSink
</OpenTracker> »

Figure 2.7: An simple OpenTracker configuration file and the corresponding
in-memory data structure, the tracker tree.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 19

2.4 User interaction

Input data from trackers and other interaction devices is delivered as a stream
of events — most tracking devices deliver their data at a constant sampling
rate, others have to be queried for their status or — like buttons — deliver
events only when their state changes. In any case, these events have to be
interpreted by software in terms of actions or gestures of the user, like, for
example, pointing, selecting or dragging.

2.4.1 Pointing

Pointing at objects or locations in space is probably the most fundamental
high-level interaction technique used in augmented reality. With a proper
technique for pointing available, users can select objects and place or relocate
them in the available space. When these objects are tools, these can then be
used to modify other objects. Pointing is therefore the basic input technique
to build interactive, constructive AR applications.

Generally speaking, pointing techniques map points in the space of the
input device to points in the space of the application. As these two spaces do
not have to match in dimensionality, extent or required/supported accuracy,
application designers have to come up with different solutions depending
on the available input devices and the requirements and dimension of the
application. As the term pointing indicates locating something in space, we
will require the input device to be at least two-dimensional, and leave out
one-dimensional input devices like sliders or up/down buttons, which could
theoretically be used to select something from a list or a menu.

R3 — R3 Pointing

The obvious, trivial case of a pointing technique is a direct 1:1 mapping
of input coordinates to application coordinates. If a tracking device with
sufficient accuracy is available, and the user can move and point freely in the
application’s space, this is probably the most intuitive of all possibilities —
one can just use the pointing device as one would use it in the “real” world,
to touch, select or grab things. Tracking devices such as the Ascension Flock
of Birds magnetic tracker or the ART system, but also ARToolkit can all be
used in this manner for direct interaction with the application. For improved
handling, the tracking target is often mounted onto a pen-, stylus- or “magic
wand”-like device, possibly carrying additional buttons or other sensors to
allow more complex gestures.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 20

There are generally two circumstances that make it in some cases impos-
sible to use this simple pointing technique: either an appropriate tracking
device cannot be used, or the application’s space cannot be fully reached by
the user to directly point at the desired locations. Reasons for not using an
appropriate tracking technology might be practical, such as a limited budget
or a temporary setup at another location; It might be technically impossible
to use an appropriate tracking device, such as in outdoor applications or in
environments that make it impossible to use magnetical or optical trackers.
The application itself may make the use of a 1:1 mapping impossible, if the
application expects inputs in an area far away from the user or larger than
the user’s radius of action, or the area of interest may be partially or fully
hidden or impossible to reach due to obstacles, that may well be parts of the
application itself.

A practical improvement in these cases is an affine transformation of the
input coordinate space to the application’s coordinate space. Users of graph-
ical operating systems know the idea in two-dimensional space from using a
mouse: The input coordinates on the user’s desk are translated and scaled
to coordinates on the computer’s screen. And although conventional mice
are not even tracking devices in the sense that they do not really “measure”
2D coordinates on the user’s desk, due to the visual feedback on the monitor
the mouse pointer can be positioned with amazing accuracy.

If we want to achieve the same thing in three-dimensional space, one of the
key requirements has just been mentioned: The user needs visual feedback
about her current pointing position in application space, since there is no
direct mapping anymore. This holds also true for almost all of the other
pointing techniques that will be discussed.

Non-affine transformations have also be successfully used in some appli-
cations. The “Go-Go” pointing technique [55] uses non-linear scaling of the
coordinates to allow the user to reach objects that are located far away from
her. As the user reaches out with her hand, the depth coordinate of the
target location is increasingly scaled up, resulting in a pointing technique
that allows for high accuracy in positions close to the user, while at the same
time allowing her to reach out and point to locations far away, with lower
accuracy.

R3 — R? Pointing

Although current tracking technology can provide us with reasonably accu-
rate measurements, it is often very hard for users to choose exact locations
in relation to an existing (virtual) object. Therefore, for some applications
like CAD programs, it is desirable to constrain the user’s input [20] to re-

CHAPTER 2. AUGMENTED REALITY SYSTEMS 21

move some degrees of freedom and gain higher accuracy. 3D points received
from the input device can be projected onto a plane in application space,
so that the 3D input device becomes effectively (and possibly temporarily)
a 2D pointing device, that can be used with much higher accuracy. Visual
feedback of this projection is desirable, at least the virtual projection plane
and the resulting point in application space should be shown to the user
while doing her pointing task.

The target coordinate space does not necessarily have to be a plane or
a line — target coordinates could also be located on an arbitrary surface,
defined by a heightfield, a mesh or a mathematical formula. An important
aspect when using such mappings is to give enough feedback to the user so
that she can understand and intuitively use the mapping for her pointing
task.

R? — R3 Pointing

To perform spatial input with a two-dimensional input device like a mouse,
the input coordinate space has to be “blown up” to deliver three-dimensional
output in application space. The trivial case is to set the missing coordinate
to a constant value, to get a pointing device that operates in a plane parallel
to one of the principal planes. If we have an additional, linear input device
available to set this constant value, the user can add the missing information
and perform “slice-wise” pointing in three-dimensional space.

Of course the target plane does not have to be parallel to one of the
principal planes, but can be an arbitrary plane in application space. Again,
the distance from that plane could be adjusted by using an additional input
device, to allow the user to reach any point in application space by using
these two input devices together.

A more sophisticated transformation is the mapping of 2D input data to
points on an arbitrary surface. This technique is useful for selecting locations
on the surface of an object, or choosing objects that are located on a non-
planar surface (like a terrain model). Depending on the topology of the
surface, different mappings have to be used to avoid ambiguities. In the case
of a terrain model, implemented with a height map, points on the ground
plane can simply be transformed by interpolating between neighbour values
in the heightmap. For other surfaces, for each point in the ground plane there
might be several points on the target surface, so this simple projection cannot
be used. Other projections, like mapping the input coordinates to spherical
or cylindrical coordinates before doing the projection, may be adequate.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 22

Ray-pointing techniques

One class of pointing techniques proved to be very versatile and intuitive in
AR applications: to let the user cast a ray (often visualized as a “virtual
laser pointer”) into the scene and select the first intersection point with any
(or a defined subset) of the application’s geometry. Ray-pointing techniques
can be further distinguished by the method how the ray is generated from
tracking input.

The obvious possibility is to use a 6DOF tracker as a virtual laser pointer.
The ray can then be defined by just taking one of the local coordinate axis of
the tracking target, transformed by the position and orientation of the target
(only the positive or negative half of the axis would be taken to generate a ray
that originates from the tracked location). For calculating the intersection
point, most high-level rendering APIs provide the necessary functions to
calculate the intersection point of a ray with a given scene.

Another way to generate a ray is to use two points in space, and calculate
the ray originating in one of the two points, passing through the second one
on its way to infinity. While this approach is also useful if no or inaccu-
rate rotational information is delivered form the tracking device, it has one
especially useful application: if the head of the user is tracked, then the orig-
inating point can be the eyepoint of the user, using a single tracked device to
define the second point to be able to “aim” at the target. As for aiming with
a gun, the user can use only one of her two eyes for aiming, to get accurate
results.

The second point used for aiming does not have to be generated by a
three-dimensional tracking device — any of the techniques discussed above
can be used to generate an appropriate point in application space. A special
case would be to use the image plane of the user’s camera as the target plane,
and use a 2D input device like a mouse for input — creating a 2D crosshair
pointing device, well known from video games and desktop VR applications.

2.4.2 Gestures

Gestures are actions performed with a pointing device that are complete and
can be interpreted unambiguously by the user and the application. While
the pointing techniques discussed above generate points that can be used to
perform gestures, pointing itself is meaningless unless it is interpreted as a
gesture — does the user want to point out, select, delete, move or view an
object?

We will look at the most common gestures that are used in AR applica-
tions and discuss how they are realized. Out of these simple building blocks,

CHAPTER 2. AUGMENTED REALITY SYSTEMS 23

more complex gestures can be composed by performing several gestures se-
quentially or simultaneous (e.g. with both hands).

Touching

Touching an object in real life means pointing to a location on its surface.
The user will be provided sensory feedback from her fingertips, indicating not
only that she has touched something but also reporting some of the object’s
properties like temperature, softness or surface structure. In addition, a
small force will be applied on the object, even with the most delicate touch,
and the objects reaction to that force will give further clues — for inanimate
objects, the weight may be guessed from that feedback, and for living beings
the reaction to the touch might lead to social interaction.

Touching an object in an AR application is much more primitive — in most
cases, users will not be able to user their hands or fingers, but use a tracked
input device like a pen instead. Virtual objects will give no tactile feedback
at all when touched, and for real objects (or parts of them) the applica-
tion has to know their position and exact shape to detect the touch. Since
virtual objects have no physical boundaries, any intersection of the objects
geometry with the current pointing location will be counted as a touch, and
for real objects, inaccurate tracking data or uncalibrated tracking equipment
might lead to the application not correctly detecting the touch gesture on
the objects surface. Therefore, object boundaries are often extended beyond
their visible geometry to provide a bounding geometry (often the object is
simplified to a bounding box) for detecting intersections with touch gestures.

Since there will be no tactile feedback when touching virtual objects and
probably insufficient feedback (and uncertainty about the correct detection
of the touch) for real objects, applications have to provide other means of
feedback for the user to indicate the possibility of a touch gesture and to
acknowledge its beginning and end. “Touchable” areas and objects are often
highlighted visually by rendering their bounding box in wireframe or using
other additional geometry to give the user hints for which objects it makes
sense to touch them. Once the user points to a location inside the object or
region, it might be highlighted by rendering it in a brighter colour, increasing
its size or rendering a transparent overlay geometry surrounding the object.

A touching gesture lasts only as long as the location pointed to by the
user lies inside the geometry or region to be touched. It is therefore often
used to display temporary information like additional information about the
object (known from desktop applications as “tooltips”), or just highlight it
to indicate the possibility of other gestures like selecting or dragging.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 24

Selecting

In contrast to touching, selecting an object persists until it is explicitly un-
done — either by de-selecting the object or, in some applications, by selecting
another object. Selecting an object means to set the focus of the application
to a given object, to be able to perform additional operations on it. Usually,
selecting an object is done by touching it (moving the pointer inside or close
to it) and then performing an additional action like pressing a button on the
input device.

Applications may allow multiple objects to be selected simultaneously,
resulting in a selection set. If an application supports selection sets, user
interaction becomes more complicated, since the application has to provide
the user with the ability to add or remove objects from the set. In desktop
applications, this is often provided by using modifier keys (like holding the
“Control” key to select multiple objects). In AR applications, there is usually
no keyboard available, so for more complex selection policies multiple buttons
have to be fitted to the input device, which in turn makes the system more
complicated and harder to learn.

Triggering

Triggering gestures perform some action associated with the touched object.
On conventional desktop systems, triggering gestures are realized, depending
on the object type, as single clicks (for buttons) or double clicks (for icons
representing files) on the corresponding object. This mapping can also be
used for AR applications, although the distinction between different object
types (and especially something like “files”) is not so well-established in these
applications. Therefore, most often only a single click is used to perform
an action on an object, which conflicts with the selection gesture discussed
above.

To resolve this conflict, the application must use either only one of these
gestures, or clearly distinguish objects that can be selected from objects
that can trigger actions. One approach, also chosen in conventional desktop
applications, is to use only special, visually distinguishable objects (called
widgets) to trigger actions on other objects, that may be selected by the
user.

Dragging

When we move around objects in the real world, natural forces like gravity
or inertia give us important feedback during this process. In a virtual world,
moving objects has to be made more explicit to avoid ambiguous situations

CHAPTER 2. AUGMENTED REALITY SYSTEMS 25

and interpret the user’s actions correct. Moving, or dragging an object is
often composed of a drag-start-gesture (selecting the object the user wants to
move and indicating that it should be moved by a subsequent gesture), a drag-
gesture (actually moving that object, pointing to its new target position), and
a drag-end-gesture (releasing the object and placing it at the desired target
location). Like pointing, dragging can be constrained to a subspace of the
area surrounding the user (possibly a plane or a line), or to specific “valid”
target positions — if the object is dragged elsewhere, it might “snap” to the
nearest valid position or return to its origin.

Usually, dragging is realized by using a button on the input device. By
pressing (and holding) the button, the user indicates that the object she is
currently pointing at will be moved. The button is then held down during
the whole dragging process, with the dragged object following the pointing
position of the user. When the button is released, this indicates the end of
the dragging procedure, and the system can check whether the object has
reached a valid end position and adjust if necessary.

Other implementations use a “magnetic” pointing device that automati-
cally picks up objects that are close to it, and a gesture to release the object,
like holding the pointing device in a certain angle or performing a rapid
“shaking” gesture. For this technique, no additional button is needed to
enable the user to move objects around, at the cost of decreased accuracy.

Drag & Drop

If, depending on the release position of a dragged object, an action is per-
formed when the dragged object is released, this process is called drag &
drop. The dragged object can be released near a drop target, which in turn
is notified of the drop action and can perform the necessary actions.

This gesture is also well-known from desktop operating systems, especially
from the Macintosh platform, where it is widely used. The most prominent
drag & drop operation is probably the deletion of files by dragging the icon
representing the file to an icon representing a trash can. Similar techniques
have been implemented in AR applications to manipulate content.

2.4.3 Widgets

So far we have discussed only actions that the user can perform on objects of
the scene surrounding her. Widgets are special, standardized objects that al-
low more specific interaction with the application by interacting with them.
Usually, the gestures performed on widgets are simple (clicking and drag-
ging), but the widget establishes a context for these gestures, determining

CHAPTER 2. AUGMENTED REALITY SYSTEMS 26

the commands sent to the underlying application.

Buttons

A Button is a button is a button. As in reality, buttons can be pressed to
trigger certain actions in the application. In addition, buttons may toggle
their state with every press (checkbox behaviour) or the press on one button
may automatically release other buttons of a group (radiobutton behaviour).

Menus

Menus are used in desktop operating systems to issue commands to the
underlying program. Due to their hierarchical structure, a lot of different
commands can be offered to the user without overloading the display area.

In VR and AR systems, menus have been less successful — being inher-
ently 2-dimensional, users have difficulties navigating through layers of menu
items that change dynamically. With heads-up displays (see section 2.4.4),
conventional menus can be used. In true AR applications, the menus would
float freely in the space around the user, and are only usable with constraints
on the pointing device.

Some projects have used the fingers of the user [21] or multiple physical
buttons on an input device to establish a hierarchy of menu items. While
this is a feasible approach, it limits the number of menu items and requires
additional tracking hardware to locate the hands or input device of the user.

Numeric Input

Buttons and menus allow the user to generate events which are sent to the
underlying application to trigger a specific action or change its state. For
the input of data, other widgets have to be provided.

An important class of input widgets in conventional desktop applications
are text input fields — an area for entering text with the keyboard. Since
most AR systems do not offer a keyboard to the user, the widgets supporting
numerical and textual input have to be different.

For numerical input within a given value range, sliders are often used.
Sliders display a handle, that can be manipulated through a constrained
dragging gesture to adjust the value that the widget represents. Some sliders
also feature two buttons, that allow the stepwise increment or decrement of
the value.

Dials are another example of numerical input widgets. With a dial, the
value is adjusted by turning the widget, like an adjustment knob on a (real)
HiFi system. The turning gesture is often more difficult to perform, therefore

CHAPTER 2. AUGMENTED REALITY SYSTEMS 27

some systems translate a dragging gesture performed on the widget into a
turning movement of the dial.

The advantage of dials is that they use less space, while not being quite
as legible and easy to operate as sliders. They are therefore mostly used for
adjustments that are not changed during normal operation of the system.

Text Input

As discussed already, text input is one of the most difficult input types to
support in an AR application. Some widgets to support textual input have
been proposed, but generally, programmers try to avoid the necessity of text
input in their applications.

One naive approach is to render a virtual keyboard, composed of multiple
individual button widgets. While this interface is well-known to most users,
it is cumbersome to handle even with an accurately tracked input device,
and impossible to operate if the tracking error of the input device is larger
that the size of a single key.

Another widget that has been proposed is an area that can be used for
“graffiti” gestures. The graffiti system is known from palm PDAs, and allows
the user to enter letters by performing drawing gestures on a 2D surface.
Again, this is only possible with a sufficiently accurate tracked input device.

Without powerful speech recognition systems, text input will remain a
problem for all AR and ubiquitous computing applications in the near future.

2.4.4 Widget containers

The main problem that occurs when using widgets in an AR scenario, is
that the user often is offered too few spatial cues to be able to operate these
widgets accurately and precisely. Buttons and menus could theoretically
float freely in the space surrounding the user, but she will have problems
to correctly identify, locate and operate these widgets if no further spatial
cues are given by the application designer. To solve this problem (or at least
improve the situation), various approaches have been proposed, all leading
to an improved spatial context for 3D-widgets.

Heads-up displays

Heads-up displays, or HUDs, use the image plane of the view of the user as
a reference plane to display GUI elements. A HUD establishes a 2D user
interface, floating in front of the user. Therefore, widgets used in a HUD

CHAPTER 2. AUGMENTED REALITY SYSTEMS 28

are not 3-dimensional, but very similar to conventional 2D widgets used in
desktop operating systems.

HUDs have been used successfully in VR scenarios like computer games
and design applications. For AR, the different focal plane of the HUD is a
source of confusion for many users. While HUDs look convincing for desktop
simulations and video-see-through AR applications, more research has to
be conducted to make them fully usable for “true” optical see-through AR
applications.

Personal Interaction Panel

The Personal Interaction Panel (PIP) [71], developed at Vienna University
of Technology, provides a tactile reference surface to arrange widgets in AR
applications. Basically, the PIP consists of a small tracked panel, that is held
by the user with her secondary hand. The AR system can then overlay the
PIP with the widgets that are offered to the user by an application (Fig. 2.8).

Figure 2.8: The personal interaction panel. The version on the right is using
a wrist-mounted trackpad for 2-dimensional pointing input.

Since the space on the PIP is limited, multiple layers of widgets can
be arranged on PIP sheets. A PIP sheet should carry widgets that are
thematically related, and by switching sheets the user can control different
widget groups for different tasks. One example would be a preferences sheet
to control various settings of the application, and an application sheet to be
used while actually working with the application.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 29

2.5 Software systems

Most AR applications known so far were prototype implementations, rapidly
implemented on top of a basic graphics framework to fulfill a relatively
narrow-defined purpose or to prove a certain point in research projects. The
few more complex software systems developed for augmented reality [66, 73]
have focused on providing basic services for such applications, like user man-
agement, device configuration and distribution, amongst others. Like con-
ventional desktop operating systems, AR systems offer to applications a set
of services to use, and often a set of user interface elements and concepts
for a consistent look and feel across applications. In conventional operating
systems, although there are still notable differences between various brands,
certain principles like the desktop metaphor or WIMP3-based graphical user
interfaces are used successfully across brands and implementations. For AR-
systems, no such standards have evolved yet, and every system uses its own
metaphors and concepts for user interaction and application management.

One naive, but nevertheless partially successful approach is to try to
simply take the WIMP set of interaction tools and the desktop metaphor into
the third dimension. Some systems provide 3-dimensional “windows” [66]
(rendering the original metaphor absurd, since 3-dimensional “windows” are
actually cubic regions of space, instead of two-dimensional viewing regions),
others make use of three-dimensional menu systems. Although one might
think that the more realistic modelling of user interface elements and the
more “natural” spatial representation would be more intuitive, users find
it harder to control applications in three-dimensional space — with desktop
operating systems, the screen and the strictly two-dimensional input device
give a reference frame for the user’s actions, which is completely missing in
unconstrained 3D environments. A lot of user interface research has therefore
focused on introducing constraints [51, 20] to give the user orientation and
reference in using the system.

AR applications have been developed for a lot of different use cases, but
one can identify a few scenarios that have traditionally been used as testbeds
for AR systems: The first systems that qualify as AR systems have been used
in maintenance and engineering scenarios, to support engineers in complex
assembly tasks with additional, location and context-dependant information.
Today, engineering scenarios have remained one of the main usecases for AR
applications, with the focus shifted from pure information providing to more
interactive design and prototyping systems [46, 29, 32].

3Windows, Icons, Menus, Pointer. The basic set of user interaction elements used in
most 2D graphical user interfaces.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 30

The early AR-based information systems also evolved into a second strand
of applications, focussing on annotation of the user’s environment. These
systems often support multiple users, and some groups have built systems
that support outdoor usage [60, 54]. Annotations of objects and regions
in the real world can be text overlays or sketches, but current systems often
support the full range of multimedia content types, including audio and video
material.

Another topic for AR research is the support for office work — be it in the
area of communication, where novel videoconferencing solutions have been
proposed by AR researchers that allow users to see their partners as part of
the environment [43, 30], or by integrating projector-based AR applications
into an office workplace [57].

Medical applications have been another fruitful field for AR researchers.
Especially in the areas of surgery there is big demand for the integration
of context- and location dependent information systems to improve surgical
processes. X-ray and ultrasonic scans of the patient can be overlaid in the
view of the surgeon [70, 59], and external experts can be consulted during
the operation without leaving the context of the current task.

Finally, the potential of AR technology to support education and teach-
ing has long been recognized and actively researched [44, 63, 50]. Because
of its ability to add abstract information to real-world objects, AR technol-
ogy seems to be ideally suited as an accompanying technology in educational
applications across domains. However, in contrast to most applications men-
tioned above, educational applications have different requirements on the AR
system: While for most of the task-oriented scenarios, the AR application is
like a tool that can be used in a given task in a relatively context-free manner,
educational scenarios require a more persistent support and guidance by the
application — one pupil is unlikely to repeat the same learning lesson more
than a few times, but should be guided and supported throughout a possibly
long-term learning process that may consist of many different tasks, lessons
and even topics.

Few AR systems have yet recognized or tackled these issues. Tradition-
ally, researchers in the area of pervasive computing are used to deal with
more persistent, stateful applications that are “always on”. However, to cre-
ate successful learning and presentation applications, it will be important to
incorporate ideas coming from these areas, to allow more complex presenta-
tions which possibly run over longer periods of time and guide users through
a sequence of different scenes.

CHAPTER 2. AUGMENTED REALITY SYSTEMS 31

2.5.1 Studierstube

Studierstube [66, 67] is a software system developed to support AR systems
and applications. Based on the Open Inventor realtime rendering framework
and the OpenTracker input device abstraction middleware (see section 2.3.3),
Studierstube allows developers to create complex, distributed AR experiences
for multiple simultaneous users.

Studierstube can make use of various output devices through a generic,
configurable off-axis camera model that can be extended with video back-
ground rendering. Therefore, all rendering devices discussed in section 2.1
can be used, and even mixed, in a single Studierstube setup. Configuration
of the whole setup and the applications is accomplished through files con-
forming to the ASCII-based Open Inventor file format, and through XML-
based OpenTracker configuration files. The whole Studierstube system can
therefore be configured and adapted to a wide range of application scenarios
without recompiling.

For user interaction, Studierstube provides a set of 3D widgets (buttons,
sliders, lists, ...), that can be operated with a tracked pointing device. To
give the user a reference for operating these widgets, and to add a physical
constraint to the interaction, widgets are usually arranged on the Personal
Interaction Panel (PIP) (see section 2.4.4).

Applications are implemented as custom nodes in the global Studier-
stube scene graph. Applications are composed of an ApplicationKit, which
act as entry points for starting an application and contain an image to
represent the application, a text describing the application and the actual
class implementing the applications behaviour — the ContextKit. While the
ApplicationKit is usually used as provided and can be compared to an
applications icon in conventional desktop operating systems (an entry-point
for identifying and launching the program), application programmers will
usually subclass the ContextKit class to implement their own applications
behaviour.

A ContextKit will define a PipSheet for the application, containing the
widgets and interaction tools to be displayed on the PIP while the application
is active. The ContextKit can also contain one or multiple “windows”, which
are cubic regions of space containing the applications geometry. If no win-
dows are used, the applications content may fill the whole space surrounding
the user.

Distribution of applications to multiple hosts and users is accomplished
through the underlying Distributed Open Inventor (DIV) [39] implementa-
tion. DIV allows the distribution of parts of the scenegraph of a running
Studierstube host to other hosts, transparently for the application devel-

CHAPTER 2. AUGMENTED REALITY SYSTEMS 32

oper. While some of the implications of using a shared scene graph cannot
be completely hidden away from the programmer or even the user (like poli-
cies of dealing with concurrent or contradictory user requests), DIV allows
the creation of complex, distributed applications without dealing with all of
the complexities of realizing such a system.

While Studierstube offers a lot of support to the application program-
mer, it does not provide any scripting mechanism. The application’s logic
has to be encapsulated in a compiled subclass of ContextKit, and the pro-
grammer has to take care to keep track of all of an applications state and
it’s reaction to user input. Creating reasonably complex applications for the
Studierstube system therefore requires advanced knowledge of the C++ pro-

gramming language and the underlying support APIs like Open Inventor,
OpenGL and ACE.

Chapter 3

Authoring and Storytelling

Authoring generally refers to a development process that is not focused
on programming, but rather on arranging multimedia content to create a
content-rich application. In recent years, we have seen authoring solutions for
web applications, that allow the creation of complex websites or interactive
movies even by non-programmers. Educational applications and interactive
CD-ROMs are also domains where authoring solutions have successfully been
used to create content-rich applications.

To create convincing and exciting presentations in Augmented Reality,
we want to guide the user through a plot or a story that she can influence by
her actions. Throughout history, there has been a dispute about what is the
driving force behind a story — the plot, created by an author, or the characters
who bring the story to life. Beckhaus et. al. [14] quote some historic positions
on this dispute:

Aristotle in his Poetics claims that ‘the plot is the first consid-
eration, and as it were, the soul of the tragedy. Character holds

the second place, ...’ [10]. The opposite is claimed by Egri: ‘ The
interference is unmistakeable: character creates plot and not vice
versa’ [28].

While this dispute might continue in literature theory, for our purposes of
creating an authoring system for interactive, yet deterministic presentations,
the focus seems clear: We want to enable the author to create a reliable plot
for the application, and not have her depend on the moods of her characters.

The term storytelling has been used in a lot of different contexts, and has
recently become quite fashionable amongst computer scientists and VR re-
searchers. For our purposes, an application that makes use of AR storytelling
has to fulfill the following criteria:

33

CHAPTER 3. AUTHORING AND STORYTELLING 34

1. It has to consist of several scenes. A scene is an atomic unit of the
story with finite duration, in which one or more actors (media objects)
expose some sort of behaviour.

2. The scenes should be modelled explicitly by the author (in contrast to
character-driven approaches where the actors drive the story). As men-
tioned above, we want the author to be in control of the presentation’s
overall plot.

3. Depending on the user’s actions, the development and outcome of the
story will vary.

As mentioned in section 2.5, most AR applications and systems that exist
today are designed as more or less stateless tools that do not provide the
features we need to create compelling stories. This is partially because the
AR software systems available do not offer the necessary support for stateful,
interaction-driven presentations.

3.1 Modeling software

Within the last years, computer games and digitally enhanced movies have set
new standards for computer graphics, and the visitors expect similar qual-
ity even in more constrained, real-time rendering environments. Together
with the results, the quality of the tools available for 3D modelling has in-
creased a lot, and as there are people specializing in 3D modelling as their
profession, there is a big market for modelling software and add-ons. For any
new authoring framework to be successful, providing a smooth workflow by
integrating these tools is crucial.

Support for real-time rendering file formats like Open Inventor is still lim-
ited in commercial modelling tools. The only modelling tool that natively
supports the Open Inventor file format is CosmoWorlds - a now discontinued
product from SGI. Since SGI stopped the development of VRML and Cos-
moWorlds (which was mainly used for authoring VRML files) already several
years ago, it does not include state of the art modelling or animation features
that we need for AR presentations. Other software packages - like the widely
used Maya or 3DStudio Max packages - offer state of the art modelling, but
are not optimized for a real-time graphics framework like Open Inventor.

CHAPTER 3. AUTHORING AND STORYTELLING 35

3.2 Authoring solutions

For authors and professional scriptwriters, there is software available to assist
them in storywriting by structuring the authoring process and providing
inspirational tools for evolving the story [5]. These tools focus on the literary
side of storytelling and support the author in generating text. However, what
we need for presentation authoring is not a support for writing text, but a
tool to structure and modularize the story, possibly in a non-linear way
that allows multiple story paths to be explored by the user in an interactive
setting.

Traditionally, complex presentation applications have been developed by
using two tools: timelines and scripting. While a timeline keeps track of the
linear flow of events and the evolving of the story over time, scripting can
be used to add user interaction, random events and conditional branches in
the story (jumping from one timeline to an alternative one). Authoring tools
for multimedia presentations have used these features to allow their users to
create complex interactive presentations.

The Alice system [25] was designed with novel computer users and stu-
dents in mind. It allows people with no prior knowledge of computer pro-
gramming to create animated 3D scenes from existing building blocks. The
idea behind using a 3D environment to teach programming is compelling: A
virtual world is inherently stateful, and is therefore ideally suited to visualize
the state of a program controlling this world. The creators of Alice use the
“key feature” we are looking for as a debugging tool for simple programs.
Alice offers very limited interaction possibilities, and no way to structure
the story into multiple parts or scenes. Stories created in Alice are simple
programs or scripts, that execute linearly and perform the actions chosen by
the user.

Examples for software that supports non-linear stories are Authorware [3]
and Director [4], both by Macromedia Software. While Authorware sup-
ports the idea of an abstract graphical representation of the flow of the story
(see Fig. 3.1) to create educational applications, Director exposes a theater
metaphor (as already indicated by its name), which enables the user to put
members of the cast onto a stage, where they act according to a score created
by the user.

While the theater metaphor of director is compelling, story modelling is
based on linear scenes with a single timeline, and more complex behaviour
can only be realized by scripting the application in its own scripting language
called “Lingo”. Authorware offers an interesting model of the presentation
as a flowchart diagram, however the system is limited to only a single active
scene at a time and cannot be extended by scripting at all. Being a tool for

CHAPTER 3. AUTHORING AND STORYTELLING 36

{2 parts of a camera - =
T Lewel 2
@] Lezzon Title
] Cameratop
H READ ME
Ellck the shutter + Shulter relsase

.................... -Lens

- dperture

-Body

Hint
What L +Shutter zpeed
* ? * —p'l'-.llcuw 2 tries

Erase camera and hint button

F:;art_suiia_taomera Shutter
Aperture

Lens

Figure 3.1: The flow of a presentation in Macromedia Authorware.

educational screen presentations, interaction is also limited to conventional
2D interaction techniques and text input.

VR and AR researchers also explored the possibilities to create more com-
plex presentations in recent years. The Virtual Reality Modeling Language
(VRML) [2] offers the possibility to create new, custom nodes (so called
PROTOs) and to use JavaScript [27] to control their behaviour. For more
complex tasks, developers can implement the desired functionality in Java
and link their PROTOs to the compiled classes. However, this remains a
low-level approach where all content has to be created from scratch by a
programmer. While the PROTO mechanism allows the creation of re-usable
components, no mechanism is provided to keep track of the overall state of a
presentation or to control interactions and animations from a central point.

Generally speaking, scripting solutions are a powerful tool to support the
rapid prototyping and development of complex applications. However, there
are two main drawbacks that make scripting a less desirable solution: First of
all, only people with sufficient programming skills can use scripting to realize
complex processes. It might be feasible to teach non-programmers how to
accomplish very simple tasks with scripting, but we are looking into complex,

CHAPTER 3. AUTHORING AND STORYTELLING 37

non-linear and interactive applications that will be too complex for novice
programmers to realize. The second drawback also applies to professional
programmers: Scripted applications usually have very poor explicit structural
information. The state of the application is hidden inside variables and data
structures, and there is no explicit model of the application’s states and the
user’s possibilities. Therefore, scripted applications are hard to debug, and
round-trip communication between programmers and designers can be very
tedious.

The Virtual Reality Slideshow System (VRSS) [35] adresses this issue
by providing a set of Python macros for the creation of virtual reality slide
shows. VRSS Slides can contain text, images and objects created in the
VRML file format. The macro language allows to define the sequence of
slides for the presentation, and the transition effects that should be used for
each slide. VRSS only supports linear presentations, but it could be easily
extended to support loops and branches in the execution. All the interactive
content within a slide (or scene) has to be provided in the VRML file format,
sharing the drawbacks of this relatively low-level format.

The concept of presentation scenarios is introduced by the authors of
VRSS, allowing the system to support several setups including frontal pre-
sentations, multi-user collaborative scenarios or mixed (collaborative users
with spectators) settings. This set of scenarios is fixed, and is not general-
ized into a generic setup description part.

Other groups have used conventional slideshow creation software like Mi-
crosoft Powerpoint to create virtual reality content. In the PowerSpace sys-
tem [38], Powerpoint presentations are exported to a simple XML-format,
defining the slides of the VR presentation. Similar to VRSS, PowerSpace
allows only linear presentations, with the possibility to further divide each
slide into a sequence of animations, which make additional elements of the
slide visible. The 2D-animations, provided by Powerpoint, are not preserved
in the VR presentation, but replaced by simply hiding or showing the corre-
sponding element.

The XML file created with Powerpoint is then loaded into the PowerSpace
viewer software. Elements of the XML file (such as slides, text or shape ob-
jects) are instantiated as DOM nodes and transformed into an Open Inventor
scene graph for viewing. The PowerSpace system creates VR presentations,
that can also be played back on AR systems, but doesn’t take into account
the special requirements and features of such systems.

The Designers Augmented Reality Toolkit (DART) [49] is one of the
few systems specifically targeted towards Augmented Reality presentations.
DART uses Macromedia Director as a base system, and provides the neces-
sary extension classes and utilities to make it possible to create AR presen-

CHAPTER 3. AUTHORING AND STORYTELLING 38

tations in Director. The advantage is that designers can use a tool that is
widely used and professionally supported, and is traditionally used by web-
and multimedia designers. Unfortunately, at this time an evaluation of the
DART software is not possible, but from the published material one can get
a good impression of the key properties of this authoring solution. With
the use of Director as a base system, developers get timeline and anima-
tion support, and a powerful scripting solution to realize complex processes.
However, it remains unclear whether DART can support the full range of AR
input and output devices. As stated above, scripting is a feasible solution
for programmers and specialist designers, but prohibits novice users from
creating complex presentations. In addition, for complex projects, it is hard
to keep the overview and organize communication with domain experts and
other designers.

One key feature of DART is that designers can use informal content like
sketches or textual annotations in the early phase of their project. This
supports the incremental prototyping of a presentation, developing and im-
proving ideas for the final content as the project develops, without having to
produce labour-intensive content before testing the application. The informal
content can also be used as a communication artifact for teams of designers,
or to communicate with external people like content creators about the ideas
of the presentation.

Within the Geist project [47], a detailed theory of Computer Supported
Collaborative Interactive Stroytelling (CSCIS) has been developed out of
literature theory. Based on a Prolog engine, several layers of abstraction
control the evolving story and the user’s interaction possibilities. Rendering
this story to an AR system is only one of many output possibilities of the
story engine. While the theoretical background and the complexity of the
Geist engine is compelling, the system lacks support for the creation of simple
stories by non-experts, and for support of AR specific features for authoring
and playback of the created presentations.

Another tool that supports the creation of 3D hypermedia narratives is
the MARS authoring tool developed at Columbia University [37]. MARS
follows more closely the hypermedia paradigm of interlinked media artifacts,
which can be distributed in a space to be explored by the user. MARS
focusses on supporting non-programmers in creating narrative multimedia
experiences.

MARS clearly distinguishes between an authoring component and a pre-
sentation component. The authoring component is used to create the pre-
sentation on a desktop system, simulating the space the user will later ex-
plore using the portable presentation component. Following the hypermedia
paradigm, presentations are composed out of snippets, which encapsulate

CHAPTER 3. AUTHORING AND STORYTELLING 39

media content and can be arranged to clips and icons, which is a visual rep-
resentation of the media content that can be placed in the scene. Clips are
interconnected by hyperlinks, allowing the author to guide the user through
a non-linear story and reference related information.

MARS uses an extended version of the Contextual Media Integration Lan-
guage (CMIL) [26], an XML-based markup language, to store presentations
created with its authoring component. Similar to HTML, individual clips
are represented by individual files, which are interconnected by hyperlinks.
The creators of MARS added proprietary extensions, like transition effects
and the specification of a snippets location in world space, to CMIL.

While MARS offers excellent high-level support for authoring hyperme-
dia documentaries by non-programmers, it has a few drawbacks. First of all,
only one specific AR setup is supported to be used as a presentation compo-
nent for the finished presentation. The presentation is structured implicitly
by interlinked files, which will make it hard to keep the overview with com-
plex projects. On the content side, MARS is focused towards multi-medial
content, and supports the playback of images, videos and sounds, but does
not provide mechanisms for controlling animations or virtual actors that are
added to the scene.

Mavigation
ontrols

SAVE |]
7 30/

3D MODEL
1« [

[T

Figure 3.2: The MARS authoring toolkit. (Image (©) 2003 Sinem Guven and
Steven Feiner, Columbia University)

Zauner et. al. [74] present an authoring wizard for AR assembly instruc-
tions. Although the usage scenario is limited to creating interactive, mixed

CHAPTER 3. AUTHORING AND STORYTELLING 40

reality assembly instruction, the software uses some interesting concepts that
may be helpful for general authoring scenarios. A state engine is used to rep-
resent the assembly process, allowing for non-linear navigation through the
presentation, according to the user’s needs. Presentations are created by
putting the parts together in the right way, identifying parts and their cor-
rect relationships with a 6DOF pointing device. The presentation is therefore
created in the same space as it will be played back.

The AIVRed project [14] aimed to create tools for storytelling in virtual
environments. Beckhaus et. al. discovered the need for a structured approach
to storytelling, and propose the use of Hierarchical Finite State Machines
(HFSM) as a conceptual model for interactive presentations. This concep-
tual model can be used to discuss the intended story with domain experts,
designers and programmers and to make adjustments before the content of
the actual presentation has been created.

State machines can be modelled in a standardized way by using the Uni-
fied Modeling Language (UML) [52]. Other projects [64, 65] have used UML
to model multimedia presentations, but none of these projects has applied
these ideas to VR or AR presentations.

After reviewing these systems, we get an idea of the authoring process
that we are looking for. First of all, we want a solution that does not rely on
scripting to create complex presentations — we are aiming for novice users,
designers and other domain experts as users of our system, and we want
to enable them to create at least prototypes of the planned presentations
without having to consult a programmer. The Alice system is geared towards
novice users, and offers them building blocks that can be arranged to create
simple, yet meaningful scenes with a visual interface. Director provides a
powerful terminology, coming from a movie directors background. Yet both
systems rely heavily on scripting, and do not support any of the input and
output devices needed for AR presentations. Authorware allows the visual
modelling of a non-linear presentation’s plot — a very helpful feature. This
idea is taken further by using a standardized conceptual model like an UML
statechart and use it for story modelling.

Recent projects like DART or MARS have offered high-level support for
authoring AR presentations. However, DART relies on scripting and there-
fore requires it’s users to have sufficient programming skills, and MARS is
following the hypermedia paradigm with its limitations for creating fully in-
teractive virtual presentations. Both systems run only on a single hardware
setup, and do not support alternative AR display technologies like virtual
showcases or light projectors.

CHAPTER 3. AUTHORING AND STORYTELLING 41

3.3 UML story modelling

As mentioned already, the capability of modelling non-linear paths through
an interactive system can be found in state chart diagrams, a method used
in computer science to model the behaviour of entities. State charts can be
annotated in various ways, including attaching text, images or other media
content to the elements of a state chart diagram, turning it into a tool for the
specification of stories, allowing the author to add notes, content suggestions
and ideas early in the design process.

The Unified Modeling Language (UML) [52] defines a standardized way
of drawing state chart diagrams, and with the recent standardization of
XMI [53], the extensible metadata interchange format, there is a standard-
ized, platform independent way of serializing these diagrams to an XML-
based format. Therefore, one can use any standard UML modelling suite,
or take an open source project like ArgoUML [1] and extend it to support
story-authoring specific features. The story can then be exported to an XML
format, which offers a convenient and standardized way to import the created
storyboard into any other software.

running

point_statue

point_roof

point_wall
show_maovie

show_detail (snnw_statﬂ
net - l next /'L J
1
|

The animated Afly-around A detailed Areconstruction L
ctharacter movie of the image ofthe of the statue in
appears, heidentor is reconstruction the middle is
introducing itself played back. use_clip ofthe roof is shown

and the heidentor - shown et

The usercan use a B-

virtual clipping plane

clip to fade between the
— — | real model and the

virtual reconstruction

-

Bave
enter

The model is
dimly Iit, nothing
is happening.

restar

Figure 3.3: An example of an UML storyboard for a simple presentation.

The state chart is created by the story author very early in the process,
acting as a sketch pad during the brainstorming phase and as a communica-
tion tool in meetings with domain experts and other people. Later on, when
the story has stabilized, it is the main specification document to hand out to
content creators and component implementers, to define the overall context
of the project and to visualize the flow of the presentation. An example
storyboard is shown in figure 3.3.

Chapter 4

The APRIL language

After reviewing the available AR systems and looking at solutions for au-
thoring and content creation, I want to present the design for a language
that supports the authoring of Augmented Reality presentations. The Aug-
mented Reality Presentation and Interaction Language (APRIL) proposed
here should provide high-level concepts, derived from the state of the art in
each of the fields, for direct usage by presentation creators.

The first step for designing APRIL is to sum up the requirements for such
a language, based on the findings in the previous chapters. Following that,
a design for the central concepts of APRIL will be proposed and the roles
in the workflow for the collaborative creation of such presentations will be
defined. In subsequent chapters, I will present a prototypical implementation
of an APRIL player software and some sample presentations that have been
realized using APRIL.

4.1 Requirements of an AR authoring lan-
guage

As stated already, an authoring language for a given media has to take into
account the special features and constraints of that media. Some of the
requirements that will be identified come out of the specifications of AR sys-
tems, others are derived from the anticipated applications that users should
be allowed to create.

As shown in chapter 2, there are probably more AR “systems” and possi-
ble configurations than research groups in the field, used to conduct various
experiments or verify user interface ideas. Those systems which do persist
over several setups and applications have to support a wide variety of in-
put and output devices, with sometimes completely different data and media

42

CHAPTER 4. THE APRIL LANGUAGE 43

types to process — video and audio data, tracking information, geometry to be
rendered are only the most common data to be processed by an AR system.
In this heterogenous landscape of devices and software systems, a generic
authoring language should support different combinations and configuration
of hard- and software, to be usable across a wide range of installations.

Requirement 1 Support at least a reasonable subset of input and output
hardware and their manifold combination possibilities.

As most AR systems are prototypes, they are usually also a sparse re-
source. It should therefore be possible to develop presentations in a (desktop-
based) simulation environment, without having to occupy the target system
for the whole time of the development process. Also, presentations developed
for a specific setup should be portable to other setups with minimum effort.

Requirement 2 Support the portability of presentations by separating the
presentation’s content from the system and hardware specific definitions. Also
support desktop based developer setups for creating and debugging presenta-
tions.

On the content side, there is a variety of tools in use for 3-dimensional
modelling and animation, let alone audio and video production. In the 3D
modelling world, formats like VRML have established themselves as stan-
dards for geometry interchange, acting as a hub between authoring software
with their proprietary file formats and rendering and playback solutions. Un-
fortunately, in the area of animated geometry, most software packages use
their own formats, and animations are usually not exported to formats like
VRML. Only recently, with the gaming industry as a driving force, stan-
dards are beginning to emerge in this area to make a seamless toolchain
across different vendors possible.

Requirement 3 Support standards for geometry and media data, and sup-
port upcoming industry standards for animation of 3-dimensional content.

Content creation for Virtual- and Augmented Reality presentations is a
tedious process. To make the most of this effort, it should be possible to re-
use content across different applications, creating a repository of components
of such applications as new projects are realized. The complexity of these
components can range from static, 3-dimensional models or media objects to
fully interactive objects, interaction techniques or even whole applications.

CHAPTER 4. THE APRIL LANGUAGE 44

Requirement 4 Support the re-use of content by providing a modular struc-
ture of presentations. Allow the creation of content archives and the sharing
of content between multiple users and setups.

Not only the input devices for AR systems, but also the interaction tech-
niques and policies realized with these devices vary greatly across installa-
tions. Unlike in 2D desktop environments, interaction in 3D space is not
yet standardized, and applications usually have to be adapted to a specific
platform before they can be used. For this reason, most VR and AR appli-
cations are either very limited in the interaction possibilities they offer to
the user, or run only on a single, specialized hardware setup. For interactive
presentations, highly sophisticated interaction techniques, as needed for ex-
ample by CAD applications, are not required — however, the user should be
able to perform basic interactions, similar to physical interactions (walk /look
around, point at objects, grab objects, press buttons ...) to interact with the
scene. These interaction techniques should be available on all hardware se-
tups and use the available input devices in an optimized way to provide a
natural mapping.

Requirement 5 Provide a well-defined set of interaction techniques and
support various input devices to implement them.

In conventional media (like books, recordings or movies), a presentation
can only progress linearly, guiding the audience through a story (usually con-
sisting of introduction, main part and conclusion). Hypermedia systems like
HTML have extended our possibilities with the introduction of hyperlinks, a
way to let the audience interactively choose their way through the content by
successively selecting one of several links to the next hypermedia document.
For our interactive presentations, the system should also support non-linear
stories, but not through an implicit, static hypermedia structure. Instead,
our presentations should evolve with the user’s actions and be able to react
to various conditions and events.

Requirement 6 Provide authors with tools to structure their presentations
n a non-linear way for the user to explore them interactively.

These requirements are the starting point for the design of the planned
presentation framework. Since, as has been argued in chapter 3, we do not
want to rely on scripting for defining an applications behaviour, our language
will be a structural language in contrast to an interpreted one — a document
written in this language defines a static structure that exposes the desired be-
haviour at runtime, and is not ezecuted by an interpreter or scripting engine.

CHAPTER 4. THE APRIL LANGUAGE 45

One important base technology that helps to encode structural information
in human readable and machine readable code is XML [22, 36].

While it would be possible to choose a different base technology for the
APRIL language, or design a proprietary syntax from scratch, using XML
as a base standard to create the AR presentation language offers several
advantages:

e It is a widely used standard. As stated in requirement 3 in the intro-
duction, the language should be based on standards that are used in
industry and research. Nowadays, a lot of tools for editing, storing and
processing XML data are available, and these tools will be of benefit
for authors using our framework.

e XSLT (see section 4.2) allows the translation of XML documents into
other XML- or arbitrary text documents. This is the basis for machine
processing of APRIL documents, allowing for automatic conversion,
rendering to various output formats and updating of documents to
new versions of the standard.

e As stated above, XML is optimized for machine processing, yet it is
saved in a human-readable ASCII-format. This supports debugging
and creation of APRIL files by hand, and allows new tools to be created
by using available XML parser frameworks.

In the following section, we will look in more detail at the consequences
of choosing XML as a base technology for APRIL.

4.2 XML technologies

While XML itself is a quite slim standard, defining only the basic syntactic
rules for well-formed documents, it is accompanied by a set of second-level
technologies that make it the powerful tool for storing structural information
it is today.

The atomic unit of information in XML is an element, which can contain
attributes and child elements. A special type of element are text elements,
containing only (ASCII-)text and no attributes or children. Every XML
document contains a single root element, which can contain an arbitrary
number of children, which can in turn contain children, and so on. In its
memory representation, the root element is the root of a tree data structure
representing the XML document, with all elements represented as child nodes
in the tree. The first step in defining a new language (or dialect) using XML
is to define the elements and attributes that the language is composed of.

CHAPTER 4. THE APRIL LANGUAGE 46

4.2.1 Defining the language: DTDs and Schemas

While the core XML standard defines rules for well-formed XML documents,
it does not allow to check whether such a well-formed document is a valid
document of a given XML dialect — i.e. if the correct elements are used in
the correct places. To allow users to define the set of valid documents of
a given XML dialect, additional standards have been proposed: Document
Type Definitions (DTDs) and XML Schemas.

DTDs have been supported by the very first XML standard as a means to
define XML sublanguages. DTDs follow their own syntax, and define element
names, and their attributes as well as allowed children. A few shortcomings
of DTDs have inspired developers to look for alternative, more advanced
ways of describing XML dialects:

e DTDs are not XML documents, but follow their own, proprietary syn-
tax. Therefore it is not possible to apply XML tools on DTDs (for
example, it is not possible to define a DTD for DTDs, and therefore
not possible to check the validity of a given DTD)

e DTDs are not typed. It is not possible to define classes of elements, or
types or value ranges for attributes.

e The possibilities for defining the validity of element structures are very
limited — it is therefore not possible to create sophisticated validity
checks.

However, since DTDs are a relatively simple standard to use as well as
to implement, they are still widely used in XML tools and applications.

An improved way to define an XML-based language is provided by XML
schemas [31]; schemas provide solutions to the main shortcomings of DTDs:
they are XML documents, provide a sophisticated type system for elements
and attributes, and allow the expression of complex conditions for defining
the validity of documents.

For APRIL, an XML schema will be provided as the primary language
specification. As most XML parsers and tools available today do not fully
support schemas, also a DTD, which can be generated automatically from
the schema, will be created. A graphical overview of the APRIL schema is
presented in appendix A, and the full schema with all elements and attributes
is listed in appendix B.

CHAPTER 4. THE APRIL LANGUAGE 47

4.2.2 Mixing dialects: XML Namespaces

In some cases it is necessary or desirable to mix elements from different XML
dialects in a single document. Doing so without further preparations would
lead to problems in identifying which dialect a given elements belongs to,
especially if the element names are identical (which cannot a prior: be ruled
out).

To solve this problem, the concept of XML namespaces was introduced.
All elements from a given dialect are marked with a (user defined) prefix,
which is in turn mapped to a unique identifier for the dialect (for this purpose,
often the URL of the organization which developed the language is used,
because it is a world-wide unique identifier). In the XML parser, the short
prefixes are expanded to the long, unique identifiers, resulting in a set of
uniquely identified elements that can be unambiguously mapped to their
respective XML languages.

In APRIL, namespaces will be used to include OpenTracker configura-
tion information (expressed in the OpenTracker configuration XML dialect)
directly inside an APRIL file. Therefore, OpenTracker can be used as a part
of APRIL, and we do not have to re-invent the wheel for the specification of
low-level tracking configuration. An example of a file using XML namespaces
is shown in figure 4.1.

4.3 Hardware description

The first thing to consider when describing an AR application is the de-
scription of the hardware setup the application will run on. As required, an
application can be run on different hardware setups, and a single hardware
setup can host multiple applications, sequentially or simultaneously. It is
therefore desirable to separate the hardware description part of APRIL from
the description of the content and behaviour of the presentations that will
run on the setup, since it can possibly be reused for other presentations.

The root element of an APRIL file, april, contains two child elements: a
setup element describing the hardware setup, and a presentation element,
which holds the definitions for the presentation’s content and behaviour. Al-
ternatively, the setup element can be empty, containing only a src attribute,
specifying the URL of an (APRIL-)file from which to include the setup ele-
ment. By using this approach, it is possible to share a single hardware setup
description amongst multiple presentations.

An AR hardware setup is typically composed of one or more comput-
ers, displays connected to those computers, tracking devices used for head-

CHAPTER 4. THE APRIL LANGUAGE 48

tracking, pointing and other purposes, and buttons for triggering certain
actions in the presentation. Within the setup element, users can define such
a setup. For tracker configuration, the elements of the OpenTracker configu-
ration files are used. Since OpenTracker uses XML-based configuration files,
these elements can simply be included by using XML namespaces.

The host element is a wrapper element for all devices that are connected
to a single host. In setups with multiple hosts, the APRIL execution plat-
form can establish network connections between hosts for distributing ap-
plication [39] or tracking data [48]. Each host element can therefore carry
additional information about its IP address and other networking properties
as attributes.

Inside the host element, the video outputs of the computer are configured
with corresponding screen elements, specifying the resolution of the video
output(s). Logical displays do not necessary fill the whole area of a video
output, therefore they are configured independently using the display ele-
ment — containing all the attributes necessary for the definition of a display
surface for AR applications. Displays can be mono or stereo, using video-see-
through, optical-see-through or virtual reality (non-see-through) techniques
or projector based approaches. Furthermore, the real-world size and posi-
tion of the display surface and its position and orientation have to be defined.
For applications with mobile displays or head tracked users, the display el-
ement can contain an additional headtracking and/or displaytracking
element(s), containing the necessary OpenTracker configuration elements to
configure the tracking.

All tracked elements in the hardware description part can either contain
OpenTracker elements, included directly inside the element, or just specify
a named OpenTracker node in an external document to define the tracking.
Therefore, existing OpenTracker setups can simply be referenced inside an
APRIL configuration file.

Some pointing techniques (see section 2.4.1) are only applicable in con-
junction with a display surface or a tracked eyepoint. For these techniques,
a pointer element is used inside the display element it refers to, clearly
associating the pointing device with the display. Other pointing devices are
specified outside the display element, as a direct child of the host they
are connected to. All pointer elements contain an attribute specifying the
technique used, and can contain OpenTracker elements to define the track-
ing source. If no tracking source is specified, the mouse is used as a default
input device, if possible. Tracked objects that are not used for pointing can
be configured using the station element. Again, the tracking is defined by
inline or referenced OpenTracker elements.

Finally, button elements define push-buttons available in the installation

CHAPTER 4. THE APRIL LANGUAGE 49

to control the application. The input for the button can be an OpenTracker
source (although a button is not a tracking device, OpenTracker can provide
button information for various devices and supports buttons connected to
the parallel port of the computer), or a key on an ordinary keyboard. For
public installations, a keyboard controller can be used to connect arcade-style
buttons to it, to act as a cheap and reliable interface.

The complete arrangement of hosts, displays and tracked devices is the
hardware setup to run APRIL presentations. Figure 4.1 shows a sample
hardware configuration file, taken from a configuration for a virtual showcase
setup.

4.4 Story modelling

The first part of the actual presentation’s content is the storyboard of the
presentation. The storyboard is modelled as an UML statechart (as presented
in section 3.3). A state in the diagram represents a scene, a transition denotes
user interaction. Additionally, statecharts can be annotated with text or
other media elements to embed hints for the design of the presentation’s
content in the storyboard.

For visual editing of UML statecharts, developers can choose among sev-
eral commercial or open-source tools that support the XMI format. Since
XMI is a very complex standard with different syntactic alternatives for iden-
tical concepts, the generated XMI code is not directly included in the APRIL
file, but a simplified syntax has been developed to define the state engine.
For a smooth workflow, an automatic conversion tool, based on XSLT, has
been developed, to translate XMI documents to the simplified APRIL syntax.
This converter tool will be described in section 5.3.1.

The simplified syntax offers elements for states, transitions, and compos-
ite states that can contain multiple concurrent substates. Figure 4.2 shows
an example story definition, using the APRIL syntax to define a simple sto-
ryboard.

4.5 APRIL components

As stated in the requirements section, the content of our presentations should
be composed out of reusable components. Components should be defined
outside the presentation, in individual files, to allow for re-use across presen-
tations and setups.

CHAPTER 4. THE APRIL LANGUAGE 20

<april xmlns="http://www.studierstube.org/april"
xmlns:ot="http://www.studierstube.org/opentracker">
<setup>
<host name="showcase" ip="10.0.0.77">
<screen resolution="1280 1024"/>
<screen resolution="1024 768"/>
<display screen="1" screenSize="fullscreen" stereo="true"
worldSize="-0.4 0.3" worldPosition="0.098 0.162 0"
worldOrientation="-0.1856 0.9649 0.1857 1.6057" mode="AR">
<headtracking>
<ot:EventVirtualTransform translation="0.00 0.20 0.01">
<ot:NetworkSource number="1" multicast-address="10.0.0.7"
port="12345"/>
</ot:EventVirtualTransform>

</headtracking>
<pointer mode="2D-RAY"/>
</display>

<station id="tool">
<ot:NetworkSource number="2" multicast-address="10.0.0.7"
port="12345"/>
</station>
</host>
</setup>
</april>

Figure 4.1: A sample hardware configuration file. In this case, a single host
with two configured VGA outputs is used to drive a single, head-tracked
display. Additionally, a pointer (using the mouse for ray-picking) and a
tracked object are defined.

CHAPTER 4. THE APRIL LANGUAGE o1

<story>
<scene name="empty" initial="true"/>
<scene name="play">
<concurrentScene>
<scene name="A1" initial="true"/>
<scene name="A2"/>
<transition event="go" source="Al" target="A2"/>
</concurrentScene>
<concurrentScene>
<scene name="B1" initial="true"/>
<scene name="B2"/>
<transition event="move" source="B1" target="B2" guard="A2"/>
</concurrentScene>
</scene>
<transition event="enter" source="empty" target="play"/>
<transition event="leave" source="play" target="empty"/>
</story>

Figure 4.2: As simple story, defined using the elements provided by APRIL.
Figure 4.3 shows the graphical representation of this storyboard. Note the
use of a guard, that enables the transition from B1 to B2 only when state
A2 is active.

play

Al A2
9o
BE1 E2
move [A2]

Figure 4.3: The graphical representation of the story from figure 4.2.

enter

empty
exit

CHAPTER 4. THE APRIL LANGUAGE 52

4.5.1 Component definition

As these components will constitute the content of our presentations, so-
phisticated means to express geometry and multimedia content, that make
up an object in a presentation, will be needed. Instead of creating a new
XML-based syntax for defining the content of such an object, another ap-
proach has been chosen: an APRIL-component is basically an ASCII-based
template, using any existing, ASCII-based language to express the intended
content, plus added XML-markup to define the interface of the component,
a collection of inputs and outputs that will be accessible from the APRIL
presentation.

While this component mechanism works with any ASCII-based language
(including XMI-dialects), APRIL components will generally use a content
description language that can be read by the target runtime platform. In
the case of our reference implementation (which will be discussed in chap-
ter 5), we will use Open Inventor as the basis for defining the content of our
components. While these components will not be portable across platforms
(since they use a platform-specific content specification format), the APRIL
component mechanism itself is platform independent and can make use of
any host language.

Using a platform specific language for content definition reduces porta-
bility of components, but makes all features and optimizations of a given
platform available to developers. The alternative would have been to create
a platform-neutral content definition language, that could always only use
a set of features supported by all platforms — an approach that does not
allow the creation of sophisticated content for our presentations that uses
state of the art real time rendering features. To support the portability of
components across platforms, components can contain multiple alternative
implementations for different platforms, letting the APRIL-translator choose
at translation time the suitable implementation for a given runtime platform.

An APRIL component definition file contains two main parts: the com-
ponents interface definition, and one or multiple implementations, expressed
as XML-enhanced templates in the chosen language. A components interface
is composed of the available input and output fields, and the specification of
possible sub-components (parts) that can be added to the component.

A field in the interface of a component can contain one or multiple values
of a primitive data type. A list of possible data types is given in table 4.1,
where single value fields are prefixed by the string SF and multiple value
fields are indicated by a MF prefix. In addition to the primitive data type,
the SFPose data type is provided for processing pose information (position
and orientation), since this is data frequently used in AR applications.

CHAPTER 4. THE APRIL LANGUAGE 23

Type SEF | MF | Description

Trigger X A trigger field, not carrying any value. The trigger
fires every time its value is changed.

Bool X X | A boolean value, either ‘“TRUE’ or ‘FALSE’.

Int32 X X | An integer value.

Float X x | A floating point number.

String X | x | A text string.

Vec2f X X | A 2-dimensional floating point vector.

Vec3f x | x | A 3-dimensional floating point vector.

Rotation | X X | A rotation value, composed out of 4 float values.

Pose X Pose information, consisting of position and
orientation.

Color X X | A color value, composed out of 3 float values for
the red, green and blue component.

Table 4.1: Field types supported by APRIL.

Fields can be used for input, output or both. This is indicated by using
an input, output or field element for defining the field, respectively. Inside
the element, the fields type and default value are specified with attributes,
and the const attribute specifies whether the field can be changed during
the presentation.

The second part of a components interface definition are parts, or chil-
dren, of the component. Parts are specified using the part element, and
define a hook for possible sub-components, that will be inserted into the
given component. By using the parts mechanism, components can be cre-
ated that influence other components — for example, the group component
(shown in figure 4.4) transforms all its children by a translation, scale and ro-
tation factor that can be configured using its inputs. As parts can be named,
a component can have multiple parts, each carrying one or more children,
for various purposes. If a component has only one part named “children”, it
is the default part of the component and can be used without specifying its
name explicitly.

The implementation part of a component contains the specification of
the components content in the chosen host language, which is indicated by
the type attribute of the implementation element. Inside this element,
the inputs and outputs used in the interface definition have to be marked by
special XML marker elements, to indicate the (platform specific) entry points
for setting and retrieving values from the components fields. These marker
elements are the in element for indicating input fields, the out element for

CHAPTER 4. THE APRIL LANGUAGE o4

<interface>
<field type="SFVec3f" id="position" default="0.0 0.0 0.0"/>
<field type="SFRotation" id="orientation" default="1.0 0.0 0.0 0.0"/>
<field type="SFVec3f" id="scale" default="1.0 1.0 1.0"/>
<field id="visible" type="SFBool" default="TRUE"/>
<part id="children"/>
</interface>

Figure 4.4: Interface definition of the group component.

indicating output fields, and the sub element for indicating the position of
a part. Additionally, the id element can be used and will be replaced by a
unique id for each instance of the component. This can be used to generate
unique IDs for various purposes.

As the usage of these marker elements depends on the runtime platform
that the presentation will be executed on, no general rules can be given for
using them. For Open Inventor components, which will be used in the pro-
totype implementation, the in element is used as a simple placeholder for
input values in the Open Inventor ASCII file format. Also the sub element
is simply used as a placeholder, which will be replaced by the corresponding
sub-components in the generated Open Inventor file. The usage of the out
marker for retrieving a field value is not so straightforward: Since in Open
Inventor the values of fields can only be referenced by using the unique name
of its parent plus the field name, the full reference of a field cannot be inferred
by using only a local marker, without parsing the Open Inventor code in the
implementation. Instead, the id element is used to create a unique prefix for
the name for the fields parent node, and the fully qualified field name (includ-
ing the unique name of the parent) is then referenced inside the out marker,
placed at the end of the implementation specification. This demonstrates the
versatility of the template-based component approach, where complex refer-
ences can be generated without parsing the host language by using relatively
primitive XML-based markup. As an example, the implementation section
of the group component is shown in figure 4.5.

4.5.2 Using components

After defining a component, it can be used in the APRIL presentation by
instantiating it one or possibly multiple times. All components are instanti-

CHAPTER 4. THE APRIL LANGUAGE

95

<implementation type="Open Inventor">
Switch {
whichChild 1 = DEF <id/>_Bool BoolOperation {
a <in id="visible"/>
operation A
}.output # convert from Bool to Int32
Group {} # Dummy Child for switching off
Group { # actual content
DEF <id/>_Transform Transform {
translation <in id="position"/>
rotation <in id="orientation"/>
scaleFactor <in id="scale"/>
}
<sub id="children"/>
+
by
<out id="position"><id/>_Transform.translation</out>
<out id="orientation"><id/>_Transform.rotation</out>
<out id="scale"><id/>_Transform.scaleFactor</out>
<out id="visible"><id/>_Bool.a</out>
</implementation>

Figure 4.5: Open Inventor implementation section of the group component.

CHAPTER 4. THE APRIL LANGUAGE 26

ated in the cast section of the presentation, by using actor elements. The
source file of the component is specified with the src attribute, and a unique
id has to be assigned to each actor by using the id attribute. This attribute
will later be used in the presentation to reference the actor, for changing or
referring its field values.

Within the actor element, field values can be set with input elements.
These values will be used as default values for the presentation, and override
the default values specified in the components interface definition. Parts of
a component are set by using a children element as a wrapper for other
component instances, specified by nested actor elements. The parent/child
relationship defined by parts is therefore expressed by nesting actor elements
in a hierarchical manner.

Figure 4.6 shows a snippet from a presentation’s cast section, instantiat-
ing a group component, which contains two sub-components: A model and
a hotspot.

<actor id="group" src="group.apc">
<input id="position" value="0 0.14 0"/>
<children>
<actor id="ryla" src="model.apc">
<input id="src" value="content/Ryla.iv"/>
<input id="orientation" value="0 1 0 -1.57"/>
</actor>
<actor id="hotspot" src="hotspot.apc"/>
</children>
</actor>

Figure 4.6: Instantiation of the group component, containing two children
that will be transformed by it.

Representing the real world

As already mentioned, one key feature of AR systems is the integration of
the real world as part of the application. In APRIL, real-world objects are
represented by stage elements, containing the geometric representation of
the real objects surface, which can be obtained by 3D-scanning or modelling.
This geometry is then used by the APRIL player software to calculate oc-
clusion between real objects and virtual content, or to render special effects

CHAPTER 4. THE APRIL LANGUAGE o7

such as projector based illumination.

4.6 Animation and behaviours

The components defined and instantiated in the cast section of a presenta-
tion are available during the whole running time of the presentation. Dy-
namic behaviour is added to the presentation on a scene-by-scene basis by
adding behaviours, which control the field values of the components of a
presentation.

Behaviours are bound to scenes of the presentation — each scene (defined
by a state in the story definition) can hold an arbitrary number of behaviours
for all the fields of all actors of the presentation, which are arranged on a
local timeline to allow behaviours to be scheduled or performed sequentially.

Each scene is further divided into three pseudostates — entry, do and
exit. All behaviours in the entry state are performed when the story enters
the given scene and are guaranteed to be executed. Therefore, behaviours
with a nonzero duration, specified in the entry substate, block the presenta-
tion until they are finished.

The internal timeline holding the behaviours of the do substate will start
when all behaviours in the entry state have completed, and will only run as
long as the parent state is active. If the state is left before all behaviours have
been effective, the remaining behaviours are ignored and the presentation
continues with the next scene.

Finally, the exit substate holds behaviours that will be performed upon
exit of the given scene. Again, all behaviours in the exit substate are guar-
anteed to execute, and will block the transition of the presentation to the
next state (which has, at this time, already been triggered) as long as their
completion takes.

As indicated already, these substates are represented in the presentation
file by the corresponding elements. A behaviour is defined by a behavior ele-
ment, specifying the scene it should be bound to, and its contained entry, do
and exit elements. Inside these elements, APRIL provides four fundamental
behaviours for controlling an actors inputs — it can be set to a given value,
animated over time, connected to an output of another actor, or controlled
by the user. Each of these possibilities is represented by a separate element
in the specification.

CHAPTER 4. THE APRIL LANGUAGE o8

Setting field values

The set element allows to assign a new value to any input field of an actor.
Depending on the field type, the to attribute contains the textual represen-
tation of the target value. Multiple values (for setting multiple value fields)
are separated by commas, the components of a multi-dimensional field value
(like Vec3f) are separated by spaces. The target field of a set operation is
specified by setting its actor and input attributes to reference the target
field.

All set behaviours are, by default, executed immediately when the par-
ent state becomes active. Alternatively, set behaviours can be scheduled
on the states timeline by using the optional time attribute. As with all at-
tributes that contain time values, the xs:duration data type, provided by
XML Schema [31], is used to express the value. The xs:duration type al-
lows to express time values ranging from years to milliseconds, allowing for
presentations that run in real-time over long periods of time.

Animating fields

In addition to the information needed for setting a fields value (target field
and starting time), animating a field needs input for the intended duration
of the animation (again expressed as an xs:duration value, stored in the
duration attribute) and the target value of the animation. The target value
can be expressed in two different ways: either as an absolute value, by using
the to attribute, or as a relative offset specified in the by attribute. If an
absolute value is used, the input field is simply animated (linearly interpo-
lated) to the new value, if the by attribute is used, its value is added to the
current value of the field over the time of the animation.

Generally, animations use the current value of the field and start the
interpolation from there. Alternatively, an explicit starting value can be
specified, which is identical to setting the field to the starting value at the
beginning of the animation and running the animation from this starting
value.

Connecting fields

The third possibility to control an input field is to connect it to another
output field of the same or another actor. Connections persist as long as the
state they are defined in remains active, routing any changes in the output
(source) field to the input (target) field immediately. By using connections,
complex behaviours can be realized by calculating the desired field value in a

CHAPTER 4. THE APRIL LANGUAGE 29

custom component and routing its output to an input field of another actor,
establishing a controller/slave relationship between the two actors.

For defining a connection, only the source and target actors and fields
have to be specified by using the corresponding attributes actor (for the
target actor), input (for the target input), master (for the source actor) and
output (for the source output).

Letting the user control a field

Finally, control of a field can be given to the viewer of a presentation by using
the control element. This is mostly used for adjusting parameters of the
story, but can also be used for more complex interaction between the user
and a presentation’s content. As for field connections, the control of a field
by the user lasts as long as the corresponding scene is active, therefore it
only makes sense to use control elements inside the entry or do substates.

Besides the usual specification of the target field, authors can define min-
imum and maximum values (for numeric inputs) of the adjustment. Addi-
tionally, a 1abel can be specified that can be used by the target platform to
annotate the user interface that is generated for controlling the field value.

How the control of the field value is realized depends on the implemen-
tation of the APRIL runtime platform. Depending on the system, two- or
three-dimensional user interface elements might be rendered with the cor-
responding label to enable the user to make adjustments. For numerical
values, this interface will most likely be a “slider” type widget, while for
boolean values it will be a toggle-button or a checkbox-like widget. Position
and rotation information can be controlled by using a station, defined in
the setup file.

Figure 4.7 shows an example of a behaviour binding element for a single
scene of a presentation. All four element described above are used in this
example.

4.7 Interaction

The last part missing to realize interactive presentations is the integration
of user interaction into the APRIL authoring concept. Like states, that
represent scenes of the story and can be bound to specific behaviours of
actors, transitions represent changes of the story and can be bound to specific
user interactions or conditions.

By separating the definition of a transition in the storyboard from the
specification of the user interaction that should be used to trigger that tran-

CHAPTER 4. THE APRIL LANGUAGE 60

<behavior scene="introduction">
<entry>
<set actor="ball" input="visible" to="TRUE"/>
<animate actor="ball" input="transparency" from="1.0" to="0.0"
duration="PT2.0S"/>
</entry>
<do>
<control actor="ball" input="transparency" min="0.0" max="1.0"
label="Transparency of ball"/>
<connect actor="ball" input="position" master="plane"
output="cargoPosition"/>
</do>
<exit>
<set actor="ball" input="visible" to="FALSE"/>
</exit>
</behavior>

Figure 4.7: Behaviour binding for a single scene. All four different behaviour
elements are used in this example.

CHAPTER 4. THE APRIL LANGUAGE 61

sition, the mapping of transitions to interactions can easily be changed and
replaced by an alternative mapping. Therefore, it is easy to realize different
versions of a story, be it for different target platforms or different audiences.
A presentation may be run in a fully automatic mode for a presentation in
front of a large audience, and switched to an interactive setting, where the
user can actively influence the story, for presentations to single users.

APRIL offers the story author a catalog of interaction techniques to be
used. This catalog contains the fundamental interaction tools and techniques
mentioned in section 2.4, plus a few specific concepts for interacting with
components.

The binding of an interaction to a given transition of the storyboard
is done by using an event element, specifying the id of the transition in
question. Inside the element, interaction elements are placed, which will be
bound to the corresponding transition. If multiple interactions are specified,
any of the interactions can be used to trigger the corresponding event.

Head tracking

A basic interaction feature of nearly all AR installations is tracking the user’s
head and rendering the graphics displayed dependent on the user’s estimated
eye point position. In the hardware description file, headtracking is defined
by a headtracking element inside a display element, containing the nec-
essary OpenTracker definitions for realizing the tracking. In the interaction
layer, headtracking can be used to detect if a user has entered a given region
or if the setup is currently unused.

Touching Objects

The touch element can be used to define an interaction that is triggered
whenever the user touches an actor, referenced by the actor attribute, in
the scene. All pointing devices defined in the setup part can be used to
touch the object. A complimentary element, untouch, ic provided to detect
the end of a touching gesture previously started.

Buttons

Buttons are the most basic hardware interaction tools that can be used in
a AR installation, but due to their robustness and versatility are a very
important interaction tool for presentations. Buttons can be used as simple
presentation controls ("next scene”, ”previous scene”), but can also change
behaviour depending on the context of the presentation. Buttons can also
be embedded into the floor or realized as photo-sensors to detect the user’s

CHAPTER 4. THE APRIL LANGUAGE 62

movement. In addition, buttons can be easily simulated by rendering them
onto the display surface as virtual buttons, if the presentation runs on a
different hardware setup with fewer or no hardware buttons installed.

A button interaction is defined by placing a buttonaction element inside
the event element for the transition, specifying whether a virtual button
should be used and (optionally) the label of the virtual button to be rendered.

Hotspots

Hotspots are cubic regions in presentation space - they might be parts of the
real or virtual content of the presentation, and mark significant parts of an
artifact that might be selected by the user. The normal scenario would be
that additional information about parts of an object is displayed when the
user selects it.

Similar to buttons, hotspots trigger the transition when the user clicks
on them or touches them — depending on the configuration. Depending of
the definitions in the setup description, various direct or indirect pointing
techniques may be used to trigger a hotspot.

To realize a hotspot interaction, a hotspot component has to be placed
into the scene, which can then be used for interaction by using a condition
for its touched or triggered outputs (see below).

Conditions

To overcome the simple, hard-coded interaction techniques offered by APRIL
and to realize custom, story-specific interaction, general conditions can be
used to trigger events to drive the story. A condition compares the value of
an output field of any actor to a constant value or another output field. If
the condition evaluates true, the transition that the condition is bound to is
triggered.

Conditions are specified using the evaluator element. Besides specify-
ing the output field to be compared and either a constant value or another
output field to compare to, the comparison itself is selected from a list of
available ones. Comparison types provided by APRIL, that can be specified
in the comparator attribute, are: equal (default), lessThan, greaterThan,
lessOrEqual, greaterOrEqual, notEqual, isInside (performs a bounding box
check), notInside.

Timeouts and automatic transitions

Besides direct user interaction, also the absence of user actions can be used
to drive presentations. APRIL provides a timeout mechanism, specified by

CHAPTER 4. THE APRIL LANGUAGE 63

using the timeout element, to be able to trigger events if for a certain period
of time no significant user interaction took place. Additionally, transitions
can be configured to trigger always (as soon as they become available) or
never (to disable parts of the story, for example for demo presentations) by
using the always or disabled elements.

4.8 The APRIL workflow

Authoring interactive, dynamic presentations is a process of varying complex-
ity that may include several professionals working with different tools, but
may also be performed by a single individual with more limited resources.
The authoring process should therefore be scalable, offering all the possi-
bilities to model simple presentations or prototypes quickly, and offering a
structured workflow to teams working on larger presentations, incorporating
various tools for modelling and content creation.

APRIL supports such a workflow by separating presentations into dif-
ferent parts — story, components, media objects, hardware description, be-
haviours and user interaction are the main aspects mentioned in the previous
sections. The APRIL authoring process helps a single author to structure
her work, and teams of specialists working together to coordinate their ef-
forts. For the authoring process, it is possible to define various roles of people
contributing to the presentation. These roles may be embodied by distinct
professionals (or teams of professionals), or by fewer or even a single person
authoring a simple presentation on her own.

The following roles of people that contribute to a VS presentation have
been analyzed:

e Domain Expert

The domain expert is the individual or group with the necessary knowl-
edge about the presentation’s subject. For history presentations, this
might be an archaeologist or historian, for scientific presentations an
expert on the given subject.

e Story Author

The story author is the person who comes up with the ideas of how
the subject should be presented in an interactive way, and defines the
storyboard for the presentation. In our model, the story author is also
the communicator between the domain experts and the content creation
people.

CHAPTER 4. THE APRIL LANGUAGE 64

e Content Creator

Content creators design and deliver multimedia content for the presen-
tation, following the storyboard as a specification document. Content
creators deliver images, graphics, video, sound and 3D-models to be
used in the presentation.

e Component Implementer

For sophisticated presentations, static media content has to be turned
into components that can expose behaviour and react to user input.
Additionally, custom components may be needed to realize complex
user interaction or behaviours.

e Story Integrator

Finally, the story integrator puts together the components and media
elements according to the storyboard, and specifies interaction tech-
niques offered to the user. This is a similar, integrative position as the
story author, and might well be performed by the same person. But
while the story author acts a priori to the content creation to specify
the details of the presentation, the story integrator takes the results of
the content creation phase and puts them together.

Using the definition of roles given above, we get a sequence of steps to
create an APRIL presentation, using the various tools that have been inte-
grated. A graphical representation of this workflow is given in Fig. 4.8.

The first step in the APRIL workflow is research of the subject of the
presentation. Raw material (text, images, video, sound, models) is collected,
and the idea for the presentation is developed, possibly in sessions with do-
main experts and museum staff. This brainstorming phase results in the
story document, the UML model of the flow of the presentation.

The story document acts as a specification for content creation (using the
raw material found in phase 1) and component authoring. Components can
be re-used from a set of default components or earlier presentations, and for
sophisticated interactive presentations new, customized components will be
developed.

Integrating the components, interaction tools and content items is the
goal of the final phase, story integration. The result is the complete pre-
sentation specified in the APRIL language. Independent from the story au-
thoring, for each hardware setup there is a configuration file, describing the
arrangement of displays, interaction hardware, speakers, and other aspects
of the available hardware. During story development and testing, it is not

CHAPTER 4. THE APRIL LANGUAGE 65

Modelling &
——
: Animation
- \ Final
C::t‘:nt Content
[y
v | v |~
l 2 Production |
Topic |, | UML Story Story [...s | COMPoNENt Story Presen-
Research 1"| Authoring _' i Authoring |~ | Integration || tation
L F | ¥
ssase Flow of information I
e Flow of content
D External Tool _— -
ardware -
EI APRIL Process Step Description —_— quration —s| VS Playback
D Documet y

Figure 4.8: The APRIL workflow for creating a presentation.

necessary to run the presentation on the actual hardware setup; the same
presentation can be run in an ”emulation mode” on the developers PC.

Media content, components and hardware description files are re-usable
parts of an APRIL presentation, and are only loosely coupled by the story
to contribute to a specific presentation. The same media, components or
hardware can be used to tell other stories about the same or completely
different subjects.

Chapter 5

Implementation

In this chapter, a prototype implementation of an APRIL player software,
based on the Studierstube AR system [66], will be presented. The approach
taken is to transform the APRIL files that make up the presentation (presen-
tation file, setup description and the components used in the presentation)
into Studierstube configuration and content files in an offline process, and
then run the native Studierstube application resulting from that process.

5.1 Transformation and querying: XSLT and
XPath

Besides the “core” standards XML, DTD, schema and namespaces, a lot of
useful tools have been developed for various purposes. One of them is XSLT,
the Extensible Stylesheet Language Transformations [23]. XSLT allows the
transformation of XML input files into one ore multiple output files in any
ASCII-based file format (including XML).

XSLT follows a template-based approach. The result of an XSLT trans-
formation is determined by two inputs: the XSLT file, containing a collection
of templates, and the XML input file to be processed. The XSLT engine loads
and parses the input XML file, and, starting at the root element, looks for
templates that match the current element in the XSLT file. If such a tem-
plate is found, it is expanded, which means that the contents of the template
are written to the output of the XSLT processor. If no template is found, an
internal default template of the XSLT processor is used, that usually outputs
the character data contained inside the element and continues with process-
ing all the children of the current element (again looking for a matching
template in the XSLT file). With this approach, all elements of the input file
are processed.

66

CHAPTER 5. IMPLEMENTATION 67

Templates can not only contain static ASCII text to be written to the out-
put, but can themselves process information contained in the input XML file.
This processing capabilities range from the access of the current element’s
attributes and children, over conditional processing of parts of the template,
to complex querying of the XML input data. Queries of the XML input are
formulated in a syntax called XPath [24], which is a powerful language to
address and query elements and attributes in an XML document. XPath
also provides mechanisms for loading and querying external XML files, and
therefore allows the processing of multiple input documents (Which is needed
for APRIL to load external hardware configuration and component files).

Within an XSLT template, other templates can be called by using the
xsl:apply-templates element. The element of the input XML file that the
template will be applied on can be selected by an XPath query, effectively
allowing each element in the input file to access and process all other elements
of the input file(s). With this mechanism, complex processing patterns, like
‘jumps’ or recursive processing of input, can be realized.

Multiple output files can be generated by using the XSLT 1.1 function
xsl:document. All templates that are called inside an xsl:document ele-
ment will write their output to the file specified in the href attribute of the
xsl:document element. For this attribute, it is also possible to dynamically
calculate a filename, by using information stored in elements or attributes of
the input XML file.

Several implementations of XSLT processors exist today. For the proto-
type implementation, the Saxon XSLT processor, Version 6.5.2 [45], will be
used. Saxon is implemented in Java, and offers a lot of extensions to the core
XSLT features and an extension mechanism to add new functionality to the
XSLT processor. While these features were not used for the implementation,
some features that were first introduced in Saxon and later incorporated into
the XSLT specification were needed for translating APRIL files.

Describing the full functionality of XSLT is beyond the scope of this work.
Interested readers are referred to [23, 36] for a complete overview.

5.2 Studierstube configuration

To run an application in Studierstube, several files are necessary to define
the configuration of the Studierstube systems and the content of the ap-
plication. These are the files that will be generated with the XSLT-based
transformation process.

For the configuration of Studierstube and its displays, usually one or mul-
tiple files are provided, containing the Open Inventor-based specification of

CHAPTER 5. IMPLEMENTATION 68

the setup’s UserKits. In contrast to APRIL, where no strong representation
of a presentation’s users is provided (only displays and pointing devices are
configured, which could be, conceptually, taken by any user), Studierstube
assumes that all displays and pointing devices are assigned to specific users.
The UserKit therefore contains a DisplayKit, providing all the necessary
fields to configure a display, and a PenKit to define a pointing device for that
user. Additionally, Studierstube makes heavy use of PIPs, and therefore al-
lows to specify a PipKit in the UserKit.

Each DisplayKit carries information about the position of the display
on the screen, and the configuration of the display window (such as whether
to show the window’s title bar and decoration, or whether to use a video
image as the background for the rendered scene). Additionally, head- and/or
displaytracking is configured by adding a specific CameraControl node to
the DisplayKit. The virtual camera itself is defined by an 0ffAxisCamera
node, which is usually loaded from an external file to re-use it across users
and installations. Figure 5.1 shows an example Studierstube UserKit, with
inline definitions of the display, camera and pointer settings.

For all tracking requirements, Studierstube uses OpenTracker as a mid-
dleware layer that deals with the details of supporting and configuring indi-
vidual tracking devices. The connection between OpenTracker nodes as data
sources and Studierstube nodes as data consumers is established through
StbSink nodes in OpenTracker, each being assigned a unique station number
to identify the source. Studierstube nodes that consume tracking data (like
the DisplayKit for headtracking, or the PenKit for tracking the pointing
device) usually have a station field to configure the OpenTracker StbSink
node that should be used for delivering the tracking data.

The OpenTracker configuration file that is used for the Studierstube setup
is another input file necessary for running a Studierstube application. If no
such file is provided, an internal default file, using only the keyboard for
tracking simulation, is used.

Finally, the applications that should be run in a setup are defined in
another Open Inventor file. This file contains (usually) one or multiple
ApplicationKits, which contain the ContextKit implementing the appli-
cations behaviour. This may be a subclass provided by an application pro-
grammer, to provide custom behaviour and complex processing capabilities,
or an ‘empty’ ContextKit that contains Open Inventor nodes to define the
applications content and behaviour. All applications can define PipSheets
to provide widgets to control the applications, and geometry, possibly con-
tained in one or multiple WindowKits, to define the content that is visible to
the user.

CHAPTER 5. IMPLEMENTATION 69

#Inventor V2.1 ascii
SoUserKit {
userID 1
display SoDisplayKit {
backgroundColor 0 0 O
decoration FALSE windowBorder FALSE

xoffset O yoffset O # position and
width 800 height 600 # size on monitor

display SoFieldSequentialDisplayMode {} # stereo vision
cameraControl SoTrackedViewpointControlMode {}
station 1 # station used for haedtracking

stereoCameraKit SoStereoCameraKit {
eyeOffsetleft -0.035 0 0
eyeOffsetRight 0.035 0 0
camLeft DEF cam SoOffAxisCamera {

position 0 0.3 0.5 # only configure the image plane,
orientation 1 0 0 O # since the viewpoint position is
size 0.4 0.3 # delivered by a tracker
}
camRight USE cam
b
+
pen SoPenKit{
station 2 # station used to track the pen

geometry Separator { Cone { bottomRadius 0.02 height 0.05 } }
}
+

Figure 5.1: An example Studierstube UserKit.

CHAPTER 5. IMPLEMENTATION 70

5.3 Implementation details

Since all input files used by Studierstube are using ASCII-based file formats,
it is possible to implement the complete transformation of the APRIL file(s)
to Studierstube input files in XSLT. Studierstube uses Open Inventor as
its content format, therefore components used in the presentation have to
provide an Open Inventor implementation section. Additionally, as some
of the concepts like state-engine driven presentations or light projectors are
not supported by Studierstube, the necessary extension classes have been
implemented and integrated into the Studierstube framework.

In the following sections, the details about the necessary transformations
and the extensions added to the Studierstube framework will be presented
in detail. In addition, the pre-processing step to simplify statecharts, saved
as XMI, to include them in APRIL presentations, is explained.

5.3.1 XMI to APRIL translation

As mentioned in section 3.3, the official standard to save UML diagrams
to XML files, XMI, is a complicated standard, allowing for many syntactic
variations and alternative representations of identical models. We therefore
want to introduce an automated simplification step, implemented in XSLT,
to be able to include storyboards created with external UML tools into an
APRIL presentation, using the simplified syntax provided by APRIL.

A single XMI document can contain, among other UML diagrams, mul-
tiple state diagrams. We want to extract the state diagram information,
producing a separate output file for each diagram encountered in the input,
ignoring the other kinds of UML diagrams that might be present in the input.
The transformation script therefore defines a template for the root element
that selects all the UML:StateMachine elements (the XMI wrapper element
for a state machine) in an xs1:apply-template call, effectively applying the
remaining templates only to these elements, ignoring all others.

The template matching UML: StateMachine creates a new output file with
the name of the state machine, and calls the templates for its children, ignor-
ing the first UML: CompositeState in the hierarchy, which represents the over-
all state machine and is always represented by the story element generated
as the root element of the output file. From this point on, UML:SimpleState
and UML:CompositeState elements in the input file are mapped to scene
element in the APRIL file, and UML:Transition elements are mapped to
transition elements.

Since references to other elements in the XMI file are using machine-
generated, unique identifiers, while APRIL uses the human-readable id at-

CHAPTER 5. IMPLEMENTATION 71

tribute, usually containing the name of the state or the transition, a mapping
of the unique id’s used by XMI to state and transition names has to be cre-
ated. For every state, referenced by a transition as its source or target, the
state element referenced by the unique id has to be queried from the input
XMI file, and its name is used as its identifier for the APRIL output.

Comments, which can be added to the UML diagram, are also preserved,
allowing to put remarks for content-creation or presentation design directly
into the UML diagram. These comments, stored in UML:Comment elements,
will be exported to the APRIL file as annotation elements inside the states
they are referencing.

5.3.2 APRIL to Studierstube translation

For our prototype implementation, an APRIL presentation, including it’s
hardware- and tracking-configuration and component definition files, will be
transformed into a complete set of Studierstube configuration files, including
a batch file to be able to start the presentation with a double click on it’s
icon.

The first step in this process is to load the contents of the referenced
hardware description file, if an external file is used, into an internal variable
for later reference without having to parse that file over and over again. After
that, the filenames for content and configuration output files are figured out,
based on the presentation’s name, and the batch file for starting Studierstube
with the necessary input files is produced. The story element is extracted
to a separate file, story.xml, which is loaded at run-time by the story engine
(see section 5.3.3).

The remaining files to be generated are the configuration files containing
UserKit definitions with displays and pointing devices, the tracking con-
figuration files and the main application file, containing the presentation’s
content.

Displays and pointers

Since Studierstube relies on the concept of users and allows only one pen and
one display per user, the following approach was chosen: Each display ele-
ment encountered will generate a UserKit, containing a DisplayKit, defining
the displays size and position on screen and referencing the camera config-
uration file, which is also generated from the information contained in the
display element. Of the pointers assigned to the display (possibly more
than one), only the first one is defined in the UserKit node — all other point-
ers are written directly to the application file and therefore have no direct

CHAPTER 5. IMPLEMENTATION 72

connection to a user in the Studierstube model.

Depending on the type of pointer(s) used (which is defined in the type
attribute of the pointer element), either a PenKit or a RayPicker node is
generated. If a raypicker is used, an additional OpenTracker station has to
be provided, routing the output of the raypicker (the picked point) to the
application (see below).

For the DisplayKit, the screen coordinates and size is calculated from
the information in the setup file, which allows the specification of percentage
values or the keyword fullscreen for the display size. These values have to
be converted to absolute pixel values on a single, virtual screen to be used
by Studierstube. For this purpose, the information specified in the screen
elements in the setup file is used to calculate the resulting pixel positions.

All OpenTracker elements used in the setup file are collected and copied
to a single OpenTracker file, optionally including content from another Open-
Tracker file specified in the otfile attribute of the setup element. All Open-
Tracker sources are wrapped by StbSink elements and assigned a unique,
automatically generated station number, which is used for subsequent ref-
erences of the corresponding tracker element. In addition, as already men-
tioned, for all RayPicker nodes, StbSource elements are introduced into
the OpenTracker file, providing the tracking output of the raypickers to the
application.

For tracked elements in the setup file that do not contain or ref-
erence OpenTracker elements to define their tracking behaviour, default
KeyboardSource elements are generated to allow users to control these in-
puts from their keyboard. Additionally, a warning message is printed to the
console to notify users of this fact.

Story engine

As stated already, the story element with the definition of a presentation’s
storyboard is copied unmodified to a separate file. This file will be read
at runtime by the StateEngine node, that has been implemented to sup-
port the necessary runtime behaviour and is described in section 5.3.3. The
StateEngine node acts as a black box, taking event tokens, generated by
interaction components, as input and exposes the names of the currently
active states and available transitions.

This story-engine is the central part of the presentation, triggered by in-
teractions and triggering behaviours. Therefore, most of the engines created
to drive the presentation will be connected to the story engine with one of
their inputs or outputs.

CHAPTER 5. IMPLEMENTATION 73

Components and actors

Since components are essentially code templates, they can easily be processed
by XSLT to be included in the final presentation. For each instantiation of a
component (any actor element referencing the component in question), the
whole implementation body of the component is simply copied to the content
file.

If a marker for an input field (marked by the in element) is encountered,
the transformation script looks up the behaviours of all scenes, if any be-
haviour is defined on the given input. If no behaviour is defined, the in
marker is simply replaced by the default value for the given field, specified
in the actor element or the component definition file. If some behaviours
for the field are found, this means the field will change during runtime, de-
pending on the state of the story engine. In this case, engines are created
to control the value of the field, dependent of the current state of the story
engine. This case will be described in detail in the next section.

Locations for parts or sub-components are indicated by a sub marker
element in the component file. If such a marker is encountered, the transfor-
mation script performs a lookup in the actor element if any sub-components
for that part are defined. If this is the case, the processor will just continue
to create that sub-component in a recursive process, and, after processing
all children, continue with the current component. If no sub-components are
found, the marker element is simply ignored.

Output fields are not directly used in the component instantiation process.
Only if a connect behaviour or comparator interaction make use of the value
of the output field, a reference to the field is created, using the information
in the out marker element.

Behaviours

Since all behaviours are essentially controlling the value of a single field, they
can be implemented as engines controlling the specified field of an actor.
Since a single field can be controlled by multiple (sequential) behaviours,
a fan-in for values generated by behaviours has to be created to route all
value changes into the corresponding field. Open Inventor does not provide a
mechanism for fanning in multiple engine outputs into a single field, therefore
a FanIn node has been implemented, which takes up to 10 inputs of a given
type and routes only the one that was most recently changed to its output
(which is, in turn, connected to the input of the component).

Since we cannot rely on the fact that only 10 behaviours are defined for
each field (in fact, this limit is quickly reached even in simple presentations),

CHAPTER 5. IMPLEMENTATION 74

additional measures have to be taken to allow an arbitrary number of inputs
for each field. For each behaviour, the XSLT transformation script checks if
it’s position (starting at 0) in the list of all behaviours assigned to a specific
field is a multiple of 9. If this is the case, the last input of the current FanIn
node has been reached, and another FanIn node is created and connected
to the last input of the previous FanIn node. The behaviour engine is then
connected to the first input of the new node.

After the last behaviour has been written, the generated FanIn nodes have
to be completed by closing brackets. This is realized by a helper template
that generates as many closing brackets as FanIn nodes have been generated,
by recursively calling itself, outputting a closing bracket and reducing the
counter by 9 with every call.

The individual behaviours themselves are realized as engines, which are
triggered by changes in the story engine. If the state, that a given behaviour
should react on, has been reached, the behaviour is triggered (or, if a time has
been specified, the behaviour is triggered by an additional OneShot engine,
waiting for the specified period of time after the scene has been reached).
In the case of a set behaviour, the behaviour is realized by a Gate engine,
holding the new value and copying it to the output when triggered.

Animations are realized with interpolator engines, provided by Open In-
ventor. The interpolator engines linearly interpolate a value between a start-
ing value and an end value. The interpolation itself is driven by a OneShot
engine, interpolating it’s output from 0 to 1 in a given time frame. This
number is then used to control the interpolation of the field value.

Connections of fields are defined with the connect behaviour, and, as for
the set behaviour, realized with the Gate engine provided by Open Inventor.
In the case of field connections, the output of the source field is referenced in
the Gate engine as an input, while the enable field of the gate, that controls
if the value is copied to the output, is controlled by an On0ff engine reacting
to the current state of the story.

Figure 5.2 shows an example of the code that is generated to control a
single field by set, animate and connect behaviours in subsequent states.
This also illustrates how complex it would be to implement the high-level
features and concepts that APRIL provides directly in Open Inventor.

Interaction

Since all interactions generate input events for the story engine, all nodes
that represent the various interaction techniques have to be connected to the
StateEngine node in the presentation. Similar to the approach chosen for
behaviours, all interactions are connected using multiple nested FanIn nodes

CHAPTER 5. IMPLEMENTATION 75

DEF ball_model_Material Material { # from the component definition
transparency 0.0 # the default value from the actor element
= DEF val_ball_transparency SoFanIn { type MFFloat
<set actor="ball" input="transparency" to="1.0"/> in first:exit
in0 = DEF set_dOel24 Gate { type MFFloat
input 1.0
trigger = DEF trigger_d0el24 SoConditionalTrigger {
triggerString "first"
stringIn "" = USE StoryEngine.exitStates
}.trigger
}.output
<animate actor="ball" input="transparency" from="1.0" to="0.0"
begin="PT1.08" duration="PT2.0S"/>
inl = DEF anim_dOel32 InterpolateFloat {
inputO 1.0
inputl 0.0
alpha 0 = OneShot {
duration 2.0
disable TRUE = DEF start_d0el132 OneShot {
duration 1.0
trigger = DEF trigger_dOel32 SoConditionalTrigger {
triggerString "second"
stringIn "" = USE StoryEngine.currentState
}.trigger
}.isActive
trigger = USE start_dOel32.isActive
}.ramp
}.output
<connect actor="ball" input="transparency" master="ghost" output="transparency"/>
in2 = DEF connect_dOel46 Gate { type MFFloat
input = USE ghost_model_Material.transparency
enable = OnOff {
on = SoConditionalTrigger {
triggerString "third"
stringIn "" = USE StoryEngine.currentState
}.trigger
off = SoConditionalTrigger {
triggerString "third"
stringIn "" = USE StoryEngine.exitStates
}.trigger
}.is0On
}.output
}.out

Figure 5.2: Generated code to control a single field by set, animate and
connect behaviours. Comments have been added by the author to annotate
the code and show the original APRIL definitions.

CHAPTER 5. IMPLEMENTATION 76

to route all events to the eventIn field of the StateEngine. Interaction
nodes are outputting a string token, containing the name of the event that
has been generated.

For buttonaction elements, a button widget is created and placed on
the HUD of all displays. The HUD is rendered by placing its content in a
Separator, that contains an OrthographicCamera as its first node which
renders the content in a static, orthographic way, not affected by head-
tracking of the users.

Depending on the availability of the transition that the button is bound
to, it is dynamically hidden or shown to the user. Therefore, only buttons
that will actually trigger a transition in the story will be visible at any time
in the presentation. Additionally, all buttons are hidden during the enter
substate of any scene, since it has been defined that the enter section should
be guaranteed to execute and not be interruptible by user interaction.

Clickable hotspots are implemented as APRIL components, that can
be triggered by using any pointer defined in the setup configuration file.
The hotspot component has two SFBool outputs for detecting interactions,
touched and triggered. These outputs can be used for interaction by eval-
uating their value with an evaluator.

The evaluator interaction is a generic tool that can be used to trigger
changes in the story whenever an output of an actor fulfills a given condition.
Fields can be compared to a constant value or to other outputs of other ac-
tors. In Studierstube, the evaluator is implemented differently for different
field types — simple types simply use the ConditionalTrigger engine imple-
mented to support the story engine (see next section), while composed types
such as Vec3f use a Calculator engine to compare their values.

The remaining interactions, always and timeout, are implemented by
just triggering an event whenever the parent state is reached. This is accom-
plished by using a ConditionalTrigger, which will be explained in the next
section.

5.3.3 The story engine

To be able to realize the desired state-engine based run-time behaviour of
APRIL presentations, Open Inventor had to be extended by some nodes
that implement the desired functionality. This is the StateEngine node, for
providing a black-box implementation of a generic hierarchical state engine,
and some helper engines to support the complex trigger networks, controlling
behaviours and interactions, connected to the state engine.

The state engine has been realized in C++ and is a generic implementa-
tion of the necessary behaviour. The binding to Open Inventor is provided

CHAPTER 5. IMPLEMENTATION 77

through a separate adapter class, that exposes the necessary fields as an en-
gine (namely, an eventIn field for routing events into the state engine, and
the fields currentState, availableTransitions and exitStates to query
the current state).

In addition, a field is provided to specify the name of a file, from which
the specification of the state engine’s structure (defined in the APRIL story
format) should be read. This file is parsed by the generic state engine imple-
mentation with a SAX-compatible parser [33], which builds up an internal
representation of the state engine defined in the APRIL file. For this in-
ternal representation, the classes State, Transition and StateEngine are
used, together with the struct Region to represent one of possibly multiple
concurrent regions inside a state.

The basic interface of the C++ implementation is the event(string
token) method of the StateEngine class. When this method is called, with
the name of an event as an argument, a recursive lookup is performed on
all transitions currently available, in all substates. If a transition is found to
match the event, the transitions target state becomes the new current sub-
state of its parent state, following the transitions source state, which is now
inactive. The event () method is replicated in the Open Inventor adapter
by the eventIn field. Whenever this field changes, its value is simply routed
to the event () call of the encapsulated StateEngine. After processing the
event, the StateEngine is queried for the active states, which are written to
the currentState field.

To be able to generate event-strings in the Open Inventor engine net-
work, a versatile helper class, named ConditionalTrigger is provided. The
ConditionalTrigger has inputs for every primitive type (MFBool, MFInt32,
MFFloat and MFString), and inputs for reference values of these types. The
semantics of the ConditionalTrigger is as follows: if any of the input val-
ues of all used input types are equal to their reference value, the trigger
output of the engine fires. In addition, the string value set in the token field
is copied to the tokenOut output.

Usually, the ConditionalTrigger is used with only one input type con-
nected. Whenever the input reaches its reference value (other comparisons,
like LESS_THAN or GREATER_THAN can also be configured), the tokenOut out-
put is set to the string defined in the token field. If the token field contains
an event name, and the tokenOut field is connected to the eventIn field of
the state engine, this can be used to effectively generate an event in the state
engine whenever a certain condition is met.

The ConditionalTrigger can also be used the other way round: if the
currentState output of the state engine is connected to the stringIn field,
and the triggerString field contains a state name, the engine will trig-

CHAPTER 5. IMPLEMENTATION 78

ger every time the given state becomes active. This can be used to trigger
behaviours, as shown in figure 5.2.

Chapter 6

Results

In this chapter some early results accomplished with the APRIL authoring
framework will be presented. Three applications will be presented, intended
for three different target platforms. The first presentation deals with an
archaeological subject, the “Heidentor” in Carnuntum/Austria, which will
be presented in a virtual showcase system. The second scenario implements
the well-known “Magic Book” scenario, which has been used for a long time to
demonstrate the capabilities of ARToolkit, allowing children to interactively
explore a story in a (real) book. In the third scenario, APRIL is used to
control the content of an AR outdoor tourist guide application, explaining
details about the Resselpark in Vienna.

6.1 Scenario: The Heidentor in the virtual
showcase

The Heidentor (Heathen Gate) [40] is an ancient roman ruin, located in
Petronell-Carnuntum/Austria, and probably the most well known roman ruin
in Austria (Fig. 6.1). Originally, the Heidentor was not a gate, but it had
4 pylons forming a so called tetrapylum, a double-passage arc, located at
the intersection of two major roads. The pylons were supporting a 2-floor
building on top of them. Today, only 2 of the pylons are still intact, and
form an impressive, gate-like ruin, which is visible from far away. The exact
original purpose of the Heidentor remains unclear; it might have been a
tomb or a triumphal arch. Due to its impressive size and location in the
countryside, it has inspired artists and storytellers over the last centuries,
and a lot of myths focus on this historical site.

For the virtual showcase, we have built a scale model of the current Hei-
dentor ruin, to be augmented with additional explanations and reconstruc-

79

CHAPTER 6. RESULTS 80

Figure 6.1: The Heidentor ruin, located in Carnuntum/Austria. A low-tech
augmentation device is used on site to show a possible reconstruction of its
original state.

tions of the original building. Users should be able to interactively explore
the model and discover explanations about the historical facts as they go
along. The interactive features should help to gain attention and raise inter-
est in the subject by offering the possibility to explore it individually instead
of just watching a linear presentation.

The scale model was built out of cardboard based on exact archaeological
plans and measurements. It was then laser-scanned to obtain a virtual model,
to be used as a proxy for the real content for correct lighting and occlusion
effects (see section 2.2.1). In addition, the virtual model can be used for
purely virtual presentations outside the showcase and during development of
the presentation as a placeholder for the real contents of the showcase.

For the virtual part of the presentation, we use two different historical
reconstructions of the original building, as well as photographs, sketches,
and virtual models of a tombstone and a statue. After the introduction, the
visitor can either use virtual buttons to advance the presentation in a linear
fashion, or use the provided tools for interactive exploration to get additional
explanations for certain parts of the building.

Since the model is enclosed inside the showcase, visitors cannot interact
directly in the space of the model. Instead, a virtual laser pointer is used
to enable users to point at parts of the model that they are interested in

CHAPTER 6. RESULTS 81

(Fig. 6.2). A 6DOF tracking device is used to control the raypicker, so it
does not have to be assigned to a specific display in the setup configuration
file, and is available to all users of the presentation. When a part is se-
lected by the laser pointer, it is highlighted and the appropriate information
is shown. This might be an image or a video displayed on a plane inside
the showcase, possibly accompanied by audio commentary, or a whole scene
involving virtual actors and audiovisual information.

Figure 6.2: Using a virtual laser pointer to explore additional information.
Here, a sketch of the reconstruction of a similar building is shown.

Another possibility for user interaction is using a virtual clipping plane, to
“cut away” the virtual model and make the real model underneath it visible
(Fig. 6.3). To realize the clipping plane effect, a custom component has been
implemented that provides geometry clipping of its children. Position and
orientation of the clipping plane are connected to a station that can be
used to control its location. The clipping plane helps the visitors understand
the relationships between the ruin that can be seen today, and the original
state of the building. The same technique can also be used to blend between
and compare different possible reconstructions of the same building.

6.2 Scenario: A magic book

The original magic book presentation, created by Billinghurst et. al. [16],
used the ARToolkit optical tracking system to create an augmented reality
reading experience for children: Markers were attached to the pages of a
book, and through a set of video-see-through glasses, the user could explore
virtual models “attached” to the pages of the book. Additionally, by pressing

CHAPTER 6. RESULTS 82

Figure 6.3: Blending between the real model and its reconstruction with a
virtual clipping plane.

a button, the user could “dive into” the page and explore a VR presentation
of the story.

Our magic book scenario was realized on a desktop setup, using a move-
able webcam to capture the book and display the image on the computer
screen. With this approach, multiple users at the same time can view the
presentation. In addition to the markers on the pages, two interaction mark-
ers were used: a “read” marker, which, when put onto the current page,
would trigger an audio file playback, reading the story of the current page.
The other marker, when put on top of the page, would display additional
geometry, illustrating the story.

Figure 6.4: The magic book application.

CHAPTER 6. RESULTS 83

In the storyboard, transitions from an “idle” state, where no page-markers
are visible, to each of the pages, which were modelled as separate states, had
to be taken into account. Additionally, transitions from each page to all the
other pages, and to the idle state, were added to the storyboard. This would
allow the user to browse through the book in a non-linear manner. The
alternative would have been to only allow a linear path through the book,
displaying an error message when the intended order had not been followed
by the user.

Each of the scenes for the pages was further divided in two concurrent
substates — whether the “read” marker was visible, and whether the “content”
marker was visible. The resulting state engine (for simplicity containing only
two pages) is shown in figure 6.5.

ARToolkit generates events only when markers are visible — no event
is generated, when a marker is not visible any more in the camera image.
Therefore, the detection of marker visibility had to be implemented on the
OpenTracker level: if for a given time span (800 milliseconds) no updates of
a marker’s position are received, the marker is considered to be invisible, and
it’s position information is set to a fixed value, outside the visible area of our
application. In the interactions section, we can then just use an evaluator,
to check whether a certain marker is at the “invisible” position, and react
accordingly.

For the behaviours, the subscenes representing the visibility of the in-
teraction markers simply switch the visibility input field of the model
actor, or the play input of the sound actor for that scene to FALSE or TRUE,
reflecting the state of the corresponding marker.

6.3 Scenario: Outdoor tourist guide

For the third scenario presented here, the goal was to interface with an ex-
isting Studierstube application: An outdoor tourist application, tracking the
user by GPS, developed by Reitmayr [62]. While this application provides
already basic capabilities for overlaying graphics in the HUD of the user or in
the environment, creation of sophisticated content or stateful presentations
like guided tours was, up to now, tedious.

To allow the tourist application to integrate with the APRIL presentation,
a component had to be developed that acts as an interface between the native
Studierstube application and the presentation. This component interacts
with the navigation application through global fields, a mechanism provided
by Open Inventor to create fields that are accessible from any point in the
global scenegraph. The navigation application creates these global fields, and

CHAPTER 6. RESULTS 84

‘ nix_ca

seite_eins

Seite 1

vorlese_marler_weg

Sound abspielen
vorlese_marler

Sound stoppen

nix_da

seite_zwei story_marlker_weqg
- 30 Bild { Aniarmtion MICHT arzeigen 3D Bild f Animation anzeigen

‘ story_mailer

eite ei . .
seite_zwei seite_eins

Seite 2

vorlese_marler_weg -
Sound stoppen Sound ahbspielen

vollese_marlker

- — - " story_marker_weg - — -
30 Bild 7 Animation MICHT arzeigen 3D Bild 7 Animation arzeigen

‘ story_imarlcer J

Figure 6.5: The storyboard of the magic book application. For simplicity,
only the states and transitions for two pages are shown.

CHAPTER 6. RESULTS 85

outputs the navigation data (such as the position of the user, or the name of
the current waypoint) to these fields. The global fields are referenced in the
APRIL navigation component, and can therefore be read from and written
to from within the APRIL presentation.

The story is primarily driven by the user’s position, and depending on
the selected navigation mode: in the guided tour mode, the user is guided
by Clara, out virtual tour guide, from one interesting waypoint to the other.
The system always waits until the correct waypoint is reached, to continue
with the presentation. In the free mode, the user can walk around freely
in the environment, and will be notified every time she comes close to some
interesting place or artifact.

Additional components have been developed for interactive content: to
simulate spatial audio, the position information, provided by the navigation
component, is fed into a Calculator engine to calculate the distance from
the sound source. This information is then connected to the volume input of
the sound component, increasing the volume as the user comes closer to the
audio content.

Chapter 7

Conclusions and Future Work

In the previous chapters, a novel authoring approach for Augmented Reality
and Virtual Reality presentations has been presented. Support of multiple
AR systems and setups, explicit structuring of the presentation through a
hierarchical, concurrent state engine, used as a storyboard as well as re-usable
components and the flexible binding of interaction methods to transitions of
the state engine are the key features of the proposed solution.

In practice, the explicit structuring of the presentation, accomplished
by using standardized UML-statecharts as a storyboard, allows even non-
programmers to invent and implement complex, interactive presentations.
Additionally, through structuring the story explicitly (in contrast to the im-
plicit definition of presentation behaviour that can be found in scripting or
hypermedia solutions), the presentation behaves deterministic and the overall
state of the story can, at any point in time, be deduced from the individual
substates that are currently active. This has helped authors with debug-
ging their presentations, and allows teamwork and an integrated workflow,
including various professionals from different domains in the design process,
by using the UML storyboard as a central artifact for communication.

Another design choice that has a great influence on the possible solutions
that can be realized with APRIL is the decision to not provide a proprietary
content format, but support a generic component model that can make use
of whatever content format the target platform supports. While this means
that components have to be re-implemented for different runtime platforms,
the chosen approach allows component implementers to optimize their com-
ponents for the given target platform and use special features that are only
available on that specific system. The alternative solution, to create a generic
(XML-based) content format that can be translated to all runtime platforms,
would have meant that only the minimum subset of features, supported by all
platforms, could have been supported. Additionally, such a standard would

86

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 87

have to be maintained and updated continuously, to reflect the current state
of the art of realtime rendering platforms. By using the platform’s native
content format, improvements and new developments can be used immedi-
ately by the developer, without having to wait for the APRIL specification
to evolve.

The rationale behind providing the component model was to provide a
mechanism for extending the features of APRIL beyond the anticipated needs
of presentation developers. If only a fixed set of features or content types
would be provided (e.g. models, images, video, sound and transformation
groups), these could be represented by elements provided by the APRIL
specification. However, presentation developers would then be constrained
to use exactly these features, and could not invent new content types. As we
saw in the results section, this was already necessary to provide the clipping
plane feature of the Heidentor presentation or the proxy component of the
pathfinding application for the outdoor tourist guide.

In contrast to actors, behaviours and interactions are not extensible by
using a component model, but limited to only those provided by the APRIL
language. For behaviours, the four provided basic types — set, animate,
connect and control — and the possibility to arrange them on a timeline
seem to cover all needs of controlling an input field of an actor. For so-
phisticated calculations of or user interaction with an input field’s value,
the field can always be connected to an output of a custom component that
performs the necessary calculations. For interactions, advanced presentation
authors can also encapsulate user interface elements in custom components,
and use an evaluator interaction to trigger state changes. However, since
user interaction is usually more complex that simply calculating or comparing
field values, and also non-programmers may want to use different and more
sophisticated interactions for their presentations, the catalog of interaction
concepts provided by APRIL should be continuously expanded to include
new techniques.

Another key feature of the design of APRIL is the possibility to separate
the definition of a presentation’s content and the description of the hardware
setup the presentation should run on. This allows users to run a single pre-
sentation on different setups, or a single setup description file to be used by
several presentations. However, we are facing a common computer science
problem here: if we want to keep a loose coupling between the two fields,
it is not possible to reference elements from one file (e.g. a station in the
hardware description) in the other — authors cannot be sure that the refer-
enced element will exist in the setup description file that is used for running
the presentation. One way to deal with this problem is the use of naming
conventions — if all APRIL users agree to always name the headtracking

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 88

elements in their setup files head1, head?,. .., then the headtracking data of
the first user can always be referenced with the id head1. If no such element
is found, an error message can be generated, and the presentation will not
run.

A better way to deal with the issue of loose coupling is the introduction
of roles: to establish a fixed, well-defined roles, like, for example, HEAD as
the headtracking of the default user, and HEAD1 as the headtracking of the
primary user. Roles are assigned to elements in addition to their id, and any
element can have multiple roles assigned to it. Additionally, default roles will
be assigned if no roles are explicitly specified, for example both roles HEAD
and HEAD1 can, by default, be assigned to the first headtracking element
encountered in the presentation. For creating a reference, a list of roles is
specified that should be used to provide the necessary reference. This list
specifies the roles that should be looked for, in order of decreasing priority.
For example, the list "HEAD1, HEAD" would cause the APRIL runtime to first
look for the headtracking element of the primary user, and if no such element
is found, use the default headtracking element of the specific hardware setup
(note that in most simple setups, this will probably be the same element).
Only if no element is found that fulfills any of the criteria, an error would be
produced. An additional attribute could be used to specify if in the case of
an error the presentation cannot run, or if it should be ignored.

Currently, no mechanism for assigning and referencing roles is provided
by APRIL. For realizing complex presentations that should run on multiple,
inhomogeneous setups, the concept of roles would allow to keep the coupling
between the presentation’s content and the hardware description low, while
at the same time allowing the detailed specification of complex presentation
behaviour and user interaction.

In other cases, it is also not possible to separate hardware and content de-
scriptions as clearly as desirable. Sometimes, even virtual content can be part
of a hardware setup — for example, in desktop setups used for authoring and
debugging presentations for other platforms, one might want to reproduce
some of the properties of the target platform (for example the dimensions and
geometry of the mirror optics of a showcase system) as virtual content, that
is in this case not part of the presentation, but part of the specific hardware
setup. In the future, we might want to introduce the possibility of placing
content also in the hardware description file, to allow the creation of more
sophisticated simulator setups.

Another are where APRIL is currently limited in its possibilities is the
placing of content in the environment: actors can either be placed on the
HUD of the user, or in the world, using absolute world coordinates to specify
the location and size of the object. While group components, that allow

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 89

to transform a group of children simultaneously and are the building blocks
of a tree-like scenegraph structure, provide some means to structure a pre-
sentation’s content, they are not the versatile mechanism for specifying the
intended location of a presentation’s content that we are looking for. Instead,
the concept of stages could be introduced, allowing authors to specify pos-
sible locations for content in the setup description file. Examples for stages
would be the world space, the HUD, a small model of the world, tracked
by a marker, or a 2-dimensional plane, displaying rendered content (like a
TV-screen placed in the AR scene). To reference the target stage(s) for a
given actor, the roles mechanism, explained above, could be used to avoid
strong coupling between content and hardware description files.

Regarding the reference implementation, future work would primarily fo-
cus on supporting multiple operating systems and platforms. While Studier-
stube already runs on the Linux operating system, and it would therefore be
trivial to make APRIL also work on this platform, the support of handheld
devices for running AR presentations is more challenging. While a large and
complex system like Studierstube will not run on the handheld devices that
can be expected to be available in the next years, realtime graphics libraries
like OpenGL and Open Inventor have already been ported to these platforms.
It would therefore be a goal for the future to provide an “APRIL player light”
version, that runs APRIL presentations on handheld devices, providing all
features that can be supported on these devices (for example, it will not be
necessary to provide multiple displays or headtracking for handheld devices).

Finally, the preferred way to create AR presentations is probably not
that of editing XML files manually. While APRIL provides a format for the
description of content, behaviours and interaction, it would be very much de-
sirable to create a visual authoring tool, that makes us of the APRIL format
and its features, but allows authors to interactively place actors in space and
wire their interactions and behaviours by providing a visual representation
for the abstract concepts of APRIL. Such an authoring platform would use
APRIL as its file format to save and load presentations, and offer the author
an intuitive way to explore the full power of the proposed solution.

Appendix A

The annotated graphical
APRIL schema

90

APPENDIX A. THE ANNOTATED GRAPHICAL APRIL SCHEMA 91

Appendix B

The APRIL language
specification

B.1 Global Simple Types

FloatList List of double values, base type for restricted data types
like vectors, rotations, etc.

IntegerList List of integer values, useful for list of indices.

Vec2f A simple type storing two float values, separated by
spaces.

Vec3f A simple type storing three float values separated by
spaces.

Vecdf A simple type storing four float values separated by
spaces.

Vec2i A simple type storing two integer values separated by
spaces.

ScreenSizeType | Either two numbers, indicating absolute pixels, or two

percentage values, or the keyword ”fullscreen”.

B.2 Top Level Elements

april

The root element of every APRIL file.

presentation

This is the top-level wrapper element of a APRIL presentation.

92

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION

Attributes

attribute | type description

id xs: 1D Unique ID for this presentation. Depending
on the implementation of the transformation
of APRIL to a specific platform, this will be
used for generating file- or folder names for
the resulting files.

name xs:string | The name of the presentation. This can

be used by target platforms as a human-
readable title for the presentation.

Allowed children

story, cast, behaviors, interactions

B.3 Hardware Description Types

TrackableType

93

Base type for trackable objects. Allows specification of an OT source either
by reference or by inline OT code.

Attributes

attribute | type | description

id ID to identify this element.

otsource DEF name of an OpenTracker node in the

included OpenTracker file (or an earlier con-
figured inline OT node)

B.4 Hardware Description Elements

setup

Wrapper element for input and output device configuration. The config sec-
tion of the APRIL file specified as src is imported (if present), and overlayed
with the information of the local config section (this means that local ele-
ments with the same id as in the src file, and their child-elements, override
the elements specified in the src file). The low-level tracking configuration is
done in the OpenTracker file specified with the otsource attribute, or inline
in the corresponding interaction elements (see below). If there is no setup
element, APRIL looks for a file called ”default.aps” in the presentation’s

directory.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 94

Attributes

attribute type description

src xs:anyURI | URI of external file containing the config sec-
tion to use. If a src is specified, any inline
specifications will be ignored and the config-
uration specified in the given file will be used.

otfile xs:anyURI | URI of OpenTracker config file to use as a
basis for the tracking configuration. Named
OpenTracker nodes referenced in the APRIL
file are referenced from this file.

multicast-address | xs:string

multicast-baseport | xs:integer

Allowed children
host

host

Wrapper element for all devices connected to a single computer.

Attributes
attribute | type description
name xs:string
ip xs:string
platform
master xs:boolean

Allowed children

screen, display, pointer, station, button

screen

Configures a VGA output port.

Attributes

attribute | type

description

resolution | Vec2i

Screen resolution in pixels.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 95

display

Defines a display for rendering content on. The containing displaytracking
and /or headtracking elements define optional tracking, this elements config-
ures the position of the display window on an output port, its resolution and
the default camera pose in the world.

Attributes

attribute type description

id xs:1D ID to uniquely identify this display.

screen xs:int The screen number this display window
should be rendered on.

screenPosition ScreenSizeType | position of the top left corner of the display
window on the screen in pixels or percentage.

screenSize ScreenSizeType | Size of the display on screen in pixels or per-
centage.

stereo xs:boolean Flag indicating if frame-interleved stereo
should be used.

worldPosition Vec3f The position of the center of the image plane
in world coordinates. Overridden if a dis-
playtracking element is used.

worldSize Vec2f Size of the image plane in the world.

worldOrientation | Vecdf Orientation of the image plane in the world.
Overridden if a displaytracking element is
used.

eyeOffsetLL Vec3f Offset of the left eye for a stereo display.

eyeOffsetR Vec3f Offset of the right eye for stereo displays.

viewpointPosition | Vec3f The world position of the viewpoint. Over-
ridden if a headtrtacking element is used.

mode "AR” (default value) displays the actors of
the presentation. "VR” also renders the
stage elements for a virtual reality view onto
the scene.

debug xs:boolean If set to true, debug information is shown in
the display.

videoBackground | xs:boolean

Allowed children
headtracking?, displaytracking?

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 96

headtracking
(of Type: TrackableType)

Configures the headtracking for the parent display element.

displaytracking
(of Type: TrackableType)

Configures tracking of the center of the display.

pointer
(of Type: TrackableType)

If used as a child element of a display element, it configures a pointing de-
vice for the display, which can be used to interact with widgets or point
on real/virtual things. If used as a direct child of the host element, this is
a general, tracked pointing device that can be used for all displays of the
application.

Attributes
attribute | type description
type
debug xs:boolean

station

(of Type: TrackableType)

Defines a tracked artifact like a marker.

Attributes
attribute | type description
debug xs:boolean

button

(of Type: TrackableType)

A hardware button that can be used for user input.

Attributes

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 97

attribute | type description

key xs:string | If no OpenTracker source for the button is
given, this defines the keyboard key to use as
an input for this button. If an OpenTracker
source is given (by inline OT code or the ot-
source attribute), it defines the button num-
ber to use (default=0)

function xs:string

B.5 Storyboard Elements

story

The content of this element specifies the logic (or the ”story”) of the presen-
tation as a hierarchical state machine. The syntax is derived from XMI, the
official UML-to-XML serialization syntax, but simplified for better readabil-

1ty.

cast

This element holds all references to used media resources (models, images,
sounds, scripts etc.).

stage
(of Type: VisibleActorType)

Defines geometry as a proxy for real world objects. In augmented reality
applications, this is not displayed, but used for correct rendering of intersec-
tions between virtual and real content, for example. In VR and authoring
setups, these objects may be rendered as regular scene objects.

Attributes
attribute | type | description
position Vec3f | Position of the object in world coordinates.
orientation | Vecdf | Orientation of the object in the world.
scale Vec3f | Scale factor for this object.

scene

(of Type: Scene)

A state in a hierarchical state machine.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 98

transition

A transition from one state to another, specifying the transition event name.

Attributes
attribute | type description
event xs:Name | Name of the event to trigger the transition.
source xs:Name | Id of the source scene of the transition.
target xs:Name | Id of the target scene of the transition.
guard xs:string | A guard string, that can contian the id of an-
other state. This means that the transition
is only available if the story is currently in
this state.
concurrentScene

(of Type: Scene)

Wrapper element to seperate multiple concurrent sub-engines inside a super-
state.

annotation
Inside this element, any annotation might be added to describe what is hap-
pening inside this scene.

actor

Defines an actor of the presentation as an instance of an APRIL component.
Inside the actor element, default values for its input fields can be set by using
input elements.

Attributes
attribute | type description
id xs:1D Unique id of the actor.
src xs:anyURI | Source of the component definition file.

Allowed children

input

input

Defines the default value for a specific input for this presentation.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 99
Attributes
attribute | type description
id xs:normalizedString | Id ofthe field to set.
value xs:string Default value of that field.
children
Attributes
attribute | type description
id xs:string

B.6 Behaviour Types

ActionType

Base type for set, animate, connect and control elements.

Attributes
attribute | type | description
input Which input field of the actor to set.
actor The target actor.

LabelType

Base type for entry, exit, do elements.

B.7 Behaviour Elements

behaviors

The behaviours section binds behaviours of objects to states of the story

logic.

Allowed children

behavior

behavior

A behaviour is a set of property changes bound to a state of the tory logic.
Whenever the state is entered, the actions defined in the "entry” sub-element

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 100

are performed. If the story is still in this state after perfomring the entry
actions, the "do” actions are performed, and can be interrupted at any time
by leaving the state. Upon leving the state, the "exit” actions are guaranteed
to perform.

Attributes
attribute | type description
scene xs:IDREF | Id of the scene this behaviour should be

bound to.

Allowed children

entry?, exit?, do?

entry
(of Type: LabelType)

The "entry” actions are performed when the associated state is entered. Ac-
tions defined here are guaranteed to perform, now matter how long the story
remains in this state. Actions should therefore only be ”set” and ”connect”,
and very short ”animate”ions.

Attributes

attribute | type description

duration | xs:duration | Allows explicit setting of the duration of the
entry substate. If this is not used, the dra-
tion is calculated from the set and animate
elements inside.

do
(of Type: LabelType)

Actions in this group are performed as long as the story is in the associated
state. Note that actions might not be called at all, if the state is immediately
left. This is the only place where looped animations make sense, because they
can be cancelled by leaving the state.

exit
(of Type: LabelType)

Actions defined here are executed when the associated state is left. They are
guaranteed to perform.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION

set

(of Type: ActionType)

Sets the given input of a component instance to the given value.

Attributes
attribute | type description
to xs:string New value for the input.
time xs:duration | Time after enter/exit the change should hap-
pen.
animate

(of Type: ActionType)

Animates the given input.

For further information, see the SMIL animation

spec.
Attributes
attribute | type description
begin xs:duration | The start time of the animation, measured
from the enter/exit time of the state.
duration | xs:duration | The duration of the animation.
to xs:string Target value of the input.
by xs:string Relative target value of the input. NOT IM-
PLEMENTED
calcMode | xs:token CalcMode like defined in the SMIL anima-
tion spec. NOT IMPLEMENTED, always
linear at the moment.
from xs:string
connect

(of Type: ActionType)

Connects an input of an actor to an output of another actor (master). The

connection remains for the duration of the container state.

Attributes
attribute | type description
master xs:IDREF | Master actor to connect the field from.
output xs:string | Which output of the master actor to use.

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 102

control

(of Type: ActionType)

Allows the user to control an input of an actor. If the id of a station is
given, this station is used to control the input using its position or orienta-
tion output, depending on the dimensionality of the field; Float, Vec2f and
Vec3f are using the position output, Rotation and Vec4f the rotation output),
otherwise PUC is used to control the input.

Attributes

attribute | type description

min xs:anySimpleType | Lower limit of the value range that can be
set.

max xs:anySimpleType | Upper limit of the value range that can be
set.

label xs:string A label shown to the user together with the
control for changing the input.

station xs:string ID of a station (defined in the setup element)
to be used to contol the property. Station in-
puts can only be used to control inputs with
types SFVec3f or SFRotation.

B.8 Interaction Types

Interaction
Attributes
attribute | type description
auto xs:boolean | If set to true, the transition triggers automat-

ically if it is the only available transition.

B.9 Interaction Elements

interactions

Allowed children

event+

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 103

event

Attributes

attribute | type | description

id xs:ID | ID of the transition this interaction is

mapped to.

Allowed children

disabled?, always?, timeout+,

disabled
(of Type: Interaction)

This disables a transition. Same as leaving it empty.

always
(of Type: Interaction)

This always triggers the transition immediately.

timeout
(of Type: Interaction)

This triggers the associated transition automatically after a specified time.

Attributes
attribute | type description
time xs:duration | Time after which the transition should trig-
ger.
buttonaction

(of Type: Interaction)

This creates or uses a button when the transition becomes available, that
can be pressed by the user to trigger the transition.

Attributes

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION 104

attribute | type description
virtual xs:boolean | Whether to create a virtual button. DEP-
RECATED.

caption xs:string | The label printed on the (virtual) button.
id xs:string

rayaction
(of Type: Interaction)

This allows the user to use a raypicker to point at objects in the scene. If
the specified actor or stage object is selected, the transition fires.

Attributes
attribute | type description
target xs:IDREF | ID of the actor or stage object that must be
selected to trigger the transition.
touch

(of Type: Interaction)

Attributes
attribute | type description
source xs:string
target xs:string
radius xs:float
evaluator

(of Type: Interaction)

Evaluates an output of an actor or tracking element (station, head- or display-
tracking) against a fixed value or another output. If the expression evaluates
to true, the transition fires.

Attributes

105

APPENDIX B. THE APRIL LANGUAGE SPECIFICATION

attribute | type description

source xs:IDREF | Actor or tracking element that should be
used as input.

output xs:string | Output field of the source to use. For track-
ing elements, position and orientation are
available outputs.

comparator The kind of comparison to perform. One
of equal (default), lessThan, greaterThan,
lessOrEqual, greaterOrEqual, notEqual,
isInside (bounding box check), notInside.

value xs:string | The fixed value the source output should be
compared to.

source2 xs:IDREF | A second actor or tracking element that de-
livers the output for comparison.

output2 xs:string | The output of the second source to be used.

Bibliography

[1] ArgoUML website. http://argouml.tigris.org/, November 2003.
[2] The VRMLIT specification. Specification 14772-1:1997, ISO/IEC, 1997.

[3] Authorware website. http://www.macromedia.com/software/authorware/,
November 2003.

[4] Director website. http://www.macromedia.com/software/director/,
November 2003.

[5] Dramatica website. http://www.dramatica.com/, December 2003.
[6] FMOD website. http://www.fmod.org, November 2003.
[7] OpenAL website. http://www.openal.org/, November 2003.

[8] OpenTracker website. http://www.studierstube.org/opentracker, May
2003.

[9] Dynasight webpage. http://www.orin.com/3dtrack/, January 2004.
[10] Aristoteles. Poetik. Philipp Reclam jun., Stuttgart, Germany, 1994.

[11] A.R.T. GmbH. ART website. http://www.ar-tracking.de/, January
2004.

[12] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Mac-
Intyre. Recent advances in augmented reality. Computers & Graphics,
November 2001.

[13] R. T. Azuma. A survey of augmented reality. Presence, Teleoperators
and Virtual Environments 6(4):355-385, August 1997.

[14] S. Beckhaus et al. alVRed — Tools for storytelling in virtual environ-
ments. Technical report, Fraunhofer IMK, Sankt Augustin, 2002.

106

BIBLIOGRAPHY 107

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

T. Berners-Lee and D. Conolly. Hypertext markup language, version
2.0.

M. Billinghurst, H. Kato, S. Campbell, D. Hendrickson, W. Chintham-
mit, I. Poupyrev, and K. Takahashi. Magic book: Exploring transitions
in collaborative AR interfaces. In Proceedings of the Siggraph 2000 Con-
ference, New Orleans, Louisiana, July 2000.

O. Bimber and B. Frohlich. Occlusion shadows: Using projected light
to generate realistic occlusion effects for view-dependent optical see-
through displays. In Proceedings of the International Symposion on
Mized and Augmented Reality (ISMAR) 2002, pages 186-195, Darm-
stadt, Germany, October 2002. ACM and IEEE.

O. Bimber, B. Frohlich, D. Schmalstieg, and L. M. Encarnacao. The
virtual showcase. IEEE Computer Graphics and Applications, 21(6):48—
55, November 2001.

O. Bimber, A. Grundhofer, G. Wetzstein, and S. Knodel. Consistent
illumination within optical see-through augmented environments. In
Proceedings of the International Symposion on Mized and Augmented
Reality (ISMAR) 2003, pages 198-207, Tokyo, Japan, October 7-10
2003. IEEE.

D. A. Bowman and L. F. Hodges. User interface constraints for immer-
sive virtual environment applications. Technical Report GITGVU-95-
26, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, Atlanta, 1995.

D. A. Bowman and C. A. Wingrave. Design and evaluation of menu
systems for immersive virtual environments. In Proceedings of IEEE
Virtual Reality, 2001.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, et al. Extensi-
ble markup language (XML), version 1.0 — W3C recommendation.
http://www.w3.org/TR/REC-xml/.

J. Clark. XSL transformations (XSLT) version 1.0 — W3C recommen-
dation. http://www.w3.org/TR/xslt, 1999.

J. Clark and S. DeRose. XML path language (XPath), version 1.0 - W3C
recommendation. http://www.w3.org/TR/xpath, November 1999.

BIBLIOGRAPHY 108

[25]

M. Conway, R. Pausch, R. Gossweiler, and T. Burnette. Alice: A rapid
prototyping system for building virtual environments. In Proceedings
of ACM CHI'94 Conference on Human Factors in Computing Systems,
volume 2, pages 295-296, April 1994.

R. Dietz. CMIL specification, version 0.9. http://www.oacea.com/cmil,
December 2003.

ECMA International. ECMAScript language specification, 3rd edition.
http://www.ecma-international.org/publications/standards/Ecma-
262.htm, December 1999.

L. Egri. The Art of dramatic writing. Simaon and Schuster, New York,
1946.

L. M. Encarnacao, A. Stork, D. Schmalstieg, and R. Barton. The virtual
table - a future CAD workspace. In Proceedings of Computer Technology
Solutions conference, Michigan, Detroit, USA, September 13-19 1999.

T. Fahmy and I. Barakonyi. AR videoconferencing. TODO.

D. C. Fallside. XML schema part 0: Primer — W3C recommendation.
http://www.w3.org/TR/xmlschema-0/, May 2000.

M. Fiorentino, R. Amicis, and G. Monno. Spacedesign: A mixed reality
workspace for aesthetic industrial design. In Proceedings of the IEEE
and ACM International Symposium on Mized and Augmented Reality
(ISMAR) 2002. IEEE Computer Society, 2002.

A. S. Foundation. Apache xerces XML parser, version 2.5.0 — website.
http://xml.apache.org/xerces-c/index.html, February 2004.

A. Fuhrmann, G. Hesina, F. Faure, and M. Gervautz. Occlusion in
collaborative augmented environments. In Proceedings of the 5" EU-
ROGRAPHICS Workshop on Virtual Environments, pages 179-190, Vi-
enna, Austria, 1999. Springer.

A. Fuhrmann, J. Prikryl, R. Tobler, and W. Purgathofer. Interactive
content for presentations in virtual reality. In Proceedings of the ACM
Symposium on Virtual Reality Software € Technology, 2001.

D. Gulbransen et al. Using XML. Que Publishing, Indianapolis, Indiana,
second edition, 2002.

BIBLIOGRAPHY 109

[37]

S. Giivem and S. Feiner. Authoring 3D hypermedia for wearable aug-
mented and virtual reality. In Proceedings of the 7th International Sym-
posium on Wearable Computers, pages 118-126, White Plains, NY, Oc-
tober 21-23 2003. IEEE.

M. Haringer and H. T. Regenbrecht. A pragmatic approach to Aug-
mented Reality authoring. In Proceedings of ISMAR 2002, Darmstadt,
Germany, 2002. IEEE.

G. Hesina, D. Schmalstieg, and W. Purgathofer. Distributed Openln-
ventor : A practical approach to distributed 3D graphics. In Proceedings
of the ACM VRST"99, pages 74-81, London, UK, December 1999.

W. Jobst. Das Heidentor von Carnuntum. Verlag der Osterreichischen
Akademie der Wissenschaften, Vienna, 2001.

H. Kato and M. Billinghurst. Marker tracking and HMD calibration for a
video-based augmented reality conferenencing system. In Proceedings of
IWAR’99, pages 85-94, San Francisco, CA, USA, October 21-22 1999.
IEEE CS.

H. Kato and M. Billinghurst. ARToolKit website.
http://www.hitl. washington.edu/artoolkit/, May 2003.

H. Kato, M. Billinghurst, K. Morinaga, and K. Tachibana. The effect of
spatial cues in augmented reality video conferencing. In Proceedings of
the 9th International Conference on Human-Computer Interaction (HCI
International 2001), New Orleans, LA, August 5-10th 2001.

H. Kaufmann, D. Schmalstieg, and M. Wagner. Construct3D: A virtual
reality application for mathematics and geometry education. FEducation
and Information Technologies, 5(4):263-276, December 2000.

M. H. Kay. Saxon website. http://saxon.sourceforge.net/, December
2003.

M. Keckeisen, S. L. Stoev, M. Feurer, and W. Strafler. Interactive cloth
simulation in virtual environments. In Proceedings of IEEE Virtual Re-
ality 2003, 2003.

U. Kretschmer, V. Coors, U. Spierling, D. Grasbon, K. Schneider, I. Ro-
jas, and R. Malaka. Meeting the spririt of history. In Proceedings
of VAST 2001, Glyfada, Athens, Greece, November 28-30 2001. Eu-
rographics.

BIBLIOGRAPHY 110

[48]

[49]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

F. Ledermann, G. Reitmayr, and D. Schmalstieg. Dynamically shared
optical tracking. In Proceedings of ART’02, Darmstadt, Germany,
September 30 2002.

B. Maclntyre and M. Gandy. Prototyping applications with DART, the
designer’s augmented reality toolkit. In Proceedings of STARS 2003,
pages 19-22, Tokyo, Japan, October 7 2003.

F. Mantovani. VR learning: Potential and challenges for the use of 3D
environments in education and training. In Towards CyberPsychology:
Mind, Cognitions and Society in the Internet Age, Amsterdam, NL,
2001. 1OS Press.

D. Norman. The Design of Everyday Things. Doubleday, New York,
NY, 1990.

Object Management Group. Unified modeling language (UML), ver-
sion 1.5. http://www.omg.org/technology/documents/formal /uml.htm,
June 2003.

Object Management Group. XML metadata interchange (XMI), version
2.0. http://www.omg.org/technology/documents/formal /xmi.htm, July
2003.

W. Piekarski and B. Thomas. Tinmith-metro: New outdoor techniques
for creating city models with an augmented reality wearable computer.
In Proceedings of the 5th International Symposium on Wearable Com-
puters (ISWC), Zurich, Switzerland, October 2001.

[. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa. The go-
go interaction technique: Non-linear mapping for direct manipulation
in VR. In Proceedings of ACM UIST 1996, pages 79-80, Seattle, WA,
USA, 1996. ACM.

D. Raggett, A. L. Hors, and I. Jacobs. Hypertext markup
language (HTML), wversion 4.01 - W3C recommendation.
http://www.w3.org/TR/html4/, December 1999.

R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The
office of the future : A unified approach to image-based modeling and

spatially immersive displays. Computer Graphics, 32(Annual Conference
Series):179-188, 1998.

BIBLIOGRAPHY 111

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. Shader lamps:
Animating real objects with image-based illumination. In Proceedings
of the 12th Furographics Workshop on Rendering, London, June 2001.
Eurographics.

B. Reitinger, A. Bornik, R. Beichel, G. Werkgartner, and E. Sorantin.
Augmented reality based measurement tools for liver surgery planning.
Bildverarbeitung in der Medizin (BVM), March 2004.

G. Reitmayr and D. Schmalstieg. Mobile collaborative augmented re-
ality. In Proceedings of the 2nd ACM/IEEE International Symposium
on Augmented Reality (ISAR’01), pages 114-123, New York, Oct. 29-30
2001.

G. Reitmayr and D. Schmalstieg. OpenTracker — an open software ar-
chitecture for reconfigurable tracking based on XML. In Proceedings of
IEEE Virtual Reality 2001, pages 285286, Yokohama, Japan, March
13-17 2001.

G. Reitmayr and D. Schmalstieg. Collaborative augmented reality for
outdoor navigation and information browsing. In Proceedings of the
Symposium on Location Based Services and TeleCartography, Vienna,
Austria, January 2004.

M. Roussos, A. Johnson, J. Leigh, C. Vasilakis, C. Barnes, and T. Moher.
NICE: Combining constructionism, narrative, and collaboration in a
virtual learning environment. Computer Graphics, 31, 1997.

S. Sauer and G. Engels. Extending UML for modeling of multimedia ap-
plications. In Proceedings of the IEEE Symposium on Visual Languages
(VL’99), pages 8087, 1999.

S. Sauer and G. Engels. UML-based behavior specification of interactive
multimedia applications. In Proceedings of the IEEE Symposium on Vi-
sual/Multimedia Approaches to Programming and Software Engineering,
Stresa, Italy, September 2001. IEEE.

D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple user
interface dimensions with augmented reality. In Proceedings of ISAR
2000, pages 20-29, Munich, Germany, October 5-6 2000. IEEE and
ACM.

BIBLIOGRAPHY 112

[67]

[69]

[70]

[71]

[72]

73]

[74]

D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavéari, L. M. En-
carnacao, M. Gervautz, and W. Purgathofer. The Studierstube aug-
mented reality project. PRESENCE - Teleoperators and Virtual Envi-
ronments, 11(1), 2002.

R. Schonfelder, G. Wolf, M. Reefling, R. Kriiger, and B. Briderlin. A
pragmatic approach to a VR/AR component integration framework for
rapid system setup. In Proceedings of the Workshop ”Augmented und
Virtual Reality in der Produktentstehung”, pages 67-79, Paderborn, Ger-
many, June 11-12 2002. Heinz Nixdorf Institut.

C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in
virtual reality with the MR toolkit. ACM Transactions on Information
Systems, 11(3), July 1993.

R. Splechtna, A. L. Fuhrmann, and R. Wegenkittl. ARAS - augmented
reality aided surgery system description. Technical Report TR VRVis
2002 040, VRVis, Vienna, Austria, 2002.

Z. Szalavari and M. Gervautz. The personal interaction panel — A
two-handed interface for augmented reality. Computer Graphics Forum,
6(13):335-346, 1997.

R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser. VRPN: A device-independent, network-transparent VR
peripheral system. In Proceedings of VRST 2001, pages 55—61, Banff,
Alberta, Canada, November 15-17 2001. ACM.

H. Tramberend. Avocado: A distributed virtual reality framework. In
Proceedings of IEEE Virtual Reality 1999. IEEE, IEEE Press, 1999.

J. Zauner, M. Haller, and A. Brandl. Authoring of a mixed reality
assembly instructor for hierarchical structures. In Proceedings of ISMAR
2003, pages 237-246, Tokyo, Japan, October 7-10 2003. IEEE.

