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Introduction

We consider n × n systems of hyperbolic conservation laws in one space
variable x ∈ R

ut + f(u)x = 0 (1)

where the unknown function u(x, t) takes its values in an open convex set
U ⊆ Rn and f : U → Rn is a given smooth vector field. The Cauchy problem
is to find a solution u : R × [0, T ) → U , T > 0, which solves the system (1)
and satisfies

u(x, 0) = u0(x) (2)

for given initial data u0 ∈ C1(R). The problem is well posed if the system is
(strictly) hyperbolic.
The calculus along characteristics shows that for some nonlinear functions f
a classical solution exists only for a finite time. Therefore, one has to allow
weak solutions, which are bounded measureable functions u(x, t) satisfying
(1), (2) in the distributional sense. However, weak solutions turn out to
be not unique. An important class of solutions are shock waves (u−, u+; s),
which are defined as

u(x, t) :=

{
u−, x < st,

u+, x > st,
(3)

where the constant vectors u−, u+ ∈ Rn together with the wave speed s ∈ R
satisfy the Rankine-Hugoniot condition

s(u+ − u−)− (
f(u+)− f(u−)

)
= 0. (4)

Such a shock wave is a weak solution of system (1), which is piecewise con-
stant with a single jump discontinuity moving with wave speed s. The quan-
tity |u+ − u−| is referred to as shock strength or amplitude.
In order to single out one of the solutions Gelfand proposed the vanishing
viscosity method, where admissible solutions of system (1) correspond to lim-
iting solutions of viscous conservation laws

ut + f(u)x = ε
(
B(u)ux

)
x

(5)
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as ε → 0. In the context of profiles this method is particularly simple. A
travelling wave or profile is a smooth solution of system (5) depending on a
single variable ξ := x−st

ε
, where s ∈ R is the speed of the wave. Majda and

Pego [MP] proposed a stability criterion for the matrix B(u) which guarentees
for shock waves the existence of a travelling wave. The identity matrix In is
admissible in the sense of [MP] and the viscous profiles are governed by the
system of ordinary differential equations

−suξ + f(u)ξ = uξξ. (6)

The travelling waves are asymptotically constant and we get the boundary
conditions limξ→±∞ u(ξ) = u±. We integrate the equation (6) once and obtain
the viscous profile equation

uξ = f(u)− su− c, (7)

where the boundary conditions determine the constant vector c ∈ Rn as
c = f(u−) − su− = f(u+) − su+. The constant vectors u−, u+ ∈ Rn are the
restpoints of the system (7) and a profile corresponds to a heteroclinic orbit
connecting u− with u+.
The problem can also be considered as an evolutionary system and stabil-
ity of solutions is an important admissibility criterion. A travelling wave is
nonlinear stable if small perturbations vanish in time. Zumbrun [Z] was able
to show that spectral stability of the linearized operator implies nonlinear
stability. Hence the general stability problem for profiles is reduced to deter-
mine the spectrum of the linearized operator.
Freistühler and Szmolyan [FS] proved the spectral stability of small ampli-
tude profiles in viscous conservation laws. In this paper they introduced the
concept of Evans bundles and used geometric singular perturbation methods.

Jin and Xin introduced a relaxation model [JX] which is popular in the
numerical studies of systems of hyperbolic conservation laws. For a given
system (1) the corresponding Jin-Xin model is

ut + vx = 0,
vt + a2ux = 1

σ
(f(u)− v) ,

(8)

where σ is the (positive) relaxation parameter, a is a positive constant and
(u, v) ∈ U × Rn ⊆ R2n. Taking the formal limit of (8) as σ tends to zero,
one finds the equilibrium v = f(u) and recovers the conservation law (1).
We consider a shock wave (u−, u+; s) satisfying the Rankine-Hugoniot con-
dition (4). The corresponding profile (u, v)t(θ), θ := x−st

σ
should satisfy the
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nonlinear ordinary differential equation

−suθ + vθ = 0,
−svθ + a2uθ = f(u)− v,

(9)

with boundary conditions

lim
θ→±∞

u(θ) = u±, lim
θ→±∞

v(θ) = v±. (10)

We integrate the first equation of system (9), insert the solution v = su + c
into the second equation and obtain

(a2 − s2)uθ = f(u)− su− c. (11)

For a > |s| the travelling wave is governed by the same equation (7) as the
viscous profile up to a positive constant. Hence for a small amplitude shock
wave (u−, u+; s) the existence of a profile is guarenteed [MP].
In this thesis we will consider the stability problem for the Jin-Xin model.
Mascia and Zumbrun [MZ1], [MZ2] have further extended the work of Zum-
brun and his collaborators [Z], [ZHo] to include relaxation models. Hence
the stability problem is again reduced to determine the spectrum of the lin-
earized operator.
The spectral stability of small amplitude profiles of the Jin-Xin model was
established in the PhD thesis of Humpherys [Hu] by energy methods. We
will instead follow the programme Freistühler und Szmolyan [FS] proposed
in their paper on spectral stability of small amplitude profiles in viscous con-
servation laws. We will be able to construct the Evans bundles and to prove
the spectral stability through a reduction of the problem. This can be viewed
as a step towards a proof of spectral stability of small amplitude profiles in
general relaxation systems.
In detail we will prove spectral stability for small amplitude profiles of a Jin-
Xin model, which satisfies the following assumptions at a basepoint u∗ ∈ U

(A1) The system (8) is strictly hyperbolic at u∗.

(A2) The eigenvalue λk is genuine nonlinear at u∗.

(A3) subcharacteristic condition: a > max
{
spec

(
Df(u∗)

)
, |s|}.

In Chapter 1 we review the existence of small amplitude travelling waves in
the Jin-Xin model. In Chapter 2 we will give the definition of nonlinear and
spectral stability and state the main result. It turns out that the proper
notion of spectral stability is, that the linearized operator L has no spectrum
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in the domain C+
• := {κ ∈ C|<κ ≥ 0}\{0}. The spectrum of L will consist

of essential and point spectrum. The essential spectrum does not intersect
C+
• and touches the imaginary axis only in 0. The point spectrum consists of

isolated eigenvalues κ of finite multiplicity, i.e. we are searching for an eigen-
value κ and an eigenfunction w satisfying the eigenvalue equation associated
with the differential operator L

Lw = κw. (12)

In Evans function theory the eigenvalue problem is considered as an first
order differential equation with spectral parameter κ. We will construct
the stable (unstable) Evans bundles, which are spaces of initial values of
solutions decaying at plus (minus) infinity. Hence a nontrivial intersection
of the bundles corresponds to an eigenfunction. The crucial region for the
stability analysis is a small neighbourhood of κ = 0. We have to consider two
regions, a inner problem corresponding to |κ| ≤ %ε2 and an outer problem
|κ| ≥ %ε2 where ε corresponds to the shock strength and % is a fixed large
constant.
The inner problem is analyzed in Chapter 3, where it is shown, that the
Evans bundles are essentially perturbations of the corresponding bundles
for the viscous Burgers equation. From the well known stability of profiles
of the Burgers equation we will be able to conclude that there is no point
spectrum in the inner problem. In Chapter 4 we will prove that there is
no point spectrum in the outer problem either. Thus the spectrum of the
linearized operator does not intersect C+

• and the small amplitude profiles of
the Jin-Xin model are spectrally stable. We present some results needed in
the analysis in two appendices. In Appendix A we collect some facts about
Grassmann manifolds. Appendix B gives a brief introduction to invariant
manifold theory.
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Chapter 1

Shock waves and profiles

We consider n × n systems of hyperbolic conservation laws in one space
variable x ∈ R

ut + f(u)x = 0, (1.1)

where the unknown function u(x, t) takes its values in an open convex set
U ⊆ Rn and f : U → Rn is a given smooth vector field. The Cauchy problem
is to find a solution u : R× [0, T ) → U , T > 0, which solves the system (1.1)
and satisfies

u(x, 0) = u0(x) (1.2)

for given initial data u0 ∈ C1(R). The well-posedness of the problem in
standard spaces, such as Hölder or Sobolev spaces, is only expected if the
system is hyperbolic.

Definition. The system (1.1) is hyperbolic if at every point u ∈ U the
Jacobian Df(u) is diagonalizable with real eigenvalues.

We will use an even stricter definition.

Definition. The system (1.1) is strictly hyperbolic if at every point u ∈ U
the Jacobian Df(u) is diagonalizable with distinct, real eigenvalues.

In a strictly hyperbolic system (1.1) we denote with λ1(u) < . . . < λn(u) the
eigenvalues of Df(u), u ∈ U in ascending order, and with ri, i = 1, . . . , n the
associated eigenfields:

Df(u)ri(u) = λi(u)ri(u), i = 1, . . . , n.

The calculus along characteristics shows that for some non-linear functions
f a classical solution exists only for a finite time. Therefore one has to
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allow weak solutions, which are bounded measureable functions u : QT :=
R× [0, T ) → U satisfying (1.1), (1.2) in the distributional sense
∫

QT

(
u∂tφ + f(u)∂xφ

)
dxdt +

∫

R
φ(x, 0)u0(x)dx = 0, ∀φ ∈ C1

(
R× [0, T )

)
.

Proposition 1.1. Let Γ be a C1-curve within QT . Let u be C1 away from Γ,
having continous left and right limits u± on Γ. Then u is a weak solution of
the Cauchy problem if and only if

1. u is a classical solution away from Γ.

2. u satisfies along Γ the Rankine-Hugoniot condition

(u+ − u−)νt −
(
f(u+)− f(u−)

)
νx = 0, (1.3)

where ν denotes a normal vector field to Γ.

An important class of solutions are shock waves (u−, u+; s), which are defined
as

u(x, t) :=

{
u−, x < st,

u+, x > st,
(1.4)

where the constant vectors u−, u+ ∈ Rn together with the wave speed s ∈ R
satisfy the Rankine-Hugoniot condition

s(u+ − u−)− (
f(u+)− f(u−)

)
= 0. (1.5)

Such a shock wave is a weak solution of system (1.1), which is piecewise
constant with a single jump discontinuity moving with wave speed s. The
quantity |u+ − u−| is referred to as shock strength or amplitude.

Definition. For k = 1, . . . , n a k-Lax shock wave (u−, u+; s) is a weak solu-
tion of (1.1) which satisfies

λk+1(u
+) > s > λk(u

+) and λk(u
−) > s > λk−1(u

−).

It turns out that weak solutions are not unique. In order to single out one
of the solutions Gelfand proposed the vanishing viscosity method, which is
based upon the idea that physically relevant (weak) solutions of system (1.1)
should correspond to limiting solutions of viscous conservation laws

ut + f(u)x = ε
(
B(u)ux

)
x

(1.6)

as ε tends to 0. In the context of travelling wave solutions the vanishing
viscosity method is particularly simple.
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Definition. A travelling wave or profile is a smooth solution of system (1.6)
depending on a single variable ξ := x− st, where s is speed of the wave.

Majda and Pego [MP] proposed a stability criterion for the matrix B(u)
which guarentees for shock waves the existence of a travelling wave. The
identity matrix In is admissible in the sense of [MP] and the viscous profiles
are governed by the system of ordinary differential equations

−suξ + f(u)ξ = uξξ. (1.7)

The travelling waves under consideration are asymptotically constant and we
get the boundary conditions limξ→±∞ u(ξ) = u±. We integrate the equation
(1.7) once and obtain the viscous profile equation

uξ = f(u)− su− c, (1.8)

where the boundary conditions determine the constant vector c ∈ Rn as
c = f(u−) − su− = f(u+) − su+. The constant vectors u−, u+ ∈ Rn are
the restpoints of the system (1.8) and a profile corresponds to a heteroclinic
orbit connecting u− with u+.

1.1 Jin-Xin model

We will follow Pauline Godillon [G] in this introduction. Jin and Xin in-
troduced a relaxation model [JX] which is popular in the numerical studies
of systems of hyperbolic conservation laws. For a given system (1.1) the
corresponding Jin-Xin model is

ut + vx = 0,
vt + a2ux = 1

σ
(f(u)− v) ,

(1.9)

where σ is the (positive) relaxation parameter, a is a positive constant and
the unknown function (u, v) ∈ U × Rn ⊆ R2n. The model was introduced
by Jin and Xin [JX] in order to obtain nonoscillatory schemes for systems
of conservation laws. Taking the formal limit of (1.9) as σ tends to 0, we
recover the local equilibrium v = f(u) and the equilibrium system

ut + f(u)x = 0, (1.10)

which is in fact a system of conservation laws. Relaxation provides a dissi-
pative mechanism similar to viscosity. This can be seen from a Chapman-
Enskog type expansion ( see Liu [L]), which shows that the solution u(x, t)
of (1.9) satisfies

ut + f(u)x = σ
( (

a2In −Df(u)2
)

︸ ︷︷ ︸
:=β(u)

ux

)
x

+ O(σ2).
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In order that this equation is well posed the coefficient β(u) has to be positive.
This is guarenteed with the subcharacteristic condition [L]

a > max
{
spec

(
Df(u)

)
, u ∈ U

}
. (1.11)

The condition is equivalent to the characteristics of the equilibrium system
being subcharacteristic to the characteristics with speeds ±a of the Jin-Xin
model. The shock waves (u−, u+; s) of the equilibrium system (1.10) are now
related to travelling waves in the Jin-Xin model for σ > 0. For the existence
of such profiles the wave speed has to be subcharacteristic and our condition
(1.11) becomes

a > max
{
spec

(
Df(u)

)
, |s|}. (1.12)

A profile u(ξ), ξ := x − st, which is a solution of system (1.9), is governed
by the system of ordinary differential equations

−suξ + vξ = 0,
−svξ + a2uξ = 1

σ
(f(u)− v) .

The travelling waves under consideration are asymptotically constant and we
get the boundary conditions

lim
ξ→±∞

u(ξ) = u±, lim
ξ→±∞

v(ξ) = v±.

The points (u, v)± are rest points for this system of ordinary differential
equations and a travelling wave corresponds to a heteroclinic orbit connect-
ing (u−, v−) with (u+, v+). The system is autonomous in ξ and hence it is
invariant under translations ξ = ξ + z, z ∈ R. This means there is no unique
solution (ū, v̄)(ξ), since the shifted travelling waves (ū, v̄)(ξ + z) solve the
problem as well. As long as σ > 0 it is possible to introduce a new variable
θ := ξ

σ
and obtain an equivalent system

−suθ + vθ = 0,
−svθ + a2uθ = f(u)− v,

(1.13)

which is independent of σ. The respective solutions (u, v)(ξ), (u, v)(θ) are
equivalent and we continue with system (1.13). The boundary conditions
became

lim
θ→±∞

u(θ) = u±, lim
θ→±∞

v(θ) = v±.

Remark 1.1. At the first glance system (1.13) is independent of σ, but we
actually tied the relaxation parameter σ to the independent variable ξ. As
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we let σ tend to 0 we have

lim
σ→0

θ = lim
σ→0

ξ

σ
=





−∞ ξ < 0,

0 ξ = 0,

+∞ ξ > 0.

The variable ξ is defined as ξ := x − st and we recover in the limit of the
profile the shock wave (u−, u+; s)

lim
σ→0

u(θ) = lim
σ→0

u
( ξ

σ

)
=

{
u− x < st,

u+ x > st.

Integrating the first equation of system (1.13) once and substituting the result
v(θ) = su(θ) + c into the second equation of system (1.13) we derive

(a2 − s2)uθ = f(u)− su− c, (1.14)

with boundary conditions limθ→±∞ u(θ) = u±. The system is reduced to an
ordinary differential equation in u with rest points u±. The constant vector
c is determined by c = f(u+) − su+ = f(u−) − su−, and we recover the
Rankine-Hugoniot condition. The profiles of the Jin-Xin model are governed
by the same equations as the viscous profiles in a viscous conservation law.
In this case for small amplitude shock waves the existence of profiles is well
known, see Majda and Pego [MP]. We will prove it by using a scaling which
allows us to use methods from singular perturbation theory (Appendix B).
The singular perturbation nature of the problem will be crucial to the proof
of spectral stability in Chapter 3.
We choose a basepoint u∗ ∈ U and assume throughout this thesis

(A1) The system is strictly hyperbolic at u∗.

(A2) The eigenvalue λk is genuine nonlinear at u∗, i.e. ∇λk(u∗) · rk(u∗) 6= 0.

(A3) subcharacteristic condition: a > max
{
spec

(
Df(u∗)

)
, |s|}.

Theorem 1.1. Under the assumptions (A2)+(A3) there exists for a small-
amplitude shock wave (u−, u+; s) a family of profiles satisfying system (1.13).

Before we prove Theorem 1.1 we develop some tools and notation needed in
the proof. We can assume without loss of generality

(S1) The basepoint u∗ satisfies u∗ = 0, otherwise substitute u with u + u∗.
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(S2) The function f satisfies f(0) = 0, otherwise replace f with f(u)−f(0).

(S3) The Jacobian Df satisfies Df(0) = diag(λ1(0), . . . , λn(0)).
As Df(0) is diagonalizable there exists a transformation matrix T with
T ◦Df(0) ◦ T−1 = diag(λ1(0), . . . , λn(0)), and we replace u with T−1u.

(S4) The genuine nonlinear eigenvalue λk satisfies λk(0) = 0, otherwise sub-
stitute f with f(u)− λk(0)u.

Remark 1.2. The subcharacteristic condition provides that a2−s2 is a positive
factor. Introducing the new variable

τ :=
θ

a2 − s2

leads to the profile equation

uτ = uθ
dθ

dτ
= f(u)− su− c, (1.15)

with boundary conditions limτ→±∞ u(τ) = u±. Note that since we scaled by
a positive factor the direction of time remains unchanged.

We denote with ′ := d
dτ

differentiation with respect to the variable τ

u′ = f(u)− su− c. (1.16)

For s = 0, c = 0, the trivial solution u = 0 is an equilibrium solution of system
(1.16), which is degenerated as Df(0) has a simple eigenvalue λk = 0. We
introduce the scaling

u = εũ, s = εs̃, c = ε2c̃, (1.17)

0 < ε ¿ 1, to analyze the system (1.16) for (u, s, c) close to (0, 0, 0). In this
way we get the scaled profile equation

εũ′ = f(εũ)− ε2s̃ũ− ε2c̃. (1.18)

We expand the function f around 0:

f(v) = f(0) + Df(0)v +
1

2
D2f(0)(v, v) + O(|v|3) (1.19)

and rewrite the equation as

εũ′ = f(0) + Df(0)εũ +
1

2
D2f(0)(εũ, εũ) + O(ε3)− ε2s̃ũ− ε2c̃

= f(0) + εDf(0)ũ + ε2 1

2
D2f(0)(ũ, ũ)− ε2s̃ũ− ε2c̃ + O(ε3).
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The function f satisfies f(0) = 0 and we divide both sides with ε to obtain

u′ = Df(0)u + O(ε),

where we dropped the tilde for notational convenience. The Jacobian Df(0)
is diagonal and the system becomes

u′i = λi(0)ui + O(ε), (1.20)

i = 1, . . . , n. The assumption λk(0) = 0 implies a slow-fast structure of the
problem, see also Appendix B. Specifically system (1.20) is in the standard
form of singularly perturbed ordinary differential equations on the fast time
scale. Here uk is the slow variable and ui, i = 1, . . . , n, i 6= k are the fast
variables. Taking the formal limit ε = 0 we arrive at the layer problem

u′i = λi(0)ui,
u′k = 0,

(1.21)

i = 1, . . . , n, i 6= k, which is in equilibrium if ui = 0, i.e. the uk-axis is a
manifold of equilibria. This critical manifold V0 is normally hyperbolic since
the eigenvalues λi(0) 6= 0, i = 1, . . . , n, i 6= k. Therefore Fenichel theory
([F2],[J2]) is applicable. We infer that the critical manifold V0 perturbs
smoothly to a slow manifold Vε, ε small, which has a parameterization

Vε := {(ui)i=1,...,n

∣∣uk ∈ R,

ui = εhi

(
uk, s, c, ε), hi smooth, i 6= k} (1.22)

and is invariant under the flow (1.18). We denote with “ ˙ ” differentiation
with respect to the slow time scale ετ . It remains to determine the evolution
of uk restricted to the slow manifold Vε.

Lemma 1.1. For 0 < ε ≤ ε1, system (1.18) has a one-dimensional invari-
ant slow manifold Vε with a parameterization (1.22). The flow on the slow
manifold is described by

u̇k = Au2
k − suk − ck + O(ε), (1.23)

where A := 1
2

∂2fk

∂u2
k
(0).

Proof. The slow flow on the manifold Vε is given by

u̇k =
1

2
D2f(0)(u, u)k − suk − ck + O(ε).
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The slow manifold Vε has the parameterization (1.22) with ui = εhi

(
uk, s, c, ε),

hi smooth, i 6= k and we investigate the quantity

D2f(0)(u, u)k =
n∑

i=1

n∑
j=1

∂2fk

∂ui∂uj

(0)uiuj

=
∂2fk

∂u2
k

(0)u2
k+

+ ε
∑

i 6=k

∂2fk

∂ui∂uk

(0)hiuk + ε
∑

j 6=k

∂2fk

∂uk∂uj

(0)ukhj+

+ ε2
∑

i 6=k

∑

j 6=k

∂2fk

∂ui∂uj

(0)hihj.

(1.24)

The term ∂2fk

∂u2
k
(0)u2

k is the only one which is O(1).

Proof of Theorem 1.1. We assumed that the eigenvalue λk is genuine non-
linear at 0, i.e. ∇λk(0) · rk(0) 6= 0 which is in our case λk = ∂fk

∂uk
and rk = ek

equivalent to the condition ∂2fk

∂u2
k
(0) 6= 0. As A := 1

2
∂2fk

∂u2
k
(0) is non-zero we can

find two restpoints connected through a heteroclinic orbit which corresponds
to a travelling wave. Since such a profile for ε = 0 exists by virtue of the
intersection of stable and unstable manifolds, it perturbs smoothly to profiles
lying in the one-dimensional slow manifold Vε for ε > 0. This finishes the
proof.

Remark 1.3. The slow flow on V0 is described by (1.23) for ε = 0. Note that
the wave speed s and the vector c depend on the small parameter ε, since
they are determined through the Rankine-Hugoniot condition.

u̇k = Au2
k − suk − ck

= A

((
uk − s

2A

)2

− ck

A
− s2

4A2

)

We define the variable v by v := uk − s
2A

and obtain

v̇ = A
(
v2 −B

)

where B := 4Ack+s2

4A2 is a positive number, since we have two restpoints. We
introduce the variable w := v√

B
and get

ẇ = A
√

B
(
w2 − 1

)
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We consider from now on only the case A < 0 as we can switch with the
transformation x := −w from one case to the other. Finally we rescale the
time variable to |A√B|τ̂ and obtain

ẇ = 1− w2

In the same manner we can transform the flow on the manifold Vε to obtain
u±k = ±1 and get a simplified profile equation

u̇k = 1− u2
k + O(ε) =

(
1− u2

k

)
gε(uk) (1.25)

with gε(uk) = 1 + O(ε).
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Chapter 2

Spectral stability

In this introduction to the stability of profiles we will follow Humpherys [Hu].
We want to study the long term behavior of travelling waves. In this regard
it is useful to describe our problem in the form of an evolutionary system
ut = F(u), defined in an appropriate Banach space B. This is achieved by
translating our problem (1.9) for σ = 1, see Remark 1.1, via the transforma-
tion (x, t) 7→ (ξ := x− s · t, t) to

ut = suξ − vξ

vt = −a2uξ + svξ + f(u)− v

}
=: F

((
u

v

))
. (2.1)

In this setting a travelling wave (ū, v̄)t is a stationary solution. The stability
is related to the long term behavior of solutions which are initially “close”
to this equilibrium. More precisely, given an appropriate Banach space B
with norm ‖.‖ and an admissible subset A ⊂ B of small perturbations, we
consider the Cauchy problem for (2.1) with initial data

u(ξ, 0) = ū(ξ) + p(ξ, 0),

v(ξ, 0) = v̄(ξ) + q(ξ, 0),

with (p, q)t ∈ A and (ū, v̄)t a stationary solution of (2.1). The evolution
of (p, q)t(ξ, t) describes the difference between the stationary solution (ū, v̄)t

and (u, v)t. In general asymptotic stability is understood as

∥∥∥∥∥
(

p

q

)
(ξ, t)

∥∥∥∥∥ =

∥∥∥∥∥
(

u

v

)
(ξ, t)−

(
ū

v̄

)
(ξ)

∥∥∥∥∥ → 0 as t →∞.

However the stationary solution u is not unique, since the shifted profiles
(ū, v̄)t(ξ + z), z ∈ R are solutions as well and we give the definition
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Definition 2.1. A stationary solution (ū, v̄)t is non-linearly stable with re-
spect to A if ∥∥∥∥∥

(
u

v

)
(ξ, t)−

(
ū

v̄

)
(ξ + z)

∥∥∥∥∥ → 0

for a z ∈ R as t →∞, whenever (u, v)t(., 0)− (ū, v̄)t(.) ∈ A.

In order to obtain an equation for (p, q)t(ξ, t) we first linearize the operator
F around the solution (ū, v̄)t + (p, q)t to find that small perturbations (p, q)t

satisfy
(

p
q

)

t

=

(
sIn −In

−a2In sIn

) (
p
q

)

ξ

+

(
0n 0n

Df(ū) −In

)(
p
q

)

︸ ︷︷ ︸
=:L(p

q)

+

(
0

R(p)

)
(2.2)

where R(p) = O(|p|2) is a nonlinear function. Results by Mascia and Zum-
brum [MZ1], [MZ2] show that spectral stability (defined below) implies non-
linear stability, in the sense of Definition 2.1. Therefore we study the eigen-
value problem

L

(
p

q

)
= κ

(
p

q

)
(2.3)

with boundary conditions

lim
ξ→±∞

p(ξ, .) = 0, lim
ξ→±∞

q(ξ, .) = 0.

Definition. The spectrum σ(L) of L is the set of all κ ∈ C such that L−κI
is not invertible, i.e. there does not exist a bounded inverse.

Definition. The point spectrum σp(L) of L is the set of all isolated eigen-
values of L with finite multiplicity.

Definition. The essential spectrum σe(L) of L is the entire spectrum less
the point spectrum, i.e. σe(L) = σ(L)/σp(L).

The next lemma shows that L has at least one eigenvalue:

Lemma 2.1 (Sattinger [St]). The derivative of the profile
(

ū
v̄

)′
is an eigen-

function of L with eigenvalue 0.

Proof. The translational invariance of the system is the reason that also the
shifted shock waves (ū, v̄)t(ξ + z), z ∈ R are solutions, i.e. they satisfy
F((

ū
v̄

)
(ξ + z)

)
= 0, ∀z ∈ R. Hence differentiating with respect to z and

evaluating at z = 0, yields L
(

ū′
v̄′
)

= F((
ū
v̄

))(
ū′
v̄′
)

= 0.
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Spectral stability in a strong sense means that the whole spectrum lies to
the left of the imaginary axis. Since κ = 0 is an eigenvalue we have to allow
this one and give the following definition.

Definition. We say that the operator L, linearized about the profile (ū, v̄)t,
is spectrally stable if it has no spectrum in the punctured closed right half
plane

C+
• := C+\{0}

with C+ := {κ ∈ C|Re(κ) ≥ 0} denoting the closed right half plane.

The variable ξ varies in R, hence the operator L can have point and essential
spectrum. We will start with the analysis of the essential spectrum and then
turn our attention to the point spectrum.

2.1 Essential spectrum

The essential spectrum can be computed by using the following theorem.

Theorem 2.1 (Henry [He]). The essential spectrum of L is sharply bounded
to the right by

σe(L
+) ∪ σe(L

−),

where L± correspond to the operators obtained by linearizing about the con-
stant solutions

(
ū
v̄

)
=

(
u
v

)±
respectively.

Let L± be the limits of L at ξ = ±∞, i.e.

L±
(

p
q

)
=

(
sIn −In

−a2In sIn

)(
p
q

)

ξ

+

(
0n 0n

Df(u±) −In

)(
p
q

)
.

A linear operator with constant coefficients has no point spectrum and σ(L±)
satisfies σ(L±) = σe(L

±). We can determine σe(L
±) by considering the

Fourier transform

( ̂L± − κI2n

)
=

(
iθ

(
sIn −In

−a2In sIn

)
+

( −κIn 0n

Df(u±) −(κ + 1)In

) )
,

θ ∈ R. We loose invertibility of L± − κI2n, when the right hand side is
singular. Thus we conclude that κ ∈ σe(L

±) if and only if

det

(
iθ

(
sIn −In

−a2In sIn

)
+

( −κIn 0n

Df(u±) −(κ + 1)In

) )
= 0, (2.4)
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for some θ ∈ R. The condition (2.4) simplifies to

det(κ(κ + 1)In − iθs(2κ + 1)In + (a2 − s2)θ2In + iθDf(u±)) = 0.

We consider the matrices Df(u±) to be diagonalizable and obtain

n∏
j=1

(κ(κ + 1)− iθ(2κs + s− λj(u
±)) + (a2 − s2)θ2) = 0. (2.5)

This implies that there is a j ∈ {1, . . . , n} such that

κ(κ + 1)− iθ(2κs + s− λj(u
±)) + (a2 − s2)θ2 = 0, (2.6)

θ ∈ R. The equation (2.6) is a second order polynomial in κ

κ2 + κ(1− i2θs)− iθ(s− λj(u
±)) + (a2 − s2)θ2 = 0. (2.7)

The spectral parameter κ±j,1/2 can be computed as

κ±j,1/2 = −1− i2θs

2
±

√
(1− i2θs)2

4
+ iθ(s− λj(u±))− (a2 − s2)θ2

=
−1 + i2θs±√

1− 4a2θ2 − i4θλj(u±)

2
,

j = 1, . . . , n. This defines 4n-curves κ±j,1/2(θ), θ ∈ R corresponding to the

eigenvalues λj(u
±), j = 1, . . . , n. The essential spectrum σe(L

±) is the union
of these curves

σe(L
+) ∪ σe(L

−) =
n⋃

j=1

κ+
j,1/2(θ) ∪

n⋃
j=1

κ−j,1/2(θ).

We drop the subscripts for notational convenience. In the following lemma
we will locate the spectrum σ(L±).

Lemma 2.2. If a > max{spec
(
Df(u−)

)
, spec

(
Df(u+)

)
, |s|} it follows that

σ(L±) ⊆ {<κ < 0} ∪ {0}.

Proof. The spectral parameter κ is at θ = 0 computed as κ1(0) = −1 and
κ2(0) = 0. Hence {0} is part of σ(L±). We will prove that under the
assumption for a and θ 6= 0, the spectral parameter satisfies <κ < 0. We
point out that the discriminant is a function in θ which is symmetric with
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Figure 2.1: The eigenvalue κ+(θ) as a function in θ.

respect to the real axis. Therefore we only consider the part of the function
which is above the real axis. The discrimant z in polar coordinates is

r =
√

(1− 4a2θ2)2 + (4θλ)2

φ = arctan
4θλ

1− 4a2θ2

We note that with z = 1− 4a2θ2− i4θλ we are only interested in the root of
z with non-negative real part. The equation

cos φ =
1− 4a2θ2

r
=

1− 4a2θ2

√
(1− 4a2θ2)2 + (4θλ)2

implies

<√z =
√

r cos
φ

2
=

√
1− 4a2θ2 +

√
(1− 4a2θ2)2 + (4θλ)2

2
.
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The property <κ < 0 of the spectral parameter is equivalent to

√
1− 4a2θ2 +

√
(1− 4a2θ2)2 + (4θλ)2

2
< 1.

As the discriminant is non-negative we are allowed to square the inequality

1− 4a2θ2 +
√

(1− 4a2θ2)2 + (4θλ)2

2
< 1

and obtain

√
(1− 4a2θ2)2 + (4θλ)2 < 2− 1 + 4a2θ2.

Again we square the inequality

(1− 4a2θ2)2 + (4θλ)2 < (1 + 4a2θ2)2

and obtain the condition

(4θλ)2 < (4θa)2.

The last inequality is satisfied with θ 6= 0 and the assumption
a > max{spec

(
Df(u±)

)
, |s|} .

Theorem 2.2. The differential operator L associated with a small ampli-
tude profile obtained in Theorem 1.1 has no essential spectrum in C+

• if the
subcharacteristic condition

a > max
(
spec

(
Df(u∗)

)
, |s|)

is satisfied and ε is sufficiently small.

Proof. The subcharacteristic condition and ε sufficiently small guarentees
that

a > max
(
spec

(
Df(εu±)

)
, |s|)

is satisfied. Thus the requirements of Lemma 2.2 are fulfilled and we conclude
that the curves κ±j,1/2(θ) are contained in the left half plane and touch the
imaginary axis only in 0. Theorem 2.1 implies that the essential spectrum is
bounded to the right by these curves.
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2.2 Point spectrum and the Evans function

In the last section we proved that under the subcharacteristic condition the
essential spectrum does not intersect C+

• . Hence the point spectrum will de-
cide upon spectral stability.
Starting with the work of Evans (see [E] and references therein) it became
popular to study the spectra of linearizations along travelling waves via a
dynamical systems approach. The point spectrum consists of isolated eigen-
values of finite multiplicity, i.e. we are searching for functions p, q : R→ Cn

and κ ∈ C satisfying the eigenvalue equation associated with the differential
operator L

L

(
p

q

)
= κ

(
p

q

)

and boundary conditions limξ→±∞ p(ξ) = 0, limξ→±∞ q(ξ) = 0. The linear
Operator L was defined in equation (2.2) and we obtain

(
sIn −In

−a2In sIn

)(
p

q

)

ξ

+

(
0n 0n

Df(ū) −In

)(
p

q

)
= κ

(
p

q

)
.

First we change the independent variable ξ to τ := ξ
a2−s2 , ,see Remark 1.2,

1

a2 − s2

(
sIn −In

−a2In sIn

)(
p

q

)

τ

+

(
0n 0n

Df(ū) −In

)(
p

q

)
= κ

(
p

q

)
.

The eigenvalue problem can be rewritten as the following explicit first-order
ordinary differential equation with variable coefficients obtained by solving
for (p, q)t

τ (
p

q

)

τ

=

(
Df(ū)− sκIn −(κ + 1)In

sDf(ū)− a2κIn −s(κ + 1)In

)

︸ ︷︷ ︸
=:Aκ(τ)

(
p

q

)
(2.8)

The matrix Aκ is clearly analytic in κ and C1 in τ because f is smooth. The
coefficients of Aκ(τ) tend to constants as τ → ±∞, since limτ→±∞ Df(ū(τ)) =
Df(u±) and we denote the limits of Aκ with A±κ at τ = ±∞.
Starting with the work of Jones [J1] the connection between properties of
the travelling wave problem and the eigenvalue problem became apparent.
Alexander, Gardner and Jones [AGJ] developed a method which is used to
analyze such problems, and is now known as Evans function theory. See also
Gardner and Jones [GJ1] for a comprehensive introduction. We will follow
the related concept of stable/unstable Evans bundles which was proposed by
Freistühler and Szmolyan in [FS].
At first we will explain the Evans function and the Evans bundles for a k-Lax
shock

(
u
v

)
in a subset Ω ⊂ C with consistent splitting.
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Definition. Ω ⊂ C has consistent splitting if there exists l ∈ N such that
A±κ both have l (resp. 2n− l) eigenvalues with positive (resp. negative) real
part for all κ ∈ Ω.

Remark. As usual the curves in C where A±κ have pure imaginary eigenvalues
define the boundary of σe(L). The essential spectrum is contained in the
region to the left of the union of these curves and tangent to the imaginary
axis at κ = 0. Thus Ω is contained in the set C/σe(L).
Additionally we get for such a domain Ω that A±κ , κ ∈ Ω has n eigenvalues
with positive respective negative real part.

It is possible to write system (2.8) in the form

x′ =
(
A + V (τ)

)
x (2.9)

with A = A±κ a constant matrix and V (τ) = Aκ(τ)−A±κ a matrix which tends
to zero in each coefficient as τ → ±∞. We state a theorem, whose proof can
be found in [CoLe, Chapter 2, page 92], which characterizes the behavior of
solutions of differential equations with asymptotic constant coefficients as in
(2.9).

Theorem 2.3 (Coddington, Levinson [CoLe]). Let A be a constant ma-
trix with characteristic roots µj, j = 1, . . . , n, all of which are distinct. Let
the matrix V be differentiable and satisfy

∫ ∞

0

∣∣V ′(t)
∣∣dt < ∞

and let V (t) → 0 as t → ∞. Let the roots of det(A + V (t) − λI) = 0 be
denoted with λj(t), j = 1, . . . , n. Clearly, by reordering the µj if necessary,
limt→∞ λj(t) = µj. For a given k, let

Dkj(t) = <(
λk(t)− λj(t)

)
.

Suppose all j, j = 1, . . . , n fall into one of the two classes I1 and I2, where

j ∈ I1, if

∫ t

0

Dkj(τ)dτ →∞ as t →∞ and

∫ t2

t1

Dkj(τ)dτ > −K (t2 ≥ t1 ≥ 0)

j ∈ I2, if

∫ t2

t1

Dkj(τ)dτ < K (t2 ≥ t1 ≥ 0)

where k is fixed and K is a constant. Let pk be a characteristic vector of A
associated with µk, so that

Apk = µkpk

23



Then there is solution ϕk of (2.9) and a t0, 0 ≤ t0 ≤ ∞, such that

lim
t→∞

ϕk(t) exp
[−

∫ t

t0

λk(τ)dτ
]

= pk.

As Ω has consistent splitting and f is smooth, we get the existence of n
independent solutions of (2.8) η−i,κ(τ), i = 1, . . . , n which decay to zero as
τ → −∞ and n solutions η+

i,κ(τ), i = n + 1, . . . , 2n which decay to zero as
τ → +∞. In view of the hyperbolicity of A±κ , κ is an eigenvalue of L if and
only if (2.8) possess a nontrivial solution which decays to zero at both ends,
+∞ and −∞. The existence of an eigenfunction is equivalent to the property
that these two subspaces intersect nontrivially. This idea is explored in two
ways: The Evans function is defined as

E(τ) : Ω → C
κ → E(τ, κ) = det

(
η−1,κ(τ), . . . , η−n,κ(τ), η+

n+1,κ(τ), . . . , η+
2n,κ(τ)

)

which has the following properties (see [AGJ])

1. E(τ, κ) is analytic in κ for κ ∈ Ω and independent of τ .

2. E(τ, κ0) = 0 if and only if κ0 ∈ σp(L).

The Evans bundles are the result of our attempt to study the mentioned
subspaces of solutions of system (2.8)

X−
κ (τ) = span{η−1,κ(τ), . . . , η+

n,κ(τ)},
X+

κ (τ) = span{η+
n+1,κ(τ), . . . , η+

2n,κ(τ)}

and their possible intersection directly. We will now line out how we are
going to construct these bundles and concentrate in this regard on the con-
struction of the unstable one as the stable case differs only slightly. As the set
X−

κ (τ) is a family of n-dimensional subspaces of C2n which depends continu-
ously on parameters (τ, κ), it has the structure of a complex n-plane bundle
over the base space R × Ω. In order to be able to construct the subspaces
X−

κ (τ), X+
κ (τ) we augment the profile equation (1.15) with the system (2.8)

to obtain an autonomous system of the form

u′ = f(u)− s · u− c,

X ′
κ = Aκ(u)Xκ,

(2.10)

with Aκ analytic in κ and C1 in u. The idea is to apply the stable/unstable
manifold theorem to the rest points, (u−, 0) and (u+, 0), of the augmented
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system (2.10). More precisely, as Ω has consistent splitting, there exist for
κ ∈ Ω n-dimensional subspaces U±

κ (resp. S±κ ) associated with the portion
of spectra of A±κ with positive (resp. negative) real part. In the situation of
a k-Lax shock the restpoint (u−, 0) of system (2.10) is hyperbolic with n− k
(real) unstable directions (from the u system) and n (complex) unstable di-
rections (from the X-system). The unstable manifold theorem provides an
unstable manifold Wu

− of solutions of (2.10) which tend to (u−, 0) in back-
ward time. The projection of Wu

− into C2n along the heteroclinic orbit u(τ)
is denoted by Xκ.

The concept of the Grassmann manifold will be helpful to study the (global)
behavior of these subspaces as an entity. The set Gd

m(C) of m-dimensional
linear subspaces of Cd is a complex-analytic manifold of dimension m(d−m).
With respect to a given basis {e1, . . . , ed} of Cd, the mapping

φ : C(d−m)×m → Gd
m(C),

T 7→ span

(
Im

T

)

is a local chart of Gd
m(C) with φ(0) = X0 = span{e1, . . . , em}. A linear au-

tonomous system Y ′ = AY with Y ∈ Cd induces a flow on Gd
m(C) which

we denote with Ŷ ′ = ΓmA(Ŷ ). The solutions of the projectivized flow
Ŷ ′ = ΓmA(Ŷ ) are obtained from the linear flow by forming the span of m
independent solutions. An important observation is that an m-dimensional
eigenspace E of A is A-invariant, and hence, E is a critical point of ΓmA.
Furthermore, if A is hyperbolic with m (resp. d−m) eigenvalues of positive
(resp. negative) real part, and if E is the eigenspace associated with the
unstable eigenvalues, then E is an attracting rest point for the projectivized
flow on Ŷ ′ = ΓmA(Ŷ ). See also Appendix A.

For the asymptotic matrices A±κ of Aκ(u), the unstable subspaces U±
κ are at-

tractors for the flow which A±κ induces on G2n
n (C). We projectivize the eigen-

value equation in the augmented system (2.10) and the flow on Rn×G2n
n (C)

becomes

u′ = f(u)− su− c,

X ′
κ = ΓnAκ(u)(Xκ).

(2.11)

The solution X−
κ (u) tends to the unstable subspace U−

κ of A−κ as u → u−.
The unstable Evans bundle H− will be defined as

H− : Ω → G2n
n (C),

κ 7→ X−
κ (u(0))
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and is analytic in κ.
In the same manner we construct the stable Evans bundle

H+ : Ω → G2n
n (C),

κ 7→ X+
κ (u(0))

as we consider the restpoint (u+, 0) and refer to the stable objects (stable
directions, stable manifold (theorem)). The existence of an eigenfunction for
κ ∈ Ω is equivalent to the nontrivial intersection of the subspaces

X−
κ (u(0)) ∩X+

κ (u(0)) 6= {0}.
We note that τ = 0 as intersection point with the spaces X±

κ (τ) was chosen
arbitrarily.

In order to prove that there is no point spectrum in the punctured closed
right half plane C+

• we would need Ω to contain a neighbourhood of 0. In the
last section we proved that the curves in C where A±κ have pure imaginary
eigenvalues define the boundary of σe(L) and intersect the closed right half
plane C+ (only) in 0. In Lemma 2.1 we even showed that 0 is an eigenvalue.
Thus consistent splitting breaks down in (a neighbourhood of) the origin.
We consider small amplitude shock waves which we discovered through a
suitable scaling. We will show that the slow-fast structure of the profile
equation carries over to the eigenvalue problem. The slow-fast structure de-
pends on the size of the spectral parameter κ relative to the shock strength
ε, introducing κ = ε2ζ, we distinguish two regions in C+:

1. Inner problem: For |ζ| ≤ ρ, ρ > 0 the equations governing the eigen-
value problem have an intricate slow-fast structure and the Evans bun-
dles can be constructed as Whitney sums of lower dimensional subbun-
dles related to the different time scales

H+
ε = H+,s

ε ⊕H+,f
ε , H−

ε = H−,s
ε ⊕H−,f

ε .

The slow subbundle H+,s
ε can be decomposed even further into H+,s

ε =
H+,ss

ε ⊕ H+,sf
ε and we will prove that the subbundle H+,sf

ε will carry
the stability information.

2. Outer problem: |ζ| ≥ ρ, ρ > 0 This is similar to the usual situation in
Evans function theory where |κ| ≥ c, c > 0 large. For large modulus
of the spectral parameter κ the eigenvalue problem is approximately
constant coefficient [AGJ]. Due to the scaling the analysis is not trivial
as the essential spectrum approaches the entire imaginary axis of the
ζ-plane as ε tends to zero. However we will show that the Evans bundle
don’t intersect.

26



We allow the small parameter ε to tend to zero and compute the limits
H±,s

0 , H±,f
0 of the perturbed summands. They will be found to be suspensions

of Evans bundles H±
0,red of a smaller problem. The analytic convergence of

the Evans bundles means that in fact we can study the zero limit objects
to decide upon the stability of the small amplitude shock waves. We will
state the main theorem which is the analogon of the result Freistühler and
Szmolyan proved for viscous conservation laws in the paper [FS].

Theorem 2.4. (“Reduction Lemma”, version for bundles)
Consider a family

φε : R→ U, φε(±∞) = u±ε , 0 < ε < ε0

of shock waves for (1.15) whose end states satisfy

u±ε = u∗ ± ε(r(u∗) + O(ε))

and the associated unstable and stable Evans bundles H−
ε ,H+

ε : C+ → G2n
n (C).

Then the scaled versions H±
ε : C+ → G2n

n (C) defined by

H±
ε (ζ) = H±

ε (ε2ζ)

have the following properties.
(i) Let

φ0 : R→ R, φ0(±∞) = ±1,

be the shock wave for the scalar viscous conservation law (Burgers equation)

vt − (v2)x = vxx

and H−
0,red,H+

0,red : C+
• → G2

1(C)be unstable and stable Evans bundles for the
scalar shock wave φ0. The scaled Evans bundles H±

ε converge as analytic
functions

lim
ε→0

H±
ε = H±

0

where H±
0 denote suspensions of H±

0,red in G2n
n (C), namely with respect to

appropriate coordinates on C2n

H−
0 (ζ) = (H−

0,red(ζ)× {(0, 0)}n−1)⊕ ({(0, 0)} × (C× {0})n−1),

H+
0 (ζ) = (H+

0,red(ζ)× {(0, 0)}n−1)⊕ ({(0, 0)} × ({0} × C)n−1).

(ii) There exist ρ̄ > 0 and ε̄ > 0 such that H−
ε (ζ) ∩ H+

ε (ζ) = {0} for all ε
with 0 ≤ ε ≤ ε̄ and all ζ ∈ C+ with |ζ| ≥ ρ̄.
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The profile equation for the travelling wave φ0 with speed s = 0 of the
Burgers equation is

u′ = 1− u2. (2.12)

The corresponding eigenvalue problem can be written as the first order sys-
tem of ordinary differential equations

p′ = −2φ0p− q,

q′ = −κp,
(2.13)

κ ∈ C. The travelling waves for the viscous Burgers equation are known to be
spectrally stable. Hence the Evans bundles for the profile φ0 don’t intersect.
We conclude from Assertion (i) that also the Evans bundles of profiles for
the Jin-Xin model don’t intersect. We state the result

Corollary 2.1. The small-amplitude profiles of the Jin-Xin model (1.9) are
spectrally stable.

The results of Mascia and Zumbrun [MZ1], [MZ2] prove that spectral stability
of profiles of a relaxation model implies their nonlinear stability. Hence the
small-amplitude profiles in the Jin-Xin model are even nonlinearly stable.
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Chapter 3

Inner problem

In the first step we will show that the augmented system (2.10) is singularly
perturbed and reveal a slow-fast structure with a suitable scaling. This allows
us to decompose the stable space S+

ε (κ) and the unstable space U−
ε (κ) in

fast and slow directions which carries over to the Evans bundles. The Evans
bundles thus can be constructed as Whitney sums of subbundles related to
the different time scales

H+
ε = H+,s

ε ⊕H+,f
ε , H−

ε = H−,s
ε ⊕H−,f

ε

In the first section we will make the slow-fast structure of the augmented
system explicit, as we introduce a scaling to investigate the singular solution.
We still assume A1-A3 and make use of the simplifications S1-S4.

3.1 Scaling and slow-fast system

The eigenvalue problem

p′ = Df(u)p− sκp− (κ + 1)q,

q′ = sDf(u)p− a2κp− s(κ + 1)q,
(3.1)

reduces at the point of interest κ = 0 and at the trivial solution u ≡ 0 of the
profile equation for s = 0, c = 0 to

p′ = Df(0)p− q,

q′ = 0.
(3.2)

The upper triangular matrix
(

Df(0) −In

0n 0n

)
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is singular with 0 an eigenvalue of multiplicity n + 1. In order to simplify
matters we introduce a new variable y := q − sp. The equations for the new
variables are

(
p

y

)

τ

=

(
Df(ū)− s(2κ + 1)In −(κ + 1)In

−(a2 − s2)κIn 0n

)

︸ ︷︷ ︸
:=Aκ(u,s)

(
p

y

)
(3.3)

The boundary conditions are limτ→±∞ p(τ) = 0 and limτ→±∞ y(τ) = 0. The
matrix Aκ is clearly analytic in κ and C1 in τ because f is smooth. The co-
efficients of Aκ(τ) tend to constants as τ → ±∞, since limτ→±∞ Df(ū(τ)) =
Df(u±) and we denote the limits of Aκ with A±κ at τ = ±∞.
The profile equation (1.15) combined with the transformed eigenvalue prob-
lem (3.3) gives a coupled autonomous non-linear system of ordinary differ-
ential equations

u′ = f(u)− su− c,

p′ = Df(u)p− s(2κ + 1)p− (κ + 1)y,

y′ = −(a2 − s2)κp.

(3.4)

We introduce the scaling which extends (1.17) to the eigenvalue problem

u = εũ, s = εs̃, c = ε2c̃, y = εỹ, κ = ε2ζ (3.5)

to investigate the situation in the neighbourhood of the origin. To be able
to use perturbation arguments we need ζ to be bounded and with %1 > 0
chosen arbitrarly, we consider from now on only spectral parameters ζ ∈
D%1 := {ζ ∈ C+

∣∣|ζ| ≤ %1}. From

εũ′ = f(εũ)− ε2s̃ũ− ε2c̃,

p′ = Df(εũ)p− εs̃(ε2ζ + 1)p− ε(ε2ζ + 1)ỹ,

εỹ′ = −(
a2 − (εs̃)2

)
ε2ζp,

(3.6)

and by using the Taylor expansion of f (1.19) we obtain

ũ′ = Df(0)ũ + O(ε),

p′ = Df(0)p + O(ε),

ỹ′ = O(ε).

(3.7)
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The system is in the standard form of singularly perturbed ordinary differen-
tial equations on the fast time scale. The Jacobian matrix Df(0) is diagonal
and for notational convenience we drop the tilde

u′i = λi(0)ui + O(ε),

p′i = λi(0)pi + O(ε),

y′i = O(ε),

(3.8)

i = 1, . . . , n. The assumption λk(0) = 0 implies a slow-fast structure of
the problem. We get that uk, pk and yi, i = 1, . . . , n are the slow variables
whereas ui, pi, i = 1, . . . , n, i 6= k are the fast variables. The system (3.8) for
ε = 0, i.e. the layer problem, is in equilibrium if ui = 0, pi = 0, i = 1, . . . , n,
i 6= k. This defines a manifold of equilibria

M0,ζ = {(ui, pi, yi)i=1,...,n

∣∣ui = pi = 0, i = 1, . . . , n; i 6= k} ⊂ Rn × C2n.

The critical manifold M0,ζ is normally hyperbolic as the eigenvalues λi(0),
i = 1, . . . , n, i 6= k are non-zero with the assumptions λk(0) = 0 and strict
hyperbolicity. Thus Fenichel theory ([F2],[J2]) shows that M0,ζ smoothly
perturbs to a slow manifold Mε,ζ which has a parameterization

Mε,ζ = {(ui, pi, yi)i=1,...,n

∣∣uk ∈ R, ui = εhi(uk, s, c, ε), hi smooth,

pk ∈ C, pi = εPi(uk, pk, y, ε, ζ), Pi smooth,

y ∈ Cn, i = 1, . . . , n; i 6= k} ⊂ Rn × C2n

(3.9)

and is invariant under the flow of the scaled augmented system (3.6). We
point out that the profile equation decouples from the rest of the system
which is reflected in the independence of hi from p, y. See also Chapter 1. In
order to switch to the slow time scale τ̂ we rescale τ with ε and denote with
“ ˙ ” the differentiation with respect to the slow time variable τ̂ = ετ . This
yields the slow system

u̇ =
1

ε2
f(εu)− su− c

ṗ =
1

ε
Df(εu)p− s(2ε2ζ + 1)p− (ε2ζ + 1)y

ẏ = −(
a2 − (εs)2

)
ζp
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The profile equation was analyzed in Lemma 1.1. In a similar way we simplify
the eigenvalue problem and obtain

εu̇i = λi(0)ui + O(ε),

u̇k =
1

2

∂2fk

∂u2
k

(0)u2
k − suk − ck + O(ε),

εṗi = λi(0)pi + O(ε),

ṗk =
∂2fk

∂u2
k

(0)ukpk − spk − yk + O(ε),

ẏi = O(ε),

ẏk = −a2ζpk + O(ε),

i = 1, . . . , n, i 6= k. In Remark 1.3 we showed the problem can be transformed
to the case A = 1

2
∂2fk

∂u2
k
(0) = −1, u±k = ±1, s = 0 and ck = −1. In the

following proposition we will collect our results for this special case and
restrict our attention to the part of the slow manifold Vε from Lemma 1.1
with uk ∈ J = [−1, 1], that corresponds to the profiles and its endpoints.

Proposition 3.1. (a) Let % > 0 be arbitrary. There exists ε1 > 0 such
that for every ζ with |ζ| ≤ % and every ε with 0 < ε ≤ ε1. the system
(3.6) possess a unique invariant manifold Mε,ζ such that

Mε,ζ =
⋃
ν∈J

{u(ν)} ×Mν
ε,ζ ,

where u(ν) denotes the point on the profile at which uk = ν, and with
linear spaces of the form

Mν
ε,ζ = {((pk, yk), (pi, yi)i 6=k

)∣∣
pi = εPi(ν, pk, y1, . . . , yn, ε, ζ), i 6= k} ⊂ C2n,

where Pi are smooth functions, linear in pk, y1, . . . , yn and analytic in
ζ.

(b) With respect to the coordinates
(
uk, pk, yk, (yi)i6=k

)
running in the fixed

domain J ×Cn+1, the (slow) flow on Mε,ζ is governed by the equations

u̇k = −u2
k + 1 + O(ε),

ṗk = −2ukpk − yk + O(ε),

ẏk = −a2ζpk + O(ε),

ẏi = O(ε),

(3.10)
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and depends smoothly on ε for 0 ≤ ε ≤ ε1. The limiting slow flow on
M0,ζ is represented by

u̇k = −u2
k + 1,

ṗk = −2ukpk − yk,

ẏk = −a2ζpk,

ẏi = 0.

(3.11)

(c) The (fast) flow outside Mε,ζ is governed by system (3.6). The limiting
(fast) flow outside Mε,ζ is represented by

u′i = λi(0)ui,

p′i = λi(0)pi,

i = 1, . . . , n, i 6= k with uk, pk, yk, yi = constant.

Remark. The claimed uniqueness of Mε,ζ follows from the requirement that
the fibres Mν

ε,ζ are linear spaces.

Remark. We point out that the slow flow on M0,ζ (3.11) consists of the
augmented system of a profile of the viscous Burgers equation combined
with the trivial flow yi = 0, i = 1, . . . , n, i 6= k.

In the following we will take full advantage of the fact that the profile equation
can be reduced to

χ′ = ε
(
1− χ2

)
gε(χ) (3.12)

with gε(χ) = 1+O(ε). See Remark 1.3. We denote with χ : R→ (−∞, +∞)
the solution of this equation with χ± = ±1 the respective endpoints at ±∞.
We note that with a solution χ also the shifted versions are solutions of the
problem and we choose the one satisfying χ(0) = 0.
We introduce the notation

Aε,ζ [χ] ≡ Aε,ζ

(
εu(χ), s

)

and rewrite the scaled augmented system as

χ′ = ε
(
1− χ2

)
gε(χ)(

p

y

)′
= Aε,ζ [χ]

(
p

y

)
.

In the next step we want to investigate the eigenvalues of Aε,ζ and the related
eigenvectors.
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3.2 Eigenvalues of Aε,ζ

The matrix

Aε,ζ(εu, εs) :=

(
Df(εu)− εs(2ε2ζ + 1)In −(ε2ζ + 1)In

−(a2 − (εs)2)ε2ζIn 0n

)

has associated to it the eigenvalue equation

det
(
Aε,ζ(εu, εs)− µI2n

)
= 0,

which specializes with Df(εu) R-diagonalizable for ε small to

n∏
j=1

(
µ2 − (

λj(εu)− εs(2ε2ζ + 1)
)
µ− ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

))
= 0.

Thus an eigenvalue µj,ε,ζ , j = 1, . . . , n has to fulfill

µ2
j,ε,ζ −

(
λj(εu)− εs(2ε2ζ + 1)

)
µj,ε,ζ − ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)
= 0. (3.13)

We obtain for the eigenvalues

µ±j,ε,ζ(εu, εs) =
λj(εu)− εs(2ε2ζ + 1)

2

±
√(

λj(εu)− εs(2ε2ζ + 1)
)2

4
+ ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)

=
λj(εu)− εs(2ε2ζ + 1)

2

±
√(

λj(εu)− εs
)2

+ 4ε2ζ
(
ε2ζ + 1

)
a2 − 4λj(εu)ε3sζ

4
.

These eigenvalues have the property

Lemma 3.1. Under the subcharacteristic condition a > max
(
spec

(
Df(u∗)

)
, |s|)

and ε sufficiently small the domain C+
• has consistent splitting, i.e.

<(
µ−j,ε,ζ(εu, εs)

)
< 0 < <(

µ+
j,ε,ζ(εu, εs)

)
(3.14)

for ε sufficiently small, ζ ∈ C+
• .

Proof. The equation (3.13) is equivalent to the equation of the spectral pa-
rameter κ (2.6) except that the parameters are scaled. We conclude with
Lemma 2.2 that there is no purely imaginary solution µ for ζ ∈ C+

• . The
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continuity of the roots in ζ proves that the number of eigenvalues of A±ε,ζ
with positive (resp. negative) real part is constant and so are the dimensions
of the stable and unstable eigenspaces. Whenever ζ is real and positive, we
note that the coefficients of equation (3.13) are real and that the product of
its roots

µ+
j,ε,ζ(εu, εs)µ−j,ε,ζ(εu, εs) = −ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)
< 0

is negative. Hence these roots are real and of opposite signs and this is true
for all of C+

• .

The eigenvalues µ±j,ε,ζ(εu, εs), j = 1, . . . , n have the associated eigenvectors

R±
j,ε,ζ(εu, εs) = span

{(
rj(εu, εs)

µ∓j,ε,ζ(εu,εs)

ε2ζ+1
rj(εu, εs)

)}
⊂ C2n (3.15)

where rj(εu, εs) are the smooth eigenvectors of Df(εu) associated with the
eigenvalues λj(εu), j = 1, . . . , n. The eigenvalues µ±j (εu, εs) and the associ-
ated eigenvectors R±

j,ε,ζ(εu, εs) are analytic functions in ζ ∈ C+ as long as
ν = ν±.

Lemma 3.2. As long as ε > 0 and ζ ∈ C+
•

S+
ε =

n⊕
j=1

R−
j,ε,ζ [ν

+] is the n-dimensional stable space of Aε,ζ [ν
+] (3.16)

and

U−
ε =

n⊕
j=1

R+
j,ε,ζ [ν

−] is the n-dimensional unstable space of Aε,ζ [ν
−]. (3.17)

Proof. We consider the stable space S+
ε . The same arguments carry over to

the case of the unstable space U−
ε . With Lemma 3.1 we have that µ−j,ε,ζ [ν

+]

is the stable spectrum and the related eigenvectors R−
j,ε,ζ [ν

+] span the stable
space of Aε,ζ [ν

+]. The eigenvectors rj[ν] of Df(εu) are linearly independent
as Df is R-diagonalizable. This property carries over to the eigenvectors
Ri,ε,ζ , Rj,ε,ζ , i 6= j. Additionally C+

• has consistent splitting for ε > 0 and the
eigenvalues satisfy µ−j,ε,ζ 6= µ+

j,ε,ζ , j = 1, . . . , n. Therefore R−
j,ε,ζ and R+

j,ε,ζ are
linearly independent as well.

In the next step we want to shed some light on the order of magnitude of the
eigenvalues.

35



Lemma 3.3. For sufficiently small ε > 0 and every % > 0 we have with
ζ ∈ D% and all ν ∈ J : The n-1 fast eigenvalues

µ−j,ε,ζ(εu, εs) (j < k), and µ+
j,ε,ζ(εu, εs) (j > k)

continue to satisfy the inequalities in Lemma 3.1 and are uniformly bounded
away from 0, while the remaining n+1 slow eigenvalues

µ−j,ε,ζ(εu, εs) (j ≥ k), and µ+
j,ε,ζ(εu, εs) (j ≤ k)

are of order O(ε).

Proof. The eigenvalues µ±j,ε,ζ(εu, εs), j = k + 1, . . . , n are defined as

µ±j,ε,ζ(εu, εs) =
λj(εu)− εs(2ε2ζ + 1)

2

±
√(

λj(εu)− εs
)2

4
+ ε2ζ

(
ε2ζ + 1

)
a2 − λj(εu)ε3sζ

The eigenvalues λj, j = k + 1, . . . , n satisfy λj(0) > 0 and we conclude

λj(εu) − εs = λj(0) + O(ε) > 0 for ε sufficiently small. We factor
λj(εu)−εs

2

out of the squareroot and derive

=
λj(εu)− εs(2ε2ζ + 1)

2

±
∣∣∣∣∣
λj(εu)− εs

2

∣∣∣∣∣

√√√√1 +
4ε2ζ

(
ε2ζ + 1

)
a2 − 4λj(εu)ε3sζ(

λj(εu)− εs
)2 .

We expand the squareroot

=
λj(εu)− εs(2ε2ζ + 1)

2
± λj(εu)− εs

2

(
1 + O(ε2|ζ|)

)

and obtain

µ+
j,ε,ζ(εu, εs) = λj(0) + O(ε),

µ−j,ε,ζ(εu, εs) = O
(
ε2|ζ|).

The eigenvalues λj(0), j = 1, . . . , k − 1 satisfy λj(0) < 0 and we conclude
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λj(εu) − εs = λj(0) + O(ε) < 0 for ε sufficiently small. In the same way as
above we prove for the eigenvalues µ±j,ε,ζ(εu, εs), j = 1, . . . , k − 1 the results

µ+
j,ε,ζ(εu, εs) = O

(
ε2|ζ|),

µ−j,ε,ζ(εu, εs) = λj(0) + O(ε).

The eigenvalues µ±k,ε,ζ are defined as

µ±k,ε,ζ(εu, εs) =
λk(εu)− εs(2ε2ζ + 1)

2

±
√(

λk(εu)− εs(2ε2ζ + 1)
)2

4
+ ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)

The eigenvalue λk satisfies λk(0) = 0 and we expand λk(u) = ∂fk

∂uk
(u) around

0, λk(εu) = λk(0)+∇λk(0)εu+O(ε2) with ∇λk(0) =
(

∂2fk

∂u1∂uk
, . . . , ∂2fk

∂un∂uk

)
(0).

The parameterization of Vε shows that ∂2fk

∂u2
k
(0)uk = 2Auk is the leading term

in magnitude and we derive λk(εu) = 2Aεuk + O(ε2).

=
ε2Auk + O(ε2)− εs(2ε2ζ + 1)

2

±
√(

ε2Auk + O(ε2)− εs(2ε2ζ + 1)
)2

4
+ ε2ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)
.

We factor out ε and obtain

= ε

(
2Auk − s + O(ε)

2

±
√(

2Auk − s + O(ε)
)2

4
+ ζ

(
ε2ζ + 1

)(
a2 − (εs)2

)
)

The expression in the parathensis is bounded since |ζ| < %. Thus the eigen-
values µ±k,ε,ζ satisfy

µ±k,ε,ζ(εu, εs) = O(ε).
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Remark 3.1. In Remark 1.3 we showed that our problem can be transformed
to the case A = −1, u±k = ±1, s = 0 and ck = −1. The above result for
µ±k,ε,ζ [ν

±] specializes to

µ±k,ε,ζ [ν
−] = ε

((
1 + O(ε)

)±
√(

1 + O(ε)
)2

+ ζ
(
ε2ζ + 1

)
a2

)

The expression 1 + O(ε) is positive for ε small and we factor it out of the
squareroot

= ε
(
1 + O(ε)

)
(

1±
√

1 +
ζ
(
ε2ζ + 1

)
a2

(1 + O(ε))2

)
.

The expression ζ(ε2ζ+1)a2

(1+O(ε))2
is O(|ζ|), as (ε2ζ + 1), a2, (1 + O(ε))2 are non-

vanishing for ε → 0 and/or |ζ| → 0

= ε
(
1 + O(ε)

)(
1±

√
1 + O(|ζ|)

)
.

In the same manner we obtain

µ±k,ε,ζ [ν
+] = ε

(
1 + O(ε)

)(− 1±
√

1 + O(|ζ|)
)
.

We will distinguish between fast and slow eigenvalues and let for such ε > 0

Sν,f
ε (ζ), N ν

ε (ζ), U ν,f
ε (ζ)

denote those invariant spaces of Aε,ζ [ν] that are associated with the eigenvalue
sets

{µ−j , j < k}, {µ−j , j ≥ k} ∪ {µ+
j , j ≤ k}, {µ+

j , j > k}
respectively.
Despite the fact that some of the eigenvalues coincide in various ways, all
eigenvalues µ±j,ε,ζ [ν] and their associated eigenvectors R±

j,ε,ζ [ν] are analytic
functions in ζ ∈ C+ as long as ν = ν±. Consistent with the above definitions

S+,f
ε (ζ) =

k−1⊕
j=1

R−
j,ε,ζ [ν

+], U−,f
ε (ζ) =

n⊕

j=k+1

R+
j,ε,ζ [ν

−], (3.18)

we define

S+,s
ε (ζ) :=

n⊕

j=k

R−
j,ε,ζ [ν

+], U−,s
ε (ζ) :=

k⊕
j=1

R+
j,ε,ζ [ν

−]. (3.19)
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With these definitions

S+
ε = S+,f

ε ⊕ S+,s
ε and U−

ε = U−,f
ε ⊕ U−,s

ε (3.20)

are the stable and unstable spaces of Aε,ζ [ν
+] and Aε,ζ [ν

−] respectively, as
long as ε > 0 and ζ ∈ C+

• . We will construct the scaled Evans bundles
H+

ε , H−
ε as sums of subbundles that are associated with the slow and fast

components of the n-dimensional invariant spaces S+
ε and U−

ε .
In the Section 3.3 we consider the fast directions which correspond to the
spaces Sν,f

ε , U ν,f
ε . As the related eigenvalues are uniformly bounded away

from zero, consistent splitting persists for ζ ∈ D% as ε tends to 0. It will be
easy to construct the corresponding fast subbundles of the Evans bundles.
In the Section 3.4 we consider the slow directions corresponding to the space
N ν

ε . The eigenvalues are of order O(ε). However we will find an additional
slow-fast structure in the slow problem which will enable us to get around this
problem by geometric singular perturbation methods. As we are interested in
both cases in the spaces as an entity, we will consider the Grassmann version
of the problem, see Appendix A.

3.3 Fast subbundles H+,f
ε , H−,f

ε

Theorem 3.1. For every % there exists ε1 such that, for all ε ∈ [0, ε1], there
exist unique smooth mappings

S+,f
ε : D% → G2n

k−1(C), H+,f
ε : D% → G2n

k−1(C)

all analytic in ζ ∈ D% such that

1. For each ε ∈ [0, ε1] and each ζ ∈ D%, the solution X+ of the system

χ′ = ε
(
1− χ2

)
gε(χ),

X ′ = Γk−1Aε,ζ [χ]
(
X

)
,

(3.21)

assuming data X+(0) = H+,f
ε (ζ), converges at the right end to

X+(+∞) = S+,f
ε (ζ).

2. The two bundles depend smoothly on ε ∈ [0, ε1] and H+,f
0 (ζ) = S+,f

0 (ζ).

Proof. The system (3.21) for ε = 0 reads

χ′ = 0, X ′ = Γk−1A0[χ]
(
X

)
(3.22)
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where A0 = diag
(
df(0), 0

)
. The X equation decouples from the χ equation

as A0 is constant and independent of χ. An equilibrium of

(
X

)′
= Γk−1A0[χ]

(
X

)

corresponds to an A0 invariant space with dimension k − 1. This is the
number of eigenvalues with negative real part of A0 and Sf

0 denotes the
constant stable subspace of A0. This is consistent with the above definition
of Sν,f

ε (ζ) (3.18) for ε = 0, as we showed in Lemma 3.3 that the related
eigenvalues are O(1) with negative real part. Thus

C+,f
0 ≡ J × Ŝf

0 ⊂ J × G2n
k−1(C)

is the critical manifold of system (3.22). The spectrally isolated point Ŝf
0 ,

spec(A0|Sf
0 ) < spec(A0|N0 ∪U f

0 ), is by virtue of Lemma A.1, Appendix A, a
repellor. Thus the critical manifold C+,f

0 is normally hyperbolic and perturbs
by Fenichel theory ([F1],[F2]) smoothly to a unique repelling slow manifold
C+,f

ε,ζ for the system (3.22) with ε sufficiently small. The curve C+,f
ε,ζ is a trace

of a unique solution
(
χ,X+

ε,ζ

)
with

X+
ε,ζ(±∞) = Ŝ±,f (ζ).

The intersection of C+,f
ε,ζ with χ = 0 depends smoothly on ε and analyti-

cally on ζ ∈ D%. By denoting this intersection point with H+,f
ε,ζ , we have

constructed the fast stable subbundle. The asserted properties are an imme-
diate consequence of our construction.

Theorem 3.2. For every % there exists ε1 such that, for all ε ∈ [0, ε1], there
exist unique smooth mappings

U−,f
ε : D% → G2n

n−k(C), H−,f
ε : D% → G2n

n−k(C)

all analytic in ζ ∈ D% such that

1. For each ε ∈ [0, ε1] and each ζ ∈ D%, the solution X− of the system

χ′ = ε
(
1− χ2

)
gε(χ),

X ′ = Γn−kAε,ζ [χ]
(
X

)
,

(3.23)

assuming data X−(0) = H−,f
ε (ζ) converges at the left end to

X−(−∞) = U−,f
ε (ζ).
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2. The two bundles depend smoothly on ε ∈ [0, ε1] and H−,f
0 (ζ) = U−,f

0 (ζ).

Proof. In the same way as for the fast stable subbundle we can show that

C−,f
0 ≡ J × Û f

0 ⊂ J × G2n
n−k(C)

is a critical manifold for the system (3.23) for ε = 0

χ′ = 0, X ′ = Γn−kA0[χ]
(
X

)
. (3.24)

The constant and spectrally isolated point Û f
0 ,

spec(A0|U f
0 ) > spec(A0|N0 ∪ Sf

0 ), is now by Lemma A.1 an attractor. Thus
C−,f

0 is normally hyperbolic and perturbs by Fenichel theory smoothly to an
unique attracting slow manifold C−,f

ε,ζ for ε sufficiently small. The curve C−,f
ε,ζ

is a trace of a unique solution
(
χ,X−

ε,ζ

)
with

X−
ε,ζ(±∞) = Û±,f (ζ).

We get the fast unstable subbundle H−,f
ε,ζ as the intersection point at χ = 0

and note that it is smooth in ε and analytic in ζ ∈ D%. The stated properties
are again a consequence of the construction.

3.4 Slow subbundles H+,s
ε , H−,s

ε

The problem of the slow directions is that the eigenvalues tend to zero as ε
tends to zero. This is the reason why the consistent splitting of D% breaks
down. We combine these directions to the neutral space

N ν
ε = Sν,s

ε ⊕ Uν,s
ε

to obtain the result

Lemma 3.4. Consider the system

χ′ = ε
(
1− χ2

)
gε(χ),

Y ′ = Γn+1Aε,ζ [χ](Y )
(3.25)

For ε = 0 the curve

M0 ≡ J ×N0 ⊂ J × G2n
n+1(C) (3.26)

is a normally hyperbolic critical manifold of the reduced system, where N0

denotes the constant value of N ν
ε (ζ) for ε = 0.
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Proof. The layer problem, ε = 0, reads

χ′ = 0, Y ′ = Γk−1A0[χ](Y ) (3.27)

with A0 = diag
(
df(0), 0

)
. The Y equation decouples from the χ equation

as A0 is constant and independent of χ. An equilibrium of the layer system
(3.27) corresponds to an n + 1-dimensional, A0 invariant subspace. The
eigenvalue 0 has multiplicity n+1 and we denote with N0 the corresponding
subspace. This is consistent with the above definition of N ν

ε (ζ) for ε = 0.
Thus we get the critical manifold

M0 ≡ J × N̂0 ⊂ J × G2n
n+1(C)

of system (3.27). The point N̂0 satisfies spec(A0|Sf
0 ) < spec(A0|N0) <

spec(A0|U f
0 ), and a slightly extended version of lemma A.1 implies that N̂0

is a hyperbolic saddle. Thus M0 is normally hyperbolic.

The normally hyperbolic critical manifold M0 of the layer problem perturbs
by Fenichel theory [F1, F2] to an unique invariant curveMε,ζ of the perturbed
system (3.25). The slow manifold Mε,ζ consists of an orbit

(
χ, Y

)
together

with its α-limit {−1}×N−
ε and ω-limit {+1}×N+

ε . We denote with Mν
ε,ζ ⊂

C2n the subspace which corresponds to the point Yε,ζ

(
χ−1(ν)

)
. Hence the

one-dimensional manifold J×G2n
n+1(C) is identical with the n+2-dimensional

manifold Mε,ζ ⊂ J × C2n, which we described in Proposition 3.1. Our goal
is to decompose the slow manifold Mε,ζ into the manifolds connected to the
stable and unstable Evans bundles. We will restrict our attention to the slow
flow on Mε,ζ

χ̇ =
(
1− χ2

)
gε(χ),

Ẏ =
1

ε
Aε,ζ [χ]

(
Y

)
.

(3.28)

The slow eigenvalues of 1
ε
Aε,ζ satisfy

µ−j,ε,ζ [χ
±] = O(ε|ζ|), j > k

µ+
j,ε,ζ [χ

±] = O(ε|ζ|), j < k

µ±k,ε,ζ [ν
−] =

(
1 + O(ε)

)(
1±

√
1 + O(|ζ|)

)
,

µ±k,ε,ζ [ν
+] =

(
1 + O(ε)

)(− 1±
√

1 + O(|ζ|)
)
,

with Lemma 3.3 and Remark 3.1. Note that we had to divide the approxi-
mations by ε 6= 0 as we consider the slow flow. We conclude that the slow
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problem has again a slow-fast structure. The manifold Mε,ζ is spanned by
the eigenvectors R−

j,ε,ζ [χ], j = k, . . . , n and R+
j,ε,ζ [χ], j = 1, . . . , k. The fast

directions are R−
k,ε,ζ [χ

+], R+
k,ε,ζ [χ

−] and we define

S+,sf
ε (ζ) := R−

k,ε,ζ [χ
+], U−,sf

ε (ζ) := R+
k,ε,ζ [χ

−]. (3.29)

The slow directions are R−
j,ε,ζ [χ], j = k + 1, . . . , n, R+

j,ε,ζ [χ], j = 1, . . . , k − 1

and the related eigenvalues µ−j,ε,ζ , j = k + 1, . . . , n, µ+
j,ε,ζ , j = 1, . . . , k − 1 are

sensitive as ε and/or ζ tend to zero. We will have to distinguish two cases

1. ζ ∈ D%1 , %1 > 0 sufficiently small.

2. ζ ∈ D%2/D%1 , 0 < %1 < %2.

We consider the Grassmann versions of the slow flow on Mε,ζ in order to
construct the slow subbundles H+,s

ε and H−,s
ε .

Slow subbundle H+,s
ε

Theorem 3.3. For every % there exists ε1 such that for all ε ∈ [0, ε1], there
exist unique smooth mappings

S+,s
ε : D% → G2n

n−k+1(C), H+,s
ε : D% → G2n

n−k+1(C)

all analytic in ζ ∈ D%. Additionally for each ε ∈ [0, ε1] and each ζ ∈ D%, the
solution Y + of the system

χ′ = ε
(
1− χ2

)
gε(χ),

Y ′ = Γn−k+1Aε,ζ [χ]
(
Y

) (3.30)

assuming data Y +(0) = H+,s
ε (ζ), converges at the right end to

Y +(+∞) = S+,s
ε (ζ).

Proof. We first consider the case ζ ∈ D%1 , %1 > 0 sufficiently small. In this
regime we take % = |ζ| as our small perturbation parameter, since with % = 0
also the eigenvalue µ+

k,ε,ζ [ν
+] =

(
1 + O(ε)

)(− 1 +
√

1 + O(|ζ|)) is zero. Thus

the layer problem is the one for % = |ζ| = 0. S+,sf
ε (0) is spanned by the

only vector whose related eigenvalue has nonzero realpart. Any n − k + 1-
dimensional subspace of eigenvectors of Nε is invariant under the flow and
thus a rest point for the Y equation. As we consider the slow flow on Mε,0

we get that
{χ+} × {Y ∈ G2n

n+k−1(C)
∣∣Y ⊂ N+

ε (0)} (3.31)
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is a manifold of equilibria for the system, but is not normally hyperbolic. In
order to apply the first theorem of Fenichel theory we need a subset of this
manifold which is normally hyperbolic, i.e. the linearization at any point of
the critical manifold of dimension m must have exactly m eigenvalues with
real part 0. However as we want to construct the stable subbundle we want
S+,sf

ε (0) to be part of it anyway. If we consider

N+(ζ) = {χ+} × {Y ∈ G2n
n+k−1(C)

∣∣S+,sf
ε (ζ) ⊂ Y ⊂ N+

ε (ζ)} (3.32)

and

C+,s
ε,ζ = {+1} × N+(ζ), (3.33)

we obtain that C+,s
ε,0 is of dimension (n−k)k and indeed normally hyperbolic.

Specifically the critical manifold C+,s
ε,0 is repelling inside {χ = +1} and at-

tracting in the χ direction towards {χ = +1}. Thus C+,s
ε,0 perturbs smoothly

to an invariant manifold C+,s
ε,ζ . Additionally the stable manifold Ws(C+,s

ε,ζ ) of

C+,s
ε,ζ , restricted to the slow flow on Mε,ζ , possesses invariant foliations with

one-dimensional leaves, with each leaf based at a point of the manifold C+,s
ε,ζ .

Any leaf whose base point is a rest point is itself invariant under the flow
(see Appendix B ).
On the one hand the point S+,s

ε (ζ) satisfies for ζ 6= 0, ε 6= 0 with Lemma 3.1
spec(A|S+,s

ε (ζ)) < spec(A|U+,s
ε (ζ)). Hence it is by virtue of Lemma A.1 a

repellor inside {χ = +1}. On the other hand the point {+1}×S+,s
ε (ζ) is at-

tracting in the χ direction (in the slow flow). We conclude that {+1}×S+,s
ε (ζ)

is a restpoint and the leaf which is based in {+1}×S+,s
ε (ζ) is indeed invariant.

Thus we find a unique orbit
(
χ, Y +

ε,ζ

)
with

Y +
ε,ζ(+∞) = S+,s

ε (ζ).

In particular we denote its intersection point with χ = 0 by H+,s
ε and note

that the bundle is smooth in ε and analytic in ζ. (Although from the theo-
rem we only got that it perturbs smoothly in the radius % = |ζ| we get still
analyticity in ζ.)

Next we consider the second case ζ ∈ D%2/D%1 , 0 < %1 < %2. In this case ε
is the small perturbation parameter and we consider the layer problem for
ε = 0. For ε = 0 we get that µ±k,ε,ζ [ν

+] are the only eigenvalues which are
non-zero. As we consider the slow flow on M0,ζ we get that

{χ+} × {Y ∈ G2n
n+k−1(C)

∣∣Y ⊂ N+
ε (0)} (3.34)
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is a manifold of equilibria for the system. In order to find a normally hyper-
bolic subset we still want S+,sf

ε to be part of any point on the critical manifold.
However the eigenvalue related to the vector spanning U+,sf

ε has positive re-
alpart and would not allow any point to be normally hyperbolic and thus
should be excluded. Thus we define with (⊕j≥kR

−
j,ε,ζ [χ

+])⊕ (⊕j<kR
+
j,ε,ζ [χ

+])
instead of N+

ε (ζ)

N+(ζ) =
{
χ+} × {Y ∈ G2n

n+k−1(C)
∣∣S+,sf

ε (ζ) ⊂ Y,

Y ⊂ ( ⊕

j≥k

R−
j,ε,ζ [χ

+]
)⊕ ( ⊕

j<k

R+
j,ε,ζ [χ

+]
)} (3.35)

and

C+,s
ε,ζ = {+1} × N+(ζ), (3.36)

The critical manifold C+,s
0,ζ is normally hyperbolic and has dimension (n −

k)(k − 1). Indeed C+,s
0,ζ is repelling inside {χ = +1} and attracting in the χ

direction towards {χ = +1}. The critical manifold C+,s
0,ζ perturbs smoothly

to an invariant manifold C+,s
ε,ζ and in the same manner as above we construct

the slow stable Evans subbundle H+,s
ε .

Slow subbundle H−,s
ε

Theorem 3.4. For every % there exists ε1 such that for all ε ∈ [0, ε1], there
exist unique smooth mappings

U−,s
ε : D% → G2n

k (C), H−,s
ε : D% → G2n

k (C)

all analytic in ζ ∈ D%. Additionally for each ε ∈ [0, ε1] and each ζ ∈ D%, the
solution Y − of the system

χ′ = ε
(
1− χ2

)
gε(χ),

Y ′ = ΓkAε,ζ [χ]
(
Y

) (3.37)

assuming data Y −(0) = H−,s
ε (ζ) converge at the left end to

Y −(−∞) = U−,s
ε (ζ).

Proof. We will follow the program outlined in the construction of the slow
stable Evans subbundle H+,s

ε we will just point out the differences.
In case 1 we define

N−(ζ) = {χ−} × {Y ∈ G2n
k (C)

∣∣U−,sf
ε (ζ) ⊂ Y ⊂ N−

ε (ζ)} (3.38)
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and consider the invariant manifold

C−,s
ε,ζ = {−1} × N−(ζ). (3.39)

For ζ = 0 the critical manifold C−,s
ε,0 is normally hyperbolic. The critical

manifold C−,s
ε,0 is attracting inside {χ = −1} and repelling in the χ direction

towards {χ = −1}. C−,s
ε,0 perturbs smoothly to an invariant manifold C−,s

ε,ζ

and the unstable manifold Wu(C−,s
ε,ζ ), restricted to the slow flow on Mε,ζ ,

possesses invariant foliations with one-dimensional leaves. The leaf based at
the point {−1} × U−,s

ε (ζ) is invariant under the slow flow. We find a unique
orbit

(
χ, Y −

ε,ζ

)
with the desired properties and denote the intersection point

with χ = 0 with H−,s
ε . This bundle is smooth in ε and analytic in ζ.

In case 2 both eigenvalues µ±k,ε,ζ [χ
−] are O(1) and we will have to exclude

R−
k,ε,ζ [χ

−] for the same reasons from the definition of N−(ζ). We define

N−(ζ) =
{
χ−} × {Y ∈ G2n

k (C)
∣∣U−,sf

ε (ζ) ⊂ Y,

Y ⊂ ( ⊕

j>k

R−
j,ε,ζ [χ

−]
)⊕ ( ⊕

j≤k

R+
j,ε,ζ [χ

−]
)} (3.40)

and

C−,s
ε,ζ = {−1} × N−(ζ). (3.41)

Again C−,s
0,ζ is a critical manifold for ε = 0 which is normally hyperbolic. C−,s

0,ζ

perturbs smoothly to an invariant manifold C−,s
ε,ζ and like in case 1 we are

able to construct the slow scaled unstable Evans subbundle H−,s
ε .

Theorem 3.5. For every % there exists ε1 such that the bundles S+,s
ε , H+,s

ε

of Theorem 3.3 and U−,s
ε , H−,s

ε of Theorem 3.4 depend smoothly on ε ∈ [0, ε1]
and

H+,s
0 (ζ) = H̃+,sf

0 (ζ)⊕ Sss
0 (ζ)

H−,s
0 (ζ) = H̃−,sf

0 (ζ)⊕ U ss
0 (ζ).

with H̃±,sf
0 (ζ) ∈ N sf

0 and dim N sf
0 = 2. Where H̃±,sf

0 (ζ) ∼= H±,sf
0 (ζ) ∈ C2n

via a coordinate transformation of N sf
0
∼= C2.

Proof. The equations for the slow flow on M0,ζ , see Proposition 3.1, are

u̇k = 1− u2
k,

ṗk = −2ukpk − yk,

ẏk = −a2ζpk,

ẏi = 0,

(3.42)
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i = 1, . . . , n, i 6= k. That means

u̇k = 1− u2
k (3.43)

and

ẏi = 0 (i 6= k) (3.44)

decouple from the rest of the system

ṗk = −2ukpk − yk

ẏk = −a2ζpk

(3.45)

The slow manifold M0,ζ is spanned by the constant vectors

( ⊕

j≥k

R−
j,0,.[.]

)⊕ ( ⊕

j≤k

R+
j,0,.[.]

)
,

which are independent of ζ and ν. See also the definition of µj and Rj.
The solution space of system (3.44) is

( ⊕

j>k

R−
j,0,.[.]

)⊕ ( ⊕

j<k

R+
j,0,.[.]

)

and the one for system (3.45)

R−
k,0,.[.]⊕R+

k,0,.[.].

Y + converges at the right end to S+,s
0 (ζ) :=

⊕
j≥k R−

j,0,ζ [ν
+]. We note that

the subspace
Sss

0 := ⊕j>kR
−
j,0,.[.]

of constant vectors is invariant under the flow (3.44) and H+,s
0 (ζ) can be

decomposed into
H+,s

0 (ζ) = H̃+,sf
0 (ζ)⊕ Sss

0

with H̃+,sf
0 (ζ) ∈ N sf

0 := R−
k,0,.[.] ⊕ R+

k,0,.[.]. In the same way we show the
decomposition of

H−,s
0 (ζ) = H̃−,sf

0 (ζ)⊕ U ss
0

with U ss
0 (ζ) := ⊕j<kR

+
j,0,.[.] and H̃−,sf

0 (ζ) ∈ N sf
0 .
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Remark 3.2. The profile φ0 with wave speed s = 0 is a solution of the viscous
Burgers equation. The viscous profile equation is

u′ = 1− u2. (3.46)

The eigenvalue problem can be written as

κv = vt = v′′ + 2uv′, (3.47)

which is equivalent to the first order system of ordinary differential equations

p′ = −2up− y,

y′ = −κp.
(3.48)

The augmented system for the profile φ0 of the Burgers equation is

u′ = 1− u2,

p′ = −2up− y,

y′ = −κp.

(3.49)

We conclude that system (3.49) is exactly the nontrivial part of the slow flow
on M0,ζ . The travelling waves for the viscous Burgers equation are known
to be spectrally stable. Hence the stable and unstable Evans bundles for the
profile φ0 don’t intersect, which is also true for their suspensions in G2n

n (C).

Proof of Assertion 1 of Theorem 2.4. We can find a small parameter ε1 > 0
such that we get from the Theorems 3.1, 3.2, 3.3, 3.4 the existence of the
subbundles which span the stable Evans bundle

H+
ε = H+,f

ε ⊕H+,s
ε (3.50)

and the unstable Evans bundle

H−
ε = H−,f

ε ⊕H−,s
ε . (3.51)

The Theorems 3.1 (Assertion 2), 3.2 (Assertion 2), 3.5 prove the analytic
convergence of the Evans bundles.

48



Chapter 4

Outer problem

We will prove the second Assertion of Theorem 2.4 which states that there
are no eigenvalue in the outer region. However an obstacle is that the es-
sential spectrum is approaching the entire imaginary axis as ε tends to zero.
Nonetheless we are going to prove that the two Evans bundles do not in-
tersect for |ζ| ≥ %1 and ε ∈ [0, ε1], if %1 is chosen large enough and then ε1

sufficiently small. The key ingredient in our argumentation is the following
result for non-autonomous linear systems whose coefficient matrices possess
a sufficiently slowly varying diagonalizer, which was formulated in the paper
[FS] on “Spectral stability of small viscous profiles”.

Lemma 4.1. For every n ∈ N there exists a constant c > 0 with which the
following holds. Let A,R : J → GL2n(C) be smooth matrix functions such
that

R−1AR = diag(µ+
1 , . . . , µ+

n , µ−1 , . . . , µ−n ) (4.1)

with

<µ+
j > 0,<µ−j < 0, j = 1, . . . , n. (4.2)

With χ : R→ (−1, 1) the solution of

χ′ = (1− χ2)g(χ), χ(0) = 0 (4.3)

for some smooth g : J → (0,∞), consider the equation

X ′ = ΓnA(χ)(X) on G2n
n (C) (4.4)

which is associated with the non-autonomous linear system ξ′ = A(χ)ξ on C2n.
With U(τ), S(τ) denoting the unstable resp. stable subspaces of A(τ), τ ∈ J,
define X± : R→ G2n

n (C) as the two solutions of (4.4) with

X−(−∞) = U(−1), X+(+∞) = S(+1). (4.5)
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If furthermore

|(R(0))−1 d

dτ
R(τ)| ≤ c, τ ∈ J, (4.6)

then these solutions satisfy also

X−(+∞) = U(+1), X+(−∞) = S(−1). (4.7)

Remark. The idea of the proof is that in the first step they construct a
positively invariant set N for the augmented system of the profile equa-
tion and the projectivized eigenvalue problem with ω-limit {+1} × U(1).
This is possible due to the slowly varying diagonalizer. As the orbit O =⋃
−1<ν≤1

({ν} × X−(χ−1(ν)) enters this positive invariant manifold it stays
in there and we conclude U(+∞) = U(1), too. The entire proof can be found
in [FS].

Remark. In a finite dimensional space the maximum norm is equivalent to
any other norm and we will consider the maximum norm in our proofs.

Proof of Assertion 2 of Theorem 2.4. We will show that Lemma 4.1 is appli-
cable to

χ′ = ε
(
1− χ2

)
gε(χ),

X ′ = ΓnAε,ζ(χ)(X)
(4.8)

uniformly for small ε > 0 and sufficiently large |ζ|. This would allow us to
conclude that the Evans bundle don’t intersect.

The problem is in the correct form and we will prove condition (4.6) for
the matrix

Rε,ζ [ν] =

((
rj[ν] rj[ν]

µ+
j,ε,ζ [ν]

ε2ζ+1
rj[ν]

µ−j,ε,ζ [ν]

ε2ζ+1
rj[ν]

)

j=1,...,n

)
. (4.9)

The inequality (4.6)

∣∣∣∣(R(0))−1 d

dν
R(ν)

∣∣∣∣ ≤
∣∣(Rε,ζ [ν]

)−1∣∣
∣∣∣∣

∂

∂ν
Rε,ζ [ν]

∣∣∣∣ (4.10)

holds especially if we can show
∣∣∣∣

∂

∂ν
Rε,ζ [ν]

∣∣∣∣ ≤ cε (4.11)
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and

∣∣(Rε,ζ [ν]
)−1∣∣ ≤ c (4.12)

with a uniform constant c > 0 if |ζ| ≥ %1.
The coefficients of ∂

∂ν
Rε,ζ [ν] are

∂

∂ν
rj(εu(ν))

and

∂

∂ν

(
µ±j,ε,ζ [ν]

ε2ζ + 1
rj[ν]

)
=

(
∂

∂ν
µ±j,ε,ζ [ν]

)
rj[ν]

ε2ζ + 1
+

µ±j,ε,ζ [ν]

ε2ζ + 1

(
∂

∂ν
rj(εu(ν))

)
.

Since rj[ν] is an eigenvector associated to the Jacobian matrix of the smooth
function f we observe that

∂

∂ν
rj(εu(ν)) =

(∇rj(εu)
)
.
(
ε
du

dν

)
= O(ε). (4.13)

In order to prove a similar result for the other coefficient we will use ε2ζ ≡ %eiϕ

with ϕ ≤ |π
2
|.

∂

∂ν
µ±j,ε,ζ [ν] =

=
∂

∂ν

(
λj(εu)− εs(2%eiϕ + 1)

2

±
√(

λj(εu)− εs(2%eiϕ + 1)
)2

4
+ %eiϕ

(
%eiϕ + 1

)(
a2 − (εs)2

)
)

=
∂

∂ν

(
λj(εu)− εs(2%eiϕ + 1)

2

)

(
1± λj(εu)− εs(2%eiϕ + 1)

2

√(
λj(εu)−εs

)2

4
+

(
%eiϕ

)2
+ %eiϕ

(
a2 − 4λj(εu)εs

)

)
.

The second factor is bounded as the discriminant has positive real-part which
is bounded away from zero. Whereas

∂

∂ν

(
λj(εu)− εs(2%eiϕ + 1)

2

)
=

1

2

∂

∂ν
λj(εu) =

1

2
∇λj(εu).

∂εu

∂ν
= O(ε)
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and we conclude
∂

∂ν
µ±j,ε,ζ [ν] = O(ε). (4.14)

Together with the result ∂
∂ν

rj(εu(ν)) = O(ε) and that

rj(εu(ν))

%eiϕ + 1
and

µ±j,ε,ζ [ν]

%eiϕ + 1

are smooth functions, we obtain that the coefficients of ∂
∂ν

Rε,ζ [ν] are O(ε).
This proves (4.11).

To prove (4.12) we note that via a basis transformation modulo an order
one, i.e. a transformation which is bounded and has a bounded inverse, R is
similar to R̂ := diag(R̂1, . . . , R̂n), with

R̂j,ε,ζ [ν] =

(
1 1

µ+
j,ε,ζ [ν]

ε2ζ+1

µ−j,ε,ζ [ν]

ε2ζ+1

)
(4.15)

and
R̂−1[ν] = diag(R̂−1

1 , . . . , R̂−1
n ) (4.16)

We derive

R̂−1
j,ε,ζ [ν] =

ε2ζ + 1

µ−j,ε,ζ [ν]− µ+
j,ε,ζ [ν]




µ−j,ε,ζ [ν]

ε2ζ+1
−1

−µ+
j,ε,ζ [ν]

ε2ζ+1
1


 (4.17)

Thus we have to show
∣∣∣∣

µ±j,ε,ζ [ν]

µ−j,ε,ζ [ν]− µ+
j,ε,ζ [ν]

∣∣∣∣ ≤ c j = 1, . . . , n (4.18)

and

∣∣∣∣
ε2ζ + 1

µ−j,ε,ζ [ν]− µ+
j,ε,ζ [ν]

∣∣∣∣ ≤ c j = 1, . . . , n (4.19)

We will write the spectral parameter again as ε2ζ ≡ %eiϕ with ϕ ≤ |π
2
| and

consider for any %2 > 0 two cases:

1. 0 < %1 ≤ % < %2, %1 > 0.

2. % ≥ %2.

52



Case 1: 0 < %1 ≤ % < %2, %1 > 0.
For the eigenvalues µ±j,ε,ζ , j = 1, . . . , n, j 6= k we obtain upper bounds

∣∣µ±j,ε,ζ [ν]
∣∣ =

∣∣∣∣∣
λj(εu)− εs(2%eiϕ + 1)

2

±
√(

λj(εu)− εs
)2

4
+ a2

(
%eiϕ

)2
+ %eiϕ

(
a2 − λj(εu)εs

)
∣∣∣∣∣

≤
∣∣∣∣
λj(εu)− εs

2

∣∣∣∣
︸ ︷︷ ︸

≤γ1

+

∣∣∣∣εs%eiϕ

∣∣∣∣
︸ ︷︷ ︸
≤γ2(%2)

+

∣∣∣∣±
√(

λj(εu)− εs
)2

4
+ a2

(
%eiϕ

)2
+ %eiϕ

(
a2 − λj(εu)εs

)∣∣∣∣
︸ ︷︷ ︸

≤γ3(%2)

= γ1 + γ2(%2) + γ3(%2) = γ(%2)

Whereas the difference of two eigenvalues is bounded away from 0 since the
discriminant has positive real part and λj(0) 6= 0

∣∣µ+
j,ε,ζ [ν]− µ−j,ε,ζ [ν]

∣∣ =

∣∣∣∣∣± 2

√(
λj(εu)− εs

)2

4
+ a2

(
%eiϕ

)2
+ %eiϕ

(
a2 − λj(εu)εs

)
∣∣∣∣∣

≥
∣∣λj(εu)− εs

∣∣ =
∣∣λj(0) + O(ε)

∣∣ > β > 0.

For µ±k,ε,ζ [ν] we conclude from the approximations in Remark 3.1 that

∣∣µ±k,ε,ζ [ν]
∣∣ ≤ εγ(%2)

and for the difference

∣∣µ+
k,ε,ζ [ν]− µ−k,ε,ζ [ν]

∣∣ =

∣∣∣∣∣± 2

√
ε2

(
2Auk − s + O(ε)

)2

4
+ %eiϕ

(
%eiϕ + 1

)(
a2 − (εs)2

)
∣∣∣∣∣

≥ εβ > 0.

From these bounds we conclude that the (4.12) holds with an uniform con-
stant c.
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Case 2: % ≥ %2.
In this case we have for the eigenvalues µ±j,ε,ζ , j = 1, . . . , n

∣∣µ±j,ε,ζ [ν]
∣∣ =

λj(εu)− εs

2
− εs%eiϕ

±
√(

λj(εu)− εs
)2

4
+ a2

(
%eiϕ

)2
+ %eiϕ

(
a2 − λj(εu)εs

)

=
λj(εu)− εs

2
− εs%eiϕ

± a%eiϕ

√√√√1 +

(
λj(εu)− εs

)2
+ 4%eiϕ

(
a2 − λj(εu)εs

)

4a2
(
%eiϕ

)2

≈ (−εs± a)%eiϕ ≈ ±%eiϕ.

Thus we conclude that (4.12) holds again with an uniform constant c.

The inequality (4.6) holds and with Lemma 4.1 this proves Assertion 2 of
Theorem 2.4.
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Appendix A

Flows on Grassmann Manifolds

Certain properties of systems of linear autonomous or nonautonomous ordi-
nary differential equations can be concisely expressed as properties of flows
which these systems induce on certain Grassmann manifolds. Background
material on Grassmann manifolds can be found in many geometry books, see
e.g. [GrHa], however, we need only a few elementary notions.

In this section, we show in particular a simple normal form statement for
the local behaviour of the Grassmann version of a linear constant-coefficients
problem at a rest point that corresponds to a spectrally isolated invariant
subspace of the original system. The proof of this proposition may serve
those readers who feel unfamiliar with flows on Grassmann manifolds as a
warmup example for the analysis in Chapter 3.

To begin with, we recall that for m, d ∈ N,m ≤ d, the set Gd
m(C) of

m-dimensional linear subspaces of Cd is a complex-analytic manifold of di-
mension m(d − m). With respect to a given basis {e1, . . . , ed} of Cd, the
mapping

ϕ : C(d−m)×m → Gd
m

T 7→ span

(
Im

T

)

is a local chart of Gd
m with ϕ(0) = X0 = span{e1, . . . , em}. We call a chart

related in this way to a basis of the underlying space Cd a canonical chart
with respect to that basis. For any basis, different canonical charts resulting
from permuting the basis vectors cover the whole manifold Gd

m and changes
between these charts are analytic mappings between appropriate domains in
C(d−m)×m.

Lemma A.1. (i) Fix a basis {e1, . . . , ed} of Cd and let X0 = span{e1, . . . , em}.
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Consider a constant coefficient system

ξ′ = Aξ on Cd. (A.1)

and the associated system

X ′ = ΓmA(X) on Gd
m, (A.2)

and let ϕ be a canonical chart for Gd
m with respect to the basis {e1, . . . , ed}.

If
A = diag(µ1, . . . , µd).

then modulo ϕ−1, the flow of (A.2) near X0 obeys the linear system

t′ab = (µm+a − µb)tab on C(d−m)×m. (A.3)

(ii) If additionally

<(spec(A|X0)) > <(spec(A|Y0))

with Y0 = span{em+1, . . . , ed}, then X0 is a hyperbolic attractor for (A.2)
and via ϕ, any sphere in C(d−m)×m ≡ C(d−m)m defines a positively invariant
neighborhood of X in Gd

m.

Proof of Lemma A.1. Represent any orbit X : R → Gd
m of (A.2) near

X0 also by some matrix-valued function Ξ : R→ Cd×m with Ξ of the form

Ξ =




x1 . . . 0
...

. . .
...

0 . . . xm

y11 . . . y1m
...

...
y(d−m)1 . . . y(d−m)m




with xj 6= 0, j = 1, . . . , m,

the columns spanning X as a subspace of Cd and thus satisfying (A.1). I. e.,




x1 . . . 0
...

. . .
...

0 . . . xm

y11 . . . y1m
...

...
y(d−m)1 . . . y(d−m)m




′

=




µ1x1 . . . 0
...

. . .
...

0 . . . µmxm

µm+1y11 . . . µm+1y1m
...

...
µdy(d−m)1 . . . µdy(d−m)m




.
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This yields
(tab) = ϕ−1(X) = (yab/xb)

with

(yab/xb)
′ = (xbµm+ayab − µbxbyab)/x

2
b

= (µm+a − µb)(yab/xb).

This proves assertion (i). Under the assumptions of (ii) all eigenvalues
(µm+b − µa) have negative real part and (ii) follows. 2

57



Appendix B

Invariant manifold theory

This appendix contains some results from the geometric theory of dynamical
systems needed in this work. For a general introduction, we refer to [Ar],
[Ce], [Gu], [W], [F2], and [J2].

B.1 Center manifolds and invariant foliations

Center manifold theory is a tool for analyzing the local dynamics of non-
hyperbolic equilibria of dynamical systems, providing a means for systemat-
ically reducing the dimension of problems near such equilibria. We will in
the following consider systems in the standard (block diagonal) form

x′s = Asxs + fs(xs,xc,xu)

x′c = Acxc + fc(xs,xc,xu)

x′u = Auxu + fu(xs,xc,xu),

(B.1)

where xs ∈ Rns ,xc ∈ Rnc , and xu ∈ Rnu for ns, nc, nu ∈ N, fs, fc, and fu
are O (‖(xs,xc,xu)‖2) and Ck (k ∈ N) in all three arguments, and the prime
denotes differentiation with respect to some t ∈ R.1 Moreover, we require
the matrices As, Ac, and Au to have only eigenvalues λs, λc, and λu with
negative, zero and positive real parts, respectively.

For the linear part of (B.1) the following invariant subspaces can easily
be identified: an ns-dimensional stable manifold Es given by {xc = 0 = xu},
which is the (generalized) eigenspace corresponding to the eigenvalues λs; an
nu-dimensional unstable manifold Eu given by {xs = 0 = xc}, which is the
(generalized) eigenspace corresponding to the eigenvalues λu; and finally an
nc-dimensional center manifold Ec given by {xs = 0 = xu}, which is the

1Here ‖ · ‖ denotes a suitably chosen norm.
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(generalized) eigenspace corresponding to the eigenvalues λc. Similarly, one
can define the invariant subspaces Ecs (the center-stable manifold given by
{xu = 0}) and Ecu (the center-unstable manifold given by {xs = 0}). To
obtain the dynamics of the linear system in (B.1), one just has to combine
the dynamics of the subsystems corresponding to these invariant subspaces.

For the full nonlinear system a similar rationale holds; indeed, one can
show that there exist invariant submanifolds tangent to the invariant mani-
folds of the linear system, see [Ce] or [Gu]:

Theorem B.1. Given system (B.1), there exists an ns(nc, nu)-dimensional
invariant Ck-manifold Ws (Wc,Wu) tangent to Es (Ec, Eu). Likewise, there
are (ns + nc)- and (nc + nu)-dimensional invariant Ck-manifolds Wcs and
Wcu tangent to Es ⊕ Ec and Ec ⊕ Eu, respectively.

For simplicity, let us now assume that nu = 0; then system (B.1) takes
the form

x′s = Asxs + fs(xs,xc)

x′c = Acxc + fc(xs,xc).
(B.2)

Since the center manifold Wc can be represented as a (local) graph

Wc = {(xs,xc)| xs = ϕ(xc)}, ϕ(0) = 0 =
∂ϕ

∂xc

(0), (B.3)

the dynamics restricted to Wc is given by

x′c = Acxc + fc(ϕ(xc),xc), (B.4)

which implies the following result, see [Gu]:

Theorem B.2. If the origin of (B.4) is locally asymptotically stable (unsta-
ble), then the origin of (B.2) also is locally asymptotically stable (unstable).

Although in most cases ϕ cannot be computed exactly, it can often be
approximated arbitrarily closely: substituting xs = ϕ(xc) in the second equa-
tion of (B.2), one obtains

x′s =
∂ϕ(xc)

∂xc

x′c =
∂ϕ(xc)

∂xc

[Acxc + fc(ϕ(xc),xc)] =

= Asϕ(xc) + fs(ϕ(xc),xc),

(B.5)

which motivates
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Theorem B.3. If a function ϕN(xc) with ϕN(0) = 0 = ∂ϕN

∂xc
(0) can be found

such that (B.5) holds up to terms of O (‖xc‖N
)

for some N > 1 as ‖xc‖ → 0,
then

ϕ(xc) = ϕN(xc) +O (‖xc‖N
)
. (B.6)

A similar result can be derived for nu > 0, see again [Gu].
In a neighbourhood of the center-stable and center-unstable manifolds

Wcs and Wcu, one can describe the dynamics of (B.1) by the dynamics on
so-called invariant foliations. In general, a foliation F of an n-dimensional
manifold W consists of a family of m-dimensional connected submanifolds
(leaves or fibers) F (x), where m,n ∈ N, m < n, and x ∈ W . Any two leaves
of F are either identical or disjoint (i.e., F (x) = F (y) or F (x) ∩ F (y) = ∅
for x,y ∈ W). Moreover, the foliation has to cover all of W , i.e., W =⋃

x∈W F (x). An invariant foliation is a foliation which is invariant under the
flow of (B.1), that is, any point y0 ∈ F (x0) is mapped to the same leaf by
the flow: y(t) ∈ F (x(t)), where x(0) = x0 and y(0) = y0.

Let β > 0 be such that <(λs) < −β, <(λu) > β; then there exist real
constants α, γ > 0 with α < β and α < γ < kγ < β, where k is as above.
The following result on the existence of invariant foliations for (B.1) can be
found in [Ce]:

Theorem B.4. There exists a stable (unstable) foliation F s (Fu) of Rn (with
n = ns +nc +nu) near Wcu (Wcs) which is invariant under the flow of (B.1)
and has the following properties:

1. Every leaf of F s (Fu) has a unique transversal intersection with Wcu

(Wcs).

2. Every leaf F s(x) (F u(x)) is a Ck-manifold, which is, however, only
Hölder continuous in its base point x ∈ Rn.

3. The distance of any two orbits starting in the same leaf of F s (Fu) is
decaying (growing) exponentially fast with rate e−γt (eγt).

Remark B.1. For nu = 0 (ns = 0), the foliation F s (Fu) corresponding to
Wcs (Wcu) is in fact Ck-smooth in its base points, see [T]. In that case the
decay (growth) rate for orbits which start in the same leaf is e−βt (eβt).

B.2 Fenichel theory

For the sake of completeness, we cite a few basic results from the pioneering
work by [F2] on geometric singular perturbation theory. The equations from
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which we set out here are of the form

x′ = εf(x,y, ε)

y′ = g(x,y, ε),
(B.7)

where 0 < ε ¿ 1, x ∈ Rm and y ∈ Rn for m,n ∈ N, f and g are Ck (k ∈ N)
in all three arguments, and the prime denotes differentiation with respect to
t. System (B.7) can be reformulated with a change of time-scale as

ẋ = f(x,y, ε)

εẏ = g(x,y, ε);
(B.8)

here the overdot denotes differentiation with respect to τ = εt. The time-
scale given by t is said to be fast, whereas that for τ is slow. We thus call
(B.7) the fast system and (B.8) the slow system. Similarly, x is usually
referred to as the slow variable, whereas y is called the fast variable. Taking
the limit ε → 0 in both (B.7) and (B.8), one obtains two limiting systems,
the layer problem

x′ = 0

y′ = g(x,y, 0)
(B.9)

and the reduced problem

ẋ = f(x,y, 0)

0 = g(x,y, 0).
(B.10)

One can think of the condition g(x,y, 0) = 0 as determining the manifold
S of equilibria of (B.9). A normally hyperbolic submanifold S0 of S consists
of a connected compact subset of S where ∂g

∂y

∣∣
S0

has no eigenvalues on the

imaginary axis. There one can solve for y = ϕ0(x) to obtain for the dynamics
on this so-called critical manifold S0

ẋ = f(x, ϕ0(x), 0). (B.11)

The primary goal of Fenichel theory is to realize both the fast and the
slow aspects of (B.7) simultaneously. Generally speaking, the fast dynamics
is captured by (B.9), whereas the slow dynamics is characterized by (B.10).
Given the above, it is often possible to reduce the analysis of the original
problem to an analysis of these two lower-dimensional limiting problems.

The following two theorems give a precise description of the relation be-
tween the dynamics of (B.7) and the combined dynamics of (B.9) and (B.10).
First, for ε > 0, S0 perturbs to a locally invariant manifold in the full prob-
lem, which we call the slow manifold Sε:
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Theorem B.5. For f ,g Ck in (x,y, ε) and S0 a compact normally hyperbolic
subset of S given by S0 = {(x, ϕ0(x))| x ∈ U} with U compact, there is an
ε0 > 0 such that for ε ∈ (0, ε0] there exists a locally invariant n-dimensional
Ck-manifold Sε given as a graph Sε = {(x, ϕ(x, ε))| x ∈ U}, where ϕ is Ck

in x and ε and ϕ(x, 0) = ϕ0(x).

The dynamics on Sε thus can be described by

ẋ = f(x, ϕ(x, ε), ε), (B.12)

which is a smooth perturbation of the reduced problem (B.10). Hence struc-
turally stable properties of (B.10) persist for sufficiently small values of ε for
the restriction of the full problem (B.7) to the slow manifold Sε.

For S0 given, let ns (nu) denote the number of the corresponding negative
(positive) eigenvalues λs (λu). Close to S0 there exist two invariant manifolds
for the layer problem (B.9), an (m+ns)-dimensional stable manifold Ws(S0)
and an (m + nu)-dimensional unstable manifold Wu(S0), which intersect in
S0. Provided that <(λs) < −α < 0 and <(λu) > β > 0, one can characterize
the flow off Sε in terms of its stable and unstable manifolds Ws(Sε) and
Wu(Sε), respectively:

Theorem B.6. For ε ∈ (0, ε0] there exist a stable (m + ns)-dimensional Ck-
manifold Ws(Sε) and an unstable (m+nu)-dimensional Ck-manifold Wu(Sε),
which are both locally invariant and Ck-close to Ws(S0) and Wu(S0), respec-
tively. The dynamics in Ws(Sε) (Wu(Sε)) is described by an invariant stable
(unstable) Ck-foliation F s (Fu) of Ws(Sε) (Ws(Sε)) such that the distance
between orbits which start in the same leaf of F s (Fu) is decaying (growing)
exponentially fast with rate e−αt (eβt). The leaves of F s (Fu) are invariant
under the flow, i.e., each leaf F s(x,y) (F u(x,y)) is mapped to another leaf
F s(x(t),y(t)) (F u(x(t),y(t))) by the flow in forward (backward) time t.

We refer to the literature for a thorough discussion including proofs.

62



Bibliography

[AGJ] J. Alexander, R. Gardner and C. K. R. T. Jones, A topological
invariant arising in the analysis of traveling waves, J. Reine
Angew. Math. 410 (1990) 167–212.

[Ar] V.I. Arnol’d, Geometrical Methods in the Theory of Ordinary
Differential Equations, Grundlehren der mathematischen Wis-
senschaften, Bd. 250, Springer-Verlag, New York, (1983).

[Ce] Chow, S.N., Chengzhi, L., Duo, W., Normal Forms and Bifur-
cations of Planar Vector Fields, Cambridge University Press,
Cambridge, (1994).

[CoLe] E.A. Coddington and N. Levinson, Theory of Ordinary Differ-
ential Equations, McGraw-Hill (1955).

[E] J.W. Evans, Nerve axon equations: IV. The stable and the
unstable impulse, Ind. Univ. Math. J. 24 (1975) 1169–1190.

[F1] N. Fenichel, Persistence and Smoothness of Invariant Mani-
folds and Flows; Indiana University Math. J. 21, (1971), 193-
226.

[F2] N. Fenichel, Geometric singular perturbation theory; Journal
of Diff. Eq. 31, (1979), 53-98.

[FS] H. Freistühler and P. Szmolyan, Spectral stability of small
shock waves, Arch. Rational Mech.Anal 164 (2002), 287-309.

[GJ1] R. Gardner, C. K. R. T. Jones, Stability of one-dimensional
waves in weak and singular limits. Viscous profiles and nu-
merical methods for shock waves, (Raleigh, NC, 1990), 32–48,
SIAM, Philadelphia, PA, 1991.

63



[GJ2] R. Gardner, C. K. R. T. Jones, Stability of travelling wave so-
lutions of diffusive predator-prey systems, Trans. Amer. Math.
Soc. 327 (1991), no. 2, 465–524.

[G] P. Godillon, Linear stability of shock profiles for systems of
conservation laws with semi-linear relaxation, Phys. D, 148(3-
4):289-316, 2001.

[Go] J. Goodman, Nonlinear asymptotic stability of viscous shock
profiles for conservation laws, Arch. Rational Mech. Anal. 95
(1986), no. 4, 325–344.

[GrHa] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley,
New York (1978).

[Gu] J. Guckenheimer,P. Holmes, Nonlinear Oscillations, Dynami-
cal Systems, and Bifurcations of Vector Fields, Applied Math-
ematical Sciences, Vol. 42, Springer-Verlag, New York, (1983).

[He] D. Henry, Geometric Theory of Semilinear Parabolic Equa-
tions, Springer-Verlag, Berlin (1981).

[HPS] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds; Lec-
ture Notes in Mathematics 583, Springer-Verlag New York,
(1977).

[Hu] J. Humpherys, Spectral Energy methods and the stability of
shock waves, PhD Thesis, Indiana University, (2002).

[J1] C. K. R. T. Jones, Stability of the travelling wave solution of
the FitzHugh–Nagumo system, Trans. Amer. Math. Soc. 286
(1984), no. 2, 431–469.

[J2] C. K. R. T. Jones, Geometric singular perturbation theory;
in Dynamical Systems, Springer Lecture Notes Math. 1609,
(1995), 44-120.

[JGK] C. K. R. T. Jones, R. A. Gardner, and T. Kapitula, Stability
of travelling waves for non-convex scalar viscous conservation
laws, Comm. Pure Appl. Math. 46 (1993) 505–526.

[JX] S.Jin, Z.P.Xin, The relaxation schemes for systems of conserva-
tion laws in arbitrary space dimensions, Commun. Pure Appl.
Math.48(3), (1995), 235-276.

64



[Ka] T. Kato, Perturbation theory for linear operators, Springer–
Verlag, Berlin Heidelberg (1985).

[L] T.-P. Liu, Nonlinear stability of shock waves for viscous con-
servation laws, Mem. Amer. Math. Soc. 56 (1985), no. 328.

[MP] A. Majda, R. L. Pego, Stable viscosity matrices for systems of
conservation laws, J. Differential Equations 56 (1985), no. 2,
229–262.

[MZ1] C.Mascia, K.Zumbrun, Pointwise Green’s bounds and stability
of relaxation shocks, Indiana Univ. Math. J. 51 (2002), no. 4,
773-904.

[MZ2] C.Mascia, K.Zumbrun, Stability of small amplitude shock pro-
files of symmetric hyperbolic-parabolic systems, Comm. Pure
Appl. Math. 57 (2004), no. 7, 841-876.

[PW] R. L. Pego, M. I. Weinstein, Eigenvalues, and instabilities of
solitary waves, Philos. Trans. Roy. Soc. London Ser. A 340
(1992), no. 1656, 47–94.

[Sd] B. Sandstede, Stability of travelling waves, in Handbook of Dy-
namical Systems II, (B. Fiedler, ed.). Elsevier, (2002) 983-
1055.

[St] D. H. Sattinger, On the stability of waves of nonlinear parabolic
systems, Advances in Math. 22 (1976), no. 3, 312–355.

[Sz] P. Szmolyan, Transversal heteroclinic and homoclinic orbits in
singular perturbation problems, J. Diff. Eq. 92, (1991), 252–
281.

[SyX] A. Szepessy, Z.-P. Xin, Nonlinear stability of viscous shock
waves, Arch. Rational Mech. Anal. 122 (1993), no. 1, 53–103.

[T] F. Takens, Parially hyperbolic fixed points, Topology, Vol. 10,
(1971), 133-147.

[W] S. Wiggins, Introduction to Applied Nonlinear Dynamical Sys-
tems and Chaos, Texts in Applied Mathematics, Vol. 2,
Springer-Verlag, New York, (1990).

65



[Z] K. Zumbrun, Multidimensional stability of planar viscous
shock waves. Advances in the theory of shock waves, 307–516,
Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser
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