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Abstract

Free–space laser communication systems are an excellent choice when high data rates are
demanded. The outstanding cause for the advantages of an optical system over radio frequency
technology is the low beam divergence. Within this thesis, the atmospheric impacts on optical
Earth–to–Satellite communication links are investigated.

Certain restrictions arise when lasers are employed within free–space transmission links:
The atmosphere absorbes optical power and affects the shape of the beam. It has to be
expected that the beam is displaced (beam wander), that the divergence is increased further
than in the diffraction limited case (beamspread), and that the angle of arrival of the laser
beam at the receiver varies. The phase front is distorted, leading to intensity variations at
the receiver (scintillations). These phenomena result in a loss of power, or in a link failure in
the worst case. While I analyze the aforementioned impacts in detail, absorption effects are
treated only briefly within this thesis.

The variations in the refractive index of air is the governing property of free–space laser
beam propagation. Wind and temperature gradients cause the air to be in permanent motion.
I arrive at the decision that the atmospheric structure must be considered turbulent, so a
stochastic description of the refractive index is indispensable. It is necessary to solve the wave
equation for the analysis of the properties of a laser beam, but it is not possible to solve this
equation directly when a stochastic refractive index is utilized. I choose statistical moments
of different order for further calculations. Closed form solutions only exist for moments of
the lowest order, thus approximations have to be employed. I present different methods, and
focus on the Rytov approximation and the Markov approximation. These methods differ in
the mathematical approach to the solution for the statistical moments.

I use the Rytov and the Markov approximation method to analyze the atmospheric impacts
on an Earth–Satellite link. As an example, the satellite being investigated is orbiting at the
low earth orbit (450 km), and the wavelength of the laser beam is 1.55µm. I show that the
beam wander will be on the order of approximately 1.5 m, and that the diameter of the beam
is expected to be three times the diffraction limited diameter. The fluctuations of the arrival
angle amount to a few microradians, thus will be negligible. These results apply to the uplink
case only, it is shown that the atmosphere is negligible in the downlink case. The results are
roughly the same for both methods.

I show that the additional link loss due to the atmosphere must not be neglected. It is
essential to employ a fast tracking system at the transmitter and the receiver to prevent the
loss of the signal.
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Kurzfassung

Optische Übertragungssysteme zeichnen sich durch die Möglichkeit der Realisierung sehr hoher
Datenraten aus. Der Grund dafür liegt im verwendeten Frequenzbereich, der eine hohe Band-
breite zulässt. Als weitere Konsequenz der optischen Frequenzen ergibt sich eine sehr kleine
Aufweitung des Strahls. Während dies einer der größten Vorteile der optischen Kommunika-
tion ist, ergeben sich Probleme wenn es große Distanzen zu überbrücken gilt, wie etwa bei der
Kommunikation zwischen einer Bodenstation und einem Satelliten. In dieser Diplomarbeit
werden die Auswirkungen der Atmosphäre auf die Ausbreitung von Laserstrahlen behandelt.

Bei optischen Freiraumkommunikationssystemen kommt es, stärker als bei Funksystemen,
zu Nachteilen durch das Medium, in dem sich der Laserstrahl ausbreitet: Die Atmosphäre
absorbiert einerseits einen Teil der Leistung, andererseits wird auch die Strahlform verändert.
Es ist zu erwarten, dass der Strahl durch die Atmosphäre abgelenkt wird und dass er sich
zusätzlich verbreitert. Ebenfalls wird der Winkel, unter dem der Strahl am Empfänger auftrifft,
nicht konstant sein. Durch die Atmosphäre treten Verzerrungen der Phasenfront auf, die zu
lokalen Fluktuationen des Feldbildes, folglich zu Intensitätsschwankungen, führen. All diese
Phänomene tragen dazu bei, dass am Empfänger weniger Leistung vorhanden ist als ohne
Atmosphäre.

Die Ursache für die Änderungen der Eigenschaften eines Laserstrahls liegt in den Vari-
ationen des Brechungsindex der Luft. Durch Druck– und Temperaturgradienten stellt sich
eine turbulente Struktur der Atmosphäre ein, was wiederum zu einer zufälligen Verteilung
des Brechungsindex führt. Folglich ist eine mathematische Beschreibung des Brechungsindex
nur mit stochastischen Mitteln möglich. Um nun die Auswirkungen der Atmosphäre auf die
Ausbreitung von Laserstrahlen zu quantifizieren, muss die Wellengleichung (die den stochastis-
chen Brechungsindex enthält) gelöst werden. Dies ist mit einfachen Mitteln nicht möglich.
Ich entscheide mich, durch die Verwendung von statistischen Momenten, dieses Problem zu
umgehen. Für die Berechnung der Momente ist es notwendig, Näherungen einzuführen. Im
Speziellen konzentriere ich mich auf zwei Methoden, die Rytovnäherung und die Markovnäher-
ung.

Durch die Verwendung dieser Näherungen ist mir die Analyse des Einflusses der Atmo-
sphäre auf eine Datenverbindung zwischen der Erde und einem Satelliten möglich. Als Fall-
beispiel ziehe ich einen Satelliten heran, der in einer Höhe von 450 km die Erde umkreist.
Die Wellenlänge für die Kommunikation beträgt 1.55µm. Es stellt sich heraus, dass der
Laserstrahl im Fall der Aufwärtsstrecke (“Uplink”) um bis zu 1.5 m abgelenkt wird, und
dass der Durchmesser des Strahls um das Dreifache gegenüber dem beugungsbegrenzten Fall
aufgeweitet wird. Vernachlässigbar sind die schnellen Variationen im Ankunftswinkel, die
einige Mikroradiant betragen. Diese Ergebnisse werden sowohl von der Rytovnäherung als
auch von der Markovnäherung erzielt. Es bestehen gravierende Unterschiede zwischen der
Aufwärts– und der Abwärtsstrecke. Alle genannten Abschätzungen beziehen sich auf die
Strecke von der Erde zum Satelliten, für den Fall der Kommunikation vom Satelliten zur Erde
ist die Atmosphäre vernachlässigbar.

Durch die enorme Ablenkung des Strahls erweist sich der Einsatz von schnellen Nachfüh-
rungssystemen als unerlässlich. Für einfachere Systeme lassen sich große Dämpfungsfaktoren,
die bis zum Verlust des Signals führen können, nicht ausschließen.
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Chapter 1

Introduction

The cause for the outstanding advantanges of an optical communication system lies within the
low divergence of the involved laser beam. For a satellite link from ground to space, the beam
has to pass through the atmosphere. This particular medium decreases the intensity in two
ways,

1. The chemical elements of air absorbe the optical power. Most of the power is absorbed
by water vapor. In addition, small particles in the air deflect the laser beam, increasing
the attenuation factor.

2. Even for clear air (i.e., chemical elements do not have an impact on the laser beam), the
atmospheric environment must not be neglected. The refractive index of air varies in
time and space because of temperature and pressure inequalities. These variations are a
result of the structure of the atmosphere that turns out to be turbulent.

The attenuation factor due to the first point is assumed to be negligible (some 1–2 dB during
a sunny day or a clear night, for example). If this were not the case, the absorption will be so
high that any optical link between the earth and a satellite can be expected to fail.

The more challenging part is the attenuation due to atmospheric turbulence. The turbu-
lent environment leads to an additional broadening of the laser beam among other impacts.
These impacts can only be described by stochastic means.

The aim of this diploma thesis is the analysis of atmospheric impacts on a laser beam for
ground to space communication systems and a clear atmospheric environment, i.e., absorption
is negligible. This thesis is organized as follows:

• Laser beams are electromagnetic waves that are well described by Gaussian beams. This
particular type of beam is derived as a solution for the wave equation in Chapter 2.

• The governing property of a medium that changes the behavior of laser beams is the
medium’s index of refraction. Chapter 3 is dedicated to different types of solutions for
the wave equation, involving stochastic refractive indices. (The atmosphere’s refractive
index is a stochastic field.)

• In Chapter 4, the topology and the structure of the atmosphere are introduced. Mathe-
matical utilities that represent the refractive index of the atmosphere are presented.

1



CHAPTER 1. INTRODUCTION 2

• The diverse impacts on a laser beam propagating through atmospheric turbulence are
outlined in Chapter 5. Two methods from Chapter 3 (Rytov approximation and Markov
approximation) and results from Chapter 4 are combined to assess the order of magnitude
of the atmospheric influence.

• The link attenuation for a specific earth–to–space communication scenario is calculated in
Chapter 6. Methods to decrease the attenuation are suggested. A worst case estimation
leads to a conclusion for the dynamic range of the attenuation.

The investigation of laser beam propagation through free–space as well as through random
media requires a mathematical model for that type of the waves. That is the reason why I
will start my analysis from scratch, in other words, with Maxwell’s equations.



Chapter 2

Beam Profiles

In this chapter, the basics for the analysis of wave propagation are presented. Maxwell’s
equations are used as fundamentals for calculations involving electrodynamics, therefore they
will be the starting point for the description of wave propagation, leading to the wave equation.
Three commonly used types of solutions for the wave equation are introduced: the Plane Wave,
the Spherical Wave, and the Gaussian beam. The focus will be laid on the Gaussian beam
because this type of solution will be extensively used in the next chapters.

Maxwell’s equations establish a relationship between the electric and the magnetic field,
~E(~x, t) and ~H(~x, t) respectively, at a fixed point in time and space. The following equations
are not the original ones1, but a simplyfied form2 found by O. Heaviside and W. Gibbs (1884)
in the cartesian coordinate system (~x = x~ex + y~ey + z~ez , t represents the time):

~∇ · ε~E(~x, t) = 0 (2.1)

~∇ · µ~H(~x, t) = 0 (2.2)

~∇× ~E(~x, t) = µ
∂ ~H(~x, t)

∂t
(2.3)

~∇× ~H(~x, t) = −ε∂
~E(~x, t)

∂t
(2.4)

The vectorial differential operator Nabla (~∇) is defined as ~∇ = ∂x~ex + ∂y~ey + ∂z~ez, ε is the
electric permittivity, and µ is the magnetic permeability. In vacuum, ε = ε0 = 8.856·10−12 As

V m ,
and µ = µ0 = 4π · 10−7 V s

Am .
It is possible to merge these coupled equations to get one expression for the electric field

(the derivation for the magnetic field is analogue) by taking the curl of (2.3) and inserting
(2.1), (2.4) [1]:

∇2~E(~x, t) + µε
∂2~E(~x, t)

∂t2
= 0. (2.5)

In (2.5), the identity ~∇ × (~∇ × ~a) = ~∇(~∇ · ~a) − ∇2~a was used, where ∇2 is the Laplace–
operator in cartesian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.6)

1The original formulation was in terms of 20 equations in 20 variables.
2The following simplifications for dielectric materials are used: charge density, current density, and magne-

tization are negligible, thus set to zero.
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CHAPTER 2. BEAM PROFILES 4

Using the Maxwell relation,
c2εµ = 1, (2.7)

the phase velocity c can be inserted into (2.5), and the result is the well–known wave equation
in the case of an isotropic and linear medium:

∇2~E(~x, t) +
1

c2
∂2~E(~x, t)

∂t2
= 0. (2.8)

To simplify further calculations, the next objective is to separate the time–dependency and
the space–dependency of ~E(~x, t). Considering only time–harmonic oscillating functions, which
is no limitation to the applications treated here, this step can be taken easily:

~E(~x, t) = <
[
~E(~x, ω)ejωt

]
=

1

2

[
~E(~x, ω)ejωt + ~E∗(~x, ω)e−jωt

]
, (2.9)

where ω = 2πf represents the angular frequency, j =
√
−1, and <[·] denotes the real part.

Inserting (2.9) into the wave equation (2.8) yields, since ∂2 ~E(~x, ω)/∂ω2 = 0, the Helmholtz
equation:

∇2 ~E(~x, ω) +
ω2

c2
~E(~x, ω) = 0 (2.10)

2.1 Plane Waves

The most simple solution for (2.10) is given by

~E(~x, ω) = ~E(~k, ω)e−j~k·~x, (2.11)

where ~k is the wavevector. This expression can be directly inserted into (2.9) to get an equation
for the electric field in the time domain,

~E(~x, t) = <
[
~E(~k, ω)e−j(~k·~x−ωt)

]
. (2.12)

The planes of constant phase for this solution of the Helmholtz equation (2.10), ~k · ~x −
ωt = const., are orthogonal to the wavevector ~k, so this solution is called plane wave. The
wavenumber k = |~k| can not be chosen independently of ω, the dispersion relation has to be
met to let (2.12) solve (2.10):

k2 =
ω2

c2
(2.13)

The physical meaning of k is that of a spatial frequency, e.g. two planes of constant phase are
separated by the distance

λ =
2π

|~k|
, (2.14)

which is called the wavelength. In vacuum, the wavelength is

λ0 =
2π

k0
= 2π

c0
ω

=
c0
f
, (2.15)

where c0 = 2.99792 · 108 m/s is the velocity of light in vacuum. One advantage of this type
of wave is, besides its simplicity, the possibility to represent each other solution3 of the wave
equation (2.8) by superposition (Fourier-Integral). Applications where the use of plane waves
is advantageous involve boundary value problems, like reflection and transmission calculations.

3Precisely, each valid solution that describes a propagating wave.
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The Phase Velocity

Since plane waves, defined by (2.12), are propagating in space, a measure for the velocity of
the surfaces of constant phase can be determined by differentiating the phase term:

~k · ~x− ωt = const. (2.16)

~k · d~x

dt
− ω = 0 (2.17)

Then, the phase velocity vph is given by

vph :=

∣∣∣∣
d~x

dt

∣∣∣∣ =
ω

k
= fλ, (2.18)

which is comparable to the right hand side of (2.15) where c0 = vph. From the Maxwell relation
(2.7), the phase velocity can also be expressed in terms of ε and µ,

vph =
1√
εµ

=
1√
ε0µ0

· 1√
εrµr

, (2.19)

where εr and µr denote the relative electric permittivity and the relative magnetic permeability,
respectively. To be able to work with materials other than vacuum, it is useful to introduce
the index of refraction4

n :=
√
εrµr. (2.20)

The refractive index is, like the relative electric permittivity εr, also frequency–dependent. For
vacuum, n = 1, and for air, n normally lies very close to 1. More detailled information on the
index of refraction can be found in Section 3.1.

Using the index of refraction, the expression for the phase velocity vph (2.18) relative to
vacuum (where vph = c0 = 1/

√
ε0µ0) becomes,

vph =
c0
n

= f
λ0

n
, (2.21)

so the index of refraction changes the wavelength of the propagating wave. With this result,
the Helmholtz equation (2.10) can be rewritten in the form

∇2 ~E(~x, ω) + k2n2 ~E(~x, ω) = 0, (2.22)

and the wave equation becomes

∇2~E(~x, t) + k2n2∂
2~E(~x, t)

∂t2
= 0. (2.23)

2.2 Spherical Waves

One big disadvantage of plane waves is that the location of their source is not defined. To
solve this problem, another Ansatz has to be chosen:

~E(~x, t) = u(~x)e−j(kz−ωt), (2.24)

4Setting µr = 1 does not restrict the applications treated in this work.



CHAPTER 2. BEAM PROFILES 6

where u(~x) is the location–dependent amplitude, and k = kz is the component of the wavevec-
tor ~k in the z–direction. Inserting the amplitude of (2.24), u(~x) exp[−jkz], into the Helmholtz
Equation (2.22), and neglecting the time dependency, yields

∇2u(~x) + 2jk
∂u(~x)

∂z
+ k2n2u(~x) = 0. (2.25)

Assuming that the amplitude u does not vary too much in the propagation direction (which is
the z–axis in this case) along a distance λ, the so–called slowly varying envelope approximation,

λ

∣∣∣∣
∂2u(~x)

∂z2

∣∣∣∣� 2π

∣∣∣∣
∂u(~x)

∂z

∣∣∣∣ , (2.26)

can be used to neglect the partial derivative in z in the Nabla-operator ~∇, compared to the
partial derivative in the second term of Eqn. (2.25), to get to another version of the Helmholtz
equation, called the paraxial Helmholtz equation:

∇2
Tu(~x) + 2jk

∂u(~x)

∂z
+ k2n2u(~x) = 0, (2.27)

with ∇2
T = ∂2/∂x2 + ∂2/∂y2. It can be verified that

u(~x) =
u0

~x
e−jk|~x| (2.28)

solves the paraxial Helmholtz equation. In this solution surfaces of constant phase are
spheres, the center lying at |~x| = 0. As with the plane waves, the phase velocity vph is ω/k,
and the distance, or difference in the radii, of two planes of constant phase is λ.

2.3 Gaussian Beam

The problem with the solutions of the wave equation mentioned before (plane wave (Sect. 2.1)
and spherical wave (Sect. 2.2)) lies within their structure: As it is impossible to determine
a dedicated point source in the case of a plane wave, the spherical wave’s source is clearly
defined. But a closer look at the divergence of those wave types reveals that the spherical
wave has the largest possible, while that of a plane wave is zero.

Since the goal of this diploma thesis is to examine atmospheric effects on laser beams,
these wavetypes are not satisfactory. Of course, one can approximate a laser beam by a
plane wave when looking only at a small part of its illumination area in the far field, but my
intention is to provide a solution that is as universal as possible. So, what has to be found is a
combination of those two types, and the Gaussian beam profile is a good and relatively easy–
to–handle mathematical construct that fulfills these needs – well defined divergence, source,
and propagation direction.

The first step for the derivation of the formulas for the Gaussian beam is to switch from
cartesian (x, y, z) to cylindric (r, φ, z) coordinates. A beam is characterized by the localiza-
tion of the major part of its energy around the propagation direction, hence the following
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approximation can be used:

|~x| =
√
x2 + y2 + z2

=
√
r2 + z2

= z

√
1 +

r2

z2

≈ z +
r2

2z
(2.29)

In the last step, I used the approximation
√

1 + x ≈ 1 + x/2, applicable when x2 + y2 � z2,
which is assumed to be the case. The absolute value of the vector lying orthogonal to the
propagation axis, |~xT |, is r =

√
x2 + y2. Thus, (2.28) can be written as

u0

~x
e−jk|~x| ≈ u0

z
e−jkr2/2ze−jkz. (2.30)

Compared to (2.24), the amplitude function is

u(~x) =
u0

z
e−jkr2/2z. (2.31)

The Gaussian beam is a solution of the paraxial Helmholtz equation (2.27). The amplitude
of the spherical wave (2.31) also solves (2.27), but with the disadvantage of a singularity at
the center, z = 0. Substituting z → z + jz0, z0 = const., which corresponds to a shift in the
complex plane, does not influence the validity of solution (2.24), but leads to many interesting
properties. First of all, the singularity is moved out of the center of the complex plane. In the
amplitude function (2.31),

u(~x) =
u0

z + jz0
exp

[
−j

kr2

2(z + jz0)

]
, (2.32)

the term 1/(z + jz0) can be split up into the real and imaginary part [2],

1

z + jz0
=
z − jz0

z2 + z2
0

=:
1

R
− j

2

kw2(z)
, (2.33)

with the parameters

R(z) = z

[
1 +

(z0

z

)2
]

(2.34)

w2(z) = w2
0

[
1 +

(
z

z0

)2
]
, (2.35)

where
w2

0 := 2z0/k = λz0/π, (2.36)

was is used (z0 is also known as the confocal parameter). The importance of (2.34) and (2.35)
will be made clear soon. Now, the amplitude function (2.32) can be written as follows:

u(~x) = u′0
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
−jk

r2

2R(z)

]
e−jξ(z), (2.37)
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u′0 := u0
jz0

, and ξ(z) = arctan
(
z
z0

)
results from the representation of the complex amplitude

u′0jz0/(z + jz0) in polar coordinates.
The phase front curvature, given by the complex term exp[−jkr2/2R(z)] in (2.37), depends

on k, r, and R(z), which stands for the radius of the phase front. This radius is determined by
(2.34). The phase fronts are paraboloidal, thus comparable to spheres with the radius equal
to the radius of curvature R(z). At z = 0, the radius becomes R = ∞, and at z = z0, the
radius reaches its minimal value, until R becomes approximately as large as z for z � z0.

The radius of the Gaussian beam after the propagation distance z is determined by (2.35).
It depends on the initial beam waist radius, and on the confocal parameter z0. It is also
possible to obtain the beam radius by calculating the standard deviation of (2.37). The
standard deviation is the squareroot of the variance, which is defined by

σ2
r =

∫ ∞

−∞
(r − µ~r)2u(~r, z)d~r, (2.38)

where µ~r is the mean of u(~r, z). In the following chapters, the Gaussian beam will be affected
by random quantities, but by using (2.38), it will still be possible to calculate the beam radius
at any distance.

Some properties of the Gaussian beam can be seen in Fig. 2.1, where the shape of a
Gaussian beam (as seen normal to the propagation direction) with a confocal parameter z0

and the resulting beam waist w0 is plotted (note that at a given wavelength, only one of these
two parameters can be chosen, cf. (2.34), (2.35), and (2.36)).
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Figure 2.1: Transversal intensity profile of a Gaussian beam

The area where |z| is less or equal z0 is called ’confocal area’, and it is common use to
define the beam as being focused where |z| < 2z0. When |z| is larger than 2z0, the increase in
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beam diameter, also called spreading or divergence, can be estimated from

2θ0 = 2 arctan
w0

z0
≈ 2

w0

z0
=

2λ

πw0
, (2.39)

where θ0 is the divergence angle in radians.
In Chapter 5, the focus will be laid on the absolute value of the beam diameter 2w at a

certain distance L from the transmitter. For vacuum, it suffices to multiply θ0 with the propa-
gation distance to get a measure for the spreading of the beam since the paraxial approximation
can be used:

2w(L) = 2(w0 + θ0L) = 2

(
w0 +

λ

πw0
L

)
(2.40)

Here, the first term is needed for small propagation distances and for large beam diameters at
the transmitter.



Chapter 3

Waves in Random Media

In this chapter, I will give an overview about different methods used throughout literature to
solve problems related to wave propagation in random media, that is, with randomly changing
index of refraction. I will start with the definition of the index of refraction n and its depen-
dencies, followed by an introduction of the moments of the stochastic field. The main focus
of this chapter will be laid on the different approaches that have been made to approximate
solutions for the wave equation.

3.1 Index of Refraction

The physical meaning of the index of refraction n as a property of a medium is the ratio of the
velocitiy of light in vacuum to the velocity of light in this medium. Since the frequency of a
wave does not change its value, the wavelength depends on the environment (2.21). Figure 3.1

Q Q

Q

n
1

n
2

1

2

1

Figure 3.1: Refraction and reflection at the boundary of dielectric media

10
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shows a light ray impinging on the border between two media with different indices of refraction
n1 and n2 (in this case: n1 < n2). The ray is reflected and transmitted. The angle of the
reflected ray is equal to that of the incident one (θ1), but the angle of the transmitted ray (θ2)
differs, and that difference is due to the unequal indices of refraction. The dependency of the
angle of the transmitted wave on the index of refraction was first found by Willebrord Snell
and is therefore called “Snell’s law of refraction”,

n1 sin θ1 = n2 sin θ2. (3.1)

Generally speaking, the value of the refractive index’s lower limit equals one for vacuum,
increasing with the density of the materials (about 1.00002 to 1.00005 for air, or 1.5 for most
types of glass). Since perfect homogeneous materials do not exist, small variations of n have
to be expected. Most of the time they will be negligible, but for the topic presented in this
thesis, I will show that, although extremly small, these variations have a certain impact on
wave propagation.

Examples for the impact of air on the propagation of light can be observed in everyday’s
life: Looking at the stars during a clear night, one does not see a settled picture, the stars
appear to be twinkling (more precisely, they appear to change their light intensity). This
phenomenon is a result of the atmosphere. Other well–known phenomena are the flicker of hot
air, the appearance of a mirage, or ’looming’ – one can see farther than the horizon at night.
A mirage evolves when a hot layer of air near ground induces a decrease in air density, leading
to a reduction of the refractive index. It can be seen directly from (3.1) that the emerging ray
will bend upwards (θ2 > θ1) – towards the denser medium – and will leave the impression of
a mirrored object on the oberserver’s eye.

The appearance of these phenomena can not be observed all the time, it is depending on the
environment. Therefore, it can be found that an additive dispartment of the refractive index
should be possible: First, there will be a constant term identical to undisturbed propagation
in vacuum, nvac = 1. The second term, nflc, will represent the fluctuating effects, e.g. the
twinkling, thus is random. An expression for the pressure and temperature dependent second
term can be found in [1, 3, 4],

n = nvac + nflc (3.2)

nvac = 1 (3.3)

nflc = 77.6 · 10−8

(
1 +

7.52 · 10−15 m2

λ2

)
p

T

ms2K

kg
, (3.4)

where p [Pa] stands for the local pressure, and T [K] is the local temperature. Comparing
the properties of local pressure and those of local temperature, it suffices to observe only the
temperature fluctuations. The pressure is depending on the temperature, and it can be shown
that changes in the local temperature due to changes of the local pressure can be neglected [5].

With regard to further calculations, it us useful to separate the refractive index in another
way than in (3.2),

n = n0 + n1, (3.5)

where n0 represents the mean of the refractive index, and n1 is the mean–free, fluctuating part
(nflc in (3.4) is not mean–free).

As will be seen in the following sections, it is impossible to state an expression that exactly
solves the wave equation with a random index of refraction. The necessity for stochastic models
and methods will become clear.
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3.2 Moments of the Field

The representation of a medium with randomly varying properties by a stochastic field becomes
useful for further analysis. It is impossible to find exact predictions for one realization of the
stochastic field, like the speed of wind at a determined time t0, or the amplitude of the
electric component of a wave after passing through random inhomogenities. Therefore, other
parameters have to be introduced so that qualitative statements can be made. Examples are
the Moments of the Field, generally defined by [3]

Γm,n(~r1, ~r2, . . . , ~rm;~r ′1, ~r
′
2, . . . , ~r

′
n; z) = 〈u(~r1, z) . . . u(~rm, z)u

∗(~r ′1, z) . . . u
∗(~r ′n, z)〉

=

〈
m∏

i=1

ui(~ri; z)

n∏

j=1

u∗j (~r
′
j; z)

〉
. (3.6)

The sum of the indices m and n defines the order of the moment, e.g. the order of the moment
Γ1,0 is one, or that of the moment Γ2,2 is four.

The vector ~r is defined in the same way as in Sect. 2.3, ~x = ~r + z ~ez , i.e., it stands for the
distance and direction of a vector that points from the middle of a plane (that lies perpendicular
to the propagation direction) to an arbitrary point. The two vectors ~ri and ~r ′i are independent.

One component of the field is given by u(~rk, z), e.g1

E(~rk, z) = u(~rk, z) exp(jkz), (3.7)

while u∗(~r ′l, z) is the complex conjugate of u(~r ′l).
The moment of first order, or mean field, is given by

Γ1,0(~r, z) = 〈u(~r, z)〉. (3.8)

It can be interpreted as the coherent part of the field.
The synonym Mutual Coherence Function (MCF) stands for the second order moment of

the field,
Γ1,1(~r1;~r ′1; z) = 〈u(~r1, z)u

∗(~r ′1, z)〉. (3.9)

The physical meaning of this expression is not obvious at the moment, but when both radii
are set to the same value ~ρ, the mean intensity Ī(~P ) at the point ~P = ~ρ+ ~z is given by

Ī(~P ) = Γ1,1(~ρ; ~ρ; z). (3.10)

Another interesting property of the stochastic field, deduced from the second order moment
of the field, is the coherence length ρ0. It is defined by the distance where the absolute value
of the complex degree of coherence,

γ(~r1;~r ′1; z) =
Γ1,1(~r1;~r ′1; z)√

Γ1,1(r1; r1; z)Γ1,1(r ′1; r ′1; z)
(3.11)

becomes equal to exp[−1]. For locally homogeneous and isotropic fields, this reads

|γ(r = ρ0)| = exp[−1]. (3.12)

1The time dependency is assumed to be strictly harmonic, thus not mentioned here explicitly.
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The complex degree of coherence lies within the interval [0, 1]; for plane waves (or for areas
of other wavetypes that can be approximated by plane waves), γ is solely a function of the
absolute value of r =: |~r1 − ~r ′1|.

The fourth order moment of the field is

Γ2,2(~r1, ~r2;~r ′1, ~r
′
2; z) = 〈u(~r1, z)u2(~r2, z)u

∗
1(~r ′1, z)u

∗
2(~r ′2, z)〉. (3.13)

This moment brings most of the trouble with it, as will be seen later in this chapter. In the
form Γ2,2(~r1, ~r1;~r ′1, ~r

′
1; z), the fourth order moment is equal to the variance of the intensity of

the field.
It has been shown that including moments other than second and fourth order is not

reasonable for the calculations made within this diploma thesis [4, 6]. Besides, there do not
exist any approximations for moments of orders higher than four.

3.3 Solutions for the Stochastic Wave Equation

The wave equation (2.27) can not be solved in a simple way when a random refractive index
is involved. In that case, there exist methods to get terms that can be used to approximate
the desired quantity.

The various methods differ mainly in their physical approach to the problem of solving the
wave equation, resulting in differences for their ranges of validity. However, these ranges are not
very strict. It is unclear at this point what method has to be favoured because some methods
yield widely different results for one task, while for another, there is only little deviation. So
the results for the particular problem, obtained by different methods, have to be compared
and evualted. Unfortunately, it is impossible to determine the ’correct’ approximate solution
(the one with the smallest error), because to do so, one would need an exact expression or
at least measured values from an experiment. (Unfortunately, it is not possible to set up an
experiment in any case.)

For most of the methods presented here, which are the most important and widely used
ones, I will give a derivation of the mathematical results. The ranges of validity will also be
defined, and evaluations will be given for the use of some approximations with regard to the
next chapter. (That chapter is about wave propagation through atmospheric turbulence.)

3.3.1 Direct Solution Methods

For some fields of interest, it is possible to derive solutions for the moments of the field by
directly analyzing the stochastic wave equation. The two methods presented here can be used
for that task.

Parabolic Equation Method

The parabolic equation method (PEM) can theoretically be applied under all atmospheric
conditions [3, 4]. Equations for the different moments of the field are established using the
paraxial Helmholtz equation (2.27)2,

∇2
Tu(~r; z) + 2jk

∂u(~r; z)

∂z
+ k2n2(~r; z)u(~r; z) = 0. (3.14)

2The Helmholtz equation is also known as the parabolic wave equation because its form is that of a parabolic
differential equation.
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Based on this expression, the first order moment, or mean field, is a solution of [6]

∇2
T 〈Γ1,0(~r; z)〉+ 2jk

∂〈Γ1,0(~r; z)〉
∂z

+ k2〈n2(~r; z)Γ1,0(~r; z)〉 = 0, (3.15)

or

∇2
T 〈u(~r; z)〉 + 2jk

∂〈u(~r; z)〉
∂z

+ k2〈n2(~r; z)u(~r; z)〉 = 0. (3.16)

The parabolic equation satisfied by the second order moment is [6]

(∇2
T1 +∇2

T1′)Γ1,1(~r1;~r ′1; z) + 2jk
∂

∂z
Γ1,1(~r1;~r ′1; z)+

+k2〈[n2
0(~r; z) − n2

1(~r; z)]u(~r1; z)u∗(~r ′1; z)〉 = 0. (3.17)

An exact expression for the solution of this set of equations has been obtained only for the
cases of plane and spherical waves. An analytic expression for the fourth order moment doesn’t
exist.

The PEM includes multiple forward scattering and ignores backscattering. It takes into
accout diffraction in the Fresnel approximation. Detailed information about this method can
be found in [4].

Since the Gaussian beam is employed in further calculations, this method can not be used.
In addition, the fourth order moment of the field is necessary to analyze some impacts on
a laser beam; the parabolic equation method does not provide solutions for this particular
moment.

Extended Huygens–Fresnel Principle

An approach to find a solution for the Helmholtz equation (2.22) similar to the parabolic
equation method was developed by Lutomirski and Yura in the United States (see [7] for a
short description and further references), and by Feizulin and Kravtsov in the former USSR [6].
They used the Huygens–Fresnel integral,

u0(~r, z) = −2jk

∞∫

−∞

G(~s, ~r; z)u0(~s; 0) ~ds, (3.18)

where G(~s, ~r; z) is Fresnel’s approximation of Green’s function 3

G(~s, ~r; z) =
1

4πz
exp

[
j

(
kz +

k

2z
|~s− ~r|2

)]
. (3.19)

The integral (3.18) is a solution of the wave equation for free–space propagation (u0(~r; z) stands
for the vacuum solution). The necessary extension to solve the stochastic wave equation reads

u(~r; z) = − jk

2πz
exp(jkz)

∞∫

−∞

u0(~s; 0) exp

(
jk|~s− ~r|2

2z
+ ψ(~r, ~s)

)
~ds. (3.20)

3Fresnel’s approximation of Green’s function can be used when λ� lo, and λz/l20 � (l0/λ)2, where l0 is the
smallest size of inhomogenities.
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The field at the origin is given by u0(~s; 0), and ψ(~r, ~s) is the random part of the complex phase
of a spherical wave propagating in the turbulent medium from the point (~s, 0) to the point
(~r; z).

As with the parabolic equation method, it has been shown that the extended Huygens–
Fresnel principle is applicable under all atmospheric conditions, but there exist only solutions
for the first and the second order field moments. For the fourth order field moment, (3.20)
can be used only with certain restrictions [6].

Rytov et al. derived quite complicated expressions for the first and second order moment
of the field [4]. As with the parabolic equation method, an expression for the fourth order
moment of the field that is needed for further calculations can not be supplied. That is the
reason why I did not further analyze this method.

3.3.2 Geometrical Optics Method

Geometrical optics refer to ray tracing methods. The starting point are plane TEM (Transver-
sal–Electro–Magnetic) waves (like those described in Sect. 2.1), with the propagation direction
being normal to the phase fronts (= “rays”). These rays will travel in straight lines in a
homogeneous medium, and when this medium changes its refractive index, they obey Snell’s
law. Effects of total reflection can also be described. The geometrical optics method can be
used to analyze spherical waves.

Since this approach uses the model of (incoherent) light rays, it is incapable of describing
effects like diffraction or interference. These effects arise from the light’s nature of being a
wave. But within its scope, the geometrical optics method (GOM) has definite advantages over
some other methods. It is easily possible to describe, e.g., the influence of regular refraction,
or large field fluctuations [4].

The use of the GOM with atmospheric turbulence is justified if the following conditions
are fulfilled:

• The smallest scale of turbulence is much larger than the wavelength, l0 � λ. The inner
scale of turbulence, l0, will be discussed in detail in the next chapter. Measurements
have shown that the typical inner scale size varies from 5 mm to 12 mm, so for optical
frequencies, this condition will always be met [8].

• The first Fresnel zone has to be much smaller than a typical minimum scale size of
the turbulence,

√
λL � l0, where L is the propagation distance. Inserting l0 = 8 mm

and λ = 1.55µm shows the shortcoming of this method, it restricts the length of the
propagation path to a maximum of a few tens of meters.

This method seems to be incapable of deriving results needed for calculations in the field
of Earth–Satellite laser communication systems. Nevertheless, it has to be outlined that for
longer pathlengths, the geometrical optics solution for phase (not amplitude) fluctuations lies
within the order of the results obtained by other approximations. This fact and the simplicity
of the GOM are the main reasons why this method is used in various astronomical applications
and in adaptive optics development.

The GOM is not treated in detail here because both phase and amplitude fluctuations are
needed when an optical communication system is analyzed. An extensive description can be
found in [4].
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3.3.3 Born Approximation

The purpose of the methods presented in subsection 3.3.1 is to find equations for the moments
of the field by directly solving the wave equation. I pointed out the restrictions, namely that
solutions for the Gaussian beam and for the fourth order moment of the field do not exist.

Another way for deriving expressions for the moments is by applying perturbation methods
to different equations, in case of the Born approximation (or method of small perturbations,
MSP), to the Helmholtz equation (2.22). The goal of this method is to separate the random
coefficient n from the quantity for which one wishes to solve u, so out of (2.22) (omitting the
z–dependency),

∇2u(~r) + k2n2u(~r) = 0, (3.21)

one wants to get an expression of the form

∇2u(~r) + k2u(~r) = f(~r), (3.22)

where the random refractive index appears as a factor in f(~r).
The index of refraction n(~r, z) is expanded into a series4 (3.5),

n2(~r, z) = [1 + n1(~r, z)]2

≈ 1 + 2n1(~r, z), |n1(~r, z)| � 1, (3.23)

The first part of (3.5) is constant, and the mean–free fluctuating part is a small random
quantity; thus, n2

1 is much smaller than n1 and can be neglected. The next step is to expand
the components of the optical field u(~r, z) into a series,

u(~r, z) = u0(~r, z) + u1(~r, z) + u2(~r, z) + . . . , (3.24)

where the contributions |ui| strongly decrease in magnitude with increasing order i. The sym-
bol |u0| denotes the absolute value of the unperturbed portion of the field, and the other terms
represent higher order perturbation terms, caused by the random inhomogenities. Inserting
(3.24) and (3.23) into (3.21) and separating the equations after the order of the perturbation
yields

∇2u0 + k2u0 = 0 (3.25)

∇2u1 + k2u1 = −2k2n1u0 (3.26)

∇2u2 + k2u2 = −2k2n1u1 (3.27)

. . .

To solve these equations, one can make use of Fresnel’s approximation of Green’s function
(3.19) in cylindrical coordinates (inserting z − L for z, where L is the overall propagation
distance) to arrive at a solution for u1 in an integral form [3, 6],

u1(~r, L) =
k2

2π

L∫

0

∞∫

−∞

exp

[
j

(
k(L− z) +

k|~s− ~r|2
2(L− z)

)]
u0(~s, z)

n1(~s, z)

L− z
~dsdz, (3.28)

which is known as the first Born approximation. The physical interpretation is given by the
association that the field perturbation u1 is a sum of spherical waves with different magnitudes

4The squared index of refraction, n2, is examined since this is needed in (2.22).
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that are proportional to the product of the initial field u0(~s) and the local index of refraction
n1(~s). Since, by definition, 〈n1(~s, z)〉 = 0, it follows that the ensemble average of the first
order Born approximation is zero as well, 〈u1(~r, L)〉 = 0.

To solve for the higher order terms, the similarity between (3.26) and (3.27) reveals that
these equations are almost the same (the only difference lies within the index of the field, ui).
Thus, the solutions for these equations will resemble (3.28),

um(~r, L) =
k2

2π

L∫

0

∞∫

−∞

exp

[
j

(
k(L− z) +

k|~s− ~r|2
2(L− z)

)]
um−1(~s, z)

n1(~s, z)

L− z
~dsdz, (3.29)

where m = 1, 2, 3, . . . . The inner integral has to be computed over the vector ~ds that lies in
the plane orthogonal to the propagation direction, and the outer intergral has to be carried
out over the propagation path. It has been shown that perturbation terms of orders higher
than m = 2 are not important [4]. Note that, in general, 〈um〉 6= 0. In the next section, I
will show that the Rytov and the Born approximation are very similar, and the expressions
for the moments of the field that will be derived at the end are valid for both approximation
methods.

The range of validity of the Born approximation is determined by the comparison of the
unperturbed field with the perturbed field, |u0| � |u1|. This condition normally applies to
weakly inhomogenous environments (the mathematical distinction when environments can be
classified as weak or strong can be found in Sect. 4.5).

3.3.4 Rytov Approximation

The Rytov approximation (western notation), or method of smooth perturbations (MSP, for-
mer USSR), was introduced by Obukhov, who used a method suggested by Rytov. Like the
Born approximation, the Rytov approximation is much more versatile than the GOM because
it takes diffraction effects into account to a certain degree. Compared to the Born approxi-
mation, the computational effort remains the same. The intention for the introduction of the
Rytov approximation was the extension of the range of validity of the Born approximation.
However, it has been shown that the Born approximation can be mathematically transferred
to the Rytov approximation, and that the range of validity will therefore be the same.

In his original work, Rytov applied his method to the parabolic wave equation (2.27), while
Obukhov used the Helmholtz equation (2.22) as the starting point [1, 3, 9]. In this work, I
will refer to the method suggested by Obukhov.

The Rytov method uses the logarithm of the field instead of the field itself to approximate
solutions for the wave equation. This is done by choosing

u(~r, z) = exp[Φ(~r, z)] (3.30)

for one part of the electric field, where Φ(~r, z) is an auxiliary variable. As before, the electric
field is given by

E(~r, z) = u(~r, z) exp(jkz). (3.31)

With this Ansatz, the Helmholtz equation (2.27) is transformed to the nonlinear Riccati
equation [1, 3],

∇2Φ(~r, z) + [~∇Φ(~r, z)]2 + k2n2(~r, z) = 0. (3.32)
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This equation has the advantage that the random coefficient n enters in an additive manner,
not as a multiplicative factor.

In the previous subsections, the electrical field was decomposed by its order, now leading
to a decomposition of the exponential term Φ(~r, z) (cf. (3.30) and (3.24)),

Φ(~r, z) = Φ0(~r, z) + Φ1(~r, z) + . . . . (3.33)

Together with the additive dispartment of the refractive index (3.23), (3.33) is inserted into
(3.32),

∇2 [Φ0(~r, z) + Φ1(~r, z) + . . . ] +
{
~∇ [Φ0(~r, z) + Φ1(~r, z) + . . . ]

}2
+ k2 [1 + n1(~r, z)] 2 = 0.

(3.34)
The next step to get to results for the moments of the field is to split the terms of (3.34) after
their order [1],

∇2Φ0(~r, z) + [~∇Φ0(~r, z)]2 + k2 = 0 (3.35)

∇2Φ1(~r, z) + 2~∇Φ0(~r, z) · ~∇Φ1(~r, z) + 2k2n1(~r, z) = 0 (3.36)

∇2Φ2(~r, z) + 2~∇Φ0(~r, z) · ~∇Φ2(~r, z) + k2n2
1(~r, z) + ~∇Φ1(~r, z) · ~∇Φ1(~r, z) = 0 (3.37)

...

Similar to the Born approximation, it suffices to retain only the first three terms Φ0(~r, z),
Φ1(~r, z), and Φ2(~r, z), that are the unperturbed and the first and second order perturbed field,
respectively. A physical interpretation of these three terms is given by the unperturbed part,
and the single and double scattered parts of the wave. The equation for the unperturbed field
(3.35) equals the common Helmholtz equation (2.22). Expressing the lowest–order term in
the form

u0(~r, z) = exp[Φ0(~r, z)], (3.38)

which represents the solution of the wave equation for free–space propagation, (3.30) becomes

u(~r, z) = u0(~r, z) exp[Φ1(~r, z)] exp[Φ2(~r, z)]. (3.39)

To get a solution for the first order perturbation term Φ1(~r, z), it is expressed as a weighted
function of the unperturbed field,

Φ1(~r, z) = W1(~r, z)/u0(~r, z), (3.40)

where W1(~r, z) is an auxiliary variable. Inserting this expression for Φ1(~r, z) into (3.36) yields

∇2W1(~r, z) + k2W1(~r, z) + 2k2n2
1(~r, z)u0(~r, z) = 0. (3.41)

This linear differential equation with constant coefficients can be solved using Green’s function,

G(~x− ~x′) =
1

4π|~x− ~x′| exp
(
jk|~x− ~x ′|

)
, (3.42)

yielding [1, 3]

Φ1(~r, z) =
2k2

u0(~r, z)

∫

V

u0(~r ′, z′)n1(~r ′, z′)G(|~r − ~r ′, z′|)dV ′, (3.43)
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where the integral has to be carried out over the volume V (corresponding to the integration
variables ~r ′ and z′). Obtaining expressions for Φ2(~r, z) in that way is rather difficult, but
there exist other ways of deriving a solution.

Another method of deriving solutions for the stochastic wave equation is to extend the
equations from the Born approximation [6]. To do so, I first introduce the normalized Born
approximations,

Ψm(~r, z) =
um(~r, z)

u0(~r, z)
, m = 1, 2, 3, . . . , (3.44)

with um(~r, z) defined by (3.29). By setting equal the Rytov and Born approximations of first
order (using u1(~r, z) = u0(~r, z)Ψ1(~r, z) for the first perturbation term of the Born approxima-
tion),

u0(~r, z) exp[Φ1(~r, z)] = u0(~r, z) + u1(~r, z) (3.45)

= u0(~r, z) (1 + Ψ1(~r, z)) (3.46)

it is found, upon dividing by u0(~r, z) and taking the natural logarithm, that both approxima-
tions are approximately equal,

Φ1(~r, z) = ln (1 + Ψ1(~r, z)) (3.47)

≈ Ψ1(~r, z), |Ψ1(~r, z)| � 1. (3.48)

For the second order approximation, this method leads to [6]

Φ2(~r, z) = Ψ2(~r, z)− 1

2
Ψ2

1(~r, z), |Ψ1(~r, z)|, |Ψ2(~r, z)| � 1. (3.49)

It has been found that it is necessary to include perturbation terms of the order of two to keep
the error of the approximation small [3, 4]. The zeroth and first order perturbation terms are
sufficient for deriving results for the log–amplitude variance, the phase variance, intensity and
phase correlation functions, and wave structure functions.

But to calculate various impacts on a laser beam, higher order statistical moments of the
field are needed, thus it is necessary to incorporate the second order perturbation term in
addition to the perturbation term of first order.

Since we have expressions for the (random) field components at hand now, the moments
of the field can be determined. For example, to get the first order moment of the field, one
has to insert

u(~r, z) = exp[Φ(~r, z)] = exp[Φ0(~r, z) + Φ1(~r, z) + Φ2(~r, z) + . . . ], (3.50)

into (3.8) to get

Γ1,0(~r, z) = 〈u(~r, z)〉
= 〈exp[Φ0(~r, z) + Φ1(~r, z) + Φ2(~r, z) + . . . ]〉 . (3.51)

To be able to transform the ensemble average into the exponent, the method of cumulants is
involved [6],

〈exp[α]〉 = lim
t→−j
〈exp[jtα]〉 (3.52)

= exp

[
K1 +

1

2
K2 +

1

6
K3 + . . .

]
, (3.53)
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where only the terms up to the second order will be used. The coefficients K are defined by

K1 = 〈α〉 (3.54)

K2 = 〈α2〉 − 〈α〉2. (3.55)

With this method, it is possible to simplify equation (3.51) to get (in terms of the normalized
Born approximation),

Γ1,0(~r, z) = u0(~r, z)

〈
exp [Ψ1(~r, z)] exp

[
Ψ2(~r, z) +

1

2
Ψ2

1(~r, z)

]〉
(3.56)

= u0(~r, z) exp

[
〈Ψ2(~r, z)〉 +

1

2

〈
Ψ2

1(~r, z)
〉]
, (3.57)

where exp[Φ0(~r, z)] is the initial field u0(~r, z), and, by definition, 〈Φ1(~r, z)〉 = 〈Ψ1(~r, z)〉 = 0.
Perturbation terms of orders higher than two are assumed to be negligible.

The second order moment of the field turns out to be [6]

Γ1,1(~r1;~r ′1; z) = 〈u(~r1, z)u
∗(~r ′1, z)〉

= u0(~r1, z)u
∗
0(~r ′1, z)

〈
exp

[
Φ(~r1, z) + Φ∗(~r ′1, z)

]〉

= u0(~r1, z)u
∗
0(~r ′1, z) exp[2 · 〈Ψ2(~r1, z)〉+

+〈Ψ1(~r1, z)〉 + 〈Ψ1(~r1, z)Ψ
∗
1(~r ′1, z)〉]. (3.58)

Exact expressions for the fourth order moment do not exist. This particular moment would be
needed for some calculations in Chapt. 5, but it is also possible to approximate results using
other methods.

The range of validity of the Rytov approximation is determined by |~∇Φn+1(~r, z)| �
|~∇Φn(~r, z)|, otherwise, the series (3.33) would converge too slowly.

The Rytov approximation is one of two methods that seems to predict the influence of
the atmosphere for ground to space communication (and vice versa) with sufficient accuracy.
Many authors derived equations for various effects (e.g., [1, 3, 6]), and measurements seem to
confirm the results obtained by the Rytov method [9]. Nevertheless, ongoing discussions lead
to doubts about the correctness of the application of this method. An alternative method is
given by the Markov approximation.

3.3.5 Markov Approximation

A major restriction of the Born approximation and the Rytov approximation is their appli-
cability to propagation paths where the influences on the wave can be classified as strong
(since the specifications for the propagation path still have to be checked, this scenario must
not be disregarded). The Markov approximation overcomes this restriction, while still being
applicable within environments where the fluctuations are small. Like all the other methods
mentioned, this approximation does not take backscattering into account.

The Markov approximation leads to solutions for the moments of the field of first and
second order, and the fourth order moment can be approximated [9]. These moments are
calculated starting with the paraxial Helmholtz equation (2.27),

∇2
Tu(~r; z) + 2jk

∂u(~r; z)

∂z
+ k2n2(~r; z)u(~r; z) = 0, (3.59)
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which can be used for calculations involving light beams with narrow angular spread, which is
assumed to be the case.

The difference between the Markov approximation and any other approximation presented
in this work is that the fluctuating part of the index of refraction, n1(~r, z), is expected to be
delta–function correlated in the propagation direction [4],

〈n1(~r, z)n1(~r ′, z′) = δ(z − z′)A(~r − ~r ′, z)〉 (3.60)

with the delta–distribution given by

δ(x− y) =:

{
1 for x = y
0 else.

(3.61)

In (3.60), the refractive index’s dependency on the vector (~r − ~r ′) is given by

A(~r − ~r ′, z) =: 8π

∞∫

−∞

Φn(κr, z)e
j~κr ·(~r−~r ′) ~dκr. (3.62)

The height–dependent spectrum of the index of refraction fluctuations Φn(κr, z) will be ex-
plained in detail in Sect. 4.4. The meaning of κr is comparable to a spatial frequency like
the wavenumber k; in this case, κr stands for the component orthogonal to the propagation
direction. Section 4.4 contains more information about κ, like its exact definition.

The paraxial wave equation (3.59) can be solved for the moments of the field by using
(3.60) along with the Novikov–Furutsu formula [3]. This formula provides a solution for the
ensemble average of n1 and u (that arises from (3.59)) if n1 is a Gaussian random variable.
The assumption that the refractive index’s statistical distribution is Gaussian comes directly
from the central limit theorem.

Ensemble averaging (3.59), inserting (3.60), and using the Novikov–Furutsu formula yields
an equation for the first order moment of the field,

∇2
T 〈u(~r; z)〉+ 2jk

∂〈u(~r; z)〉
∂z

+
jk3

4
A(~r, 0)〈u(~r, z)〉 = 0. (3.63)

Prokhorov et al. [10] derived the same equation (3.63) from a more physical point of view,
while Rytov et al. [4] derived this equation in a mathematically very strict way. Fante [9]
solved this equation, leading to

〈u(~r, z)〉 = −
(

jk

2πz

) ∞∫

−∞

u(~r ′, 0) ·

· exp

[
j
k(~r − ~r ′)2

2z
− k

8

∫ z

0
A(h, 0)dh

]
~dr′ (3.64)

Strohben [3] found a much simpler solution for (3.63),

〈u(~r, z)〉 = Γ1,0(~r; z) = u0(~r, z) exp

[
−k

2A(z, 0)z

2

]
, (3.65)

where u0(~r, z) is the undisturbed wave. Although both solutions look different, they lead to
the result that the mean field vanishes after a very short propagation distance. Therefore the
first order moment of the field will be neglected in the calculations to follow.
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For the second order moment of the field [3],

(
2jk

∂

∂z
+∇2

T −∇2
T ′ +

jk3

2
[A(0, z) −A(~r − ~r ′, z)]

)
Γ1,1(~r, ~r ′; z) = 0 (3.66)

has to be solved (The indices of the nabla operator, T, T ′, refer to the different radii, ~r and
~r ′). A solution for (3.66) was found by Fante [9] and by Ishimaru (in [3]), but neither could I
carry out the derivation nor could I verify these results.

The equation to solve for the fourth order moment of the field can be found in [3, 9], but
analytic solutions do not exist. When needed, approximations will be introduced. They can
be found in [3, 4, 9, 11].



Chapter 4

Laser Beam Propagation in the
Atmosphere

For any free–space optical communication system, the atmosphere is the medium where the
main part of the propagation of the laser beam takes place. This medium is special in the
sense of attenuating and changing the properties of the laser beam. Attenuation results from
the chemical elements of the atmosphere, mainly water vapor. This topic is briefly mentioned
in Sect. 5.1 and Sect. 5.2, but for the remaining calculations, it is neglected. Another dis-
regarded effect of the interaction between the atmosphere and a laser beam is the change of
the atmospheric temperature and structure due to the power of the laser beam. This effect is
called Thermal Blooming. More about it can be found in [3].

The structure of the atmosphere changes the properties of the laser beam passing through
it. In this chapter, this structure is physically and mathematically described.

In the first section, I will present the topology and the contents of the atmosphere. Sec-
tion 4.2 focuses on the definition and evolution of turbulence, and a section about structure
functions that are used for describing random fields follows (Section 4.3). An introduction of
the spectrum of turbulence that is needed to compute some moments of the field (see Sect.
3.2) will finalize this chapter.

4.1 Topology of the Atmosphere

The atmosphere1 is the gaseous area surrounding the earth. Its density distribution is descend-
ing approximately exponentially with increasing height. The structure of the atmosphere can
be split up into different layers lying parallel to the ground, but with varying borders (see
Fig. 4.1(b)). Between these layers lie narrow transition zones. The upper limit at which gases
disperse into space is situated at an altitude of approximately 1000 km, but more than 99% of
the total atmospheric mass is concentrated in the first 40 km next to the earth’s surface.

The atmosphere is a mixture of different types of gases and gaseous elements. A detailled
decomposition and explanation of some chemical substances of content can be found in [13].
Besides gases like nitrogen, oxygen, carbon dioxide, and hydrogen, the atmosphere also con-
tains water vapor and particulate material (also known as aerosol). The concentration of
water vapor is strongly varying in time and space, but it is decreasing with increasing height
due to the falling temperature. Dust, smoke, and small particles can be classified as ’particu-

1greek: atmos = haze; sphaira = sphere

23
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(a) Atmospheric layers (b) The upper boundary of the troposphere.

Figure 4.1: Visualizations of the topology of the atmosphere (from [12]).

late material’, and one can distinguish between consolidated, gaseous, anorganic, and organic
particles and microorganisms.

Since different elements of the atmosphere have different mass, one could expect that the
lighter parts will be found at higher altitudes, while the parts with more mass reside next to
the ground. But counterintuitively, the mixing ratio remains almost unchanged within distinct
layers. This mixing is due to vertical turbulences. Horizontal turbulences are the reason why,
e.g., the density of Oxygen (O2) is the same above areas with high photosynthetic activity, like
the tropics, and above regions where one would not expect it, like regions with a high density
of industrial facilities [13].

Following Fig. 4.1(a), the atmosphere’s layers are (starting from ground and increasing alti-
tude): the troposphere, the stratosphere, the mesosphere, the thermosphere, and the exosphere
(not shown).

Troposphere: This atmospheric layer lies closest to the planet’s surface and contains the
largest percentage of mass of the total atmosphere. The upper boundary is dependent on
location and season: the troposphere ranges from 8 km in high latitudes to 18 km above
the equator. Its expansion is largest in summer and lowest in winter (see Fig. 4.1(b)).

Depending on the season, the average temperature near ground varies from −30◦C to
40◦ C. The average vertical change of temperature in the troposphere is approximately
four degrees Celsius per kilometer, resulting in an average temperature of −60◦ C to
−80◦ C at the upper bound. The amount of water vapor drops off quickly with increasing
height2. About 99% of the water vapor in the atmosphere is contained in the troposphere.

2Water vapor plays a major role in regulating the air temperature since it absorbs solar energy from the sun
and thermal radiation from the planet’s surface.
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The distribution of water vapor is location–dependent (about 3% to 4% above the tropics,
decreasing towards the polar regions).

The troposphere is the layer where all weather phenomena occur (extensions into the
lower stratosphere are possible). The troposphere can also be named the “region of
mixing”, and this name comes from the strong convective air currents within this layer.
A narrow zone called Tropopause, where air temperature remains constant, separates
the troposphere from the next layer, the stratosphere.

Stratosphere: This layer resides between 10 and 50 km above the earth. Up to an altitude
of about 25 km, the temperature remains approximately unchanged (at an average of
−50◦ C), then it increases gradually to a range between −10◦ C and 0◦C at the lower
boundary of the stratopause layer. From then on, the temperature decreases again
with increasing height. The increase of air temperature in the stratosphere results in a
stabilization of atmospheric conditions in this region. The “most prominent” part of the
stratosphere is the ozone layer at an altitude of 20 to 30 km; ozone overtakes the role of
water vapor in this region, i.e., it regulates the temperature.

Mesosphere: Above the stratosphere, the mesosphere extends from approximately 50 km to
80 km; its lowest temperatures are in the range of −80◦C to −90◦ C at highest altitudes.
The concentrations of water vapor or ozone are negligible, leading to lower temperatures
than in the lower layers. With an increase of distance from the earth’s surface, the
chemical composition of the atmosphere becomes strongly altitude–dependent. At very
high altitudes, the residual gases begin to stratify according to molecular mass, because
of gravitational separation.

The Mesopause Transition Layer separates the Mesosphere from the Thermosphere.

Thermosphere: This part of the atmosphere reaches from approximately 80 km to 500 km.
Temperatures are lower than in the mesosphere. At an altitude of 100 – 200 km, the
major atmospheric components are still nitrogen and oxygen.

The Exosphere: This is the outermost region of the Earth’s atmosphere. The Exosphere
begins at approximately 500 km and extends outwards to roughly 10000 km until it fades
to interplanetary space. Atoms follow ballistic trajectories and rarely collide because the
density of atoms in this region is low.

4.2 Turbulence

The atmosphere is in permanent motion. This motion arises as a consequence of a pressure
gradient between a high–pressure and a low–pressure area (anitcyclone and cyclone in mete-
orological terms, respectively). The atmosphere has the tendency to balance this difference
in pressure. Air flows from the high–pressure area to the low–pressure area (wind). At the
lowest 1500 m, the friction of the earth’s surface must not be neglected. This friction leads to
a turbulent air flow.

The evolution of turbulence is made visible by an experiment [5]:
Consider an unlimited volume containing a fluid in motion. The direction of the motion is

parallel to the x–direction in the xy–plane only. No boundaries are assumed, so the velocity
vectors are strictly parallel. To find out how this fluid reacts when it is disturbed, a cylinder
with infinite length, but a defined diameter l [ m] is inserted into the flow. The cylinder’s
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principal axis coincides with the z–axis. Next, the fluid needs to be specified by the absolute
value of its characteristic velocity vector |~v| [ m/s] and its kinematic viscosity ν [ m2/s]. Based
on this values, it is possible to calculate the Reynoldsnumber to classify the behaviour of the
fluid,

Re =:
|~v| · l
ν

. (4.1)

Re ≤ 10 : The flow will be strictly laminated, a slight loss of symmetry in the xy–plane is
possible. The fluid can be described by deterministic means.

10 ≤ Re ≤∼ 40 : Some parts of the flow will start to mix and form “eddies” (the vector of
the velocity changes its direction clockwise or counterclockwise in these areas). At low
Reynoldsnumbers, a periodicity of those eddies establishes in the direction of the flow
(Kármánsche Wirbelstrasse [14]). With increasing Re, the periodicity is lost, and the
xy–plane is dominated by eddies.

∼ 40 . . . 75 ≤ Re : At a certain Reynoldsnumber that lies in this range, the symmetries in
the xz–plane and in the yz–plane are also lost. In that case, the flow is seen as highly
turbulent. Since the vectors of velocity point to various directions, only a stochastic
approach can be used to describe the behaviour of the fluid.

In the atmosphere, the mixture of gases and small particles is similar to a fluid. A typical
value for the kinematic viscosity of the atmosphere near ground is ν ∈ [10−4 . . . 10−6] m2/s,
decreasing with height3. Assuming low windspeeds, |~v| ≈ 1 . . . 5 m/s and minimum typical
dimensions of the disturbing elements on the order of a few millimeters, the lower bound for
the Reynoldsnumber near ground is on the order of approximately 500. With this value in
mind, the atmosphere has to be considered highly turbulent, at least in the lowest layer, the
troposphere, where the density has its maximum.

The energy flux of atmospheric turbulence is best described by the energy cascade theory
that was introduced by L. F. Richardson in 1926: At large scales, the source of energy is
either wind shear or convection. The wind speed increases until a critical Reynoldsnumber is
exceeded, resulting in local unstable air masses, also called eddies. These eddies are slightly
smaller and independent of the parent flow. Their typical dimension is called the outer scale
of turbulence L0, and they were found to be as large as 20 m or more4 [15, 16]. Under the
influence of inertial forces, these large eddies brake up into smaller ones, who brake up on
their part and so on, until they reach a minimum scale size, the inner scale of turbulence l0.
Measurements have shown that this scale size is on the order of 5 mm to 12 mm [8]. Eddies
of scale sizes between the outer and the inner scale form the inertial subrange. Scale sizes
that are smaller than l0 belong to the viscous dissipation range. In this range, the turbulent
eddies disappear and the energy is dissipated as heat [6]. Richardson’s energy cascade model
is visualized in Fig. 4.2.

3The kinematic viscosity is defined by ν = µ/ρ, where µ is the abolute viscosity and ρ is the density of
the medium. The density of the atmosphere decreases with height, so ν increases, and the Reynoldsnumber
decreases, too, leading to more or less stable conditions in higher regions, like in the stratosphere and layers
above.

4The outer scale of turbulence is generally much larger than the diameter of an observing telescope, so the
actual value is not of great importance.
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Figure 4.2: Richardson’s energy cascade model; L0 denotes the outer scale, and l0 the inner
scale of turbulence.

4.3 Structure Functions

Actual random (=stochastic) processes can often be approximated by stationary random func-
tions. Unfortunately, this approximation is not justifiable with atmospheric parameters, like
temperature fluctuations or changes in the wind velocity, because their mean values are con-
stant only over relatively short periods of time.

To circumvent this problem, it is useful to analyze the behavior of the difference x(t +
τ)− x(t) rather than that of the stochastic process x(t) itself (t represents an arbitrary point
in time, τ is an arbitrary time delay). The advantage of this method is that the difference
x(t+τ)−x(t) often behaves like a stationary function, even though x(t) may not be stationary.
This method is also called the method of stationary increments 5 [6].

The wide–sense description of a stochastic process is defined by its covariance function and
its mean [17]. Since it is not always possible to find the corresponding covariance function, it
is useful to introduce structure functions,

Dx(t, τ) =
〈

[x(t+ τ)− x(t)]2
〉
, (4.2)

where 〈·〉 denotes the ensemble average. Splitting the random process x(t) into the mean
m(t) = 〈x(t)〉 and a mean–free fluctuating part x1(t), the structure function can be written as

Dx(t, τ) = [m(t+ τ)−m(t)]2 +
〈

[x1(t+ τ)− x1(t)]2
〉

≈
〈

[x1(t+ τ)− x1(t)]2
〉
. (4.3)

5A random process is random with stationary increments if the ensemble averages of [x(t + τ ) − x(t)] and
[x(t+ τ )− x(t)]2 are independent of the absolute instant t.
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In the last step, it is assumed that the mean does not change significantly during the time of
observation τ .

For random processes with stationary increments, the structure function Dx(t, τ) becomes
independent of the absolute instant t, Dx(t, τ) = Dx(τ).

If x(t) is a stationary random process as well, then its covariance function Bx(τ) and its
structure function are directly related:

Dx(τ) =
〈

[x(t+ τ)− x(t)]2
〉

=
〈
x2(t+ τ)

〉
+
〈
x2(t)

〉
− 2 〈x(t+ τ)− x(t)〉

= 2 [Bx(0)−Bx(τ)] (4.4)

Note that it is impossible to derive the covariance function from the structure function!
A spatial equivalent for a random process with stationary increments is a field6 that is

locally homogeneous7. Such a random field can be decomposed into a part with slowly varying
mean and a mean–free fluctuating part,

x(~r) = m(~r) + x1(~r). (4.5)

These locally homogeneous fields are usually characterized by structure functions. Switching
from the time domain to the spatial domain, (4.2) becomes

Dx(~r0, ~r) =
〈

[x(~r0 + ~r)− x(~r0)]2
〉
, (4.6)

where ~r0 defines an arbitrary point in space, and ~r is the difference vector that points from ~r0

to another arbitrary point. The spatial equivalent to (4.3) is

Dx(~r0, ~r) ≈
〈

[x1(~r0 + ~r)− x1(~r0)]2
〉
. (4.7)

Spectral Representation

Many deterministic functions can be represented by their Fourier Spectra, F (jω) (ω = 2πf is
the angular frequency) [18]. A necessary condition for the existence of a Fourier spectrum is
that the function is absolutely integrable,

∫ ∞

−∞
|f(t)|dt <∞. (4.8)

Using the Fourier transformation, it is possible to obtain a spectral representation of the
time–dependent function,

F (jω) =
1

2π

∞∫

−∞

f(t) exp[−jωt]dt. (4.9)

The inverse Fourier transformation associates a frequency spectrum with a signal in the time
domain,

f(t) =

∞∫

−∞

F (jω) exp[jωt]dω. (4.10)

6A random function of a vector spatial variable ~r = x~ex + y~ey + z~ez and, possibly, time t is called random
field.

7A field is called locally homogeneous if its moments are invariant under spatial translation.
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From (4.9), one can see that the corresponding spectrum will normally be complex valued,
except when the signal in the time domain is an even function, leading to a real valued
spectrum.

For complex stationary random functions x(t), condition (4.8) will not be met. To obtain
a spectral representation, the Fourier–Stieltjes integral has to be involved,

x(t) =

∞∫

−∞

exp[jωt]dν(ω), (4.11)

where dν(ω) is a random complex amplitude, and 〈x(t)〉 = 0. Of course, x(t) and dν(ω) differ
for each realization of the random process. Therefore, the power spectral density can be used
to describe the random process in the frequency domain [17]. It is obtained by taking the
Fourier transform of the autocorrelation function, which is equal to the covariance function,
since the random process is mean free.

Using (4.11), the covariance function can be expressed as (t1,2 are independent points in
time)

Bx(t1, t2) = 〈x(t1)x∗(t2)〉 (4.12)

=

∫ ∞∫

−∞

exp[j(ω1t1 − ω2t2)]〈dν(ω1)dν∗(ω2)〉, (4.13)

where ω1,2 are auxiliary variables of frequency. With regard to random processes with station-
ary increments, the correlation function must not be a function of an absolute instant, so the
random amplitude has to satisfy

〈dν(ω1)dν∗(ω2)〉 = δ(ω2 − ω1)Sx(ω1)dω2dω1, (4.14)

where Sx(ω1) ≥ 0 is the power spectral density of the stochastic process x(t). Replacing ω1 by
ω and τ by t1 − t2, (4.13) becomes

Bx(τ) =

∞∫

−∞

Sx(ω) exp[jωτ ]dω. (4.15)

The power spectral density is the inverse Fourier transform of the covariance function,

Sx(ω) =
1

2π

∞∫

−∞

Bx(τ) exp[−jωτ ]dτ. (4.16)

This set of equations, (4.15) and (4.16), is known as the Wiener–Khintchine theorem.
A locally homogeneous stochastic field x(~r) is usually described by its structure function,

(4.7), rather than by its covariance function. It is also possible to derive a relation between
the structure function and its power spectrum Φn(~κ) [6, 19],

Dx(~r) = 2

∞∫

−∞

Φ2
x(~κ)[1 − cos(~κ · ~r)] ~dκ. (4.17)
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The power spectrum Φn(~κ) is the spatial equivalent of Sx(ω), as ~κ (in radians/meter) is to ω.
In other words, κ can be interpreted as a spatial frequency.

If the locally homogeneous stochastic field is isotropic, (4.17) simplifies to

Dx(r) = 8π

∞∫

0

κ2Φx(κ)

(
1− sin(κr)

κr

)
dκ, (4.18)

with r = |~r| and κ = |~κ|.
The equivalent to (4.16) is [6]

Φx(κ) =
1

4π2κ2

∞∫

0

sin(κr)

κr

d

dr

[
r2 d

dr
Dx(r)

]
dr. (4.19)

The spectra of the structure functions are included in approximations for the moments of
the field. Using the moments, one can calculate the impacts on a laser beam passing through
random media (see Chap. 5).

4.4 Spectra of Turbulence

Turbulence is a nonlinear process that can be described by the Navier–Stokes equations.
A. N. Kolmogorov had difficulties solving these equations, so he developed a statistical theory
of turbulence that relied on dimensional analysis [20]. In other words, his results were obtained
empirically, they were not derived from basic assumptions. Since his work is fundamental for
other considerations, the description of turbulence that is commonly used relies on empirical
data.

For locally homogeneous, isotropic turbulence, Kolmogorov showed that the wind velocity
parallel to a vector ~r connecting two observation points obeys a “2/3” power law,

Dv(r) = C2
vr

2/3, l0 � r � L0, r = |~r|. (4.20)

The structure constant C2
v represents the total amount of the wind’s energy in turbulence. It is

related to the average energy dissipation rate ε by C 2
v = 2ε2/3. The inner scale l0 ≈ η = (ν3/ε)

1
4

depends on the kinematic viscosity ν and the average rate of dissipation ε. The parameter
η is Kolmogorov’s microscale. The outer scale of turbulence, L0, is proportional to

√
ε. For

separation distances r smaller than l0,

Dv(r) = C2
v l

4/3
0 r2, r � l0. (4.21)

No general description of the structure function can be predicted for separation distances larger
than the outer scale L0, since the velocity fluctuations are nonisotropic and local homogeneity
is not warranted.

The corresponding power spectrum can be derived from (4.19) [6],

Φv(κ) = 0.033C2
vκ
−11/3, 1/L0 � κ� 1/l0. (4.22)

This spectrum is plotted in Fig. 4.3. Most of the energy lies at large scale sizes (where κ is
small), descending to lower scale sizes.
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Figure 4.3: Double logarithmic plot of the normalized power spectrum of the wind velocity in
the region 1/Lo < κ < 1/lo (L0 = 100 m, l0 = 8 mm).

The considerations above can also be adapted to temperature fluctuations [6]. The nec-
essary conditions are that the fluctuations of the temperature are locally homogeneous and
isotropic. Meeting these conditions, (4.22) takes on the form

ΦT (κ) = 0.033C2
T κ
−11/3, 1/L0 � κ� 1/l0. (4.23)

The only differences between (4.23) and (4.22) are the structure constant, and the defini-
tion of the inner scale size. For temperature fluctuations, the inner scale is defined by
l0 = 5.8(D3/ε)1/4, where D is the diffusivity of heat in air (in m2/s). The magnitude of
the inner scale of temperature fluctuations is of the same order as that of velocity fluctuations.

Temperature fluctuations and fluctuations of the index of refraction are closely related. For
locally homogeneous and isotropic turbulence, the following structure function can be defined:

Dn(r) =

{
C2
nr

2/3, l0 � r � L0,

C2
nl
−4/3
0 r2, r � l0.

(4.24)

The inner scale of turbulence is defined by l0 = 7.4η = 7.4(ν3/ε)1/4, and C2
n is the index

of refraction’s structure parameter. The structure parameter represents the strength of the
fluctuations of the refractive index. The close relation of the refractive index to the temperature
fluctuations leads to a simple rule to transfer C 2

T into C2
n, using (3.4):

C2
n = 77.6 · 10−8

(
1 +

7.52 · 10−15 m2

λ2

)
p

T 2
C2
T

ms2K2

kg
. (4.25)

Here, p is the pressure in Pascal, T is the temperature in Kelvin, λ is the wavelength in m, and
CT

2 is the structure parameter of the temperature fluctuations in m−2/3. Based on (4.23),
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the power spectrum of the refractive index’s fluctuations in the inertial subrange becomes

Φn(κ) = 0.033C2
nκ
−11/3, 1/L0 � κ� 1/l0. (4.26)

This equation is the well–known Kolmogorov spectrum, which is, because of its simplicity,
widely used in theoretical considerations8. All spectra presented in this thesis have in common
the Kolmogorov spectrum of turbulence over a major part of the inertial subrange. The
Kolmogorov spectrum is plotted as the straight dashed line in Fig. 4.4.
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Figure 4.4: Models for the spectrum of the refractive index’s fluctuations (L0 = 50 m, l0 =
8 mm). The area 1/L0 . . . 1/l0 is the inertial subrange.

Tatarskii Spectrum: Tatarskii [4] extended Kolmogorov’s spectrum so that it was also valid
in the dissipation range, i.e., where κ > 1/l0. To this end, (4.26) is multiplied by a
Gaussian function to truncate the spectrum at high wavenumbers,

Φn(κ) = 0.033C2
nκ
−11/3 exp[−κ2/κ2

m], κ� 1/L0. (4.27)

The parameter κm is 5.92/l0. At low wavenumbers, this model equals Kolmogorov’s
spectrum (see Fig. 4.4, curve marked by ’o’). A disadvantage of the Kolmogorov and
the Tatarskii spectrum is their singularity at κ = 0. This singularity is a discrepancy
between the mathematical model and real turbulence: while atmospheric turbulence is
almost always locally homogeneous and isotropic, the Kolmogorov and the Tatarskii
spectra contain these properties only in the inertial subrange or dissipation range for
which κ� 1/L0.

8Zilberman et al. have shown by measurements that the Kolmogorov spectrum has to be modified above the
atmospheric boundary layer, i.e., approximately 1km above the earth’s surface [21]. This has not been included
in this thesis.
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von Kármán Spectrum: The Kolmogorov and the Tatarskii spectrum are not capable of
describing atmospheric turbulence at low wavenumbers, i.e., where κ < 1/L0. This leads
to the shortcoming that, e.g., the covariance function does not exist. A model that
overcomes this problem is the von Kármán spectrum:

Φn(κ) = 0.033C2
n

exp[−κ2/κ2
m]

(κ2 + κ2
0)11/6

, 0 ≤ κ ≤ ∞ (4.28)

with κm = 5.92/l0 and κ0 = 1/L0. In Fig. 4.4, where the profile of the von Kármán
spectrum is marked by ×, it can be seen that, at high wavenumbers, this type of spectrum
follows the Tatarskii spectrum, while at low wavenumbers, it flattens and takes on a
constant value.

Modified Atmospheric Spectrum: Experiments have shown that there exists a slight bump
in the spectrum at high wavenumber (around 1/l0) [6]. This bump is unattended by all
presented models. The only spectrum that takes it into account is the modified atmo-
spheric spectrum [6],

Φn(κ) = 0.033C2
n

[
1 + 1.802(κ/κl)− 0.254(κ/κl)

7/6 exp[−κ2/κl]

(κ2 + κ2
0)11/6

]
, 0 ≤ κ ≤ ∞

(4.29)
where κl = 3.3/l0 and κ0 = 1/L0. The modified atmospheric spectrum is the solid curve
in Fig. 4.4.

4.4.1 The Structure Parameter C2
n

The structure parameter C2
n represents the total amount of energy contained in the stochastic

field of the refractive index’s fluctuations9. Because of the spatial dependency of the structure
parameter, it will be written in a parameterized version, C 2

n(z), where z represents the relative
distance to the starting point of observation.

The values of C2
n(z) can be determined indirectly by the structure parameter for temper-

ature fluctuations C2
T (z). This structure parameter can then be converted using (4.25). Note

that the pressure and the temperature in (4.25) are also location dependent.
One possibility to measure C2

T (z) is to keep two fine wire thermometers at a fixed distance
r and to record the mean–square temperature difference. Using the definition of the structure
function for temperature fluctuations,

DT (r, z) = C2
T (z)r2/3, (4.30)

the structure parameter C2
T (z) can be determined. (The value of DT (r, z) is measured, and

the separation distance r of the two fine wire probes is determined, e.g. r = 1 m.)
Another way to obtain the C2

n(z) profile is by using the SCIDAR (SCIntillation Detection
And Ranging) technique. The light from stars is used to calculate a correlation function. The
height and strength of any turbulent layer can be determined from the peaks of this function
(see [22] for further information, and [23] for sample measurements).

Path–averaged values of C2
n(z) and of the inner scale of turbulence l0(z) can be measured

with an instrument called scintillometer, like those in Fig. 4.5. This device uses a Shack–
Hartman wavefront sensor to measure local variations (or scintillations) over the cross section
of a laser beam (see, e.g., [24] for an introduction to Shack–Hartman wavefront sensors).

9Another name is structure constant, but this notation is physically not correct, since C2
n is constant only

in a relatively small area.
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Figure 4.5: Optical Scintillometers, c©Scintec AG, Germany, http://www.scintec.com/

The structure parameter C2
n(h) is also a function of time. The temperature near the earth’s

surface varies with time because of the change in solar radiation:

Day: The earth’s surface is generally warmer than the air above, leading to strong wind and
strong turbulences. Averaged values for C2

n(0) (near ground) reach from 10−14 m−2/3 to
10−11 m−2/3 (“strong turbulence”)

Night: More stable conditions can be expected since the air is warmer than the ground.
Values for C2

n(0) are from 10−15 m−2/3 to 10−13 m−2/3

Morning / Evening: The temperature of air and ground are almost equal, the most stable
conditions can be expected. Values for C2

n(0) of 10−16 m−2/3 or less are possible (“weak
turbulence”).

The range for values of the structure parameter C 2
n is highly location dependent, thus may

differ from the values above, but the cycle over daytime will be the same.
The troposphere (see Sect. 4.1) has the biggest impact on the structure parameter, both

for horizontal and slant or vertical C2
n(z) profiles.

Models for Cn
2(h)

There exist several models for the calculation of the vertical profile of the structure parameter:

Hufnagel–Valley (H–V) Model: This model is based on measurements that were made
at various locations [6]. It is a good approximation for the behaviour of C 2

n(h) (the
parameter h indicates the height). An advantage of this model is that only two measured
values are needed: the rms–windspeed10 υ in m/s, and the value of C2

n near ground (at
h = 0).

C2
n(h) = 0.00594(υ/27)2(10−5h)10 exp(−h/1000)

+2.7 × 10−16 exp(−h/1500) + C2
n(0) exp(−h/100) (4.31)

10The root mean square windspeed is calculated as follows: υ =

√
1

15·103

∫ 20·103

5·103 V 2(h)dh with V (h) =

υg + 30 exp[−((h − 9400)/4800)2 ]. υg is the wind speed near ground. If the direction of the path along which
the C2

n–profile is specified changes, this has to be taken into account by adding a term ωsh to V (h). The
variable ωs is the slew rate associated with that motion.
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Choosing v = 21 m/s and C2
n(0) = 1.7 ·10−14 m−2/3 yields the commonly used Hufnagel–

Valley5/7 (H–V5/7) profile. The index 5/7 comes from values that are reached using this
model: For a wavelength of λ = 0.5µm, the atmospheric coherence diameter (= two
times the atmospheric coherence length presented in Sect. 3.2) becomes 5 cm, and the
isoplanatic angle becomes 7µrad (the isoplanatic angle is the aperture angle of a beam
in which the profile of C2

n(h) is constant). Figure 4.6 shows the H–V model for different
values of C2

n(0) and υ. The bump at a height of 10 000 meters comes from a region with
high wind velocities (up to 400 km/h). These winds are called jet streams [25].
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Figure 4.6: Profile for C2
n(h) after Hufnagel and Valley (H–V) (υ = 21 m/s and C 2

n(0) =
1.7 · 10−14 correspond to the H–V5/7 model).

CLEAR 1: Depending on the height above ground h, this model provides different equations
to determine the value of C2

n(h) [26]. No measured data is needed:

log10(C2
n) = A1 −B1h+ C1h

2 1230 ≤ h ≤ 2130

log10(C2
n) = A2 −B2h+ C2h

2 2130 ≤ h ≤ 10340 (4.32)

log10(C2
n) = A3 −B3h+ C3h

2

+De−0.5(h−E
F

)2
10340 ≤ h ≤ 30000

The parameters Ai . . . F can be found at [26]. Figure 4.7 shows a plot of (4.32), along
with a measured profile of C2

n(h). Since no meteoroligcal data is used, the CLEAR1
model is the worst approximation of the measured Cn

2(h) profile.
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SLC Day and Night Model: SLC stands for submarine laser communication studies. The
SLC Day Model is based on daytime averages. It is defined by [6]

C2
n(h) =





1.7 · 10−14 m−2/3, . . . 0 m < h < 18.5 m,

3.13 · 10−13/h1.05 m−2/3, . . . 18.5 m < h < 240 m,

1.3 · 10−15 m−2/3, . . . 240 m < h < 880 m,

8.87 · 10−7/h3 m−2/3, . . . 880 m < h < 7200 m,

2.0 · 10−16 m−2/3, . . . 7200 m < h < 20000 m.

(4.33)

The SLC Night Model differs from the SLC Day model only below altitudes of 1500m.
It is given by

C2
n(h) =





8.4 · 10−15 m−2/3, . . . 0 m < h < 18.5 m,

2.87 · 10−12 m−2/3/h2, . . . 18.5 m < h < 240 m,

2.5 · 10−16 m−2/3, . . . 240 m < h < 880 m,

8.87 · 10−7/h3 m−2/3, . . . 880 m < h < 7200 m,

2.0 · 10−16 m−2/3, . . . 7200 m < h < 20000 m.

(4.34)

This model uses median values of C2
n(h) above the Air Force Maui Optical Station

(AMOS) in Hawaii, thus may not be representative for other geographical locations.

Dewan: The Dewan model uses meteorological data to predict the Cn
2(h) profile [26]. The air

pressure, temperature, height, and the outer scale of turbulence are used to approximate
values for Cn

2(h). Figure 4.7, shows that the Dewan model follows the measured profile
most precisely.

HMNSP99: The abbreviation HMSNP99 stands for HollowMaN SPring 99, that is the loca-
tion where the measurements that led to the model were made. Like Dewan, this model
involves meteorological data to predict the Cn

2(h) profile [26]. The difference to the
Dewan model lies in the approximation of the outer scale of turbulence. HMNSP99 has
the smallest statistical error among all models, but as can be seen in Fig. 4.7, green line,
it is not as good as Dewan in approximating the real distribution of Cn

2.

4.5 Classification of the Turbulent Environment

The structure parameter C2
n(h) is used to determine the magnitude of the turbulence. A

commonly used method to classify the strength of turbulence is to use the scintillation index,

σ1 = 1.23C̃2
nk

7/6L11/6, (4.35)

where k is the wavenumber, L is the propagation distance, and C̃2
n is the path–averaged value

of C2
n(h). Turbulences are weak if σ1 � 1, and strong if σ1 ≥ 1. I calculated the average of

C2
n(h) by employing an integral form of the arithmetic mean,

C̃2
n =

L∮
0

C2
n(h)dh

L∮
0

dh

. (4.36)

As an example, inserting the H–V5/7 profile for C2
n(h) and choosing vertical propagation for

the path integral yields C̃2
n = 2.19 ·10−23 m−2/3 for a distance of L = 450 km. For λ = 1.55µm,

I yield σ1 = 3.23 · 10−4, so this turbulent environment can be considered weak.
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Figure 4.7: Comparison of Cn
2(h) models that use meteorological data. The thin line shows

the measured profile. The Dewan model follows the measured values most precisely, while the
HMNSP99 model has the smallest statistical error (from [26]).



Chapter 5

Results

The fundamentals for the analysis of the behavior of an optical wave propagating through
turbulent media were presented in the preceding chapters.

In this chapter, qualitative results are derived and appied to the following scenario: A
Gaussian beam (cf. Sect. 2.3) emerges from an optical ground station vertically into space,
where a receiver is located at a low earth orbit (LEO) satellite (altitude: 450km) (uplink). The
beam is disturbed at the very beginning of the propagation path, when it passes through the
lowest layer of the atmosphere. This layer is characterized weakly turbulent, cf. Sect. 4.5. On
the other hand, when the LEO satellite is the transmitter, the beam traverses the troposphere
at the end of the propagation path (downlink). The location of the disturbing element, the
troposphere (cf. Sect. 4.1), is different for the uplink and the downlink, so impacts of different
orders can be expected.

The troposphere contains eddies of scale sizes from l0 to L0, which are the inner and the
outer scale of turbulence, respectively (Sect. 4.2). Each eddy is an area of nearly constant
refractive index n (Sect. 3.1). A demonstrative illustration of the turbulent atmosphere is
given by the following figure: Atmospheric turbulence can be interpreted as a continuum of
lenses with random focal lengths. These lenses are responsible for the displacement of the beam
(Beam Wander), and for a broadening of the beam (Short–Term Beamspread) in addition to
free space spreading (see Sect. 2.3).

5.1 Absorption

Air is a mixture of various gases and particles. When a laser beam passes through the atmo-
sphere, the atmospheric constituents such as water vapor, carbon dioxide, and ozone absorb
parts of its energy. The transmission of air is plotted in Fig. 5.1. The narrow regions where
the atmospheric transmission reaches very low values in Figure 5.1 reveal that molecular ab-
sorption is rather a thin line than a band phenomenon [27].

The order of magnitude of atmospheric absorption depends on the weather conditions. For
clear air, the attenuation will be some 1–2 dB at a wavelength of 1.55µm.

5.2 Scattering

Small particles in the atmosphere deflect the laser beam in various directions. This effect
atmospheric impact is called Rayleigh scattering. For objects that are larger than the wave-
length, Mie scattering occurs. While the dependency on the wavelength is given by λ−4 for

38
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Figure 5.1: Transmission of the atmosphere as a function of the wavelength (from[27]).

Rayleigh scattering, Mie scattering does not depend on the wavelength that strong. The curve
in Figure 5.1 represents measurements of both absorption and scattering [27].

5.3 Beam Wander

The Gaussian beam has a well–defined diameter at each point along its propagation direction.
This diameter 2w(L) (2.40) depends on the initial diameter 2w0 of the beam waist, on the
wavelength λ, and on the propagation distance L,

2w(L) = 2(w0 + θ0L) = 2

(
w0 +

λ

πw0
L

)
. (5.1)

Generally, aperture effects will also lead to an additional broadening of the beam, but these
effects are not analyzed within this thesis.

For the uplink case, the beam is immediately affected by the turbulent troposphere. As
described before, this layer of the atmosphere consist of eddies with different scale sizes that
can be interpreted as lenses. When the beam impinges on an eddy that is of a larger size than
the beam’s diameter, the direction of the beam will be altered, like shown in Fig. 3.1.

For the downlink case, the beam will already be much larger than most of the eddies
because of diffraction.

Therefore, negligible beam wander is expected for the downlink, while for the uplink, there
should be a noticeable displacement.

The distribution of the intensity of the laser beam will not retain its Gaussian form when
passing through turbulence [3, 4, 6]. I assumed that the laser beam remains Gaussian in the
approximations presented within this thesis . This is justified since many approaches have
been made in the same way, leading to results that were confirmed by experiments (horizontal
propagation) [1, 3, 4, 6]. Therefore, the maximum of the intensity of the laser beam will
be at the center of the laser beam’s profile (orthogonal to the propagation direction). The
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displacement of this center ρc(h) at a certain height h can be found by calculating the center
of gravity of the irradiance I(~ρ, h) (~ρ is the vector from the observed point to the geometrical
middle of the area, that is, the spot where the maximum would be located if there were no
turbulence),

ρc(h) =

∞∫
0

~ρI(~ρ, h) ~dρ

∞∫
0

〈I(~ρ, h)〉 ~dρ
. (5.2)

Figure 5.2 shows the spot of the laser beam without turbulence (at the center of the figure)
and the displaced laser beam.

rC

Laser Spot
without turbulence

Laser Spot
with turbulence

X

Y

Figure 5.2: Displacement of the center of the beam due to turbulence (= beam wander)

With the moments of the field (Chapt. 3), (5.2) can be transformed into [3, 9]

〈ρ2
c(h)〉 =

∞∫
0

∞∫
0

(~ρ1 · ~ρ2)Γ2,2(~ρ1, ~ρ1, ~ρ2, ~ρ2;h) ~dρ1
~dρ2

[∞∫
0

Γ1,1(~ρ1, ~ρ1;h) ~dρ1

]2 . (5.3)

Solutions for Γ1,1, the second order moment of the field, are known [3, 9], but there exist
only limited approximations for the fourth order moment Γ2,2. Since it is possible to calculate
the maximum radius of the beam wander more easily (i.e., without using the moments of the
field), I will present the results of this method.

Sasiela analytically derived an equation for the beam wander ρC(L) [1]. He used the
Rytov method to get an expression for the log–amplitude variance1, which he solved by Mellin

1The amplitude of the irradiance after passing through turbulence is assumed to be distributed log–normally,
and the phase’s distribution to be uniform.
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transformation methods. Andrews and Phillips adapted these results and simplified them,
yielding [6]

〈ρ2
C〉 =





2.87L2w
−1/3
0

∫ L
0 C2

n(h)dh (Uplink)

8.61w
−1/3
0

∫ L
0 C2

n(h)h2dh (Downlink).

(5.4)

The squareroots of ρC are plotted in Fig. 5.3 as a function of w0, which is the initial beam
radius. The link distance is L = 450 km, and the Hufnagel–Valley5/7 model (H–V5/7) is used
for the profile of C2

n(h).
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Figure 5.3: Beam Wander ρC using the Rytov Approximation; (a) Uplink, (b) Downlink

Figure 5.3 confirms the assumption that was made at the beginning of this section: while
the beam wander must not be neglected for the uplink case, it can be neglected in the downlink
case.

Klyatskin and Kon approximated a solution for (5.2) involving the Markov approxima-
tion [28]. They used degenerate hypergeometric functions (Kummer functions) to express the
beam displacement ρC , but their calculations result in very high values for the beam wander.
Depending on the initial beam waist, the beam wander would be on the order of 20 m to 40 m.
Measurements lead to the conclusion that these results are implausible [3]. Since no range
of validity for their formula is mentioned in [28], I analyzed various scenarios with different
pathlengths and different strengths of C2

n(h), but never achieved physically reasonable results.
In the previous solutions, it is assumed that the Gaussian beam retains its initial shape.

Fante suggests the possibility that the beam changes its shape, depending on the length of the
propagation path (L) and the strength of turbulence [9]:

1. If L ≤ k ·A2, where k is the wavenumber and A is min[2w, ρ0] (2w is the beam diameter
at the transmitter, and ρ0 is the atmospheric coherence length (see Sect. 3.2)), the laser
beam may behave as follows:
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(a) When ρ0 � 2w < L0, beam wander is determined by

ρC(L) =

√
2.97L2

k2ρ
5/3
0 (2w)1/3

. (5.5)

This expression is similar to (5.4), yielding almost the same results.

(b) For the case when ρ0 ∼ 2w, there do not exist any analytic expressions for the beam
wander, but it can be estimated from diagrams [9]. Another possibility to obtain
values for this case is to subtract the short–term beamspread from the long–term
beamspread. Both will be addressed in the next sections.

(c) When ρ0 � 2w, beam wander will be negligible.

2. If L� k ·A2, the beam is expected to break up into multiple patches. It is not possible
to define a measure for the beam wander.

The atmospheric coherence length can be calculated by [9]

ρ0 =


1.46k2

L∫

0

(
1− η

L

)5/3
C2
n(η)dη



−3/5

. (5.6)

For the H–V5/7 profile, a propagation length of L = 450 km, and at the wavelength λ =
1.55µm, the coherence length amounts to ρ0 ≈ 9 cm. Inserting these values into the above
conditions shows that the second case will be met for most beams: k · ρ2

0 ≈ 33 km � 450 km.
The beam can be expected to “break up”, and as it is impossible to determine how many
patches there will be, it is impossible to determine the beam wander. This behavior is similar
to the picture shown in Fig. 5.4(b).

5.4 Short–Term Beamspread

Beam wander occurs when a laser beam is refracted by an eddy of a dimension that is larger
than the beam’s diameter. Since there exist eddies of different scale sizes, the laser beam will
also impinge on eddies of sizes smaller than its diameter. That will sometimes be the case
for the uplink, but more frequently for the downlink, since the beam’s size increases over the
propagation path. But for the downlink case, the additional increase of the laser beam’s size
due to turbulence will be negligible, since the beam already has a very large size. Figure 5.4(a)
shows the change of the shape of the beam only due to small eddies.

An approximate solution for the short–term beamspread can be found solely in [9]. The
radius 〈ρS〉, defined by the distance where the intensity if the beam has decreased to exp[−1]
of its maximum value, reads

〈ρ2
S〉 =

(
w0 +

λL

πwo

)2

+

(
λL

πρ0

)2
[

1− 0.62

(
ρ0

2w0

)1/3
]6/5

. (5.7)

For a Gaussian beam, this distance equals the standard deviation (which is the squareroot of
the variance), as described in Sect. 2.3. The condition for the validity of this equation is the
same as in 1a in the previous subsection.
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Figure 5.4: Intensity distributions of a laser beam after passing through turbulent atmosphere.

An analysis of (5.7) shows that the values for ρS lie at most 18% below the values for the
long–term beamspread (next section), and that the form of the curves is approximately the
same. Since I could not derive (5.7), this formula will not be used within further calculations.
Other methods to obtain the short–term beamspread will be presented in the next section.

The short–term beamspread radius is more important for calculations of the system loss
than the beam wander. The displacement of the center of the beam can be compensated by
fast tracking systems, but the turbulent spreading of the beam can not be cancelled unless
adaptive optics are applied at the transmitter and the receiver. Ishimaru has shown that after
a few kilometers of propagation distance (3 to 10km), it makes no difference for the average
on–axis irradiance wether a collimated or a focused beam is used [3].

5.5 Long–Term Beamspread

The combination of the beam wander (Sect. 5.3) and the short–term beamspread (Sect. 5.4)
leads to the long–term beamspread [9],

〈ρ2
L〉 = 〈ρ2

S〉+ 〈ρ2
C〉. (5.8)

The notation “long–term” refers to the observation time that is much longer than for the
“short–term” beamspread. While the short–term beamspread represents the additional broad-
ening at a certain instant, the long–term beamspread represents the area where at least 84%
of the intensity will be as long as the turbulent environment’s parameters do not change2.

2These 84% are the amount of energy that is contained within −ρL < r < ρL.
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These parameters are the structure parameter, and the inner and outer scale of turbulence.
They obey Taylor’s frozen flow hypothesis: The time it takes to blow the turbulent layer over
the propagation path is much shorter than the time that is needed by turbulence to change
its structure. This hypothesis can be approved easily: Looking at the sky, clouds pass the
observer much faster than they change their form. In absolute values, the time constant for
the change of turbulent parameters is on the order of a few seconds or minutes, while the time
constant for motion due to wind is generally much smaller than one second.

Three possibilties of how the beam will react when propagating through turbulence have
been presented in Sect. 5.3: The beam wanders and broadens, the beam wanders negligibly,
or the beam breaks up into multiple patches. The particular form of the individual beam
after being influenced by turbulence is unimportant for the long–term beamspread, since it
mathematically represents an average over an infinite amount of realizations. The beam will
remain inside a circular3 area with radius ρL. These behaviors can be seen in Fig. 5.4(a) and
Fig. 5.4(b).

The energy of an unperturbed and a perturbed beam must be the same at any distance L.
Therefore, the smaller the mean on–axis intensity of the perturbed beam will be, the larger
must be its radius (or standard deviation),

〈I(0)〉 = A
1√

2πσ2
exp
[
−
( |~ρ|
σ

)2] ∣∣∣∣
|~ρ|=0

=
1√

2π(σ/A)2
exp
[
−
( |~ρ|
σ

)2] ∣∣∣∣
|~ρ|=0

, (5.9)

where A is an arbitrary attenuation factor.
It is possible to obtain ρ2

L(L) by introducing a Gaussian function for the irradiance [6],

〈I(~r, L)〉 =

(
w(L)

ρL(L)

)2

exp[−2(r/ρL(L))2], r = |~r|. (5.10)

In this equation, w(L) is the diffraction limited radius of the laser spot at the receiver. Us-
ing the mutual coherence function Γ1,1(~r, ~r;L) from the Rytov approximation for the mean
intensity 〈I(~r, L)〉, the long–term beamspread can then be calculated to be [6]

〈ρ2
L(L)〉 =





w(L)

(
1 + 4.35

∫ L
0 C2

n(h)
(
1− h

L

)5/3
dh·

·
(

2L
kw2(L)

)5/6
k7/6L5/6

)1/2

. . .Uplink

w(L)

(
1 + 4.35

∫ L
0 C2

n(h)
(
h
L

)5/3
dh·

·
(

2L
kw2(L)

)5/6
k7/6L5/6

)1/2

. . .Downlink.

(5.11)

This equation is plotted as a function of the initial beam waist in Fig. 5.5 (dash–dotted line),
with L = 450 km, λ = 1.55µm, and the H–V5/7 profile for C2

n(h).
The only difference between the uplink and the downlink case in (5.11) lies within the

integrand. A closer analysis of the downlink case reveals that there is virtually no difference to
the diffraction limited case. This behavior can be explained with the same arguments like in

3The circular area is a result of the isotropic form of the turbulence at a certain height.
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Figure 5.5: Different methods for deriving the long–term beamspread as a function of the trans-
mitter’s beam radius w0 (uplink). The propagation distance is 450 km, and the wavelength
λ = 1.55µm along with the Hufnagel–Valley5/7 profile are used.

Sect. 5.4, that is, the beam is already so large that a further increase of size due to turbulence
is negligible.

In 1971, V. L. Mironov and S. S. Khmelevtsov found an expression for the relation between
the average on–axis intensity of an unperturbed and a perturbed Gaussian laser beam [29].
They used the Markov approximation and involved degenerate hypergeometric functions 1F1

(Kummer functions),

〈I(L, 0)〉
I0(L, 0)

=
w(L)

〈ρ2
L(L)〉

= 2

∫ ∞

0
s exp

[
−s2 − 1

2
D1(L,

2w0

g
s)
]
ds, (5.12)

where s is an auxiliary variable, and g =
√

1 + k2w4
0/L

2. The function D1(L, 2w0
g s) is defined

by

D1

(
L,

2w0

g
s
)

= 8.7k2κ−5/3
m

∫ L

0
C2
n(h)

[
1F1

(
−5

6
, 1;−

(w0κm
g

)2
s2
(

1− h

L

)2)
− 1
]
dh, (5.13)
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where κm = 5.92/l0, and 1F1(a, b; z) is the Kummer function,

1F1(a, b; z) = 1 + z
a

b
+
z2

2!

a(a+ 1)

b(b+ 1)
+ . . .

=

∞∑

k=0

(a)k
(b)k

zk

k!
with (a)k =

k∏

l=0

(a+ l), (a)0 = 1. (5.14)

If a < 0 and either b > 0 or b < a, the series yields a polynomial with a finite number of terms.
This is the case in (5.13). No comment about the range of validity of (5.12) has been made in
[29]. This behavior is plotted as a solid curve in Fig. 5.5.

Fante postulated that two cases have to be distinguished calculating the long–term beam-
spread [9]: Depending on the relation between the propagation distance L and the wavenumber
k = 2π/λ, the inner scale of turbulence l0, and the structure parameter C2

n, one of the following
equations has to be chosen:

〈ρ2
L〉 ≈





(
w0 + λL

πw0

)2
+
(
λL
πρ0

)2
for L� 1/(k2C̃2

nl
5/3
0 )

(
w0 + λL

πw0

)2
+

6.6L2
L∫
0

(1−h/L)2C2
n(h)dh

l
1/3
0

for L� 1/(k2C̃2
nl

5/3
0 ).

(5.15)

The atmospheric coherence length ρ0 in (5.15) was introduced in Sect. 5.3 and is defined by
(5.6). To determine the equation that has to be used, the mean value C̃2

n (from (4.36)) has
to be employed. For λ = 1.55µm and l0 = 8 mm, the right hand side of the condition for L
becomes 8.7 ·109 km, so the propagation distance will definitely lie within the range of validity
for the first equation of (5.15). This equation is plotted in Fig. 5.5. It coincides with (5.12),
and is labelled ’With Turbulence – Markov’. Therefore, it is assumed that (5.12) is also valid
within this range.

In a report for the European Space Agency (“QSpace”) [30], an approximation that in-
volved Fried’s parameter r0 was used,

〈ρ2
L〉 ≈ w2

0 + (θL)2 = w2
0 + θ2

diff L
2 + θ2

turbL
2

≈
(
w0 +

λL

πw0

)2

+

(
λL

πr2
0

)
2. (5.16)

The structure of (5.16) is the same as in (5.15), the only difference is the use of the Fried pa-
rameter instead of the atmospheric coherence length. The Fried parameter r0 can be calculated
by means of the atmospheric coherence length ρ0 [31],

r0 ≈ 2.1ρ0, (5.17)

which explains why (5.16) underestimates the atmospheric influence on the broadening of the
beam. Using the Hufnagel–Valley5/7 turbulence profile for C2

n(h), r0 takes on values around
19 cm. Measurements in a weakly turbulent environment confirm this value [32].

For comparison purposes, Fig. 5.5 also shows the diffraction limited beamradius as a dashed
curve. This figure reveals that turbulence must not be neglected and will lead to a significant
degradation of the irradiance at the receiver for the uplink.

The difference between the uplink and downlink scenario can be directly seen in Fig. 5.6.
One transmitter is located at 0 km, the other transmitter at a height of 100 km. The ini-
tial beam waists of both transmitters are identical for each subfigure. For the long–term
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beamspread, approximation (5.15) has been used. This figure clearly shows the additional
beamspread for the uplink scenario, while for the downlink case, turbulent spreading can be
neglected.

altitude [km]

B
ea

m
sp

re
ad

 R
ad

iu
s 

[m
]

w0=0.25m

altitude [km]

B
ea

m
sp

re
ad

 R
ad

iu
s 

[m
]

w0=0.15m

altitude [km]

B
ea

m
sp

re
ad

 R
ad

iu
s 

[m
]

w0=0.5m

altitude [km]

B
ea

m
sp

re
ad

 R
ad

iu
s 

[m
]

w
0
=0.07m

Figure 5.6: Direct comparison of the long–term beamspread of beams with varying beam radius
w0 for the uplink (blue) and downlink (red) scenario (the dashed line shows the diffraction
limited beamsize, which has to be equal for the uplink and the downlink). The wavelength
λ = 1.55µm and the Hufnagel–Valley5/7 profile are used.

5.6 Other Impacts

Beam spreading and beam wander are not the only impacts on a laser beam that passes
through turbulence. There exist other phenomena, but they can be compensated easily or are
of minor importance within optical communication, so they are mentioned here only briefly.

Angle of Arrival Fluctuations

The angle at which the transmitted beam impinges on the receiver’s detection plane varies
with time. If the arrival angle fluctuations were large, they resulted in an attenuation of the
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intensity because of the radiation pattern of the receiving antenna. Calculations have shown
that the turbulent arrival angle fluctuations are on the order of a few µrad for the uplink,
while they are much larger for the downlink [3, 6].

A fast tracking device may be used to balance deviations in the arrival angle at the receiver.
In this case, angle of arrival fluctuations will not lead to system degradation as long as the
time constants of the tracking device are kept short enough (i.e., shorter than the fluctuation
rate).

Scintillations

The wavefront is disturbed when it passes through turbulence, which leads to local changes
of the phase of the electric field. When the wave impinges on the receiver, different parts
of the wave interfere, resulting in a non–uniform distribution of the intensity. This effect
is called scintillation, which is similarly used for variations of the irradiance in time and in
space. Figure 5.7 shows a realization of scintillations for a field distribution that was initially
Gaussian.

It can be shown that signal loss due to intensity scintillations will be around −1.26 dB for
λ = 1.55µm and the H–V5/7 profile, independent of the propagation distance (as long as the
receiver is above turbulence) [34].
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Figure 5.7: One realization of the intensity distribution of a Gaussian Beam after passing
through turbulence (red = high intensity, blue = low intensity). The local variations of the
irradiance are called scintillations. The center of the beam without turbulence lies in the
lower left corner of the picture, and the part of the circle represents the diffraction limited
spotradius, ρDL. This plot was obtained using PILab [33].



Chapter 6

System Loss

The results from Chapter 5 are used to calculate the link attenuation for free-space optical
propagation through turbulence. The length of the propagation path is 450 km, which is a
typical distance of an Earth–LEO (Low Earth Orbit) link. The wavelength λ = 1.55µm is used,
and the characteristic of the structure parameter of turbulence C 2

n(h) follows the Hufnagel–
Valley5/7 profile. The modified atmospheric spectrum is used within all calculations.

6.1 Overall Path Attenuation

The atmospheric environment attenuates the intensity of the laser beam at the receiver’s
antenna. The overall attenuation given in dB is a combination of the following parts:

Aatm = Asbs +Abw +Ascint +Aaoa +Aabs +Asca (6.1)

The attenuation due to the short–term beamspread Asbs includes the diffraction (cf. Sect. 5.4),
and Abw represents the beam wander (cf. Sect. 5.3). These two impacts are discussed in detail
on the following pages; it will be useful to subsume them to Aturb = Asbs +Abw. The attenua-
tion due to scintillations, Ascint, will be approximately 1.26 dB, independent of the propagation
distance [34]. It is assumed that the attenuation factor arising from angle of arrival fluctua-
tions, Aaoa, is negligible (cf. Sect. 5.6). The term Aabs represents the absorption of energy by
the chemical elements of the atmosphere (mainly water vapor). The last term, Asca, stands
for the attenuation due to scattering. Following Fig. 5.1, the attenuation due to absorption
and scattering is on the order of 1 to 2 dB. It is assumed that no optical communication is
possible if the atmosphere additionally attenuates the laser beam in a significant way.

The attenuation that results from the first two terms of (6.1) can be calculated using simple
geometrical considerations. An antenna of constant size receives more power from a beam with
a small diameter than from the same beam after broadening. Therefore, the size of the laser
beam’s spot can be used to calculate the link attenuation,

Aturb = 10 log10

{
D2
rπ

(2ρL)2π

}
= 20 log10

(
Dr

2ρL

)
. (6.2)

The diameter of the receiver’s antenna is given by Dr, and the diameter of the beam spot is
twice the long–term beamspread radius, which is the (positive) squareroot of

〈ρ2
L〉 =

(
w0 +

λL

πw0

)2
+
( λL
πρ0

)2
. (6.3)

49
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(a) Clear air atmospheric attenuation due to turbulence and
diffraction.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2w
0

[m]

D
r

[m
]

15

1821

24

27

3
0

30

3
3

33

3
6

36

3
9

39

4
2

42
45

45

48

4
8

5
1

54
57

60

63

(b) Attenuation due to diffraction only.

Figure 6.1: Link attenuation (in [dB]) as a function of the transmitter’s beam diameter (2w0)
and of the diameter of the receiving aperture (Dr).
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The Markov approximation method was used to derive this equation.
The beam waist radius at the transmitter is w0, and ρ0 is the atmospheric coherence length,

given by

ρ0 =


1.46k2

L∫

0

(
1− η

L

)5/3
C2
n(η)dη



−3/5

, (6.4)

where k is the wavenumber.
The attenuation Aturb in dB is plotted in Fig. 6.1(a) as a function of the beam waist at

the transmitter (2w0) and of the diameter of the receiver’s antenna (Dr). For small values of
the beam waist, the attenuation is very high since the beam has a huge divergence. Very high
attenuation factors can also be expected for small receiving antennas. In both cases, the ratio
of the receiver’s aperture and the actual spot size is very low.

Figure 6.1(a) reveals that increasing the beam’s diameter at the transmitter beyond a
certain width does not lead to a significant reduction of attenuation. For example, choosing
Dr = 0.2 m and 2w0 = 0.2 m, the attenuation is approximately 30.5 dB, and for 2w0 =
0.4 m, the attenuation is 28.5 dB. Doubling the transmitter’s beam diameter results in an
improvement of only 2 dB. This behavior can be explained by the following analogy: The
atmosphere can be seen as a large telescope with an aperture diameter that is determined
by the Fried parameter1 r0 = 2.1ρ0. Laser beams that are smaller than this “aperture” pass
through turbulence without being influenced, while those beams with a larger diameter are
affected by turbulence. A comparison with Fig. 6.1(b), where the attenuation due to diffraction
only is plotted, shows the influence of the atmosphere. Increasing the transmitter’s diameter
in the diffraction limited case from 2w0 = 0.2 m to 0.4 m results in a gain of 6 dB. This is
insightful since the diameter of the transmitter to the power of two enters the formula to
compute the attenuation (cf. (6.2) with ρDL instead of ρL).

Figure 6.2 shows the additional attenuation due to turbulence, i.e., the factor that is added
to the diffraction limited attenuation. For very small diameters of the beam at the transmitter,
the turbulent attenuation is negligible compared to the one from diffraction because the spot-
size of the beam at the receiver is already quite large. The turbulence’s impact increases with
the size of the beam waist because the diffraction limited spotsize at the receiver decreases. For
huge beam diameters, the turbulent attenuation becomes smaller again due to the fact that
the spot size at the receiver has approximately the same size as at the transmitter (collimated
beam), thus is also huge.

The results presented in Fig. 6.2 do not depend on Dr,

Aturb −ADL = −10 log10

(
D2
r

(2ρL)2

)
−
(
−10 log10

(
D2
r

(2ρDL)2

))

= −20 log10

(
ρDL
ρL

)
= −10 log10

(
ρ2
DL

ρ2
DL + ρ2

atm

)

= 10 log10

(
1 +

ρ2
atm

ρ2
DL

)
. (6.5)

The diffraction limited spot radius is given by

ρDL = w0 +
λL

πw0
, (6.6)

1For the Hufnagel–Valley5/7 profile, the Fried parameter is on the order of ∼ 19 cm.
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Figure 6.2: Increase of attenuation solely due to turbulence as a function of the initial beam
diameter, 2w0 (Aturb = Attenuation due to the long–term beamspread, ADL = Diffraction
limited beamspread).

and the spot radius due to the atmospheric impact is

ρatm =
λL

πρ0
. (6.7)

6.2 Compensation of Atmospheric Impacts

It is possible to compensate for some atmospheric impacts on a laser beam. For example, the
angle of arrival fluctuations (see Sect. 5.6) can be compensated by a fast tracking system. To
estimate the time constant of this tracking system, a measure for the variations in time of the
desired atmospheric impact has to be found. Assuming that the rate of change of atmospheric
conditions mainly depends on the wind velocity (cf. Taylor’s frozen flow hypothesis, Sect. 5.5),
an approximation for the atmospheric time constant, τ0, is obtained by [35]

τ0 ≈
r0

v̄
. (6.8)

In this equation, r0 is the Fried parameter, and v̄ is the mean wind velocity2. Inserting typical
values for r0 and v̄ (e.g., r0 = 0.2 m, v̄ = 50 m/s)3, the atmospheric time constant can become

2The precise expression for τ0 is given by the inverse Greenwood frequency that involves the wind velocity
profile [35]. Using the Greenwood frequency, values for τ0 are approximately 10 ms or more.

3The high value for v̄ results from typical wind velocities at heights from 10000 km to 13000 km, i.e., the
region of jetstreams.
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as low as 4 ms, which is an upper limit for the time constant of the tracking system.
It is also possible to eliminate the beam wander with the same tracking system, since the

movement of the beam occurs with the same time constant. Figure 6.3 shows the remaining
attenuation (solely due to beamspread) after cancelling the beam wander. Choosing 0.2 m
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Figure 6.3: Link attenuation due to turbulence with compensated beam wander as a function
of the transmitter beam diameter, 2w0, and the receiver’s antenna size, Dr.

for the diameter of both the transmitter’s beam and the receiver’s antenna now leads to an
attenuation factor of 29 dB. A comparison with the results from Fig. 6.1(a) reveals that
cancelling the beam wander may lead to a gain in the intensity of approximately 2 dB. The
real advantage of a fast tracking system lies beyond the (small) gain in intensity, as will be
seen in the worst case scenario in the next section.

6.3 Assessment

In the previous subsections, the attenuation for an Earth–LEO link was calculated. Geo-
metrical considerations led to the perception that a simple relation between the size of the
broadened beam and the receiver’s diameter yields the desired result.

The problem with this method is its dependency on the long–term beamspread, that is, on
a factor that represents the average intensity of all possible realizations of beam wander and
short–term beamspread (cf. Chap. 5). But the perturbed beam will never fill the whole area
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definded by the long–term beamspread, so the attenuations calculated above are only mean
values.

The dynamic range of the attenuation is defined by the best and worst case scenarios:

Best Case: Beam wander is negligible, i.e., the maximum of the intensity of the laser beam
is in the middle of the receiver. This case is shown in Fig. 6.3. In addition, it is possible
that the beam does not diverge to the maximum extent assumed in the definition of the
short–term beamspread. These considerations lead to the conclusion that the attenuation
will be only slightly above the values that are obtained for the diffraction limited case.

Worst Case: The beam wander reaches its maximum. It is possible to show, using the results
from Chap. 5, that the maximum attenuation can be expected to be 15 dB higher than
plotted in Fig. 6.1(a).

These considerations demonstrate that it is essential for an optical communication system to
include a fast tracking system. The time constants of this system must be at least 10 ms or
less.

Since the position of a LEO satellite is not fixed in space, the formulas for the attenuation
are only valid if the receiving antenna is located at the zenith elevation angle (90◦) directly
above the transmitter. The angles of slant propagation paths have to be included for calcula-
tions of any other constellation. Generally speaking, any deviance from a vertical propagation
path will lead to an increase of all mentioned impacts, thus to additional attenuations.
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Appendix A: Simulation Tools

To estimate the impact of the atmosphere on a laser beam, simulation tools can be used. The
most challenging task is to simulate the random index of refraction. Different programs have
been developed for various application areas. Most of these tools are available free of charge.
They are generally build up as follows: A laser beam with well defined shape emerges from an
aperture. The atmosphere is modelled by multiple phase screens [6] with infinitesimal small
dilatation in the propagation direction, separated by areas where free–space propagation takes
place. These layers only change the phase of the beam. (Note that the Markov approximation
method decomposes the atmospheric propagation path in a similar way.)

A major difference of the simulation programs lies within the way the phase screens are
approximated. An example of how the simulation of a Kolmogorov phase screen is done can
be found in [36]. Most of these programs have been developed either for astronomic or for
military tasks. Table 1 lists some simulation tools, together with a short description and web
adresses for further information.

Name Institution Description & Adress

PILab DLR (D) PILab = Propagation and Imaging Lab; MATLAB c© tool-
box; Generates realizations of intensity distributions in the
receiver’s plane; Not available for public use
http://www.dlr.de/KN/KN-DN/groups/optic/pilab/

WaveTrain MZA (USA) Approximates beam wander and beam spread among other
things; Available free of charge (for US–companies only)
http://www.mza.com/

CAOS University of
Florence (IT)

CAOS = Code for Adaptive Optics Systems; IDL–based;
Tools for laser beam propagation do not exist yet; Available
free of charge
http://www.arcetri.astro.it/caos/

ALTM Ontar Corp.
(USA)

ALTM = Atmospheric Laser Turbulence Model; Simulates
the link attenuation and reliability of an optical system for
horizontal propagation paths, i.e., constant structure pa-
rameter; Prize: $ 1,950.00 (28.03.2004)
http://www.ontar.com/Software/product ALTM.htm

Table 1: Simulation Tools for wave propagation in the atmosphere.
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Symbols

c0 . . . Velocity of light, vacuum; c0 = 2.998 · 108 ms−1

C2
n(h) . . . Structure parameter of the refractive index [ m−2/3]
Dr . . . Diameter of the receiver’s aperture [ m]

Dx(t, τ) . . . Structure function of the parameter x [depending on the unit of x]
~ei . . . Canonical basis

~E(~x; t) . . . Electric field vector in cartesian coordinates; time–dependent [ Vm−1]
~E(~x, ω) . . . Electric field vector in cartesian coordinates; frequency–dependent [ Vm−1]
f . . . Frequency [ s−1]

1F1(a, b; z) . . . Degenerate hypergeometric function (Kummer function) [ 1]
G(~s, ~r; z) . . . Green’s function [ m−1]
~H(~x; t) . . . Magnetic field vector in cartesian coordinates; time–dependent; [ Am−1]
Ī(~r; z) . . . Average intensity [ W m−2]
~k . . . Wavevector; ~k = kx ~ex + ky ~ey + kz ~ez [ rad m−1]
k . . . Wavenumber; k = |k|
L . . . Overall propagation distance [ m]
l0 . . . Inner scale of turbulence [ m]
L0 . . . Outer scale of turbulence [ m]
n . . . Index of refraction [ 1]
p . . . Pressure [ Pa = kg m−1s−2]
~r . . . Radius in the plane perpendicular to the propagation direction [ m]
r0 . . . Fried parameter [ m]
R(z) . . . Radius of the phase front curvature of a Gaussian beam [ m]
Re . . . Reynoldsnumber [ 1]
t . . . Time [ s]
T . . . Temperature [ K]
u(~x) . . . Location–dependent amplitude of the electric field [ Vm−1]
~v . . . Wind velocity [ m/s]
υ . . . Pseudo–windspeed [ m/s]
v̄ . . . Mean wind velocity [ m/s]
vph . . . Phase Velocity [ m/s]
vgr . . . Group Velocity [ m/s]
w0 . . . Gaussian beam waist radius [ m/s]
w(z) . . . Beam radius of a Gaussian beam at distance z from the transmitter [ m]
~x . . . Cartesian vector; ~x = x~ex + y ~ey + z ~ez [ m]
z0 . . . Confocal parameter; [ m]
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δ(x) . . . Delta–distribution [ 1]
ε . . . Electric Permittivity; ε0 = 8.854 × 10−12 AsV−1m−1 (vacuum)

εr = Relative electric permittivity [ 1]; ε = εrε0

Γm,n . . . Moment of a stochastic field of the order m+ n [unit depends on order ]
γ(~r) . . . Complex degree of coherence [ 1]
λ . . . Wavelength; λ0 = c0/f ;[ m]
µ . . . Magnetic Permeability; µ0 = 4π × 10−7 VsA−1s−1 (vacuum)

µr = Relative magnetic permeability [ 1]; µ = µrµ0

ν . . . kinematic viscosity [ m2/s]

Φn(κ) . . . Spectrum of the fluctuations of the refractive index [ rad−11/3m3]
ρ0 . . . Atmospheric coherence length [ m]
ρC . . . Beam Wander [ m]
ρDL . . . Diffraction–limited beamspread [ m]
ρS . . . Short–term beamspread [ m]
ρL . . . Long–term beamspread [ m]
σ1 . . . Scintillation index [ 1]
τ0 . . . Atmospheric time constant [ s]
2θ0 . . . Aperture angle of a Gaussian beam ] rad]
ω . . . Angular frequency [ rad s−1]
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[30] M. Aspelmeyer, H. R. Böhm, C. B. R. Kaltenbaek, M. Lindenthal, J. Petschinka, T. Jen-
newein, R. Ursin, P. Walther, A. Zeilinger, M. Pfennigbauer, and W. Leeb, “Quantum
communications in space (“QSpace”),” Institut für Nachrichtentechnik und Hochfrequen-
ztechnik, TU Wien,” European Space Agency Contract Report, ESTEC, Contract No.
16358/02/NL/SFe, Final Report, 2003.

[31] D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” Journal of
the Optical Society of America, Vol. 55, no. 11, pp. 1427–1435, 1965.

[32] A. R. Weiss, S. Hippler, M. E. Kasper, N. J. Wooder, and J. C. Quartel, “Simultaneous
measurements of the fried parameter r0 and the isoplanatic angle θ0 using scidar and
adaptive optics - first results,” in Marrakech Site 2000 Conference Proceedings, Marrakech,
2000.

[33] R. Juengling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter At-
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