
Engineering Device-Independent
Web Services

Ph.D. Thesis

Engin Kirda

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Engineering Device-Independent Web Services

An XML/XSL-based approach to creating flexible and extensible multi-device
services

Ph.D. Thesis

at

Technical University of Vienna

submitted by

Dipl.-Ing. Engin Kirda

Distributed Systems Group, Information Systems Institute,
Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria

19th August 2002

c� Copyright 2002 by Engin Kirda

Advisor: o. Univ.-Prof. Dr. Mehdi Jazayeri
Second Advisor: a.o. Univ.-Prof. Dr. Gabriele Kotsis

Abstract

The popularity of computing devices such as Personal Digital Assistants (PDAs) and
mobile phones have been increasingly and these devices have been getting more powerful
every day. Although the latest PDAs are even able to display frames, it is still important
to adapt the content for these devices in order to provide a satisfactory surfing experience
for users. Web services in the near future will not only have to support mobile access, but
will also have to deal with other forms of Web access such as voice interfaces. Hence, Web
services will often need to be device-independentand will have to support different XML
Web formats.

Although much work has been done on providing mobile access to Web content, the focus
has mainly been the adaptation of HTML content to make it viewable on mobile devices that
might have memory and screen-size limitations. Only a few attempts have been made to date
to integrate device-independence into the design, implementation and maintenance phases
of Web services.

This dissertation provides solutions to the problem of designing and implementing in-
teractive, maintainable, device-independent Web services. It introduces a novel XML/XSL-
based design and implementation technique and a development tool suite to support the Web
developer. The constructed services can be accessed by a wide range of Web devices such as
mobile phones, PDAs with micro HTML browsers, speech-based Web interfaces and tradi-
tional full-fledged HTML browsers.

My general thesis is that Web services can effectively be made device-independent if
device-independence support is integrated into the Web service design, implementation and
maintenance phases. I present an extended model of the traditional Web service life cycle
that takes device-independence support into account and describe the Device-Independent
Web Engineering (DIWE) framework for engineering device-independent Web services. I
introduce the novel concepts of page splitting, process partitioning and XSL stylesheet pre-
processing.

Kurzfassung

Elektronische Geräte wie Personal Digital Assistants (PDAs) und Mobiltelefone sind in
den letzten Jahren sehr populär und leistungsfähig geworden. Die neuesten PDAs können so-
gar Frames in Webseiten darstellen. Trotzdem ist es noch immer wichtig, den Webinhalt für
diese Geräte so anzupassen, dass die Benutzer zufrieden sind und eine positive Erfahrung mit
der Website haben. Bald werden viele Websites nicht nur mobilen Zugang, sondern andere
Formen des Webzugangs wie zum Beispiel Sprachschnittstellen unterstützen. Die Websites
der Zukunft müssen geräteunabḧangig (device-independent)sein.

Der Fokus der Forschung bis jetzt ist die Anpassung und Abbildung des HTML Inhalts
von Websites gewesen damit sie auf mobilen Geräten mit wenig Hauptspeicher und klei-
nen Displays dargestellt werden können. Nur wenige Forschungsgruppen haben versucht,
Geräteunabhängigkeit in den Design-, Implementierungs-, und Wartungsphasen der Website
zu integrieren.

Diese Dissertation presentiert Lösungen zum Problem des Entwerfens und der Im-
plementierung von interaktiven, geräteunabhängigen Websites. Sie beschreibt eine neue
XML/XSL-basierte Methodologie und ein Webentwicklungswerkzeug.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Contribution of this Dissertation . 2

1.3 Structure of this Dissertation . 3

2 Web Engineering basics 5

2.1 Terminology . 5

2.2 Web engineering: An emerging field . 6

2.3 Web service characteristics and requirements 8

2.3.1 Information transfer characteristics 8

2.3.2 Stakeholders . 8

2.3.3 Basic Web service requirements 8

2.4 Web Service Life Cycle . 9

2.4.1 Requirements Analysis . 10

2.4.2 Design . 11

2.4.3 Implementation . 11

2.4.4 Maintenance . 11

2.5 Flexibility . 12

2.5.1 XML . 13

2.5.2 XSL . 14

2.6 The device-independent Web engineering problem 15

2.6.1 Historical overview . 15

2.6.2 Problem: Constructing maintainable, interactive device- indepen-
dent Web services . 18

2.7 Summary . 21

5

3 Related Work 22

3.1 Brief overview of research on device-independent Web access 22

3.2 Traditional Web engineering approaches 23

3.2.1 The Dexter hypertext reference model 23

3.2.2 The Relationship Management Methodology (RMM) 24

3.2.3 Object-Oriented Hypermedia Design Methodology (OOHDM) . . . 24

3.2.4 W3DT and eW3DT . 25

3.2.5 Webcomposition and W3Objects 26

3.2.6 Strudel . 26

3.2.7 Araneus . 27

3.3 Mobile Web access techniques . 27

3.3.1 Quality aware transcoding . 28

3.3.2 Digestor . 28

3.3.3 Annotation-based Web content transcoding 29

3.3.4 The Business Card Search Service (BCSS) 30

3.3.5 Web access with PDAs: PowerBrowser 30

3.3.6 Web content and form summarization 30

3.4 A taxonomy for device-independent Web engineering 31

3.5 Device-independent Web engineering approaches 34

3.5.1 OO-H Method . 34

3.5.2 WebML . 36

3.5.3 JML . 37

3.5.4 SISL . 37

3.5.5 UIML . 37

3.5.6 iStudio . 38

3.5.7 Cocoon . 39

3.5.8 Microsoft ASP.NET and the Mobile Developer Toolkit 40

3.5.9 Total e-mobile . 41

3.6 Summary . 42

4 DIWE: A conceptual framework for device-independent Web engineering 43

4.1 Rethinking the Web Service Life Cycle 43

4.2 Basis of solution: Separation of Layout, Content and Logic (LCL) 45

4.3 Main requirements for a device-independent Web engineering framework . 46

4.4 Overview of the DIWE framework . 47

4.4.1 Web service design, implementation, deployment and maintenance . 47

4.4.2 Processors . 49

4.5 Flexible Web service construction in three steps 50

4.6 Device-independent Web service construction in three steps 52

4.7 The MyXML language . 54
4.7.1 Overview . 54
4.7.2 MyXML Namespace . 55
4.7.3 A simple MyXML example: Searching for musicals 57
4.7.4 Another MyXML example: Shopping Cart 59
4.7.5 Post XSL stylesheet application 63

4.8 XSL stylesheet pre-processing for stylesheet reuse 64
4.9 Page splitting . 66

4.9.1 Page splitting descriptors and parameters 68
4.9.2 A simple page splitting example 69

4.10 Process partitioning . 71
4.10.1 Process partitioning parameters 72
4.10.2 A simple process partitioning example 72

4.11 Device-independent application logic interfacing 76
4.11.0.1 Calling the logic in three steps 76
4.11.0.2 A simple example . 78

4.12 Summary . 78

5 The MyXML tool suite: A prototype implementation 79
5.1 The MyXML tool suite . 79
5.2 The MyXML compiler . 82

5.2.1 Usage . 82
5.2.2 Implementation . 83

5.3 Configurable device-independence components 85
5.3.1 The Dispatcher component . 86

5.3.1.1 Configuration grammar 86
5.3.1.2 A configuration example 87
5.3.1.3 Implementation . 88

5.3.2 The Collector component . 89
5.3.2.1 Configuration grammer 89
5.3.2.2 A configuration example 90
5.3.2.3 Implementation . 91

5.3.3 The Output component . 91
5.3.3.1 Configuration grammer 91
5.3.3.2 A configuration example 92
5.3.3.3 Implementation . 93

5.4 MyXMLDesigner . 93
5.4.1 Overview of the IDE . 94
5.4.2 Support for design . 95
5.4.3 Support for implementation . 96
5.4.4 Support for configuration and deployment 96
5.4.5 Support for Web page creation and maintenance 97
5.4.6 Architecture and implementation 98

5.5 Summary . 99

6 Case Study: VIF e-Commerce Web service 100

6.1 The Vienna International Festival (VIF) Web site 100

6.1.1 Service overview . 101

6.1.2 Main VIF components . 101

6.2 VIF e-commerce Web service . 102

6.2.1 The programme . 102

6.2.2 Detailed event information . 102

6.2.3 Ticket availability, date and price information 103

6.2.4 The shopping cart . 103

6.2.5 Completing the order (checking out) 103

6.3 Implementation with the MyXML tool suite 104

6.3.1 Design . 104

6.3.1.1 Device identification . 104

6.3.1.2 Data organization planning 104

6.3.1.3 Content definition . 105

6.3.1.4 XSL stylesheet definition 106

6.3.2 Implementation . 106

6.3.2.1 Construction of the pages 106

6.3.2.2 Integration of PDA device family 107

6.3.3 Deployment . 108

6.3.4 Maintenance . 108

6.4 Usage scenarios . 109

6.4.1 Ordering a ticket using a traditional browser 109

6.4.2 Ordering a ticket using an iPAQ PDA 109

6.4.3 Ordering a ticket using a WAP phone 110

6.5 Summary . 110

7 Evaluation and Future Work 122

7.1 Empirical proof of concepts . 122

7.1.1 Setting up an experiment . 122

7.1.2 Example: Measuring readability 123

7.2 Analysis and discussion . 123

7.2.1 Stylesheet complexity and numbers 123

7.2.1.1 Discussion . 124

7.2.1.2 Conclusion . 124

7.2.2 Complexity . 125

7.2.2.1 Discussion . 125

7.2.2.2 Conclusion . 125

7.2.3 Layout adaptation . 125

7.2.3.1 Discussion . 126

7.2.3.2 Conclusion . 126

7.2.4 Graphical and navigational design 126

7.2.4.1 Discussion . 127

7.2.4.2 Conclusion . 127

7.2.5 Layout/Content/Logic (LCL) separation 127

7.2.5.1 Discussion . 127

7.2.5.2 Conclusion . 128

7.2.6 Comparison of the DIWE framework to other approaches 128

7.3 Laying out future work . 131

7.3.1 Higher level abstractions . 131

7.3.2 UML for visual modeling . 131

7.3.3 Re-engineering for device-independence 132

7.4 Summary . 132

8 Conclusion 133

A Sample case study code listings 135

Bibliography 147

List of Figures

2.1 Life Cycle of a Web Service [Sch98b, TL97] 10

2.2 The difficulty of supporting small displays: The DSG homepage as seen on
an iPAQ PDA . 16

2.3 Screenshots of the 1995 and 2001 VIF home pages 17

2.4 Part of the Perl script implementing the HTML grading service 19

2.5 Part of the Perl script implementing the WAP grading service 19

2.6 Part of the VIF 2000 servlet code implementing a shopping cart 20

3.1 Adaptation of HTML for mobile computing devices (Hori et. al [HKO�00]) 29

3.2 OO-H Design Process (Gomez et al. [GCP01]) 35

3.3 WebML graphic notation for data units, and a possible rendition in HTML
(Ceri et al. [CFB00]) . 36

3.4 A sample iStudio fragment that defines an XHTML form (Skarra et al.
[SHKE01]) . 38

3.5 Part of a logic sheet in Cocoon . 40

4.1 Life Cycle of a device-independent Web Service 44

4.2 Web service design, implementation, deployment and maintenance 48

4.3 Differences in description granularity . 49

4.4 Interactions between the user’s device, the Web server and the generated
static content . 50

4.5 Interactions between the user’s device, the Web server, the application logic
and the generated functionality that produces the dynamic content 51

4.6 Sequence diagram showing the interactions between the device-independence
components for static content . 52

4.7 Sequence diagram showing the interactions between the device-independence
components for dynamic content . 53

4.8 Example MyXML file to search in a database 58

4.9 XSL stylesheet for formatting the output 58

4.10 Part of the generated Java Source Code . 59

4.11 MyXML content definition for a shopping cart 60

4.12 XSL layout definition for the shopping cart 61

4.13 Part of the generated shopping cart Java code encapsulating the HTML code 62

10

4.14 Invoking the generated code . 63

4.15 XSL Stylesheet reuse with pre-processing 65

4.16 XSL Stylesheet for PDA access after pre-processing 66

4.17 XSL Stylesheet for full HTML access after pre-processing 66

4.18 Page splitting using groups and subgroups 67

4.19 MyXML document for the events page . 69

4.20 XSL layout definition for HTML event page 69

4.21 XSL layout definition for WML event page 70

4.22 An online WML-based order with process partitioning compared to a tradi-
tional HTML-based order . 71

4.23 XSL layout definition for HTML Web form 73

4.24 Screenshot of simple HTML Web form 73

4.25 XSL layout definition for the partitioned HTML Web form 74

4.26 Screenshot of the partitioned HTML Web form – First group 75

4.27 Screenshot of the partitioned HTML Web form – Second group 75

4.28 Invoking the Checkoutlayout/content class from the application logic . . . 77

4.29 The MyXML-generated Checkoutlayout/content class 77

5.1 Relations between the tools in the MyXML tool suite 79

5.2 The MyXML tool suite in Web service construction and operation based on
the DIWE framework . 81

5.3 Flowchart showing the main steps taken by the MyXML compiler 83

5.4 UML class diagram describing the architecture of the MyXML compiler . . 84

5.5 The Dispatcher component configuration DTD 87

5.6 A Dispatcher configuration for a service 88

5.7 UML class diagram showing the architecture of the Dispatcher component . 89

5.8 The Collector component configuration DTD 90

5.9 A typical XML Collector component configuration 90

5.10 UML class diagram describing the architecture of the Collector Component 91

5.11 The Output component configuration DTD 92

5.12 A typical XML Output component configuration 92

5.13 UML class diagram of the Output component 93

5.14 The MyXMLDesigner visual Integrated Development Environment (IDE) . 94

5.15 Configuring general device properties . 97

5.16 Simplified UML class diagram describing the architecture of MyXMLDesigner 98

6.1 Main VIF Components in 2000 . 101

6.2 Screenshot of the project pane for the VIF project 107

6.3 Adding the PDA layout to the Web service 107

6.4 Default HTML programme page . 111

6.5 Default HTML detailed event information 112

6.6 Default HTML ticket reservation page . 113

6.7 Default HTML shopping cart . 114

6.8 Completing the order (checking out) in the default HTML layout 115

6.9 Default HTML order confirmation . 116

6.10 Programme, detailed event information and ticket reservation for the PDA
device family (screenshots from an iPAQ running Windows CE) 117

6.11 Shopping cart and order form for the PDA device family (screenshots from
an iPAQ running Windows CE) . 118

6.12 Programme, detailed event information and ticket reservation for the WAP
device family (as seen on a WAP emulator) 119

6.13 Part of ticket reservation and shopping cart for the WAP device family (as
seen on a WAP emulator) . 120

6.14 Order form for the WAP device family (as seen on a WAP emulator) 121

7.1 The full HTML interface of the VIF programme as seen on an iPAQ PDA . 126

List of Tables

3.1 Comparison of device-independent Web engineering approaches 32

3.2 Comparison of device-independent Web engineering approaches 33

4.1 Page splitting-related CGI parameters that the page splitting processor inter-
prets . 68

4.2 Descriptors that the page splitting processor substitutes at run-time 68

4.3 Table showing process partitioning-related CGI parameters the Collector
component understands . 72

5.1 The Web service life cycle phases each tool in the MyXML tool suite supports 80

5.2 The functionality provided by the tools in the MyXML tool suite 80

5.3 Table showing the device-independence components and the functionality
they provide . 85

6.1 Identification of MyXML dynamic content functionality on each page . . . 105

6.2 Device configurations for the VIF case study 108

7.1 Comparison of the DIWE framework with other approaches 129

7.2 Comparison of the DIWE framework with other approaches 130

13

Chapter 1

Introduction

1.1 Overview

Millions of pages and terabytes of information exist on the World Wide Web (WWW) today.
The Web is a dynamic, constantly changing medium and it is the largest growing area of the
Internet. With the advent of the WWW, the demand for Web sites (i.e., services) suddenly
grew and many organizations realized the huge potential of the Web. The Web quickly
became a powerful and important means to stay in contact with customers, provide online
services, express opinions and make profit with e-commerce applications.

The primary language used on the Web is still the Hypertext Markup Language (HTML)
supported by the Hypertext Transfer Protocol (HTTP). HTML was originally created be-
cause scientists at CERN were looking for ways to share information and documents over
the Internet [BCL�94]. It was never expected to gain popularity this fast and it was not de-
signed for the requirements we see in Web sites today: Web sites need to be manageable,
changeable, and need to provide dynamic functionality for interaction with users. The typ-
ical Web development environment usually needs a combination of different technologies,
tools and architectures.

Until the late 90s, the focus of Web service engineering research was the development
of tools, technologies and methodologies for the design, implementation and maintenance
of HTML-based Web sites. The common assumption was that a Web site would always be
accessed by a browser found on a personal computer or a laptop. Recent developments in
mobile computing software and hardware not only have changed this view, but have also
increased the importance of device-independentaccess to Web content: The ability to access
Web sites using a wide variety of Web devices. A Web device is any hardware or software
that can be used to access Web content [LS99] such as telephones equipped with speech
recognition software, digital televisions and Personal Digital Assistants (PDAs).

One of the next challenges faced by the research community and the World Wide Web
Consortium (W3C) is the definition of standards, tools, methodologies and technologies for
the “browser-less Web” and device-independent Web sites.

A major drawback of HTML has turned out to be its lack of support for device-specific
content specification. An HTML Web page, with its tables, fonts, forms, etc., usually only
adequately supports the display of a personal computer and may cause usability problems for

1

CHAPTER 1. INTRODUCTION 2

Web devices with smaller display and memory sizes (e.g., mobile phones). Further HTML
drawbacks are the inflexibility to easily incorporate layout (i.e., presentation, user interface)
design changes and the inability to reuse content embedded in HTML.

In order to eliminate HTML’s shortcomings and to define extensible standards that ad-
dress current Web requirements, the World Wide Web Consortium (W3C) defined the eXten-
sible Markup Language (XML) [W3C98a] and the eXtensible Stylesheet Language (XSL)
[W3C00]. XML is a syntactic meta-language for defining content and other languages and
XSL was proposed and designed because XML by itself does not contain any layout seman-
tics. XSL can be used to add presentation information to content defined in XML. XML and
XSL have gained popularity fast both in industry and in academia. These standards have
paved the way in creating the device-independent Web by providing a basic flexible infras-
tructure to independently define content and layout information. This separation of layout
and content allows the same content to be displayed on different devices by providing the
appropriate presentation information.

XML and XSL alone are not sufficient to design and build device-independent Web sites
that are easy to manage and that can be adapted to meet changing requirements. Users fre-
quently expect interaction, personalization and up-to-date information. Often, major updates
involving multiple documents and external information sources such as databases are neces-
sary.

To support the increasing variety of devices used by people to access Web content, Web
service providers and developers are increasingly concerned with the questions:

� How can a service be designedand implementedso that it is able to support different
Web devices?

� How can we make a service device-independent without increasingthe maintenance
effort significantly?

This dissertation provides solutions to the questions and problems mentioned above. It
introduces a novel XML/XSL-based design and implementation technique and a develop-
ment tool suite to support the Web developer in engineering device-independent, interactive
Web services. These services can be accessed by a wide range of Web devices such as mo-
bile phones, PDAs with micro HTML browsers, speech-based Web interfaces and traditional
full-fledged HTML browsers.

1.2 Contribution of this Dissertation

The integration of device-independence support into the Web service design, implementation
and maintenance phases has not received much attention. Most solutions that have been
proposed only tackle a part of the problem (e.g., Web access through mobile computing
devices), but ignore the bigger problem of how to deal with device-independent Web access
in general. These approaches do not always work when many different devices with varying
display and memory sizes have to be supported.

The new generation of PDAs (e.g., the Compaq iPAQ) and mobile phones (e.g., the Nokia
Communicator) are getting more powerful every day so limitations such as memory and CPU

CHAPTER 1. INTRODUCTION 3

power will probably become less important in the near future. Although the latest PDAs are
even able to display frames, it is still important to adapt the content for these devices in order
to provide a satisfactory surfing experience for users.

This dissertation introduces the notion of a device-independent Web service and defines it
as a service that can be extendedto support different Web devices of widely varying technical
capabilities. It treats the mobile Web access problemas a special case of device-independence
support.

My general thesis is that Web services can effectively be made device-independent if
device-independence support is integrated into the Web site design, implementation and
maintenance phases. Adaptation is not only the key to mobile information access [Sat96b],
but to multi-device access in general.

To this end, the dissertation makes the following contributions to knowledge:

� A taxonomy for the comparison of device-independent Web site engineering ap-
proaches.

� A novel XML/XSL-based conceptual framework for building device-independent Web
sites by using a reuse strategy. A constructed site can be easily extended by adding
device-specific user interfaces to it and existing functionality does not have to be mod-
ified.

� The concept of page-splitting and steppingby layout marking so that the information
on a Web page can be split into chunks to support devices with restricted memory or
display sizes.

� The concept of process-partitioning and steppingby layout marking so that Web form-
based interactions in a Web site can be divided into independent steps for interactions
with devices that have restricted memory or display sizes.

� The concept of device-specific XSL stylesheet pre-processingfor reusing existing XSL
stylesheets to ease the overall maintenance effort.

All the concepts have been implemented and demonstrated in a prototype implementation
that is available on the Web for download 1. The prototype implementation, the MyXML tool
suite, includes a visual integrated Development Environment (IDE) for engineering device-
independent Web sites and supports device configuration, device maintenance and device-
independent content authoring.

1.3 Structure of this Dissertation

This dissertation is structured as follows:

The next chapter gives a brief introduction to the Web engineering discipline and intro-
duces basic terms and concepts such as XML, XSL and the World Wide Web service life
cycle. It describes the device-independent Web site engineering problem.

1http://www.infosys.tuwien.ac.at/myxml

CHAPTER 1. INTRODUCTION 4

Chapter 3 presents the related work and discusses the different existing strategies and ap-
proaches to creating and supporting device-independent Web sites. It introduces a taxonomy
for the comparison of device-independent Web site design and implementation approaches.

Chapter 4 presents an extended model of the traditional Web service life cycle that takes
device-independence support into account. It presents the Device-Independent Web Engi-
neering (DIWE) conceptual framework for engineering device-independent Web sites and
discusses the novel concepts of page splitting, process partitioning and XSL stylesheet pre-
processing.

Chapter 5 presents and discusses the MyXML tool suite for engineering device- indepen-
dent Web sites. The tool suite is a prototype implementation of the conceptual framework
presented in Chapter 4. The suite consists of the MyXML processor, three configurable
run-time device-independence components and the MyXMLDesigner visual Integrated De-
velopment Environment (IDE).

Chapter 6 discusses the usage of the MyXML tool suite in the device-independent imple-
mentation of the Vienna International Festival e-commerce Web service. It shows how the
tool suite was used to provide Web site access to full-fledged HTML browsers, PDAs and
WAP-enabled mobile phones without the need to modify the existing functionality.

Chapter 7 evaluates the presented concepts and the MyXML tool suite. It discusses
potential problems and lays out future work.

Chapter 8 summarizes and concludes this dissertation.

Chapter 2

Web Engineering basics

This chapter provides an introduction to the Web engineering discipline. It introduces basic
technologies such as XML and XSL and discusses concepts such as the Web service life
cycle. It describes the device-independent Web site engineering problem.

2.1 Terminology

I first define some basic terms that will be used with consistent meaning in the context of this
dissertation.

The term Web Servicehas been used since the mid 90s to describe the information offered
to users on a Web site (e.g., see [CFB00, ICL97, KJKS01, Sch97]), it is recently often being
used to denote browser-less(i.e., machine) access to content on a Web site (e.g., see [Alp,
dev, Sun]). Hence, to eliminate possible confusion and ambiguity, I make the following
definitions:

� Content: The information that is offered to the user (e.g., the price for a book).

� Static content: Content that does not change at run-time. It is mainly stored in files
on servers or in databases and is presented to the user without any processing (e.g., a
home page defined in HTML).

� Dynamic content: Content that is generated at run-time based on the interaction with
the user (e.g., an e-commerce application that presents a welcome text and lists the
current items in a user’s shopping cart).

� Layout (i.e., user interface): The formatting information with which the content is
formatted for presentation (e.g., fonts, graphics, buttons, tables, etc.).

� Application logic: The functionality that is necessary for providing the interaction and
services to the users (e.g., maintaining the dialog between the user and the service that
culminates in the purchase of a ticket.).

� Web page: Static or dynamic content on a Web site that is intended for browser-access
and that is accessible through a unique URL.

5

CHAPTER 2. WEB ENGINEERING BASICS 6

� Web service (or Web application): Functionality supported by one or more Web
pages that provide some sort of interaction or information to the user for achieving a
certain task (e.g., booking a ticket, retrieving price information, searching). The access
to a Web service can be browser-less, or via browser.

� Static Web service: A Web service that returns static content.

� Dynamic Web service: A Web service that returns dynamic content.

� Web site: Collection of Web pagesand Web servicesin a singleadministrative domain
(e.g., the Web site of a company).

� Web tool: A software application that eases the construction of Web applications in
some way.

� Web technology: An industry standard or a collection of Web tools for constructing
Web applications.

� Web engineer: A Web developer who follows a systematic approach to construct Web
services.

2.2 Web engineering: An emerging field

With the advent of the WWW, the demand for home pages suddenly grew; many organi-
zational Web sites were initially created without a systematic approach by individuals who
were interested in this new technology and who quickly gained basic knowledge of HTML.
Although the ability of anybodyto put anyinformation on the Web has clearly contributed to
the popularization and success of the Web, it also resulted in several problems that are found
in many of today’s Web sites.

First, because of the lack of understanding for the Web and hypermedia concepts, a single
employee, often referred to as webmaster, was often designated to diverse tasks related to
the Web site such as designing the information, the graphical look of the pages and the
management and updating of information. The workload in many cases was too much for
a single person to handle. Large and complex Web sites usually require a team of content
providers and graphic, layout and interface designers. Indeed, management is a collaborative
task [Str95]. Hence, many webmasters designed the Web pages according to their taste
and picked the information that theyfound important. This sometimes conflicted with the
business objectives of the management level and the image they wished to convey.

Second, webmasters did not have previous hypermedia experience in many cases and the
lack of design guidelines showing what is good and bad on the Web resulted in excessive
use of Web technologies such as frames and JavaScript. Furthermore, dynamic functionality
(e.g., a Web-based database program for checking in and checking out books in a library)
is often developed in an ad-hoc manner and most of the time the programs are script-based
and not well documented or designed. This increases the management complexity of Web
sites and makes maintenance difficult. Maintenance becomes especially sophisticated once
the webmaster, not rarely the single person who has a complete understanding of the system,

CHAPTER 2. WEB ENGINEERING BASICS 7

leaves the organization. Some authors have referred to the current situation on the Web as
the Web crisis(e.g., [GM01]) and have likened it to the software crisis(e.g., [She95]) in the
1960s when much of the produced software was not reliable and failed to reach basic levels
of quality and user satisfaction.

Due to the nature of the Web, users expect a Web site to offer interactive and up-to-date
content. Managing and maintaining a Web service, hence, usually becomes a challenging
task once the number of services and the amount of offered information exceed a certain
limit. Web engineering(e.g., [GM01, KJKS01]) is a discipline that deals with the systematic
design, implementation, and deployment of large-scale, complex, Web-based information
systems. It attempts to define processes and provide development tools that cover all phases
in the life cycle of a Web service. The Web engineering discipline is young and there is
consensus on the need for more evaluation, but many challenges remain, including issues
such as scalability, multi-device access, increased performance, robustness, extensibility,
maintainability and flexibility.

Much of the initial research on Web site design and development was based on the re-
sults of more than thirty years of hypertext research (e.g., see [Eng95, Nel95]) and a majority
of Web engineering researchers came from a hypertext background. A Web site, after all,
consists of a collection of hyperlinks. Although the WWW is not actually hypertext accord-
ing to the Dexter Hypertext Model [HS94], hypertext researchers were quick to realize that
many concepts involved in the design of hypertext are also applicable to the design and im-
plementation of Web sites. As a result, several approaches emerged that integrated hypertext
navigational structure considerations into the design process (e.g., [DIMG95, ISB95, SR95]).

As the demand for Web sites steadily increased and the amount of information grew,
many sites started using relational databases to store and manage a large proportion of the
offered information (e.g., news sites such as Reuters, CNN, portals such as Yahoo and e-
commerce sites such as E-Bay). Hence, the database community also started working on
Web site design and maintenance issues, but their focus mainly being the engineering of data-
intensive, relational database-backed sites. Several approaches were proposed that adapted
database concepts for Web site management and design. (e.g., [Goe98, CFP99, FFKL98]).

Since the mid-90s, the Web engineering field has been gaining popularity fast and re-
searchers involved in this area possess all sorts of backgrounds such hypertext, data engineer-
ing, databases, library sciences, education, and lately even reverse engineering. The software
engineering community, however, has been slow to pick up on the trend and to make a sig-
nificant contribution with its knowledge. As a result, many of the well-known approaches
for Web service design and implementation mainly concentrate on staticor database-based
content and fall short in supporting dynamicWeb-based interactions such as those needed in
e-commerce applications.

Hence, many Web applications and services are developed in an ad-hoc manner today
and the main reason is the lack of practical methodologies, approaches and guidelines. Doc-
umentation, for example, is as important in Web engineering as it is in software engineering
and unfortunately often equally ignored. One reason for this is sometimes the general mis-
conception that the services being built are “simple” anyway, and are to be used only for “this
year”. A Web service, however, is often put together using a number of different technolo-
gies and dependencies. Due to the nature of the Web, the architectures of Web applications
are distributed and not always easy to comprehend.

CHAPTER 2. WEB ENGINEERING BASICS 8

As the Web engineering discipline is becoming more mature, it is becoming evident that
methodologies, tools, and technologies are needed that can effectively deal with the differing
requirements for building Web-based information systems.

2.3 Web service characteristics and requirements

2.3.1 Information transfer characteristics

The World Wide Web (WWW) consists of the classical client/server model where clients
(i.e., browsers) contact Web servers and request information. The information is returned to
the client in a reply message. Users have to locate and retrieve the information actively and
have to remember (or bookmark) the locations of services they are interested in.

One of the main reasons for the success of the Web is the possibility of integrating legacy
applications, data sources and external services under a uniform, platform-independent inter-
face (e.g., publicly available gateways provide access to libraries and flight booking systems
that are often legacy applications with a Web interface).

The HTTP protocol used in the Web is stateless and insecure. A transaction management
function often needs to be added to Web applications because of the lack of state and secu-
rity. Most Web servers support the Secure Socket Layer (SSL) protocol for protecting Web
communication against eavesdropping.

2.3.2 Stakeholders

Just like in software engineering (e.g., see [GJM91]), there are different stakeholders in Web
site engineering projects: The content managersare responsible for providing and maintain-
ing the content to be offered on the Web site. The graphic designersdeal with the appearance
of the Web pages in the site. The Web engineershave to develop the application logic and
have to integrate it with the content and the layout information. Usually, one or more project
managers are responsible for the timeliness of the project and the overall coordination. Fi-
nally, the visitors (i.e., users) of the site are the target audience that consume the offered
information and use the services.

2.3.3 Basic Web service requirements

Each stakeholder in a Web site engineering project will have a different set of requirements
for the Web site.

The content managers will mainly be interested in easy-to-use update mechanisms. They
will need content management applications that allow them to edit, delete and enter informa-
tion into the Web site and versioning mechanismsto enable them to keep track of changes in
content and work concurrently.

The graphical designers will be interested in providing an attractive, appealing graphical
look that will attract visitors and that will increase the acceptance of the Web site.

CHAPTER 2. WEB ENGINEERING BASICS 9

The visitors of the Web site will be mainly interested in up-to-date contentand usabil-
ity. If there is no consistent navigational modeland the site is difficult to use, the typical
visitor will leave and not come back again. This is because the attention spans of users in
hypermedia environments are very low, and users are impatient [RM98].

Visitors will also want to use different Web devices they have to access the contentin the
site. A user, for example, will appreciate a Web service that provides a satisfactory surfing
experience with her PDA. On the other hand, she will be frustrated if the information is
difficult to find or access with the PDA.

The project managers will mainly be interested in decreasing the implementation and
maintenance costs and will look for ways to decrease the time-to-market.

All these factors and requirements create a great challenge for Web engineers. The
changes need to be integrated into the site swiftly, without the need for the Under Con-
structionsign that is now infamous, and highly unpopular among Web surfers.

The Web engineers will look for the ability to integrate off-the-shelf software components
to ease construction and for ways to utilize information in legacy data repositoriesto elim-
inate the need to redefine content. Further, they will aim to provide location independence
in case the service needs to be migrated. Their overall goal will be to design and construct
the service in such a way so that future requirements can be integrated with ease: They will
attempt to construct extensible, changeableservices.

The key to successfully dealing with all these requirements is to systematically cover all
the phases in the Web Service Life Cycle.

2.4 Web Service Life Cycle

Some authors [NN95] have likened Web engineering to the software engineering process
[GJM91]. There are fundamental differences, however. Web engineering includes some
additional tasks: Data analysis, information architecting, navigation management and data
organization. Using the software engineering process in Web engineering may be both diffi-
cult and inadequate [Sch98b].

Every Web service has a life cycle [TL97] that consists of a sequence of four major steps:
Requirements Analysis, Design, Implementationand Maintenance. Most of the existing Web
authoring systems concentrate on the implementation phase and only few provide support
for the design stage. All stages, however, are important for Web services and have to be
supported. Figure 2.1 depicts the Web service life cycle.

From the very beginning of the Web, tools first concentrated on content authoring using
HTML. Later, more sophisticated tools were introduced that provided WYSIWYG support
for authoring content. The next generation of tools started providing help in navigating,
interface design and site management.

The vast majority of the available Web tools today are able to create pages and graphical
layouts using simple templates, but lack support for handling major updates involving mul-
tiple documents, dynamic data, and the integration of external information sources such as
databases.

A typical Internet development environment is still quite fragmented. A combination of

CHAPTER 2. WEB ENGINEERING BASICS 10

Requirements
Analysis

Design

Implementation

Maintenance
Waterfall Cascades

Iterative Feedback

Figure 2.1: Life Cycle of a Web Service [Sch98b, TL97]

many tools is necessary to implement a Web service. Several alternative approaches have
been introduced (e.g., [GWG97a, Mau96]) that attempt to support all phases of the Web
engineering process.

2.4.1 Requirements Analysis

The first step in Web engineering is to analyze what type of information needs to be pro-
vided and in what way. Standard software requirements analysis is often necessary when
interactive services need to be provided and Web applications need to be written.

All stakeholders are involved in this phase and each state what they expect the site to do.
The Web engineers usually do not have explicit requirements. Extensibility, for example, is
a valuable asset and a requirement for the Web engineer, but not really a requirement for the
other stakeholders.

The Web engineer’s job is to fulfill the requirements of the other stakeholders. If the
Web services that are designed and constructed can easily be modified and extended, it will
make the Web engineers’ lives easier once requirements start to change in the future. Clearly,
Web engineers have the main responsibility in building maintainable, extensible Web sites
because other stakeholders are mainly interested in havingtheir requirements covered, but
not in how they are implemented.

CHAPTER 2. WEB ENGINEERING BASICS 11

2.4.2 Design

The information collection is organized in the design phase and an architecture of the service
is defined.

Different stakeholders are involved in the design phase. The graphical designers provide
layout mock-ups of the Web pages and use them to get feedback from prospective visitors
and other stakeholders. The usability of the mock-ups and the graphical appearance are
evaluated and improved in an incremental process.

Content managers identify the information that will be offered to visitors and plan and
coordinate how it will be inserted into the site.

The Web engineers design the architecture of the Web service application logic and plan
the integration of the content and the layout. Further, they design the content update mecha-
nisms that will be used to insert content into the site.

The project managers coordinate the activities between the stakeholders, organize regular
meetings and keep track of the progress.

2.4.3 Implementation

In the implementation phase, the information and functionality planned and organized in the
design phase is coded in an appropriate format.

Most Web sites use HTML files to deliver static content. These HTML documents can
be written using editors or generated from relational databases using widely available Web
tools.

The functionality and support for interactions is usually implemented using popular Web
technologies. Most of these technologies generate dynamic content by either writing HTML
to a stream that is sent back to the calling client or by mixing layout information with ap-
plication logic in files that are interpreted at run-time by an application server. An example
of the first form of interaction are the Perl script[Pag], Java servlet[Jaw98], and C#[Arc01]
technologies and an example of the second form are the PHP[RSS�99] and Coldfusion[col]
technologies.

Scripting languages can be server-side, or client-side. Perl, for example, is a server-side
scripting language that is interpreted on the Web server. Javascript, on the other hand, is
embedded into HTML and is interpreted locally on the user’s browser.

Usually, a combination of different technologies are used to implement the interactive
functionality. A server-side Perl script may be used in an e-commerce application, for ex-
ample, to check a relational database for shopping cart information. To save bandwidth, the
user’s input may be validated on the browser using a client-side Javascript before it is sent.

2.4.4 Maintenance

Service maintenance is one of the most important and costly issues in Web Engineering.
Similar to software management, the handling of a Web service becomes non-trivial once its
size increases [Sch97].

CHAPTER 2. WEB ENGINEERING BASICS 12

Most Web sites today change their appearance at least once a year to stay attractive.
Minor changes in the look-and-feel of a site several times a year are very common, and
major modifications are not rare.

Modifications are motivated by better understanding of user needs based on previously
gained feedback, new requirements, optimization strategies and new market directions.

Service maintenance involves information updates and content management, naviga-
tion management, version management and service migration.

Ad hoc navigational links are embedded almost anywhere in Web services. Unfortu-
nately, links may be broken due to the nature of the Web. Navigational management is
necessary for checking the validity of the links and resources for consistency and integrity.

Service migration is the movement of a part of, or the entire Web service, to another
host. Service migration is often necessary as hardware is updated, performance requirements
change, and new versions of software components become available.

Version management is an important issue in service maintenance because it allows Web
engineers to issue releases of scripts and source code and keep track of functionality changes.
Furthermore, a versioning system allows content managers to work concurrently. Versions
increase the manageability and maintainability of the service – especially when dynamic
content is involved.

Versioning also allows the analysis of the evolution of the site. By checking the logs,
site-specific information can be retrieved such as the pages that had to be updated regularly
and those that did not change much. This information can be utilized to maintain and adapt
the services according to the users’ needs.

Standard versioning systems, such as CVS, [cvs] may be deployed for version manage-
ment.

2.5 Flexibility

A flexible Web service is a service that is easy to extend and maintain. The modifications in
the graphical layout and the look-and-feel of the service is one important flexibility issue for
Web services. The most important aspect of flexibility, though, is the ability to integrate new
functional requirements without having to do major modifications to the system.

The first generation of HTML document standards lacked support for layout flexibility.
Attempts were later made to eliminate these shortcomings by extending the HTML stan-
dard with technologies such as the Cascading Style Sheets [W3C]. CSS defines common
formatting properties such as font size, font family, font weight, paragraph indentation and
paragraph alignment. One can specify, for example, that all H2 HTML elements should be
formatted in 24pt Times New Roman font. Multiple stylesheets can be applied to a single
element and the styles then cascade according to a particular set of rules.

In order to eliminate HTML’s shortcomings and to define extensible standards that meet
requirements such as layout flexibility, the World Wide Web Consortium (W3C) defined the
eXtensible Markup Language (XML) standard along with the XML Style Sheet Language
(XSL).

CHAPTER 2. WEB ENGINEERING BASICS 13

Both technologies are important for Web engineering because they are standards and
have gained popularity fast. Many software vendors are integrating XML and XSL support
into their products and a wide range of XML/XSL-based tools are available today such as
editors and configuration tools.

2.5.1 XML

XML is a set of rules for defining semantic tagsthat break a document into parts and identify
the different parts of a document. It is a meta-markup language that defines a syntax used to
define other domain-specific, structured markup languages [Har99].

XML is not just another markup language such as HTML. HTML defines a fixed set of
tags (e.g., H1 for Heading 1, H2 for Heading 2, etc.) that describe a fixed number of ele-
ments. The main difference of XML is that it is a markup language in which one can define
tags as one wishes. These tags must be organized according to certain general principles, but
their meaning is flexible.

Suppose we would like to describe students by noting their name, age and computer
science knowledge. We can create tags for each of these. The XML definition of this infor-
mation may look something like this:

<?xml version="1.0"?>
<student>

<name> Engin Kirda </name>
<age> 28 </age>
<knowledge> Expert :-)) </knowledge>

</student>

This listing uses meaningful tags such as ageand namethat we defined.

The tags we defined can be documented in a Document Type Definition(DTD). The DTD
[W3C98b] can be thought of as a vocabulary and a syntax for certain kinds of documents.
XML definitions do not necessarily need to have a corresponding DTD. A DTD merely
allows the validity (i.e., the conformance to the syntax defined in the DTD) of XML infor-
mation to be checked. All XML documents, however, have to follow a specific set of rules
such as having a header at the beginning and having a closing tag for every opening tag (e.g.,
if there is an �engin� tag, then there mustbe an �/engin� closing tag). XML documents
that conform to these specific set of rules are said to be well-formed. Well-formedness is the
minimum requirement for XML information.

While one might find it useful to write documents that use a single markup vocabulary,
it is sometimes even more useful to mix tags from different XML definitions. The problem,
however, is that when mixing tags from different XML definitions, one might find the same
tag used for two different things. In an e-commerce related XML definition, for example,
the tag namecould refer to the name of an article rather than the name of a student as in
the previous example. Namespacesdisambiguate these instances by associating a Universal
Resource Identifier (URI) with each tag set and attaching a prefix to each element to indicate
which tag set it belongs to. Thus, one could have a students:nametag and an articles:name
tag.

CHAPTER 2. WEB ENGINEERING BASICS 14

Unlike HTML, XML does not describe the layout (i.e., formatting/presentation) of the
elements on a page. It describes a document’s structure and meaning and only contains tags
that say what is in the document and not how the document should be presented.

A layout can be added to an XML document with a stylesheet. For this purpose, XSL is
used.

2.5.2 XSL

XSL is an advanced stylesheet language specifically designed for use with XML documents.
In fact, XSL documents themselves are XML documents.

XSL is divided into two parts: transformations (XSLT) and formatting objects (XSL:FO).
XSL:FO is a language for describing 2D layout of text in both digital and printed media.
XSLT, on the other hand, is a language for transforming one XML document into another
textual format.

XSL documents contain a number of rules (called templates) that apply to particular
patterns of XML elements. An XSL processor reads an XML document and compares it to
the rules in the stylesheet. Whenever a rule is recognized, transformation rules are invoked
and corresponding output text is generated. Unlike CSS, the output text is arbitrary and is not
limited to the input text plus formatting information. XSL is far more flexible and powerful
than CSS and it is better suited to XML documents. XML documents can also be easily
converted to HTML documents with CSS stylesheets.

The following simple XSL stylesheet prints the HTML fragment “�br�This is some
name�br�” for every student nametag defined in the previous XML definition. Every time
it recognizes a studenttag, it recursively processes student names.

<?xml version="1.0" ?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/XSL/Transform/1.0">
<xsl:template match="student">

<xsl:apply-templates/>
</xsl:template>

<xsl:template match="name">

This is some name

</xsl:template>

Template rules defined by the xsl:template element are the most important part of an
XSL stylesheet. Each template rule is an xsl:template element. These associate particular
input with particular output. Each xsl:template element has a match attribute that specifies
which nodes of the input document the template is instantiated for.

To get beyond the root element(i.e., the first tag, studentin our example), the XSL
processor needs to be told to process the children of the root. In general, all child elements
are recursively processed using the xsl:apply-templates directive.

CHAPTER 2. WEB ENGINEERING BASICS 15

XSL provides advanced functionality such as conditional loops, if/then/casedirectives
and a powerful mechanisms (i.e., XPath) for selecting elements.

One frequent use of the XML and XSL technologies is to create flexible static content
for multi-purposepublishing1 [LS99]. Using XSL, the content in XML is transformed into
an appropriate format for different target devices.

Although the XML and XSL standards have created a basic flexible infrastructure to
independently define content and layout information, they are not sufficient alone to design
and build device-independent Web sites that are flexible and maintainable.

2.6 The device-independent Web engineering problem

This section discusses the device-independent Web site engineering problem that this disser-
tation tackles. It presents simplified, as well as real-world examples to define and illustrate
the problem.

2.6.1 Historical overview

The problem of device-independence is not new in computer science. Since the very early
days of computing, computer displays and hardware have always had widely varying techni-
cal characteristics. Hence, differences such as display sizes and graphical capabilities had to
be supported by operating systems and programs. Modern operating systems provide device
abstractions to programs and support different devices using drivers.

The situation was similar for the Web in the mid 1990s: Many users existed that did not
have access to graphical browsers and were using browsers such as Lynx on dumb terminals
with text-only characteristics. As a result, it was considered good Web design practice to
offer the content in pure textual form (without graphics) as well as in a more appealing
graphical look. The reader familiar with the Web since its early days will remember pages
that had a “text only” link in the navigation bar. Another solution that was often used to
deal with limited text-based devices was to keep the design of the HTML-pages as simple as
possible so that all browsers and displays could satisfactorily cope with the rendering of the
content.

In fact, the original HTML definition did not contain elements such as �font� and the
font sizeattribute. Generic font type and size tags such as �h1� and �h2� were used that
were device-independent: The browserinterpreted the size and fonts of headings according
to user settings or the device characteristics.

As concepts such as corporate imageor identity [Qui94] started emerging and gaining
in importance, however, the demand for more functionality grew and companies such as
Netscape and later Microsoft started expanding the HTML element set to meet the demand.
As a result, HTML incompatibilities occurred because of the different HTML namespace
implementations. Unfortunately, this is still the case sometimes in Web development. It is
not uncommon, for example, for a table to look quite different on a browser such as Netscape
when compared to the Internet Explorer. These differences are the main reason why Web

1Sometimes also called syndication

CHAPTER 2. WEB ENGINEERING BASICS 16

companies and customers usually agree on a browser in projects that will be guaranteed to
work with the provided functionality.

With the increase in available functionality, the trend of supporting alternative, simpler
text interfaces largely disappeared. Instead, users visiting a site were often “encouraged” to
download a newer version of a browser (e.g., the infamous “This site is best viewed with
Netscape version...” type messages) and the common assumption that a user would at least
have 600-pixel width screen estate started to establish itself among Web designers. Many
Web sites today require at least a mid-size display (i.e., minimum 800x600 pixel size) for
a satisfactory surfing experience and HTML extensions such as frames cause problems on
smaller displays. Figure 2.2 illustrates the difficulty of supporting small displays. Note that
the user cannot see a large proportion of the information on the site. Much scrolling is
required, thus, increasing the cognitive overhead and decreasing usability [RM98].

Figure 2.2: The difficulty of supporting small displays: The DSG homepage as seen on an
iPAQ PDA

Even though most browsers conform to the W3C HTML standards that were later agreed
upon, browser-specific (and therefore device-specific) functionality already exists and ele-
ments that are not device-independent such as �font� have therefore been standardized.

Figure 2.3 depicts the differences in design between the 1995 version of a commercial
Web site (the Vienna International Festival home page) and the 2001 version. Note how much
simpler the 1995 version is compared to the newer version. Tables are used extensively by
the graphical designers in the 2001 design.

Recent developments mobile computing software and hardware (e.g., Wireless Access
Protocol (WAP) access provided by mobile phone providers) and speech technology (e.g.,
the definition of the VoiceXML XML language for defining speech-based Web applications)
have highlighted the need for device-independent Web access, once again [BFJT01]. The

CHAPTER 2. WEB ENGINEERING BASICS 17

Figure 2.3: Screenshots of the 1995 and 2001 VIF home pages

CHAPTER 2. WEB ENGINEERING BASICS 18

challenge, however, is greater this time. The Web site has to be accessible by users using
Web devices that have a wide range of display sizes and memory limitations, and that may
require a special XML-based Web format(e.g., the Wireless Markup Language (WML) is an
XML language that has been specially designed to describe small pages that can be accessed
by WAP-enabled mobile phones).

The next section describes and illustrates the device-independence problem from the Web
engineering point of view.

2.6.2 Problem: Constructing maintainable, interactive device- inde-
pendent Web services

One Web-based mobile computing service that has become quite popular in the last couple
of years is providing custom-tailored information for PDAs that users can download from a
Web site for offline-browsing.

Varnum in [Var00], for example, discusses how PDA-services were deployed at Ford
and presents an experience report. The problem was that managers and company leaders
that were higher up in the company hierarchy did not have any time to get information
from the company intranet. These people were always busy and only had time between
meetings. They preferred to get their emails in paper form and had time for correspondence
in cars, during flights, etc. Interestingly, though, it was observed that PDAs had found a high
acceptance by these people.

The IT department decided to utilize the wide usage of PDAs (i.e., Palms in this case)
and developed a system with which Web sites in the intranet can be downloaded to these
devices. The interactions are offline and any forms submitted are queued in the PDA. All
requests are sent once the PDA is synchronized and connected to the PC.

Only some services are offered for PDAs and the server-side scripts offering these ser-
vices had to be modified or duplicated. One observation was that it pays to make low use
of images on the Palm output. Users are primarily interested in acquiring information and
the images do not serve an important navigational purpose on low-resolution displays. Even
after eliminating graphics, though, there is still precious little screen space available. Fur-
thermore, although the PDA is able to render tables, simpler pages render faster. Thus,
performance considerations played a significant role in designing the pages.

The server-side scripts were in Perl and it was not too difficult to modify them in this
case.

The problems, however, were: 1) There was little logic reuse – hence making code main-
tenance more difficult as the site grows, and 2) The modification of the Perl scripts is an
ad-hoc solution and although it solves the problem, the solution is temporary and does not
guarantee that the services will be able to support other Web devices and formats in the fu-
ture as the requirements evolve. Supporting a speech interface using VoiceXML, or creating
a PDF version of the information in the intranet for the managers, for example, would need
a considerable implementation and maintenance effort.

In the Distributed Systems Group at the Technical University of Vienna, we experienced
a similar problem. We had a Web-based grading service that enabled the students to look up
the grades they had earned in courses. This service was a script-based solution using Perl.

CHAPTER 2. WEB ENGINEERING BASICS 19

package grading;

dbmopen (%files,"files",undef);

#-- gradingCodeLayout ---
$classes{"gradingCodeLayout"} = '

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<TITLE> Engin Kirda </TITLE>

<BODY BGCOLOR=#FFFFFF TEXT=#000000
 LINK=#0000FF ALINK=#000000 VLINK=#800080 >

<table border="0" width="100%" cellspacing="0" cellpadding="0">
 <tr>
 <td bgcolor="#000000" VALIGN="CENTER">

 </TD>

 </tr>
</table>
<table><tr><td>
Grades $forwhom:</td></tr>
<tr><td>
$content</td></tr></table>';

Figure 2.4: Part of the Perl script implementing the HTML grading service

package grading;

dbmopen (%files,"files",undef);

#-- gradingCodeLayout ---
$classes{"gradingCodeLayout"} = '<?xml version=\"1.0\"?>
<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML 1.1//EN\”

 \"http://www.wapforum.org/DTD/wml_1.1.xml\">
<wml>
<template>

<do type=\"prev\"> <prev/> </do>
</template>
<card id=\"result\" title=\"Query Results\">
<p>
Grades $forwhom:</p>
$content

</card>
</wml>
';
sub gradingCodeLayout # call as gradingCodeLayout

($content,$forwhom,$httproot,$now)
 {
 local ($content,$forwhom,$httproot,$now) = @_;
 $_ = $classes{"gradingCodeLayout"};
 eval qq/"$_"/;
 }

Figure 2.5: Part of the Perl script implementing the WAP grading service

CHAPTER 2. WEB ENGINEERING BASICS 20

After seeing that WAP services were being offered by Web sites such as banks and cinemas,
we decided to offer the grading service we had through an additional WAP interface.

Figures 2.4 and 2.5 depict parts of the Perl scripts that provide the functionality. The
layout information (e.g., tags such as �html�, �wml�, �table�) are directly hard-coded
into the source code. Note, also, that there is a considerable amount of overlap and duplica-
tion between the scripts. This approach is typical and the easiest solution to building Web
services that can support more than one device. It clearly does not scale and may cause main-
tenance nightmares. If, for example, there is a need to generate a PDF report for the student
grades, the source code has to be copiedand modified in an ad-hoc manner to incorporate the
new requirement. This approach would solve the problem for a while, but whenever there
is a need to change the underlying application logic, the duplicated logic would have to be
modified as well.

The described problem is wide-spread when popular, traditional technologies such as
Java servlets, PHP and ASP are used. Figure 2.6 shows a fragment of the Java servlet code
from a commercial Web site that provides shopping cart functionality. The servlet displays
the contents of the user’s shopping cart in HTML. The entire HTML information is inter-
mixed with the content and the application logic and is hard-coded into the code.

One source-code level solution would be to integrate device-specific content and layout
information into the application logic for every new device. This integration, however, is not
necessarily easy because it involves the analysis and modification of the code. This can be
an error-prone and expensive task. It may become especially difficult when different display
sizes have to be supported and memory limitations exist.

 // Go through the Shopping List and print everything...
for (int i=0; i<=eventList.size()-1;i++) {
 ShoppingCartEvent event = (ShoppingCartEvent)

eventList.elementAt(i);
 database.getEventInfo(event.getEventId());
 out.println
 ("<tr><td colspan=\"3\" align=\"center\">"+
 database.getEventTitle()+"</td></tr>");

 if (!database.getSecondEventTitle().equals("Nothing")) {
 out.println("<tr><td colspan=\"3\" align=\"center\">"+
 "Shown together with:
"+
 database.getSecondEventTitle()+

"</td></tr>");
 }

Figure 2.6: Part of the VIF 2000 servlet code implementing a shopping cart

The presented examples show that the main device-independence Web site engineering
problem is the increase in maintenance complexity as the number of devices that need to
be supported grows. Because Web sites are usually not designed to support Web devices of
varying technical characteristics, it is sometimes difficult and costly to integrate support for
a new device.

A maintainable, higher-level solution is needed to support the design and implementation
of interactive, device-independent Web sites. The solution has to cover the following main

CHAPTER 2. WEB ENGINEERING BASICS 21

requirements:

1. It should provide support for the different phases in the Web service life cycle.

2. It should support both static and dynamic content.

3. Application logic reuseshould be possible so that the logic does nothave to be dupli-
cated. The samelogic needs to workwithout modifications with any Web device no
matter what its display and memory size is.

4. It should be possible to provide the content in the site in any standard XML Web format
(e.g., VoiceXML, WML).

5. It should notincrease the maintenance effort significantly.

I define the notion of a device-independent Web sitein this dissertation as a site that is
flexibleand can be extendedto support different Web devices of widely varying technical ca-
pabilities and propose a solution that fulfills the requirements listed above. I present a novel
XML/XSL-based Web service design and implementation technique that allows the system-
atic construction of device-independent, flexible Web sites. New Web device support can be
added to the Web sites with ease and existing functionality does not have to be modified.

2.7 Summary

This chapter provided a brief introduction to the Web engineering discipline. It introduced
basic technologies such as XML and XSL and discussed the Web service life cycle and ser-
vice flexibility. It described the device-independent Web site engineering problem and de-
fined the goals for a solution that allows the engineering of maintainable, device-independent
Web sites.

Chapter 3

Related Work

Much research has been done since the early 1990s on Web service design techniques,
methodologies and development tools. Most of the existing work focuses on the construc-
tion of HTML-basedWeb services. Since the beginning of the year 2000, device-independent
Web engineering has been receiving growing interest.

This chapter presents related work. First, it describes and discusses traditional Web en-
gineering approaches and mobile Web access techniques that do not explicitlyattack the
device-independent Web engineering problem, but that are relevant and important as back-
ground work. Second, it introduces a taxonomy for classifying and comparing the solutions
that explicitly tackle the device-independent Web engineering problem and third, it describes
and evaluates these approaches.

The next section gives a brief overview of research on device-independent Web access.

3.1 Brief overview of research on device-independent Web
access

The majority of the authors describe the mobileinformation and Web accessproblem (e.g.
[Sat96b, KAK�00]). Many conferences and workshops are being held that address problems
related to information access from mobile computing devices with restricted capabilities such
as mobile phones and PDAs.

The term mobile e-commerce[Sen00] has also recently gained popularity. There is a
general expectation that much commerce over the Internet and the Web will be performed
via mobile devices in the next decade (e.g. [Gla01]).

At the same time, there is another growing market: Web access via speech recogni-
tion and synthesis technologies. This application area is especially important for companies
involved in the speech technology market. Speech recognition systems are already being
deployed in many organizations such as airports and banks. They allow customers to call by
phone and retrieve information such as flight information and the current account balance.
Providing speech access to the Web, thus, is interesting for these companies.

Research in speech-based Web access has led to the specification and development of
VoiceXML [Luc00]. VoiceXML is an XML-based language that allows interactive speech

22

CHAPTER 3. RELATED WORK 23

applications to be written that provide access to Web content. It has been quickly adopted by
companies and the number of VoiceXML development environments and tools are increasing
every day.

Ralph in [RS01], for example, looks at WAP’s “failure”. Much hype was involved in
marketing WAP and users’ expectations were not met. Interactions with WAP devices are
usually so difficult that, according to Ralph, speech interfaces based on VoiceXML will
increase in importance.

Ralph also states that British Telecom (BT) has been experimenting with Portia, a cor-
porate voice portal that provides a voice interface to the systems that people use every day
in the course of their work. It was discovered that people that are using a portable laptop or
a PDA also use Portia. The experimental usage results were promising and users use Portia
because it seems to be quick. Portia has been running in a trial setting with 200 users (see
[RS01]).

Clearly, the problem is not only mobile or speechaccess to the Web, but device-
independent access in general. As a result, a device-independent Web working group was
established within the World Wide Web Consortium last year and this group aims to address
general device-independence issues that are related to Web access from a wide variety of
fixed and mobile devices such as watches, televisions, telephones, PDAs and mobile phones.

3.2 Traditional Web engineering approaches

Traditional HTML-based Web engineering approaches and tools have been classified in the
past (e.g., [Fra99, Sch98b]) as belonging to four groups: Page-based editors, site manage-
ment tools, Web service models and object-based approaches.

Among the phases in the life cycle of a Web service, the design phase is usually the
one that is either ignored or that receives less attention (e.g., [GM01, KJKS01]). Since the
mid 90’s, the special importance of the design phase in the Web service life cycle has been
identified by many authors (e.g., [BMY95, BN96, NN95, Qui94, Str95]). Several models
and methodologies have been proposed for the construction of Web services and hypermedia
systems.

3.2.1 The Dexter hypertext reference model

The Dexter Hypertext Reference Model [HS94] is the most influential hypermedia reference
model in literature. It was defined because many hypermedia systems existed and it was
difficult to classify and compare them. Because of the existing differences, it was important
to capture the significant abstractions both formally and informally.

The Dexter Hypertext Reference Model consists of three layers: The Within-component,
Storageand Run-timelayers. The Within-component layer covers the content and structures
within hypertext nodes. The Storage layer describes the network of nodes and links that is
the essence of hypertext. The Run-time layer describes mechanisms supporting the user’s
interaction with the hypertext.

CHAPTER 3. RELATED WORK 24

The model focuses on the storage layer and the mechanisms of anchoringand presenta-
tion specification that form the interfaces between the three layers. The fundamental entity
in the storage layer is the component. A component is either an atom, a composite entity or
a link made from other components.

At the time the Dexter Hypertext Reference Model was defined, no hypertext systems
existed that had to support more than one type of layout. The model, however, is quite
flexible and there are no restrictions that only a single layout has to be built on top of the
Storage and Within-component layers.

Unfortunately, the Web is not hypertext according to the Dexter Model because a storage
layer that contains a database of nodes (i.e., content) and links does not exist. “Broken” links
can exist on the Web whereas this is not possible in a hypertext system.

Another shortcoming of the Dexter model is that it does not take application logic into
consideration.

3.2.2 The Relationship Management Methodology (RMM)

The Relationship Management Methodology (RMM) [DIMG95, ISB95] for building hyper-
text applications is well-known in the Web engineering community. It is one of the first
attempts to define guidelines for the systematic construction of Web applications (i.e., hy-
pertext).

RMM is based on a data modeling language, Relationship Management Data Model
(RMDM), that is developed by the authors and based on the Entity Relationship (ER) Model
(e.g., [TYF86]) used in database modeling.

The methodology is based on the traditional software engineering process and focuses
on the design, implementation and construction phases for hypermedia applications. It has
seven steps for hypermedia service management: 1.) ER Design, 2.) Slice Design, 3.) Nav-
igational Design, 4.) Conversion protocol design, 5.) User-Interface screen design, 6.)
Run-time behavior designand 7.) Construction. Steps four to seven are tasks beyond the
modeling of hypermedia information and must either be done manually, or by using tools
that provide automated support for these steps. (e.g., RMC [DIMG95]).

The RMM Methodology is well-suited for applications that have a regular structure, es-
pecially where there is a frequent need to update the information to keep the system current.
Traditional sites that rely heavily on a RDBMS can benefit from the usage of this methodol-
ogy.

The main restriction of the methodology is that it has no support for the design and
integration of application logic.

3.2.3 Object-Oriented Hypermedia Design Methodology (OOHDM)

The Object-Oriented Hypermedia Design Methodology [RSL99, SR95, SRB96, Sd98] (OOHDM)
consists of four steps. The methodology uses Object-Oriented (OO) concepts and techniques
for systematically building hypertext applications.

CHAPTER 3. RELATED WORK 25

The OOHDM steps are 1.) Domain Analysis, 2.) Navigational Design, 3.) Abstract
Interface Design, 4.) Implementation.

In the domain analysis step, a conceptual model of the application domain is built using
well-known OO modeling principles. The model is augmented with some primitives such as
users and tasks.

In the navigational design stage, the navigational structure of the hypermedia application
is described in terms of navigational contexts that are induced from navigation classes such
as nodes, links, indices and guided tours. Links are derived from conceptual relationships
defined in the first step.

In the abstract interface design phase, the abstract interface model is built by defining
perceptible objects (e.g., a picture, a city map, and for so forth) in terms of interface classes.
Interface objects map to navigational objects, providing a perceptible appearance.

Finally, in the implementation phase, interface objects are mapped to implementation
objects.

Just like RMM, OOHDM assumes that Web services are merely hypertext. The main
focus of the methodology is the design of the navigation, but no real support is provided for
the implementation and maintenance stages.

In theory, it could be possible to use OOHDM to model the user interfaces and navigation
for different devices that a Web service supports.

3.2.4 W3DT and eW3DT

The WWW Design Technique [BN96] (W3DT) has been proposed by Bichler and Nussler.
The authors present observations that have a high practical value. In [BN96], the authors
identify the problems on the Web well and also note the insufficiency of traditional hypertext
modeling methodologies such as OOHDM and RMM.

The difference of their technique, they state, is that it has been designed for large Web
sites(in contrast to hypertext). Analogous to our previous discussion, the authors note that
although the Web is based on hypertext, it is not really hypertext according to the Dexter
model. Their paper identifies the importance of communication between the different par-
ties involved in a Web project (users, designers, application developers, etc.). Furthermore,
it draws attention to distributed services and states that Web services might be distributed
across organizations and corporations. It notes that design mechanisms and methodologies
are missing in this area.

According to Bichler and Nussler, models are needed for communication between man-
agement, end-users and programmers. These models help to avoid structural inconsistencies
and the reusing of global structures of applications becomes possible.

W3DT is a simple-to-use graphical methodology. They have also implemented a sim-
ple tool that provides support during the graphical modeling. The tool generates HTML
templates and CGI code from the model.

Scharl and Bauer [BS00b, Sch98a] have extended W3DT and called it the Extended
W3DT (eW3DT). The ideas they present attack the problem of meta-modeling Web-based
Information Systems (WISs) for communication between users, managers, designers and

CHAPTER 3. RELATED WORK 26

implementors. It presents a graphical representation of Web interactions1.

The graphical models the authors present are HTML-based (e.g., they are graphical no-
tations for HTML pages), the content is embedded in HTML pages and there are no consid-
erations for device-independent access.

3.2.5 Webcomposition and W3Objects

Webcomposition [GWG97b, GGS�99] concentrates on the manageability and maintainabil-
ity of hypertext services and extends OOHDM. A Web application is decomposed hierarchi-
cally into so called components. At the higher level, a component may model a page or even
a site. Further down, a component relates to parts of HTML pages such as tables and nav-
igation bars. The Webcomposition model allows the sharing of components and prototype
documents.

A component in Webcomposition can be associated with any complete resource such as
an HTML page or a Perl script generating an HTML page.

Some of the ideas presented in Webcomposition are quite similar to W3Objects [DMCS95,
ICL96, ICL97]. In W3Objects, components are simply called objects. Different views can be
built on services and ‘components’. So called W3OScriptsare able to access the functional
interface of a service. This mechanism can be used to include other views as components.

Both W3Objects and Webcomposition provide support for covering all the phases in the
Web service life cycle.

3.2.6 Strudel

In [FFKL98], the authors present a Web site management tool, Strudel, that adapts database
concepts for Web site management. The key idea of the tool is the separation of the structure,
content and visual presentation of Web sites.

The designer first creates a uniform model of all the information in the site. Then, the
builder builds the site using a query language – StruQL.

Strudel is based on a semi-structured data model of labeled, directed graphs. This model
was introduced to manage semistructured data, which is characterized as having few type
constraints, irregular structure, and rapidly evolving or missing schema.

One disadvantage of the tool is that existing data needs to be integrated using wrappers
and scripts written by hand. Furthermore, the authors state that Strudel does not have any
dynamic content generation support.

The layout, in Strudel, is integrated using HTML templates. The authors state that the
usage of HTML templates in their system have many advantages. The usage of HTML tem-
plates, however, is not new and many industry tools such as PHP [RSS�99] and Coldfusion
[col] provide similar functionality. One disadvantage of using HTML templates is that they
do not support complex navigational structures.

1Note that the same problem was picked up by Conallen later and he extended UML to model Web interac-
tions – see [Con99]

CHAPTER 3. RELATED WORK 27

3.2.7 Araneus

Araneus [AMM�98a, AMM98b] aims to define an environment for managing unstructured
and structured Web content in an integrated system called Web-Based Management Sys-
tem (WBMS). A relational database is used to store data and meta-data about the structural
information.

The Araneus system has a conceptual model and a design process. First, the database
is modeled using the traditional EER [TYF86]. Then, the hypertext conceptual modeling
formalizes navigation by converting the EER schema into an Navigation Conceptual Model
(NCM) schema. The implementation is done using page-schemas in the Penelopelanguage
that specifies how the physical pages are constructed from the content in the database and
the logical page schemes.

One disadvantage of Araneus is that it requires a proprietary HTML-dependent template
language for specifying the layout. Furthermore, it does not have any support for application
logic integration.

3.3 Mobile Web access techniques

Initially, much of mobile computing research concentrated on operating system, file, resource
and data management support for mobile users mainly carrying laptops (e.g., [LB96, MES95,
Sat96b, Sat96a, Sat89]). As the importance of the Web increased, more people have started
working on mobile Web access problems and some have even predicted that one of the next
big challenges of the Internet is mobile access to Web content (e.g., [AF99, Fra97]).

Several transcodingtechniques have been proposed that attempt to convert and adapt
content available in HTML to be viewable on mobile devices. The quality of images, for
example, may be decreased at run-time for devices that have limited memory sizes. Another
example is displaying images of varying quality to the user based on the available bandwidth.
Some approaches try to automatically convert content available in an unsuitable form (e.g.,
HTML with frames) to a suitable form (e.g., WML, HTML without tables, etc.). The aim
of these approaches is to provide “intelligent” algorithms that can convert the content with
minimal information loss and provide a satisfactory surfing experience for users.

Some researchers are focusing on summarizationtechniques that attempt to automati-
cally summarize Web content by extracting important information and making it viewable
on devices with small displays or memory limitations. Rules have to be often set up with
which summarization and extraction can be ’guided’.

Existing summarization approaches belong to two classes [HM00]: Knowledge-poor and
Knowledge-rich approaches.

Knowledge-poor approaches rely on not having to add new rules for each new application
domain or language. Knowledge-rich approaches assume that if you grasp the meaning of
the text, you can reduce it more effectively, thus yielding a better summary.

Summaries may be extracts or abstracts. Knowledge-poor approaches, at least for the
short term, are likely to dominate applications, particularly when augmented with extraction
learning mechanisms.

CHAPTER 3. RELATED WORK 28

Summarization research is still young and there is consensus on the need for more evalua-
tion [HM00]. Many challenges remain, including the need to scale techniques for generating
abstracts.

The transcoding and summarization techniques that have been proposed to date solely
concentrate on providing Web access to PDAs and mobile phones.

3.3.1 Quality aware transcoding

Chandra et al. have proposed transcoding techniques to provide differentiated service to
Web devices and to dynamically allocate available bandwidth among different device classes,
while delivering good quality of information content for all clients [CEV99, CE99, CEV00].

The idea presented is to deliver the information on a Web server according to network
connectivity and client device characteristics. The technique proposed concentrates on adapt-
ing JPEG images based on bandwidth information. If the connection is weak (i.e., slow), for
example, the quality of the JPEG images on the server are reduced to increase the speed of
access.

The authors state that in theory, they can use their technique to transcode other multi-
media binary objects as well. They say that while they restrict their efforts to the “single
metric” (i.e., JPEG images), the techniques are equally valid for any transcoding with well-
understood tradeoff characteristics. The solution proposed, however, cannot be used for
transcoding text content.

Chandra et al. give some interesting statistics about the percentage of images in Web
sites. 77% of the bytes accessed through the Web, they state, belong to multimedia objects.
Of these, 67% are transfered for images.

The authors also state that image transformations are important for mobile devices. They
provide solutions for a part of the device-independence Web engineering problem: A way to
deal with images on mobile devices.

3.3.2 Digestor

Bickmore and Schilit’s Digestor [BS97] is a software system that automatically re-authors
arbitrary documents from the Web to display appropriately on small screen devices such as
PDAs and mobile phones. Bickmore and Schilit’s paper on Digestor is one of the first papers
in literature that explicitly mentions device-independence.

Digestor is implemented as an HTTP proxy that dynamically re-authors requested Web
pages using a heuristic planning algorithm and a set of structural page transformations to
achieve “the best looking document” for a display size. HTML pages are analyzed and split
into a number of smaller pages that are more easily displayed on PDAs.

WAP and many other Web formats such as XSL:FOP for PDF generation did not exist at
the time the system was designed so the tool only concentrates on HTML to simple HTML
(e.g., no cascading tables) conversions.

Digestor deals with images by providing a set of techniques that transform all images in
the pages by pre-defined scaling factors (25%, 50% and 75%) and making reduced images

CHAPTER 3. RELATED WORK 29

hypertext links back to the originals.

The authors state that Digestor does a good job of automatically re-authoring Web pages
for display on devices with small screens. They do note, however, that the pages are not
always aesthetically pleasing.

3.3.3 Annotation-based Web content transcoding

Hori et al. present an annotation-based Web content transcoding technique in [HKO�00].
They introduce a framework of external annotation, in which existing Web documents are
associated with content adaptation hints as separate annotation files. The authors also present
a WYSIWYG annotation tool and a transcoding module that they have implemented.

Figure 3.1: Adaptation of HTML for mobile computing devices (Hori et. al [HKO�00])

Figure 3.1 illustrates Hori et al.’s annotation framework for transcoding HTML docu-
ments for mobile devices. As the syntax of the annotation files, RDF is used. In addition,
W3C XPath and XPointer technologies are used for associating annotated portions of a do-
cument with annotating descriptions.

The idea the authors present is quite simple and effective. By using their visual tool,
portions of a Web page can be marked (i.e., annotated). For example, a navigation bar can
be marked to be displayed on a separate page on a PDA and the page header can be left out
for PDA access. This “extraction” information is stored in external files.

Whenever a PDA device accesses the pages, a proxy server converts the pages based on
the annotation information. Hence, large amounts of information on an HTML page that do
not fit on a mobile device can be split and spread over a number of smaller pages.

The approach does have a major disadvantage, though. Every time the annotated HTML
pages change, the annotation definitions need to be updated.

Furthermore, the presented approach only supports PDAs and similar devices with
HTML browsers.

CHAPTER 3. RELATED WORK 30

3.3.4 The Business Card Search Service (BCSS)

In [KAK�00], Kaasinen et al. describe their experiences in adapting and summarizing exist-
ing HTML pages for WAP access.

The authors have implemented a case study service, Business Card Search Service
(BCSS), that users can use to search contact information by making queries to a business
card database. They have used this application to test how users interact with WML pages
that have been converted from HTML.

The HTML/WML conversion proxy server they have developed converts HTML-based
Web content automatically and on-line to WML. This approach gives the mobile users trans-
parent access to their familiar Web pages from their mobile phones and other mobile devices.

The study the authors present indicates that if HTML-based Web services follow certain
guidelines, they can be converted automatically to WML and adapted to the client device.
They state that Web services need to be mobile-awarein order to produce acceptable results
for users.

The authors report that conversion is not always easy and does not always deliver usable
results.

3.3.5 Web access with PDAs: PowerBrowser

In [BGP00], Buyukkokten et al. address the problems of interacting with the Web through
wirelessly connected PDAs. As a way to address bandwidth and battery life limitations, they
provide local site search facilities for all sites.

They incrementally index Web sites in real time as the PDA user visits them. These
indexes have narrow scope at first, and improve as the user dwells on the site, or as more
users visit the site over time. The authors address the keyword input problem by providing
site specific keyword completion, and indications of keyword selectivity within sites.

The PowerBrowser system the authors have built provide two alternative techniques for
interacting with the Web through PDAs. These techniques are of two categories: The first
supports browsing. The second helps users search more effectively.

The user browses the Web through an HTTP Proxy server. The proxy server fetches
Web pages on the PDA’s behalf, dynamically generates summary views of Web pages, and
manages the site search facility. The connection between the PDA and the Power Browser
Proxy Server is established through a wireless modem in the implementation.

The PowerBrowser mainly focuses on easing searching on PDA devices and dealing with
input limitations.

3.3.6 Web content and form summarization

In [BGP01] and [KBGP01], the authors present algorithms they have adapted and used for
summarizing Web pages and forms so that they can be displayed on handheld devices. They
take HTML pages using a proxy, partition (i.e., split) the pages and the user is able to ’mine’
into the partitions.

CHAPTER 3. RELATED WORK 31

In [BGP01], Buyukkokten et al. discuss five alternative methods for displaying Semantic
Textual Units (STUs)to find out how effective each of them are in helping users solve infor-
mation tasks on PDAs quickly. STUs are page fragments such as paragraphs, lists, or ALT
tags that describe images.

The first method, Incrementaldisplaying, is the same as the method used in the Power-
Browser discussed in the previous section.

The All display method shows the text of an entire STU in a single state. No progressive
disclosure is enabled.

The third method, Keywords, displays in its first state the “important” keywords that
occur in the STU by using a special algorithm.

The Summarymethod consists of only two states. In the first state the STU’s ’most sig-
nificant’ sentence is displayed. The second state shows the entire STU. The authors present
an algorithm for determining significant sentences.

The Keyword/Summarymethod combines the previous two methods. The first state
shows the keywords. The second state shows the STU’s most significant sentence. Finally,
the third state shows the entire STU.

The authors have conducted experiments with users to find out which technique is most
efficient. Keyword summary (i.e., displaying some keywords instead of the whole text)
seems to be the most efficient technique.

[KBGP01] is similar to [BGP01], but this time the authors describe algorithms for effec-
tively displaying Web Forms on PDAs.

The approaches mainly concentrate on HTML to simple HTML summarization.

3.4 A taxonomy for device-independent Web engineering

No one to date has attempted to analyze and classify existing approaches that tackle the
device-independent Web engineering problem. One reason is probably because different,
disjunct research communities (e.g., database, mobile computing and Web engineering peo-
ple) are working on the problem in parallel.

This section introduces a taxonomy of device-independent Web engineering approaches.
Tables 3.1 and 3.2 present the comparison of solutions that tackle the device-independence
problem.

The taxonomy is structured as follows: A general section lists the main objective of
the approach and the technical features it provides such as static and dynamic content and
external database integration support.

The life cycle support section lists the support provided by the approaches for the design,
implementation and maintenance phases in the Web service life cycle.

The usability section focuses on the usability aspects of the approach such as its ease of
learning and the required developer skills.

The standards section indicates if the standard content and layout definition technologies
are used in the approach (e.g., XML or relational databases for content and XSL for layout).
Some approaches use proprietary formats for defining the content and layout.

CHAPTER 3. RELATED WORK 32

M
a

in
 O

b
je

ctive
T

o
 su

p
p

o
rt a

ll
W

e
b

 d
e

v
ic

e
s

T
o

 s
u

p
p

o
rt a

ll
W

e
b

 d
e

vice
s

T
o

 su
p

p
o

rt a
ll

W
e

b
 d

e
vic

e
s

T
o

 su
p

p
o

rt
s

pe
e

ch
in

terfa
ce

s

T
o

 s
u

p
p

o
rt a

ll
U

s
e

r
In

te
rfa

ce
s

T
o

 su
p

p
o

rt a
ll

W
e

b
 d

e
vic

e
s

T
o

 s
u

p
p

o
rt

fle
xib

le
se

rvice
s

T
o

 su
p

p
o

rt
m

o
b

ile
d

e
v

ic
e

s

T
o

 su
p

p
o

rt
m

o
b

ile
d

e
vice

s

Im
p

le
m

e
n

ta
tio

n
S

u
p

p
o

rt

D
e

sig
n

 S
u

p
p

o
rt

M
a

in
te

n
a

n
ce

S
u

p
p

o
rt

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

N
o

Y
e

s

N
o

C
o

n
ce

p
tu

a
lly

P
la

tfo
rm

In
d

e
p

e
n

d
e

n
t

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
N

o
Y

e
s

A
p

p
ro

a
ch

 N
a

m
e

O
O

H
W

e
b

M
L

JM
L

S
IS

L
U

IM
L

iS
tu

d
io

C
o

co
o

n
M

S
 M

D
T

T
o

ta
l e

-
M

o
b

ile

S
ta

tic C
o

n
te

n
t

S
u

p
p

o
rt

E
x

te
rn

a
l D

a
ta

b
a

se
In

te
g

ra
tio

n

D
yn

a
m

ic C
o

n
te

n
t

S
u

p
p

o
rt

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

E
a

se
 o

f L
e

a
rn

in
g

R
e

q
u

ire
d

D
e

ve
lo

p
e

r S
kills

S
e

rvice
 C

o
m

p
le

xity

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

H
ig

h

M
e

d
iu

m

M
ed

iu
m

Lo
w

Lo
w

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

H
ig

h

L
o

w

L
o

w
(h

id
d

e
n

)

M
e

d
iu

m

M
e

d
iu

m

U
n

kn
o

w
n

V
isu

a
l In

te
rfa

ce
Y

e
s

Y
e

s
N

o
N

o
N

o
Y

e
s

N
o

Y
e

s
N

o

General Technical
FeaturesLife Cycle SupportUsability

Table 3.1: Comparison of device-independent Web engineering approaches

CHAPTER 3. RELATED WORK 33

Standards
Flexibility and
Maintainability

Device-
Independence

Support

X
M

L
 W

e
b

 F
o

rm
a

ts

O
O

H

Y
e

s

W
e

b
M

L

Y
e

s

JM
L

Y
e

s

S
IS

L

N
o

U
IM

L

Y
e

s

iS
tu

d
io

Y
e

s

C
o

co
o

n

Y
e

s

M
S

 M
D

T

Y
e

s

T
o

ta
l e

-
M

o
b

ile

Y
e

s

D
e

vice
 D

e
te

ctio
n

N
o

N
o

N
o

N
o

N
o

N
o

Y
e

s
Y

e
s

Y
e

s

S
ta

n
d

a
rd

 C
o

n
te

n
t

D
e

fin
itio

n
 (e

,g
,,

X
M

L
)

S
ta

n
d

a
rd

 L
a

yo
u

t
D

e
fin

itio
n

 (e
.g

.,
X

S
L

)

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

L
C

 S
e

p
a

ra
tio

n

L
L

 S
e

p
a

ra
tio

n

L
C

L
 S

e
p

a
ra

tio
n

L
o

g
ic R

e
u

se

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

Y
e

s

N
o

U
n

kn
o

w
n

O
ve

ra
ll S

e
rvice

F
le

xib
ility

M
e

d
iu

m
M

e
d

iu
m

M
e

d
iu

m
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

O
ve

ra
ll S

e
rvice

M
a

in
ta

in
a

b
ility

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

A
p

p
ro

a
ch

 N
a

m
e

Table 3.2: Comparison of device-independent Web engineering approaches

CHAPTER 3. RELATED WORK 34

The flexibility and maintainability section assesses the flexibility and maintainability of
the solution and identifies if there is application logic reuse, Layout/Content (LC), Lay-
out/Logic (LL), or Layout/Content/Logic separation in the solution.

The device-independence support section indicates if the solution is able to support dif-
ferent XML Web formats and if there is device detection support.

3.5 Device-independent Web engineering approaches

Some technologies and tools have been proposed to support the implementationof device-
independent Web services, but only few have drawn attention to the lack of support for the
designand maintenancephases (e.g., [FKST00]).

Several Web engineering proposals have appeared lately that explicitly tackle the device-
independent Web engineering problem.

3.5.1 OO-H Method

The Object-Oriented Hypermedia (OO-H) method is proposed by Gomez et al. in [GCP01].
The authors state that their approach allows Web developers to conceptually model and gen-
erate device-independent Web services.

OO-H attempts to provide a standard-based framework to capture all the relevant prop-
erties involved in the modeling and implementation of Web application interfaces. The
methodology contains two views: the navigation view extends a class diagram with hyper-
media navigation features and the presentation view uses the different elements regarding the
interface appearance and behavior to model a number of interconnected template structures
expressed in XML.

The navigational views are defined in so called Navigational Access Diagrams (NADs)
and presentation views are defined in so called Abstract Presentation Diagrams (APDs).
Both NADs and APDs capture the interface-related design information with the aid of a set
of patterns, defined in an interface pattern catalog integrated in the OO-H method proposal.

A model compiler in the framework generates the Internet application front-end for the
desired client platform and/or language (e.g., HTML, XML, WML). The authors state that
they have developed a CASE tool that automates the development of Web applications mod-
eled with the OO-H method.

Each NAD instance reflects the information, services and required navigation paths for
the associated user’s navigation requirements fulfillment. Figure 3.2 illustrates the OO-H
design process.

The authors have adapted a template approach for the specification of the visual appear-
ance and page structure (i.e., APDs) on the Web. The framework contains five types of
templates: tStruct, tStyle, tForm, tFunctionand tWindow.

tStructinstances define the information that has to appear on the abstract page. tStylein-
stances define features such as physical placement of elements, typography or color palette.
tForm instances define the data items required from the user to interact with the system.

CHAPTER 3. RELATED WORK 35

Figure 3.2: OO-H Design Process (Gomez et al. [GCP01])

tFunctioninstances capture client functionality and tWindowinstances define a set of simul-
taneous views available to the user.

The framework allows the Web developer to choose patterns and to instantiate and use
them in the application being constructed. These patterns can be instantiated by using com-
mands such as:

Dlist->addAPDPage(h); h.name’head’

The command above, for example, inserts a header template into a page.

In their paper, the authors present a case study HTML Web site that can be used to
manage discussion lists. The user first sees a list of discussion topics and by clicking on
the link, she sees the list of messages in that discussion group and is able post replies and
messages to it. The authors state that they have developed the sample application using
JavaServer pages and Java Bean components as the server-side and HTML as the client-side
technology.

The authors say that by invoking the model compiler, they are able to generate user
interfaces for different devices and present the screenshot of a page as seen on a WAP device
to illustrate the device-independence of the approach. The paper does not give any details
about the model compiler.

A single page in the example site they provide contains a list of discussion topics and the
message overview pages list all the messages in a discussion group. To support WAP devices,
the model compiler they describe takes the page specifications and generates a WML version
of the functionality.

One problem is that a single page that contains too much information such as a high
number of messages in a discussion group may cause errors on devices with memory limita-
tions. The approach of mapping a single HTML page to another device does not always give
satisfactory results.

The OO-H method is a promising new approach that specifically tackles the device-
independence problem.

CHAPTER 3. RELATED WORK 36

3.5.2 WebML

The Web Modeling Language (WebML) [CFP99, CFB00] is a high level modeling and spec-
ification language for Web sites. The language was developed in an EU project and it is
completely XML-based. WebML is an evolution of AutoWeb [FP00] developed by the same
research group.

WebML enables designers to express the core features of a site at a high level without
committing to architectural details. A CASE tool is provided that can be used to create XML
specifications that are then used to automatically generate server-side scripts.

The system has a structureand hypertextmodel. The hypertext model consists of Com-
position, Navigation, Presentationand Personalizationmodels.

The fundamental elements of WebML structure model are entities that are containers of
data elements (i.e., data units), and relationships, which enable the semantic connection of
entities. Figure 3.3, for example, depicts the graphical notation for data units and a possible
rendition in HTML. The data unit displays the contents of the Artist entity.

Figure 3.3: WebML graphic notation for data units, and a possible rendition in HTML (Ceri
et al. [CFB00])

WebML uses the notion of pages that can be used to compose the content in data units.
The layout information is defined using a special, tool-supported XML syntax.

In their paper (i.e., [CFB00]), the authors state that they are able to generate layout code
of their choice such as WML for WAP devices and HTML for traditional browsers: They
say that WebML can be used to support “multi-access” Web sites.

The examples they provide in the paper show a traditional, HTML-based service being
constructed. As future work, they state that they are working on WML extensions to the
language.

Because large database query results cannot always be displayed on some devices in
practice because of memory limitations, in their project Web site [web01], the authors de-
scribe the problem and indicate that they have done some extensions to the tool that allows
the database query results to be automatically split for WAP devices.

WebML does not provide any support for dynamic content and only deals with static
content that is stored in relational databases.

CHAPTER 3. RELATED WORK 37

3.5.3 JML

In [BS00a], Barta and Schranz describe the Jessica Markup Language (JML). JML attacks
the multi-purpose publishing problem so that Web content can be generated for various target
platforms such as XML, WML and HTML.

JML provides object-oriented support to abstractly describe information for the Web. The
authors state that the approach includes typical OO benefits such as encapsulation, reusabil-
ity, and inheritance. The most basic components of JML are pages and layouts. JML is an
XML-based language. It is quite similar to the Jessica system (e.g., see [BS98]), but has
some extensions that allows it to support formats other than HTML.

JML solely aims to separate the layout and the content for static content and does not
deal with dynamic content.

3.5.4 SISL

Several Interfaces Single Logic (SISL) [BCD�00, GJJL00] is a system that has been de-
signed and developed by Lucent technologies.

The idea in SISL is to use reactive constraint graphs to model the service logic. The
authors have developed an XML language for writing special SISL programs. They claim
that programs written in SISL are device-independent. They have constructed a service
that reuses the application logic and supports voice interfaces in VoiceXML and an HTML
interface.

A special service monitortakes care of the interaction between the user interfaces and
service logic. User interfaces can be developed in the language of choice and the service
monitor runs it.

SISL separates the logic from the layout but does not attempt to separate the content from
the application logic. A static text such as “Welcome to this site”, for example, is embedded
into the source code.

The authors state that they provide mechanisms to customize the user interface. The main
HTML interface forms depicted in [BCD�00] are generated automatically.

The developers of SISL say that they plan to use SISL for PDAs and mobile devices.

The papers on SISL give a detailed analysis of the problems related to speech/ voice
interfaces. The tool does not attempt to cover the design and maintenance phases in the Web
service life cycle.

3.5.5 UIML

The User Interface Markup Language (UIML) [APBW99, AP99, Abr00, Lin01] seeks to
create one canonical syntax that can be used to specify user interfaces. Using this syntax, the
user interface definition becomes platform and language independent. By using specialized
model compilers, a common user interface description can be converted to WML, HTML,
VoiceXML, Java Swing, etc.

CHAPTER 3. RELATED WORK 38

In UIML, a user interface is a set of user interface elements with which the user interacts.
Each interface element has data (e.g., text, sound) used to communicate information to the
user. Runtime interaction is done using events. Events can be local (i.e., between user
interface elements) or global (i.e., between interface elements and objects that represent an
application’s internal program logic).

UIML is truly device-independent and has model compilers for WML, VoiceXML,
HTML and Java and it has been shown to work in example sites.

UIML treats the Web as just another user interface for the application logic. Web applica-
tions, however, are more than user interfaces because they also have hypertext characteristics
such as embedded links and a significant content maintenance overhead. UIML is a language
that can be effectively used to describe user interfaces and components.

One disadvantage of the approach is that although it separates the layout from the logic,
the content is often embedded into the UIML specifications. Although UIML has a template
mechanism to group common user interface elements, supporting a common Web look-and-
feel and multi-lingual Web sites is still not easy because the content is intermixed with the
user interface definition.

The authors state that they attempt to separate the content from the user interface but the
content they refer to is content describing user interface elements (e.g., text on buttons).

Similar to SISL, UIML does not attempt to cover the design and maintenance stages in
the Web service life cycle.

3.5.6 iStudio

iStudio [SHKE01] is an application development environment based on the Java, XML and
XSL technologies. The developers of iStudio state that the tool can be used to build device-
independent Web services. The application logic can be reused to support different devices
such as VoiceXML browsers, PC browsers and WAP devices.

<is:fragment name=“body”>
<form method=“post” action=“validateUser”>
 <is:attr name=“action”>
 <is:link objAlias=“TransferTable” clearParams=“true”>
 <is:param name=“action”><is:content/></is:param>
 </is:link>
 </is:attr>
 <table>
 <tr><td> Cellular # (10 Digits): </td>
 <td><input type=“text” name=“userID” size=“10” value=“”>
 <is:attr name=“value”><is:temp name=“userID”/></is:attr>
 </input></td></tr>
 </table>
 <p><input type=“submit” name=“submit” value=“SUBMIT”/></p>
</form>
</is:fragment>

Figure 3.4: A sample iStudio fragment that defines an XHTML form (Skarra et al.
[SHKE01])

CHAPTER 3. RELATED WORK 39

The main objective of iStudio is to support the service creation and the reduce develop-
ment time through the definition of reusable and extensible application components. The
developer uses XML in the approach to specify a service (i.e., its business logic, data pre-
sentation, authentication and permissions, configuration). A suite of iStudio tools transform
the specifications into a collection of Web-capable objects that implement the service.

A run-time engine in the system interprets service code and responds to client requests.

iStudio is conceptually similar to the W3Objects and Webcomposition approaches dis-
cussed in Section 3.2.5. Instead of intermixing the layout and logic as Webcomposition and
W3Objects do, though, iStudio uses a concept the authors denote fragmentsto separate the
layout and to map elements in the layout to the application logic. The fragments are compa-
rable to components and objects in the Webcomposition and W3Objects systems.

To support different devices, fragments have to be written that produce the appropriate
code (e.g., WML for WAP, HTML for PCs). One problem with these fragments is that
fragments containing content may need to be duplicated for different devices. Figure 3.4
depicts a typical fragment that defines an XHTML form. Much of the embedded content in
the fragment, for example, would have to be duplicated for WML and other devices. This
would have a negative effect on maintainability.

3.5.7 Cocoon

Cocoon is a Java servlet-based application server that is based on freely available XML
parses (e.g., Xerces [Apa01b]) and XSL processors (e.g., Xalan [Apa01a]). Cocoon can be
used for the real-time translation of XML files on a web server to HTML and any XML-based
Web format such as WML.

Cocoon is designed to allow Developers, Business Analysts, Designers, and Administra-
tors to work with each other in parallel without breaking the other person’s contribution.

The Cocoon community believes that the problem with using technologies such as ASPs
[RAS00] or ColdFusion [col] templates is that “ all of the the look, feel, and logic are inter-
mixed.” Maintenance, hence, is often much more difficult, costs more and takes longer. If the
site layout design is introduced late in the design phase, for example, the cost of integrating
the graphical look may become significantly higher. Cocoon aims to separate concerns and
to enable the involved parties to work in parallel as much as possible.

The Cocoon project proposes two technologies for providing flexible and layout inde-
pendent dynamic content in web pages; XSP (eXtensible Server Pages) and DCP (Dynamic
Content Processor). XSP is completely based on XML/XSL technology and uses XSL tag
libraries and associated code generation style sheets (logic sheets) to generate compilable
source code. DCP uses a simpler approach than XSP but is an interpreted language and thus,
has a performance drawback. DCP is only intended to support dynamic content.

Cocoon supplies a number of different components for the Web developer. The types of
components are Generators, Transformers, Serializers, Readers, and Actions.

A Generator will create SAX2 events for a SAX stream. A FileGenerator, for example,

2SAX is the Simple API for XML, originally a Java-only API. SAX was the first widely adopted API for
XML in Java, and is a de facto standard. The current version is SAX 2.0.1, and there are versions for several
programming language environments other than Java.

CHAPTER 3. RELATED WORK 40

reads an XML file from an input source, and converts it into a SAX stream.

Transformers read a SAX stream, manipulate the XML stream, and send the results to
the next component in the chain. The provided LDAPGenerator, for example, is a class that
can be plugged into a pipeline to transform the SAX events that passes through it into queries
and responses to and from an LDAP interface.

Actions are the main form of logic processing in Cocoon. There are a number of ap-
proaches that can be taken when developing Actions. One possibility is to create a specific
action for each piece of application logic. This approach is heavy handed and requires much
development time to create actions.

The preferred method for creating actions in Cocoon is to provide a generic action that
can handle a wide range of specific actions. The Database Actions and Validator Actions are
examples of this approach. They will read a configuration file specified by a parameter, and
they will modify the specific results based on the configuration file.

Serializers read a SAX stream and convert it into the servlet’s output stream. Readers
read an input stream and copy the results to the servlet’s output stream.

Cocoon also provides functionality for querying, updating and embedding content stored
in relational SQL databases.

<p>
Name: <text name=“name“ size=“30“ required=“true“/>

<xsp:logic>
if (<xsl-formval:is-toosmall name=“name“/>)

<xsp:text>“Name“ must be at least 5 characters</xsp:text>
} else if (<xsp-formval:is-toolarge name=“name“/> {

<xsp:text>“Name“ was too long</xsp:text>
}
</xsp:logic>

</p>

Figure 3.5: Part of a logic sheet in Cocoon

Figure 3.5 shows part of a logic sheet in the Cocoon system. Although Cocoon aims to
separate the layout, logic and content, these are still intermixed to a certain degree.

An interesting feature of Cocoon is its ability to automatically detect devices based on
the HTTP request header information. The system can be configured to detect devices and
to invoke the corresponding stylesheets.

Cocoon is only an implementation technology and does not provide any direct support
for the design and the maintenance phases of Web services.

3.5.8 Microsoft ASP.NET and the Mobile Developer Toolkit

Microsoft’s new ASP.NET framework [dev] has extensive support for the creation of Web
pages and Web services. The Visual Studio graphical development environment enables
Web developers to rapidly create Web pages, Web sites and Web services. For example,
Microsoft’s C# has been designed to make it easy to export C# methods as Web services.

CHAPTER 3. RELATED WORK 41

The way ASP.NET deals with Web services is quite low-level: The framework lacks
a higher-level, language-independent model for dealing with device-independent Web ser-
vices.

Recently, Microsoft has started shipping the Mobile Developer Toolkit that is an exten-
sion to the Visual Studio Development Environment. This toolkit provides a visual environ-
ment for creating and deploying Web services for mobile devices.

The developer creates an application by placing components such as buttonsand text
fields into forms. Content is also inserted into these forms in terms of label components.
Based on the characteristics of a device (e.g., PDA, WAP phone, etc.), the platform automa-
tically adapts and renders the forms to be viewable on the device.

The main advantage of this development platform is that applications can be rapidly
developed without a high technical knowledge. The disadvantage is that the created appli-
cations are not flexible and rather difficult to maintain because of the use of forms (e.g.,
changing a logo on each page could mean that the developer has to manually delete each
logo component on every form).

Similar to Cocoon, the Mobile Developer Toolkit provides an implementation platform
and technology, but does not aim to support the design or maintenance stages of Web ser-
vices.

3.5.9 Total e-mobile

There are several commercial systems that claim to enable the construction of device-
independent Web services. Bluestone’s Total-e-Mobile business solution [blu02], for ex-
ample, is one such system and is a good representative.

Unfortunately, it is not always possible to find out technical details about these commer-
cial products and to test how good they work.

Bluestone says that its solution is device-independent and that “regardless of the device
being used, Total-e-mobile can serve up correctly formatted, fully functional content from a
single URL. It does this by automatically sensing the client device and using HP Bluestone’s
Dynamic-Stylesheet-Engine (DSE) to format content appropriately for any known device
whether it is a browser, a cell phone or a vending machine” [tot01].

The product uses XSL to define layout information for new services and can support
various mobile devices. It uses conversion techniques for existing HTML pages. Devices
are defined and identified by cookies that the clients store.

Technologies such as Bluestone, though, usually do not provide any support for the de-
sign phase of Web applications. In their white papers, for example, Bluestone state that
XSL stylesheets can be simply used to define layouts for different devices. They do not
explain, however, how the developer can designthe stylesheets and the service to minimize
redundancy and maximize reuse.

CHAPTER 3. RELATED WORK 42

3.6 Summary

This chapter presented related work. It described and discussed traditional Web engineer-
ing approaches and mobile Web access techniques that do not explicitlyattack the device-
independent Web engineering problem, but that are relevant and important as background
work. It then introduced a taxonomy for classifying and comparing the solutions that explic-
itly tackle the device-independent Web engineering problem and described and evaluated
these approaches.

Chapter 4

DIWE: A conceptual framework for
device-independent Web engineering

This chapter introduces a novel conceptual framework for device-independent Web engi-
neering. The Device-Independent Web Engineering (DIWE) framework is composed of an
XML-based Web language that is used to separate the layout, content and application logic
to construct flexible Web services and four default run-time processors that provide device-
independence support during service execution.

The framework introduces and uses two novel techniques, page splittingand process
partitioningby layout marking, that allow the Web developer to tune the selected information
and the sizes of generated pages according to the characteristics of a device that is being
targeted. These techniques attack the problem of displaying Web pages on devices with small
displays and memory sizes. The adaptation of content for a Web device is performed during
the design and implementation stages of Web site engineering. During the implementation,
the Web engineer has full control over the partitioning and selection of information.

The framework also introduces a novel technique called XSL stylesheet pre-processing
that allows the reuse of existingXSL stylesheets when adding new devices to a Web service.
The approach, advocated by the W3C, of having a new XSL stylesheet for every supported
device does not work effectively and there is often quite a lot of duplication in the stylesheets.
As a consequence, the maintenance overhead increases. Stylesheet pre-processing signifi-
cantly reduces the maintenance overhead because a lesser number of XSL stylesheets are
needed.

The chapter is structured as follows: First, the Web service life cycle discussed in Chapter
2 is revisited and device-independence considerations are integrated. Second, an overview of
the conceptual framework is given. Third, the concepts of page splitting, process partitioning
and XSL stylesheet pre-processing are presented and discussed.

4.1 Rethinking the Web Service Life Cycle

Adaptability is an important issue when building software of any sort [GJM91]. Require-
ments change between the time when the customers say what they want and the time when
the software is actually delivered. Fayad states in [FC96] that software that is being built

43

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 44

must be adaptable with respect to the ability to change the system’s capabilities in amount
and in kind, and the ability to fix the system without “breaking” other parts.

Requirements
Collection

Design for
Device Family

Implementation
for Device

Family

Maintenance
for Device

FamilyWaterfall Cascades

Iterative Feedback

Device Family
Identification

Deployment

Requirements Analysis

Figure 4.1: Life Cycle of a device-independent Web Service

As motivated in the previous chapters, one more adaptability requirement must be in-
cluded for Web sites: device-independence.

Figure 4.1 depicts the WWW Service Life Cycle model with the integrated device-related
processes. The requirements analysis includes traditional steps such as identifying the target
audience, the functionality goals of the service and quality parameters. Devices families
need to be identified that the service will support. A device family is made up of a collection
of Web devices that have similar characteristics. PDAs with high memory capacity and a
display size larger than 200x300 pixel size, for example, could make up a device family for
a particular service. Another example of a device family is the collection of WAP-enabled
phones and PDAs.

Each Web service will at least support one device family during its life time: the default
device family. For example, a typical decision in a cultural event Web site could be to
support a full HTML browser interface for the entire site as the default device family and a
WAP-based mobile phone interface for the ticketing service only.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 45

The main difference in the design, implementation and maintenance stages in compar-
ison to the traditional Web service life cycle model is that these phases differ individually
according to the device families that are to be supported. The WAP design, for example, will
show differences to the HTML design: The navigation will be different and due to the mem-
ory limitations of mobile phones, the amount of information per page that can be displayed
will also differ. The maintenance overhead is clearly higher than in traditional, HTML-only
Web services because of the higher number of formats and devices that need to be supported.
At the same time, changes may occur that only affect one device family and have no effect
on the others. For example, changing the HTML layout to give the site a more appealing
look-and-feel will not affect the WAP pages.

One important difference in the model is the introduction of a deploymentphase. The
deployment phase is ignored by well-known Web service life cycle models (e.g. [Sch98b,
TL97]). Deployment is especially important when more than one Web device has to be
supported and requires a significant planning, coordination and configuration effort.

As requirements change and new devices have to be supported, the Web engineer will
often go back to the device family identification stage in the requirements analysis phase and
iteratively design and implement support for a new device family.

The XML/XSL-based solution proposed in this dissertation is a flexible approach that
eases the implementation stage and attempts to reduce the overall design, maintenance and
deployment effort in engineering device-independent Web sites by reusing stylesheets and
application logic.

4.2 Basis of solution: Separation of Layout, Content and
Logic (LCL)

The basis of a solution to the device-independence Web site engineering problem is to find a
way to effectively separate the layout (i.e., user interface) from the application logic.

The idea of separating the user interface from the application logic for achieving flexibil-
ity is not new and well-known (e.g., [Coc96]). User interfaces in software systems change
frequently. Keeping the user interface “outside” the system and making the system program-
driven has been a discussion issue in software engineering for many years. This separation is
not always easy to achieve in traditional, large and complex software systems. The question
which modules belong to the user interface and which do not cannot always be answered
with ease. For example, should keyboard inputs be handled by the user interface component,
or are they part of the application logic?

Because Web services are event-driven, it is easier to separate the layout from the appli-
cation logic. A Web service reacts to user input by returning HTML that is then displayed on
the user’s browser so the interaction of the user with the service is session oriented. Every
time the user gives some sort of input to the system, a connection to the service is built from
the user’s browser.

This layout and logic separation by itself, however, is not enough to enable the engineer-
ing of truly device-independent Web sites. An interfacing mechanism is needed for interac-
tions that allows layouts of varying sizes to be supported with the same application logic.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 46

Furthermore, the content needs to be separated from the layout and the logic as well to in-
crease maintainability and flexibility. Clearly, a full Layout/Content/Logic (LCL) separation
is needed for achieving flexible, maintainable device-independent Web sites.

Although the XML and XSL technologies solve the layout and content separation prob-
lem, they do not address application logic separation in Web sites. The concepts presented
in this chapter fill this gap.

The next section discusses and summarizes the main requirements for a conceptual
framework that supports device-independent Web site engineering.

4.3 Main requirements for a device-independent Web en-
gineering framework

There are four important requirements that a device-independent Web engineering frame-
work should meet: It should use industrial standardsto enable the use of existing tools, it
should be platform and implementation language-independent, it should support the defini-
tion and generation of content and layout in XMLfor non-HTML Web devices and most
importantly, it should not increase the maintenance effort significantly.

The design of the DIWE framework presented in this chapter was guided by the following
goals:

� Support should be provided for the design, implementation, deployment and mainte-
nance phases of a device-independent Web site.

� The XML and XSL standards should be used as core underlying technologies. Many
Web developers are already familiar with XML and XSL and there is wide third party
tool support.

� Both static and dynamic content should be supported. The framework should enable
the construction of interactive Web sites as well as Web pages that are static in nature.

� The integration of content in Relational Database Management Systems (RDBMSs)
should be supported. RDBMSs are widely used in Web sites to store and manage
content. Providing RDBMS support is essential.

� Adaptation of the application logic in the Web site for a new device should not be
necessary. The same logic needs to work for any device (independent of its display
and memory size) so that application logic maintenance is eased.

� Layout adaptation should be possible. A page that can be displayed without problems
on a device with a large display may be too large for other devices and needs to be
split. Support should be provided for splitting pages.

� The use of stylesheets and separation of Layout, Content and Logic (LCL) should not
increase the maintenance effort significantly. A typical consequence of LCL separa-
tion may be that the number of project files and resources increase.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 47

4.4 Overview of the DIWE framework

The DIWE framework consists of the MyXML language, a compiler that can interpret the
language, and four basic run-time processorsthat are configured and deployed on the Web
server at run-time to provide device-independence support. These processors are Web ser-
vices themselves.

A device-independent Web service in the DIWE framework is a Web service that can
be extendedto support different Web devices of widely varying technical capabilities. The
first step in constructing a device-independentWeb service, hence, is to construct a flexible
Web service with the MyXML language. The language provides support for LCL separation
and is used by the Web developers to design and define the content and the interfaces to the
application logic. A MyXML language compiler integrates the layout and generates static
content embedded in HTML or XML, or source code that provides interactive functionality.

A Web device that accesses the Web server interacts with the instance of the run-time
processors that filter and adapt the output produced by the MyXML-generated Web services.
If no layout adaptation is required, the device may also be configured to directly access a
Web service.

4.4.1 Web service design, implementation, deployment and mainte-
nance

Figure 4.2 illustrates the usage of the framework in the design, implementation, deployment
and maintenance stages of Web services.

During the design stage of a Web service, the content, layout and the application logic
are designed and defined. The application logic is written using a technology of choice such
as Java servlets. The MyXML language is used to define the content and the interfaces to the
application logic and the layout is defined using XSL stylesheets.

To benefit from the advantages of XSL, the developer needs to follow traditional XSL-
based Web engineering guidelines such as analyzing the commonalities of the pages and not
encoding any content into the stylesheets to enable reuse (e.g.,[KKJK01]).

Content definition covers the structuring of information to be displayed in the Web ser-
vice so that it can be adapted according to the characteristics of different device families.
The content needs to be designed carefully to make it accessible from heterogeneous devices.
Having the content in XML does not necessarily guarantee that it will be automatically ac-
cessible by all devices. The description granularity, the degree the content is described in
XML, has to have the correct depth. If the description granularity is not deep enough, it will
not be possible for some devices to select it using XSL. More descriptive tags will have to
be inserted into the XML content later and the maintenance overhead will increase.

Figure 4.3 illustrates the description granularity problem. The content definition on the
left has a lower description granularity than the definition on the right. Suppose only one
sentence per page can be displayed because the Web device is a watch with a mini browser
(e.g., a device such as IBM’s Linux watch [NKR�02]). The content definition on the left
would cause problems because the entirecontent is wrapped up in a single �text� tag. The
definition on the left, in comparison, marks each sentence using extra �sentence� tags and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 48

MyXML Language

Content

XSL+ =
Static or
dynamic
content

(Files or
Source Code)

2)

Implementation

3)

Deployment

Processor+ =
Device-
specific
content

Static or
dynamic
content

1)

Design

Content
definition
(XML/MyXML)

Layout
definition

(XSL)

Application
logic

definition

4)

Maintenance

Layout
definition
for new
device

Content
management

Figure 4.2: Web service design, implementation, deployment and maintenance

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 49

 <text>
This is a long example text:

To be or not to be. To be or
not to be. To be or not to be.
To be or not to be.
be or not to be. To be or not
to be. To be or not to be.

To be or not to be. To be or
not to be.
</text>

<text>

<sentence>
This is a long example text:
</sentence>

<sentence>
To be or not to be. To be or not
to be. To be or not to be. To be
or not to be.
</sentence>

<sentence>
be or not to be. To be or not to
be. To be or not to be.
</sentence>

<sentence>
To be or not to be. To be or not
to be.
</sentence>

</text>

Figure 4.3: Differences in description granularity

thus, allows the selection of sentences one by one. The more descriptive the content is, the
better it is for device-independent access.

During the implementation stage, a compiler that interprets the MyXML language is used
to process the content and add an XSL layout to it. The resulting dynamic or static content
is processed by the run-time processors during the deployment phase and device-specific
content is generated.

During the maintenance phase, the XSL layout is extended for new devices (e.g., using
new XSL stylesheets or XSL stylesheet pre-processing) and the XML content is maintained.

4.4.2 Processors

The four default run-time processors in the DIWE framework are: The device detection,
logic interfacing, page splittingand process partitioningprocessors. These processors are
instantiated and used at run-time in combination with the static and dynamic Web services
defined by the MyXML language and generated with a MyXML language compiler. The
Web developer can optionally construct and deploy application-specific processors that can
process the content produced by the MyXML-generated Web services (e.g., to generate PDF
receipts for an e-commerce order).

The device detectionprocessor is responsible for device detection and identification. It
can be configured to detect the device a user is using based on the HTTP request header and
respond accordingly.

The logic interfacingprocessor provides device-independent application logic interfac-
ing support to the services specified by the MyXML language. It allows the application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 50

to be written once and used for multiple device-specific MyXML-generated Web services
without any modifications.

The page splittingand process partitioningprocessors provide layout adaptationsupport.
Layout adaptation in Web site construction deals with the problem of displaying pages on
device families with small display and memory sizes. It also deals with the problem of
providing Web form-based interaction support to users on devices with limited capabilities.
An e-commerce application, for example, may collect information from the user such as her
name, address and credit card number in a singleHTML page. This information may be too
large for a weak device such as a WAP phone.

The page splittingtechnique deals with the page size problem by using a combination
of special tags that are encoded into the XSL stylesheets that are interpreted by the page
splitting processor at run-time. Based on this “splitting” information, the content of a single
page can be incrementally displayed on the target device family over a number of steps.

The process partitioning processor applies the process partitioningtechnique to deal with
Web form-based input and interactions on devices with small displays and limited memory.
It collects the required input from the user partially over many smaller pages. The applica-
tion logic is invoked once all the information has been submitted. The process partitioning
technique uses the page splitting technique to adapt the layout to the device.

4.5 Flexible Web service construction in three steps

Device

HTTP Request

Web server
MyXML Generated HTML/

XML file

Read

Reply (HTML/XML)

Figure 4.4: Interactions between the user’s device, the Web server and the generated static
content

The first step in creating a flexible Web service that is extensible and supports LCL
separation is to define the content in a so called MyXML document. These documents are

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 51

Device

HTTP Request

Web server Application logic class MyXML Generated Layout/
Content class

Instantiate and invoke

Instantiate and invoke

Reply (HTML/XML)

Figure 4.5: Interactions between the user’s device, the Web server, the application logic and
the generated functionality that produces the dynamic content

well-formed XML documents that contain the structured content and can also be based on a
document type definition (DTD) that defines the content’s overall structure. MyXML docu-
ments consist of XML content enriched with XML tags from the MyXML namespace. The
MyXML namespace defines the elements in the MyXML language. The language enables
the developer to add database integration functionality and dynamic content to a Web service.

In the second step, all the necessary layout information is added to the content defined
in MyXML documents as separate XSL documents. Context information can be used in
the layout definition rules and enables the processing of elements only if they appear in a
predefined context (e.g., if they have a certain parent element, if they have an attribute with
a given value etc.). XSL stylesheets can also be used to add static content, such as common
headers and footers to the documents.

If the service being constructed produces static content, a MyXML language compiler is
used to process the MyXML document and the XSL layout definition and generate an HTML
or XML file. The generated files are then deployed on the Web server. Figure 4.4 shows a
sequence diagram describing the interactions between the user’s device, the Web server and
the generated static content.

If the service is dynamic, source code that encapsulates the content and layout informa-
tion is generated. The reference implementation produces Java sources and this source code
provides hooksthat the application logic can use to instantiate and invoke it. The Web de-
veloper then provides the application logic in the third step and uses the generated sources

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 52

to produce the dynamic content at run-time. Figure 4.5 shows a sequence diagram describ-
ing the interactions between the user’s device, the Web server, the application logic and the
generated functionality that produces the dynamic content.

4.6 Device-independent Web service construction in three
steps

HTTP Request

Device detection Page splitting/Process
partitioning

Device

MyXML Generated HTML/
XML file

Read

Result stream

Reply (HTML/XML)

Web server

Instantiate and invoke

Figure 4.6: Sequence diagram showing the interactions between the device-independence
components for static content

The first step in creating a device-independent Web service is to create a flexible Web
service as described in the previous section. The Web service can later be extended to support
multiple layouts with the same content by either using different XSL stylesheets or XSL
stylesheet pre-processing. Page splitting and process partitioning information is embedded
into the stylesheets during service definition.

In the second step, the device detectionprocessor is configured and deployed on the Web
server. At run-time, based on the request and the device the user is using, the device detection
processor responds by dispatching the HTTP request to the corresponding device-specific
pages that have been prepared by using the MyXML language.

If the service the user is accessing is static, the device detectionprocessor reads the
MyXML-generated HTML/XML file and passes the result stream to the page splittingand

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 53

Device

HTTP Request

Page splitting/Process
partitioning

Device detection MyXML Generated Layout/
Content class

Application Logic

Dispatch request and device name

Send parameters and device name

Send parameters

Logic interfacing

Result stream

Result stream

Reply (HTML/XML)

Web server

Instantiate and invoke

Figure 4.7: Sequence diagram showing the interactions between the device-independence
components for dynamic content

process partitioningprocessors. These processors process the result stream and split the
pages and interactions accordingly. They return HTML/XML to the requesting client device.
Figure 4.6 shows the sequence diagram that illustrates the interactions between the default
processors in the framework for processing static content.

The third step is only needed if the service being constructed is dynamic. In this step, the
logic interfacingprocessor is configured and deployed on the Web server. The logic inter-

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 54

facing processor transparently and automatically invokes the corresponding layout/content
classes based on the name of a device family.

Figure 4.7 shows a sequence diagram that illustrates the interactions between the de-
fault processors in the framework at run-time for processing dynamic content. The device
detectionprocessor receives the HTTP request and invokes the application logic. The appli-
cation logic instantiates and invokes the logic interfacingprocessor with the device name it
has received from the device detectionprocessor and parameters it would like to pass to the
layout/content class. The logic interfacingprocessor then instantiates the corresponding lay-
out/content class and invokes it. It passes the result stream returned from the layout/content
class to the page splittingand process partitioningprocessors. These processors process the
page splitting and process partitioning information in the stream and return HTML/XML to
the calling client device.

4.7 The MyXML language

The MyXML language used in MyXML documents is a simple XML-based language that
uses loops, variables and database access functions.

One of main advantages of an XML-based Web language is that it allows the definition
of functionality that is platform and technology independent. Although the reference imple-
mentation is based on the generation of Java sources, any popular programming or scripting
language can be generated from the MyXML documents and XSL specifications with an
appropriate MyXML language compiler.

4.7.1 Overview

Each element in the MyXML language has a special meaning and is processed accordingly
by the MyXML language compiler. Variable definitions are the most important elements in
the MyXML namespace because they define the interface between the application logic and
the generated sources containing the layout and the content.

There are two types of variables in the language: Singlesand Multiples. Singlevariables
map to String objects in Java (i.e., character arrays in C) and Multiple variables map to arrays
of String objects (i.e., n dimensional character arrays in C).

A Loop in the MyXML language defines a block of content and MyXML elements that
are iterated according to the number of elements in the Multiple variable in the Loop. Each
Loop has to have at least one Multiple variable in it and Multiples cannot exist without an
encapsulating Loopblock as its parent. A Loopblock, for example, that contains a Multiple
variable names will be processed by the MyXML language compiler to produce Java source
code (i.e., in a Java implementation) that looks like the following (pseudo code):

for(i=0;i<=names.length;i++) {
... DO SOMETHING ...;
<print out> names[i] ...;
... DO SOMETHING ...;

}

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 55

The Loop, Singleand Multiple statements are all a Web developer needs to successfully
separate the application logic from the content and the layout. The MyXML language, how-
ever, also provides CGI and database functionality that eases the construction of interactive,
database-backed Web services.

4.7.2 MyXML Namespace

The MyXML namespace describes 18 elements that belong to the MyXML language. The
language has 8 core elements that are needed for constructing flexible Web services. Fur-
thermore, it provides 10 general utility elements for tasks such as accessing and embedding
the current date and time into the content and formatting functionality for eliminating car-
riage returns and spaces. The XML syntax of the language allows the easy definition and
extension of the general utility functionality.

The 8 core elements in the MyXML namespace are the�myxml:single�,�myxml:multiple�,
�myxml:loop�, �myxml:cgi�, �myxml:sql�, �myxml:dbcommand�, �myxml:dbitem�
and �myxml:attribute� elements.

The�myxml:single� element describes a Singlevariable that can be used arbitrary times
in a MyXML document. The value of a �myxml:single� element is determined at run-time
(i.e., provided by the application logic) and the same value is used whenever the element
appears. A possible use of the �myxml:single� element is to print a customized welcome
text depending on who is currently logged in. For example, the MyXML document:

<?xml version="1.0"?>
<welcome_text> Welcome to this site </welcome_text>
<myxml:single> name </myxml:single>

defines a welcome text and a Singlevariable name that is instantiated by the application
logic at run-time (e.g., name=”Engin”, producing “Welcome to this site Engin”).

The �myxml:loop� and �myxml:multiple� elements provide the Loop and Multiple
variable functionality. For all values provided as input for the �myxml:multiple� element,
the part of the document enclosed in the�myxml:loop� element is processed. For example,
the MyXML document:

<?xml version="1.0"?>
<myxml:loop>

<welcome_text> Welcome to this site </welcome_text>
<myxml:multiple> names </myxml:multiple>

</myxml:loop>

defines a welcome text for every name in the Multiple variable names that is instantiated by
the application logic at run-time (e.g., names=�“Engin”,”John”�, producing “Welcome to
this site Engin”, “Welcome to this site John”). �myxml:loop� elements can be cascaded.
Loops within other loops can be used, for example, to print a table containing all the books
in a bookstore along with a list of authors for each book. The dimension of the Multiple
variable is determined based on its position within the loop (i.e., dimension of 1 within the
first loop, dimension of 2 within the second loop and so on).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 56

The �myxml:cgi� element supports direct access to HTTP CGI parameters within a
MyXML document. The definition of the �myxml:cgi� element has to correspond to the
name of the CGI parameter it refers to (e.g., the name of the input field in an HTML form).
For example, the MyXML document:

<?xml version="1.0"?>
<welcome_text> Welcome to this site </welcome_text>
<myxml:cgi> name </myxml:cgi>

defines a welcome text for a user who’s name is received by a CGI parameter posted by a
Web form.

The �myxml:attribute� element is used to define an attribute of a parent element that
is not in the MyXML namespace. The usage and functionality of this element is simi-
lar to the �xsl:attribute� element from the XSL namespace. The main difference is that
�myxml:attribute� can be used for dynamiccontent whereas �xsl:attribute� is only for
static content. For example, the �myxml:attribute� element in the MyXML document:

<?xml version="1.0"?>
<a> Click here

<myxml:attribute name="href">
<myxml:single> url </myxml:single>

</myxml:attribute>

defines a hypertext link and sets the hrefattribute of the HTML a element to the value of the
Singlevariable url at run-time.

The�myxml:sql� element represents a database query. It is similar to the�myxml:loop�
element. The document fragment enclosed by the �myxml:sql� element is processed
for every record in the query’s result set. Access to database fields is provided by the
�myxml:dbitem� element. The query to be executed is defined by the�myxml:dbcommand�
element and can contain other MyXML elements from the MyXML namespace such as Sin-
gle variables. A possible use of the �myxml:sql� element is to generate XML from the
content stored in a relational DBMS. For example, the MyXML document:

<?xml version="1.0"?>
<myxml:sql>

<myxml:dbcommand>
select * from names

</myxml:dbcommand>
<theName>

<myxml:dbitem> name </myxml:dbitem>
</theName>

</myxml:sql>

defines an SQL query in the database that selects all records in the table names and wraps
the contents of the field name in XML theNametags. The resulting static content produced
by the MyXML language compiler could look like this:

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 57

<?xml version="1.0"?>
<theName>

Engin
</theName>
<theName>

John
</theName>
...

The�myxml:currentdate� element is a good representative of the functionality provided
by the general utility elements in the MyXML namespace. For example, the MyXML docu-
ment:

<?xml version="1.0"?>
<date> Today’s date is:

<myxml:currentdate/>
</date>

defines the content “Today’s date is:” enriched with the system date functionality. The
MyXML language compiler inserts the necessary date for static content or produces the
system date source code for dynamic content.

Other general utility functions allow the Web developer to control the parsing and for-
matting of the content and insert output produced by external system scripts and commands
into it (e.g., inserting the output of the UNIX ls command into the content).

4.7.3 A simple MyXML example: Searching for musicals

Suppose a search form needs to be implemented. The form lets the user search for musicals
in the Web site of a cultural organization that specializes in selling musical tickets. All
musicals containing a certain keyword need to be retrieved from the database and have to be
displayed in a Web page in a given layout. The content is dynamic because it is generated
according to user input. The user enters a keyword that is then transmitted to the Web page.

Figure 4.8 shows the MyXML document that defines this functionality. There is a strict
separation of content and layout as only the content and its structure are defined in the
MyXML document. The example illustrates the use of CGI parameters and the handling
of SQL queries with the MyXML language. The CGI parameter is used to construct the
query string (see lines 6 and 7) and after the query is executed, the title field is extracted
from the result set (see lines 9-11).

After the content has been defined, an XSL stylesheet is used to add a simple layout to
the content. The search result is displayed in a table. Figure 4.9 depicts the XSL stylesheet
used to format the output.

The XSL stylesheet generates HTML output and adds a heading to the document. For
every record in the query’s result set, a new row is added to the table. Of course, real world
stylesheets would contain more complex rules and a more sophisticated layout would be
defined.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 58

1. <?xml version="1.0"?>
2. <!DOCTYPE VIF>
3. <VIF xmlns:myxml=".../ns/myxml">
4. <query>
5. <myxml:sql>
6. <myxml:dbcommand>SELECT * FROM VIF_EVENTS WHERE title LIKE
7. <myxml:cgi>musical_title</myxml:cgi>
8. </myxml:dbcommand>
9. <db_title>
10. <myxml:dbitem>title</myxml:dbitem>
11. </db_title>
12. </myxml:sql>
13. </query>
14. </VIF>

Figure 4.8: Example MyXML file to search in a database

1. <?xml version="1.0"?>
2. <xsl:style sheet version="1.0"
3. xmlns:xsl=".../Transform"
4. xmlns:myxml=".../ns/myxml">
5. <xsl:import href="myxml.xsl"/>
6. <xsl:output method="html" indent="yes"/>
7.
8. <xsl:template match="query">
9. <html><h2>The result of your search is:</h2>
10. <table><xsl:apply-templates/></table>
11. </html>
12. </xsl:template>
13.
14. <xsl:template match="db_title">
15. <tr><td><xsl:apply-templates/></td></tr>
16. </xsl:template>
17. </xsl:style sheet>

Figure 4.9: XSL stylesheet for formatting the output

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 59

1. public class VIF {
2. protected HttpServletRequest request = null;
3. protected ResultSet SQL0 = null;
4. public VIF(HttpServletRequest request) {
5. this.request = request;
6. }
7. protected String getCGIParameter(String paramName) {
8. return request.getParameter(paramName);
9. }
10. protected ResultSet processSQLStatement(
11 String select, String user,
12. String pwd, String url, String driver) {
13. // do sql query using JDBC here!
14. }
15. public void printContents(PrintWriter pw) {
16. pw.println("<html>");
17. pw.println(" <h2>");
18. pw.println(" The result of your search is:");
19. pw.println(" </h2>");
20. pw.println(" <table>");
21. printHTMLSQL0(pw);
22. pw.println(" </table>");
23. pw.println("</html>");
24. }
25. public void printContentsSQL0(PrintWriter pw) {
26. try {
27. SQL0 = processSQLStatement(
28. "SELECT title, isbn_nr FROM VIF_EVENTS WHERE title LIKE“
29. +getCGIParameter("musical_title")
30. +";", "user", "pwd", "connect", "dbdriver");
31. while (SQL0.next()) {
32. pw.println(" <tr>");
33. pw.println(" <td>");
34. pw.println(SQL0.getString("title"));
35. pw.println(" </td>");
36. pw.println(" </tr>");
37. }
…

Figure 4.10: Part of the generated Java Source Code

The Java source code that is generated from the MyXML document and the XSL
stylesheet is shown in Figure 4.10. This generated Java class encapsulates the layout and
the content information that was separately defined in the MyXML document and the XSL
stylesheet file. Whenever a new layout is needed, only the XSL stylesheet has to be adapted.

The application logic can now create a new instance of this layout/content class and call
its printContents()method (see line 15). The output produced by the method (e.g., see lines
16-23) is usually directly sent back to the calling client.

4.7.4 Another MyXML example: Shopping Cart

Suppose a flexible e-commerce Web service needs to be built for the cultural organization
that specializes in selling musical tickets. The shopping cart is to allow users to manage
tickets that they wish to buy.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 60

1. <?xml version="1.0" encoding="US-ASCII"?>
2. <!DOCTYPE cart>
3. <cart xmlns:myxml="http://www.infosys.tuwien.ac.at/ns/myxml">
4. <title>
5. This is a simple shopping cart example using MyXML.
6. </title>
7.
8. <user>
9. <myxml:single>username</myxml:single>
10. </user>
11.
12. <items>
13. <myxml:loop>
14. <item>
15. <myxml:multiple name="id" create_name_element="no">
16. product_id</myxml:multiple>
17. <myxml:multiple name="name" create_name_element="no">
18. product_name</myxml:multiple>
19. <myxml:multiple name="quantity" create_name_element="no">
20. product_quantity</myxml:multiple>
21. <myxml:multiple name="price" create_name_element="no">
22. product_price</myxml:multiple>
23. </item>
24. </myxml:loop>
25. </items>
26. </cart>

Figure 4.11: MyXML content definition for a shopping cart

Again, the content and the layout are defined in separate files. The dynamic content of
the shopping cart is provided by the application logic at run-time. The application logic
determines from user input which tickets have been booked and gives out the contents of the
shopping cart using the MyXML generated layout/content encapsulating Java class.

Figure 4.11 depicts the MyXML document file for the shopping cart application. A
�myxml:single� variable provides the value for the name of the user currently logged in. A
�myxml:loop� element is used to iteratively step through the contents of the user’s shopping
cart. In the loop, �myxml:multiple� elements access the contents of the user’s shopping
cart. An item in the cart, consists of an ID number, a name, a price and the quantity of tickets
the user wishes to order.

The layout of the shopping cart is defined with an XSL stylesheet. Figure 4.12 shows the
XSL layout definition for the shopping cart. In this simple example, a welcome message is
printed for the user and a table contains all the items currently stored in the shopping cart.

Note that a special myxml.xslstylesheet is imported in the layout definition (see line 5).
The imported stylesheet contains the default set of XSL processing rules for the MyXML
namespace.

The rule for the �cart� element provides a basic HTML structure (see line 9-16). The
content of the�user� element (see lines 8-10 in Figure 4.11) is used to print an introductory
message including the user’s name (see lines 18-20 in Figure 4.12). In the HTML docu-
ment’s body, a simple table is constructed containing the shopping cart’s contents. For every
�item� element (see lines 12-23 in Figure 4.11), a new table row is added that contains

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 61

1. <?xml version="1.0"?>
2.
3. <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
4. version="1.0">
5. <xsl:import href="myxml.xsl"/>
6. <xsl:output method="html" indent="yes"/>
7.
8. <!-- root element: create HTML skeleton -->
9. <xsl:template match="cart">
10. <html><head><title>
11. <xsl:value-of select="title"/>
12. </title></head><body>
13. <xsl:apply-templates/>
14. </body>
15. </html>
16. </xsl:template>
17.
18. <xsl:template match="user">
19. Shopping cart for user <xsl:apply-templates/>
20. </xsl:template>
21.
22. <xsl:template match="items">
23. <table border="1"> <xsl:apply-templates /></table>
24. </xsl:template>
25.
26. <xsl:template match="item">
27. <tr><td><xsl:apply-templates select="*[@name='id']" /></td>
28. <td><xsl:apply-templates select="*[@name='name']" /></td>
29. <td><xsl:apply-templates select="*[@name='quantity']" /></td>
30. <td><xsl:apply-templates select="*[@name='price']" /></td>
31. </tr>
32. </xsl:template>
33. </xsl:stylesheet>

Figure 4.12: XSL layout definition for the shopping cart

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 62

1. import java.io.*;
2. public class cart {
3. ...
4. public cart(String username, String[] product_quantity,
5. String[] product_id,
6. String[] product_name, String[] product_price) {
7. this.username = username;
8. this.product_quantity = product_quantity;
9. this.product_id = product_id;
10. this.product_name = product_name;
11. this.product_price = product_price;
12. }
13. public void printContents(PrintWriter pw) {
14. pw.println("<html><head><title>");
15. pw.println(
16. "This is a simple shopping cart example using MyXML.");
17. pw.println("</title></head><body>");
18. pw.println(
19. "This is a simple shopping cart example using MyXML.");
21. pw.println(”Shopping cart for user ");
22. pw.println(username);
23. pw.println("<table border=\"1\">");
24. printContents0(pw);
25. pw.println(”</table></body></html>");
26. }
27. public void printContents0(PrintWriter pw) {
28. for(int i=0; i<product_id.length; ++i) {
29. pw.println("<tr> <td>");
30. pw.println(product_id[i]);
31. pw.println("</td> <td>");
32. pw.println(product_name[i]);
33. pw.println("</td> <td>");
34. pw.println(product_quantity[i]);
35. pw.println("</td> <td>");
36. pw.println(product_price[i]);
37. pw.println("</td> </tr>");
38. }
39. }
40. }

Figure 4.13: Part of the generated shopping cart Java code encapsulating the HTML code

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 63

1. // test application for cart.java
2.
3. import java.io.*;
4.
5. public class carttest {
6. public static void main(String args[]) {
7.
8. // provide shopping cart values
9. String username = ”Engin Kirda";
10. String[] id = {"1", "3", "4"};
11. String[] name = {"PS/2 Mouse", "Cherry Keyboard",
12. "Logitech Wingman"};
13. String[] quantity = {"2", "1", "1"};
14. String[] price = {"399", "599", "799"};
15. cart c = new cart(username, quantity, id, name, price);
16. PrintWriter pw = new PrintWriter(System.out);
17. c.printContents(pw);
18. pw.flush();
19. pw.close();
20. System.out.println("Done.");
21. }
22. }

Figure 4.14: Invoking the generated code

table data elements for all the characteristics of the items in the shopping cart (i.e., ID, name,
quantity and price) (see lines 22-24 and 26-32 in Figure 4.12).

Figure 4.13 shows the Java code that the MyXML language compiler generates (i.e., in
a Java implementation) from the content and layout definitions and Figure 4.14 depicts how
the generated code is invoked from the application logic (see lines 15-17 in Figure 4.14).
Item information in the shopping cart such as the ID, name and quantity are passed to the
layout/content code using string arrays (see lines 9-14 in Figure 4.14).

4.7.5 Post XSL stylesheet application

In some cases, it is not advantageous to generate static content in HTML/XML or source
code functionality that produces dynamic content. There are situations when the developer
does not wish to add a layout to the content during the implementation, but would like to
keep it flexible and add it when the service is run. For example, the layout may be changing
often and generating HTML or source code might be costing too much time.

Post stylesheets are XSL stylesheets that can be applied to the content at run-time. For
example, if the first XSL stylesheet produces XML data instead of adding a layout to the
content, a second stylesheet, the post XSL stylesheet, can be used to process it and add a
layout. When the MyXML-generated source code is compiled and run, the specified post
stylesheet is automatically applied to the generated content.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 64

4.8 XSL stylesheet pre-processing for stylesheet reuse

The examples given in the previous sections used a single XSL definition to add a layout to
the content. Clearly, if the aim is to support multiple devices, it is possible to use a different
stylesheet for every device.

The problem is that as the number of devices increase, the number of stylesheets increase
proportionally. The stylesheets are often quite similar with respect the processing rules.
Often, the only difference is the formatting specifications and the Web format being used
(e.g., HTML, WML, etc.). In a service with 4 stylesheets, for example, 12 stylesheets would
be necessary to support 3 different devices. There would be much redundancy and hence,
the maintenance overhead would significantly increase.

Before a layout is added to the content, a technique called XSL stylesheet pre-processing
is used to eliminate the described duplication and enable the reuse of existing XSL stylesheets:
Instead of the traditional approach of using a new XSL stylesheet for every new device, the
information necessary for the device is integratedinto the existing stylesheets using spe-
cial descriptors that help differentiate between the device-specific layout in the stylesheets.
The MyXML language compiler processes these specifications and generates the appropriate
XSL stylesheet for a particular device.

Figure 4.15 depicts a portion of an XSL stylesheet from a commercial Web site. The
single XSL match template (see lines 1-42) defines an HTML layout for traditional full-
fledged browsers and a simpler HTML version of the page for PDAs. The @myxml:device
descriptors (e.g., see lines 3 and 9) are used to define device-specific output. In the exam-
ple, HTML for traditional browsers is the default device family (see Section 4.1) and this
output is marked in @myxml:device:defaultblocks (e.g., see lines 3-6). The PDA-specific
output, on the other hand, is marked in @myxml:device:pdablocks (e.g., see lines 9-14).
New devices can be added to the stylesheets by embedding layout content in blocks of the
form @myxml:device:�Name of device�, where the name can be any string description of a
device family.

In the example, a descriptor of the form @myxml:device:default,pdain the stylesheet
(see lines 16-18) indicates that the layout is valid for the default device family as well as the
PDA device family. A comma can be used between device names to signal the compiler that
the following layout definition is valid for more than one device.

Figure 4.17 shows the XSL stylesheet for the traditional browser version of the page after
pre-processing. Figure 4.16 shows the XSL stylesheet for the PDA version of the page after
pre-processing. Pre-processing filters out the layout definitions that are not needed for the
device for which the XSL stylesheet is being generated.

The XSL pre-processing technique eliminates the need to copy the stylesheets and adapt
them for a new device. This is important because XSL stylesheets can become quite complex
in real-world Web sites. Using a separate stylesheet for a new device only shifts the problem
of copyingand adapting source code to copyingand adapting stylesheets.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 65

1. <xsl:template match="event_list">
2. <!-- %%%%%%%%%%%%% HTML %%%%%%%%%%%%%%%%%%%%%-->
3. @myxml:device:default{
4. <table border="0">
5. <tr><td>Event</td><td>Location</td></tr>
6. }@myxml:device
7.
8. <!-- %%%%%%%%%%%%% PDA %%%%%%%%%%%%%%%%%%%%%%-->
9. @myxml:device:pda{
11. <xsl:apply-templates select="//explanation"/>
12. <table border="1" cellspacing="0" cellpadding="2">
13. <tr><td>Events</td><td>Location</td></tr>
14. }@myxml:device
15.
16. @myxml:device:default,pda{
17. <xsl:apply-templates/>
18. }@myxml:device
19.
20. <!-- %%%%%%%%%%%%% HTML %%%%%%%%%%%%%%%%%%%%%-->
21. @myxml:device:default{ </table> }@myxml:device
22.
23. <!-- %%%%%%%%%%%%% PDA %%%%%%%%%%%%%%%%%%%%%%-->
24. @myxml:device:pda{
25 </table>
 <table border="0" width="400">
26. <tr><td alight="left">
27. <a href="/wf/
28. displayevents?device=pda">
29. <img border="0" src="/images/english/buttons/
30. vorige.gif"
31. alt="Previous events"/></td>
32. <td alight="right">
33. <a href="/wf/
34. displayevents?device=pda“>
35. <img border="0" alt="More events"
36. src="/images/english/buttons/naechste.gif"/>
37. </td></tr></table>
38.
39. Back to the
40. first event
41. }@myxml:device
42. </xsl:template>

Figure 4.15: XSL Stylesheet reuse with pre-processing

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 66

1. <xsl:template match="event_list">
3. <xsl:apply-templates select="//explanation"/>
4. <table border="1" cellspacing="0" cellpadding="2">
5. <tr><td>Events</td><td>Location</td></tr>
6. <xsl:apply-templates/>
7. </table>
8.

9. <table border="0" width="400">
10. <tr><td alight="left">
11. <a href="/wf/
12. displayevents?device=pda">
14. <img border="0" src="/images/english/buttons/vorige.gif"
15. alt="Previous events"/>
16. </td>
17. <td alight="right">
18. <a href="/wf/
19. displayevents?device=pda">
21. <img border="0" alt="More events"
22. src="/images/english/buttons/naechste.gif"/>
23. </td></tr></table>
26. Back to
27. the first event
29. </xsl:template>

Figure 4.16: XSL Stylesheet for PDA access after pre-processing

1. <xsl:template match="event_list">
2. <table border="0">
3. <tr><td>Event</td><td>Location</td></tr>
4. <xsl:apply-templates/>
5. </table>
6. </xsl:template>

Figure 4.17: XSL Stylesheet for full HTML access after pre-processing

4.9 Page splitting

The main idea behind page splitting in Web site construction is to split and partition the
content in XSL layout files by groupinglayout elements. A groupidentifies a single unit of
information on the page that a device family is able to display. Groups can also be partitioned
and split using subgroupsand thus, different splitting granularities can be achieved.

Figure 4.18 illustrates the concept of grouping and subgrouping on a commercial Web
page (belonging to the Vienna International Festival Web site) that displays a list of cultural
events (i.e., exhibitions, ensembles, theaters, performances) and their locations. On the page,
the entire event information has been marked as belonging to a group. Every two events on
the page make up a subgroup.

Depending on the order they appear on a page, each group and subgroup implicitly re-
ceives an ID to make it uniquely identifiable (the ID count starts from 0). In the Figure, for
example, there is one group with the ID 0, and the depicted subgroups have IDs 0, 1 and 2.

Each time the layout is presented, only the information in a single group is displayed and

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 67

Figure 4.18: Page splitting using groups and subgroups

the other groups are ignored. If, for example, the layout in Figure 4.18 is presented with
the group ID 1, no event information would not be displayed and one would only see layout
elements that do not belong to any groups (i.e., the header, title, logo in the page).

If a group contains subgroups, similarly, the subgroups are displayed one after one. Only
the group and subgroup with the given ID would be displayed. For example, to display the
information in the second subgroup, the layout in Figure 4.18 would be presented with the
group ID 0 and subgroup ID 1.

By setting a so called stepvalue, the subgroups that are to be displayed can be further
adjusted. For example, a step value of 2 and a subgroup ID of 0 would display the first
and the second subgroup and then stop. The next time the layout is presented, the next two
subgroups would be displayed. With a step value of 3, the first three subgroups would be
displayed, then the next three and so on.

The described simple mechanism allows the selection of portions of a page during Web
site construction so that they can be incrementally displayed on devices with small displays
and limited memory sizes.

The page splittingprocessor in the DIWE framework is responsible for giving out the
information partially over many smaller steps. It keeps track of the group and subgroup
numbers and can receive commands on which splits (i.e., layout fragments) to give out.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 68

4.9.1 Page splitting descriptors and parameters

Parameter Description

ui

sg Indicates the subgroup number to display

 Indicates the group number to display

reset
 Signals that all internal counters (e.g.,
 subgroup and group count) should be reset

Table 4.1: Page splitting-related CGI parameters that the page splitting processor interprets

Descriptor

 @myxml:nextGroup

 @myxml:currentGroup

 @myxml:previousGroup

 @myxml:currentSubgroup

 @myxml:previousSubgroup

 @myxml:nextSubgroup

Functionality

 Substitute this descriptor with the
 current group number

 Substitute this descriptor with the next
 group number

 Substitute this descriptor with the
 previous group number

 Substitutes this descriptor with the current
 subgroup number

 Substitutes this descriptor with the previous
 subgroup number

 Substitutes this descriptor with the next
 subgroup number

Table 4.2: Descriptors that the page splitting processor substitutes at run-time

Group and subgroup information is inserted into the XSL stylesheets using @myxml:group
and @myxml:subgroupdescriptors. When processing an output stream at run-time, the page
splittingprocessor looks for these descriptors to split a page.

Further, a Web page is constructed in such a way that when a user follows a link, the
page splittingprocessor is invoked with CGI parameters that signal to it which group and
subgroup number it should display. Table 4.1 lists the page splitting-related CGI parameters
the page splittingprocessor understands. The ui parameter indicates the group and sg, the
subgroup number to display. The resetparameter can be used to reset all internal group and
subgroup counters. The page splittingprocessor can accept CGI parameters using both the
GET and POST HTTP methods.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 69

Because it is not always possible to know how many splits a page consists of and what
the next group or subgroup number is, the page splittingprocessor is able to recognize
and interpret descriptors at run-time that request group/subgroup information. Table 4.2
lists descriptors that the page splittingprocessor substitutes with appropriate values. The
@myxml:nextGroupdescriptor, for example, is substituted with the next group number in
the page splittingprocessor’s internal counters.

4.9.2 A simple page splitting example

Suppose the information on the HTML page in Figure 4.18 has to be displayed on a WAP
device. Clearly, the information on the HTML page is too large and cannot be displayed in a
single WML page.

1. <event_list>
2. <myxml:sql>
3. <myxml:dbcommand>
4. select * from WF2001_EVENTSENGLISH as e, WF2001_LOCATION
5. as l where (e.location_id=l.id)
6. </myxml:dbcommand>
7. <event>
8. <title>
9. <link>
10 <myxml:dbitem> title </myxml:dbitem>
11 </link>
12 </title>
13 </event>
14 </myxml:sql>
15. </event_list>

Figure 4.19: MyXML document for the events page

1. <xsl:template match="event">
2. <tr>
3. <xsl:apply-templates/>
4. </tr>
5. </xsl:template>
6.
7. <xsl:template match="title">
8. <td>
9. <xsl:apply-templates select="link"/>
10. </td>
11. </xsl:template>
12.
13. <xsl:template match="link">
14. <a> <xsl:apply-templates/>
15. </xsl:template>

Figure 4.20: XSL layout definition for HTML event page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 70

1. <xsl:template match="event">
2. @myxml:group{
3. <xsl:apply-templates/>
4. }@myxml:group
5. </xsl:template>
6.
7. <xsl:template match="title">
8. @myxml:subgroup{
9. <p>
10. <xsl:apply-templates select="link"/>
11. </p>
12. <a href=“/collector?ui=@myxml:nextGroup
13. & sg=@myxml:nextSubGroup”>
14. Next Page
15.
16. }@myxml:subgroup
17. </xsl:template>
18.
19. <xsl:template match="link">
20. <a> <xsl:apply-templates/>
21. </xsl:template>

Figure 4.21: XSL layout definition for WML event page

Figure 4.19 shows the simplified MyXML document for the page. A �myxml:sql�
element selects the event information from a relational database. The event names in the
database column “title” are picked using the �myxml:dbitem� element.

Figure 4.20 shows a part of the XSL layout definition for the HTML version of the page.
Figure 4.21 shows the layout definition for the WML version of the page. The stylesheets
are quite similar except for the differences in HTML and WML tags and the grouping and
subgrouping in the WML definition (e.g., compare the lines 1-5 in Figure 4.20 with the lines
1-5 in Figure 4.21).

In the WML stylesheet in Figure 4.21, groups and subgroups are defined using the de-
scriptors @myxml:groupand @myxml:subgroup. As in the page shown on Figure 4.18, the
entire event information is defined in a group, but each event is marked as a subgroup (see
lines 1-5 and 7-17). The @myxml:nextGroupand @myxml:nextSubGroupdescriptors in the
stylesheet are automatically replaced by the next group and subgroup numbers by the page
splittingprocessor at run-time. Whenever the user clicks the “Next Page” link, the next sub-
group in the current group is presented by the page splittingprocessor. If there are no more
subgroups, the next group and the first subgroup in the group are fetched and the information
is incrementally given out to the device. Setting the stepping count to 2, hence, would give
out the subgroups at 2 step intervals.

In the example, the page splittingprocessor is accessed via the URL /collector(see line
12 in Figure 4.21) and receives two parameters: ui for the group and sg for the subgroup
number to display.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 71

4.10 Process partitioning

The page splitting concept solves the problem of dealing with different page sizes various
Web devices are able to display. A database query, for example, can be made to display three
results per page for WAP devices and ten results per page for desktop browsers.

An important problem page splitting does not solve, however, is how to deal with inter-
active Web pages that use Web forms. If a Web form in a page is split and distributed over
two other pages, for example, it will not work because every Web form has a corresponding
target URL(i.e., the application logic) that it invokes with the parameters it collects. Hence,
if the parameters on the first page are submitted, the information in the following pages will
be missing.

Process partitioningis a technique that allows Web developers and designers to deal with
Web form-based dynamic interactions on devices with display and memory size limitations.
Process partitioning uses the page splitting technique to incrementally display Web forms
and provides a mechanism to partition the interactive process over a number of independent
steps.

WML Client

Collector

Application Logic

N
a

m
e

A
d

d
re

s
s

E
-m

a
il

C
re

d
it

c
a

rd
 i

n
fo

R
e

s
p

o
n

s
e

a) WML Scenario (process partitioning)

HTML Client

N
a

m
e

A
d

d
re

s
s

E
-m

a
il

C
re

d
it

c
a

rd
 i

n
fo

Application Logic

R
e

s
p

o
n

s
e

b) HTML Scenario

Figure 4.22: An online WML-based order with process partitioning compared to a traditional
HTML-based order

Using process partitioning in a WAP e-commerce application for selling cultural event
tickets, for example, the ordering process would be distributed over several WML pages.
Each time a part of the required information would be collected (e.g., customer’s name in
the first step, her address in the second, and so on) and sent to an intermediary processor that
temporarily stores the input. The intermediary processor would invoke the application logic

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 72

with the input data it has collected when all necessary data is submitted. In the DIWE frame-
work, the functionality of the intermediary processor is provided by the process partitioning
processor.

Figure 4.22 depicts the ordering of an event ticket using HTML and WML. The HTML
page is able to collect all of the information in a single page, but the process is partitioned
into multiple steps for WML.

4.10.1 Process partitioning parameters

Parameter Description

colstat Signals that the collection process is finished

target
 Indicates the target URL to invoke once
 collection process is finished

Table 4.3: Table showing process partitioning-related CGI parameters the Collector compo-
nent understands

Two CGI parameters are used by the Collector component that help control the input
collection process over several steps. Table 4.3 lists these parameters and describes their
functionality. The colstatCGI parameter is used to signal the process partitioningprocessor
that the collection is finished. The process partitioningprocessor then invokes the URL that
it receives with the targetparameter.

4.10.2 A simple process partitioning example

Figure 4.23 depicts the XSL stylesheet for a simple HTML Web form that displays four input
fields and collects the user’s name, age and address information and some miscellaneous
comments. A button is placed at the bottom of the form (see line 5) and the user has to press
it to submit the information. The POST method is used to submit the values in the input
fields and the target URL that processes the results is a program (i.e., servlet, script, etc.)
/showin the example (see line 3). Figure 4.24 shows the Web form as seen on a desktop
browser.

Figure 4.25 depicts the XSL stylesheet for the same HTML Web form that has been
partitioned into two HTML pages using page splitting. The target URL has been changed
from /showto /collector(see line 3) which is the URL for the process partitioningprocessor
in this example. The process partitioningprocessor accepts a command parameter ui that
indicates which group in the page should be displayed next. This command is embedded
into the form as a hidden input element and uses a @myxml:nextGroupidentifier to retrieve
the next group number (see line 5).

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 73

1. <xsl:template match=”page">
2. <html><head> <title> Page </title> </head> <body>
3. <form action="/show" method="post">
4. <xsl:apply-templates/>
5. <input type="submit"/>
6. </form>
7. </body></html>
8. </xsl:template>
9.
10. <xsl:template match="name">
11. <h2>
12. <xsl:apply-templates/>
13. <input type="text" name="name"/>
14. </h2>
15. </xsl:template>
16.
17. <xsl:template match="age">
18. <h2>
19. <xsl:apply-templates/>
20. <input type="text" name="age"/>
21. </h2>
22. </xsl:template>
23.
24. <xsl:template match="address">
25. <h2>
26. <xsl:apply-templates/>
27. <input type="text" name="address"/>
28. </h2>
29. </xsl:template>
30.
31. <xsl:template match="misc">
32. <h2>
33. <xsl:apply-templates/>
34. <input type="text" name="misc"/>
35. </h2>
36. </xsl:template>

Figure 4.23: XSL layout definition for HTML Web form

Figure 4.24: Screenshot of simple HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 74

1. <xsl:template match=“page“>
2. <html><head> <title> Page </title> </head> <body>
3. <form action="/collector" method="post">
4. <xsl:apply-templates/>
5. <input type="hidden" name="ui" value="@myxml:nextGroup"/>
6. <input type="submit"/>
7. </form>
8. </body></html>
9. </xsl:template>
10.
11. <xsl:template match="main">
12. @myxml:group{
13. <xsl:apply-templates select="name"/>
14. <xsl:apply-templates select="age"/>
15. <input type="hidden" name="target" value="/show"/>
16. }@myxml:group
17.
18. @myxml:group
19. <xsl:apply-templates select="address"/>
20. <xsl:apply-templates select="misc"/>
21. <input type="hidden" name="colstat" value="true"/>
22. }@myxml:group
23. </xsl:template>
24.
25. <xsl:template match="name">
26. <h2>
27. <xsl:apply-templates/>
28. <input type="text" name="name"/>
29. </h2>
30. </xsl:template>
31.
32. <xsl:template match="age">
33. <h2>
34. <xsl:apply-templates/>
35. <input type="text" name="age"/>
36. </h2>
37. </xsl:template>
38.
39. <xsl:template match="address">
40. <h2>
41. <xsl:apply-templates/>
42. <input type="text" name="address"/>
43. </h2>
44. </xsl:template>
45.
46. <xsl:template match="misc">
47. <h2>
48. <xsl:apply-templates/>
49. <input type="text" name="misc"/>
50. </h2>
51. </xsl:template>

Figure 4.25: XSL layout definition for the partitioned HTML Web form

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 75

In the XSL template for main (see lines 11-23), two groups have been defined with
@myxml:group. The nameand age input fields are in the first group and the addressand
miscinput fields are in the second (see lines 12-16 and 18-22).

There is a hidden input named target in the first group (see line 15). This is a special
parameter that is passed to the process partitioningprocessor and that identifies the target
URL for this collection session. In the case of the example, this is the URL /show. The
process partitioningprocessor, hence, knows that it has to invoke this URL once it has col-
lected all parameters from both groups. The colstathidden input in the second group (see
line 21) signals the process partitioningprocessor that it can invoke the target URL after it
has received the results of the second group. It indicates that there are no more groups and
input parameters in the page.

Figure 4.26: Screenshot of the partitioned HTML Web form – First group

Figure 4.27: Screenshot of the partitioned HTML Web form – Second group

Figures 4.26 and 4.27 depict screenshots of the partitioned HTML Web forms as seen on
a browser. Once the information in the first group has been submitted (i.e., first page), the
second group is displayed (i.e., second page) and the user is prompted for input. Pressing the
submit button in the second group invokes the application logic at the URL /show.

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 76

4.11 Device-independent application logic interfacing

The traditional approach to supporting different layouts with the same application logic is
to build conditional (e.g., if/then/else) statements into the code and to present the layout
based on some criteria (e.g., the user chooses a device name from a list). For example, the
following pseudo application logic code:

... do some domain specific task ...
if (device="html") present HTML_LAYOUT
else if (device="wap") present WAP_LAYOUT

... do some domain specific task ...

checks the value of a variable named deviceand presents the appropriate HTML or WAP
layout.

The disadvantage of this approach is that the application logic has to be modified and
extended for every new device that is being supported. While writing the application code,
the Web developer often needs to know in advance what type of devices will be supported.
She has to try to design and optimize the code so that it can easily be extended: A task that
is not always easy to achieve.

The logic interfacingprocessor provides a solution to this problem and allows the ap-
plication logic to be reused for arbitrary devices. It acts as a wrapper to the layout/content
and eliminates the need for the application logic to explicitly choose and invoke a MyXML-
generated layout/content class.

4.11.0.1 Calling the logic in three steps

The first step in invoking a MyXML-generated layout/content class in a device-independent
way is to create an instance of the logic interfacingprocessor.

In the second step, instead of directly instantiating the layout/content class with the pa-
rameters it requires (e.g., as in the MyXML Web service construction example presented in
Section 4.7.4), the parameters are written in an array.

The logic interfacingprocessor provides a method invoke()that the application logic can
use to invoke layout/content classes. In the third step, this method is used to present the
output of the appropriate device-specific layout/content class.

The invoke()method has the following signature (i.e., in a Java implementation):

public void invoke(String name, Object array[]);

The method accepts two parameters: a string containing the name of the layout/content class
to be invoked and an Object array that the application logic uses to pass the parameters that
the layout/content class requires.

The logic interfacingprocessor uses a simple trick to enable a single invoke()method
in the application logic to work for arbitrary layout/content classes: A class naming con-
vention is used to identify layout/content classes that belong to the same page and this
enables the logic interfacingprocessor to automatically instantiate and invoke the appro-
priate layout/content class. The default device family layout/content class name for a page

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 77

1. Output output = new Output(new
2. CheckoutRequestWrapper(request), response);
3. Object[] params = new Object[20];
4.
5. params[0] = cart.getTotalNumberOfTickets();
6. params[1] = cart.getMinimumPrice();
7. params[2] = cart.getMaximumPrice();
8. params[3] = "";
9. params[4] = "";
10. params[5] = "";
11. params[6] = "";
12. params[7] = "";
13. params[8] = "";
14. params[9] = "";
15. params[10] = "";
16. params[11] = "";
17. params[12] = cart.getEventName();
18. params[13] = cart.getEventLocation();;
19. params[14] = cart.getEventDate();
20. params[15] = cart.getEventTime();
21. params[16] = cart.getNumberOfTickets();
22. params[17] = cart.getCategoryName();
23. params[18] = cart.getCategoryInfo();
24. params[19] = creditCards;
25. output.invoke("Checkout",params);

Figure 4.28: Invoking the Checkoutlayout/content class from the application logic

1. public Checkout(String totalNumberOfTickets,String minimumPrice,
2. String maximumPrice,String errorMessage,String name,String address,
3. String phonePrivate,String phoneWork,String email,String comments,
4. String cardNumber,String validThru,String event_name[],
5. String event_location[],String event_date[],String event_time[],
6. String number_of_tickets[][],String category_name[][],
7. String category_info[][],String creditCard[]) {
8. this.totalNumberOfTickets=totalNumberOfTickets;
9. this.minimumPrice=minimumPrice;
10. this.maximumPrice=maximumPrice;
11. this.errorMessage=errorMessage;
12. this.name=name;
13. this.address=address;
14. this.phonePrivate=phonePrivate;
15. this.phoneWork=phoneWork;
16. this.email=email;
17. this.comments=comments;
18. this.cardNumber=cardNumber;
19. this.validThru=validThru;
20. this.event_name=event_name;
21. this.event_location=event_location;
22. this.event_date=event_date;
23. this.event_time=event_time;
24. this.number_of_tickets=number_of_tickets;
25. this.category_name=category_name;
26. this.category_info=category_info;
27. this.creditCard=creditCard;
28. }

Figure 4.29: The MyXML-generated Checkoutlayout/content class

CHAPTER 4. A CONCEPTUAL FRAMEWORK FOR DEVICE-INDEPENDENCE 78

is taken as the base identifier and device names are apprehended to this identifier for all
other device-specific layout/content classes. For example, if the name of the layout/content
class is homepagefor the default device family, for the PDA layout/content class this would
be homepagepda(i.e., device name is “pda”), for the WAP layout/content class this would
be homepagewap (i.e., device name is “wap”) and so on. A CGI parameter called device
signals the logic interfacingprocessor the name of the device the application logic is being
invoked for. For example, if the user is visiting the home page that is available at the URL
/homepage, calling the URL as /homepage?device=pdawould make the logic interfacing
processor invoke the PDA layout/content class homepagepda. The component would add
the “pda” device name to the default family layout/content class name (i.e., homepage) and
instantiate that class with the parameters.

The advantage of this simple approach is that the application logic is device-independent:
It can be used for many devices as long as the developer keeps to simple naming conventions
that the logic interfacingprocessor can correctly interpret.

4.11.0.2 A simple example

Figure 4.28 depicts a part of the Java application logic from an e-commerce Web application.
First, an instance of the logic interfacingprocessor is created (a Java implementation called
Output in this case – see lines 1-2). Then, a Java Object array is created that accepts 20
parameters (see lines 3-24). Finally, the layout/content class is invoked using its class name
(i.e., Checkoutin this case) and the parameters it requires (see line 25). Figure 4.29 depicts
the constructor of the Checkoutlayout/content class.

Suppose an alternative PDA layout has to be provided. To cover this requirement, first, a
PDA layout/content class would be created using the MyXML compiler. Following the lay-
out/content class naming conventions, the device family name would be apprehended to the
name of the default device family layout/content class. The PDA layout/content class, hence,
would be called Checkoutpda. The logic interfacingprocessor would instantiate and invoke
the appropriate layout/content class based on the name of the device family the application
logic is being invoked for.

4.12 Summary

This chapter introduced a novel conceptual framework for device-independent Web engi-
neering. The Device-Independent Web Engineering (DIWE) framework consists of the
MyXML language, a compiler that can interpret the language, and four basic run-time pro-
cessorsthat are configured and deployed on the Web server at run-time to provide device-
independence support. These processors are Web services themselves. The framework in-
troduces two novel techniques, page splittingand process partitioningby layout marking,
that allow the Web developer to tune the selected information and the sizes of generated
pages according to the characteristics of a device that is being targeted. The framework also
introduces a novel technique called XSL stylesheet pre-processingthat allows the reuse of
existingXSL stylesheets when adding new devices to a Web service.

Chapter 5

The MyXML tool suite: A prototype
implementation

This chapter presents the MyXML tool suite, an implementation of the Device-Independent
Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-
sists of the MyXML compiler, three configurable run-time device-independence components
and a visual Integrated Development Environment (IDE).

5.1 The MyXML tool suite

The MyXML compiler and the MyXMLDesigner IDE are development tools used to con-
struct flexible, XML/XSL-based Web services using the MyXML language. The config-
urable device-independence components in the tool suite are implementations of the device
detection, logic interfacing, page splittingand process partitioningprocessors discussed in
the previous chapter. These components are configured and deployed on the Web server at
run-time to provide device-independence support.

MyXML Compiler

MyXMLDesigner IDE

Configurable
Device-

Independence
Components

Configuration

Deployment

Figure 5.1: Relations between the tools in the MyXML tool suite

Each tool in the tool suite addresses a specific part of the Device-Independent Web En-
gineering (DIWE) framework. Table 5.1 shows the Web service life cycle phases each tool
in the tool suite supports and Table 5.2 shows the functionality each one provides.

Figure 5.1 depicts the relations between the tools in the suite. MyXMLDesigner is a
visual development environment and a user-friendly graphical front-end to the functionality

79

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 80

Phase/Tool MyXML Compiler
Device-

Independence
Components

MyXMLDesigner
IDE

Design

Implementation

Deployment

X X X

X

X

Maintainence X

Table 5.1: The Web service life cycle phases each tool in the MyXML tool suite supports

Functionality/Tool MyXML Processor
Device-

Independence
Components

MyXMLDesigner
IDE

LCL Separation
(with XML/XSL)

Logic Reuse

XSL Reuse

RDBMS
Integration

User-friendly IDE

Device Detection

Device
Configuration

Device
Management

XML Content and
Layout Generation

Layout Adaptation

X

X

X

X

X

X

X X

X

X

X

Table 5.2: The functionality provided by the tools in the MyXML tool suite

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 81

MyXML Compiler

MyXMLDesigner IDE

XML
XSL

Logic

Device-
Independence
Component
Collection

Application Logic

MyXML
Generated Web

Service

Device-
Independence
Components

Device-Specific
Web Page

Development
Environment

Web Server
(Run-time)

Web Device
(Client)

Deployment

Interactions

Figure 5.2: The MyXML tool suite in Web service construction and operation based on the
DIWE framework

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 82

provided by the tools in the tool suite. Device-independent Web sites can be created and
maintained with MyXMLDesigner and interactive functionality can be constructed.

Based on MyXML language specifications, MyXMLDesigner uses the MyXML com-
piler to generate static content embedded in HTML or XML, or Java source code that pro-
vides interactive functionality.

Although the MyXML compiler and the device-independence components can be con-
figured and deployed manually, the MyXMLDesigner IDE has integrated support for their
automated, user-friendly configuration, deployment and usage.

Figure 5.2 illustrates the role of the MyXML tool suite in Web service construction and
operation based on the DIWE framework discussed in the previous chapter. A typical deve-
lopment environment consists of MyXMLDesigner and the MyXML compiler. The device-
independence components are stored in a repository (i.e., component collection) integrated
into the MyXMLDesigner IDE. The developer creates (or integrates) XML content and XSL
layout definitions. If static layout is being generated, there is no need for application logic.
If dynamic content is being created, however, an application logic (i.e., Java source code) is
created (or integrated) using editors in MyXMLDesigner. The application logic, the gener-
ated layout and source code files, and the configured device-independence components are
automatically compiled, configured and deployed on the Web server.

5.2 The MyXML compiler

The implementation of the MyXML language compiler in the MyXML tool suite is a plug-
gable, stand-alone application. As a part of this dissertation, three versions of the MyXML
compiler have been developed since early 2000: rudimentary prototypes to estimate the fea-
sibility of the tool (e.g., [KK01, KK00]) and the final version that is pluggable into external
applications and that can support arbitrary content types and XML content. This section
focuses on the final version (called MyXML version 1.3 Xenon).

5.2.1 Usage

The MyXML compiler has a command-line interface that can be used to invoke it by hand
or from scripts. It can be started with the syntax:

java myxml.Xenon <MyXML File> <XSL File>
-p <XSL Post Style> <Class/Document Name>
<ConnectURL> <User name> <Password>
<Device Name>

The user provides:

� A MyXML document file

� An XSL stylesheet that defines the layout

� An optional XSL post stylesheet

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 83

� A Java class name for the generated layout/content class or a name for the generated
static content HTML/XML file

� A connection URL, user name and password for the relational database

� A device name for XSL stylesheet pre-processing

The compiler also provides a Java Application Programming Interface (API) to its func-
tionality and can be configured and invoked from inside programs. The MyXMLDesigner
visual IDE uses this API to start the MyXML compiler.

5.2.2 Implementation

Command-line / API
parameters

Read content and
MyXML elements

MyXML Document

Read layout
Device-specific

layout in XSL file

Generate XSL for
device

Apply XSL to
content read

Process MyXML
elements

Are all MyXML
elements static?

Generate
HTML/XML

Content and layout in
HTML/XML

Generate Java
source code

Java source code
encapsulating

content and layout

Yes

No

MyXML
Compiler Documents

Figure 5.3: Flowchart showing the main steps taken by the MyXML compiler

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 84

The flowchart in Figure 5.3 shows the main steps taken by the MyXML compiler during
the processing of MyXML documents and XSL specifications.

The compiler is invoked using either command-line parameters or its Application Pro-
gramming Interface (API). First, the compiler reads the MyXML document it is given. Then,
it reads the XSL layout definition. Based on the device for which the content and layout is
being generated, XSL stylesheet pre-processing is performed and an XSL stylesheet is gen-
erated for the target device.

The generated device-specific XSL stylesheet is applied to the MyXML document and
the elements from the MyXML namespace are parsed and interpreted. If all MyXML el-
ements are static (i.e., do not contain any variables, loops, CGI elements that need to be
instantiated at run-time), an HTML or XML file is generated based on the layout informa-
tion in the XSL definition. If dynamic MyXML elements exist, on the other hand, a Java
source code file (i.e., Java class) is generated that encapsulates the content and the layout.

+generate()
+getDirectory() : String
+loadFile() : String
+main()
+processDevices() : String
+processImports() : String
+setDirectory()

Xenon

XenonLexparser

sym

+getName() : String

Single

+getLevel() : Integer
+getName() : String

Multiple

+addMultiple()
+addSingle()
+addSoapSingle()
+getLastMultiple()
+getMultiples()
+getSingles()
+getSoapSingles()

Variables

+getBooleanData() : Boolean
+getIntData() : Integer
+getStringData() : String

-booleanData : Boolean
-stringData : String
-intData : Integer

LexCurrentData

Generated from parser.cup specification

Generated from XenonLex JLex specification

Figure 5.4: UML class diagram describing the architecture of the MyXML compiler

The MyXML compiler reference implementation has been written in Java (JDK Version
1.2). The compiler first uses the Apache Xalan [Apa01a] XSL processor and the Apache

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 85

Xerces [Apa01b] XML parser to parse MyXML documents (i.e., XML content and MyXML
elements) and to add a layout to them. The resulting documents are then processed by
the JLex lexical analyzer [Ber01] and the JCup code generator [Ani01] and the embedded
MyXML elements are interpreted and resolved.

Figure 5.4 shows the architecture of the MyXML compiler with simplified UML class
diagram. The classes parser(i.e., code generator), symand XenonLex(i.e., lexical analyzer)
are generated from JLex and JCup lexical analysis and grammar specifications and are used
for content and code generation.

The class Xenonprovides a command-line interface and an API to the compiler. The
classes XenonLexCurrentData, Variables, Singleand Multiple are used to pass information
from the lexical analyzer to the code generator and to keep track of MyXML variables during
the parsing.

5.3 Configurable device-independence components

There are three components in the MyXML tool suite that provide device-independence
support: The Dispatcher, Outputand Collectorcomponents. These components are imple-
mentations of the default device-independence run-time processors in the DIWE framework
that were discussed in Chapter 4. The components are configurable and are instantiated and
used at run-time in combination with the static and dynamic Web services generated by the
MyXML compiler based on MyXML language specifications.

Table 5.3 shows the Dispatcher, Outputand Collectordevice-independence components
and lists the functionality each one provides.

Functionality/
Component

Dispatcher Output Collector

Application Logic
Interfacing

Page Splitting X

X

Device Detection X

Process
Partitioning

X

Table 5.3: Table showing the device-independence components and the functionality they
provide

The Dispatchercomponent is responsible for device-detection and is a Java implemen-
tation of the device detectionprocessor. It can be configured to detect the device a user is
using based on the HTTP request header and respond accordingly.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 86

The configurable Outputcomponent provides device-independent application logic inter-
facing support to the services generated by the MyXML compiler and is an implementation
of the logic interfacingprocessor discussed in the previous chapter. It allows the applica-
tion logic to be written once and used for multiple device-specific MyXML-generated Web
services without any modifications.

The Collectorcomponent is one of the most important run-time tools in the MyXML tool
suite. It provides layout adaptation support and is an implementation of the page splitting
and process partitioningprocessors in the DIWE framework.

5.3.1 The Dispatcher component

The Dispatchercomponent detects devices by analyzing the User-Agentattribute that is
sent by most clients (i.e., browsers) in the HTTP request header. This attribute provides
information about the client the user is using to access the Web service such as its name and
version number.

By maintaining a list of clients and URLs they should be ”mapped” to (i.e., the appropri-
ate response), the Dispatchercomponent allows two users on two different devices to access
the sameURL, but see two differingpages that have been custom-tailored for the device.

Detecting devices based on the User-Agentattribute is not a new idea. Other systems
and programs have been using this attribute for various purposes (e.g., collecting statistics
on browser usage) since the early days of the Web. One limitation of the approach is that not
all clients may send the User-Agentattribute with HTTP requests. Therefore, the component
allows the configuration of a default action if it cannot detect the client agent.

A second limitation of detecting devices based on the User-AgentHTTP attribute is that
a list of known devices have to be maintained. If the user is using an unknown device that
is not in the list (e.g., a new micro-browser for the Compaq iPAQ PDA), the Dispatcherwill
not be able to detect it. Nevertheless, by analyzing the Web access logs, it is possible to
find out what devices users are using to access a particular service. The configuration of the
Dispatchercomponent, thus, can be adjusted for each service.

5.3.1.1 Configuration grammar

The Dispatchercomponent provides an XML configuration language. Figure 5.5 depicts the
DTD that defines the configuration grammer of the Dispatchercomponent.

A typical configuration consists of a list of user agents and a default agent in case there
are no matches (see line 3). Each agent entry is accompanied by a name and a mapping URL
(i.e., �name� and�map to� elements – see lines 5-6 and 12-15). The name entry defines a
string that should be matched to the contents of the User-Agentattribute in the HTTP request
header.

The Dispatchercomponent can dispatch or redirect requests. Redirecting requests means
that the Dispatchercomponent forwards the request to another URL via HTTP. Dispatching
requests, on the other hand, means that the Dispatchercomponent invokesanother compo-
nent internally with the parameters it has received. Each agent entry in the configuration

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 87

1. <?xml encoding="UTF-8"?>
2.
3. <!ELEMENT agents ((agent)+,default>
4.
5. <!ELEMENT agent (name,map_to)>
6. <!ATTLIST agent action CDATA #IMPLIED>
7.
8. <!ELEMENT default (target,action)>
9. <!ELEMENT target (#PCDATA)>
10. <!ELEMENT action (#PCDATA)>
11.
12. <!ELEMENT name (#PCDATA)>
13.
14. <!ELEMENT map_to (#PCDATA)>
15. <!ATTLIST map_to static CDATA #IMPLIED>

Figure 5.5: The Dispatcher component configuration DTD

definition accepts an actionattribute (see line 6). This attribute defines if the request should
be dispatched or redirected (i.e., its value can be “dispatch” or “redirect”).

The �map to� element accepts an attribute static(see line 15). The attribute signals the
Dispatchercomponent that the service that is being configured is static. It is assumed per
default that the service being configured is dynamic.

5.3.1.2 A configuration example

Imagine device detection support is needed for a service that is accessible at the URL
http://kirda.com/welcome/. There are users that access the service with traditional desktop
HTML browsers and users that access it using micro-browsers on PDAs.

The goal is that users on PDAs should automatically see the contents in the URL
http://kirda.com/welcome/pda/and the desktop browser users should see the content at the
URL http://kirda.com/welcome/pc/.

First the Web server has to be configured to divert any requests that come to the URL
http://kirda.com/welcome/to the Dispatchercomponent. Web servers offer configuration
facilities with which this is easily done. Then, based on the User-Agentattribute, the Dis-
patchercomponent has to be configured to dispatch the request to the device-specific URLs
listed above.

Figure 5.6 depicts the XML Dispatchercomponent configuration for the service. The
action=”dispatch” attributes in the agententries (see lines 4,9,14) signal to the Dispatcher
component that it should dispatch a request instead of redirecting it. The nameand mapto
tags in the agent entries define the mapping between the name of a user agent (i.e., device)
and the URL it should be mapped to (e.g., see lines 5-6). In the example, two user agents,
Windows CEand Palm, are mapped to the /welcome/pdaURL (see lines 5-6 and 10-11).
PDAs running the Windows CE and Palm operating systems usually send these strings in

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 88

1. <?xml version="1.0" encoding="UTF-8"?>
2. <!DOCTYPE agents SYSTEM "agents.dtd">
3. <agents>
4. <agent action="dispatch">
5. <name> Windows CE </name>
6. <map_to> /welcome/pda </map_to>
7. </agent>
8.
9. <agent action=“dispatch”>
10. <name> Palm </name>
11. <map_to> /welcome/pda </map_to>
12. </agent>
13.
14. <agent action="dispatch">
15. <name> Mozilla </name>
16. <map_to> /welcome/pc </map_to>
17. </agent>
18.
19. <default>
20. <map_to> /welcome/pc </map_to>
21. </default>
22. </agents>

Figure 5.6: A Dispatcher configuration for a service

the HTTP requests they make. When the Dispatchercomponent receives an HTTP request
header User-Agentattribute that contains these strings, it dispatches the request to the URL
designated for the PDA.

In the example, the Dispatchercomponent detects Mozilla-based browsers and dis-
patches them to the /welcome/pcURL (see lines 14-17). The default rule in this configuration
is to dispatch all requests to the /welcome/pcURL (see lines 19-21).

It is usually not necessary to configure a Dispatchercomponent for every single page in
a service. The home page, for example, can act as an entry point into the device-specific
pages.

5.3.1.3 Implementation

The Dispatchercomponent has been implemented as a stand-alone Java servlet and uses the
Apache Xerces XML parser for processing configuration files. It is based on the Java Servlet
API Version 2.3 and has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

The Dispatcherclass is instantiated and invoked by the servlet engine (i.e., Web server).
The RequestWrapperclass is used in the Java Servlet API Version 2.3 to wrap and mod-
ify/extend an incoming HTTP request. It is usually used in request dispatching. The ParseEr-
rorHandler class is used by the Xerces XML parser to process errors that are encountered
during the parsing.

Figure 5.7 depicts a UML class diagram that describes the architecture of the Dispatcher
component.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 89

+doGet()
+doPost()
+getClassName()
+getDefaultAction()
+getDefaultTarget()
+getManageCookies()
+getMapRelative()
+getRequest()
+getResponse()
+getSessionID()
+init()
+mapActionDescription()
+processAction()
+processRequest()
+setClassName()
+setDefaultAction()
+setDefaultTarget()
+setManageCookies()
+setMapRelative()
+setRequest()
+setResponse()
+setSessionID()
+Dispatcher()

Dispatcher

+error()
+fatalError()
+warning()

ParseErrorHandler

+setParams()
+getParameter() : String
+getParameterNames() : Object
+getParameterValues() : Object

RequestWrapper

Figure 5.7: UML class diagram showing the architecture of the Dispatcher component

5.3.2 The Collector component

The Collector component in the MyXML tool suite is a configurable, stand-alone applica-
tion that provides both the page splittingand process partitioningprocessor functionality
discussed in the previous chapter. It is responsible for giving out the information partially
over many smaller steps, keeps track of the group and subgroup numbers and can receive
commands on which splits (i.e., layout fragments) to give out. Furthermore, it invokes the
application logic with the input data it has collected when all necessary data has been sub-
mitted.

5.3.2.1 Configuration grammer

The Collector component provides an XML configuration language that allows the Web
developer to define page splitting stepping values and content typesfor devices. A Web
device requests information from the Web server with a specific content type HTTP attribute.
A WAP phone, for example, signals the Web server with the content type vnd.wap.wmlthat
it is awaiting a WML page.

Figure 5.8 depicts the DTD that defines the configuration grammer of the Collectorcom-
ponent.

A typical configuration consists of a list of device names and the corresponding content
type definitions and stepping values. There is also default device definition (see line 3).

The XML definition contains a list of �device� elements with �contentType� and
�steps� elements (see line 5). Each device name is mapped to a content type definition

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 90

1. <?xml encoding="UTF-8"?>
2.
3. <!ELEMENT config ((device)+,default>
4.
5. <!ELEMENT device (name,contentType,steps)>
6.
8. <!ELEMENT default (contentType,steps)>
9.
10. <!ELEMENT contentType (#PCDATA)>
11.
12. <!ELEMENT steps (#PCDATA)>

Figure 5.8: The Collector component configuration DTD

and a stepping value.

5.3.2.2 A configuration example

1. <?xml version="1.0" ?>
2. <config>
3.
4. <device>
5. <name> pda </name>
6. <contentType> text/html </contentType>
7. <steps> 3 </steps>
9 </device>
10. <device>
11. <name> wap </name>
12. <contentType> text/vnd.wap.wml </contentType>
13. <steps> 3 </steps>
15. </device>
16. <default>
17. <contentType> text/html </contentType>
18. <steps> </steps>
19. </default>
20. </config>

Figure 5.9: A typical XML Collector component configuration

Figure 5.9 shows the Collector component configuration file for a Web service. The
content type for the default device family is HTML (i.e., text/html, see line 17) and a stepping
value is not given (i.e., no page splitting or process partitioning is required).

Two other devices, PDAs and WAP phones, are also supported. The content type defini-
tion for PDA devices is HTML (i.e., text/html, see line 6) and WML for WAP phones (i.e.,
vnd.wap.wml, see line 12). Both devices use a stepping value of 3.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 91

5.3.2.3 Implementation

The Collectorcomponent has been implemented as a stand-alone Java servlet. It is uses the
request dispatching and session management feature of the Java Servlet API Version 2.3.
The component has been tested with the Tomcat Servlet Engine version 4.0 (Catalina).

Figure 5.10 shows a UML class diagram describing the architecture of the Collector
component. The class Collectorprocesses the result stream that the calling component passes
to it. In a typical setting, the Dispatchercomponent instantiates and invokes this main class.
The class CollectorStoreis used to keep track of group and subgroup numbers and the target
URLs for process partitioning. The class ParameterStoreis used to keep track of all CGI
parameters that the Collectorcomponent receives so that they can be forwarded to the target
URL when the collection is finished.

+dispatchToTargetServlet()
+doGet()
+doPost()
+getCollectorStore()
+getRequest()
+getReponse()
+init()
+processRequest()
+setCollectorStore()
+setRequest()
+setResponse()
+Collector()

Collector

+getContentType() : String
+getCurrentUserInterfaceNumber() : Integer
+getNextSubGroupNumber() : Integer
+getNextUserInterfaceNumber() : Integer
+getParameter() : String
+getParameters() : Object
+getPreviousSubGroupNumber() : Integer
+getPreviousUserInterfaceNumber() : Integer
+getRequest() : Object
+getSubGroupNumber() : Integer
+getSubGroupSteps() : Integer
+getTarget() : String
+getUserInterface() : String
+incSubGroupNumber()
+init()
+setContentType()
+setParameters()
+setRequest()
+setSubGroupNumber()
+setSubGroupSteps()
+setTarget()
+setUserInterface()
+CollectorStore()

CollectorStore

+getParameterName() : String
+getParameterValue() : String
+setParameterName()
+setParameterValue()
+ParameterStore()

ParameterStore

Figure 5.10: UML class diagram describing the architecture of the Collector Component

5.3.3 The Output component

The Outputcomponent in the MyXML tool suite is a stand-alone application that provides
the functionality of the logic interfacingprocessor in the DIWE framework. Just like the
other two device-independence components, it can be configured to adjust its behavior.

5.3.3.1 Configuration grammer

The Outputcomponent provides an XML configuration language that allows the Web de-
veloper to specify how the component should deal with the output that it receives from the
layout/content classes. Figure 5.11 depicts the DTD that defines the configuration grammer
of the Outputcomponent.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 92

1. <?xml encoding="UTF-8"?>
2.
3. <!ELEMENT config ((device)+,default>
4.
5. <!ELEMENT device (name,processor)>
6.
7. <!ELEMENT default (#PCDATA)>

Figure 5.11: The Output component configuration DTD

A typical configuration consists of a list of device names and the appropriate processor
that the Outputcomponent should invoke with its output. Usually, the Outputcomponent
will invoke the Collector component with an output stream that should be processed for
page splitting and process partitioning. However, the configuration mechanism of the Out-
put component provides flexibility and allows other processors to be invoked as well. For
example, an output stream for a device could be sent to a specific Java servlet developed by
the Web developer for creating and saving PDF files.

Figure 5.11 shows the Outputcomponent configuration DTD. The XML definition con-
tains a list of �device� elements with �name� and �processor� elements (see line 5).
Each device name is mapped to a processor available at a specific URL. Furthermore, a de-
fault processor is also given for the default device family using the �default� element (see
lines 3 and 7).

5.3.3.2 A configuration example

1. <?xml version="1.0" ?>
2. <config>
3.
4. <device>
5. <name> pda </name>
6. <processor> /collector </processor>
7 </device>
8. <device>
9. <name> wap </name>
10. <processor> /collector </processor>
11. </device>
12. <device>
13. <name> pdf </name>
14. <processor> /pdfgenerator </processor>
15. </device>
16. <default>
17. /collector
18. </default>
19. </config>

Figure 5.12: A typical XML Output component configuration

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 93

Figure 5.12 shows the Outputcomponent configuration file for a Web service. The pro-
cessor for the default device family is the Collector component available at the URL /col-
lector (see lines 16-18). The device families pda and wap have been configured to use the
Collectorcomponent as well (see lines 4-7 and 8-11). The device family pdfhas been config-
ured in this case to use a processor available at the URL /pdfgenerator. The Web developer
has written this processor herself.

5.3.3.3 Implementation

The Outputcomponent has been implemented as a simple Java class and uses the Apache
Xerces XML parser for processing configuration files. It uses the Reflectionmechanism of
Java to create instances of layout/content classes from their class names.

Figure 5.13 shows the UML class diagram of the Outputcomponent. The application
logic creates an instance of the OutputJava class. Errors in the configuration files are pro-
cessed with the ParseErrorHandlerclass.

+invoke()
+init()
+Output()()

Output

+error()
+fatalError()
+warning()

ParseErrorHandler

Figure 5.13: UML class diagram of the Output component

5.4 MyXMLDesigner

A user-friendly visual development environment is important for device-independent Web
engineering because of the increased complexity of Web sites that are built with XML and
XSL. The Web site planning, organization and maintenance overhead may increase signif-
icantly with the use of XML and XSL technologies [KKJK01]. Web sites may become
even more complex when application logic separation support is also provided and separate
layouts have to be managed for different Web devices. The MyXMLDesigner visual de-
velopment environment attacks this problem and aims to ease device-independent Web site
development and maintenance.

Compared to other visual Web site development tools and environments, one of MyXML-
Designer’s distinguishing features is its editing support for the separation of layout, content
and logic during the implementation. Furthermore, MyXMLDesigner is one of the few visual
development environments that aims to support the construction and maintenance of device-
independent Web sites. It provides a user-friendly interface to the MyXML compiler and the
device-independence components in the MyXML tool suite.

MyXMLDesigner provides the following functionality to Web developers:

� Customizable, XML-based menusfor layout, content and logic separation, and page
splitting and process partitioning support.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 94

� Configuration mechanismsthat allow the definition and management of devices and
the configuration of the Dispatcher, Collectorand Outputdevice-independence com-
ponents.

� User-friendly code editing facilitieswith syntax highlighting for MyXML, XML, XSL
and Java documents.

� Creation, organization and managementof Web projects and project files.

� Visual definition and managementof Web pages that support multiple layouts.

� Generation, deployment and compilationof static and dynamic content (using the
MyXML compiler).

5.4.1 Overview of the IDE

Figure 5.14: The MyXMLDesigner visual Integrated Development Environment (IDE)

The MyXMLDesigner IDE contains of a desktop that is able to display multiple docu-
ments. Figure 5.14 presents a screenshot of the application. The MyXML, Layoutand Logic

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 95

menu items in the main menu are customizable by the user. To add and manage devices,
the user chooses the Devicesmenu item. The Project menu contains items that allow the
generation of pages, compilation of sources, managing of projects and configuration settings
(e.g., setting the Java CLASSPATH Environment).

A message pane is embedded into the bottom of the desktop pane that displays system
messages. In the screenshot, for example, the messages indicate that the user (i.e., Web
developer) has processed and generated pages for the project using the MyXML compiler.

The project view on the left side of the desktop supports two views: the project view and
the file view: The project view provides a collapsible tree view of the MyXML documents
and XSL layout definitions in the project, the pages in the Web site and the devices each
page supports. The file view provides a collapsible tree view of the files in the project and
their physical locations.

By clicking on the nodes of the collapsible tree, page properties can be displayed, new
pages can be created by visually combining MyXML documents and XSL definitions, and
the contents of the files in a project can be opened as documents in the desktop. In the
screenshot, for example, an XSL stylesheet layout.xslhas been opened and is being edited.

5.4.2 Support for design

One important feature of MyXMLDesigner is its support for data organization. Data orga-
nization is an old issue in Web site design. A frequent problem is that as the site grows,
content managers lose track of the files and resources in the site. The results are often bro-
ken (or dangling) links, a growing need for extra storage space and files that are “forgotten”
[KKJK01, RM98]. If XML/XSL technologies are deployed, data organization problems may
worsen because the number of involved files and their dependencies increases. In a typical
site, for example, an XML file may reference a DTD, import other XML files and point to a
stylesheet that, yet again, imports other stylesheets. Data organization planning also includes
writing makefiles and scripts that allow the easy compilation of sources and copying of files.

MyXMLDesigner decreases the data organization planning and management effort by
automatically creating content, layout and source code directories and generating makefiles.
Static and dynamic content can then be generated and deployed by calling these makefiles.
Files that are being inserted into the project, as well as new content, layout and application
logic files that are created are automatically stored in the corresponding locations.

In MyXMLDesigner, a project is the highest organizational unit. Web sites and Web
services are treated as projects in MyXMLDesigner. The project in MyXMLDesigner de-
fines the content, layout and application logic resources that are available and the necessary
settings for the development environment such as the location of the deployment directories.

A Web site can constitute a single project in MyXMLDesigner. From a management and
organization point of view, it is more practical to structure Web sites as a combination of
separate projects. For example, a main project can be created that defines the main layout
infrastructure and content in the Web site and other projects can then import and extend this
functionality.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 96

5.4.3 Support for implementation

HTML editors are quite popular in Web development. They often provide syntax highlight-
ing for editing HTML content. One common feature of such editors is their ability to gener-
ate HTML elements: The developer can choose HTML layout elements such as �br� and
�table� from a menu that are then inserted into the HTML document that is being edited.
The customizable development menusin MyXMLDesigner are similar. The menus allow
Web developers to encode layout, content and application logic-specific elements and code
into MyXML, XSL and Java documents.

The advantage of having customizable development menus is that the Web developer
can extend them to contain device and problem-specific code. The layout definition menu
supports HTML, WML and MyXML layout code by default, but the Web developer, for
example, can add VoiceXML elements to it simply by extending the XML menu definition.

Contrary to other Web site construction tools that intermix the layout, content and appli-
cation logic information, MyXMLDesigner guides the Web development during the imple-
mentation and supports the layout, content and logic separation by enabling and disabling
menu items. For example, when the Web developer is editing an XSL layout file, menu ele-
ments from the MyXML Namespace are disabled and cannot be automatically inserted into
the document.

In real-world projects, it is sometimes necessary to mix layout and content to some de-
gree (e.g., when embedding links). The separation mechanism, does not prevent the Web
developer in inserting elements manually. It merely encourages the separation and provides
some guidance.

MyXMLDesigner provides syntax highlighting and editing support for pure text, XML,
XSL, MyXML and Java code files. By displaying the file contents in a combination of colors,
the Web developer can distinguish between MyXML, general XML and XSL elements and
identify the layout, content and logic during the development.

5.4.4 Support for configuration and deployment

Figure 5.15 shows a screenshot of MyXMLDesigner’s device configuration dialogs. MyXML-
Designer provides a graphical user interface for the configuration of the Dispacher, Collec-
tor and Outputdevice-independence components. Device families and their properties can
be easily configured and managed without the need to edit the XML configuration files by
hand. In the screenshot, for example, the Web service (the Vienna International Festival e-
commerce component in this case) has been configured to support 5 device families: PDAs
(device name pda), PDF generation (device name fop), speech-recognition interface using
VoiceXML (device name voice) and WAP access (device name wap).

In the screenshot, the properties of WAP devices are currently being edited. The splitting
step has been set to 3 and the Collectorcomponent available at the URL /collectorhas been
selected as the processor for the device.

Whenever a Web site is generated, MyXMLDesigner automatically instantiates, con-
figures and deploys the device-independence components on the Web server based on the
project settings.

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 97

Figure 5.15: Configuring general device properties

5.4.5 Support for Web page creation and maintenance

Compared to other visual Web tools, one of the main distinguishing features of MyXMLDe-
signer is its support for device-independent Web page creation and management. The Web
developer can add device-specific layouts to pages and multi-device support is part of the
page creation and management process.

MyXMLDesigner provides visual mechanisms for:

� Listing the pages that constitute a service or a site (i.e., site overview).

� Displaying information about each device a page supports.

� Grouping of pages to ease organization and management.

� Displaying which MyXML documents and XSL stylesheets each page uses.

A page is created with a dialog that allows the Web developer to enter descriptive in-
formation about the page such as its name and purpose. The user is then presented a page

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 98

propertydialog that displays the MyXML documents and layout stylesheets in the project.
The minimum setting needed to create a page is to choose a MyXML document and a layout
stylesheet for the default device family.

The developer can later choose a page and add arbitrary numbers of devices to it by
simply specifying the stylesheet in the project that applies the suitable layout for the device
(i.e., either a new stylesheet or an existing one that uses XSL stylesheet pre-processing).

The devices each page supports are listed in a collapsible tree in the project view. In the
screenshot in Figure 5.15, for example, the project panel contains a page ListOfEventsthat
supports the PDA, WAP and HTML device families. By expanding each device node in the
tree, the layout components that they support become visible.

5.4.6 Architecture and implementation

MyXMLDesigner has been implemented in Java and uses the Swing Graphical User Inter-
face (GUI) classes. It accesses and uses the MyXML compiler using the processor’s API.
The device-independence components are stored and managed in a repository on the local
file system.

MyXMLDesigner generates XML makefiles that can be processed by the Apache Jakarta
Ant [ant02] tool. Furthermore, it uses the Ant libraries to compile Java sources generated by
the MyXML compiler.

MyXMLDesigner

MainFrame

Notepad

JakartaAnt

JakartaAntBuilder
ComponentCollection

MyXML
Processor

Jakarta Ant

Figure 5.16: Simplified UML class diagram describing the architecture of MyXMLDesigner

Figure 5.16 shows a simplified UML class diagram describing the architecture of the
MyXMLDesigner IDE. The MyXMLDesignerclass is the main class of the application and
creates the desktop with the MainFrameclass. MyXML, XML and Java documents are
opened in the desktop using the Notepadclass. The device-independence components are
stored and accessed using the ComponentCollectionclass. The IDE imports the MyXML
compiler and Jakarta Ant packages. The MyXML compiler is directly accessed using its
API in the Xenonclass (see Section 5.2). The Jakarta Ant libraries are accessed using the

CHAPTER 5. THE MYXML TOOL SUITE: A PROTOTYPE IMPLEMENTATION 99

JakartaAntclass (for makefile generation) and the JakartaAntBuilder(for source code com-
pilation).

5.5 Summary

This chapter presented the MyXML tool suite, an implementation of the Device-Independent
Web Engineering (DIWE) framework discussed in the previous chapter. The tool suite con-
sists of the MyXML compiler, three configurable run-time device-independence components
and a visual Integrated Development Environment (IDE). The set of tools in the suite provide
support for the design, implementation, deployment and maintenance of device-independent
Web sites.

Chapter 6

Case Study: VIF e-Commerce Web
service

The two previous chapters discussed the conceptual details of the Device-Independent Web
Engineering (DIWE) framework and presented the technical details of its prototype imple-
mentation; the MyXML tool suite.

To evaluate the DIWE framework and its concepts of LCL separation, page splitting,
process partitioning and XSL pre-processing, the MyXML tool suite was used to design,
implement and extend a device-independent version of the online ticket booking and ordering
Web serviceof the Vienna International Festival (VIF) Web site.

The Web service supports a default full-fledged HTML layout for traditional Web
browsers on medium to large displays, a simpler HTML layout for PDA micro-browsers
and small displays, and a WAP-layout for WAP-enabled mobile phones. Furthermore, after
the user has completed an order, she has the possibility of downloading the receipt as a PDF
file. The PDF information is generated dynamically and is treated as an additional device
layout that the developer can add to an existing service.

The case-study Web service demonstrates that the devices a Web service will have to
support in the near future might not only have varying display sizes and technical capabilities,
but may also use different Web formats (e.g., WML for WAP, XSL:FOP for PDF, etc.). It
shows that devices supported by a Web service do not necessarily have to be mobile or
computingdevices (e.g., PDF file generation).

The next sections give an overview of the Vienna International Festival (VIF) Web site,
the functionality of the VIF e-commerce Web service and the device-independent implemen-
tation of the service with the MyXML tool suite.

6.1 The Vienna International Festival (VIF) Web site

The Vienna International Festival (Wiener Festwochen) is the major cultural event in Vienna.
Visitors from around the globe come to Vienna during the festival. The festivities take place
in various famous theater locations and concert halls. The annual festival, which usually lasts
five weeks, presents operas, plays, lectures, concerts, musicals and exhibitions, featuring and
hosting eminent international directors, performers and ensembles.

100

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 101

6.1.1 Service overview

The VIF Web site provides an extensive range of services to the visitors. Event locations,
information on the current programme, an archive on former performances since 1995, on-
line ticket service, as well as maps of major stages and venues are just some of the service
offerings by the site. All of the information and interactive services are designed bilingually,
in English and German, with the potential for extending the service to integrate other lan-
guages.

The number of services offered vary each year. The received user input and collected
site statistics are analyzed annually, and the services offered, including the look-and-feel of
the site, are tuned accordingly. These modifications can be anything from minor changes to
significant transformations with major implications on the provided services.

6.1.2 Main VIF components

The festival programme, the archive system and the ticket reservation service are the main
components of the VIF Web site. Additionally, services are offered that inform the user on
stage highlights, press coverage, site news and some text translations of musicals and stage
performances. The site visitor is able, anytime, to switch between German and English ver-
sions of the offered information.

Figure 6.1: Main VIF Components in 2000

All of the site is indexed and coupled with a search engine. The user can search ex-
tensively in the archive and the current programme for specific locations, performances and
events.

The programme information and the ticket management data are stored in an external

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 102

data source: a relational DBMS. The DBMS is used to manage all performance and event-
related information.

The programme information is very dynamic and changes occur frequently. Online Web
forms enable the content managers to modify the information in the DBMS. The information
stored in the DBMS is retrieved every night and static HTML pages are compiled from it.
Figure 6.1 depicts the various VIF components.

6.2 VIF e-commerce Web service

The VIF e-commerce Web service allows users to browse through cultural events such as
operas and theater performances in the festival, retrieve detailed information about them and
order tickets online.

The application is backed by a MySQL database (version 3.22.32). The layout and look-
and-feel of the e-commerce Web service change every year. The general information struc-
ture and the way it is presented to the user is usually the same.

The graphical look of the site has also shown similarities in the last couple of years.
There is a header on each page that contains logos and a navigation bar that allows the user
to jump to different sections of the site. Sponsor logos are usually placed at the bottom and
sides of pages.

This information is presented to the user over a number of pages: the programme (i.e.,
overview of events), detailed event information, ticket information, the shopping cart and the
order form. The information in the database in the case study is from the 2001 festival.

6.2.1 The programme

The programme page gives an overview of the events in the festival for the specific season.
There are about 30-40 events that are displayed in a clickable list. By clicking on an event,
the user is taken to a page that provides more in-depth information about the event.

The typical HTML implementation of the festival programme displays all of the events
in a single page. The user needs to vertically scroll to get an overview of all the events. This
scrolling is acceptable as the number of events is low.

6.2.2 Detailed event information

In each detailed event page, the user can retrieve information about the event such as its
language, short and long descriptions, dates and times, length, performers, authors and di-
rectors. Typically, some events also provide an introductory image.

After looking at the details of an event, the user can either go back to the programme
overview, or can decide to book tickets for the event.

By clicking on a button (i.e., image) that is designated for ticket reservation, the user is
taken to a page that displays ticket booking information for the event.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 103

6.2.3 Ticket availability, date and price information

The ticket reservation page provides price and booking information about the available tick-
ets for an event.

The page displays a list of dates, times and locations that show where and when the event
is performed. By typing in the number of tickets into a corresponding input field, the user is
able to specify the number of seats she would like to book for a specific performance. Once
she has booked the tickets, her order is placed in a virtual shopping cart.

If the tickets for a specific performance are sold out, the input field for that date is re-
placed by an image that indicates that no more tickets are available.

The number of performances of a single event usually vary. There is often one perfor-
mance per day and events may be performed for up to seven days. The entire information is
displayed on a single page.

There are four different price categories for the tickets: A,B,C,D – A being the most
expensive. The prices per category change from event to event and are listed with the perfor-
mance dates, times and locations.

6.2.4 The shopping cart

Whenever the user books a ticket for an event, she is taken to a page that displays the contents
of her virtual shopping cart.

The user is shown a list of tickets she has booked, the dates, times and locations of the
performances, the prices of the tickets and the total sum she has to pay for the tickets if she
decides to confirm and go ahead with the booking.

At the shopping cart page, the user can choose to go back to the programme page to
browse information about other events and to book more tickets. She can also decide to
complete the order (i.e., check out) by providing the necessary purchase information such as
her name and credit card number.

6.2.5 Completing the order (checking out)

Once the user decides to go ahead with the purchase and buy the tickets she has booked, she
is taken to a page that displays an order form.

The page presents a list of tickets she has booked with the corresponding dates, times
and locations. The total sum that she has to pay for the tickets is displayed.

If there are any errors in the bookings, the user has a final chance to go back and make
modifications. Otherwise, by entering the necessary purchasing information such as her
name, address, credit card number and e-mail address, she confirms the bookings she has
made and the order is sent to the festival organization.

The user is displayed a finishing page that thanks her for the purchase. It serves as a
receipt for the purchase.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 104

6.3 Implementation with the MyXML tool suite

Using the MyXML tool suite, a device-independent version of the VIF e-commerce Web
service was designed and implemented. The constructed e-commerce Web service was ex-
tensible and able to support different devices with the same application logic.

The engineering of the case study covered four phases: Design, implementation, deploy-
ment and maintenance. In all engineering phases of the case study, the MyXMLDesigner
visual IDE was used.

The target development and deployment environment for the case study consisted of the
Java Development Kit (JDK) version 1.2 and the Apache Tomcat servlet engine version 4.0.
MM MYSQL version 1.1b was used as the JDBC driver for the MySQL relational database.

Some extra libraries were also needed for implementing the application logic. The fol-
lowing libraries were used: PerlTools version 1.2.0a, Apache FOP toolkit version 0.20.2,
Apache Xerces XML parser version 1.4.0 and the Apache Xalan XSL processor version
2.2.D6.

6.3.1 Design

The design phase consisted of five stages: device identification, data organization planning,
content definition and XSL stylesheet definition.

6.3.1.1 Device identification

The default device family for the VIF e-commerce Web service was identified as being the
traditional HTML access that the VIF had been supporting since 1995. The default family
was to provide full support to all the functionality.

It was also decided to provide full functionality and service support to PDA devices. The
total provided information, however, would be less. The detailed event pages, for example,
would not present long descriptions of events because of the smaller display sizes. The user
would be able to access all the pages with a PDA and book and purchase tickets online with a
custom-tailored layout. This layout would be a simpler HTML layout that would not contain
as many images and tables as the default family HTML layout.

The objective was to initially provide support for the default and PDA device families
and to add additional devices during the maintenance phase.

6.3.1.2 Data organization planning

MyXMLDesigner provided support for the data organization and planning of the case-study.
A new project was created for the e-commerce Web service and a development directory
structure was created automatically. Build files (i.e., makefiles) were also generated that
enabled command line compilation and generation outside of MyXMLDesigner.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 105

6.3.1.3 Content definition

The content definition identified which MyXML elements would be necessary to select the
content from the relational database and how the XML content should be structured.

Page MyXML Functionality

Programme <myxml:sql> (<myxml:dbcommand>,
<myxml:dbitem>)

Event details <myxml:sql> (<myxml:dbcommand>,
<myxml:dbitem>),<myxml:cgi>

Ticket details <myxml:single>,<myxml:multiple>

Shopping cart <myxml:single>,<myxml:multiple>

Order form <myxml:single>,<myxml:multiple>

Receipt <myxml:single>,<myxml:multiple>

Table 6.1: Identification of MyXML dynamic content functionality on each page

Six different types of pages had to be constructed: The programme, event details, ticket
information, shopping cart, order form and a final receipt.

By analyzing the content provided in these pages, some commonalities were identified:
The final page, for example, displayed the tickets the user had ordered and its contents over-
lapped with the contents of the shopping cart page. The order form also displayed the con-
tents of the user’s shopping cart and there was again a commonality with the shopping cart
page.

In the pages that had to be constructed, the content often had to be retrieved from the
database. �myxml:sql� elements were necessary to retrieve the contents from the database
and in some of the pages, there was also a need for�myxml:single� and�myxml:multiple�
elements for dynamic content.

Table 6.1 presents the list of pages in the case study and the MyXML elements that
they use. The programme page uses a �myxml:sql� command to select all the event titles
from the database. The detailed event pages are constructed by passing a CGI database ID
parameter to the service (using �myxml:cgi�) with which the necessary event details are
retrieved (using �myxml:sql� again). Pages such as the shopping cart, on the other hand,

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 106

receive dynamic content from the application logic directly. A �myxml:single� element,
for example, is used that contains the total number of tickets the user has ordered. The total
sum is calculated in the application logic.

The content is structured in four different MyXML documents: Show events, Show event
details, Shopping cartand Ticket information. Two pages, the receipt and the order form,
reuse existing content definitions. The description granularity was kept as high as possible.

Appendix A lists the content definition for the shopping cart and the order form.

6.3.1.4 XSL stylesheet definition

During the XSL stylesheet definition, the default HTML layout was analyzed and common-
alities were identified such as header, footer and navigational constructs. The main aim in
defining the XSL stylesheets was to keep the number of stylesheets needed to generate the
pages as small as possible.

The XSL stylesheets for the pages were defined incrementally: First, stylesheets were
written that generated the common layout elements and that were to be imported by the rest.
Then, XSL stylesheets were built that displayed simple HTML pages (i.e., without icons,
logos, pictures, etc.) that implemented the functionality and that were used for testing.

The XSL stylesheet infrastructure that had been defined was then extended and adapted
to the graphical look of the default HTML layout: Headers, navigational constructs, icons,
images and the correct fonts were added.

Appendix A lists the XSL default device family layout definition for the shopping cart.

6.3.2 Implementation

6.3.2.1 Construction of the pages

The application logic was created traditionally using servlet session management to keep
track of the tickets the user had booked. The logic accessed the database to check for ticket
availability and to build the dynamic content accordingly. Based on the discussion in Chapter
5, it used the Outputcomponent to pass the dynamic content to the layout/content code by
using string variables and arrays. Appendix A lists the Java application logic for the shopping
cart servlet.

MyXMLDesigner’s page creation and management functionality was used to construct
pages by choosing MyXML documents and XSL layout files.

Figure 6.2 shows a screenshot of the project pane in MyXMLDesigner for the VIF e-
commerce Web service. Two groups have been defined to organize the pages: Event infor-
mationand Ticket booking. The following pages have been defined: ListOfEvents(i.e., the
programme page), EventDetails(i.e., the detailed event information), TicketDetails(i.e., the
ticket information), ShowCart(i.e., the shopping cart), Checkout(i.e., the order form) and
Receipt(the receipt page).

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 107

Figure 6.2: Screenshot of the project pane for the VIF project

6.3.2.2 Integration of PDA device family

After the default device family pages had been implemented, the aim now was to integrate a
PDA layout that had been identified in the design phase.

Because of the smaller display sizes of PDAs, page splitting and process partitioning
information was integrated into the existing stylesheets. The HTML pages for PDAs had
less images and simpler tables and the selected content also varied. The detailed event page,
for example, presented less information and omitted a long description of the event. PDA
devices were added to the existing pages in MyXMLDesigner as discussed in the previous
chapter.

Figure 6.3: Adding the PDA layout to the Web service

Figure 6.3 presents a screenshot of the project pane for the case study that shows the PDA
and default stylesheets the ListOfEventspage supports. This implementation uses the same
stylesheets for the default and PDA layouts and makes use of XSL stylesheet pre-processing.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 108

6.3.3 Deployment

Device name Content type definition Steps Processor

default text/html none /collector

pda text/html 3 /collector

wap text/vnd.wap.wml 2 /collector

pda text none /fopprocessor

Table 6.2: Device configurations for the VIF case study

Four devices were configured for the service during deployment. Table 6.2 shows the
device configurations for the VIF e-commerce Web service. A stepping value of 3 is used,
for example, for the PDA device family.

The default family service was configured to be accessible via the URL /wf/displayevents.
The Dispatcher component detects the device the user is using (see discussion in the previous
chapter) and dispatches the corresponding URL.

6.3.4 Maintenance

During the maintenance, it was decided that a WAP layout should be added to the e-
commerce service. The WAP layout was to support full access to the service.

Page splitting and process partitioning had to be used again to provide WAP access sup-
port. In contrast to the default and PDA device families, no images were used for the WAP
pages.

The existing service was extended by both adding new device stylesheets to the pages
(where necessary) using MyXMLDesigner, and by extending the existing stylesheets using
stylesheet pre-processing.

During the maintenance phase, it was also decided that the receipt page that the user
sees at the end of a completed order should be downloadable as a PDF file. A PDF device
family was added to the receipt page that generates XSL:FOP commands. The XSL:FOP
information is sent to a FOP processor (i.e., via URL /fopprocessor). The FOP processor
then generates PDF information that is sent to the user’s browser.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 109

6.4 Usage scenarios

This section illustrates the usage of the device-independent VIF e-commerce Web service
with three different devices. Screenshots from the Web service are presented.

6.4.1 Ordering a ticket using a traditional browser

Imagine Dr K is using a common PC browser, the Internet Explorer, and would like book
and purchase a ticket. He is thinking about going to Le Nozze di Figarowhen the festival
starts a couple of months later.

He accesses the service and sees the complete list of events in the festival programme.
Figure 6.4 shows the screenshot of the default device layout that Dr K sees.

He clicks on the link for Le Nozze di Figaroand is taken to a page that provides detailed
information about the event. Figure 6.5 presents the screenshot of the default detailed event
information page for Le Nozze di Figaro. Dr. K reads a description of the opera and decides
that he would like to go. He clicks on an image for ticket reservation.

He sees a page that lists performance dates and locations for Le Nozze di Figaro(Figure
6.6). He decides to book and purchase one ticket for the 18th of June. He types in “1” in
the input field for Category A (that may cost between 1800 and 2450 ATS depending on
availability).

When Dr K submits the ticket booking form, he sees a page that shows the contents of his
shopping cart. Figure 6.7 shows a screenshot of his shopping cart. He decides to go ahead
with the booking and clicks an image to complete the order.

He is presented a page that displays the tickets he has reserved and a number of empty
input fields prompting for information such as his name and credit card number (Figure 6.8).
He fills in the information and confirms the order.

He sees a confirmation and receipt page (Figure 6.9). He clicks on a link at the bottom
of the page and downloads his receipt as PDF.

6.4.2 Ordering a ticket using an iPAQ PDA

A few days later, Dr K is attending a meeting with his Compaq iPAQ Windows CE PDA.
During a short break, he decides to book another ticket and accesses the VIF e-commerce
application with his PDA.

He sees a page that fits his PDA display and that uses simple tables and small images for
navigation. Figure 6.10(a) shows a screenshot of the programme page that Dr K sees. By
pressing the previousand nextbuttons, he is able to see two event titles at a time (i.e., he is
browsing through the page splits on the same page).

He clicks on Intolleranzaand sees a new page that displays information about the event.
Figure 6.10(b) shows a screenshot of the PDA Intolleranzainformation page. He sees that
the event is in German and the music is by Luigi Nono. He has heard of him before and
decides to buy a ticket.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 110

Once Dr K clicks the ticket reservation button, he is presented a number of small pages
with booking information (i.e., the ticket information page splits). He clicks through the
pages by pressing the nextbutton. Figures 6.10(c) and 6.10(d) present screenshots of the
PDA page splits for the ticket availability and information page that Dr K is shown. He
decides to book a ticket for the 15th of May. He enters the amount into the input field and
submits the form.

Dr K is shown the contents of his shopping cart – again, over a number of smaller pages
(i.e., Figure 6.11(a) depicts the first page split).

Dr. K clicks the link to complete the order and sees a final confirmation page that lists
the tickets he is buying (i.e., Figure 6.11(b)). He continues by pressing the nextbutton and
is prompted for input over a number of smaller pages (i.e., page splits) where he enters
information such as his name and address (i.e., Figures 6.11(b), 6.11(c) and 6.11(d)).

Finally, he sees a receipt page that confirms that his order has been successfully sent.

6.4.3 Ordering a ticket using a WAP phone

Dr K is waiting at an airport and is waiting for his flight to Chicago. He will be attending a
conference there. He decides book another ticket for Intolleranzaand invite somebody when
he is back. He takes out his WAP phone and accesses the VIF service.

He is able to browse through the festival programme over a number of smaller WAP
pages and sees two events per page (i.e., Figure 6.12(a) shows the first page split). He clicks
on Intolleranzaand is displayed a page that provides short information about the event such
as its length and language (i.e., Figure 6.12(b)).

He clicks on ticket reservation and is presented a number of smaller pages that contain
general ticket reservation information (i.e., ticket information page splits in Figures 6.12(c)
and 6.12(d)).

He then chooses the 5th of May again and clicks a link to book a ticket for Category A
(i.e., Figure 6.13(a)).

He is shown his shopping cart over a number of pages (i.e., page splits in Figures 6.13(b),
6.13(c) and 6.13(d)).

He clicks a link to complete the order and is taken to a final confirmation page. He enters
information such as his name and address over a number of smaller pages and confirms the
order (i.e., Figures 6.14(a), 6.14(b) and 6.14(c)).

Finally, he sees a page that confirms that his order has been sent successfully (i.e., Figure
6.14(d)).

6.5 Summary

This chapter presented the case study Vienna International Festival (VIF) Web site. It de-
scribed the functionality of the VIF e-commerce Web service and the device-independent
implementation of the service with the MyXML tool suite.

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 111

Figure 6.4: Default HTML programme page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 112

Figure 6.5: Default HTML detailed event information

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 113

Figure 6.6: Default HTML ticket reservation page

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 114

Figure 6.7: Default HTML shopping cart

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 115

Figure 6.8: Completing the order (checking out) in the default HTML layout

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 116

Figure 6.9: Default HTML order confirmation

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 117

(a) Programme (first page split) (b) Detailed event information

(c) Ticket reservation (first page split) (d) Ticket reservation (second page
split)

Figure 6.10: Programme, detailed event information and ticket reservation for the PDA de-
vice family (screenshots from an iPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 118

(a) Shopping cart (first page split) (b) Order form (first page split)

(c) Order form (second page split) (d) Order form (third page split)

Figure 6.11: Shopping cart and order form for the PDA device family (screenshots from an
iPAQ running Windows CE)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 119

(a) Programme (first page split) (b) Detailed event information

(c) Ticket reservation (first page
split)

(d) Ticket reservation (second
page split)

Figure 6.12: Programme, detailed event information and ticket reservation for the WAP
device family (as seen on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 120

(a) Ticket reservation (third page
split)

(b) Shopping cart (second page
split)

(c) Shopping cart (third page split) (d) Shopping cart (fourth page
split)

Figure 6.13: Part of ticket reservation and shopping cart for the WAP device family (as seen
on a WAP emulator)

CHAPTER 6. CASE STUDY: VIF E-COMMERCE WEB SERVICE 121

(a) Order form (first page split) (b) Order form (second page split)

(c) Order form (third page split) (d) Final message

Figure 6.14: Order form for the WAP device family (as seen on a WAP emulator)

Chapter 7

Evaluation and Future Work

The device-independent implementation of the VIF case study with the MyXML tool suite
provides access to four different Web devices: traditional HTML browsers, micro browsers
on PDAs, WAP-enabled mobile phones and PDF readers. The case study backs my general
thesis that Web services can effectively be made device-independent if device-independence
support is integrated into the Web service design, implementation and maintenance phases
and that adaptation is not only the key to mobileinformation access [Sat96b], but to multi-
device access in general.

This chapter analyzes the DIWE framework and the concepts of page splitting, process
partitioning and XSL stylesheet pre-processing in practice. It discusses the advantages and
disadvantages of the concepts and compares the DIWE approach to existing solutions. The
chapter also lays out future work.

7.1 Empirical proof of concepts

This section discusses the difficulty of providing useful empirical data to measure and com-
pare the extensibility and maintainability of Web service engineering approaches. The prob-
lem may become even more complex if device-independence is involved.

7.1.1 Setting up an experiment

To set up controlled experiments to measure the flexibility, extensibility and maintainability
provided by the tools and concepts presented in the dissertation, software metrics are neces-
sary. Some software metrics and methods for metric definition have already been introduced
that can be used to measure qualities such as complexity, productivity and maintainability
(e.g., see [Fen96, vSB99]). The problem, however, is that Web services are not traditional
software: They do not only consist of source code and libraries, but also content, layout files
and a large number of resources such as images.

The following example illustrates the ineffectiveness of using traditional software engi-
neering metrics for Web services.

122

CHAPTER 7. EVALUATION AND FUTURE WORK 123

7.1.2 Example: Measuring readability

If traditional metrics are used, one can show that the readability of the logic code improves
using the DIWE framework: It has been reported that readability of code is an important
factor in determining maintainability.

De Young and Kampen defined (in [YK79]) the readability R of programs as:

R=0.295a-0.499b+0.13c

The variable a is the average normalized length1 of variables, b is the number of lines contain-
ing statements, and c is McCabe’s cyclomatic number2 (see [Fen96]). The authors derived
this formula using regression analysis of data about subjective evaluation of readability. They
discovered that readability worsens as the number of lines in a program increase no matter
how complex it is and how long the variables are. Based on this finding, it can be deduced
that the readability of the logic source code increases when the DIWE framework is used.
This is because the layout is not encoded into the source code and as a result the logic has
less number of lines.

This empirical evidence, however, is not really convincing. Readability might improve
for the application logic source code, but there is no evidence about the readability of XML
and XSL files and other resources that the Web service depends on.

Special metrics are needed to measure the flexibility, extensibility and maintainability
of Web services. The field of Web metricsis young (e.g., [MMC01]) and much work is
still needed. This chapter presents a qualitative analysis of the concepts introduced in this
dissertation.

7.2 Analysis and discussion

This section analyzes the device-independent implementation of the VIF e-commerce Web
service with the DIWE framework (i.e., the MyXML tool suite) and compares it to the tradi-
tional single-device implementations in the past.

7.2.1 Stylesheet complexity and numbers

Using traditional servlet writing techniques, the layout information is often encoded into
the source code. This can be a tedious and error-prone task. The header information that
contained a logo and a navigation bar in a typical servlet-based implementation, for example,
need to be duplicated in all the servlets. Whenever there is a requirements change and the
general layout needs to be adapted, all the duplicated code has to be analyzed and modified.
Although this approach works, the code usually becomes difficult to maintain and reuse
(e.g., for different devices), and may show the typical symptoms of spaghetti code(e.g.,
poor readability).

1Number of characters in a variable
2Defines the complexity of the code

CHAPTER 7. EVALUATION AND FUTURE WORK 124

The usage of stylesheets for defining and generating the layout is criticized sometimes.
The argument is that the effort spent in separating the layout information by using stylesheets
is not less (and sometimes even more) than integrating the layout into the code directly. This
argument is justified to a certain degree. Not separating the layout, however, makes device-
independence support difficult.

In the case study, the use of stylesheets eased the integration, separation and maintenance
of layout information. Commonalities could be grouped together and imported.

Although using stylesheets has advantages, it has disadvantages as well. The following
discussion lists two stylesheet-related problems and presents solutions.

7.2.1.1 Discussion

The DIWE framework allows developers to use a separate stylesheet for each supported
device, but this feature may have a negative and significant effect on maintainability. When
a separate stylesheet is used for each device in a project, the number of XSL stylesheets
needed to implement the service increase proportionally to the number of supported devices.
For a service that supports four devices, for example, each XSL stylesheet is duplicated four
times. Hence, it may become difficult to maintain repeated complex XSL functionality such
as cascading �xsl:when� statements.

XSL stylesheet pre-processing support in the DIWE framework eliminates the problem
of increased number of stylesheets in projects. The stylesheets, however, become more
complex. Each stylesheet usually supports more than one device and good documentation
(i.e., comments in the stylesheets) became a critical factor in reducing the complexity and
readability.

When adding new devices, it is often easier to copy and adapt an XSL stylesheet rather
than integrate a new layout directly into existing stylesheets with XSL pre-processing. This
is because the unnecessary layout code in the stylesheet can be completely deleted – hence,
increasing readability – and the new layout can be incrementally built in.

7.2.1.2 Conclusion

Obviously, a tradeoff is necessary in deciding between using separate stylesheets or stylesheet
pre-processing when adding new devices. The aim is to combinethe advantages of both ap-
proaches.

An effective solution is to initially use separate stylesheets by copying and adapting ex-
isting ones. Once the layout has been debugged and is functioning correctly, the layout
is extracted and integrated into the default family stylesheets by using XSL stylesheet pre-
processing.

As a result, the total number of stylesheets does not increase and one can effectively deal
with the increased complexity of using XSL pre-processing when adding new devices.

CHAPTER 7. EVALUATION AND FUTURE WORK 125

7.2.2 Complexity

The traditional, single-device implementation of the VIF e-commerce Web service with
servlets took three days, but more than a week was needed to have a first running device-
independent version. This section discusses the problem of increased design and implemen-
tation complexity of device-independent Web services.

7.2.2.1 Discussion

Obviously, the design and implementation of device-independent Web services is more com-
plex than traditional Web engineering techniques and needs more time. The main reason is
because more steps are involved (e.g., content definition with a sufficient description gran-
ularity) and the separation of layout, content and application logic not only needs more
analysis, but is also more difficult to implement.

XSL requires the programmingof the layout by use of templates and XSL commands.
Hence, although the layout becomes more flexible, building and debugging the initial layout
requires a significantly higher effort.

7.2.2.2 Conclusion

The advantages provided by the DIWE framework may not be apparent during the design
and implementation phase, but the extra deployment effort pays off once new devices are
added to the service.

In the case study, although it took longer to create a device-independent version of the
VIF e-commerce Web service, adding new device layouts during maintenance was much
easier than traditional approaches and technologies. For example, once the XSL infrastruc-
ture had been built, both the PDA and WAP layouts were built within one day without any
modifications to the application logic.

The more devices that need to be supported by the Web service, the more the usage of the
DIWE framework pays off. Setting up a service initially is more difficult, but it enables the
construction of custom-tailored services that can meet evolving access requirements (e.g.,
VoiceXML-based speech access in the near future).

7.2.3 Layout adaptation

Figure 7.1 shows the screenshot of the full HTML layout of the VIF programme as seen on
an iPAQ PDA and motivates the usage of the page splitting and process partitioning concepts
in the case study. The user is only able to see a small proportion of the available information
and needs to scroll a lot.

Although the idea of page splitting and process partitioning works, how much effort is
necessary to deploy the techniques? The following discussion evaluates page splitting and
process partitioning in practice.

CHAPTER 7. EVALUATION AND FUTURE WORK 126

Figure 7.1: The full HTML interface of the VIF programme as seen on an iPAQ PDA

7.2.3.1 Discussion

When a PDA layout was being added to the VIF e-commerce Web service in the case study,
groups and subgroups had to be defined in the stylesheets.

The same group and subgroup definitions were used in the stylesheets for supporting
WAP access. Only minor adaptations were necessary. By using different step values (i.e.,
3 for PDA and 2 for WAP),the grouping and subgrouping infrastructure could be reused for
page splitting and process partitioning on two different device families.

Hence, the design of groups and subgroups for device families with similar restrictions
and characteristics is only required once and the design can often be reused.

7.2.3.2 Conclusion

Clearly, splitting and process partitioning imposes an extra design effort on the Web devel-
oper. This effort, however, is acceptable because 1) it is not needed for every device family
2) in most cases, it can be reused (e.g., for mobile devices).

In the case study, for example, four devices are supported and page splitting and process
partitioning is only needed for PDAs and WAP phones. For both devices, grouping and
subgrouping was done once.

7.2.4 Graphical and navigational design

In the usage scenarios presented in the last chapter, Dr K. accesses the VIF service using
different devices. Although the functionality is the same, the ways the interactions are sup-
ported are different. When viewing the shopping cart contents on a PDA, for example, Dr K
is required to press the nextbutton at the bottom of each page to continue, but no such button
exists in the default layout.

CHAPTER 7. EVALUATION AND FUTURE WORK 127

The following discussion analyzes the graphical and navigational design issues involved
in device-independent Web service engineering.

7.2.4.1 Discussion

One difficulty of device-independent Web engineering is that the main navigation and layout
features may not work on some devices. In the case study, for example, the main navigational
information in the default HTML layout was in the header of each page. Putting the naviga-
tional information in the header of the PDA interface, on the other hand, did not make any
sense because of the small display size. Furthermore, using a header was also not possible
on WAP devices.

Hence, the navigation and layout features may not always be portable to other devices.
As a consequence, the graphical design process of device-independent Web services differ
from traditional, single-device Web services and there is a need for a systematic approach.

7.2.4.2 Conclusion

The DIWE framework does not focus on navigation and layout design issues. Its focus is on
the engineering of flexible and extensible Web services that can effectively support different
layouts for different Web devices.

The layout and navigation features of a device-independent Web service often have to
be redesigned for most devices and there is a considerable effort involved. It is important
to consider this effort during the design stage. When more than one layout is involved, the
interactions and the navigational model have to adapted to the device characteristics.

7.2.5 Layout/Content/Logic (LCL) separation

This section discusses LCL separation in device-independent Web engineering.

7.2.5.1 Discussion

Although a full LCL separation has many advantages such as multi-lingual 3 and multi-
device support, a full separation is not always easy to achieve. Application logic separation
can be quite easy, but the main problem is the separation of content and layout. The effort
needed to achieve a full separation of layout and content may not be trivial and there may be
a tendency by Web developers to make quick fixesby intermixing them.

Dealing with hyper-links, for example, often raises the question of where the links be-
long: are they content or layout? It is usually better to treat hyper-links as content because
a link description (i.e., text such as “click here to continue”) is described in a specific lan-
guage. Encoding this link directly into a stylesheet eliminates the possibility of reusing the
stylesheet for multiple languages.

3e.g., Separating the content enables the stylesheets to be reused for supporting content in different lan-
guages

CHAPTER 7. EVALUATION AND FUTURE WORK 128

On the other hand, it is often much easier and faster to encode links directly into a
stylesheet without defining and selecting them as content.

7.2.5.2 Conclusion

Obviously, a tradeoff is necessary in separating layout and content. The aim should be to
achieve a complete separation of layout and content whenever possible, but if there are time
problems, content may be encoded into the stylesheet. It is important, however, to make
corrections later and to continue supporting the separation for easing maintenance and future
extensions.

The process is similar to writing source code and documenting it later. Unfortunately,
the problems with this approach are also similar: Just as there may be a tendency not to
document code although it is written with the intention of documenting later, there may also
be a tendency to ignore the LCL separation goal during maintenance.

7.2.6 Comparison of the DIWE framework to other approaches

This section compares the DIWE framework to the related approaches. Tables 7.1 and 7.2
show the comparison and evaluation of the DIWE framework with the device-independent
Web engineering taxonomy defined in Chapter 3.

Table 7.1 compares the general technical features, the life cycle support and the usability
of each approach. Based on the discussion in Chapter 4, the Deploymentphase has also been
inserted into life cycle section in the table.

It can be seen in the table that OOH, IStudio and WebML are the only approaches besides
DIWE that have full life cycle support. Although these approaches cover the Web service
life cycle, only DIWE provides all the technical features that are important for constructing
Web services. WebML, for example, does not have any dynamic content support and OOH
does not support the integration of external databases.

In comparison, Cocoon and Total e-mobile are conceptually platform independent and
provide all important technical features, but do not cover the full Web service life cycle.

When usability is evaluated, DIWE is not easy to learn and requires high developer skills
when compared to the other approaches. A user interface, however, is provided to make its
usage easier.

Table 7.2 compares the standard usage, flexibility and maintainability and device-
independence support of each approach.

Only Cocoon, Total e-mobile and DIWE use layout and content definition standards.
Most of the other approaches at least use one standard for content definition (e.g., XML in
WebML), but the layout is defined in a system-specific, proprietary way.

When the flexibility and maintainability of each approach is evaluated, the table shows
that Cocoon and DIWE are the only approaches that provide a maximum flexibility and main-
tainability because they support the complete layout, content and logic separation (LCL).

The importance of logic reuse has been identified by most of the approaches: SISL,
UIML, iStudio, Cocoon and DIWE all support logic reuse.

CHAPTER 7. EVALUATION AND FUTURE WORK 129

A
p

p
ro

a
ch

 N
a

m
e

O
O

H
W

e
b

M
L

JM
L

S
IS

L
U

IM
L

iS
tu

d
io

C
o

co
o

n
M

S
 M

D
T

T
o

ta
l e

-
M

o
b

ile

E
a

se
 o

f L
e

a
rn

in
g

R
e

q
u

ire
d

D
e

ve
lo

p
e

r S
kills

S
e

rvice
 C

o
m

p
le

xity

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

H
ig

h

M
e

d
iu

m

M
e

d
iu

m

L
o

w

L
o

w

M
e

d
iu

m

M
e

d
iu

m

L
o

w

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

H
ig

h

L
o

w

L
o

w
(h

id
d

e
n

)

M
e

d
iu

m

M
e

d
iu

m

U
n

kn
o

w
n

V
isu

a
l In

te
rfa

ce
Y

e
s

Y
e

s
N

o
N

o
N

o
Y

e
s

N
o

Y
e

s
N

o

Life Cycle SupportUsability

D
e

p
lo

ym
e

n
t

S
u

p
p

o
rt

Y
e

s
Y

e
s

N
o

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

M
a

in
 O

b
je

ctive
T

o
 su

p
p

o
rt a

ll
W

e
b

 d
e

v
ic

e
s

T
o

 s
u

p
p

o
rt a

ll
W

e
b

 d
e

vice
s

T
o

 su
p

p
o

rt a
ll

W
e

b
 d

e
vic

e
s

T
o

 s
u

p
p

o
rt

s
p

e
e

ch
in

te
rfa

ce
s

T
o

 s
u

p
p

o
rt a

ll
U

s
e

r
In

te
rfa

ce
s

T
o

 su
p

p
o

rt a
ll

W
e

b
 d

e
vic

e
s

T
o

 s
u

p
p

o
rt

fle
xib

le
se

rvice
s

T
o

 su
p

p
o

rt
m

o
b

ile
d

e
v

ic
e

s

T
o

 su
p

p
o

rt
m

o
b

ile
d

e
vice

s

C
o

n
ce

p
tu

a
lly

P
la

tfo
rm

In
d

e
p

e
n

d
e

n
t

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
Y

e
s

Y
e

s
N

o
Y

e
s

S
ta

tic C
o

n
te

n
t

S
u

p
p

o
rt

E
x

te
rn

a
l D

a
ta

b
a

se
In

te
g

ra
tio

n

D
yn

a
m

ic C
o

n
te

n
t

S
u

p
p

o
rt

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

General Technical
Features

Im
p

le
m

e
n

ta
tio

n
S

u
p

p
o

rt

D
e

sig
n

 S
u

p
p

o
rt

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

M
a

in
te

n
a

n
ce

S
u

p
p

o
rt

Y
e

s
Y

e
s

Y
e

s
N

o
N

o
Y

e
s

Y
e

s
N

o
N

o

D
IW

E

M
e

d
iu

m

H
ig

h

M
e

d
iu

m

Y
e

s

Y
e

s

T
o

 su
p

p
o

rt a
ll

W
e

b
 d

e
v

ic
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Table 7.1: Comparison of the DIWE framework with other approaches

CHAPTER 7. EVALUATION AND FUTURE WORK 130

Standards
Flexibility and
Maintainability

Device-
Independence

Support

X
M

L
 W

e
b

 F
o

rm
a

ts

O
O

H

Y
e

s

W
e

b
M

L

Y
e

s

JM
L

Y
e

s

S
IS

L

N
o

U
IM

L

Y
e

s

iS
tu

d
io

Y
e

s

C
o

co
o

n

Y
e

s

M
S

 M
D

T

Y
e

s

T
o

ta
l e

-
M

o
b

ile

Y
e

s

D
e

vice
 D

e
te

ctio
n

N
o

N
o

N
o

N
o

N
o

N
o

Y
e

s
Y

e
s

Y
e

s

S
ta

n
d

a
rd

 C
o

n
te

n
t

D
e

fin
itio

n
 (e

,g
,,

X
M

L
)

S
ta

n
d

a
rd

 L
a

yo
u

t
D

e
fin

itio
n

 (e
.g

.,
X

S
L

)

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

Y
e

s

Y
e

s

L
C

 S
e

p
a

ra
tio

n

L
L

 S
e

p
a

ra
tio

n

L
C

L
 S

e
p

a
ra

tio
n

L
o

g
ic R

e
u

se

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

N
o

N
o

N
o

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

N
o

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

N
o

N
o

N
o

N
o

Y
e

s

Y
e

s

N
o

U
n

kn
o

w
n

O
ve

ra
ll S

e
rvice

F
le

xib
ility

M
e

d
iu

m
M

e
d

iu
m

M
e

d
iu

m
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

O
ve

ra
ll S

e
rvice

M
a

in
ta

in
a

b
ility

M
e

d
iu

m
M

e
d

iu
m

L
o

w
L

o
w

L
o

w
M

e
d

iu
m

H
ig

h
L

o
w

M
e

d
iu

m

A
p

p
ro

a
ch

 N
a

m
e

D
IW

E

Y
e

s

Y
e

s

Y
e

s

H
ig

h

H
ig

h

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Y
e

s

Table 7.2: Comparison of the DIWE framework with other approaches

CHAPTER 7. EVALUATION AND FUTURE WORK 131

Cocoon, MS MDT, Total e-mobile and DIWE are the only approaches that have full
device-independence support. Although WebML, OOH, JML, UIML and iStudio support
different XML Web formats, they provide no support for device detection.

The tables show that although DIWE is not easier to learn or use than most of the other
approaches, it provides maximum flexibility and maintainability, important technical device-
independence features and full support for the Web service life cycle. Furthermore, it is one
of the only approaches that uses standards for content and layout definition and hence can be
used together with other industrial tools.

7.3 Laying out future work

The DIWE framework supports and enables the engineering of device-independent Web ser-
vices, but there is room for improvement. This section discusses and lays out future work.

7.3.1 Higher level abstractions

One of the difficulties of Web projects is the lack of easy-to-use and easy-to-understand
graphical notations for communicating with the customers. For example, UML has become
a standard in software engineering projects for communicating system requirements and ar-
chitecture, but how does one describe and communicate the structure of a Web site to the cus-
tomers? Existing Web design methodologies (e.g., [ISB95, SR95]) are too low level for Web
managers or customers without a technical background to appreciate and may cause confu-
sion and misunderstanding (i.e., technical terms such as nodeand entityare often unknown
to customers). Although these methodologies are useful for the developers in designing the
site, they are not as useful during the requirements discussions with the involved parties.

No graphical notations have been proposed that support device-independent Web access.
It would be useful, for example, to able to depict which pages provide which services on
different devices.

There is a need for more work in this area for improving communication with non-
technical users and customers.

7.3.2 UML for visual modeling

In [Con99] Conallen proposed an extension of UML for modeling Web applications. How-
ever, the use of UML in modeling Web applications has not universally been accepted by
Web developers yet. These extensions of UML for the Web domain concentrate on the mod-
eling of the architecturesof Web applications and not the information structurefor Web
sites. Furthermore, it remains to be seen if UML will be easy to understand by Web man-
agers and customers who may lack technical knowledge and experience in object-oriented
domain modeling.

The UML model that Conallen proposes assumes that the Web service will be HTML-
based. The model, hence, needs to be extended for device-independent Web services.

CHAPTER 7. EVALUATION AND FUTURE WORK 132

7.3.3 Re-engineering for device-independence

An important question that remains to be discussed is how to deal with existing Web ap-
plications. In many cases, it is not feasible to rewrite these applications to meet the new
device-independence requirements.

Not much work exists on the re-engineeringof Web applications to make them flexible
and multi-device-aware. The developer in the field often has to deploy ad-hoc techniques
and tools if she is faced with a need to re-engineer Web sites and applications for device-
independent access.

Although some work has been done in re-engineering and analyzing Web sites (e.g.,
[RP00, RT01]), the adaptation of legacy Web applications to make them flexible and multi-
device-enabled has received less attention. [HH01] presents a framework to recover the
architecture of Web applications to gain a better understanding of the underlying system. It
does not deal with the code-adaptation of Web applications, though.

Kienle’s[KM01] states that Web application reverse- engineering is ad-hoc and tradi-
tional reverse-engineering tools are ill-equipped to meet the needs of Web developers.

There is a need for re-engineering approaches and tools that aim to adapt existing Web
services to make them device-independent.

7.4 Summary

This chapter analyzed the DIWE framework and the concepts of page splitting, process par-
titioning and XSL stylesheet pre-processing in practice. It discussed the advantages and dis-
advantages of the concepts, compared the DIWE approach to existing solutions and briefly
discussed future work.

Chapter 8

Conclusion

When the first laptop computers became commercially available, they were quite weak com-
pared to desktop computers. Their displays were small and they had memory limitations.
Many believed that software applications had to be adapted to cope with the technical re-
strictions. They were wrong. Laptops and notebooks have become so powerful in the last
decade that many companies are only issuing notebooks to their employees and are not using
desktop computers anymore. While notebook sales are constantly increasing, desktop sales
are decreasing.

The popularity of computing devices such as PDAs (e.g., the new generation such as the
Compaq iPAQ) and mobile phones (e.g., the Nokia Communicator) have been increasingly
and these devices have been getting more powerful every day. Limitations such as memory
and CPU power will probably become less important in the near future. Although the latest
PDAs are even able to display frames, it is still important to adapt the content for these
devices in order to provide a satisfactory surfing experience for users. Web services in the
near future will not only have to support mobile access, but will also have to deal with other
forms of Web access such as voice interfaces. Hence, Web services will often need to be
device-independentand will have to support different XML Web formats.

My general thesis was that Web services can effectively be made device-independent if
device-independence support is integrated into the Web service design, implementation and
maintenance phases.

Much work has been done on providing mobile access to Web content, but the focus has
mainly been the adaptation of HTML content to make it viewable on mobile devices that
might have memory and screen-size limitations. Only a few attempts have been made to date
to integrate device-independence into the design, implementation and maintenance phases
of Web services.

The dissertation presented an extended model of the traditional Web service life cycle
that takes device-independence support into account and presented the Device-Independent
Web Engineering (DIWE) framework for engineering device-independent Web services. It
introduced the novel concepts of page splitting, process partitioning and XSL stylesheet pre-
processing. The MyXML tool suite is a prototype implementation of the DIWE framework
and consists of the MyXML processor, three configurable run-time device-independence
components and the MyXMLDesigner visual Integrated Development Environment (IDE).
The MyXML tool suite was used in the device-independent implementation of the Vienna

133

CHAPTER 8. CONCLUSION 134

International Festival e-commerce Web service. The service provides Web access to full-
fledged HTML browsers, PDAs and WAP-enabled mobile phones with the same application
logic.

Nielsen predicts in [Nie99] that the Web will eventually suffer a usability meltdown
unless the vast majority of Web sites are improved considerably. He states that the emphasis
has to be placed on quality content and software and not on “dazzle and coolness.” Not only
these factors will determine the future of the Web, but also the development and usage of
device-independent Web engineering techniques and tools.

Appendix A

Sample case study code listings

<?xml version="1.0" ?>

<root xmlns:myxml="http://www.infosys.tuwien.ac.at/myxml/ns">

<pageInformation>
<explanation>

If you have entered all tickets you want into your order list, please click
 "Order". This will connect you with our secure server, where you can
enter all information required for processing your order, such as your address
 and mode of payment.

</explanation>
<explanation2>

Please fill in the missing fields with the required information and press "order" to
complete your purchase.

</explanation2>
</pageInformation>

<ticketinfo>
 <myxml:loop>

<booking>
<event_information>

<event_name>
<myxml:multiple> event_name </myxml:multiple>

</event_name>
<event_date>

<myxml:multiple> event_date </myxml:multiple>
</event_date>
<event_location>

<myxml:multiple> event_location </myxml:multiple>
</event_location>
<event_time>

<myxml:multiple> event_time </myxml:multiple>
</event_time>

</event_information>

MyXML Document for shopping cart

135

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 136

<tickets>
<myxml:loop>

<loop>
<category_info>

<myxml:multiple> category_info </myxml:multiple>
</category_info>
<category_name>

<myxml:multiple> category_name </myxml:multiple>
</category_name>
<number_of_tickets>

<myxml:multiple> number_of_tickets</myxml:multiple>
</number_of_tickets>

</loop>
</myxml:loop>

</tickets>
</booking>

 </myxml:loop>
</ticketinfo>
<summary>

<totalNumberOfTickets>
<myxml:single> totalNumberOfTickets </myxml:single>

</totalNumberOfTickets>
<minimumPrice>

<myxml:single> minimumPrice </myxml:single>
</minimumPrice>
<maximumPrice>

<myxml:single> maximumPrice </myxml:single>
</maximumPrice>

</summary>
<orderform>

<errorMessage> <myxml:single> errorMessage </myxml:single> </errorMessage>
<name> <myxml:single> name </myxml:single> </name>
<address> <myxml:single> address </myxml:single> </address>
<phonePrivate> <myxml:single> phonePrivate </myxml:single> </phonePrivate>
<phoneWork> <myxml:single> phoneWork </myxml:single> </phoneWork>
<email> <myxml:single> email </myxml:single> </email>
<comments> <myxml:single> comments </myxml:single> </comments>
<creditCard>

<myxml:loop>
<creditCardType>

<myxml:multiple> creditCard </myxml:multiple>
</creditCardType>

</myxml:loop>
</creditCard>
<cardNumber> <myxml:single> cardNumber </myxml:single> </cardNumber>
<validThru> <myxml:single> validThru </myxml:single> </validThru>

</orderform>
</root>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 137

XSL stylesheet for shopping cart

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:myxml="http://
www.infosys.tuwien.ac.at/myxml/ns" version="1.0">
<xsl:import href="/home/ek/eksstuff/xenon/resources/xenon.xsl"/>
<xsl:import href="/home/ek/eksstuff/xenon/resources/well-formed-html.xsl"/>
<xsl:output method="html" indent="yes"/>

<myxml:import name="/home/ek/eksstuff/xenon/case-study-devices/Styles/layout.xsl"/>

<xsl:template match="ticketinfo">
@myxml:device:default{
<tr><td class="hl1" align="left"> Order List </td></tr>
<tr><td>
So far, you have ordered the tickets listed here. You can add to this list by selecting tickets
 for other events from the Vienna Festival's
Programme.

<br clear="none" /><br clear="none" />When ordering tickets,
you will divulge personal information that, however, will be transmitted using a
 secure, state-of-the-art transmission protocol.</td>

</tr>
<tr><td>

<table border="0" cellpadding="2" cellspacing="0">
}@myxml:device

<xsl:apply-templates/>
@myxml:device:default{
</table>
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="booking">
@myxml:device:pda{
@myxml:group{
Shopping cart contents:

<table border="1" cellspacing="0" cellpadding="0">
}@myxml:device
<xsl:apply-templates/>
@myxml:device:pda{
</table>
<table width="400" border="0">
<tr><td align="left">

<img border="0" alt="Show previous
page" src="/images/english/buttons/vorige.gif"/>

</td><td align="right">
<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif"/>
</td></tr>
</table>
}@myxml:group
}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 138

<xsl:template match="event_information">
<xsl:apply-templates select="event_name"/>
<xsl:apply-templates select="event_date"/>

</xsl:template>

<xsl:template match="event_name">
@myxml:device:default{
<tr><td class="hl1" colspan="4">
<xsl:apply-templates/>
<xsl:apply-templates select="../event_location"/>
</td></tr>
}@myxml:device

@myxml:device:pda{
<tr><td>
<xsl:apply-templates/>
<xsl:apply-templates select="../event_location"/>
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="event_location">
(<xsl:apply-templates/>)

</xsl:template>

<xsl:template match="event_date">
@myxml:device:default,pda{
<tr><td>
<xsl:apply-templates/>
<xsl:apply-templates select="../event_time"/>
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="event_time">
,<xsl:apply-templates/>

</xsl:template>

<xsl:template match="tickets">
<xsl:apply-templates/>

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 139

<xsl:template match="loop">
@myxml:device:default{
<tr>
<xsl:apply-templates select="number_of_tickets"/>
<xsl:apply-templates select="category_name"/>
<xsl:apply-templates select="category_info"/>
</tr>
}@myxml:device

@myxml:device:pda{
<tr><td>
<table border="0">
<tr>
<xsl:apply-templates select="number_of_tickets"/>tks.
Category <xsl:apply-templates select="category_name"/>, Prices
<xsl:apply-templates select="category_info"/>
</tr>
</table>
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="category_info">
@myxml:device:default{
<td align="center">
Prices <xsl:apply-templates/> ATS
</td>
}@myxml:device

@myxml:device:pda{
<td>

<xsl:apply-templates/>
</td>
}@myxml:device

</xsl:template>

<xsl:template match="category_name">
@myxml:device:default{
<td align="center">
Category <xsl:apply-templates/>
</td>
}@myxml:device

@myxml:device:pda{
<td>

<xsl:apply-templates/>
</td>
}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 140

<xsl:template match="number_of_tickets">
@myxml:device:default{
<td align="center">
<xsl:apply-templates/>ticket(s)
</td>
}@myxml:device

@myxml:device:pda{
<td>

<xsl:apply-templates/>
</td>
}@myxml:device

</xsl:template>

<xsl:template match="minimumPrice">
@myxml:device:default{
<tr><td>
}@myxml:device

Minimum price: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{
</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="maximumPrice">
@myxml:device:default{
<tr><td>
}@myxml:device

Maximum price: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{

</td></tr>
}@myxml:device

</xsl:template>

<xsl:template match="totalNumberOfTickets">
@myxml:device:default{
<tr><td>

}@myxml:device
Number of tickets: <xsl:apply-templates/>
@myxml:device:pda{
 }@myxml:device

@myxml:device:default{
</td></tr>
}@myxml:device

</xsl:template>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 141

<xsl:template match="summary">
@myxml:device:default{
<xsl:apply-templates/>
<tr><td>
<table border="0" width="460">
<tr><td align="left">

</td>
<td align="right">

</td></tr>
</table>
</td></tr>
}@myxml:device

<!-- %%%%%%%%%%%%%%%%%%% PDA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-->

@myxml:device:pda{
@myxml:group{
<xsl:apply-templates/>
<table width="400" border="0">
<tr><td align="left">

<img border="0" alt="Show previous
page" src="/images/english/buttons/vorige.gif"/>

</td><td align="right">
<img border="0" alt="Show next page" src="/

images/english/buttons/naechste.gif"/>
</td></tr>
</table>
}@myxml:group
@myxml:group{

 Please choose:

<table width="400" border="0">
<tr><td align="left">
<img border="0" src="/images/english/buttons/

programm.gif"/>
</td><td align="right">
<img border="0" src="/images/english/

buttons/abschliessen.gif"/>
</td></tr>
</table>
}@myxml:group
}@myxml:device

</xsl:template>

<xsl:template match="orderform">
<!-- Ignore -->
</xsl:template>

</xsl:stylesheet>

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 142

Application logic for shopping cart

public class ShoppingCart {

 private String totalNumberOfTickets = null;
 private String minimumPrice = null;
 private String maximumPrice = null;
 private String[] event_name = null;
 private String[] event_location = null;
 private String[] event_date = null;
 private String[] event_time = null;
 private String[] termin_id = null;
 private String[][] number_of_tickets = null;
 private String[][] category_name = null;
 private String[][] category_info = null;

 public void init(String totalNumberOfTickets, String minimumPrice, String maximumPrice,
 String[] event_name, String[] event_location, String[] event_date, String[] event_time,
 String[][] number_of_tickets, String[][] category_name, String[][] category_info) {

this.totalNumberOfTickets = totalNumberOfTickets;
this.minimumPrice = minimumPrice;
this.maximumPrice = maximumPrice;
this.event_name = event_name;
this.event_location = event_location;
this.event_date = event_date;
this.event_time = event_time;
this.number_of_tickets = number_of_tickets;
this.category_name = category_name;
this.category_info = category_info;

 }

 public void addEvent(String terminID, String eventName, String eventLocation, String eventDate, String
eventTime) {

if (event_name==null) {
 event_name = new String[1];
 event_location = new String[1];
 event_date = new String[1];
 event_time = new String[1];
 termin_id = new String[1];

 event_name[0] = eventName;
 event_location[0] = eventLocation;
 event_date[0] = eventDate;
 event_time[0] = eventTime;
 termin_id[0] = terminID;

 number_of_tickets = new String[1][];
 category_name = new String[1][];
 category_info = new String[1][];
 return;
}

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 143

else {
 int dimension = event_name.length+1;
 String[][] number_of_tickets2;
 String[][] category_name2;
 String[][] category_info2;
 number_of_tickets2 = new String[dimension][];
 category_name2 = new String[dimension][];
 category_info2 = new String[dimension][];

 for (int i=0;i<event_name.length;i++) {
number_of_tickets2[i] = number_of_tickets[i];
category_name2[i] = category_name[i];
category_info2[i] = category_info[i];

 }

 number_of_tickets = number_of_tickets2;
 category_name = category_name2;
 category_info = category_info2;
}

String[] name = new String[event_name.length+1];
String[] location = new String[event_location.length+1];
String[] date = new String[event_date.length+1];
String[] time = new String[event_time.length+1];
String[] termin = new String[termin_id.length+1];

for (int i=0;i<event_name.length;i++) {
 name[i] = event_name[i];
 location[i] = event_location[i];
 date[i] = event_date[i];
 time[i] = event_time[i];
 termin[i] = termin_id[i];
}

name[event_name.length] = eventName;
location[event_name.length] = eventLocation;
date[event_name.length] = eventDate;
time[event_name.length] = eventTime;
termin[termin_id.length] = terminID;

event_name = name;
event_location = location;
event_date = date;
event_time = time;
termin_id = termin;

 }

 public void addOrder(String numberoftickets, String categoryname, String categoryinfo) {

int eventIndex = event_name.length-1;

String tickets[];
String categories[];
String categoryinfos[];

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 144

if (number_of_tickets[eventIndex]!=null) {
 tickets = new String[number_of_tickets[eventIndex].length+1];
 categories = new String[number_of_tickets[eventIndex].length+1];
 categoryinfos = new String[number_of_tickets[eventIndex].length+1];

 for (int i=0;i<number_of_tickets[eventIndex].length;i++) {
tickets[i] = number_of_tickets[eventIndex][i];
categories[i] = category_name[eventIndex][i];
categoryinfos[i] = category_info[eventIndex][i];

 }
}
else {
 tickets = new String[1];
 categories = new String[1];
 categoryinfos = new String[1];

 tickets[0] = numberoftickets;
 categories[0] = categoryname;
 categoryinfos[0] = categoryinfo;
 number_of_tickets[eventIndex] = tickets;
 category_name[eventIndex] = categories;
 category_info[eventIndex] = categoryinfos;
 return;
}

tickets[number_of_tickets[eventIndex].length] = numberoftickets;
categories[number_of_tickets[eventIndex].length] = categoryname;
categoryinfos[number_of_tickets[eventIndex].length] = categoryinfo;

number_of_tickets[eventIndex] = tickets;
category_name[eventIndex] = categories;
category_info[eventIndex] = categoryinfos;

 }

 public String getTotalNumberOfTickets() {

int total = 0;

for (int i=0;i<event_name.length;i++) {
 for (int t=0;t<number_of_tickets[i].length;t++) {

Integer totalInt = new Integer(number_of_tickets[i][t]);
total = total + totalInt.intValue();

 }
}
totalNumberOfTickets = new Integer(total).toString();

return totalNumberOfTickets;
 }

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 145

 public String getMinimumPrice() {

int total = 0;

for (int i=0;i<event_name.length;i++) {
 for (int t=0;t<category_info[i].length;t++) {

String str = category_info[i][t];
if (str.indexOf("-")==-1) {
 Integer totalInt = new Integer(category_info[i][t]);
 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();
}
else {
 Integer totalInt = new Integer(category_info[i][t].substring(0,category_info[i][t].indexOf("-")));
 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();
}

 }
}

minimumPrice = new Integer(total).toString();

return minimumPrice;
 }

 public String getMaximumPrice() {

int total = 0;

for (int i=0;i<event_name.length;i++) {
 for (int t=0;t<category_info[i].length;t++) {

String str = category_info[i][t];
if (str.indexOf("-")==-1) {
 Integer totalInt = new Integer(category_info[i][t]);
 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();
}
else {
 Integer totalInt = new Integer(category_info[i][t].substring(category_info[i][t].indexOf("-

")+1,category_info[i][t].length()));
 total = total + totalInt.intValue()*new Integer(number_of_tickets[i][t]).intValue();
}

 }
}

maximumPrice = new Integer(total).toString();

return maximumPrice;
 }

APPENDIX A. SAMPLE CASE STUDY CODE LISTINGS 146

 public String[] getEventName() {
return event_name;

 }

 public String[] getEventLocation() {
return event_location;

 }

 public String[] getEventDate() {
return event_date;

 }

 public String[] getEventTime() {
return event_time;

 }

 public String[][] getNumberOfTickets() {
return number_of_tickets;

 }

 public String[][] getCategoryName() {
return category_name;

 }

 public String[][] getCategoryInfo() {
return category_info;

 }
}

Bibliography

[Abr00] Marc Abrams. Device-Independent Authoring with UIML. In W3C
Workshop on Web Device Independent Authoring, Bristol, Englandm,
http://www.harmonia.com/resources/papers/, October 2000.

[AF99] Prathima Agrawal and David Famolari. Mobile computing in next generation
wireless networks. In 3rd international workshop on Discrete algorithms and
methods for mobile computing and communications (DIAL 99), Seattle, WA,
USA, August 1999.

[Alp] Alphaworks. Web Services - http://www.alphaworks.ibm.com/webservices.

[AMM�98a] P. Atzeni, G. Mecca, G. Merialdo, P. Masci, and G. Sindoni. The Araneus
Web-Based Management System. In L.M. Haas and A. Tiwary, editors, Pro-
ceedings of the International Conference Sigmod98, Exhibits Program, Seat-
tle, WA, USA, page 544 546, June 1998.

[AMM98b] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data-
Intensive Web Sites. In I. Ramos H. J. Schek, F. Saltor and G. Alanso, editors,
Proceedings of the International Conference on Extending Database Technol-
ogy, EDBT98, Valencia, Spain, page 436 450, March 1998.

[Ani01] Scott Anian. JCup: CUP Parser Generator for Java -
http://www.cs.princeton.edu/ appel/modern/java/CUP/ , 2001.

[ant02] Apache Jakarta ANT -
http://jakarta.apache.org/ant. Technical report, 2002.

[AP99] Marc Abrams and Constantinos Phanouriou. UIML: An XML Language
for Building Device-Independent User Interfaces. In XML ’99 Conference,
Philadelphia, PA, USA, http://www.harmonia.com/resources/papers/, Decem-
ber 1999.

[Apa01a] Apache. Xalan XSL Processor - http://xml.apache.org/xalan-j , 2001.

[Apa01b] Apache. Xerces XML Parser - http://xml.apache.org/xerces-j , 2001.

[APBW99] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, and
Stephen M. Williams. UIML: an appliance-independent XML user interface

147

BIBLIOGRAPHY 148

language. In Proceedings of the 8th International World Wide Web Confer-
ence, Toronto, Canada, volume 31 of Computer Networks, page 1695 1708.
Elsevier Science, 1999.

[Arc01] Tom Archer. Inside C#. Microsoft, 2001.

[BCD�00] Thomas Ball, Christopher Colby, Peter Danielsen, Lalita Jategaonkar Ja-
gadeesan, Radha Jagadeesan, Konstantin Laeufer, Peter Mataga, and Kenneth
Rehor. Sisl: Several interfaces, single logic. International Journal of Speech
Technology, 3:93 108, 2000.

[BCL�94] T. Berners-Lee, R. Cailliau, A. Loutonen, H. F. Nielsen, and A. Secret. The
World-Wide Web. Communications of the ACM, 37(8), August 1994.

[Ber01] Eliot Berk. JLex: A Lexical Analyser Generator for Java-
http://www.cs.princeton.edu/ appel/modern/java/JLex/, 2001.

[BFJT01] George Buchanan, Sarah Farrant, Matt Jones, and Harold Thimbleby. Improv-
ing Mobile Internet Usability. In Proceedings of the 10th International World
Wide Web Conference, Hong Kong, China, May 2001.

[BGP00] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Focused
Web searching with PDAs. In Proceedings of the 9th International World Wide
Web Conference, Amsterdam, Netherlands, May 2000.

[BGP01] Orkut Buyukkokten, Hektor Garcia-Molina, and Andreas Paepcke. Seeing the
Whole in Parts: Text Summarization for Web Browsing on Handheld Devices.
In Proceedings of the 10th International World Wide Web Conference, Hong
Kong, China, May 2001.

[blu02] Hp bluestone home page, http://www.bluestone.com, 2002.

[BMY95] V. Balasubramanian, Bang Min Ma, and Joonhee Yoo. A Systematic Approach
to Designing a WWW Application. Communications of the ACM, 38(8):47–8,
August 1995.

[BN96] Martin Bichler and Stefan Nusser. Modular Design of Complex Web-
Applications with W3DT. In Proceedings of the 5th Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE ’96),
page 328 333. IEEE Comput. Soc. Press., Los Alamitos, CA, USA, 1996.

[BS97] Timothy W. Bickmore and Bill N. Schilit. Digestor: Device-Independent Ac-
cess To The World Wide Web. In Proceedings of the 6th World Wide Web
Conference, Santa Clara, CA, USA, 1997.

[BS98] Robert Barta and Markus W. Schranz. JESSICA – An Object-Oriented Hy-
permedia Publishing Processor. Computer Networks and ISDN Systems, 30(1–
7):281, Apr. 1998.

BIBLIOGRAPHY 149

[BS00a] Robert Barta and Markus Schranz. Syndication with JML. In Proceedings
of the ACM Symposium on Applied Computing, Como. Italy, pages 962–70,
March 2000.

[BS00b] C. Bauer and A. Scharl. Tool-supported Web Development: Rethinking Tra-
ditional Modeling Principles. In Proceedings of the 8th European Conference
on Information Systems, Vienna, Austria, volume 1, pages 282–289. Vienna
University of Econ. and Bus. Adm., 2000.

[CE99] S. Chandra and C.S. Ellis. JPEG Compression metric as a quality aware im-
age transcoding. In Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems, page 81 92. USENIX Assoc., Berkeley, CA, USA,
1999.

[CEV99] Surendar Chandra, Carla SChlatter Ellis, and Amin Vahdat. Multimedia Web
Services for Mobile Clients Using Quality Aware Transcoding. In 2nd ACM
International Workshop on Wireless Mobile Multimedia (WoWMoM 99), Seat-
tle, WA, USA, August 1999.

[CEV00] Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Application-Level
Differentiated Multimedia Web Services Using Quality Aware Transcoding.
IEEE Journal on selected areas in communications, 18(12):2544 2565, De-
cember 2000.

[CFB00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. In Proceedings of
the 9th World Wide Web Conference, Amsterdam, Netherlands, volume 33 of
Computer Networks, page 137 157. Elsevier Science B.V, May 2000.

[CFP99] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-Driven, One-
To-One Web Site Generation for Data-Intensive Applications. In Malcolm P.
Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
Michael L. Brodie, editors, VLDB’99, Proceedings of 25th International Con-
ference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scot-
land, UK, pages 615–626. Morgan Kaufmann, 1999.

[Coc96] Alistair Cockburn. The Interaction of Social Issues and Software Architecture.
Communications of the ACM, 39(10):40–6, October 1996.

[col] Coldfusion home page, http://www.coldfusion.com.

[Con99] Jim Conallen. Modeling Web Application Architectures with UML. Commu-
nications of the ACM, October 1999.

[cvs] CVS,
http://cellworks.washington.edu/pub/docs/cvs.

[dev] Essential .NET :Component Development with C#. Technical report, Devel-
opmentor.

BIBLIOGRAPHY 150

[DIMG95] Alicia Diaz, Tomas Isakowitz, Vanesa Maiorana, and Gabriel Gilabert. RMC:
A Tool To Design WWW Applications. December 1995.

[DMCS95] D.B.Ingham, M.C.Little, S.J. Caughey, and S.K. Shrivastava. W3Objects:
bringing object-oriented technology to the Web. In Proceedings of the 4th
International World Wide Web Conference, Boston, MA, USA, 1995.

[Eng95] Douglas C. Engelbart. Toward Augmenting the Human Intellect and Boosting
our Collective IQ. Communications of the ACM, 38(8):30–3, August 1995.

[FC96] Mohamed Fayad and Marshall P. Cline. Aspects of Software Adaptability.
Communications of the ACM, 39(10):58–9, October 1996.

[Fen96] Norman E. Fenton. Softare Metrics. Thomson Computer Press, 1996.

[FFKL98] Mary Fernandez, Daniela Florescu, Jaewoo Kang, and Alon Levy. Catching
the Boat with Strudel: Experiences with a Web-Site Management System. In
Proceedings of Sigmod ’98, Seattle, Washington, USA, page 414 425, June
1998.

[FKST00] Thomas Feyer, Odej Kao, Klaus-Dieter Schwebe, and Bernhard Thalheim.
Design of Data-Intensive Web-Based Information Services. In Proceedings of
the First International Conference on Web Information Systems Engineering,
volume 1, page 462 467. IEEE Computer Society, Los Alamitos, CA, USA,
2000.

[FP00] Piero Fraternali and Paolo Paolini. Model-Driven Development of Web Ap-
plications: The Autoweb System. ACM Transactions on Information Systems,
18(4):323 382, 2000.

[Fra97] Larry Francis. Mobile computing - a fact in your future. In 15th Annual Inter-
national Conference on Computer Documentation (SIGDOC 97), Snowbird,
UT, USA, October 1997.

[Fra99] Piero Fraternali. Tools and approaches for developing data-intensive applica-
tions: A survey. ACM Computing Surveys, 31(3):227 263, 1999.

[GCP01] Jaime Gomez, Christina Cachero, and Oscar Pastor. Conceptual Modeling of
Device-Independent Web Applications. IEEE Multimedia, 8(2):26–39, April-
June 2001.

[GGS�99] Martin Gaedke, Hans-W. Gellersen, Albrecht Schmidt, Ulf Stegemueller, and
Wolfgang Kurr. Object-oriented web engineering for large-scale web service
management. In Proceedings of the 32nd Annual Hawaii International Con-
ference on System Sciences. IEEE Computer Society, Los Alamitos, CA, USA,
January 1999.

[GJJL00] Patrice Godefroid, Lalita Jagadeesan, Radha Jagadeesan, and Konstantin
Laeufer. Automated systematic testing for constraint-based interactive ser-
vices. pages 40–50. ACM Press, November 2000.

BIBLIOGRAPHY 151

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi-
neering. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Gla01] Steve Glasgow. Enterprise Applications, Electronic Commerce and XML. In
Proceedings of OMG Days, Vienna, Austria. OMG, February 2001.

[GM01] Athula Ginige and San Murugesan. Web Engineering: An Introduction. IEEE
Multimedia, Special Issue on Web Engineering, 8(1):14–18, March 2001.

[Goe98] Karl M. Goeschka. Architectures of Web applications. PhD thesis, 1998.

[GWG97a] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-
tion: An object oriented support system for the web engineering life cycle.
Computer Networks and ISDN Systems, pages 1429–38, April 1997.

[GWG97b] Hans Werner Gellerson, Robert Wicke, and Martin Gaedke. Web composi-
tion: An object oriented support system for the web engineering life cycle.
Computer Netowrks and ISDN Systems, pages 1429–38, April 1997.

[Har99] Elliotte Rusty Harold. XML Bible. IDG Books, 1999.

[HH01] Ahmed Hassan and Richard C. Holt. Towards a better understanding of Web
applications. In Scot Tilley, editor, Proceedings of the 3rd Web Evolution
Workshop, International Conference on Software Maintenance 2001, Flo-
rence, Italy, page 112 116. IEEE Computer Society Press, November 2001.

[HKO�00] Masahiro Hori, Goh Kondoh, Kouichi Ono, Shin ichi Hirose, and Sandeep
Singhal. Annotation-based Web content transcoding. In Proceedings of the
9th International World Wide Web Conference, Amsterdam, Netherlands, May
2000.

[HM00] Udo Hahn and Inderjeet Mani. The challenges of automatic summarization.
IEEE Computer, 33(11):29 35, November 2000.

[HS94] Frank Halasz and Mayer Schwartz. The Dexter Hypertext Reference Model.
Communications of the ACM, 37(2):30–39, February 1994.

[ICL96] D. B. Ingham, S. J. Caughey, and M.C. Little. Fixing the ”broken
link”problem: the W3Objects approach. In Proceedings of the 5th Interna-
tional World Wide Web Conference, Paris, France, volume 28 of Computer
Networks and ISDN Systems, page 1255 1268. Elsevier Science, 1996.

[ICL97] D. B. Ingham, S. J. Caughey, and M.C. Little. Supporting highly manageable
Web services. In Proceedings of the 6th International World Wide Web Con-
ference, Santa Clara, California, number 29 in Computer Networks and ISDN
Systems, page 1405 1416. Elsevier Science, 1997.

[ISB95] Tomas Isakowitz, Edward A. Stohr, and P. Balasubramanian. Rmm: A
methodology for structured hypermedia design. Communications of the ACM,
38(8):34–43, August 1995.

BIBLIOGRAPHY 152

[Jaw98] J. Jaworski. Java 1.2 UNLEASHED. Sams Publ., 1998.

[KAK�00] Eija Kaasinen, Matti Aaltonen, Juha Kolari, Suvi Melakoski, and Timo
Laakko. Two approaches to bringing internet services to wap devices. In
9th International World Wide Web Conference, Amsterdam, Netherlands, May
2000.

[KBGP01] Oliver Kaljuvee, Orkut Buyukkokten, Hector Garcia-Molina, and Andreas
Paepcke. Efficient Web Form Entry on PDAs. In Proceedings of the 10th
International World Wide Web Conference, Hong Kong, China, May 2001.

[KJKS01] Engin Kirda, Mehdi Jazayeri, Clemens Kerer, and Markus Schranz. Experi-
ences in Engineering Flexible Web Services. IEEE Multimedia, 8(1):58–65,
April-June January - March 2001.

[KK00] Engin Kirda and Clemens Kerer. MyXML: An XML based template engine
for the generation of flexible Web content. In Proceedings of WEBNET 2000,
San Antonio, Texas, USA, November 2000.

[KK01] Clemens Kerer and Engin Kirda. Layout, Content and Logic Separation in
Web Engineering. In Proceedings of the 9th International World Wide Web
Conference, 3rd Web Engineering Workshop, Amsterdam, Netherlands, May
2000, number 2016 in Lecture Notes in Computer Science, page 135 147.
Springer Verlag, 2001.

[KKJK01] Clemens Kerer, Engin Kirda, Mehdi Jazayeri, and Roman Kurmanowytsch.
Building XML/XSL-Powered Web Sites: An Experience Report. In Proceed-
ings of the 25th International Computer Software and Applications Confer-
ence (COMPSAC), Chicago, IL, USA. IEEE Computer Society Press, October
2001.

[KM01] Holger M. Kienle and Hausi A. Mueller. Leveraging Program Analysis for
Web Site Reverse Engineering. In Scot Tilley, editor, Proceedings of the 3rd
Web Evolution Workshop, International Conference on Software Maintenance
2001, Florence, Italy, page 117 125. IEEE Computer Society Press, November
2001.

[LB96] Songwu Lu and Vaduvur Barghavan. Adaptive resource management algo-
rithms for indoor mobile computing envoironments. In ACM SIGCOMM 96,
Stanford, CA, USA, August 1996.

[Lin01] Sumanth Lingham. UIML for Voice Interfaces. In UIML Europe 2001 Con-
ference, http://www.harmonia.com/resources/papers/, March 2001.

[LS99] Hakon Wium Lie and Janne Saarela. Multipurpose Web Publishing: Using
HTML, XML, and CSS. Communications of the ACM, 42(10), October 1999.

[Luc00] Bruce Lucas. Voicexml for web-based distributed conversational applications.
Communications of the ACM, 43(9):53 57, September 2000.

BIBLIOGRAPHY 153

[Mau96] Hermann Maurer. Hyper-G now Hyperwave, the next generation Web solution.
Addison-Wesley England, 1996.

[MES95] Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan. Expoliting weak
connectivity for mobile file access. In 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, USA, December 1995.

[MMC01] Emilia Mendes, Nile Mosley, and Steve Counsell. Web Metrics – Estimat-
ing Design and Authoring Effort. IEEE Multimedia, 8(1):50–67, April-June
January - March 2001.

[Nel95] Theodor Holm Nelson. The Heart of Connection: Hypermedia Unified by
Transaction. Communications of the ACM, 38(8):31–3, August 1995.

[Nie99] Jacob Nielsen. User interface directions for the web. Communications of the
ACM, 42, January 1999.

[NKR�02] C. Narayanaswami, N. Kamijoh, M. Raghunath, Inoue T, T. Cipolla, J. San-
ford, E. Schlig, S. Venkiteswaran, D. Guniguntala, V. Kulkarni, and K. Ya-
mazaki. IBM’s Linux watch, the challenge of miniaturization. IEEE Com-
puter, 35(1):33–41, January 2002.

[NN95] Jocelyne Nanard and Marc Nanard. Hypertext design environments and the
hypertext design process. Communications of the ACM, 38(8):49–56, August
1995.

[Pag] Perl Home Page. http://www.perl.com.

[Qui94] Christine A. Quinn. From Grass Roots to Corporate Image - The Maturation of
the Web. In Proceedings of the 2nd International World Wide Web Conference,
Chicago, Illinois, USA, 17-20 October 1994, October 1994.

[RAS00] Rob Howard Richard Anderson, Alex Homer and Dave Sussman. A Preview
of Active Server Pages+. Wrox Press, 2000.

[RM98] Louis Rosenfeld and Peter Morville. Information Architecture for the World
Wide Web. O’Reilly & Associates, February 1998.

[RP00] F. Ricca and P.Tonella. Web site analysis: Structure and evolution. In Proceed-
ings of the International Conference on Software Maintenance 2000, page 76
86. IEEE Computer Society Press, 2000.

[RS01] D. Ralph and C. G. Shephard. Services via mobility portals. BT Technology
Journal, 19(1):88–99, January 2001.

[RSL99] Gustavo Rossi, Daniel Schwabe, and Fernando Lyardet. Web Application
Models are more than Conceptual Models, volume 1727 of Lecture Notes in
Computer Science, chapter Proceedings of the World Wide Web and Concep-
tual Modeling ’99 Workshop, ER ’99 Conference, page 239 252. Springer,
Paris, 1999.

BIBLIOGRAPHY 154

[RSS�99] Harish Rawat, Sascha Schumann, Chris Scollo, Jesus M. Castagnetto, and
Deepak T. Valiath. Professional PHP Programming. Wrox Press. Incorporated
ISBN: 1861002963, 1999.

[RT01] F. Ricca and P. Tonella. Understanding and restructuring Web sites with
ReWeb. IEEE Multimedia, 8(2), April-June 2001.

[Sat89] M. Satyanarayanan. Coda: A highly available file system for a distributed
workstation environment. In Proceedings of the Second IEEE Workshop on
Workstation Operating Systems, Pacific Grove, California, USA, September
1989.

[Sat96a] M. Satyanarayanan. Fundamental challenges in mobile computing. In 15th
Annual ACM Symposium on Principles of Distributed Computing, Philadel-
phia, PA, USA, May 1996.

[Sat96b] Mahadev Satyanarayanan. Accessing information on demand at any location:
Mobile information access. IEEE Personal Communications, pages 26–30,
February 1996.

[Sch97] M. W. Schranz. Management process of WWW services: An Experience
Report. In Proceedings of the 9�� International Conference on Software Engi-
neering and Knowledge Engineering (SEKE ’97),Madrid, Spain, pages 16–23.
Knowledge Systems Institute, June 1997.

[Sch98a] Arno Scharl. Reference Modeling of Commercial Web Information Systems
Using the Extended World Wide Web Design Technique (eW3DT). In Pro-
ceedings of the 31st Hawaii International Conference on System Sciences
(HICSS-31), Hawaii, USA. IEEE Computer Society Press, 1998.

[Sch98b] Markus W. Schranz. World Wide Web Service Engineering – Object Oriented
Hypermedia Publishing. PhD thesis, Distributed Systems Group, Technical
University of Vienna, September 1998.

[Sd98] Daniel Schwabe and Rita de Almeida Pontes. OOHDM-WEB: Rapid Pro-
totyping of Hypermedia Applications in the WWW. Technical Report MCC
08/98, Department of Informatics, PUI-Rio, Brasil, 1998.

[Sen00] James A. Senn. The emergence of m-commerce. IEEE Computer, 33(12):148–
51, December 2000.

[She95] Deri Sheppard. An Introduction to Formal Specification with Z and VDM. The
McGraw-Hill International Series in Software Engineering, 1995.

[SHKE01] Andrea H. Skarra, Karrie J. Hanson, Gerald M. Karam, and Jeff Elliott. The
iStudio Environment: An Experience Report. In Proceedings of the XML in
Software Engineering Workshop (XSE 2001), 23rd International Conference
on Software Engineering (ICSE 2001), May 2001.

BIBLIOGRAPHY 155

[SR95] Daniel Schwabe and Gustavo Rossi. The Object-Oriented Hypermedia Design
Model. Communications of the ACM, 38(8):45–6, August 1995.

[SRB96] Daniel Schwabe, Gustavo Rossi, and Simone D.J. Barbosa. Systematic Hy-
permedia Application Design with OOHDM. In Proceedings of the Seventh
ACM Conference on Hypertext, New York, NY, USA, page 116 128, 1996.

[Str95] Norbert A. Streitz. Designing hypermedia: A collaborative activity. Commu-
nications of the ACM, 38(8):70–1, August 1995.

[Sun] Sun. Implementing Services on Demand with the SUN Open Net Environment
– Sun ONE. Technical report, Sun Microsystems.

[TL97] Kenji Takahashi and Eugene Liang. Analysis and Design of web-based In-
formation Systems. In Proceedings of the 6th International World Wide Web
Conference, Santa Clara, CA, USA, 1997.

[tot01] Hp bluestone mobile and wireless computing description,
http://www.bluestone.com, March 2001.

[TYF86] TJ. Teorey, D. Yang, and J. Fry. A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Sur-
veys, 18(2):197–222, 1986.

[Var00] Ken Varnum. Information @ your fingertips: porting library services to the
PDA. Online, 24(5):14 17, September - October 2000.

[vSB99] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: A
Practical Guide for Quality Improvement of Software Development. McGraw
Hill, 1999.

[W3C] W3C.
Cascading Style Sheets,
http://www.w3.org/Style/CSS/ . Technical report.

[W3C98a] W3C. Extensible Markup Language (XML) 1.0 -
http://www.w3.org/TR/1998/REC-xml-19980210. Technical report, Feb.
1998.

[W3C98b] W3C.
XML Specification DTD
http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm. Technical
report, Sep. 1998.

[W3C00] W3C. eXtensible Stylesheet Language 1.0 -
http://www.w3.org/TR/xsl/. Technical report, Jan. 2000.

[web01] The webml tool site, http://webml.org, 2001.

[YK79] G. E. De Young and G. R. Kampen. Program factors as predictors of pro-
gram readability. In Proceedings of the Computer Software and Applications
Conference (COMSAC), pages 668–673. IEEE Computer Society Press, 1979.

