
DISSERTATION 

Micro— and Macromechanical Models 

for Hybrid, 

Selectively Reinforced Structures 

ausgeführt zum Zwecke der Erlangung des akademischen Grades 

eines Doktors der technischen Wissenschaften 

eingereicht an der Technischen Universität Wien, 

Fakultät für Maschinenbau 

von 

Dipl. Ing. Christian Maximilian CHIMANI 

Wien, im Jänner 1998 Christian M. Chimani



Acknowledgments 

This work was carried out in the course of my employment at the Institute 

of Light Weight Structures and Aerospace Engineering at the Vienna Uni- 

versity of Technology. I am deeply indebted to my thesis advisor, Prof. F.G. 

Rammerstorfer, for his invaluable assistance in preparing this work. 

I also want to thank Prof. H.-P. Degischer for acting as co-advisor for this 

thesis. 

Many thanks are given to Doz. H.J. Böhm for assistance and all the critical 

discussions with respect to my work as well as with respect to the present 

text. 

I want to acknowledge the helpful discussions with Dr. H.E. Pettermann, 

especially for the introduction into his umat. My special thanks go to all the 

members of the “ILFB-gang”, who have made working at the Institut für 

Leichtbau und Flugzeugbau an inspiring and interesting experience. 

Finally I want to thank my family for their patience and support. I dedicate 

this thesis to my wife, Daniela. 

The financial support of the BRITE EURAM Project BE’95-1183 is grate- 

fully acknowledged. 

II



Abstract 

In modern research and development numerical simulation plays an impor- 

tant role for obtaining a better understanding of complex correlations in 

natural and technical processes and thus reducing expensive trial and er- 

ror loops in experimental development procedures. Based on research in the 

field of micromechanics of materials in the present work numerical simulation 

techniques are employed and developed that make it feasible to investigate 

the thermo-mechanical behavior of light metal matrix composites and selec- 

tively reinforced structures. 

An overview of selected micromechanical methods for the analytical and nu- 

merical description of heterogeneous materials is followed by an examination 

whether these methods, especially the Mori-Tanaka method, give reliable 

results modeling composites containing curved fibers, as found e.g. in cir- 

cumferentially reinforced axisymmetric composites. 

An introduction and comparison of some mechanical properties is given for 

fiber reinforced magnesium and aluminium based composites. This material 

characterization can provide information, from the mechanical point of view, 

for a proper selection of constituents used for the experimental development 

of processing routes for the manufacturing of selectively reinforced compo- 

nents. 

At the intersection of a material interfaces and the free surface in multi ma- 

terial structures complex tri-axial stress states occur which are expected to 

be critical with respect to damage in the envisaged applications. These free 

edge effects are studied in terms of a bimaterial wedge problem. The stress 

singularities typically predicted when homogeneous material descriptions are 
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used are determined analytically and numerically. 

Based on the analytical solution techniques rules for an optimized interface 

design are derived. 

Introducing a micromechanical embedding technique that explicitly accounts 

for the micro scale heterogeneity of the composite material the previously 

mentioned singular solutions are reconsidered. It is found that the singular 

solution disappears for several important applications. 

Finally a thermo-elasto-plastic analysis of a selectively, circumferentially 

reinforced axisymmetric structures is presented. Two modeling techniques, 

the incremental Mori-Tanaka approach and a hexagonal cell tiling approach, 

are employed for comparison. The stress distribution after cooling down from 

the manufacturing temperature is studied on the macro and micro level. 
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Zusammenfassung 

Der numerischen Simulation kommt in der modernen Forschung und Entwick- 

lung eine wichtige Rolle zu. Sie ermöglicht es, ein besseres Verständnis kom- 

plexer natürlicher und technischer Prozesse zu erlangen und hilft dadurch, 

teure experimentelle Entwicklungsarbeit zu verringern. Basierend auf Grund- 

lagen aus dem Forschungsgebiet der Mikromechanik der Werkstoffe werden in 

der vorliegenden Arbeit numerische Simulationstechniken verwendet und ent- 

wickelt, die es erlauben, das thermomechanische Verhalten von Leichtmetall- 

Verbundwerkstoffen und selektiv verstärkten Strukturen zu untersuchen. 

Nach einem Überblick über einige analytische und numerische Verfahren zur 

Beschreibung von heterogenen Werkstoffen wird untersucht, ob sich diese 

Verfahren, besonders die Mori-Tanaka Methode, zur Beschreibung von Ver- 

bunden mit nicht geradlinigen Fasern, z.B. in Umfangsrichtung verstärkten 

axialsymmetrische Strukturen, eignen. 

Zur Unterstützung einer Werkstoffauswahl nach mechanischen Kriterien wer- 

den die wichtigsten mechanischen Eigenschaften von faserverstärkten Mag- 

nesium- und Aluminiumverbundwerkstoffen charakterisiert. 

Durch die eingeschränkte Anwendung von Verstärkungsmaterial auf hoch 

belastete Bereiche einer Struktur kommt es zur Ausbildung von makroskop- 

ischen Materialgrenzflächen. An der freien Oberfläche führen solche Grenz- 

flächen zu komplexen dreiachsigen Spannungszuständen, die das Versagensver- 

halten solcher Strukturen kritisch beeinflussen. Diese i.a. singulären Span- 

nungen werden analytisch und numerisch untersucht. Auf der Basis von ana- 

lytischen Lösungsmethoden werden Möglichkeiten für ein verbessertes Grenz- 

flächendesign aufgezeigt. 

Durch die Entwicklung einer mikromechanischen Einbettungsmetode ist es 
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moglich, solche Spannungskonzentrationen auf Mikroskalenebene zu unter- 

suchen. Dadurch kann eine explizite Berücksichtigung der Mikrohetero- 

genität realisiert werden. Für viele Anwendungen kann damit gezeigt werden, 

daß es, unter Berücksichtigung der Mikrostruktur, nicht zur Ausbildung von 

singulären Spannungsfeldern kommt. 

In einer thermo-elasto-plastischen Analyse einer selektiv verstärkten axi- 

symmetrischen Struktur werden zwei Modellierungsverfahren, eines basierend 

auf einer inkrementellen Formulierung der Mori-Tanaka Methode und einem 

Verfahren basierend auf einer hexagonalen Subzellenteilung, verglichen. Es 

werden die Spannungsverteilungen während und nach der Abkühlung vom 

Herstellungsprozeß auf Makro- und Mikroskalenebene untersucht. Mit dieser 

Untersuchung konnte eine sehr gute Übereinstimmung der beiden Model- 

lierungsverfahren nachgewiesen werden. 
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Chapter 1 

Introduction 

1.1 Selectively reinforced magnesium based com- 

ponents, aims and scope 

The fastest growing market for magnesium cast components is for automotive 

applications, particularly in the US, but equivalent tendencies are observed in 

the Asian and European markets. The reason for this are future regulations, 

which require fuel economy targets to be met by automobile manufactur- 

ers. Since weight reduction is even more important in aerospace engineering, 

there is a common tendency in the automotive as well as in aerospace engi- 

neering to increase the fuel economy by producing vehicles of lighter mass. 

Accordingly there is a strong interest to substitute steel components by light 

weight alloys, particularly materials based on aluminum and magnesium. 

The aluminum industry has been by far more successful in achieving this, 

owing to the good chemical and mechanical properties of aluminium and 

to the familiarity with its use. Nevertheless, magnesium is the lightest of 

the structural metals with a density of only 1.74g/cm?, i.e. magnesium has 

a potential of weight reductions of about 30% with respect to equivalent 

aluminum components. Other potential advantages of magnesium castings 

compared to aluminum are the better castability, a reduction of machining 

costs compared to aluminum, improved casting tool life and reduced trans- 

portation costs of finished castings due to their lower weight. For the future



market in magnesium cast components an annual increase of 15% is forecast 

[91]. 

1.1.1 Magnesium die casting properties 

Magnesium is rarely used for engineering applications without being alloyed 

with other metals, typically Al, Zn, Mn, and rare earth metals, see [23]. In 

die casting applications most of the present products are produced by the 

alloy, AZ91D (9% Al, 0.5% Zn, 0.3% Mn). This alloy shows excellent die 

castability and good strength properties but poor ductility. Its high purity 

(absence of cathodic impurities, e.g. Fe) provides corrosion properties com- 

parable to those of Al die cast alloys. For magnesium die cast applications 

AZ91D is always the alloy of the first choice unless it is ruled out by spe- 

cific property requirements. For an improved fracture toughness alloys with 

reduced Al content are used to decrease the amount of embrittling inter- 

metallics (Mgı7Alı>). 

The mechanical properties of Mg alloys are dominated by the hexagonal lat- 

tice structure (c/a = 1.624), which possesses only three possible slip systems 

providing dislocation movement. This is also true for Zn, but there the c/a 

ratio is such that Zn can mechanically twin in tension, and hence new slip 

systems get into play. The c/a ratio of Mg allows mechanical twinning in 

compression only, i.e. in tension tests of polycrystalline samples twinning is 

not available for activating new slip systems. Thus magnesium has a com- 

parable small ductility. A typical tensile test stress vs. strain curve shows a 

rather small plastic region and fracture occurs just after reaching the ulti- 

mate strength. Magnesium alloys have the lowest yield strength in the group 

of light metal alloys but the strength/weight ratio is about the same as that 

of Al and Ti, see |3, 20]. 

It should be noted that all mechanical properties of magnesium exhibit a 

pronounced temperature dependence, even at moderate temperatures. A 

comprehensive data collection of mechanical properties for magnesium die 

cast alloys is given in [5, 23]. Special consideration to the ’high’ temperature 

properties is given in [4].



The low melting temperature of magnesium alloys, e.g. for AZ91D the melt- 

ing point is approximately 420°C, indicates that time dependent (thermally 

activated) deformation mechanisms, i.e. creep and relaxation, also influence 

their mechanical behavior at rather low temperatures, see [40, 74]. 

As demonstrated for many metal alloys the specific strength and stiffness as 

well as the creep behavior of Mg can be improved considerablely by fiber 

reinforcements, see e.g. [31, 99]. 

Typical Mg based composite systems that are currently under development 

are carbide- and oxide ceramic particles and fibers, see e.g. [68, 71, 86, 83, 67]. 

A disadvantage of oxide ceramics is the high chemical affinity of Mg to oxy- 

gen leading primarily to the formation of MgO and Spinel (MgAlO,) and 

consequently to damaged fibers and embrittlement of the matrix alloy. 

The most promising reinforcement for Mg are carbon fibers. This combi- 

nation leads to maximum values for the specific strength and stiffness at 

relatively low cost. Additionally this combination has the ability to ad- 

just the coeflicient of thermal expansion to develop dimensional stable struc- 

tures, which makes this material interesting for space applications, com- 

pare e.g. |92]. Some recent studies on carbon magnesium composites are 

[6, 10, 36, 58, 60, 82, 109]. A comprehensive review of recent developments 

and tendencies of magnesium matrix composites is given in [81] 

Parts of the present work are closely related to BRITE EURAM Project 

BE’95-1183, “Design and Processing of Selectively Reinforced Magnesium 

Based Components”. The project’s target is to provide material technologies 

to substitute even aluminium components for aeronautical and automotive 

applications by lighter castings based on magnesium, which are selectively 

reinforced to fulfill the service requirements: high strength and stiffness, as 

well as fatigue, creep and corrosion resistance at low weight. Although the 

optimistic expectations of recent years for the economic impact of metal ma- 

trix composites (MMC) have not been fully realized, the technical potential 

still exists to increase the weight-specific properties of light metals in many 

respects. It can be exploited by economical usage of the expensive reinforce- 

ment and by appropriate processing techniques, which require a scientific



background. Therefore, the objectives of the project are [32]: 

e To develop economical production techniques for selectively reinforced 

light metal hybrid components consisting of a minimum amount of 

MMC, taking advantage of a two-step production route, where in a 

first step a continuous fiber reinforced MMC-insert is designed and 

processed at its optimum strength, which in a second step is embedded 

into a high strength Mg-based casting produced by modified conven- 

tional foundry techniques. A single-step technique for manufacturing 

selectively reinforced Mg-parts will be investigated for comparison. 

e To provide criteria for the selection and the design of such hybrid com- 

ponents tailored to meet the service requirements. Materials research 

and micromechanical modeling form the basis for that development and 

are supplemented by specially adapted thermo-mechanical testing. 

e To offer alternative process techniques together with their pros and 

cons for the production of small and medium/large series components 

demonstrated by the fabrication and evaluation of prototype compo- 

nents. 

The main subject of this work is related to the second item. Before expensive 

MMC and hybrid test specimens are manufactured and tested numerical 

material simulation is employed to 

e provide criteria for the selection of the proper materials, with respect 

to the thermo-mechanical behavior of the MMCs (material characteri- 

zation on the basis of available material data of the constituents), 

e define test specimens for experimental investigations, 

e derive design rules for the shape of anisotropic reinforcing preforms, 

e derive macro- and micromechanical models, which allow the numerical 

modeling (based on Finite Element methods) of selectively reinforced 

structures, including the nonlinear thermo-elasto-plastic behavior of 

such structures on the macro as well as on the micro level (in each 

constituent).



Due to the wide range of demands on the numerical simulation several meth- 

ods are employed within these studies to provide optimum information mak- 

ing use of the individual advantages of each simulation technique. All these 

methods are related to the scientific field called “ Micromechanics of Mate- 

rials”, which is discussed in chapter 2. 

Apart from material characterization (where no special shape is assumed) 

typical simple hybrid structures also used for experimental testing are an- 

alyzed, i.e. selectively reinforced plates and a generic housing component 

shown in fig. 1.1. 
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Figure 1.1: Sketch of an axisymmetric selectively reinforced generic housing 

component. The dark ring (insert) is a metal matrix composite surrounded 

by pure metal (light gray) 

Within this study primarily carbon fibers are considered as reinforcing mate- 

rial. This is due to economic reasons, carbon fibers being the less expensive 

long fiber reinforcement among the possible ones, and due to their beneficial 

mechanical properties, see section 1.1.2. Even though different fiber types as 

well as different matrix alloys have also been used during the development of 

manufacturing techniques, the numerical studies presented in this work are 

restricted to the carbon fiber type T300 and to the matrix alloy AZ91D, in 

addition to an Altex-Al99.9 MMC for comparison. The Young’s modulus 

E, the Poison’s ratio v and the coefficient of thermal expansion a of each 

constituent are given for the matrix alloys (m) AZ91D in tab. 1.1 [5], for 

A199.9 in tab. 1.2 [18] and for the fiber types (£) Altex in tab. 1.3 [97] and 
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Table 1.1: Material data for Mg-AZ91D 

oM g™ TıEm o 0 6 
°C] | [GPal [] [107°K™!] [MPa] [GPa] 

20 | 45.5 0.35 25.0 160.0 1.28 

50 | 439 0.35 25.2 145.0 1.28 

100 | 40.3 0.35 25.4 140.0 1.20 

150 | 37.4 0.35 25.7 110.0 0.90 

200 | 27.6 0.35 26.0 73.0 0.12 

250 | 18.7 0.35 26.4 45.0 0.11 

300 | 18.7 0.35 26.8 10.0 0.10 

  

      
  

for T300 carbon fibers in tab. 1.4 [104]. Additionally the yield strength o, 

and the hardening modulus E, is given for AZ91D and A199.9, respectively. 

1.1.2 Carbon fibers and their properties 

Because of their excellent performance in mechanical, electrical and thermal 

applications carbon fibers, particularly pitch-based carbon fibers have be- 

come one of the key materials for future development of advanced materials. 

Carbon fibers exhibit a wide spectrum of properties which are the conse- 

quences of micro structural variations determined by the processing route 

and processing parameters. There are basically three types of carbon fibers 

distinguished by the carbon fiber precursor: rayon, polyacrylonitrile (PAN), 

and petroleum pitch. Details of the production of carbon fibers are given e.g. 

in [64]. 

The mechanical properties, which are considered in the following, are deter- 

mined by the graphitic submicrostructure, i.e. by atomic bonding energies, 

and on the microscale, by their partial crystalline-amorphous microstruc- 

ture. 

The basic hexagonal planar structure of graphite is sketched in fig. 1.2. 

Carbon has four valence electrons, in graphite they are in the sp? hybrid state. 
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Table 1.2: Material data for Al99.9 
    

T | B m am Ei 
°C] | [GPal [] [107°K™!] [MPa] [GPa] 
  

20 | 67.2 0.35 23.0 28.2 0.638 

50 | 66.5 0.35 23.6 27.4 0.525 

100 | 66.3 0.35 24.5 25.9 0.367 

150 | 63.3 0.35 25.4 23.8 0.264 

200 | 60.0 0.35 26.3 21.1 0.199 

250 | 54.3 0.35 27.2 17.5 0.158 

300 | 46.8 0.35 28.1 13.6 0.125         

Table 1.3: Material data for Altex fibers 

T | EU L0 a® 

°C] | [GPa] [] [107°K] 
20 | 180. 0.20 6.0 

300 | 180. 0.20 6.0 

    

  

        

Table 1.4: Material data for carbon fibers 
  

  

  

T | EQ EY J MA oy oy 
°C] | [GPa] [GPa] [] [] [GPa] [10°K~'] [107°K~7] 
20 | 214.0 140 020 025 140  -0.55 5.6 
300 | 214.0 14.0 020 025 140  -0.55 5.6        



                
l \ 2.46 A 

Figure 1.2: Crystal structure of graphite 

Thus three electrons per atom form covalent bondings with their neighboring 

atoms, which causes high bonding forces in one plane (basal plane, see fig. 

1.2), while the fourth electron cannot be directly related to a single atom 

(the neighboring electron orbitals are overlapping) and forms a bond per- 

pendicular to the basal planes, which has much less bonding energy then the 

covalent bondings in the basal planes. The bonding forces are comparable 

to van der Waals forces. Thus the atomic spacing perpendicular to the basal 

planes is much higher than within the planes. The fourth valence electron 

is also responsible for the electric conductivity of graphite, which is excel- 

lent parallel to the basal planes but very small perpendicular to the planes. 

Thus the carbon microstructure leads to an extreme anisotropy of mechani- 

cal, thermal, and electrical properties. 

From the microstructural point of view there are two idealized descriptions 

for the geometrical transverse configurations of the basal planes in circular 

cylindrical fibers. They are labeled as radial and onion skin configurations,



see [75]. Both types lead to a transversely isotropic mechanical behavior, 

i.e. their elastic behavior is described by five independent elastic constants, 

e.g. Er, the longitudinal Young’s modulus, Er the transversal Young’s mod- 

ulus, v, the axial Poisson ratio, G, and Gr the axial and transversal shear 

moduli, see |80]. The distinction between radial and onion skin types has 

almost no effect on the elastic properties, only the transverse shear modulus 

exhibits a significant dependence, compare [26]. As stated at the beginning 

of the section these properties can vary over a wide range, depending on the 

manufacturing process. The elastic constants of the graphite hexagonal lat- 

tice (measured on a single crystal) are 1060GPa parallel to the basal planes 

and 36.5GPa in the perpendicular direction. Commercially available fibers 

reach values for the axial modulus of about 200GPa for high strength fiber 

to more than 500GPa for high modulus fibers. Experimentally fibers having 

a modulus of about 1000GPa have been developed. 

Similar to the elastic properties also the thermal expansion behavior exhibits 

an extreme anisotropy. Perpendicular to the fiber the coefficient of thermal 

expansion (CTE) reaches values typical for common crystalline materials. 

However the axial CTE is close to zero or even negative. 

One of the technical risks for the present project arises from the different 

thermo-mechanical material properties of the individual constituents. Es- 

pecially their different thermal expansion behavior, which causes thermal 

eigenstresses on the micro level between reinforcement and matrix as well 

as on the structural level between the reinforced and the unreinforced ma- 

terial, must be considered. These stresses reach maximum values close to 

the material interfaces. The intersection points between a material interface 

and the free surface are known to be locations of complicated tri-axial stress 

states which are the consequence of the step-like, i.e. discontinuous, variation 

of the mechanical material parameters. Additionally at these interfaces the 

material strength is reduced because of the possible formation of oxide layers 

and intermetallics or due to imperfect metallic bonding. Thus a challenge of 

the present work is to find solutions which allow to overcome or handle these 

types of problems.



Chapter 2 

Micromechanics of composite 

materials 

2.1 Basic notions 

The principal aim of theoretical studies of multiphase materials and com- 

posites is the deduction of the their overall (or effective) properties (e.g. 

thermo-mechanical properties such as stiffness and strength, hygrothermal 

properties, electro-mechanical properties, heat conduction properties, elec- 

trical and magnetic properties) from the material behavior of the components 

and from their microscale geometry. This corresponds to describing the be- 

havior of the microinhomogeneous material via an equivalent continuum, a 

so called homogenized medium. 

Descriptions of the properties of composite materials have to account for at 

least two (but often three or more) length scales: 

e Macroscale: the length scale of the structure, component or sample 

e Mesoscale: intermediate length scale (e.g. lamina level in layered com- 

posites) 

e Microscale: the length scale of the reinforcement diameters or the dis- 

tances of adjacent material phases (in many cases, however, the con- 

stituents may be inhomogeneous themselves, e.g. polycrystalline ). 
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The subject of the present work is based on micromechanics of materials, 

i.e. the study of mechanical properties of inhomogeneous materials at the 

microscale as well as mechanical properties of hybrid components at the 

macroscale within the framework of continuum mechanics. Thus, following 

[17] some basic ideas on micromechanical modeling of materials are discussed 

in this chapter. Even though the emphasis in this work is put on the thermo- 

mechanical behavior of fiber reinforced composites. There is a large body of 

literature applying analogous or related methods to other physical properties 

and to a wide range of other inhomogeneous materials. 

In micromechanical approaches, the stress and strain fields in an inhomo- 

geneous material are typically split into contributions corresponding to the 

different length scales, which may be termed “fast” and “slow” variables. It 

is assumed that the length scales are suffliciently different so that variations 

of the stress and strain fields on the microlevel (fast variables) influence the 

macroscale behavior only by their average values (i.e. from the point of view 

of the macroscale or mesoscale the composite acts as a “material”). 

It is further assumed that gradients in the macroscale and mesoscale temper- 

ature, stress, and strain fields as well as compositional gradients (in terms of 

slow variables) are not significant at the microscale, where these fields appear 

to be locally constant and act as “applied” homogeneous far field tempera- 

tures, stresses, and strains. 

From the point of view of a given length scale the material behavior at any 

lower scale may be described by that of an equivalent homogenized contin- 

uum. These assumptions are somewhat restrictive, but disregarding them 

could lead to erroneous results, and thus to some misinterpretation on the 

composite behavior. If the conditions are not met to a sufficient degree, 

special investigation techniques must be used, e.g. special homogenization 

procedures, see [22, 33]. In chapter 5 this topic is discussed for the case of a 

meso-macro interface (a material interface dividing two differently reinforced 

subregions) typically occurring in layered composites having the same matrix 

material in each layer, and selectively reinforced structures. An embedding 

modeling technique is employed, which was primarily introduced in [24] to 
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investigate free edge effects in hybrid materials. 

For samples (or subregions of samples) that do not exhibit macroscopic stress, 

strain and compositional gradients, the microscale strain responses e(r”), the 

microscale stress response a(r) and the corresponding macroscale responses, 

e.g. an effective mechanical strain responds Emecn, OT an applied stress g, 

can be formally linked by localization relations of the type 

1 > 
Emech = ash. e(r)dN 

1 > 
o, = ash. o(r)ÄN (2.2) 

where N); stands for the volume of the sample (or of the subregion). A(r”) 

and B(r’) are called strain and stress concentration tensors (or influence 

functions [52]), respectively. It may be noted here that in the absence of 

microscopic body forces the microstresses a(r) are self-equilibrated. 

In the above form, eqn.(2.1) applies to elastic composites only, but it can 

be easily modified to cover thermo-elastic composites, see eqn.(2.3). An 

extension to nonlinear (i.e. thermo-elasto-plastic) composites is is discussed 

in section 2.2.2. 

The microgeometry of real composites is at least to a certain extent ran- 

dom and correspondingly highly complex. Accordingly, exact expressions for 

A(r)), B(7), e(r), and o(r’) cannot realistically be provided and approxima- 

tions have to be introduced. 

Typically, these approximations are based on the “ergodic hypothesis”, i.e. 

it is assumed that the heterogeneous material is statistically homogeneous. 

Sufficiently large subvolumes selected randomly within the sample give rise 

to the same effective material properties, which correspond to the sample’s 

12



overall material properties. The homogenization volume is accordingly cho- 

sen to be some reference volume element (RVE), Nrvz, which is a subvolume 

of N; that is representative of the microgeometry of the composite. Nrve 

should be sufficiently large to allow a meaningful sampling of the microfields 

and sufliciently small for the influence of macroscale gradients to be negligi- 

ble and for an analysis of the microfields to be possible. For more thorough 

discussion on the size of the reference volumes see |33, 46]. 

2.1.1 Basic strategies in micromechanics 

Homogenization methods aim to find a reference volume’s response to pre- 

scribed loads (typically far-field stresses, far-field strains, or temperature 

changes) and deduce from it the corresponding overall properties. In mi- 

cromechanics, they typically are used either for characterizing the material 

properties of composite materials (e.g. to generate simulated uniaxial stress 

vs. strain curves) or for generating macroscopic constitutive models. The 

latter allow the effective properties of the inhomogeneous material to be ob- 

tained for any given material state and loading history, e.g. for use as material 

models in Finite Element calculations (compare chapter 2.2.2). 

Localization procedures are used for finding the local response of the phases 

when the macroscopic response of the sample or structure is known. Typical 

applications are evaluating the matrix stresses in an MMC in order to check 

for yielding, or to evaluate damage effects controlled by microscale stresses 

or strains such as debonding between the composite’s components. 

Because for realistic phase distributions the analysis of the spatial varia- 

tion of the microfields in realistic reference volumes can hardly be captured 

computationally, many descriptions of composites are based on one of the 

following approximations: 

e Mean Field Approaches (MFA), 

e Periodic Microfield Approaches (PMA), 

e Embedding Methods. 

An additional difficulty that must be mentioned is of special importance for 

all modeling schemes, especially for metal matrix composites. For these ma- 

13



terials, the selection of material properties for the matrix can be very difficult, 

because the in-situ properties of the metal matrix in the MMC can differ con- 

siderably from those of bulk samples of the same metal (as typically used for 

obtaining material parameters). There are various mechanisms causing such 

differences, e.g. refined grain size in the matrix, dominant grain orientation 

caused by the temperature gradient between matrix and reinforcement dur- 

ing manufacturing, increased and spatially varying dislocation density due to 

plastic deformations after cooling down from manufacturing temperature, or 

formation of additional phases after a chemical reaction between matrix and 

reinforcement, compare e.g. [11, 106]. The presence of such effects requires 

special care in generating models and in interpreting the results. 

2.2 Mean field approaches (MFA) 

In mean field approaches the microfields within each phase are approximated 

by their phase averages EP) and o®) i.e. the mean total strain and stress 

fields in each phase under thermomechanical loading. Such descriptions use 

information on the microscale topology, the inclusion shape and orientation, 

and (to some extent) on the statistics of the microgeometry. The localization 

relations then take the form 

ei) — AM.+aPAT 

oe) = BOa+bPAT (2.3) 

and the homogenization relations become 

1 

= — | ean 
kp) 2) 

e = Deren (2.4) 
p 

oe) = I o (7)dQ 
ot Q(P) Q(P) 

o = Year (2.5) 
p 

where (p) stands for a given phase of the composite, NP) is the correspond- 

ing phase volume, and EI=-NP/S,N® is the volume fraction of the phase. 
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Note that for MFAs the phase concentration tensors AP), aP), BP), and 

b) are not functions of the spatial coordinates within the reference volume 

(in contrast to A(r) and B(r) in eqn.(2.1)). Mean Field Approaches tend 

to be formulated in terms of the phase concentration tensors and they have 

been highly successful in describing the linear response of aligned composites. 

Approaches of this type are essential for material characterization and for the 

structural modeling in the present work. Consequently a general overview 

is given. Surveys on meanfield approaches are given, e.g. in |[31, 99]. For a 

more comprehensive treatment see [17]. 

Rules of Mixture 

In the most general case, “rule of mixture” expressions for some (scalar) 

effective physical property VW of a two-phase composite take the form 

1/8 
u= [Eu + (1-8 w)?] (2.6) 

where the exponent 3 is typically chosen to obtain a good fit to experimental 

data. The most popular expressions, which, in contrast to most other choices 

of ß, have a clear physical interpretation, are d=1 (Voigt model) and d=-1 

(Reuss model). Voigt expressions correspond to full strain coupling of the 

phases (“springs in parallel”) and Reuss expressions to full stress coupling 

(“springs in series”), i.e. they describe the in-plane and out-of-plane behavior, 

respectively, of a layered material made up of two materials having the same 

Poisson number. The usefulness of Voigt and Reuss expressions for actual 

composites depends strongly on the given microtopology. Even though it 

neglects Poisson effects, the Voigt expression 

EB, = EEE +(1-£)E (2.7) 

is usually a very good approximation for the axial stiffness of continuously 

reinforced unidirectional composites. 

Reuss-type models for the overall behavior of particle reinforced materials or 

for the transverse and shear properties of continuously reinforced composites, 
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however, typically result in excessively soft overall responses. 

Even though they are not meanfield methods in the strict sense, Rules of 

mixture can in principle be used to generate effective “elastic tensors” (and 

consequently concentration tensors) that may be employed in a mean field 

framework. Because they do not intrinsically account for the relationships 

between the engineering moduli, however, such procedures are inconsistent 

(i.e. computing all elements of the overall elasticity tensor of a statistically 

transversely isotropic composite by Voigt and Reuss formulae will in general 

not result in a complete description of the elasticity tensor). 

The VFD model 

An approach which is closely related to the rules of mixture, but which 

gives consistent and unique overall material tensors for unidirectional con- 

tinuously reinforced composites is known as the Vanishing Fiber Diameter 

(VFD) model originally developed by Dvorak/Bahei-el-Din [35]. The phys- 

ical interpretation of the VFD model is a composite containing aligned and 

continuous but infinitely thin fibers (which strongly influence the axial effec- 

tive behavior, but affect the transverse behavior of the composite only via 

the Poisson effect) in a matrix. 

Due to its simplicity it has been a popular description for continuously re- 

inforced elasto-plastic and visco-elasto-plastic UD composites since its intro- 

duction (the original VFD model was conceived as a description for MMCs), 

giving good results for fiber dominated properties and reasonable predictions 

for the hardening behavior in matrix dominated deformation modes. Since 

the VFD model derives the overall material tensors in a consistent manner, 

it has been successfully used as a material model for FE programs, e.g. [100]. 

Hashin’s CCA and CSA models 

Hashin’s composite sphere assemblage |45] and composite cylinder assem- 

blage [47] approaches (also called “direct methods”) are of major interest 

because they give exact expressions for some engineering moduli of special, 

but fairly realistic, particle reinforced and aligned continuously reinforced 
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composites, respectively. It may be noted that even though the derivations 

of the CCA and CSA methods do not involve phase averaged microstresses 

and strains, the results can be directly interpreted in terms of mean fields. 

Both CSA and CCA are based on analyzing reference volumes tightly packed 

with either composite spheres or composite cylinders of varying diameters 

(the cores of the composite spheres/cylinders consist of the reinforcement, 

and the matrix is placed in a concentric shell of the appropriate thickness 

to give the desired volume fraction). These reference volume elements are 

subjected to suitable homogeneous boundary conditions, from which the ap- 

propriate boundary conditions for a single cylinder or sphere are deduced. 

The appropriate differential equations governing elastic deformation of the 

composite spheres or cylinders are then solved and the overall moduli are 

obtained. It is not possible to derive the overall material tensors in a com- 

plete manner, so that G (for particle reinforced composites) or E,, Gy: and 

v, (for continuously reinforced UD composites) must be evaluated by other 

means, e.g. the Hashin-Shtrikman bounds [48] or three-phase self-consistent 

schemes [27]. 

2.2.1 Mean Field Methods based on Eshelby’s solution 

A large number of mean field descriptions for the micromechanics of com- 

posites are based on the work of Eshelby [37], who investigated the stress 

and strain distributions in homogeneous media containing a subregion that 

spontaneously changes its shape and/or size (undergoes a “transformation”) 

so that it no longer fits into its previous space in the “parent medium”. 

Eshelby’s results show that if an elastic homogeneous ellipsoidal inclusion 

(i.e. an inclusion consisting of the same material as the matrix) in an infinite 

matrix is subjected to a homogeneous strain e, (called the “stress-free strain”, 

“unconstrained strain”, “eigenstrain”, or “transformation strain” ), the stress 

and strain states in the constrained inclusion are uniform, i.e. a) = oe and 

eld) = ei). The uniform strain in the constrained inclusion (the “constrained 

strain”), e., is related to the stress-free strain e, by the expression 

e.=Se, , (2.8) 
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where S is called the Eshelby tensor. For eqn. (2.8) to hold, e, may be any 

kind of eigenstrain which is uniform over the inclusion (e.g. a thermal strain, 

or a strain due to some phase transformation which involves no changes in 

the elastic constants of the inclusion). 

For spheroidal inclusions (i.e. ellipsoids of rotation) in an isotropic matrix, S 

can be evaluated analytically and depends only on the Poisson’s ratio of the 

homogeneous material and on the aspect ratio a of the inclusion. 

Mean field methods for dilute inhomogeneous matrix-inclusion composites 

typically aim at making use of Eshelby’s expressions for the stress and strain 

fields in a homogeneous inclusion subjected to an eigenstrain by using the 

concept of an equivalent homogeneous inclusion. This strategy involves re- 

placing the actual inhomogeneous inclusion (which has different material 

properties than the matrix) subjected to a given unconstrained eigenstrain 

with a (fictitious) “equivalent” homogeneous inclusion on which a (fictitious) 

“equivalent” eigenstrain is made to act. 

In the case of an isotropic matrix containing inhomogeneous inclusions e; 

depends on the Poisson’s ratio of the matrix and the aspect ratio of the 

inclusion only. Introducing an equivalent homogeneous inclusion equation 

(2.8) is replaced by 

€. =Se, . (2.9) 

€,, the equivalent eigenstrain, is chosen in such a way that the same mean 

stress and strain fields are obtained in the actual inhomogeneous inclusion 

and in the fictitious homogeneous inclusion, compare fig. 2.1. For a compre- 

hensive discussion of the Eshelby solution see [15, 99, 31]. 

If a uniform external stress o, is applied to an inhomogeneous elastic matrix— 

inclusion system, the total stress in the inclusion, oa), will be a superposition 

of this applied stress and of some additional stress o® caused by the con- 

straining effect of the surrounding matrix on the inclusions. 

o% =0,+0 = EM (ce +8.-8,) , (2.10) mech 

i.e. such problems can be treated by an extension of the above strategy, which 

takes the form of introducing an equivalent homogeneous inclusion subjected 
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Figure 2.1: Sketch depicting Eshelby’s solution procedures for a homogeneous 

inclusion and a typical equivalent inclusion procedure for a matrix-inclusion 

system loaded by a transformation strain e, 

to both the external stress o, and a suitable equivalent eigenstrain e,. Again, 

this equivalent eigenstrain is chosen in such a way that the total average 

inclusion stress oe and the constrained strain €, are the same in the actual 

(inhomogeneous) and the equivalent (homogeneous) inclusion, compare [31]. 

By inserting Eshelby’s relation in the form of eqn.(2.9) into eqn.(2.10) and 

solving for the equivalent eigenstrain e, one obtains 

e, = (EN -EM)S+EMILEN Eden + EVe] , 
(2.11) 

which, as expected, contains a contribution due to the applied strain Em, 
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as well as a term due to the unconstrained eigenstrain e,. Substituting 

eqn.(2.11) into the right hand side of eqn.(2.10) gives the following expression 

for the total stress in the inclusion 

ai = EMIT+(S- TEN <EM)S+ EMI EM —EO) Jemen 
+ E®(S - D[(E® - E®)s + E® an . (2.12) 

Using the relationship, which holds for a dilute composite (&E — 0), Em, = = 

C® o,, eqn.(2.12) can be rewritten as 

ai = EMLT+(S-DIEN -EM)S+ EM] (EM -EO)})CHe, 
+ E®(S - I[(E® - E®)s + EP] 1E® 

= EPII+ Ru(E” - EÖ)IC®o, +EPRy4E®e, (2.13) 

where the tensor R., is defined as 

Rau = (S - DI(E® - EP) S + EP]. (2.14) 

By comparing the definition of the inclusion stress concentration tensor B®, 

eqns.(2.3) with eqn.(2.14) and by setting the transformation strain €,=0 

(only applied mechanical loads but no stress-free eigenstrains are consid- 

ered), the following expression for the stress concentration tensor of a dilute 

composite is directly obtained, compare [103] 

BY) = E™[I+ Ry(E™ — EO)jCt . (2.15) 

and following [9] the dilute strain concentration tensor follows as 

AG = [I+SCM(E® mt. (2.16) 

It should be noted that these expressions only hold for inclusion volume frac- 

tions &E < 0.1. 
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Theoretical descriptions for the overall thermoelastic behavior of composites 

with inclusion volume fractions of more than a few percent must explicitly 

account for the interaction between inclusions, i.e. for the effects of the sur- 

rounding inclusions on the stress and strain fields experienced by a given fiber 

or particle. One way for achieving this consists of approximating the stresses 

acting on an inclusion, which may be viewed as the perturbation stresses 

caused by the presence of other inclusions (“image stresses”, “background 

stresses”, “perturbation stresses”, “mean field stresses”) superimposed on 

the applied far field stress, by an appropriate average matrix stress. The idea 

of combining such a concept of an average matrix stress with Eshelby-type 

equivalent inclusion approaches goes back to Brown and Stobbs [21] as well 

as Mori and Tanaka |76]. Theories of this type are generically called Mori- 

Tanaka methods or “Equivalent Inclusion — Average Stress” approaches. 

Mori-Tanaka methods 

It was shown by Benveniste [9] that in the isothermal case the central as- 

sumption involved in Mori-Tanaka approaches can be denoted as 

el = A el 
o, = By el . (2.17) 

Essentially, the methodology developed for dilute inclusions is retained and 

the interactions with the surrounding inclusions are accounted for by suitably 

modifying the stresses acting on each inclusion. Equation (2.17) may be thus 

viewed as a modification of eqn. (2.3) in which the applied strain or stress, 

e, and a,, is replaced by the total matrix strain or stress, em and m 

respectively. Of course, suitable expressions for em and/or oe must be 

introduced into the schemes in an explicit or implicit way. 

Following Benveniste, eqn. (2.17) leads to strain and stress concentration 

tensors for non dilute composites of the form 

By, = BOI1-oT1+eBY (2.18) 
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and the corresponding expressions for the matrix strain and stress concen- 

tration tensors are given by 

Ar = [A-OT+ EAN" 
BY, = [(1-&I+¢BY" . (2.19) 

Introducing the Eshelby type solution for dilute composites the Mori-Tanaka 

strain and stress concentration tensors take the form 

Ar = {ü -EI+ EIT+ SCHE" rn r' 
BP, = {(1-8)I+ EERIT+ SC! nn Alm (2.20) 

and the expressions for the effective elasticity tensor Eyr, the effective com- 

pliance tensors Cyr, and the effective thermal expansion tensor ayr of the 

composite can be recovered as 

Eur = EM +EIEO EMAIL - 1+ €AY 
Cur = C¥ +¢[Cc® — cPIBY[(1-&T+£BY™ 
aur = a" +elc - OMiE Gl — T+ €BY - 

It should be noted that “standard” Mori-Tanaka theories can describe the 

overall thermoelastic response of composites containing aligned inclusions 

of a single type, which may have any aspect ratio between 0 and oo (i.e. 

aligned platelets, spherical particles, aligned short and continuous fibers). 

Special procedures are necessary for dealing with non-aligned or hybrid com- 

posites and materials with more than two phases, compare e.g. |85]. For 

further discussions of Mori-Tanaka theories for elastic inhomogeneous two- 

phase methods, especially of their relation to other mean field approaches 

and of their range of validity, see e.g. |30, 29]. 

Finally, it is worth noting that Mori-Tanaka type theories can be imple- 

mented into computer programs in a straightforward way. Because they are 

explicit algorithms, all that is required are matrix additions, multiplications 
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and inversions plus expressions for the Eshelby tensor. Together with their 

fairly good accuracy this makes them a very useful tool for assessing the stiff- 

ness and thermal expansion properties and for evaluating the thermoelastic 

tensors of inhomogeneous materials that show a matrix-inclusion topology 

with aligned inclusions or voids. Mori-Tanaka methods for thermo-elasto- 

plastic materials are discussed in section 2.2.2. 

Self-Consistent schemes 

An alternative way of extending the expressions for the elastic properties of 

dilute composites is based on the assumption that an inclusion is surrounded 

by an “effective medium” instead of the matrix (i.e. EP — Eand C® — C). 

The elasticity tensor of such an effective medium is given by 

E= EM + &(E® - ER)II+SC(E® -B)" , (2.22) 

where, of course, the compliance tensor C is the inverse of E. This can be 

interpreted as an implicit system of equations for the unknown elastic tensors 

E and C of the effective medium, which can be solved by self-consistent 

iterative schemes of the type 

E,;; = EM +2g[E® - ER]IT+S,C,(E® - E,)]" 
1 Cu = [Ba] - (2.23) 

The Eshelby tensor S, in eqn.(2.23) describes the response of an inclusion in 

the n-th iteration for the effective medium and must be recomputed for each 

iteration. This approach is known as the two-phase or classical self-consistent 

scheme (CSCS; [53]), and its predictions are noticeably different from those 

of Mori-Tanaka methods. Essentially, the microstructures described by the 

CSCS are characterized by interpenetrating phases around &=0.5, with one 

of the materials acting as the matrix for &>0.0 and the other for &1.0. 

A more elaborate self-consistent approach, the three-phase or generalized 

self-consistent scheme (GSCS; [27, 28]), describes inclusions surrounded by a 

matrix layer (of a thickness appropriate for obtaining the required inclusion 
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volume fraction) embedded in an effective medium. The predictions obtained 

with such a procedure are generally considered as producing the best mean 

field type predictions for materials with matrix-inclusion microtopology, i.e. 

for composites in the usual sense. However, being implicit and requiring the 

iterative solution of nonlinear equations, this method is computationally less 

efficient than Mori-Tanaka approaches. 

2.2.2 Incremental Mori-Tanaka method 

Mean field methods can be extended into the thermo-elasto-plastic range by 

formulating eqn.(2.3) in terms of strain, stress, and temperature rates, de), 

de”, da, do, and dT, respectively, and using instantaneous concentration 

tensors AP, BP) a and b{P to give 

de? = APde +aPdT 

do?) = BPdo®+bPdT . (2.24) 

For the case of thermoelastic inclusions in a thermo-elasto-plastic matrix the 

global instantaneous tensors then take the form 

Ei = EO+(1- (EN -EN)AY” 
a = Ne +1 ar Nee] | (2.25) 

where the specific thermal stress tensor of constituent (p) is defined as e®) = 

-EP ar). 

Using the formulation of [9], Mori-Tanaka expressions for the instantaneous 

concentration tensors can be obtained in the form 

AD = {(1-I+E[I+S,C (EP - EP)]'}" 
a = (I-ÄNM)EN- Bi) "ter" - e“')) 
Bi” = {(1- )I+£[I+E N(I-8,)(C? — M)} 
bi? = (I-B)(C® - Ci?) (a - IN (2.26) 

Here I is the identity tensor and S, stands for the instantaneous Eshelby 

tensor, which depends on the instantaneous material properties of the matrix 
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and on the aspect ratio of the inclusions. In the elasto-plastic range it has 

to be evaluated numerically, e.g. by the procedure proposed by Gavazzi and 

Lagoudas [38]. 

Compared to mean field approaches based on secant plasticity, incremental 

Mori-Tanaka (IMT) procedures have the advantage of not being restricted to 

radial loading at the microlevel, which is vital for their use as material models 

in FE programs. 'They show a tendency, however, towards overpredicting 

the overall hardening behavior of the inhomogeneous material, compare [98]. 

IMT-type procedures in the literature include e.g. |62, 59]. 

In [85] the IMT algorithm given by eqns.(2.24)-(2.26) was implemented as 

a user supplied material module (UMAT) for the FE code ABAQUS [1], 

which requires that at each integration point and in each iteration the over- 

all stress response and the elasto-plastic tangent operator be evaluated for 

some prescribed strain increment. Because in the case of the IMT model the 

elasto-plastic material behavior is directly defined only for the matrix and 

not for the overall response, a combination of a radial return mapping algo- 

rithm at the level of the elasto-plastic matrix and an Euler backward iteration 

scheme was selected for this task. Appropriate provisions had to be made for 

resolving the thermal strains in the case of thermo-elasto-plastic behavior, 

because in inhomogeneous materials such as MMCs the thermal expansion 

response depends on the load history and, as is evident from eqn.(2.25), on 

the instantaneous moduli of the matrix. For details of the algorithm, which 

is also capable of handling temperature dependent material parameters, see 

[85]. 

It should also be mentioned that in addition to the previously described 

micromechanical approaches there are also macromechanical approaches for 

simulating the elasto plastic-behavior of fiber reinforced composites using 

anisotropic plasticity material models, which where primarily introduced by 

Hill [51]. Whereas Hill type plasticity models are very useful for the descrip- 

tion of anisotropic metals, e.g. sheet metals, they are not capable of modeling 

the anisotropic inelastic behavior of fiber composites with an acceptable accu- 

racy. Comparisons with the IMT approach demonstrate that the anisotropic 

Hill model only produces reasonable results for the first stage of yielding, 
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whereas the hardening stage could not be covered correctly. There are sev- 

eral assumptions introduced, which are very useful for pure metals, but do 

not hold satisfactorily for composites: 

e There is no influence of hydrostatic stress states on the plastic defor- 

mation behavior. 

e The Poisson ratio is assumed to be 0.5 (constant volume) for plastic 

deformations. 

e T'he hardening behavior is originally assumed to be a scalar function 

of the stress-strain state. 

e The shape of the yield surface is far too restrictive for fiber reinforced 

composites. 

e With respect to the thermal expansion behavior it is not possible to 

account for the load history dependence of the thermal expansion be- 

havior of composite materials. 

Some more sophisticated macro-plasticity models have been proposed, which 

can at least account for some of the previously mentioned shortcomings, see 

e.g. [41, 56, 61, 94, 102]. 

The main advantage of these continuum approaches for the use in non-linear 

structural analysis is that they are less expensive with respect to computer 

power. In comparison to micromechanically based methods, however, they 

are less accurate, and they do not provide any information about stress and 

strain field of the constituents. The main problem for the application of 

macro-plasticity approaches to model composite materials is that the effec- 

tive composite behavior has to be determined experimentally. Le. it is not 

possible to determine the effective composite properties form the properties 

of the individual constituents. 

As it will be demonstrated in chapter 4 it should be mentioned that it is 

not possible to model the elasto-plastic behavior of a composite material 

correctly, assuming the effective coefficient of thermal expansion to be a ma- 

terial constant. 
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2.3 Periodic microfield approaches (PMA) 

Periodic microfield approaches aim at describing the macroscale and mi- 

croscale behavior of composites by investigating model composites with pe- 

riodic phase arrangements. In comparison with mean field approaches, such 

strategies allow a much more detailed description of the microscale varia- 

tions of the stress and strain fields, and many effects of inclusion shapes and 

arrangements can be investigated at considerable depth. Periodic microfield 

approaches are, however, subject to inherent limitations in accounting for 

the statistical phase arrangements typically found in actual composites, and 

they tend to be restricted in the mechanical loading conditions that can be 

modeled. Due to the detailed description of the microscale stress and strain 

fields, periodic microfield models are well suited to studying microscale fail- 

ure mechanisms and failure-related effects in composite materials, and they 

are highly useful for material characterization. 

Periodic microfield investigations typically analyze the behavior of an infi- 

nite periodic arrangement (in two or three dimensions) of the constituents 

under the influence of some far-field load (this, of course, corresponds to the 

assumption that macroscale gradients of the stress and strain fields are not 

noticeable on the microscale) or some constant temperature field. In some 

studies, e.g. investigations of Functionally Graded Materials (e.g. [105] or 

analysis of thin layers of monofilament reinforced unidirectional MMCs (see 

e.g. [57]), however, free boundaries and microscale stress or temperature gra- 

dients were accounted for. 

The stress and strain fields in infinite periodic microgeometries can be studied 

analytically by employing series expansions that make use of the periodicity 

of the phase arrangements, e.g. [93]. 

For the majority of periodic microfield studies of composites, however, stan- 

dard numerical engineering methods have been used to compute the mi- 

crofields in the unit cells, typically at high resolution. At present, the FEM 

is the most popular numerical scheme for unit cell investigations of inho- 

mogeneous materials, especially in the nonlinear range. Figure 2.2 shows a 

typical FE unit cell for a periodic hexagonal arrangement of fibers. 
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Figure 2.2: Unit cell for a periodical hexagonal fiber arrangement 

The proper use of unit cell based methods requires that the unit cells together 

with the boundary conditions prescribed on them generate valid tilings of the 

problem space both for the undeformed geometry and for all deformed states 

pertinent to the investigation (i.e. gaps or overlaps between neighboring unit 

cells must be avoided). Of course, the boundary conditions for the unit cells 

must be selected in such a way that all deformation modes appropriate for 

the load cases to be investigated can be attained. Usual choices are bound- 

ary conditions of the periodic, symmetry and point symmetry types. The 

primary practical challenge within such a “mechanics of materials” approach 

involves the development of appropriate unit cells that allow a close repre- 

sentation of the microgeometries of actual inhomogeneous materials within 

available computational resources. In addition, a less obvious difficulty is 

encountered when the response to general loading conditions is to be mod- 

eled. Whereas periodic boundary conditions are sufficiently general for deal- 

ing with such problems, the specification of appropriate microscale loads or 

load distributions that do not constrain the generality of the model tends 

to be difficult in all but the simplest cases (e.g. setting up tractions giving 

rise to overall simple shear in a general orientation is challenging). Together 
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Figure 2.3: Multi fiber unit cell for a continuously fiber reinforced composite 

these limitations restrict the range of applications of periodic microfield ap- 

proaches. It may be noted that difficulties of this type can be resolved by 

using descriptions based on asymthotic homogenization, see [98]. 

Composites reinforced by continuous aligned fibers typically show a sta- 

tistically transversely isotropic overall behavior. Their overall thermoelas- 

tic properties are very satisfactorily described by generalized self-consistent 

schemes and Mori-Tanaka methods, so that periodic microfield analysis are of 

interest mainly for their nonlinear and damage-related responses. However, 

in order to model realistic phase distributions such periodic cells can get quite 

complex. It should be noted that the VFD method [35], incremental Mori- 

Tanaka methods, and Aboudi’s Method of Cells [2] can give reasonably good 

results for the overall elasto-plastic and thermo-visco-elasto-plastic behavior 

of unidirectional continuously reinforced composites at low computational 

costs, but do not resolve the microfields as well. 

The thermo-mechanical behavior of composites reinforced by continuous aligned 

fibers under mechanical loading by axial and transverse normal stresses, hy- 

drostatic stresses and certain transverse shear stresses as well as under ther- 

mal loading can be described by two-dimensional models employing gener- 
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alized plane strain conditions, three dimensional analysis being mainly of 

interest in the context of stress distributions near failed fibers (see e.g. [69]). 

It should be noted, however, that generalized plane strain conditions are not 

suitable for modeling the response of unidirectional composites under axial 

shear loading [95]. 

Even though periodical arrangements like the one shown in fig. 2.2 can re- 

produce many features of the fiber distributions in actual composites (and 

are thus useful for some damage related investigations), they are clearly not 

fully representative of “real” composites. Much improved descriptions in this 

respect can be obtained by multi-fiber unit cells, e.g. [79], in which the fiber 

positions are selected in a pseudo-random way, compare fig. 2.3. 

2.4 Embedding methods 

Alternatively to studying composites via periodic microgeometries, models 

may be used that consist of an inner “core” with a discrete phase arrange- 

ment that is embedded in an outer zone in which the microfields are resolved 

less accurately and which serves mainly to introduce the applied far field 

loads. Whereas in periodic microfield methods all features of the phase ar- 

rangement are repeated within each unit cell, embedding approaches allow 

to effectively “zoom in”into regions of interest, what is highly desirable for 

investigating e.g. the microfields near crack tips or macroscale interfaces in 

inhomogeneous materials. Accordingly, embedding strategies are the meth- 

ods of choice for the above type of problem, where they can be used for any 

type of inhomogeneous material. 

Because of the step like changes from homogenized material description to 

a discrete phase arrangement typically perturbed stress fields occur at the 

boundary layers ofthe embedded models, which decay within a region compa- 

rable to the size of the reinforcements. Thus, choosing the embedded model 

large enough, such perturbations are of negligible influence for the region of 

interest. 

One type of embedding approach, see e.g. [96], uses discrete phase arrange- 

ments in both the core region and in the surrounding material, the latter 
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being, however, discretized much more coarsely. Such models, which may be 

similar to periodic microfield descriptions containing a refined mesh in some 

inner region, largely avoid boundary layers as discussed above, but tend to 

be relatively expensive in terms of computational costs. 

More commonly, homogeneous (smeared out) material properties are used 

for the embedding region. In the simplest case, the material parameters are 

obtained from measurements in conjunction with a proper material law or 

by some micromechanical theory as discussed previously. An approaches of 

this type is used in chapters 5 and 6 for a detailed investigation of free edge 

effects in selectively reinforced structures. 

The strategy of using a homogeneous embedding region has been further 

developed by describing the material properties of this outer zone via the ho- 

mogenized material behavior of the core. Such approaches are frequently 

viewed as some sort of computational analogies to the three-phase self- 

consistent scheme, in which the response of a more complex composite core is 

evaluated by analytical or numerical methods [19]. Methods of this type can 

be used without major limitations in the elastic range, see e.g. |44|. However, 

difficulties typically arise in the elastic-plastic regime, where rather strong 

assumptions have to be introduced with respect to both the selection of the 

macroscale plasticity theory and the functional dependence of the overall 

hardening behavior to be used for the embedding region. Accordingly, such 

approaches have been termed “quasi self-consistent schemes”. 
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Chapter 3 

On curvature eflects ın modeling 

circumferentially reinforced 

composites 

In general mean field methods based on the Eshelby approach, e.g. the 

Mori-Tanaka method, as well as unit-cell based homogenization strategies 

for determining micromechanically based effective material laws for unidi- 

rectionally reinforced composites assume that the axes of the reinforcements 

are straight on the micro level, compare chapter 2. In particular, for describ- 

ing the macroscopical behavior of aligned continuous fiber composites used 

in circumferentially reinforced axisymmetrical structures (compare, generic 

part fig. 1.1) or other structures with curved reinforcements, these methods 

do not explicitly take into account a possible influence of the curvatures of 

the fibers. It might however, be expected that stiff fibers in the form of con- 

centrically arranged rings in a soft matrix can lead to (matrix) stress states 

on the micro level that cannot be satisfactorily described by these methods. 

For example, in a uniformly heated composite cylinder with circumferen- 

tially oriented continuous fibers that have a coefficient of thermal expansion 

smaller than that of the matrix, the local, i.e. microscale, matrix stress state 

will show higher radial compressive stresses at that side of the fiber which 

is closer to the cylinder axis than at the opposite side of the fiber’s cross 

section. Methods based on micromechanical models in which straight fibers 

32



are considered are not capable of showing this local effect. 

A similar problem arises if a curved thick laminate is treated by simple lam- 

ination theory. Since for this problem an analytical reference solution for a 

multi-layered cylinder can be derived, the curvature effect is first studied on 

the basis of the laminate. 

In order to assess the curvature effect in UD continuous fiber reinforced com- 

posites the above multi-layer cylinder solution can also be used as a reference 

solution with the restriction that, in contrast to the behavior of a circumfer- 

entially UD fiber reinforced cylinder, in the multilayer cylinder solution axial 

strain coupling is assumed. 

The individual layers are arranged in such a way that they represent fibers 

and matrix, respectively, in a thick-walled circular cylindrical tube reinforced 

by circumferential aligned fibers. The analytical solution follows and extends 

the derivations presented in [89]. 

The micro- or meso-mechanical approaches compared with the reference so- 

lution are the simple lamination theory (LAM) [54] and the Mori-Tanaka 

method (MTM) [76]. In the LAM and MTM approaches the local curvature 

effects are not included in the macroscopic material law. Additional solutions 

for the cylinder reinforced by circumferential aligned continuous fibers were 

obtained by analyses combining a hexagonal cell tiling concept (HCT) with 

axisymmetric FE. In this approach the fiber curvature effects are explicitly 

taken into account and the assumption of axial shear coupling in the multi- 

layer model is avoided. However, the individual fibers are typically modeled 

with diameters larger than in reality. This phase pattern, or modeling effect 

is discussed in section 3.2. 
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3.1 Analytical solution for an axisymmetric lam- 

inate 

3.1.1 General analytical solution for a thick-walled lay- 

ered cylinder under thermo-mechanical loading 

Assuming axisymmetric generalized plane strain conditions and cylinder co- 

ordinates, Hooke’s law is given by 

Er = 1/E(oyr V(O + C,)) +aAT 

€pp = 1/E(0,p — VlOrr + 022)) + a AT 

€.z = 1/E(0,, — V(0yp + Orr)) + @AT. (3.1) 

Using the definitions 

tm (3.2) v ._1—]/, ._1—]/2, .   

where E is the Young’s modulus and v Poisson’s ratio, we obtain 

1 
Op = E—z |&pp + V7 (6 + €25) — (1+ 20")aAT| 

  

  

    

1-v 

* 1 5k * O =B lerr + V" (€pp + €22) — (1 + 207)QAT]| 

1 
Opp = E*fi [er + Ve + Er) — (1+ 2v”)a@AT|. 

(3.3) 

The relations between strains and radial displacement u, are given by 

ou, Ur 
€r =5 wu €= C. (3.4) 

The local equilibrium condition 

oo, 1 
dr + „(Orr — 0<p<p) =0 (3.5) 

leads to a differential equation for u, 

Hu, 1, u „ OAT 
— = (1+ 27”)a —— (3.6) 

ör? r Or r2 Or 
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with the general solution 

A 
ur=?+Br+(1+2u*)%fATrdr. (3.7) 

Hence, for an axisymmetric cylinder we obtain an equation with three un- 

known variables A, B and C which have to be determined from the boundary 

conditions. Equations 3.1 and 3.3 lead to 

  

  

A o QAT 1 
err=—fi+B—(1—|—2V ) > (R t—|—§t2) 

A aAT 1 
€pp =5+ B+ (1+27)——(Rt+ §t2) (3.8) 

E* A * * * Or = —|5@ -1)+B(1+v*)+v’C 

1 1 + (1+W)aAT(Z(R E+ )0 —1) - ] (3.9) 

E* TA 
Tpp =T 7x2 [T—z(u* -1)+B(1+v*)+v’C 

+(1+ 2V/)aAT(Z(R t+ SPA —- v*) — ] 

(3.10) 

* E 
Oz =T 73 [ZV*B +C-(1+ 2u)aAT|. (3.11) 

3.1.2 n-layered cylinder 

Employing the solution for a homogeneous isotropic thick walled cylinder 

given in the previous section, we derive the thermo-elastic solution for an 

arbitrarily layered cylindrically shaped structure under thermo-mechanical 

loading. 

Let us assume an n-layered circular cylindrical structure which is initially 

stress free. Each individual layer is assumed to be homogeneous and isotropic 

with the thickness %, the elasticity matrix E, and the vector « for the co- 

efficients of thermal expansion, see fig. 3.1. There are no mechanical loads 

on the inner and outer surfaces of the cylinder, and homogeneous thermal 
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it, IE, IQ, 

  
Figure 3.1: Generic model of an n-layered cylindrical structure 

loading under axisymmetric generalized plane strain conditions is considered. 

Accordingly following boundary and continuity conditions must be met: 

',.,('R) =0, (3.12) 

"o ("R+"t) = 0. (3.13) 

Continuity of radial stresses o,, and displacements u, at the layer boundaries 

leads to 

on lR+t)= to „(HR) i=ln-1, (3.14) 

wÜR+) = "ul R) i=1n-1. (3.15) 

Furthermore, because there are no external loads the following condition 

must hold 

"R+t 
f 0, 7dr =0. (3.16) 
'R 
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Introducing eqns.(3.7) — (3.9) into the above eqns. (3.12 — 3.16) we come up 

with a system of 2n + 1 equations for 2n + 1 variables ‘A, ‘B and C, i =1, 

. ‚N. 

Equation (3.12) leads to 

1 

14   
*—1 
m +'"Bi1+'v)+CWV* = 

1 1 —(1+2%")a AT[?(lR +, lv 1) - 1], 
(3.17) 

where ‘o is the coefficient of thermal expansion in the i—th layer and AT is 

the temperature load. ‘A,’B and C are constants to be determined from the 

boundary and continuity conditions. From eqn. (3.13) we obtain 

_ (1 + 2rv)"aAT | ann R "t +%nt2)(ny* -1) - 1] (3 18) 

Using the convention j = ¢+ 1 eqns. (3.14) give rise to the expressions 

  

  

B vl SB vr B (L4 ) ? _J ? _ 

AT IR? AIR i g2 + B 1 _ ivr2 
. jE*(1_|_jV*) z'E*z'V* jE*jV* 

I - 4 s 0 — = 
B 1 — Jp*2 C 1 — iyp*2 1 — dp*2 

‘B J 3, 1, * i+2p2 im? 
T i aAT(1+2 [ev 1 RAR) n-1]- 

Er, 1 
i 1 i % i % ip? _ip?2 - S _ AT —|—2u)[(u VRR), -1 i=1n-1 

(3.19) 

Equation (3.15) leads to 

IA 3A; +'BIR-IBIR = IR IR - 

AT ii (oipir | 142 NG (i Dig ir 
oip |- (1427 a@ R +) + (1+27) a2/ Rt +7¢) 

1=1,n-1 (3.20) 
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and from eqn. (3.16) one obtains 

  
n ; ip* i,/* ; ip* ; 

> B— (JR2 'R?) +CZ 8 ser - R?) = 

i=1 

In matrix notation these 2n + 1 linear equations can be written as 

Kx=d (3.22) 

where K is a non-symmetric sparse coefficient matrix and x is the vector of 

unknown quantities 'A,'B and ©. d is a vector depending on the boundary 

conditions as well as on the material properties. 

This system of equation is solved using a modified Gauss-Jordan algorithm. 

Thus we end up with a full description of stresses and strains within each 

layer as well as the global thermo-mechanical behavior of the arbitrarily lay- 

ered cylinder. 

3.2 Discussion of simulation results 

Since it is the aim of this chapter to verify the applicability of the Mori- 

Tanaka method for axisymmetric inclusion-matrix composites, a multi-layered 

cylinder is studied in which two different layers alternate consecutively, i.e. 

+2: =!t and ?E =°’E. Fictitious material data which provide a consider- 

able elastic contrast between neighboring layers were assumed: 'E/?E = 0.11, 

'v =2 v = 0.3 and the coefficients of thermal expansion fulfill 'ax/’« = 10. 

The layered structure is used as a model for a circumferentially continuous 

fiber reinforced material in a circular cylindrical body, with material 1 repre- 

senting the matrix, and material 2 representing the reinforcing fibers. Corre- 

spondingly, the layer thicknesses are determined by the volume fractions of 

the phases and by the total number of layers. It should be mentioned that 

the number of layers must not be too small and, consequently, the layers 

must not be too thick, in order to allow neglecting the difference between the 

volume fractions and the fractions of meridian cross sections of the phases. 
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A fiber volume fraction of & = 1/3 and a total number of layers n = 11,27 

and 67, respectively, were chosen for the considered examples. In order to 

quantify the curvature effect two different cylinder geometries were treated: 

R, = 10mm, R, = 11mm, which relates to a “moderate curvature”, and 

R, = Imm , R, = 11mm corresponding to a “strong curvature”. R; and R, 

represent the inner and the outer radius, respectively, of the layered cylinder. 

A constant temperature load of AT’ = -+10K was applied to the models. 

The resulting stresses within the composite cylinder with a weak curvature 

are displayed in fig. 3.2 for the circumferential stress component, in fig. 3.3 

for the radial component and in fig. 3.4 for the axial component, respectively. 

In each figure results are shown for cylinders composed of 11(bold solid line), 

27(dashed line) and 67(thin solid line) individual layers. The stresses are plot- 

ted over the thickness of the cylinder in radial direction from the inner radius 

of the cylinder to the outer one. In fig. 3.2 we find that the circumferential 

stresses alternate in a stepwise manner from compression in the softer layers 

to tension in the stiffer ones. The magnitude of the compressive stresses is 

nearly constant over the whole thickness, whereas the tensile stresses within 

the stiffer material increase from the inner layers to the outer ones. Thus, 

the effective (integral) stress state changes from compression to tension with 

increasing radial distance while maintaining global equilibrium. Comparing 

the results derived for the models with different numbers of layers, we did 

not find any qualitative changes using a moderately small number of lay- 

ers. Similar results were found for the axial stress components. It should be 

mentioned that due to the small curvature of the individual layers the radial 

stress components are small and, accordingly, their influence on the overall 

stress distribution is negligible, see fig. 3.3. 

Next, analytical results are compared to predictions obtained from conven- 

tional lamination theory, where the composite cylinder is described using 

the macroscopical material law of a thin laminate, see [54]. In this material 

model the influence of the curvature on the material behavior is not taken 

into account. The results are plotted in fig. 3.5 for the case of an 11-layer 

cylinder. 
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Figure 3.2: Distribution of circumferential stresses o,, for cylinders com- 

posed of 11, 27 and 67 layers, respectively, as a function of their radial 

position 

It is obvious that even for the small curvature case the resulting circumfer- 

ential stresses within the stiffer layers exhibit an error of about 10%, which 

is due to the fact that the simple lamination shell theory cannot capture 

the appearance of effective, i.e. macroscopic, thermal stresses under uniform 

temperature loads which are caused by the anisotropy of the effective thermal 

expansion behavior. In contrast to a fully unconstrained body of isotropic 

homogeneous material, in which no thermal stresses appear under uniform 

temperature loads, in the case of anisotropic materials such thermal stresses 

must not be excluded. Effective thermal stresses of this kind are shown in 

fig. 3.8 denoted there by o,,-MTM. 

Next we switch to the two micromechanical approaches which get employed 

for the description of axisymmetrical metal matrix composites reinforced by 

circumferentially oriented continuous fibers in chapter 6. In one approach the 

classical Mori-Tanaka method was used to derive the overall thermo elastic 

material behavior which was then employed as input for the Finite Element 
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Figure 3.3: Distribution of radial stresses o,, for cylinders composed of 11, 

27 and 67 layers, respectively, as a function of their radial position 

code. In a complementary approach a model micro geometry was generated 

by a hexagonal cell tiling (HCT) concept, (i.e. the computational domain 

is divided into regular hexagons that are assigned to either fibers or ma- 

trix and subsequently modified to obtain the required fiber volume fraction) 

and discretized with 6-noded triangular elements using special preprocessing 

software [16]) and used as a 2D axisymmetric FE analysis. Here, due to lim- 

itations in computational power, the fibers are not modeled with their real 

dimensions, but with somewhat larger diameters. Two different HCT models 

were used, one with 63 fibers per cross-section and another one with 1036, see 

fig. 3.6. Symmetry boundary conditions were applied at the bottom edges 

of the cross section and constraint equations were employed at the top edge 

to obtain axisymmetric generalized plane strain conditions. Thus, similarly 

to the previously presented analytical approach the influence of the modeled 

phase pattern can be studied. This approach explicitly covers second order 

effects caused by the curvature of the fibers which is, of course, not possible 

in the MTM or any other Mean-Field approach based on Eshelby’s theory 

for calculating the stress state within a composite reinforced by aligned el- 
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Figure 3.4: Distribution of axial stresses o,, for cylinders composed of 11, 27 

and 67 layers, respectively, as a function of their radial position 

lipsoidal inclusions. 

In fig. 3.7 a comparison is given between the analytically determined results 

for a layered cylinder consisting of 67 layers and predictions for a fiber rein- 

forced cylinder with the same constituents properties and volume fractions 

obtained by the MTM. Again the results are given as functions of the radius 

between R,; and R.. The analytically determined circumferential stresses 

09-367 (thin line jumping from compression to tension corresponding to 

the alternating layers) are compared with results of the MTM, represented 

by the circumferential stresses in the matrix phase (0), the reinforcing 

fibers (0\)) and an effective, i.e. averaged stress level (c},,). For the defini- 

tion of the effective stresses in a composite material see chapter 2 eqn. 2.5. 

The overall behavior is similar for both models, the matrix material being 

in compression and the reinforcing material in tension, the latter increasing 

with increasing radius. Thus, for both models the effective stress changes 

from compression to tension with increasing radius, see o,, for the MTM. 

There is, however, some difference for the circumferential stress within the 

reinforcing material, which appears to be mainly caused by the axial strain 
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Figure 3.5: Comparison of circumferential stresses in a 11-layer laminate 

after a temperature change AT = 10K, employing conventional lamination 

theory (o,,lam) and the analytical solution technique (o,,-a)- 

coupling assumed in the multi-layer cylinder model. 

In fig. 3.8 results for the fiber reinforced cylinder are compared between 

the two micromechanically based approaches, MTM and HCT. Since the 

implementation of the HCT approach does not allow a continuous variation 

of the dimensions of the modeled area for a given volume fraction and fiber 

diameter, the global geometries of both models (MTM and HCT) were chosen 

to be identical. For this reason the external radius has a value of R, = 

11.15mm instead of R, = Ilmm. All other conditions remain unchanged. 

For the sake of comparison the MTM results for the circumferential stresses 

(0), (0%) and (c},) are plotted together with results obtain by two HCT 

models with 63 fibers (HCT_ A) and 1036 fibers (HCT_B), respectively. The 

predictions are in very good agreement, i.e. there is no major error caused by 

either the curvature of the constituents (compare MTM and HCT models) 

or by the degree of refinement of the phase pattern, i.e. the modeled fiber 
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Figure 3.6: Cross sections of two axisymmetric fiber reinforced composite 

ring models containing 63 (model A, left) and 1036 fibers (model B, right), 

generated via the HCT approach 

diameter (compare HCT_A vs. HCT_B). 

On the basis of these results it can be stated that, as long as small fiber 

curvatures are concerned, both modeling approaches, MTM and HCT, are 

suitable modeling tools that give reliable results on the macro and on the 

phase level. 

In the final part of this section a configuration with a more pronounced 

curvature is investigated. Here, the ratio of outer to inner diameter of the 

composite cylinder has been increased, R; = Imm and R, = 11mm. 

In figs. 3.9, 3.10 and 3.11 the results for the analytical cylinder model are pre- 

sented. In comparison to the previous results (figs. 3.2, 3.3, 3.4) it becomes 

obvious that the strong curvature has a marked influence on the circumfer- 

ential stresses of the stiffer layer. The previously observed effect, that the 

effective stresses change from compression to tension moving from the inner 

to the outer diameter, is now much more pronounced. Close to the inner 

surface even the stiffer layers are under circumferential compression. These 

effects act very locally, i.e. close to the inner surface, and are accompanied 

and caused by non-negligible radial stresses. Thus the results of the analyti- 

cal models exhibit a major dependence on the number of layers used for the 

model. 

The same cylinder was modeled as a fiber reinforced cylinder by the MTM 
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Figure 3.7: Comparison of circumferential stresses after a temperature change 

of AT = 10K determined analytically for a layered cylinder and predicted 

for a fiber reinforced composite using the MTM 

and the HCT approaches, and a similar behavior was found. Because the 

stress distribution close to the inner surface is mainly influenced by the over- 

all stress state, i.e. it is not a second order effect caused by the curvature of 

the individual fibers, the MTM also represents this behavior in an appropri- 

ate manner. Like in the analytical solution, which is based on a finite number 

of layers, for the HCT approach, which uses on a finite number of fibers, the 

stress distribution at the innermost positions exhibits a strong dependence 

on the refinement of the phase pattern. Thus, in both cases by choosing an 

excessively coarse phase pattern the compressive circumferential stresses of 

inclusions are underestimated. 

To conclude this chapter it can be stated that the Mori-Tanaka method 

is capable of describing composites reinforced by curved aligned long fibers 

without significant loss of accuracy due to the fiber curvature, as long as the 

fiber diameter is small compared to the cylinder diameter. In addition, it 
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Figure 3.8: Comparison of circumferential stresses after a temperature change 

of AT = 10K predicted for a fiber reinforced ring by the MTM and by two 

HCT models 

was found that as long as the ratio of outer to inner diameters of circum- 

ferentially continuous fiber reinforced axisymmetric bodies does not become 

too large, approaches using simplified phase patterns of the composite, e.g. 

the hexagonal cell tiling approaches, represent the real composite behavior 

in proper manner. 
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Figure 3.9: Circumferential stresses for a layered cylinder with strong curva- 

ture composed of 11 and 67 layers, respectively 
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Figure 3.10: Radial stresses for a layered cylinder with strong curvature 

composed of 11 and 67 layers, respectively 
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Figure 3.11: Axial stresses for a layered cylinder with strong curvature com- 

posed of 11 and 67 layers, respectively 
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strong curvature — comparison of MTM and HCT results 

48



Chapter 4 

Material characterization 

The objectives of this chapter are to derive effective material data for com- 

posites envisaged for the reinforcing insert. Consequently the results should 

support the selection of the proper constituents from the mechanical point of 

view. Considering the individual benefits of the available micromechanical 

tools a first screening on the elastic and inelastic properties is accomplished 

by the standard mean field methods. Whereas nonlinear material character- 

izations use either unit cell approaches or the incremental formulation of the 

Mori-Tanaka method. 

4.1 First screening of the effective elastic-inelastic 

properties of Mg- and Al-MMCs 

To obtain a quick overview on the mechanical characteristics of carbon fiber 

(T300) reinforced MMCs, we start with estimating the effective isothermal 

elastic behavior from the material parameters of the constituents. In figs. 

4.1, 4.2, 4.3 and 4.4 the effective Young’s and shear moduli, the effective 

Poisson’s ratios and the effective coefficients of thermal expansion (CTE), 

respectively, are shown in axial and transversal directions as a function of 

the volume fraction of reinforcement. These results as well as the predic- 

tions for the uniaxial and shear yield strength, figs. 4.5 and 4.6, are based 

on the Mori-Tanaka method (MTM), comparing MMCs constituents of car- 

bon fiber (T300) in commercially pure Al (A199.9), in AlMg5, and in AZ91D. 
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The axial Young’s modulus for a longfiber reinforced composite is an almost 

linear function of the reinforcement volume fraction, compare fig. 4.1 and 

for £ = 0.5 the axial Young’s modulus for the magnesium matrix composite 

is predicted as E, = 1.3 - 10°N/mm?, i.e. three times the Young’s modulus 

of the matrix. The effective elastic response in transverse direction exhibits 

an unusual behavior for reinforced metals. In contrast to MMCs reinforced 

by ceramic reinforcements, which are in general isotropic and stiffer than 

the matrix, the anisotropic behavior of carbon fibers (stiff in fiber direction 

and compliant in transverse direction) leads to decreasing stiffness with an 

increasing fiber volume fraction. A similar behavior is evident for the effec- 
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Figure 4.1: Predictions for the effective Young’s moduli in axial and transver- 

sal directions for carbon fiber (T300) reinforced composites comparing the 

matrix materials Al99.9, AlMg5, and AZ91D 

tive shear moduli given in fig. 4.2 in axial as well as in transverse directions. 

The effective Poisson’s ratios vs. the volume fraction of reinforcements are 

given in fig. 4.3. Whereas the axial Poisson’s ratio decreases with increas- 

ing fiber volume fractions, the transversal Poisson’s ratio slightly increases 
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Figure 4.2: Predictions for the effective shear moduli in axial and transver- 

sal directions for carbon fiber (T300) reinforced composites comparing the 

matrix materials Al99.9, AlMg5, and AZ91D 

for small volume fraction and then decreases for higher fractions, which is 

a consequence of a constraint effect in fiber direction that prevails over the 

transverse properties of the fibers. A similar effect is present for the transver- 

sal thermal expansion behavior, fig. 4.4, where the constraint of the thermal 

expansion in longitudinal direction in combination with the Poisson effect 

leads to a maximum of transversal effective CTEs at some small volume 

fraction. It is also evident that, due to the negative axial CTE of carbon 

fibers the effective axial CTE can be adjusted over a wide range by varying 

the fiber volume fraction. For a reinforcement volume fraction of 50 % the 

axial CTE reaches a value of 4.3-10"°K" for an elastic C-AZ91 composite. 

It should be mentioned that for composite materials the CTE is no longer 

a simply material constant, because once yielding takes place the CTE be- 

comes time- and load history dependent, so that only instantaneous values 

can be determined for an elasto-plastic composite’s CTE. 

In figs. 4.5 and 4.6 estimates for the effective yield limits under uniaxial and 
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pure shear loading, respectively, are given. An enhancement of the axial yield 

limit due to the fiber reinforcement is evident, whereas the transversal uni- 

axial as well as the shear yield limits are dominated by the matrix. It should 

be noted that for all calculations in this section the material is assumed to 

be initially stress free. 
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Figure 4.3: Predictions for the axial and transversal effective Poisson’s ratios 

for carbon fiber (T300) reinforced composites comparing the matrix materials 

A199.9, AlMg5, and AZ91D 

In addition a first statement on the composites’ response to thermal load- 

ings can be given using the MTM. The mismatch between the CTE’s of the 

constituents gives rise to self equilibrating microstresses, which after a suf- 

ficiently large temperature excursion depending on the mechanical loading 

cause the matrix to yield. Figure 4.7 presents predictions for this critical 

temperature change assuming initially stress free constituents and no exter- 

nal loading. The material combinations C-AlMg5 and C-AZ91D lead to 

moderate values for the critical temperature change, e.g. for & = 0.5 tem- 

peratures of 124°C and 164°C, respectively, were found. The combination 

C-A199.9 leads to rather small values (25°C for € = 0.5), a fact which is the 
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Figure 4.4: Predictions for the axial and transversal initial coeflicients of ther- 

mal expansion (CTE) for carbon fiber (T300) reinforced composites at room 

temperature comparing the matrix materials Al99.9, AlMg5, and AZ91D 

consequence of the poor resistance to plastic deformations known for pure 

Al. Consequently we can deduce that cyclic thermal loading (e.g. between 

service-rest temperatures of composite component) leads to cyclic plastic 

deformation of the pure Al matrix, so that the fatigue behavior has to be 

considered seriously. It should be mentioned that in the present predictions 

the material properties of the constituents were assumed to be temperature 

independent, which might lead to some overestimations for the critical tem- 

perature change. More accurate estimates can be obtained from unit cell 

type models with temperature dependent material properties, compare the 

following section 4.2. 
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Figure 4.5: Predictions for the yield limits under uniaxial loading in axial 

and transversal directions, respectively, for carbon fiber (T300) reinforced 

composites comparing the matrix materials Al99.9, AlMg5, and AZ91D 
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Figure 4.6: Predictions for the axial and transversal shear yield limits for 

carbon fiber (T300) reinforced composites comparing the matrix materials 

A199.9, AlMg5, and AZ91D 
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Figure 4.7: Predictions for a critical homogeneous temperature change that 

leads to yielding of the matrix material of initially stress free composites. A 

comparison is given for carbon fiber (T300) reinforced AZ91D, AlMg5, and 

A199.9 composites 
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4.2 Elasto—plastic response 

A more accurate numerical way for modeling the thermo-elasto-plastic re- 

sponse of fiber reinforced composites is by the use of unit cells, compare 

chapter 2. Nevertheless we additionally make use of the incremental Mori- 

Tanaka approach (IMT), in order to check its accuracy, and on the other 

hand because the IMT is not restricted to a limited number of loading direc- 

tions, so that arbitrary loading cases can be investigated which would violate 

symmetry conditions used in the present unit cell models. The stress-strain 

responses derived by the IMT method came from single element tests, i.e. the 

load was applied to a cube shaped 8-node brick element employing the user 

supplied IMT- material subroutine (UMAT) in ABAQUS for the material 

description on the integration point level. 

The following results are restricted to a carbon-AZ91 composite. The elasto- 

plastic stress-strain response of the matrix material is modeled in a simplified 

way as a bilinear function. 

At first uniaxial tension in fiber direction and perpendicular to the fiber di- 

rection, respectively, are modeled and the strain responses are investigated 

for 40 %vol of aligned fibers. The results are compared to predictions from 

Finite Element unit cell models for a periodic hexagonal fiber arrangement, 

compare fig. 2.2, the same material properties for the constituents being used 

in both approaches. For unidirectional loading in fiber direction, see fig. 4.8, 

the agreement is excellent, the stress and strain distributions in the unit cells 

being close to the mean field assumption. Also for transverse loading, see fig. 

4.9, good agreement is found. It should be noted that for hexagonal periodic 

unit cell models the transverse isotropy with respect to the overall behavior 

is broken under transverse loading in the elasto-plastic regime, compare the 

dashed and dotted lines in fig. 4.9. For a detailed discussion see [14]. The 

IMT-results tend to over predict the onset of yielding, which is a well known 

effect since standard mean field methods cannot account for micro fluctua- 

tions of the stress field. 

Also for the transverse shear response a good agreement between unit cell 

and IMT method was found, as shown in fig. 4.10. 

In fig. 4.11 the IMT predictions for the stress-strain response of a 30%vol car- 
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Figure 4.8: Predicted effective stress-strain diagram of a 40%vol carbon 

fiber-AZ91 composite subjected uniaxial loading in fiber direction at room 

temperature; comparison between predictions of the incremental Mori- 

Tanaka method (IMT) and a Finite Element unit cell approach 

bon fiber - Mg(AZ91D) composite subjected to uniaxial loading employing 

various inclination angles with respect to the fiber and the loading direc- 

tion are given. It is obvious that the stiffness is significantly reduced even for 

small angles of inclination. In the transverse direction the sensitivity is much 

less pronounced. For inclination angles greater than 30° the yield strength 

is found to be smaller than the yield strength of the pure matrix material, 

which is a consequence of the compliant transverse behavior of carbon fibers. 

The composite’s response to pure shear loading with different inclination an- 

gles between the fiber and the loading direction is given in fig. 4.12. For 

an angle of inclination & = 45° the material exhibits a stiff response, since 

one of the principal stress axes coincides with the fiber direction. For shear 

loading in and perpendicular to the fiber direction a compliant stress-strain 

response is predicted, because in these case the normal stresses in the fibers 

are almost zero. 
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Figure 4.10: Effective stress-strain diagram of a 40%vol carbon fiber-AZ91 

composite subjected to pure transversal shear loading; Comparison between 

predictions of the incremental Mori-Tanaka method (IMT) and a Finite El- 

ement unit cell approach 
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Figure 4.11: Predicted effective stress-strain response of a T300-AZ91D 

MMC to unidirectionally loading applied at different inclination angles with 

respect to the fiber directions 
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Although the MTM provides some qualitative aspects of the behavior of 

composites subjected to thermal loading, compare figs. 4.4 and 4.7, espe- 

cially the thermal expansion behavior should be considered in closer detail. 

Thus a unit cell approach is employed to investigate the expansion behavior 

under cyclic thermal loadings. For both envisaged material combinations 

(Altex-Al and C-AZ91D) a unit cell with & = 0.58 is used. The thermal 

cycling of the Altex-Al composite starts at a temperature of 350°C, cool- 

ing down to 0°C being followed by heating to the initial temperature and a 

further thermal cycle. The axial (e,,) and transversal (e,,) strains exhibit 

hysteresis loops, indicating the accumulation of plastic deformation in each 

thermal cycle, compare fig. 4.13. Looking at the effective thermal expan- 

sion behavior of the Altex-Al MMC, see fig. 4.14, it is found that a,, the 

axial CTE, decreases immediately after the onset of cooling while ar, the 

transversal CTE, increases, followed by a nearly linear decrease for both a4 

and «&r during further cooling down. At elevated temperatures (350°C at 

the beginning) the yield limit for the Al-matrix is very small, causing the 

matrix to yield right after the onset of cooling, which is the reason for the 

first changes of the instantaneous CTEs. After the matrix has yielded the 

instantaneous effective axial expansion coefficient a4 is dominated by the 

fiber properties, i.e. a4 is close t0 AAltez- Ihe constrained expansion in fiber 

direction causes an increase of ar simultaneously to the decrease of a. The 

subsequent decrease of a, and ar is caused by the temperature dependence 

found for the CTE of Altex with a small influence of the hardening behavior 

of the Al-matrix. 

If the temperature time gradient changes its sign the instantaneous effec- 

tive CTEs exhibit a discontinuos change from the fiber dominated state to 

a Tegime where the matrix behaves elastically and thus has more influence 

on the effective thermal expansion behavior of the composite. Depending on 

the number of cycles the temperature change AT’ which causes the matrix 

material to plastify after changing the loading direction is AT =~ 30-40°C 

for heating and AT * 10°C for cooling. (Compare predictions of the critical 

temperature change 4.7 assuming a initially stress free composite.) 

Figure 4.15 and 4.16 present a similar simulation for the C-AZ91D compos- 

ite. The thermal strain hysteresis is narrower compared to the Al-composite, 

61



i.e. although AT was increased to 400°C the Mg matrix exhibits much less 

plastic deformation during thermal loading. The temperature intervals in 

which both constituents behave elastically are much larger, having values of 

AT = 200°C in both “loading directions”. Due to the negative axial CTE 

of the carbon fibers also the effective axial thermal expansion behavior ex- 

hibits rather small values especially in the fiber dominated state when the 

matrix has plastified. Due to the pronounced temperature dependence of 

the Young’s modulus, the yield limit, as well as the hardening properties 

of the Mg-matrix the instantaneous effective CTEs exhibit an even more 

pronouced load history dependence then predicted for the Altex-Al compos- 

ite. To demonstrate the mechanical load history dependence of a carbon-Mg 

composite the CTEs during a thermal loading of AT = +400K of a initially 

stress free o,, = 0 MPa and prestressed o,, = +300MPa composite (£ = 0.4) 

is shown in fig. 4.17 
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Figure 4.13: Predicted effective axial and transversal strain responses to 

cyclic thermal loading of an initially stress free Altex—Al99.9 composite (§ = 

0.58) 
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Figure 4.14: Predicted effective axial and transversal coefficients of thermal 

expansion responses to cyclic thermal loading of an initially stress free Altex— 

Al199.9 composite (£ = 0.58) 
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Figure 4.15: Predicted effective axial and transversal strain responses to 

cyclic thermal loading of an initially stress free carbon-AZ91D composite 

(£ = 0.58) 
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Figure 4.16: Predicted effective axial and transversal coefficient of ther- 

mal expansion responses to cyclic thermal loading of an initially stress free 

carbon-AZ91D composite (£ = 0.58) 
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Chapter 5 

Free edge effects at bimaterial 

junctions 

A consequence of producing selectively reinforced components, where the 

reinforcing material is restricted isolated regions, interfaces occur on the 

macroscale between the reinforced and the unreinforced materials. At inter- 

sections between material interfaces and free edges of multi material struc- 

tures complex tri-axial stress states occur which often are critical with respect 

to damage. When the stress fields are studied in terms of a bimaterial junc- 

tion problem using homogenized material descriptions singular stress fields 

are typically predicted. In the following section some simply shaped hybrid 

components are analyzed under thermal and mechanical loading, special con- 

sideration being given to the singular stress fields. 

An analytical method was utilized to determine the singular stress fields close 

to the intersection points of the material interface and the free surface. It 

employs the Airy stress function to set up the corresponding boundary value 

problem, which is solved via the Mellin transform. In addition, ways for im- 

proving the interface design with respect to the free edge effect are derived 

for some given hybrid components. 

Using a combined macro-micromechanical embedding approach it is demon- 

strated in the second part of this chapter, that under certain conditions the 

stress singularities disappear when the heterogeneous micro structure of a 

selectively reinforced component is accounted for explicitly. 
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5.1 Singular stress fields at bimaterial junc- 

tions 

  

  

Figure 5.1: Sketch of the generic bimaterial wedge problem 

Assuming two bonded wedges of dissimilar homogeneous materials, as shown 

in fig. 5.1, under arbitrary loading conditions, investigations based on con- 

tinuum mechanics exhibit a singular behavior of the stress and strain fields 

at the intersection point of the material interface and the free surface. This 

is a consequence of the step-like, i.e. discontinuous, variation of the material 

parameters at the interface. An analytical solution of the so called bimaterial 

wedge problem was derived independently by Bogy [13], and by Hein and Er- 

dogan [50] who solved the problem of two bonded isotropic elastic dissimilar 

wedges in 1971. Following their results the stress field in the vicinity of the 

singularity can be described by the expression 

ar, ) = Kr‘? F;;(0) (5.1) 

where polar coordinates (r,@) are used and the origin of the coordinate sys- 

tem is taken to lie at the intersection of the interface with the free surface. A 

is the order of the singularity, which is a function of the material constants 

and the geometry only, whereas the function F;;(©) and the stress intensity 

factor K also depend on the boundary conditions. 
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In the last decade considerable efforts were aimed at determining the singu- 

lar stress fields for various geometries and loading conditions. The employed 

solution methods can be divided into analytical, numerical and combined 

methods. The analytical solutions are generally based on the simplifying 

assumptions of two bonded semi-infinite plates and isotropic material prop- 

erties, e.g. [12, 13, 50, 55, 90, 107]. Analytical studies of the singularities in 

compounds of anisotropic materials have been presented in |66, 73]. 

For arbitrarily shaped components combined analytical-numerical ([65, 77]) 

or purely numerical methods have been employed. The majority of the nu- 

merical investigations are based on the Finite Element Method (FEM), com- 

pare e.g. |49, 42, 84, 87]. In [108] different numerical solution techniques like 

the Finite Difference Method, the Boundary Element Method and the Finite 

Element Method are discussed with respect to the accuracy of their results. 

It is demonstrated that the stress and strain fields are correctly described by 

the FEM (using fine meshes of standard continuum elements) except in the 

elements closest to the intersection point. Comprehensive overviews on the 

determination of stress singularities are given in [43, 110]. 

5.2 Analytical treatment of the bimaterial wedge 

problem 

The plane problem of two linear elastic bonded dissimilar wedges, shown 

in fig. 5.1, under thermo-mechanical loading conditions can be treated by 

introducing the Airy stress function [88]. The stress and displacement fields 

in two-dimensional polar coordinates are obtained by solving for the Airy 

stress function d(r,©) which satisfies the equation 

Vip =0 (5.2) 

® 18 1 92 th vl 422, 29 Rn V= er T e T R ge? 
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In the absence of body forces the stresses and displacements in polar coordi- 

nates are related to ¢ by 

  

  

_19¢, 10% _ 
O = or T 12602 700 = Gr2> 

1 8% 106 

Ho, gr | 1250’ (5:3) 
and 

du, 1[18¢ 1686 2 
or —%[mfl—zw*l‘m/‘”v ?) 
dus ue 10w, 1 1 8% 1 06 

engl - stars Ä 54) 
respectively, where G is the shear modulus corresponding to domains A or 

B, compare fig. 5.1, and m takes the values of m = 4(1- v) for plane strain 

or m = 4(1+v)"! for plane stress analysis, respectively. The stress and 

displacement components have to satisfy the boundary conditions 

o6elr, -60;) = N“r), orelr, -6,) = T“(r), 

080lr, 9) = N”(r), rolr; 8) = T”(r), (5.5) 

as well as the bonding conditions at the interface (continuity of tractions and 

displacements) 

088 (r, 0) = O'g@(’l", 0), 078 (r, 0) = 078 (r, 0), 

u(r,0)=w(r,0),  wg(r,0) = ug(r,0). (5.6) 

Here N“(r), T#(r), N®(r), and T®(r) stand for the normal and tangential 

components of the tractions at the surfaces of materials A and B, respec- 

tively. A powerful method for solving the above singular boundary value 

problems is the Mellin transform, [39, 101, 107]. 

The Mellin transform of a function d(r,©) has the following definition [63]: 

45,0) = |, Hr, Or" "ar, (6) 
where s is the complex transform parameter, and the inverse Mellin transform 

is given by 

ön,0)= | T (s, 0)rds, (5.8) 
271 Jy—ioco 
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where y determines the path of the integration in the complex line integral. 

Of course, y must be chosen in such a way that the integral exists. 

The application of the Mellin transform to eqn. (5.2) leads to an ordinary 

differential equation for d(s,©) of the form 

(D? + s?)[D? + (s+ 2)?]ö(s,0) = 0, (5.9) 

with D= 

which holds for both wedges A and B. A general solution for this equation 

in the transformed notation takes the form 

A 

d(s,9) = als) sin(sO) + b(s) cos(sO) + 

c(s) sin(sO + 20) + d(s) cos(sO + 20) (5.10) 

within materials A and B, respectively. Here a(s)*, ... d(s)* for &(s,©)* 

and a(s)®, ... d(s)® for d(s,©)® have to be determined through the trans- 

formation of eqn. (5.3) and from the transformed boundary and bonding 

conditions, eqns. (5.5) and (5.6). Now we end up with a system of eight 

equations and eight unknown coeflicients a(s)“, ... d(s)“ and a(s)?, ... 

d(s)”, that depend on the transform parameter s. 

- sin(O,s)a“ + cos(8,s)b* - sin(©1s + 2s)c” + cos(9,s + 2s)d? = 

NA(s)/s(s+1)  , 
s cos(8,5)a“ + ssin(8,5)b“ + (s+ 2) cos(9, + 2s)c? + 

(s+2)sin(8, +2s)d!=T/(s)/s+1 , 

sin(O25)a® + cos(92s)b? + sin(Ogs + 2s)c® + cos(O2s + 2s)d” = 

NB(s)/s(s+1)  , 
s cos(O,5)a” — ssin(©25)b” + (s+ 2) cos(O, + 2s)c” — 

(s + 2)sin(0y + 28)d® = TB(s)/s +1 , 

r4+dt -8 —df=0 | 

sa® +(s+2)ct —sa® — (s+2)P =0 : 

GEsb* + GB(s + m*)d* — G4sb® — GAH(s +mB)d® =0 „, 

GP sat + GP(s +2 —m*)c* — GAsa® - GA(s+2-mP)P =0 . (5.11) 
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In matrix notation this system can be written as 

Kx=d. (5.12) 

When the Mellin transform is applied to eqn. (5.3), back transforming of the 

solution ö;; via eqn. (5.8) gives expressions of the type 

Gy = — [. 6,,(5,O0)r "*Pds (5.13) 

for the stress components. Comparison with eqn. (5.1) shows that the or- 

der of the singularity A must be related to the transform parameter s by 

A = s + 2. Furthermore, it can be shown that the solution of eqn. (5.8) is 

analytic in the open strip —2 < Re(s) < —1 except for poles that may occur 

at the zeros of the determinant of the matrix K. Thus X, the order of the 

singularity can be determined from the eigenvalues of the matrix K defined 

in eqn. (5.12). 

The solutions for s > —1 are unphysical, since the displacements at r = 0 

would be infinite. From eqn. (5.7) it is obvious that one has to distinguish be- 

tween two types of zeros, first, zeros lying within the interval —2 < Re(sı) < 

—1 and, second, zeros sg = —2. The latter ones correspond to A = 0, and 

thus to a constant stress term oy, see [110]. For the first case we come up 

with singular stress fields of the type 

alt, ©) = KrF, (9) (5.14) 

if A€eR, or 

04 (r,0) = Kr_c(cos (n logr Fi; ©) + sin (n logr Fi; ©)) (5.15) 

if A= (+metC. 

The global solution for the stress and displacement fields can be found by 

applying the inverse Mellin transform to the corresponding equation in the 

transformed notation. This can be done either numerically or analytically 

by using the residual principle [63]. 

From eqn. (5.10) it is obvious that the eigenvalues of the corresponding 
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boundary value problem are determined by the solution of a transcenden- 

tal equation. In general this leads to an infinite number of eigenvalues. Thus 

for arbitrarily shaped finite geometries the stress field can be expressed as 

N 

= le) + ale) (6.16) 
Here L is a characteristic length of the structure, which will be discussed in 

the following section, and o;;o is the constant stress term, see [110]. How- 

ever, for special cases like the plane problem of two isotropic elastic wedges 

with wedge angles ©; = —0©, = r/2 only one singular term exists [50]. For 

arbitrary wedge angles additional terms might occur, compare fig. 5.4 which 

will be discussed later on. Another well known special case of the bimaterial 

wedge problem that can be solved employing the above method is obtained 

by choosing 8, = -& = 1, leading to the solutions for a crack in the line 

of bonding between two dissimilar isotropic half planes where the order of 

singularity is found to be A = 0.5 + in. For the even more specialized case 

of both wedges having the same material properties we come up with the 

solution of a semi-infinite crack in a homogeneous infinite medium, where 

A = 0.5, compare [50]. For the present study the primary interest was to 

investigate the region affected by the singular stress field, and thus to de- 

termine the order of the singularity A depending on the material parameters 

and on the geometrical influence of the angles (0, ©). 

5.2.1 Proper interface design in hybrid structures with 

respect to stress singularities 

Looking at the cross section of the generic hybrid part (discussed in chapter 

1, see fig. 1.1) we find two intersection points of the material interface with 

the free surface. Thus, assuming two dissimilar homogeneous materials, ar- 

bitrary loading conditions leads to singular stress fields at the intersection 

points X and Y marked in fig. 5.2 (possible singularities in the vicinity of 

the lower right corner of the insert are not discussed here). 

For these particular cases, ©; = -9, = /2, at intersection point X and 

©, = 7,0, = —7/2 at intersection point Y, respectively, we study the sin- 

gular behavior analytically. For simplicity a plane strain state is assumed for 
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    \ N . 

Figure 5.2: Cross section of a selectively reinforced ring. Regions where 

singular stress fields may occur are marked as X and Y 

this study instead of an axisymmetric one. In fig. 5.3 the order of singularity 

A versus the elastic contrast for the wedge angles 8, = -9, = r/2, i.e. the 

configuration at intersection point X, is given. Such configurations appear in 

numerous applications, e.g. at free edges of laminates, or barrier coatings. In 

the logarithmic plot the order of singularity is found to be a symmetric func- 

tion with respect to G?/G® = 1 if material A and material B have the same 

Poisson’s ratio. With increasing elastic contrast the curves reach plateaus of 

approximately A = 0.3. For v, = v3 = 0.3 the maximum order of singularity 

reaches a value Anaz > 0.289. A variation of the Poisson’s ratios leads to 

some shift for the order of singularity, but the global behavior is not affected. 

As mentioned before A is a function of the elastic mismatch and the wedge 

angles only, so that this solution holds for arbitrary loading conditions. 

For the second intersection point Y ( ©; = and 8, = -/2) the order of 

singularity is found to be close to 0.5 over a wide range of elastic contrasts, 

i.e. A is close to values reached in front of a crack tip, compare fig. 5.4. For 

stiffness ratios smaller than 0.1, A becomes complex and the value of the 
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Figure 5.3: The order of singularity for A for the wedge angles ©; = —0, = 

n/2 versus elastic contrast G4 /G®? 

real part is about 0.5. Close to G?/G® = 0.1 a bifurcation occurs, and for 

higher elastic contrasts two eigenvalues are found, so that the stress field has 

to be described using two singular terms, compare eqn. (5.16). Analogous 

solutions were given in [50]. 

For comparison a combination with an inclined interface 8, = 2”/3 and 

©, = n/3 is shown in fig. 5.5. For G*/G® < 0.1 the singularity increases 

quite rapidly and becomes complex in a short interval around G* /G® ~ 0.05. 

The interval 0.1 < G4 / GP < 1 exhibits very small or zero values of X. In 

comparison with fig. 5.3 this indicates the possibility of reducing the free 

edge effect by inclining the interface with respect to the free surface. Conse- 

quently, we are looking for an improved interface design with respect to the 

free edge effect at intersection points X and Y, respectively. 

We first discuss intersection point X, for which the order of the singularity is 

plotted in fig. 5.6 as a function of the angle ©, defined in fig. 5.1. The angle 
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Figure 5.4: The order of singularity A for a bimaterial wedge with ©, =, 

@, = —m/2, versus the elastic contrast G* /G5 

of inclination of the interface is varied while keeping ©; — ©, = a. Three 

different elastic contrasts are considered to account for the mechanical prop- 

erties of the constituences of a selectively reinforced component composed of a 

fiber reinforced MMC and monolithic (unreinforced) metal. G4/G? =3 cor- 

responding to the material combination T300-AZ91-AZ91 (i.e. carbon fiber 

reinforced magnesium combined with monolithic magnesium), G4/G® = 1.8 

to Altex-Al-Al, and G4/G® = 2.8 to Altex-Al-AZ91, respectively. The ef- 

fective elastic contrasts between reinforced and unreinforced material were 

obtained via the Mori-Tanaka method, see section 2.2. Since the analyti- 

cal approach is restricted to isotropic material parameters only the elastic 

contrast in fiber direction is acounted for. Numerical investigations that ex- 

plicitly account for the anisotropic material behavior demonstrate that the 

singularity is mainly influenced by the elastic mismatch in fiber direction, see 

chapter 5.3, so that this simplification seems to be justified for the current 

considerations. 

The qualitative behavior of the order of singularity is predicted to be similar 

for all material combinations. The curves show two maxima for A, one at 
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Figure 5.5: Order of singularity A for 8, = 2r/3, 9, = —7/3 

©, = 0.1 and another at ©; =~ 0.557. For ©; = m/3 and for ©, > 0.77 one 

obtains A = (), i.e. no singular stress field is found. This demonstrates the 

possibility of reducing or avoiding the singular free edge effect by a proper 

interface design. 

For the hybrid structure sketched in fig. 5.2 this means that an inclination 

of the interface of more than 40° from the axial direction should avoid stress 

singularities in the vicinity of point X. For material combinations producing 

a weak interface between the inner ring and the outer casting such an inclined 

interface has the additional advantage of acting as geometrical anchor for the 

MMC insert. 

In fig. 5.7 the order of the singularity A is plotted as a function of the wedge 

angle ©,, with 9, kept at a constant value of ©, = a. Only the first eigen- 

value is displayed which is the more important one for the singular stress field 
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Figure 5.6: Variation of the order of singularity A for different inclination 

angles ©, at intersection point X, keeping 8, - & =7 

close to the intersection point. Again, we find that by decreasing the angle 

©, the order of the singularity can be reduced. Thus, a smooth transition, 

which could be realized by a radius instead of the sharp corner, would avoid 

most of the free edge effect in this intersection region. It is also interesting to 

note that the order of singularity A is higher for smaller elastic contrasts, an 

analogous behavior being evident in fig. 5.4. For elastic contrasts larger than 

unity the slope of the first eigenvalue is negative, i.e. the order of singularity 

decreases with increasing elastic contrast. 

5.2.2 Concluding remarks on the analytical approach 

An analytical treatment of the bimaterial wedge problem was utilized for 

improving the geometrical interface design with respect to free edge effects. 

Assuming an effective homogeneous material for both components meeting at 

the interface, singular stress and strain fields were predicted at the intersec- 

tion points of the material interface and the free surface. It was demonstrated 
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Figure 5.7: Variation of the order of singularity A for different inclination 

angles ©, (8, =, and ©; varies from 0 to —/2) at intersection point Y 

that the singularity can be reduced or even avoided by a proper design of the 

interface, thus mitigating free edge effects. 
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5.3 Numerical treatment of the bimaterial wedge 

problem 

Although the Finite Element method (FEM), using standard regular con- 

tinuum elements, cannot explicitly account for singularities, it is the most 

common tool for the investigation of free edge effects in arbitrarily shaped 

hybrid structures of finite size. A comprehensive treatment of the question 

whether or not an FEM solutions behaves in a consistent and reliable way in 

the immediate vicinity of singularities is given in [108]. Solving as a reference 

problem the free edge stress distribution of a mechanically loaded symmet- 

ric laminate it was found that the FEM solutions are accurate everywhere 

except very close to the singularity. The region of inaccurancy was found 

to be restricted to the two elements closest to the singular point. Similar 

results were found in the present study, the region where the results differ 

significantly from the analytic predictions being restricted to the distance of 

two integration points from the singular point. This region can be reduced 

by progressive mesh refinement to obtain any required degree of accurancy. 

Another possibility for considing singular stress-strain fields within the FEM 

is to introduce singular elements around the singularity, a method which is 

well known for applications in fracture mechanics. The most popular ele- 

ment in this respect is the quarter-point 8-noded degenerated quadrilateral 

element, introduced in [7]. The most severe limitation of this element is its 

ability to model only square-root singularities, i.e. A = 0.5. However several 

methods have been published introducing Finite Elements which are capable 

of handling variable singularities A, e.g. |34, 70, 84]. These methods are 

preferably used for applications where the order of singularity is known or 

can be derived analytically. For applications with unknown A iterative pro- 

cedures may have to be used, e.g.|8]. 

It should be noted that at a later stage of the present work it will be shown 

that for various hybrid components the singular stress fields predicted by 

structural analysis employing homogenized material descriptions for the mul- 

tiphase part are not valid. They are a consequence of assumptions for the 

use of homogenization relations given in eqn. (2.2). Nevertheless the free 
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edge effect has to be treated comprehensively since it is important to obtain 

information on the size of the region that is influenced by the free edge ef- 

fect in order to check whether homogenization via mean field approaches is 

acceptable or not. Thus the main topic of this chapter is determining the 

region where the stress and strain fields are mainly influenced by the singular 

stress field. 

From eqn. (5.16) it is obvious that the stress field close to the intersection 

point is determined by a factor of the type (%)A , 1.e. its range depends on 

the characteristic macroscopic length of the sample L, e.g. the length of the 

interface, and on A. 

Additionally, we have to notice that the introduction of Z leads to a definition 

of the stress intensity factor K which is independent on the overall size of the 

component (a definition which obviously differs from the conventions used in 

fracture mechanics). Consequently, studying two bimaterial wedges made of 

equal materials, subjected to equal loading conditions and having a scaled 

geometry leads to geometrical similar results. The length scale dependence 

is introduced via the overall geometry (L) in contrast to the conventional 

definition in fracture mechanics, where a length scale is introduced via the 

finite crack length. Comprehensive studies of the geometrical influence on 

the singular stress field for components of finite size are given in [110]. 

5.3.1 Numerical investigation of the free edge effect in 

selectively reinforced components employing ho- 

mogenized material descriptions 

Numerical and experimental investigations of selectively reinforced axisym- 

metric components have indicated that the interfaces between the reinforced 

and the unreinforced material are the most critical regions with respect to 

failure. There are several reasons for this. On the one hand, at the interface 

the material strength is reduced because of the formation of oxide layers and 

intermetallic phases. On the other hand, as a consequence of the mismatch 

in the material properties thermal loading gives rise to eigenstresses of first 

and second order, i.e. stresses on the macro scale due the hybrid structure 

and stresses on the micro scale within the reinforced material. These stresses 
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reach maximum values close to the material interface. In addition, the inter- 

section points between a material interface and the free surface are locations 

of complicated tri-axial stress states which are the consequence of the step- 

like, i.e. discontinuous, variation of the mechanical material parameters. 

In the present section the stress field under several loading conditions is stud- 

ied considering hybrid structures similar to the test specimens used for the 

experimental part of the project, compare chapter 1. In particular the free 

edge effect at the intersections between the macro interface (i.e. between the 

reinforced and unreinforced parts of a component) and the free surface is 

analysed to determine the order of singularity predicted by the use of ho- 

mogenized material descriptions. 

  

            

Figure 5.8: Selectively reinforced component, material A: matrix inclusion 

type composite, material B: monolithic matrix material 

Primarily a selectively reinforced component having a square cross section 

as shown in fig. 5.8 is considered. The left half of the model {bf A is taken 

to be a continuously reinforced composite with a fiber volume fraction of 

50%. The aligned fibers are assumed to be arranged in the out-of-plane 
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Figure 5.9: Macroscale FE-model of the hybrid structure 

direction in a matrix having the same material properties as the homogeneous 

right half B. Hypothetical material parameters were chosen for matrix (m) 

and fibers (i) in order to reach a high elastic contrast: E™ = 10.0GPa, 

vr — 0.33, E® = 167.5GPa and v®® = 0.15. For these material data, the 

elastic contrasts between the matrix and the effective (homogenized) material 

behavior of the composite as obtained by a Mori-Tanaka analysis [10] are 

Ei, /ER, = 2.5 and Ef/E? = 8.9. The model is loaded by a distributed 

force applied at the left side of the specimen causing an effective tensile 

stress of o,„, = 1MPa. From the analytical solution of the boundary value 

problem it is known that the A, egn.(5.16) correspond to the eigenvalues of a 

transcendental equation, i.e. in general there is an infinite number of terms. 

However, assuming isotropic materials for the given structure it can be shown 

that there exists only one valid eigenvalue and for mechanical loading the 

regular stress term 0,;0(9) is equal 0, compare fig. 5.3. Thus eqn. (5.16) is 

reduced to 

K 

(r/L)* 
From eqn. (5.17) it is obvious that A can be estimated from the slope of the 

0ij(r, ©) = =1 Fy(©). (5.17) 

logarithmic plot log(o;,;(r,©)) versus log(r/L). 

The macroscale Finite Element model shown in fig. 5.9 uses homogenized ma- 

terial descriptions for the eight-noded isoparametric plane strain elements. 

A mesh progressively refined in the vicinity of the intersection between in- 

terface and free edge was used. Because of symmetry conditions only one 
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Figure 5.10: Predicted stress distribution o,, due to mechanical loading using 

homogenized material descriptions 

half of the problem shown in fig. 5.8 was modeled (-L/2 < y< 0), where 

L/2 = H = 20mm. The x-displacements on the right boundary are locked 

and the left side is constrained to remain vertical. 

The resulting stress distributions are given in fig. 5.10 for the stress compo- 

nent o,, and in fig. 5.11 for the shear stresses o,,, respectively. Both fringe 

plots exhibit homogeneous stress distributions except for a stress concentra- 

tion close to the intersection point of the macro interface and the free surface. 

The predicted stresses 0,5, Oyy, Oz, and 0,, along the interface (x = 0) are 

plotted in fig. 5.12, and along the the free edge (y = 0) in fig. 5.13. The nor- 

mal stresses do not vary over a wide range of the interface, but close to the 

free surface they become unbounded. The shear stress o,, varies over the en- 

tire length of the interface to fulfill the equilibrium condition Do22 + -. = 0. 

Close to the intersection point o,, also becomes singular. Of course, if one 

stress component becomes singular all other stress components are singular, 

too. 

In order to determine the order of the singularity A the absolute values of 

each stress component are plotted along the interface (r/L) using a double 

logarithmic diagram in fig. 5.16. From the slopes of the logarithmic stress 
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Figure 5.11: Predicted shear stress distribution o,, due to mechanical loading 

using homogenized material descriptions 

components the numerical result for the order of the singularity is found to 

be A = 0.06. 

Thus, although the elastic contrast was increased by choosing hypothetical 

material parameters, the singularity is quite weak and the region influenced 

by the singular stress term is small. For a radial distance of 0.2mm from the 

singular point the singular stress term causes a stress increase of less than 

30% . 
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Figure 5.13: Stresses along the free edge y = 0 
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Figure 5.14: Stress components along the macro interface versus the distance 

from the singular point. 
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Using the same specimen geometry as before, we do a similar analysis apply- 

ing a homogeneous thermal loading of AT = 10°C. Material A is considered 

to be a particle reinforced Al,O3-A199.9 composite (having isotropic effective 

material properties). The reinforcement volume fraction is 0.5. Material B 

is considered to be monolithic Al99.9. Applying thermal loading the stresses 

close to the singular point are given by 

K 
0;i(r,0) = WFU(@) + 0,,0(9). (5.18) 

The constant stress term o,,;0(0) can be determined from the solution given 

e.g. in [78]. o,yo and o,,0o are found to be zero, and 0,4 is given by 

1 1 

Ei o # 
    0220 = Aal "ar, (5.19) 

using B* = E/(v(1 4+ v)) and Aa = a,s(1+v4) — ag(l+ vp). 

After rearranging equation 5.18 and taking the logarithm of both sides the 

equation takes the form 

log (a,-j(r, 0) - 0(0)) = log (KFU(@)) — Alog (’I"/L) (5.20) 

The stresses 044, 0y, 0,, and o,, predicted along the interface (x = 0) by the Yy 
Finite Element method are plotted in fig. 5.15 Accordingly to eqn. (5.20) the 

order of singularity A can be determined from the slope of the logarithmic plot 

log(o;;(r,©) — 0,;0(0)) versus log(r/L), shown in fig. 5.16. For the current 

problem the numerical result for the order of the singularity is A = 0.025 

which is in good agreement with the analytical solution of the boundary 

value problem. 

Applying the same procedure to a long fiber reinforced hybrid structure (ma- 

terial A being a fiber reinforced MMC and material B pure metal) the sin- 

gularity was predicted for an Altex fiber-Al-Al structure by A = 0.024, the 

combination carbon fiber T300-AZ91D-AZ91D leads to A * 0.02, and finally 

the combination Altex fiber-Al-AZ91D gives A * 0.065. It should be men- 

tioned that these values are only estimates for the singularities because the 

fiber reinforced MMC is not isotropic, so that eqn. (5.18) gives reasonable 

results only very close to the singular point. For an exact analytical solution 
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Figure 5.15: Stress components along the macro interface versus the distance 

from the singular point of an AlaOz — Al— Al hybrid component subjected 

to thermal loading. 

of the boundary value problem including anisotropic materials see [72]. 

A similar investigation of free edge effects in selectively reinforced ring shaped 

structures is discussed in [25]. 

An important result that holds for all of the structural problems discussed 

here is that the order of singularity is very small. Thus the region affected 

by the singular stress term is very limited, i.e. its characteristic length is 

comparable to or smaller than the characteristic length of the constituents 

at the micro scale of the composite. Thus we come up with high effective 

stress-strain gradients at the microscale. Consequently a major assumption 

employed for the use of homogenized material description, i.e. that gradients 

in the macroscale stress and strain fields as well as compositional gradients 

(slow variables) are not significant at the microscale, see section 2.1, is vio- 

lated. For this small region close to the intersection point special microme- 

chanical approaches have to be employed, which are capable of accounting 
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Figure 5.16: Stress components along the macro interface versus the distance 

from the singular point of an AlaOz — Al— Al hybrid component subjected 

to thermal loading. 

for local compositional variations. For a discussion of some related problems 

in the field of free edge singularities in laminates see e.g. [111]. 

In the following section we use a combined macro-micromechanical embed- 

ding approach, which was introduced in [24], to study the free edge effect on 

the micro structural basis. 
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5.3.2 Combined macro—micromechanical investigation 

of free edge effects 

In the previous section we found that arbitrary loading conditions lead to 

singular stress fields close to an intersection point of an interface between 

homogeneous materials and the free surface. Thus stress based failure cri- 

teria cannot be used to predict failure at the interface. Additionally it was 

argued that the use of homogenized material descriptions is not applicable 

for micro heterogeneous materials close to the intersection point. 

In the present section it will be shown by using a micromechanical approach 

that under certain conditions these theoretically derived stress singularities 

disappear when the inhomogeneous microstructure of the composite is ac- 

counted for explicitly. Hence, a stress based assessment of the free edge 

stress fields is justified. 

This modeling approach is discussed using the results of the previously con- 

sidered example of a mechanically loaded hybrid component shown in fig. 

5.8. For a detailed investigation of the free edge effect at a length scale 

comparable to the reinforcement size, an embedding method is used, which 

introduces a micromechanical submodel that is centered at the singular point 

of the global model (x = 0, y= 0) and has dimensions of 0.Amm by 0.2mm 

(i.e. it is somewhat larger than the zone of influence of the singularity in the 

homogenized model as defined in fig. 5.17). The composite material on the 

left side, A, is explicitly modeled via a periodic hexagonal array of fibers 

of 10um diameter and a volume fraction of 50%, whereas region B consists 

of homogeneous isotropic matrix material. The material properties of the 

matrix and the fibers correspond to the data used to derive the homoge- 

nized properties for the macro model. The microgeometry is generated by 

a hexagonal cell tiling approach (HCT) [16], compare section 3.2. Displace- 

ments obtained from the macroscopic model are prescribed at the left, right, 

and bottom boundaries. A periodic fiber arrangement was chosen, on the 

one hand, because it has the required transversely isotropic overall material 

symmetry and, on the other hand, because it tends to minimize microscale 

stress concentrations that might mask the free surface effects to be studied. 
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Figure 5.17: Micromechanically based submodel for local investigations close 

to the intersection point between the macro material interface and the free 

edge 

It should be noted that, due to the change from a homogenized material de- 

scription to position dependent constituent material properties, the present 

submodel technique gives rise to perturbations in the local stress fields along 

the left and lower boundaries, which, however, decay within a few fiber di- 

ameters and are of no relevance to the region of interest. 

The results obtained with the submodel display no marked stress concentra- 

tions at the intersection between the interface and the free surface, as can be 

seen in fig. 5.18 which shows the stress component o,, in the matrix (top) and 

in the fibers (bottom). The most highly stressed regions in both constituents 

are found in region A in the neighborhood of the intersection between inter- 
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face and free surface. The peak values of the predicted microscale stresses in 

both fibers and matrix, however, do not exceed the applied stress by more 

than a factor of 3.1. 

The low stress intensities predicted by the micro model clearly show that in 

the vicinity of the bimaterial junction the conditions for using homogenized 

material properties, which lead to the prediction of a stress singularity, were 

not met. Even though the results were obtained for the case of a selectively 

reinforced sample, i.e. for an inhomogeneous material A containing inclu- 

sions in a matrix corresponding to material B, it might be expected that an 

analogous behavior will prevail if both materials are matrix-inclusion com- 

posites with a common matrix, e.g. at the interfaces of a fiber reinforced 

laminate, where each lamina is composed of the same matrix with individual 

fiber directions. 

The (hypothetical) example of two joined matrix-inclusion composites, hav- 

ing different matrix materials, however, suggests that free edge singulari- 

ties can be present in bimaterial samples with a pronounced microstructure. 

More sophisticated microscale models (or nonlocal homogenization theories, 

see e.g. |33]) will be required for studying the stress states at such interfaces. 
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Figure 5.18: Predicted distributions of o,, in matrix (top) and fibers (bot- 

tom) within a detail of the submodel due to an applied effective macro stress 

of o£!f = 1MPa 
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Chapter 6 

Structural Analysis of Hybrid 

Components 

This chapter is dedicated to the micromechanical modeling of selectively rein- 

forced components featuring the incremental Mori-Tanaka (IMT) approach. 

In addition a “quasi-real” structure model (the micro heterogeneity is mod- 

eled explicitly but in a bigger size scale compared to the real reinforcement 

distribution) is employed. To the knowledge of the author this is the first 

thermo-elasto-plastic investigation of a heterogeneous hybrid structure us- 

ing micromechanically based material descriptions that explicitly accounts 

for the micro heterogeneity of the material. The hybrid component which 

was introduced in chapter 1, fig. 1.1 is intended as a generic part for devel- 

oping manufacturing techniques for the production of selectively reinforced 

gear box housings. It consists of a circumferentially longfiber reinforced metal 

matrix composite surrounded by a monolithic (unreinforced) Mg-alloy. Due 

to the big differences in the coefficients of thermal expansion (CTE) of each 

constituent, on the macro level between MMC and monolithic material, as 

well as on the micro level between reinforcement and matrix of the MMC, 

it is expected that thermal loadings are most critical from the mechanical 

point of view. Hence, in the following investigation we look at the stress dis- 

tribution after thermal loadings under thermo-elastic conditions as well as 

for thermo-elasto-plastic cases. Special consideration is given to the macro 

material interface between the MMC and the monolithic region. 
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6.1 Thermo—elastic analysis 

The Finite Element mesh used for the axisymmetrical macro model of the 

component is shown in fig. 6.1. The dark area, i.e. the MMO ring insert, is 

modeled employing the IMT approach as material description at the integra- 

tion point level of the elements, while the white area (pure matrix alloy) is 

described via standard material laws. T'he dimensions of the insert are 50mm 

for the inner diameter and 60mm for the outer one, its height being 12mm. 

The matrix material of the insert is the magnesium alloy AZ91D, which also 

makes up the monolithic part. The fibers are T300 carbon fibers with a 

volume fraction of € = 0.5 that are arranged in circumferential direction. 

Predicted stress distributions in each constituent after a temperature change 

of AT = -10K are given in fig. 6.2 for the circumferential stresses o,, in the 

monolithic part and the matrix of the MMC (right figure) and in the fibers, 

respectively (left figure). The small axial coefficient of thermal expansion of 

the carbon fibers in comparison with the surrounding matrix causes circum- 

ferential compressive stresses in the fibers and tension in the matrix material 

after cooling down. The maximum fiber stresses are found in the lower right 

corner of the insert reaching values of more than 40MPa, while the maximum 

matrix stresses are located at the upper left corner with maximum stresses 

of about 15MPa. Additionally, some stress concentrations occur where the 

macro interface intersects the free surface. However, the coarse FE-mesh 

does not allow a detailed investigation of the free edge effect. In the previous 

chapter these intersection points were treated in detail. It was found that 

the singular stress field, predicted using homogenized material descriptions, 

is restricted to a very small region around the intersection point. Subse- 

quently it is demonstrated that the singular solution of the stress field close 

to the intersection point of the free surface and the material interface is not 

always valid, since in the case of micro structured materials the gradients of 

the stress fields and the micro structural gradients are much too large to al- 

low the use of a homogenized material description on the basis of mean field 

approaches see previous chapter. This effect is even more pronounced if the 
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Figure 6.1: Axisymmetric FE-model for the selectively reinforced generic 

part 

material transition is smeared out at the micro scale and a distinct interface 

no longer exists, as is the case for the material combinations covered here. 

In fig. 6.3 and 6.4 metallographic sections of a transition zone from car- 

bon fiber reinforced magnesium to pure magnesium alloy are shown. These 

SEM pictures represent cross-sectional views perpendicular to the fiber di- 

rection. The “dotted” dark zone on the left side corresponds to the car- 

bon/magnesium composite, whereas at the right pure magnesium alloy is 

visible. The very light areas are intermetallic Mgı,Alı, precipitates. Al- 

though at the structural level a sharp interface would be expected, it is 

obvious that there is no distinct interface at the micro scale. 

Accordingly the combined macro-micromechanical embedding technique 

introduced in chapter 5 is used for an assessment of the stresses close to 
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the intersection region. An axisymmetric micro scale submodel is centered 

around the intersection point X. It has the dimensions of 0.2mm in height, 

0.4mm in width, the outer diameter of the insert being 60mm, see fig. 6.5. 

These dimensions are chosen to be sufficiently large to cover the region af- 

fected by the singular stress field derived from the macro model. 

Within the submodel the heterogeneous microstructure of the MMC is mod- 

eled explicitly. The diameter of the fibers is chosen as 10m, which is compa- 

rable to their actual size, see fig. 6.4, and for simplicity a periodic hexagonal 

arrangement of fibers is again used within the insert. The model micro geom- 

etry is generated via the HCT approach, compare chapter 5. The boundary 

conditions for the submodel are derived from the global analysis, i.e. dis- 

placements obtained from the macroscopic model are prescribed at its left, 

right, and bottom boundaries, and the same thermal loads as in the macro 

model are applied. 

As in chapter 5 the results obtained with the submodel display no marked 

stress concentrations at the intersection between the macro interface and the 

free surface, as can be seen in fig. 6.6, a fringe plot of the radial stress com- 

ponent, o,,, and in fig. 6.7, which displays the axial stress component, 0,,. 

Both stress components increase as the free surface is approached from the 

interior of the hybrid ring, but they actually decrease near the surface close 

to the macro interface. These predictions can be seen as evidence that in the 

immediate vicinity of the interface the micro stresses within the constituents 

ofthe MMC are relieved due to the presence of the monolithic material in the 

homogeneous region. In addition, these stress distributions strongly indicate 

that in the vicinity of the junction between MMC and homogeneous metal 

the conditions for using homogenized material properties, which lead to the 

prediction of a stress singularity, are not met. 

The above predictions are, to some extent, verified by a series of experiments, 

in which special test specimens consisting of a cylindrical MMC insert em- 

bedded in an axisymmetric monolithic casting were produced for a structural 

push out test in order to characterize the strength of the macro interface. In- 

vestigations of the fracture surfaces after push out showed composite material 

on both sides of the fracture surface, which indicates that damage has been 

initiated within the MMC a few fiber diameters away from the interface. 
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In fig. 6.8 a metallographic view of a fractured generic part is shown, which 

failed after cooling down from manufacturing temperature. The upper part 

consists of reinforced material, while the lower, lighter colored part belongs to 

the monolithic constituent. The dark regions consists of the metallographic 

embedding material. It is evident that the crack was propagating close to 

the macro interface but again a view fiber diameters within the MMC. 

The theoretical prediction that the maximum stresses occur at a distance 

of a few fiber diameters away from the interface is also in good agreement 

with results given in [22]. In that contribution the effective elastic properties 

within and around a cluster of inclusions embedded in an infinite matrix are 

studied using the nonlocal version of the multiparticle effective field method 

(MEFM). It was found there that the effective elastic tensor varies continu- 

ously from the cluster to the matrix within a boundary layer having a width 

of a few inclusion diameters. This is a further theoretical proof that no sin- 

gularity occurs in configurations of the type discussed here. 
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Figure 6.3: Cross-section of the macro interface perpendicular to the fiber 

direction obtained by SEM (supplied by Swiss Federal Laboratories for Ma- 

) terial Testing and Research, Thun, Switzerland 
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Figure 6.4: Detail of the cross-section of the macro interface perpendicular to 

the fiber direction obtained by SEM (supplied by Swiss Federal Laboratories 

for Material Testing and Research, Thun, Switzerland) 
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Figure 6.5: Micromechanically based submodel for local investigations of the 

region around intersection point X 
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Figure 6.8: Metallographic view of a fractured macro interface where the 

crack occurs within the MMC (top) close to the monolithic material (lower 

light region). The black region belongs to metallographic embedding material 

(supplied by Inst. of Mat. Technology, TU-Vienna) 

104



6.2 Thermo—elasto—plastic analysis 

For comparison we introduce a second set of analyses of the generic part, 

where both the homogenized model employing the IMT-approach and a 

“real” structure model are used to simulate the stress accumulation due 

to cooling down from manufacturing temperatures. With respect to com- 

putational requirements it is unnecessarily difficult and as demonstrated in 

chapter 3 rather pointless to model the fibers in their real dimensions, so that 

MMC insert was modeled by periodic hexagonal arrangement of 1105 fibers. 

The heterogeneous phase pattern was derived using the HCT approach. The 

advantage of this modeling technique is that standard elasto-plastic material 

laws could be used and, additionally, the stress fluctuations at the microlevel 

are accounted for, whereas the IMT approach accounts for the micro stresses 

in terms of their mean values only , which, on the other hand, makes it 

feasible to cover a wide range of structural problems involving composite 

materials. 

Both modeling techniques imply simplifications with respect to fiber cur- 

vature effects. The Mori-Tanaka method uses the assumption of straight 

ellipsoidal inclusions to derive the stress-strain concentration tensors used 

for the localization relations, compare chapter 2. The HCT approach covers 

the curvature effect, however introducing a different relation between fiber 

diameter and curvature radius. A validation of the two modeling approaches 

with respect to the previously mentioned shortcomings is given in chapter 3. 

The two models used for the following investigations are shown in fig. 6.9 

For comparison of the results obtained from each model two small regions, 

annotated by the letters E and F, both lying within the MMC ring, are con- 

sidered in detail. The calculations start at a temperature of 473K, which 

is about 0.7 of the homologous temperature of AZ91D, and it is assumed 

that the structure is stress free at this temperature. For temperatures above 

this value it is assumed that all stresses are deactivated by thermal activated 

relaxation processes. 

In fig. 6.10 predictions of the variation of the circumferential stresses with 

temperature obtained via the HCT-model are shown for both the matrix (m) 
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IMT-approach: 

  

HCT-approach: 

    

Figure 6.9: FEM models for the investigation of the generic part, employing 

the IMT and the HCT approach, respectively. 

and the fibers (i). The mean values of the stress distribution for region E 

and F, and for the whole insert, respectively, are shown. Additionally, the 

standard deviations are indicated using “error bars”. 

Similarly to the elastic case the maximum fiber stresses (with respect to the 

cross sectional view of the generic part) are found in the lower right corner of 

the insert. Consequently the mean value over the whole insert exhibits much 

higher stresses than the values found for regions E and F. It is also found 

that the stress distribution inside the fibers is by far more homogeneous than 

the stress distributions found for the matrix, which is a well known behavior 
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Figure 6.10: Circumferential (o,,) stresses predicted via the HCT-model. 

The given stresses are averages over the entire insert and over the regions E 

and F, respectively. The standard deviations are indicated by “error bars” 

of inclusion-matrix type composites. 

In fig. 6.11 results for the region E obtained via the IMT approach are pre- 

sented together with the circumferential stresses obtained via HCT approach. 

The agreement between the two modeling techniques is excellent. However, 

for the radial and axial stress components o,,, 0, some discrepancies caused 

by the strong micro stress fluctuations in the HCT model occur, compare fig. 

6.12. In figs. 6.13 and 6.14 a comparison is given for the model predictions of 

the accumulated equivalent plastic stain after a cool down of AT = —250K. 

The matrix starts to plastify at the inner top corner of the insert and, addi- 

tionally, at the intersection point of the macro interface and the top surface. 

The agreement found between both modeling approaches is excellent. For 

the plastic deformations predicted within the insert the HCT-model leads to 

higher values, caused by the micro stress fluctuations. 
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Figure 6.11: Comparison of IMT and HCT predictions for the circumferential 

phase stress components o() and o(”) in region E during cooling down 
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Figure 6.12: Comparison of IMT and HCT predictions for the phase stress 

components o{™, ¢(™ and om) in region E during cooling down 
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Figure 6.13: Equivalent plastic strain predicted for the matrix material using 

the IMT-model 
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Figure 6.14: Equivalent plastic strain predicted for the matrix material using 

the HCT-model 
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Chapter 7 

Conclusions 

In the present work a number of topics relevant to the thermo-mechanical 

behavior of selectively reinforced magnesium based components have been 

studied via Finite Element based micromechanical methods. After a short 

review of selected micromechanical methods for the description of fiber re- 

inforced composites the advantages of the Mori-Tanaka method (MTM), 

especially the incremental version of the Mori-Ianaka method which can be 

used as a material law at integration point level of standard finite elements, 

are pointed out. 

By deriving the analytical solution for an arbitrarily layered cylinder it was 

demonstrated that the MTM, even though it is based on the assumption 

straight aligned spheroidal inclusions, is capable of modeling composite ma- 

terials containing curved fibers without a significant loss of accuracy, which is 

essential for modeling circumferentially fiber reinforced axisymmetric struc- 

tures. 

Some material characterization based o n the MTM was presented. The 

thermo-mechanical responds of fiber reinforced Mg and Al composites under 

cyclic thermal loading was studied using a unit cell approach. It was demon- 

strated that the coefficient of thermal expansion for the composite must not 

be treated as a material constant. The simulation results clearly indicate a 

temperature-load history dependence. 

As expected using a homogenized material description for the composite re- 
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gions in structural investigations of selectively reinforced structures subjected 

to arbitrary loading conditions leads to stress concentrations, i.e. singular 

stress fields, at the intersection of the material interface between reinforced 

and unreinforced material and the free edge. Using an analytical solution 

method for the singular stress problem it was found that the singularity can 

be reduced or even avoided by a proper interface design. 

Introducing a micromechanically based embedding technique that explicitly 

accounts for the micro heterogeneity of the composite material it was found, 

that for the cases covered here the singular stress field disappears at the mi- 

croscale, since there is no longer a distinct interface between the composite 

having the same matrix material as used for the unreinforced zone. Maxi- 

mum stresses were found within the composite material a few fiber diameters 

away from the interface. 

In the final part a themo—elasto—plastic analysis of a axisymmetric selectively 

reinforced component was carried out via the incremental Mori-Tanaka ap- 

proach. Due to the simple shape of the reinforced part a comparison calcula- 

tion using a hexagonal cell tiling approach was possible. The stress distribu- 

tion after cooling down from the manufacturing temperature was studied on 

the macro- and, with respect to phase mean values, on the microlevel. The 

agreement found between the two models was excellent, i.e. the incremental 

Mori-Tanaka approach was found to be very well suited for the mechanical 

investigation of complex fiber reinforced structures. 
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