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Kurzfassung

Die Skalierung von Si Bauelementen führte zu einer stetigen Leistungssteigerung von integri-
erten Schaltungen. Mit jeder neuen Technologiegeneration wird jedoch die Skalierung zu einer
immer komplexeren und kostenintensiveren Aufgabe. Eine zusätzliche Möglichkeit zur Leis-
tungssteigerung besteht in der Verbesserung des Ladungsträgertransports durch Veränderung
des Materials. Eine vielversprechende Option ist verspanntes Si, welches deutlich verbesserte
Transporteigenschaften aufweist.

Diese Arbeit beschäftigt sich mit den elektronischen Eigenschaften von Sii_^Ge2 Schichten
auf Sii-yGe^ Substraten. Im entwickelten Modell kann der Ge Anteil beider Schichten im
gesamten Bereich variiert werden. Durch mechanische Verspannung wird die Entartung von
Leitungsbandzuständen mit unterschiedlichem Quasiimpuls aufgehoben. Diese Entartungsreduk-
tion hängt von der relativen Orientierung des Quasiimpulses der Bandminima und der auf die
Schicht einwirkenden Kräfte ab. Die Aufspaltung der Bandminima hängt über den Verzerrungs-
tensor von den Legierungszusammensetzungen der epitaktischen Schicht und des Substrats ab.
Die Aufspaltung und die mittlere Verschiebung der X- und L-Täler werden mit Hilfe der Defor-
mationspotentialtheorie berechnet. Die Form des Verzerrungstensors wird von der Orientierung
des Substrats bestimmt und ist im allgemeinen Fall nicht diagonal. Der Einfluss des Verzer-
rungstensors auf die verschiedenen Leitungsbandminima führt zu veränderten elektronischen
Eigenschaften des Halbleitermaterials.

Um die Kinetik der Ladungsträger in verspannten SiGe Schichten zu untersuchen, wird die
semiklassiche Boltzmann Transportgleichung verwendet. Diese ermöglicht es, die gegenseitigen
Abhängigkeiten von Streuprozessen, Bandstruktureffekten und Verspannungseffekten in sehr
allgemeiner Weise zu berücksichtigen.

In dieser Arbeit wird ein analytisches Leitungsbandmodell verwendet, welches Anisotropie und
Nichtparabolizität berücksichtigt. Dadurch können die Streuraten sowie der Einfluss der Verspan-
nung auf die Streuraten analytisch angegeben werden. Es werden folgende Streumechanismen
berücksichtigt: akustische Innertal-Phononstreuung, welche elastisch angenommen wird, Zwi-
schental-Streuung durch optische und akustischen Phononen, bei höheren Elektronenkonzen-
trationen Elektron-Plasmon-Streuung, Legierungsstreuung, sowie die Streuung an ionisierten
Störstellen. Im letzteren Modell werden Effekte wie die Paar-Streuung, impulsabhängige Ab-
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schirmung und eine Korrektur für die zweite Born'sche Näherung berücksichtigt. Durch die
Verspannung werden sämtliche Streuraten verändert, etwa durch die geänderte kinetische En-
ergie im Endtal und die Anzahl der verfügbaren Endtäler. Die Störstellenstreuung wird durch
die geänderten Abschirmungsparameter beeinflußt.

Die Boltzmanngleichung wird mit Hilfe der Monte Carlo Methode gelöst. Diese Methode erlaubt
eine Lösung des semiklassichen Transportproblems, ohne zusätzliche physikalische Näherungen
treffen zu müssen. Um den Beweglichkeitstensor bei niedrigen elektrischen Feldstärken zu berech-
nen, wird ein spezieller Monte Carlo Algorithmus für verschwindendes Feld angewendet. Da bei
hohen Elektronenkonzetrationen das Pauli-Verbot an Einfluss gewinnt, wurde dieser Algorith-
mus für entartete Halbleiter erweitert. Ebenso wurde ein bestehender Monte Algorithmus zur
Berechnung der Kleinsignal-Beweglichkeit für entartete Halbleiter erweitert.

Es wurden unterschiedliche Transportberechnungen in verspannten SiGe Schichten durchgeführt.
Als Parameter werden die Dotierungskonzentration, die Legierungszusammensetzungen der epi-
taktischen Schicht und des Substrats, sowie die kristrallografische Orientierung des Substrats
variiert. Um das komplexe Verhalten der Niederfeldbeweglichkeit zu erklären, kann die Beset-
zung der Täler als Funktion der Dotierung und der Legierungszusammensetzungen herangezogen
werden. Für Substrate, deren Orientierung nicht mit den Hochsymmetrie-Richtungen (100) und
(111) zusammenfallen, wird die Elektronenbeweglichkeit in der Schicht anisotrop. Für MOS-
Transistoren ist im Besonderen die Beweglichkeitskomponente parallel zur Grenzfläche von Be-
deutung. Der höchste Wert für die Parallekomponente konnte in verspanntem Si auf einem
(100) SiGe Substrat beobachtet werden. Ab einem Ge Anteil von 0.2 sättigt die Erhöhung der
Gitterbeweglichkeit bei etwa 55% im Vergleich zu unverspanntem Si. Im Fall von HeteroStruktur-
Bipolartransistoren ist die die Normalkomponente der Elektronenbeweglichkeit in der verspan-
nten SiGe Basis maßgeblich. Für diese Komponente kann keine Verbesserung erzielt werden, da
der positive Effekt durch die Aufspaltung der Bandminima durch diestarke Legierungsstreuung
kompensiert wird.

Im Weiteren wird das Zusammenspiel von Verspannungseffekten und dem Effekt durch das
Pauli-Verbot gezeigt. Der Anstieg des Fermi-Niveaus kann in bestimmten Fällen dem positiven
Effekt durch die Bandaufspaltung entgegenwirken. Es wurde die Kleinsignal-Beweglichkeit für
verspannte und unverspannte Si Schichten berechnet, sowie der Einfluss des Pauli-Verbots un-
tersucht.



Abstract

Geometrie scaling of Si devices has provided a continual Performance improvement of integrated
cireuits. However, with each new technology generation geometric scaling has become an in-
creasingly complex and expensive task. An additional way to improve device Performance is to
enhance the carrier transport by changing the material properties. A promising candidate is
strained Si which shows significantly improved carrier transport properties.

This work deals with electron transport in strained Sii-xGex layers grown on Six-yQey sub-
strates. The Ge compositions of both layers and Substrates can vary in the whole ränge. Due
to the strain the degeneraey of the conduction band states with different quasi-momentum is
reduced. This degeneraey reduetion depends on the relative orientation of the quasi-momentum
of a band minimum and the forces applied to the layer. The strength of the minima Splitting
also depends on the Ge composition of both the layer and the Substrate. Deformation-potential
theory is applied to calculate the Splitting of the conduction band extrema and the mean energy
shift of both X and L Valleys. Within this theory the strain tensor is used which depends on the
Substrate orientation. It can be diagonal and non-diagonal which strongly changes the infiuence
of the conduction band minima of different types and leads to new kinetic properties of the
material.

To investigate the kinetics in strained SiGe layers the formalism based on the semiclassical
Boltzmann transport equation is used. This allows incorporation of scattering processes and
band strueture effects including the strain effects in a rather complete and comprehensive man-
ner. In this work an analytical conduction band strueture which considers the anisotropy and
non-parabolicity is employed. In this case the scattering rates of different scattering mechanisms
can be analytically obtained and modified so as to include strain effects.

The scattering mechanisms are intravalley acoustic phonon scattering treated as an elastic pro-
cess, intervalley phonon scattering, which can be both of acoustic and optic type and which are
considered inelastic, elastic alloy scattering originating from the alloy lattice disorder, inelas-
tic electron-plasmon scattering coming into play at higher electron densities, elastic scattering
on ionized impurities which includes effects such as two-ion scattering, momentum dependent
screening and the second Born correction. The presence of strain modifies the scattering rates.
Strain affects the phonon scattering rates through the final energy of scattered electrons and
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the number of available Valleys. The ionized impurity scattering rate is modified through the
screening parameters.

The Boltzmann kinetic equation is solved using the Monte Carlo method. By this approach
semiclassical transport is exactly modeled without any additional physical approximations. To
find the low field electron mobility tensor a zero field Monte Carlo algorithm is applied. Since at
high electron concentrations the quantum mechanical Pauli exclusion principle becomes impor-
tant, a new zero field Monte Carlo algorithm accounting for degeneracy effects is developed and
applied to find the low field mobility tensor in strained doped SiGe. To perform a small signal
analysis of highly degenerate SiGe layers for both low and high electric fields a new small signal
Monte Carlo method is developed which takes the Pauli exclusion principle into consideration.

Finally, results obtained for strained SiGe layers are given. Both doped and undoped layers are
considered for different Ge compositions x and y of the layer and the Substrate, respectively.
The Substrate orientation dependence is also investigated. To explain the behavior of the low
field electron mobility the Valley population is analyzed as a function of the Ge compositions x
and y and impurity concentration. The in-plane component of the electron mobility is found to
be dependent on the in-plane angle for a general Substrate orientation. The in-plane mobility,
a key parameter for MOSFET Performance, is highest for strained Si on [001] SiGe Substrates.
For Ge compositions above 0.2, the enhancement of the pure lattice mobility saturates at 55%
as compared to unstrained Si. In the case of HBT the perpendicular component of the electron
mobility in the strained SiGe base increases due to the band minima Splitting, but strong alloy
scattering suppresses this gain. The interplay between strain effects and effects caused by the
Pauli exclusion principle at high electron density is shown. The small signal response of strained
Si layers is modeled and compared with the relaxed case. To understand the behavior of the
response functions the energy distribution functions are analyzed for two carrier ensembles. It
is shown that for the case of high degeneracy these distribution functions are nearly the same
at the very beginning and strongly shifted to the high energy domain due to the Pauli exclusion
principle.
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Chapter 1

Introduction

The application of strained layers in semiconductor devices took on another point of view
when it was recognized that strained-layer structures might display new electronic and

optical properties not seen in the unstrained-constituent materials. Before this conceptually
new point of view, strained-layer growth was considered a compromise between a desire to
produce semiconductor heterostructures and simultaneously to avoid misfit dislocations in these
structures. This was changed later by noting that strain could be a tool for modifying the band
structure of semiconductors in a useful and predictable fashion. As the bigger part of modern
technology is Silicon based, much research interest on strained layers is devoted to this material.
Before Silicon became dominant in semiconductor industry, germanium was the main material,
and its properties are also well developed. As there is a difference in the lattice constants of
these two materials, it is quite natural to strain Silicon based devices by introducing germanium
or its alloy with Silicon into both active layers and Substrates.

First data on SiGe were published in 1955 based on measurements of magneto-resistance [1].
Later in 1975 first Sii-^Ge^ layers with x < 0.15 were grown on Si Substrates using ultra high
vacuum epitaxy [2]. As the lattice constants of Si and Ge differ by 4.2%, the epitaxial layers
were strained when sufficiently thin. At the beginning the strain was essentially considered
a drawback which destroys the perfect crystal structure and cannot be avoided. But later in
1982 it was realized that this provided an additional Option for band structure engineering [3].
Soon after that the strained-layer modulation-doped field effect transistor was fabricated [4].
Two years later the hetero-junction bipolar transistor was reimplemented using strained-layer
Sii-^Gez/Si heterostructures [5-8], In the early 1990s short-period SiGe superlattices became
populär as promising results were obtained in this field. The most important results were
enhanced optical absorption at the bandgap of short-period superlattice structures [9] and band
to band photoluminescence and electroluminescence [10,11]. At the end of the 1990s the idea of
cascade lasers based on Si and SiGe heterostructures was discussed [12]. This idea turned into
a large modern research area. Another present-day topic concerns quantum Computing using
SiGe heterostructures [13]. The idea is based on the difference of g factors in Si and Ge and the
possibility to shift the electron wave function into layers with different Ge composition. This
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changes the spin Zeeman energy and in this way produces single-qubit operations.

This short historical review demonstrates undiminished interest in electronic devices based on
strained SiGe and that this area is quite large and diversified. Thus the investigation of SiGe
properties and their changes under strain conditions plays an important role for future appli-
cations of strained SiGe layers in electronic devices. However, the complicated physics of SiGe
Systems gets even more sophisticated when strain comes into play. This leads to the need for
physical modeling of strained SiGe layers.

In particular, the necessity of physical modeling stems from the fact that the kinetic processes
in semiconductors have a complex behavior which cannot be described analytically. The strain
makes the Situation even worse as it affects the kinetic properties of the material. One of
the main tasks for the modeling of strained SiGe layers is thus to examine the modifications
introduced by strain into the kinetic properties of the semiconductor.

One possible way to describe the kinetic properties of the material is based on the kinetic
Boltzmann equation. This is an integral-differential equation which can be nonlinear when
the quantum mechanical Pauli exclusion principle is taken into account. There are very many
approaches for the solution of the kinetic equation, both analytical and numerical ones. However,
only the Monte Carlo approach allows a comprehensive physical model to be included without
further approximations. Additionally, strain effects can be included in a natural way in the
formalism provided by the Boltzmann equation.

In this thesis electron transport in strained Sii_3;Gex layers is studied using an analytical
anisotropic and nonparabolic band structure model. The influence of strain on low field as
well as high field kinetics including the small signal response is studied using Monte Carlo meth-
ods. Undoped and doped layers are considered and the quantum mechanical Pauli exclusion
principle is taken into account. New Monte Carlo methods which are equally applicable to any
level of degeneracy are developed.

The thesis is organized as follows:

Chapter 2 provides the description of the semiclassical transport model used in this work. The
equations of motion, the distribution function, the Boltzmann equation and its validity, band
structure and scattering mechanisms are discussed.

Chapter 3 treats the strain effects in SiGe within the deformation-potential theory. The stress
and the strain tensor are introduced. Their transformations is then given and applied to obtain
the elements of the strain tensor in the principle axes using Hooke's law. Finally, the influence
of the strain on the band structure and the scattering mechanisms is considered.

Chapter 4 develops the zero field Monte Carlo algorithm used to obtain the low field electron
mobility tensor in strained SiGe. The Pauli exclusion principle is included into the scattering
Operator. The Monte Carlo algorithm is then derived using an integral representation of the
Boltzmann equation. The role of the Pauli exclusion principle on the scattering processes is
explained and reversing of the inelastic processes is found at high degeneracy. Finally, a small
signal Monte Carlo algorithm accounting for the Pauli exclusion principle is developed.

In Chapter 5 applications are presented. The dependence of the low field mobility on the
transport direction, Ge compositions of the Substrate and the layer, Substrate orientation and
the doping level is investigated. To explain the mobility behavior the Valley populations and the
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role of repoplution effects is studied. The small signal response including degeneracy effects is
also explained.

Finally, Chapter 6 presents a summary of the thesis.



Chapter 2

The Semiclassical Transport Model

The semiclassical transport model represents a generalization of the theory of free electrons in
the case of a spatially-periodic potential. In the free electron theory electrons move between

two collisions according to the classical equations of motion. Prom the quantum mechanical point
of view these equations of motion actually describe the behavior of wave packets constructed
using energy levels of a free electron. This can be generalized for the case of electrons in an
arbitrary periodic potential where plane waves are replaced by Bloch's waves. The proof of this
generalization is a difficult mathematical task. However it removes various contradictions of the
free electron theory. In particular, in the semiclassical model electron collisions with motionless
periodic ions do not influence the resistivity of a solid because now the electron interaction with
fixed periodic lattice has been taken into account in the original Sroedinger's equation which
Bloch's wave is obtained from. In other words, within Bloch's theory the classical point of view
about scattering on fixed periodic ions is not valid any longer. Prom the quantum mechanical
point of view this means that in a periodic structure of scattering centers a wave can move
without any damping [14].

The semiclassical model based on the concept of Bloch's wave packets correctly works only when
the electron position is measured with an accuracy of the wave packet width. The fact that the
wave packet width must be less than the size of the Brillouin zone can be used to estimate the
size of Bloch's wave packets and the limitations of the semiclassical model. Similar to the theory
of free electrons, the wave packet is constructed using energy levels of an electron. But now an
electron is represented by Bloch's wave:

k n k ( ) (2.1)

where n numerates bands and Ak' ~ 0 for |k — k| > A/c. Changing the position of an electron
from r to r + R, where R is a Bravais lattice vector, gives:

.R-'-^pJl). (2.2)
k'
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As a function of R this expression is just a superposition of plane waves with another weight.
Thus the wave packet must be localized in a domain with a characteristic size AR w l/Ak. The
characteristic size AA; is less than the size of the Brillouin zone which is of the order of l/a,
where a is the lattice constant. This gives the condition AR > a, that is, the wave packet built
from Bloch energy levels and which has a wave vector correctly determined in a domain smaller
than the size of the Brillouin zone is smeared over a large number of elementary crystal cells
in the coordinate space. Therefore the conclusion is that the semiclassical model describes the
electron response to external electric and magnetic fields which slowly change within the wave
packet's width and thus more slowly within an elementary cell. In this model such fields are
responsible for the creation of classical forces which determine the evolution of the wave packet's
coordinate and its wave vector.

It should be noted that the semiclassical model is more complex than the classical limit of free
electrons. This difference comes from the fact that the characteristic length at which the lattice
periodic potential considerably changes is smaller than the wave packet's width and thus this
Potential cannot be treated classically. Consequently, the semiclassical model represents only in
part the classical limit as the external fields are only considered classically while the ion periodic
field is treated quantum mechanically.

An additional element of the quantum mechanical nature of the semiclassical model is that the
electron wave vector is only accurate to the vector k;, of the reciprocal lattice. Thus two sets
of variables (n, r, k) and (n, r, k + kj,) specify the same electron State. This means that all
physically distinguishable wave vectors within the same band are located within the elementary
cell of the reciprocal lattice.

The fact that in the semiclassical model the band number represents an integral of motion allows
to formulate some restrictions on the external fields. For the amplitude of the electric field E
the condition reads:

, (2.3)
q ,

and for the amplitude of the magnetic field H the condition has a similar form:

M !
mc

« Mä!, (2.4)
ef

where Ae(k) = en(k) — e„'(k) and ej is the Fermi energy. The frequency of the external
electromagnetic field must satisfy the following condition:

hu < Ae(k), (2.5)

which prevents that a photon with a high enough energy causes an interband transition. For
the wave length of the external electromagnetic field the condition

A » a (2.6)

is necessary to make the concept of wave packets meaningful.
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2.1 Equations of Motion

The semiclassical model predicts how the electron's position and wave vector change with time
between two collisions under external fields. This description is possible from the knowledge of
the band structure given by the functions e„(k). In the semiclassical model the functions en(k)
are known and the main goal is to relate the band structure to the kinetic properties.

2.1.1 Real Space Equation of Motion

In the semiclassical transport model the real space equation of motion relates the change of the
electron position to the band structure of a solid.

2.1.1.1 Equation of Motion

The motion in real space is described by the following equation:

Tt = v"(k)' (2'7)

where v„(k) is the quantum mechanical average of the velocity Operator over an electron State
represented as a Bloch wave packet for band index n:

v„(k) =
(2-8)

v = -i—Vr.m0

Using Bloch's wave function with the periodic amplitude unk(r) and the ortho-normality con-
dition, equation (2.8) gives:

hk ih C
vB(k) = — - — / <k(r)V*xnk(r) dr. (2.9)

The important difference of this expression from that of the free electron theory consists in the
second term which is in general not equal to zero. Thus vn(k) ̂  ^ and the directions of the
quantum mechanical average of the velocity and quasi-momentum do not coincide in general
as it is shown in Fig. 2.1. In the limiting case of free electrons the amplitude unk does not
depend on position and thus the second term in (2.9) vanishes. In this case vn(k) = ~- as in
the theory of free electrons. This is another consequence of the quantum mechanical aspect of
the semiclassical model, which uses the concept of quasi-momentum.

Note that the quasi-momentum does not coincide with the momentum of a Bloch electron. The
point is that the momentum Pn(k) = movn(k) of an electron changes under the action of the
total force which also includes the periodic potential. The quasi-momentum p = ftk of an
electron only changes under the action of external fields and the periodic field of a crystal does
not change the quasi-momentum of an electron.
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Bloch's wave-packet
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Figure 2.1: Momentum and quasi-momentum differ by the vector D = —^ / u£ k ( r )Vu n k( r )d r .

2.1.1.2 Velocity-Band Structure Relationship

The relation of the average electron velocity to the band structure is established by the Schrödinger
equation for the amplitude of a Bloch wave:

h2

Vn„k(r) + t/(r)n„k(r) = (2.10)

. (2.11)

If n = n and p' -> p, so that e„(k) - e„(k') « (p - p') • Vk<^(k), p2 - p'2 « 2p • (p - p'), it
follows from (2.11):

2mo " ' ' mo"

Using periodic boundary conditions and the Gauss theorem one obtains from (2.10):

dr = [e„(k)-<

- — /<k(r)V«nk(r)dr = Jvken(k) - -B-. (2.12)

This equation together with (2.9) gives for the average electron velocity in band n with wave
vector k:

v„(k) = ^Vken(k). (2.13)

This relationship means that the average electron velocity in the band n is the gradient of
the energy branch e„(k) in quasi-momentum space and is thus perpendicular to the surface
of constant energy e„(k) = const. This also emphasizes the difference between momentum
and quasi-momentum which are not parallel in general. For example, in the vicinity of a non-
degenerate band extremum the surface of constant energy can be either a sphere or an ellipsoid.
In the former case momentum and quasi-momentum are parallel and in the latter they are not
parallel as it is shown in Fig. 2.2(a) and (b), respectively.

2.1.2 Time Evolution of the Quasi-Momentum

The equation of motion in quasi-momentum space describes how an electron quasi-momentum
changes under applied external forces.
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momentum
momentum

Figure 2.2: Momentum and quasi-momentum for different shapes of the surface of constant energy.

2.1.2.1 Equation of Motion

The evolution of the quasi-momentum governed by the equation:

— -f(r W t\ (9 14̂

where F(r, k, t) is an external force which has a spatial and a time dependence. This equation
looks like Newton's law but the sense is quite different because now only external fields are
considered.

2.1.2.2 Force Expression

The external force in (2.14) includes both electric and magnetic forces. It represents their vector
sum:

F(r, k, t) = q f E(r, t) + v„(k) x B(r, t)\ , (2.15)

where q is the particle charge. In the case of a time-independent electric field such an expression
for the external force can be justified by the energy conservation law. If the electric field is fixed
and (/>(r) is the electrostatic potential then the Bloch wave packets travel in such a way that
en(k(i)) -f- q<j>(r{t)) = const. The time derivative of this expression vanishes and taking (2.13
into account results in

This is the equation of motion in quasi-momentum space with the electric force according to
(2.15). However, (2.16) is not a unique expression for the energy conservation as the expression
Kk + gV</>(r) + f, where f is a vector perpendicular to the average electron velocity vn, can
also fulfill this requirement. It is possible to show that the only possible additional term is
f = vn(k) x B, the Lorenz force, and that (2.15) is valid for time dependent external fields [15].



THE SEMICLASSICAL TRANSPORT MODEL 2.2 Distribution Function

2.1.3 General Properties of Semiclassical Dynamics

The semiclassical equations of motion (2.7) and (2.14) with the band structure relation (2.13)
and the force expression (2.15) have several important properties.

2.1.3.1 Phase Space Domain Evolution.

The equations of motion can be rewritten in a canonical form using the Hamiltonian for electrons
in band n:

Q ) i ) , (2.17)

where p c Stands for the quasi-momentum canonical conjugate to the electron coordinate r and
A(r, t) is the vector potential. This canonical conjugate quasi-momentum differs from the quasi-
momentum:

p = p c - g A ( r , t ) . (2.18)

Therefore the semiclassical evolution process conserves volume of a domain moving in the (r, pc)
space. Since the difference between quasi-momentum and conjugate quasi-momentum is a vector
independent of pc, the domain volumes are also conserved in (r, k) space if the evolution process
is described by the semiclassical equations of motion. This Statement is schematically depicted
in the Fig. 2.3. From this volume conservation law it follows that bands which are fully occupied
do not contribute to the electrical conductivity and thus conduction is only possible for materials
with partially filled bands.

2.1.3.2 Constant External Electric Field

For a uniform time-independent electric field the equation of motion in the quasi-momentum
space (2.14) has the general solution

k(t) = k(0) + ^ t . (2.19)

This means that for a given time all wave vectors are shifted by the same vector. If an electron
could travel in the quasi-momentum space between two collisions for distances longer than the
size of the Brillouin zone, the static electric field would cause a time dependent current due to
the periodicity of the average electron velocity in the quasi-momentum space. The fact that
a static electric field can cause a time dependent electrical current cannot be explained from
the classical point of view and represents the quantum mechanical property of the semiclassical
model.

2.2 Distribution Function

Electrons in solids are described statistically by the distribution function in the phase space.
This is a function of some coordinates and corresponding quasi-momenta. Additionally, in a
non-equilibrium State the distribution function can depend also on time.
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Figure 2.3: Evolution of a domain in the (r, k) space. The domain changes its form but its volume is the
same during the semiclassical evolution process.

2.2.1 Equilibrium Distribution

Using the equations of motion described in Section 2.1 it is in principle possible to obtain the
complete information about the motion of particles in a solid. However, in practice it would be
necessary to solve a huge number of ordinary differential equations, which is not possible from a
computational point of view. Due to the large number of degrees of freedom particle trajectories
are on the one hand very quickly mixed in a complex way such that there is no possibility to
find some regularity in physical properties but on the other hand new properties come into play
at large number of degrees of freedom. These properties allow the System to be described by a
statistical approach. This approach has nothing to do with mechanical regularity of a System
and does not make any sense for Systems with a small number of particles.

The statistical approach considers a closed System. From this system a Subsystem1 is separated,
which is not closed and interacts with other Subsystems of the system. Because of the large
number of degrees of freedom of the system the interactions have a very complex character.
Thus the State of the Subsystem changes in a complex way. By this very nature the Subsystem
passes many times all its states during a rather long time interval T. A small domain2 ArAk
of the Subsystem will be visited many times. If At is the total time the Subsystem spends in

'in particular, this Subsystem may be represented by one particle.
2Here r and p = ßk denote all coordinates and quasi-momenta of the Subsystem. For an electron they are just

(x,y,z) and (px,py,Pz) (in Cartesian coordinates).
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ArAk, the quantity

w= lim — (2.20)
T—>oo i

can be treated as the probability of finding the Subsystem in a state within the phase space
domain ArAk around (r, k).

2.2.1.1 Statistical Distribution

Considering an infinitesimal element of the phase space drdk the probability dw that coordinates
and quasi-momenta have values within intervals [r, r + dr] and [k, k + dk) is introduced through
the expression:

dw = f(r,k)drdk, (2.21)

where /(r , k) is called a phase space distribution function3. The distribution function must
satisfy the normalization condition

/(r,k)drdk = l, (2.22)

which means that the sum of probabilities for all possible states must be equal to unity. The
important property of the distribution function of a Subsystem is that it does not depend on
the initial state of another Subsystem as its influence dies out by other Subsystems. It does not
depend on its own initial state either because the Subsystem passes all its states during a long
time interval and each of these states can be chosen as an initial one.

Using the distribution function it is possible to calculate the average of a function g(r, k) which
depends on the coordinates and quasi-momenta of a Subsystem

(g) = Jg(r,k)f(v,k)drdk. (2.23)

This statistical average removes the necessity to follow #(r,k) in time in order to make an
average. It is completely equivalent to the time average

(g)=rlimo~Jg(t)dt. (2.24)

If the closed system is in a state in which all its parts have their physical values close to their
statistical averages, the system is in the statistical or thermodynamic equilibrium. It is clear
that a closed system spends the most of its time in the thermodynamic equilibrium. If at some
moment it is not in the thermodynamic equilibrium then it will relax to the equilibrium state.
The time interval of the transition to the equilibrium state is called a relaxation time.

3Note that due to the fact that g^'^l) = 1 we can consider the phase space distribution as a function of the
variables (r, kc) in the phase space of the variables which are canonically conjugated through the Hamiltonian
(2.17). This will be assumed in the following.

11
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The fact that different Subsystems do not interact with each other4 leads to the possibility to
consider them independent in a statistical sense. The statistical independence implies that a
state of one Subsystem does not influence the State probabilities of other Subsystems.

From the mathematical point of view statistical independence means that the probability for
a subsystem which consists of two parts to be in the element of its phase space5 drdk =
dridkidr2dk2 is equal to the product of the probabilities for each of the two Subsystems to
have coordinates and quasi-momenta in dr\dki and dr2dk2- Using (2.21) this gives

i, r2, ki, k2) = /i(ri , ki)/2(r2) k2), (2.25)

where /(ri ,r2,ki,k2) is the distribution function for the constituent Subsystem and / i ( r i ,k i ) ,
/2(r2,k2) are the distribution functions of the two Subsystems. It is obvious that the same
equality (2.25) is valid for any number of Subsystems.

Let two functions g\(r\, ki) and g2{*2, k2) describe the two Subsystems. In this way they describe
the subsystem which consists of the two Subsystems. From (2.23) and (2.25) it follows that the
statistical average of the product <7i(ri,ki)<?2(r2>k2) is equal to the product of the statistical
averages:

<Si<?2) = (<?i)(S2>. (2.26)

Considering particles as independent Subsystems it is possible to determine their equilibrium
distribution functions. However, these distributions depend on the wave function which describes
the whole System. It can be either Symmetrie or antisymmetric with respect to the exchange of
any two particles of the system. In turn it depends on the spin of particles. Particles with an
integer spin are subjeet to the Bose-Einstein statistics, while particles with fractional spin are
subjeet to the Fermi-Dirac statistics.

2.2.1.2 Distribution of Fermions

For a system of particles described by antisymmetric wave functions the Pauli exclusion principle
implies that only one particle can be placed at each quantum state. To derive the distribution
function the Gibbs distribution is applied to the subsystem of particles which are in the same
quantum state. This is possible even in the presence of the exchange interaction because it
only takes place inside the subsystem. Taking into aecount that the energy is equal to nke\. the
thermodynamic potential is given as:

n \ (2.27)
nk

where k Stands for all quantum numbers characterizing the particle state, nk is the number
of particles in state k and [i is the chemical potential of the system6. According to the Pauli
exclusion principle occupation numbers nk for fermions can only take values 0 or 1. Thus the
thermodynamic potential has the form:

(2.28)

4For particles this means the absence of scattering between them.
5Here dt\d\fL\ and dv2dk.2 are elements of phase Spaces of the two parts.
6In solids fj, is the Fermi energy denoted as £/.

12
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Since the average number of particles is defined through the derivative of the thermodynamic
potential (2.28), with respect to the chemical potential ß by the expression:

K> = ~^p, (2.29)

the expression for the average fermion number in state k is:

It can be seen from (2.30) that all n* < 1 and when exp{(/z — e^/kßT} -C 1 the Boltzmann
distribution function7 is obtained. The normalization is obtained from the condition that the
sum over all (n^) is equal to the total number of particles N in the system:

^ ( 2 3 1 )

The normalization condition gives the chemical potential /J, as an implicit function of the tem-
perature T and the total number of particles N in the system.

For example, for the equilibrium electron gas in solids the number of electrons in the phase Space
element drdk. can now be written as8:

(2.32)
1 ( 2 7 r ) 3 '
1

The physical meaning of the Fermi energy is that it is the largest electron energy at zero
temperature. It is a boundary between occupied and free states. At non-zero temperatures
electrons can also occupy states above the Fermi energy as shown in Fig. 2.4.

2.2.1.3 Distribution of Bosons

In the case of Symmetrie wave functions the occupation numbers of quantum states are not
limited and can take on any values. The series (2.27) converges only if exp[(/x — e^/kßT] < 1.
This condition is valid for any ê  including zero. Thus the chemical potential must be negative
while for fermions it can take both positive and negative values.

The series (2.27) represents a geometric progression and its value can easily be obtained:

(2.33)

Using (2.29) one obtains from (2.33) for the average number of bosons:

7The Boltzmann distribution is valid when all (n*) <g 1. Physically it corresponds to a dilute system.
8The factor 1/(2TT)3 comes from the fact that in the quasi-classical case the phase space volume (2irh)3 corre-

sponds to two quantum states of a particle. These states differ by spin orientation.

13
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Figure 2.4: The Fermi-Dirac distribution at zero and finite temperatures.

Considering the equilibrium phonon gas the number of phonons in the phase Space element drdk
can now be written as9:

1 d3kd3r

eXp(MKi) - 1 (2.)

where ui is the phonon frequency.

3 ' (2.35)

2.2.2 Non-Equilibrium Distribution

A non-equilibrium state can be described analogously to the equilibrium State introducing a
distribution function, which is called the non-equilibrium distribution function in this case.

2.2.2.1 Non-Equilibrium State

If a closed System is in a state in which some of its parts have physical quantities different from
their statistical averages, the System is in a non-equilibrium state. It is assumed that a non-
equilibrium state can be described by a non-equilibrium distribution function /n(r, k, t) which
now depends on time. The electron number in band n at time t in the phase space volume drdk
around point (r, k) is equal to:

dNei = /n(r ,k , i
drdk

(2.36)

When a closed System approaches its equilibrium the non-equilibrium distribution function tends
to the equilibrium distribution (2.30).

The spin of a phonon is taken to be zero. Thus the pre-factor g = 2s + 1 = 1. Since the phonon number is
not fixed and determined by the equilibrium condition, the chemical potential of the phonon gas is equal to zero:

14
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2.2.2.2 Interpretation Within the Relaxation Time Approximation

To understand the structure of a non-equilibrium state and the difference from an equilibrium
State it is useful to consider the relaxation time approximation before the general theory. The
relaxation time rn(r, k) is introduced in a way that the collision probability during the time
interval dt for an electron in band n at phase space point (r, k) is equal to dt/Tn(r,k). In
the relaxation time approximation it is inferred that some time after scattering has occurred
the electron distribution does not depend on the non-equilibrium distribution just before the
scattering. Additionally, if electrons have the equilibrium distribution with local temperature
T(r):

TTJ—T-, , (2.37)
kBT(r) ) + l

the collisions do not affect the form of the distribution function. Therefore this approximation
surmises that the information about the non-equilibrium state is completely lost due to the
scattering processes10 and that the thermodynamic equilibrium corresponding to a local tem-
perature is maintained through the scattering. This totally specifies the distribution function of
those electrons, which have been scattered near point r between t and t + dt. This distribution
function is denoted as dfn(r, k, t). It cannot depend on the non-equilibrium distribution function
/n(r,k, t) . Thus dfn(r,k,t) can be found assuming an arbitrary form of fn(r,k,t). This can
be done for example using expression (2.37) for the local equilibrium taking into account the
fact that the collisions do not change its form. During a time interval dt an electron fraction
dt/rn (r, k) in band n with quasi-momentum hk and coordinate r are scattered, changing their
band number and quasi-momentum11. The distribution function /°(r, k) cannot change which
means that the distribution of those electrons which contribute to band n with quasi-momentum
hk during the same time interval dt, must exactly offset for all the losses. This leads to the
following expression:

dfn(r,k,t) = -^-f^r,k). (2.38)

This equation mathematically refiects the essence of the relaxation time approximation.

The number of electrons (2.36) in band n at time t in the phase space domain drdk can be
alternatively found selecting electrons by the time of the last collision. Let rn(t') and kn(t')
be the Solutions of the semiclassical equations of motion, (2.7) and (2.14), for band n. Let this
semiclassical trajectory pass through point (r, k) at time t = t: rn(t) = r, kn(t) = k. If at time
t an electron was in the phase space domain drdk around (r, k) and had been scattered during
the time interval [t ,t -f- dt'], it must be scattered to the phase space domain drdk' around
(rn(t), kn(t)) because after time t its trajectory is completely determined by the equations of
motion. Using (2.38) the total number of electrons scattered from point (rn(t'),kn(t)) into the
phase space domain drdk' during the time interval [t ,t + dt] can be written as:

f%(rn(t'),kn(t))dt' drdk

TB(r„(O,MO) ^ ^
10This of course overestimates the efficiency of scattering needed to restore the equilibrium state.
11 In the semiclassical approach collisions are considered as instantaneous events taking place at a given point

in real space. Thus the semiclassical transport model only considers changes of the non-equilibrium distribution
function which happen during time intervals longer in comparison with the collision duration and at distances
longer than the collision domain.
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where the conservation law of the phase space volume has been used, that is, dr dk = drdk.
Some of these electrons are not scattered between time moments t' and t. Let the relative
number of these electrons be Pn(r,k,t,t). Multiplying (2.39) by Pn(r,k,t,t') and summing
over all possible values of t gives the expression for dNei:

el J
- f
" J rn(rn(t'),kn(t')) •

—oo

Comparison with (2.36) gives for the non-equilibrium distribution function:

)dt'\ct\- J fn(Vn(t'),kn(t'))Pn(v,k,t,t)

The last expression clearly shows the structure of the non-equilibrium distribution function. The
integrand includes the product of the total number of electrons scattered between t and t + dt
and moving in such a way that they reach the phase space domain drdk at time t assuming
that no scattering events have occurred and the relative number of electrons which really reach
the phase space domain drdk. The contribution from all possible time moments is taken into
account by the time integration.

2.3 Boltzmann's Transport Equation

The general approach to obtain the non-equilibrium distribution function in the semiclassical
approximation is based on the Boltzmann kinetic equation. The kinetic equation gives the
microscopic description of the evolution process of the electron system. This description is valid
at time intervals longer than the interaction duration and at distances longer than the size of
the interaction domain.

2.3.1 Liouville's Theorem

The time interval during which a closed Subsystem is observed can be divided into a large
number of equal intervals separated by times ii, *2> *3> At these moments the Subsystem has
corresponding phase space12 points si,S2,S3,..., which are distributed in the phase space with
the equilibrium distribution function13 /(r, k). The points si,S2,S3,-.. determine a statistical
ensemble at the initial time t = 0. The motion of the ensemble's phase space points is governed
by the semiclassical equations of motion containing coordinates and quasi-momenta of the sub-
systems only. At each time t > 0 all the phase points are distributed according to the same
equilibrium distribution function. If the Subsystem has l degrees of freedom, the motion can
formally be considered as the stationary flow of a "phase space gas" in the 2i-dimensional phase
space. This motion obeys a continuity equation14:

div(/v) = 0. (2.42)
12The phase space is considered in the sense of canonical conjugate variables.
13The fact that the equilibrium distribution is considered is shown by the absence of the time among the

arguments.
14In steady State there is no any explicit time dependence. Thus -^ = 0.
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THE SEMICLASSICAL TRANSPORT MODEL 2.3 Boltzmann's Transport Equation

In the case of the 2Z-dimensional phase space the last expression gives:

The second term in this expression is equal to zero due to the semiclassical equations of motion15.
The first term the total time derivative of the distribution function. Hence (2.43) is reformulated
as:

where the differentiation is performed along the semiclassical phase space trajectories. This
expression is called Liouville's theorem. From this theorem it follows that the equilibrium dis-
tribution function can only be expressed through such mathematical functions of coordinates
and quasi-momenta which are conserved during the motion of the closed Subsystem. Such func-
tions are called integrals of motion. Thus the equilibrium distribution function itself represents
an integral of motion.

As the equilibrium distribution function of two closed Subsystems is equal to a product of the
distribution functions of these Subsystems (see (2.25)), the logarithm of the distribution function
represents an additive integral of motion. It is well known from mechanics that there only exist
seven independent integrals of motion. One of these integrals is the energy of a Subsystem16. The
dependence of the equilibrium distribution on the energy has already been shown for fermions
(2.30) and bosons (2.34).

2.3.2 Collision Integral

If the scattering events could be neglected, each electron would represent a closed Subsystem
and equation (2.44) would completely determine the distribution function of an electron. The
time derivative means here the differentiation along the semiclassical trajectory in the phase
space of an individual electron. If an external force field acts on the electron system, the total
time derivative can be expressed as:

where F(r) is the total external force given by (2.15).

If collisions are taken into consideration, Liouville's theorem is violated and the distribution
function is no longer constant along semiclassical phase space trajectories. Instead of (2.44) one
should write:

i "(SO--
where the right hand side is called the collision integral or scattering Operator17. The collision
integral is thus defined as the rate of change of the distribution function, that is, [

15This can be easily seen using the Hamiltonian form of the semiclassical equations of motion.
16The other six independent integrals of motion are the components of momentum of the Subsystem and

components of its angular momentum.
17The alternative symbol often used for the collision integral is Stf.
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THE SEMICLASSICAL TRANSPORT MODEL 2.3 Boltzmann's Transport Equation

is the change of the electron number per unit time in the phase space volume drdk due to
scattering. Coinbining (2.45) and (2.46) gives the following equation:

dt ' 'v*v wv*,~,», . n ^ , a k -\dt)coli
 (2 '47)

Equations of this type represent kinetic equations in a general form. In the case of gases including
the electron gas in solids it is usually called the Boltzmann kinetic equation. The kinetic equation
takes a real meaning only when the form of the collisional integral is found. This form can be
found accounting for electrons which are scattered in and out of a given phase space domain.
The number of these electrons can be obtained introducing the scattering rate. In general each
scattering mechanism is described by a scattering rate which can be found using the quantum
mechanical scattering theory for an electron and the scattering center.

2.3.2.1 Scattering Probability

For a more detailed description of the collisions a probability that an electron is scattered per
unit time from band n having quasi-momenta hk to a State in band n with quasi-momenta hk is
assumed. This probability is obtained from the corresponding microscopic theory. The scattering
probability is denoted as S(k,k',r,t) and introduced as follows18. The probability that an
electron with quasi-momenta hk and coordinate r has been scattered during an infinitesimal
time interval dt to an infinitesimal volume of the quasi-momenta space dk around k is equal
to:

S(k,k',r,t)dtdk'. (2.48)

Here it is inferred that the final states are not occupied, that is, the definition of the function
5(k, k', r, t) does not include the quantum mechanical Pauli exclusion principle. The form of
this function depends on the type of a scattering mechanism. It can have a rather complex
structure. In general it can depend on the distribution function itself.

2.3.2.2 Pauli Exclusion Principle

The quantity 5(k, k', r, t)dk' represents the probability per unit time that an electron with wave
vector k will be scattered to one of the levels in the domain dk around k if the levels are not
occupied. Thus the real rate of transitions should be less than this quantity by a factor given by
the ratio between available levels and the total number of levels, as the Pauli principle forbids
transitions to occupied levels. This is schematically shown in Fig. 2.5. The relative number of
available states is equal to 1 — / (k ). The total probability that an electron will be scattered is
given by the sum over all k , which can be converted to an integration over k :

J{\-f{v,k',t))S{k,k\v,t)dk'. (2.49)

18For the sake of simplicity the scattering within one band and without spin flipping is considered here.
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a scattrering
center

occupied
states

quantum mechanical
interaction

k- space domain die'

Figure 2.5: The Pauli exclusion principle forbids transitions to the states which are already occupied by
electrons.

2.3.2.3 Out-Scattering and In-Scattering Terms

It is convenient to define a quantity (<9/(r, k,t)/dt)out to express the electron number per unit
volume with quasi-momenta in the infinitesimal volume dk around k and which have been
scattered during the infinitesimal time interval dt:

fdf(r,k,t)\ dk
V dt )

(2.50)

As the volume dk is infinitesimal, the scattering results in an electron being removed from this
volume. Therefore (2.50) can also be considered as the number of electrons which are lost from
the volume dk around k during the time interval dt due to scattering.

The quantity (<9/(r, k, t)/dt)out can be found from the fact that the expression

dtJ(l-f(r,k',t))S(k,k\r,t)dk'

is the probability that any electron from the vicinity of point k has been scattered during the
time interval dt and thus the total number of the scattered electrons in dk around k is equal to

f(r,k,t)^~dtJ(l-f(v,k',t))S(k,k',r,t)dk'.

Comparison with (2.50) gives

=-f(r,k,t)J(l-f(r,k',t))S(k,k',r,t)dk',

(2.51)

(2.52)

where the minus sign shows that this quantity describes the loss of electrons.
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THE SEMICLASSICAL TRANSPORT MODEL 2.3 Boltzmann's Transport Equation

Scattering processes can change the distribution function in the opposite way. In addition to the
scattering out of the domain dk there also exist scattering processes leading to a gain of electrons
in dk. To describe these processes it is natural to introduce the quantity (ö/(r, k, t)/dt)m defined
so that the expression

(df(v,k,t)\ dk
r ) rwdt [Z.OOj

\ fi~f I (OTT \O

gives the number of electrons per unit volume which are scattered into the volume dk around
k during the infinitesimal time interval dt. In order to find (df(r,k,t)/dt)m it is necessary to
consider electrons in dk near k which are scattered into dk and sum over all possible k . The
total number of electrons in dk' is equal to /(r, k' ,t) dk'/(2ir)3. Prom this number of electrons
only S(k', k, r, t) dtdk would be scattered into dk around k during dt if the corresponding states
were not occupied. However only the fraction 1 — /(r , k, t) of the states are available. Thus,
the total number of electrons per unit volume scattered into dk around k from dk around k
during dt is equal to

„i

/(r, k\ t)—~T5(k', k, r, t) dkdt(l - /(r, k, t)). (2.54)

Summing over all possible k' and comparing with (2.53) gives:

(5/(fltM)). =(1-/('.M)) fs(k\k,r,t)f(r,k',t)dk'. (2.55)

Now the collision integral in (2.46) can be expressed as a sum of two terms:

(df(r,k,t)\ /0/(r,k,t)\ /a/(r,k,t)\
) c o n \ dt j i n

+ \ dt ; o u t

= (1 - /(r,k,t))J5(k',k,r,t)f(v,k',t)dk'- (2.56)

-/(r,k,t)J(l-/(r,k' It))S(k,k',r It)<flc'.

It should be noted that in the non-degenerate case when /(r,k, t) < 1 the scattering Operator
can be rewritten as:

df(rk,t)\ = / 5 ( k ' k M ) / ( r k ' i ) ( i k ' / ( r M ) A ( r k f ) ( 2 5 7 )
Ot /coll

where the total scattering rate A(r, k, t) is defined as follows:

A(r, k, t) = f 5(k, k', r, t) dk'. (2.58)

The Boltzmann equation takes now the form:

(l-f(r,k,t))Js(k',k,r,t)f(r,k',t)dk'- (2.59)

f(r,k,t)J(l-f(r,k',t))S(k,k',r,t)dk'.
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THE SEMICLASSICAL TRANSPORT MODEL 2.4 Band Structure

2.3.3 Principle of Detaiied Balance

In equilibrium the distribution function is known and the left hand side of the Boltzmann
equation is equal to zero19:

. ^ (2.60)
- / e q ( r ,k , i ) /( l- / e q(r ,k ' ) i)) 'S '(k>k' ,r , t)dk' = 0,

which is valid for any quasi-momenta hk. To satisfy this equation for all quasi-momenta hk the
following equality must be valid:

,k ' , r , t) . (2.61)

Using the explicit form of the Fermi-Dirac distribution function one obtains from (2.61):

S(k',k,r,i)exp [fffl =S(k,k',r)t)exp [ ^ 1 . (2.62)
[KBl J \KB1 J

Equation (2.62) is called the principle of detailed balance and relates the probabilities of forward
and backward processes. For elastic processes, e(k) = e(k'), (2.62) gives:

S(k\ k, r, t) = S(k, k', r, t), (2.63)

that is for elastic processes the scattering probabilities of forward and backward processes are
equal.

2.4 Band Structure

It has been pointed out in Section 2.1 that the quantum nature of the semiclassical transport
model comes from the quantum mechanical consideration of a periodic crystal potential. This
information is included into the electron energy dependence on the quasi-momentum e(k). This
dependence enters the Boltzmann kinetic equation (2.59) through relation (2.13) as well as
through the differential scattering rates 5(k,k',r, t). To solve the Boltzmann kinetic equation
it is necessary to know the band structure and its specific features.

2.4.1 Electron in a Periodic Potential

In an ideal crystal the ions occupy positions which form a regulär periodic structure. The
potential U(r) is thus a periodic function with the period equal to the period of the corresponding
Bravais lattice:

U{v + R) = U(T), (2.64)
19This can easily be checked substituting (2.30) where e(k) is replaced with e(k) + U(r), U(r) is the potential

energy.
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where R are the vectors which belong to the Bravais lattice. The period of the potential is of
the same order as the de Broglie wave length which requires quantum mechanical consideration
of the problem. As the total Hamiltonian for solids contains electron-electron interaction terms,
the problem represents the many-body System. Within the theory of independent electrons an
effective single-electron potential U(r) is introduced. In the case of the ideal periodic crystal
this potential must satisfy property (2.64). The main purpose is to analyze the periodicity20

induced properties of the single-electron Schrödinger equation:

(r) = eV'(r)- (2.65)
2m0

Due to the potential periodicity the solution of this equation has several remarkable properties
shortly given below.

2.4.1.1 Bloch's Theorem

Bloch's theorem states that the solution of equation (2.65) has the form of a plane wave multi-
plied by a function with the period of the Bravais lattice:

V>nk(r) = exp(zk • r)unk(r), (2.66)

where the function unk(r) satisfles the following condition:

unk(r + R) = nnk(r), (2.67)

for all vectors lattice R. Note that Bloch's theorem uses a vector k. In the periodic potential
this vector plays the role analogous to that of the wave vector in the theory of free electrons.

2.4.1.2 Energy Bands

In (2.66) n denotes the band index as there are several independent states for a given vector
k. This can be seen by substituting equation (2.66) into the Schrödinger equation (2.65) which
gives:

with the periodic boundary condition:

+ R). (2.69)

This periodic boundary condition is very important as it allows to consider equation (2.68) as
an eigenvalue problem for a finite volume, which leads to a discrete set of eigenvalues. The
wave vector is only a parameter in this problem. Therefore, there are several branches21 of the
electron energy en(k).

20It should be noted that the periodicity is only a simplification. Real crystals never have an ideal periodicity
due to impurities, thermal vibrations and so forth.

21 It is assumed that the discrete levels are continuous functions of the parameter k.
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2.4.1.3 Band Structure Periodicity

For two wave vectors k and k + K the Solutions of Schrödinger equation (2.68) are equivalent
because Bloch's theorem gives ^^ ( r ) = exp(ik • r)un^(r) and V'nk+K^) = exp(?k • r)/unic+K(r)-
This leads to equal eigenvalues

en(k) = en(k + K), (2.70)

and equal Bloch's amplitudes and thus equal wave functions

(2.71)

It can be seen that each energy branch has the same period as the reciprocal lattice. As the
functions en(k) are periodic, they have maxima and minima which determine the width of the
bands.

It should be noted that the wave vector k in (2.66) can always be chosen in a way to belong to
the first Brillouin zone because any vector k' out of the first Brillouin zone can be represented
as the sum k' = k + K, where K is a vector of the reciprocal lattice. Using the equivalent form
of Bloch's theorem:

tpnk> (r + R) = exp(zk • R)ipnk> (r) (2.72)

together with (2.71) and the equality exp(z'K • R) = 1 one obtains (2.72) for vector k.

2.4.2 Analytical Band Structure

The füll band structure gives a rather complete Information about behavior of an electron in
a given lattice. The determination of the band structure and its use in modeling problems are
intricate problems. However, in many important physical phenomena only a small part of the
Brillouin zone plays an essential role. This small part of the first Brillouin zone corresponds to
energy levels near the bottom or top of some energy band. It turns out that for the description
of the dispersion law in the vicinity of bands extrema it is possible to construct analytical
expressions using only few parameters.

2.4.2.1 Effective Mass Tensor

If the extremum of the band n is located at the point PQ = Hk^, the function en(p) can be
expanded into the Taylor series as follows22

*„(p) = ^n(pS) + \mlx
ß{pa - pn

a0)(pß - pn
ß0) + • • • • (2.73)

Here the linear terms vanish due to the definition of the point pQ. The quantities m~ß have the
dimension of an inverse mass. They represent the second derivatives of the energy

(2.74)

22Summation is understood under repeated indeces

23



THE SEMICLASSICAL TRANSPORT MODEL 2.4 Band Structure

As the value of a second derivative does not depend on the differentiation order, quantities
rnZß r ePresent a Symmetrie tensor of the second rank 2 3 called the inverse effective-mass tensor.
The components of this tensor depend on the coordinate system in quasi-momentum space. In
particular the coordinate system can be chosen so tha t the non-diagonal components vanish,
tha t is, rn~ß = 0 for a ^ ß. This coordinate system is called a principle coordinate system. In
the principle coordinate system (2.73) can be rewritten as:

The equation of constant surface is obtained from the condition e n (p) = const using (2.75):

—^——— 1 —•—^— + ^-—r—^-!— = const. (2.76)
Zmx 2my 2mz

Thus the constant energy surface near a non-degenerate extremum represents an ellipsoid with
the half-axes being proportional to -\/\mx\, \J\my\ and v / | m a | and the center being placed at
p = po- This means that the coordinate system chosen to diagonalize the tensor m~l coincides
with the principle axes of an ellipsoid.

2.4.2.2 Nonparabolic Band Structures

When an electron occupies higher energy levels its dispersion law deviates from (2.75). In order
to improve this Situation and still use the analytical description of the band structure the k • p
technique [16,17] is employed and an additional nonparabolicity parameter is introduced for
the conduetion band extrema. This leads to a modified dependence of energy on the quasi-
momentum in the conduetion band [18,19]:

( 2 J 7 )

where a is the nonparabolicity parameter and the energy reference point is at the band minimum.

2.4.2.3 Analytical Band Structures of Si and Ge

For Si the lowest extrema of the conduetion band are located along the A axes near the X
points of the first Brillouin zone and are called X Valleys. In the case of Ge they are located
exactly at the L points of the first Brillouin zone and called L Valleys. Thus the surface of
constant energy24 for Si, equation (2.76), represents six füll ellipsoids while for Ge it represents
eight half-ellipsoids. This is also shown in Fig. 2.6. Two of the three effective masses are equal
to each other and called transverse effective masses. The third mass is called the longitudinal
effective mass. They are denoted by mt and nn, respectively25. The numerical values [20] for
the parameters of the analytical expression for the conduetion band of Si and Ge are given in
Table 2.1.

23It should be noted that ma^ > 0 for a minimum, and maß < 0 for a maximum.
24The surface in the first Brillouin zone.
25For example for Si X Valleys along z axes mx = my = mt, mz = mt-
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The first Brillouin zone

X Valleys of Si L Valleys of Ge

Figure 2.6: The surfaces of constant energy for Si and Ge.

Silicon
Germanium

mf
0.191
0.204

mf
0.903
1.791

mt
0.126
0.101

1.634
1.387

ax

0.5 eV~l

0.5 eV~l

OLL

0.3 eV-1

0.3 e F - 1

Table 2.1: Analytical conduction band structure parameters for Si and Ge.

2.4.2.4 Herring-Vogt Transformation

The analytical band structure given by (2.77) represents an anisotropic dispersion law. However,
it is possible to transform [21] the coordinate System to obtain a spherical energy surface which
is more convenient to work with. The orientation of the coordinate system is specified so that
the tensors m~i for the Valleys located along the A axes have the form:

m^ = 0
0

0
1

0

0

0
1

mXt_

mxt
0
0

0
1

mXi
0

0
0
1

The transformation w = Tk is given by matrices T of the form:

T — 0

0

I m
m.

0

0

0 0

0

/ 771

m

0

0

0

0

0

0
0

0

0

0
1

0
0
1

. (2.78)

(2.79)
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The dependence of energy on the wave-vector w is now isotropic

(2.80)

For the Valleys located at the L points the tensor ml is not diagonal in the coordinate system
chosen above. The right hand side of (2.77) can be expressed in terms of a rotation transforma-
tion D as follows:

— k J D J

with matrix D defined as:

1

0
0

0

(T
0
0
1

iriLt

Dk, (2.81)

T =
cos a cos ß sin Q COS /? sin ß

— sin a cos a 0
— cos a sin /? — sin a sin ,5 cos /?

(2.82)

where the angles a and ß specify the longitudinal direction of an L valley as shown in Fig. 2.7.
This longitudinal orientation is chosen to be x axis of the rotated coordinate system. Therefore

[001]

[010]

nooi

Figure 2.7: Angels a and ß with respect to the coordinate system which diagonalizes m - 1 .

the transformation matrices in this case are equal to SD, where the matrix S is given as

S =

/ISSL 0 0

0

0

(2.83)
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For example, for the [111] orientation the angles are a = | , sin/3 = 4? and the matrix D equals

(2.84)D =

l
v/3

l l n
v/3 v/3

71 71 °
1 l_ \/2

v/6 v/6 v/3J

Analogous expressions can easily be obtained for other orientations:

Di =

l

f
71
I

L75

7V

_L ^
v/6 v/3-

1

71

i

"75
l

v ^
0

LTe 3-

, D 3 =
\/3 v/3

v ^ v/2
1 1

v/6 v/6

(2.85)

where indices 1,2 and 3 specify orientations [111], [111], and [111], respectively.

2.5 Scattering Mechanisms

In an ideal periodic lattice an electron is not scattered at all. Within the approximation of
independent electrons scattering occurs only due to deviations from the ideal periodicity. These
deviations can be caused by various reasons, such as impurities, crystal defects, and thermal ion
vibrations or phonons. Another type of scattering is due to electron-electron interactions. In
this case there is a many body problem which is treated by the second quantization formalism
introducing additional quasi-particles and considering scattering of electrons on these quasi-
particles26. Both types of scattering are used in this work and thus briefly described below.

2.5.1 Perturbation Theory

Deviations from an ideal lattice periodicity cause a deviation of the ideal crystal Hamiltonian
Ho- The whole system is described by a new Hamiltonian H. The new Schrödinger equation
cannot be solved exactly in general27. However if the deviations from the periodicity are small,
it is possible to find corrections to the known solution obtained for Ho. Such corrections are
obtained by the quantum mechanical perturbation theory.

2.5.1.1 First Order Perturbation

Let s denote a set of quantum numbers which characterize states of an unperturbed system.
The corresponding wave functions are ips and satisfy the unperturbed Schrödinger equation

= ESI/JS. (2.86)

In the case of one electron in the lattice, s represents a band index n and the components of
the quasi-momentum p = hk, and ips is Bloch's wave function given by (2.66). For electrons

26 For example electron-plasmon scattering.
27In the sense that the form of its eigenstate cannot be determined in contrary to the ideal crystal case where

Bloch's theorem exists.
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in a vibrating lattice s includes in addition phonon numbers in all possible states and ipa is
the product of a Bloch wave and the crystal wave function. Bloch's wave functions and the
normal lattice modes are subject to the usual periodic boundary conditions in a cube. The wave
functions ipa are ortho-normalized. Due to the interaction Hamiltonian Hjnt the wave function
ips turns into a new wave function \&. At the initial time t = 0 the System is unperturbed which
means ty(t = 0) = ips. At t > 0 <]> is determined by the equation28

ihlt = &*• (2'87>
In the absence of the interaction equation (2.87) has the usual solution: \& = ipsexp(—iEst/h).
When the interaction is present $(t) can be represented as a series

* ( * ) = exp( « (2.88)

where as« are yet unknown coefficients. Quantities \as»(t)\2 are the probabilities of finding the
system in State s at time t. They satisfy the condition

."(*)i2 = 1- (2-8 9)

Substituting (2.88) into (2.87) and forming the inner product (as '|4
r) gives the equation for

(2.90)

coefficients as»:

dt
)a " ( t ) e x p \ T ( E > -E »)t\.

In the first order perturbation the unperturbed values of as» are used in the right hand side29

of (2.90). The unperturbed values of as» follows from (2.88)30:

(2.91)= (s\Hint\s)exp\l(Es/-Es)t\.

The solution of this equation is

- l + exp| ji
fl.'W = E (2.92)

Therefore the probability of finding a System at time t in state s is

|2 _
1 — cos I

(E,-E3

\{s \Hint\s)\2. (2.93)

The transition probability per unit time is equal to the time derivative of (2.93):

'E ,-Es
sin

dt -Ea

(2.94)

28H denotes the füll Hamiltonicin: H = Ho + Hint.
29Matrix elements (s \Hint{s ) are considered as quantities of first order.
30The case when s' ^ s is considered. The probability |as(t)|2 is obtained from (2.89).
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2.5.1.2 Fermi's Golden Rule

Expression (2.94) cannot directly be used in the kinetic equation (2.59) because of two reasons.
The first reason is that it relates to transitions between states of a discrete spectrum31 while in
the kinetic equation they are treated as continual states. The second one lies in the fact that in
the semiclassical transport model scattering events are local in time. The first problem can be
overcome by the fact that Systems are usually macroscopic which allows to consider the discrete
spectrum as quasi-continuous. The second problem is removed assuming that the free-fiight
time is much longer than the effective interaction time which allows to simplify (2.94) by taking
the long interaction time limit32, namely for t —> oo one gets:

^ ^ % - E . ) . (2.95)

This equality is called the Fermi golden rule and it shows that transitions only happen between
states with equal energy Es< — Es. The proof that expression (2.95) can be used in the kinetic
equation (2.59) represents a difficult problem. For the example of impurity scattering such proof
can be found in [22,23].

2.5.2 Scattering on Phonons

The thermal motion of atoms in the crystal may be considered as normal oscillations of the crys-
tal lattice. The mechanical properties of this System are described by the following Lagrangian
[24]:

A?,s ( n _ n ) u (n)u , (n ) (2 96)
nn ss

which leads to equations of motion:

m i'i • — - > A*? ( n - n 1?/ / f n ^ C? Q7\

Here n = (ni,n2,ri3), ms are the atomic masses, us are the atomic displacements. The solution
of this equation represents a plane wave of the form:

us(n) = es(k) exp{i(k • rn - ut)}, (2.98)

where es is the complex amplitude33 which only depends on the position within the elementary
cell.

2.5.2.1 Phonon Concept

From the quantum theory point of view instead of waves (2.98) phonons are introduced through
the second quantization formalism (see Appendix A). Phonons represent quasi-particles moving

31Quasi-momentum components and phonon quasi-wave vectors are considered as discrete quantities.
32Since it is assumed that an interaction decays much faster in coraparison with the free-flight time, the error

caused by the long interaction time limit is negligible.
33 It is also referred to as polarization.

29



THE SEMICLASSICAL TRANSPORT MODEL 2.5 Scattering Mechanisms

in the crystal. The energy of a phonon is

c = hu, (2.99)

where u> is the frequency of the classical wave (2.98). The wave vector k in (2.98) determines a
phonon quasi-momentum as follows:

p = hk. (2.100)

This quantity is not unique as any quasi-momentum hk + Kb, where b is a reciprocal lattice
vector, is physically equivalent to hk. The velocity of a phonon is determined as the group
velocity of the corresponding classical waves vgr = dco/dk and has the form:

^ ,2,0!)

All the properties of the classical wave spectrum are valid for the energy spectrum of phonons.
In particular it has 3n branches, three of which are acoustic ones. The wave density is now
interpreted as the phonon density of states.

The free wave motion is considered as the free motion of non-interacting phonons. Inclusion of
the anharmonicity leads to scattering processes in the phonon gas. These scattering processes
restore the thermal equilibrium of the phonon gas. The processes conserve the quasi-momentum.
However, this is only valid within an addition of a reciprocal lattice vector /ib.

It should be noted that the phonon concept appears only as the quantum mechanical description
of the collective atomic motion in a crystal and that phonons cannot be identified with individual
atoms.

As applied to the electron transport in semiconductors the interaction between the electron gas
and the phonon gas plays an important role. In this work only covalent semiconductors are
considered. In this case the electron-phonon interaction can be successfully described using the
deformation-potential approach [25]. In this case the interaction Hamiltonian in (2.95) is given
as:

#el-ph = "jj-jr—^, (2.102)

where Ey is the deformation-potential tensor describing the shift of a band per unit deformation.
Using the continuous medium approximation the ion displacement takes the form:

u = E ( ^ f c - ) 2 ( ß q + "-J e x p ( i q r ) e' (2-103)
where p is the density of the crystal and a and a+ stand for the phonon annihilation and creation
Operators, respectively. Therefore the interaction Hamiltonian is:

) (aq + a-d) e x p ^ q r ) - ^ ^ . (2.104)

It is convenient to interpret this equation in terms of phonon emission and absorption processes.
If in (2.95) \s) Stands for |iVqi, Nq2,..., iVq, N 1, ...)|k) then in the sum over q only two terms
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will contribute: one from (...,iVq — 1, ...|aq|..., iVq,...) with pre-factor JVq and the second from
{...,Nq + 1, ...|a+|...,iVq,...) with pre-factor iVq + 1. Thus using (2.95) the phonon differential
scattering rates in the kinetic equation (2.59) take the form:

- 6(k) - fr*,],

2 (2.105)

, k', r, t) = (N* + 1V«J**«\ '

where iVq is given by (2.34), that is, within this work the phonon gas is assumed to be in the
equilibrium which is not valid in general [26-28]. Iov is the overlap integral:

/ dru*,(r)uk(r)exp(iG • r) (2.106)

where G is a reciprocal lattice vector. For intervalley transitions the angle between initial and
final states depends mainly on the Valleys involved in the transition, /Ov is nearly constant [29]
and can be taken into account by renormalizing the corresponding coupling constant.

The most important phonon scattering processes for covalent semiconductors can be described
by (2.105). Those of them which are important for Si, Ge and SiGe are briefiy given below.

2.5.2.2 Intravalley Scattering by Acoustic Phonons

This type of scattering assumes that the initial and final states of an electron are within the same
valley. The acoustic scattering mechanism is assumed to be elastic which is an approximation
called equipartition [18]. For this type of scattering the transition probability is given by:

^ ' (2-107>

where i is the valley index, T/, is the lattice temperature, DA{ is the acoustic deformation
potential of the z-th valley, us denotes the average sound velocity, p is the density of the crystal
and gi (E) the density of states per spin in the i-th valley which is defined by the following
formula:

p (2.108)

BZ

For the analytical band structure (2.77) it follows from (2.108):

(2.109)

where m*d. is the density of states effective mass for the i-th. valley, and ji (E) denotes the
band-form function:

7i(£) = 6(l + a ie). (2.110)
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The average sound velocity is defined as:

us = - (2.111)

where ut and ui are the transverse and longitudinal components of the sound velocity.

The numerical values for the parameters [18,20] of the acoustic phonon scattering rate are given
in table Table 2.2.

Silicon
Germanium

DAX

7.2 eV
9.58 eV

DA,

11.0 eV
8.84 eV

P
2.338xlO~3 kg/cm3

5.32 xlO-3 kg/cm3
5.410xl05 cm/sec
3.61 xlO5 cm/sec

ui

9.033xlO5 cm/sec
5.31 xlO5 cm/sec

Table 2.2: Numerical values for the acoustic phonon scattering rate.

2.5.2.3 Intravalley Scattering by Optical Phonons

This scattering mechanism is divided into optical deformation potential scattering and polar
optical scattering. The latter only takes place in polar semiconductors and is absent in Si, Ge
and SiGe. Optical deformation potential scattering can occur in X-valleys only due to selection
rules, which follow from group theory and depend on the symmetry of initial and final states and
also on the symmetry of the perturbation Operator [30]. In this case the transition probability
for the L-valleys is:

(2.112)

(2.113)

where ey is given as:

e/ = e,- =F fiwo.

The upper and lower signs refer to emission and absorption processes, respectively, Do is the
optical deformation potential, tvjjo is the respective phonon energy, e, and ej are the initial and
final electron energies respectively, and JVO is the equilibrium phonon distribution function given
by the Bose-Einstein statistics:

1
(2.114)

The numerical values for the parameters [18, 20] of the acoustic phonon scattering rate are given
in table Table 2.3.

2.5.2.4 Intervalley Phonon Scattering

An electron can be scattered from one Valley to another one both by acoustical and optical
phonons. Intervalley scattering can be treated as a deformation-potential interaction [30] in the
same way as intravalley scattering by optical phonons.
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Semiconductor
Dopt

fiüJopt

Silicon
2.2 x 108 eV/cm

0.0612 eV

Germanium
5.5 x 108 eV/cm

0.03704 eV

Table 2.3: Numerical values for the intravalley L-L optical deformation potential scattering rate.

Equivalent X-X Intervalley Scattering This scattering process is subdivided into f-type
and g-type processes. A process is referred to as f-type, if the initial and final orientations are
different, otherwise as g-type process. The transition probability of this mechanism is given by:

(2.115)

(2.116)

(2.117)

Zf is the number of possible equivalent final Valleys of the same type. For f-type scattering Zf =
4 and for g-type scattering Zf ~ 1. Dxx is the coupling constant, tuüxx is the corresponding
phonon energy.

The numerical values of the coupling constants and phonon energies [18,20] are shown in Ta-
ble 2.4.

where Cf is:

Nxx is the equilibrium phonon number of the involved phonon type:

1

Dxx
hrf$x

^x
Kx
D"xX
Hf*
Dix
f^xx
uxx

n/3UXX

boxx

Silicon
0.5 x 108 eV/cm

0.01206 eV
0.8 x 10« eV/cm

0.01853 eV
1.1 x 109 eV/cm

0.06204 eV
0.3 x 108 eV/cm

0.01896 eV
2.0 x 108 eV/cm

0.04739 eV
2.0 x 108 eV/cm

0.05903 eV

Germanium
0.488 x 10b eV/cm

0.005606 eV
0.79 x 108 eV/cm

0.00861 eV
9.5 x 108 eV/cm

0.03704 eV
0.283 x 108 eV/cm

0.00992 eV
1.94 x 108 eV/cm

0.02803 eV
1.69 x 108 eV/cm

0.03278 eV

Table 2.4: Numerical values for the intervalley X-X scattering rate.
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Equivalent L-L Intervalley Scattering For this type of scattering there is no Separation
into f- and g-type processes. The scattering rate is given as:

(2.118)

(2.119)

(2.120)

where ej is

e / = ei T fiwLL-

is the equilibrium phonon number of the involved phonon type:

1

ZL = \ for the transition between two different orientations and ZL = \ for scattering within
the same orientation, DLL denotes the corresponding coupling constant and hun is the energy
of the phonon involved in the scattering process.

The numerical values of the coupling constants and phonon energies [18,20] for this type of
scattering are shown in Table 2.5.

DLL
fuJLL

Silicon
5.26 x 10ö eV/cm

0.02395 eV

Germanium
3.0 x 10« eV/cm

0.02756 eV

Table 2.5: Numerical values for the intervalley L-L scattering rate.

Non-Equivalent Intervalley Scattering This process involves transitions between all pos-
sible Valleys in the conduction band. The scattering rate is given by:

where EJ is:

Nij is the equilibrium phonon number of the involved phonon type:

1

exp

and ÖEij is given as

- e

(2.121)

(2.122)

(2.123)

i>min. (2.124)

Indices i and j stand for the initial and final valley, respectively, Zj is the number of possible
equivalent final Valleys, Dij is the corresponding coupling constant, huij is the respective phonon
energy, ei)min &nd eJimjn are the energy minima of the initial and the final valley, respectively.

The numerical values of the coupling constants and phonon energies [18,20] for this type of
scattering are shown in Table 2.6.
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DGx
foüGX

DGL

ftuGL

Dxi

Silicon
0.0 eV/cm

0.0 eV
0.0 eV/cm

0.0 eV
4.65 x 108 eV/cm

0.02283 eV

Germanium
10y eV/cm
0.02756 eV

2.0 x 10ö eV/cm
0.02756 eV

4.1 x 10B eV/cm
0.02756 eV

Table 2.6: Numerical values for the non-equivalent intervalley scattering rate.

2.5.3 Plasmon Scattering

In semiconductors with intermediate and high electron density an additional type of scattering
is possible. The source of scattering are electron plasma oscillations, which are treated within
the quasi-particle approach. In this case these quasi-particles are called plasmons.

2.5.3.1 Plasmon Concept

The plasmon concept arises from the consideration of an interacting electron gas described by
the following Hamiltonian:

l.gas 2m - r,-
(2.125)

where the first sum gives the kinetic energy and the second one arises from the Coulomb inter-
action between electrons. This Hamiltonian can be rewritten using the random phase approxi-
mation [31-34] as follows:

•ffel.gas — Hp\ aaf. + H\elgas
el—el.scr , rVpl _i £re'—pl

+ -°el.gas + ""61^38'el.gas
(2.126)

where each contribution can be represented in the second quantized form [35]. The first term
H^ is the kinetic energy of the electron gas:

(2.127)
2m

where c£ and ĉ  are the electron creation and annihilation Operators, respectively, and spherical
and parabolic dispersion is assumed.

The second term H^~^scr gives the contribution from a two-electron screened Coulomb inter-

action:

Tjel-el.scr
nel.gas

27re2

k>qc

(2.128)

As can be seen, this term accounts for scattering of two electrons with the initial quasi-momenta
kA and kM and the final quasi-momenta k> + k and k^ — k respectively. Screening is taken into
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account through the cut-off wave vector qc which separates short- and long-range parts of the
Coulombic term.

The third term H^ gas describes a non-interacting plasmon gas, that is, the quantized oscillations
of the electron gas34:

where a£, a^ are the plasmon creation and annihilation Operators and HUJPI is the plasmon
energy.

The forth term H^~^s represents the electron-plasmon interaction:

• q + q 2 ) ( a <

where two terms in the second sum can conveniently be treated in terms of absorption and
emission of a plasmon in the same way as it has been shown above for phonons.

The possible plasmon-phonon coupling [36-38] is not considered in this work as it plays an
important role only in polar semiconductors where in the degenerate case the frequencies of the
charge density fluctuations are comparable to the optical frequencies.

2.5.3.2 Scattering Rate

The scattering rate due to electron-plasmon interaction can be obtained using Fermi's golden
rule (2.95) and the Hamiltonian (2.130). Plasmon scattering of electrons represents the long-
range part of the electron-electron interaction [39]. Assuming a nonparabolic and spherical
analytical band structure (2.77), the scattering rate is given by:

N M + \ ± \) ^ ' kWln 7^' (2J31)
[m*d) Upivg(k) V l

The final electron energy is given as:

f/ = £iT hvPh (2-132)

where the plasma frequency is (see Appendix B):

Here the summation over all possible Valleys is assumed, and nv Stands for the contribution from
valley v to the electron density.

The cut-off wave vector qc is defined as follows:

qc = min (qmax, ß s ) . (2.134)
34Similarly to phonons plasmons represent bosons.
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9min and qmax stand for the boundaries of the momentum transfer:

\kkf\

<?max = \k + kf\.

kf is the final wave vector defined by the equation:

e(kf) = e/, (2.136)

N (u)pi) is the average number of the plasmon excitations defined by the equilibrium Bose-
Einstein statistics:

2.5.4 AUoy Scattering

When an alloy of Si and Ge is considered, there is an additional scattering mechanism due to
the atomic disorder. To describe this mechanism it is necessary to define the model of disorder
and the scattering potential.

The model used in this work for the SiGe alloy is that of Harrison-Hauser [40], which uses
Warren-Cowley's approach for the disorder model [41] and Mott's inner-potential model for the
scattering potential. The resulting scattering rate is given by the following expression which
takes both intravalley and intervalley scattering into account:

Aalloy(e) = ^(1 - x)xQcenU
2g{e), (2.138)

where x is the mole fraction of one of the materials, f2cen is the volume of the elementary cell,
and U is the alloy scattering potential.

2.5.5 Ionized Impurity Scattering

The scattering by ionized impurities represents an elastic process. The most populär modeis for
this type of scattering are due to Brooks and Herring [42] and Conwell and Weisskopf [43]. The
difference between the two approaches lies in the treatment of the screening effect. In this work
we adopt the Brooks-Herring model with some reflnements described below.

2.5.5.1 Brooks-Herring Model

Within this model the scattering potential is given by

^ ß r ) , (2.139)

where ß~l is the screening length and Z denotes the number of charge units of the impurity.
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Using Fermi's golden rule (2.95) together with the nonparabolic band structure (2.77) one obtains
for the total scattering rate:

where parameter eß is defined by

The important improvements to this model are shortly described below.

2.5.5.2 Two-Ion Scattering

This correction [44,45] to the Brooks-Herring model takes into account the fact that at high
impurity concentration the scattering on two ions becomes important. The bare scattering
Potential is given as:

where |R| is the average distance between impurity centers. The Fourier transform of this
potential is equal to:

Vb(q) = / e x p H q • r)Vfc(r) dr = ^ ( 1 + exp(-zq • R)). (2.143)

Electrons respond to this potential forming a self-consistent potential which can be described by
screening theory. The general screening theory in the presence of the periodic crystal potential
is rather complicated. Thus the screening theory for the electron gas is employed here.

2.5.5.3 Screening Theory

The screening effect is the most important manifestation of the electron-electron interaction. In
this work only linear screening is considered. Nonlinear effects which require the solution of the
nonlinear Poisson equation either analytically [46,47] or numerically [48] are neglected here.

A positively charged particle introduced into the electron gas will create an excess of negative
charge in its vicinity which screen its electric field35. The bare potential (2.142) satisfies the
Poisson equation:

= -po(r), (2.144)

where po(r) = Ze[6(r) + <5(r — R)] is the volume density of the particle charge36. The total
physical potential Vt(r), which is produced both by the particle and the electron cloud, is
described by the Poisson equation of the form:

eV2Vt(r) - -p(r), (2.145)
35The same is valid for two positively charged particles.
36In our case the charge density of two ions.
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where p(r) is the total volume charge density:

p(r) = po(r) + Pind(r). (2.146)

Here pmd(r) denotes the volume density of the charge induced in the electron gas by the positive
particle. Prom the electrodynamics of continuous media [49] it is known that Vo(r) and Vj(r)
are linearly related to each other:

V0(r) = Je(r,r')Vt(r)dr. (2.147)

For the homogeneous electron gas function e(r, r ) can only depend on the distance between the
two points r and r':

e(r,r') = e ( r - r ' ) . (2.148)

This gives the following relation between the Fourier components of Vo(r) and Vt(r):

(2.149)

In the linear screening theory it is assumed that pind(r) and Vt(r) are linearly related to each
other37 which implies for Fourier components:

ftnd(q) = x(q)Vrt(q). (2.150)

The Fourier transform of the Poisson equations (2.144) and (2.145) together with (2.150) leads
to the relation:

e(q) = 1 - ^ x ( q ) . (2-151)

To calculate the quantity x((l) some approximations are necessary. In this work we use the so
called Lindhard screening theory38. Within this model the expression for the dielectric function
[50] is:

e(q,0) = l +&G&T,), (2.152)

with the inverse screening length given by the Thomas-Fermi theory:

/ » M ( 2 .1 53)
(r/)

f"
ekBTL Tyi (r/)

Here Ti Stands for the Fermi integral of the ?'-th order, and 77 is the reduced Fermi energy:

EF-Ec
-1 5 4)

37This is valid for a rather weak potential Vt.
38Soraetimes it is called the Random Phase Approximation (RPA).
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G represents the screening function given by the following expression:

oo

, 1 1 f X
, 77) = /

•^-1/2 (v) £V™ J 1 + exp (x2 —

-rln

v)
0

dx, (2.155)

where the argument £ is:

(2.156)

The corrections described above can be taken into account within the first Born approximation.
In this approximation the scattering amplitude is given as:

/ (q) = - i - L / ( q ) , (2.157)

where £/(q) is defined by

. (2.158)

The differential cross section is defined as:

Now the total scattering rate is obtained through

A(k) = JVp|v(k)|<7tot(k), (2.160)

where Np = Nj/2 is the density of scattering pairs and crtot(k) is equal to:

(2.161)

The simple calculations give the final total ionized impurity scattering rate taking into account
the momentum dependent screening and the two-ion correction:

sin() ,

(2.162)

2.5.5.4 Second Born Correction

The additional correction applied to the ionized impurity scattering rate results from the second
Born approximation. The Schwinger scattering amplitude is used to obtain a correction to the
first Born approximation. The second Born correction is given by:

2fc

AA (k) = 50 (k) C (k) J (g2 +
9^2 ) 2 dq, (2.163)
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where the expression for so(k) is

«„(*:) = ^ , (2.164)

with the parameters a and UQ defined as:

The first Born approximation is valid when \UQ\/ßs <C 1 [51]. This inequality is violated at low
and intermediate doping levels, where the second Born correction thus plays an important role.

2.5.5.5 Ridley's Model

The ionized impurity scattering rate has a sharp peak at very low energies. This can cause
very high self-scattering rates in Monte Carlo methods described later in this work and long
computational times. Although the comprehensive ionized impurity scattering model described
above is mostly used in the present work, in some cases it is useful to employ simpler modeis.
One such model is briefly described here.

Assuming statistical screening avoids the problem of the sharp behavior at low energies [52]. In
this approach an additional statistical screening mechanism is introduced to cut off the long-
range part of the screened Coulomb interaction. The resulting scattering rate is:

(2.167)

where \BH Stands for the scattering rate of the Brooks-Herring model (2.140). This approach
allows the number of small-angle scattering events to be reduced and thus reduces the amount
of scattering events to be simulated.
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Chapter 3

Strain Effects in Sii_xGe^ Grown on
a Sii-^Ge^ Substrate

3.1 SiGe Strained Layers

SiGe active layers are used to create advanced semiconductor devices. These layers must be suf-
ficiently thin to avoid generation of dislocations which will negatively affect transport properties
of the devices.

3.1.1 Critical Thickness and Dislocations

The basic principle of strained-layer epitaxy is that a certain amount of elastic strain can be
accommodated by any material without generating dislocations or defects. It takes energy to
accomraodate an epitaxial layer of lattice-mismatched material. The energy depends on both the
thickness and the size of the lattice mismatch. It also requires energy to create a dislocation that
will relieve the lattice mismatch strain. If the thickness of the epitaxial layer is kept small enough
to maintain the elastic strain energy below the energy of dislocation formation, the strained-
layer structure will be thermodynamically stable against dislocation formation. The unstrained
State of the lattice-mismatched layer is energetically most favorable, but the strained structure
is stable against transformation to the unstrained State by the energy barrier associated with
the generation of enough dislocations to relieve the strain.

The most important types are edge and screw dislocations. Edge dislocation can be represented
by an extra half plane inserted into a crystal as illustrated in Fig. 3.1. The edge of this half
plane is called an edge dislocation. In the vicinity of the dislocation the deviation of the crystal
structure from the ideal one is rather strong. But already at distances of a few lattice peri-
ods the crystal planes touch each other almost as in the perfect crystal structure. However,
the deformation also exists at great distance from the dislocation. It can be clearly found by
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Figure 3.1: Edge dislocation.

traversing a closed contour through the lattice nodes in x — y plane containing the origin of the
coordinates. If u Stands for the displacement of an atom from its position in the ideal structure,
the total change of this vector for the whole contour is not equal to zero. Instead it is equal to
the lattice period along x.

Screw dislocations can be viewed as a result of cutting a lattice along a half plane with a
subsequent one period relative shift of the two parts of the lattice on each side of the cut as
depicted in Fig. 3.2. The edge of the cut is called the screw dislocation. Traversing a contour
around the dislocation line the vector u gains one period along this axis. From the macroscopic
point of view a dislocation deformation of a crystal considered as a continuous media has a
general property: traversing a closed contour L containing the dislocation line D, the vector
of the elastic shift u gains a finite addition b equal to one of the periods of a given crystal
lattice. The constant vector b is called Burger's vector of a given dislocation. This property is
mathematically written as:

A l Ö U i A K ^ Q 1 \
dui = (b ——dxu = —o%, (3.1)

J dxk
L L

where it is understood that the traversing direction of the contour is clockwise with respect to
the chosen direction of the tangent vector r of the dislocation line. The dislocation line itself
represents a line of peculiar points of the deformation field. In the case of edge and screw
dislocations the dislocation lines D represent straight lines with r ± b and r || b, respectively.
In the general case a dislocation is a curve along which the angle between r and b can change. A
dislocation line cannot stop inside a crystal. The two ends must be on the surface of a crystal or
the dislocation represents a loop. Condition (3.1) means that the displacement vector is a non-
unique function of coordinates. It gains an additional vector after traversing a contour around
a dislocation line. Physically there does not exist any non-uniqueness: an additional vector b
means an additional one period shift of the lattice nodes which cannot change the lattice state.
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Figure 3.2: Screw dislocation.

In particular, the stress tensor is a unique and continuous function of coordinates.

A fundamental assumption underlying many of the critical thickness calculations is the a priori
assumption that the equilibrium configuration of the strain induced dislocations is that of a
regulär, non-interacting, rectangular array. Critical layer thicknesses are then computed by
requiring that the total strain energy per unit area ey be a minimum with respect to the in-
plane strain e

der
d\e\

= 0 (3.2)

evaluated at |e| = / , where / is the mismatch between the film and the Substrate. Here
defined as a sum

of the homogeneous strain energy density

and the areal energy density of the dislocation €£>:

Ei
eD = —.

P

(3-3)

(3.4)

(3.5)

44



STRAIN EFFECTS IN SIi^GE* GROWN... 3.1 SiGe Strained Layers

Here G is the shear modulus, h is the film thickness, Ei the energy per unit length of a given
dislocation line, and p is the spacing between the dislocations in the assumed rectangular array.
It should be noted that Ei is independent of the in-plane strain e in the film [53] and in fact eo
only depends on the strain in the film through of the strain-dependence of the effective interfacial
width p. The spacing between dislocations in the array is given by

where b is the magnitude of Burger's vector. Equations (3.4)-(3.6) in conjuction with the me-
chanical equilibrium condition (3.2) give the following equation [54] for the critical thickness
hc:

^ K ) 4
 (3'7)

However there are other modeis for the critical thickness hc. One of them can be described by
the expression [55]:

kc= / t t » ) inf̂ V (3.8)

The difference between the modeis (3.7) and (3.8) lies in the fact that in deriving (3.8) it is
not assumed that initial dislocations appear in a regulär rectangular array. Here dislocations
are generated in a stochastic fashion. This is an attempt to deal with the relaxation kinetics
in contrast to the equilibrium based derivation (3.7). It is assumed that dislocation formation
requires in a dislocation formation energy ep. As the thickness of a film approaches its critical
value, some fraction of the homogeneous strain energy e# will be used to supply this dislocation
formation energy.

3.1.2 Applications of Strain

The study of lattice-mismatched epitaxy gained much attention when it was recognized that
strained-layer structures might display new electronic and optical properties not seen in the
unstrained-constituent materials [3,56]. The strain is unavoidable in semiconductor heterostruc-
tures. However it can be a tool for modifying the band structure of semiconductors in a useful
and predictable fashion. The strain is imposed internally, as a consequence of lattice-mismatch
and it may be compressive or tensile. To modify the band structure by more than 100 meV it is
necessary to create a lattice mismatch greater than about 2%. This in turn means that a careful
control over the layer thickness is required to produce extended strained structures that meet
the critical thickness requirement.

3.1.3 Strained Layers in Semiconductor Devices

Strained SiGe layers are used in modern semiconductor devices, such as the strained-layer mod-
ulation doped field-effect transistor (S-MODFET) and the strained metal-oxide-semiconductor
field-effect transistor (S-MOSFET).
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3.1.3.1 Modulation-Doped FET

The typical layer structure of an n-S-MODFET [57] is shown in Fig. 3.3. It is grown by molecular
beam epitaxy on a p~-substrate with p > 1000 Ü, • cm starting with a relaxed SiGe buffer layer
whose Ge content is linearly graded to 40-50%. The core of the layer structure is the 7-10 nm
thick biaxially strained Si Channel embedded in undoped Sii_a;Gex spacers which separate the
following carrier supply layers from the Channel. Due to a Ge content of 40-50% in the SiGe
layers, a high conduction band offset is achieved and the resultant quantum well enables sheet
carrier densities up to ns = 7 x 1012 cm"2.

Ti/Pt/Au contact
Source Drain

5 nm Si-cap

10nmSi06Ge04

19 —3

4 nm SiO6Geo,4, Sb 1.5x10 cm
3 nm Si0 6Ge0 4 spacer

9 nm Si - Channel

3 nm Si0 6Ge0 4 spacer

nm Si06Ge04> Sb 8x10 cm"3 V

graded buffer

Si,-* Gex

x = 0 — 0.4

Figure 3.3: S-MODFET structure.

3.1.3.2 Strained MOSFET

The strained Si layer is also used as the Channel in the usual n-MOSFET structure where, it
is grown on a SiGe Substrate. The in-plane electron mobility increase is used to improve the
device Performance.
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3.2 Linear Deformation-Potential Theory

Linear deformation potential theory has been first justified within the effective mass approxi-
mation by Bardeen and Shockley [58] and thus is usually referred to as the Bardeen-Shockley
theory. Originally this method has been applied to study the interaction of electrons and acous-
tic phonons, and later in the theory of strained materials, in particular for thin strained SiGe
layers. Within this theory the energy is expanded into a Taylor series in powers of a quantity
characterizing the strength of the lattice strain. The expansion is truncated after the first power
of this parameter, which renders the theory linear. Neglecting terms of the second order is
equivalent to the effective masses being unchanged by the induced strain.

3.2.1 General Description of the Conduction Band Splitting in Strained SiGe

In this work the linear deformation potential theory is used to calculate the conduction band
Splitting in thin strained SiGe layers. As Si and Ge have their conduction band extrema at quasi-
momenta k / 0, the applied stress reduces the original degeneracy1 of band states with different
quasi-momenta. This reduction depends on the relative orientation of the quasi-momentum for
a given conduction band extremum and the applied forces as schematically illustrated in Fig. 3.4
and Fig. 3.5. For a general orientation of applied forces all band extrema can be split. However,
if the forces are applied along some axes with high symmetry the degeneracy reduction can be
partial. Extrema are forming subsets within which the degeneracy is conserved, but extrema
from different subsets are no longer degenerate. In Sii_xGex layers grown on relaxed Sii-^Ge^
Substrates stress due to lattice mismatch always arises when the Ge compositions are different,
x y£ y. The direction and the magnitude of the applied forces in such a System depend on the
orientation of the Sii_yGey Substrate and the Ge compositions x and y. This stress leads to a
deformation of the perfect crystal. It is assumed that the thickness is below the critical value
which implies absence of dislocations. As a result the degeneracy of the conduction band is
reduced. The Splitting of the conduction band minima has a strong impact on the transport
properties of strained SiGe active layers in comparison with unstrained ones. In particular it
causes anisotropy of transport quantities such as electron mobility. For Si, Ge and SiGe the low
field electron mobility is represented by a scalar, that is, the mobility tensor is diagonal with
equal diagonal elements. In the strained layer the diagonal elements are in general different.
The difference of the kinetic properties for different orientations can be significant and can be
used to optimize the characteristics of advanced semiconductor devices.

3.2.2 Strain Tensor

Under applied forces solids are strained resulting in a change of volume and shape. In the
approximation of the elastic continuum, the position of each point of a solid is described by
the vector r which in some Cartesian coordinate System has the components x\, X2, £3. Under
strain all points of a solid are in general shifted. If the position of a given point before strain
was r, then after strain it is r with components x'{, i = 1,2,3. The displacement of the point is

1The original degeneracy is related to the symmetry of the unstrained Si and Ge crystals.
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"e(k)

applied forces

Figure 3.4: Füll degeneracy reduction due to the applied stress for a hypothetical band structure. For a
general orientation of applied forces £i ^ £2 ¥" £3 ¥" £4-

characterized by the displacement vector defined as

u = r — r. (3.9)

The coordinates x{ of a shifted point are functions of the coordinates X{ of the same point
before strain. This means that the displacement vector u is also a function of x{. This function
completely determines the strained state of a solid.

When a solid is strained, the distances between points change. If before strain the distance
between two infinitely close points was dxi, then after strain it is equal to dxi = dx{ + du{. The
distance between these two points before strain is

dl =

and after strain:

dl' =

+ dx3

dx'i

(3.10)

(3.11)

Substituting the expressions for dxi through dui the following expression for dl 2 is obtained:

„'•> 9 ^dui , dui du{ , . „ <r>.
d/ ^ = dr + 2-—dxidxk + -—-^-dxkdxi. (3.12)
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applied forces

strained

Figure 3.5: Partial degeneracy reduction due to the applied stress for a hypothetical band structure. For
applied forces oriented along high symmetry axes £1 ^ £2 = £3 7̂  £4.

Since indices in the double sum can be exchanged, the last expression can be rearranged and
rewritten as:

dl!2 = dl2 + 2£ikdxidxic,

where a tensor of the second rank has been introduced:

1 / du; duk dui dui \
Fn. =: — I 1 1 I

(3.13)

(3.14)

The second rank tensor eik is called the strain tensor. As can be seen from the definition (3.14),
it represents a Symmetrie tensor:

Vi,/s = 1,2,3. (3.15)

Any Symmetrie tensor can be reduced to the principle axes. This means that at each given point
the coordinate system can be chosen in such a way that only diagonal elements £n, £22 and
£33 will be non-zero and all non-diagonal elements vanish. It should be noted that if a tensor
is reduced to the diagonal form at a given point, it will be in general non-diagonal at all other
points of a given solid considered as continuum.

If the strain tensor is reduced at a given point to its principle axes, in the elementary volume
built around this point the element of the length (3.13) takes the form:

dl'2 = (1 + 2sn)dx\ + (1 + 2E-n)dx\ + (1 + 2s33)dxl (3.16)

This expression is decomposed into three independent terms. This means that at any given
elementary volume of a solid the strain can be considered as a set of three independent deforma-
tions along three relatively orthogonal directions - the prineipal axes of the tensor. Each of these
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deformations represents a simple stretching or compressing along the corresponding direction:
the length dxi along the i-tb. principle axis turns into the length dx\:

dx[ = Vl + Zeudxi. (3.17)

The relative elongation along the i-th axis is thus given as:

(3.18)

A deformation is considered small if the change of any distance in a solid turns out to be much
less than the distance itself. In other words all relative elongations are much less than unity. In
this work only strain of this kind is considered.

When strain is weak in the sense mentioned above, the displacements U{ and their derivatives
are small. Thus, in the general expression (3.14) the last term is negligible and can be omitted.
Therefore, in the case of weak strain, the components £$. of the strain tensor are determined by
the following expression:

In this case the relative elongations are thus equal:

v/1 + 2eü - 1 » EH, (3.20)

and given by the eigen values of the strain tensor.

3.2.3 Stress Tensor

When a solid is strained by external forces the positions between atoms change and it is in a
non-equilibrium State. As a result some internal forces appear. These forces tend to return the
strained solid to its equilibrium State. The induced forces are called the internal stresses. If a
solid is not strained, the internal stresses vanish.

Considering some volume of a solid the total force applied to it can be written as an integral
over the same volume:

FdV, (3.21)

where F is the force applied to a unit volume of the solid. As the forces between internal parts
of the volume are balanced, only external parts contribute. Further the macroscopic principle2

means that the total force can only be expressed as a surface integral.

Therefore each of the three components of the total force (3.21) should be a surface integral.
This fact implies the that vector F must be the divergence of a tensor of rank two. Denoting
this tensor as a^, i, k = 1,2,3, F can be expressed as:

(3.22)

2That is the statement about the radius of the atomic forces. This radius must be considered to be zero in the
macroscopic theory.
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From this expression the following formula is obtained:

JFidV= <£aikdfk,

which is only valid for the weak strain condition3.

(3.23)

The tensor O{k is called the stress tensor. As it can be seen from (3.23), Oikdjk is the i-th
component of the force applied to the surface element di. Choosing a surface element in the
x, y; y, z and x, z planes it can be seen that the component oik of the stress tensor is the i-th
component of the force applied to a unit area perpendicular to the xk axis. For example, the
normal component of the force applied to a unit area perpendicular to x is equal to oxx and the
forces tangential to it are equal to uyx and ozx as it is shown in Fig. 3.6.

Figure 3.6: The stress tensor components in terms of the applied forces.

It is well known that the moment of force can be written as an antisymmetric tensor of rank
two4. Thus the total moment of force applied to the volume under consideration is:

Mik = J(FiXk - FkXi) dV. (3.24)

3The integration variables must be x . However, due to weak strain the derivative in (3.22) differs from the
derivative with respect to x by higher order terms.

4Moment of force is a vector. Its components can be expressed as Mi = \eijkMjk, where e is the unit
antisymmetric tensor of rank three and Mjk is the antisymmetric tensor of rank two which is integrand in (3.24).
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Like the total force the moment of force also must be expressed through a surface integral.
Substituting (3.22) into (3.24) gives:

Mik — j> (<TüXk - °klXi)dfi + / (ufcj - oik)dV. (3.25)

This expression represents a surface integral only if the following equality is satisfied:

(3.26)

which removes the volume integral in (3.25). Hence an important property of the stress tensor
is its symmetry. In principle the integrand in the volume integral in (3.25) can be a complete
divergence of a tensor of rank three which is antisymmetric in the first two indices. This tensor
must be expressed through derivatives like dui/dxk- Thus the stress tensor would contain terms
of higher order derivatives of the displacement vector u. Within this work such terms are
considered negligible. Hence the symmetry of the stress tensor is again justified.

It should be noted that the stress tensor can be transformed into diagonal form even without
this approximation. The point is that its definition (3.22) is not unique. Any transformation

^ (3-27)

where the tensor Xiki is antisymmetric with respect to the last two indices, does not change the
force F.

3.2.4 Energy Shift

As it has been pointed out above in a strained solid the energy of an extremum is expanded
into the Taylor series in powers of some small quantity characterizing the strength of the lattice
strain. For weak strain it is natural to perform the expansion in powers of the strain tensor
components around the unstrained point. The energy shift of the k-th. non-degenerate band
extremum is in general expressed as:

XV (3-28)
ij

The coefncients of this expansion form a second rank tensor called the deformation potential
tensor. This tensor is a characteristic of a given non-degenerate band of a solid. Due to the
symmetry property of the strain tensor the deformation potential tensor is also Symmetrie:

Z^ = E{k) (3.29)

Such tensor has only six independent components. For eubie crystals the number of independent
components reduces to three, denoted as 2U, H^ and Hp.

3.2.4.1 Shift of Conduction Band Minima

In this work the X and L Valleys of Si, Ge, and SiGe are considered. The symmetry of these
Valleys further reduces the number of independent components of the deformation potential

52



STRAIN EFFECTS IN SIi-gGE» GROWN... 3.3 Substrate Orientation and Strain Tensor

tensor to two, namely Eu and S^. The deformation potential Ed relates to pure dilatation while
Eu is associated with a pure shear involving a uniaxial Stretch along the major axis plus a
symmetrical compression along the minor axis [59].

Linear deformation-potential theory implies that for conduction band extrema not located in
the center of the Brillouin zone the shape of the equal energy surface does not change to the first
order in strain. However, a particular extremum of the conduction band shifts under strain. The
shift depends on the magnitude of applied forces and their orientation with respect to the quasi-
momentum of a given extremum. The degenerate extrema are in general split. This Splitting is
completely determined by the deformation potentials Ed and Eu.

The general form of the energy shift (3.28) of valley i of type k = X,L for an arbitrary homo-
geneous deformation can be written in the following form [60]:

where a* is a unit vector parallel to the k vector of valley i. From (3.30) it follows that degeneracy
is reduced by shear strain.

3.2.4.2 Shift of the Mean Energy

The shift of the mean energy of the conduction band extrema of type k is expressed as:

I. (3.31)

This shift can become important when more than one type of valley is taken into account as in
general the deformation potentials E<* and Eu have different values for different valley types. The
relative shift of the mean energy for Valleys of different type can cause a repopulation between
these Valleys as schematically shown in Fig. 3.7 for the case of X and L Valleys. Expression
(3.31) is derived as an average of particular shifts given by (3.30). Thus some Valleys of a given
type can still significantly move which will cause a repopulation between particular extrema of
different type while the transitions between other extrema will be reduced.

3.3 Substrate Orientation and Strain Tensor

The energy Splitting and the shift of the mean energy depend on the orientation of the applied
forces. In the case of strained SiGe active layers grown on relaxed SiGe Substrates this orientation
is determined by the orientation of a Substrate.

3.3.1 Strain Tensor in the Interface Coordinate System

The energy Splitting and the hydrostatic shift of the mean energy depend on the orientation of
the applied forces.

The interface coordinate system is specified as a System with its 2-axis perpendicular to the
hetero-interface. The form of the strain tensor e in this coordinate system can be found as
follows.
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Figure 3.7: Repopulation effect between X and L Valleys in strained material.

The condition of biaxial dilatation or contraction gives:

£'n =£22 = ̂ 11»

where ey is the in-plane strain given as the relative lattice mismatch:

CLc — 0,1
e\l = -T7- •

(3.32)

(3.33)

Here a/ is the lattice constant of the layer and as that of the Substrate. The Substrate is
assumed to be thick enough to remain unstrained. Further, the condition of vanishing in-plane
shear implies:

e'l2 = 0. (3.34)

It is also assumed that there is no any film distortion which means the following conditions:

e'lz = 4 3 = 0. (3.35)

This is justified for the case of Substrates with high rotational symmetry. In other cases it is
relatively weak for SiGe structures.

Thus under these conditions the strain tensor for the SiGe active layer is diagonal in the interface
coordinate System. The two diagonal elements are known to be equal to £y. To determine the
third diagonal element Hooke's law is applied. It linearly relates the components of the stress
and the strain tensors o^ and £ß:

(3-36)

where c ^ / is a tensor of rank four called the elastic stiffness tensor. As the only external stress
is in-plane, the out-of-plane component vanishes

uzz = 0 (3.37)

which gives for the third diagonal component of the strain tensor:

' _ C33U + C3322
£33 -,

C3333

(3.38)
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3.3.2 Coordinate System Transformation

To find the components of the elastic stiffness tensor it is necessary to perform a coordinate
transformation.

3.3.2.1 Euler's Angles

The angles which specify the relative orientation of the two coordinate Systems are called Euler's
angles. They are defined by the following rules. First a clockwise rotation around the z-axis
is performed. This angle is usually denoted as a. Then a clockwise rotation around the new
y-axis follows. This second angle is denoted as ß. Finally, a clockwise rotation around the new
z-axis finishes the transformation. The last angle is denoted as 7. The ränge of these angles are
determined as follows:

0 ^ a < 2TT,

0 < ß ^ 7T, (3.39)

0 ^ 7 ^ 2?r.

3.3.2.2 Transformation Operator

The transformation Operator describing three successive rotations with Euler's Angles a, ß and
7 is given as a product of three rotations:

y z ( ^ , (3.40)

where the unitary Operators Uz(a), U /(ß) and ^ ' (7 ) are given through the expressions:

(cos ex — sin a 0\
sine* cosa 0 1 , (3.41)

0 0 1/
/ cos/3 0 sin/3\

Üyl{ß)=[ 0 1 0 , (3.42)
\ -s in/3 0 cos/3/

(cos 7 — sin 7 0\
sin 7 cos 7 0 1. (3.43)

0 0 l /
Thus the transformation Operator (3.40) takes the form:

/cos a cos ß cos 7 — sin a sin 7 — cos a cos ß sin 7 — sin a. cos 7 cos a sin ß\
Ü(a,ß, 7) = sin a cosß cos7 + cos asin7 - sina cosßsin 7 4- cosa cos7 sinasin/3 j . (3.44)

\ — sin/? cos 7 sin ß sin 7 cos/3 /

Due to the symmetry property (3.32) the transformed strain tensor will not depend on 7. So 7
is arbitrary and can be set to zero. The transformation Operator takes the final form:

/cos a cos ß — sin a cos a sin
Ü(a,ß) = I sin a cos ß cosa sin a sin /? ] . (3.45)

\ — sin/3 0 cos/3
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3.3.2.3 Tensor Transformations

Using the transformation Operator U(a, ß) the strain tensor elements are transformed as follows:

6 aß = UiaUjß£ij. (3.46)

Therefore the main task is to determine the elements of the strain tensor in the interface coor-
dinate system. The strain tensor elements in the principle coordinate system are then obtained
as:

Saß = UaiUßje'i:j. (3.47)

The elastic stiffness tensor is transformed analogously:

4/K7 = uiaUjßUkSUhcijki (3.48)

3.3.3 Strain Tensor Elements in the Principle Coordinate System

Due to the cubic symmetry of Si and Ge there are only three non-zero components of the elastic
stiffness tensor, namely cn, c\i and C44 in the short-hand notation [50]. This fact allows to signif-
icantly simplify the calculations of e33 which are given below for the three Substrate orientations
[001], [110] and [111]. The calculations for an arbitrary Substrate orientation are performed in
the same manner. For these three Substrate orientations the transformation Operator takes the
form:

(3.49)

(3.50)

(3.51)

^(110) =
° ~7 ?0 75 71

- 1 0

~t2
V2

0

V3

Using (3.48) and (3.38) one obtains:

e'(ooi) _
-33 -

'(HO) _
-33 -

-'(in) _
-33 -

cn

— 2C44

+ C12 + 2C44 '

+ 4C12 - 4C44

-4c 4 4

(3.52)

(3.53)

(3.54)

Now the transformation of the strain tensor according to (3.47) gives for the elements of the
strain tensor in the principle coordinate system the following expressions.

56



STRAIN EFFECTS IN SIi-gGE» GROWN... 3.4 Band Structure of Strained SiGe layers

[001]:

-(001) _ .(001) _
£U - e22 — £ | | i

(3.55)

.(001)
£u

(001)
£33

.(001)
£12

[110]:

£(H0)

e(no)

.(HO)

_ .(ooi) _
— £ 22 —

2ci2

_ .(ooi) _
— £ 1 3 —

e(no)

= £

Cll

_ .(HO)

• 1 .

2c 4 4 - C12

C\\ -\- C\2 ~\~ 2c44

+ 2c^2
'12 ~l~ 2 c 4 4

(3.56)

[111]:

(in) _ (in) _ (in) _ 4c44
£11 — e22 - £33 — T~ZZ T~A

cu + 2ci2 + 4c44
g 5 7

(in) _ (in) _ (in) _ cn + 2ci2
£12 " £ 13 - £ 23 - - C l l + 2 c i 2 + 4 c 4 4

e l | -

3.4 Band Structure of Strained SiGe layers

Within linear deformation-potential theory only shift of Valleys is taken into account whereas
their shape is unchanged. This shift is described by general expressions (3.30) and (3.31). These
expressions are used to calculate the energy Splitting and the shift of the mean energy of the X
and L Valleys for the three most important Substrate orientations. Generalization for the case
of an arbitrary Substrate orientation is straightforward.

3.4.1 Hydrostatic Strain

Expression (3.31) gives the hydrostatic shift of the mean energy of both X and L Valleys:

n + £22 + ess). (3-58)

Note that the deformation potentials for X and L Valleys are different.

3.4.2 Uniaxial Strain

The Splitting of equivalent Valleys is given by the difference of (3.30) and (3.31) and depends on
both Valley type and Substrate orientation.
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3.4.2.1 Splitting of the X Valleys

For [001] and [110] Substrates the Splitting is given as:

3 (3-59)
2 ^ ( £ 3 3 _ £ i i ) _

For [111] Substrate it becomes:

Ae(10°) = Ae(01°) = Ae^001) = 0. (3.60)

Expression (3.60) means that for [111] Substrates the X Valleys remain degenerate.

3.4.2.2 Splitting of the L Valleys

For [001] Substrate the Splitting becomes:

Ae( in) = Ae( In) = Ae(m) = Ae<lTl) = 0. (3.61)

For [110]:

") = A e(ni) = | H L £ I 2 )

3
 0 (3.62)

_22L£ i 2_

For [111]:

Ae^111) = Ae<m> = Ae^111) = - - E L £ i 2 .
3 "

Expression (3.61) shows that the L Valleys are degenerate for the Substrate orientation [001].
For [110] and [111] Substrates they are split. This Splitting is Symmetrie with respect to the
mean energy for the Substrate oriented along [110] while it is asymmetric for the case of the
Substrate oriented along [111].

3.4.3 Effective Masses in Strained SiGe

To take into account effects beyond the linear deformation-potential theory the model of Rieger
and Vogl [61] is used for the Substrate orientation [001]. This model gives the effective masses
versus Ge mole compositions in the active layer and the Substrate:

m*(x,y) = (l, (x-y), (x - y)2) W ( ^ j y ) ) (3.64)

where W contains parameterized transverse and longitudinal effective masses for the perpen-
dicular and parallel X Valleys, and x and y denote the Ge mole fractions of the active layer and
the Substrate, respectively.

58



STRAIN EFFECTS IN SIi_xGEx GROWN... 3.5 Scattering Mechanisms in Strained SiGe

For Substrate orientations different from [001] a linear interpolation

m*SiOe = m*Si(l -x) + m*Gex. (3.65)

is used for the effective masses in the active layer.

3.5 Scattering Mechanisms in Strained SiGe

The changes in the band structure of strained SiGe affects the scattering processes in the active
layer. These modification are discussed in the following for the main scattering processes in
SiGe such as the electron-phonon and the ionized impurity scattering.

3.5.1 Electron-Phonon Scattering

The influence of strain on acoustic phonon scattering is taken into account through the modifi-
cation of the number of final equivalent Valleys and the final electron energy.

The final energy is given by the following expression:

Efin = Ein = %V\\ (' }

where A ü ^ 1 ' 2' is the difference between the minima of the Valleys V\ and V<i , Vy. — X, L
is the Valley type and indices i and j denote the initial and final orientations of the Valleys,
respectively.

3.5.2 Ionized Impurity Scattering

The influence of strain on the Fermi level and the screening parameters of the ionized impurity
scattering model [44] is considered. The effects of strain on impurity centers [62] in doped layers,
however, are neglected.

For an analytical band structure taking into account nonparabolicity and anisotropy the density
of states of one valley is given by

X
In order to calculate the Fermi energy in the strained material only terms up to the second
order in the nonparabolicity coefflcient are kept. A nonlinear equation for the Fermi energy Ef
is obtained:

t] E k/2(%) + ^akBToFwtmj) + ̂ a2fc|r0
2^5/2(%)] (3.68)

* 3

where rnj = (Ef - ECi — AECij)/kßTo, iVc, Stands for the effective density of states of valley i
with orientation j , AECi. is the energy Splitting of that valley and TQ is the lattice temperature.
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The linear and quadratic terms in (3.68) play an important role as carriers can populate higher
energy levels in highly degenerate semiconductors. (3.68) is solved by Newton Iteration using as
an initial guess the solution obtained for non-degenerate statistics and parabolic bands.

Including nonparabolicity up to the second order the contribution of Valley % with orientation j
to the inverse screening length takes the following form:

6 » -r(rvf\ \ ~- , \ J-̂ * r r r̂-, -r~ / \ J.WW <J T , ' J „_,'} ^ » / . 1 ,„ fifl\

13 £S£OKB1O L ' 4

It should be noted that in semiconductors with non-parabolic bands the inverse screening length
increases which may weaken the ionized impurity scattering rate in particular for a high doping
level when due to the Pauli exclusion principle the population of higher energies increases sig-
nificantly. Thus there are two opposite factors which determine the strength of ionized impurity
scattering. Another interesting effect occurs in strained doped materials. Due to strain some
Valleys shift up and do not contribute to the kinetics. However, this may change at high degen-
eracy when the Pauli principle causes the upper split bands to be populated, which then also
give a contribution to the transport properties. The repopulation may be significant leading to
a reduction of the valley Splitting effect.

In case of momentum-dependent screening the dielectric function is modified to take into account
the strain induced Splitting of the conduction band minima for different Valleys and orientations:

e(q) = *(0) • f 1 + 1 £ ßlPiM, rm) J , (3.70)

where Gij Stands for the screening function in valley i with orientation j . The momentum
transfer q = p' — p and the temperature dependence enters through £.

3.5.3 Plasmon Scattering

In the case of plasmon scattering the strain effects enter through the screening length ßs which
determines the cut-off wave vector (2.134). Additionally the plasmon frequency in the strained
case is given as:

where n^ is the contribution to the electron density from valley i with orientation j :

(3-72)

It should be noted that this result as well as the expression (2.133) for the unstrained material
is only valid within the Random Phase Approximation (see Appendix B).
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Chapter 4

Monte Carlo Methods for the
Solution of the Boltzmann Equation

To analyze the semiclassical kinetics in semiconductors described in Chapter 2 in a compre-
hensive manner it is necessary to solve the Boltzmann kinetic equation (2.59). This equation
mathematically represents an integro-differential equation. In general the exact solution cannot
be obtained analytically. Thus approximate solution techniques have been developed. They can
be divided into three classes which are analytical techniques, deterministic numerical methods,
and Monte Carlo approaches.

Analytical techniques were the flrst attempt to understand the semiclassical transport in semi-
conductors. Some of these techniques assume an analytical form of the distribution function
which contains parameters. These parameters are obtained from the Boltzmann kinetic equa-
tion. For example, for a heated and drifted normalized Maxwellian distribution

where A is the normalization constant, two parameters k^ and Te are introduced. The flrst
Parameter, ftkd is the average quasi-momentum of the distribution. The second one, Te, is the
electron temperature. These two parameters are obtained from the equations which represent
the first three moments of the Boltzmann transport equation which are coupled. Despite this
approach is restricted to simple cases it turned out to be very useful for the hot-electron problem
[63]. Another analytical approach is related to an expansion of the distribution function in
spherical harmonics [64-67]. If a problem has a cylindrical symmetry around the direction of
the electric field, the Legendre polynomial expansion can be written as:

/(k) = /0(e) + A(6)Pi(cos0) + • • • , (4.2)

where e is the electron energy, 6 Stands for the angle between the electron quasi-momentum
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fik. and electric field1, /o denotes the symmetrical part of the distribution function and f\ is
the anti-symmetrical contribution to the distribution. Expansion (4.2) is substituted into the
kinetic equation. Making use of the orthogonality of the Legendre polynomials a coupled System
of equations for the coefficients /o, / i , ... is derived. This System can then be solved numerically.
However, the treatment of general band structures is quite difflcult within this approach.

Iterative techniques [68-70] are based on the following equality for the distribution function for
a homogenous System2:

oo t

/(M) = j dt J dk'exJ- J\[K(y)]dy\f(k',t-t)S(K(t),k'). (4.3)
o o

The iterative method consists of substituting an initial distribution function /o(k, t) into the
right-hand side of (4.3) and evaluating /(k, t). The new distribution function is again substituted
into the right-hand side of (4.3) and this procedure is repeated until /(k, t) has converged to its
solution with a given accuracy.

The Monte Carlo method simulates the electron's motion in a crystal under external forces.
Within this technique a particle trajectory is constructed as a sequence of free flights and scat-
tering events3. The free fiight times between collisions and the parameters of the scattering
events are generated stochastically using probabilities of microscopic processes. Thus the main
advantage of this approach is the direct description of the microscopic particle dynamics. This
allows to incorporate within the same technique very complicated kinetic phenomena. Gen-
eral band structures of different semiconductors can be taken into account. In addition the
implementation is simpler compared to other numerical methods.

In this work preference is given to the Monte Carlo approach. In the following new Monte Carlo
algorithms are developed for modeling of strained bulk SiGe, and known Monte Carlo techniques
and their aspects are also described.

4.1 Perturbation Approach to the Boltzmann Equation
Including the Pauli Principle

In the following a homogenous semiconductor is considered. Then the distribution function and
the differential scattering rate are independent on position. It is also assumed that the differential
scattering rate is time invariant. With these conditions the time dependent Boltzmann equation
(2.59) taking into account the Pauli exclusion principle takes the following form:

), (4.4,

:The quasi-momentum and electric field are assumed to be transformed to the Herring-Vogt space to spherical
constant energy surfaces instead of ellipsoidal ones which are the case for Si and Ge.

2This is just an integral form of the Boltzmann kinetic equation discussed later in this chapter.
3In general a Monte Carlo trajectory is not identical with a real trajectory and depends on a specific Monte

Carlo algorithm.
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where E(i) is an electric field and q is the particle charge. Q[f](k,t) represents the scattering
Operator which is given by the following expression:

t) = j/(k\ t)[l - /(k, t)}S(k\ k) dk'-
(4.5)

where S(k',k) Stands for the differential scattering rate. Thus S(k' ,k)dk is the scattering rate
from a state with wave vector k to states in dk around k, /(k, t) is the distribution function,
and the factors [1 — /(k, i)] mean that the final state must not be occupied according to the
Pauli exclusion principle. As can be seen from (4.5), there are terms /(k, t)f(k',t) which render
the equation nonlinear. Only when the condition /(k, t) <C 1 is valid the factors [1 — /(k, t)] can
be replaced by unity and the equation takes the usual linear form.

To linearize (4.4) the electric field is written in the form:

TT7X /x\ ._ T71 | TTl /t\ {A £\\

where E5 Stands for a stationary field and Ei (t) denotes a small perturbation which is superim-
posed on a stationary field. It is assumed that this small perturbation of the electric field causes
a small perturbation of the distribution function which can be written as follows:

where /s(k) is a stationary distribution function and /i(k, t) is a small deviation from a sta-
tionary distribution. Substituting (4.7) into (4.5) the scattering Operator Q[f](k,t) takes the
form:

(4.8)
s(k') + f1(k\t))[l-fs(k)~f1(k,t)}S(k',k)dk'-

J(fs(k) + A(M))[1 - /s(k') - /!(k',t)]5(k,k') dk'.

It should be noted that in spite of the fact that /i(k, t) <C 1 one should take care when linearizing
terms such as 1—/s(k)—/i (k, t). Especially in the degenerate case it may happen that 1—fs(k) <S
fi(k,t) because of [1 - /s(k)] -> 0.

4.1.1 The Zeroth Order Equation

Neglecting terms of the first and the second order in (4.4) the zeroth order equation is derived:

|ESV/S(k) = [1 - fs(k)]J /8(k')S(k\k)<flc' - fs(k)J[l - fs(k)}S(k,k')dk'. (4.9)

(4.9) represents the nonlinear stationary Boltzmann equation for the stationary distribution
function /5(k).
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4.1.2 The First Order Equation

Collecting terms of the first order gives the following equation:

) = -fo(t) • V/S(k) + Q(1)[/](k,t), (4.10)

where the notation Q^[f](k, t) has been introduced for the first order scattering Operator which
has the form

Q^[f](k,t)=[l-fa(k)]Jh(k',t)S(k',k)dk'-

- /!(k, t) J[1 - fa(k')]S(k, k') dk' - h(k, t) J /s(k')5(k', k) dk'+ (4.11)

+ fs(k)Jh(k',t)S(k,k')dk'.

Equation (4.10) is linear with respect to /i(k,£), but it is a kinetic equation different from
the usual form of the Boltzmann equation. The first difference is the additional term on the
right hand side being the term proportional to Ej which additionally depends on the stationary
distribution /s(k) determined by (4.9). The second difference is the expression for the scattering
Operator which now has a more complex form and also depends on the stationary distribution
fs(k).

4.2 Integral Form of the First Order Equation

To construct a new Monte Carlo algorithm the Boltzmann kinetic equation of the first order is
reformulated as an integral equation.

4.2.1 New Differential and Total Scattering Rates

For this purpose a new differential scattering rate and new total scattering rate are introduced,
as defined by the following expressions:

k) = [1 - fa(k)]S(k ,k) + /s(k)5(k,k ), (4.12)

A(k) = A[l - /s(k)]5(k,k') + fs(k')S(k',k))dk' = fs(k,k')dk'. (4.13)

The differential scattering rate and total scattering rate are now functionals of the stationary
distribution function which is the solution of the equation of zero order (4.9).

With these definitions the scattering Operator of the first order Q^[f](k, t) takes the form:

Q(1)[/](k,£) = / ' /1(k' , t)5(k',k)dk'-/i(k,t)A(k)> (4.14)

and the Boltzmann-like equation can be rewritten as follows:

^ ^ + | E J . V / 1 ( k , t ) = fh(k\t)S(k',k)dk'-

h 1 V '
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4.2.2 Integral Form for the Distribution Function Perturbation

The integral form of this equation is derived using techniques described in [71]. Introducing a
quasi-momentum space trajectory K(t') = k - fEs(t — t') which is the solution of Newton's
equation it is possible to replace the left-hand side of (4.15) by the total derivative:

+ Ä E . • V/i(K(t), t) = Jt . (4.16)

Introducing function g{t):

g(t) = /"/^k'.tJ^k'.KCtJJdk' - | E i • V/s(K(t)), (4.17)

the first order equation can be written as:

dfi(K{t),t)
dt

X(K(t))h(k,t)=g(t). (4.18)

This is an ordinary differential equation which can be solyed by multiplying both sides by a
function h(t). This function has to fulfill the condition:

= Kt)X(t) (4.19)

with the particular solution:

h(t) = exp \ f A(y) dy . (4.20)
Lo J

Then the left-hand side of (4.18) is the total derivative of the product fi(t)h(t). Taking into
account that fi(K(to),to) = 0 f°r *o < 0 because of Ei(t) = 0 for t < 0 the solution is obtained:

t t

h(K(t),t) = Jg(t)exp{-J\[K(y)]dy}dt. (4.21)
o t'

Substituting (4.17) into (4.21) the following integral form is obtained as:

t t

h(K(t),t) =J dt J dk' fx(k\t')S(k' ,K(t))exp(- Jx{K(y)}dy)-

(4-22)

h(t) • {Vfs}(K(t'))exp(-Jx[K(y)}dy) dt.
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4.2.3 Free Term and Initial Distribution

Assuming an impulse like excitation of the electric field, Ej(i) = ö(£)Ejm, gives:

t t

fi(K(t),t) =J dt'Jdk'f1(k\t')S{k\K(t))-exp(-J\\K(y)]dy\ +

° *' (4.23)

+ •

where

G(k) = - | E i m - V / s ( k ) . (4.24)

The essential difference of this integral representation from the one of the non-degenerate ap-
proach consists in the appearance of the new differential scattering rate S(k , k) and of the total
scattering rate A(k). The Boltzmann-like equation (4.10) differs from the Boltzmann equation
(4.4) by the additional free term on the right hand side which in general cannot be treated as
an initial distribution because it also takes negative values.

4.2.4 The Resolvent Series

Equation (4.23) represents a Fredholm integral equation of second kind with a free term deter-
mined by function G(k). This equation can be rewritten4:

fix) = Jf(x')K(x\x)dx'+g(x), (4.25)

where the K(x , x) and the free term are given functions. The multidimensional variable x Stands
for (k,t) 5. The resolvent series6 of a Predholm integral equation is obtained by replacement of
its right hand side into itself:

f(x) = g(x) + f g{xi)K(xu x) dxx + Jdxxf dx2 g(xi)K(xux2)K(x2, x) + • • • (4.26)

This means that the solution of (4.23) can be written as consecutive iterations of the free term:

To find the Iteration terms explicitly (4.23) is rewritten as:

t t

fi(k,t)= I dt! / dki/i(ki,*i)5(ki,K(ti))-exp(- fx[K(y)]dy) +
J J \ J )

(4.28)

+ G(K(0))exp(- '
o

4This is the Standard form from the theory of integral equations.
sFor inhomogeneous case it Stands for (k,r,t) that is a point in the seven dimensional space.
6 Also known as the Neumann series [72].
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where (k , t) has been replaced by (Iq, t\) and the respective quasi-momentum space trajectory
is:

K(t) = k,
0<t1<t.

Introducing a quasi-momentum space trajectory for the time interval 0 < £2 < t\:

Kifc) = kl-fE.fr-fc),

one obtains for j \ (ki, t\):

hJ y

(4-29)

h

i,ti) =J -expf-

G(K1(0))exp(-
V

Substituting (4.31) into (4.28) gives:

M)=y

( 4 3 0 )

(4.31)

exp (- J~X[K(y)} dy

- y A[K1(2/)]dy)5(k1,K(i1))exp(-
o

Prom (4.32) the first iteration term is obtained:

(4.32)

r ( }~ \ ~ ( t~ \ (4-33)
dhj dk1G(K1(O))exp^-y A[Ki(y)]dyJS(ki,K(ti))exp^-y X[K(y)}dyJ.

0 0 ti

which is also schematically shown in Fig. 4.1.

In order to obtain the second iteration term the third quasi-momentum space trajectory is
introduced for 0 < £3 < i2

K2(i2) = k2.
( 4 3 4 )
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0

Figure 4.1: Graphical representation of the first iteration term.

Then for /i(k2,£2) in (4.31) one obtained:

t2 t2

/i(k2lt2) = J dhj ü!k3/i(k3,i3)5(k3,K2(i3)) -expf-J\[K2(y)}dy
o t3

G(K2(O))exp -

(4.35)

The second iteration term is obtained from (4.35) by replacing /i(k3,t3) with the free term of
(4.28):

t h t2

/J2)(k,i) = J dh J dki J dt2 J <2k2G(K2(0))expf- J\[K2(y)}dy
o o

ti
(4.36)

«2

This term is displayed graphically in Fig. 4.2.

4.2.5 The Second Iteration of the Forward Resolvent Series

The structure of the algorithm can be seen by derivation of the second iteration term of the
Neumann series for (4.23) using the forward formulation to obtain the ensemble Monte Carlo
algorithm. This algorithm does not give the distribution function value at a given point, but
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First Scattering Event

0

Figure 4.2: Graphical representation of the second iteration term.

instead the relative number of carriers in a region 0, with volume Ak around point k in the
quasi-momentum space7.

The relative number of carriers in fi determined by the small perturbation / i (k, t) is defined as:

(/i)n = J A(k, t) dk = J f,(k, t)9n(k) dk, (4.37)

where the domain indicator #n(k) has bee introduced as a function which evaluates to one if
k 6 Q and zero otherwise. In order to use the phase space volume conservation law described
in Section 2.1.3, an additional integral over the real space is added and (4.37) is rewritten as

)0n(k), (4-38)

7It should be noted that in our case this is the relative number of carriers determined by the perturbation
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where V&. is a crystal volume. From (4.36) the second iteration term is obtained:

t ti t2

JJ ( 2

dv J dk2 J dkiG(K2(0))exp(- Jx\K2(y)]dy

Considering r as R(i) which is the real space trajectory corresponding to the quasi-momentum
trajectory (4.29) it follows from the phase space volume conservation8 that dkdr = dK(ti)dR(ii).
Denoting K.(t\) with k" (4.29) can be rewritten in a forward initialization:

K(t) = k" + | E s ( t —ti). (4.40)

In the same manner combining dki with dR(ii) gives dkidR(^i) = dKi(t2)d!li(t2). Denoting
Ki(£2) with k2 (4.30) can be rewritten in a forward initialization:

Ki(ij) = k2 H—Es(ii — £2). (4-41)

Finally dk2dRi(t2) = dK2(0)dR2(0). Denoting K2(0) as k; one obtains for the corresponding
forward initialization:

K2(t2) = k* + |E s t 2 . (4.42)

Integrating out -R2(0) cancels the crystal volume Va- and the final expression is:

t t\ *2

(/i(2))n = y dhj dt2 J dka
2 J dka

x J dkiG(ki) exp (- J A[K2(y)] dy

° ° tl ° t (4-43)

ti t\

To express the time integrals in a forward way the following identity is used:

t ti t t

'h I dt2= I dt2 I dti, (4.44)
0 0 0 t-2

which is schematically shown in Fig. 4.3.
8Or from the incompressibility of the phase space liquid.
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a) b)

Figure 4.3: The same Integration area can be covered either vertically a) or horizontally b).

Now the second iteration term has the form:

t t

f ( 2 ) ^ -(A(2))n =
o

dki{G(ki)}x

2(t2)
(4.45)

where ka Stands for an after-scattering wave vector and kj denotes an initial wave vector. The
quantity S[k, k']/A[k] represents a normalized after-scattering distribution. As can be seen from
(4.12) and (4.13) it is normalized to unity. It follows from (4.45), that during Monte Carlo
Simulation a particle trajectory is constructed in terms of new quantities S and A.

4.3 Zero Field Monte Carlo Algorithm Including the
Pauli Principle

At zero electric field the free term can be calculated explicitly which simplifies the construction
of the algorithm.
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4.3.1 Low Field Carrier Mobility and Monte Carlo Techniques

The low field carrier mobility of is an important kinetic property of a bulk semiconductor. It
is used to analyze carrier transport in semiconductor devices at low applied voltages and enters
expressions for high field mobility modeis as an additional parameter. Thus the knowledge of
the low field carrier mobility and its correct dependence on the material properties such as the
doping concentration are necessary to adequately simulate carrier transport in semiconductor
devices.

The Standard Monte Carlo approach for qbtaining the low field carrier mobility is a single
particle Monte Carlo method. In order to calculate the low field mobility along the direction
of the electric field one has to carefully choose the magnitude of the applied electric field. On
the one hand, the magnitude of the electric field must be as low as possible. In principle it is
desirable to have zero electric field. However, there exist limitations related to the increase of
the variance of Standard Monte Carlo methods. On the other hand, the field must not be too
high to avoid a mobility reduction due to carrier heating.

In addition to these disadvantages, the Standard approaches only give one component of the
carrier mobility, namely the component in the direction of the electric field. For isotropic
conditions it does not make any difference since the mobility tensor is diagonal and all diagonal
values are equal. However, when anisotropy is present, for example in strained semiconductors,
the mobility tensor elements may be different and several Monte Carlo simulations are required
to obtain all the components of the tensor.

To overcome these problems associated with the Standard Monte Carlo methods a new Monte
Carlo algorithm has been suggested recently [73], which solves the Boltzmann equation for zero
electric field and represents a limiting case of the small signal algorithm obtained in [74]. One of
the most remarkable properties of the algorithm is the absence of self-scattering that allows to
significantly reduce calculation time and achieve very good accuracy of the results. This method
is restricted to the Simulation of lowly doped semiconductors. The quantum mechanical Pauli
exclusion principle is not included in the scattering term of the Boltzmann equation used for the
derivation of the algorithm. As a result there are limitations on the doping level of the materials
analyzed by this technique. It allows to obtain excellent results at low and intermediate doping
levels while results obtained for higher doping levels, where the effects of degenerate statistics
are more pronounced, are incorrect. As the Standard Monte Carlo methods exhibit a very high
variance especially in the degenerate case, it is thus desirable to have a powerful technique to
analyze the carrier mobility at high doping levels.

In this chapter a zero field algorithm [75] used to account for degenerate statistics in strained SiGe
layers is described. The Pauli exclusion principle is taken into consideration in the scattering
term of the Boltzmann equation. As a result the Boltzmann equation becomes nonlinear. Using
this nonlinear equation a generalized zero field algorithm applicable for the analysis of highly
doped materials is derived.

4.3.2 Specific of the Equilibrium Distribution

When the electric field tends to zero, the distribution function approaches the equilibrium dis-
tribution which is in the case of particles with fractional spin represented by the Fermi-Dirac
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distribution function (2.30). It has the form

/FD(6(k)) = 1 (4.46)

where Bf denotes the Fermi energy, e Stands for the electron energy and TQ is the equilibrium
temperature equal to the lattice temperature. Since the stationary distribution is known, there
is no need to solve the zeroth order equation (4.9). As can be seen from (4.46), in equilibrium
the distribution function depends only on the carrier energy, and the dependence on the quasi-
momentum is only introduced through the dispersion law e(k).

4.3.3 Total Scattering Rate

The fact that the dependence on the quasi-momentum enters (4.46) only through the dispersion
law allows one to significantly simplify (4.13) using the Fermi golden rule [76]:

V
(4.47)

Making use of the delta function in the last expression (4.13) can be rewritten in the following
manner:

A(k) = [1 - /FD(e/)]A(k) + /FD(e/)A*(k), (4.48)

where e/ denotes the final carrier energy e(ky). The backward scattering rate has been intro-
duced as 5*(k,k') = 5(k',k) and the total backward scattering rate as A*(k) = JS*(k,k')dk'.
(4.48) represents a linear combination of the forward and backward total scattering rates. In the

backward
scattering

forward
scattering

forward
scattering

E

backward
scattering

f
FD

1 0 ^

a) b)

Figure 4.4: Schematic Illustration of the scattering processes at high degeneracy.

non-degenerate case, /FD(C) <̂  1> w e obtain A(k) = A(k) which means that scattering processes
are mostly determined by the forward-scattering rate and thus the algorithm developed in [73]
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for non-degenerate statistics is restored. On the other hand, for highly degenerate semicon-
ductors, /FZ?(£) ~ 1) scattering processes are dominantly backward A(k) = A*(k). In the case
of intermediate degeneracy both forward-scattering and backward-scattering contributes to the
kinetics.

The fact that backward-scattering is dominant in processes where an initial state of an electron
has lower energy than in its final State can formally be explained by the principle of detailed
balance, given by the symmetry relation (see also (2.62))

(4.49)

As can be seen from (4.49), forward transitions from high to low energy levels are preferred and
backward transitions from low to high energy levels prevail.

It should be mentioned that at high degeneracy the backward scattering rate is dominant, and
thus the probability of scattering to higher energy levels is larger than to lower energy levels as
schematically shown in Fig. 4.4(a). Physically this means that lower energy levels are already
occupied by particles, /FD(^) & 1 (see Fig. 4.4(b)) and, due to the Pauli exclusion principle,
scattering to these energy levels is quantum mechanically forbidden.

4.3.4 Expression for the Initial Distribution

The additional free term in (4.23) cannot be considered an initial distribution because the
function G(k) may take on negative values. However, in the case of zero electric field the
stationary distribution is known analytically and G(k) can be evaluated explicitly:

a xP( T T )
G(k) = ^ E t o • v - P{ kBTj , , (4.50)kßT ( V

where v denotes the group velocity. This expression can be rewritten in the following manner:

_ gEim(A) y(k)[l - /FD(e(k))] f A(k)/FD(6(k)) }

^ kBT0 A (k ) l <A> / V ' '

where the term in curly brackets represents the normalized distribution function of the before-
scattering states.

The Monte Carlo algorithm contains the same steps as that in [73] except that the whole kinetics
is now determined by S(k, k') and A(k) instead of S(k, k') and A(k).

Another difference from the non-degenerate zero field algorithm is that the weight coefficient
v(k)/A(k) must be multiplied by the factor [1 —

With the modifications described above the zero-field algorithm for the time discrete impulse
response of a physical quantity A(k) of interest becomes:

1. Follow a main trajectory for one free flight and störe the before-scattering State k.
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2. Compute the weight w = [1 - /pö(e(k))]v(k)/A(k).

3. Start a trajectory K(t) from k and follow it for time T. At equidistant times U add
wA(K(ti)) to a histogram i^.

4. Continue with the first step until N k-points have been generated.

5. Calculate the time discrete impulse response as (A)im(ti) = qElm(X)i'i/kßToN.

This algorithm is also depicted in Fig. 4.5.

Figure 4.5: Schematic representation of the zero field Monte Carlo algorithm. Here k;, and ka denote
before- and after-scattering states, respectively.

4.3.5 Monte Carlo Algorithm for the Mobility Tensor

The response to small Signals with a general time dependence can be obtained from the knowl-
edge of the impulse response. The static zero field mobility is given by the long time limit
of the differential velocity step response. This is exploited to derive a zero field Monte Carlo
algorithm for the mobility tensor from the algorithm presented in the previous section. For a
vector-valued physical quantity A elements of the differential step response tensor are related
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to the differential impulse response tensor in the following manner:

t

(4.52)

where the differential impulse [Kl™p(t')]ij and step [Ks^ep(t)}ij response tensors are defined
through the following relations:

(Aihmp(t) =

(4.53)

In order to obtain the zero field mobility tensor it is necessary to integrate the differential veloc-
ity impulse response over a secondary trajectory for a sufficiently long time. However, the time
integration can be stopped after the first velocity randomizing scattering event has occurred,
because in this case the correlation of the trajectory's initial velocity with the after-scattering
velocity is lost. Since in the thermodynamic equilibrium the before and after-scattering distri-
butions are equal, the secondary trajectories can be mapped onto the main trajectory. As a
result the algorithm schematically depicted in Fig. 4.6 is obtained.

v = 0, w = 0,s = 0

choose initial

State k" arbitrarily

s = s+1

ves

- v (k)

v = v + wvjf

scattering

-^djsotra ^ — - , no
2i£-—
;s

w - 0

Figure 4.6: Zero field Monte Carlo flow chart.
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1. Set v = 0, w = 0.

2. Select initial State k arbitrarily.

3. Compute a sum of weights: w = w + [l

4. Select a free-flight time tf = — ln(r)/A(k) and add time integral to estimator: v =
oi use the expected value of the time integral: u = v + w[vi/X(k)].

5. Perform scattering. If mechanism was isotropic, reset weight: w — 0.

6. Continue with step 3 until N k-points have been generated.

7. Calculate component of zero field mobility tensor as fuj = q(\)v/(kBToN).

Especially the diagonal elements can be calculated very efnciently using this algorithm. Consider
a System where only isotropic scattering events take place. Then the product wvi is always
positive, independent of the sign of V{. Therefore, only positive values are added to the estimator,
which leads to a low variance.

4.4 The High Field Small Signal Monte Carlo Algorithm

To investigate the small signal response of the carriers in semiconductors different Monte Carlo
techniques are widely applied to solve the time-dependent Boltzmann equation [73,74,77-79].
There are also small signal approaches based on the velocity and energy balance equations
[80,81]. However, a significant advantage of Monte Carlo methods based on the Boltzmann
kinetic equation is that they allow a comprehensive treatment of kinetic phenomena within the
quasi-classical approach and to account for accurate band structures. Additionally, the quantum
mechanical Pauli exclusion principle can be taken into consideration to study the small signal
response of carriers in degenerate semiconductors.

When the carrier density is very high the Pauli exclusion principle becomes important and
may have a strong infiuence on various differential response functions which relate a small
perturbation of the electric field and a mean value of some physical quantity. The infiuence is
expected to be strong and it has been pointed out [74] that the behavior of impulse response
functions is determined by the overlap of the distributions of two carrier ensembles introduced
in the formalism. This overlap is much stronger when the Pauli exclusion principle is included
due to the additional statistical broadening. When degenerate statistics is taken into account,
the Boltzmann equation is nonlinear which makes its solution more difßcult. One of the possible
solution methods is based on a Legendre polynomial expansion [65]. In this work however, the
Monte Carlo method is employed.

In this section the approach presented in [74] is extended and a Monte Carlo algorithm for small
signal analysis of degenerate electron gases in homogeneous bulk semiconductors is constructed.

4.4.1 Solution of the Zeroth Order Equation

To solve the nonlinear Boltzmann equation including the Pauli exclusion principle Monte Carlo
algorithms based on a rejection technique have been developed by Bosi and Jacoboni [82] and
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later by Lugli and Ferry [83]. The first algorithm is adopted in this work to solve the zeroth
order equation. In what follows it is shown that this algorithm can also be used to generate
the initial distributions G+ and G~ of the two carrier ensembles which appear when solving the
first order equation. The normalization of the stationary distribution required for the correct
rejection is presented.

4.4.1.1 Initial Distributions of the Two Ensembles

Using the same method as suggested in [74] the free term in (4.23) is split into two positive
functions G+ and G~ which are related to G through the relation: G = G+ — G~. These two
positive functions are considered as initial distributions of two carrier ensembles which contain
the same numbers of particles. This follows from the following equality:

G(k) dk = 0. (4.54)

To find the initial distributions for the case of a longitudinal perturbation the zeroth order
equation (4.9) is used. This equation gives together with (4.12):

G(k) = ^ • (A(k)/S(k) - J /s(k')S(k', k) dk'), (4.55)

where A(k) = J S(k, k')dk'. The last expression provides a Splitting of G into two positive
functions. From the balance condition stated by the zeroth order equation (4.9) it follows
(A)s = (A)s, where the stationary statistical average is defined as {• • • )s = J /s(k) • • • dk. Then
the initial distributions can be written as:

" Es n <A)S ' (4.56)

In (4.56), G+ represents the normalized before-scattering distribution function for a particle tra-
jectory whose free-flight times are determined by the conventional scattering rate A(k), while G~
gives the normalized after-scattering distribution function for a particle trajectory constructed
using 5(k, k ) and A(k), respectively.

4.4.1.2 Normalization of the Stationary Distribution Function

The stationary distribution function fs(k) must be normalized as a probability, 0 < fs(k) < 1
to guarantee the correct rejection of scattering events. The k space is divided into sub-domains
fi of size VQ = (Ak)3. In the following /n Stands for the average distribution function in fl for
a given Valley and n is the contribution to the electron density from the same Valley. In each
sub-domain the electron density is

s(k)dk. (4.57)
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and the average distribution function is given as:

h = kip± = ̂ . (4.58)
Using the before-scattering estimation for the statistical average

( 4 - 5 9 )4
where N is the number of electron free-flights and the normalization constant C is given as

C-p^. (4.60)

one obtains for UQ:

where the indicator function 0^(k) of sub-domain Q has been introduced. Substituting (4.61)
into (4.58) the average distribution function is finally obtained:

£6l/A(k6) •

4.4.1.3 Integral Form of the Nonlinear Boltzmann Equation

To show the generation of the distributions G+ and G~ the integral representation of the sta-
tionary Boltzmann equation (4.9) is used. First, the scattering Operator in (4.9) is reformulated
as:

Q[fs] =[1 - /s(k)] [ fs(k')S(k',k)dk' + ffs(k')a(k')X(k')ö(k-k')dk'-
J J . (4.63)

-/a(k')]5(k,k')dk' + a(k)A(k)l>

where the self-scattering rate a(k) has been introduced. Note that the delta function guarantees
that the self-scattering does not change an electron State. Pree-fiight times are generated using
the total scattering rate A(k). Thus the self-scattering rate has to satisfy the equality

A(k) = Al - /8(k')]5(k,k')dk' + a(k)A(k). (4.64)

This gives for the self-scattering rate the following expression:

')dk'. (4.65)

Purther, an additional differential scattering rate 5(k, k ) is introduced

5(k,k') = [1 - /s(k')]5(k,k') + a(k)A(k)<5(k - k'), (4.66)
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Now taking into account (4.64) and (4.66) the scattering Operator (4.63) takes the conventional
form:

Qlfs] = Jfs(k')S(k',k)dk' - /s(k)A(k). (4.68)

Using the Neumann series of the forward equation the second iteration term (4.45) is derived as
an example:

oo oo oo

/£2) =Jdt2J dh j dt0 J dka
2 J dkl J dki • {/o(ki)}

0

*0

J0

xpf-JX[K(y)} dy)\(K(to))\e(t - ii)en(K(t))e(t0 - t).
h

Here G(t) is the step function and /^2) = / fM(k,t)Qn(k) dk. Prom (4.69) it is seen that if the
free-flight time is calculated from the exponential distribution according to the scattering rate
A(k), the conditional probability density for an after-scattering State k from the initial State k
is equal to S(k,k')/A(k).

Within the algorithm presented in [82] the before-scattering distribution function is equal to
A(k)/S(k)/(A)S which gives the distribution G+. In order to find the distribution function of
the after-scattering states the before-scattering distribution function should be multiplied by
the conditional probability density for an after-scattering State and this product is integrated
over all before-scattering states. Using (4.66) and (4.65) one obtains for the after-scattering
distribution:

\(k)fs(k)\fS(k,k')} /fA(k)/s(k)|[l/,(k)]5(k,k)

X(k)fs(k)\fs(k')S(k\k)

(A)s J l A(k) J Eim{X)s

Note that the after-scattering distribution is normalized to unity. Now it is obvious that the
initial distributions G+ and G~ can be generated by introduction the main trajectory which
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is constructed using the algorithm from [82] to solve (4.9). Then for each main iteration two
carrier ensembles with initial distributions G+ and G~ evolve in time according to (4.10) for the
secondary trajectories.

4.4.2 Solution of the First Order Equation

(4.10) contains terms which depend on the stationary distribution function / s(k). These are the
free term and the scattering term. The stationary distribution function is the solution of (4.9).
This fact prevents an analytical solution for A, and a numerical integration is necessary. However,
in this work a rejection technique is applied to solve (4.10). In Section 4.2.1 a new differential
scattering rate S has been introduced (see (4.12)). Here another differential scattering rate is
defined according to the following expression:

). (4.71)

The corresponding total scattering rate is

A0(k) = A(k)+A*(k), (4.72)

where A* Stands for the total backward-scattering rate

5*(k,k') = S(k',k),
(4.73)

A*(k) = f S*(k,k')dk'.

From (4.12) and (4.71) it follows that

S0(k',k)>S(k',k). (4.74)

To solve (4.10) a wave vector k is generated using the differential scattering rate 5o(k ,k). The
condition of acceptance takes the following form

rS0(k',k)<S(k',k), (4.75)

where r is a random number evenly distributed between 0 and 1. The last inequality may be
rewritten as follows:

r[S(k\k) + S(k,k')] < ( l- /s(k))S(k' ,k) + /s(k)S(k,k'). (4.76)

When the scattering process can be split into the sum of the emission and absorption of some
quasi-particles such as phonons and plasmons, this condition can be rewritten. Considering a
forward transition from k' to k it can be easily shown that one of the following rejection condi-
tions has to be checked depending on whether an absorption or emission process has occurred.
For absorption processes it takes the form:

whereas for emission processes the following condition is checked
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where iVeq denotes the equilibrium number of quasi-particles. For example, when N(Xi/(Neq +
1) < 1 it follows from (4.77) and (4.78) that for the non-degenerate case, / s •€. 1, emission
processes will be dominantly accepted while absorption processes will be mostly rejected. This
means that the kinetic behavior is determined by emission processes. On the other side for the
degenerate case, when / s ~ 1, it follows from the same relations that emission processes will
be mostly rejected while the probability of the acceptance of absorption processes increases.
Finally, it should be noted that for elastic processes, S(k, k') = 5(k', k), the rejection condition
(4.76) takes the following form:

r < l- (4.79)

This means that one half of the elastic scattering events will not be accepted in the rejection
scheine given above.

4.4.3 Monte Carlo Algorithm for the Impulse Response

Using (4.56) and the combined rejection technique developed for the secondary trajectories based
on the inequalities (4.77) to (4.79), the new small-signal Monte Carlo algorithm including the
Pauli exclusion principle can be formulated as follows:

1. Simulate the nonlinear Boltzmann equation until fs has converged.

2. Follow a main trajectory for one free flight. Store the before-scattering State in k;>, and
realize a scattering event from k& to ka.

3. Start a trajectory K+(t) from k& and another trajectory K~(i) from ka.

4. Follow both trajectories for time T using the rejection scheme based on the acceptance
conditions (4.77) to (4.79). At equidistant times U add A(K+(ti)) to a histogram ctf and
A(K~(U)) to a histogram ct~.

5. Continue with the second step until N k-points have been generated.

6. Calculate the time discrete impulse response as (A)im(ti) = (Eim{\)/NEs)(af — a~).

This algorithm is schematically illustrated in Fig. 4.7 and its flow chart is shown in Fig. 4.8.
It should be noted that in a highly degenerate electron gas the main trajectory contains many
self-scattering events. As in this case ka = kb, the corresponding two secondary trajectories
will give the same contribution, that is af — a^. This does not change the impulse response.
Thus in order to save the computation time it is reasonable not to start trajectories K+(t) and
K~(t) after a self-scattering event has occurred. If a self-scattering event has taken place during
the evolution of the main trajectory, the main trajectory is continued until a physical scattering
event has happened. Only at this moment the secondary trajectories K+(t) and K~(t) are
started.
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Figure 4.7: Schematic representation of the small-signal algorithm.
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Solution of the nonlinear
Boltzmann equation: fs

s = s
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scheme (4.76) - (4.78).
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a>a:+A(K:(t))

Figure 4.8: Flow chart of the small-signal algorithm.
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Chapter 5

Modeling of Strained Sii_^Ge^ on
Substrates

In this chapter the results of Monte Carlo simulations of electron transport in strained SiGe
layers are presented. First the low field electron mobility is investigated as a function of the
Ge composition both in the active layer and the Substrate for the undoped case. Then strained
doped layers are studied. Additionally the infiuence of the Substrate orientation is demonstrated.
Finally, a small signal analysis is performed for both non-degenerate and degenerate strained
layers. The zero field and small signal Monte Carlo methods developed in the previous chapter
are employed to calculate the low field mobility tensor and the small signal response functions
at high electric fields, respectively. All results are presented for room temperature.

5.1 Low Field Electron Mobility in Undoped Layers

In undoped layers scattering on ionized impurities and plasmon scattering can be neglected and
thus these scattering mechanisms are not included in the scattering Operator in this section.

5.1.1 Si layers on Sii^Ge^ Substrates

First electron transport in a pure Si strained layer is considered. In this case alloy scattering
has no infiuence.

5.1.1.1 Ge Composition Dependence of Perpendicular and In-plane Components

Fig. 5.1 shows /ix, the electron mobility perpendicular to the interface for several Substrate
orientations, while Fig. 5.2 /J,^, the mobility parallel to the interface.
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Figure 5.2: The in-plane component of the low field electron mobility /zy.
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Figure 5.3: The valley population for the Substrate orientation [001].
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Figure 5.4: The Valley population for the Substrate orientation [111].
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Fig. 5.3 and Fig. 5.4 show the population of the X and L Valleys for different orientations.
As can be Seen from Fig. 5.3, the X Valleys with orientations [100] and [010] are not split in
accordance with (3.59). The L Valleys remain unpopulated in this case as they are much higher
than the X Valleys. The decrease of /J,± and increase of yU|| is explained by the population of the
X Valleys with orientation [001] which contribute through mf to the in-plane and mf to the
perpendicular transport.

Fig. 5.4 provides an explanation of the mobility components for the Substrate orientation [111].
The X Valleys are not split in accordance with (3.60). When the Ge composition in the Substrate
increases, the Splitting of the L Valleys becomes important. The Valleys with orientations [111],
[TTl] and [lTl] go up and remain empty while the L valley oriented along [111] goes strongly
down as stated by (3.63). This valley is dominant at high Ge mole fractions. Now the in-plane
and perpendicular transport is determined by mf and mf, respectively. The increase of /xy at
high compositions y is related to the decrease of the X —» L intervalley transitions. fi± does
not increase due to the higher value of m\'. The ränge of Ge compositions where the X —> L
transitions are most effective can be seen in Fig. 5.5, showing the band edges versus the Substrate
composition y.
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Figure 5.5: The band edges in strained Si grown on the Substrate with the orientation [111].
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5.1.1.2 Substrate Orientation Dependence

Here the electron mobility as a function of the Substrate orientation is presented for two Ge
compositions of the Substrate. The second Euler angle ß is chosen as a parameter while the first
one a varies between 0 and TT/2. The third Euler angle is equal to 0 as discussed previously.

Fig. 5.6 illustrates the behavior of the perpendicular component /J,± of the electron mobility,
while Fig. 5.7 shows the same dependence for /zy. The two components /uj_ and /xy for ß = 40°
reach their maximum values at a = TT/4 because at this value of a the population of the X valley
with orientation [001] is the highest and due to the orientation the influence of the longitudinal
masses mf of the X Valleys oriented along [100] and [010] is minimal. However, the influence
of the X Valleys of these orientations is significant at a = 0° and a = 90° where the two
components have their minima.

The analogous results for /zj_ and /x|| for a Substrate composition of y = 0.9 are depicted in
Fig. 5.8 and Fig. 5.9. The main difference from the case of Sio.sGeo.s Substrate is that here the
L valley comes into play which causes an additional intervalley scattering process between X
and L Valleys.

The repopulation processes are most clearly seen in Fig. 5.10 and Fig. 5.11, which display the
populations of different orientations of both the X and L Valleys. As can be seen from Fig. 5.10,
the X Valleys with the orientation [001] are the most populated ones while all the L Valleys
remain empty. In the case of Substrates with higher Ge mole fraction (see Fig. 5.11) the L valley
oriented along [111] becomes important.

The next three figures Fig. 5.12, Fig. 5.13, and Fig. 5.14 show the dependence of the in-plane
component of the electron mobility /xy on the in-plane angle, that is the third Euler angle 7,
in polar coordinates for three Substrate orientations. The mobility on these figures is obviously
anisotropic. This means that the in-plane transport turns out to be dependent on the orientation
of devices grown on the Substrate.

Thus in order to reach their optimal characteristics devices, or more specifically, their active
strained regions (base, Channel, or other parts) can be properly oriented on the surface of the
Substrate. Where it is necessary this can be used to increase Output currents. Additionally, this
effect can also be used to reduce leakages by orienting some parts of the device so as to reduce
the mobility along the possible leakage directions.
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5.1.2 Sii-xGe-r layers on Sii-^Gey Substrates

In this subsection the Monte Carlo Simulation results for the low field electron mobility in
Sii^Ge-E undoped active layers are given. The essential difference in comparison with Si active
layers is that in this case alloy scattering strongly influences the transport properties of the active
layers. Alloy scattering is described by expression (2.138). As a function of the Ge composition
x in the active layer it has a maximum at x = 0.5. Therefore it is expected that electron
mobility in this case has its minimum at the same point. However, it is shown below that this is
not always the case. The reason for this is both the change of the effective masses and various
repopulation effects between Valleys both of the same and different types. These effects can be
strong enough to suppress the decrease of the electron mobility due to alloy scattering.

The results for the perpendicular fi± and in-plane /j.» components of the electron low field mo-
bility are presented as functions of the layer composition x for several Substrates parameterized
by their Ge compositions y as well as their orientations in terms of the Miller indices. Again
the Miller indices specify only two Euler angles a and ß while the third Euler angle 7 is kept
constant equal to zero.

Fig. 5.15 compares Monte Carlo Simulation results and experimental data for a Six-zGe* active
layer grown on a relaxed Si Substrate oriented along [001]. As it is expected the curves have
the minima at x = 0.5. The electron mobility in the strained case has Si like character over the
whole ränge of Ge mole fractions. In the case of the perpendicular component /xj_ the mobility
in the strained layer is higher than that in the unstrained case up to x = 0.8. It follows from
the fact that the two X Valleys along [001] move up and have only little contribution to the
mobility. Thus only four in-plane Valleys with transverse effective masses determine the mobility.
This gives an increase in comparison with unstrained SiGe. At very high Ge mole fractions the
mobility in the unstrained case increases rapidly while for the strained SiGe it has lower values.
This is related to the increase of biaxial compressive strain which at high x makes the four
in-plane Valleys move strongly down setting them equal or even lower than the L Valleys. In the
case of the in-plane component /xy the mobility in the strained layer is lower compared to that
in unstrained SiGe. This is explained by the fact that unlike in the relaxed material, where four
transverse effective masses determine the electron mobility, only two transverse effective masses
are left in strained SiGe which leads to a decrease of the in-plane component.

Fig. 5.16 to Fig. 5.19 display [i± and //y in Sii-xGex grown on Sio.7Geo.3 and Sio.iGeo.g for
several Substrate orientations.

Fig. 5.20 explains the behavior of the mobility components in the case of Sio.iGeo.g Substrates
oriented along [221]. It shows the populations of the X and L Valleys with different orientations
and the repopulation between them. The L Valley oriented along [111] is the most populated one
up to x «s 0.8. Thus the contribution of the longitudinal effective masses of the L Valley plays
the main role up to this value of the Ge composition. This reduces the mobility components fi±
and /X||. The increase of the in-plane component /i|| is related to the effective mass interpolation.
When the Ge mole fraction is greater than x = 0.8, the repopulation between different L Valleys
comes into play. First, electrons scatter from the valley located along [111] to the Valleys located
along [TU], [lTl] and [TTl] and then from [111] and [TTl] to [TU], [lTl]. In this way the influence
of the longitudinal masses decreases while the transverse masses contribute stronger, leading to
the mobility increase.
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Figure 5.15: The electron mobility /ix and /ty in relaxed and strained Sii_xGex on the Si substrate with
the orientation [001].
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Figure 5.16: /ix in Six-zGe^ on Sio.7Geo.3 for several substrate orientations.

96



MODELING OP STRAINED SIi-xGE*... 5.1 Low Field Electron Mobility in Undoped Layers

2000

0.2 0.4 0.6
Ge composition, x

0.8

Figure 5.17: /x|| in Sii^Ge^ on Sin.7Geo.3 for several Substrate orientations.
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Figure 5.18: /J,± in Sii-^Ge^ on Sio.iGen.9 for several Substrate orientations.
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Figure 5.19: /i|| in Sii_xGex on Sio.iGeo.g for several Substrate orientations.
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Figure 5.20: The valley populations as functions of the active layer composition for the Sio.iGeo.g Substrate
with the orientation [221],
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5.2 Low Field Electron Mobility in Doped Layers

In this section the results of Monte Carlo Simulation of the electron low field mobility in doped
strained SiGe layers are presented. Two scattering mechanisms appear additionally to the
phonon and alloy scattering, namely plasmon and ionized impurity scattering. The influence of
the strain on the screening parameters and its interplay with the Pauli exclusion principle are
discussed.

Fig. 5.21 shows the Monte Carlo Simulation results for the majority electron mobility in relaxed
[001] Si in comparison with experimental data.

Fig. 5.22 and Fig. 5.23 demonstrate the doping dependence of fj.± and /iy in the Si active
layer grown on relaxed Sio.7Geo.3. In Fig. 5.23 the curve for the perpendicular component fj,j_
exhibits an increase for the Substrate oriented along [001] when the doping level becomes high
enough. The same increase can be seen in Fig. 5.24, which displays the doping dependence of
the perpendicular component fi± in strained Si on a relaxed Sio.iGeo.g Substrate of orientation
[111]. At the same time the in-plane component does not increase as shown in Fig. 5.25. This
effect can be explained by the influence of the quantum mechanical Pauli exclusion principle
which Starts playing an important role at high electron densities.

At low doping level, the L Valley oriented along [111] is the lowest one. It is fully populated
(see Fig. 5.26) and /ij_ is determined by mf, while /in is determined by mf. As the donor
concentration increases, lower energy levels are forbidden to scatter in by the Pauli exclusion
principle and thus electrons scatter to higher energy levels. At doping level about 1019cm~3

electrons occupy energies high enough to be able to scatter to the unsplit X Valleys which lie
higher than the L ones due to strain. The intervalley L — X scattering becomes possible and
gets stronger as the donor concentration increases. Finally, most of the electrons are equally
distributed between the X Valleys. The influence of mf on fx± is significantly reduced and
which turns out to be enough to suppress increasing ionized impurity scattering. However, the
X Valleys are oriented in such a way that the influence of rnf and m* on ßu is not strong
enough to suppress the impurity scattering, and as a result /i|| does not show an increase.

Fig. 5.27 and Fig. 5.28 show the Ge composition dependence of /zj_ and fi\\ in strained Sii-^Gea;
layers grown on Si [001] Substrates. The increase of the perpendicular component at high doping
levels and low composition x can be explained in the following manner. In the undoped material
there are two factors which depend on the Ge mole fraction: the Splitting of the X Valleys and
alloy scattering. The first factor increases the perpendicular component of the electron mobility
and the second one decreases it. In doped SiGe at high doping levels, ionized impurity scattering
dominates the alloy scattering and thus suppresses the second factor leaving the first one that
leads to the increase. The in-plane component does not have this increase because both the
energy Splitting and alloy scattering decrease /in. Thus after removing the second factor there
still exists the second one which decreases the parallel component.
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Figure 5.28: The composition dependence of /i|| in Sii_xGeT on [001] Si at several doping levels.
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5.3 Small Signal Response

In this section results of the small signal analysis are presented. A comparison is made between
non-degenerate and degenerate electron gases. Finally, small signal analysis of strained Si is
performed.

Fig. 5.29 shows the differential velocity in relaxed Si for both the non-degenerate and degenerate
cases. The differential velocity obtained from the non-degenerate algorithm displays a weak
oscillatory character, while the differential velocity from the degenerate algorithm does not show
any oscillations. This can be explained by analyzing the energy distribution functions of the two
ensembles introduced in Chapter 4. The small difference of the distribution functions of the two
ensembles in the non-degenerate algorithm (see Fig. 5.30) is responsible for the weak oscillation,
while for the degenerate algorithm the ensembles have nearly the same distributions at the very
beginning as depicted in Fig. 5.31. In addition, in the degenerate case the distribution functions
significantly shift to higher energies as the lower energy levels have already been occupied and
scattering to these states is quantum mechanically forbidden.

Fig, 5.32 show the differential velocity in the strained Si active layer grown on the relaxed [001]
Sio.yGeo.3 Substrate in comparison with the relaxed Si.
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Figure 5.29: The differential velocity in non-degenerate and degenerate (n=1021 cm 3) relaxed Si for a
stationary electric field Es = 5kV/cm.
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Chapter 6

Summary

The influence of strain on the electron transport in strained bulk Sii_xGex grown on relaxed
Sii-^Ge^ Substrates with an arbitrary orientation has been studied. The description of the
electron transport has been based on the semiclassical model described in Chapter 2. This
model includes both the quantum and classical nature of electrons in solids. It uses classical
trajectories and treats scattering processes quantum mechanically. Additionally, the quantum
mechanical Pauli exclusion principle is taken into account within this transport model. The
solids are considered as quantum mechanical objects described through their band structure and
quantization of ion vibrations by quasi-particle description. The same quasi-particle concept is
used for the electronic system itself at high densities through the plasmon picture. The most
general description of semiclassical kinetics is covered by the Boltzmann transport equation with
a scattering term including all specific scattering mechanisms. Acoustic phonons, intervalley
phonon scattering, plasmon scattering, alloy scattering and ionized impurity scattering have
been included in this study of transport in SiGe. To account for the Pauli exclusion principle
the scattering term has also been modified leading to a nonlinear form of the Boltzmann equation.

Strain effects have been considered in Chapter 3. The linear theory of deformation-potentials
have been applied to the conduction band of SiGe. Within this theory the shape of the bands is
kept unchanged while the shift of different Valleys leads to a Splitting of the equivalent conduction
band minima. The influence of the Substrate orientation on this Splitting has been taken into
account. This results in non-zero non-diagonal elements of the strain tensor, which leads to
various possible Splittings. Finally, the scattering processes have been modified to account for
the change of the band structure. The phonon scattering rate has been changed by modifying
its prefactor due to the change of the number of final equivalent minima. In addition the
energy argument of the delta-function changes due to the Splitting. The influence on the ionized
impurity scattering has been taken into account through the screening parameters. The Fermi
energy is found from the solution of a nonlinear equation. The screening length and the dielectric
function are obtained by a proper modification of the expressions known from the unstrained
case.
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SUMMARY

The Monte Carlo approach has been chosen to solve the nonlinear Boltzmann kinetic equation.
To study the low field electron mobility tensor in strained semiconductors and in particular in
strained SiGe a zero field Monte Carlo algorithm has been developed in Chapter 4. The algorithm
allows the whole mobility tensor to be obtained from one Simulation, which is an advantage over
Standard low field Monte Carlo approaches. It has been found that at high electron densities
the inelastic scattering processes reverse. This has been explained as a quantum mechanical
effect caused by of the Pauli exclusion principle. Finally, the algorithm has been extended to
a small signal algorithm for semiconductors in the high field regime. A rejection technique
has been proposed to solve the first order perturbation equation. This method is able to deal
with an arbitrary shape of the static distribution function and is not limited to the equilibrium
distribution as is the case for the zero field algorithm.

The results of Monte Carlo Simulation of strained SiGe layers have been discussed in Chapter
5. Both undoped and doped layers have been considered. The influence of repopulation effects
in undoped layers caused by energy Splitting has been studied. The interplay between the Pauli
exclusion principle and strain effects has been observed in doped strained layers. Finally, small
signal analyses have been performed for relaxed and strained Si layers.
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Appendix A

Second Quantization

For Systems composed of many identical particles it is useful to define Operators which create
or annihilate a particle in a specified state. Operators of physical interest may be expressed
in terms of these creation and annihilation Operators. They are said to be expressed in second
quantized form.

A.l Many-Body Operators

An Operator U is a one-body Operator if the action of Ü on a state |ai...ajv) of N particles1 is
the sum of the action of Ü on each particle:

N

(A.l)

where the Operator Ui operates only on the z-th particle.

An Operator U is a two-body Operator if the action of Ü on a state |ai...ajv) of N particles is
the sum of the action of Ü on all distinct pairs of particles:

Ü\a1...aN) = - J2 #«|ai...aw), (A.2)

where Uij operates only on particles i and j .

In general an n-body Operator U is defined as an Operator which acts on a state \a\, ...,a/^) in
the following way:

U\ax...aN) = - 22 Uhh..An\ai...aN), (A.3)

:The symbol |...) Stands for the tensor product of the single-particle states.
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where Uili2__in acts on the subset of n-particles h,i2, ..•,««•

A.2 Creation and Annihilation Operators

For each single-particle state |A) of the single-particle Hubert space H a Boson or Fermion
creation Operator a j is defined by its action on any symmetrized or antisymmetrized state
|AI...AJV} of the Hubert space of N Bosons, B^, or N Fermions, TN, as follows:

a+|Ai...A,v} = |AAI...AJV} (A.4)

The creation Operators â " do not operate within one space ßn or J-n, but rather operate from
any space ßn or Tn to Bn+i or jFn+1. It is useful to define the Fock space as the direct sum of
the Boson or Fermion spaces

B = 0 ~ Oßn,

where by definition:

Y2 T" rU
O\ — J~\ = /%•

It can be easily shown that for Bosons the creation Operators commute:

°A< - 44 = 0. (A.7)

whereas they anticommute for Fermions:

~\~ H- i ~\~ ~f" f\ ( A O\
a\ %. +aßal = 0- (A-8)

The annihilation Operators aA are defined as the adjoints of the creation Operators a^. The
commutation and anticommutation relations of annihilation Operators follow from (A.7) and
(A.8), respectively. They commute for Bosons:

axan ~ ana\ = 0) (A-9)

whereas they anticommute for Fermions:

a\aß + aßa\ = 0. (A.10)

The action of the annihilation Operator on a many particle state is given for Bosons as

a\\ai...an} = ^5 A Q i | a i . . . a i . . . a n }, (A.ll)

while for Fermions it reads:

ax\ax...an} =
t=i
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Here ön shows that the state a; has been removed from the mani-particle State |ai...d,-...an}.

The commutation rules for the creation and annihilation Operators are:

«A^ - a+ax = 6X» (Bosons)
a^at + atax = 5V (Fermions).

If the orthonormal basis {a} transforms into another basis {5}, the creation and annihilation
Operators transform as follows:

at =
a s =

a

Of particular importance is the coordinate basis {|x)}. In this case the creation and annihilation
Operators are traditionally denoted by V'+(x) and V>(x) and are called field Operators. From
(A.14) it follows:

where 4>a(x) is the coordinate representation wave function of the state |a).

It can be shown that n-body Operators (A.3) can be expressed through the creation and anni-
hilation Operators in a simple form:

For example using the coordinate representation, the kinetic energy Operator T

may be rewritten in second quantized form as:

f = - — / d3xVi+(x)V2V'(x). (A.18)
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Appendix B

Random Phase Approximation and
Plasmons

Random phase approximation (RPA) is obtained by summing all chain Feynman diagrams. The
sequence of chain diagrams can be summed by writing an integral equation which iterates the
addition of a Single link. The Single link is shown in Fig. B.l. The corresponding response

Figure B.l: Feynman diagram for a Single link,

function for a non-interacting system is thus given as [84]:

V v(k + cL) + iV co + ev(k) - ev(k + q) - iV\ ' ^

where n„(k) = 0(k1i — |k|). For small q one obtains from (B.l):

y ; ^ i (B.2)

Summation over all direct RPA chain diagrams gives for the particle-hole Green's function:

i - v 4 1 ^ 0 ^ 4 , - ; j ( B > 3 )
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RANDOM PHASE APPROXIMATION AND PLASMONS

where v(|q|) is the direct matrix element which only depends on the momentum transfer |q|.

Since the poles of the Green's function give the excited states of the System, in RPA the excited
states occur at to such that:

t7(|q|)A,(q,u;) = l. (B.4)

In the case of electron gas for the Coulomb potential the direct matrix element becomes:

«(|q|) = 4*. (B.5)

This equation together with (B.2) gives the expression for the plasmon frequency (2.133).
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