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Deutsche Kurzfassung

Das Ziel dieser Dissertation ist es, einen adaptiven Regler zur Unterdrückung
zirkulatorischer Kreuzkopplungskräfte, der am Institut für Maschinendyna-
mik und Messtechnik entwickelt wurde, mit einem Unwuchtkompensations-
algorithmus, der in der Literatur beschrieben wird, zu kombinieren.

In dieser Dissertation wird das Verhalten eines starren Rotors beschrie-
ben, der in zwei aktiven Magnetlagern gelagert ist sowie von zwei Arten
von Kräften zu Schwingungen angeregt und durch drei Algorithmen gere-
gelt wird. Die betrachteten Anregungen sind, die Unwuchtanregung, die eine
drehzahlsynchrone, harmonische Anregung darstellt, und eine nichtkonser-
vative zirkulatorische Kreuzkopplungsanregung, die einen destabilisierenden
Prozess repräsentiert. Die drei Regelalgorithmen sind ein zeitdiskreter PID-
Regler, ein adaptiver Kreuzkopplungskompensationsalgorithmus (adaptive
cross-coupling control, ACCC) und ein Unwuchtkompensationsalgorithmus,
der in diskreter (discrete harmonic control, DHC) und kontinuierlichen Form
(continuous harmonic control, CHC) vorliegt.

Diese Dissertation besteht aus zwei Teilen. Im ersten Teil werden der Ro-
tor und die aktiven Magnetlager modelliert, während im zweiten Teil die Re-
gelalgorithmen hergeleitet und ihr Verhalten, insbesondere ihre Interaktion
untereinander, mittels numerischen Simulationen studiert wird. Alle drei Al-
gorithmen werden als zeitdiskrete Prozesse analysiert und implementiert. Die
zeitkontinuierlichen Gegenstücke sind ebenfalls beschrieben um ein leichteres
Verstehen der Wirkungsweisen zu ermöglichen.

Die Ergebnisse in zusammengefasster Form sind: der PID-Regler ist für
einen stabilen Betrieb des Rotors in Magnetlagern notwendig. Der ACCC-
Algorithmus stabilisiert den Rotor wenn dieser durch starke Kreuzkopplungs-
kräfte destabilisiert wird. Wenn der Rotor gleichzeitig durch Unwuchtschwin-
gungen angeregt wird, bewirkt dieser jedoch starke Rotorschwingungen. Die
Unwuchtkompensationsregelung reduziert deutlich die Auswirkungen der
Unwuchtanregung, unabhängig davon, ob der ACCC-Algorithmus eingesetzt
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wird oder nicht. Mit der Reduktion der Unwuchtauswirkungen verschwinden
auch die starken Rotorvibrationen, die durch den ACCC-Algorithmus hervor-
gerufen werden. Für einen durch Kreuzkopplungskräfte destabilsierten Rotor
ist der ACCC-Algorithmus für den Betrieb notwendig, während eine zusätzli-
che Unwuchtkompensationregelung die negativen Auswirkungen des ACCC-
Algorithmus beseitigt und darüber hinaus die Unwuchtschwingungen redu-
ziert.



Abstract

The goal of this thesis is to combine an adaptive cross-coupling control scheine,
developed at the Institute for Machine Dynamics and Measurement, with an
unbalance control scheme, described in the literature, and study the interac-
tion between these two algorithms.

In this doctoral dissertation, the behavior of a rigid rotor is described which
is supported by active magnetic bearings (AMBs) and is excited by two
sources of Vibration and controlled by three control algorithms. The sources
of Vibration are the mass unbalance excitation which is a harmonic excitation
synchronous to the rotational speed and a nonconservative cross-coupling
excitation representing a destabilizing process. The three control algorithms
are, a discrete-time PID (proportional integral differential) control, an adap-
tive cross-coupling control (ACCC) algorithm, and an unbalance control algo-
rithm either discrete harmonic control (DHC) or continuous harmonic control
(CHC).

This thesis consists of two parts. In the first part, rotor and active mag-
netic bearings are modelled while in the second part the control algorithms
are developed and their behavior is studied by numerical simulations as they
operate independently or interact with each other. All three algorithms are an-
alyzed and implemented as discrete-time control algorithms; the continuous-
time counterparts are also included in the thesis for easier understanding of
the operational principles.

Summarizing the result, the PID Controller is necessary for a stable Opera-
tion of the AMB-supported rotor. The ACCC control stabilizes the rotor when
it is destabilized by a nonconservative cross-coupling force, but causes a high
rotor Vibration level when unbalance excitation acts on the rotor at the same
time. The unbalance control can substantially reduce the effects of unbalance
excitation regardless of adaptive cross-coupling control. With the reduction of
the unbalance effects, the high Vibration level from the ACCC algorithm disap-
pears. So, for an unstable cross-coupling excited rotor, the ACCC is necessary
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for Operation, while the additional unbalance control diminishes the negative
effects of the ACCC algorithm without influencing the positive effects of the
ACCC and furthermore, it can reduce unbalance vibrations.
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Nomenclature

General Conventions

Variable Example Font

Scalar
Vector
Matrix

a
a
A

italic letter (usually lowercase)
bold face lowercase letter
bold face capital letter

Indexing Rules

Generally subscripts are used for identifying Symbols. As an example, the
static magnetic bearing force vector is given as follows

fMBAx,0

*MB,0 = r = r
l1 MBB,Oj JMBBx,0

JmByJQ.

The symbol f^g is the force vector for the magnetic bearing forces. The ad-
ditional ,0 indicates that it is the static force vector. The subscript A or B
indicates the selector of higher importance (bearing Station A or ß ) and the
subscript x or y indicates the seiector of iower importance (x ür y-direcliün).
As an additional example, the san\e force vector in center coordinates is given;

*MBc,Q — i £ \ — f

LrMBxc,0j JMBxcO
jMByc,0.

The additional subscript c indicates center coordinates and is written imme-
diately after the main symbol. It is only necessary in the symbol for the com-
plete vector, because the Symbols for the vector components already indicate
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the center coordinates. The next example shows the rotor position vector in
bearing, measurement, and center coordinates.

VA VmA

X-mB

.ymB.

ß
Xc

\.Vc

Finally, three current vectors are given, first the position current vector, second
the control current vector for all four coils of bearing A, and third the actual
currents in all four coils of bearing A.

l v =
UxB

Notation

lAx

}By.

lcAl

icA2 IA2

IA3

}A\.

Symbol Description

R

C

e

i
i

o

field of real numbers

field of complex numbers

belong to

defined as

approximately equal to

correspond to

much greater than

much less than

y/—l, imaginary unit

identity matrix

zero matrix or vector

(continued on next page)
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Symbol

1

A r

A"1

A"T

*(A)

l|A||p

(x,y)
t,T

a(t)

ä, ä

s

ä(s)

k, x

a(kTs)

a(k)

z

ä(z)

äi

als

ä\c

G(s)

G(s)

G(z)

Description

matrix or vector of ones

transpose of A

inverse of A

shorthandof (A" 1 ) 7

maximum Singular value of A

p norm of A

inner product of x and y

continuous-time

continuous-time signal

first and second time derivative of a (t)

variable of the Laplace transform

Laplace transform of a (t)

sample number

sampled continuous-time signal

discrete-time signal

variable of the z-transform

z-transform of a (kTs)

vector of speed synchronous Fourier coefficients of a

speed synchronous sine coefficient of a

speed synchronous cosine coefficient of a

variable of the Tustin approximation transform

Laplace transfer function

Laplace transfer matrix

z-transfer function

(continued on next page)
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Symbol

<r(k)

Description

transformation matrix from A to B

(1) continuous dirac impulse function 5 (0) = oo
(2) discrete dirac impulse function 5 (0) = 1

discrete-time unit step function

Symbols

Symbol

u,ß,7
A(f)

V

<P
A

Ä(O)

B

D

d,

dm

f

h
im

in

iub

Matlab

alpha,...

lambda

mu

phi

A

mhatA

B

mD

vd_i

vf

vf_g

vf_MB

vf_n

vf_ub

Description

Kardan position angles of the rigid rotor

time variant forgetting factor

(1) relative magnetic permeability
(2) parameter of CHC control

magnetic flux

area

control gain matrix for harmonic control

flux density (induction)

damping matrix

current disturbance

measurement noise

force vector

weight force vector

magnetic bearing force vector

nonconservative cross-coupling force vector

unbalance force vector in bearing coordi-
nates

(continued on next page)
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Symbol Matlab Description

H

i

k
JA

lAx

iBl,0

ic

ick

h

H

i

LO

vi_A

i_Ax

i_B10

vi_c

i_ck

vi_h

ikjo

ix

ixA

1
K

i_kO

vi_x

vi_xA

J
mK

G mG gyroscopic matrix

Gx/f (s) force to position transfer matrix of the rotor
supported by the AMBs.

Gx/i (s) current to position transfer matrix of the ro-

tor supported by the AMBs.

magnetic field strength

current

bias current

current vector of bearing A
control current for the x-direction in bearing
A

bias current for coil 1, bearing B

vector of control currents

control current for coil k

harmonic control vector added to the AMB
control current

vi_n additional control current from the adaptive
cross-coupling control

bias current for coil k

vector of control currents for bearings A and
B (both directions)

vector of control currents (both directions)

moment of inertia

Symmetrie stiffness matrix

k_i current coefficient

k_iAx current coefficient bearing A, x-direction

(continued on next page)



Symbol

K,

K//i (s)

K//x 00

*s

Ks

w

M

M(s)

N

n

m
Nfc

Nw

co

o

p

P D

Pf

P P

Pui

Matlab

mK_i

mK_fi

mK_fx

k_s

mK_s

m

mM

mN

vtilden

n_l

mtildeN_b

N_w

Omega

P

mP

mP_D

mP_I

mP_P

p_ui

NOMENCLATURE XVIII

Description

current coefficient matrix

dynamic current coefficient matrix (transfer
matrix)

dynamic position coefficient matrix (transfer
matrix)

position coefficient

position coefficient matrix

mass

mass matrix

transfer matrix of the measurement device
including any measurement filters and calcu-
lations; it is assumed to be Tm^

skew-symmetric stiffness matrix

estimated parameter vector

cross-coupling coefficient 1

estimated cross-coupling stiffness matrix

number of coil windings

natural frequency

rotational speed

magnetic permeance

gain matrix of the estimator

differential gain matrix

integral gain matrix

proportional gain matrix

proportional gain of the underlying current
Controller

(continued on next page)
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Symbol Matlab Description

n
n
R

R(z)

r

f(O)

Th

TMB

Ts

i-sw

Rel

mRel

R

vr

mhatT

T_h

T_MB

T_s

T_sw

u

vu_A

u_max

vx

x_A

x_Am

x_B

vx b

Xc x_c

magnetic reluctance

magnetic reluctance matrix

ohmic resistance

z-transfer matrix of the discrete-time Con-
troller

reference value vector, usually equal to 0

influence coefficient matrix

sample time of the discrete harmonic control

time constant of the magnetic beaf ing

sample time of the stabilizing (PID) control

switching time of the PWM controlled
power amplifiers

voltage

voltage vector of bearing A

maximum voltage

damping ratio

position vector

subscript for bearing Station A

subscript for sensor Station A

subscript for bearing Station B

rotor position vector in bearing coordinates

measured rotor position in bearing coordi-
nates with additional harmonic control vec-
tor

subscript for center of gravity

(continued on next page)
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Symbol Matlab Description

xc vx_c subscript for center coordinates

x/, vx_h harmonic control vector added to the mea-

sured rotor position signal x&

xm vx_m subscript for sensor (measured) coordinates

XN X_N subscript for plane of cross-coupling force

xp x_p general position at the rotor



1. Introduction

Active magnetic bearings (AMBs) are well established in modern turboma-
chinery. Their obvious benefits like contact free Suspension and the lack of
a lubrication System encourage the use of magnetic bearings in vacuum and
high speed technology. Since the levitation in an AMB is inherently unstable,
a stabilizing Controller is needed and thus control theory issues have been
introduced into the field of rotor dynamics.

The development of active magnetic bearings has also ignited substantial
research in actively Controlling the movement of the rotor itself. A widely re-
searched issue is the control of mass unbalance excitations, especially with the
so-called open-loop methods. Another important topic in Standard rotor dy-
namics is the instability of rotors which occur in various applications. There
are several constructive measures discussed in the literarure to prevent unsta-
ble behavior, but only very few researchers have tried to use active elements
for this purpose.

At the Institute for Machine Dynamics and Measurement a control algo-

0

k

Stabilizing
Controller

<i

+
r

i

ACCC

Unbalance
Control

(DHC or CHC)

AMB and Rotor
X

Figure 1.1.: Block diagram of the System
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rithm for stabilizing nonconservative cross-coupling excitations has been de-
veloped and tested. This algorithm is named "adaptive cross-coupling control"
(ACCC). The main goal of this thesis has been to combine this algorithm with
an open-loop unbalance control algorithm called "recursive gain scheduled
algorithm" in the literature. It has turned out that a more appropriate name
for this algorithm is "discrete harmonic control (DHC)" and there is a similar
unbalance control algorithm, which is named "continuous harmonic control
(CHC)" in this thesis. The System with the two control algorithms is depicted
in figure 1.1. The questions posed are:

• Is it possible to combine unbalance and adaptive cross-coupling control
algorithms?

• How do they influence each other?

• Which phenomena will occur?

It should be pointed out that AMBs are only one possible choice for the actu-
ators and that the control algorithms could also be used with different actua-
tors.

This thesis is subdivided into nine chapters. A more detailed introduction
including a comprehensive literature review is given at the beginning of each
chapter. The contents of the chapters are as follows.

In chapter 2, the numerical values of the Simulation model are summarized.
The position of this chapter reflects the actual research process which also
began with the collection of these values.

In chapter 3, the active magnetic bearing is modelled and linearized. For
the linearized model, Laplace transfer matrices are derived. Special attention
is paid to include the magnetic bearing inductance and the underlying cur-
rent Controller in the model. Additionallv. the behavior of the oulse-width-
modulation controlled switching amplifier is studied and some hints are given
for the design of the underlying current Controller.

In chapter 4, the linearized model for the rigid rotor is described. It is shown
that any distribution of cross-coupling forces along the rotor can be described
with three independent parameters. The rotor is combined with the AMBs.
Three types of System modeis are given: a simple model neglecting the induc-
tance of the AMBs, a complex model including the inductance of the AMBs,
and a simple two degrees of freedom (2DoF) model. The eigen values of all
three modeis are calculated.
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In chapter 5, the stabilizing feedback loop Controller is described in the
continuous-time and the discrete-time domain. The influence of the sampling
time on the discrete-time controUed System is studied. The eigen values of all
three controUed AMB-rotor modeis are calculated.

In chapter 6, the behavior of the System with cross-coupling excitation is
studied and the stability margins are calculated. The adaptive cross-coupling
control (ACCC) is derived. The behavior of the rotor with this control algo-
rithm is studied for the simple 2DoF model and for the complex 4DoF model
and various excitation cases.

In chapter 7, three possible goals of unbalance control are posed, indicated
as "current nulling", "force nulling" and "position nulling". An open-loop
method, which is called discrete harmonic control (DHC) and a closed-loop
method called continuous harmonic control (CHC) are derived, and the simi-
larities between these two methods are analyzed. Both methods can be used
to reach all three goals; this is shown by various simulations.

In chapter 8, the unbalance and the cross-coupling control algorithms are
combined. If necessary, the unbalance control schemes are adapted to work
together with the adaptive cross-coupling control. It is possible to achieve all
goals of unbalance control together with the adaptive cross-coupling control.

In chapter 9, conclusions are drawn and an outlook for possible future re-
search is given.



2. Data of the Numerical
Simulation Model

2.1. The Rotor

A numerical Simulation model of a rigid rotor supported by active magnetic
bearings is used for testing the developed control algorithms. The parameters
of the model are chosen to represent a test rig at the Institute for Machine
Dynamics and Measurement, which has been designed by Markus Nagl. His
assembly drawing is shown in figure 2.1. For the Simulation as a stiff rotor,
important values are given in table 2.1 (The values correspond to the rotor
with laminations). The dimensions of the rotor are taken from the original
construction drawings. Values for mass, moment of inertia, and the position
of the center of gravity have been calculated by O. Lang and are taken from
his thesis [Lan97].

Table 2.1.: Design parameters of the rotor

Property

total mass
lateral moment of inertia
polar moment of inertia
Position üf ihe center of gravity
position of bearing Station A
position of sensor Station A
position of bearing Station B
position of bearing Station B

Symbol

m
h
JP
zc
ZA

ZmA

ZB

ZmB

Value

28.768
0.8632
0.02188
n n

-0.239
-0.190

0.241
0.192

Unit

kg
kgm2

kgm2

rv»
in

m
m
m
m
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2.2. The Magnetic Bearing

The magnetic bearings used in the test rig are of the type RL90 produced by
MECOS Traxler. In table 2.2, the geometrical and electrical design parameters
of the Magnetic bearings are shown. These values are either taken from the
design drawing or measured. Unfortunately, no data is available about the
relative permeability of the rotor and Stator material. From the identified po-
sition and current coefficient of the magnetic bearing in [Lan97], however, a
value of ]i = 3000 seems reasonable. The ohmic resistance of the coil windings
and the permeability of stator and rotor material are estimated.

Table 2.2.: Design parameters of the magnetic bearing

Property

axial length of the pole shoes

axial length of the rotor
sheets

outer diameter of the stator

inner diameter of the stator

half angle between two poles

width of the pole shoes (tan-
gential)

inner diameter of the pole
shoes

cross section of a pole shoe

lEngui Gi LII6 nüX pciin in u i£

pole shoes

cross section of the back iron

mean diameter back iron

length of the flux path in the
back iron

Symbol

h
Irt

da,st

di,st

Oip

Wp

dp

Ap =

7

Ab =

db =

k> =

- Wplp

_ 1 (A.
~ 2 V*i,st

-• \ (da,st

2 (da,st

= f* +

Value

44

42

158

118

22.5

17

90

697
A \ 1/1

— <*pj i i

- diiSt) lp 820

-r-M " 138

\ (db - diiSt) 64.19

(continued on

Unit

mm

mm

mm

mm
0

mm

mm

mm2

IxlITY

mm2

mm

mm

next page)
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Table 2.2.: (continued)

Property

total length of the flux path in
the stator

outer diameter of the rotor
sheets

inner diameter of the backup
bearing

inner diameter of the rotor
sheets

diameter of the flux path in
the rotor sheets

cross section of the rotor
sheets

length of the flux path in the
rotor

length of the air gap (center
position)

maximum orbit radius

number of coil windings for
one pole

number of coil windings for
one actuator

diameter of coil windings
wire

length of coil windings wire
(one actuator)

Symbol

1 ^ 7 1 1
^(pfSi ^•i(pn 1 ''(bb

da,rt

diM

di,rt

d<ptrt = 2 \~a,rt "1" "i,rfj

**rt = 2 \ aJt i,rt) '•rt

k.« = ¥*,«*

k = \ (dV ~ d«St)

Yo,max = 5 [dp ~ difik)

Np

Nw = 2Np

ß-wzv

Iww

Value

92.19

89

89.5

68

78.5

441

30.83

0.5

0.25

65

130

1.06

24

Unit

mm

mm

mm

mm

mm

mm2

mm

mm

mm

mm

m

(continued on next page)
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Table 2.2.: (continued)

Property Symbol

specific ohmic resistance (cop-
per)

ohmic resistance of one actua-
tor (calculated)

ohmic resistance of one actua-
tor and cables (estimated)

permeability of vacuum

relative permeability Stator

relative permeability rotor

inductance of one actuator
(calculated air-gap only, no
back iron)

inductance of one actuator
(calculated, no back iron)

Lo =

Value Unit

Pww

R

Ho

Fst

Hrt

(Nlfi0Ag)/(2L)

0.017

0.46

0.8

40TT

3000

3000

14.802

uO m

n

n

uH/m

mH

14.182 mH

nominal maximum current

nominal bias current

nominal maximum control
current

nominal maximum force

Itnax

k
lc,max

Jmax 4
z'oN^cosa ;
H2u A c'max

8

4

4

803.38

A

A

A

N
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3. Modelling of the Magnetic
Bearing

3.1. Introduction

The modelling of an active magnetic bearing can be divided into two parts.
The first part is to describe the relätionships among the electrical properties
(like coil current and coil voltage), the magnetic properties (like magnetic flux,
flux density and magnetic field strength), and the mechanical properties (like
forces acting on the rotor). The second part is to choose how the magnetic
bearing is controlled and to find an input-output relationship between the
control variable and the magnetic bearing force. This may also include the
choice of a stationary operating point and a linearization of the input-output
relationship. The distinction of these two parts is not always drawn in the
literature; sometimes only the first part is regarded as modelling process and
sometimes both parts are combined, depending on the focus of the work.

Finite elements model The first part of the modelling process consists main-
ly of the calculation of the magnetic field in the AMB. This would usually
lead to a three-dimensional field calculation, but, to the author's knowledge,
in no publication a three-dimensional magnetic field calculation is considered.
The first simplification is to assume a constant magnetic field density along
one of the three spatial directions and thus reducing the three-dimensional
field calculation to a two-dimensional one. One method to calculate the two-
dimensional field is by means of finite elements. Unfortunately, finite elements
äre not very well suited for dynämicäl cälculations due to the high computa-
tional demands. Therefore, the cälculations are usually carried out for a sta-
tionary rotor, neglecting magnetic hysteresis effects, and assuming sinusoidal
or constant coil currents. The results from the finite element cälculations are
not directly useful for Controller design or numerical Simulation of the overall
rotor behavior; they are used for deriving the coefficients of a linearized input-
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Output relationship, for the verification of simpler modeis or the calculation
of losses.

Reluctance network model The next possible simplification in the calcu-
lation of the magnetic field in the AMB is to use a reluctance network. The
two-dimensional AMB is divided into sections where the magnetic field is
assumed to be constant along a second spatial direction resulting in a one-
dimensional reluctance element describing the relationship between mag-
netic flux and magnetic field strength in this section of the AMB. The one-
dimensional reluctance elements are combined to a two-dimensional network
similar to an electrical network. The resulting equations are simple enough
to be used in a Simulation of the overall rotor behavior, even when magnetic
hysteresis is included in the model. Other applications are the optimization of
current control schemes, calculation of linearized parameters or precise force
calculations. However, the reluctance network model is still too complex for
the rotor-position Controller design.

One-dimensional field model The simplest magnetic field calculation is
applicable when only Single flux loops are considered. The result is a one-
dimensional field calculation for every magnetic actuator of the AMB. Nei-
ther coupling between actuators nor leakage effects can be included in the
model. This is the most frequently used model and in spite of all simplifica-
tions it can describe the magnetic bearing behavior quite well in the usual
operational ränge. Further simplifications can only be reached by neglecting
the magnetic material hysteresis, using a linear relationship between magnetic
field strength and flux density (constant material permeability) or setting the
iron core permeability to infinity.

Control variable The second part of the modelling process Starts with choos-
ing the control variable. The most commonly used approach is to use the coil
current as control variable which is called "current control scheine". This im-
plies the assumption that the current can be injected into the coils. In practical
applications, a current source where the current is independent of the elec-
trical load is not available. Usually, a controllable voltage source is used and
controlled in a way that the actual current is as close as possible to the needed
(control-) current. This scheme is called "underlying current Controller" and
the current Controller as well as the power amplifiers are included in the mag-
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netic bearing model. In the literature, the current Controller is often seen as
part of the power amplifiers and is not explicitly mentioned. Another possi-
ble choice for the control variable is the coil voltage which is called "voltage
control scheine". This approach describes the actual behavior of the AMB
much better than the current control scheine, but leads to a more difficult
input-output relationship and thus to a higher sophisticated global Controller
design. The choice of the control variable influences the overall modelling pro-
cess. In general, only stark relationships are derived for current control, while
voltage control usually leads to dynamical equations.

Linearization and push-pull scheme Even with the simplest magnetic field
and force calculation the resulting bearing model is described by nonlinear al-
gebraic or differential equations. Although there are many nonlinear rotor con-
trol schemes described for AMBs in the literature, the most commonly used
control schemes are linear Controllers; therefore, the input-output relationship
of the AMB has to be linearized. This is done by choosing an operating point
at which the equations are linearized (bias linearization). A better linearity
of the bearing characteristics can be achieved by Controlling two opposing
actuators in a push-pull scheme.

Literature review The early papers describing AMBs in a rotor-dynamic
context like [SL76, Ulb79, Zam81] exclusively use the one-dimensional field
formulation together with a current control based linearization. This approach
is described e.g. in the book of Schweitzer et al. [STB93].

Knight et al. [KXM92] apply a two-dimensional finite element method to
study the behavior of a Single and two opposing horseshoe actuators and
compare the numerical results with experiments. Magnetic Saturation of the
iron core without hysteresis is included in the model. They calculate and mea-
sure statte forces for a given current when the rütür is displaced frorn Lhe
center position and find out that not only a force component in the direction
of displacement exists but also a force component perpendicular to the dis-
placement. This cross-coupling effect is purely nonlinear and should not be
mixed up with the nonconservative cross-coupling effect as discussed later in
this thesis.

Maslen et al. [MM94, MM95] describe how to apply a reluctance network
model to calculate the statte AMB forces depending on the coil currents. The
magnetic material is assumed to be linear. The resulting equations are also
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used to find a certain current control law by which the AMB forces are linear
and decoupled for a specific rotor position. This is viewed to be especially
useful for asymmetric bearings and to achieve fault tolerance to coil failures.
Fault tolerance to coil failures is only possible when initially more coils are
included in the AMB than would be necessary for magnetic Suspension. In
Meeker et al. [MMN96, Mee96], the reluctance network model is augmented
to include eddy currents, fringing, and leakage effects. This model is used to
calculate the frequency response from applied voltage to coil current and the
coil inductance for an AMB with a fixed rotor position. The results are com-
pared with a simple network model and with experiments. The augmented
network model is superior to the simple network model especially at frequen-
cies higher than 1000 Hz. The most recent paper from this group of authors
is by Noh et al. [NMMKOO]. Additionally to the effects considered by Meeker,
magnetic hysteresis and a switching power amplifier is also included in the
model. They calculate the magnetic field and the resulting coil currents by a
numerical Simulation, but again only for a stationary rotor.

Gähler et al. [GF94] also develop a reluctance network model; nonlinearities
in the material are not considered. Contrary to the work by Maslen, Meeker,
Noh et al., they derive the network equations with the help of Standard meth-
ods of electric circuit theory (graph theory). The details are not given in the
paper [GF94], but similar calculations can be found in the appendix A.3 of this
thesis. The resulting set of equations is more convenient to use than the ones
by Maslen, but the results calculated from these equations should be identical.
Gähler et al. use the network model to calculate the AMB force from statte
currents as well as from measured fluxes. The fluxes are measured in some
parts of the AMB and the actual force is calculated; the AMB is employed as
a "force sensor". In additional papers from the same group [FGN96, AN99],
the application of this force measurement principle is described and quantita-
tive errors in comoarison to a strain eauee measurement and finite elements
calculation are given.

Schmidt et al. [SPS96] compare results from finite elements and reluctance
network calculations. The material is assumed to have a linear magnetic field
strength to flux density relationship, thus Saturation and hysteresis effects
are neglected. They calculate statte forces and linearized parameters for the
current control scheme. Schlager [Sch97b] and Springer [SSP98] use a reluc-
tance network including magnetic material hysteresis to model the magnetic
bearing. They simulate the behavior of a 2DoF rotor suspended in a voltage
controlled AMB for unbalance and shock loads.
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Antila et al. [ALT98, ALA98, Ant98] use finite elements and reluctance net-
work calculations to calculate the static linearized parameters of the AMB
especially when magnetic Saturation occurs; additional to the current and po-
sition stiffness the dynamic inductance of the coils and the cross-coupling
coefficients are also evaluated. The reluctance network model is used to in-
clude magnetic hysteresis and eddy currents which are not included in the
finite elements calculation. These results are compared with measurements.

Na et al. [NP01, NPOOc, NPOOa, NPOOb] pick up the idea of fault tolerance
from Maslen et al. as mentioned above. They use, among other differences,
the reluctance network model not only for finding a specific current control
law in the case of a coil failure, but also for a dynamical Simulation of the
rotor and AMB behavior.

In [HirOl], the author of this thesis develops a reluctance network model to
calculate the AMB force and also describes a Simulation model. However, it
turns out that the increased accuracy due to the network model has almost no
effect on the qualitative behavior of the AMB in the usual operational ränge
and is small compared to the uncertainties of the material parameters. For
that reason, the AMB model is derived from a one-dimensional field calcu-
lation in this thesis. (The equations for the reluctance network model can be
found in the appendix A3.) This nonlinear model is used for the numerical
simulations. For the Controller design and stability considerations, a linearized
model is employed. This linearized model is derived from the voltage control
scheme and used together with an underlying current Controller. The result-
ing model described by a System of ordinary differential equations combines
the accuracy of the voltage controlled AMB model with the usability of the
current controlled AMB model. Additionally, it offers some design hints for
the underlying current Controller and power amplifiers, which are also consid-
ered here. To the author's knowledge, this approach cannot be found in the

3.2. The Nonlinear Simple AMB Model

The one-dimensional model of the AMB is shown in figure 3.1. This simple
model also implies the neglect of leakage fluxes and coupling among the four
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Figure 3.1.: The simple actuator model

actuators1. The induction law

d
u = Ri + Nw—<p ,

Ampere's loop law

iNw = 0 = & Hdl

and the relationship between the air gap force and the flux density

are the basis for the differential equations of the AMB. The differential equa-
tions describing the characteristics of one opposite pair of the four actuators
are derived in the following. Each of the circuits is divided into three mag-
netic path resistances, one for the rotor, denoted by the subscript rt, one for

1 In this thesis, the term magnetic actuator refers to a part of the magnetic bearing.
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the Stator, denoted by the subscript st, and one for the two air gaps, denoted
by the subscript g. After several algebraic calculations, the following relations
can be obtained

d_
d7

_R_
2(lg-xcosap)

l<t>3
Nw I M3

h
h

Kk- xcosocp

+

(3.1)

Although the relationship between the magnetic flux and the magnetic field
strength is nonlinear in the rotor and the Stator, material hysteresis is ne-
glected in this model. Assuming that the relationship between the magnetic
field strength H and the magnetic flux <p is linear, that is

(X)

where

ls-act \*-) —

equation (3.1) simplifies to

l<p,st 2 (lg-X COS 0Cp)

d
dt

"fr"
<h.

h
Jx.

R
~ N2

=

Nw ' '

(<p\-

n •ad \

0
0

Kact(-X)\ [(p3_ *w

U1

"3

COS OCp

In equation (3.2), the magnetic bearing force is written in terms of magnetic
fluxes. It will also be useful to write the force in terms of the coil currents, that
is

N2, cos a.p

nact(x)2 nact(-x)
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When the rotor is at the center position (x = 0) this simplifies to

where

2/c

3.3. The Linearized Simple AMB Model

3.3.1. The Linear Magnetic Bearing with an Input Voltage

Figure 3.2.: Linearizing the AMB

In this section, the equations are written for all four actuators/coils. They
are valid for bearing A as well as for bearing B of the rigid rotor (see figure
2.1). In order to derive a linearized model, a static equilibrium State has to
be found. At this equilibrium point the inputs (the position and the voltage)
are set to a fixed value. Usually the position is set to the center position, i.e.
xo = 3/0 = 0- The input voltage is set to the so-called bias voltage U\tQ to
The equilibrium condition

leads to

02,0
03,0
.04,0.

"1,0

"2,0

"3,0

L"4,0.
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The bias fluxes (piß to phi^o represent the Solutions for the equilibrium pointpß p^ p q p
It is useful to define bias currents i\$ := ^ to Uß : = TT- We now define the
deviations of the actual values for fluxes, voltages, currents and forces from
the statte equilibrium (bias) values by

Auk := uk - uk/0 A(pk :=(pk- <pk,o

Afx •= fx - fxß A/y := fy - fy,o
&k '•= h ~ kß
Ax:=x- x0 Ay := y - y0

where k £ {1,2,3,4}. The linearized model for the deviated values is derived
by approximating the nonlinear differential equations by a Taylor series and
neglecting all terms of higher order. The linearized equations have the form

d
dl

A02
A(p3

Afa.

RlZo~ ~~w
A(p\
A(p2
A(f>3

.A<^4.

NÜT

A«I

Alf2
AM3

.A"4.

2 COS U.p

"1,0

0
-«3,0

0

0
"2,0

0
- " 4 , 0 j

"AzV

Ai3

Afx

2 cos ap

-" i ,o 0
- " 2 , 0

0

"4,0 J

0
"3,0

0

Ax
[AyJ

RTZOfioAg

"i,o 0 -u3ß
0 u2ß 0

0
A<pi
A(p2

When the bias voltages are added to the input voltages and the bias currents
are subtracted from the actual coil currents as shown in figure 3.2, these lin-
earized equations represent a proper description for the System. The bias cur-
rents (voltages) of the AMB are chosen in section 4.5 to carry the weight of
the rotor. Tnerefore, the resuiting magnetic bearing force is the deviation from
the static equilibrium value. From now on, only the deviation values are con-
sidered, and, for the sake of simplicity, the prefix A is dropped. With the
following abbreviations .

N2

Jt« := 4
cos2 ocp
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COS CC

(the other constants ki2 to fc,4 and ksy are calculated accordingly), and the
relationship

the transformation into the Laplace domain of the linearized equations yields

i (s) =Gi/u (s) ü (s) +Gi/X (s) x (s) (3.3)

i(s)=Gf/u(s)ü(s)+Gf/x(s)x(s)

with the corresponding transfer matrices for a four actuator model

1

(3-4)

i/U
:= I

Gi/X (s) :=

Gf/u (s) •=

Gtiris) :=

sL0 + R

h- n
Ix

0 -ki2

kn 0 sL0
0 kiA j

kn 0 -ki3 0
0 kn 0 -kiA (sL0 + R)

0 1
T 7 7 •

3.3.2. The Linear Actuator with an Input Current
(underlying current Controller)

In most AMB applications, the coil voltages are controUed by an underlying
current Controller. This Controller is usually a simple proportional gain Con-
troller and the coil voltages are

Ü (s) = Pui (ic (s) - (3.5)
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Figure 3.3.: AMB with underlying current Controller

with ic as the vector of control currents and d, as the current measurement
noise. From (3.3) and (3.5) we get for the current

i (s) = Ti/k (s) ic (s) - Ti/ic (s) d{ (s) + Ti/X (s) x (s)

where

TlVlc (s) := I
Pui

R + Pui, LQ • -i

(3.6)

T,-/x (s) :=
0 - f c
fc/3 0
0 fcf4

Lo

The actual coil voltage is given by

* (s) = Tu/ic (s) ic (s) - Tu/ic (s) d,- (s) + Tu/X (s) x (s)

with the transfer matrices

— T
— X

(s) :=

kn 0
0 ki2

-Ic- 0
0 -fef4.

R + Lo
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Finally, the magnetic bearing force is given by

* 00 = T / / / e (s) % (s) - Tf/ic (s) d, (s) + Tf/X (s) x (s)

with the transfer matrices

Vui 1
fc (s) : =

fcii 0 - J k ö 0
0 fc,-2 0 - f c j 4

T//x 00 :=
tsx 0
0 k«v + 1

To improve the linearity of the AMB, it is controUed by a push-pull scheme
such that the control currents are

h\ = ix ic3 = — ix

With the definitions

= 2-

and

we get the AMB force (neglecting the current measurement noise) as

ff..

+ Pui[0 kiy\ [iy\
 + [0 ksy\ [y\J '

>_.. n 1

The time constant of the current controUed magnetic bearing is

TMB '•=
R + pUl

(3.8)

From equation (3.7) it can be seen that a high proportional gain /?„,- of the
underlying current Controller always improves the AMB Performance. Since
the current measurement noise to force transfer matrix is the same as the
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control current to force transfer matrix, a higher bandwidth for Tf/ic (s) also
increases the noise level in the resulting forces. The TM/,-c (s) transfer matrix
has the characteristics of a lead element. Higher frequencies are amplified
more than lower frequencies. This effect increases with higher pM1 as well as
the overall amplification.

The State space form of the linearized AMB with underlying current Con-
troller is given by

dt
$2
$3
.04.

[fy\

R+Pui
LQ

<t>2
<p3
(p4

1
T Nw

" 1
0

- 1
0

0 '
1
0

- 1 .
L'yJ

R + Pui
NWLO

0
0

0
0 - /

Nw
LQ

kü 0 -ka 0
0 ki2 0 -Jk,-

<p2

Calculating the transfer matrices from this State Space form will lead to the
same results as before.

3.3.3. Pulse-Width-Modulation Controlied Switching
Amplifier

(a) 2 switch amplifier (b) 4 switch amplifier

Figure 3.4.: Two types of dc-to-dc Converters

To generate the necessary voltages, power amplifiers have to be used. In the
previous section, it has been assumed that the coil voltage is proportional to
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the current error. This behavior can be realized very easily with linear am-
plifiers. However, due to the low efficiency of linear amplifiers, switching
amplifiers are used for most modern magnetic bearing applications.

In figure 3.4, two variants of dc-to-dc Converters are drawn. The variant
shown in figure 3.4a is usually used, since in most AMB applications only
unipolar output current is required. It is cheaper because only two active
switches (metal oxide semiconductor field effect transistor, MOS-FET) are
needed and the two diodes work as "passive switches". The circuit can as-
sume three states. In the first State, the switches 1 and 2 are closed while the
two passive switches 3 and 4 are "open"; positive voltage is applied to the
coil. In the second State, switches 1 and 2 are open while the passive switches
3 and 4 are "closed"; negative voltage is applied to the coil. In the third State,
switch 1 is open while switch 2 is closed; no supply voltage is applied on
the coil. In this State, the load current stays approximately constant and there-
fore the electromagnetic emission of the coils is minimal; all measurements
should take place during this period. The variant figure 3.4b shows an iden-
tical behavior; it is used when bipolar coil current is needed. For a detailed
description of the functionality, the reader is asked to refer to e.g. [CCI+97].

The dc-to-dc Converter can either work with a fixed switching frequency or
without one. Designs without a fixed switching frequency have some advan-
tages but a substantial disadvantage; they cannot be synchronized with the
measurements and therefore there is no way to reduce measurement noise by
selecting the measurement time. Some of the possible operating principles are
described in [Sch95, KMHW90]. The most common method of Controlling the
switching amplifier is the pulse width modulation approach.

An ideal dc-to-dc Converter is considered with perfect switches and constant
supply voltage, for all further calculations. Reformulating equation (3.3) and
(3.5) for a Single actuator of the AMB and the rotor at center position (x, y = 0)
the s^stsm is

The voltage u (t) is now given as a pulse-width-modulation controlled voltage

u(t)=PWM(e(tk))

depending on the current error

e(t)=ic(t)-i(t) .
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> 0 -

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
-100

(a) Voltage Output of the dc-dc Converter

4.1 4.2 4.3 4.4 4.5 4.6

(b) Resulting coil current

Figure 3.5.: Typical Output voltage of a PWM controlled amplifier and resulting coil current

swThe PWM Operator is characterized by a periodic sampling with period T<
at discrete instants tk (i.e., tk+i = tk + Tsw). For the sake of simplicity, it is
assumed that the absolute value of the maximum voltage is umax and the
minimum voltage is —umax. Following [SRBPRLA92], the voltage Output of
the PWM controlled dc-to-dc Converter is described by

FWM («(**)):= umax for
0 otherwise

r(e(tk))TS;

where

r(e(tk)):=
'Ul

U
e(tk)

max

for

for \e(tk)\<

umax
Pui

Umax

Pui

T is known as the duty ratio and pM! will be addressed as the amplifier gain.
In figure 3.5, a typical Simulation result for the System equation (3.9) is

plotted. The parameters for the Simulation are umax = 75 V, p„,- = 150 V/A,
Lo = 14.18 mH, and R — 0.8 O. The control current is a sine wave with a
frequency of 1000 Hz and an amplitude of 1 A.
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Figure 3.6.: Step responses of different dc-to-dc Converter modeis

It is shown in [SRBPRLA92] that, under certain conditions and assuming
that the switching frequency 1/TSW is much higher than the natural frequencies
of the Converter System2, the dc-to-dc Converter can be described by the so-
called average controlled System

f(s)=- ü(s)
sL0

e(t)=ic(t)-i(t)

u(t) =umaxsat(e(t))

(3.10)

1» rt—-^
VVl LC1C

sign(e(0)
Pui

Umax
e(t)

for

for

\e(t)\>

\e(t)\<

Umax

Pui

Pui

2 This also implies that the sampling frequency of a global discrete-time Controller should be
much lower than the switching frequency.
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For small values of e (t), the average model simplifies to

e(t)=ic(t)-i(t) (3.11)

u(t)=puie(t)

which is equivalent to equation (3.6). It is worth to note that the average
controlled System has not the same value for the resulting coil current i(t) as
the PWM controlled System, even at the discrete-time instants ty.

The average model does not describe the effects connected to the discretiza-
tion of the model with the switching frequency 1/TSW. A method to overcome
this drawback is to discretize equation (3.11). In figure 3.6, the step response
of the PWM controlled dc-to-dc Converter equation (3.9) is compared to the
average model without Saturation (equ. (3.11)) and to a discrete version of the
average model without Saturation.

The dashed line is the response of the continuous model and the stair case
function is the response of the discrete version. The simulations are done for
a value of pui = 100 V/A (fig. 3.6a) and a value of pui = 1000 V/A (fig. 3.6b).
The switching frequency 1/TSW is 40 kHz as in the thesis of A. Schulz [Seh].

For the low amplifier gain, all three modeis behave very similar; the discrete
model describes the behavior of the PWM controlled model a little bit better.
For the high amplifier gain, the discrete model behaves qualitatively differ-
ent compared to the other modeis since the step response is oscillating. In
the PWM controlled model, the Saturation effect is preventing this oscillation,
while the continuous model does not show this behavior at all.

3.3.4. Design of the Underlying Current Controller

THs r**rol?lsm tJist cirisss st tHis ^oint is tKs cHoics of ^ '. For tin° svsrs0"0

model, it seems as if it would be the best to set /?„,• simply to infinity. But is
this still true with the actual PWM controlled model? (It should be noted here
that current measurement noise is not taken into consideration.) In figure 3.7,
simulations are shown for different values of puj and a switching frequency
of 40 kHz. As the control current a discrete sine wave is chosen with a small
amplitude of 0.2 A. The frequency of the sine wave is 2094.4 rad/s which
corresponds to the maximum rotational speed of the rotor and the sample
time of the sine wave is 100 us which is the same as the sample time of the
position Controller of the AMB/rotor System.



3. AMB MODELLING 27

-0.2
0.012 0.013 0.014 0.015

t in s

(a) pui = 10 V/A

0.012 0.013 0.014 0.015
t in s

(b) pui = 100 V/A

0.012 0.013 0.014 0.015
t in s

(c) pui = 1000 V/A

Figure 3.7.: Response of the PWM controlled actuator to a harmonic signal with amplitude
0.2 A and frequency of 2094.4 rad/s

In figure 3.7a, the amplifier gain is too small and the current cannot follow
the control current, but the amplifier gain is high enough to follow the control
current in 3.7b. In 3.7c, the very high amplifier gain only marginally increases
Performance, but also increases the so-called current ripple in the actual cur-
rent. Such a high amplifier gain is more or less a bang-bang control scheine
and the main advantage of the PWM-scheme, the low current ripple, is totally
lost.

The simulations shown in figure 3.8 are carried out with the same parame-
ters as before, only the amplitude of the control current is set to the maximum
value of 4 A. Figure 3.8a is almost the same as 3.7a. For higher amplifier gains,
the results are different. The amplifier reaches its maximum voltage and there-
fore also the maximum current slew rate. A further increase of pUj neither
improves the Performance nor increases the current ripple.

For the choice of the amplifier gain, the following problem arises. If the

< 0

0.012 0.013 0.014 0.015
t in s

0.012 0.013 0.014 0.015
t in s

(b) p^ = 100 V/A

0.012 0.013 0.014 0.015
t in s

(c) p^ = 1000 V/A

Figure 3.8.: Response of the PWM controlled actuator to a harmonic signal with amplitude
4 A and frequency of 2094.4 rad/s
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amplifier gain is chosen so that no Saturation is occurring at the maximum
current amplitude, the performance for low amplitudes may be bad. Since a
higher amplifier gain never decreases performance the choice for the amplifier
gain should be as high as needed, but not higher, so that the resulting current
ripples are as low as possible.

As there is no exact design process for choosing the gain /?„,-, it is more
or less a trial and error procedure. The starting point for the actual value

used in the simulations is to allow a maximum deviation £ of {4joj to the

statte value k{X R^' at the maximum rotational frequency O. The maximum
deviation is (at center position x = y = 0)

\/(ninfc)
2

+ 1

Solving this equation for puj gives

_ OLp
Pui - K

For O = 2094 rad/s = 20000 r/min and £ = 0.95, the value pui = 89.6 V/A
is obtained. The actual chosen value of the underlying current control gain is
set to

which results in a magnetic bearing time constant of

TAffi = 140,7 us ,

Current measurement noise is not included in the previous considerations.
A higher amplifier gain also increases the resulting noise level in the coil
current, so basically the same conclusion, namely to choose the gain as high
as needed but not higher, also arises from noise considerations. Contrary to
many other control problems a high noise and oscillation level in the control
variable (the PWM signal) does not damage the control element (the switching
amplifier), since the switching frequency is fixed.
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Maximum Pulse Width

Finally, a few words have to be said about the maximum pulse width. There
are two reasons to restrict the duty ratio to a value lower than one and thereby
the maximum pulse width to a value lower than Tsw:

• The specific dc-to-dc Converter design needs a minimum time with a de-
fined voltage Output. This is the case e.g. in the bootstrap design where
the high side switches have to be in open State for a minimum amount of
time to Charge the capacitors of the bootstrap circuits of the gate drivers.

• All measurements in the System are synchronized with the switching
frequency of the amplifier, and these are carried out during the period
where the amplifier Output is zero. In this way the disturbance caused
by high magnetic field changes is minimized (See also [Sch95]).

A maximum pulse width lower than one can be described with the average
model simply by multiplying the maximum voltage with the maximum pulse
width.
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4. The Linearized Rigid Rotor
Model

4.1. Introduction

Without any linearization, the equations of motion of a rigid rotor are difficult
to derive in an exact manner from Euler's equations for a gyroscope. So, in al-
most every book on rotor dynamics, the position tilting angles of the rotor are
assumed to be small a priori, and all trigonometric functions of these angles
are linearized. With the assumption of small tilting angles of the rotor axis,
the derivation of the linearized equations of motion is rather easy and several
approaches are used. For example, Schweitzer et al. [STB93] use Lagrange's
equations and Gasch et al. [GNP02] insert a linearized relationship between
the rotor angles and the angular momentum into the Euler's equations. In
both books, the additional assumption is used that the rotational speed is
constant.

Genta [Gen93] derives the equations of motion including statte and dynamic
mass unbalance applying Lagrange's equations. In his derivations, the rota-
tional speed is not assumed to be constant and the resulting equations are the
same as from other authors for the case without dynamic unbalance. Genta
also uses the small displacement assumption from the beginning, but claims
that a fully nonlinear derivation of the equations of motion and subsequent
iinearization will lead to the same resuit.

Beside the unbalance excitation, nonconservative cross-coupling excitation
is considered in this thesis. This cross-coupling excitation is seen as a general
coneept, valid for various types of destabilizing processes, especially fluid to
strueture interactions as, for example, fluid film bearings, annular seals, steam
to blade interaction, and furthermore, partially filled centrifuges, or internal
damping sources in the shaft. In the rotor-dynamic literature (e.g. [GNP02,
Chi93]), cross-coupling excitations are described in a linearized way by calcu-
lating the cross-coupling force as a produet of the rotor displacement vector
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with a skew-symmetric stiffness matrix. The coefficients of the cross-coupling
stiffness matrix in general depend on the rotational speed and other opera-
tional parameters of rotating machinery.

The derivations, assumptions and resulting equations in this chapter are
very similar to those in [Lan97]. As the results are very important for the fol-
lowing calculations, the derivation is repeated here. In addition, the results in-
cluding the magnetic bearing characteristics and a reduction to a 2DoF model
are presented.

4.2. Equations of Motion in Center Coordinates

A Dt

B

w

Figure 4.1.: The rigid rotor model

For the derivation of the linearized rigid rotor model, we use the following
assumptions:

• The rotational-a-xis is parallel to the axis of inertia (no dynamic unbal-
ance). The rotation of the body around this axis can be described with
the angle 7 (t) where 7 (0) = 0 and ^ 7 (t) = Cl(t). (The assumption
that O is constant is not necessary.)

• The location of the rotational axis is described by the position of one
point on the rotational axis and the angle et about which we have to
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rotate the z-axis around the x-axis and the angle ß about which we have
to rotate this axis around the y-axis to get the axis of rotation. (For a
detailed description of these so-called cardan angles see e.g. [Sch86].)

• The angles oc and ß are considered small (|a| <C 1 and \ß\ <C 1), so that
the angle between the projeetion of the rotational axis on the x, z-plane
and the x-axis is approximately ß, and the angle between the projeetion
of the rotational axes on the y, z-plane and the z-axis is approximately oc.

• There is no displacement considered of the rigid rotor in z-direction.

• The coordinates xc, yc and zc = 0 describe the point W on the rotational
axis which is closest to the center of gravity CG. The distance between
W and CG is the eccentricity e.

• 7 (t) is the given angle of rotation and is not influenced by oc, ß, xC/ and

With these assumptions, the linearized equations of motion for the rigid
rotor shown in figure 4.1 can be written in the following form

Mcxc+Gcxc= f„ + fc .

The center coordinate vector xc is defined as

x c : = [ex ß xc yc] ,

the mass matrix MC/ and the skew-symmetric gyroscopic matrix Gc for center
coordinates are defined as

JP 0 0"
0 0 0
0 0 0
0 0 0.

the pseudo-external force d u e to statte mass unba lance fu

0

M c :=

Jl
0

0
0

0
//
0
0

0
0

m
0

0
0

0
m

Gc : = O

0
- J P

0
0

fM :=me
0

O2 cos 7 + O sin 7
O2 sin 7 — O cos 7_

and the sum of external forces and moments fc acting on the rotor with respect
t o W

f c : = [mx my fXc fyc]
T .
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4.3. Transformations of Displacements and Forces

With the center coordinate vector, the position of any point P along the axis
of rotation with a z-coordinate zp is given. Using the assumptions of small a
and ß, the Xp and yp coordinates are determined by

H 0
-Zp

zP

0
1
0

0'
1

' cc'
ß
xc

(4.1)

my

fxc
UcJ

' 0 -zP'
zP 0
1 0
0 1

fpx
Jpy.

A force vector [fpx fpy] acting on the rotor at a point P with a z-coordinate
zp can be transformed into the equivalent force System with respect to point
Wby

(4.2)

Using equations (4.1) and (4.2), the transformation matrices from center to
bearing coordinates can be defined. The bearing coordinate vector is defined
as the rotor displacements at the two bearing stations, that is

VA XB

Expanding (4.1), the transformation from center to bearing coordinates is
given by

xb = Tbcxc (4.3)

where

Tbc:=

0 ZA 1 0'
-zÄ 0 0 1

0 zß 1 0
L-zB 0 0 1

The forces acting at the bearing stations are combined to the vector

JAy fßx fßy]
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and can be transformed to forces and moments with respect to point W by
equation (4.2), that is

where

lbc

With the

bc

=

"0
ZA
1

.0

inverse

l T .
'•cb

-ZA

0
0
1

of the

1

Z A -

0
ZB
1
0

- Z B

0
0
1

•

transformation

ZB

' 0
1

0

- 1
0
0

-ZB

matrix

0
- 1
ZA
0

Tbc

1"
0

0
ZA

and the transposed matrix T^J of the inverse, the equations of motion can be
transformed to bearing coordinates in the form

T ^ H r T ^ + T ^ G c T ^ x , = ib + T-TfM

Mbxb + Gbxb = ib + iub

where the resulting mass matrix in bearing coordinates is

Mb =

h+mz2
B

0
o

-]l-mzAzB 0
0 -},-mzAzB

-Jl-mzAzB 0
0 -]\-mzAzB

Jl+mz2
A 0

0 7/+mz2

(4.4)

1 o
n/p

the resulting gyroscopic matrix in bearing coordinates is

0 n/p 0 -J
-O./„ n .O/p

(z A -2 ß ) 2 o" -n/p 6"
. n/p o -n/p o

and the vector of unbalance forces transformed to bearing coordinates is given
by

me ( )
zA ( n sin 7 + n 2 cos 7)
zA ( - 2



4. THE LINEARIZED RIGID ROTOR MODEL 35

4.4. Nonconservative Cross-Coupling Forces

Figure 4.2.: Local nonconservative cross-coupling stiffness density distribution

It is assumed that an unknown distribution of nonconservative cross-coupling
forces are acting perpendicular to the rotor axis. The cross-coupling force den-
sity -gj£ at an arbitrary z-position Z, in local £-coordinates of the rotor is given
by

dL 0 n (0
0

H

The parameter n (£,) is the local nonconservative cross-coupling coefficient
or stiffness density and is depicted in figure 4.2. A positive coefficient n (£)
induces a forward whirl and a negative coefficient a backward whirl of the
rotor axis (for Cl > 0).

With eqüation (4.1) and eqüation (4.2)/the cross-coupling force density can
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be transformed to center coordinates

dfwc

"0

i
.0

-C
0
0
1 .

0 n(0
-n (0 0

0 £ 1 0
- ( 0 0 1

0

- £ 2 o o
0 0 1

0 - £ - 1 0.

Transforming this into bearing coordinates yields

u C2

dinb = ~n (0

0

0

ZT

0
—uv

0

0

0
— U2

0

0

where

u := and v :=

By integrating the stiffness density matrix along the z-direction of the rotor,
one gets a skew-symmetric cross-coupling stiffness matrix Nj, in bearing coor-
dinates with three independent parameters n\, n^, n$ in the form

*nb = -

0
- » 1

0
-n2

« l

0
n2

0

0
- n 2

0
- « 3

n2

0
" 3
0 .VB.

(4.5)

For a Single discrete cross-coupling force at a point P with z-coordinate Zp and
the local cross-coupling stiffness n, the cross-coupling force density is

with the continuous dirac impulse function ö. The resulting cross-coupling
matrix is then

0
-v2

0

V

0

0

0
UV

0
- u 2

—1<

0
u:

0
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where

u := ZP~ZA and v :=
- z ß

4.5. Preloading the Magnetic Bearings

The magnetic bearing force in terms of control current and rotor position is
given by equation (3.7) in the Laplace domain for a Single AMB. This equation
is extended for two magnetic bearings to

f (s) = Kf/i (s) ix (s) + Kf/x (s) xb (s)

where ix is the control current vector for both bearings

. . _ r . • • • ]T
1x •— \}Ax lAy lBx lBy\ /

Kf/i is the dynamic current coefficient matrix, given by

(4.6)

Pui HBx

and Ky/X is the dynamic position coefficient matrix or dynamic magnetic bear-
ing stiffness matrix, given by

<sAy

CsßyJ

with the time constant T/v© being equal for both bearings and axes.
In the common magnetic bearing literature, the magnetic bearing time con-

stant TMB is assumed to be zero. This is equivalent to the use of Ky/,- (0) and
Kf/X (0). Since we will also use this assumption sometimes, we will write for
the statte current and position coefficient matrix

K,- := Kf/i (0) Ks := Kf/x (0) .

The use of K, and Ks is consistent with the AMB literature and is slightly
easier to read.
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The numerical values for the geometric and electrical parameters of the mag-
netic bearings are given in chapter 2. The only unknown parameters are the
bias currents. Since for a horizontal machine the magnetic bearing rotor sys-
tem is preloaded with the static rotor weight, the bias currents must be able
to carry this weight. Usually the bias current is simply set to half of the maxi-
mum allowed current (which is usually the current where magnetic Saturation
occurs) and the force to lift the weight is provided by the Controller [STB93].
This is not really correct, since the weight shifts the working point away from
the zero force point. Since the weight force for each bearing is about 17% of
the maximum force the bearing can supply, neglecting this working point shift
will result in a significant deviation of the actual position coefficients from the
calculated ones (see [SW]).

First the calculation of the bias currents and AMB coefficients are carried out
for one bearing. The bias currents for the two actuators in y-direction (actuator
2 and 4 in figure 3.1) are chosen to be —i'o- To generate a force in x-direction
without changing the current coeffident, the bias current in actuator 1 should
be î o = *'o + *o/ a n d m actuator 3 should be i^ß = z'o — z'o/- The static force in
x-direction fx is then

and so z'oy becomes

The bias currents for one magnetic bearing are chosen to be
T

io = [k + kf ~io k ~ kf ~k] • (4.7)
The negative sign of the bias currents z'2,0 a n d h,o indicate that an NNSS pole
scheine Hs used in the magnetic bearing; this does not change the behavior of
the simple actuator model but influences the behavior of higher sophisticated
modeis. With this choice for the bearing bias currents, we get for the current
coefficients

f\j y TI /̂  »WiV * ~

1 There are two possible pole configurations, the classical NNSS scheine where two north
poles are followed by two south poles, and the NSNS scheme where a north pole is always
followed by a south pole.
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and for the position coefficients

The shift of the working point only changes the position coefficient of the
bearing; the current coefficients are unchanged, because the static current to
force relationship is linear at the center position.

The weight force carried by each bearing can be found by transforming the
weight to bearing coordinates

fgb = TbcTi
8c = T^T[0 0 -mg 0 ] T

= \fgAx fgAy fgBx f g B V ] T = [-141.7 N 0 -140.5 N 0 ] T .

To lift the weight, the static forces of both magnetic bearings have to be

/AX,O = -fgAx and fBx,o = -fgBx • (4-8)

Therefore, using the numerical values of the Simulation model, the current
and the stiffness coefficient matrix respectively are

K , =

Kfi =

199.07
-199.07

199.07
-199.07

1.4665
1.4222

1.4657
1.4222 J

M N / m .

4.6. Rotor Magnetic Bearing Assembly

11LC CUUUL1U1 IO WX l l lUUUll KJ± LJ. L\„ iX^X*»l i v i V i n L u c u i m ü vvyvivtiiiuivi; xiiv*vivixi L^

nonconservative cross-coupling stiffness have now the form

Gbxb + Nbxb = fb + fub .

With the rotor being supported by active magnetic bearings, the weight of the
rotor is lifted by the static nonlinear magnetic bearing forces (see equ. (4.8)),
so it is not included in the force vector ib. The remaining forces ib acting on
the rotor in bearing coordinates are

h — f MB + Üb /
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where fMB is the linearized deviation of the magnetic bearing forces from the
static values f MB,O and f̂  are additional disturbance forces acting on the rotor.

The forces of both magnetic bearings are combined in one vector named iy®.
These forces can be described by the corresponding Laplace transfer matrix
equation (4.6) or by the differential equations of the magnetic bearings

In this equation, the bearing forces instead of the bearing fluxes are used as
State space variables; this reduces the number of State variables by a factor
two.

Since the rotor position has to be measured, we also need a relationship
between the State vector Xf, and the sensor signals (the position of the axis of
rotation at the sensor locations zmA and zmg). The sensor signal is

with

mb — Lmc lcb — vhm —
0
—z
0

ß 0
zmA—zB

B 0
Zmß-Zß

ZA-Z m A
0

Z/l-ZmB
0

o -
ZA-ZmA

0
ZA-ZmB .

For collocations of sensors and bearings, the transformation matrix
equal to the identity matrix

Tmb = I for zmA = zA, zmB = zB .

When xj, is calculated from the sensor signals

is

with

'•bm — '•bc'-cm — zmA — zmB

-ZmB 0 ZmA-ZA 0
0 zA-zmB 0 zmA-zA

-ZmB 0 ZmA-ZB 0
0 " ZB-ZmB 0 ZmA-ZB

we assume that this calculation is exact and that we "measure" x̂  directly.
Other possible approaches might be to write the System in sensor coordinates
instead of bearing coordinates or to include an output equation in the rotor
AMB System. Both alternative approaches, however, make the handling of the
equations more difficult and do not have significant advantages.
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The equations of motion for the rotor supported by active magnetic bearings
can either be written as a system of first order differential equations in the
form

TMB .
0

I
0
0

0

0
V Ix

,+f, b

(4.9)

or with the corresponding Laplace transfer marrices

% (s) = Gx/f (s) (iub (s) + U (s)) + Gx/i (s) ix (s)

where

Gx/f (s) := (s2Mfc + sGb + Nfc - Kf/x (s))

Gx/ , - ( s ) :=G x / / ( s )K / / f ( s ) .

To avoid confusion, this model is referred to as "complex model".
For large l/Tm in relation to the excitation frequencies and the other eigen-

values of the system, the differential equations of the magnetic bearing can
be neglected and one gets the well known system of second order differential
equations

Mbxb + Gbxb + (Nb - Ks) xb = i
db

rub (4.10)

or
- l

•Kiijr(s)) .xb (s) = (s2Mb + sGb + Nb- Ks) (iub (s) + hb (s

This model is referred to as "simple model".

4.6.-1. Eigenvalues of the Simple Model

For the simple model equation (4.10), the poles A,- of the system for Nb = 0
and Gb — 0 are the Square roots of the generalized eigenvalues of M and K
or the Solutions of

det (KS + = 0 .
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Assuming that the center of gravity is located at the mid-span position be-
tween the two bearings i.e. z& = —Zg and that the stiffness coefficients of both
bearings are equal i.e. ks/\x = kSßx = ksx, ksfy — fcSßy = kSy, the poles of the
System are

Ai,2 = ±\j—^ = ±319.257 s"1 A3/4 = ± d —^ = ±314.444 s~

= ±\l t ^ A = ±442.335 s"1 A7 8 = ± W —^ = ±435.666 s'1 .

The actual poles of equation (4.10)

Ai,2 = ±319.252 s"1 A3/4 = ±314.438 s"1

A^6 = ±442.342 s"1 A7'8 = ±435.674 s'1

differ only very slightly from the symmetrical configuration. The occurrence
of eigenvalues with positive real parts indicates that the System is not stable.

4.6.2. Eigenvalues of the Complex Model

For the poles of the complex model equation (4.9), we have to solve

det
-J-l
—M^~ —Ä

0

o

I

Tm S

0

- A/I = 0

for A/. The values are given in table 4.1. The first eight poles are close to those
of the simple model. There are four additional poles which correspond to the
magnetic bearing characteristic and have the approximate value of A9...12 ~

Table 4.1.: The poles of the complex AMB/rotor model

Pole

Ai

A3
A5

A7

A9

An

value
s"1

312.46
307.84
423.25
429.55

-7080.84
-7093.36

Pole

A2

A4

A6

A8

A10

A12

value
s"1

-326.86
-321.81
-450.16
-457.30

-7080.01
-7093.79
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4.7. Two Degrees of Freedom Model

It will be useful to have a simpler model with fewer degrees of freedom that
behaves similar to equation (4.10). Under the assumption that xA = xB = xc

and yA=yB =VC,OL = ß = 0 and iAx = iBx = ix and iAy = iBy = iy, we can
use the transformation

r
where

R:=
1 0 1 0 ]
0 1 0 1 '

to reduce the 4DoF model to a 2DoF Model. The transformation of the simple
4DoF System

(Nb - Ks) R = RTK,R h +RTiuh + RTf,

leads to

m 01 \xc

0 m\ \yc

" 0 n] _ \ksAx +
-n 0 0

'yJ

0

db

Pui \k{Ax + kiBx 0
R + pMf 0 kiAv + , L*yJ

O2 cos 7 + Ö sin 7] j db '

(4.11)

There is no gyroscopic effect in the 2DoF System since RTGj,R = 0. The cross-
/•»/•«i-r̂ iit-irr n a r a m o f o r -vi ic r»a1r*n1 afoH \\\T

n:—ni+ 2n2 + n3

which is the same as the integration of the cross-coupling density along the
rotor, i.e.

n= r n
j — 00
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Part II.

Control
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5. Stabilizing Feedback Loop
Control

5.1. Introduction

One of the most significant disadvantages of magnetic levitation and sus-
pension is that these levitations are usually unstable. This fundamental fact
has already been proved by S. Earnshaw in [Ear39], and is known as "Earn-
shaw's theorem". It states that no stationary object made of charges, mag-
nets, and masses in a fixed configuration can be held in stable equilibrium
by any combination of static electric, magnetic, or gravitational forces [GG97].
The only way around Earnshaw's theorem is to violate the assumptions on
which the theorem is based. Using diamagnetism is one way to levitate ob-
jects [Bra39a, Bra39b], but has no technical relevance yet. For an interesting
review of such experiments, the reader is asked to refer to [BG97]. Another fa-
mous approach is to use superconducting materials, but technical realizations
are still very rare.

The most often used principle of magnetic levitation is to feed back the ob-
ject position and change the magnetic field in a way to stabilize the levitation.
One of the earliest publications describing magnetic bearings are carried out
by Beams et al. In [BB39], the magnetic forces are only used to support a me-
chanical bearing, but in [BYM46] small solid steel spheres are fully suspended
in a magnetic field; two degrees of freedom are passively stabilized, and an
analog proportional-derivative (PD) Controller is used together with an induc-
tive position measurement to actively stabilize the third degree of freedom.
The PD control scheine is also widely used for the Suspension of rigid as well
as flexible rotors in active magnetic bearings. Because of the similarity with
mechanical spring-damper elements, the PD control is easy to understand.
Usually an integral part is added to the PD scheme to achieve steady State
accuracy (see [STB93]).

For a simple rigid rotor AMB model as shown in equation (4.10), the rotor
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position and the rotor velocity are the states of the System. So, a PD Controller
can also be viewed as a State feedback Controller where the velocity states are
generated from differentiation of the position states. The differentiation has
some important disadvantages which are mentioned later in this thesis; a dif-
ferent approach for the calculation of the velocity states is to use an observer.
Ulbrich [Ulb79] employs the Ricatti equation to find an optimal State feed-
back (LQR, linear quadratic regulator) Controller and uses it together with an
optimal observer to control a rigid rotor. Bleuler [Ble84] Starts from a similar
Controller structure combined with a Luenberger observer and develops an
optimal decentral Controller and a decentral observer to reduce the computa-
tional load for the rotor Controller. There are numerous other publications in
which optimal linear Controllers like an LQR Controller are coupled with op-
timal linear observers like a Kaiman filter. This combination is usually called
LQG (linear quadratic gaussian) Controller. A good review of the available
publications in 1991 is included in the PhD-thesis by Maslen [Mas91]. Other
modern linear control approaches, which have drawn some attention recently,
are HTO and ^-synthesis control (see for example [KB92, NI96, LGH98]).

5.2. Feedback Loop

discrete-time Controller!

Figure 5.1.: The feedback control loop

Figure 5.1 illustrates the components of the discrete-time Controller feedback
loop. The loop is divided into a discrete-time part and a continuous-time part.
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At the boundary, the translation from discrete-time to continuous-time is done
by a zero order hold block (denoted by zoh) and a sample block S vice versa.
The measured rotor position xm in measurement coordinates is converted back
to bearing coordinates with the transformation matrix T^m; it is assumed that
this conversion as well as the measurement itself are perfect (M (s) = Tmj,).

The System figure 5.1 is a mixed discrete-time and continuous-time System.
As long as only the input-output relationships between discrete-time Signals
are investigated, the input-output relationship is described by z-transfer matri-
ces. For the input-output of relationship from continuous-time to discrete-time
Signals, there is no exact transfer matrix relationship. However, if the contin-
uous Signals have only frequency components significantly smaller than the
Nyquist frequency fay = l/2Ts, the use of the equivalent discrete-time sig-
nals with the corresponding z-transfer matrices is a good approximation. This
means that from the relationship

y(s) = G ( s ) ü ( s ) , with f(s)

follows the approximation

with

f(z) = Z (y (kTs)) ü (z) = Z (u (kTs)) k = 0,1,...,oo .

So, basically the calculation of the input-output relationship is the same for
the continuous and the discrete Signals. This has the additional benefit that, if
we assume a continuous-time System, we only have to exchange the z-transfer
matrices with the corresponding Laplace transfer matrices.

When we neglect the dynamics of the measurement device M (s), only one
continuous-time transfer matrix is outside the discrete-time part of the con-
trol loop, namely the current to displacement transfer matrix Gx/,(s). The
corresponding z-transfer matrix can be calculated with

It is worth to note that

Gx/i (s) = Gx/f (s) Kf/i (s) , but Gx/i (z) ^ Gx/f (z) Kf/i (z) .
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The control law is given by

ix (z) = R (z) (r (z) - xb (z)) + in (z) + % (z) (5.1)

where ix (z) is the control current vector for both bearings, R (z) is the Con-
troller transfer matrix, f (z) is the reference value vector, x& (z) is the mea-
sured rotor position vector, in (z) is the additional control current vector for
cross-coupling control, and i/, (z) is the additional control current vector for
harmonic control. For further discussion (see [ZDG96]), it is convenient to de-
fine the input open-loop transfer matrix, L„ and the Output open-loop transfer
matrix, Lo (the function argument z is omitted), as,

L, := Lo :=

respectively. The input sensitivity matrix S, (z) and the Output sensitivity ma-
trix are defined as

S,- (z) := (I + Lf (z))-1 , So (z) := (I + Lo (z))"1 .

The input and Output complementary sensitivity matrices are defined as

The input-output relationship of the Signals in System shown in figure 5.1 is
described by

K
RS0 - R S 0 S, —T; —RS0Gx/f_

b

• (5-2)

For the continuous-time inputs d„ dm, and iu\„ equation (5.2) is just an ap-
proximation. Additionally the approximation that

Gx/i (z) 9* Gx/f (z) Kf/i (z)

is used in equation (5.2) for the transfer matrices with input signal \u\,.
Although equation (5.2) is written with transfer matrices the actual calcula-

tions of the input-output behavior is done with state space equations. Another
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issue in the calculation of the transfer matrices is the numerical imperfect zero
pole cancellations. For example, the numerical calculation of To with

would deliver an unstable System, since Gx/j is unstable, while a numerical
calculation with

- l

delivers a stable System. For various other calculations, the following identi-
ties may come handy

T,- = LjSj = RSOGX/,- = S,-L,- .

5.3. Continuous-Time PID Control

The rotor supported by active magnetic bearings is coherently unstable as
indicated by the poles with positive real parts of equation (4.9) and (4.10).
Therefore a stabilizing Controller is needed. There are many different ways
of designing a stabilizing Controller for the linearized System. Most modern
linear control concepts for MIMO Systems are based on a State feedback Con-
troller coupled with a State observer (see e.g. [ZDG96]).

Mechanical engineers, however, do still prefer a PD control scheine, because
the principle is highly analogous to changing the stiffness and the damping
in a mechanical spring mass System. The idea behind this is to measure the
position of a mechanical System and calculate the velocity by differentiating
the position. This is a simple State observer, since the position and the velocity
are also the states of the System equation (4.IÖ). With the "observed" states,
a feedback Controller can be designed so that the closed-loop has the desired
damping and eigenfrequency characteristics (pole placement see [STB93]).

Lang [Lan97] has designed a PID Controller by augmenting the simple mod-
el, described by equation (4.10), with an integral State and setting 0 = 0 and
N = 0. The resulting System in State Space form is

d_
dt L/o1

0 1
I
0

™b •

0
I

s 0
0
0 ./(NdT-

"'K,-
0
0
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with the augmented State vector z

z = [xb xb f*

Lang used an LQR algorithm, which minimizes the cost functional

where Wz and W,- are weighting matrices, to calculate the optimal State feed-
back Controller

i x = - [ P D PP P l ] z .

The resulting control law in the Laplace domain is given by

(s) = - R (s) xb (s) = - + PP + ip 7 ) xb (s) (5.3)

where R (s) is the Controller transfer matrix. The numerical values for Pp, P/
and PD are as follows

PP =

PD =

25450.3 0 75.7595 0
0 -25135.8 0 -75.2596

74.9087 0 25442.5 0
0 -75.2596 0 -25133.2

160000 .0 3.7642 0 '
0 -160000 0 0

-3.7642 0 160000 0
0 0 0 -160000.

'52.3681 0 8.5144 ö
0 -52.0436 0 -8.462

8.5126 0 52.0664 0
0 -8.462 0 -51.7492

A/m (5.4)

A /ms (5.5)

As/m (5.6)

Inserting the PID Controller into the simple System equations (4.10), the con-
trolled simple System can be written as

Mbxb + (Gb + K,PD) xb + (Nb -Ks + K,-Pp) xb + KfPj = fdb + iub .
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(5.7)

The poles of the PID controlled simple System for O = 0 and Nj,= 0 are given
in table 5.1 together with the corresponding undamped natural frequencies
and the damping ratios; the values are rounded to three significant digits. The
poles A5 to As correspond to the mechanical natural frequencies of the motion
in x and y direction, A9 to A12 to the natural frequencies of the tilting motion in
the x, z-plane and y, z-plane, and Ai to A4 to the integral part of the Controller.

Table 5.1.: Poles of continuous-time controlled simple model

pole

Ai
A2

A3
A4

A5/6
A7/8

A940

A1142

value
s'1

-9.09
-9.09
-9.13
-9.13

-413 ± 268/
-416 ± 266/
-573 ± 372/
-576 ± 369/

natural
frequency

ÜJ\y

CO\x

^ 2 y

OÜ2x

value
Hz

1.45
1.45
1.45
1.45

78.4
78.6

109
109

damping
ratio

£iy

^2y

value

1.0
1.0
1.0
1.0

0.839
0.842
0.839
0.842

5.4. Discrete-Time PID Control

The continuous PID Controller has one major drawback: it can not be realized.
This might seem surprising, since there are numerous so-called PID Controllers
in use today. All these devices have in common that they behave only approxi-
mately as a PID Controller for lower frequencies and quite different for higher
frequencies. The most common way to implement a PID Controller today is
a digital approximation. There is almost no advantage of an analog design
especially since the cost for digital components have decreased dramätically.

With the forward difference quotient, we can find a simple discrete-time
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approximation of the continuous PID Controller from equation (5.3), which is

ix (kTs) = P/

The properties of the discrete-time PID Controller are mainly influenced by the
sample time Ts. A smaller sample time improves the Controller Performance
but also increases the hardware cost and may lead to numerical problems in
the realization of the control algorithm.

Choosing the sample time is not as trivial as it seems to be. As a rule of
the thumb (see [Ack88]) the sample time Ts for discretizing a linear System
should be

T <
s 4max(|A,|)

where A,- Stands for the poles of the System. For the simple model, the value
of Ts would be 1776 us and even the complex model could be stabilized by a
discrete Controller with this sample time, since the unstable poles are already
included in the simple model.

The discretized PID Controller, however, has to use a sample time smaller
than 800 us to be stable. As shown in simulations, good Performance is accom-
plished with a sample time smaller than 100 us. This is due to the continuous
design process of the PID Controller. So the sample time is set to

Ts = 100 us .

In figures 5.2 and 5.3, the continuous PID controlled simple System, the dis-
crete PID controlled simple System TMB = 0, and the discrete PID controlled
comnlex svstem T\/m "> 0 are comnared. Thev shnw the frenuencv restinnse
plots of the (1, l)-element of the transfer matrices SOGX/,—that are, the trans-
fer functions from ij\x to XA—and the continuous-time equivalent for the con-
tinuous PID control. In figure 5.2 the sample time Ts is 800 us and in figure 5.3
T s is l00us.

Especially in the magnitude plot figure 5.2a we see that for the sample time
Ts = 800 us the difference between the discrete-time controlled simple model
and the discrete-time controlled complex model is very large; the complex
model and therefore also the real System is close to instability. For smaller sam-
ple times, the influence of the magnetic bearing time constant is much lower as
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shown in figure 5.3. All three modeis have a similar magnitude response, but
there is still a significant phase lag corresponding to the discretization and the
magnetic bearing dynamics; neglecting the magnetic bearing time constant,
however, might be reasonable, i.e. the simple model may be sufficient.

A big advantage of the PID Controller is its relatively high robustness in
comparison to e.g. an LQG Controller (LQR control combined with a Kaiman
filter). Since the rotational speed and the cross-coupling parameters are chang-
ing we need some robustness of the basic control even if we add adaptive
cross-coupling control. This is the reason why an LQG Controller approach is
not used here. Instead of the PID Controller, a design process including the
robustness issue could be used (e.g. Hco). In table 5.2, the poles of the simple
model with the discrete-time PID Controller can be seen. To make compar-
isons with the continuous-time System easier, we use the equivalent poles as
a Solutions of z = esTs. In comparison to the continuous-time System, we see
four additional poles, A13 to Ai6, corresponding to the differential part of the
Controller. The "mechanical" natural frequencies have also changed and are
now a little bit higher than in the continuous case.

In table 5.3, we have the equivalent poles of the discrete-time PID controlled
complex model, where the magnetic bearing time constant is greater than zero
(see equation (3.8)). We see four additional poles A17 to A20 corresponding

Table 5.2.: Poles of discrete-time controlled simple System

equiv.
pole

Ai

A2

A3

A4

A56

A7/8

A940

An,i2

A13
A14
A15

A16

value
s"1

-9.09
-9.09
-9.14
-9.14

-443 ± 264z
-446 ± 262z
-632 ± 362z
-637 ± 359z

-27200
-27200
-30800
-30900

equiv. value
nat. fr. Hz

1.45
1.45
1.45
1.45

Ct>ly 8 2 . 1

CV\x oZ.j
CÜ2y. 1 1 6

Cd2x 1 1 6

4330
4340
4900
4910

equiv.
dmp.ratio

£iy
Slx
&y
llx

value

1.0
1.0
1.0
1.0

0.859
0.862
0.868
0.871

1.0
1.0
1.0
1.0
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Table 5.3.: Poles of discrete-time controlled complex System

equiv.
pole

Ai
A2

A3

A4

A5,6

A7,8

A94O

All,12

A13

A14

A15

A16

Al7,18

Al9,20

value
s"1

-9.09
-9.09
-9.14
-9.14

-495 ± 263/
-499 ± 260/
-766 ± 348/
-774 ± 340/

-4380
-4400
-5230
-5240
-42200 + 31400/
-45100 + 31400/

equiv. value
nat. fr. Hz

1.45
1.45
1.45
1.45

coly 89.2
cvlx 89.6
coly 134
u>2x 135

697
701
832
834

8370
8750

equiv. value
dmp.ratio

1.0
1.0
1.0
1.0

£iy 0.883
lix 0.887
fry 0.911
frx 0.916

1.0
1.0
1.0
1.0
0.802
0.820

to the magnetic time constant T^g. The poles A17 to A20 are not conjugate
complex pairs as one might assume. The reason for this is the transformation
2 = esls. The magnetic bearing time constant has also a high impact on the
poles A13 to Ai6, corresponding to the differential part of the Controller, as they
are moved to a much lower frequency ränge.

5.5. Two Degrees of Freedom Model

In section 4.7, we derived a two degrees of freedom version of the simple
model. For n = 0, the two degrees of freedom are decoupled and we can
write (4.11) in the form

m 0
0 m

R + Pui
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where fx is the sum of all external and unbalance forces in x-direction and
fy in y-direction, respectively. The reduced continuous PD Controller for two
degrees of freedom (the integral term is neglected) is

with

PPx 0
\>

VDX

0
0 1

VDy\

The factor 1/2 is needed to get similar poles for the 2DoF PD controlled model
and the continuous PID controlled 4DoF simple model. The controlled System
can be written as

coxxc = —fx

yc w
2
yyc = -fy (5.8)

with

+ kiBh) PPh - (hAh + Kuh)

_
PDh

2mwh

where h G {x,y}.
A further simplification can be obtained by making the System Symmetrie.

The parameters for the Symmetrie System are the mean values of the parame-
ters of system equation (5.8)

\PPy\
PP =

\PPx\ \PDx\+\VDy\
PD- ^

\KAx

(The absolute values are necessary when the parameters of both equations
have different signs.) Then the stiffness and the damping parameter of both
directions are

and ui

+ Pui
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and the resulting natural frequency and damping ratio are given by, respec-
tively

IT C £x + £y
and c =2

The resulting System can be written as

with the parameter values

m = 28.768 kg k = 7.2161 kN/mm c = 24.111 kN s/m

and the natural frequency and damping ratio, respectively

cv0 = 501 rad s'1 = 79.7 Hz £ = 0.837 .
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6. Adaptive Cross-Coupling
Control

6.1. Introduction

Destabilizing cross-coupling excitations are a well known phenomenon in ro-
tor dynamics. Usually the destabilizing effect can be reduced by design mea-
sures, as for example

• replacing the source of the cross-coupling excitation, e.g. replace piain
Journal bearings by tilting-pad bearings,

• including additional damping sources like squeeze film dampers,

• influencing the source of the cross-coupling excitation, e.g. inject a tan-
gentially directed flow in the rotor stator clearance (see [MFB88, Mus88,
MB89]),

• introduce honey-comb seals instead of common piain labyrinth seals,
etc.

A good overview of the various design alternatives is given in the book by
Childs [Chi93].

bility due to cross-coupling excitation may also be very helpful; they may
either be cheaper than design methods, especially when the rotor is already
equipped with actuators, or design measures may not be sufficient to stabilize
the rotor or can not be realized due to some other constraints. However, there
is very little literature about cross-coupling control.

Matsushita et al. [MTY+88, MTY+90] describe the cross-coupling control
of a partially filled centrifuge which is unstable within a certain rotational
speed ränge. They assume that the resulting unstable whirl vibrates with the
2nd natural frequency of the rotor; so they use a tuning filter centered at this
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frequency to pick up only the unstable vibrations. The Output of the tuning
filter is multiplied with a counter acting cross-coupling stiffness a and applied
to the rotor by the magnetic bearings; the cross-coupling control is switched on
before the rotor reaches the critical speed ränge and switched off afterwards.
This approach has some important drawbacks. First, one has to have a good
guess of the actual cross-coupling parameters in order to choose the right
value of et; it seems that this is basically a trial and error approach. Second,
one must know the speed ränge where the rotor becomes unstable. Third, it
is not quite clear why the tuning filter is needed, since the actual control is
just a counter acting cross-coupling force; maybe it makes the System more
robust with respect to variations of oc, and therefore the frequency of the cross-
coupling whirl must be known.

The papers of Ulbrich et al. also discuss the control of partially filled cen-
trifuges. In [UAC96], the authors derive a detailed model of the flexible rotor
with the centrifuge including the fluid components and calculate the stability
margins of the System. In [UCA97], the authors suggest to use the calculated
fluid forces to counteract on the actual rotor, which worked well in the numer-
ical Simulation. In [UCAOO], the authors present three possible approaches to
stabilize the centrifuge. In the first approach, two sets of parameters are used
for the basic PD control where one parameter set shifts the unstable region
to a higher operational speed. In a run-up Operation, the PD Controller pa-
rameter set is switched to the second set, when the unstable rotational speed
region is reached, and switched back, when it is passed. The second approach
utilizes a velocity cross-coupling control to stabilize the System. This approach
is based on the observation that, for the given System, the fluid forces are in
phase with the rotor position velocities. The velocity cross-coupling control is
plugged into the System model and the control parameter is chosen in a way
that the System is stable. This control parameter depends on the rotational
frequency and on the filling ratio of the centrifuge- In the third approach, an
observer is used to identify the states of a simplified fluid model; these states
are used in a State feedback Controller to stabilize the System. Also in this ap-
proach the Controller parameters have to be adjusted for every operating point,
i.e. rotational frequency and filling ratio of the centrifuge. Since the work by
Ulbrich et al. is based on a very detailed model of the centrifuge including the
interacting fluid components, it is not clear how proper a simple excitation
model, using a skew-symmetric cross-coupling stiffness matrix introduced in
the rotor model, would approximate the actual behavior of the System.
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Wurmsdobler et al. [WJ96, WJS96, Wur97a, Wur97b] use a discrete-time
adaptive State Space Controller for stabilizing a rigid rotor with cross-coupling
excitation modelled by a skew-symmetric stiffhess matrix. No additional ex-
citations like mass unbalance are considered. Wurmsdoblers's approach is
based on a Kaiman filter as a State observer together with an identification
process of the System parameters and Kaiman filter parameters; this results in
a total of 96 parameters to be identified. Based on the identified parameters
the parameters of a State feedback Controller are computed, such that the poles
of the closed-loop System are at predefined values (pole placement). The main
advantage of this approach is that it utilizes a well established adaptive con-
trol method. The drawbacks are that it poses a high computational load on the
actual Controller hardware and a total of 96 parameters are estimated while
only one parameter (a Single cross-coupling stiffhess) is changed in the exam-
ple simulated by the authors. However, other parameters may also change
without the need for additional Controller complexity; it should be easy to use
this approach for a distributed cross-coupling force along the rotor axis.

Another interesting approach is described by Liao et al. [LGKK00]. They
consider a 2DoF Jeffcott rotor supported by Journal bearings. The use of Jour-
nal bearings results in a stiffhess matrix with skew-symmetric components
which induce an unstable behavior of the rotor above a certain rotational
speed. Additional to the cross-coupling excitation, mass unbalance excitation
is present in the System. The starting point for the Controller design is that, as
long as the rotor is stable, the rotor position and the rotor velocity oscillate
with the frequency of the unbalance excitation, i.e. the rotational speed. The
applied so-called "phase-locked delayed feedback control" calculates the dif-
ference between the actual values and the values which have been measured
a period ago. These differences of the velocity as well as the rotor position
are amplified and fed back into the System. So the Controller is only active
when instability occurs, and can be seen as an increase in stiffness and darnp-
ing. Again, the Controller parameters are calculated from the known system
parameters, including the cross-coupling parameters. The advantage of this
approach is that the System is unchanged as long as it is stable. Unfortunately,
measurement noise is not included in the numerical simulations, which will
probably turn on the phase-locked control all the time.

The control approach used in this thesis has been first employed by Kien-
berger [KE94, Kie94]. The basic idea is to identify only the cross-coupling
stiffness parameter with a continuous-time least-squares algorithm. As a ref-
erence for the estimation parameter the cross-coupling forces are used in the
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derivation of the estimation process and exchanged with the magnetic bearing
forces in the actual estimation process. Kienberger has successfully tested this
approach in a numerical Simulation. Lang et al. [LWS95, LWS96b, LWS96a,
Lan97] carried out numerical simulations and experiments on a test rig to
validate and improve the algorithm; as in the work by Kienberger only a sin-
gle source of cross-coupling excitation is considered. Steinhardt [Ste96] uses
the Simulation model of Lang to stabilize a flexible rotor with cross-coupling
excitation. However, the adaptation of the algorithm for the flexible rotor is
described very rudimentarily.

6.2. Influence of the Cross-Coupling on the
System

Figure 6.1.: Orbit of a rotor excited by a cross-coupling force

It has already been mentioned that self-exciting cross-coupling forces can be
described approximately by a linear relationship between the displacement
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vector and the cross-coupling force vector with a skew-symmetric matrix.

f„ = - N x , N = - N T .

Nonconservative forces may drive a System to instability. Although it is hard
to prove this analytically, the reason is quite obvious. In figure 6.1, we see
the orbit of a rotor which is excited by a cross-coupling force. As the rotor is
displaced, a force acts on the rotor which is perpendicular and proportional in
magnitude to the rotor displacement vector. This drives the rotor away from
the center position on a spiral orbit; the center position is unstable.

If we look at the energy stored in the System we might get a better insight
into the stability problem. For a second order System,

Mx + Dx+ (K + N) x = 0

with Symmetrie M, D and K and a skew-symmetric N, we can write the total
(kinetic plus potential) energy in the System as

E = -xTMx+JxTKx .
2 2

The time derivative of the total energy (for a more detailed derivation see
appendix A.4),

£ = -xTDx + xTNx = - Wd + Wn , (6.1)

consists of the dissipative work W^ and the excitation work Wn. The System is
unstable when the exciting work exceeds the dissipative work. Unfortunately,
this relationship is not really helpful, because x and x have to be known to
calculate the energy change, whereas the stability of the system is independent
of x and x.

In section 4.4, we have derived the cross-couT>liri<r stiffness matrix fot the
4DoF rigid rotor. It has been shown that the matrix Nj, consists of only three
independent parameters n\, n-i and n^ for any distribution of cross-coupling
forces along the rotor. A good impression of the influence of the three inde-
pendent cross-coupling parameters can be seen from the change they impose
to the System poles in the complex plane.

The poles are calculated for the discrete-time PID controlled complex model.
Instead of the poles of the corresponding z-transfer matrix To (z) we use the
poles of the q-transformed transfer matrix T^ (q) (see section A.2.3). This q-
transformed transfer matrix is stable if all poles are in the open left half plane.
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Figure 6.2.: Root locus of T^ (q) for variations of the parameters ti\, n-i, and «3

In figure 6.2, the poles of T* (q) are plotted for variations of the parameters n\,
ni and n^ in the ränge of -20 MN/m to +20 MN/m. The diamonds in figure 6.2
are the poles for n\ = n-i = n.3 = 0 while for any other value the poles are
points inside the grey bands. It is interesting that the varying poles stay in
a narrow band which crosses the imaginary axis approximately between the
undamped natural mechanical frequencies. If n\ and nj, are set to zero and
only ni is varied the band degrades to two lines (root locus) which are also
the borders of the bands.

A second possibility to describe the stability behavior of the System is to
plot the stable region for the three independent parameters; this is shown in
the figures 6.3 and 6.4.
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6.3. On-Iine Parameter Estimation

Numerous different mechanisms may be the source of cross-coupling forces
(see [GNP02, Chi93]). For most of these mechanisms, the cross-coupling coef-
ficients depend on the operating conditions of rotating machinery. The matrix
N can change with time and this might also happen very fast, e.g. due to a
fast run-up or run-down Operation. An instability during such an Operation
may lead to a catastrophic failure of a machine.

The basic idea behind the proposed control algorithm is to use the linearity
between the cross-coupling force and the displacement, that is

For any matrix N, we can also write

fn(0 = X ( t ) n

since

Xl

Xl

Xn_

~xT 0 • • • 0"
0 xT • • • 0

0 0 •• xT_

Hl"

n2

with n^ as the row vectors of N. If some parameters n^ are equal to other
parameters riß or equal to zero the size of the matrix X (t) can be reduced.
For our Special case of the rigid rotor with three independent parameters (see
equ. (4.5)),

VA

0

*B(0
0
0

n2

«3

holds.
The goal is to calculate a parameter vector ftf which is the best estimate

based on measurements of X (t) and f„ (t) within the time interval t > 0;

||f„(t)-X(t)ftt|l ^ llfn(0-X(0nll forallneR" .

The properties of the used norm ||.|| define what is meant by "best estimate".
If the Square root of an inner product ||x|| = A/(X,X) is used as a norm (see
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definition A.3 in the appendix), we can apply the projection theorem (see
theorem A.4) to calculate the "best estimate" flf of n. The Special inner product

f
s=0

finally leads to the algorithm as described by Slotine and Lee [SL91], that is

xT(0(f„(0-x(0fl(0)

1

(6.2)

(6.3)

For a more detailed discussion, see section A.5 where the discrete-time equiv-
alent is described. Instead of -fit, which has been the best estimate of the con-
stant parameter vector n based on the measurements from 0 to t, we now use
n (t). This indicates that the actual parameter vector n (t) may change with
time and n (£) is now an estimate of this parameter vector, but not necessarily
the "besf'estimate, because we assumed a constant parameter vector n in the
derivation of the algorithm. The actual quality of the estimate is determined
by the behavior of n (t) and the forgetting factor A (t).

Slotine and Lee suggest a time varying forgetting factor1

Unfortunately, Slotine and Lee do not specify the appropriate norm for the
algorithm. A quite simple approach is to use the induced 1-norm ||
that is

Pn • • • Pin

Pnl • • • Vnn
= max (coiumn sum).

The forgetting factor A (1) is quickly disposing old data for fast changes in
the System Output (indicated by a small ||P (t) ||) and slowly for little changes
in the System Output. Ao represents the maximum forgetting rate and KQ the
upper bound of ||P (t) \\.

1 The used norm ||P (t) || is a different norm than for deriving equation (6.2), because it is not
a function norm but a norm of the matrix P (t) at the time t.
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6.4. Reference Force Concept

67

Figure 6.5.: Reference force transfer function

In the preceding section, the on-line estimation algorithm for n has been de-
rived assuming that the cross-coupling forces in can be measured. Since this
is not the case, the negative magnetic bearing forces—calculated with the as-
sumption that TMB is equal to zero—are used as reference forces instead of the
actual cross-coupling forces, that is

£re/ (0 := -K;- ix (t) - Ks xb (t) .

Assuming that \ = 0 and r = 0, equation (5.1) is written as

ix(z) = -R(z)xb(z)+in(z)

and the reference force vector is given by

f ref (z) = K,- R (z) xb (z) - K,- in (z) - Ks xh (z) .

(6.4)

(6.5)

This relationship is depicted in figure 6.5. The last term Ksxb in this expression
is not really necessary since it does not contribute to the cross-coupling param-
eters but simplifies the input-output relationship between cross-coupling and
reference force.

The reason for the choice of the reference force is quite obvious. A "perfect
Controller" would compensate all forces acting on the rotor. With the assump-
tion that the magnetic bearing force and the cross-coupling force are the only
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forces acting on the rotor, the equation of motion is

Mbxb = inb (t) + im (0 •

A perfect Controller would make

im (0 = -U (0

and, with the additional assumption TMB — ®> w e g e t

iref (t) = inb (0 •

Of course, the Controller is not perfect (if it were, no additional cross-coupling
control would be needed). Further, additional forces act on the rotor, and

> 0- So, instead of a perfect Controller, we demand that

Iref (?) ~ Kb (z)

in the relevant frequency ränge where

inb(z) = Z(inb(kTs)) .

We consider three inputs into the System for the analysis of the errors in the
reference force. First, the cross-coupling force inb (t). Second, some additional
external force ib (t). And third, the cross-coupling control current i„ (z). Be-
cause inb (t) and ib (t) are not discrete-time input Signals, the relationship be-
tween inb (t), ib (t), and lref (z) cannot exactly be described with a z-transfer
matrix. So we use the following approximations. For the sake of simplicity, we
define

Gx/f (s) = [s2Mb + sGb - Kf/X (s)]

with

Gz/i (s) = G x / / (s) Kf/i (s) and Gx/i (z) = Gf/i (z) Kf/i (z) .

Nb is not included in Gx/i (z) and Gx/f (z) because fnb is regarded as an
"external" force. Written in the frequency domain, the reference force is ap-
proximately

lef (Z) = Tref (z) (?„fc (z) + h («)) + (T„/ (z) Kf/i (z) - K,) in (z)
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where the transfer matrix
- lTref (z) := (K,R (z) - Ks) (I + Gx/i (z) R (z))'1 Gx/f (z) .

We can rearrange this as the sum of the actual cross-coupling force and the
reference force error

iref (z) = in (z) + eref (z)

where

eref (z) ^ (T re / (z) - I) inb (z) transfer error
+ Tref (z) lb (z) external force error . (6.6)
+ (Trey (z) Ky/,- (z) — K,-) in (z) compensation error

6.4.1. Compensation Current and Reference Position
Filtering

F,

m - R <-•

+ h

A very simple way to reduce the compensation and the transfer error from
equation (6.6) is to use a slightly modified Version of equation (6.5),

i„f (z) = F ; 1 (Z) [K,R (Z) xb (z) - F,- (z) in (z) - Ks xb (z)]

where the compensation current filter2

F / ( z ) :=T r e / ( z )K / / / ( z ) (6.7)

2 The product of i„ and K, is now included in the filter F,.
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and the inverse position filter

F*"1 (*) := T;e} co • (6-8)
Usually Tref (z) is not invertible. So, instead of applying F"1 (z) on the refer-
ence force, we apply Tx (z) on the measured rotor position

xre/ (z) = Fx (z) xb (z)

for the use in the estimation algorithm; this relationship is depicted in fig-
ure 6.6. With the usage of the two filters, the errors in the on-line estimation
algorithm are reduced, but this causes additional computation load.

6.5. Adaptive Cross-Coupling Control (ACCC)

The concept of the adaptive cross-coupling control is very simple. With the
estimate of the cross-coupling matrix Nb, a compensating cross-coupling force
is applied to the rotor. The additional cross-coupling control current is

i„ = K^Nj, xb .

The combination of the on-line estimation and the additional cross-coupling
control is called "Adaptive Cross-Coupling Control" (ACCC). The resulting
reference force is

t„f (z) = (K,R (z) - Nb - Ks) xb (z) .

For the continuous-time controlled simple model described by equation
(5.7), the resulting cross-coupling stiffness matrix becomes

Nres = Nfc - Nb .

This is just an approximation for the complex model with discrete-time con-
trol.

6.6. 2DoF Model with Adaptive Cross-Coupling
Control

First the 2DoF case of the simple model is considered, to get some basic under-
standing of the adaptive control algorithm. The 2DoF case is very similar to
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the 4DoF case with a Single unknown parameter, which has been investigated
by the author et al. in [HSS02, HirO3b].

For a 2DoF model described by equation (5.8), we can use the stability anal-
ysis described in section 6.2 to get an analytical stability limit of the System.
With cox = coy = CÜQ and £x = £y = £, we can assume that the unstable orbit of
the autonomous System is a forward circular whirl with the angular frequency
CÜQ, that is

[coso^! . f—sina;ofl
X c = £ . U Xc = £CÜ0\ " .

[srnwo^J L coswo^ J
Inserting this trajectory into the energy equation (6.1) yields instability if

9 n
E — -£CÜQ 2£,LÜQ + £(VQ — > 0 ,

i.e. the System is unstable for

n > 2£cvlm = 2£k = ncrit . (6.9)

Although we have derived this relationship by assuming a specific motion tra-
jectory of the System, the difference between this expression and the numeri-
cally calculated stability limit has turned out of the same order of magnitude
as the numerical accuracy.

For the parameter estimation algorithm, we have to write the cross-coupling
force

f (t) - -

in the form

Inserting this into the estimation algorithm, the parameter vector n degrades
to a scalar n, the signal matrix X (t) degrades to a vector, and the gain matrix P
degrades to a scalar. The on-line parameter estimation algorithm for the 2DoF
model according to equation (6.2) and (6.3) is

±n (t) = p(t)- frefx (t) yc (t) + n (t) y2
c (t) + frefy (t) xc (t) - n (t) x2

c (t)

d
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with the forgetting factor

and the reference force
r' xc + cxc-nyc

CJPP — ks)yc + ,

6.7. Simulation Results 2DoF Model

First, four parameters have to be chosen. The initial value onn(f) is set to zero,
since we have no a^priori knowledge of the parameter n(t). The least-squares
estimator can be interpreted in a Kaiman filter framework, with p (t) as the
estimation variance (P (t) as the covariance matrix in the multi parameter
case) [Lju87, SL91]. When instability occurs, the difference between estimated
and actual parameter is larger than the critical value of n, that is

\n{t)-n(t)\>ncrit.

The gain p (£) should be high enough to cope with this Situation and should be
in the same order of magnitude than n*rit. So the upper bound KQ of p (t) is set
to n*it and the initial value of p (t) is also set to n* it. The chosen parameters

are

Ao = 100 Ko = (2£k)2 p (0) = Ko n (0) = 0 .

The simulations are carried out for a completely continuous System. In or-
der to realize the PD Controller, we "measure" the rotor velocity instead of
differentiating the measured position. Of course, this is only possible with ad-
ditional velocity sensors3 in a real application, but is easy to accomplish in
Simulation. The applied integration algorithm is a fixed step algorithm based
on an explicit Runge-Kutta (4,5) formula, the Dormand-Price pair. The name
of this algorithm is ode5 in Simulink®. The step size is set to 10 us.

3 The dynamic behavior of velocity sensors has to be very good, i.e. the relevant time con-
stants have to be much higher than the time constants of the System.
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6.7.1. Autonomous 2DoF System with Nonzero Initial
Conditions

The Simulation results for the 2DoF System with ACCC are plotted in fig-
ure 6.7. There is no external excitation in the System, the only source of Vibra-
tion is a nonzero initial condition of xc (0) = 0.1 um.

The applied cross-coupling parameter "(0/ncn, is plotted together with the
estimated parameter "(0/ncn, in figure 6.7a. The grey background indicates the
stable region. This means that the difference between n (t) and n (t) is smaller
than ncrit when n(t) is inside this region; then the System is stable in a quasi-
static sense. In figure 6.7b, the gain P(0/K0 is plotted. The division by KQ results
in a maximum value of P(0/K0 = 1. Additionally to the gain, the ratio of the
estimated parameter to the applied parameter H^/nit) and the stable region
for this ratio is included in the figure.

In figure 6.7c, the first element of the reference force vector frejr (t) and of the
actual cross-coupling force in (t) can bee seen. The grey region in this figure
is magnified and shown in figure 6.7d. The rotor position itself is not drawn,
but the qualitative behavior can also be seen in the reference force.

The applied cross-coupling parameter n (t) is increased from zero to a value
of about four times the critical value ncrjt. In the beginning (t < 0.11 s), the es-
timated parameter n (t) does not follow the applied parameter n (t) (fig. 6.7a),
but as soon as an unstable whirl develops, the estimation Starts and n (t)
moves inside the stable region. As the unstable whirl disappears, the estima-
tion stops and Starts again when the unstable whirl reappears.

The behavior of the gain p (t) is interesting. As long as there is no unstable
whirl, the gain stays at its upper bound (fig. 6.7b); the estimation algorithm
is not persistently excited. As the unstable whirl and with it the estimation
Starts, the gain p (t) decreases, the estimation algorithm is persistently excited,
and the forgetting rate is increased, as new Information becomes available.

In figure 6.7c and figure 6.7d, the reference force and the cross-coupling
force are plotted. It is astonishing how small the difference is. There is only
a little phase lag between the actual and the reference force. In order to see
the reason for the small referertce force error, we loök at the different contri-
butions to the error according to equation (6.6). With the transfer functions
of equation (6.6), we are able to calculate the transfer error from the force in

and the compensation error from the current i„; there is no external force and
no corresponding error. These errors together with the actual cross-coupling
force f„ (t) are shown in figure 6.8. Since the System is continuous, we can
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Figure 6.7.: The adaptive control for the 2DoF System with nonzero initial conditions
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Figure 6.8.: The various errors included in the reference force

sum up the Signals from figure 6.8 to get exactly the reference force frey (t).
It is surprising that the transfer error associated with the difference between

Tref (s) and the identity matrix is rather high. The compensation error (asso-
ciated with the difference between the cross-coupling control force and its
backlash on the reference force) partially compensates the transfer error.

6.7.2. 2DoF System with Noise Excitation

In the second Simulation case, we set the initial conditions to zero and add
white noise with a Standard deviation of 1 um to the measured rotor position.
Now, the estimated parameter n (t) follows the applied value more closely
(fig. 6.9a) and the gain p (t) is much lower (fig. 6.9b) which indicates high
persistent excitation. In figure 6.9c the rotor position xc and in 6.9d the control
current ix are plotted.

A comparison between the reference force and the actual cross-coupling
force would not be very useful, because the reference force is too noisy for
interpretation. In figure 6.10, the same Simulation is carried out as before, but
this time the maximum forgetting rate Ao is set ten times higher, i.e. Ao =
1000. The estimation still works well, but we see that the gain p (t) is now
higher than before and the estimated parameter n (t) is shakier. The rotor
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Figure 6.9.: The adaptive control for the 2DoF System with measurement noise and maximum
forgetting rate Ao = 100
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Figure 6.10.: The adaptive control for the 2DoF System with measurement noise and maxi-
mum forgetting rate Ao = 1000

displacement (not shown) is similar to the version with Ao = 100, but the
amplitude is lower. However, for a higher measurement noise level, the high
forgetting rate will lead to a very high Variation of the estimated parameter.

In table 6.1, the results of six Simulation runs with different values for n (t)
and Ao are combined. Contrary to the earlier Simulation results, where the
parameter n (t) Starts at zero and increases to a final value, the value of n (t)
is kept constant for this simulations to ensure a better comparability.

Table 6.1.: Comparison of different parameters for the 2DoF Simulation model

ACCC No ACCC

'ncrit A0 stnd (xc) stnd (
um A

stnd (xc) stnd (ix)
um A

0
0.99
4
4

100
100
100

1000

0.055
0.084
0.543
0.286

0.0255
0.0268
0.126
0.111

0.055 0.0255
0.301 0.0281

unstable
unstable
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It becomes clear that even when there is no cross-coupling excitation (i.e.
n(t) = 0 ) the ACCC does not degrade Performance significantly. For a value
of n close to the critical value ncrjt, the ACCC already reduces the rotor vibra-
tions compared to the Situation without adaptive cross-coupling control.

6.7.3. 2DoF System with Unbalance Excitation

As demonstrated in subsection 6.7.2, noise input does not degrade the per-
formance of the adaptive control algorithm. A second important class of dis-
turbances beside noise are harmonic disturbances. Especially mass unbalance
excitation, which is a rotational speed synchronous harmonic excitation, is
very important in rotor dynamics.

Slow Estimator Oscillations

The Simulation results for the 2DoF model with adaptive control and unbal-
ance excitation are shown in figure 6.11. The parameter values for the un-
balance excitation are O = 2094 rad/s and e = 1.58 um, which corresponds
to a rotational speed of 20000 r/min, an unbalance force amplitude of 200 N,
and a center of gravity velocity of 3.31 mm/s. The estimated parameter n (t)
shows now an oscillatory behavior. This is due to the fact that the unbalance
excitation leads to an external error in the reference force (see equation (6.6)),
which is misinterpreted as a higher cross-coupling parameter than the actually
applied n (t). The difference between \n (t) — n (t)\ is higher than ncnt (

n/ncrit

is outside the stable region in figure 6.11a) and the System is unstable in a
quasi-static sense. With this, an unstable whirl develops (as can be seen in
the peaks of the rotor position in figure 6.11c). As the unstable whirl increases,
the cross-coupling force vector in (t) also increases in magnitude and the exter-
nal force error—which is constant—gets smaller in comparison to the actual
cross-coupling force. With that, the estimation gets better and the System is
stabilized again.

The gain p (t) is much lower than in the simulations before (fig. 6.11b),
which also results in a higher forgetting rate. The position xc and the control
current ix are plotted in figures 6.11c and 6.1 Id. The horizontal lines indi-
cate the amplitudes of xc and ix without adaptive control and cross-coupling
excitation (n (t) = 0). The adaptive control in conjunction with unbalance ex-
citation leads to a very high Vibration level of the rotor position as well as of
the control current.
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Figure 6.11.: The adaptive control for the 2DoF System with unbalance excitation
O = 2094 rad/s, e = 1.58 ]xm
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We note that the oscillation frequency of the estimated parameter n (t) is
not directly related to the rotational speed and the frequency of the unbalance
excitation. Of course, there is a relationship, but the oscillation frequency of
n (t) is not a multitude of the rotational speed. The influence of the unbalance
excitation on the estimation algorithm will be discussed in section 6.8.

The parameters Ao and Ko = p (0) have an important influence on the os-
cillation frequency of n (£). This is shown in figures 6.12 and 6.13 where Ao is
set to Ao = 10 and the upper bound of p (t) is set to -Ko = n ^ / 1 0 0 respec-
tively. Both parameter changes have a similar effect; the oscillation frequency
of n (t) is decreased. The gain in 6.12b is very low while in 6.13b it is at its
upper bound. The difference between figure 6.12b and figure 6.13b may seem
very striking, but in absolute numbers p (t) and A (t) are in the same order of
magnitude for both cases, only the qualitative course is different.

So far we have seen that the estimated parameter n (t) oscillates and the
parameters of the estimation algorithm influence the oscillation. The oscilla-
tion frequency is low compared to the rotational frequency. A typical example
is shown in figure 6.14, together with the discrete Fourier transform of the
estimated parameter and the rotor position. The time interval of one second
is taken for the DFT, so that the frequency resolution is 1 Hz. The signal is
multiplied with a Hanning window divided by the mean value of the win-
dow. This normation to a window mean value of one keeps the peak value of
a frequency spike close to the real value of the corresponding Fourier coeffi-
cient, while the "energy" of the spike is higher than the energy of the actual
frequency, since the spike is broader.4

The spectrum of n(t) — n (t) is shown in figure 6.14b. The first harmonic of
n (t) is at 24 Hz and we can see the next three harmonics in the figure. Above
the rotational frequency of 433 Hz we see some small peaks. The natural fre-
quency of the System cvo = 500.8 rad/s = 79.71 Hz does not appear at all. In
figure 6.14d, the harmonics of the estimator oscillations appear as sidebands
of the natural frequency, which is the peak at 80 Hz. Of course, the rotational
frequency also appears in the rotor position signal.

4 Usually window functions are defined such that the area under their Fourier transform is
one. A multiplication with a window function in the time domain broadens and decreases
peaks in the frequency domain; the energy content of the peak is preserved. The rectangular
window is an exception.
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Figure 6.12.: The adaptive control for the 2DoF System with unbalance excitation
fl = 2094 rad/s, e = 1.58 >im, and Ao = 10
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Figure 6.13.: The adaptive control for the 2DoF System with unbalance excitation
fl = 2094 rad/s, e = 1.58 \im, and Ko = (2£fc)2 /100
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Figure 6.14.: The adaptive control for the 2DoF System with unbalance excitation O = 433 Hz,
e = 0.94 um
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Figure 6.15.: The adaptive control for the 2DoF System with unbalance excitation Cl = 200 Hz,
e = 4.4 um
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Fast Estimator Oscillations
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Figure 6.16.: The adaptive control for the 2DoF system with unbalance excitation Ci = OÜQ,
e = 27.7 jun

For a lower rotational speed of 200 Hz, a quite different behavior can be ob-
served, as shown in figure 6.15. The "slow oscillation" of n (t) rapidly wears
off and only a very fast oscillation remains. The DFT shows that the frequency
of this oscillation is the rotational frequency plus the natural frequency of the
system. This oscillation is also harmonic since no high-orders are present. The
mean value of the estimated parameter is approximately n + ncrit. In the rotor
oscillations, we have only a component with the natural frequency and a com-
ponent with the rotational frequency. The amplitude of the rotor Vibration is
higher than for the case n = 0, which is marked by the horizontal lines in
figure 6.15c.

When the rotational speed is further decreased to match the natural fre-
quency an interesting effect is recognized (see fig. 6.16). After all transients
have decayed, the high frequency oscillation also disappears and the esti-
mated cross-coupling parameter n is n + ncrit. Looking at the rotor Vibration,
we see that the amplitude is reduced dramatically, even compared to the Sys-
tem without cross-coupling excitations, which is marked by the horizontal
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Figure 6.17.: Rotor orbits for the simulations in the figures 6.14, 6.15, and 6.16

lines again. An explanation for this effect can only be found by looking at the
actual rotor orbits given in figure 6.17. It only appears that the rotor orbit is
smaller than the orbit without cross-coupling excitation, which is drawn as a
dashed circle. The orbit itself has degraded to a line, and the amplitude of the
x coordinate is a projection of this line on the x-axis. The actual angle between
the "orbit" and the coordinate axes depends on the initial conditions. When
the rotational speed is lower than the natural frequency this phenomenon
disappears and the Situation is similar as in figure 6.15.

Waterfall plots

In order to investigate the occurrence of fast or slow oscillations, the rotational
frequency is varied from 0.5 CÜQ to 6 CÜQ, and the DFTs oin — n and xc are car-
ried out. The results are plotted in a so-called "waterfall-diagram". To reduce
the influence of transients, the simulations are carried out for 3 s; the DFT is
taken from the last 2.62 s which results in a frequency resolution of 0.38 Hz.
The unbalance amplitude is chosen in a way that the rotor Vibration ampli-
tude would be 10 um in the case n = 0 in the whole rotational speed ränge.
The applied parameter n is kept constant at a value of n = 4 ncnf. Additionally
to the DFT results, the lines for the natural frequency COQ and the rotational
frequency O are plotted in figure 6.18.

We can see in figure 6.18a that the low frequency oscillation of the estimated
value n (t) only appear for higher values of O, whereas the high frequency
oscillations appear in the whole ränge of Q and have the frequency O + CÜQ.

The waterf all plot of the rotor vibrations is shown in figure 6.18b. The oscil-
lations with the natural frequency exist for the whole ränge of O. As soon as
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Figure 6.18.: Waterfall plots for a Variation of the rotational frequency fi
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the low frequency estimator oscillations start, the sidebands of the natural fre-
quency oscillations appear. Although the amplitude of the speed synchronous
oscillations with the frequency O should be constant, however, the peaks in
figure 6.18b are not constant. A reason for that is mainly the limited frequency
resolution of the DFL

Finally, we should note that, for different parameters or a discrete version of
the System, the waterfall plots may be very different from the plots as shown
here.

6.8. Analysis of the 2DoF System with Unbalance
Excitation

6.8.1. Analytic Solution of the On-line Estimator for a
Constant Whirl Radius

Finding an analytic solution for the 2DoF model with adaptive control and
unbalance excitation is probably impossible. However, if we only investigate
the estimation algorithm without the adaptive control, and if we assume a
circular whirl motion with constant radius X, i.e.

cos nti

and furthermore a constant circulating reference force with an amplitude F
and a phase lag <p between the reference force and the rotor displacements,
i.e.

frefx
=

then a solution can be found. The above assumptions are valid for an unbal-
ance excited stable rotor when all transients have decayed.

The solution of the differential equations for

are
Ko

V (0 =
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It is interesting that the frequency O does not appear in this solution. The final
value of n (t) then is

Km ( 1 ( 0 - ^ . (MO)

This result is exactly the perpendicular component of the reference force vec-
tor iret on the rotor position vector x. Since irej and x rotate with the same
angular speed around the origin, the perpendicular component of fref on x
is constant and the estimated parameter n (t) approaches a steady value. The
speed of convergence cannot be expressed by such a simple equation. How-
ever, at the initial time t = 0 the convergence speed is

For t > 0, Ao also influences the convergence speed.

6.8.2. Prediction of Estimator Oscillations

The obvious result of equation (6.10) for the final value of n (t) leads to a
prediction method of estimator oscillations in the adaptive control case. If we
assume that the only external excitations are the unbalance forces and the
System is stable, we can assume that a steady State solution of x will be a
harmonic oscillation with the same frequency O as the frequency of iu\,.

The reference force in the 2DoF case is

f...r... (c\~\

f \ ~ [
j rcj x \~ / I

frefy (s)\ \$c (s)J
~\

[~n %C (s)\

For the sake of convenience, we will use a complex notation (see section A.1.1)

*c(t)+jyc(t)

instead of the displacement vector x. The complex cross-coupling force is then
written in the form

fnx+jfny=jn (xc + jyc)
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and the complex reference force is

frefx (0 + ; frefy (0 = (kPP ~ *s + k{pD jd + jü) (xc (t) + jyc (t)) .

From equation (6.10), we know that n (t) converges to the orthogonal part of
i ref on x divided by the length of x. In complex notation, this can be written
as

T ~ / i \ T n / frefx i Jjrefy \*J
hm n (t) = hm Re . / . . , , . ,.^

if limt^oon (f) exists. By canceling (xc + jyc) we get a complex equation for
the final value limf_*oo n (t) oin(t)

= Re f )
; /

which obviously has the solution limf_̂ oo n(t) = oo as long as

R e

This means that for the proposed adaptive control algorithm there is no steady
State solution for n(t) under the assumption of harmonic rotor oscillations.

When we use the compensation current and the reference position filters
as described in subsection 6.4.1 the Situation is different. For the 2DoF model
the current filter Ff (s) (equation (6.7)) and the position filter F* (s) (equation
(6.8)) are diagonal transfer matrices, that is 5

Ff(s) =
'qFi (s) 0

0 kiFt (s)\
and Fx (s) =

Fx (s) 0
0 Fx(s)\ '

we get the following equation for the limit value of the parameter estimate;

_ Uvn P Q fkjpp -ks + kjpD / n + Fj (/Q); n (t) \
li V

This can be solved for limf_̂ oo n(t) and the result is

pp + kipc jn.-ks'
Re

lim n (t) =
Re f 1 - MM.)

(6.11)

5 The current coefficient fc,- is included in the matrix F,- to be compatible with the definition
given by equation (6.7).
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We note that neither the rotor Vibration amplitude nor the unbalance ampli-
tude influences this solution. There is no solution for F, (jfl) = Fx (jCl). It is
possible, however, to use F, (s) or F* (s) alone. F, and ¥x are chosen according
to equation (6.7) and (6.8), thus F,- (s) and Fx (s) are given by

r / \ r / \ T ( \ kiPP ~ ks + kiP£)S
F; (S) = Fx (S) = Tref (Sj = -= —. ; —

1 v ' K J efKJ s2m + kipp -ks + kipDs
s2 + IDCOQS + tüfi

(6.12)

The limit value of the parameter estimate given by equation (6.11), when ei-
ther F,- or ¥x is used, is plotted in figure 6.19a together with the results for
in = 0 (no adaptive control). If there is no adaptive control the usage of Fx

does not change the limit value of n (t); the curve in figure 6.19a for i„ = 0 is
välid with and without Fx. Both filters are defined by equation (6.12).

Additional to the results for the continuous-time 2DoF, the results for a
discrete-time PD Controller are shown in figure 6.19b. Although we have not
described the discrete PD Controller for the 2DoF case, these results are impor-
tant, since they are significantly different from the continuous PD Controller
results. Moreover, they are also important for the 4DoF case. Similar results
have been found for the discrete-time controlled 2DoF System in [HirO3a],

10

-5

• filter
-• ™ • = f i l t er

ln —

F,
F*
0

10

K

'S

-5

• filter F,
filter ¥x

in = 0 •
i„ = 0 and Tx

0 2

(a) continuous-time (b) discrete-time

Figure 6.19.: Steady State value of n in the case of unbalance excitation
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with the additional assumption that the stable rotor oscillations with cross-
coupling are similar to the oscillations without cross-coupling.

When the predicted limit value of limf_>Oow(0 in figure 6.19 is outside
the stable region, that is llim^oon (t) —n(t)\ > ncrit, an oscillatory behav-
ior in the estimated parameter n (t) like in section 6.7.3 can be expected. If
|limt^oon(t) —n(t)\ < ncrn, there should be no oscillatory behavior, because
the unbalance excitation drives the estimated value n (t) into the stable region.

Three simulations are carried out to clarify the meaning of the results plot-
ted in figure 6.19. Figure 6.20 shows the Simulation result for the System with
compensation current filter F„ when we choose the applied cross-coupling in-
tensity n (t) to go exactly to the predicted value of limf_K» n (t) = 3.367ncnt

for O = 2COQ. We see that the "prediction" is excellent, as n (t) converges to the
exact value of n (t). Because the System is stabilized (n(t) — n(t) = 0), the ro-
tor Vibration has the same amplitude as it would have without cross-coupling
excitation, which is indicated by the two horizontal lines.

After 0.5 s, the applied parameter n (t) jumps back to zero. The estimated
parameter n (t) follows the applied parameter; the estimation is still working.
After the jump, we have a high frequency oscillation of the estimated parame-

0

- 1

• n (t) /ncrit

• « (0 /»cru
I '- 1 stable region

0 0.2 0.4 0.6
t in s

0.8

(a) estimated n and applied n parameter

0.4 0.6
t in s

(b) rotor position xc

Figure 6.20.: The adaptive control with compensation current filter F, (s) for the 2DoF system
with unbalance excitation O = 2co0
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Figure 6.21.: The adaptive control without filters for the 2DoF System with unbalance excita-
tion Q = 2O;Q
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Figure 6.22.: The adaptive control with position filter Fx (s) for the 2DoF System with unbal-
ance excitation fl = 2cv0
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ter n (t), similar to figure 6.15. This is not a result of the usage of the filter, but
a result of the chosen parameter set.

In figure 6.21, the same Simulation is carried out without any filter. Com-
pared to the Simulation with filter F, (s), the estimated parameter always os-
cillates with a high frequency around the value n (t) + ncnf. The jump itself
induces a low frequency oscillation of n (t) with a higher amplitude than be-
fore, but it decays quickly.

Figure 6.22, shows an example for the usage of the position filter Fx (s).
All parameters are the same as before, only the maximum value of the ap-
plied cross-coupling stiffness is now 6ncnf. We have a similar behavior as in
figure 6.20 before the jump, while the Situation after the jump looks like in
figure 6.21.

6.9. Simulation Results 4DoF System

For the Simulation of the 4DoF case, we use the nonlinear AMB model includ-
ing amplifier Saturation (see section 3.2) and the discrete-time PID Controller
(see section 5.4). This has an important consequence; the rotor position as
well as the magnetic bearing forces are limited, and this may result in a sys-
tem where the center position of the rotor is locally asymptotically stable but
not globally, since the magnetic bearing force is not sufficient to stabilize large
orbits.

For the on-line parameter estimation algorithm, a discrete-time Version has
to be found in order to be "compatible" with the PID Controller. A possibility
would be to use the discrete least-squares algorithm described in section A.5.2.
However, it is computationally easier to use the forward difference quotient
to get a simple discrete-time approximation of the continuous-time algorithm
given by equations (6.2) and (6.3). The resulting estimation algorithm is

n {k + 1) = n (k) + TSV (k) XT (kTs) (fn (kTs) - X (kT8) n (k))

P (fc + 1) = P (k) (1+A {kTs) Ts) - TSP (k) XT {kTs) X {kTs) P {k) .

No matrix inversion is needed in contrast to the discrete least-squares algo-
rithm given by equations (A.3) and (A.4). The sample time for the estimation
algorithm is set to the same value as the sample time for the PID algorithm.

As in section 6.7, we have to choose the parameters of the estimator. For
equal parameter values n\ to n^, the System gets unstable approximately for
m — n.2 = 7*3 > 3 MN/m. Analogous to section 6.7 we choose the upper



6. ADAPTIVE CROSS-COUPLING CONTROL 95

bound KQ of the norm of the gain matrix P (t) to be (3 MN/m)2 and the
initial value of P (t) is set to I (3 MN/m) . The chosen parameters are:

Ao = 100 Ko = (3 MN/m)2 P (0) = I (3 MN/m)2 n (0) = 0 .

The used integration algorithm is a fixed step algorithm based on an ex-
plicit Runge-Kutta (4,5) formula, the Dormand-Price pair. The name of this
algorithm is ode5 in Simulink®. The step size is 10 ps.

6.9.1. Autonomous 4DoF System with Nonzero Initial
Conditions

The Simulation results for the autonomous System with nonzero initial condi-
tions are plotted in figure 6.23. The behavior of the System is quite similar to
the 2DoF Model in figure 6.7. A difference in the graphical representation is
that it is not possible to plot the stability limit of the system without adaptive
control and the stable region of the estimated parameters, since the stability
depends on three independent parameters.

The applied and the estimated parameters in figure 6.23a are not marked
separately. However, they can be recognized, by their different behavior. At
first the parameter ni (t) increases from 0 to 20 MN/m, then ti\ (t) increases
from 0 to 15 MN/m, and finally n^ (t) increases from 0 to 10 MN/m. It takes
some time until the changes in the applied parameters affect the estimated
parameters. It is interesting that fi\ and ni have approximately the same value,
as long as the applied parameter n\ (t) Starts to rise and with it the estimated
parameter n\. The norm of the gain matrix ||P(f)|| is exceeding its "upper
bound" KQ for a short time interval. An explanation for this phenomenon is
the discrete-time approximation of the continuous-time estimation algorithm.

6.9.2. 4DoF System with Noise Excitation

Figure 6.24 shows the response of the system to white noise with a Standard
deviation of 1 um added to the measured rotor position. The Vibration of
the rotor position x&, shown in figure 6.24b, is quite high with a Standard
deviation of 2.589 um. This is mainly the result of the high noise amplification
of the PID Controller. The estimated parameters in figure 6.24a also show a
very shaky behavior, but the system is still stable.
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Figure 6.23.: The adaptive control for the 4DoF System with nonzero initial conditions



6. ADAPTIVE CROSS-COUPLING CONTROL 97

• — • — n\ and
«2 and «2

and

0.03

0.02

0.01

-0.01

0.2 0.4 0.6 0.8
t in s

-0.02
0 0.2 0.4 0.6 0.8

t in s

(a) estimated and applied parameters (b) rotor position x^

Figure 6.24.: The adaptive control for the 4DoF system with measurement noise

6.9.3. 4DoF System with Unbalance Excitation

Figure 6.25 shows the Simulation result for unbalance excitation with a ro-
tational speed of O = 2094 rad/s and an unbalance radius of e = 1 um. The
same unbalance excitation is applied to the rotor in figure 6.26 with additional
measurement noise with a Standard deviation of 2.589 um. The simulations
are carried out for a period of 3 s to observe the development of the unstable
whirls.

As in the 2DoF case, the estimated parameters «1,2,3 oscillate. They induce
an unstable whirl as they increase and they stabilize the System again as
they decrease. The oscillation frequency is much lower than in the 2DoF case,
which is not necessarily a result of the expansion to four degrees of freedom,
since several other parameters have changed too.

In the next four figures 6.27 to 6.30, we see Simulation results for two differ-
ent rotational speeds and two different applied cross-coupling parameters. In
figure 6.27 and figure 6.28, the rotor rotates with O = 90 Hz. Ko is set to

Ko = 1000 (3 MN/m)2

because, for the low rotational frequency, a higher KQ value is needed to keep
the rotor whirl magnitude inside the region where the maximum magnetic
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Figure 6.26.: The adaptive control for the 4DoF system with unbalance excitation
fi = 2094 rad/s, e = 1 um, and measurement noise



6. ADAPTIVE CROSS-COUPLING CONTROL 99

30

25

20

15

10

\ j \ A A A A A /

• — • — « i a n d n\

rii and «2
n3 and %

VW

OOHz

2.3 Hz

1 2
f in s

(a) estimated and applied parameters

50 100
Hz

(b) amplitude spectrum of (n2 —

12

10

8

-20

Q57Hz

. 933 H.:

Q90Hz

1 2
t in s

(c) rotor position x^

50 100
Hz

(d) amplitude spectrum of xA

150

150

Figure 6.27.: The adaptive control for the 4DoF system with unbalance excitation fi = 90 Hz,
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Figure 6.28.: The adaptive control for the 4DoF system with unbalance excitation fi = 90 Hz,
e = 21.7 um, na = 24 MN/m, and n2 — n3 = 0



6. ADAPTIVE CROSS-COUPLING CONTROL 101

bearing force is larger than the maximum cross-coupling force. The value of
the applied cross-coupling parameters is set to ri2 = 24 MN/m and n\ =
n3 = 0, and the result is depicted in figure 6.27. The resulting oscillation of
the estimated parameters (fig. 6.27a) is quite slow with a frequency of about
2.3 Hz. This is also visible in figure 6.27b, which shows the DFT of ni (t) —
ni. The DFT is calculated for the 3 s Simulation period so that the frequency
resolution is 0.33 Hz. A Hanning window, normed to a mean value of one, is
used to reduce leakage and transient effects. In the amplitude spectrum of the
rotor position %A, there are two peaks with 57 Hz and the rotational speed of
90 Hz. It is interesting that no mechanical natural frequency appears in the
rotor Vibration.

In figure 6.28, we see the Simulation results with the same parameters, ex-
cept that n\ is now set to 24 MN/m and n2 = «3 = 0. The 2.3 Hz oscillation
in the estimated parameters has vanished completely and there is a constant
offset between the estimated and the applied parameters superposed with a
small oscillation. The rotor Vibration in figure 6.28d is similar to the results as
obtained earlier, except that the first spike is at a higher frequency of 70.3 Hz.

Figures 6.29 and 6.30, show the Simulation results when the rotor rotates
with O = 2094 rad s'1 = 333.33 Hz. In figure 6.29, again n2 = 24 MN/m
and n\ — n^ = 0; and in figure 6.30, n\ = 24 MN/m and n2 = n$ = 0.
The results are quite different from each other. It is interesting that in both
cases the mechanical natural frequencies do not appear in the rotor Vibration
spectra.
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7. Unbalance Control

7.1. Introduction

Although in some applications Controllers are designed particularly with re-
gard to harmonic disturbances (e.g. mass unbalance excitation), this kind of
design is usually not called unbalance control. In this thesis, the term "un-
balance control" is reserved solely to any kind of control, which, based on
the knowledge of the mass unbalance excitation frequency (i.e. the rotational
speed), tries to influence the response to and only to the unbalance excita-
tion. There are three possible goals of unbalance control with active magnetic
bearings:

1. Displacement nulling, i.e. to achieve a rotation of the rotor around its
geometric center.

2. Force nulling, i.e. to achieve a rotation of the rotor around its inertial
axis through the center of gravity, also called "force free" rotation or
"adaptive balancing".

3. Current nulling, i.e. reduction of the AMB currents (sometimes referred
to as "force free" because the AMB forces are reduced substantially).

All three goals have been subject to extensive research. In early papers by
Haberman and Brunet [Hab84, HM84], current nulling is achieved with a sim-
ple notch filter centered at the rotationai frequency inside the Controller feed-
back loop. This rather simple approach may work well for a fixed rotational
speed. However, if the rotational frequency changes, the System gets unstable
for certain ranges of the speed of rotation [Kno91, Kno92a, Kno92b]. The other
two goals can not be achieved by such an approach.

In [BS83], Burrows and Sahinkaya develop an open-loop control scheme for
the displacement nulling of a flexible rotor. The basis of this approach is the
algebraic equation
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where yi is the vector of speed synchronous Fourier coefficients of the sys-
tem response, T is the System model matrix or System gain matrix for the
rotational speed O, üi is the vector of speed synchronous Fourier coefficients
of the unbalance control signal, and di is the vector of speed synchronous
Fourier coefficients of the free unbalance response. They use a least-squares
approach to calculate the optimal control vector which minimizes a cost func-
tion calculated from the rotor displacements. The least-squares approach is
needed, because the number of control force locations can be lower than the
number of measurement locations for the rotor displacements and thus T (O)
is not a Square matrix.

The optimal control vector is calculated from the free unbalance response
for any rotational frequency. The authors propose that the free unbalance re-
sponse could either be measured or calculated from an estimated mass unbal-
ance distribution, but they do not explain the exact procedure that is used in
the numerical simulations. However, there is no feedback of the actual rotor
displacements and the control scheme can be viewed as an open-loop scheme.
Still, the rotational frequency has to be known (measured) to calculate the op-
timal control vector. Another subject of their research is the sensitivity of the
optimum response and the Optimum force locations. Numerical Simulation
results are given to show the feasibility of the approach.

In [BS88], the same authors give experimental results for the control of syn-
chronous vibrations of a flexible rotor with the help of a magnetic bearing.
The used procedure is not explained in detail, but seems to be the same as
in [BSC89], where the calculation of the optimal control vector is expanded
to an adaptive calculation of a new control vector from an old control vector.
It seems that this adaptation is only carried out in a Single step and not pe-
riodically. Additional to the unbalance control, the System matrix T itself is
identified by applying test Signals and measuring the responses. The identi-
fied System parameters are used to calculate the optimal control vector. Again,
this control is viewed as open-loop control, but this is not thoroughly correct,
because the measured rotor vibrations are at least once fed back to the con-
trol vector calculation. Experimental results are given and the used test rig
is explained in detail. In [BSTS88, Bur91], the earlier results are resumed. In
these papers, it is described that an FFT (Fast Fourier Transform) is used to
calculate the speed synchronous components of the measured Signals, while
in the earlier papers they used the term "Fourier coefficients" which can be
calculated much easier. The adaptation of the control vector is carried out as
long as the rotor Vibration is larger than the desired limit or the rotational
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speed changes. Thus, the term open-loop control is only valid when the rotor
Vibration is inside these limits.

Knospe et al. have started their research at unbalance control in 1991 with
[KHS91b]. They compare current nulling with a notch filter with displacement
nulling by the open-loop control method from Burrows et al. and gave experi-
mental result for the open-loop control. Contrary to the approach by Burrows
et al. the optimal control vector is not calculated but manually adjusted for
the first critical speed. They describe the open-loop experimental results more
explicitly in [KHS91a] and the problems with the notch filter in [Kno91]. In
[HKS91], the same authors describe that the open-loop scheme can also be
used to compensate sensor run-outs at low frequencies and foundation vi-
brations (force nulling). Again the control vector is determined after several
minutes of manual adjustment. In [Kno92b, Kno92a], Knospe uses the struc-
tured singular value to study the stability and robustness of a 22 mass Station
model of a high speed compressor with a notch filter and an alternative filter
for current nulling included in the feedback loop. He draws the conclusion
that poor robustness and, in some cases, even nominal instability results due
to excessive phase lag below the notch center frequency; only open-loop con-
trol would not alter the stability properties of the nominal feedback Controller.
In [KHMA92], the authors use the open-loop scheme with manually tuned
control vectors to achieve, current nulling, force nulling, and displacement
nulling.

The first publication of this research group describing adaptive open-loop
control where the optimal control vector is actually calculated is [KHFW93]. The
authors suggest two methods to find an estimate of the System matrix T (O)
and the optimal control vector from the Fourier coefficients of the measured
rotor vibrations yi. The third method uses an off-line calculated estimate of
the System matrix T and the measured rotor vibrations to calculate the opti-
mal ronfrni \re>rtr\r All fhrpp mpfhnHs arp aHantivp mpfhnHs whirh nppH tViP

. r —.. ., ...-
measurement of the rotor vibrations at every control Update step. Thus, the
term open-loop control is not longer correct. The last one of the three control
methods is the most important one, since model on-line estimation of the the
other methods may lead to numerical problems.

This adaptive open-loop control scheme with an off-line calculated or es-
timated System matrix T is explained in detail in [KHFW94]. There, a set
of System matrices for different operational speeds are estimated and a lin-
ear Interpolation is used to calculate the System matrix T (O) for operational
speeds between the ones used for the model estimation. The authors also give
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criteria for the stability of the System with adaptive open-loop control. The
control scheme is applied on a test rig and 30 s run-ups from 1500 r/min
to 5000 r/min are carried out. The research of this group up to this point is
summarized in [KHFW95] and the most important version of the adaptive
open-loop control is called "recursive gain scheduled algorithm".

Then, the work of this group has concentrated on the robustness of the adap-
tive open-loop control. Various papers have emerged from this research, for
example [KTF95, KT96, KTF97, KT97a, KT97b, KTL97]. Only iwo more recent
papers are not focused on robustness. In [KFHW97], Knospe et al. describe
the implementation of the adaptive open-loop control scheme on a DSP and
in [BK00, BK01] Betschon et al. describe an alternative method for the calcula-
tion of the System matrix from off-line computed parameters which minimizes
the computational and memory requirements imposed on the hardware.

In 1980, Shaw [Sha80] independently develops the same adaptive open-
loop control scheme for the control of helicopter rotor blades at harmonics
of the rotor frequency such that unsteady airloads are canceled. In Shaw's
thesis, this control method is referred to as "higher harmonic control". It is
never viewed to be an open-loop control scheme but a discrete-time control
algorithm with Special blocks for the transition from discrete-time Fourier
coefficients to continuous-time Signals and vice versa. With the paradigm of
discrete-time control algorithms, all well established methods for discrete-time
Systems can be used and so the stability condition of the higher harmonic con-
trol algorithm is already described in [Sha80]. Shaw also suggests a Kaiman fil-
ter algorithm for estimating the System matrix T on-line during the harmonic
control Operation. To honor this first researcher the Shaw-Burrows-Knospe al-
gorithm is called "discrete harmonic control (DHC)" throughout this thesis.
It should be pointed out that the underlying Fourier coefficient calculation
process can be worked out in both discrete-time and continuous-time.

Shaw's work has ignited substantial research of harmonic disturbance com-
pensation in the control of helicopters. A good review of the developments
based on Shaws algorithm is given by Hall and Wereley in [HW89]. Hall and
Wereley show that the higher harmonic control can be viewed as a discrete-
time version of a continuous-time algorithm and that this continuous-time
version can be described as a classic linear time invariant System. For T = 1,
this algorithm represents a notch filter. Hall and Wereley State that by imple-
menting the DHC algorithm in continuous-time significant improvements in
gain and phase margins can be achieved. The continuous-time version of the
DHC algorithm is called continuous harmonic control (CHC) throughout this
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thesis.
The DHC algorithm can be used with discrete-time and continuous-time

time Systems; the only difference is in the calculation of the Fourier coeffi-
cients. The CHC algorithm is only described in continuous-time by Hall and
Wereley. A discrete-time version of the CHC can be found in a different field
of science, the adaptive signal filtering. Glover [Glo77] applies the so-called
adaptive noise cancelling to sinusoidal interferences. With the Special least-
mean-squares (LMS) algorithm for the filter weight adaptation procedure, the
adaptive noise cancelling filter is approximately a discrete-time linear time-
invariant System. In the book by Widrow and Stearns [WS85], the adaptive fil-
ter approach is used to build an unusual notch filter which offers easy control
of bandwidth, an infinite null, and the capability of adaptively tracking the
exact frequency and phase of the disturbance. This algorithm gives a discrete-
time version for the CHC and T = 1. The so-called filtered-x LMS algorithm
is also included in the book by Widrow and Stearns; this approach inspired
Na and Park [NP97] for their unbalance control algorithm for a SISO System.
It is similar to the discrete-time version of the CHC for a general System ma-
trix T, but the actual application is much more complicated. An interesting
review of some of these control concepts is given by Sievers and von Flotow
in [SF90, SF92].

Quite recently, Shi et al. have used the filtered-x LMS algorithm for dis-
placement and current nulling. They distinguish between a "direct method"
which is described in [SZL02a] and an "indirect method" which is described
in [SZL02b]. In the direct method the quantity to be minimized is measured
and the Output of the filtered-x LMS algorithm is used as a control input to
minimize this quantity. Therefore, it is almost identical to the CHC control.
However, the authors do not use the System model matrix T to acquire a sta-
ble and fast unbalance control algorithm, but instead they use a arbitrarily
chosen constant. In the indirect method a performance measure which is an
indirect function of the quantity to be minimized is used; this makes it easier
to apply the original filtered-x LMS by Widrow and Stearns to the unbalance
control problem. Both methods are summarized and experimental results are
given in [SZQ03].

Herzog et al. independently derive the continuous-time version of the CHC
in the often cited paper [HBGL96] and the earlier work [LH94], but they use
it only for current nulling and choose to name the algorithm "generalized
notch filter" which has led to many misunderstandings. Kugi et al. [KHS+98,
KHS+00] also use a similar control algorithm for the compensation of roll
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eccentricity in rolling mills. Kugi shows in [KugOl] that, if the System fulfills
certain conditions, no further Information about the plant is needed for the
algorithm to be stable.

There several other publications describing different types of unbalance con-
trol algorithms. A few of these papers are cited here, for example the works of
Beale et al. [BSLC92b, BSLC92a, SBLC94] describe an algorithm similar to the
DHC based on a synchronous energy calculation. Lum et al. [LCB96] and von
Löwis et al. [LR00] used an on-line identification of the location of the mass
center. Setiawan et al. discuss the compensation of both mass unbalance ex-
citation and sensor runout in [SMMS99, SM00, SMMOla, SMMOlc, SMMOlb,
SMM02].

7.2. Ideal Unbalance Control of a Single-DoF
Mass Rotor

For a better understanding of the three possible unbalance control goals, a
single-degree-of-freedom lumped mass rotor supported by an active magnetic
bearing is investigated. The rotor with mass m and displacement x is governed
by the following equation of motion

mX(t)=fMB(t)+fub(t)

with the magnetic bearing force /MB a n d the unbalance excitation force fu\,.
The magnetic bearing force can be described with the linear relationship

fm{t)=kiix{t)+ksx{t)

with the current ix, the current coefficient kj and the position coefficient ks.
The unbalance excitation is nurelv harmonic, i.e.

fub(t) = füb COS Clt,

which will result in a purely harmonic current, magnetic bearing force and
rotor position

x(t) = xcosClt + q>x

ix(t) =tx cos dt+ q>i

fm (t) = fm cos Cit + q>f .
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Table 7.1.: PD and unbalance control alghorithms

PD Control displ. null, current null, force null.

control law ix = —PJJX — Ppx ix = — *$

j- , 0
Jub

T 1 -*TT 0

In table 7.1, the control algorithms for a PD Controller and the three unbal-
ance control concepts are given together with the Solutions for displacement,
current and force. It should be pointed out that this control algorithms and
Solutions are only valid for the harmonic excitation and the corresponding
harmonic Solutions. The results are given in nondimensional parameters with
the following abbreviations

k:=(kiPP-ks) £:=

s s s
tü8:=\l— cc:=\T = — V '•= —

V m V k CÜQ cos

The parameter oc gives the ratio of the position coefficient ks to the resulting
"stiffness" k of the PD controlled magnetic bearing. A PD Controller with a
value of et = 1 is referred to as natural control in [STB93].

The amplitude response for x, ix, and /MB for all three control laws is shownin fiffure 7.1. Two n i r v e s arp o-ivpn for tVip PD rnntrnl V>r»tVi TAnfVi a Hamnintr<-> - - — . - _ o - — - _ - _ , . . — j o

ratio of £ = 0.1, the first one for a value of oc = 0.5 and the second one for
a value of oc = 1. The displacement, current, and force nulling laws are ideal
in this calculation, so that e.g. the displacement nulling does not appear in
the displacement amplitude response plot. A quasi static run-up curve would
look different though, because the unbalance amplitude is proportional to the
squared rotational speed.

Figure 7.1c shows that the current nulling also reduces the magnetic bear-
ing force dramatically, compared to the PD control. So the term "force free"
rotation is somewhat justifiable.
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7.3. Discrete Harmonie Control (DHC, Adaptive
Open-Loop Control)

7.3.1. Harmonie Response of a Linear Time Invariant System

Harmonie Response of a Continuous-Time System

One fact that makes the suppression of harmonic disturbances very easy is
that for a linear time invariant System the response to a harmonic excitation
can be computed from an algebraic equation. The relationship between the
Output y (t) of the System and the input u (t) of the System can be described
using a Laplace transfer matrix G (s). It is assumed that the disturbance d (t)
may be represented as acting on the Output. The resulting equation in the
Laplace domain is

y(s) = G(S)ü(s)

For a purely harmonic input u (t) with angular frequency O, that is

u (t) = üic cos dt + üis sin Clt,

and a purely harmonic disturbance d (t) on the Output, that is

d (t) = dic cos Cit + dis sin Qt,

the steady State response after all transients have decayed is given by

y (t) = y lc cos Clt + y l s sin Of.

The amplitude of the cosine and sine waves can be also viewed as Fourier
coefficients corresponding to the frequency O of a signal consisting of more
than one harmonic. The Fourier coefficients are combined to a vector yi =

[flc fisll a n c ^ t n e relationship between input and output can be described
by

=[Re(G(/n.))
L-Im(G(;O)) Re(G(;O))j lsl

or

y 1 =

The matrix T (O) is called "influence coefficient matrix".
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Harmonie Response of a Discrete-Time System

For discrete-time Systems, the equations for a harmonic input signals are very
similar to the continuous-time ones. For a discrete-time System with sample
time Ts and 2—transfer matrix G (z), the relationship between input and out-
put can be given as

y(z) = G(z)ü(z)

For a purely harmonic input

u (k) = üic cos O,Tsk + üis sin ClTsk

and corresponding disturbance d (k), the Output is

y (k) = y l c cos HTsk + yis sin ClTsk

where the vector of Fourier coefficients yi of the Output is related to the vector
of Fourier coefficients of input and disturbance by

= r Re (G (e^)) im (G (ß/^))j facl + frei _

Basically we have the same equation as in the continuous-time case

the only difference is the calculation of T (O).

7.3.2. Discrete Harmonic Control Algorithm (DHC)

It has been shown that the harmonic response of a linear time invariant system

y i = f (O) Ü! + dj . (7.1)

When T(O) is a Square matrix, an open-loop control law is given by the
optimal control vector üi/Opt

Ül,op( = -f-1 (O) d! .

Only the knowledge of the influence coefficient matrix T and the disturbance
vector di, but no feedback of measured quantities is needed. However, when
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Figure 7.2.: A continuous-time or discrete-time System prepared for discrete harmonic control

either the matrix T or the disturbance vector di is not exactly known or chang-
ing, yi will not be zero.

In order to develop a feedback Controller that eliminates the harmonic com-
ponents in y (t), the steady State equation (7.1) is expanded to a sequence of
steady states, i.e.

y i (f) = f (O) Ü! (i - 1) + dX (!) , (7.2)

where

u (t) = üic (z) cos nt + ü l s (z) sin Clt for iTh < t < (i + 1) Th

for continuous-time Systems and

u (k) = üic (i) cos ClTsk + üls (i) sin ClTsk for iTh < kTs < (z + 1) Th

for discrete-time Systems. What these equations stand for in an actual system
is depicted in figure 7.2. The underlying linear time invariant (LTI) System
can be discrete-time or continuous-time. From the output of the system y,
the Fourier coefficients are calculated in the block FC and sampled with a
sampling time T/,.1 The result is a sequence of Fourier coefficients yi (i). The
control vector u is calculated from the sequence of Fourier coefficients üi (i)
by a zero order hold block and a multiplication with cos Clt and sinOt or
cösOTgA: and sinOTsA: respectively. Equation (7.2) suggests that the system
reaches the steady State within the harmonic sampling time T/,. This quasi-
steady approach is only valid when T̂  is much larger than the typical settling
time of the system G and the sampling time Ts if applicable. It should be

1 The sampling procedure and Fourier calculation procedure are separated here, although
they could be lumped together.
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pointed out that in the literature equation (7.2) is usually written with yi (i)
and üi (i). This is not correct, because at the measurement time point zT/, we
measure the reaction of y to the last control value ü (i — 1).

The control algorithm proposed by Shaw [Sha80] can be written as

Ü! (i) = üi (i - 1) + ÄYl (i) . (7.3)

This is simply an integrating Controller with a gain matrix Ä. Since it is a dis-
crete control algorithm it is called discrete harmonic control (DHC) through-
out this thesis. Inserting the control law equation (7.3) into equation (7.2), the
System with discrete harmonic control can be described with the discrete dif-
ference equation

y i (f) = t üi (i - 1) + d! (0 . (7.4)

Again the literature is inconsistent in the usage of üi (i + 1), üi (i), üi (z — 1).
The important point is that üi (z) is calculated from the last control vector
üi (i — 1) and the actual measurement yi (z) and is applied immediately on the
System.

The discrete harmonic control (DHC) is a linear discrete-time control algo-
rithm with sample time T̂  and a Special measurement/sampling procedure to
generate the Fourier coefficients. In rotor dynamics literature, the term "adap-
tive open-loop control" is used for this kind of control, which is not a very
helpful paradigm, because it makes the analysis more complicated. The term
open-loop should point out that the discrete harmonic control does not influ-
ence the stability of the underlying control loop, but this is actually a side-
effect of the quasi-static assumption.

When the quasi-static assumption is valid, the System with discrete har-
XXLV-FXIA\_ V.VilLXWl ^ULACll lOlL ^ / ,1J l ö D L U U l C ; XX U 1 L U V7X LX V XX C1XX C l l l C l l V U l U C k ) U l X ~ | ~ £~%. JL

lie within the unit circle. A weaker condition is that the maximum Singular
value of I + ÄT is smaller than one,

The advantage is that the maximum Singular value of a matrix also gives an
induced matrix norm such that

xec«
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This implies that the maximum Singular value of I + ÄT can be interpreted
as the convergence speed of the algorithm. We should note that this induced
matrix norm is a "worst case" convergence speed.

If the System equation (7.4) is stable and the disturbance vector is constant

di (i) = di = const.

there exist final values of yi (i) and üi (i)

lim yi (i) = ( -T (Äf) - 1 Ä + i) d!

limüi(0 = - (Äf )~ 1 Ädi .
J—»00

For square matrices Ä and T, this simplifies to

lim yi (i) = 0 lim üi (z) = - f ~1d1 .

This result implies that regardless of the value of Ä the DHC controlled System
converges to y = 0, as long as the System is stable; the choice of Ä is only
relevant for the stability and the convergence speed, and the final value of y
is determined by the integrating action of the Controller.

If T is a square matrix, the Optimum choice for the matrix Ä (O) is

so that all eigenvalues of I + ÄT are zero and the DHC is a dead-beat control
which means that yi (/) is reduced in one discrete time step T), to zero.

For non-square T, a weighted pseudo-inverse can be used instead of the
inverse of T

where W is a weighting matrix. This approach is equivalent to applying the
DHC to a new System output ŷ  where

In this thesis, only square matrices T are considered, so the implications of a
non-square T are not described here, and the reader is referred to the literature
by Knospe et al. (e.g. [KHFW95]) and Burrows et al. (e.g. [BS83]).
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7.3.3. Calculation of Fourier Coefficients

The basic equation for calculating the Fourier coefficients of the measured
System Output y is simply an integration of the signal multiplied with a sine
and cosine wave of frequency O, i.e.

2 fiTh 2 f'Th
yic (0 = 7f / y (T) COS O T d r y l s (z) = — / y (r) sin O T d r .

T{ JiTh-Tj U JiTh-Ti
(7.5)

The integration time T, has to be an (approximate) integer multiple of the
period 27r/n. In DHC control, the integration time has to be smaller or equal
than the step time of the DHC control;

T(<Th.

It may be useful to choose the integration time T; significantly smaller than 7),
in order to minimize the effect of transients on the Fourier coefficients, since
they may violate the quasi-static assumption.

For an actual implementation in a discrete-time Controller environment, a
discrete-time version has to be used

2 iNk

yic (0 = TT E y (^Ts) cos nr s x

<w, (7.6)
yis (0 = TT E y (xT«)sin O 7 >

where

Nt := £ and Nh := ̂  .
•'s is

Additional to the conditions of the continuous-time case, the integration time
T- Viac tr> V»o an intoffor Tnnlfir>lo r>f tno camnlitid Kmo T. Thic rnnHifinn

O I I O J

violates the condition that the integration time should be an integer multiple
of the period 2^/n. Therefore, an error results in the Fourier coefficients. All
simulations in this thesis are carried out with the discrete-time version of the
Fourier coefficients calculation.

As a rough rule of thumb, the error of the Fourier coefficient in percent is the
ratio of the sample time Ts to the integration time T, in percent, as long as T, is
the nearest integer multiple of 2n/n. Of course, this is only valid for Ts <?C

 n/n.
Additional white noise with a low signal-to-noise ratio may increase the error
significantly.
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7.3.4. Application to a Magnetic Bearing System

The DHC can be used to achieve all three design goals: current, displacement,
or force nulling. The only difference is the measured quantity to be minimized
and the corresponding influence coefficient matrix. A problem in achieving
the force nulling goal arises from the fact that the magnetic bearing force can-
not be measured directly. Instead of measuring the force, it can be calculated
from the measured bearing current and rotor positions. Another way is to use
the current nulling approach and additionally compensate for the position
coefficient matrix as shown in [SivO2].

There are more or less two choices for the harmonic control input, namely
the additional magnetic bearing current vector ij, for harmonic control and
the additional rotor position vector x/,. There is a-priori no Special advantage
or disadvantage of one choice. However, if the DHC is used together with the
ACCC, the DHC control output should not interfere with the ACCC, which
is usually allowed by the choice of either i/, or x̂  (for details see chapter 8).
Another issue is that for one of the control input choices the elements of the
matrix Ä can be approximated by simple functions and thus computation time
and computation memory can be reduced.

For the practical implementation of the discrete harmonic control, the com-
putational load and the needed memory space of the DSP are limited. An
on-line calculation of the inverse influence coefficient matrix is usually too
time consuming and an off-line calculation and storing the values of Ä (O)
for a table of O-values needs much memory.

The first step to reduce the amount of necessary memory is to störe only the
upper half of Ä (O). When we use the following abbreviations

T = ,

we can use tne matrix in Version theorem A.2 in appendix A.I ror the caicuia-
tion of f - 1 . With A = Ä = f R + tjt^tj, we get

A - 1 ! ; ^ 1 A-!7 R J • (77)

So the inverse of T has the same structure as T itself. Since Ä should be an
approximation of f-1 we assume that

£'
AR
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The second step is to use the symmetry of G (z). If we neglect the gyroscopic
effect2, G (z) has the same structure as the mass matrix M^ (4.4) and the Con-
troller matrices PP (5.4), Pj (5.5), and PD (5.6)—this is that half of the elements
are equal to zero—because there is no coupling between x and y coordinates.
When we further assume that the rotor bearing System is Symmetrie with re-
spect to the x- and y-direction (isotropic bearings), some elements of G (z) are
equal to each other and we obtain the following scheme for the elements of
the real and imaginary parts of T (O) = G (^nTs) as well as for the elements
of AR and Ä;

AR =

A 0 B 0
0 ±A 0 ±B
B 0 A 0
0 ±ß 0 ±A

Ar =

C 0 D 0 '
0 ±C 0 ±D
D 0 C 0
0 ±D 0 ±C

(7-8)

There are only four independent variables in Ä (O), which have to be stored.
The ± sign of some parameters indicate that for the use of i/j as control input
the variables have different sign (a consequence of the NNSS-configuration of
the AMBs) and for the use of x/j as input variable the coefficients have equal
signs. A further reduetion of memory space can be achieved by approximating
the variables A to D depending on ü by a polynomial or a rational funetion.

Figure 7.3 shows the effect of the various approximations on the maximum
singular value of I + ÄT over O for the displacement nulling case. The har-
monic control input x̂  (kTs) is added to the measurement vector to minimize
Xj, (t). Therefore the influence coefficient matrix T is calculated from the fre-
quency response of - T o (z). The matrix Ä is calculated by neglecting the gy-
roscopic effect and and assuming a Symmetrie rotor, which results in only
four independent elements (see equation (7.8)). The highest curve shows the
maximum singular value for the actual influence coefficient matrix T and the
DHC gain matrix Ä. The maximum singular value is different from zero, be-
cause we neglected the gyroscopic effect, assumed a Symmetrie System, and
approximated the resulting coefficients by a polynomial. In order to see how
much each approximation contributes to the increase in ä we gradually im-
prove the gain matrix Ä and/or omit3 the gyroscopic effect in t . The second

2 The nonconservative cross-coupling is also neglected, because it is a-priori unknown and
handled separately by the adaptive control.

3 It is not possible to include the gyroscopic effect and use the symmetry assumption in Ä.
Therefore the gyroscopic effect is omitted in T which is equivalent to including it in Ä
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Figure 7.3.: Maximum singular value of 1 + ÄT for control input x/, and harmonically con-
trolled variable xj, (T calculated from — To (z))

curve shows the maximum singular value when the coefficients are not ap-
proximated by polynomials. It is obvious that for low rotational speeds the
polynomial approximation is the main reason for the deviation of ä from zero.
The third curve shows ä when the gyroscopic effect is omitted in T and the
symmetry assumption as well as the polynomial approximation is used. The
lowest curve is calculated for T without gyroscopic effect and the "symmet-
ric" Ä. The amount by which ä is larger than zero can be interpreted as the
convergent speed decrease due to the symmetry assumption.

Although the highest curve represents the actual System, the convergence
speed is best predicted by the third curve, where the gyroscopic effect is omit-

ir* 4-Vio mflnon

gravity is almost at the mid-span position between the two bearings, the mass
unbalance forces are not exciting tilting motions; the gyroscopic effect is not
important for the actual unbalance control, while ä gives a worst case limit
of the convergence rate. It should be pointed out that in the whole rotational
speed ränge from O = 200 rad s"1 to O = 2100 rad s'1 the maximum singular
value ä is smaller than 0.04, which means in the worst case a reduction of 96%
in a Single time step of the DHC algorithm

The robustness of the DHC algorithm is very good, since it tolerates quite
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large deviations of Ä from T 1. However, if the simple model of the AMB/
Rotor System with TMB — 0 a n d continuous PID control is used to calculate
Ä, the relatively high phase lag between this model and the actual Simulation
model makes the DHC controlled System unstable. This can be prevented by
multiplying the matrix Ä with a factor lower than one, which stabilizes the
DHC controlled System but decreases the convergence speed. This method
has been used in the first papers of the author [HSS02, HS02, HirO3b].

7.3.5. Simulation Results for Displacement Nulling

—r

Figure 7.4.: Block diagram of the displacement nulling discrete harmonic control

Figure 7.4 shows the block diagram of the displacement nulling DHC scheme.
The block FC Stands for the calculation of the Fourier coefficients, DHC for
the discrete harmonic control algorithm and GH for the generation of the
actual harmonic control input. As in the previous sections, Ky/,- for the control
current to magnetic bearing force transfer matrix, Gx/f is the force to rotor
disolacement transfer matrix. G, /, is the control current to rotor disolacement
transfer matrix, R is the PID Controller transfer matrix, r is the reference rotor
displacement vector (usually zero), and ib is the disturbance force vector in
bearing coordinates (including unbalance force) acting on the rotor.

The implementation of the displacement nulling with discrete harmonic
control is straight forward. Since we want to minimize xb with the control
input xjj, we need the input-output relationship between these two to calculate
T and Ä. From equation (5.2) we get

xb (z) = - T o (z) xh (z)



7. UNBALANCE CONTROL 122

and the matrix Ä is

( ( ) )

Re(T0(V
nT'))

This matrix is brought into the form of equation (7.8) (all coefficients have
the same sign) and the matrix elements are approximated by a second order
polynomial.

In figure 7.5, we see the Simulation results for DHC controlled rotor at a
rotational speed of O = 2094 rad/s = 20000 r/min, an unbalance radius
of e = 2 um, a DHC sample time of 7), = 0.05 s and an Integration time
T{ = 10|y. 7), is chosen rather large, so that the quasi-static assumption holds
and the Fourier coefficients are calculated for approximately ten oscillation
periods. The adaptive control Starts at t = 27},. The points of time 27),, 37),
and 47), are marked by dotted vertical lines in figure 7.5. As in all following
Simulation the rotor displacement XA, the control current ixA, and the actual
magnetic bearing force fx/{ are plotted relative to the nominal maximum val-
ues given in table 2.2.

With the Start of the DHC control the harmonic control variable x^ jumps
from zero to a value defined by the Fourier coefficients of the DHC Output.
This jump is amplified by the differential part of the PID Controller and we
can see a rather high peak in the control current (figure 7.5b). However, the
low pass behavior of the magnetic bearing smoothes this peak and it is com-
paratively small in the actual magnetic bearing force as can be seen in figure
7.5c. The rotor vibrations are reduced in one Single step by 99%, which is a
little bit faster than predicted by the maximum singular value as plotted in
figure 7.3; the DHC control works at its maximum speed. There is only one
possibility to make the unbalance control faster with respect to the actual time
that the DHC needs to reduce the unbalance Vibration: the time T), has to be
reduced.

Figure 7.6 shows the result for Th = 0.01 s and T,- 9ä 2n/ci. The reduction
of the sample time 7), violates the quasi-static assumption as can be seen in
figure 7.6a. After the Start of the algorithm, the response on the DHC does
not reach a steady State in one time step 7},. Coincidentally the DHC is not
unstable and is able to reduce the rotor vibrations in an additional time step.
Although the DHC algorithm is now faster with respect to the actual time
t (while it is slower with respect to the needed discrete Steps), we are on
dangerous grounds. The steady State assumption is violated and the stability
and convergence of the algorithm cannot be guaranteed anymore.
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Figure 7.5.: Displacement nulling with DHC algorithm for a rotational speed of
n = 2094 rad/s = 20000 r/min, a DHC sample time of Th = 0.05 s, and an
integration time T, = 10^f
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Figure 7.6.: Displacement nulling with DHC algorithm for a rotational speed of
n = 2094 rad/s = 20000 r/min, a DHC sample time of Th = 0.01 s, and an
integration time T,- = ^f
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Figure 7.7.: Displacement nulling with DHC algorithm for a rotational speed of
n = 2094 rad/s = 20000 r/min, added measurement noise, a DHC sample time
of Th — 0.05 s, and an integration time T, = 10 ̂ f
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Finally, for the displacement nulling DHC control Simulation, measurement
noise with a Standard Variation of 0.1 um is added to the measured rotor posi-
tion xb. The resulting rotor Vibration is shown in figure 7.7. The measurement
noise does not influence the Performance of the DHC, since the noise has
almost no effect on the Fourier coefficients.

7.3.6. Simulation Results for Current Nulling

Gx/f

il

\^

j

Gx/i

Kf/i

•
x

R
—r

GH DHC FC

Figure 7.8.: Block diagram of the current nulling discrete harmonic control

For the current nulling control aim, it would be possible to use the same pro-
cedure as before; measure the control current and add a compensation signal
x/i or i/,. However, for the adaptive cross-coupling control the control current
as well as the rotor position have to be free of harmonic components. Instead
of compensating the unbalance directly in the control current, we compensate
it in the rotor position vector

which is used as the input for the stabilizing Controller and the ACCC. Thus,
the control signal of the DHC is added to x'b which results in the System
shown in figure 7.8. There is no additional harmonic disturbance between-
the measurement and the Controller. An elimination of the harmonics in the
rotor position x'b also eliminates the harmonics in the control currents ix.

In equation (5.2) the input-output relationship between x'b and x^ is given
by

x'b (z) = So (z) xh (z)
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Figure 7.9.: Maximum Singular value of I + ÄT; The nonzero elements of A are polynomial
approximations of the elements of T"1.

so that Ä is calculated from So (z). Unfortunately, a polynomial approxima-
tion of the coefficients of the matrix Ä is not very good in the sense of a
low maximum Singular value er of I + ÄT. This is shown in figure 7.9 where
ä is plotted over the rotational frequency O for various polynomial approx-
imations. Therefore, rational funetions with polynomials of degree three as
numerators and denominators, that is

b0 b2Cl2

are used to approximate the elements of Ä. The resulting ä is also shown in
figure 7.9.

In figure 7.10, we see the Simulation results for the DHC current nulling
controlled rotor, at a rotational speed of O = 2094 rad/s = 20000 r/min, a
DHC sample time of T), = 0.05 s and an integration time T,- = Wx/n. Again
the Vibration level is reduced substantially, this time at a rate of about 99%
in a Single time step T̂  = 0.05 s. Further, the magnetic force level is reduced
to about 5% and even the rotor Vibration is reduced to about 81% compared
with no DHC application; the current nulling scheme causes a lower Vibration
level than the discrete-time PID Controller for rotational speeds significantly
higher than the first natural mechanical frequency.
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Figure 7.10.: Current nulling with DHC algorithm for a rotational speed of fi = 2094 rad/s =
20000 r/min, a DHC sample time of Th = 0.05 s, and an integration time T, =
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7.3.7. Simulation Results for Force Nulling

Figure 7.11.: Block diagram of the force nulling discrete harmonic control

The force nulling unbalance control is the most difficult goal. The problem
with force nulling is that the force of a magnetic bearing is usually not mea-
sured, and therefore it cannot be controlled in a closed-loop manner. An alter-
native would be, to measure the housing vibrations and use measured trans-
fer functions to calculate a corresponding Ä-matrix and control the housing
vibrations. A further problem will arise in conjunction with the adaptive cross-
coupling control, because the DHC may cancel the control forces needed to
stabilize the cross-coupling excited rotor. For a more detailed discussion about
the combination of ACCC and unbalance control, the reader is referred to
chapter 8.

However, a quite simple approach is at least able to reduce the magnetic
bearing forces. The starting point is the magnetic bearing force equation (see
equation (4.6))

'MB =
K

f/x

The magnetic bearing control current and the rotor position contribute to the
AMB force. In the current nulling case, the harmonics in the control current
are eliminated and only a force contribution of the rotor vibrations remains.
If we set the harmonics in the control current to cancel the effect of the rotor
vibrations, we get

ix = -K7/ . (s) Kf/X (s) xb (s) = - K r i K s xb (s) .



7. UNBALANCE CONTROL 130

This equation is purely algebraic, since Ky/,- (s) and Kj/X (s) have the same
poles and no zeros.

In the current nulling case, the elimination of the harmonics in the measured
rotor vibrations has already been used to achieve the elimination in the control
current. After a few time Steps the harmonics in the measured rotor vibrations
have been eliminated and the negative DHC control Output — x̂  has been
equal to the harmonics in the actual rotor vibrations x .̂ If we use the same
scheine with an additional compensation path from the DHC to the control
current, that is

we can achieve a significant reduction in the harmonics of the control current.
This scheme is shown in figure 7.11. Due to the additional current input, we
also get a different transfer function for the calculation of Ä. The relationship
between x'b and the DHC control Output x^ is (see equation (5.2))

x'b (z) = So (z) xh (z) + So (z) Gx/i (z) ih (z)

= (So (z) + So (z) Gx/i (z) K f 1 ^ ) xh (z) .

The compensation in the magnetic bearing force is not perfect, since the com-
pensation signal is discrete-time and the rotor Vibration effect is continuous-
time. An additional error in the modelling of K; and Ks will increase the
residual harmonics in the AMB force and the resulting force amplitude may
even be higher than in the original case.

A further problem is the approximation of the elements of Ä with rational
functions. The approximation of the matrix elements itself is quite good, but
since the force nulling scheme produces high rotor Vibration amplitudes in
the low frequency region (see fig. 7.1a) the coefficients of Ä are also very large
in tVio lmAr frpniiPtiru rancro Art artr\mvimaHr\ri r\rr^^oA^^r•o -\\Triin\-\ minimWacj j o _ . _ r r „„„„„. t >.. „. „„.„„„„̂ —

the overall matrix element error produces large values for the maximum sin-
gular value ä of I + ÄT. Since the rotor Vibration is limited, the force nulling
should only take place in the higher frequency ränge where the resulting rotor
Vibration as well as as the coefficients of Ä are rather small. In this region, the
approximation procedure usually leads to a small Singular value er of I + ÄT.
The actual optimization is carried out in the ränge from O = 100 rad/s to
3000 rad/s.

Figure 7.12 shows the Simulation results, again at a rotational speed of
O = 2094 rad/s = 20000 r/min, a DHC sample time of Th = 0.05 s, and an
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Figure 7.12.: Force nulling with DHC algorithm for a rotational speed of fi = 2094 rad/s =
20000 r/min, a DHC sample time of Th = 0.05 s, and an integration time T, =
10?*
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Figure 7.13.: Force nulling with DHC algorithm for a rotational speed of Cl = 200 rad/s, a
DHC sample time of Th = 0.2 s, and an integration time T,•. = 5^y
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integration time T,- = 10^y. The magnetic bearing force is reduced very fast,
but there is a residual force oscillation. Since K, and Ks are exactly known in
the Simulation this can be viewed as an optimal case. Any further attempt to
reduce the remaining oscillation is probably not worth the effort, because in
reality the uncertainties in K,- and Ks will contribute much more to a resid-
ual oscillation than the difference between discrete-time and continuous-time
input Signals.

To show that the algorithm also works for low frequency oscillations, a fur-
ther Simulation is carried out with a rotational frequency of O = 200 rad/s =
1910 r/min. To get a larger rotor Vibration amplitude the unbalance radius is
set to e = 170 um. The result is shown in figure 7.13. The algorithm works sim-
ilar to the earlier cases. It is interesting that there are nonlinear effects due to
the rather large rotor vibrations in the remaining force oscillation (fig. 7.13c).
The control current exceeds the maximum allowed current at t = 0.4 s, as we
see in figure 7.13b. However the actual magnetic bearing current is smaller,
since the underlying current Controller is taking care of the limitations, and
the coil current cannot follow the control current immediately.

7.4. Continuous Harmonie Control

The discrete harmonic control equation (7.3) can also be written as

Ü! (i) = Ä (y i (0 + y i (i - 1) + y i (/ - 2) + . . . + y i (1)) ,

which emphasizes the integrating nature of this Controller. We insert the con-
tinuous calculation of the Fourier coefficients equation (7.5), set the integra-
tion time of the Fourier coefficients to the DHC sample time, i.e. T; = T ,̂ and
obtain

i / llh r „ ^ rwl lhr„r^ rwl \
ü i ( z ) = Ä ^ / y v / ^ " " 1 drH h / yv/x<""°^1' dr .

Th \ J Ly(T)smOTj J Ly^s inOrJ

This can be simplified to

y (T) COS O T
d r .

y (T) sin O T

This equation suggests an alternative implementation of the DHC algorithm.
The whole adaptive or recursive process can be moved to the Fourier coeffi-
cients calculation part, and the discretization is done afterwards by sampling
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with sample time Th. The only drawback of this implementation is that T, has
to be the same as 7), and therefore Th must be a multiple of the period of
rotation ^/n.

However, it is not really clear why the control vector üj should be sampled
at all. The elimination of the sampling procedure leads to

u (t) = [I cos Cit I sin n t 1 Ä 2u f \y ^\COS ^ T l d r . (7.9)
w L J Wo Ly(T)smOTj

This control algorithm is called "continuous harmonic control" (CHC) in this
thesis. The gain factor // is introduced here to be able to adjust the conver-
gence speed. A direct comparison between DHC and CHC is achieved for
(see [HW89])

When we repeat the derivation of the CHC from the DHC with the discrete-
time calculation of the Fourier coefficients equation (7.6), we get a discrete-
time version of the CHC algorithm, i.e.

for the discrete case.4 Both continuous-time (7.9) and discrete-time (7.11) ver-
sions are called continuous harmonic control. All simulations are carried out
with the discrete-time version.

7.4.1. Stability Analysis

Continuous-Time CHC

For the continuous-time System, the stability analysis of the CHC algorithm
is rather easy. The control vector u (t) in equation (7.9) satisfies the following
differential equation [HBGL96]

ü (t) + O2U (0 = 2fl (AR y (t) + DA; y (f))

4 To make the implementation easier, the summation is carried out from x = 0 to k — 1 which
makes almost no difference for small sample times.
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or, written in the Laplace domain,

ü (s) = ? T T ? ( 5 Ä R + n Ä / )

So, basically the CHC algorithm behaves like a linear time invariant System of
differential equations.5 When the transfer marrix described by equation (7.12)
is included in the PID controlled System, the poles of the complete System can
be calculated. For fi = 0, the control loop is open and the additional poles
from the CHC algorithm are located at jCl. A classical root locus curve with
]i as parameter can be drawn. In [HW89] and [HBGL96], the authors come

to the conclusion that, for Ä = T , the root locus in ^ of these additional
poles has an angle of departure of 90°, i.e. they move in the left half plane for
increasing ji; the additional CHC poles are always stable for small ]i when Ä
is chosen in the described way. There is no general rule how the other poles
of the System react. Since we assume that the System without CHC control is
stable and therefore the poles are in the left half plane, a small ]i exists that
the root locus starting from these poles stay in the left half plane. However,
for increasing ]i some poles may move to the right half plane, so that the
upper bound of }i is set by the behavior of the System. This corresponds to the
condition for the DHC algorithm that 7), should be greater than the relevant
time constants of the System (quasi-static assumption).

Discrete-Time CHC

The approach by Hall et al. [HW89] and Herzog et al. [HBGL96] for the
continuous-time version of the CHC suggest that the discrete-time Version
of the CHC can also be expressed as a linear time invariant System. Widrow
et al. [WS85] developed the so-called LMS-algorithm for adaptive signal pro-
csssin0 '. Xhic L.N/IS~slcrori^rn tno-otTior TAntVi cipuc^idal r<3fc>rc>r|c'1 irifints ic py-
actly the same as the discrete-time CHC control with Ä = I. Glover [Glo77]
and Widrow et al. [WS85] show that the path from y (k) to u (k) is linear and
time-invariant. This analysis is extended here for an arbitrary AR and Äj.

In equation (7.11), we set the input y (k) to be a unit pulse at discrete-time
k = m, that is

y (Jfc) = 1 <$ (fc - m )

5 The same result is achieved by Laplace transforming equation (7.9).
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where S (k) is a unit pulse at k = 0

1 for k = 0
0 for M O

The response on this unit pulse is

u (k) = [I cos ClkTs I sin ClkTs]
AR Ar] O T [lcosOmTs

_-A7 ARJ
 r [

(7.13)

where er (k) is the unit step function

r o0 for k < 0
for fc > 0

Equation (7.13) can be simplified to

cos OTS (fc - m) - Ä / s i n n T s (Jk-m)] a{k-m-l) .

Note that the right hand side of this equation is a function only of {k — m)
and is thus a true impulse response. If the impulse time m is set equal to zero,
the unit impulse response is

u (Jt) = 2Ts}i [AR COS ClTsk - Ä; sinn.Tsk] cr(k-l)

and the z-transfer matrix is the z-transform of the impulse response, that is

ü (z) = Z2 _ 2 2 eis QTS + 1 ( Ä R ( z c o s n T s - X) " Ä/ 2sinOTs) y (z) . (7.14)

The transfer matrix described by equation (7.14) can be included in the stabil-
ity analysis of the complete PID controlled System.

7.4.2. Comparison of DHC and CHC for Displacement
Nulling

To compare the discrete harmonic control and the continuous harmonic con-
trol, we use the same parameters as in figure 7.5 and 7.6 and simulate again
with CHC. In order to compare the results, we choose y. from equation (7.10).
The result is compared with the previous result in figure 7.14.
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Figure 7.14.: Displacement nulling with DHC algorithm and CHC algorithm; fl =
2094 rad/s = 20000 r/min, Th = 0.05 s, and \i = 1/7),

Both algorithms Start after 0.05 s. The DHC needs one discrete step to calcu-
late the Fourier coefficients and then diminishes the rotor vibrations in almost
a single step. The CHC can immediately start with the Vibration reduction,
but it takes longer to diminish the Vibration completely. This result may lead
to the conclusion that the CHC is slower than the DHC.

However, if we try to speed up both algorithms the Situation changes. In fig-
ure 7.15, we repeat the Simulation of figure 7.5 and compare it with the accord-
ing CHC result. Now both algorithms have almost the same speed, because
the DHC no longer shows a dead beat behavior. The steady State assumption
of the DHC algorithm is not longer valid and the stability of the algorithm
cannot be guaranteed.

The advantages of the CHC algorithms become even clearer when the rota-
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Figure 7.15.: Displacement nulling with DHC algorithm and CHC algorithm; Cl =
2094 rad/s = 20000 r/min, Th = 0.01 s, and y = 1/Th

tional speed and therefore the frequency of the unbalance excitation is lower.
For Cl = 79 Hz, the sample time of the DHC has to be set quite high with
TV = 0.013 s bec?.use it has to hs ?.t least on«? rotationsi oetiod- The result is
shown in 7.16a. The DHC takes quite a long time because the steady State
assumption is not fulfilled. When the corresponding CHC is used with a pa-
rameter of \i — 77 s'1, this is shown in figure 7.16b as the dotted line, the
unbalance vibrations are reduced faster than with DHC. However, there is no
strict limitation of ]i while T}, is limited to be larger than the duration of one
period. So ]i is increased to a value of }i = 200 s"1 and the result is shown
as the solid line in figure 7.16b. With the higher value of }i, the unbalance
Vibration is diminished even faster than before.

In conclusion, the CHC algorithm is easier to handle than the DHC algo-
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Figure 7.16.: Displacement nulling with DHC algorithm and CHC algorithm; fi = 79 Hz,

Th = 0.013 s, y = l / r h = 77 s"1, and y = 200 s"1

rithm because there is no need for a sophisticated calculation of Fourier co-
efficients, especially with changing excitation frequency. The CHC is slower
when ]i — i/rft and the steady State assumption is true, but ]i can be set to
much higher values and usually reaches the same speed as the DHC algo-
rithm. For low excitation frequencies, the DHC is limited to a sample time
that is equal or greater than the duration of one unbalance period while for
the CHC the only limitation is the stability of the System. The work of Sivich
[SivO2] suggests that the robustness of the CHC algorithm is usually higher
than the robustness of DHC algorithm. The main advantages of the DHC al-
gorithm are: it is easier to understand, the steady State assumption allows an
easy stability and robustness test, and it can easily be used to on-line identify
the influence coefficient matrix T.
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8. Combination of Unbalance and
Cross-Coupling Control

8.1. Introduction

In the sections 6.7.3 and 6.9.3, the negative influence of harmonic excitations
on the adaptive cross-coupling control can be seen. A possible solution of this
problem is to add the compensation current filter and the position filter to the
calculation of the reference force for the adaptive control as in the 2DoF case.
Another possibility is to filter out the harmonic components from the reference
force and the measured rotor position. However, when the DHC or the CHC
algorithm is used in order to achieve any of the three unbalance control goals,
this can be done in a way which also eliminates the harmonic components
in the Signals for the on-line estimator. Therefore, DHC and CHC not only
have the ability to diminish unbalance vibrations but may also eliminate the
negative effects of unbalance excitations on the ACCC.

Matsushita et al. [MTY+88, MTY+90] have already controlled unbalance
as well as cross-coupling excitations, but the unbalance control algorithm de-
scribed is similar to the cross-coupling control algorithm and has nothing to
do with more advanced algorithms. Steinschaden has done some preliminary
investigations based on the Simulation model of Lang which are incorporated
in the paper by the author et al. [HSS02]. To the knowledge of the author, this
and the other pubiications by the author et al. [HS02, HirÖ3b] are the orüy
ones considering unbalance control and cross-coupling control at the same
time.
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8.2. Simulation Results for DHC and Adaptive
Cross-Coupling Control

8.2.1. Displacement Nulling and ACCC

f to the estimator
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Figure 8.1.: Block diagram of the displacement nulling discrete harmonic control that is com-
patible with the adaptive cross-coupling control

In section 7.3.5, we have described how to use the DHC algorithm to minimize
the speed synchronous rotor vibrations with x/, as control variable, see fig-
ure 7.4. Unfortunately, this approach is incompatible with the adaptive cross-
coupling control, because the compensation signal x/, is included in the rotor
position signal x'b. So the DHC would diminish the rotor vibrations, but the
ACCC would still get harmonic signal components included in the reference
force from the DHC.

Instead of x/j a compensation current i;, is used; the according block diagram
is shown in figure 8.1. With this variant, the Signals for the estimator are free
of harmonic components. According to equation (5.2) the influence of i/, on xj,
can be described with

xb (z) = So (z) Gx/i (z) h (z) .

So the coefficients of the matrix Ä are calculated from SOGX/,-. Figure 8.2 shows
the maximum singular value of I + ÄT for different methods of calculating
the coefficients of Ä. It is easy to see that at least a polynomial with a degree
of three has to be used for the calculation of the coefficients of Ä.

The Performance of the DHC algorithm does not depend on the specific
choice of the control variable. In figure 8.3, we see the Simulation result for the
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Figure 8.2.: Maximum singular value of I + ÄT; The nonzero elements of A are polynomial
approximations of the elements of T"1

DHC combined with the ACCC for a rotor without cross-coupling excitation
«1 = "2 = "3 = 0.

The DHC algorithm Starts at t = 0.5 s and the first two discrete Steps are
shown as dotted vertical lines in figure 8.3.

At first, we have the same Situation as before and the unbalance whirl in-
fluences the adaptive cross-coupling control. Since there is no applied cross-
coupling excitation we can only see the estimated parameters n\, n-i and n$ in
figure 8.3a. n\ and % have almost the same value, so that they appear as a sin-
gle line in the plot. As the DHC control Starts, the algorithm is able to reduce
the unbalance excitation in a Single discrete step. With the disappearance of
the harmonic vibrations, the large estimator oscillations are also diminished
and the rotor vibrations disappear completely.

The conclusion that the two algorithms do not influence each other in a neg-
ative way is not really surprising. The cross-coupling excited whirls are in the
frequency region of the mechanical natural frequencies while the unbalance

LLL I X XX L l 1%

also close to the natural frequencies a higher level of interaction will most
likely occur.

In figure 8.4, we see the Simulation result when only the DHCis actiye.
The on-line estimation is still included but the ACCC loop is not closed. We
also see that for a rotational speed at the natural frequency of the rotor the
DHC can achieve displacement nulling in a Single step. When the ACCC loop
is closed, the Situation is different. In figure 8.4, the DHC takes significantly
more steps to reduce the rotor vibrations. This is due to the interaction of the
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Figure 8.3.: 4DoF System with no cross-coupling excitation n\ = «2 — «3 = 0 an<3 ACCC;
unbalance excitation fi = 333.3 Hz, e = 4 um, and DHC
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two algorithms at approximately the same frequency.
The first two simulations with ACCC and DHC are carried out for applied

values of «i = n2 = «3 = 0. An increase of these values also increases the
required magnetic bearing force to stabilize the rotor. Therefore the maximum
controllable unbalance amplitude is decreased.

The next Simulation, shown in figure 8.6, is carried out for the same param-
eters as in the simulations in figure 6.25 with additional unbalance control.
The DHC Starts at 1.5 s and immediately decreases the unbalance vibrations.
With the unbalance vibrations, the oscillations in the estimated cross-coupling
parameters and the "unstable" whirls also disappear. In figure 8.7, measure-
ment noise with a Standard deviation of 0.2 um is added to the System. The
behavior of the System is similar to the Situation without noise.

The last Simulation with displacement nulling by DHC and ACCC is carried
out for the same parameters as in figure 6.30. Again the DHC eliminates the
estimator oscillations as the unbalance vibrations disappear.
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Figure 8.4.: 4DoF System with no cross-coupling excitation and ACCC loop not closed; unbal-
ance excitation O = 89 Hz, e = 22 um, and DHC
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Figure 8.5.: 4DoF System with no cross-coupling excitation ti\ = n2 = n3 = 0 and active
ACCC; unbalance excitation n = 89 Hz, e = 22 um, and DHC
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Figure 8.6.: 4DoF system with cross-coupling excitation n\ = 15 MN/m, «2 — 20 MN/m,
n3 = 10 MN/m and ACCC; unbalance excitation n = 333.3 Hz, e = 1 um, and
DHC
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8.2.2. Current Nulling and ACCC

In section 7.3.6, it is shown that the DHC algorithm is able to eliminate the
speed synchronous components in the magnetic bearing currents. The chosen
control input xh is also suitable to work together with the ACCC algorithm.
The DHC minimizes the harmonic components in x'b. Since x'b is also used
for the PID Controller and therefore also in the estimator reference force, the
estimated parameters ü\ to nj, are no longer influenced by the unbalance vi-
brations;

However, for the cross-coupling compensation part in the ACCC, there are
two possible choices for the used rotor Vibration signal, either xb or x'b, i.e.

i„ = -Nxb (t) or i„ = -Nx'b = - N (xb (t) + xh (t)) .

If xj, is used, the cross-coupling forces are compensated and the System is
stabilized. However, since there is still a speed synchronous rotor Vibration,
we also have speed synchronous magnetic bearing currents due to the cross-
coupling compensation. Since the rotor Vibration may be higher with current
nulling, the resulting magnetic bearing currents may be even higher than with-
out current nulling.

If x'b is used, the harmonic components are also compensated in the cross-
coupling compensation part of the ACCC. This has the effect that the com-
pensation current in is also free from harmonic components as long as the
DHC succeeds. Unfortunately, this has the effect that the actual cross-coupling
forces due to the unbalance vibrations are not compensated and an unstable
whirl may develop.

Both choices have their benefits. With xb/ the ACCC is more reliable but the
speed synchronous harmonics in ix are not zero; with x̂  the ACCC /DHC com-
bination is able to decrease the harmonics in ix to zero but may not succeed
to do so. When the rotational speed of the rotor is close to one of the mechan-
is^'-ii »-.,-*4-.,*.,-.! £*.•-,,-»,, ^.«.-.-I^.,-, j/U.^. ^. , ,™««4. « , J 1 ^ « ^ ^„,'U«.*«rt. **,,s>s~>s> *~—rt'U1rt«~„ „.:«,-.« i."U.«.
X^UJ. 1LUIU1U1 i l C ^ U U l U C J / LILC LU11C1LI I L Ulli-l Lg 5L1LC111C V»aUOCD ^lUUlCHLO 3AJ.1A-C tlLC

DHC strongly interferes with the ACCC. With the choice i„ = -Nxb (r), the
System is usually still stable but the DHC does not converge, while with the
choice i„ =—Nx[, (f) the System is usually unstable.1 . . .

The next three figures show the Simulation results for a rotational frequency
of O = 333.3 Hz and an unbalance radius of e = 1 um. In all three cases,

1 Unstable means that no stable whirl develops and the rotor crashes into the housing. Since
the linearized cross-coupling forces are not limited, there exists no other stable limit cycle.
In a real System, the cross-coupling forces are limited and stable high amplitude limit cycles
might occur.
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Figure 8.11.: 4DoF System with nx = 12 MN/m, n2 = n3 = 0; ACCC with i„ = -Nx'b; unbal-
ance excitation O = 333.3 Hz, e = 1 um, and DHC

the applied cross-coupling parameters «2 a n d «3 are set to zero and only n\
is greater than zero. In figure 8.9, n\ is set to n\ = 24 MN/m and for the
adaptive control in = -Nxb (t) is used. The DHC is able to reduce the har-
monic components in the PID Controller current but not in the total Controller
currents. However, the oscillations in the estimated parameters disappear. In
figure 8.10, we have the same parameter values as before, but instead of x\,
we use x'b in the adaptive Controller. In this case, the DHC can neither dimin-
ish the harmonics in the Controller current nor prevent the oscillation in the
estimated parameters. However, if the applied cross-coupling parameter n\ is
J 1 i„ „
ucucascu IU n\ —

TV/TNT / 1.1 U~: ~£
IVJ.±\/ in, nie v_iion.c VJL

•CT../ /z\ 1 1- i~ I_J._

disappearance of the harmonics in \x as shown in figure 8.11.

8.2.3. Force Nulling and ACCC

The force nulling scheme as used in section 7.3.7 is just an extension of the
current nulling scheme. Therefore, the force nulling has basically the same
implications on the ACCC as the current nulling. Since the force nulling is of
lesser importance in practice than the other two schemes, we will just show
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Figure 8.12.: 4DoF System with n\ = 24 MN/m, «2 = «3 — 0; ACCC with i„ = —Nxj,; unbal-
ance excitation Cl = 333.3 Hz, e = 1 ]im, and DHC

(a) estimated and applied parameters (b) magnetic bearing force

Figure 8.13.: 4DoF System with n\ = 12 MN/m, ni = n^ = 0; ACCC with i„ = — Nx|,; unbal-
ance excitation Cl = 333.3 Hz, e = l um, and DHC
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the Simulation results for the same parameter sets as in figure 8.10 and 8.11.
The results are shown in figure 8.12 and 8.13, respectively.

8.3. Simulation Results for CHC and Adaptive
Cross-Coupling Control

8.3.1. Displacement Nulling and ACCC

The combination of the CHC control scheme with the ACCC is very similar to
the combination of ACCC with DHC. Therefore, only two Simulation results
of the displacement nulling scheme are given as a "proof of concept". For the
first Simulation, we use the same parameters as in figure 8.6 and a CHC gain
factor of ji = 100 s'1 (see (7.10)). The result is given in figure 8.14. There is not
much difference between the DHC in figure 8.6 and the CHC in figure 8.14,
except the convergence speed is a little bit higher with the chosen parameters.

The second Simulation in this section shows the influence of measurement
noise. Again the parameters of an earlier Simulation as shown in figure 8.7 are
used to test the CHC. The measurement noise is white noise with a Standard
deviation of 0.2 um. Again the continuous harmonic control behaves almost
exactly the same as the discrete harmonic control.
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Figure 8.14.: 4DoF System with cross-coupling excitation n\ = 15 MN/m, n^ = 20 MN/m,
n3 = 10 MN/m and ACCC; unbalance excitation n = 333.3 Hz, e = 1 um, and
CHC
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Figure 8.15.: 4DoF System with cross-coupling excitation «i = 15 MN/m, n2 = 20 MN/m,
«3 = 10 MN/m and ACCC; unbalance excitation fi = 333.3 Hz, e = 1 um and
CHC; measurement noise
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8.3.2. Rotor Run-Ups

The last two simulations show a rotor run-up for a realistic System. We use
displacement nulling, because it seems to be the most realistic unbalance con-
trol goal and we use the CHC algorithm, because it is very well suited for
changing relational speed. For the DHC, we would either have to choose a
discrete sample time which works with low rotational frequencies as well as
with high ones. This would result in a reduced convergence speed for the
higher speed ränge. Alternatively, we could adjust the sampling time which
makes the programming more complicated.

For the applied cross-coupling parameters, we choose a configuration with
two cross-coupling forces at each end of the rotor and one in the center of
the rotor. The cross-coupling stiffness close to the bearing A is called na with
z-coordinate zna, close to B is n& with znb, and close to the center of gravity is
nc with znc. From section 4.4 we get for the three cross-coupling parameters

_ (2nfl-2B)(2„fl-2/t) {znb-ZB)(znb-ZA) (znc-ZB)(znc-ZA)

- ~ 2 H a ~ 2 U b ~ (2A-2B)2

with

Zna = 2/1 — 46 mm = -285 mm
znb = Zß — 46 mm = 195 mm

znc — 20 mm ,

the resulting cross-coupling parameters n\ to n^ are calculated to

nx = 1.2009 * na + 0.009184 *nb + 0.21198 * nc

n2 = -0.10502 * na + 0.Ö86649 * nb + Ö.24843 * nc

n3 = 0.009184 *na+ 0.81752 * nb + 0.29115 * nc .

We assume that the cross-coupling parameters na to n\, depend on the rotor
angular speed O in the following way

na = nc = 6 kN s/m * O nb = 18 kN s/m * O - 12 MN/m

for O in rad s"1. Although there is no evidence that real sources of cross-
coupling excitation behave like this, the assumption of linear dependency on
the rotational speed is realistic, see [Nor93].
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For the simulations, we increase the rotational speed from 0 to 20000 r/min
in 4 s with a constant acceleration rate of 83.33 Hz/s. The unbalance radius
is e = 3 um. The first Simulation, shown in figure 8.16, is the reference case
where we use the ACCC to stabilize the System with no unbalance control
present. During the run-up we see the characteristic oscillations in the esti-
mated cross-coupling parameter values and the corresponding peaks in the ro-
tor Vibration. After 4 s the rotational frequency reaches the steady State value
and the rotor Vibration increases dramatically since a steady State harmonic
excitation is very bad for the estimator performance.

The second Simulation, shown in figure 8.17, is now carried out with CHC
displacement nulling. The rotor Vibration level is substantially reduced by
the CHC, but not completely eliminated, because the additional unbalance
force due to acceleration and the changing excitation frequency degrades the
CHC performance. Since the rotor Vibration is reduced, the information for the
estimator is also reduced. The peaks in the rotor vibrations indicate "unstable"
whirls and the Steps in the estimated parameters correspond to these peaks,
since they are the only source of information for the estimator.

The third Simulation, shown in figure 8.18, combines ACCC and CHC, with
white measurement noise of a Standard deviation 0.2 um is added to the mea-
sured rotor position. The noise improves the estimation process and the peaks
in the rotor vibrations disappear while the estimated parameters n,- are closer
to the applied parameters tij. At O = 20000 r/min a peak in the rotor Vibration
can be recognized, due to the abrupt end of the rotor acceleration phase. In
figure 8.19, we see the rotor Vibration of the three run-up simulations, plotted
in the equal scales for easier comparison.
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Figure 8.16.: Rotor run-up with ACCC; unbalance radius e = 3 um
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9. Conclusions and Outlook

This dissertation consists of two parts. The first part describes the mod-
elling of the magnetic bearing rotor System. Although this should be a well
known process, the implications of using a current controlled magnetic bear-
ing with an underlying current Controller as described cannot—to the author's
knowledge—be found in the literature. The differences between a conven-
tional approach and the approach used here may significantly influence the
behavior of the magnetic bearing rotor System. Using PWM controlled power
electronic is another issue and the justification of a linear model has been
found in control theory literature. The other sections of the modelling part,
where the model of the rotor and the combination of magnetic bearings with
the rotor are derived, are straight-forward and not really new results, but nec-
essary for the understanding of the following chapters.

The second part of this thesis describes the control of the rotor supported
by active magnetic bearings. The basic stabilizing Controller is a simple PID
Controller which has already been used by Lang [Lan97]. However, the sys-
tem is analyzed with discrete-time methods which is a substantial progress
and makes it possible to increase the sampling time by a factor of more than
six. The stabilizing Controller itself is not substantially improved compared
to Lang, although it is not considered by the author to be the best possible
design. A üi approach (Kaiman filter based observer together with an LQR
control) has been tested, but is not included in the thesis since it has not pro-
\nr\e>r\ pnrnicrh initial rnhiistnps«; tr> lA/nrk tncrp+hpr wifh fhp ACCC alcrnrifhm
• o — • • -~o " —o

A more carefully designed H2 or H«, approach would probably be able to
overcome the limitations of the PID control and provide enough robustness
to work with the ACCC control, but is beyond the scope of this thesis.

In chapter 6, a thorough stability analysis of the rigid rotor with an arbi-
trary distribution of cross-coupling forces along the rotor is carried out. The
ACCC control is derived from theoretical considerations and the behavior is
studied for a two degrees of freedom System as well as for a four degrees of
freedom system. Special effort is made to explain the behavior of the ACCC
control with harmonic excitation and analytical Solutions for the two degrees
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of freedom System are found.
In chapter 7, the discrete harmonic control, which is known in rotor dynam-

ics literature as adaptive open-loop control, is derived from theoretical con-
siderations. The name open-loop control is misleading and so throughout this
thesis the term discrete harmonic control (DHC) is used. The three possible
control goals—displacement nulling, current nulling, and force nulling—are
defined and the DHC algorithm is used to achieve these goals. Furthermore,
Special considerations are taken to reduce the necessary time and memory
space for the actual calculation of the required influence coefficient matrix.

With help of helicopter control literature, it has been shown that there is a
continuous form of the DHC algorithm, which is naturally called "continuous
harmonic control" throughout this thesis. The only paper in rotor dynamics lit-
erature [HBGL96] in which basically this CHC control algorithm is described
unfortunately has not described the equivalence with the DHC control and
has only been used for current nulling as an advancement of the notch filter
scheme. Therefore, the introduction of CHC control and its application for dis-
placement and force nulling can be viewed as a progress in the field of rotor
dynamics.

In chapter 8 of this thesis, the unbalance and adaptive cross-coupling con-
trol algorithms are combined. It is shown that all three unbalance control goals
can be achieved with the DHC algorithm together with the ACCC, and that
the influence of unbalance excitation on the ACCC is minimized. Run-up sim-
ulations are carried out of a rotor with displacement nulling CHC and ACCC,
which show a very good behavior of the two algorithms for fast changing
rotational speeds.

There are many directions of further research in which the present work
can be extended. One important topic is, of course, experimental work. In the
authors opinion, however, it would not be of a very high scientific value to
build UD an experimental setup iust to Drove that the CHC, DHC and ACCC
algorithms work, because this is already proven by the Simulation studies,
carried out in this thesis. So, in order to learn something new, the control
algorithms should be tested on a machine with a real source of cross-coupling
excitation, like e.g. annular seals, to see how the ACCC algorithm handles
an excitation, which behaves in the linearized way as described in this thesis
for small Vibration amplitudes, while it behaves different for large Vibration
amplitudes.

Another possibility to get at least a feeling what might be the problems
with real-world nonlinear cross-coupling excitations would be to do a numer-
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ical Simulation with a nonlinear model of a cross-coupling excitation, e.g. for
a Journal bearing utilizing the short bearing assumption. Also a linearized
model may be helpful where further knowledge about the dependency of the
cross-coupling parameters on the operational conditions is included.

The nonlinear behavior of the ACCC algorithm itself, when applied to a lin-
ear cross-coupling excitation, could also be investigated. There are many mod-
ern methods which could be utilized, for example, numerical path-following
methods to acquire bifurcation diagrams. However, the parameter Space is of
high dimension and general Statements, which are not only valid for a very
small set of parameters, might be difficult to acquire.
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A. Appendix

A.1. Some Concepts of Linear Algebra, Rotor
Dynamics and Controller Design

Theorem A.l (Push-Through Identity) For regulär matrices A and B, thefollow-
ing equation holds

(I + AB)"1 AB = A (I + BA)"1 B = AB (I + AB)"1 .

Theorem A.2 (Matrix Inversion) Let Abea Square matrix asfollows

A := [An A l 2 l
[A2i A22J

where An and A22 also are Square matrices. IfA is nonsingular then

_i r _j _j _j _j _j

j21 11 ii^_ iA 1 2

I A 2 i A22

with A := A22 — A2iAjj A12 (A is nonsingular if and only i/A is nonsingular) and

[An A12
I A2i A22

- 1 , - 1

V22

with Ä := An — Ai2A22
1A2i (A is nonsingular ifand only ifh is nonsingular). The

matrix A (A) is called Schur complement of A n (A22) in A.

A.1.1. Complex Notation for 2DoF Rotor Dynamics

It may be convenient to describe the two degrees of freedom as a Single com-
plex number, i.e. instead of

we use x(t) +jy(t) .
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Two matrix multiplications can be carried out on this

a 0] \x(t)
0 a\ [y(t)\

_ \ax (t)
k (0J is equivalent to a (x (t) + jy (t)) for a G 1R

and

[0 -a
\a 0

x(t)
Ly(OJ L a x ( 0 J

is equivalent to ;'a (x (f) + jy (t)) for a e R .

With the additional assumption that x (f) and y (£) are describing a constant
orbit with constant rotational speed O, amplitude x, and phase lag between
x (t) and y (t) of 90° (cartesian coordinate System), that is

f) y(t) =xsin(Clt + f) ,

x (s)

[y (s)

x(t) =

we can find the solution of

\ä(s)
[Hs)\

G (s) 0
0 G(s)_

(after all transients have decayed) by

= G(jn)(x(t)+jy(t)) .

A.2. Discrete-Time (Digital) Control

A.2.1. Discrete-Time State Space

Today almost every Controller is implemented as digital control. Still many
people design their Controllers as continuous Systems and approximate these
continuous Systems through a discrete-time System by a forward Euler method,
i.e.

x(t)=f(x(t),u(t)) _ x((k + l)Ts) =x(kTs) + Tsf(x(kTs),y(kTs))
y(t)=g(x(t),u(t)) ~ y(kTs) =§(x(kTs),y(kTs)) .

Although this method works for many control tasks, there are many disadvan-
tages:
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• It is only an approximation. The lower the sample time Ts is chosen,
the better is the approximation. If the sample time is too high the con-
trol will not work. So people tend to choose the sample time as low as
possible, which also imposes a high bandwidth demand on the measure-
ment equipment and a high demand for calculation speed on the digital
equipment.

• The approximation of an optimal continuous-time control algorithm is
probably not optimal for the discrete System.

• Not every possible discrete-time control algorithm has a continuous-
time equivalent.

• Although the continuous-time System is stable, the discrete-time approx-
imation may be unstable.

• The discrete-time approximation of connected continuous-time Systems
may be significantly different to the connection of their discrete-time
approximations.

The first step of designing a digital Controller is to convert the physical
continuous-time model of the plant to a discrete-time model. This can be
achieved by assuming a zero order hold block at the System inputs, which con-
verts the discrete-time series to a continuous-time step function and sample
block at the System Outputs, which converts the continuous System Outputs to
a discrete-time series.

If the plant can be described by linear differential equations, i.e.

x(f) =Ax( t )+Bu(0
y(0=Cx(0+Du(0 ,

the resulting System can be described by a linear difference equation

x (jfc + 1) = eATs x (jfc) + / S eATBdr u (Jfc)
Jo

= Ad x (k) + Bd u (k)

This difference equation is the starting point for many state-space control al-
gorithms like pole placement method (including dead beat Controllers) and
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linear quadratic optimal control. The problem is that for these kind of Con-
trollers the states have to be known. In most cases, not all of the states can be
measured directly and so the states estimators are used e.g. Kaiman estimators
or dead beat estimators.

A.2.2. z-Transform

Analogous to the Laplace transform for the continuous Systems, there exists
the z-transform for discrete-time Systems. For a linear discrete-time System,
the so-called z-transfer function can be found, which describes the input-
output behavior, that is

y (z) = G (z) u (2)

G ( z ) : = C ( 2 l - A d ) - 1 B r f + D .

The frequency response to an input series

Uk = cos cvkTs

can be found with

Vk = |G ( ^ T s ) | cos (ukTs + arg G ( > T s ) ) .

The z-transfer function is BIBO-stable (Biased Input Biased Output), if and
only if, the poles of this function are inside the unit circle.

A.2.3. q-Transform (Tustin Approximation)

The z-transfer function is a little bit difficult to use. The stability tests are
different from the ones for the Laplace transfer function and the frequency re-
sponse spectrum is also difficult to calculate; therefore Controller design meth-
ods based on Bode plots are virtually impossible. However, with the bilinear
transformation (Tustin approximation)

and its inverse
2 z - 1
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the so-called q-transfer function G* (q)

can be found which has some interesting features (see [GHS91]).

• Every point inside the unit circle of the z-plane is mapped to the left
open half-plane of the ^-plane.

• Every point on the unit circle of the z-plane is mapped to the imaginary
axis of the ^-plane.

• The region outside the unit circle of the z-plane is mapped to the right
open half-plane of the ^-plane.

• The frequency response to an input series

Uy_ = COS ClTsk

can be found with

yk= G*(jw) cos(n/tTs + argG#(;w))

with the transformed frequency w

w=-tan(n-

• For a discrete-time transfer function G (z) of a sampled continuous-time
transfer function G (s), the approximation

G# dw) « G an) for mrd <̂  1
\ J / \ J / i - 1

is valid.

These features make it possible to use all the stability tests and most control
design methods for Laplace transfer functions also for the discrete-time G* (q)
transfer function with no or little changes.

We note that
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is a discrete-time approximation of an integrator applying the right-side rule,

T&i = T7LT y(n) = T

is a discrete-time approximation of an integrator applying the trapezoid rule
and

is a discrete-time approximation of an integrator applying the left-side rule.
The inverse of this integrator is the only useful approximation of a differentia-
tor

y(z) _ 1 z - l „ ( , _ u(n)-u(n-l)
Ü(z)-T, z VW~ Ts

A.3. The Reluctance Network AMB-Model

The governing equations of the reluctance network model are developed with
the help of the graph theory. Only a short excerpt can be given in this thesis.

At first we search for a "tree" of the network. This is a part of the network
without any loops and where the addition of a Single other component of the
network will add a loop to the tree. The components of the network that do
not belong to the tree are the so-called "gates". There exists a linear relation-
ship between the independent gate fluxes and the tree fluxes

<PT = A(PG •

This is a relationship which is based on the topology of the network and it is
valid for any kind of network and network components, as long as Kirchhoff's
laws are valid.

Now we choose the tree in such a way that all network elements are in-
cluded in the tree, and the gates are Virtual network elements which repre-
sent the magneto motive force in each loop. If we assume: a material without
magnetic hysteresis, and a linear relationship between the flux through one
network element and the magnetic potential drop along this element, we can
find a linear relationship between the tree fluxes and the tree magnetic poten-
tials which is

xfy) <pT,
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Figure A.l.: The actuator model for the reluctance network

where Hj is the diagonal matrix of the magnetic reluctances of the network
tree elements. The relationship between magnetic potential at the gates ©Q
and the gate fluxes <pG is given by

0 G = H{x,y) <f>G

[9 x 1] [9 x 9] [9x1] ,

where 72. is the gate reluctance matrix,

n{x,y) := AT nT{x,y) A
[9x9] [9x32] [32x32] [32x9] "

For the four actuator AMB used in this thesis (figure A.l), the gate reluctance
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matrix IS

n(x,y) =
• TlA+Tlgi+Tlg2

-Tlp-Tlg2

0

0

0

0

0

-Tlp-Tlr-Tlg\

-Tlr

-Tip-ng2

TlA+Tlg2+Tlg3

-Tlp-Tlg3

0

0

0

0

-Tlr

-Tlr

0

• • .

0

0

0

-Tlr

-Tlr

0

0

• • .

* #

0

0

-Tlr

-Tlr

0

0

0

"-.

* t

0

-Tlr

-Tlr

0

0

0

0

"-.

* t

-Tlr

-Tlr

0

0

0

0

0

-Tlp-Tlg7

TlA+Tlg7+Tlgt,

-Tlp-Tlr-Tlgs

-Tlr

-Tlp-Tlr-Tlgi

-Tlr

-Tlr

-Tlr

-Tlr

-Tlr

-Tlp-Tlr-Tlgs

TlA+6Tlr+Tlg8+Tlg

7 Tlr

-Tlr

-Tlr

-Tlr

-Tlr

-Tlr

-Tlr

-Tlr

1 7Tlr

8 Tlr

where

-.= nb n r .
It is worth to note that the matrix lZ(x,y) is Symmetrie. For the gate fluxes,
we can find

with

The magnetic motoric force ©G at the gates can be calculated with

©G = Ni

where N is the coil matrix given by

N:=

1
l

"2

0
0
0
0
0
1

"2
0

0
1

"2
1
1

"2

0
0
0
0
0

0
0
0
1

'2

1
'2

0
0
0

0
0
0
0
0

'2
1
1

"2
0



A. APPENDIX 173

and i is the coil current vector given by

i := [h h h U] •
The relationship between the gate fluxes and the coil currents is given with

To calculate the fluxes in the poles, we use again the linear relationship be-
tween the gate fluxes and the tree fluxes to calculate the tree fluxes. We select
the pole fluxes from the tree by multiplication with a selection matrix Sp. The
pole fluxes are

<pp = SvAV{x,y) Ni = Vv{x,y) i .

The magnetic bearing forces are calculated with

Fx = <pT
pXF<pp Fy = 4>

where

XF:=

A\ COS 0L\

cos a-i

COS «8

A2 sin «2

A8sina8_

and Yp are calculated from bearing geometry.)
Now we can describe the complete System. With the applied voltage vector

T

U — [«i U2 U3 M4] , -

we have the System of differential algebraic equations

[4 x 1] = [4 x 8] [8 x 1] + [4 x 4] [4 x 1]
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[8 x 1] = [8 x 4] [4 x 1]

to describe the System. Since DAEs are very difficult to simulate we can sim-
plify the System by assuming that the number of windings in each coil is
equal. Then we define the vector of flux sums

<Ps '•=

'<Ppl + <Pp2

<Pp5
.<Pp7 + <Pp8_

= SsTp(x,y)Ni

With the inverse of "Pj (x,y), we can calculate the coil currents from <ps

The differential equations are

u = N-<ps + Ri = N - (x,y) <f>s

A.4. Change in the Total Energy of a System with
Cross-Coupling Excitation

The System of differential equations of second order

Mx + Dx + Kx + Nx = 0

can be transformed to a System of differential calculated of first order, that is

z = Az ,

with

z = and A =
_ r-M-xD -M- 1 (K + N)

I 0
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The total energy in the system is given by
•.-iT

= zTPz .M 0

0 KJ
V also is a candidate for a Lyapunov function of the System. The change in
the total energy is

V = zT (ATP + PA) Z

where

ATP + PA = - Q

is the famous Lyapunov equation. With
- 1 D I

AT=
- (K-N)M- 1 0

P A = -

:2 [-(K-N)M-1 0

M 01
0 K

M 0] _ 1
0 K \~ 2

0

- D
- K + N

_ i r - D

2 [ K

K
0

- K -
0

N'

we get

ATP + PA = - D - I I

L2J 0

and for the change in the total energy
T

V = "-D - jl-N | |X

0

= -xTDx + xTNx .

A.5. Least-Squares Estimation

A.5.1. Projection Theorem

Definition A.3 (Inner Product, see [ZDG96, Sch97a]) Let X be a vector space
over C. An inner product on X is a complex valued function

such thatfor any x,y,z e X and et,ß 6 C
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1. (x,cty + ßz)=ct(x,y)+ß(x,z)

2. (x, y) = (y, x) (conjugate complex)

3. (x,x) >Oifx^O

Theorem A.4 (Projection Theorem, see [Sch97a]) Let Xbea Hubert space with
the inner product (.,.)• X x X —>R and the norm ||x|| = y/(x,x), and let V be
a linear closed subspace of X.1 Thenfor each vector v £ X exists a unique vector
vo G V such that

||x-vo|| < ||x-v||

for all v G V. v0 is the unique vector such that (v, x - v0) = 0 for all v G V, or
x — vo is orthogonal onallv G V .

The usefulness becomes clear if we look at the equation

y = Wa + e (A.l)

where y is the so-called Output vector, W is the so-called signal matrix, and
e is an additional error vector. Now we search for a vector ä which is an
"optimal" estimate for a when y and W are known. The "optimal" estimate ä
should be a solution of equation (A.l) such that ||e|| is a minimum.

y is element of the vector space X = Mm and the column vectors of W span
the closed subspace V = span{wi,W2,.. . ,w„}. The optimal vector vo such
that

lly-voll ^ lly-vll

is given by

(w;, y — v0) = 0 for all i = 1 , . . . , n .

Since vo G V we can write

(w,-, y - Wä) = 0 for all i = 1 , . . . , n

(w,-,y - Wjfli - \v2fl2 — . . . - w„ä„) = 0 for all i = 1 , . . . , n

1 The definition of a Hubert space can be found in [ZDG96].
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or

(wi,wB)

_(wn/wi) ••• (w„,wn)_

If G is invertible, the optimal solution of ä is

A.5.2. Discrete Least-Squares

Standard Least-Squares

Let y (k) e R™ ([0,k]) be a discrete-time Output vector which is given by

y(fc)=W(Jfc) a + d(fc) .

where W(fc) € RmxM ([0,fc]) is the a discrete-time signal matrix, a is the un-
known parameter vector, d (k) is the error vector, k G N, and Rm is the Hubert
Space of vector valued discrete-time functions.2 The optimal estimate ä̂  for a,
based on the past values of W and y, at the discrete time k is defined by

||y(Jk)-W(Jt)äJfc|| < ||y(Jk)-W(Jfc)a|| for all a

with

and
k

The solution for the optimal estimate äjt is

k

vi=l

2 The usage of k as the end of the definition interval of y (k) and the point at which y (fc) has
a Special value is a little bit sloppy.
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where

A recursive definition of this algorithm is given by

p - 1 (jt) = p - 1 (Jk - 1) + WT (jk) W (Jfc)

äk= ä,_!+P (*) W r (k) (y (k) - W (*) ä,_i) .

Least-Squares with Exponential Forgetting

For time varying Systems, it is convenient to use a weighted inner product
with Kd (k) < 1

to get the same result as in [Lju87]. The name exponential forgetting is chosen
in analogy with the continuous least-squares algorithm from [SL91] and due
to the fact that

The optimal äjt based on measurements until k is

**= P (*) (E ( f l A* (/)) wT (0 y (o) (A.2)

with the gain matrix

( fl )
«=1 \J=«+1

a recursive definition of this algorithm is

p - 1 (jfc) = Ad (jfc) P"1 (jfc - 1) + WT (jfc) W (jfc) (A3)

äjt = äjt_i + P (*) W r (fc) (y (fc) - W (*) äfc.j) . (A.4)
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Applying the matrix inversion lemma

(A + BCD)"1 = A"1 - A ^ B ( D A ^ B + CT1) ~* DA"1

and taking A =Ad (jk) P"1 (Jk - 1), B = D r = WT (jk) and C = I, we get

P (k) = [kd (k) P- 1 (* - 1) + WT (k) W (k)] ~*

= P ( / c - l ) !

which reduces the computational effort for calculating P as long as W (k) G
R m x n and m < n.

A.5.3. Continuous Least-Squares

The formulation of the continuous least-squares algorithm from Slotine and
Lee [SL91] presented here cannot—to the author's knowledge—be found in
the literature.

Standard Least-Squares

Let y (t) G Rm ([0, t]) be a continuous-time Output vector which is given by

y(0=W(0 a + d(O .

where W (t) G RmXM ([0, t]) is the a continuous-time signal matrix, a is the un-
known parameter vector, d (t) is the error vector, and Rm ([0, t]) is the Hubert
space of vector valued continuous-time functions.3 With the inner product

<x(0,y(0>:= /• xT(r)y(r)dr
Jr=0

we get the same result as in [SL91] for the optimal estimate ät of a, based on
the past values of W and y, at the time t. It is defined by

ät = P (0 ( / WT (r) y (r) dr (A.5)

3 The usage of t as the end of the definition interval of y (t) and the time point at which y (t)
has a Special value is a little bit sloppy.
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where

P(0 =

The derivative of the inverse of the gain matrix P is

To avoid matrix inversions we can use the relationship

Inserting equation (A.6) delivers

^ P =
dt

For a differential equation version, we are differentiating (A.5)

p-*(t)ät + p-*(t)±ät = WT(t)y(t) .

The differential equation form is

ät = p ( o w (

Least-Squares with Exponential Forgetting

Slotine and Lee [SL91] also describe a least-squares estimator with exponential
forgetting. If we use the inner product

r=0

we get the same result

1 (t) ä t = f e~ Sl Hr)
J 0
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with

P ( t ) = C f I A ( ) d T ^

We note that, for t = kTs and the approximation

rkTs k

f 7 ( 0 * « £ /(zTs)TS/

equation (A.8) is equal to equation (A.2). The relationship between the contin-
uous and the discrete forgetting factor

A(/T,) = ~lnA r f0') •
is

For a differential equation version of the algorithm, we are differentiating
(A.8)

1 p - 1

By inserting the differential equation version of the inverse gain matrix

p-1 (t) ä, + P"1 (0 ^ t = ~A (0 jT s- /•' A«drWr (r) y (r) ds + WT (t) y (0

dt

we get

P"1 (0 ^ ä f = -A (t) (£ e~ Is MdryfT ( r ) y ( r ) d s _ p-i {t) A

=0 equ. (A.8)

Together with equation (A.7) we get the differential equation version of the
algorithm

Ap (o = A (o p (o -p (o wT (o w (0 p (0
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