
DIPLOMARBEIT

A Superscalar 16 Bit

Microcontroller for Real-Time

Applications

ausgeführt am Institut für

Technische Informatik, Embedded Computing Systems Group

Technische Universität Wien

unter der Anleitung von

a.o.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

und

Univ.Ass. Dipl.-Ing. Martin Delvai

durch

Gottfried Fuchs

Canavesegasse 14

1230 Wien

Wien, 9. Dezember 2003

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Für meine Eltern

Danksagung

Für die fachliche und persönliche Unterstützung möchte ich folgenden Per-

sonen danken, die zum Gelingen dieser Diplomarbeit beigetragen haben:

Martin Delvai, Thomas Handl, Wolfgang Huber, Peter Tummeltshammer

und Angela Schörgendorfer

Besonderer Dank gebührt meinen Eltern und Großeltern, die mir dieses Stu-

dium durch ihre finanzielle, vor allem aber durch ihre seelische Unterstützung

ermöglicht haben.

Kurzfassung

Im Zuge dieser Diplomarbeit wurde LANCE, ein superskalarer 16 Bit Mikro-

controller für Echtzeitanwendungen, entwickelt. LANCE ist Teil eines Bauka-

stensystems für Mikrocontroller und basiert auf dem SPEAR Prozessor (Sca-

lable Processor for Embedded Applications in Real-Time Environments), wel-

cher am Institut für Technische Informatik - Embedded Computing Systems

Group an der Technischen Universität Wien entwickelt wurde. Das Bauka-

stensystem besteht aus mehreren Prozessorkernen, an die über eine generi-

sche Schnittstelle eine Reihe von Extension Modulen angeschlossen werden

kann. Die Extension Module werden verwendet um den Prozessor an anwen-

dungsspezifische Aufgaben anzupassen. Extension Module, welche für einen

bestimmten Prozessorkern entwickelt wurden, können aufgrund der standar-

disierten Schnittstelle ohne jegliche Änderung von allen anderen Prozessoren

verwendet werden. Die grundsätzliche Idee hinter dem LANCE-Entwurf war,

einen Prozessorkern mit deutlich höherer Leistung als SPEAR zu entwickeln,

ohne dabei die Code-Kompatibilität zu verlieren. Des Weiteren muss das

Zeitverhalten von LANCE (wie auch von SPEAR) im Detail vorhersagbar

sein, damit der Entwurf von Echtzeit-Systemen erleichtert wird. Um die zuvor

genannten Anforderungen zu erfüllen, musste beträchtlicher Aufwand inve-

stiert werden um den Befehlsspeicher und das Register File dem Superskalar-

Entwurf anzupassen. Aufgrund der Tatsache, dass LANCE zwei Befehle par-

allel ausführt, hat sich die Anzahl der Speicherzugriffe im Vergleich zu SPE-

AR verdoppelt. Die Notwendigkeit für massives Daten-forwarding zur Auf-

rechterhaltung der Code-Kompatibilität zu SPEAR, wie auch die erwähnte

Verdopplung der Speicherzugriffe pro Taktzyklus, waren die größten Heraus-

forderungen während der Entwicklung von LANCE. Ein weiteres Problem

entstand aus der bereits definierten Extension Module Schnittstelle, welche

nur einen Modulzugriff pro Taktzyklus zulässt. Die oben genannten Proble-

me konnten durch sorgfältigte Abstimmung der parallelen Pipelines gelöst

werden, sodass schließlich ein funktionsfähiger Prototyp vorliegt.

Abstract

In the course of this diploma thesis LANCE, a superscalar 16 bit microcon-

troller for real-time applications, has been developed. The LANCE design is

part of a modular construction system for real-time applications and based

on the SPEAR processor (Scalable Processor for Embedded Applications in

Real-Time Environments), which has been developed at the Institute for

Computer Engineering - Embedded Computing Systems Group at the Vi-

enna University of Technology. The modular construction system consists

of several processor cores, a set of different so-called extension modules and

a generic interface between these two types of components. The extension

modules are used to adapt the processor core to different requirements im-

posed by a specific application. An extension module developed for one

processor core can be used without any modification in all the others due to

the standardized interface.

The basic idea behind the LANCE design was to design a processor core

with significantly higher processing power than SPEAR without losing code

compatibility. Furthermore, LANCE has to be temporally predictable like

SPEAR to offer enhanced support of embedded real-time system design. To

satisfy the previously mentioned requirements, considerable effort had to be

invested to fit the instruction memory and register file to the superscalar

design approach. Due to the fact that two instructions are executed in par-

allel, the memory access rate has doubled compared to SPEAR. The need

for massive data forwarding to achieve code compatibility and the increased

memory accesses per clock cycle were topics of great concern during the de-

sign of LANCE. Moreover, the extension module access implicated further

problems due to the already defined module interface which only supports

one access per clock cycle. The above introduced problems have been re-

solved by carefully tuning the parallel pipelines, which finally lead to a fully

operative prototype.

CONTENTS vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Processor Cores . 4

1.2.1 SPEAR . 4

1.2.2 NEEDLE . 6

1.3 Extension Modules . 8

1.3.1 Processor Control Unit 9

1.4 Program Download . 13

1.5 Chapter Organization and Overview 14

2 Superscalar Designs - State of the Art 15

2.1 Intel Pentium . 15

2.2 Motorola 68060 . 18

2.3 PowerPC 601 . 21

2.4 Intel Pentium 4 . 23

3 Specification 25

3.1 Instruction Set . 26

3.2 Instruction Set Features . 29

3.2.1 Conditional Instructions 29

3.2.2 Framepointer Operations 30

3.2.3 Subroutine Calls . 31

3.2.4 Immediate Instructions 31

3.2.5 Exceptions . 32

3.3 Code Restrictions . 33

4 Overall Design of the Microcontroller 34

4.1 Increasing Speed . 34

4.2 Superscalar Design Issues . 37

4.3 Microcontroller Architecture 40

CONTENTS vii

4.4 Microcontroller Implementation 41

4.4.1 Instruction Memory and Boot-ROM 43

4.4.2 Register File . 45

4.4.3 Instruction Decode . 47

4.4.4 Exception Vector Table 48

4.4.5 ALU . 49

4.4.6 Data Memory . 50

4.4.7 Extension Module Access 51

4.5 Data Forwarding . 53

5 Development Environment 55

5.1 APEX FPGA Family . 55

5.2 DIGILAB 20Kx240 Prototyping Board 60

5.3 Design Flow . 62

5.3.1 VHDL Coding . 63

5.3.2 Behavioral Simulation 63

5.3.3 Synthesis . 63

5.3.4 Pre-Layout Simulation 64

5.3.5 Place and Route . 65

5.3.6 Post-Layout Simulation 66

6 Results 67

6.1 Test Environment . 67

6.2 Processor Characteristics . 70

6.3 Different Implementations . 73

6.4 Evaluation . 75

6.5 Real-Time Capability . 77

7 Conclusion 79

8 Outlook 82

8.1 Task to Pipe . 82

CONTENTS viii

8.2 Fault Tolerant System . 83

8.3 FPGA Optimizations . 84

A Appendix - The Instruction Set 85

B Appendix - Assembler Code 88

LIST OF FIGURES ix

List of Figures

1 Modular Construction System 3

2 SPEAR Architecture . 5

3 SPEAR Pipeline Architecture 6

4 NEEDLE Architecture . 7

5 Generic Extension Module Interface 8

6 Processor Control Extension Module 10

7 Register Interface of the Processor Control Extension Module 11

8 Program Download . 13

9 Intel Pentium Pipeline Architecture 16

10 Motorola 68060 Pipeline Architecture 18

11 PowerPC 601 Pipeline Architecture 21

12 Pentium 4 Pipeline Architecture 23

13 Framepointer Stack . 31

14 Exception Vector Table . 32

15 Critical Path . 34

16 SPEAR Architecture Extended by an Additional Pipeline Stage 35

17 LANCE Architecture . 40

18 LANCE Pipeline Architecture 41

19 Instruction Fetch - Swap Mechanism 43

20 Register File Implemented as Memory 46

21 Extension Module Access . 51

22 APEX Architecture . 56

23 MultiCore and FastTrack-Interconnect Structures 57

24 MegaLAB Structure . 58

25 Logic Element Structure . 59

26 DIGILAB 20Kx240 Development Board 60

27 Hardware Design Flow . 62

28 Synopsys Waveform Viewer 64

29 Synopsys Design Analyzer . 65

LIST OF FIGURES x

30 ALTERA Quartus . 66

31 Test Environment . 68

32 The LANCE Processor . 70

33 Quartus - Timing Report . 72

34 Logic Analyzer Screenshot - Instructions out of the IRAM . . 75

35 Logic Analyzer Screenshot - Interrupt Response 77

36 Interconnect Delay . 80

37 Boot-ROM Assembler Code 88

LIST OF TABLES xi

List of Tables

1 Comparison of the NEEDLE, SPEAR and LANCE Processor

Characteristics . 71

2 Different LANCE Implementations 73

1

1 Introduction

Embedded systems are used in a wide range of devices in everyday life such as

refrigerators, microwave ovens, TVs, VCRs, DVD-players, printers, cameras,

automotive control equipment (e.g. climate control, ABS, engine control,

etc.), aircrafts and many more. There are many definitions of embedded

systems, but all of them can be combined into a single concept: hardware

and software, which are expected to function without human intervention

and together form a component of some larger system [11].

1.1 Motivation

Why develop another 16-bit microcontroller? The ongoing miniaturization

progress of electronic and electro-mechanic components will provide even

more possible application areas for embedded computer systems in the fu-

ture. An example application which is becoming more and more important

these days are embedded networks. Usually embedded networks comprise

a lot of different sensors to receive information from the environment, a

processing unit to treat this information and a certain number of actuators

to interact with the environment. To simplify the system and to reduce

costs, sensors and actuators are not connected directly to the processing

unit, but networked by a so-called field-bus [14]. This implies that each sen-

sor/actuator has to be equipped with a network interface that implements

the communication protocol. Such an interface comprises a microcontroller

and a communication unit. An additional benefit of this local intelligence

is that the microcontroller can also be used to preprocess the data in order

to reduce the traffic on the field-bus. Furthermore, failure detection mecha-

nisms and recovery strategies can be implemented in each network node to

improve safety and reliability of the entire network. Due to the fact that

such networks contain various nodes with different requirements in terms of

processing speed, memory size and interfaces, different standard microcon-

1.1 Motivation 2

trollers have to be used within the same network. This implies that the

communication protocol, which is the same for all nodes [18], has to be im-

plemented and tested for each microcontroller separately. This makes the

development process costly and error-prone. Therefore it would be desirable

to use the same microcontroller for all network nodes including the processing

unit, but this would result in a waste of resources (silicon area, power con-

sumption, etc.). Hence an ideal development system for embedded networks

should provide a microcontroller that features modularity and is scalable in

terms of computational power and functionality. Another problem arises if

an embedded system has to provide real-time functionality. In real-time com-

puter systems correctness of the system behavior depends not only on the

logical results of the computations, but also on the instant at which these

results are produced [24], therefore response and delay time of the embed-

ded system have to reside in guaranteed boundaries. Common off-the-shelf

processors, which are optimized for average performance, make it difficult to

calculate exact worst-case behavior of executed program code. Worst-case

assumptions (only cache misses, hazards, mispredicted branches, etc.) made

for such systems lead to unrealistic bad performance.

Based on the requirements mentioned above, a modular construction sys-

tem for real-time applications [8][9] (shown in Figure 1) has been developed

at our institute. All components of the modular construction system have

been implemented as VHDL designs [3] and tested on an APEX-FPGA de-

velopment board [1][13]. Scalability of the microcontroller with respect to

computational power is achieved by providing different processor core im-

plementations of the same instruction set. Extension modules can be used

to customize the various processor cores to application-specific requirements

(extension modules and their interface are shown in section 1.3). A cen-

tral role in this concept plays the standardized interface between processor

core and extension modules, which ensures that all extension modules can

1.1 Motivation 3

be attached to any of the available cores. Three different code-compatible

real-time processors are provided, while the design and implementation of

the LANCE processor is the objective of this diploma thesis.

Processor

Core

M1

M2

M3

Extension Module

Repository

Processor Core

Repository

In
te

rf
ac

e

Figure 1: Modular Construction System

The LANCE design is intended to provide the modular construction system

with more computational power than the two already existing processor cores

NEEDLE and SPEAR are able to offer (NEEDLE and SPEAR are described

in detail in section 1.2). The basic idea behind the LANCE design is to

create a processor with twice as much processing power as SPEAR, without

losing code compatibility and real-time capability. Performance gain shall

not only be achieved through higher clock rates, but also by extending the

SPEAR processor to a superscalar design. Independent from clock rate, the

superscalar approach will lead to a major improvement of the instruction

execution rate. The effects of both, increased clock rate and superscalar de-

sign, should provide LANCE with significantly higher overall performance

than the SPEAR processor core.

1.2 Processor Cores 4

1.2 Processor Cores

The two already existing, fully code-compatible 16-bit real-time processor

cores SPEAR and NEEDLE will be presented in detail in this section.

1.2.1 SPEAR

SPEAR stands for ”Scalable Processor for Embedded Applications in Real-

time environments”[6][7]. The SPEAR design has been developed to provide

moderate computational power and represents a RISC architecture which

executes instructions through a three-stage-deep pipeline. The instruction

set comprises 80 instructions which are described in detail in section 3.1 and

appendix A. The main components of the processor are:

• Extended Register File

• Exception Vector Table

• Data Memory

• Instruction Cache

• Extension Modules

• ALU

Instruction and data memory are both 4 kB in size, but it is possible to add

up to 128 kB of external instruction memory and 127 kB of additional data

memory. The uppermost 1 kB of the data memory is reserved for memory

mapping of the extension modules. As a result of the memory mapping,

no dedicated instructions for extension module access are needed (common

load/store instructions are used) which satisfies the RISC [28] philosophy of

our approached design. The register file holds 32 registers which are split into

26 general purpose and 6 special function registers, three of which are used to

construct stacks efficiently (see frame pointer operations in section 3.2.2) and

1.2 Processor Cores 5

the remaining three are used to save the return address in case of an interrupt

or subroutine call. SPEAR supports 32 exceptions, 16 of which are hardware

exceptions (=interrupts) and 16 can be activated by software (=trap). The

entries of the exception vector table hold the corresponding jump addresses

to the interrupt/exception service routines for each interrupt or exception.

The SPEAR ALU performs all provided arithmetic and logical functions, but

is also responsible for offset calculation on jumps. Furthermore, the ALU is

used to pass through data out of the exception vector table or register file.

Figure 2 shows a block diagram of the SPEAR processor.
P

ip
e

R
eg

is
te

r
1

P
ro

g
ra

m
 C

o
u
n
te

r

P
ip

e
R

eg
is

te
r

2

Boot-
ROM

Instr.
Memory

Extended
Register
File

Instr.
Decoder

Except.
Vector
Table

Data
Memory

Ext.Mod.

SysCtrl

P
C

P
C

A
L
A

U

fetch decode exe/writeback

Figure 2: SPEAR Architecture

The SPEAR Pipeline shown in Figure 3 is structured into an: instruc-

tion fetch (FE), instruction decode (DE) and combined execute/writeback

(EX/WB) stage. Inside the fetch cycle, instruction memory is accessed and

one instruction opcode is passed to the decode stage. During the decode

cycle the control signals for the memories and the ALU are generated, fur-

1.2 Processor Cores 6

thermore the instruction’s operands are retrieved from the register file. The

execute/writeback stage performs the instruction’s intended operation and

writes the resulting value to the appropriate memory location. If an exten-

sion module access (EXT) happens, it is also executed during the EX/WB

cycle.

DE EX/WB

EXT

FE

Figure 3: SPEAR Pipeline Architecture

1.2.2 NEEDLE

The NEEDLE processor core [12] is fully code-compatible to SPEAR and

is intended to pay attention to a compact design, therefore it is primarily

optimized to reduce silicon area. NEEDLE uses the same extension module

interface as SPEAR does, and an identical Processor Control Unit (which

is presented in chapter 1.3). NEEDLE has no pipeline and requires several

clock cycles per instruction. To minimize chip area, instruction- and data

memory, the register file and the exception vector table have been mapped

into the same physical memory. This way only one address- and data bus is

necessary to access all memory elements which leads to reduced silicon area.

The physical memory block is 4 kB in size, of which 2 kB are used as instruc-

tion memory and 1.92 kB as data memory. The remainder is allocated to the

register file and the exception vector table. Additionally the processor core

comprises only an ALU, a multiplexor, three registers (program counter, in-

struction register, accumulator register) and a sequencer. The block diagram

of NEEDLE is shown in Figure 4.

The instruction register (IR) is needed to store the currently processed in-

struction. The accumulator register (ACCU) is used to store one operand

1.2 Processor Cores 7

for the ALU and the program counter (PC) contains the address of the next

instruction. The most complex part of NEEDLE is the sequencer which has

been implemented as eight-stage state machine. The sequencer’s task is to

distinguish between the 80 different instructions and generate the appropri-

ate control signals for the ALU and the memory. Instructions are executed

within three phases, the fetch, the decode and the execute phase. As the

write-back to the memory runs parallel to the fetch phase, some of the in-

structions only need two instead of three clock cycles to be processed. The

NEEDLE processor supports 32 exceptions as well, 16 of which are hardware

exceptions (= interrupts) and 16 can be activated by software (= traps).

IR

Data
Memory

Instruction
Memory

RegisterFile

Vector Table

Extension
Module

ACCU

PCM
U
X

Sequencer

ALU

Figure 4: NEEDLE Architecture

1.3 Extension Modules 8

1.3 Extension Modules

As mentioned in chapter 1.1, extension modules are used to fit the processor

for different applications. For reason of simplicity and lucidity, the integra-

tion of and the access to extension modules should work the same way for

all of them. Thus a generic interface for all extension modules has been de-

fined [16]. All extension modules are mapped to a unique location at the

upper most region of the data memory. The modules are accessed via eight

registers using simple load and store instructions, since from the processors

point of view the extension modules are simply memory locations. A block

diagram of the generic extension module interface is shown in Figure 5. The

first two registers are the module’s status and config registers, of which the

status register is read only. The lower 8 bit of these registers are defined

within the interface specification, hence they are identical for all extension

modules, whereas the upper 8 bit are module specific. The status register

tells the processor the current state of the extension module. Among other

things it shows if an interrupt has been activated, an error has occurred, or

the extension module is still busy. The config register is used to specify pa-

rameters for the module’s operations. Next to a softreset bit, which is used

to deactivate the extension module, an interrupt acknowledge bit exists to

reset the interrupt status. The remaining six registers Data 0 - Data 5 are

allocated for module specific issues.

Addr. Dec

Status

Data 5

Config

Data 2
Data 1

Data 3

Data 4

Data 0

Address

WR-Data

RD-Data

WR/nRD

Interrupt Req

BaseAddr

Processor
Core

environment

Interface

Figure 5: Generic Extension Module Interface

1.3 Extension Modules 9

Dependening on their functionality there are three different types of extension

modules:

• Processor Control Modules : These modules have direct influence on

the processor core’s behavior. An example for such a module is the

”protection control module”, which provides the processor core with

the possibility to restrict memory access to specific locations. This is

necessary if the processor runs an operating system.

• Function Modules are used to provide the processor core with hard-

ware implementations of different functions like integer multiplication,

floating point operations or even complex algorithms.

• I/O Modules : Since the processor core has no direct interface to the

environment, all interaction is aided by I/O extension modules. Exam-

ples for I/O extension modules are: RS-232, USB, 7-segment display,

VGA, PS/2, etc.

1.3.1 Processor Control Unit

The processor control unit plays a major role among the extension modules,

because it contains the processor status register as well as the interrupt han-

dler. As the status register and the interrupt handler are vital components

of the processor core, the processor control unit can be accounted as proper

component of the processor. The status register and the interrupt handler

have been moved to an extension module due to compatibility issues. This

way all processor cores use the same processor control unit and therefore it is

guaranteed that the status register and the interrupt mechanism act exactly

the same way in all processor cores. Since the processor would not work

without the processor control unit, it is always mapped to the uppermost

address of the data memory. As depicted in Figure 6, the processor control

unit is subdivided into four parts:

1.3 Extension Modules 10

Status

Int_Prot
Int_Mask

Not Used

Not Used

ADDRESS DECODER

Status
Control
Logic

Config

INTERRUPT
HANDLER

Interface LOGIC

Data_In

Address

WR/nRD

Enable

Data_Out

Clk

HW_Reset

AccViol

Base_Addr
=”1FFF”

Interrupt_In

Status_Enable

Status_Ctrl

Status_Flag

Cond_Flag

Carry_Flag

Current_ProtL

System_Reset

Interrupt_Cmd

Interrupt_Nr

E
x

te
n

si
o

n
 M

o
d

u
le

 I
n

te
rf

ac
e

P
ro

ec
ss

o
r

C
o

n
tr

o
l

S
ig

n
al

s

Not Used

Not Used

Figure 6: Processor Control Extension Module

• Generic Interface: The registers of the interface hold the status and

config register as well as the interrupt protocol and interrupt mask

register.

• Status Control Logic: The status control logic provides the processor

with correct status values and is responsible for updating and saving

the status register.

• Address Decoder: Each extension module is mapped to a unique mem-

ory location within the data memory. The address decoder recognizes

if the modules is accessed and activates it.

• Interrupt Handler: The interrupt handler is responsible for synchroniz-

ing and logging incoming interrupts and provides the processor with

the correct interrupt number.

Figure 7 depicts the register interface of the processor control module, the

status register and essential parts of the config register will be illustrated

below. The first two registers of the generic interface are the status and the

config register (as described in the previous section). The module specific

part of the status register holds the processor status register, and can only be

1.3 Extension Modules 11

read by the processor. Besides common status flags (zero-, carry-, overflow-

and negative flag) the processor status register holds, additional flags:

S A V E S T A T U S

Interrupt Protocol Register

Interrupt Mask Register

NMI

U N U S E D

U N U S E D

UNUSED

UNUSED

Illegal
Opcode

Access
Viol

Sysctrl
Wr Err

GIE PROT1 PROT0 CARRYCOND ZERO NEG OVER LOOR FSS BUSY ERR RDY INT

EFSS OUTD SRES ID INTALOOW

Status

Config

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Generic I/O-Module Part

System Control Module Specific Part

U N U S E D

U N U S E D

Figure 7: Register Interface of the Processor Control Extension Module

• GIE: If the global interrupt enable (GIE) is set (=’1’) all interrupts

are accepted by the processor control unit; if GIE is deactivated the

interrupts are only logged but not executed (with the exception of the

non maskable interrupt NMI which is always executed and mapped to

bit 0).

• PROT1/PROT0: Protection bits 1 / 0 show the protection level of

the current processor task. ”11”for zero protection, ”10”for low pro-

tection, ”01”for high protection and ”00”for the supervisor mode (will

be ignored if the protection control module has not been activated).

• COND: The condition flag is used to determine if conditional instruc-

tions will be executed or not. The cond flag is only set or deleted by

compare or bit-test instructions.

• ZERO: The zero flag indicates that the result of the last ALU operation

was zero.

1.3 Extension Modules 12

• NEG: The negative flag is set if the result of the ALU operation is

negative.

• CARRY: The carry bit is used for arithmetic instructions.

• OVER: The overflow bit indicates an overflow of a calculation.

The module specific part of the config register is used to save the processor

status if an interrupt/exception occurs.

The interrupt protocol register is responsible for the logging of all incoming

interrupts. All interrupts that are masked within the interrupt mask register

(bit set at the corresponding position) will be logged, but the interrupt service

routine will not be executed.

1.4 Program Download 13

1.4 Program Download

To provide the user of the microprocessor with a versatile programming inter-

face between PC and microprocessor the download hardware has been split

into two parts, the communications unit (COM-Module) and the program-

mer module (PROG-Module) which includes a Boot-ROM for startup. This

approach has the advantage that it is quite simple to change the download

medium. Only the communications module and the corresponding initializa-

tion program code (situated inside the programmer’s Boot-ROM) have to be

replaced. The communications unit transports the downloaded program code

into the processor, but the actual programming into the instruction memory

is done by the programmer module. Figure 8 depicts dataflow during the

programming procedure.

The programmer module’s Boot-ROM is used to set up the communication

module and initiates the data transfer from the communication unit to the

programmer and the instruction memory. After the download is finished the

programmer module switches from the Boot-ROM to the instruction mem-

ory and the processor starts to execute instructions out of the instruction

memory.

COM-
Module

PROG-
Module

Processor Core

Instr.
Memory

PC
FPGA

Figure 8: Program Download

1.5 Chapter Organization and Overview 14

1.5 Chapter Organization and Overview

Chapter two gives an overview on superscalar designs considering three dif-

ferent past and one state of the art processor designs.

In chapter three a detailed specification of the microcontroller is given, fur-

thermore the instruction set is described in detail. This chapter ends with a

survey of code restrictions that may arise due to the superscalar approach.

Chapter four treats the design of LANCE and gives deep insights into the

design decisions on each component of the microprocessor.

Chapter five focuses on the hardware design flow and the development envi-

ronment.

Chapter six presents the test environment and the results, and gives a com-

parison of NEEDLE, SPEAR and LANCE.

Chapter seven covers the conclusion of this diploma thesis.

In Chapter eight an outlook on topics for further research is given.

15

2 Superscalar Designs - State of the Art

In this chapter different superscalar designs are introduced to give an overview

of how superscalar processors can be designed. The term ”superscalar”is used

for architectures which are able to execute two or more instructions in par-

allel. The Intel Pentium, Motorola 68060 and PowerPC 601 were chosen due

to the fact that all three designs are the first superscalar approach in their

product families and therefore less complex than currently available proces-

sors. Furthermore, a short overview on the Intel Pentium 4 architecture will

be given to show one state of the art superscalar design.

All the presented superscalar designs are commercial off-the-shelf proces-

sors for use in workstations and personal computers. They are all optimized

for best performance using standard application software. This optimization

concept led to several architectural constructs like caches, dynamic branch

prediction or out-of-order execution which improve average performance, but

make it very difficult (in some cases impossible) to calculate exact WCET

(Worst Case Execution Time) boundaries for executed program code [38].

2.1 Intel Pentium

The first superscalar member of the Intel processor family for Personal Com-

puters is the Intel Pentium r© [19][20]. The processor core consists of two

parallel pipelines, the u-pipe and the v-pipe, as shown in Figure 9. The u-

pipe handles any kind of instruction, whereas the v-pipe only supports simple

integer and simple floating-point instructions. Each pipeline is able to exe-

cute frequently used instructions in a single clock cycle. Together these two

pipelines can issue two integer instructions or one complex floating-point

instruction in one clock cycle. The pipes are organized as five-stage-deep

pipelines. The pipeline stages are as follows:

• PF Prefetch

2.1 Intel Pentium 16

• D1 Instruction Decode

• D2 Address Generate

• EX Execute - ALU and Cache Access

• WB Writeback

Pre-

Fetch

D2 EX WB

D1

D2 EX WB u-pipe

v-pipe

Figure 9: Intel Pentium Pipeline Architecture

The first pipeline stage is the Prefetch (PF) stage in which instructions are

prefetched from the on-chip instruction cache. Because the processor has

separate caches for data and instructions (Harvard-Architecture), prefetches

do not conflict with data references. In the PF stage two independent pairs

of prefetch buffers work in conjunction with the branch target buffer (BTB).

One of these two buffers prefetches instructions sequentially while the other

retrieves instructions according to the BTB predictions.

The pipeline stage after the PF stage is Decode1 (D1), in which two parallel

decoders issue the next two sequential instructions. The decoders also de-

termine whether the instructions can be paired (executed in parallel) or not.

When instructions are paired, the instruction issued to the v-pipe is always

the next sequential instruction after the one issued to the u-pipe. Instruc-

tions with data dependencies or complex instructions (which require both

pipelines) are not allowed to be paired. Jumps can only be paired if they are

issued to the v-pipe. More details on instruction pairing is provided in [20].

The D1 stage is followed by the Decode2 (D2) in which addresses of memory

resident operands are calculated.

2.1 Intel Pentium 17

In the Pentium processor the Execute (EX) stage of the pipeline is used for

both ALU operations and data cache access. In EX, all u-pipe and v-pipe

instructions are also verified for correct branch prediction. If the BTB has

mispredicted a branch, both pipelines have to be flushed and a new instruc-

tion stream will be fetched.

The final pipeline stage is Writeback (WB), in which the instructions are

enabled to modify the processor state and complete execution.

During their progression through the pipeline, instructions may be stalled

due to certain conditions. The u-pipe and the v-pipe instructions enter and

leave D1 and D2 at the same time. If there is a stall in one pipeline, the

instruction in the other pipeline is also stalled at the same pipeline stage.

No instructions are allowed to enter EX stage of either pipeline until the

instructions in both pipelines have advanced to WB. This concept of instruc-

tion issuing is know as in-order execution.

2.2 Motorola 68060 18

2.2 Motorola 68060

The Motorola 68060 [5][26][4] is the forth generation microprocessor of the

M68000 Family and it is code compatible with previous family members. The

68060 employs a deep pipeline, dual-issue superscalar execution, a branch

cache, a floating point unit and 8 kB each of on-chip instruction and data

cache.

As shown in Figure 10, the 68060 consists of two distinctive parts: a four-

stage Instruction Fetch Pipeline (IFP) for prefetching instructions and load-

ing them into the FIFO instruction buffer, and dual four-stage operand exe-

cution pipelines (OEPs) which perform the actual instruction execution.

The four stages of the IFP are:

• IAG Instruction Address Generation

• IC Instruction Fetch Cycle

• IED Instruction Early Decode

• IB Instruction Buffer

IAG

DS

IC IED IB

AG OC EX DA WB

DS AG OC EX DA WBIn
st

r.
 F

IF
O sOEP

pOEP

FPU

IFP

BC

Figure 10: Motorola 68060 Pipeline Architecture

The first pipeline stage in the IFP is the Instruction Address Generation

(IAG) which calculates the next prefetch address. The Branch Cache (BC),

which improves prefetch efficiency by detecting changes in the sequential flow

of the fetch stream based on past execution history, is also accessed in this

pipeline stage.

2.2 Motorola 68060 19

After the IAG sends the correct address to the instruction cache, the Instruc-

tion Fetch Cycle (IC) stage performs the cache lookup and fetches the bit

pattern of the next instruction.

The Instruction Early Decode (IED) stage implements a lookup table func-

tion to provide the OEPs with decode information concerning instruction

resource requirements along with controlling information for the superscalar

dispatch algorithm. The IED stage also converts the variable length instruc-

tions with multiple formats into a fixed-length extended operation word. At

the end of the IFP the prefetched and converted instruction along with the

extended operation word are issued to the Instruction Buffer (IB).

In the IB stage the instructions are read from the FIFO and loaded into the

dual OEPs.

The Operation Execution Pipelines, known as the primary OEP (pOEP) and

the secondary OEP (sOEP), are partitioned into a four-stage-deep pipeline.

The pOEP supports all instructions, whereas the sOEP only executes a sub-

set of the instruction set. The four OEP stages are:

• DS Decode and Select

• AG operand Address Generation

• OC Operand Cycle

• EX Execute cycle

For instructions writing data to memory, there are two additional pipeline

stages:

• DA Data Available

• ST Store

The Decode and Select (DS) stage determines the next state for the entire

operand pipeline and also selects the components required for operand ad-

dress calculation. If multiple instructions can issue into the AG stage, the

2.2 Motorola 68060 20

first and the second instruction move into the respective AG stages. If only

a single instruction can issue (because of architectural restrictions), the first

instruction issues into pOEP and the second and third instruction will be

used for pairing in the next cycle, which leads to a sliding two-instruction-

window to examine possible pairs of instructions.

In the operand Address Generation (AG) stage each pipeline calculates the

effective address for instructions requiring data from memory.

The Operand Cycle fetches register and memory operands.

Finally the Execute (EX) stage performs the desired instruction executions

in the integer and floating point units including condition flag updating. The

68060 performs condition code checking inside the EX stage, which leads to a

penalty of seven clock cycles if a branch has been mispredicted. To minimize

this effect the microprocessor employs a sophisticated branch cache.

The two additional stages Data Available (DA) and Store (ST) are needed

to complete operand store operations.

The Motorola 68060 issues all instructions according the to in-order execu-

tion concept. One special feature, implemented for solving data hazards, is

register renaming. This renaming optimization, performed in the DS stage,

substitutes internal pipeline register contents for general register contents.

For more details, see [4][37].

2.3 PowerPC 601 21

2.3 PowerPC 601

The PowerPC 601 [35][25] combines a RISC architecture with a superscalar

machine organization. The 601 contains a 32kB cache (combined instruction-

and data cache) and is capable of dispatching, executing and completing up

to three instructions per clock cycle. As shown in the block diagram in Figure

11, the 601 consists of three different execution pipelines, which are:

• BU Branch Unit

• FXU Fixed Point Unit

• FPU Floating Point Unit

Dispatch

Dispatch Execute

Decode

Writeback

Mult Add Writeback

Instruction

Fetch

In
st

ru
c
ti
o
n
 B

u
ff
e
rs

Dispatch

Branch Unit (BU)

Fixed Point Unit (FXU)

Floating Point Unit (FPU)

Figure 11: PowerPC 601 Pipeline Architecture

The Branch Unit (BU) uses a static branch prediction algorithm to predict

the direction of unresolved branches and executes them. This prediction al-

gorithm simply predicts a branch as taken if the displacement of the target

address is negative, and as not taken if it is positive.

The Fixed Point Unit (FXU) serves as master pipeline and is used for all

integer ALU operations. It also handles all processor Load and Store in-

structions (including the Floating Point Loads and Stores).

The Floating Point Unit (FPU) pipeline contains six stages and is able to

execute all single precision instructions fully pipelined, only double precision

multiplication and division are double pumped through the Mult and Add

stages.

The different pipeline stages will now be described in more detail.

2.3 PowerPC 601 22

Inside the Fetch pipeline stage the unified cache is accessed, with instructions

having lower priority than data. To provide the pipelines with a continuous

stream of instructions, up to eight instructions are fetched into the instruc-

tion buffers in a single cycle, even though the absolute maximum processing

rate is three instructions per clock cycle.

Instructions are dispatched within the Dispatch stage to the FXU and FPU.

The Branch Unit (BU) also decodes, predicts and executes branches inside

the Dispatch stage.

The Decode stage is responsible for decoding instructions, furthermore all

source registers are read. Instructions going to the FXU are dispatched and

decoded in this pipeline stage.

All fixed-point operations are executed inside the Execute stage, moreover

in case of a load/store instruction the address processing and cache lookup

take place.

The Mult pipe stage is responsible for floating point multiplications and

hands its results over to the Add stage where the final floating point result

is calculated.

The Writeback pipeline stage performs the register update, for the FPU

pipeline it also takes care of result rounding and normalization.

Instructions may be dispatched out of order which makes it possible to get

instructions out of the instruction buffers even while one pipeline is blocked.

To keep track of the program order, a unique tagging and counting mecha-

nism has been implemented. Although out-of-order dispatch is more complex

to implement, it also allows to minimize potential dispatch stalls. Further-

more, the PowerPC 601 provides register renaming [37] (only FXU) and full

data forwarding between pipeline stages to resolve as many data hazards as

possible. If there are still any hazards left, they are automatically interlocked

by hardware (stall cycles are inserted).

2.4 Intel Pentium 4 23

2.4 Intel Pentium 4

Intel’s current flagship for desktop computers is the Intel Pentium 4 Pro-

cessor. The Pentium 4 introduces a few new terms like the NetBurst Micro-

Architecture, Rapid Execution Engine, Hyper-Pipelined Technology and Hyper-

Threading Technology [15][23].

The Hyper-Pipelined Technology refers to the 20-stage pipeline of the Net-

Burst micro-architecture (shown in Figure 12). This pipeline is twice as long

as its predecessor on the P6, and therefore provides Intel with the possibility

of reaching much higher clock rates (if less work has to be done in each clock

cycle, the cycle time can be shortened).

TC Nxt IP

1 2

TC Fetch

3 4

Drive

5 6

Rename

7 8 9 10

Sch

11 12

Disp

13 14

RF

15 16

Ex

17 18

Br Ck

19 20

Alloc Que Sch Sch Disp RF Flgs Drive

Figure 12: Pentium 4 Pipeline Architecture

The NetBurst instruction execution is broken down into three main parts:

an in-order issue front end, an out-of-order superscalar execution core and

an in-order retirement. The front end feeds a continuous stream of up to

three micro-operations to the execution engine. The decode unit can decode

one IA-32 [22] instruction per clock cycle and stores the resulting µops to

the Execution Trace Cache. The trace cache can hold up to 12k µops, which

for most of the time preserves the processor from the need of instruction

decoding. The execution engine can have up to 126 instructions ”in-flight”at

once, 48 of which may be loads and 24 stores. The Pentium 4 core can dis-

patch up to 6 µops per cycle and uses register renaming to resolve as many

data hazards as possible. Retirement in NetBurst reorders the instructions

executed in an out-of-order manner to ensure that the system state is left as

the programmer intended.

Rapid Execution Engine refers to the integer execution units of the Pentium

4. These low latency integer ALUs are able to perform fully dependent in-

teger ALU operations at twice the main clock rate. Two instructions are

2.4 Intel Pentium 4 24

issued by calculating one during the first half of the clock cycle and the sec-

ond during the second half.

Hyper-Threading Technology (HT) [21] stands for the ability of a processor

to execute more than one thread at a time and to appear to the Operating

System as two logical processors. HT has been developed to increase usual

processor utilization (about 35%). By sending two threads into the processor

at the same time, execution units that would otherwise have been idle can

be used by the second thread, which can increase processor utilization by up

to 50%. The trace cache is shared between the two threads, furthermore the

trace cache and the retirement logic alternate between the threads and there-

fore ensure that both logical processors can progress on program execution.

In the case of a mispredicted branch the 20-stage-deep pipeline leads to

average costs of 20 cycles, which makes branch prediction the single most

important unit inside the Pentium 4 architecture (and therefore more ad-

vanced than in any other intel processor).

The NetBurst processor architecture was designed to provide a platform

which desktop processors for the next few years will be based on. Intel

claims that this 20-stage pipeline will allow them to reach clock frequencies

of 10 GHz in the future without changing the micro-architecture.

25

3 Specification

This chapter gives a detailed specification of all requirements and constraints

regarding the design of LANCE. The basic idea behind LANCE is to design

a processor with twice as much processing power as SPEAR. A major re-

quirement was to maintain code compatibility to SPEAR and NEEDLE as

far as possible. This ensures that program code developed for one processor

can be used without any modification on another one, which supports rapid

prototyping concepts. From there, it is also necessary to implement exactly

the same extension module interface.

Top priority issue during the design of LANCE has been to maintain real-

time capability, therefore following requirements have to be met:

• predictable program execution time at an accuracy of one clock cycle

to support WCET analysis

• deterministic interrupt response time

• support of priority levels to ensure immediate response on operating

system tasks

The performance gain which is intended to be achieved should result out

of two approaches, in the first place by increasing the clock rate due to

architectural optimizations. The second approach will extend the SPEAR

processor to a dual-issue superscalar design. The effects of both increased

clock rate and superscalar design should provide the LANCE processor with

significantly higher overall performance than SPEAR. Due to the fact that

the generic extension module interface only supports one extension module

access each clock cycle, special architectural mechanisms have to be inte-

grated to ensure fully predictable timing behavior (extension module access

integration is shown in detail in section 4.4.7).

3.1 Instruction Set 26

3.1 Instruction Set

Following a RISC architecture concept, the instruction set of NEEDLE,

SPEAR and LANCE comprises 80 different one-word instructions. The in-

structions can be separated into five distinctive groups:

• two-register-instructions

• one-register-instructions

• instructions using one constant

• register-constant-instructions

• instructions without arguments

two-register-instructions: these instructions have two register addresses

as arguments and can be further subdivided into:

• load/store instructions where the first register is the operation’s des-

tination/source register and the second register holds the memory ad-

dress that has to be accessed, for example LDW r1, r2 : mem(r2)− >r1

• arithmetic operations like ADD r1, r2; OR r1, r2; AND r1, r2 where

the first and second register hold instruction source values, furthermore

the first register serves as destination register.

one-register-instructions: only operate on the contents of one register.

The result of the operation can either be written back to the same register

e.g. NOT r1; SL r1; RR r1; SRA r1; or may be used as branch target e.g.

JMP r1; JSRY r1.

instructions using one constant:

• JMPI offset;(jump immediate) performs a near jump to the instruction

address calculated from the program counter and the given offset (PC

+ offset). The offset is a 10-bit signed integer and therefore provides a

jump range of -512 and +511.

3.1 Instruction Set 27

• TRAP n4; activates one of 16 possible software interrupts (trap) and

saves the return address to register 31. TRAP 5 for example leads to

a jump to the address stored on position 5 inside the exception vector

table (further details on interrupts, traps and the exception vector table

are provided in section 3.2.5).

register-constant-instructions: have one register and one constant as pa-

rameters. These instructions can be subdivided into several instruction sub-

classes:

• LDL r1, n8 ; (load low) is used to initialize the lower 8 bit of register

r1 with the binary representation of the constant n8. (the instruction

performs sign-extension of two’s complement numbers, this means that

the constants MSB is copied to bit 9 to 15 of r1)

• LDH r1, n8; (load high) In contrast to LDL this instruction stores the

8-bit constant n8 to bit 9 to 15 of register r1 without affecting the lower

8 bit.

• CMPI EQ r1, n5 compares the register contents of r1 with the signed

integer constant n5, if r1 and n5 are equal the condition flag is set.

• ADDI r1, n5 adds register r1 and the signed integer constant n5 and

writes the result back to register r1.

• LDOFX, LDOFY, LDOFZ, STOFX, STOFY, STOFZ r1, n5; load-

with-offset and store-with-offset instructions are dedicated framepointer

operations. The registers r26 (framepointer X) to r28 (framepointer Z)

are coupled with the framepointer load and store instructions. For ex-

ample, STOFY r11, 7 stores the content of r11 at the memory location

which is given by the sum of r27 and the signed integer value 7. (more

details on framepointer operations are provided in section 3.2.2)

3.1 Instruction Set 28

• STVEC r1, n5; LDVEC r1, n5; are required to store and read back

the exception vector table entries. Register r1 holds the jump address

for the exception/interrupt service routine and the 4-bit signed integer

constant specifies the position load/store position at the vector table

• BTEST r1, n4; BSET r1, n4; BCLR r1, n4; the 4-bit unsigned integer

constant specifies the bit position of register r1 on which a bit set, clear

or test is performed. E.g. BTEST r12, 7; tests bit number 7 of register

12, if it is set to ’1’ the condition flag will be set.

instructions without argument: NOP (no operation), ILLOP (illegal

opcode), RTSX, RTSY (return from subroutine) the return address is stored

in register r29 respectively register r30 and RETI (return from interrupt)

the return address is stored in register r31.

3.2 Instruction Set Features 29

3.2 Instruction Set Features

Knowing the worst-case execution time (WCET) of programs is crucial for

real-time systems. Safe WCET bounds for all time-critical tasks of a real-

time system have to be established to verify the correct timing behavior of

the whole real-time computer system. Analyzing execution paths as per-

formed by static WCET analysis is supported by the instruction set due to

constant instruction execution time of any single instruction. Furthermore,

the instruction set supports the ONE-PATH programming paradigm [30] by

providing constant-time conditional instructions like MOV CF (move if con-

dition is false). Using those conditional instructions there is the possibility

to implement logical branches as strictly sequential program code.

3.2.1 Conditional Instructions

As mentioned above, constant-time conditional instructions are needed to

support real-time system design, especially the ONE-PATH programming

paradigm (32 out of 80 instructions are conditional). Conditional instruc-

tions like MOV CT r1, r2 evaluate the processors condition flag (set by a

previous compare or bit-test instruction) to determine if the operation has

to be executed or if a NOP is going to be executed. Inserting a NOP if the

condition is false is necessary to provide data-independent constant execution

time. The condition flag, which is located inside the processor status regis-

ter, remains in its current state until the next compare or bit-test operation

alters it. This approach simplifies execution of program blocks like:

if condition then evaluate condition

expression 1; expression1_CT;

expression 2; expression2_CT;

else expression3_CF;

expression 3; end;

end if;

3.2 Instruction Set Features 30

The implementation on the left side executes either expression 1 and expres-

sion 2 or expression 3, whereas the implementation on the right side which

uses conditional instructions in any case performs all three expressions. Ex-

ecuting all instructions of the if-then-else block provides constant execution

time regardless of the condition and does not necessarily lead to loss of per-

formance. If there is a small amount of instructions within the if-then-else

block, the implementation with conditional instructions will lead to equal or

even better performance than the common implementation (left side). The

common if-then-else block implementation typically consists of at least two

jump instructions. One jump may take place after the condition has been

evaluated and leads to expression 3 (else-part), the other jump is performed

after expression 2 is executed and leads to the end of the if-then-else block.

Each jump instruction implicates significant performance loss within pipelined

processors, since the content of both pipelines has to be flushed (if the pro-

cessor implements jump-prediction the amount of pipeline flushes can be

minimized at the cost of more complex WCET analysis).

3.2.2 Framepointer Operations

Framepointer operations are used for efficiently building stacks inside the

data memory (shown in Figure 13). In contrast to common stacks, data can

be written to or read from any memory location within the frame (there is no

need for emptying the whole stack to get data that has been pushed at the

beginning). Framepointer operations are coupled with the registers r26, r27

and r28 (framepointer register X, Y and Z), hence three independent stacks

can be built. To use framepointer operations, first of all a framepointer (e.g.

framepointer X which corresponds to register r26) has to be set to the desired

memory location to provide a base address for the stack. After that, a simple

summation of the framepointer and the 5-bit offset performed by LDOFX,

LDOFY, LDOFZ (”load with offset”) or STOFX, STOFY, STOFZ (”store

with offset”) instructions lead to the intended stack operation.

3.2 Instruction Set Features 31

Data Memory

F
R

A
M

E

Framepointer
+ Offset

- Offset

Figure 13: Framepointer Stack

3.2.3 Subroutine Calls

Two independent subroutine calls are supported by the instruction set. In

case of a subroutine call the return address (address of the succeeding in-

struction of the subroutine call) is automatically stored to register r29 (sub-

routine X) or register r30 (subroutine Y) respectively, hence a subroutine

nesting depth of two levels is provided. If further subroutine nesting is re-

quired, the programmer is responsible for saving and restoring the correct

return address.

3.2.4 Immediate Instructions

There are three different types of immediate instructions to aid compact

program code design:

• CMPI EQ r1, n5; (compare immediate equal) The contents of register

r1 and the sign extended 5-bit constant n5 are examined. If they are

equal, the condition flag (inside the processor status register) is set.

• ADDI r1, n5; (add immediate) adds up the contents of register r1 and

the signed extended 5-bit constant n5 (the carry flag will be ignored

by this instruction).

3.2 Instruction Set Features 32

• JMPI offset; (jump immediate offset) performs a near jump to the

target address given by the signed 10-bit offset value. The signed 10-

bit offset results in a jump range of -512 and +511 instructions.

3.2.5 Exceptions

Exceptions can be subdivided into two groups:

1. interrupts, which are generated by hardware

2. traps, which are activated by software via the TRAP instruction.

Apart from the way they are activated, interrupts and traps show the same

behavior: the program status register is saved and the program counter is

copied to register r31 to ensure that the actual processor state can be recov-

ered after the service routine is finished.

Typically the exception vector table (shown in Figure 14) is initialized with

the service routine address for each exception during program start-up us-

ing the STVEC instruction. If an interrupt or trap occurs, a jump to the

corresponding service routine takes place.

Trap
Vectors

Interrupt
Vectors

0

15

-16

-1

Figure 14: Exception Vector Table

3.3 Code Restrictions 33

3.3 Code Restrictions

The superscalar approach implicates various considerable problems regarding

code compatibility due to possible data dependencies, for example:

instr.A: ADD r1, r2;

instr.B: ADD r4, r1;

If these two instructions are going to be executed in the same clock cycle,

forwarding of register r1 (the result of instruction A) to instruction B has to

take place inside the ALU. Of course not only the ALU, but also the data

memory and other components of the processor core require data forwarding.

Obviously a lot of forwarding paths between the two instruction execution

pipelines will be necessary to resolve all code restrictions, which will lead to

a notable increase of the processors gate count. The example given above

also indicates that the need for forwarding will increase the latency of the

pipeline stages (in the given example two sequential ALU operations have to

be executed within one clock cycle). Another forwarding problem of great

concern is given by the following example:

instr.A: CMP_EQ r1, r2;

instr.B: MOV_CT r4, r1;

During the decode pipeline stage SPEAR determines if a conditional instruc-

tion is going to be executed or not (the SPEAR architecture has been shown

in section 1.2.1). In case of the superscalar approach the shown example

needs special treatment to ensure that the condition flag is available in time

to serve the conditional instruction as input.

How the code restrictions have been resolved and whether there are any left

or not will be discussed in detail in chapter 4

34

4 Overall Design of the Microcontroller

In this chapter all design decisions for LANCE will be explained in detail.

The LANCE processor is intended to extend the SPEAR design to a more

powerful superscalar design. Therefore, an in-depth analysis of the SPEAR

architecture will be presented and all design relevant issues of the superscalar

approach will be discussed. Furthermore, important implementation details

of the architectural components like instruction memory, register file, data

memory, etc. are pointed out.

4.1 Increasing Speed

The first approach to improve the throughput of LANCE with respect to

the SPEAR processor leads to detailed analysis of all data paths within the

SPEAR architecture. As highlighted in Figure 15, the identified critical pro-

cessing path comprises the register file (pipe register 2), the data multiplexors

at the ALU input ports, the ALU and the write-back bus to the register file

framepointer generator.

P
ip

e
R

eg
is

te
r

1

P
ro

g
ra

m
 C

o
u

n
te

r

P
ip

e
R

eg
is

te
r

2

Boot-
ROM

Instr.
Memory

Reg. File

Instr.
Decoder

Except.
Vector
Table

Ext.Mod.

SysCtrl

Data
Memory

P
C

P
C

A
L
A

U

FramePtr.
Generator

fetch decode exe/writeback

Figure 15: Critical Path

4.1 Increasing Speed 35

The following piece of code shows an operation along the critical path:

ADDI r26, 12

STOFX r2, 9

To provide the correct values for the initialization of register r26, which is

coupled with the framepointer X operations, the input data for the ADDI in-

struction is multiplexed to the ALU input ports inside the execute/writeback

pipeline stage. Concurrently (inside the decode pipeline stage) the succeeding

STOFX framepointer operation has to sum up register r26 and the given off-

set to generate the appropriate memory location to store register r2. There-

fore, the result of the ADDI instruction is forwarded out of the ALU to the

framepointer generator where it is used for the address calculation. The ALU

input multiplexor inside the execute/writeback, as well as the framepointer

address generator inside the decode stage and the resulting unbalanced work-

load on these pipeline stages, limit the maximum clock rate of SPEAR. To

resolve these limitations which result from the above identified bottlenecks,

another pipeline stage (decode2) has been inserted between the SPEAR de-

code and execute/writeback stages, shown in the block diagram in Figure 16.

P
ip

e
R

eg
is

te
r

1

P
ro

g
ra

m
 C

o
u
n
te

r

P
ip

e
R

eg
is

te
r

2

Boot-
ROM

Instr.
Memory

Extended
Register
File

Instr.
Decoder

Except.
Vector
Table

Data
Memory

Ext.Mod.

SysCtrl

P
C

P
C

A
L
A

U

Frame
Pointer
Generator

Forward
Unit

Data
Path
MUX

P
ip

e
R

eg
is

te
r

3
P

C

fetch decode1 decode2 exe/writeback

Figure 16: SPEAR Architecture Extended by an Additional Pipeline Stage

4.1 Increasing Speed 36

The additional pipeline stage allows to balance the workload of the pipeline

stages which results in increase of clock rate and hence higher throughput.

The address calculation for framepointer operations (baseaddress+ offset)

has been transferred to the decode2 pipeline stage. Moreover the multiplexor

which provides the two ALU input ports with correct input data (out of the

program counter, the exception vector table or the register file), also moves

to the decode2 stage to speed up the execute/writeback cycle. For further

increase of the ALU processing speed the ALU input data is preprocessed

(details on preprocessing in section 4.4.3).

4.2 Superscalar Design Issues 37

4.2 Superscalar Design Issues

One way to increased processing power while disregarding clock frequency

arises from the superscalar design approach. The LANCE architecture con-

sists of two operand execution pipelines called Pipe A and Pipe B (similar

to the pentium design presented in section 2.1) and therefore represents a

dual-issue superscalar architecture. The superscalar design of LANCE faces

three main problems:

1. Data dependencies arise from the concurrent execution of two instruc-

tions per clock cycle

2. The number of possible instruction memory, register file, exception vec-

tor table and data memory accesses doubles in comparison to SPEAR.

3. Only one extension module access per clock cycle is supported by the

standardized module interface.

To resolve as many code restrictions as possible both pipelines are able to

execute any instruction of the instruction set. One for the programmer trans-

parent restriction regarding extension module access exists within Pipe B

(described in detail in section 4.4.7). As denoted in section 3.3, several data

dependencies arise from the concurrent execution of two instructions. To

ensure code compatibility to NEEDLE and SPEAR, considerable forward-

ing effort is necessary to resolve these data dependencies. It has been en-

sured that Pipe B always issues the succeeding instruction of Pipe A to limit

the needed forwarding mechanisms to an absolute minimum (minimizing the

number of forwardings also results in less silicon area). This constraint also

assures that only forwarding from Pipe A to Pipe B is needed, but not vice

versa. Section 4.4.1 gives detailed insights into the applied fetching mecha-

nisms. Furthermore, section 4.5 points out implementation details on data

forwarding.

4.2 Superscalar Design Issues 38

As discussed in section 4.1, framepointer address generation has moved to

the decode2 pipeline stage to achieve more balanced pipeline stages. This

design decision implicates a code restriction illustrated by the following lines

of code:

Pipe A: ADDI r26, 16;

Pipe B: LDOFX r22, -3;

The ADDI instruction alters the position of framepointer X inside the ex-

ecute/writeback stage, but the LDOFX instruction has already calculated

the memory address inside the decode2 pipeline stage. The resulting code

restriction can not be resolved via simple data forwarding. Only inserting

an additional framepointer address generator within the execute/writeback

stage can solve this restriction. Since this extra hardware will extend the

critical path, the code restriction is not resolved via hardware but has to be

kept in mind during program code generation. Inserting a filler operation (an

independent instruction or NOP) between the operation that sets the frame-

pointer and the one that uses it is essential to achieve correct results. The

drawback of this code restriction should be minor, because framepointers are

only set infrequently and in many cases an independent filler operation can

be found by code reordering mechanisms. Due to the fact that code com-

patibility to SPEAR and NEEDLE should be provided as far as possible, no

further code restrictions were added to the LANCE design.

As LANCE determines whether a conditional instruction is going to be ex-

ecuted or not within the pipeline register 3 (decode2 pipeline stage), the

following code sequence introduced in section 3.3 demands special treatment:

Pipe A: CMP_EQ r1, r2;

Pipe B: MOV_CT r4, r1;

All compare and bit-test instructions issued to Pipe A perform their condition

flag calculation inside the decode2 pipeline stage. Thus condition evaluation

of conditional instructions which have been issued to Pipe B can take place

4.2 Superscalar Design Issues 39

within pipe register 3 as usual. Condition flag calculation of compare and bit-

test instructions issued to Pipe B are performed within execute/writeback

stage and the result is forwarded to pipeline register 3 for further use by

conditional instructions.

To ensure that each clock cycle two sequential instructions are read out of

the instruction memory, the memory has been split into two blocks. One

block holds all instructions with even addresses, the other block those with

odd addresses. As mentioned above, Pipe A is loaded with the preceding

instruction of that issued to Pipe B. A detailed description of the whole

instruction fetch mechanism is given in section 4.4.1.

The register file has to be able to perform two independent write- and four

read-accesses per clock cycle. As there are no memory modules within the

APEX standard memory modules (an APEX-FPGA represents the desired

target device) that meet those requirements, two different implementations

have been verified. Both register file designs are presented in section 4.4.2.

Data Memory has to handle two read, two write or one read and one write

action per clock cycle. To provide this functionality there have also been two

approaches that will be shown in detail in section 4.4.6.

Finally the exception vector table also needed adapting to the superscalar

design to provide both pipelines with the possibility to read and store the

service routine jump addresses. Section 4.4.4 presents the implementation

details.

The restriction that only one extension module access can be processed each

clock cycle (due to the fact that the standardized interface does not support

more) has been resolved by hardware. The extension module interface is

only connected to Pipe A, therefore all extension module accesses occurring

in Pipe B are handed over to Pipe A for further processing. Details on the

whole hand-over mechanism are given in section 4.4.7.

4.3 Microcontroller Architecture 40

4.3 Microcontroller Architecture

The LANCE processor aims to be code-compatible with and more powerful

than SPEAR. All design issues discussed in section 4.1 and 4.2 led to a

pipelined dual-issue superscalar design with a four-stage-deep pipeline, as

shown in Figure 17. The presented LANCE architecture is able to execute

any program code written for NEEDLE and SPEAR due to extensive data

forwarding and special treatment of extension module accesses. However,

the code restriction regarding framepointer operations, introduced in section

4.2, has to be considered.

P
ro

g
ra

m
 C

o
u
n
te

r

P
ip

e
R

eg
is

te
r

2

P
ip

e
R

eg
is

te
r

3
Boot-
ROM

IRAMo

IRAMe

Extended
Register
File

Instr.
Decoder

Except.
Vector
Table

Frame
Pointer
Generator

Data
Path
MUX

Forward
Unit

Data
Memory

Ext.Mod.

SysCtrl

P
C

P
C

P
C

A
L
A

U

Swap
Logic

Pipe A Pipe B

P
ip

e
R

eg
is

te
r

1

A
L
A

U

fetch decode1 decode2 exe/writeback

Figure 17: LANCE Architecture

4.4 Microcontroller Implementation 41

4.4 Microcontroller Implementation

As mentioned earlier, LANCE comprises two instruction execution pipelines,

Pipe A and Pipe B as shown in Figure 18. Both pipelines are able to han-

dle any instruction within the instruction set of the processor. However,

extension module accesses are processed, in a manner transparent for the

programmer, via Pipe A only since the extension module interface does not

support concurrent access to modules (section 4.4.7 provides detailed infor-

mation on the implemented extension module access mechanism). Pipe A

and Pipe B are organized as four-stage-deep scalar pipelines. The pipeline

stages are as follows:

• Instruction Fetch (Fetch)

• Instruction Decode 1 (D1)

• Instruction Decode 2 (D2)

• Execute and Writeback (EX/WB)

Fetch

D1 D2 EX/WB

D1 D2 EX/WB Pipe A

Pipe B

EXT

Figure 18: LANCE Pipeline Architecture

The first pipeline stage is the Fetch stage in which instructions are read from

Boot-ROM or instruction memory and stored to the pipe register 1. On sys-

tem startup instructions are always fetched from the Boot-ROM at a rate

of one instruction per clock cycle, therefore only Pipe A has to execute in-

structions (Pipe B is filled with NOPs). Performing the boot sequence only

4.4 Microcontroller Implementation 42

on one pipeline allows to use the same Boot-ROM as SPEAR and NEEDLE

do. After the instruction memory has been filled, the processor switches over

to the instruction memory and starts reading instructions at a rate of two

instructions per clock cycle to utilize both pipelines.

The decode1 (D1) pipeline stage holds two parallel decoders, which gener-

ate the appropriate ALU and memory control signals corresponding to the

processed instruction opcodes. The operands of both currently issued in-

structions are also read out of the register file and/or the exception vector

table within the decode1 pipeline stage.

The decode1 stage is followed by decode2 (D2) where another control signal

generation and preprocessing for the ALU takes place. Multiplexing of the

correct input data to the ALU input ports is also done within the D2 cycle.

Compare and bit-test instructions issued to Pipe A are evaluated within de-

code2 stage. This is necessary to provide conditional instructions processed

in parallel inside Pipe B with the correct condition flag value. Furthermore,

address calculation for framepointer operations is handled within the D2

pipeline stage.

In the LANCE design the execute/writeback (EX/WB) stage of the pipeline

is responsible for data memory access, but also performs all arithmetic and

logical operations within the ALU. Furthermore, results are passed through

to the register file and the exception vector table as well as to the pro-

gram counter and all pipeline registers along both write-back busses. If

an extension module access (EXT) occurs it is also handled during the exe-

cute/writeback cycle.

Detailed information on design and implementation approaches of the pro-

cessor core components is given in the subsequent paragraphs.

4.4 Microcontroller Implementation 43

4.4.1 Instruction Memory and Boot-ROM

The instruction memory has to ensure that the processor operates at full

capacity, therefore two valid, sequential instructions have to be read out of

the instruction memory each clock cycle. In order to keep the instruction

fetch mechanism simple, a single instruction memory, which contains two in-

structions per line, could be used. This concept, known as VLIW (Very Long

Instruction Word) computer architecture [29], assures that two successive in-

structions, starting with an even memory address, are read each cycle. In

the case of a jump to the second instruction of such an instruction-memory-

line, the first instruction has to be discarded to guarantee correct program

execution behavior. This would result not only in loss of performance, but

also would make it impossible to perform exact WCET analysis since the

program execution time would depend on the LSB of jump-target addresses

which are known only at runtime (a jitter of one clock cycle on each branch

instruction would be the consequence). The above mentioned problems re-

garding branch-instructions lead to the architecture depicted in Figure 19.

IRAMe

P
ro

g
ra

m
 C

o
u
n
te

r

16

IRAM
Control

PC

ë û(PC +1)/2

15

ë ûPC/2

15

IRAMo P
ip

e
R

eg
is

te
r

1

Swap
Logic

16
PC

PC[0]

1

Return
Addr.

Instr. N

Instr. N+1

sw_cmd

Figure 19: Instruction Fetch - Swap Mechanism

4.4 Microcontroller Implementation 44

The instruction memory is 8 kB in size and has been split into two blocks of

4 kB each. One block holds all instructions with even instruction addresses

(IRAMe), the other block the instructions with odd addresses (IRAMo).

The program counter, without the least significant bit (LSB) bPC/2c - the

LSB is implicitly resolved due to the fact that two separate instruction

memories have been used - is directly mapped to the IRAMo address port.

Since IRAMe’s address port is fed by the program counter increased by one

b(PC + 1)/2c, this mechanism guarantees that two successive instructions,

starting with the one the program counter points to, are fetched each clock

cycle. By default instructions out of IRAMe are mapped to Pipe A and the

instructions out of IRAMo are issued to Pipe B. These instructions have to

be swapped if the program counter holds an odd value, because it has to

be ensured that Pipe B holds the successive instruction of the one issued

to Pipe A. The implemented instruction fetch mechanism ensures that two

valid, successive instructions are fetched each clock cycle and therefore sup-

ports accurate WCET analysis.

The Boot-ROM is used for initializing the microcontroller on system start-

up. The Boot-ROM can hold only 128 instructions, thus it is used to set up

the communication and programmer extension module to transfer the appli-

cation code to the instruction memory. The Boot-ROM architecture has not

changed in respect to NEEDLE and SPEAR to allow the programmer to use

the same assembler [7] as well as the identical programmer extension module.

Due to the fact that the Boot-ROM has just one output port it is only able

to retrieve one instruction per clock cycle. All instructions are issued to Pipe

A as long as they are fetched from the Boot-ROM, in the meantime Pipe B

is filled with NOPs and therefore stays idle.

4.4 Microcontroller Implementation 45

4.4.2 Register File

As denoted in section 4.2, the register file has to be able to perform six inde-

pendent data accesses each clock cycle, two register write and four register

read actions. As there are no memory modules within the APEX standard

memory modules that meet those requirements (an APEX-FPGA [1] repre-

sents the desired target device), the following two different implementations

have been realized.

1. discrete flip-flop register array

2. two mirrored dual-port memories clocked at twice the processor clock

frequency

The first design approach for the register file, the discrete flip-flop register

array allows as many read and write accesses as needed for the reason that

it is built of common flip-flops. With a register file size of 32 registers of 16

bit each, the flip-flop implementation leads to 512 required flip-flops. The

flip-flop count is quite high for an FPGA implementation due to the fact

that APEX devices, which are presented in detail in section 5.1, need one

logic element (LE) for each flip-flop. In Addition to the 512 flip-flops which

implement the 32 registers another 1000 LEs are needed for the multiplexors

which select the correct location for the 16 bit input and the two 16 bit

outputs of the register file. The implementation which uses memory blocks

needs far less chip resources than this one.

The second approach, the mirrored dual-port memory, is depicted in Figure

20. Dual-port RAM modules, as provided by the APEX-FPGA, permit

memory access twice per clock cycle, once for reading and once for writing

data. Duplicating the RAM block as well as the memory contents allows to

perform one write access and two independent read actions each clock cycle.

The mirroring process is quite simple, all data written to the RAM is written

into RAM block 1 and RAM block 2 at the same time. For read access each

RAM block is addressed separately, which leads to the two independently

4.4 Microcontroller Implementation 46

read operations announced above. The SPEAR processor [7] uses exactly

this design as register file implementation. The mirrored dual-port RAM has

been adapted to the LANCE architecture by increasing the clock rate to twice

the processor’s clock frequency (increasing clock rate of certain components

is not uncommon, as shown by the Pentium 4 design in section 2.4). Pipe A

reads and writes its data in the first half of the processor’s clock cycle and

Pipe B does the same in the second half. In that way the mirrored dual-port

RAM design supports two register writes (write back the resulting data of

Pipe A and Pipe B) and four register file read actions (read two instruction

parameters for each pipeline). Doubling the clock rate for the RAM blocks

has been considered as possible solution due to the fact that a similar memory

design has reached clock rates up to 160 MHz.

RAM block 1
syn_dpram 32x16

RfData1

RfData2

RfAddr2

RfAddr1

RfWrBAddr

RfWrBData

ReadAddress

WriteBData

WriteBAddress

ReadData

ReadAddress

WriteBData

WriteBAddress
ReadData

RfAddr1A

RfAddr1B

RfAddr2A

RfAddr2B

RfWrBAddrA

RfWrBAddrB

RfWrBDataA

RfWrBDataB

RAM block 2
syn_dpram 32x16

RfData1A

RfData1B

RfData2A

RfData2B

Figure 20: Register File Implemented as Memory

The discrete flip-flop register array was chosen as register file implementation

for the LANCE design for two reasons. First of all it is more technology-

independent and would also perform well within a ASIC (Application Specific

Integrated Circuit) design or other FPGAs. The second reason is that the

4.4 Microcontroller Implementation 47

mirrored dual-port memory does not perform well due to forwarding issues

(the first half of the processor clock cycle has to last at least as long as the

longest path in the exe/writeback stage to ensure correct data forwarding).

4.4.3 Instruction Decode

Instruction decoding has been split into two parts as depicted in Figure 17

in section 4.3:

• instruction decoder: generates ALU- and memory control signals (lo-

cated inside decode1 pipeline stage).

• framepointer generator and data path multiplexor: performs frame-

pointer address calculations and preprocesses data for the ALU (lo-

cated inside decode2 pipeline stage).

Instruction decoder: The instruction decoder component is exactly the

same as the one used in the SPEAR architecture. The only difference is that

LANCE performs instruction decoding on two identical decoders in parallel

to provide both pipelines with appropriate control signals.

Framepointer generator and data path multiplexor: The decode2

pipeline stage has been inserted to optimize the workload of each pipeline

stage. Framepointer calculations from the register file and data-source mul-

tiplexing as well as data preprocessing from the ALU have moved to the

decode2 stage.

As introduced in section 4.1, framepointer operations calculate the effective

memory address by adding the offset (hardcoded into the framepointer in-

struction) and the appropriate framepointer, hence two carry select adder

(CSA) have been implemented to provide this functionality.

The data path multiplexor provides the ALU input ports with correct in-

put data out of the program counter, exception vector table, register file or

the writeback busses. Furthermore, data preprocessing is done in terms of

inverting operands for compare, invert or subtraction instructions to keep

4.4 Microcontroller Implementation 48

the ALU delay as low as possible. As a result of data preprocessing, ALU

operations have been merged. This leads to a smaller subset of ALU control

signals which have been split into four distinctive groups to enhance the ALU

performance.

Another important part of the decode2 pipeline stage is responsible for re-

solving compare and bit-test instructions issued to Pipe A to ensure correct

behavior of conditional instructions processed in parallel. Therefore, another

carry select adder is fed with the operands of pending compare instructions

and the resulting condition flag is propagated to the pipe register 3 to deter-

mine if the instruction inside Pipe B is going to be executed or not.

4.4.4 Exception Vector Table

In the LANCE architecture the exception vector table has to support two

read, two write or one read and one write action per clock cycle. To pro-

vide this functionality, two different vector table implementations have been

verified:

• discrete flip-flop array

• dual-port memory at double processor clock frequency

Similar to the register file implementations the exception vector table was

built with flip-flops, which resolved the multiple access problem, but also led

to drastic increase of silicon area (FPGA logic elements).

The second approach uses one dual-port memory clocked at twice the clock

rate as the processor core (in contrast to the register file implementation no

memory mirroring is needed, because only two, instead of four, read opera-

tions can occur concurrently). In the first half of the processor clock cycle

the exception vector table is read and/or written by Pipe A, while Pipe B

performs its operation on the vector table during the second half of the clock

cycle.

4.4 Microcontroller Implementation 49

As mentioned in section 4.4.2, the discrete flip-flop implementation provides

a more technology-independent solution, whereas the dual-port memory ap-

proach leads to less logic elements on FPGA designs. Both implementations

were tested, the resulting insights are presented in chapter 6.

4.4.5 ALU

The ALU implementation of LANCE adapted the SPEAR ALU in several

different ways listed below.

• input multiplexor removed

• multiple small multiplexors for operation selection

• carry select adder with static carry-in

• data forwarding from Pipe A to Pipe B

First of all the multiplexor which provides the ALU with input data from

the register file, exception vector table and program counter has been moved

to the decode2 pipeline stage.

To keep the multiplexor, which selects the appropriate action for each ALU

operation, as simple as possible, it has been replaced by a set of different

small multiplexors. The control signals for these multiplexors are generated

within the decode2 pipeline stage from the ALU control signals provided by

the instruction decoder. Splitting the SPEAR ALU multiplexor to a set of

smaller multiplexors led to a smaller amount of distinctive ALU operations

and therefore aids speeding-up ALU operations.

Another important difference to the SPEAR ALU are the used carry select

adders (CSA) which operate at hardcoded carry-in variables. The ALU com-

prises four distinctive CSAs, two of which are part of Pipe A and the others

associated with Pipe B. The CSAs for each pipeline are distinguished by the

carry-in value, one CSA has its carry-in port hardcoded to ’0’ the other one to

’1’. The CSAs calculate their results as soon as input data changes. There is

4.4 Microcontroller Implementation 50

no need to wait on any multiplexor switching to determine whether an ADD

or a SUB instruction - with or without carry-in - has to be processed. The

switching of the multiplexor to choose the correct result is done in parallel

to the operations computation.

If no further code restrictions should be inserted, data forwarding from the

ALU and/or the data memory associated with Pipe A to Pipe B’s ALU, is

necessary to ensure correct program behavior .

The concepts introduced above support a notable increase of ALU processing

speed.

4.4.6 Data Memory

To provide the data memory with the possibility of two read, two write or

one read and one write access per clock cycle, two designs similar to the

exception vector table implementation (section 4.4.4) have been verified.

The discrete flip-flop array represents a solution for multiple memory access,

which supports high clock rates but also implicates a large amount of required

hardware resources. This concept does not perform well on FPGAs if large

memories are necessary.

The dual-port memory clocked at double processor clock frequency leads to

problems providing the address and/or data for the memory access at the

right time if forwarding from Pipe A to Pipe B takes place. This approach

needs far less hardware resources than the flip-flop approach if an FPGA

represents the chosen target device.

Section 8.3 treats optimization issues in conjunction with FPGA devices as

target technology, like the data memory access.

4.4 Microcontroller Implementation 51

4.4.7 Extension Module Access

How extension module accesses are treated within the LANCE design has

been introduced in section 4.2 and will be described in more detail in this

section. Due to the fact that the standardized extension module interface

does not support concurrent access to more than one extension module, a

solution had to be found to eliminate this restriction within the LANCE de-

sign.

All extension modules are connected directly to Pipe A. If an extension mod-

ule access takes place it can only be executed via Pipe A. If the instruction

in Pipe B has to access an extension module, this will be identified within

the execute/writeback pipeline stage. Once the extension module access has

been recognized, the following four steps for instruction serialization, also

depicted in Figure 21, are performed:

1. The instruction in Pipe A is executed as usual.

2. Pipe B’s instruction is issued to Pipe A to be executed in the next

cycle.

3. Pipe B’s extension module access is replaced by a NOP.

4. All preceding pipeline stages are halted for one clock cycle, Pipe A

performs the extension module access while Pipe B executes a NOP.

Fetch D1 D2 EX/WB
Pipe A

Pipe B
Fetch D1 D2 EX/WB

Instr. 7 Instr. 1Instr. 3Instr. 5

Instr. 8 Instr. 2Instr. 4Instr. 6 NOP

Fetch D1 D2 EX/WB
Pipe A

Pipe B
Fetch D1 D2 EX/WB

Instr. 7 Instr. 2Instr. 3Instr. 5

Instr. 8 NOPInstr. 4Instr. 6

haltedstep 2

step 1

step 3

step 4

Figure 21: Extension Module Access

4.4 Microcontroller Implementation 52

The decode2 pipeline stage determines if an extension module access is go-

ing to happen in Pipe A. To ensure that the LANCE architecture needs

the same amount of time for extension module accesses no matter to which

pipeline they are issued, Pipe A’s extension module accesses are also halted

for one clock cycle (one major requirement to maintain real-time capability

of a processor is that all instructions always need a pre-determined time

for execution). If both pipelines are going to access extension modules the

introduced mechanism starts with processing the module access of Pipe A

followed by the serialized module access of Pipe B. For each extension module

access the pipeline stages are halted once which ensures constant execution

time regardless of the amount and sequence of extension module accesses.

4.5 Data Forwarding 53

4.5 Data Forwarding

As denoted in section 3.3, a considerable amount of forwarding mechanisms

had to be implemented to ensure code compatibility to NEEDLE and SPEAR.

Due to the fact that the instruction fetch logic (presented in section 4.4.1)

ensures that Pipe A always issues the preceding instruction of Pipe B, only

forwarding from Pipe A to Pipe B is necessary.

The following data forwardings have been implemented:

forwardings within the writeback/execute pipeline stage:

• ALU Pipe A − > ALU Pipe B

• ALU Pipe A − > Data Memory Pipe B

• Data Memory Pipe A − > ALU Pipe B

• Data Memory Pipe A − > Data Memory Pipe B

forwardings between pipeline stages:

Data forwarding can take place from the write-back bus of either Pipe A or

Pipe B (fed by the corresponding ALU or data memory) to Pipe A and Pipe

B of the destination component. Inter-pipeline stage forwardings are needed

for following paths:

• Writeback/Execute Pipe A − > Decode2 Pipe A

• Writeback/Execute Pipe A − > Decode2 Pipe B

• Writeback/Execute Pipe B − > Decode2 Pipe A

• Writeback/Execute Pipe B − > Decode2 Pipe B

• Writeback/Execute Pipe A − > Register File Pipe A

4.5 Data Forwarding 54

• Writeback/Execute Pipe A − > Register File Pipe B

• Writeback/Execute Pipe B − > Register File Pipe A

• Writeback/Execute Pipe B − > Register File Pipe B

Furthermore, the condition flag calculated inside the ALU of Pipe B is for-

warded to pipe register 3 to determine if succeeding conditional instructions

will be executed or replaced by a NOP.

55

5 Development Environment

The LANCE processor core has been implemented in VHDL [3] like NEEDLE

and SPEAR. The development environment used to design and download the

LANCE architecture consists of Synopsys software for design verification and

synthesis and the Quartus software for place-and-route and download into

an FPGA [36][1]. A prototyping board from El Camino equipped with an

APEX FPGA represents the target technology for the LANCE processor.

The APEX FPGA and the prototyping board as well as the hardware design

flow in relation to the above mentioned software are treated in this chapter.

5.1 APEX FPGA Family

An FPGA (Field Programmable Gate Array) is an integrated circuit which

consists of an array, or a regular pattern, of logic cells. The logic cells can

be configured to represent a limited set of functions. These individual cells

are connected by a matrix of programmable switches. The developer’s design

is implemented by specifying the logic function for each cell and selectively

closing the switches in the interconnect matrix. The array of logic cells and

the interconnect matrix form a set of basic building blocks for logic circuits.

These basic blocks are combined to achieve the intended behavior of more

complex designs.

The logic cell architecture varies between different device families. In gen-

eral, each logic cell combines a few binary inputs (typically between 3 and

10) to one or two outputs according to a boolean logic function specified in

the programmed design. In most FPGA families, there exists the possibility

of registering the combinatorial output of the cell, so that clocked logic (like

counters or state-machines) can be implemented easily. The cell’s combina-

torial logic may be physically implemented as a small look-up table (LUT)

or as a set of multiplexors and gates.

5.1 APEX FPGA Family 56

Field Programmable means that the FPGA’s function is defined by the user’s

hardware configuration file (written in VHDL, VERILOG or System C) and

not by the manufacturer of the FPGA chip. Typical integrated circuits per-

form a particular function defined at the time of manufacturing. Depending

on the particular device, the program is either stored permanently or is loaded

from an external memory each time the device is powered up. This kind of

user programmability gives the user access to complex integrated circuit de-

sign without the high fabrication costs associated with ASICs (Application

Specific Integrated Circuit).

The APEX family represents highly integrated FPGA devices which are man-

ufactured in 0.22 µm to 0.15 µm processes. APEX devices are available in

ranges from 30,000 to over 1.5 million gates. The features provided by APEX

devices support high-performance system-on-a-programmable-chip (SOPC)

solutions, allowing designers to integrate a system efficiently and use it in a

broad range of applications. Figure 22 depicts the APEX architecture.

Figure 22: APEX Architecture

5.1 APEX FPGA Family 57

The APEX MultiCore architecture consists of so-called MegaLABs: These

function blocks can be connected with each other as well as to I/O Pins.

This MultiCore approach combines the strengths of LUT-based and product-

term-based devices with an enhanced memory structure as shown in Fig-

ure 23. LUT-based logic provides optimized performance for data-path and

register-intensive designs, whereas product-term-based logic is optimized for

combinatorial paths, such as state machines. LUT- and product-term-based

logic combined with memory functions provide a highly efficient approach,

since applications usually require a combination of LUT-, product-term-, and

memory-based components. Embedded system blocks (ESB) can implement

a variety of memory functions, including first-in-first-out (FIFO) buffers,

ROM or dual-port RAM functions. Embedding the memory directly into

the FPGA improves performance in respect to external SRAMs. The ESBs

support memory block sizes of 128x16, 256x8, 512x4, 1024x2 and 2048x1,

but may be cascaded to implement larger sizes.

Figure 23: MultiCore and FastTrack-Interconnect Structures

Each I/O pin is fed by an I/O element (IOE) located at the end of each row

and column of the FastTrack Interconnect. Two clocks are provided in APEX

devices. These signals use dedicated routing channels to provide short delays

and low clock skews. The clock pins can also feed ClockLock and ClockBoost

5.1 APEX FPGA Family 58

clock management circuits, which provide PLL (Phase-Locked Loop) func-

tionality.

The MegaLAB Structure depicted in Figure 24, comprises a set of logic array

blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals

within the MegaLAB structure. The amount of LABs inside each MegaLAB

depends on the specific APEX device, and can range from 10 to 24 LABs.

Signal interconnections between MegaLABs and I/O pins are provided by

the FastTrack Interconnect, a set of fast column and row channels (addition-

ally LABs at the edge of MegaLABs can be driven by I/O pins via the local

interconnect).

Figure 24: MegaLAB Structure

Each LAB consists of 10 logic elements (LE) and the associated local inter-

connect, as shown in Figure 24. Furthermore, the carry and cascade chains

of each LE are also part of the LAB. Signals are transferred between LEs in

the same or adjacent LABs, ESBs or IOEs via high-speed local interconnects.

This feature minimizes the use of the MegaLAB and FastTrack interconnect

and aids higher design performance and flexibility. The LAB-wide control

signals can be generated from the LAB’s local interconnect, global signals,

or dedicated clock pins.

5.1 APEX FPGA Family 59

The logic element (LE), the smallest addressable logic unit in the APEX

architecture, is very compact and provides efficient logic usage. Figure 25

shows a block diagram of an LE. Each logic element contains a four-input

LUT, which is a function generator that is able to implement any function

of four input variables. Furthermore, carry and cascade chains as well as a

programmable register for D-, T-, JK-flip flop and shift register implemen-

tation are part of each LE. LEs can drive the local interconnect, MegaLAB

interconnect, and the FastTrack interconnect structures.

Figure 25: Logic Element Structure

5.2 DIGILAB 20Kx240 Prototyping Board 60

5.2 DIGILAB 20Kx240 Prototyping Board

A DIGILAB 20Kx240 prototyping board was used for LANCE Processor

tests [13]. Figure 26 depicts the configuration of the FPGA board.

Figure 26: DIGILAB 20Kx240 Development Board

The chip in the middle of the board is the ALTERA APEX20K300EQ240-

1X FPGA [1]. Two independent memory banks of the size of 512 x 16 Bit

each are available in the two chips on the left and the right side of the

APEX FPGA. The two EEPROMs above the APEX chip can be used for

programming of the APEX FPGA.

There are two different ways of downloading the hardware configuration to

the APEX device:

1. Direct programming to the FPGA: The APEX is directly programmed

via the Quartus software.

5.2 DIGILAB 20Kx240 Prototyping Board 61

2. Programming via EEPROMs: The hardware configuration is down-

loaded into the EEPROMs and transferred into the FPGA after a spe-

cific switch has been pressed.

A multiplexed four-digit 7-segment display, four two colored LEDs (red and

green) and four push-buttons can be found next to the EEPROMs. In the

upper left corner the programming interface to the PC can be found. At the

lower left side of the board there are two additional switches, one of them is

the global board reset, the other one triggers the hardware download from

the EEPROMs to the APEX chip. At the upper left side two USB connectors

can be found. The prototyping board supports three different I/O voltage

levels 5V, 3.3V and 2.5V, which can be very useful when connecting external

hardware via USB or the connectors at the upper and lower boundary of the

board.

5.3 Design Flow 62

5.3 Design Flow

The hardware design flow used during the development of LANCE consists

of several steps and is depicted in Figure 27. First of all circuits of the design

are described in the hardware description language VHDL [17]. After this the

correct behavior of the VHDL-code is verified via the behavioral simulation.

The behavioral simulation is followed by the synthesis, where the VHDL-code

is translated into logic cells. Afterwards the pre-layout simulation verifies the

generated hardware, the timing behavior of each logic cell is included in this

simulation. The succeeding place-and-route process maps the logic cells to

the desired target device. After the place-and-route process, exact timing

values for each logic cell as well as for the interconnects between the cells,

are available. The obtained timing information is used within the post-layout

simulation. The last step of the hardware design flow is the production of

the chip, in the case of LANCE the download to the APEX FPGA. Each

single step of the design flow is described in more detail in the subsequent

sections.

Synopsys-

VHDL-analyzer

VHDL Code

Synopsys-vhdldbx

behavioral

simulation

Synopsys-

designcompiler

synthesis

Quartus

pre-layout

simulation
Synopsys-vhdldbx

place and

route

post-layout

simulation

Synopsys-vhdldbx

Quartus

production

Figure 27: Hardware Design Flow

5.3 Design Flow 63

5.3.1 VHDL Coding

The LANCE processor as well as all extension modules have been designed

in the hardware description language VHDL. VHDL stands for Very High

Speed Integrated Circuit Hardware Description Language and was initiated

by the United States Department of Defense. In 1987 it was standardized

within the IEEE standard 1076 [17], in 1993 the standard was revised (IEEE

standard 1076-1993). VHDL is used for description of the behavior and

structure of electronic hardware designs such as ASICs and FPGAs as well

as conventional digital circuits. A detailed introduction to VHDL is given in

[2][3].

5.3.2 Behavioral Simulation

For verification of correct programming syntax the Synopsys VHDL-analyzer

is used [36]. After the VHDL-code has been analyzed, it is simulated with

the VHDL Simulation System (VSS). This simulation includes no timing

information for the created components. All timings in synchronous designs

are based only on the clock signal. Figure 28 shows simulation results of the

LANCE design.

5.3.3 Synthesis

For synthesis the Synopsys design-compiler, depicted in Figure 29, is used.

The synthesis is responsible for transforming the behavioral model of the de-

sign (VHDL-code) into a structural representation, furthermore design op-

timizations are performed. The structural model represents a network of

generic AND, OR and NOT cells. This network undergoes a further trans-

formation into a target-technology-specific representation (FPGA cells to

gates).

5.3 Design Flow 64

Figure 28: Synopsys Waveform Viewer

5.3.4 Pre-Layout Simulation

The pre-layout simulation, also performed via the Synopsys VHDL Simula-

tion System, is necessary to verify the design after synthesis. The behavior

of the hardware generated during synthesis is compared to the behavioral

VHDL-model. Within this simulation the timing of all logic cells, but no

delay caused by interconnects, is considered.

5.3 Design Flow 65

Figure 29: Synopsys Design Analyzer

5.3.5 Place and Route

During the place-and-route process the circuits generated during synthesis

are attached to specific chip regions. Furthermore, the placed components are

connected to each other. Usually the place and route follows a (user) defined

optimization criterion (e.g. optimize to achieve a defined clock rate). Quartus

represents the newest development environment for ALTERA programmable

devices and is used for place and route as well as the download to the FPGA.

The exchange format from the Synopsys design compiler to Quartus is the

EDIF-netlist format. Figure 30 shows the results of a place and route of the

LANCE processor.

5.3 Design Flow 66

Figure 30: ALTERA Quartus

5.3.6 Post-Layout Simulation

During place and route a VHDL-file containing the exact timing behavior

of the whole design can be generated. This VHDL-file is used to perform

the post-layout simulation via Synopsys VSS to verify whether or not the

intended design behavior is still provided.

67

6 Results

This chapter summarizes the results of the measurements and simulations

of the developed superscalar microprocessor LANCE. The test environment

built to compare the performance and overall behavior of NEEDLE, SPEAR

and LANCE is also presented. To fit into the APEX20K300EQ240-1X FPGA

provided by the DIGILAB 20Kx240 prototyping board a slightly simplified

version of the LANCE processor was downloaded for testing. The behavior

of LANCE was verified by using the 7-segment display and the LEDs of the

prototyping board as well as a logic analyzer.

6.1 Test Environment

Code compatibility to NEEDLE and SPEAR had been one major require-

ment for LANCE design, therefore the test environment, designed for SPEAR

can be used for testing LANCE. The test environment depicted in Figure 31,

comprises the processor core, the processor control module (which is a vi-

tal part of the processor), a communications module (the UART extension

module), the programmer module and the 7-segment display module. Ad-

ditionally a boot-ROM initialization file and the download file of the test

program are needed.

Before LANCE and its components have been downloaded to the prototyp-

ing board for testing, each single component and the whole processor have

been simulated extensively. Since simulation only covers a short amount of

time and a limited set of processor functions, the simulation can not proof

correct behavior of LANCE.

The test on the prototyping board covers most of the processor’s functions

due to the usage of asynchronous interrupts, nested subroutine calls, condi-

tional instructions, framepointer instructions, extension module access and

many other operations.

6.1 Test Environment 68

UART

PROCESSOR

CORE

PCFPGA

SysCtrl

Prog

Display

LANCE
CORE

SPEAR
CORE

NEEDLE
CORE

7 Segment Display

Figure 31: Test Environment

The test process can be structured into two main parts:

• Program download: LANCE operates on the boot-ROM contents

• Program execution: The downloaded program code is executed

At the beginning of the test the behavior of Pipe A as well as the UART and

the programmer module is verified by downloading the actual test program

from the Personal Computer (PC) to the instruction memory. First of all

the processor waits for the synchronization pattern for the UART module

to determine the transmission baud-rate. After synchronization the program

code is transferred to the instruction memory. This boot sequence is pro-

vided by the boot-ROM program code and is processed via Pipe A only as

described in section 4.4.1 (Appendix B shows the boot-ROM program code).

The processor switches from boot-ROM to the instruction memory after the

entire test program has been transmitted.

Both pipelines start fetching instructions as soon as the processor switches

to the instruction memory. Whether the LANCE processor is running on the

boot-ROM or the instruction memory can be determined easily by monitor-

ing the program counter. The boot-ROM is active, if the program counter

6.1 Test Environment 69

is increased by 1 each clock cycle. However, if the program counter is in-

creased by 2, instructions are fetched out of the instruction memory and

both pipelines are utilized.

During the second part of the test the processor executes the previously

downloaded program code. The test program which helps verify the correct

processor behavior implements the calculation of the factorial of a number

using recursive calls. At the begin of the test program the processor waits for

the synchronization pattern for the UART module to determine the trans-

mission speed. Using the UART module the hardcoded value for the factorial

calculation can be replaced by a transmitted number. The C-program code

corresponding to the factorial calculation is depicted below.

int factorial (int number)

{

if (number == 0) return 1;

return number * factorial(number - 1)

}

The int factorial(number) function calls itself with the argument decreased

by one until number = 0. Afterwards it returns from the subroutine calls

multiplying the result of the previous subroutine call with the current value

of number which leads to the factorial of number.

After the synchronization of the UART module the factorial computation of

the number takes place and the result is written to the 7-segment display

extension module.

Due to the fact that the program download and the factorial calculation

include complex program flow scenarios like multiple extension module access

and nested subroutine calls in conjunction with interrupts (generated by

entering new numbers for the calculation), a high test coverage has been

achieved. The correct behavior of LANCE during the applied test scenarios

showed that the LANCE design is fully operative.

6.2 Processor Characteristics 70

6.2 Processor Characteristics

The LANCE processor consists of clock, reset and SerIn input-ports as well as

the SerOut output-port. The SerIn and SerOut ports are needed to transfer

the test program via UART module into the instruction memory. To simplify

the testing of the processor the following ports, depicted in Figure 32, have

also been added.

Figure 32: The LANCE Processor

• Instr Addr: is directly connected to the program counter and is used

for verifying correct behavior after program download (switch from

boot-ROM to instruction memory), furthermore it is used to check the

performance of jumps, interrupts and traps.

• Int Cmd: shows if an interrupt has been identified by the processor

core

6.2 Processor Characteristics 71

• Int Nr: holds the interrupt number of the interrupt detected by the

processor control module

• LED: are used to access the LEDs on the prototyping board

• Pin select and 7-segment signals: are connected to the 7-segment dis-

play on the test-board

The developed processor, which has been specified in chapter 4, did not

achieve the expected performance gain due to the fact that the size of the

design and the chosen implementation approaches do not scale well on FP-

GAs. To show the potential of the superscalar approach, several alternative

concepts which needed fewer logic cells within an FPGA but have some de-

sign constraints released were tested also. Table 1 gives a comparison of

NEEDLE, SPEAR and the version of LANCE which has been downloaded

for testing, using an APEX20K300EQ240-1X as target device. The code re-

striction of the presented LANCE version concerns framepointer operations

as introduced in section 4.2.

NEEDLE SPEAR LANCE
Max Clock Rate 25 MHz 46 MHz 18 MHz
Silicon Area 0,33 1 3
MIPS 10 46 36
Instr-/Data Mem 2 kB/1.92 kB 4 kB/4 kB 8 kB/32
Register File 26 GPR+6 SPR 26 GPR+6 SPR 26 GPR+6 SPR
Interrupts/Traps 16/16 16/16 16/16
Instructions 80 80 80
Compatibility full full 1 code restriction

Table 1: Comparison of the NEEDLE, SPEAR and LANCE Processor Char-
acteristics

The main cause for the unexpected low clock rates of the LANCE design

is located in the high amount of used logic and the implicated enormous

interconnect delays. As depicted in Figure 33, the interconnect delay along

6.2 Processor Characteristics 72

the critical path of LANCE represents more than three-fourths of the proces-

sor’s latency (Chapter 7 treats the interconnect delay problem in detail). The

presented LANCE version provides the basis for superscalar microcontroller

implementations which are optimized to specific requirements (e.g. target

technology, code compatibility, gate count, etc.). A possible application field

of the current available LANCE design is a single chip microcontroller for em-

bedded real-time systems where an RC-oscillator is used instead of a quartz.

At the low clock frequencies provided by RC-oscillators (below 10 MHz)

LANCE provides almost twice the computational power of SPEAR.

Figure 33: Quartus - Timing Report

6.3 Different Implementations 73

6.3 Different Implementations

In order to verify the impact of various design approaches, different processor

versions have been implemented. The parameters of the alternative LANCE

designs as well as the resulting performance and restrictions are shown in

Table 2.

LANCE LANCE LANCE no LANCE
download full forwarding no flip-flops

DRAM 32 register 32 register memory memory
Register File register register register memory
exception-
vector table memory register memory memory
vector table-
Pipe A only yes no yes yes
DRAM Pipe A only no no yes yes
forward Pipe A
− > Pipe B yes yes no no
forward EXE/WB
− > decode2 yes yes no no
Clock Rate 22 MHz 24 MHz 36 MHz 54 MHz
Si-Area 3 3.5 2 1.3

Table 2: Different LANCE Implementations

The LANCE processor version with the register file, exception vector table

and data memory built of flip-flops (”LANCE full”column in Table 2), meets

the functional requirements specified in chapter 3, but does not fit into the

available APEX FPGA of the prototyping board. Therefore another version

of LANCE (”LANCE download”) had to be built to test the superscalar pro-

cessor concept. The simplified LANCE processor implements the exception

vector table as dual-port RAM which is connected only to Pipe A. This de-

sign fits into a APEX20K300EQ240-1X FPGA provided by the prototyping

board. The restriction resulting from the simplified approach is that load and

6.3 Different Implementations 74

store operations to the vector table have to be processed via Pipe A. This

restriction has only a minor impact on program design, since operations on

the vector table are only needed at processor startup for initializing of the

exception service routine addresses.

The version of LANCE entitled with ”LANCE no flip-flops”achieves high

clock rates due to exploiting FPGA characteristic components like using

ESB memory blocks instead of logic cells for data memory, register file and

exception vector table. The problem regarding multiple memory accesses

each clock cycle has already been described in section 4.2. The need for

those multiple accesses was neglected by defining restrictions (data memory

and exception vector table access only via Pipe A, ...). The implementation

mentioned above therefore leads to a non-code-compatible processor version

with a high clock rate.

6.4 Evaluation 75

6.4 Evaluation

A logic analyzer screenshot of the execution of the assembler code presented

below is shown in Figure 34. LANCE executes instructions out of the in-

struction memory: the program counter is increased by two each cycle which

indicates that two sequential instructions are issued in parallel.

006A: LDL r20, -21

006B: STW r2, r20; Extension Module Access!

... ...

006F: CMP_EQ r21, r22

0070: JMPI_CT finish; jump_CT to label finish

0072: LDL r19, 0

...

0098: finish: ...

Figure 34: Logic Analyzer Screenshot - Instructions out of the IRAM

The STW instruction on address 006B represents an extension module ac-

cess. Since this instruction is issued to Pipe B, the extension module access

6.4 Evaluation 76

is recognized within the execute/writeback stage which corresponds to a Pro-

gram Counter (PC) value of 0070. As highlighted in Figure 34 the PC stays

on a value of 0070 for two clock cycles which reflects the instruction seri-

alization during extension module access (introduced in section 4.4.7). The

execution of the LDL instruction on address 006A takes place within the

first clock cycle of the two cycle PC = 0070 phase, whereas the the STW

operation is processed during the second clock cycle.

The screenshot also shows that the jump of the JMPI CT instruction which

resides on address 0070 is executed because the PC value changes to 0098

after JMPI CT passed through the execute/writeback pipeline stage.

6.5 Real-Time Capability 77

6.5 Real-Time Capability

In real-time computer systems the correctness of computations depends not

only on correct results in the value domain, but also on the physical instant

at which these results are produced [24]. Therefore it is crucial that the

response time to interrupts and the jitter of the response is known exactly

(and minimal).

The LANCE design fulfils the requirement for minimum interrupt response

time with minimum temporal jitter by aborting the current program flow

and switching over to an ISR (interrupt service routine) as soon as an inter-

rupt has been recognized. Figure 35 shows a logic analyzer screenshot of the

interrupt response of LANCE.

Figure 35: Logic Analyzer Screenshot - Interrupt Response

The interrupt response time can be divided into three parts: the recogni-

tion/synchronisation of the asynchronous interrupt, the context switch and

the execution of the ISR. The interrupt is synchronized with the first rising

edge upon its occurrence. One clock cycle after synchronization the processor

6.5 Real-Time Capability 78

reads the ISR address from the exception vector table and passes it on to the

decode2 pipeline stage. The return address as well as the processor status

word are automatically saved after interrupt synchronization. With the next

rising edge the address of the interrupt service routine is transmitted to the

execute/writeback pipeline stage. Another clock cycle is required until the

two first instructions of the service routine are fetched out of the instruction

memory. Thus, for LANCE the interrupt response has a fixed delay of four

clock cycles.

Due to the fact that the SPEAR pipeline only consists of three pipeline stages

in contrast to the four-stage-deep pipeline of LANCE, the interrupt response

time of SPEAR is only three clock cycles.

The exact prediction of task execution times on LANCE is supported due

to extensive data forwarding and the LANCE processor’s support of the

SINGLE-PATH [30][9] programming model. The forwardings between stages

of each pipeline as well as between both pipelines guarantee constant exe-

cution times of single instructions. Typical program code has a number of

different program execution paths and the active execution path depends

on current data values which implicate data dependent execution times.

Program code which has been developed according to the SINGLE-PATH

paradigm has only one execution path and therefore leads to completely pre-

dictable timing behavior.

79

7 Conclusion

The processor developed in the course of this diploma thesis represents a

temporally predictable 16-bit superscalar processor. The design aim was to

be code-compatible to NEEDLE and SPEAR as far as possible. The imple-

mentation fulfils all requirements posed by the specification except for the

aimed performance within the used target device. The reasons for the un-

expected low performance of LANCE reflect the current problems regarding

chip design. The main problems concerning hardware design as well as ap-

proaches to solve these problems are presented in current literature and can

be divided into the following topics:

• Gate delay vs. interconnect delay: the decreasing feature size in chip

design shifts the focus from the decreasing gate delay to the increasing

interconnect delay.

• Limits of FPGA: not all kinds of hardware design scale well on FPGAs

due to technological constraints.

• Hardware/Software co-design: optimized performance can be achieved

through balancing hardware and software effort.

The development of LANCE showed that the main challenge in current hard-

ware designs does not lie in minimizing the gate delay, but in handling the

interconnect delay of designed circuits. The increased importance of inter-

connect delay has its origin in the decreasing feature sizes of ASICs as well

as FPGAs [32] [33]. Furthermore, rising gate counts of actual designs lead

to additional wiring between components and therefore to increased inter-

connect delay. The used target device an APEX20K300EQ240-1X FPGA

has been manufactured in a 0.18µm process. Figure 36 illustrates that the

interconnect delay of a 0.18µm ASIC is about 2.5 times higher than the gate

delay. The interconnect delay of the LANCE FPGA implementation is about

3.4 times higher than the gate delay. The notably higher interconnect delay

80

in respect to ASIC designs has its origin in the programmable interconnects

which are used within FPGAs.

0

5

10

15

20

25

30

35

40

0.65 0.5 0.35 0.25 0.18 0.13 0.1

1989 1992 1995 1998 2001 2004 2007

Interconnect Delay

Gate Delay

G
a

te
 D

el
a

y
 (

p
s)

Source: SIA Roadmap 97

Figure 36: Interconnect Delay

The LANCE design has shown that FPGAs are not an ideal target technol-

ogy for all kinds of hardware designs. Designs which lead to bad performance

on FPGAs due to enormous wiring costs are:

• designs with a high degree of FPGA utilization where interaction be-

tween the majority of the implemented components is needed

• memory intensive designs where the memory is implemented in discrete

logic

The LANCE design has shown that the target technology characteristics are

a topic of great concern during the development process. The design per-

formance mostly depends on whether target technology features have been

considered during development or not (e.g. memory implementation: mem-

ory blocks vs. flip-flop array).

Another way to solve performance bottlenecks within hardware designs is

81

provided by hardware/software co-design. Hardware and software effort is

balanced for optimized performance and flexibility of the whole developed

system. There is no need to resolve all code restrictions within a processor

(e.g. LANCE) via hardware, some restrictions may be handled by the com-

piler or have to be kept in mind by the programmer. This approach leads to

less complex hardware and decreases gate count as well as interconnect delay

and power consumption of the design. Balancing the hardware and software

effort to attain optimal processor performance is a non-trivial problem. This

optimization process can not provide a general optimum since requirements

vary for each application.

For future hardware designs not only the target technology and the impli-

cated features and constraints have to be considered during the develop-

ment process, but also notable effort has to be put into hardware/software

co-design. Only extending the perspectives and the field of activity of the

hardware designer enables innovative hardware/software solutions.

82

8 Outlook

Three different topics for further research and design optimizations are pre-

sented in this chapter.

8.1 Task to Pipe

The Task-to-Pipe idea addresses current processor concepts like the Hyper-

Threading technology of the Pentium 4 processor. Hyper-Threading Tech-

nology (HT) stands for the ability of the Pentium 4 processor to execute

more than one thread at a time [23] [15], therefore the processor appears as

two processors to the operating system.

In the case of the LANCE design it should be possible to adapt the processor

that Pipe A and Pipe B operate on two independent tasks (threads). Only

little adaption on the existing instruction fetch mechanism would be nec-

essary due to the fact that the instruction memory already consists of two

memory blocks. A second program counter as well as independent pipe regis-

ters would be necessary to support two autonomous instruction streams. One

main objective to support two parallel tasks would be to develop a shared-

memory concept for data exchange between the two pipelines. The register

file may be duplicated, or split into two parts, to support both pipelines.

A register locking mechanism is also a possible solution, but would make it

more difficult to obtain deterministic timing behavior. The extension mod-

ule interface as well as the system control module (especially the processor

status register) would also need special treatment.

The Task-to-Pipe concept could be used to split operating system tasks and

application tasks to distinctive pipelines. This should preserve the processor

from the need of context switching if the operating system is permanently

executed on Pipe A and the application threads are issued to Pipe B.

8.2 Fault Tolerant System 83

8.2 Fault Tolerant System

Fault tolerance is necessary in safety-critical real-time systems to ensure that

no single failure can lead to catastrophic system failure [24].

A fault tolerant processor provides redundancy in terms of additional hard-

ware. In case of LANCE Pipe A and Pipe B could be considered two separate

pipelines both working on identical sets of input data. The results provided

by Pipe A would be cross-checked with the results of Pipe B. A predefined

test-sequence could be used to identify the erroneous pipeline after different

pipeline results have been detected. After the erroneous pipeline has been

identified it can be disabled, or the whole processor may switch over into a

defined failure-mode. Furthermore, CRC-checks for all data buses could be

implemented to increase the error detection rate.

Another possible approach would be to check not only the results of the

whole pipeline, but also the outgoing signals of each component. This would

make it possible to re-route instructions on redundant hardware to bypass

erroneous components and therefore would lead to increased fault tolerance.

If for example the decode stage within Pipe A and the execute/writeback

stage of Pipe B were defective, the system could still provide correct results

if the instructions were re-routed to proper working components of the other

pipeline.

The third possible design could implement a third pipeline and a voting

mechanism which compares the results of all pipelines and selects the result

that has been computed by the majority.

The main problem concerning superscalar designs, the multiple memory ac-

cess per clock cycle, is not present in the introduced fault tolerant designs,

since only one instruction is issued per clock. The resulting processor should

be able to operate at a peak performance below that provided by SPEAR,

but therefore would implement a fault tolerant 16 bit processor. The silicon-

area of a fault tolerant processor based on LANCE should be notably below

that of LANCE due to the fact that far less data forwarding will be needed.

8.3 FPGA Optimizations 84

8.3 FPGA Optimizations

This section treats design optimizations for the existing LANCE designs to

achieve higher performance with FPGAs as target technology.

The LANCE design is a fully operative superscalar processor, but the achieved

performance within FPGA devices does not satisfy the expectations. The dis-

crete flip-flop approach for the register file, exception vector table and data

memory will perform well in ASICs, but for FPGAs as target technology

another solution has to be found to achieve moderate performance.

The performance penalty of the LANCE design was caused mostly by the

”multiple memory access problem”which led to increased hardware effort for

the register file, exception vector table and data memory. Therefore it would

be desirable to remove the flip-flop based memory implementations. One

possible solution would be to migrate to ALTERA mercury FPGAs which

support quad-port RAM modules [1]. Quad port RAMs would lead to sim-

ple memory interfaces as implemented within SPEAR. Since this solution is

extremely hardware dependent, another design approach which would lead

to reduced hardware effort and especially decreased interconnect delay would

be preferable.

A revised version of the ”mirrored dual-port memory at doubled clock rate”

approach (discussed in section 4.4.2), will eventually lead to higher processor

performance within FPGAs.

85

A Appendix - The Instruction Set

Complete instruction set.

instruction explanation

1. LDL r1,n8 8 bit const n8 → r1[7..0]; r1[15..8] = n8[7]

2. LDH r1,n8 8 bit const n8 → r1[15..8]; r1[7..0] = r1 old[7..0]

3. ADD r1,r2 r1 = r1 + r2 (without carry in)

4. ADDC r1,r2 r1 = r1 + r2 + carry in

5. SUB r1,r2 r1 = r1 - r2 (without carry in)

6. SUBC r1,r2 r1 = r1 - r2 - carry in

7. MOV r1,r2 r2 → r1

8. MOV CT r1,r2 r2 → r1 if condition flag = true

9. MOV CF r1,r2 r2 → r1 if condition flag = false

10. CMPI EQ r1,n5 Compare Equal, r1 and signed 5 bit constant n5

11. CMP EQ r1,r2 Compare Signed Equal

12. CMP LT r1,r2 Compare Signed Less Than

13. CMP GT r1,r2 Compare Signed Greater Than

14. CMPUN LT r1,r2 Compare Unsigned Less Than

15. CMPUN GT r1,r2 Compare Unsigned Greater Than

16. ADDI r1,n5 Add immediate r1 and signed 5 bit constant n5

17. ADDI CT r1,n5 Add immediate r1 and signed 5 bit constant if condi-

tion flag = true

18. ADDI CF r1,n5 Add immediate r1 and signed 5 bit constant if condi-

tion flag = false

19. AND r1,r2 r1 = r1 AND r2

20. OR r1,r2 r1 = r1 OR r2

21. EOR r1,r2 r1 = r1 XOR r2

22. LDW r1,r2 Mem(r2) → r1

23. STW r1,r2 r1 → Mem(r2)

24. LDOFX r1,n5 Mem(StptrX+n5) → r1

25. LDOFY r1,n5 Mem(StptrY+n5) → r1

26. LDOFZ r1,n5 Mem(StptrZ+n5) → r1

27. STOFX r1,n5 r1 → Mem(StptrX+n5)

28. STOFY r1,n5 r1 → Mem(StptrY+n5)

29. STOFZ r1,n5 r1 → Mem(StptrZ+n5)

86

instruction explanation

30. LDVEC r1,n5 LoaD Exception VECtor n5 → r1

31. STVEC r1,n5 r1 → STore Exception VECtor n5

32. TRAP r1,n4 activates jump to address stored on position n5 of the

Exception Vector Table

33. BTEST r1,n4 if Bit n4 is set in r1 → condition flag = true

34. BSET r1,n4 Bit n4 will be set in r1

35. BSET CT r1,n4 Bit n4 will be set in r1 if condition flag = true

36. BSET CF r1,n4 Bit n4 will be set in r1 if condition flag = false

37. BCLR r1,n4 Bit n4 will be deleted in r1

38. BCLR CT r1,n4 Bit n4 will be deleted in r1 if condition flag = true

39. BCLR CF r1,n4 Bit n4 will be deleted in r1 if condition flag = false

40. NOT r1 r1 is negated

41. NOT CT r1 r1 is negated if condition flag = true

42. NOT CF r1 r1 is negated if condition flag = false

43. SL r1 r1 is shifted left

44. SL CT r1 r1 is shifted left if condition flag = true

45. SL CF r1 r1 is shifted left if condition flag = false

46. RL r1 r1 is rotated left (MSB becomes LSB)

47. RL CT r1 r1 is rotated left if condition flag = true

48. RL CF r1 r1 is rotated left if condition flag =true

49. SR r1 r1 is shifted right

50. SR CT r1 r1 is shifted right if condition flag = true

51. SR CF r1 r1 is shifted right if condition flag = false

52. RR r1 r1 is rotated right (LSB becomes MSB)

53. RR CT r1 r1 is rotated right if condition flag = true

54. RR CF r1 r1 is rotated right if condition flag = false

55. SRA r1 r1 is shifted arithmetic right

56. SRA CT r1 r1 is shifted arithmetic right if condition flag = true

57. SRA CF r1 r1 is shifted arithmetic right if condition flag = false

58. ROLC r1 r1 is rotated left with carry (carry becomes LSB)

59. ROLC CT r1 r1 is rotated left with carry if condition flag = true

60. ROLC CF r1 r1 is rotated left with carry if condition flag = false

87

instruction explanation

61. RORC r1 r1 is rotated right with carry (carry becomes MSB)

62. RORC CT r1 r1 is rotated right with carry if condition flag = true

63. RORC CF r1 r1 is rotated right with carry if condition flag = false

64. JSRX r1 JSR, the return address is stored in register X

65. JSRX CT r1 JSR, if condition flag = true, the return address is stored

in register X

66. JSRX CF r1 JSR, if condition flag = false, the return address is stored

in register X

67. JSRY r1 JSR, the return address is stored in register Y

68. JSRY CT r1 JSR, if condition flag = true, the return address is stored

in register Y

69. JSRY CF r1 JSR, if condition flag = false, the return address is stored

in register Y

70. JMP r1 Jump, r1 contains address

71. JMP CT r1 Jump, if condition flag = true

72. JMP CF r1 Jump, if condition flag = true

73. JMP offset Jump (immediate) offset contains address

74. JMP CT offset Jump, if condition flag = true

75. JMP CF offset Jump, if condition flag = false

76. RTSX RTS, return address in register X

77. RTSY RTS, return address in register Y

78. RTE Return from Exception

79. NOP No OPeration

80. IllOp Illegal Opcode

88

B Appendix - Assembler Code

begin:
 ; set UART interrupt vector to 9th bit
 byte2:
 CMPI_EQ r10,2;

LDL r0,lo(rec_int);
 low-byte der address

LDH r0,hi(rec_int);
 LDL r21,0xfc;

STVEC r0,-7;
 STOFX r21,12

;set framepointer
 JMPI_CT ld_low;

LDL r26,-32;

LDL r27,-8;
 byte3:
 CMPI_EQ r10,3;

; UART config: no parity bit,
 type-byte,01 -> end of download

 ;one stop bit, no transmition control
 LDL r21,0x0c;

; msglength= 8 bit
 STOFX r21,12

LDL r19, 0;
 JMPI_CF byte4;

LDH r19, 0b01000111;
 LDOFX r9,-12;

STOFX r19,-15;
 CMPI_EQ r9,1;

; set UART to sync mode
 JMPI_CT end_prog;

LDL r19, 0b01000001;
 RETI;

STOFX r19,-14;

byte4:
 CMPI_EQ r10,4; instr. high-byte

; initialize constants
 LDL r21,0xf8;

LDL r10,0;
 STOFX r21,12

LDL r0,0;
 JMPI_CT ld_high;

LDL r19,0b00000000; set GIE

LDH r19,0b10000000; set GIE
 byte5:
 CMPI_EQ r10,5; instr. low-byte;

STOFY r19,1; in SST memory
 LDL r21,0xf0;

LDL r31, lo(wait) ;set return address
 STOFX r21,12

LDH r31, hi(wait)
 JMPI_CT ld_low;

RETI;

byte6:
 LDL r19, 0b00000000;

; wait until UART is synchronized
 LDH r19, 0b10000000;

wait:
 LDOFX r11,-16;
 LDL r21,0x00;

BTEST r11,8
 STOFX r21,12

JMPI_CF wait;
 STOFX r19, -7;

; sync finished
 LDL r10,0;

LDOFX r17,-9;
 RETI;

STOFX r17,11; display-register

STOFX r17,-12; transmit-register
 ld_low:
 LDOFX r8,-12;

LDL r19, 0b10011000; transmit BR
 OR r8,r9;

STOFX r19,-14;
 STOFX r8,11

; set UART to receveive mode
 CMPI_EQ r10,5;

LDL r19, 0b10100000;
 JMPI_CT data

activate receive mode
 STOFX r8,-6;

STOFX r19,-14;
 RETI;

wait1:
 ; wait for CR
 data:
 STOFX r8,-5;

LDOFX r11,-16;
 RETI;

BTEST r11,10;

JMPI_CF wait1;
 ld_high:
 LDOFX r9,-12;

 ; set event flag
 LDL r15,8;

LDL r19, 0b11100100; receive-completion

STOFX r19,-14;

shift_l:
 CMPI_EQ r15,1;

wait2:
 JMPI wait2;
 SL r9;

ADDI r15,-1;

rec_int:
 LDOFX r12,-16; receive interrupt
 JMPI_CF shift_l;

BTEST r12, 2;
 STOFX r9,11

JMPI_CT rec_error;
 RETI;

LDOFX r12,-15;
 end_prog:
 LDL r19, 0;

BSET r12, 0;
 LDH r19, 0b00000011;

STOFX r12,-15;
 ;switch to instruction memory

ADDI r10,1; increment byte counter
 STOFX r19, -7;

STOFY r0,2; ; clear interrupt

rec_error:
 LDOFX r12,-16;

byte1:
 CMPI_EQ r10,1; address high-byte
 STOFX r12,11;

LDL r21,0xfe;
 JMPI rec_error;

STOFX r21,12;

JMPI_CT ld_high;

Figure 37: Boot-ROM Assembler Code

REFERENCES 89

References

[1] Altera Corporation. Apex 20K Programmable Logic Device Family,

http://www.altera.com, 2003.

[2] P. J. Ashenden. The VHDL Cookbook. Dept. Computer Science University

of Adelaide South Australia, 1990.

[3] P. J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Pub-

lishers, 2nd edition, 2001.

[4] J. Circello, G. Edgington, D. McCarthy, J. Gay, D. Schimke, S. Sullivan,

R. Duerden, C. Hinds, D. Marquette, L. Sood, A. Crouch, and D. Chow. The

Superscalar Architecture of the MC68060. Motorola Inc., Microprocessor and

Memory Technology Group, 1995.

[5] J. Circello and F. Goodrich. The Motorola 68060 Microprocessor. Motorola

Inc., Microprocessor and Memory Technology Group, 1993.

[6] M. Delvai. Entwicklung eines Echtzeitkontrollers für das Echtzeitprotokoll

TTP/A. Master’s thesis, TU Wien, Institut für Technische Informatik, 2000.

[7] M. Delvai. Handbuch für SPEAR, Technical Report. TU Wien, Institut für

Technische Informatik, 2002.

[8] M. Delvai, U. Eisenmann, and W. Huber. Modular Construction System

for Embedded Real-Time Applications. In Proc. Austrochip 2002, Vienna,

Austria, 2002.

[9] M. Delvai, W. Huber, P. Puschner, and A. Steininger. Processor Support

for Temporal Predictability - The SPEAR Design Example. In Proc. 15th

Euromicro International Conference on Real-Time Systems, Porto, Portugal,

2003.

[10] M. Delvai, W. Huber, B. Rahbaran, and A. Steininger. SPEAR - Design-

Entscheidungen für den Scalable Processor for Embedded Applications in Real-

Time Environments, 2001.

[11] die.net. Definition: embedded systems, http://dict.die.net/, 2003.

[12] U. Eisenmann. Design and implementation of a highly efficient communica-

tion node for real-time applications. Master’s thesis, TU Wien, Institut für

Technische Informatik, 2002.

[13] El Camino GmbH. Digilab 20Kx240 Manual, 2003.

REFERENCES 90

[14] W. Elmenreich and S. Pitzek. Smart transducer- principles, communications

and configurations. In Proc. 7th IEEE International Conference on Intelligent

Engineering Systems (INES), Assuit, Egypt, 2003.
[15] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and

P. Roussel. The Microarchitecture of the Pentium 4 Processor. Desktop

Platforms Group, Intel Corp., 2001.
[16] W. Huber. Spezifikation der Schnittstelle zwischen Extension-Modulen und

SPEAR. Technical report, Institute for Technical Computer Science, VLSI -

Design, Vienna, 2001.
[17] Institute of Electrical and Electronics Engineers, Inc. Standard 1076, IEEE

Standard VHDL Language Reference Manual, 1987.
[18] Institute of Electrical and Electronics Engineers, Inc. Standard 1451.2-1997,

IEEE Standard for a Smart Transducer Interface for Sensors and Actuators -

Transducer to Microprocessor Communication Protocols and Transducer Elec-

tronic Data Sheet (TEDS) Formats, 1997.
[19] Intel. Embedded Pentium r© Processor - Datasheet, 1998.
[20] Intel. Embedded Pentium r© Processor Family - Developer’s Manual, 1998.
[21] Intel Corporation. Hyper-Threading Technology ,

http://www.intel.com/technology/hyperthread/, 2003.
[22] Intel Corporation. IA-32 Intel r© Architecture Optimization Reference Man-

ual, http://www.intel.com/design/pentium4/manuals/245472.htm, 2003.
[23] Intel Corporation. Intel Pentium 4 processor website,

http://www.intel.com/design/intarch/pentium4/pentium4.htm, 2003.
[24] H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded

Applications. Kluwer Academic Publishers, Boston, 1997.
[25] C. R. Moore. The PowerPC 601 Microprocessor. Advanced Workstations

and Systems Division, International Business Machines Corporation, 1993.
[26] Motorola Inc. MC68060 - Superscalar 32-Bit Microprocessors - Product Brief,

1994.
[27] D. A. Patterson and J. L. Hennessy. Computer Architecture a Quantitative

Approach. Morgan Kaufman Publishers, 2nd edition, 1996.
[28] D. A. Patterson and J. L. Hennessy. Computer Organization and Design.

Morgan Kaufman Publishers, 2nd edition, 1998.

REFERENCES 91

[29] Philips Semiconductor. An Introduction to Very Long Instruction Word

(VLIW) computer architectures, 1993.

[30] P. Puschner and A. Burns. Writing temporally predictable code. In Proc.

7th IEEE International Workshop on Object-Oriented Real-Time Dependable

Systems, 2002.

[31] C. E. Salloum. Realisierung eines generischen Online Debuggers für Embed-

ded Systems. Master’s thesis, TU Wien, Institut für Technische Informatik,

2003.

[32] M. Schutti. Deep Submicrion (DSM) Effects. In Proc. Austrochip 2003, Linz,

Austria. DICE.

[33] Semiconductor Industry Association. The National Technology Roadmap For

Semiconductors, 1997.

[34] J. E. Smith and G. S. Sohi. The microarchitecture of superscalar processors.

In Proceedings of the IEEE, VOL. 83, NO. 12, 1995.

[35] J. E. Smith and S. Weiss. PowerPC 601 and Alpha 21064: A Tale of Two

RISCs. Tel Aviv University, 1994.

[36] Synopsys Inc. VHDL Simulation Reference Manual, 2000.

[37] R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.

IBM Journal of Research and Development, 11(1):25-33, 1967.

[38] I. Wenzel. Principles of Timing Anomalies in Superscalar Processors. Diplo-

marbeit, TU Wien, Institut für Technische Informatik, 2003.

