
DISSERTATION

Ultraviolet/Infrared Mixing &
Non-Commutative Instanton Calculus

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Schweda
E 136

Institut für Theoretische Physik

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von

Dipl.-Ing. Andreas Alois Bichl
9327397

Gerotten 26, A-3910 Zwettl
bichl@hep.itp.tuwien.ac.at

Wien, am 31. Mai 2004

 
 
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek 
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). 
 
The approved original version of this thesis is available at the main library of 
the Vienna University of Technology  (http://www.ub.tuwien.ac.at/englweb/). 

 



W E N N MAN ALLES UNWAHRSCHEINLICHE

AUSSCHLIESST, MUSS DAS, WAS ÜBRIG

BLEIBT, UND SEI ES AUCH NOCH SO UN-

WAHRSCHEINLICH, DIE WAHRHEIT SEIN.

WHEN YOU HAVE ELIMINATED THE
IMPOSSIBLE, THAT WHICH REMAINS, HOW-
EVER IMPROBABLE, MUST BE THE TRUTH.

Sherlock Holmes to Dr. Watson in 'The Sign of Four'

by Sir Arthur Conan Doyle



Kurzfassung

Nichtkommutative Feldtheorien (NKFT) unterlagen in den letzten Jahren
sehr großem Interesse, um ein besseres Verständnis diverser Probleme in
Quantenfeldtheorie und Stringtheorie zu bekommen.

Die Idee Raum-Zeit eine immanente Längenskala zu geben, um punktar-
tige Wechselwirkungen, die Divergenzen in der üblichen Quantenfeldtheorie
verursachen, zu vermeiden, geht zurück auf die Fünfziger Jahre. Diese fun-
damentale Längenskala wurde über eine Unschärferelation, welche die Nicht-
kommutativität der Raum-Zeit impliziert, eingeführt.

Man mußte beinahe fünfzig Jahre auf die Wiederbelebung dieses Konzep-
tes warten, bis sich die NKFT als ein bestimmter niederenergetischer Grenz-
wert der Stringtheorie zeigte. Großer Aufwand wurde betrieben, um alle neu-
en Eigenschaften der NKFT zu verstehen: UV/IR-Mischung, Nichtlokalität,
Brechung der Lorentz-Invarianz, Frage nach Unitarität und Renormierbar-
keit, Seiberg-Witten-Abbildung, Morita-Dualität, usw.

Diese Doktorarbeit beschäftigt sich hauptsächlich mit einer Untersuchung
der Mischung von ultravioletten und infraroten Freiheitsgraden in nichtkom-
mutativen Yang-Mills-Theorien (NKYMT) und ihre Auswirkung auf die Va-
kuumenergie dieser Theorien.

Die UV/IR-Mischung zerstört normalerweise die Renormierbarkeit von
NKFT. Ein-Schleifen-Rechnungen führen zu neuen quadratischen und linea-
ren infraroten Divergenzen, die in höheren Schleifen-Ordnungen nicht auf-
integriert werden können. Des weiteren zeigt die ein-schleifen-korrigierte Di-
spersionsrelation eine tachyonische Instabilität bei niedrigen Energien. Aber
dies ist nicht das Ende der Geschichte — Supersymmetrie hilft aus.

In supersymmetrischen nichtkommutativen Feldtheorien (SUSY NKFT)
findet man nur logarithmische UV/IR-Mischungseffekte, die in geeignetem
Maße behandelt werden können. Es gibt keine gefährlich quadratisch oder
linear divergenten Terme. Der Grund liegt in der üblichen Auslöschung zwi-
schen fermionischen und bosonischen Freiheitsgraden. Aber nachdem SUSY
im niederenergetischen Bereich nicht realisiert ist, muß man über mögliche
Brechungsszenarien nachdenken. Eine Möglichkeit besteht in schwach gebro-



chener SUSY, wo der Superpartner des Photons, das sogenannte Photino,
Masse erhält. Man weiß von gewöhnlichen kommutativen Theorien, dass trotz
dieses Massenterms nachwievor alle führenden Divergenzen verschwinden.

Im ersten Teil dieser Doktorarbeit berechnen wir die Ein-Schleifen-Selbst-
energie des Photons in schwach gebrochener Abelscher SUSY NKYMT und
finden hier ebenfalls die oben erwähnten Auslöschungseffekte. Wir erhal-
ten nur logarithmische UV/IR-Mischungen, die eine Modifikation der Beta-
Funktion bewirken, aber die Renormierbarkeit nicht verletzen. Andererseits
ergeben die Berechnungen einen tachyonischen Pol in der Dispersionsrelati-
on des Photons, der proportional zur Photinomasse, aber unabhängig vom
Nichtkommutativitätsparameter ist. Dies schließt die Möglichkeit einer Reali-
sierung von schwach gebrochener Abelscher SUSY NKYMT in der Natur aus,
da man nicht mehr mit einem sehr kleinen Nichtkommutativitätsparameter
argumentieren kann, der die tachyonischen Moden unterdrücken würde.

Im zweiten Teil dieser Doktorarbeit untersuchen wir Effekte der UV/IR-
Mischung im nichtstörungstheoretischen Sektor von NKYMT, das heißt, wir
berechnen den nichtkommutativen Instanton-Beitrag zur Vakuum-Vakuum-
Übergangsamplitude. Wir wissen von gewöhnlichen Nicht-Abelschen Yang-
Mills Theorien, dass Instantonen einen Größen-Modulus besitzen, der infra-
rote Divergenzen verursacht. Diese Divergenzen zeigen den Zusammenbruch
der „Dünnes-Instanton-Gas-Näherung" bei großen Abständen.

Um die Ein-Schleifen-Instanton-Determinante in Abelscher NKYMT zu
berechnen, wiederholen wir zuerst die ADHM-Konstruktion von Instantonen,
die sich auf den nichtkommutativen Fall verallgemeinern läßt. Wir lösen diese
deformierten ADHM-Gleichungen explizit für ein antiselbstduales Instanton.
Das Instanton fällt mit einer bestimmten Potenz bei großen Abständen und
besitzt signifikante Werte nur innerhalb einer Skala gegeben durch den Nicht-
kommutativitätsparameter, und zeigt daher keinen Größen-Modulus.

Wir hofften deshalb, dass nichtkommutative Instantonen besseres Verhal-
ten bei großen Abständen zeigen als ihre kommutativen Verwandten. Aber
wir zeigen im weiteren, dass im Fall von NKYMT die UV/IR-Mischungsef-
fekte die „Dünnes-Instanton-Gas-Näherung" zerstören. Diesmal erhalten wir
infrarote Divergenzen aber von der UV/IR-Mischung und nicht von der In-
tegration über den Größen-Modulus. Oder anders ausgedrückt: „Nichtkom-
mutative Quantenfluktuationen blasen die klassisch endlichen Instantonen zu
unendlicher Größe auf."

Diese Berechnungen stellen einen weiteren Hinweis für die mögliche In-
konsistenz von NKFT dar. Aber wiederum hilft SUSY auch in diesem Fall, da
sie den Ein-Schleifen-Instanton-Beitrag endlich macht. SUSY NKFT schei-
nen konsistente Quantenfeldtheorien zu sein, da sie nicht unter gefährlicher
UV/IR-Mischung leiden.
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Summary

Non-commutative field theories (NCFT) have shown up in recent years as
a huge playground in Order to get a much deeper understanding of various
Problems in quantum field theory and string theory.

The idea to give space-time an intrinsic length scale in order to avoid
point-like interactions which cause divergences in Standard quantum field
theory, goes back to the fifties. This fundamental length scale has been
introduced via an uncertainty relation which implements non-commutativity
of space-time.

One had to wait almost fifty years for the revival of this concept where
NCFT shows up as a certain low-energy limit of string theory. Much effort
has been made in order to understand all the new features of NCFT: UV/IR
mixing, non-locality, breaking of Lorentz invariance, question of unitarity
and renormalizability, Seiberg-Witten map, Morita duality, etc.

The main concern of this thesis consists in an investigation of the mixing
of ultraviolet and infrared degrees of freedom in non-commutative Yang-Mills
theories (NCYMT) and its impact on the vacuum energy of these theories.

The UV/IR mixing normally spoils renormalizability of NCFT. One-loop
calculations lead to new quadratic and linear infrared divergences which can-
not be integrated over at higher loops. Furthermore, the one-loop corrected
dispersion relation presents a tachyonic instability at low energies. But this
is not the end of the story—supersymmetry helps out.

In supersymmetric non-commutative field theories (SUSY NCFT), one
finds only logarithmic UV/IR mixing effects which could be handled in an
appropriate way. There are no dangerous quadratic or linear divergent terms.
The reason for that is the usual cancelation between fermionic and bosonic
degrees of freedom. But, since supersymmetry is not realized at low-energy
regimes, one has to think about possible breaking scenarious. One possibility
consists in softly broken SUSY where the superpartner of the photon, the so-
called photino, gets a mass. One knows from usual commutative theories
that all leading divergences are still absent despite such a mass term.

In this thesis, we calculate the one-loop self-energy of the photon in softly

iii



broken Abelian SUSY NCYMT and find that the above mentioned cancela-
tion effects hold also in the non-commutative set-up. We only have to deal
with logarithmic UV/IR mixing which goes into a modification of the beta-
function but does not spoil renormalizability. On the other hand, we get a
tachyonic pole in the dispersion relation of the photon which is proportional
to the mass of the photino but this time independent of the non-commuta-
tivity parameter. Unfortunately, this rules out softly broken Abelian SUSY
NCYMT in nature, because one cannot argue anymore with a very small
non-commutativity parameter which would render the tachyonic modes neg-
ligible.

In the second part of this thesis, we investigate the effects of UV/IR
mixing in the non-perturbative sector of NCYMT, i. e. we calculate the non-
commutative instanton contribution to the vacuum-to-vacuum amplitude.
We know from ordinary non-Abelian Yang-Mills theories that instantons ex-
hibit a size modulus which produces infrared divergences. These divergences
indicate the breakdown of the dilute instanton gas approximation at large
scales.

To calculate the one-loop instanton determinant in the case of an Abelian
NCYMT, we review first the ADHM construction of instantons which can be
generalized to the non-commutative case. We solve these deformed ADHM
equations for an anti-self-dual instanton. Having this explicit expression in
hand, we recognize a power-like fall off of the instanton gauge field at large
scales. Further, the instanton has significant values only at a scale given by
the non-commutativity parameter. Therefore, non-commutative instantons
do not have a size modulus.

This gave hope that non-commutative instantons are better behaved at
large scales than their commutative counterparts. But, we show that UV/IR
mixing effects ruin the dilute instanton gas calculations also for NCYMT.
This time, infrared divergences arise due to the UV/IR mixing, and not from
integration over a size modulus. Stated in another way: "Non-commutative
quantum fluctuations blow the classical finite size of the instanton up to in-
finity."

These calculations are one hint more for the possible inconsistency of
NCFT. But again, SUSY helps also in this case, rendering the one-loop
instanton contribution finite. SUSY NCFT seem to be consistent quantum
field theories, not suffering from dangerous UV/IR mixing.
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Introduction

Non-commutative field theories have shown up in recent years as a huge
playground in order to get a much deeper understanding of various problems
in quantum field theory and string theory.

The idea to give space-time an intrinsic length scale in order to avoid
point-like interactions which cause divergences in Standard quantum field
theory, goes back to the 1950's. This fundamental length scale has been
introduced via an uncertainty relation which implements non-commutativity
of space-time [1].

Non-commutativity of space-time

The basic relation implementing non-commutativity of space-time will be

where 8ßU is a constant real-valued antisymmetric matrix. It has dimension
of length squared and defines therefore a fundamental length scale of space-
time. Since this graininess of space-time seems to be rather unnatural, we
will give a simple heuristic argument [2, 3] that the concept of space-time
has to be modified at very short distances.

In order to measure the distance d between two points with the help of an
interference pattern, the wave length A which will be used in the experiment
has to be smaller than the distance d

\<d.

Using the de Broglie relation we can assign a mass m to the incoming wave

h hc h
p E mc

The mass m causes a gravitational field and the smaller our distance d, the
stronger the gravitational field will be. When this field becomes so strong



as to prevent light or other Signals from leaving the region in question, an
operational meaning can no longer be attached to the measurement of the
distance. Therefore, the distance d should be larger than the Schwarzschild
radius i?s

d>Rs.

With the help of

s c2 '
we get

Gm _ GJ^l Gh,l

and therefore the condition

= AP ~ l(T33cm.

With these heuristic arguments combining the principles of general relativity
and quantum theory we have shown that at the Planck scale Ap the concept
of space-time as a differentiable manifold breaks down and we have to replace
it by something eise—perhaps non-commutative geometry [4, 5, 6, 7].

One had to wait almost 50 years for the revival of this concept where non-
commutative field theories (NCFT) show up as a certain low-energy limit of
string theory. They appeared as low-energy effective descriptions of open
strings on a D-brane with a constant background B field [8]. Much effort
has been made in order to understand all the new features of NCFT: UV/IR
mixing, non-locality, breaking of Lorentz invariance, question of unitarity
and renormalizability, Seiberg-Witten map, Morita duality, etc. For general
reviews on non-commutative field theories we refer the reader to [9, 10, 11].

Planar and non-planar graphs

Due to the fundamental length scale of space-time, there has been hope that
quantum field theories on non-commutative space-time do not show Standard
ultraviolet divergences. But, it was shown in [12] that there are still UV
divergences in the so-called planar sector of the theory. All Feynman graphs
in a NCFT can be divided into planar and non-planar graphs. The planar
ones are equal to their commutative counterparts multiplied by a phase factor
which depends only on external momenta. Therefore, from this sector we get
the usual UV divergences which are handled with Standard renormalization
techniques.



UV/IR mixing

Non-planar graphs include phase factors like exp (i k • 9 • p), with k the loop-
momentum, p an external momentum and 9 the NC parameter. For very
high loop momenta, the phase factor oscillates very fast and renders the
integral finite. There are no UV divergences Coming from the non-planar
sector. However, this is only valid for a non-vanishing external momentum
9 • p. Taking the limit 9 • p —> 0 brings back the infinity, but this time as
an IR divergence. Therefore, UV modes do not decouple from IR modes in
non-commutative field theories. This phenomenon is known under the name
UV/IR mixing, and was recognized for the first time in [13, 14, 15].

Quantization &; renormalizability

Quantization of non-commutative scalar field theories performed in [13, 15,
16] showed that these new UV/IR mixing effects can spoil renormalizability
of a theory. One-loop calculations lead to new quadratic and linear IR diver-
gences which cannot be integrated over at higher loops [17, 18]. Furthermore,
the one-loop corrected dispersion relation can present a tachyonic instability
at low energies.

At first, there was hope that gauge theories are better behaved with
respect to UV/IR mixing phenomena. Due to gauge invariance, a gauge
theory has only logarithmic UV divergences which would naively suggest that
there are also only logarithmic IR divergences in the non-planar sector. But,
it was shown in [14] that there are also dangerous quadratic and linear IR
divergences spoiling therefore renormalizability of non-commutative Yang-
Mills (NCYM) theory at higher loops. Interesting work in this context has
been done in [19, 20, 21, 22, 23, 24, 25, 26, 27].

Supersymmetry

The next logical step was to consider supersymmetric modeis. And indeed, in
supersymmetric non-commutative field theories (SUSY NCFT) one has only
logarithmic UV/IR mixing effects which could be handled in an appropriate
way—there are no dangerous quadratic and linear divergent terms [28, 29,
30, 31, 32, 33, 34, 35]. The reason for that is the usual cancelation between
fermionic and bosonic degrees of freedom which hold also in a non-commu-
tative set-up.

As mentioned above, non-commutative field theories can suffer from a
tachyonic instability in the low-momentum regime. This is also true in the
case of gauge theories [14], but again, supersymmetry can heal this problem



in avoiding all quadratic UV/IR mixing effects in the one-loop corrected
dispersion relation [36, 37, 38].

Softly broken SUSY

Since supersymmetry is not realized in real world at low-energy regimes, one
has to think about possible breaking scenarious. One possibility consists
in softly broken SUSY where the superpartner of the photon, the photino,
gets a mass. It has been known from ordinary field theory that all leading
divergences are still absent despite such a mass term.

The study of softly broken SUSY NCYM theory has shown that the above
mentioned cancelation effects hold also in a non-commutative set-up. One
only has to deal with logarithmic UV/IR mixing effects, but in contrast to
the fully supersymmetric case, one gets a tachyonic pole in the dispersion
relation of the photon which is proportional to the mass of the photino, but
this time independent of the non-commutativity parameter [39, 40, 41, 42].
Unfortunately, this rules out softly broken SUSY NCYM theory in nature,
because one cannot argue anymore with a very small non-commutativity
parameter which would render the tachyonic modes negligible.

Seiberg-Witten map

There exists also a complete other philosophy of quantizing non-commuta-
tive gauge theories. This approach makes use of the so-called Seiberg-Witten
map [8] which can be applied to expand a non-commutative gauge field in
terms of its commutative counterpart [43, 44]. Quantization of the Seiberg-
Witten map was first performed in [45] and put forward in [46, 47, 48, 49,
50, 51, 52, 53, 54, 55]. Roughly speaking, there are no UV/IR mixing effects
in this approach, but one has to deal with an infinite amount of interaction
vertices. Further interesting attempts to eure the UV/IR mixing can be
found in [56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. Here, we will not use the
Seiberg-Witten map, but will refer at several stages to it.

Recently, it was found in [66, 67, 68, 69, 70] that non-commutative scalar
field theory can be renormalized if one does not use the Standard plane
wave expansion for the fields. Despite of being non-supersymmetric and
not Seiberg-Witten mapped, there are no dangerous quadratic or linear IR
divergences in the game.

Non-commutative instantons

So far, we considered perturbative studies of non-commutative field theories.
But, of course, it is worth to take a short look on the non-perturbative



sector of the theory. Especially, we are interested here in non-commutative
instantons which have been first constructed in [71] via a deformation of the
Standard ADHM construction [72]. A review can be found in [73]. Explicit
Solutions in four-dimensional non-commutative Spaces have been derived and
discussed in [74, 75, 76, 77, 78, 79].

In contrast to the usual commutative case, non-commutative instantons
exist also in Abelian Yang-Mills theories. A further very important difference
is the lack of a size modulus, since scale invariance is explicitly broken in non-
commutative field theories. Hence, the instanton has significant values only
at a scale given by the Square root of the non-commutativity parameter. This
gave hope that the dilute instanton gas approximation, which is rendered IR
divergent in the commutative case through integration over the size modulus
of the instanton, is better behaved in the non-commutative case.

Outline of the thesis

In the first chapter, we will review the basic concepts of non-commutative
space-time which will be used for the study of non-commutative field theories.
In chapter two, we will study non-commutative Yang-Mills theory, deriving
Feynman rules and calculating explicitly the self-energy. Then, we discuss
the effects coming from UV/IR mixing and consider also the supersymmetric
and softly broken supersymmetric cases. Chapter three will be concerned
with the construction of non-commutative instantons and the study of their
properties. The last chapter is devoted to a study of the instanton-induced
vacuum energy in non-commutative Abelian Yang-Mills theory. It is based
on the last work of the author [80].



Chapter 1

Non-Commutative Space-Time

Non-commutative space-time K^ is defined by replacing space-time coordi-
nates xß by Hermitian generators xß of a non-commutative C* -algebra of
"functions on space-time" [4, 5, 6, 7] which obey the following commutation
relations:

[£",£"] = 10"". (1.1)

In the whole work, we will only consider the simplest Special case of (1.1)
where 9ßU is a constant, real-valued antisymmetric D x D matrix (D is the
dimension of space-time) with dimensions of length squared. Since the coor-
dinates no longer commute, they cannot be simultaneously diagonalized and
the underlying space disappears, i.e. the space-time manifold gets replaced
by a Hubert space of states.

1.1 Weyl map

Within the framework of canonical quantization, Weyl introduced an elegant
prescription for associating a quantum Operator to a classical function of the
phase space variables [81]. This technique can be used also here, since the xß

in (1.1) generate a non-commutative algebra of Operators. Weyl quantization
provides a one-to-one correspondence between the algebra of fields on RD and
this ring of Operators, and it may be thought of as an analog of the operator-
state correspondence of local quantum field theory.

Let us take a function f(x) on M.D and its corresponding Fourier coeffi-
cients given by

r
'^T* —ikiiX^ ff \ (1 c\\

x e J\x)i \1-^)
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with f(—k) = f{k)* whenever f(x) is real-valued. Then, we introduce its
Weyl symbol by

nn = f e^f(k), (1.3)

where 2Ü[/] is Hermitian if f(x) is real-valued. Notice, that in the exponen-
tial of (1.3) appears the Operator xß. Therefore, we have to take a certain
Operator ordering which in this case is just the Symmetrie Weyl ordering.

Next, we introduce the Hermitian Operator 0(x) given by

e ^ e ^ ' ( L 4 )

which provides us with an explicit map between the fields f(x) and the
associated Operators 2U[/]:

= JdDxf(x)O(x). (1.5)

The expression (1.5) can be verified directly by inserting (1.4) and using (1.2)
which gives us back the Weyl symbol (1.3).

Therefore, we can interpret the field f(x) as the coordinate Space rep-
resentation of the Weyl Operator 2ü[/]. Notice here again, that (1.4) is
a highly non-trivial field Operator, which reduces only in the commutative
limit 0"" -> 0 to a delta-function 5D(x - x).

Since we have established now the coordinate Space representation of
a Weyl Operator, we would like to have a proper notion of derivation and
integration on non-commutative space. We may introduce "derivatives" of
Operators through an anti-Hermitian linear derivation dß which is defined by
the commutation relations

=0. (1.6)

With the definitions (1.6) and (1.4) it is easy to show that

=-dß0(x). (1.7)

Using (1.7) and (1.5) we arrive upon integration by parts at

[dß , W[f]\ = I dDx dßf(x) 0(x) = W[dßf}. (1.8)
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Therefore, we see from equation (1.8) that the introduced "derivatives" on
the Operator side indeed correspond to the usual derivatives on the associated
fields on non-commutative space-time.

Further, we can interpret the expression (1.7) as an infinitesimal transla-
tion generated by the Operator dß which we can exponentiate to a finite one
given by

ä ^ =O(x + y), (1.9)

where y is a finite position vector in RD. Defining now a cyclic trace Traj on
the algebra of Weyl Operators, and acting with it on (1.9) yields

Trw0(x)=Trw0{x + y). (1.10)

Therefore, we have the very important property that Tr^ 0(x) is independent
of the position in space-time and we can normalize it by

Tr2uO(a;) = l. (1.11)

With the normalization (1.11) we get by taking the trace of (1.5) the following
result:

Trw W[f]= fdDxf(x). (1.12)

This shows that the Operator trace Tran is equivalent to Integration over the
non-commutative coordinates.

The next thing we would like to show is that the relation (1.5) is invert-
ible, and the Operator 0{x) provides therefore a one-to-one correspondence
between fields and Operators.

For this purpose we will calculate the product of Operators §(x) at distinct
points. Using the Baker-Campbell-Hausdorff formula

eA eB = ^+B+\[A,B]t w i t h

we first calculate the product
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From the defintion (1.4) and the relation (1.14) we derive

= / / d fc a fc
 ei(

J J VZ7r/ v^7*/
e

dDk dDk'

~ JJ
d fc rfö A C ) ^ A D ( o ( Y ( 9 ~ l \ - k

ß

f
J

Q{) |detö|
DZ 6(z) p2i(2-

Let us give a few comments about certain steps in the calculation of (1.15).
In the second line we used the fact that

m[eiq»x"} = e'«"*" = f dDx eiq"x" 0(x), (1.16)

which can be seen from the equations (1.3) and (1.5). Further, we used the
property S(ax) = 5(x)/\a\, where we have assumed that 6ßV is an invertible
matrix with 9ßV{9~l)l>p = 5ß

p. Of course, this can be true only in even space-
time dimensions, since theta being antisymmetric. In case of uneven space-
time dimensions or a degenerate theta, we perfom the calculation (1.15) only
in a subspace where theta is non-degenerate.

Having established the explicit expression of the product <)(x) 0(y), we
can take the trace of (1.15) and get

C) ° (2 / )) = ^ Ide tg l / d°Z TlW ° ( Z )

1 f
= 7rD|detö| 7 ^ ;

— ——— fiD(')(9~1) (<r — iAu\ *2[(e~l)»nxliy"
~ |detö| i A M j j

= o (x — y) e

= 5 D (x -y ) , (1.17)
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where we used the normalization (1.11) and the antisymmetry of (ö" 1 )^ .
We see from (1.17) that the Operators 0(x) form an orthonormal set. This
implies that the transformation (1.5) is invertible, where the inverse is given
by

( ) (1-18)

We can easily proof equation (1.18) by inserting (1.5) and using the orthonor-
mal relation (1.17):

f{x) = Tvw(an[/] <>(*)) = Tr2B ( j dDy f(y) 0(y) O(xj)

= I dDy f(y) Trw (<>(y) Q(x)) = J dDy f(y) SD(y - x) = f(x).

Therefore, we have established a one-to-one correspondence between op-
erators and fields on non-commutative space—the so-called Weyl map given
by

f{x) M 2U[/]. (1.19)

1.2 Star-product

Since we are able now to represent the Weyl Operator 2B[/] via the function
fix) in non-commutative coordinate space we would like to go one step fur-
ther and try to find the appropriate representation for the product of two
Weyl Operators 2D[/] 2 % ] .

Therefore, we introduce the so-called star-product:

W[f * g] = W[f]W[g]. (1.20)

Inverting the definition (1.20) with the help of (1.18) yields

(1.21)

which will be calculated in the following in order to get an explicit represen-
tation of the star-product in coordinate space.

Inserting (1.5) into (1.21) we get

(/ * 9)ix) = II dDy dDz fiy) giz) Tr^OÜ/) <>(*) 0(*)) • (1-22)
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Using (1.15) and (1.17) for the expression under the trace in equation (1.22)
yields

Taking now the inverse Fourier transformation

^ e ' ^ / W , (1.24)

and the expression (1.23) we can write (1.22) as

Rewriting the term in the last exponent of (1.25) as

we can perform the integration over z and y in (1.25) and get

( / •

x eifcMj/

dDk dPk>

Looking at the result (1.27) we just recognize that it corresponds to the
Fourier transform of the usual product f(x)g(x) but with the additional
phase factor exp(—£ kß8

ßUkl).
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Transforming the expression (1.27) back from momentum space into co-
ordinate space we get the following formula for the star-product:

(f*9)(x) = f(x) exp {^K^€) 9(x). (1.28)

The star-product (1.28) is associative but non-commutative , and it is defined
for a constant, possibly degenerate matrix 9ßU. In the commutative limit
Qß" _>. o, it reduces to the ordinary product of functions. Further, it is a
highly non-local product, because it includes an infinite number of derivatives
which can be seen by expanding the exponential in (1.28):

(1.29)
n = l

More exactly, the product (1.28) is called Groenewold-Moyal star-product,
and it is a particular example of a star-product which is normally defined in
deformation quantization [82, 83].

A generalization of the expression (1.21) via

(/i*---*/«)(*) = TriaJ(2ü[/1] • • • 2ü[/n] 0(z)), (1-30)

leads with an analogous calculation as above to the following formula for the
star-product of an arbitrary number of functions:

(1.31)

Therefore, we can draw the very important conclusion that the space-time
non-commutativity may be encoded through ordinary products in the non-
commutative C*-algebra of Weyl Operators, or equivalently through the de-
formation of the product of the commutative C*-algebra of functions on
space-time to the non-commutative star-product.

Before concluding this section we would like to state that cyclicity of the
Operator trace Trgu implements cyclicity of the star-product under space-time
integration. One can see this by the identity

Tr2D(2ü[/1] • • -2U[/n]) = Tr^aULA *• • •*/„]) = jdDx (/i *• • •*/„)(x),

(1.32)
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which follows from (1.20) and (1.12). But note the important point, that
(1.32) is only invariant under cyclic permutations, and not under arbitrary
ones.

Further, the star-product of two functions reduces under space-time in-
tegration to the usual commutative product:

j dDx f{x) * g(x) = j dPx f{x) gix). (1.33)

This can be directly verified by inserting (1.28) and integrating by parts,1 or
by using the momentum Space representation of the star-product (1.27) and
momentum conservation. But note, that this works only for the product of
two functions.

Next, we define the Moyal commutator and anti-commutator given by
the following two formulas, respectively:

[/(*)> 00*01* = fix) • gix) - gix) * fix)

gix), (1.34)

{fix), gix)}* = fix) * gix) 4- gix) * fix)

= 2 fix) cos Q X 0»" t \ gix). (1.35)

The form of the bi-differential Operators in (1.34) and (1.35) can be verified
again with the explicit form of the star-product (1.28).

Furthermore, we would like to mention that the Moyal commutator (1.34)
can be used to generate derivatives:

[x»,fix)l = i9^dJix). (1.36)

As a last point, we introduce for later purpose the matrix norm 9 of the
non-commutativity parameter QßV:

0 = max|0'H'|. (1.37)

This concludes our introduction in non-commutative space-time KP.

xWe assumed here from the beginning that all functions are of Schwartz type, i.e. they
are faster decreasing than any polynomial in x.



Chapter 2

Non-Commutative Gauge
Theory

2.1 Non-commutative field theory

Having established in the previous chapter all the main features of non-
commutative space-time, we can Start thinking about field theories on such
Spaces, called non-commutative field theories. Despite the fact, that we will
focus here on non-commutative gauge theories, we will Start in considering
very briefly the simpler case of a non-commutative scalar field theory.

2.1.1 Non-commutative scalar theory

To illustrate the general idea of obtaining the action of a non-commutative
field theory, we consider first the case of a massive real scalar field theory
with quartic interaction in D dimensions. To transform an ordinary scalar
field theory into a non-commutative one, we may use the Weyl quantization
procedure we introduced in chapter 1. Written in terms of the Hermitian
Weyl Operator W[<j>] corresponding to a real scalar field 4>{x) on M°, the
action is given by

SM = Tnm Q [dß , W[d>)]2 + ̂  VßW + ̂  2 « 4 ) • (2-1)

We can rewrite the action (2.1) with the help of the map (1.5) and the
relations (1.8), (1.17), (1.20) and (1.33) in coordinate Space:

S[4>] = I dDx [ i (dß4>(x)Y + ~ <j>(x)2 + A 0(x) * 0(x) * 0(X) * fls)J .
(2.2)

15
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By looking at the action (2.2) we can draw the following important conclu-
sions, which are valid for every non-commutative field theory:

• There are no star-products in the bilinear expression of a non-commu-
tative action, which follows from property (1.33). Therefore, all prop-
agators of a non-commutative field theory are the same as in the cor-
responding ordinary commutative theory, because they are just given
by the inverse of the Operators between two fields in the theory.

• The interaction vertices get drastically modified due to the appearance
of the star-products. They become highly non-local interactions and
the corresponding Feynman rules will be modified by momentum de-
pendent phase factors. This fact can be seen from the momentum Space
representation of the star-product in equation (1.27), but will become
more clear in explicit calculations in section 2.2.

• The non-commutative version of a field theory can simply be obtained
by replacing all products in the action by star-products.

After this very basic look on non-commutative field theories by the simple
example of a scalar field theory, we will go on and consider non-commutative
gauge theories. For the case of non-commutative scalar field theories we refer
the reader to the literature [12, 13, 15, 16], where they have been extensively
discussed. Excellent reviews on NCFT can be found in [9, 10, 11].

2.1.2 Non-commutative Yang-Mills theory

The Weyl quantization procedure of chapter 1 generalizes straightforwardly
to the algebra of N x N matrix-valued functions on RD. The star-product
then becomes the tensor product of matrix multiplication with the Groene-
wold-Moyal product (1.28) of functions which is still associative. We can
therefore use this method to systematically construct non-commutative gauge
theories [43].

We denote the Hermitian matrix-valued U(N) gauge field by Aß{x) and
introduce its Weyl Operator by generalizing equation (1.5):

= fdDx 0(x) <g> Aß{x), (2.3)

where ()(x) is the Weyl map (1.4) and the tensor product between the coordi-
nate and matrix representations is written explicitly for emphasis. With this
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in hand, we can write down the non-commutative version of the Yang-Mills
action given by

( - [d„ , <m[Aß]\ - i

(2-4)

where Tr2jj®;v denotes the tensor product of the Operator trace Trgjj (1.12)
and the trace Trw in some representation of the gauge group U(N). With
the definition of the star-product (1.20) and the relations (1.8), (1-17), (2.3)
we can rewrite the action (2.4) as

S[A) = ~ JdDxTvN(Fßl/(x)*F>"(x)), (2.5)

where we introduced the non-commutative field strength

FßV{x) = dßAu(x) - d„Aß(x) - i [Aß(x), Au(x)l. (2.6)

Note the appearance of the star-product in the equations (2.5) and (2.6).
In the following, we will work with the action (2.5) and denote it as

the non-commutative Yang-Mills action. As explained in section 1.2, the
star-product does not play a role for bilinear expressions under space-time
integrations. Therefore, when considering perturbation theory, the gauge
field propagator will be the same as in usual gauge theory, since it is simply
given by the inverse of the Operator between two gauge fields.1 On the other
hand, the star-product seriously changes the vertices of the theory, and even
in the case of the Abelian gauge group U(l) we have a non-trivial interacting
theory because of a non-vanishing Moyal commutator in (2.6). This is quite
astonishing, since the commutative limit of non-commutative U(l) Yang-
Mills theory corresponds to the free Maxwell theory.

The action (2.5) is invariant under the following local star-gauge trans-
formation parameterized by a function X(x) and given by

SxAß(x) = d,\(x) + i [\{x), Aß(x)l, (2.7)

where the field strength transforms covariantly with

6xFßU(x) = i[\(x),Flu,(x)l. (2.8)

We can verify the star-gauge invariance just by inserting (2.8) into (2.5) and
using the cyclicity of the star-product under space-time integrations together
with the cyclicity of the matrix trace Tr̂ v-

*We will discuss gauge fixing later on.
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We should mention here that it is not possible to realize every gauge
group G o a a non-commutative manifold in a consistent way [44, 84, 85]. To
see this, let us write all fields $(x) appearing in the theory in some basis
spanned by the generators Ta of the Lie algebra of G:

a<f>a{x). (2.9)

Inserting (2.9) for Aß(x) and X(x) in (2.7) yields

6xAß(x) = TadßX
a{x)

+ i [Ta , Tb] (Xa(x) * Ab
ß{x) + Ab

ß{x) * Xa(x))

+ i {Ta , Tb} (Xa(x) * Ab
ß(x) - Ab

ß(x) * Xa(x)). (2.10)

Therefore, the non-commutative character of the star-product implies that
star-gauge transformations depend on the anti-commutator [Ta, T6}, to-
gether with the usual commutator terms [Ta, T6]. In general, the anti-
commutator of two generators belongs to the Lie algebra only in the case of
unitary groups U(N). Thus, the discussions of non-commutative Yang-Mills
(NCYM) theories are normally restricted to U(N) groups.2

A further very important property of star-gauge symmetry is the non-
existence of naive local gauge-invariant Operators like Tr# FßU(x) *FßU(x).
Since the star-product is cyclic only under space-time integrations, we have
to take Operators like / dDx TrNFß„(x) * FßU(x) which are gauge invari-
ant. Therefore, Standard local Operators must be integrated over in order to
remain gauge-invariant on non-commutative space-time.

2.1.3 Perturbative Quantization

In order to quantize a non-commutative field theory we can start by writing
down its formal path integral given by

Z[J]= f[d^]eiS^e^dDxJ^, (2.11)

where Z[ J] is the generating functional of Green's functions, and J denotes
the external classical sources of the fields $ in the theory. The integration
measure [ofä>] has to be defined properly. The action <S*[$] is normally ob-
tained by taking the usual commutative counterpart of the theory and replace

2There exists a possibility to work with other groups than U(N) which will be discussed
in the context of the Seiberg-Witten map in section 2.6.
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all products in it with star-products. See, e.g. the NCYM action of section
2.1.2. For the time being, we will restrict ourselves to the perturbative eval-
uation of Z[J\.

Mainly, there exists two philosophies how to quantize a non-commutative
field theory correctly:

*-FT expansi°") 0-FT
in 9

• *-FT - ^ *-QFT:
Take the non-commutative action 5*[$] and calculate from it Feynman
rules in the usual way where one just obtaines modifications of the
vertices as mentioned previously in section 2.1.2. Then, take these
modified Feynman rules and perform loop calculations, i.e. make a
perturbation series in h.

• *-FT - ^ 0-FT -A> 0-QFT:
Expand the star-product in S*[$] with the help of formula (1.29) and
terminate the resulting infinite series in 9 at a certain Order. Then,
evaluate Feynman rules from this expanded action and perform loop
calculations. Here, we have a perturbation series both in 9 and h.

As everything in life, both approaches have their advantages and disadvan-
tages. For example, *-QFT seems to have a new kind of severe infrared
Problems, whereas 0-QFT do not. On the other hand, one has to deal with
an infinite number of vertices in 0-QFT, contrary to *-QFT. Furthermore, it
is an open question if both approaches lead to the same result at the very
end, i.e. after summing up the 0-series in 0-QFT. We will discuss further
points later on and give instead some relevant references for this topic.

*-QFT has been considered for scalar fields in [12,13,15,16] and extended
to the case of gauge theories in [14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31,
32, 33, 34, 35, 36].

One of the main motivations for considering 0-QFT was the observation
that one is not restricted to unitary gauge groups anymore (as mentioned in
section 2.1.2), if one performs also a Seiberg-Witten map of the gauge field
[44]. This means an expansion of the star-product and of the gauge field
itself which turns out to be a polynomial in its commutative counterpart and
the non-commutativity parameter (see section 2.6). The first perturbative
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analysis of 0-expanded Yang-Mills theory has been done in [45]. Further
work on 0-QFT can be found in [43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].

Here, we will follow the lines of *-QFT, i.e. we will not expand our action
in terms of the non-commutativity parameter.

2.2 NC Abelian Yang-Mills theory

From now on, we will only consider non-commutative gauge theories. Fur-
ther, we restrict ourselves to the case of a Yang-Mills theory with gauge
group U(l) since this is enough to show all the new interesting physics which
comes from the non-commutativity of the theory. In [24] it has been shown
that only the U(l) part of a pure NC U(N) YM theory shows all the new
features which will be studied in the next sections where we will follow the
lines of [21, 22].

2.2.1 Gauge fixing

Taking the gauge group G = U(l) in (2.5) and (2.6) we have the following
action of the NC U(l) YM theory in D — 4 space-time dimensions:

1 f A
Y M — — - l a x P ß V * r ^ , {*•*•*•)

4 J

with the field strength

and g the coupling constant.3

In order to calculate the Feynman rules of NC U{\) YM theory we have
to gauge fix the action (2.12). Due to the non-Abelian structure of the non-
commutative U{1) field strength (2.13) we have to use the BRS formalism
[86, 87, 88, 89, 90] which works also in non-commutative gauge theories [27].
The BRS transformations are given by

sAß = Dßc, sc = B,

sc = igc*c, sB = 0, (2.14)

where c denotes the ghost field, c the anti-ghost field and B a multiplier field.
Here, we introduced the non-commutative covariant derivative

D* = dß-ig[Aß, ] (2.15)

3We have also made a rescaling of the gauge field Aß -> gAß.
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and the BRS Operator s is still nilpotent:

s2 = 0. (2.16)

In Order to keep BRS invariance of the gauge fixed action, we write the gauge
fixing term as a BRS exact term:

f A _ ( n OL \
Sgf = s I d x c -k I aßA

ß H— B\
J ^ 2 /

— / r/4r (B * ß A*1 4- — B * B — r*ßßD*r\ (2 '\7)
J \ 2 ^ /

where a is some gauge parameter. After integrating out the B field,4 we end
up with the following expression for the gauge fixing term:

S r = I d^x ( d A^ -k d Av — c-k d^d c + i o c -k d11 \A c] l (2 18)

With (2.12) and (2.18), we have established the füll action

C i C (0 1 Q̂
NCYM — j y M i ^ßf) \ ^)

and can proceed now to calculate the Feynman rules.

2.2.2 Feynman rules

As explained in section 2.1.2, the bilinear part of the action (2.19) is the same
as in the corresponding commutative Yang-Mills theory. Therefore, we can
take the propagators of an ordinary SU(N) YM theory from the textbooks,
e.g. [92, 93, 94].5 Taking the formal limit SU(N) ->• U(l) of these Feynman
rules, we get for the photon propagator Dßl/(p) and the ghost propagator
G(p):

P ~ / x i
»AAAAAAAAAA/ v 9lu, - (1 - a) ̂  , (2.20)

P

l G(p) = -2. (2.21)
pz

Now, we pass to the more interesting case of interactions. Looking at the
interaction part of the action (2.19), one recognizes three kinds of interaction:

4Functional differentiation works as usual, despite the star-product [91].
5Of course, the reader can calculate the propagators directly from (2.19) just by using

Standard methods.
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• three gauge interaction ~ gdßAv * [Aß , A"]^ + perm.,

• four gauge interaction ~ g2 [Aß , Au]^ * [Aß , A"}^,

• ghost gauge interaction ~ gdßc* [Aß , c]^.

Under the integral f d4x in the action (2.19) we can get rid of one star in
each interaction term above. Therefore, we are left with Moyal commutators
(1.34) which have the following form in momentum Space:

$2(9). (2-22)

For obtaining the Feynman rules we use the Standard procedure, i.e. we
perform a Fourier transformation and differentiate with respect to the fields
in the interaction part. In this way, we get the Standard Feynman rules of
SU(N) YM, but with the structure constants replaced by some factors of the
form6

Q ) = 8 i n ^ , (2.23)

where we defined

jfc" = QßVkv. (2.24)

The Feynman rules of the gauge three-vertex Yßup, the gauge four-vertex
-, and the gauge ghost vertex Vß are listed in the following:

, Q, r) = 2g sin y

x [(P - q)p9ß* + {Q- r)ßgvp + (r - p)vgPß),
(2.25)

6Take the Feynman rules for non-Abelian gauge theories from e.g. [93], and make the
replacement fabc -> 2sin(pq/2).
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, q, r, s) = -4 i g2 Ö4(p + q + r + s)

f . pq . rs .
x sm — sin — {gßp gua - gßa gvp)

. rp . qs
+ sin — sin — {gßa gvp - gßU gpa)

. ps . qf 1
sin — sin — (gßV gpa - gßp gva)\ ,

(2.26)

(2.27)

q V

Here, one should recognize the non-locality of the vertices, because the expan-
sion of the sinus function leads to an infinite series in the momenta. Further,
all vertices disappear in the commutative limit 9ßl/ —> 0 leading to a free
Maxwell theory as expected.

2.2.3 Self-energy

Having all the Feynman rules in hand, we can start to calculate the one-
loop corrections to the gauge field propagator, called self-energy. We have
two contributions with a gauge loop: i n ^ p ) (figure 2.1) and illjj(p) (figure
2.2), and one contribution with a ghost loop: in|fj(p) (figure 2.3). Therefore,
the self-energy i n ^ p ) is given by:

i iV (p) = i n « (p) + in w (p) + a ig (p). (2.28)

To keep calculations as simple as possible, we introduce the definitions

(2.29)

and work in Feynman gauge a = 1 (see (2.20)). Of course, physics is in-
dependent of the gauge choice also in the non-commutative case [32]. The
explicit expressions for all the graphs read as follows:
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Figure 2.1: Self-energy contribution

Figure 2.2: Self-energy contribution

wwwv
v

k_

Figure 2.3: Self-energy contribution illßu(p)
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1 f d^k
inJJCp) = 2 / ( 2 ^ ) 4 ^ ( * + ) ^ ( * - ) > ; ^ ( - p . - f c - . M y j **(?,-*+,*_)

, /• d4fc (2/c2 + | P
2 ) ^ , + I O A ; ^ - \PßPv . 2pk

~lg J (2iry fcpl sin T 1 ( 3Ü)

/
J4

- _ 4 o 2 f
" 5 J jfc« A;2_

To obtain the expressions (2.30), (2.31) and (2.32) we made use of the Feyn-
man rules in section 2.2.2. The prime on Y, X and V denotes the fact that we
can omit the delta-functions in the rules for the vertices, because we already
considered momentum conservation in drawing the graphs in the figures 2.1,
2.2 and 2.3. Further, there is a symmetry factor 1/2 in (2.30) and (2.31),
and a minus sign in (2.32) due to its fermionic ghost loop. Then, we have to
integrate over the loop momentum k with integration measue d4/c/(27r)4.

Further, we have the important property

Pßfy=Pße^Pl/ = 0, (2.33)

due to the antisymmetry of the non-commutativity parameter 9ßU. We used
(2.33) to simplify the arguments of the sinus factors above.

Looking at the expressions (2.30), (2.31) and (2.32), we recognize that
they all have a common factor sin2(pfc/2) which includes the non-commuta-
tivity parameter 6ßU. Using the identity

2 sin2 — = l-cospA;, (2.34)

we can split every graph in a ö-dependent part and another part which is
completely independent of 9. Therefore, we make the following definitions:

• planar graphs do not depend on the non-commutativity parameter 9,

• non-planar graphs depend on the non-commutativity parameter 9.
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Now, we can write the self-energy (2.28) as a sum of a planar and a non-
planar contribution, respectively:

in^(p) = inj,(p) + in^p(p). (2.35)

The termini planar and non-planar come from the fact that it is possible to
introduce some kind of 't Hooft's double line notation [95, 96] for non-com-
mutative field theories [13].

The planar parts of the graphs in figure 2.1, 2.2 and 2.3 lead exactly to
the same integrals as in the case of ordinary SU(N) Yang-Mills theory in
the formal limit N —> 1. They can be regularized and renormalized in the
usual way [19, 24]. We will come back to these results later on, but now we
will consider only the non-planar parts which contain possibly new physics.

Due to the oscillating factor cospk in the non-planar parts of (2.30),
(2.31) and (2.32), there is no need for an ultraviolet regularization. These
integrals are completely finite in the UV. Let us calculate them explicitly.

In the following, we will use Schwinger parameterization [92]:

k2 - m2 +
^ - = - / ida eW-n'+V, (2.36)

with an appropriate ier-prescription.7 Further, we represent the non-commu-
tative oscillating factor as

2cospJfc = ei*ifc + e-i'!A!. (2.37)

Starting with the simplest contribution to the self-energy iUßU (p) from

(2.31) we get with (2.36) and (2.37) the expression

±±-J ida e^2 (e1* + e"**) . (2.38)
\Z7r) Jo

Quadratic completion with the shift k —> k ±p/2a in (2.38) leads to

idae^2-^. (2.39)

Now, we can perform the Gaussian integration over the momentum k via the
formula

i(27r)<

7The ie-term simply acts as a damping factor as usual. We will not write it anymore
in future calculations.
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and get for (2.39) the following term:

f°° ida £_
/ ^ e » . (2.41)

The oscillating factor exp(—ip2/4a) renders the integral in (2.41) finite and
we get by applying the formula [97]:

/

°° dr
e

fl '* = - l / a , [ » ( a ) < 0 ] , (2.42)
x

the result

< P < " gi (2.43)

Because of the identity (2.33), the vector p1 is space-like8 and therefore
p2 < 0, which allowed us to use the formula (2.42) above.

With (2.43) we have calculated the non-planar part of figure 2.2, which
is finite for non-vanishing p. But, we see that in the limit p —¥ 0 we get a
quadratic singularity. Before discussing this point further, we will also derive
the non-planar parts of figure 2.1 and figure 2.3.

Instead of performing the calculation of i n ^ (p) and iIIMi/ ^ (p) in füll
detail we will give all necessary ingredients for this tedious but straightfor-
ward derivation in the following.

First, we use two Schwinger parameters a+ and cv_ in (2.36) and formula
(2.37) to rewrite the non-planar parts of the integrals (2.30) and (2.32):

J^jjf ida+j^ ida-VCP.^e'^'e^-fe^ + e-1**), (2.44)

with

21/11/(P, k) = -g
2 [(/c2 + -

In order to perform the integration over k in (2.44) we write every kß in
(2.45) as a derivative d/idz^ acting on an additional factor exp(izfc), which
we introduce by hand. We can do this without changing the integral, since
we will set this factor equal to 1 by evaluating the whole expression at z = 0
at the very end.

8The momentum p^ is time-like for physical particles, of course.
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The next step consists in a quadratic completion of the terms in the
exponentials of (2.44) and the above introduced additional factor. Then,
we can do the Gaussian fc-integration (2.40), and perform afterwards the
derivations with respect to z. After setting the auxiliary variable z equal to
zero, we have the following expression:

3o(p) - 81(^3!(p)

j) 32{p) (2

(2.46)

where we defined the integrals

ida. ^ i exp ( i ^ p 2 - i±?), (2.47)

with

ß = a+ + a_. (2.49)

In order to perform the integrals (2.47) and (2.48) we make the following
reparameterization:

k*+ = X \ i a - = (1 - X)A. (2.50)

Then, we replace the integration variable A through the variable rj given by

V = -X(l - X)P2\ (2-51)

and end up with

3«(P) = f dX(- ix( l - X)P2T r - ^ exp ( - r, - - ) , (2.52)
Jo Jo V V

5(P) = Jo dx x(i -x)J f exP ( - ^ - j)> (2-53)
where

-x)^r-- (2.54)
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The kind of integration over 77 in (2.52) and (2.53) can now be found in
mathematical textbooks [97, 98, 99]. It is carried out with the formula

f1" äx , aN ,a^

Jo
rrr exp(-bx ) = 2 ( - ) 2 Kv(2väb), [ 3?(a) > 0, R(b) > 0 ] ,

(2.55)

where K„(z) is the modified Bessel function of the second kind. Application
of formula (2.55) to (2.52) and (2.53) yields

= / dX{- ix ( l - X)P2T ~K KK{2v), (2.56)

5(p)= f dxx(l-x)2Ko(2^), (2.57)
Jo

where we used the property KK(2v) = K^K(2v).

Since we are not able anymore to perform the integration over x m (2.56)
and (2.57) in closed form, we will make an expansion of the modified Bessel
functions KK{2v). Due to an exponential fall off for large v

(2.58)

the only interesting regime will be the limit v —> 0. In the following, we list
the necessary expansions (K = 0,1, 2) around v ~ 0 up to the Order ö{vA):

2KQ(2v) ~ -

where 7 E ~ 0,577216 denotes the Euler gamma. With the help of the ex-
pansions (2.59) we can do the integration over x in (2.56) and (2.57) and get
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with (2.54) up to the Order O(p4):

3O(P) ~ 2(l - 7E - ^ln (p2p2)) + ^ ( f - 7E - ^ln (p2p2))p2p2,

1 /61/Dl „ 1
120 V30

1 / 4 5 7 _ . _ 1.

1680V210

(2.60)

where we introduced the constant 7E = 7E — In 2 ~ —0,115932. Further,
the argument of the logarithm is always positive, i.e. we should have written
more exactly ln(|x|) instead of ln(a;). This remains true in all the following.

Finally, we can use the results (2.60) to get an explicit expression for
the one-loop contributions of figure 2.1 and 2.3 to the non-planar part of the
self-energy (2.46). We will summarize and discuss our results in the following.

The non-planar part of the self-energy is given by the sum of the terms
(2.43) and (2.46):

K K K i ( p ) , (2-61)
and can be rewritten as

n N 1 » , (2.62)

where up to the order O(p4)

• T T N P , x i<?2 T 2 0 / 1 4 „ 1 . 2 _ 2 . \ 2
i n ( p ) ~ 7 ^ z d - — V Y ^ ~ 7 E ~ 2 Xn\PP))v

3 /163 „ 1 , / 9 n i \ i ol , .

7E - - l n ( p V ) p y , (2.63)
10 V 90 2 K ' ) J v '

2 , / " - \ I 2~T\\ 4~2l In CA\

—p -\ 1 — — 7E — - In Ip p I Jp p I. ^z.o4J

Before discussing this result, let us write down the füll one-loop self-
energy, including also the contributions from the planar sector of the theory.
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With (2.35) and (2.62) we get for the self-energy of non-commutative U(l)
Yang-Mills theory:

pf) ( ) ( ^ ) NP(P). (2.65)

The term illp(p) is just given by the logarithmic UV divergent part of the
self-energy from ordinary SU(N) Yang-Mills theory in the limit iV —> 1:

with A the UV cutoff scale. There is no corresponding piece iITp(p), of course.
Now, we know from gauge invariance of the action (2.12) that the self-

energy has to be transversal. Since the two projection Operators appearing
in (2.65)

V
' ßV

V
1 ßV —

have the properties9

9ßu

PßPu

p2 '

V —
1 ßV —

PßPv

P1'

o,

rßp

Vßp

T>P
' V

v p ^

= vßU,

--vßU,

o,

(2.67)

(2.68)

(2.69)

it is easy to see that the self-energy (2.65) of non-commutative C/(l) Yang-
Mills theory is still transversal:

p" i rV(p) = 0. (2.70)

This is a very important consistency check, because otherwise we would have
an anomaly. The non-transversal part from the graph in figure 2.2 given by
(2.43) was exactly canceled by the self-energy parts from the graphs 2.1 and
2.3 in (2.46).

We will discuss new physics Coming from the non-planar parts iITNP(p)
and iIlNP(p) of the self-energy (2.65) in section 2.3.

2.2.4 One-loop corrections

In order to be complete, we list here the one-loop corrections of all prop-
agators and vertices of non-commutative U{\) Yang-Mills theory (see sec-
tion 2.2.2). We have calculated the vacuum polarization tensor ill^(p) in

9See also equation (2.33).
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section 2.2.3 in the Feynman gauge a = 1, and take all the other results
from [32]. There, dimensional regularization was used in the planar sector
with D = 4 + 2e. We denote the gauge three-vertex by iTßlß2ß3(pi,p2,P3),
the gauge four-vertex by iTßlß2ß3ßi(pi,p2,P3,p4), the ghost self-energy by
ingh(p), and the gauge ghost vertex by iTß

h(pi,p2,p3). There are no more
UV divergent one-loop corrections in the game.

In the following, all results are given modulo finite contributions:

2ig2 p~ßpv ig2 / 1 3 \ r l , 2 _ 2 . i 2

iUßU(p) ~ — - | p - — [— - a) [- - In (pV)j (p2gßU - pßPl/),
(2.71)

ftßlß2ß3(pi,P2,P3) 5" COSßlß2ßa ^ y J

X
 [ P W M ( P I - ^2)^3 + 9ß2ß3(P2 - P3)W + 9ß3ßÄP3 - Pl)ß2\ .

(2.72)

-,4

167T2
. / \ . (P\P2\ . f

4 [9ßiß39ß2ß4 ~ 9ßiß49ß2ß3) s i n l ~ 2 ~ ) s i n l

sin ( ^ ) sin (

sin l - y 1 sin
l y 1 sin ( y ) MPuP

(2.73)

(2.74)

p1)P8>p,) ~ - ^ sin ( ^ ) [I + In (pl) - In (p2) - In (p2)] (Pl)„

(2.75)
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where the function fe{pj,Pk) is given by

töiM = ; ( | - 2a) + I [(a + 3) (a - 1) + y] £ In (fe)2)

(2-76)

We will comment on these results in the next section and refer the interested
reader for further details to [32].

2.3 UV/IR mixing — Part one

Let us take a closer look at the term VßUTlNF(p) in the self-energy (2.65)
of non-commutative U(l) Yang-Mills theory which arises from the small-
momentum regime of the non-planar sector.10 Using the equations (2.64)
and (2.68) we have

2^^ . (2.77)

We immediately recognize from expression (2.77) that we have a quadratic
singularity, when either the non-planar projection of the external momentum
goes to zero, i.e. p —¥ 0, or by taking the commutative limit 9 —> 0.

Therefore, the limit 9 —¥ 0 is not smooth anymore on the quantum level.
On the tree level, we have got back free Maxwell theory from non-commuta-
tive U(l) Yang-Mills theory in performing the commutative limit, but this
is not true anymore after quantization. The non-commutative deformation
and the quantum deformation do not commute anymore.

Moreover, at fixed non-commutativity parameter 9 we have a new infrared
singularity in the limit p —¥ 0. Where does this IR singularity come from?

Going back to the loop calculations of section 2.2.3, we see that all non-
planar graphs are rendered finite due to oscillating factors like

exp(ipA;), (2.78)

where k is the loop-momentum and p the external momentum. Now, we see
in taking the limit p —> 0 that the phase factor (2.78) goes to one, and there
is no regulator anymore in the loop-integral over k. Therefore, we have to
get back a singularity in the limit p —¥ 0. But this singularity coming from

10Remember, that there is no non-planar contribution coming from the large-momentum
regime due to an exponential fall off of the modfied Bessel function in (2.58).
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the ultraviolet regime of the loop-momentum, is now an infrared singularity
of the external momentum. The UV and IR modes of the theory do not
decouple anymore, hence the name UV/IR mixing.

One can see this phenomenon also by introducing a UV cutoff A for the
non-planar graphs. Then, one gets together with the regulating phase factor
(2.78) an effective cutoff scale Aeff given by

From the expression (2.79) we see that the UV limit A —> oo does not com-
mute with the IR limit p —>• 0, demonstrating again the interesting mixing of
UV and IR modes.

2.3.1 Renormalizability

The UV/IR mixing was first discovered in [13] for the cases of non-commu-
tative 4>A theory in four dimensions and (j)3 in six dimensions. Naive power
counting suggests in both theories a quadratic UV divergence of the one-loop
planar two-point function. In the non-planar sector, one gets an IR diver-
gence which has exactly the same degree as the corresponding UV divergence,
therefore being also quadratic.

Quadratic UV/IR mixing effects in gauge theories were first stated in
[14, 21, 22]. The degree of the new infrared divergences in the non-planar
sector is again given by naive power counting of the corresponding UV di-
vergence in the planar sector. Due to gauge invariance one has effectively
only logarithmic planar UV divergences, but there are still quadratic non-
planar IR divergences. Even more, there are also linear IR divergences of
the three-point functions, and logarithmic ones of the four-point functions,
corresponding again to naive power counting (see section 2.2.4).

These quadratic and linear UV/IR mixing effects are quite disastrous,
because they spoil renormalizability of a quantum theory. Of course, as we
have seen above, non-commutative U(l) Yang-Mills theory is still one-loop
renormalizable, because all UV divergences come from the planar sector and
can be regularized and renormalized in the usual way. But, when we start to
consider higher-loop corrections, the quadratic and linear IR divergences from
the non-planar sector, formerly IR divergences of external momenta, become
now divergences of loop-momenta. Therefore, they cannot be integrated over
anymore yielding a non-renormalizable theory [17, 18].

Non-commutative Yang-Mills theory was also studied in [19, 20, 23, 24,
25, 26, 27]. It was shown in [24], that non-Abelian non-commutative gauge
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theories also suffer from quadratic UV/IR mixing, therefore being only one-
loop renormalizable. Even more, the non-commutative U(N) gauge group
does not converge to the ordinary SU(N) x U(l) gauge group in the com-
mutative limit. There is only one coupling constant, i.e. non-commutative
gluons interact with non-commutative photons.

Now, the question rises, if there are non-commutative quantum field the-
ories which are renormalizable. Mainly, there are two possibilities for a
non-commutative theory to be renormalizable, either being topological or
supersymmetric. Chern-Simons theory is free of radiative corrections at the
one-loop level even in a non-commutative setting [100], and it was shown
to be fully finite in [101]. The non-commutative Wess-Zumino model was
studied in component formalism in [28], and in the superfield formalism in
[29]. It was the first non-commutative field theory which was shown to be
renormalizable to all orders, having only a logarithmic UV/IR mixing.

Later, we will see that it is a common feature of supersymmetric non-com-
mutative field theories to suffer only from logarithmic UV/IR mixing which
does not spoil renormalizability in general. We will discuss this point exten-
sively in section 2.5, but will come back now again to non-supersymmetric
gauge theories.

2.3.2 Running coupling
We still have not considered the new physics Coming from the term iüNP(p)
in the self-energy (2.65) of non-commutative U(l) Yang-Mills theory. From
the expression (2.63) we have modulo finite terms

)2. (2.80)

Here, we get a logarithmic infrared singularity in the limit p —> 0, or alter-
natively 6 —> 0. Comparing (2.80) with its counterpart (2.66) Coming from
the planar sector, we see that both terms have the same coefficient 10/3, but
with different signs. This is again an effect coming from UV/IR mixing. The
coefficient of logarithmic IR divergences that arise from non-planar graphs
is exactly opposite to that of the logarithmic UV divergences in the planar
sector of the theory [21, 22, 24, 25].

We know from Standard renormalization procedure that the logarithmic
UV singularity (2.66) Coming from the planar sector gets canceled by a coun-
terterm corresponding to the wave function renormalization factor. This
factor, together with another counterterm Coming from the logarithmic di-
vergent one-loop vertex correction, combines to the one-loop beta-function
coefficient ß0 of the theory. Since the planar sector of NC f/(l) YM theory
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is identical to ordinary SU(N) YM theory in the formal limit N —> 1, the
beta-function of non-commutative U(l) Yang-Mills theory is just given by11

^ o , ß> = 22/3. (2.81)

The commutative counterpart of non-commutative f/(l) Yang-Mills theory is
the usual Maxwell theory, consisting only of free photons with no running of
the gauge coupling constant, of course. Due to the new interactions Coming
from non-commutativity in NC U(l) YM (see section 2.2.2), it is clear that
we have now a gauge coupling constant which depends on the considered
energy scale. Therefore, we have a non-vanishing beta-function in (2.81).

Inserting the expression (2.81) into the definition of the beta-function
ß(g) with g(p) denoting the coupling constant at momentum p:

we can integrate (2.82) with respect to the momentum p and get for the
running of the coupling constant g(p):

ITT - "T = j h & l n
 (PVA2) » (2-83)

with #A the coupling constant at a certain scale A.
It is possible to get the result (2.83) directly by calculating the self-energy

of NC 17(1) YM theory with the background field method [25, 34, 35]. Here,
the Wilsonian effective coupling constant g(p) is determined by the following
equation [93]:

{uPM + n P { ) ) ( 2 ' 8 4 )

The quantities Ilß(p) and lTßP(p) denote the planar and non-planar parts
of the self-energy in a background field B, respectively. They are just given
by the before calculated quantities (2.66) and (2.80), when we replace the
coefficient 10/3 by —22/3 and perform the rescaling Aß -4 g~*Aß.

Now, we have to consider two different energy regimes. For this purpose
let us introduce the non-commutative scale given by Ag = 1/6. In the regime
with momenta much larger than the non-commutative scale, |p| 3> Kg, we

11 The one-loop beta-function coefficient ß0 = 22JV/3 for ordinary SU(N) Yang-Mills
theory [92, 93, 94], and also for non-commutative U(N) Yang-Mills theory [24].
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In p

Figure 2.4: Running coupling of NC U(l) YM theory

have only a planar contribution to (2.84). The non-planar part goes expo-
nentially to zero (see section 2.2.3) and we get with the above mentioned
modifications of (2.66) the relation

\p\
1

92(p)

1 1
(2-85)

Comparing (2.85) with (2.83) leads to ß0 = 22/3 exactly confirming the
result in (2.81). Therefore, we see that due to its negative beta-function
in the large-momentum regime, non-commutative U(l) Yang-Mills theory
is asymptotically free, or put another way, non-commutative photons are
asymptotically free.

On the other hand, when momenta are much smaller than the non-com-
mutative scale, i.e. in the regime \p\ <C Ae, we get contributions to (2.84)
from the planar and the non-planar sector, leading with the appropriate
forms of (2.66) and (2.80) to

\p\
1

92(P) 16?r2 (2.86)

Looking at (2.86) and (2.85) we find that the running of the coupling con-
stant in the infrared regime is completely similar to the one in the ultraviolet
regime. But, there is a change in the sign of the beta-function which means
that in the small-momentum regime the theory becomes again weakly cou-
pled. We have drawn qualitatively the running of the coupling constant g
with the energy scale p in figure 2.4 where the minimum sits at the non-com-
mutative scale Afl.

Therefore, we conclude that non-commutative U(l) Yang-Mills theory is
weakly coupled in the far infrared and ultraviolet. This kind of duality is a
further characteristic feature of UV/IR mixing, i. e. mixing of ultraviolet and
infrared degrees of freedom.
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2.4 NC Abelian YM theory with matter

Having studied pure non-commutative Yang-Mills theory in the previous sec-
tions, we will go one step further now, and add some matter content to the
theory. Here, we will study two interesting cases, namely adding fermions
in the fundamental and the adjoint representation of the gauge group U(l).
Considering NC U(l) YM theory with a fermion in the fundamental represen-
tation corresponds to non-commutative QED, i.e. we get non-commutative
photons interacting with electrons. On the other hand, a massless fermion in
the adjoint representation combines with the non-commutative photon into a
supermultiplett yielding a supersymmetric NC U{\) YM theory. We will also
study the case with a massive fermion in the adjoint representation, giving
a softly broken supersymmetric theory.

• NC 1/(1) YM 0 fundamental fermion —> NC QED

• NC E/(l) YM 0 adjoint fermion

- massless —> NC 1/(1) SUSY YM

- massive —> softly broken NC E/(l) SUSY YM

We will study both cases in the next two sections with Special emphasis on
the UV/IR mixing appearing in the self-energy of the gauge field.

2.4.1 Fundamental fermions
The interaction of non-commutative photons with fermions in the fundamen-
tal representation (electrons) is given by the non-commutative extension of
the Dirac action [21, 22]:

S* = f dAxip* (i#* - M) ip, (2.87)

where ip is the Dirac spinor, ip = ip^j0 the Dirac adjoint spinor,12 and M
the electron mass. The covariant derivative Ip* = -D*7M acting on ip and ip
is given by

l Aß. (2.88)

Therefore, we have the total action

SNCQED
 =

 SNCYM + "SVJ (2.89)
12The Dirac matrices 7^, (/z = 0,1,2,3) fulfill a Clifford algebra {7",7"} =

and further properties can be found in Standard textbooks [92, 93, 94].
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where 5NCYM (2.19) denotes the pure gauge field and gauge fixing part (see
section 2.2.1). The action (2.89) is again invariant under the BRS transfor-
mations (2.14) and

stp = igc-ki/j, s-ij) = —igty * c, (2.90)

with c the ghost field. We should mention here that the charges of the fields
•0 and •i/' are restricted to 1 and —1, respectively. This is due to the non-
Abelian structure of the star-gauge group and in contrast to ordinary QED
where the charges can be any number [51].

Using (2.88) to expand the matter term (2.87) we get

S^= f d4x ($(i0-M)il) + gi>4*il>), (2.91)

where we used the property (1.33) to get rid of one star-product. Now, we
can easily read off from (2.91) the Feynman rules of the matter part:

p-M'

exp ( ^ ) S4(p- q + r). (2.93)

Note that in the vertex rule (2.93) appears an exponential factor rather than
a sinus factor as in all other vertex rules (see section 2.2.2). This is due to the
fact that the gauge field and the ghost transform in the adjoint representation
producing therefore Moyal commutators (1.34) leading to sinus functions,
and the fundamental fermion comes just with a star-product (1.28) giving
the exponential factor above.

With these preparations in hand we can calculate the additional one-loop
correction to the self-energy of the gauge field Coming from the fermionic
sector. We denote this contribution by ill}j (p) and the corresponding graph
with a fermionic loop is given in figure 2.5. Application of the Feynman rules
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Figure 2.5: Self-energy contribution

(2.92) and (2.93) with k± = k ±p/2 leads to

= - 2 / —
J \£K

dAk r 1 p
t [ \ exp ( T (fc- -

(2.94)

where the prime on T denotes again that we can omit the delta-function,
because we already considered momentum conservation in drawing the graph
in figure 2.5. Further, we have to take the trace over the spinor indices and
get a minus sign from the fermionic loop.

Since fc_ — k+ = —p and pp = 0 from (2.33), the exponential in (2.94)
completely drops out, and we are left with a purely planar contribution,
because there is no dependence on the non-commutativity parameter 9 any-
more. Therefore, we see that fermions in the fundamental representation of
the gauge group contribute only to the planar part of the self-energy.

Now, the expression illjj(p) in (2.94) is exactly the same as the fermionic
contribution in an ordinary SU(N) Yang-Mills theory coupled to fermions
in the formal limit N —> 1. There, the only effect is a modification of the
coefficient /?0 of the one-loop beta-function (2.81) given by

ßo = 22/3 - 4/3 NF, (2.95)

where Np is the number of flavors in the game. Therefore, we still have
asymptotic freedom with a sufficient small number of fermions. Comparing
this result with the running of the coupling constant in pure NC U(l) YM
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theory in section 2.3.2, we see that we have a modification in the UV due
to an additional fermionic planar contribution, but in the IR we still have a
running with the coefficient —22/3 lacking of any new non-planar contribu-
tions. Therefore, the rule that one can get the coefficient of the logarithmic
divergence in the IR by changing the sign of the corresponding logarithmic
UV divergent term fails in a theory with fundamental fermions.

Before closing this section and passing to the case of adjoint fermions,
we have to mention here the very important point that there is no change
of the quadratic IR divergence (2.77) in the self-energy of the gauge field.
The same holds for the linear IR divergent vertex correction in section 2.2.4.
Fundamental fermions do not change quadratic or linear UV/IR mixing ef-
fects, therefore they cannot improve renormalizability of non-commutative
Yang-Mills theory.

2.4.2 Adjoint fermions

Now, we proceed the analogous way we have gone in the previous section by
considering fermions transforming in the adjoint representation of the gauge
group instead of taking fundamental fermions. Denoting the Weyl fermion
by A and its conjugate by Ä, we have the following matter Lagrangian:

Sx= f <Px\* (i#* - m) X, (2.96)

with m the mass of the fermion. Here, the covariant derivative ijf = D*ß^
ß

acts on A and Ä through a Moyal commutator:

, (2.97)

contrary to (2.88) where we had just a star-product. The total action

•?NCSYM = SNCYM ~*~ ^x> (2.98)

with SNCYM g i v e n in (219) is invariant under the BRS transformations (2.14)
and

sX = i g [ c , X l , sX = - i g [ X , c ] i i , (2.99)

with c the ghost. We have again a restriction of the charge of the fermion
which in this case has to be zero [51].

Furthermore, since the fermion transforms in the adjoint representation
like the gauge field, A and Aß build a supermultiplett [102, 103, 104]. They
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are the component fields of an Af = 1 vector multiplett.13 Of course, su-
persymmetry is only realized in the case m = 0 where we have a massless
adjoint fermion, called photino, in the game. If the photino gets a mass,
supersymmetry is broken, but in a so-called soft way.

One of the big advantages of supersymmetric field theories is the absence
of dangerous quadratic and linear ultraviolet divergences due to cancelations
between bosonic and fermionic degrees of freedom. Softly breaking of super-
symmetry, e.g. by giving a mass to the superpartner of the photon, does not
spoil these cancelation effects. The question is now, if this holds also in a
supersymmetric theory on non-commutative space. We will investigate this
point in the following by considering the case of supersymmetric NC U(l)
YM theory with the action already given in (2.98).

With (2.97) we can expand the matter term (2.96) and get

Sx= f dAxf dAx (\(i0-m)\ + g\[A, A] Y (2.100)

where we used again the property (1.33) to get rid of one star-product. Now,
the Feynman rules of (2.100) have the following form:

(2.101)

(2.102)

In (2.102) we recognize the familiär sinus factor Coming from the Moyal
commutator (1.34), which appears in the interaction part of (2.100).

Now, we can Start to calculate the additional one-loop contribution to the
photon self-energy Coming from a photino running in the loop. The Feynman
graph is drawn in figure 2.6 and the corresponding self-energy contribution
in}f2(p) with the Feyman rules (2.101) and (2.102) is given by

tr [^(-p, *_, A4.) S(*+) K(p, k+t k.) -(*_

/

d^k r 1 1 1 pk

13There is also an auxiliary scalar field which can be integrated out.
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Figure 2.6: Self-energy contribution

where we used the same Conventions as for the graph in section 2.4.1. Since
the sinus factor in (2.103) does not vanish in general, there will be a non-
planar contribution from the photino-loop in contract to the electron-loop of
the previous section.

With (2.34) we can split (2.103) into a planar and a non-planar part

(2.104)

Since we can achieve the contribution Coming from the planar sector by
considering ordinary SU(N) Yang-Mills theory coupled to a massive adjoint
fermion in the formal limit N —> 1, we will concentrate in the following on
the non-planar part given by

( 2 1 0 5 )

Multiplication by (fi± + m) and using of ## = k2 leads to

d4k tr [jß (ft+ + m) j u (#_ + m)]

(2TT)4 (ife2 - m2) (kl - m2)

In doing some 7-matrix gymnastics via the relations14

^ I I tL 11/ 1 ^^^ T 1LIS 1

f r /v ^Y ry 1^/ Q I r% ft
U1 [ /M ]v Jp Ja] — * \yiiv ypa

cospk. (2.106)

= 0,

gup), (2.107)

14Here, the 7-matrices are in a 2 x 2 representation and fulfill {7^,7"} = 2gtiUH.2x2,
because we are dealing with two-dimensional Weyl spinors instead of four-dimensional
Dirac spinors.
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we can rewrite (2.106) as

iTTNP(e)(n) - An2 f ^ k+^k~v + k+*k-ß + 9w ^ ~ k+ßk-) - .
i i V w - 4$ y (2?r)4 (A.2 _ m 2 ) (fc2 _ m 2 )

 cos P fc-
(2.108)

Now, we will proceed close to the calculational Steps we did already in section

2.2.3. The expression (2.108) reads with Schwinger parameterization (2.36)

and formula (2.37) as follows:

^-4Jo ida+J^ ida-*„,(**, k)

x eia+(fc^-m2) eiQ_(fci-m2) ^ipk + e~ipkj ^ (2.109)

with

Q5^(m, k) = 2g2 [k+ßk_„ + k+„k_ß + gßl/ (m
2 - k+ßkt)] • (2.110)

Performing the trick k±ß —> d/idz± (see section 2.2.3) and doing the Gaussian
integration (2.40) over the loop-momentum k leads to

[4m V £o(p, m) - A\gßV ^ ( p , m)

- {P29ßv-2pßpv) £2{p, m) + (Ap2gßl/-8pIJ,pl/)

(2.111)

with

K(p, m) = | !da+ | ida_ ^ - exp ( i - ^ - p - ^m - i - p

(2.112)

, m) = / irfa+ / irfa_ JT^ —^- exp (i——p2 - ißm2 - i—p2),
JQ JO V-P) P V P 4 P '

(2.113)

and ß given in (2.49). Comparing the integrals (2.112) and (2.113) with the
expressions (2.47) and (2.48) we see that

2K(p, 0) = 3K(p), £(p, 0) = 3(p). (2.114)

Therefore, the loop with a massless photino leads exactly to the same type
of integrals as we had for the photon- and the ghost-loop in section 2.2.3. In
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the following, we consider the modifications Coming from a non-zero photino-
mass corresponding to softly broken supersymmetry. At the end, we can
simply pass to the superymmetric case by setting the mass of the photino to
zero.

Performing the reparameterization (2.50) and introducing the variable

V = -X( l - X)P2A + m2, (2.115)

we get for (2.112) and (2.113) the expressions

ZK(p, m) = j \ X { - i(x(l - X)P2 ~ m2)) f ^ exp ( - f) - | ) ,

(2.116)

dxx(l-x) ^exp(-rj-^), (2.117)
Jo V V

with

(2.H8)

in complete analogy to the equations (2.51)-(2.54) of section 2.2.3. Now, we
can again use formula (2.55) to integrate over fj in (2.116) and (2.117) and
get

£K(p;m)= fdX(-i(x(l-x)p2-m2)Y-KKK(2v), (2.119)
Jo v ' v

£(p,m)= [ dXX(i-x)2KQ(2v), (2.120)
J
[
o

which correspond in the massless case exactly to (2.56) and (2.57).

Since the modified Bessel functions KK (2v) fall off exponentially for large
values of v (see (2.58)) the only non-vanishing contributions come from the
region v ~ 0. In this regime, the expansions of KK(2v) are given by the
equations (2.59) in replacing v by v. With these expansions in hand, we can
perform the remaining integration over x a n d get for (2.116) with K = 0,1, 2
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and (2.117) up to the Order O(p4,m4):

£o {Pim) ~ 3o (p) Ö~ 2 In (——) H — I — — 7 E — — In ( p p ) ) p p ,

p2 i v p 2 / 2 \ 3 2 / J
, m) ~ 3i{p) - im2 [2(- - iE - - In

? 2 i 4 1 / 4 3 1 ,
, j T O )~3f 2 (p ) + m p | - _ + - ( _ - 7 b - - l n

1
+ l2ÖvIÖ5 ~ 7 E ~ 2

£(p,m) ~5(p) + ^ - [- - 7^(77 - 7 k - pln(p2P2))p2P2], (2.121)

where the functions 3K(p), 3(p) and the constant 7E are given in section 2.2.3.
We see that the equations (2.121) justify the relations (2.114).

Now, we are able to write down the explicit expression for the non-planar
part of the self-energy Coming from the photino-loop in figure 2.6. We per-
form again a Splitting (2.62) with the two projection Operators (2.67) and
(2.68) for the self-energy part ill^J(e^(p):

(2.122)

and get with the formulas (2.111) and (2.121) the following result:

9 /93 1
- 7 E - - In (p2p2) )p2p2m2 , (2.123)

3 V 1 5 2 v ' ' ' v ;

-^(i- f E-^ l n(p 2^)^ 2

+ ^ ( | - 7 E - ^ l n ( p 2 p 2 ) ) p 2 p W ] , (2.124)

again up to the order Ö(p4,rni). Since we are able to write the expression
(p) in the form given by (2.122), the non-planar part Coming from the
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photino-loop is also transversal (see the relations (2.69)). This follows again
from gauge symmetry.

Finally, we have to sum up all non-planar contributions Coming from the
Feynman graphs in the figures 2.1, 2.2, 2.3, and 2.6:

inN P(p) |m = inNp(a)(p) + inNp(bHp) + in N P ^(p ) + i n N P ^ ( p ) (2.125)

where the subscript shows the fact that we are dealing with an jV = 1
supersymmetric field content (one gauge field Aß and one Weyl fermion A),
and the superscript denotes the non-vanishing mass m of the fermion.

Adding the photino-loop contribution (2.122) to the already obtained
photon- and ghost-loop contributions (2.61) of section 2.2.3, we end up with
the following non-planar self-energy part of softly broken U(l) NCSYM the-
ory up to the Order O(p4,m4):

i r O € = 1 = ( ^ - P-f) inNP(/C=1 + i^f) inNP(p)|;=1) (2.126)

with

\g2 \ . / , „ 1. / o-o\\ 2 16 o

, (2.127)

" 8m2 + | (H _ fE _ I m ̂ ) ) ^ r o » ] , (2.128)

Let us discuss this result in the next section in the context of UV/IR mixing.

2.5 UV/IR mixing — Part two

Let us first investigate the leading part of VßU nNP(p)|A/-_1 in the non-planar
self-energy (2.126) of softly broken non-commutative U(l) SUSY Yang-Mills
theory by using the equation (2.128) and the projector (2.68):

The expression (2.129) is completely finite in the limit p —> 0 or 6 -4 0. There
is no quadratic IR singularity anymore in the self-energy of the non-commu-
tative photon in a softly broken supersymmetric set-up. The quadratic IR



48 CHAPTER 2. NON-COMMUTATIVE GAUGE THEORY

Singular term in the self-energy of U(l) NCYM in (2.77) is exactly canceled
by the photino-loop contribution given by (2.124).

In a regime where supersymmetry is fully realized, i.e. when we can set
the photino-mass m = 0, we get an even stronger result, namely

^ = 0 . (2.130)

Equation (2.130) holds to every order in p, it is an exact result. We can see
this by looking at the sum of the unexpanded equations (2.46) and (2.111)
where all terms proportional to VßU (2.68) are exactly canceled in the massless
case,15 where ^ ( p ) = ^ ( P J O ) (see (2.114)). Hence, the non-planar vacuum
polarization tensor i n ^ ( p ) | ^ ~ x in (2.126) is proportional to the ordinary
transversal projection Operator Vßl/ (2.67) for arbitrary values of the non-
commutative momentum p.

Therefore, supersymmetry kills all quadratic UV/IR mixing effects of
non-commutative Yang-Mills theory. Furthermore, it has been been shown
in [32] that these cancelation effects remove also the linear IR divergence
of the gauge three-point-function (2.72). We are only left with logarithmic
IR divergences which are harmless with respect to higher loop integrations.
Supersymmetry seems to be a necessary tool for rendering non-commutative
gauge theories renormalizable.

2.5.1 Dispersion relation

We have argued in section 2.3.1 that the quadratic IR divergent term in the
self-energy of non-commutative U(l) Yang-Mills theory spoils renormaliz-
ability at higher loops. But, there is another crucial effect Coming from this
term. To see this, we generalize the expressions (2.77) and (2.129) to the
following form [14, 32, 34, 35, 37, 38]:

4
71

€= 24 ( i - n f + y ) . (2-13D
7 \ Z '

where rif and ns are the numbers of Weyl fermions and real scalars in the
game.16 We can understand expression (2.131) from the fact that fermions in
the adjoint representation of the gauge group contribute to these IR divergent
terms with an additional minus sign (see section 2.4.2), and scalars come
with a positive sign, due to their bosonic nature. Therefore, we can write

15There are no terms proportional to PßV in ill^,, ' (p) given by (2.43).
16For U(N) NCYM theory one has € = | £ ( 1 - nf + f)N.
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the constant € in the sloppy but simple form:17

€ oc iVB - NF. (2.132)

The number of bosonic degrees of freedom iVß is always equal to the number
of fermionic degrees of freedom iVF in a supersymmetric theory, hence the
constant CSUSY = 0, and all quadratic IR divergences disappear. In non-
supersymmetric theories there is a sign difference between the cases NB > NF

and NB < NF.
Now, we know from ordinary Yang-Mills theory that the polarization

tensor modifies the photon propagator [92, 93, 94]. The one-loop corrected
photon propagator has still a pole at p2 = 0, yielding the Standard dispersion
relation for massless photons:

commutative: E2 — p • p . (2.133)

In non-commutative Yang-Mills theory we have to take into account the non-
planar part of the self-energy, where the quadratic IR divergent term yields
an additional pole in the modified propagator. For explicit calculations of the
resummation procedure we refer the reader to [34, 35]. From the non-planar
polarization tensor (2.131) one gets the following dispersion relation:18

non-commutative: E2 — p • p — ———. (2.134)
\0-P\

The physical interpretation of (2.134) is very interesting and we draw this
dispersion relation for all different cases qualitatively in the following graphs
of the figures 2.7, 2.8, 2.9, 2.10.

The figure 2.7 corresponds to the case NB > NF where we see that the
energy is unbounded from below and we have a tachyonic instability in the
low-momentum regime of the spectrum. This could be taken as a hint that
we are expanding around the wrong vacuum, hence perturbation theory fails.
But nobody comes up with a solution to this problem so far. Note the fact
that this takes place also in pure non-commutative Yang-Mills theory which
we considered in section 2.2.

The tachyonic instability disappears in the case N% < NF of figure 2.8,
but nevertheless the theory is oddly behaved at low-momentum where the
energy increases again at low momentum and gets infinite at zero momentum.

17Remember, that each gauge boson and Weyl fermion has two degrees of freedom,
whereas a real scalar field has just one degree of freedom.

18Here, we restrict ourselves to the case 9°' = 0, i.e. space-space non-commutativity.
Therefore, f? = 6^"pv has only spatial components and we can write it as 6 • p.
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Figure 2.7: NB > NF Figure 2.8: NB < NF

Figure 2.9: iVB = NF (SUSY) Figure 2.10: Softly broken SUSY
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The only way out of this disaster seems to be supersymmetry where these
IR divergences are exactly canceled and we get back the usual dispersion
relation for the photon even in a non-commutative set-up (see figure 2.9).

The last figure 2.10 shows the dispersion relation of softly broken M = 1
NCSYM which is given through relation (2.129) by the following expression:19

2

softly broken NC SUSY: E2 =p-p-^m2. (2.135)

Equation (2.135) implies that the photon has a negative mass squared at zero
momentum. And, even worse, this tachyonic mass of the photon cannot be
argued away by demanding a very small non-commutativity scale, because it
is independent of 9. This fact rules out softly broken Af = 1 NCSYM theory
in nature [42].

On the other hand, it was argued in [34, 35] that soft breaking scenarious
could make sense in higher supersymmetric theories. There, one has more
fields in the game and the relation (2.135) is replaced by

SB NC higher SUSY: E2 = p • p - | ^ ( £ m j - \ £ X ) > (2.136)

where mj and ms denote the masses of the fermions and scalars, respectively.
Therefore, one can get a massless photon if J ^ rrij = \ J2S

 m s ' but this would
correspond to fine-tuning and seems to be unphysical.

2.5.2 Beta-function

Having discussed in the previous section the effects Coming from the quadratic
UV/IR mixing effects in the one-loop corrected two-point function, we would
like to take a look now on the logarithmic IR divergent piece of (2.126). We
know already from section 2.3.2 that non-planar logarithmic contributions
give rise to a modincation of the beta-function in the low-momentum regime
\p\ -C AÖ, with Ag = l/y/ö the non-commutativity scale.

In a supersymmetric set-up, i. e. with the photino mass m = 0, we have the
following relations for the high- and the low-momentum regime, respectively:

and

\p\ < Ag : -±- - \ ~ - - ^ (A>ln (P2A2)), (2.138)
92{P) 9K 16TT2 V ')

19Remember that p2 < 0 (see section 2.2.3).
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in complete analogy to (2.85) and (2.86), but with the one-loop beta-function
coefficient ß0 modified to

22 4 1
ßo = Y-^nf--ns, (2.139)

again with rt{ and ns the numbers of Weyl fermions and real scalars in the
game.20 As in the non-supersymmetric case of section 2.3.2, we have a com-
plete similar running of the gauge coupling constant g(p) in the ultraviolet
and infrared regime, yielding to a weakly coupled theory in the UV and IR,
and confirming therefore again the UV/IR duality of non-commutative field
theories.

Additionally, supersymmetric jV = 4 NCYM theory has a vanishing beta-
function (rif = 4, ns = 6), suffering therefore not even from logarithmic
UV/IR mixing in the two-point function and is believed to be ultraviolet
finite [105, 106].

In the case of softly broken supersymmetric NC U(l) YM theory, we have
a non-vanishing photino mass giving us therefore an additional mass scale.
The behaviour of the running coupling for momenta much smaller than the
photino mass scale m is given by

1 / 9 9 \
( ! (ßW))(2.140)

In the large-momentum regime, the relation (2.137) is still valid (with ri{ — 1
and ns = 0), since m can be neglected in this case.

For an arbitrary number of Weyl fermions ri{ and real scalars ns with
different masses rrif and ms, we have to make the following replacement in
equation (2.140):

(
^QmJJ^ml , (2.141)

in the regime where the momentum p is much smaller than all the masses in
the game. This concludes our discussion of the beta-function of non-commu-
tative gauge theories.

2.5.3 Heuristic explanation
To conclude the discussion of the UV/IR mixing, we would like to give a sim-
ple physical picture about its origin. We will closely follow the argumentation
line given in [11].

20For U(N) NCYM theory the expression for ß0 gets multiplied by N.
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Consider a non-commutative field <ß(x) which interacts through a Moyal
commutator (1.34) with some other field ip(x). This resembles the cases we
had for the interaction parts in non-commutative Yang-Mills theory in the
previous sections. Therefore, we take the interaction Lagrangian

(2.142)

which can be written for a plane wave configuration

(j)(x) ~ e ipi, (2.143)

in the following form:

£int = (i/>{x ~ P/2) - iß(x + p/2)) eipx, (2.144)

where we used the formula (1.28) for the star-product.
Hence, the non-commutative field <f>(x) interacts with the field ip(x) effec-

tively like an extended rigid object [107, 108, 109, 110] with length £ given
by the quantity21

e = \p\ = \ e - P \ . (2.145)

From relation (2.145) follows that the size l of a non-commutative particle
represented by the field 4>{x) grows with its momentum p. Therefore, when
a particle of momentum p circulates in a loop it can induce an effect at the
distance \9 • p\. The high-momentum end (ultraviolet regime) of the loop-
integrals give rise to long ränge forces (infrared regime) which are completely
absent in the classical theory [14]. Hence, we get a mixing of ultraviolet and
infrared degrees of freedom, called UV/IR mixing.

Furthermore, the non-locality of the interactions in non-commutative field
theories leads to an interesting extension of the heuristic Heisenberg uncer-
tainty principle. There, the extent Are of a particle is given by22

Ax ~ 1/Ap. (2.146)

Combining the two relations (2.145) and (2.146), we see that the effective
size 4ff of a non-commutative particle follows from

(2.147)

21Fields interacting through a star-product instead of a Moyal commutator have the
effective length e/2 [111].

22Note, that h = c = 1 in "God-given" units.
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Therefore, the size of a particle grows in the infrared and the ultraviolet
momentum-regime, taking a non-vanishing minimum in-between. This type
of relation is known to appear also in string theory [112] where the non-
commutativity scale 9 is replaced by the Regge slope parameter a'. Hence,
non-commutative field theory can also be seen as an interesting toy model
for string theory.

2.6 Seiberg—Witten map
Despite the fact of being not in the scope of this work we would like to give
a few comments about the Seiberg-Wüten map which showed to be very
important in the context of quantizing non-commutative gauge theories.

It was first derived in [8] via requirement of gauge equivalence between a
commutative Sx and a non-commutative gauge transformation 5^:

Ä(A)+6-xÄ(A) = Ä(A + SxA), (2.148)

where A(A) is a non-commutative gauge field which depends on a commu-
tative gauge field A. Or, denoted graphically, equation (2.148) reads:

0=0

A! > A'
A non-commutative gauge transformation on the left hand side has to be
equivalent to a commutative gauge transformation on the right hand side.
This demand for gauge equivalence follows from the fact that non-commu-
tative and commutative gauge theories arise from the same two-dimensional
field theory regularized in different ways [8], and leading therefore to the
same physics given by gauge invariant Operators.

We have shown in [49] that the Seiberg-Witten map results also from a
covariant Splitting of combined conformal transformations of the non-commu-
tative Yang-Mills field Aß and of the non-commutativity parameter 0ßV. The
Seiberg-Witten differential equations describing the map can be computed
as the missing piece to complete a covariant conformal transformation to
an invariance of the Yang-Mills action. This approach does not require the
usual ansatz of gauge equivalence.

The Seiberg-Witten differential equation for the non-commutative gauge
field Aß is given by

dÄ 1 ( 1 1 r i
^ = --{Ä*, (Fßfl + dßÄß)}^ + -{Äß, (Faß + daÄß))^ (2.149)
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with the non-commutative field strength

FßV = dßÄv - dvkß - i [ i„ , i„] . (2.150)

The differential equation (2.149) can be solved for the non-commutative
gauge field Äß perturbatively in 6ßU yielding the following polynomial in
the commutative gauge field Aß:

Äß (A) = Aß- i 0 "M p (daAß + Faß) + O(92), (2.151)

now with the usual commutative field strength

FßV = dßAu - dvAß. (2.152)

With the expansion of the non-commutative gauge field (2.151) and the ex-
pansion of the star-product (1.29), we can map the non-commutative Yang-
Mills action (2.12) from section 2.2:

5 = - ^ I J d4xFßU*F>", (2.153)

into the following commutative action [45]:

ö{62).

(2.154)

The action (2.154) is invariant under the usual Abelian gauge transformations

5xAß = dß\, (2.155)

and has in its füll form, involving all Orders of 6, infinitely many interactions
at infinitely high order in the gauge field. Furthermore, since 9 has dimension
minus two, the theory is power-counting non-renormalizable in the traditional
sense. Despite these facts, we started to do loop calculations in [45] and have
been able to show in [47] that the non-commutative photon self-energy is
renormalizable to all Orders in 6 and h via Seiberg-Witten map.

The Seiberg-Witten map of non-commutative QED was performed in [46]
and later on, shown in [52] to be non-renormalizable due to a divergence in
the electron four-point function which cannot be removed by field redefinitons
in the context of the Seiberg-Witten map.

We refer the reader for further considerations on this interesting topic to
the literature where a lot of work has been done [43, 44, 48, 50, 51, 53, 54, 55].
With this short trip into the world of quantization via Seiberg-Witten map
we conclude the chapter about non-commutative gauge theories.



Chapter 3

Non-Commutative Instantons

3.1 Instantons in general

Instantons are finite-action Solutions of the classical equation of motion in the
Euclidean version of some theory. They play an important role in quantum
field theory, describing phenomena which cannot be catched by perturbation
theory. Excellent reviews on ordinary instantons can be found in Coleman's
book [96] and in the review article by Shifman et al. [113].

3.1.1 Ordinary instantons in gauge theories

Before passing to non-commutative instantons we will give a very short survey
of ordinary instantons in Euclidean four-dimensional Yang-Mills theory. The
Euclidean action is given by

S = -^JdixTr(Fßl/Fß„), (3.1)

with g the coupling constant, Tr the trace in color space, and the Euclidean
anti-Hermitian field strength

Fß„ = dßAv - d„Aß - i K , A„], (3.2)

taking values in some gauge group G. The action (3.1) implements the
following equation of motion for the gauge field Aß:

DßFßt/ = 0, (3.3)

with the covariant derivative

Dß = dß-i[Aß, ]. (3.4)

57
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Now, we are after finite-action Solutions of (3.3), but instead of trying to
solve the non-linear differential equation (3.3), we will study the properties
such Solutions must have yielding us to a much simpler possibility to obtain
them. In the following, we show that such Solutions are of the form

Aß = gdßQ-1 + O(l/r2), (3.5)

where r is the radial variable in Euclidean four-space, and g is a gauge trans-
formation from configuration space into the gauge group G of order one,
depending on angular variables only.1 Inserting (3.5) into (3.2), we see that

FßV ~ ö(l/r3), (3.6)

because the first term in (3.5) is pure gauge. Therefore, FßV falls off faster
than l / r 2 and we get a finite action in four-dimensional space.

Thus, with every finite-action field configuration there is associated a
group-element-valued function of angular variables that is to say, a mapping
of a three-dimensional hypersphere S3 into the gauge group G. Due to a
remarkable theorem (see [96] and references therein) we can cook down the
whole problem to the case G = SU(2), because any continuous mapping of
S3 into G can be continously deformed into a mapping of S3 into an SU(2)
subgroup of G. Since SU(2) is topologically a hypersphere S3, we have to
study mappings from S3 into S3. Now, we know from mathematicians that
such mappings are divided into different homotopy classes. In our case, we
have to consider the third homotopy group2

S3 -> S3 : 7T3(S
3) ~ Z. (3.7)

Equation (3.7) means that every mapping S3 —>• 5 3 has an integer Q G Z
associated with it, the so-called Pontryagin index or winding number3 which
is a homotopy invariant and uniquely defined. Each mapping belongs exactly
to one and only one homotopy class, and one cannot pass from one homotopy
class to another via continuous transformations.

dr i t ten in equations: g = exp(iAaTa) with Aa some function in Euclidean four-space
depending on angular variables only, and Ta the generators of the Lie algebra associated
to the Lie group G.

2In the case of an Abelian gauge theory with G = f/(l), we would have the trivial
mapping S3 -> S1 : ^ (S 1 ) ~ I without any winding number. There exist no instantons
in ordinary Maxwell theory, contrary to its non-commutative counterpart (see section 3.3).

3Denoted picturally, it gives the number how often the first hypersphere is wrapped
around the second one.
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To summarize, we can characterize every finite-action solution (3.5) by
an integer Q which can be calculated by the following formula:4

J^JFßV), (3.8)

with the dual field strength5

* fiu = 7) ^-ßvpa rpa-

Although we do not have an explicit form of the finite-action solution
(3.5), we can nevertheless calculate the value of the action for it.6 Rewriting
the Euclidean action (3.1) by using (3.8) we obtain

\

(3.10)

Since the second term in (3.10) is negative definite,7 we obtain the minimum
of the action if the solution fulfills the self-duality (anti-self-duality) condition

Fßl/ = ±FIU/, (3.11)

where the positive (negative) sign holds for positive (negative) Q. Further,
we show that gauge fields satisfying (3.11) are also Solutions of the equation
of motion. Taking the covariant derivative (3.4) of (3.11) and using (3.9)
leads to

^ ß r ßv ^•J-/ß r ßv — ^- n ^ßvpa *-Jß r per

= ±± eßvpa{Dß Fpa + Dp Faß + Da FßP) = 0, (3.12)

where the last equality follows from the Bianchi identity. Hence, (anti-)self-
dual gauge field configurations (3.11) fulfill the equation of motion (3.3).

4For brevity, it is given without any proof, but we refer the interested reader to [96,113].
5The factor 1/2 is inserted in the definition so that FM1/ = Fßl/, and £1234 = 1 with

antisymmetry in all indices.
6We have to disappoint the reader waiting for such an explicit solution, but we will not

need it anyway.
7Remember that we have chosen Aß anti-Hermitian.
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Now, we can make the following Statement: (Anti-)Self-dual gauge fields
are finite-action Solutions of the equation of motion, and establish therefore
our searched instantons with the action

Sinsi = ^-\Q\, (3.13)

where the index Q is also called topological charge of the instanton. Instan-
tons with negative topological charge corresponding to anti-self-dual solu-
tions are called anti-instantons in the following.

3.1.2 Review of the ADHM construction

Before going into details of the case of non-commutative instantons we will
review very briefly the pioneering work [72] of constructing instantons in
usual commutative Space R4. This ADHM construction (named after Atiyah,
Hitchin, Drinfeld, and Manin) has the advantage of solving quadratic matrix
equations instead of non-linear differential equations,8 in Order to obtain
(anti-)self-dual instantons [114]. Here, we will only State the main Steps of
this construction, i.e. giving just a recipe. For further details we refer the
interested reader to the literature [115, 116, 117, 118, 119, 120].

In order to construct (anti-)self-dual U(N) gauge fields corresponding to
k instantons, one Starts from the following ADHM data:

• A pair of complex hermitian vector Spaces V = Cfe and W = C^.

• The Operators BuB2e Hom(V, V), I e Hom(W, V), J € Hom(V, W),
which have to satisfy the equations:

ßr = [Bu B\) + [B2, B\) + 7/t - J t J = 0,

ßc = [B1,B2] + IJ = 0. (3.14)

For z = (zx,z2) € C2 « M4 we define the Dirac Operator V\ : V 0 V 0 W ->
y © V b y the formula:

8However, it was due to Belavin, Polyakov, Shvarts, and Tyupkin [114] to construct
the so-called BPST instantons out of the first-order difFerential equation (3.11) instead of
using the second-order differential equation (3.3).
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where

( -Bx-zx\
TZ=(B2-Z2 Bx + zx I ), az = B2-z2 (3.16)

for self-dual (SD) instantons, and

—r»i + Zi \

#2 - z2 (3.17)

for anti-self-dual (ASD) instantons. The ADHM equations (3.14) are equiv-
alent to the so-called factorization conditions:

rzr\ = o\az, rzoz = 0. (3.18)

Given the matrices obeying all the conditions above the actual instanton
solution is determined by the following formula:

Aß = tfdrf, (3.19)
where ip : W —> V (B V (B W is given by the N zero-modes of the Dirac
Operator

V\i\) = 0. (3.20)

The zero-modes I/J a r e normalized by

^ V = 1, (3.21)

and have to fulfill the completeness relation

Vg-^—Vl + ̂  = l. (3.22)

Note that the Operators on the left hand side of (3.22)

^ (3.23)

are Hermitian projection Operators since they have the following behaviour
in addition to (3.22):

£ 2 = 2), V2 = V, 2) • <p = <P • 2) = 0. (3.24)

So far we have been completely abstract, but in section 3.3.4 we will see
that a vector ip constructed by the formulas above will indeed correspond to
an (anti-)self-dual gauge field which minimizes the Euclidean action, being
therefore an instanton, as was explained in section 3.1.1.
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3.2 Non-commutative ADHM construction

3.2.1 Parameterizing the non-commutative space

Before considering the generalization of the ADHM sheme to the non-com-
mutative case, we will introduce the following notations.

We consider a four-dimensional non-commutative Euclidean space which
is represented by coordinates xß obeying the following algebra:

rT r l _ ja (o 05)

where 6ßU is a constant antisymmetric real matrix and fj,,v = l, 2,3,4 are the
Euclidean Lorentz indices. Using Euclidean space-time rotations, 9ßU can be
always brought to the form

/ 0 0i2 0 0 \
-012 0 0 0

0 0 0 034

\ 0 0 - 0 3 4 0 )

Passing to complex coordinates,

z\ = x2 + ixi, z\ = x2 — ixi,

Z2
 = X4 -\- iX3, Z2

 = X4 — iX3, (o.2YJ

we end up with the following commutator relations:

[̂ 1, Z\] = 2012, [Z2, Z2] = 2 0 3 4 ,

(3.28)

where i,j = 1, 2 denote the indices for the complex coordinates.
Now, we have to distinguish between three important cases:

the case of K4:
Here, 9u = 034 = 0 and all the commutators vanish giving the ordi-
nary commutative space. The corresponding gauge theory is the usual
commutative gauge theory, and instanton Solutions are given by the
Standard ADHM construction (see section 3.1.2).

the case of T8§ x l 2 :
When either 0i2 or 034 vanishes, there is only one non-vanishing com-
mutator in (3.28). Here, we have the direct product of two-dimensional
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non-commutative space with two-dimensional ordinary space. For def-
initeness we set ö34 = 0 and introduce the notation 012 = 9 = C,/2.
Therefore, we get

[zuz\] = C, [h, z2] = [zi, Zj] = [z\, 2j#»] = 0. (3.29)

This case corresponds to space-space non-commutativity9 and there-
fore avoids unitarity problems of the associated Lorentzian theory [122,
123].

• the case of IRj):
The most general case is given by 9u ^ 0 and Ö34 7̂  0, and generates
the non-commutative Euclidean space-time R^ic = K^c x ^NC- Here,
the corresponding gauge theory has non-commutative (Euclidean) time
implementing all the various subtleties [122, 123]. Via appropriate
rescalings10 of the coordinates one can divide this case into two further
subclasses:

— the self-dual 9ßV:
Here, the condition #12 = Ö34 = £/4 gives a self-dual theta,
\ = 9ßU implementing the following commutator relations:

[zitZj]=0. (3.30)

the anti-self-dual 9ßV:
This case is given by #12 = — ö34 = £/4 corresponding to an anti-
self-dual theta, \eßUpa9p(T = —9ßV and yielding to:

[ZU ZJ] = ( - r ^ - C A [zu Zj) = 0. (3.31)

Since we have settled now all the Conventions for the different cases of non-
commutativity in Euclidean four-dimensional space, we will proceed to the
discussion of constructing instantons on this space.

9Using Euclidean space-time rotations, we can always transform a three-dimensional
non-commutative space into the product space 1^ x i 2 .

10Of course, physics of non-commutative space-time is determined by a constant QßV

and therefore not invariant under dilatations and parity transformations. However, the
general case can be always recovered from the simple case of a self-dual theta via opposite
rescalings. The anti-self-dual theta can be obtained from this by a parity transformation
of two coordinates.
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3.2.2 Deformed ADHM equations
In order to generalize the ADHM equations /xr = 0 and ßc = 0 given in
(3.14) to the case of a non-commutative space, Nekrasov & Schwarz [71]
have deformed them in the following way:

A*r = Cl> Mc = 0. (3.32)

Here, ( is just some deformation parameter, but we will see in a moment that
it is exactly the non-commutativity parameter introduced in the previous
section. One may think of deforming the second equation in (3.32) also,
but this modification is equivalent to the one already considered by a linear
transformation of the matrices in (3.14).

Now, suppose the data B\<i, B\ 2, / , / t , J, Jt obey the modified equations
(3.32). Then, the factorization conditions (3.18) are no longer valid but they
will be valid again if the coordinates ziy Z{ will not commute.

Let us study this in more detail. Inserting the data for an anti-self-dual
instanton (3.17) into the factorization conditions (3.18) yields the following
two equations

[BltB{] + [B2,Bl} + lP - JU = [zuZl]l + [z2,z2]l, (3.33)

[B1,B2]+IJ=[z2,z1]l. (3.34)

Since the matrices on the left hand side have to fulfill the deformed ADHM
equations (see (3.32) and (3.14)) we get

C = [zi,zi] + [z2,Z2], (3.35)
0 = [z2,Zl}. (3.36)

Therefore, we see that the factorization conditions for an anti-self-dual in-
stanton hold in the case of i^ x I 2 (3.29) or R$ with self-dual theta (3.30).
Doing the same calculation with the data for a self-dual instanton (3.16)
leads to

[BUB\] + [B2,Bl\ + / / t - ßj = [zuzt]! - [z2,z2]TL, (3.37)

[B1,B2] + IJ=[zl,z2]l, (3.38)

imposing

C = [zi,z1]-[z2,z2], (3.39)
0 = [Zl,z2}. (3.40)

These conditions will be fulfilled on the Spaces R̂  x IR2 (3.29) and IRjj with
anti-self-dual theta (3.31).
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To summarize, we have seen that we can construct non-commutative anti-
self-dual and self-dual instantons on R2, x R2. On Rjj with self-dual theta only
the ADHM equations for anti-self-dual instantons are deformed, therefore
we have non-commutative anti-self-dual instantons but usual commutative
instantons in the self-dual sector. The analog holds in the case of R^ with
anti-self-dual theta.

3.3 One ASD U(l) instanton on R2
9 x R2

So far we have been completely general concerning the construction of in-
stantons on non-commutative four-dimensional Euclidean space. Now, we
will restrict ourselves to the most simple case of one instanton taking val-
ues in the gauge group U(l) and living on a space with commutative time
(R2, x K2). For definiteness we will consider anti-self-dual Solutions but there
is now obstruction in doing all the calculations in the self-dual case. Never-
theless, we will make some comments about instantons on Rj? at appropriate
stages of the calculations.

3.3.1 Operator formalism

To handle the non-commutativity of the coordinates Zj, Z{ in an appropriate
way we introduce the following Operator formalism.

Regarding formula (3.29) we see that the only non-vanishing commutation
relation on R2, x R2 is given by

[zi,zi] = C- (3-41)

We easily realize the coordinates Z\ and z\ as an annihilation and a creation
Operator acting in a Fock space H for a simple harmonic oscillator11 spanned
by a basis \n) with n > 0:

- 1 ) , zi \n) = VC(n+ 1) \n + 1). (3.42)

On the other hand, the coordinates z2 and z2 are still ordinary c-numbers
(see (3.29)). Therefore, all fields on the space Rj x R2 will be described
by Operator-valued expressions on the non-commutative plane (zi,zi) and
ordinary functions on the commutative plane (22,22).

Derivatives of a function / (z i , zi,z2, z2) with respect to the non-commu-
tative coordinates z\ and z\ are defined by

11 The space 18$ = M̂  x K̂  would require two oscillators.
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Using the relations (3.29) it can be easily checked that (3.43) fulfill the Stan-
dard requirements for / = Z{ or / = Z{, as well as the chain rule. Further,
we have the useful identities for the derivatives of the inverse function:

ÖI/-1 = - r 1 (dj) r \ Bj-1 = - r 1 (BJ) r \ (3.44)

where a simple proof of these equations can be found in appendix A.l.
Since we will make extensively use of the language of differential forms we

introduce the differentials dzi and dz^i £ (1,2) which anticommute with each
other, but commute with Zj and 2j. Next, we define the exterior derivative

d = dzidi + dzidi, (3.45)

where di, d\ are given in (3.43), and d2 = d/dz2, B2 = d/dz2 as usual.
Further, the Operator d is nilpotent:

d2 = 0. (3.46)

For later convenience we define the following abbreviations:

5 = z\Z\ + z2z2,

A = S + C, V = <5-C, (3.47)

and find the following very useful formulas in order to keep control over the
Operator ordering in the (zi, Zi)-plane:

Z!f(S) = /(A) zu zj(5) = /(V) Zl. (3.48)

Nevertheless, the reader should notice that the Hermitian Operators S, A
and V commute under each other, a fact which will be used extensively
throughout all calculations. The total exterior derivative of a function f(S)
is given by the formula:

df(S) = C 1 (/(A) - /(*)) zldz1 + C 1 (/(<$) - /(V)) zxdzx

+ mp-(z2dz2 + z2dz2). (3.49)

A proof of (3.48) and (3.49) can be found in appendix A.l.

3.3.2 Solving the deformed ADHM equations
Using the preparation of the configuration space in the previous section we
can solve the deformed ADHM equations (3.32) which will lead us to the
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wanted instanton solution. For further details, we refer the reader to the
literature [74, 75, 76, 77, 78, 79], and references therein where this topic has
been extensively discussed.

In order to build the instanton field (3.19) we have to find the zero-mode
ip of the Dirac Operator T>\. Therefore, we write down equation (3.20) using
(3.17) in its explicit matrix form:

where ip = ipi © ip2 © £ as an element of V © V © W. In the case of one
anti-self-dual U(l) instanton, the ADHM data Bi>2, B\>2,1, l \ J, J^ above are
just c-numbers.

We can make life easy by using translational invariance and set B\ =
B2 = 0. Further, one can show that J = 0 in the case of a U(l) gauge group
[121]. From the deformed ADHM equations (3.32) we get J = >/£ and (3.50)
reduces to

(3.51)

In order to see the above introduced Operator formalism at work, we will
perform the solution to (3.51) in füll detail. Having the two equations

-Ziifii - z^2 = -C*f, (3.52)

zitßi - z2ip2 = 0, (3.53)

we will multiply (3.52) with z\ from the left, and (3.53) with z2. This yields

-z1z2ipi - z\zx^2 = -21CH, (3.54)

z2z~iipi — z2z2ip2 = 0. (3.55)

Now, we make use of the commutation relations (3.29) and the fact that C is
just a c-number:

= - C ^ l f 1 (3 '56)

— z2z2tp2 = 0. (3.57)

Adding (3.56) and (3.57) one gets

z2z2 + C)V>2 = A^2 = C^i£, (3-58)
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where we used (3.47). Multiplying by the Operator A"1 from the left we get
with (3.48) the equation:

iP2 = (1iA-1zl( = (h1ö-1C (3.59)

Putting (3.53) and (3.59) together we have

ziil>i = z2tp2 = C^i-M""1^ (3.60)

and get also an equation for ip\\

M" 1 ?- (3.61)

The last thing we have to do is normalizing our solution with respect to
equation (3.21):

V>V = xfyn + T/4V>2 + f ff = 1. (3.62)

Inserting (3.59) and (3.61) we get

^]5-lz2z2ö-1^ + C ^ " 1 zxzx b~xi + tf£ = 1. (3.63)

Using (3.47), this reduces to

^ ^ + ^ = l- (3-64)

Multiplying (3.64) with ( ^ ) - 1 from the left and with £ - 1 from the right leads
to

(3-65)

Recognizing the identity

(C<J-1 + l )=(J- 1 (C + <J) = r 1 A , (3.66)

we can rewrite (3.65) as

5A-1 = ^ f , (3.67)

and end up with the following Hermitian expression for £:

£ = <55A~i (3.68)

CoUecting all results (3.59), (3.61) and (3.68) we have the solution:

R~ fr
j&i ^ = V A " (3 '69)
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The reader should recognize at this stage that we are allowed to represent
the solution (3.69) with the help of fractions, because we put only Operators
inside one fraction which commute under each other.

Before proceeding further in calculating the gauge field associated to ip
we should check if our solution (3.69) indeed fulfills the completeness relation
(3.22). Taking the Dirac Operator T>\ from equation (3.51) we see that

(3.70)

and therefore

Vz—-,—T>\ = Vg£arlV\. (3-71)

With the expression (3.71) and the vector notation of (3.51) for ip, we can
write the completeness relation (3.22) as

A \
^2 ( ^1 ißl &) = 13X3- (3-72)
e /

As an example we pick out the 11 matrix element of (3.72) which reads

= 8~1(z2Z2 +

= 1, (3.73)

where we used the explicit expressions of 2?| (3.51) and ip (3.69). The reader
can convince himself that all the other matrix elements fulfill the relation
(3.72) and ip is indeed a solution of the ADHM equations.

At the end of this section we should make a comment about the solution
of (3.50) on Kß with self-dual theta. Having the commutation relations (3.30)
in mind one can repeat the calculations (3.50-3.69) and get exactly the same
result (3.69) as in the case of Kj? x R2 before. But this naive approach will
fail here, because we have to write the normalization condition (3.21) more
accurately as

<0|VV|0> = 1, (3.74)

since I/J is an Operator on a Fock space H spanned by harmonic Oszillator
states (see section 3.3.1). Recognizing z\ and z2 as annihilation Operators on
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Rjj we see that our naively obtained solution ij; (3.69) annihilates the vacuum
and is therefore not properly normalized with respect to (3.74). To eure this
problem one has to introduce a projeetion Operator p = I — |0)(0| which
projects out the vacuum State [74] and perform all further calculations with
respect to the projeeted Fock space pH.

In the previous case of R2, x R2 it is not necessary to projeet out the
vacuum State, since Z\ is the only annihilation Operator in the game and
ip does not annihilate the vacuum and therefore being properly normalized.
Further, it was shown in [77] that it is even not possible to projeet out the
vacuum, because then the completeness relation (3.22) will not be fulfilled
anymore. Therefore, in the case of Rf, x R2 we are dealing with the füll Fock
space T-L which makes life more easy.

3.3.3 Instanton gauge field

Having the zero-mode ip (3.69) in hand we can use equation (3.19) given as
a differential form

A = ^di/>, (3.75)

to calculate an explicit expression for the anti-self-dual non-commutative
U{1) instanton. Expanding equation (3.75) into

A = ip\dipx + ipldifo + fdf, (3-76)

we can divide the following calculation into three parts.
Here, we will give the detailed calculation of ip2dip2 and leave the other

two terms as an exercise to the reader.12 Using the solution (3.69) and the
differentiation rule (3.49) we get

dip2 = C*

- - A 5 (Z2dz2 + z2dz2)) |. (3.77)

12We choose t/4'^'2 because ip2 depends explicitly on the non-commutative coordinate
z\, building therefore the most dimcult term to calculate in (3.76).
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Moving the coordinate z,\ with the rule (3.48) to the right side yields

O A - 5 ( ( A + 2C)-2 - (A

- -C»A-»(A + C)"^i(M22 + 22^2), (3.78)

and reordering the resulting expression leads to

*ö~*A~2d

» (A + C)-" ((A + 2C)"5 - A-2) z^xdz:

^A"^ ((A + C)"5 - 6~^zizidzi

) i ( M ^ + ^2^2). (3-79)

Multiplying the Hermitian conjugate of ^2 given by

= C'A-U-'Zi, (3.80)

with the expression for dip2 in (3.79) yields

((A+ ((A + C)"» A"1*-s

+ A - ^ - ^ z i f i ^ a ^ + Z2dz2), (3.81)

where we used again (3.48) for moving z\ to the right side.
Analogous calculations lead to the foUowing expressions for the other two
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terms in the sum for the instanton field (3.76):

(A~18~1z2dz2

+ O ^ A ^ H - A-1ö-1^z2z2z1dz1

z2dz2), (3.82)

and

+ Q-kfik - A-M)zxdzx

(z2dz2 + z2dz2). (3.83)

Summing up the terms (3.81), (3.82) and (3.83) leads to

A = tpldi/ji + i>\dil)2 +

1 - A~25] [z2dz2 + z2dz2)
J

" ^ " 1 ] z2dz2, (3.84)

where we used 5 = z\Z\ + 2:2-22 several times. Since all Operators in Square
brackets commute under each other, we can simplify them by writing each
Square bracket as a fraction with one common denominator. Here, we perform
the explicit calculation for the expression proportional to z\dz,\ given by the
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second and fourth Square bracket, and leave the rest to the reader.13

A - 1 - - — 1 A — - I T -

1
Ä 'AV C\/Ä

c2\/Ä

. (3.85)

Using the identity (2 - ö2 = (C + 5)(C - 5) = - A V we can write (3.85) as

- AV\/Ä

c
1 -

/ ÄV
(3.86)

Eventually, doing analogous transformations of the other terms we end up
with the following explicit expression for the anti-self-dual non-commutative
U(l) instanton field:

^
- 1 - 1 -

'AV

(3.87)

Before converting this expression back into real coordinates (xi,X2,x$,x±)
and discussing its physical properties we will go on and calculate the corre-
sponding field strength in the next section.

3.3.4 Field strength of the instanton

First of all, let us introduce the following notations for the gauge field

A = Aydxi + A2dx2 + A3dxz + A4dx4

= AZidzi + A2ldzi + AZ2dz2 + AZ2dz2, (3.88)

13In order to be consistent, we again choose the most difficult term for presenting the
detailed calculational Steps.
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and the field strength

F = F\2dx\dx2 +

+ F23dx2dx3 +

= FZlZ2dz1dz2 -

+ FZ2Z2dz2dz2 H

Fi3dxxt

F24dx2c

t- FZxZ2d

- F - d

ix3 + Fudx^xt

ix 4 + F34dx3dxi

Z\dz2 + Fzizidz\dz\

zxdz2 + Fz.Z2dzxdz2 (3.89)

where the transformation between the coordinates x and z is given in equa-
tion (3.27). With these notations in hand we can rewrite the (anti-)self-
duality relation from (3.9) and (3.11) on x-space

1

Le equivalent

SD: FX2

ASD: F12

F

conditions

- ^34 = 0, 1

+ F3A = 0, 1

(+ . . .SD) ,

1̂3 + F24 = 0,

^ 3 - F24 = 0,

Fu '

Fu '

.ASD),

- ^ 2 3 =

\-F23 =
0,
0.

(3

(3

(3

.90)

.91)

.92)

Transforming (3.91) and (3.92) with the help of (3.27) into the z-space yields
respectively

SD:
ASD:

" Z\Z\ Z2%2

F - 4- F
•*- Z\Z\ 1 x ZoZo

= 0,
= 0,

^2122

-^2122

- "^2122

= FZlZ2

= 0,
= 0.

(3.93)
(3.94)

Now, we will proof that a vector ip fulfilling the relations (3.20), (3.21)
and (3.22) will indeed lead to an (anti-)self-dual field strength. Using (3.75)
the field strength is given by14

F = dA + A A A

(3.95)

because ip^dip = —dip^ip due to the normalization condition (3.21). With the
help of the completeness relation (3.22) we can rewrite (3.95) and obtain

F = d^Vg—^—Vldip. (3.96)

Taking the Dirac Operator T>\ (3.15) and using the factorization conditions
(3.18) we get

= Dzl, (3.97)

14Prom time to time we omit the wedge Symbol in order to improve readability.
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where we introduced the notation TZT\ = Oz. Therefore, we have

V'^rvl = V*n:lvt = T1V:1T. + ̂ njV], (3.98)uzuz

and

F = dtf (rJD;1^ + azU~la\) dip. (3.99)

Since ip is a zero-mode of the Dirac Operator T>\ fulfilling (3.20) which is
equivalent to

TZI\) = 0, a\ip = 0, (3.100)

we have the relations

rzdip = -drzip, a\dij) = -do\ij>. (3.101)

Inserting (3.101) into (3.99) yields the following expression for the field
strength

F = ip] (drln^dT, + dozU-ldo\) ip. (3.102)

The components rz and o\ of the Dirac Operator V\ are given by the formulas
(3.16) and (3.17) in the SD and ASD case, respectively. Therefore, we have

SD: drz = (-dz2 dzx 0 ) , do\ = (-dzl -dz2 0 ) , (3.103)

ASD: drz = (-dz2 -dzx 0) , da\ = {dzx -dz2 0) . (3.104)

Insertion of (3.103) and (3.104) into (3.102) leads to

+ dz1C\~1dzl -dz2U~xdzx + dzxU~ldz2 0\
FSD = -0f | -dzxn-ldz2 + dz2U~ldzx dzxU-;ldzx + dz2U~ldz2 0 ip,

0 0 0/
(3.105)

( dz2O~1dz2 + dzxO~ldzx dz2O~ldzx - dzxU~xdz2 0\
dzxn~ldz2 - dz2n~ldzx dzxU-ldzx + dz2U~ldz2 0 V-

0 0 0/
(3.106)

Now, we can read off from the expressions (3.105) and (3.106) the rel-
evant components in Order to check their self-duality and anti-self-duality,
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respectively. Using the vector notation ip = ipi © ip2 © £ we get

(^SD)2I2-2 = (Fsv)-ZlZ2 = 0, (3.107)

(FASD)ZI2I = - (^ASD)222-2 = i f e V i - ^ D j V 2 ,

(FASD)2 I 2 2 = (*ASD)2-I2-2 = 0. (3.108)

One can check immediately that (3.107) fulfills the self-duality conditions
(3.93) and the same holds for (3.108) with (3.94). This closes the proof that
a vector ip constructed via the ADHM sheme (see section 3.1.2) indeed yields
an (anti-)self-dual gauge field.

So far we have been completely generic about the form of the field strength
of an instanton. Now, we proceed in calculating the explicit expression of
the field strength of the anti-self-dual non-commutative U(l) instanton con-
structed in section 3.3.3.

For this purpose we can go two different ways. We can either use the
generic constructed formula (3.106) or calculate the field strength directly
via its defining equation F = dA + A A A by using the explicit form of the
instanton field A (3.87). Since this way is much longer we choose the first
one, but it would be a nice exercise for the reader to do this brüte force
calculation by making extensively use of the derivative formula (3.49).

The components of the anti-self-dual field strength are given by (3.106)
and read15

F2121 = VlA-Vi - ^ A " V 2 , (3.109)

FZ2-Z2 = -A fA"Vi + V4A~V2, (3.110)

F2221 = 2</>lA-V2, (3.111)

F2122 = 2 ^ A " V i , (3.112)

where we used the fact that

VlVz = Dzl = Al, (3.113)

which stems from comparison of (3.70) and (3.97). Using now the explicit
expression for ip (3.69) we can write (3.109) as

fzizi

(3.114)

15We skip the substring ASD, because from now on we are only considering anti-self-dual
quantities.
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For (3.111) and (3.112) we get

F-Z2Zl =

(3-115)

F-ZlZ2 =

= 2C<r2A~2 V-'Zxh. (3.116)

CoUecting all pieces together we find the following explicit expression for
the anti-self-dual field strength corresponding to a non-commutative U(l)
instanton field:

zxz2dzxdz2. (3.117)

3.3.5 Topological charge

At the beginning of studying the properties of non-commutative instantons
there has been some rumour in the literature that non-commutative instan-
tons might have non-integer topological charge, whereas in the commutative
sector the topological charge is always an integer at least on Spaces with in-
finite volume.16 Then, it has been shown in [77] due to a non-commutative
generalization of Corrigan's identity [117] that every non-commutative in-
stanton constructed in the ADHM regime has an integer topological charge.
This result is independent of the rank of theta and applies equally to the
cases of space-time (Kg) and space-space non-commutativity (K| x K2).

Here, we will evaluate the topological charge Q of the anti-self-dual non-
commutative U(l) instanton directly via formula (3.8) written in the lan-
guage of differential forms17

Q = -7^[FAF, (3.118)

without making use of Corrigan's identity. Insertion of the field strength
(3.117) into (3.118) yields after a tedious but straightforward calculation18

16On Spaces with finite volume there exist so-called fractional instantons having non-
integer topological charge.

17There is a relative factor of 2 Coming from the trace and the wedge-product [124].
18 After the explicit calculations of the previous sections the reader should be familiär

now with the Operator formalism introduced in section 3.3.1.
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the following expression for the topological Charge:

f
7

- 5z2z2)
2 2(zi2i + Qz2z2,4 [ (A^zi - 5z2z2) 2(zi2i + Qz2z2

[ A4Ö4 (A + C)AM
f [

w ~ 4TT2 7 [ A4Ö4 (A + C)AM A<54 V J '
(3.119)

with the Integration measure

dAz = dz\dzidz2dz2 = —4 dx\dx2dx?,dx± = —4 d4x. (3.120)

Now, the question rises what does it mean to integrate over the operator-
valued coordinates zi,zi (or equivalently z i , ^ ) - The answer is a mapping
of the Integration over the non-commutative space to the trace in the Fock
space T-C which we introduced in section 3.3.1:

/ •
d2dx —> (27r)Vdet0Tr-H, (3.121)

where D = 2d is the dimension of the non-commutative space. In the Fock
space representation we have d harmonic Oszillators and can write the Oper-
ator trace as

TrnO= ] T (n1,n2,...,nd\ö\nun2,...,nd). (3.122)
jii,n2,...,n,j=0

Spezializing the formulas (3.121) and (3.122) to our case 1^ x I 2 we get

fdAz=-4 fd4x —> -4?rC fd2yTrn, (3.123)

where we use Vaetö = Q/2 (see section 3.2.1) and define d?y — dz2dz2

which can be integrated over in the usual sense.19 With the simple harmonic
Oszillator representation (3.42) we end up with

/

oo .

dAzö —> — 4 7 r C ^ / d2y (n\O\n). (3.124)
n Jn=0

Next, let us give an interpretation of the Operators z\zx and z2z2 which
appear explicitly in the expression (3.119) for the topological charge. Using
the Operator relations (3.42) we get for the action of the Operator z\Z\ on the
State |n):

n) = z\ yj^n \n — 1) = Qn \n). (3.125)

19Remember that z2 and z2 are commutative coordinates.
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Therefore, we recognize z\Z\ being proportional to the number Operator.
Transforming z2z2 via (3.27) back to the x-space:

z2z2 = x\ + x\ = Cr2, (3.126)

we see that it just gives the distance from the origin in the commutative
plane (z2,z2) which we denote by the c-number ry (given in units of the non-
commutativity scale y/C)- Since we have chosen the states \n) to span an
orthonormal basis

(n\m) = 6nm, (3.127)

we have with (3.125) and (3.126) the following relations:

(n\ z\zx \n) = (n, (n\ z2z2 \n) = C^- (3.128)

Using the definitions (3.47) we get further

(n |V|n) = C ( n - l + rJ). (3.129)

With the mapping (3.124) and the identities (3.128) and (3.129) we can
write the topological charge (3.119) as

s n=0

(n + 2 + rl){n + 1 + r2)4(n + r2)

. (3.130)

Since the integrand in (3.130) depends only on the radius ry, we can inte-
grate trivially over the angular variable in the plane (z2, z2) and replace the
integration measure by

fd2y = 2Trcf dryry. (3.131)
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Performing a shift n —>• n + 1 in the third term of (3.130) and using (3.131)
we get

dry ry
(n + 1 + r2)4 (n +T-2),2U

4(n+l)r2
— -J^ . (3.132)

From expression (3.132) we see that the topological charge Q does not de-
pend on the non-commutativity scale £. This has to be the case, since the
topological charge is just a number.

In order to improve our understanding of the various contributions to the
instanton charge we define its density Qn(ry):

OO „oo

Q = ~I2 dryQn(ry), (3.133)
n=0J°

where the quantity Qn(fy) can be read off from expression (3.132). Figure
3.1 shows the density of the instanton charge where the thick line denotes
the contribution from n = 0, the dashed line corresponds to n = 1, and the
dotted line to n = 2. Since Qn(ry) behaves like l /n 4 for large n, we omit
the drawing of higher terms. Furtner, we see that the relevant contributions
come from the region 0 < ry < 1. This is a typical feature of non-commu-
tative instantons. They have a finite size given by the non-commutativity
scale \/C (^e unit of ry).

Now, we finish the calculation of the topological charge in performing
the summation and Integration in (3.132) with the help of the program
Mathematica™. Doing first the summation we get

Q = -2 jTdr,, ry(2^)( r;) +4rJ^2)(rJ) +ry^
3\r2

y)), (3.134)

where - 0 ^ (z) is the digamma function given by

rftn+l

V>MW = ^ r l n r ( z ) , (3.135)

with F(z) the usual gamma function. The integral in (3.134) can be done
numerically and leads at the very end to the expected result:

Q = -l. (3.136)

Therefore, we have shown that the anti-self-dual non-commutative U(l) in-
stanton has topological charge minus one.
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Figure 3.1: Density of instanton Charge

3.3.6 Properties of the instanton

Established the expression (3.87) as the anti-selfdual one instanton solution
of NC U(l) YM theory in the space Kg xR 2 , we can proceed in taking a
closer look at its properties.

First of all, we recognize the Operator

ö = Z\Z\ + z2z2 = x\ + x2 + £3 + x4 = r , (3.137)

as the square of the distance r from the origin in R^ x R2 and rewrite the
instanton field A (3.87) as

1
+ -

j {z2dz2 - z2dz2).

1 -

(3.138)

From the expression (3.138) we see that we have a singularity at the origin,
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when we take the limit r —¥ 0:

limA = —— z\dz\ - —r {z2dz2 - z2dz2)r->o rz 2rz

- - (zidzi - zidzi) + — (z2dz2 - z2dz2). (3.139)

But this singularity is harmless since it can be removed by a singular gauge
transformation like in the usual case of commutative instantons [77, 78]. It is
a gauge artifact which disappears in gauge invariant quantities like TrnF

n.
In the previous section we have seen this at work where no singularity in the
expression for the topological charge appeared.

Further, we see from expression (3.139) that the commutative limit £ —>• 0
gives also a singularity at the origin. This is consistent with the fact that
there are no smooth instanton Solutions in usual Maxwell theory which is the
commutative limit of non-commutative U(l) Yang-Mills theory (see [8, 79]
for further discussions on this point).

Next, we will take a closer look at the instanton tail, i.e. the limit r —> oo
which will be of great importance for the rest of our work. Performing this
limit of the instanton solution (3.138) we get

lim A — —— {—Z\dz\ + Z\dz\ — z2dz2 + z2dz2). (3.140)

Transforming (3.140) via (3.27) to the x-space yields

lim A = — (—x2dxi + x±dx2 — x4dxs + x^dx^). (3.141)
r » o o T

Using the notation (3.88) and £ = 29 (see section 3.2.1) we can rewrite
(3.141) in the more convenient form

lim Aß{x) = -2\0eßV ^ , (3.142)

where €12 = £34 = 1 a n d 621 = £43 = — 1.

Therefore, the non-commutative instanton (3.142) decreases with l / r 3

very far from the origin and it can be shown that it has only significant
values in a region r < y/Ö (see section 3.3.5). Furthermore, the instanton tail
vanishes completely in the commutative limit 9 —> 0.



Chapter 4

Non-Commutative Vacuum
Energy

In the previous chapter, we have established instanton Solutions of non-com-
mutative f/(l) Yang-Mills theory, and now we would like to know their con-
tribution to the vacuum energy of the theory. This will be the aim of the
following sections.

4.1 Review of ordinary Yang-Mills theory

As done already in previous sections, we would like to begin with a very
short overview about the instanton-induced vacuum energy of ordinary non-
Abelian Yang-Mills theory.1 For a detailed investigation of the subject we
refer the reader again to the excellent reviews [96] and [113].

Adding the gauge invariant topological term (3.8) to the Yang-Mills ac-
tion (3.1) we get

S = -J^\d"x Tr(F^ F^) " i^ä / * * T r (^^)> (4-1)

with i9 the so-called topological angle.2 It denotes the fact that the original
gauge field theory splits up into a family of disconnected sectors, labeled by
the angle -d, each with its own vacuum. Most of the time when Yang-Mills
theory is considered, one ignors the second term in (4.1), because it is just
a total derivative and thus has no effect on the equations of motion. But, it
has topological consequences and contributes to the vacuum energy.

1 As mentioned earlier there exist no instantons in Abelian Yang-Mills theory.
2The reader should not confuse the topological angle d with the non-commutativity

Parameter 6.

83
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The vacuum-to-vacuum amplitude is given by

[dA]e-s, (4.2)[[

with H the corresponding Hamiltonian and T the Euclidean time extent of
the four-dimensional box where we consider our theory for the moment. We
will pass to infinite space at the end of our discussion.

Now, we know from section 3.1.1 that every instanton with topological
charge Q has the action (3.13), and contributes therefore to (4.2) with a
factor proportional to

^ (4.3)

A summation over all possible instanton configurations leads in a semiclas-
sical approximation to the following result for the vacuum energy:

AEinst = - 2 K/T cos ö. (4.4)

A few explanations are necessary. Formula (4.4) was derived in the so-
called dilute instanton-gas approximation where one assumes that all instan-
tons contributing to the vacuum energy are widely separated, and thus can
be regarded without any interactions. The factor K is given by the equation

/ dp p3 e~s« e's^A\ (4.5)

with V the four-dimensional volume of the Euclidean box, and Auv some
ultraviolet momentum-cutoff. 5ci is the classical part of the action, coming
from one instanton, therefore Sc\ = 8ir2/g2, and Seß is the perturbative effec-
tive action evaluated on the instanton field A. The scale p denotes the size
modulus of the instanton.

To leading Order, the effective action 5eff is given by a ratio of determi-
nants of the gauge field and ghost quadratic fluctuation Operators.3 Roughly,
this can be seen by [93]

f [det£($)]", (4.6)

with v = —1/2 for bosonic and v = 1 for fermionic quantum fields 0, and
denotes the quadratic fluctuation Operator evaluated on the background

3We have to gauge fix the action.
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field $. As usual, symmetries of the action lead to zero-modes of the determi-
nants in (4.6) and have to be treated separately. In the case of the instantons
serving as background fields in the effective action of (4.5) the zero-modes
are taken into account via so-called collective coordinates.

Here, we have eight collective coordinates of the instanton solution. First,
there are four coordinates of the center of the instanton, then the scale p (the
size of the instanton), and, finally, there are three Eulerian angles in four-
dimensional Space, specifying the orientation of the instanton in isospace.

Now, every zero-mode leads to a factor proportional to y/S^\ and an in-
tegral with respect to a collective coordinate. Therefore, we can explain
the origin of the pre-factors in (4.5). The volume V comes from translation
invariance, the Integration over p from scale invariance, and the factor p3

from the Jacobian of the Eulerian angles. The momentum-cutoff Auv arises
due to a necessary regularization, but can also be found due to dimensional
considerations.

The calculation [113] of the one-loop effective action in an instanton back-
ground of ordinary SU(2) Yang-Mills theory leads to

| ( ) (4.7)

Inserting (4.7) into (4.5) yields the following result:4

T + T l n ( M u v ) ) ' (48)
f°
h

dp ( 8?r2 22

7exp(" +
/o P5 V 9

with the renormalization group invariant expression

92(p)
(4.9 )

where ß0 = 22/3 is the one-loop beta-function coefficient of SU(2) Yang-
Mills theory.6 Therefore, the zero-modes and the positive frequency modes
of the quadratic fluctuation Operators combine exactly to a renormalization
group invariant expression (4.9) which determines the running of the gauge
coupling.7 One could have argued from the very beginning that (4.5) must
have the form (4.8) as a direct consequence of renormalizability.

4The exact computation was done by 't Hooft [125], cited by Coleman [96] as a very
hard worker.

5Here, g is the bare coupling constant at the cutoff-scale Auv-
6The whole discussion works also for SU{N) YM theory with ß0 - UN/3, and 4N

collective coordinates Coming from additional isospace rotations.
7See also section 2.3.2.
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The reader might have noticed that the integral over p in (4.8) is infrared
divergent. The origin of the divergence is clear from the derivation of the
integral, because the efFective coupling constant g(p) becomes large for large
instantons, and this makes the integrand blow up. The subsequent inte-
gration over p yields an infrared divergence over moduli space. Therefore,
the whole calculation holds only for very small instantons, and the dilute
instanton gas approximation breaks down at large scales.

4.2 Vacuum energy of NC U(l) YM theory
We will pass now to the study of the vacuum energy induced by instantons
in non-commutative Maxwell theory, i.e. non-commutative U(l) Yang-Mills
theory, giving it a non-trivial vacuum-structure even in the case of an Abelian
gauge group.

Proceeding in complete analogy to section 4.1, we write down the non-
commutative version of (4.1):

S = -— J dAxFßU* FßU - - ^ I dAx FßU * FßU. (4.10)

We refer the reader to chapter 2 where non-commutative U(l) Yang-Mills
theory with the action (4.10) has been extensively discussed.8

Now, the formulas (4.2), (4.3), (4.4) apply also in the non-commutative
set-up, but there is a crucial change in the equation for the determinantal
factor K which is given by

K oc V A*v (V^d) e~s« e~s^A\ (4.11)

The only collective coordinates we have in the game are the four position
moduli of the instanton. There is no scale modulus anymore, because scale
invariance is explicitly broken by the non-commutativity parameter 9 and the
size of the instanton is given by p ~ y/Ö (see section 3.3.5). Further, isospace
is trivial in an Abelian gauge theory. Therefore, following the discussion
in section 4.1, the four translational collective coordinates yield exactly the
pre-factors in (4.11).

8 The attentive reader would have noticed that there is relative factor of 2 in the expres-
sions (2.5) and (4.10) for the action. Maybe this seems a bit confusing, but we will keep
this difference, because this chapter is based on [80] where the numerical Convention in
(4.10) has been used. It is just an overall factor, but it goes for example into the definition
of the /?o-coefficient. Nevertheless, all calculations are consistent within each chapter, of
course.
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4.2.1 One-loop instanton determinant

The procedure of obtaining the one-loop effective action of a theory with the
background field method is Standard in the literature [93], and we will be
very briefly here in order to pass directly to the relevant calculations.

After a Splitting of the gauge field and the ghost field into a classical
background field and a quantum field, one obtains via Integration over the
quadratic part in the quantum fields the one-loop effective action

Ses(A) = - - In det' Lgauge + In det' LghOst, (4.12)

in complete analogy to equation (4.6). The determinants of the quadratic
fluctuation Operators in the gauge and ghost sectors are given by9

[Lgnugejßu — {Dp * Dp) ö^i, — 2i

Lghost = Dp-k Dp, (4.14)

where Dß = dß — i [Aß, ]̂  and a denotes the gauge parameter.
Now, det' indicates that the zero modes have to be omitted when Com-

puting the determinants. The complete effective action, including the In det'
contributions and the zero mode contributions can be written as a formal
sum over all one-loop diagrams with external legs on the classical instan-
ton profile A. In this representation, the zero mode terms should arise as
convenient resummations of infrared divergences to all Orders.

At the level of planar diagrams we have a Situation entirely similar to that
of ordinary SU(N) gauge theory, in the formal limit N —> 1. For example, the
logarithmic dependence on the ultraviolet cutoff Auv arises from the planar
two-point function (see sections 2.2.3 and 4.1) given by the half10 of (4.7)
and combines with the explicit dependence from the zero modes in equation
(4.11) to

Ka

Introducing the dynamical scale A via

/ R-7T2 \

(4.16)

9The commutative analog of (4.14) is given in [126], and can be derived directly from
the action (4.10). But, we will not need the explicit expressions of the determinants in
the following. We give them just for completeness.

10For SU(N) the factor is -N/3.
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we can write equation (4.15) as

) V * ( A ) Ä + ...> (4.17)

producing again a renormalization group invariant expression as expected.
ßo is the one-loop beta-function coefficient which is equal to 11/3 for the case
of pure NC U{\) YM theory (see section 2.3.2).n

Here, the size of the instanton p ~ VÖ acts like an infrared cutoff, since
the classical field A decays to zero on distances larger than the instanton
size. Hence, even if we cannot calculate the numerical coefficients in a precise
way, a combination of dimensional analysis and the general properties of the
perturbative effective action allows us to determine the gross features of the
planar contribution to the instanton measure.

The dots in Eq. (4.17) stand for other UV-finite perturbative contribu-
tions. Among those, the non-planar diagrams of low Order have strong IR
singularities as a result of the famous UV/IR mixing effects (see section 2.3).
Despite the fact that the instanton profile vanishes at long distances, we must
then check the infrared behaviour of the one-loop effective action. Here, in
the non-planar sector, we do not have to implement the zero modes (cor-
responding to a summation over an infinite number of diagrams), because
we focus on peculiar IR singularities that arise only from a finite number of
diagrams which is enough to estimate their effect. We will split the analysis
into two parts: we will consider the IR poles (I) and the IR logarithms (II)
separately.

4.2.2 Infrared pole structure

The pole structure of non-planar n-point functions of pure NC U(l) YM the-
ory can be read off from the listed expressions in section 2.2.4. Or, to proceed
another way, can be taken from the following gauge-invariant expression for
the effective action [37]:

where W'(p) denotes a truncated open Wilson line Operator. It is a common
feature of non-commutative gauge theories that one has to make use of such
Operators in order to write down gauge-invariant expressions [127, 128, 129].

11See also footnote 8 on page 86.
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Because we are mainly interested in the IR regime of the theory we will
expand the modified Bessel function K2(z) for small momenta12

(4.19)

Insertion of the Wilson line Operators (given in [37]) in the IR regime, with
A denoting the classical background gauge field

W (p) = i f^Aß{p) — - I 7—^7 PflpuAtl{p — q)Au{q) + . . . , (4.20)

and performing a Wick rotation leads to the following Euclidean expressions
for the two- and three-point functions

(4.21)

A ( P ) A ( 9 ) A ( P < ? ) n ; i 3 > ) (4.22)

with13

= 0—~A r C/(J9 J, (4.zoJ
IT1 p 4

Ö ~A T ̂ \P )• (.4./4J

It will be sufficient to consider these functions, since higher ones cannot
lead to IR divergent terms. Looking at the expansions (4.19) and (4.20) we
recognize that the n-point functions n 1 ' ^ ^ ) will lead to pole struetures of
the order of p~(n~4). Furthermore, we have to check the IR strueture of our
background gauge field A which will be used to calculate the contributions
to the effective action. The instanton field (3.142) obtained in section 3.3.6
will play this role. It reads

lim AJx) = -2\6eßU -£•, (4-25)
r—>oo T

with t\2 = £34 = 1 and €21 = 4̂3 = —1, and r = Vx* the distance from the
origin in four-dimensional Euclidean space. In order to proeeed, we need the
Fourier transform of (4.25) which is given in appendix A.2 by the equation14

f i ( p ) t i l / ^ (4.26)
p->0 pz

12See (2.59) and the textbooks [97, 98, 99] for the properties of KK(z).
13Compare the expressions (4.23) and (4.24) with (2.71) and (2.72), respectively. Note

also footnote 8 on page 86.
14 We omit the usual tilde for denoting the Fourier transform for readability.
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Now, every term of 5gff has the following form (we skip Lorentz indices):

S^n) o c | d4pd% • • • d4qn_2 A(p)A(qi) • • • A(qn-2)A(-p - ££? lQi)^Un) '(p).

(4.27)

Doing the power counting for the p-integration by taking the IR structure
of the instanton (4.26) into account, we see that the first A field contributes
with p p~2, whereas the last one with p~2 for n > 3 (we have to pick out the
most dangerous IR terms) and with p p~2 for n = 2. Therefore, we have

n

n

=
>

2 :

3 :
P4

P4

{PP'2)
{pp-2)

{pp'2)p{2-4)

-2 -(n-4) x

OC

P{

P\
n-3)

(4.28)

(4.29)

The last thing we have to do is to check the remaining integrations over the
9i's. But they are harmless in the IR. With the same argumentation, it can
be shown that they are linear in qf

n>3: qt(Qiqr2)qr2 « ft> i = l,...,n-2. (4.30)

This shows IR finiteness for four-point functions and higher terms. Further-
more, two- and three-point functions can at most lead to logarithmic IR
divergences in the instanton background.

For the following calculations it will be useful to list all necessary tensor
contractions (remember that we are considering a space with commuting time

x l 2 ) defined in section 3.3):

p2 = p \ + p \ + p \ + PI P2 = Q2(p2i + PD,
\ l), pßtßUqv = 6(plql + p2q2),

u = 0, ePßepu = 5ßl/. (4.31)

Let us start with the contribution of the two-point function (4.21). For the
background gauge field A, we insert the non-commutative instanton (4.26).
As stated before, we are only interested in the IR regime, therefore taking
only the small momentum approximation of the instanton solution. From
(4.21), (4.23), (4.26), and (4.31) we get the fairly simple expression

_ &_ f ,4 ^(pj+P2)2 _ J_ f <^P_
~ n2J aPp*e*(p2 + p 2 ) 2 - n2J p f

(4.32)
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Since the integrand in (4.32) is invariant under 50(4) rotations we can
rewrite the Integration measure with respect to the formula

/

2ir
dppD-\ Q D = _ _ _ (4.33)

and get with D = 4 the expression:

SlP = 2 / £ . (4.34)

Being interested only in the infrared part of this integral, we evaluate it
with an ultraviolet momentum cutoff at the instanton size Auv ~ 1/VÖ (see
section 3.3.5) and an infrared momentum cutoff AIR. ~ l / L corresponding to
a box of size L. The result is logarithmically divergent in the IR (L —>• oo):

5 = B- —

h/L P

We will postpone a further discussion of this point to section 4.2.4. Instead,
we go straight to the appropriate calculations of the contribution from the
three-point function to the one-loop effective action.

Applying again (4.31) and inserting (4.26) and (4.24) into (4.22), we get
after lengthy but straightforward simplifications:

+ - Ö 5 • (4.36)
p'q\p + qy [" " "• P1+P2 J

The structure of this integral suggests a Splitting of the four-dimensional
momenta into two two-dimensional subparts. In fact, it is clear, considering
the underlying integration space I ^ x R 2 , that this procedure makes sense.
Let us apply the substitutions

p=(s,t) and q = (u, v), (4.37)

to the integral (4.36)

{s2 + t2){u2 + v2)((s + u)2 + (t + v)2y
(4.38)

Considering the two parts in the numerator separately, calling them /1 and
I2, we introduce three Schwinger parameters oti for the first part; for the
second term, we use four of them via the relation

i =/"*».--. (4.39)
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Representing now the term (s • u) in both integrals with the help of a dif-
ferential Operator, we can perform all 2-dimensional Gaussian integrals over
the momenta and end up with

62 f°° 7
/ l = ~T7 dadßdj^, (4.40)

=d-r dX da dß ̂ Z+M+jl+g (4.41)
4 y T(T + A0Ö + 7 ) ) 3 V '

where we introduced

r = aß + aj + ßj. (4.42)

Using Schwinger cutoffs in the UV and IR by implementing factors such as

(4.43)

for every Schwinger parameter, we can perform the integrals Ji and I2 explic-
itly.15 The results include only positive powers of AIR and are therefore finite
in the limit AIR —> 0. There is no IR singularity Coming from the three-point
function, as naive power counting in (4.29) would suggest.

4.2.3 Infrared logarithm structure

We have seen in section 2.3.2 that the UV/IR mixing of non-commutative
gauge theories makes the coefficient of logarithmic IR divergences that arise
from non-planar graphs exactly opposite to that of the logarithmic UV di-
vergences in the planar sector of the theory. Therefore, we can write down
the corresponding Euclidean contribution to the effective action in the region
of small momenta p <C 1/vÖ, given by

ßo , . . ,A 2 ~2x *? (-p)Flu,(p) + ..., ( 4 . 4 4 )
(2TT) 4 ( 4TT) 2

where ß0 = 11/3 is the one-loop beta-function coefficient16 for NC U(l)
YM theory and the ultraviolet cutoff is again given by the instanton size
Auv ~ l / \ /ö of section 3.3.5. The dots denote higher terms which have to
be implemented in order to render the effective action gauge invariant. We
must use again a generalization of open Wilson lines [37], but for our purpose
the leading part is sufficient.

15We have done the parameter integrations with the program Mathematica™, but avoid
to write down the results due to their lengthy unreadable structure.

16See also footnote 8 on page 86.
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Let us first calculate the contribution of the two-point function to the
effective action and then give arguments why higher-point functions are ir-
relevant to IR divergences. We rewrite (4.44) as

JW)* K (4-45)

with

n^(2)(P) = - j ^ ä ln(Auv ?) (P%» ~ P&)• (4-46)

Inserting in (4.45) the instanton field (4.26) and applying the relations (4.31)
yields the following integral for the leading part of (4.45):

(4.47)

Splitting again the four-dimensional momentum space into two two-dimen-
sional parts via p = (s, t) leads to

l2s dH Hs2e)-
Making use of the formula [97, 98, 99]:

/

oo „-aß
——dß-jE + O{a), (4.49)

P
and performing the Gaussian momentum integral over s shows that the ex-
pression (4.48) is completely finite in the IR. There are no IR divergences
arising from the logarithmic piece (4.46) of the two-point function.

What happens in the case of higher-point functions? They are all safe in
the IR regime (pi —> 0) since, because of the •-product, every ln-term gets
multiplied by sm(piPj/2) (see the explicit expressions in section 2.2.4) which
renders the whole expression finite.

4.2.4 Discussion of the results

We have seen now from the sections 4.2.2 and 4.2.3 that the only IR di-
vergent contribution to the one-loop effective action (4.12) in the instanton
background (4.26) comes from the quadratic UV/IR mixing in the two-point
function (4.23).
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The resulting divergence is logarithmic (4.35) and signals the breakdown
of the dilute instanton gas approximation also in non-commutative Yang-
Mills theory. In the commutative case it was due to an IR divergent inte-
gration over the instanton size modulus, and now it is due to UV/IR mixing
effects.

Since we know already that supersymmetric non-commutative gauge the-
ories are much better behaved with respect to UV/IR mixing, we will com-
ment on their one-loop instanton determinant in the next section.

4.3 Supersymmetry as an IR regulator

In section 2.5 we have discussed UV/IR mixing effects in supersymmetric
non-commutative Yang-Mills theories and found that they do not show any
quadratic or linear UV/IR mixing. Therefore, we expect that the instanton
calculation outlined in the previous sections will be better behaved in the
supersymmetric case.

To demonstrate this, we consider a theory with one gauge field, ri{ Weyl
fermions and ns real scalars where we take again the simplest gauge group
[7(1). The leading term of the non-planar two-point function of the gauge
field in the IR regime is given by the Euclidean expression of (2.131) multi-
plied with (2.68) and reads17

n^SUSY(p) = ~ (l - «f + ̂ ) ?f- + O(p% (4.50)

which replaces the equation (4.23) in section 4.2.2. The expression in brackets
is always zero for a theory with supersymmetric field content. Because for
M — \ NCSYM theory we have n? = 1, ns = 0, whereas in the case of
M = 2 we have ri{ = ns = 2, and finally for J\f = 4 we have to apply
rif = 4 and ns = 6. This cancelation between bosonic and fermionic modes
also takes place for higher-point functions. No IR divergences come from the
pole-like structure of non-planar supersymmetric n-point functions, rendering
therefore the one-loop instanton determinant IR finite.

Next, we have to generalize expression (4.44) to the supersymmetric case.
This is again achieved very easily in replacing the coefficient of the beta-
function by the corresponding expression (2.139) of section 2.5 which reads18

(4.51)

17See also footnote 8 on page 86.
18There is again a relative factor of 2, explained in footnote 8 on page 86.



4.3. SUPERSYMMETRY AS AN IR REGULATOR 95

In the case of non-commutative M = 4 theory, there is still a vanishing beta-
function, whereas we get logarithmic non-planar corrections for M = 2 and
M — 1 NCSYM theories. Nevertheless, as shown above, they are harmless
with respect to the instanton determinant.

A last comment should be made on softly broken supersymmetric theories.
These theories have difFerent masses for the fermions and scalars which partly
breaks supersymmetry. But, as shown in section 2.4.2, these soft breaking
effects do not change the leading IR structure of non-planar n-point functions.
The instanton determinant is again IR safe in these theories.

Hence, dilute instanton calculus in non-commutative Yang-Mills theory
is ruined by the infrared catastrophe, unless we work in supersymmetric or
softly broken supersymmetric theories.19

19Another interesting possibility consists in working in finite volume. See [130] for a
discussion of such a case in a related context.



Conclusion

In this thesis we have reviewed the basic concepts of non-commutative field
theories and have focused especially on the impact of UV/IR mixing effects.
Non-commutative Yang-Mills theory is found to be non-renormalizable be-
yond one-loop due to quadratic and linear IR divergences which cannot be
integrated over at higher loops. Further, we found a tachyonic mode in the
dispersion relation and that non-commutative Yang-Mills theories are weakly
coupled in the infrared and ultraviolet.

Then, we studied the changes coming from implementing supersymmetry.
In SUSY NCYM theories, all quadratic and linear IR divergences disappear
and no tachyon shows up in the spectrum. Softly breaking of supersymmetry
via a non-vanishing mass of the photino gives us back a tachyonic mode,
whereas UV/IR mixing effects are still only logarithmic. The appearance of
the tachyon is quite severe, because it is independent of the non-commuta-
tivity parameter and cannot be neglected anymore by arguing with a small
NC parameter. Softly broken SUSY NCYM theory is ruled out in nature.

Afterwards, we passed to the non-perturbative sector of NCYM theo-
ries. More exactly, we studied non-commutative instantons which were con-
structed via deformed ADHM relations. We transformed the explicit solution
of an anti-self-dual instanton in NC U(l) YM theory given in an abstract
Operator formalism into an expression in non-commutative coordinate space.
The instanton has a classical size of order \[Ö and decreases with l/r3 away
from the origin.

With this in hand, we studied the impact of UV/IR mixing on the one-
loop instanton determinant of non-commutative U(l) Yang-Mills theory.
The instanton-induced vacuum energy is well behaved in the classical approx-
imation of the theory. But, taking one-loop quantum effects into account, we
found a logarithmic infrared divergence of the instanton determinant coming
from the non-planar two-point function. Non-commutative quantum fluctu-
ations blow the classical finite size of the instanton up to infinity.

It should be clarified here that the blow up of the instanton size to in-
finity is a metaphor, a way of conveying the message that at the end, the
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non-commutative Yang-Mills theory behaves similarly to the ordinary non-
Abelian Yang-Mills theory, having an IR divergent dilute instanton measure,
although for different reasons when it comes to the details. In the case of
ordinary Yang-Mills theory, the IR problem comes from the integral over
instanton sizes, whereas in the non-commutative case it is because of the
UV/IR mixing effects.

Rescue is again provided by supersymmetry. All n-point functions are
free of quadratic or linear IR divergences in supersymmetric or softly broken
SUSY NCYM theories. Therefore, the instanton-induced vacuum energy
is IR safe in these theories. This fact can be regarded as one hint more
that the only consistent non-commutative field theories are theories with a
supersymmetric field content.
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Appendix A

Some Formulae

A.l Operator formalism

• Proof of the formula dxf~
l = — f~l (dxf) f~l:

0 = öill = dAf'1/) = ö i / " 1 / +

and analogous for B\f~l = — / - 1 (öi/) f~l.

Proof of the formula z\f{5) — f(A) z\.
From the only non-vanishing commutator (3.29) we have

Now, we take f(8) = 5, implying

= zx5 = zx(zxzx + z2z2) = (C + zizi + z2z2)zi = Azi = f(A)zx,

which holds also for an arbitrary function of 5 and works completely
analogous for zxf(8) = / (V) zx.

• Proof of the following formula:

d f(S) = C 1 (/(A) - f(6)) zxdzx + C1 (f(S) - /(V)) zxdzx
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Using (3.41), (3.43), (3.45), (3.47) and (3.48) it is easy to show that

df(6) = (dzl di + dzx 8X + dz2 82 + dz2 B2) f(6)

= C 1 [zu /(*)] dzx - C 1 [zu f{6)] dz, + ̂  dz2 + ̂ P dz2
ÖZ2 OZ2

= C 1 (zif{S) - /(tf)zi) dz, + C"1 (f(6)Zl - zJ(S)) dz!
df{5) 85 df(S) 86

ao a^2 öo 8z2

= C1 (/(A) - /(*)) fidZi + C"1 (/(*) - /(V)) ZxdZ!

+ ^ 7 ^ «2dz2 + -J7^r z2dz2.86 86

A.2 Fourier transform

Here, we perform the explicit Fourier transformation of the instanton field
(3.142) given in section 3.3.6:

lim Aß{x) =-2166^^, (A.l)
r->oo T

with t\2 = 634 = 1 and e2\ = £43 = —1, and r = \fx* the distance from the
origin in four-dimensional Euclidean Space. The Fourier transform of (A.l)
is given by1

lim AJp) = - 2 i 0 eßU [ dAx eipx ^ = -29 eßV 8V
V [ d4x eipx ^-, (A.2)

p->o J x J xq

where 8% denotes the derivative with respect to p. Therefore, we can reduce
the problem to the Fourier transform of

ipxh> (A-3)
x

x

which can be obtained by the formula [131, 132]:

(A.4)

with d the space-time dimension and the momentum p = \/p2. Since the
gamma function has poles at zero and the negative integers, we have to

xWe omit the usual tilde for denoting the Fourier transform for readability.
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regularize the expression (A.4) for d = 4 and A = —4. Hence, we evaluate it
in d — 4 + e dimensions with e > 0 yielding

^ - (A.5)

Performing a series expansion of (A.5) around e ~ 0 leads to

0 - 7E + | ( T ! + y ) + O(s2)) (l - e ln(p) + O(e

= 2£7r2+§ (^ - 7E - 2 ln(p) + O(e)), (A.6)

with 7E ~ 0, 577216 the Euler gamma. Combining now the expressions (A.2),
(A.3), and (A.6) we get

limA„(p) = lim ( -26tßVdlTi+Ax~A)\

= lim (22+En2+2 6tßl/ dl ln(p) + O(e))
£->0 \ /

(A.7)

where we can perform the limes e —> 0 corresponding to four space-time
dimensions at the end. Next, we calculate

= nf, (A.8)

and end up with the following expression for the Fourier transform of the
instanton tail lim,—^ Aß(x):

\unAß(p)=4n26eßl/^. (A.9)
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