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Abstract

The aim of the present study is the modeling of the successive brittle failure of particles

embedded in a ductile matrix subjected to global uniaxial tensile loading. The work is based

on three-dimensional multi-particle unit cells and uses the Finite Element method. Micro-

geometries are generated by appropriately arranging a number of spherical particles within

the unit cell. On the one hand so called Randomly Pruned Cube (RPC) arrangements are

employed, in which the unit cell is split into a number of cube-shaped subvolumina some

of which are randomly selected to contain a centered particle. On the other hand periodic

pseudo-random particle arrangements are generated by a modified Random Sequential

Adsorption (RSA) algorithm. Elastic material properties are used for the particles and the

matrix is described by J2 plasticity.

Predefined fracture surfaces, which are assumed to be oriented perpendicularly with

respect to the direction of the overall uniaxial stress state, are provided for within the

reinforcements. Brittle failure of the reinforcements, which is modeled as instantaneous

cleavage at these surfaces, is implemented by a node release technique. Failure in a given

particle is controlled by Weibull-type fracture probabilities in combination with a Monte

Carlo algorithm. The fracture probabilities are evaluated for the whole particle on the

basis of the current stress distribution.

Within the modeling assumptions used, which do not account for other local failure

mechanisms such as ductile damage of the matrix and decohesion at the interface between

the constituents, successive particle cleavage and the resulting stress redistribution effects

are simulated for two types of materials, a particle reinforced aluminium matrix composite

and a high speed tool steel. Results are presented in terms of predictions for the overall

stress vs. strain behavior and for damage relevant fields at the microscale for the above

types of composite, which represent materials with highly ductile and rather hard matrices.

Special consideration is given to influences of the material properties and the relative sizes

of the particles on the predicted fracture behavior.
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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die Modellierung des sukzessiven spröden Versagens

von in einer duktilen Matrix eingebetteten und global einachsig belasteten Partikeln. Die

Arbeit basiert auf dreidimensionalen Mehrpartikel-Einheitszellen und verwendet die Finite

Elemente Methode. Die Mikrogeometrien wurden durch die geeignete Anordnung einer An-

zahl von Partikeln in der Einheitszelle generiert. Einerseits wurden sogenannte Randomly

Pruned Cube (RPC) Geometrien entwickelt, für die die Einheitszelle in eine bestimmte

Anzahl von Subvolumina aufgespalten wird und von welchen einige zufallsgesteuert ein

zentral positioniertes Partikel beinhalten. Andererseits wurden periodische pseudozufällige

Partikelanordnungen mittels eines modifizierten Random Sequential Adsorption (RSA) Al-

gorithmus generiert. Für die Partikel wurden elastische Materialeigenschaften verwendet

und die Matrix wurde mit einem J2-Plastizitätsmodell beschrieben.

Bruchflächen sind innerhalb der Verstärkungsphase vordefiniert und werden als normal

zur Richtung der globalen einachsigen makroskopischen Spannung angenommen. Sprödes

Versagen der Verstärkungsphase, welches als instantanes Versagen an diesen Flächen mod-

elliert wird, ist mittels einer Knotenöffnungstechnik implementiert. Das Versagen der indi-

viduellen Partikel wird durch Bruchwahrscheinlichkeiten vom Weibull-Typ in Kombination

mit einem Monte-Carlo-Algorithmus gesteuert. Die Bruchwahrscheinlichkeiten werden auf

Basis der aktuellen Spannungsverteilung für das ganze Partikel berechnet.

Innerhalb der verwendeten Modellierungsannahmen, die andere lokale Versagensmech-

anismen, wie duktile Schädigung der Matrix und Ablösung am Interface zwischen den

Konstituenten, nicht berücksichtigen, wurden sukzessiver Partikelbruch und die daraus

resultierenden Spannungsumlagerungseffekte für zwei Werkstoffe simuliert: Partikelver-

stärktes Aluminium und Schnellarbeitsstahl. Ergebnisse werden in Form von Vorhersagen

des globalen Spannungs-Dehnungs-Verhaltens und der schädigungsrelevanten Felder in der

Mikroebene präsentiert, wobei die untersuchten Verbunde Werkstoffe mit hochduktiler

bzw. mit einer relativ steifen Matrix repräsentieren. Speziell wird auf den Einfluß der Ma-

2



Nomenclature 3

terialeigenschaften und der relativen Partikelgrößen auf das vorhergesagte Bruchverhalten

eingegangen.



Chapter 1

Introduction

The strong demand for improved engineering materials in the past decades has been a driv-

ing force for introducing composite materials. Materials showing improved properties have

opened the way for new applications. An important goal has been functionally oriented

materials design, which seeks to leverage the growing understanding of the interactions

between the constituents of inhomogeneous materials into the development of materials of

enhanced user value. In addition, refined modeling capabilities provide a basis for appro-

priately focussing experimental efforts and reducing the length of development cycles.

In the present work two ductile matrix composites are studied which differ considerably

in their mechanical properties. On the one hand, a metal matrix composite consisting of

a matrix of AA2618-T4 reinforced by silicon carbide particles is investigated and, on the

other hand, the mechanical behavior of a powder metallurgically produced high speed steel

is studied.

1.1 Heterogeneous Solids and Structures

Even though they have similar microstructures, hard phase composite materials, based

e.g. on iron, and light metal composites, based on e.g. aluminium, both of which show dif-

ferent advantages corresponding to ”standard alloys”, can be distinguished from the point

4



1.1 Heterogeneous Solids and Structures 5

of view of their field of application.

Within the former group high wear resistance, high strength and high stiffness are aimed

for and these materials are used e.g. in tooling applications. The big advantage of the

second group compared to conventional alloys is their low density combined with improved

strength and stiffness. These factors make low weight Metal Matrix Composites (MMCs)

an alternative to ”classical” materials such as steel and light metal alloys based on alu-

minium or titanium, depending on the application.

MMCs aim at combining favorable physical and/or chemical properties of the con-

stituents, e.g. ductility and toughness with wear resistance, as well as low density with

high strength and stiffness. In contrast to the production routes of standard alloys most

MMCs are produced from their constituents by additional processes. Three basic types

of the geometry of the reinforcing phases can be distinguished which also require differ-

ent processes. Whereas continuous fiber reinforced composites are typically produced with

liquid-state processes (squeeze or gas pressure infiltration) short fiber reinforced composites

nowadays may also be produced, beside mixing in the melt, infiltration and spray deposi-

tion, by semi-solid-state (e.g. rheo-casting) and solid-state processes like powder metallurgy

(Suresh et al. [1993]; Clyne and Withers [1993]). These reinforcement types are not part of

the investigations in the present work, where the focus is put on particle reinforced MMCs,

produced by one of the above production routes, and on powder metallurgically produced

High Speed Steels (HSSs). Both are referred to as Particle Reinforced Ductile Matrix

Composites (PRDMCs) in the following. It has to be mentioned that throughout this work

”reinforcement”, ”particle” and ”inclusion” are used interchangeably.

Depending on the production routes the spatial distribution of the particles (and their

sizes) can be controlled to some extent. The materials show homogeneous or inhomoge-

neous dispersion of the reinforcing phase, the first resulting in isotropic material behavior

and the second in anisotropic overall material properties.

For the development of improved PRDMCs a fundamental understanding of the behav-

ior of their constituent materials and their interactions is necessary, which can be achieved

by both experimental and theoretical methods. A considerable number of published ex-

perimental studies on PRDMCs offer results on the overall material properties, but the

measurement of the constituents’ mechanical behavior in isolation is very difficult and it is

generally hard to deduce the local behavior of these materials from their overall response.

Therefore theoretical studies of MMCs at different length scales are an important tool.

Within such approaches the behavior at larger length scales can be obtained from that at
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smaller length scale by homogenization, while localization methods infer the local behavior

at smaller length scales from the conditions at larger scales.

1.1.1 Continuum Mechanical Description of Composites

PRDMC materials consist of several phases. The reinforcement phases, either being ionic,

like Al2O3, or metallic, like carbides (e.g. M7C3), exist as precipitates of the sizes of some

nm up to particles of approximate 20µm.

The present study deals with two-phase and three-phase composites at length scales, where

the behavior of the constituents can be described within a continuum mechanics framework,

the particle diameters being taken to be about 1 to 20µm. Furthermore, the constituents

are viewed as continua and for this length scale no ”sub-continuum” treatments such as,

for example, dislocation mechanics or molecular dynamics are assumed to be required.

Following e.g. Böhm [1991] and Plankensteiner [2000] the length scale where the present

discussions are carried out will be called the microscale.

This is based on the idea that for materials such as MMCs and HSSs suitable continuum

mechanical descriptions can be devised on the basis of two length scales. At the macroscale,

a length scale comparable to the overall dimensions of specimens or components, smeared

out material properties are used, whereas at the microscale the inhomogeneity of the ma-

terial is accounted for, each of the constituents being taken to be homogeneous (the effects

of smaller length scales are included via the constituents’ material properties). An inter-

mediate scale, the mesoscale, may be introduced, when the material shows an appropriate

structure, such as layered or clustered particle arrangements.

The overall (effective, homogenized) material properties are evaluated by averaging

microscale stress and strain fields of the composite over suitable volumina. The effects of

these microfields, which directly depend on the constituent (matrix, reinforcements, inter-

faces) properties, the loading state and the loading history, as well as on the arrangement

of the constituents (the microgeometry), on the macroscopic behavior can be investigated.

However, the predictions are limited by necessary modeling idealizations and the difficulty

in obtaining reliable constituent material data.

1.1.2 Microstructural Effects

Many PRDMCs are designed to fulfill specific goals, e.g. increasing the wear resistance,

optimizing the Coefficients of Thermal Expansion (CTE) of structural components, pro-
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viding thermal conductivity. These properties of the PRDMCs are not the core of in-

vestigations within the present study, but the mechanical properties of PRDMCs. Thus,

microstructural effects on the mechanical behavior are the topic of this section, where first

some considerations on particles and particulates in general are given, followed by aspects

specific to the particles of the studied PRDMCs.

The post-yield mechanical properties of composite materials at room temperature are

a result of different hardening mechanisms. Finely dispersed (nanometer-sized) precipitates

within the base lattice give rise to strain fields in their surroundings and consequently hin-

der dislocation movements. A moving dislocation, may, on the one hand, cut a particle.

On the other hand, the dislocation may be incapable of shearing the particle and may have

to pass it, leaving it surrounded by dislocation loops. Such processes which require consid-

erable driving forces, are aimed at in precipitate strengthened alloys. These two competing

mechanisms are strongly dependent on the particle size, so that the fine calibration of the

particles sizes for optimizing strength must be carried out with appropriate adjustment

of heat treatment and heat treatment sequences. Details on this Orowan-mechanism and

other dislocation mechanisms, generating strengthening dislocation rings (e.g. Frank-Read),

can be found in the literature, see e.g. Weißmantel and Hamann [1980].

In contrast, the major effect of reinforcement phases with particle sizes discussed in the

present work (about 1 to 20µm) on the composites’ mechanical behavior is the stiffening

effect. It is caused, because these µm-sized particles due to their higher stiffness markedly

change the stress and strain fields in the matrix, the reinforcements acting as stress concen-

trators. Accordingly the interface between matrix and reinforcement plays an important

role. In practice perfect bonding between the constituents is not always the case (for

alloying additional elements for increasing the wettability may be required), and for a

considerable number of MMCs a chemical bonding does not really occur, i.e. the bonding

forces can be expected to lie in the region of Van der Waals-forces, see Clyne and Withers

[1993]. In the present work perfect bonding is assumed as a first step of idealization.

1.1.3 Microscale Damage Mechanisms

At the length scale of the reinforcements, the microscale, PRDMCs such as particle rein-

forced MMCs and powder metallurgically produced HSSs, show three basic mechanisms for

the initiation and progress of damage, viz. brittle cleavage of the particles, decohesion at

the interface between matrix and reinforcements, and ductile failure of the matrix. Under

given loading conditions, the relative importance of and the interactions between these
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local damage modes (see e.g. the schematic drawing in figure 1), and consequently the

overall ductility and damage behavior of the composite, are determined by the strength as

well as stiffness properties of all constituents and by their geometrical arrangement.

Ductile matrix failure starts with the nucleation of pores, as a consequence of the

local stress and strain states (i.e. triaxiality), and continues with their growth and ongo-

ing coalesce to microcracks, see figures 1 and 2. In general, pore nucleation is more or

less temperature dependent and dislocation mobility is the main mechanism for plastic

relaxation. Therefore these conditions are strongly influenced by the volume fraction of

the reinforcements and their individual sizes and shapes (i.e. corners), compare Goods and

Brown [1978]. For example close to elongated reinforcements that are oriented in loading

direction, initial pores could be found in experiments. Tests with aluminium reinforced by

SiC particles are presented in LLorca et al. [1991].

Along interfaces material debonding can occur, caused by weak bonding or by advanced

plastic deformation, especially at reinforcement corners or at elongated particles (reinforce-

ments) oriented in loading direction, see figure 3. The interface strength is highly depen-

dent on the chemical bonding of the phases, therefore influenced by diffusion processes and

consequently by temperature; investigations and results are described e.g. in Flom and

Arsenault [1986]; Lee and Subramanian [1992].

Reinforcement failure takes place when some critical stress within the particle is exceeded

(figure 4). Upon increasing the plastic deformation of the embedding matrix frequently an

increased number of failed particles can be observed; experimentally it has been shown that

in tensile tests the reinforcing particles tend to fail predominantly perpendicularly to the

overall loading direction. Beside that the size and shape (rod shaped, platelike, equiaxed)

of the particles and also the yield strength of the matrix and therefore temperature play

important roles in the failure behavior (Wallin et al. [1987]).

For illustrating the complexity of the problem one may refer to figure 5 (from Gross-Weege

[1996]). Evidently after failure of a particle the microcrack may propagate either into the

matrix or along the interface. The modeling strategies used in the present study are aimed

at studying microscale damage due to particle fracture in isolation, the idea being to open

an avenue for a better understanding of the factors involved by reducing the complexity of

the problem (see chapter 3).
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1.1.4 Models and Descriptions for Nonlinear Heterogeneous Solids

Modeling work on the stiffness and strength behavior of PRDMCs has been largely based

on continuum micromechanics, where the stresses and strains acting within the material

are resolved at length scales comparable to the size of the particles. Within this framework

a considerable number of micromechanically based modeling studies have been reported on

the initiation and evolution of microscale damage and failure in PRDMCs, in which analyt-

ical (Tohgo and Weng [1994]), numerical (Pandorf [2000]) as well as combined approaches

(Estevez et al. [1999]; LLorca and González [1998]) were employed. Unit cell models, in

which the local stress and strain fields can be resolved to a high degree, have covered all

of the above damage modes for planar and axisymmetric model geometries, see e.g. Berns

et al. [1998]; Ghosh and Moorthy [1998]; Nutt and Needleman [1987], and for simple pe-

riodic arrays of particles (Hom and McMeeking [1991]). Recent work (Iung and Grange

[1995]; Böhm and Han [2001]), however, has shown that two-dimensional models tend to

give unsatisfactory predictions for the mechanical response of particle reinforced materials.

Plane stress models generally underestimate and plane strain as well as generalized plane

strain models overestimate the overall elastic and elastoplastic stiffness of such materials.

Compared to three-dimensional unit cells, both groups of planar models have been shown

to give rise to considerably different phase averages of the microscale stresses and strains

and underestimate the widths of their distributions (Böhm and Han [2001]). As a con-

sequence, two dimensional models may not give reliable predictions for damage relevant

variables. For example the Weibull fracture probabilities of the particles were found to be

markedly underestimated by two-dimensional unit cells at a given reinforcement volume

fraction (Han et al. [2001a]). Axisymmetric cell descriptions fare better in this respect,

but by design can handle only highly regular microgeometries, so that local “hot spots”

caused by irregular particle spacing can hardly be investigated. Accordingly, it is of con-

siderable interest to study the initiation and progress of microscale damage in PRDMCs by

three-dimensional unit cells that involve a number of particles in irregular arrangements.

Experiments have shown that in a number of PRDMC systems, among them AA2618-

T4 reinforced by SiC particulates (LLorca and González [1998]) and HSS (Mishnaevsky

et al. [2001]), brittle cleavage of the particles tends to be the primary microscale mechanism

for initiating damage (This behavior, however, is by no means universal. Among the wide

range of PRDMCs produced and studied, essentially any combination of critical damage

modes can be found). Cracks in such materials have been found to be preferentially oriented

normally to the applied uniaxial tensile loading direction (Mawsouf [2000]) and, depending
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on particle shape and size, to often run through the inclusions’ centers (Wallin et al. [1987];

Pandorf [2000]).

The study presented in the following was planned as a major step towards modeling

a damage mechanism of this type in PRDMCs via three-dimensional multi-particle unit

cells. Due to the complexity of the problem and to minimize interaction effects between

the damage mechanisms it was focussed on the brittle failure of reinforcements in ductile

matrix composites reinforced by stiff spherical particles. This choice of spherical particles

is quite realistic for powder metallurgically produced HSS, but is more of an idealization

for MMCs in which SiC particles reinforce an aluminium matrix. The present modeling

strategy differs considerably from the published literature (Pandorf [2000]; Broeckmann

[2001]), where two-dimensional models were used but all of the above mentioned damage

mechanisms were modeled.

1.2 Particle Reinforced Composite AA2618/SiCp-T4

Lightweight MMCs based on commonly used matrix materials such as aluminium can be

produced economically with liquid-state processes. In order to approach homogeneous

particle distributions well controlled stiring is necessary. However, the production route

is limited to lower particle volume fractions and the problems of particle wetting and

of the trends towards segregating of the commonly used SiC and Al2O3 particulates are

persisting. For increasing the reinforcement volume fraction rheo-casting is used. Spray

deposition methods are alternatively employed for higher volume fractions, the melt being

spray nozzled under the use of nitrogen and deposited together with the ceramic particles,

which are blown into the spray zone. However, these methods have limitations in the

geometrical shapes that can be attained.

Arbitrary reinforcement volume fractions are possible with powder metallurgical processes,

which also offer very homogeneous reinforcement distributions. Consolidation is done via

vacuum hot pressing or Hot Isostatic Pressing (HIP) processes or extrusion, which make

this method quite expensive.

For the present studies an MMC has been specifically chosen, which is known to

have particle failure as a dominant damage mechanism and the required component ma-

terial properties of which are reasonably well known. In LLorca and González [1998]

AA2618/SiCp-T4 is described as an MMC with such a behavior, the particle sizes rang-

ing from 5 to 20µm. The chemical composition of the matrix material used, AA2618-T4,
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is given in table 1. For the mechanical properties for both the matrix AA2618-T4 and

the reinforcing material SiC used in the simulations refer to table 3. Note, that the SiC

particulates are treated as isotropic (and thus not as monocrystalline), that the elasto-

plastic behavior of the AA2618-T4 matrix is taken to include all effects of the submicron

microstructure of the alloy (e.g. precipitate hardening effects) and that the grain structure

of the matrix is not accounted for explicitly.

1.3 High Speed Steel

Due to its high working hardness, wear resistance and its toughness HSS is the most

widely used material for tools in machining processes such as shaping and forming, extru-

sion and punching. The usually high content of metallic carbides makes HSS capable for

applications up to the temperature range of 550–600oC. For attaining specific properties

careful adjustment of alloying elements is a precondition. In contrast to proper MMCs, the

carbides are formed in HSS according to thermodynamics and kinetics, but the resulting

microstructure clearly can be treated as a PRDMC.

Most of the world production of HSS still relies on electro slag remelting technology. This

process typically gives an inhomogeneous distribution of hard carbidic particles in the ma-

terial of the size of micrometers, the primary carbides. Nanometer-sized carbides, referred

to as secondary carbides, are more or less homogeneously distributed throughout the ma-

trix phase. Alternatively the more expensive Powder Metallurgical (PM) routes allow a

”larger window of opportunity” in controlling the arrangements of the primary carbides

and have become more and more important in tool design.

However, even though HSS has been widely used for a long time, the influence of the com-

plex morphology of such heterogeneous materials on the effective material properties and

on their failure behavior is yet not well understood. The present work is intended to be a

step towards obtaining additional insight into the damage and failure behavior of HSS. It

is mainly focused on HSSs produced by PM routes. Throughout the present study primary

carbides will be referred as ”carbides”, their material being chosen to represent either of

two groups of ”mixed metallic carbides”. The matrix is treated as homogeneous isotropic

elastoplastic material, the secondary carbides and other inhomogeneity effects (martensite-

austenite topology) being smeared out and accounted for in the material parameters. An

example of the chemical composition of a typical HSS produced by PM is given in table 2,

the constituent material properties used in this work for modeling the mechanical behavior

are listed in table 4.



Chapter 2

Modeling Damage in PRDMCs on

the Microscale

As is well known from everyday experience the failure behavior of brittle materials differs

strongly from typical ductile failure behavior. In principle it could be said, that catastrophic

failure at widely varying stress levels takes place.

In general, failure, and in the special case failure of brittle materials, is attributed to always

present inhomogeneities within the material. ”Inhomogeneity” is characteristic for all real

materials at atomic, micro-, meso- and macroscale. At the macroscopic level the random

inhomogeneity is evident in the random variations of macroscopic properties, such as hard-

ness, deformation or strength properties. At the smaller scales the random inhomogeneity

refers to size, orientation, topology, physical properties of the materials’ constituents and

at the submicroscopic level, it takes the form of geometrical defects in the almost perfect

structure, vacancies, precipitates, grain boundaries, and dislocations. The present study

corresponds to conditions at the microscale. Simulation allow idealizations to be intro-

duced, where e.g. inhomogeneities at lower length scales are smeared out and each of the

constituents, matrix and reinforcement, can be assumed to be homogeneous and isotropic.

This results in a reduction of degrees of freedom within the models to be considered. Fur-

thermore, the simulation methods used in the present work offer a tool for studying the

microscale damage modes of inhomogeneous materials in isolation, which opens an avenue

for a better understanding of the factors involved by reducing the complexity of the problem.

The focus has been put on the brittle failure of particulate reinforcements.

12
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First, this chapter tries to give a survey of models proposed in the literature for the

brittle fracture of bulk ceramics. Then the method chosen for the description of the failure

of brittle particles in a ductile matrix is explained. For completeness useful damage rele-

vant parameters for describing damage in the matrix and failure in the interface are also

introduced.

2.1 Fracture of Brittle Reinforcements

Fracture processes that are neither preceded nor accompanied by inelastic, especially plas-

tic, deformation, because the material does not possess any mechanism by which significant

amounts of strain energy can be dissipated (e.g. slip mechanisms, or existing mechanisms

are blocked because of environmental conditions such as temperature), are designated as

”brittle fracture”: the whole applied energy is reversibly stored and can be dissipated only

by the formation of new (fracture) surfaces (Freudenthal [1965]).

With the survey of experimental results given in Wallin et al. [1987] the main aspects

of brittle particle failure in PRDMCs relevant to the present work are:

• On the average larger particles fail preferentially compared to smaller ones.

• The crack orientation in particles tends to be perpendicular to the direction of the

maximum tensile stress.

• Experiments show that the ultimate strength of PRDMCs under tensile loading shows

a considerable statistical scatter.

From these findings it is clear, that a failure description similar to brittle bulk ceramics

may be suitable.

The experimental fact that experiments on uniformly sized samples of brittle ceram-

ics subjected to equal tensile loads show a wide statistical scatter, was the basis for the

statistical probability model published by Weibull [1939] which is well established in the

literature for describing the failure probabilities of brittle materials. This idea has been

extended into Weibull probability models for describing the brittle failure of reinforcements

in composite materials, which have seen fairly wide use (Wallin et al. [1987]; Bréchet et al.

[1991]; LLorca et al. [1993]; Lewis and Withers [1995]), the main alternative being critical
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particle stress criteria, see e.g. (Li and Ellyin [1998]). Weibull fracture probabilities have

been used in this framework both in the form of Rankine-type criteria and in combination

with Monte-Carlo algorithms, see e.g. Pandorf [2000].

The modeling of the generation or growth of cracks proper (i.e. the generation of new

free surface) in numerical methods like the Finite Element Method (FEM), has been real-

ized via cohesive zone models (Finot et al. [1994]; Steglich [1999]), instantaneous opening

by node release (Broeckmann [1996]; Pandorf [2000]) or by the instantaneous introduction

of an elliptical crack (Ghosh and Moorthy [1998]). Within special FE formulations the first

approach uses so called cohesive elements, which link the nodes lying at predefined crack

planes and which lose their stiffness under appropriate loading and deformation conditions

(such elements are also frequently used for modeling interfacial debonding). This behavior

is typically controlled by a cohesive potential, which links local tractions and displace-

ments while prescribing the appropriate energy of fracture. Within the second method

crack planes open after some fracture criterion is fulfilled (e.g. controlled by Weibull frac-

ture probabilities) either by node release, in which case ”double nodes” must be provided

along predefined crack planes, or by fully remeshing the FE mesh. In the third method,

special elements are used which provide for the presence of particles within each element,

each particle, in turn, having the capability of forming an elliptical crack. This has been

achieved within the extended Voronoi Cell Finite Element Method (VCFEM, Ghosh and

Moorthy [1998]) essentially by embedding appropriate analytical solutions via enriched hy-

brid shape functions. Note that whereas cohesive zone models are capable of modeling the

progress of a crack, in the other two models crack opening is instantaneous, which makes

them suitable for the use in combination with Weibull-type probabilistic models.

In the present study a Weibull based node release technique at predefined fracture

surfaces is used. In the following the Weibull model is discussed in general, i.e. the basic

application to bulk ceramics is introduced and considerations on uniaxial and multiaxial

loading conditions for brittle materials are given. Finally the Weibull model is applied

to the description of the brittle failure of reinforcements, and, to come to the core of the

present work, to the brittle particle fracture in PRDMCs.

2.1.1 General

A statistically relevant number of test results of nominally identical brittle specimens under

nominally identical loading conditions typically give strengths that differ widely around

the mean values, obtained by simple Gauß type statistics, and for material evaluation and
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material design the significance of such average values is rather doubtful. Experiments

have shown that the scatter of test results has to be considered as a part of the physical

process of brittle fracture. A single ”tensile strength” cannot be given, but there is a

certain definable probability that a given sample will have a given strength.

A first general consideration of experiments on brittle materials typically shows, that

the average tensile stress of fracture is smaller than the average bending fracture stress,

i.e.

σ̄fr,tensile < σ̄fr,bending (2.1)

can be observed. The reason for this behavior obviously is the different stress distributions

inside the specimen. In bending tests of brittle specimens the part of the cross section

which is exposed to compressive stresses must not be regarded in the discussion of fracture

behavior (Ashby and Jones [1986]; Green [1998]) and only flaws lying in the tensile loaded

section of the specimen can become critical. Thus, compressive stresses can be safely

assumed to have no influence on the risk of rupture and the specimen will survive higher

stresses under bending.

A second important result of experiments, a typical volume dependence of the failure of

brittle materials, shows that larger specimens of the same material fail at lower stresses

than small ones, on the average. One must assume, that this is a consequence of the inner

structure of the material. A higher likelihood of defects, namely in larger samples, results

in a higher probability of failure at the same applied load. Or, in other words, the brittle

fracture of a material under a state of (tensile) stress is related to its defect structure, i.e. to

the concentration and severity of defects in the specimen and the likelihood of the existence

of a critical crack is greater in large specimens than in small ones.

These findings were first combined into a reliability model by Weibull [1939]. The

statistical considerations lead to a size effect on brittle fracture strength in the meaning

of having either a certain number or a certain severity of flaws for causing fracture; the

likelihood of the occurrence of failure is dependent on the statistical expectation of the

critical conditions in the sample and it is directly related to the specimen’s size. Failure

of many brittle materials initiates at micro cracks that reach or exceed a certain effective

critical length, and naturally depends on their bias compared to the local stress state.

Furthermore the flaw distribution in bulk ceramics individually differs from specimen to

specimen, for typical distributions of microdefects g(a) see figure 8. Thus, as mentioned

above, the failure of brittle materials cannot be satisfactorily described by deterministic
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methods and the statistical description has to be used.

In the following, first a group of methods for describing the failure of brittle materials

in general will be discussed and then their applications to the brittle failure of particles

embedded in a ductile matrix will be focussed on.

2.1.2 Uniaxial Stress State

Weibull [1939] showed, that for uniaxially loaded specimens of elastic brittle materials the

probability of failure Pfr is simply related to the applied (tensile) stress σ and the specimen

volume V by

Pfr = 1 − exp(−n(σ) · V ) , (2.2)

where n(σ) is called the ”density of risk of fracture”. Defects and inhomogeneities are

assumed not to influence each other, they are independent; therefore probabilities of in-

terrelated parts of a discussed structure can be multiplied. The fracture probability of the

whole sample can be obtained by the use of the Weakest Link Theory (WLT) (the proba-

bility of the nonfailure of e.g. a chain is equal to the simultaneous probability of nonfailure

of all of the links):

Ps = (1 − Pfr) =

k
∏

j=1

Ps,j (2.3)

The probability of survival Ps of a given specimen of volume V is the result of the inde-

pendent probabilities of survival Ps,j of the k considered and relevant volume elements.

Weibull [1939, 1951] related the density of risk of fracture (the logarithmized survival

probability) to the actual stress acting on the body in the following way, based on empirical

observations:

n(σ) := − ln(1 − Pfr) =
1

V0

(

σ − σ′
u

σ′
0

)m′

. (2.4)

Here V0 represents an arbitrary scaling parameter (reference volume), σ ′
u a lower limit of

strength, where Pfr(σ ≤ σ′
u) = 0, and σ′

0 and m′ are material parameters, respectively,

compare Weibull [1951]; Wallin et al. [1987]; Margetson and Cooper [1984]. The frequently

used two-parameter relations set the threshold stress σ ′
u = 0 and lead to the well known

relation for the fracture probability for a specimen
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Pfr = 1 − Ps = 1 − exp

{

− V

V0

(

σ

σ0

)m}

, (2.5)

where m is known as the Weibull modulus. The characteristic strength σ0 is defined such

that for a specimen of volume V = V0 the probability of fracture is

Pfr = 1 − exp

{

−
(

σ

σ0

)m}

= 1 − exp {−1} = 0.632 , (2.6)

i.e. where the density of risk of fracture n(σ) = 1. For a given material, the characteristic

strength σ0, the normalizing parameter V0 and the Weibull modulus m are taken to be

material constants and consequently

V0σ
m
0 = const. (2.7)

For a homogeneous stress state σ0 and V0 determine the position of the curve Pfr(σ) since

Pfr(σ0) = 0.632 at σ = σ0 and V = V0. The slope of Pfr(σ) is given by the Weibull modulus

m. The typical volume dependence of a Weibull distribution as function of the applied (ho-

mogeneous) stress state is schematically presented in figure 6: different specimen volumes

of the same material have the same fracture probability at different stress levels. More

detailed mathematical considerations of the Weibull distribution are given in appendix B.

Following Danzer [1992] the density of risk of fracture n(σ) can be associated with the

average number of critical defects 〈Nc,V 〉 within the specimen (averaged over a number of

specimens),

〈Nc,V 〉 = n(σ) · V , (2.8)

from which the influence of the specimen dimensions becomes obvious. A larger specimen

of the same material (the interpretation of n(σ) is discussed in more detail in the following

section) means a higher average number of critical defects 〈Nc,V 〉, and leads, together

with eqn. (2.2), to a higher probability of failure.

The shapes of Weibull distribution functions for different m are schematically drawn

in figure 7. Perfectly predictable materials are characterized by m → ∞, resulting in a

step function Pfr(σ) with σ0 representing a discrete strength value.

In the next subsection a physical interpretation of the Weibull fracture distribution

function, eqn. (2.5), is introduced, in the case of limitation to uniaxial tensile stress states.
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Defect Density and Strength Distribution:

In order to link Weibull fracture probabilities with defect densities in a sample, one can

assume that all critical cracks are oriented perpendicularly to the loading orientation and,

for simplicity, that the failure criterion is of ”Griffith”-type, who originally considered the

strain energy change of an infinite plate of elastic material with a central elliptical flaw

loaded under uniform tension and under plane strain conditions (more complex criteria are

possible, but not necessary for the basic message). Hence failure occurs, when the stress

intensity factor K of at least one flaw exceeds the fracture toughness related to mode I

loading, KI,c, i.e. (see Freudenthal [1965] and Danzer et al. [1992])

K = σY
√

a ≥ KI,c . (2.9)

Here σ is the applied stress multiplied by Y (a geometry factor) and the length of the flaw

is a. The critical crack length ac(σ) therefore is given by the critical value KI,c, Y and σ

and all cracks of length a ≥ ac(σ) are supposed to lead to specimen failure

a ≥ ac(σ) =

(

KI,c

σY

)2

. (2.10)

The density of critical flaws of sizes a ≥ ac(σ) for a given stress σ and hence the probability

of fracture per volume unit then is

n(σ) =

∫ ∞

ac(σ)

g(a)da , (2.11)

where the size distribution of the microdefects distribution function g(a) (compare figure 8)

may be approximated by an inverse power law h(a) for explicit evaluation, compare Danzer

et al. [1992]:

h(a) = h0

(

a

a0

)−ρ

. (2.12)

The proportionality factor h0/a
−ρ
0 is given by metallographically obtained material param-

eters h0, ρ and the scaling length a0 (flaws are assumed to be small in relation to the

specimen dimensions). The relation between eqn. (2.12) and the Weibull parameters can

be obtained by inserting eqn. (2.12) into eqn. (2.11). With the use of eqn. (2.10) one

obtains
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n(σ) =
a0h0

ρ − 1

(√
a0π σY

KI,c

)2(ρ−1)

(2.13)

and comparison with eqns. (2.2) and (2.5) leads to

m = 2 · (ρ − 1) (2.14)

and

σ0 =

(

ρ − 1

h0a0V0

)
ρ−1
2

· KI,c

Y
√

a0
. (2.15)

(see also Lewis and Withers [1995] and Mura [1987]).

Strictly speaking these considerations are valid only for homogeneous crack distributions

within the discussed specimen. For inhomogeneous defect distributions the density of

cracks, h(a), and the density of critical defects, n(σ), are position dependent, i.e. h0(a) →
h(a, r), ρ → ρ(r) (Sutherland et al. [1999]). However, locally the Weibull fracture proba-

bility distribution can be expected to hold true. Another type of position dependence can

result from inhomogeneous stress distributions, so that ac(σ) → ac(σ(r)) in eqn. (2.10).

Under such conditions eqn. (2.5) becomes:

Pfr = 1 − exp

{

− 1

V0

∫

V

(

σ(r)

σ0

)m

dV

}

. (2.16)

Whereas eqn. (2.14) is true even for multiaxial stress states and other crack orienta-

tions, eqn. (2.15) changes. Eqn. (2.16) requires additional discussion, considering that an

arbitrary oriented crack under a uniaxial stress state in general is loaded multi-modally.

The linkage between fracture mechanics and Weibull fracture probabilities and the treat-

ment of other damage modes (mode II and mode III), are considered e.g. in Thiemeier

[1987] and Heger [1993].
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2.1.3 Treatments of Multiaxial Stress States in the Literature

For generalizing the concept of the WLT for considering multiaxial stress states the fol-

lowing methods have been proposed in the literature:

• Mapping the stress tensor onto an equivalent stress, e.g. using the normal stress com-

ponent acting on a given plane, and, after exponentiating by the Weibull parameter

m, averaging over all plane orientations for forming the density of risk of fracture.

This idea goes back to Weibull [1939].

• In a number of publications the Weibull fracture probabilities of multiaxially loaded

bodies are based on the so called Principle of Independent Action (PIA) of the

principal stresses, see e.g. Freudenthal [1965]. Within this assumption the probability

of survival for each of the principal stresses are evaluated using the original model

and their combination by multiplication results in the probability of survival of the

specimen, see e.g. Margetson and Cooper [1984]; Stanley et al. [1973]; R’Mili et al.

[1996].

For anisotropic materials such as fiber composites this implies a description based

on lengths instead of volumes, where the Weibull parameters ml, mb and md are not

necessarily equal (Sutherland et al. [1999]) and for two specimens A and B instead

of eqn. (2.7) the following relationships hold for length, breadth and depth

σB

σA

=

(

lA
lB

)
1

ml σB

σA

=

(

bA
bB

)
1

mb σB

σA

=

(

dA
dB

)
1

md

. (2.17)

Similarly, a so called ”Noninteractive Macroscopic Reliability Model” based on the

PIA assumption interprets the risk of fracture as a function only dependent on a set

of invariants that correspond to the physical mechanisms related to fracture of the

individual problem, and are ”constructed” out of the stress tensor and an orientation

unit vector (Duffy and Arnold [1990]).

Experiments have shown, however, that with the PIA under certain conditions un-

derestimation of multiaxiality influences can result (Batdorf and Crose [1974]).

• More complex methods treat the failure mechanism on the basis of fracture me-

chanics. Defects are assumed to be plane cracks subjected to certain stress levels

depending on orientation and stress state and this results in an influence of the stress

state on the failure probability.
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2.1.4 Modeling Brittle Particle Failure in

Heterogeneous Materials

The General Model

For the present work an approach based on the third of the above groups of methods is

used:

In analogy to Thiemeier [1987] an equivalent stress σI,eq which accounts for considering

only mode I loading of a crack oriented by angles θ and ϕ (see figure 9) has to be found

out of the local stress tensor

σI,eq = σI,eq(σ1(x, y, z), σ2(x, y, z), σ3(x, y, z), ϕ, θ)

⇒ σI,eq = σI,eq(x, y, z, ϕ, θ) (2.18)

on the basis of some appropriate fracture criterion. With the knowledge of the orientation

of the normal of a given crack to the local principal axes of the stress tensor and a criterion

for the multiaxiality in terms of an equivalent stress σI,eq, the fracture probability then

follows as:

Pfr = 1 − exp

[

− 1

V0

∫

V

1

2π

∫ π

ϕ=0

∫ π

θ=0

(

σI,eq(x, y, z, ϕ, θ)

σ0,I

)m

sin θ dθ dϕ dV

]

, (2.19)

compare Thiemeier [1987], with the characteristic strength to mode I loading, σ0,I .

An approach similar to eqn. (2.19) was developed by Gyekenyesi and Nemeth [1987]

and Hunt and McCartney [1979], the latter additionally considered different types of defects

having different fracture criteria. In appendix A some expressions for equivalent stresses

for evaluating Weibull-type fracture probabilities are given.

In the next section the assumptions for the fracture criterion used in the present work

are listed.

FE Model for Particle Cleavage in PRDMCs

In the present work, ductile matrices reinforced by spherical particles are considered. This

particle shape avoids crack initiation at surface features of the particles such as notches,
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which may act as local stress concentrators in more general particle shapes. Also, for geo-

metrical reasons, multiple cracks in a particle are not very probable. Accordingly, particle

cleavage along planar fracture surfaces running through the particle centers is a reasonable

assumption. Because experimental work has shown that the crack orientations correlate

strongly with the direction of the overall maximum principal stress, the assumption can

also be made that crack planes (provided by the FE-mesh of the particle) are oriented

normally to the direction of the overall principal stress.

A node release algorithm was chosen to model the actual opening up of the crack (see

chapter 3), which is activated by Weibull-type fracture probabilities. For evaluating the

fracture probabilities within each particle j the following simple extension was chosen. For

the calculation of the equivalent stress σI,eq, relevant for evaluating the particle fracture

probability, the stress tensor for each integration point is analyzed. As a consequence of

assuming mode I failure of the particles the maximum principal stresses can be used for

the equivalent stresses σI,eq, only one crack plane, oriented perpendicularly to the global

loading direction being regarded:

σI,eq = σ1 and σ0 = σ0,I (2.20)

The resulting relation for the fracture probability of particle j as used in the present work

is, rewriting eqn. (2.19):

Pfr,j = 1 − exp

{

− 1

V0,j

∫

Vj :σ1(r)>0

(σ1(r)

σ0,j

)mj

dV

}

. (2.21)

With the material characteristic Weibull modulus of the particle, mj, the first maximum

principal stress distribution within the particle, σ1(r), related to a characteristic material

strength, σ0,j , integrated over the particle volume Vj and normalized by the reference vol-

ume V0,j, the Weibull fracture probability is determined. The WLT assumption, integrated

into Weibull models by definition, considers, on the one hand, that the probability of frac-

ture increases when the particle size increases and, second, increases when stresses acting

on the particle increases.

Numerical experiments showed that for the conditions studied, i.e. loading by uniaxial

tension of a PRDMC with randomly positioned spherical particles, eqn. (2.21) gives very

similar results to the more complex expressions listed in appendix A.2, compare also ap-

pendix A.3.

Details of the implementation are discussed in chapter 3.
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2.2 Matrix Failure

Methods for describing the evolution of ductile damage in metallic matrices are the topic

of this section. Two main approaches have been used in the published literature for the

description and modeling of matrix failure. First, the previously mentioned cohesive zone

models have been used by a number of authors, especially in cases where the position of

the crack is known beforehand from symmetry considerations (Finot et al. [1994]).

Second, damage type models have been used, in which the initiation and evolution of

spatially distributed damage is followed, the effects of which may be accounted for by a

gradual reduction of local stiffness or by element elimination techniques. A well known

group of descriptions of this type are Gurson models (Gurson [1977] and Tvergaard [1982];

Tvergaard and Needleman [1984]), which describe ductile damage in metals via yield func-

tions that depend on the void volume fraction. In their fully developed form they contain

an evolution law that covers void nucleation, growth and coalescence.

A common drawback of damage type models that give rise to local stiffness reductions

is their marked mesh dependence. This difficulty can be resolved by regularizing the models

by invoking higher order or nonlocal continuum theories or by carrying out time dependent

analyses with some dissipation.

Ductile matrix damage is not a primary topic of the present study and, accordingly,

no analyses involving stiffness reduction due to matrix damage were carried out. Where

appropriate, assessments of the vulnerability of the matrix to ductile matrix damage were

made, however, by evaluating a ductile damage indicator (Fischer et al. [1995]), which

may also be considered as belonging to the damage type family of models. This damage

indicator was developed by Gunawardena et al. [1991] on the basis of work by Rice and

Tracey [1969] as well as Hancock and Mackenzie [1976]. It uses a reference failure strain

εf = 1.65 ε0 exp

(

−3

2
η

)

with η =
σH

σeq

, (2.22)

where the stress triaxiality ratio η, given by the relation of the hydrostatic stress σH = 1
3
σkk

divided by the Mises equivalent stress, σeq, influences the initiation and growth of ductile

matrix damage. The failure strain εf relates the fracture strain in the uniaxial case, ε0, to

the general triaxial case. That is, for

σ1 6= 0, σ2 = σ3 = 0 (2.23)
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the triaxiality becomes η = 1
3

and

−3

2

σH

σeq
= −1

2
=⇒ exp

(

−1

2

)

=
1

1.65
. (2.24)

The differential damage indicator then is defined as the increment of the accumulated

plastic strain related to the reference failure strain, eqn. (2.22):

dDi =
dεeq,p

εf
. (2.25)

By inserting eqn. (2.22) into this relation one obtains

dDi =
1

1.65 ε0
exp

(

3

2
η

)

dεeq,p . (2.26)

Provided the evolution of both εeq,p and η are known over the full deformation history, the

above expression can be integrated, leading to the following ductile damage indicator:

Di =
1

1.65 ε0

∫ εeq,p

0

exp

(

3

2
η

)

dεeq,p . (2.27)

Within numerical engineering methods the local stress (and thus η) as well as the plastic

strains are available at each integration point at each increment, so that an approximate

evaluation of eqn. (2.27) e.g. by the trapeze rule is rather straightforward. At Di = 1

the material locally has ”used up its ductility” and ductile failure must be expected. For

other values of Di (except, of course, the trivial value of Di = 0), however, a physical

interpretation of Di is not possible.

A major strength of the concept of the ductile damage indicator is the fact that only one

material parameter, ε0, is required, which can be obtained from uniaxial tests (Fischer et al.

[1995]). Ductile damage indicators can be combined with element elimination algorithms

which are activated upon reaching Di = 1 to actually model the progress of ductile cracks,

see e.g. Mishnaevsky et al. [1999]. Note that in the present studies an uncoupled method is

used (the damage indicator does not influence the elastoplastic analysis) and a damage free

structure is investigated in the stress analysis. In the present study the damage indicator

concept has been used only for an estimation of possible damage within the matrix in

addition to the particle fracture.
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2.3 Interfacial Debonding

Interfacial failure at phase boundaries can have a significant influence on the deformation

properties of PRDMCs. First approaches for modeling interfacial failure were based on

energy-balance evaluations similar to Eshelby models (Goods and Brown [1978]). The en-

ergy released by interfacial decohesion must be higher than the energy required for creating

new surface. This is a necessary but not a sufficient condition for interfacial decohesion.

Additionally a critical interface strength has to be exceeded.

Therefore models based on stress-strain criteria have been developed, e.g. by Nutt and

Needleman [1987], for quantitative description of pore growth at reinforcement ends, where

the continuum mechanics based approach of a cohesive zone model, suggested by Needle-

man [1987], enables activation of different damage modes:

• Exceeding a critical normal stress leads to decohesion normal to loading direction, in

the sense of mode I failure. Cyclic loading would make crack closure possible.

• Sliding along the interface, mode II failure, occurs after exceeding a critical shear

stress.

• Mixed mode failure, superimposing both modes can occur, as a consequence of mul-

tiaxial loading of the interface.

Evaluation of interfacial decohesion via FE-methods and on the basis of the cohesive zone

model can be realized either by interface elements (Needleman [1990]; Steglich [1999]),

setting the element stiffness to zero after exceeding the critical value, or by node release

techniques, introducing interface failure at appropriate positions of the modeled interface

(Gross-Weege [1996]).

In the present work the interface conditions after applying mechanical loads and possi-

ble particle failure are only analyzed on the basis of the evaluated magnitudes of the inter-

facial tractions. It should be noted, however, that within the implemented user subroutines

interfacial decohesion could be realized. For a detailed description refer to appendix C.



Chapter 3

The Unit Cell Model

With the present levels of computational power particle reinforced materials can be routinely

modeled by three dimensional periodic arrangements of particles using unit cells that con-

tain a limited number of particles. For the description unit cells have to be created, which

ideally should correspond to representative volume elements (Hashin [1983]; Markov [2000])

that fully describe the statistics of the microstructure.

Within the unit cell the position distribution of the inclusions can be either regular and/or

more or less symmetric/oriented (for different particle shapes). Simple but regular struc-

tures can be treated by special unit cell design or by axisymmetric models. Random arrange-

ments of inclusions offer more general microgeometries and foundations for more general

studies of MMCs; they are used within this work. Nevertheless, the periodic arrangement

of the unit cells itself prevents them from fully describing statistically homogeneous micro-

geometries.

Within this chapter the unit cell models used are introduced: The techniques for generating

particle arrangements are explained and a method for a geometrical characterization of the

unit cells is discussed. The realization of the Finite Element model and the preparation of

the input data for the Finite Element code are presented, including a description of sub-

routines required for implementing particle failure.

26
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3.1 Multi Inclusion Unit Cells

The principal aim of the present work consists in using unit cell models for studying the

mechanical behavior of PRDMCs subjected to multiple sequential particle fracture, the

failure events being triggered by the stress states of the individual particles. Implicit with

this task is the need for unit cells that contain a number of particles that may either form

”simple periodic” arrays (such as simple cubic (sc), body centered cubic (bcc) or face

centered cubic (fcc) microgeometries) or may be positioned in some random manner that

aims at approximating the statistically homogeneous arrangements of particles found in

most particle reinforced composites. While the former type of model microgeometry may

pose slightly lower computational requirements for a given number of particles per unit

cell, it suffers from the disadvantages of leading to inhomogeneous overall properties even

in the elastic range, compare e.g. Weissenbek [1994], and of considerably underestimating

the fluctuations of the microstresses in the particles (Han et al. [2001a]). It is also in-

capable of accounting for inter-particle fluctuations of the stresses and strains, which are

an important arrangement effect that can be studied by unit cells with statistically based

microgeometries (Han and Böhm [2002]).

Accordingly, in the following unit cells are used that aim at approaching the properties of

Representative Volume Elements (RVEs) for statistically homogeneous particle distribu-

tions. In addition, the following assumptions are made:

• All particles are assumed to be of the same shape (which fits well for modeling

powder metallurgically produced HSS, see figure 10, but is an approximation for

MMCs consisting of aluminium reinforced by SiC),

• have isotropically elastic material behavior up to failure,

• and are perfectly bonded to the matrix.

Two algorithms were used for generating the particle arrangements of the unit cells.

Initial development work was performed on Randomly Pruned Cube (RPC) arrangements,

which are fairly easy to mesh. For ”production runs” geometries generated by Random

Sequential Adsorption (RSA) algorithms were employed. It may be noted that the algo-

rithms developed here can in principle be used for any type of microgeometry consisting

of spherical particles embedded in a matrix. The RSA-approach is limited to a particle

volume fraction of about 25 %, depending on number, size and shape of the particles,



3.1 Multi Inclusion Unit Cells 28

whereas the RPC-method would allow a considerably higher reinforcement volume frac-

tions, theoretically, for a qualitatively acceptable FE-mesh, but with the price of having

higher regularity (it approaches the sc arrangement).

3.1.1 Randomly Pruned Cube Arrangement of Spheres in a Unit

Cell (RPC-Cells)

In this subsection the creation of one RPC-unit cell used within the present work is described.

The cube shaped unit cell is built up of an appropriate number of identical cube shaped

subvolumes, in each of which provision is made for a centered spherical region. In order

to obtain phase arrangements of some given volume fraction of particles, an appropriate

number of these spheres is selected by a random procedure to have the material properties

of particles. All other spheres as well as all other volumes are treated as matrix. Figure 11

shows such an RPC arrangement consisting of 64 subvolumes of side length lsubcell
1,2,3 = 0.25,

the diameter of all spheres being dø = 0.2. Designating fifteen of these spheres as particles

results in a total particle volume fraction of ξ = 6.3%.

This method evidently gives rise to phase arrangements that are much more irregular

than the sc, bcc or fcc arrays that were frequently used in the literature (see e.g. Hom and

McMeeking [1991]; Weissenbek et al. [1994]). Even arrangements with differently sized

spheres can be generated this way up to a certain point.

Nevertheless, even though considerable irregularity is evident in such microgeometries,

interparticle distances are constrained to remain relatively large and particle positions in

figure 11 clearly show patterns of layering and alignment. For identifying the individual

spheres for later discussion they are assigned to four layers, named A to D. The numbering

scheme is explained in figure 11. It may be noted that the realism of the arrangements

might be improved by using spheres that are randomly offset from the centers of the

subcubes, but at the cost of losing much of the simplicity of the basic scheme.

3.1.2 Cells Created by the Random Sequential Adsorption Ap-

proach (RSA-Cells)

A variant of the RSA, see e.g. Rintoul and Torquato [1997], is the technique of choice for

approximating random distributions of inclusions by unit cells in the present work.

In general, this method for generating reinforcement positions starts with choosing the
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volume fraction, number of reinforcements per unit cell and limiting variations of sizes and

shapes of the reinforcements. With this initial information positions are created sequen-

tially for each reinforcement center by using a random number generator. These positions

are accepted, if the ”new” reinforcements do not intersect with or do not approach too

closely to (with respect to some minimum distance) reinforcements already present. Oth-

erwise new center coordinates have to be generated. For nonspherical reinforcements the

orientations, sizes and shapes of the reinforcements have to be considered additionally.

Depending on the number, shape and size variations RSA-type approaches are limited to

particle volume fractions below, say, 25%. Higher volume fractions tend to lead to geo-

metric frustration due to the scarcity of free volumes for additional particles.

A general version of the modified RSA approach accounting for user specified particle

distances and the periodicity of unit cells can be explained in detail as follows (Han et al.

[2001b]):

The surface of each inclusion j can be described by a parametric equation

jX = jX(jc, jβ, jR, js) with j = 1, . . . , N, (3.1)

where the vector valued function jX gives the position of each point on the j-th particle’s

surface, jc is a reference position of the particle center, jβ the orientation vector, jR the

size parameter and js is a free parameter (e.g. describing the shape). For positioning the

next new particle i its distance i,j∆ to each of the previously accepted particles j = 1, i− 1

has to be equal to or larger than a user selected minimum separation D:

i,j∆ =‖ iX(ic, iβ, iR, is) − jX(jc, jβ, jR, js) ‖ (3.2)

i,j∆ ≥ D with j = 1, i − 1. (3.3)

In order to allow the use of periodic boundary conditions (eqn. (3.12)) of the unit cells for

the surfaces of neighboring particles in adjacent unit cells the relations

jX(jc k, jβ, jR, js) = jX(jc ± hk, jβ, jR, js) = jX(jc, jβ, jR, js) ± h(k) ∀ k (3.4)

must hold, i.e. each of the cubes making up the phase arrangement contains the same

number and arrangement of particles as the original cell. Here k describes the k-th adjacent

cell (k = 1, . . . , 26 in the case of cube-shaped unit cells: 6 nearest neighbors, 12 next-nearest

neighbors, 8 third-nearest neighbors) and h(k) the unit cell translation (periodicity) vector

for obtaining the k-th adjacent cell

h(k) = q
(k)
1 · a (1) + q

(k)
2 · a (2) + q

(k)
3 · a (3)
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with q
(k)
l = 0,±1, l = 1, 2, 3, k = 1, . . . , 26. (3.5)

where a (1), a (2) and a (3) represent the base vectors of the unit cell. Note that eqn. (3.2)

and eqn. (3.3) also have to be fulfilled for particles positioned in adjacent unit cells; for

nonspherical reinforcements their evaluation can be a considerable computational effort.

This method allows to generate rather realistic and general arrangements of spheres.

Figures 12 to 15 display arrangements obtained by positioning fifteen equally or bidispersely

sized spherical particles within unit cells using the modified RSA-method. It is clear that

more irregular microgeometries can be generated for a given volume fraction, numbers of

particles, particle size and particle shape with this approach, compared to the RPC-method.

Even though the maximum number of inclusions per unit cell has been chosen to fifteen

for the present work, which is expected to be sufficient for a satisfactory description of

the overall elastic properties (compare Drugan and Willis [1996]) of the modeled PRDMCs

(with overall isotropic material behavior), a higher number of inclusions per unit cell would

be preferable for modeling the behavior in the elastoplastic and damage regimes. At

present the number of particles is limited by hardware and software resources, especially

for modeling 3D unit cells by Finite Elements with the present sequential particle cleavage

approach (for more detailed discussions refer to section 3.3, too).

3.2 Geometric Characterization of Inclusion Arrange-

ments

The aim of ideal multi-inclusion unit cells is to correspond to RVEs for the full description

of the material to be studied Hashin [1983]; Markov [2000]. Actually, as mentioned above,

the size of phase arrangements is limited at present by available computational power. In

general it is difficult to show that a given volume element is a proper RVE for a given

material.

Drugan and Willis [1996] estimated for the case of elastic statistically isotropic composites

with matrix-sphere inclusion topology, that the overall moduli can be approximated within

errors of less than 5% (1%) by volume elements of the size of approximately two (five)

inclusion diameters independent of the reinforcement volume fraction. Even though the

above estimates were not developed for periodic microgeometries, they were also found

to be applicable to this case (Gusev [1997]). No comparable estimates are available for

nonlinear composites. Studies, however, strongly point out that the use of larger volume
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elements for nonlinear material behavior is necessary for obtaining accuracies comparable

to the linear case (Böhm and Han [2001]).

Arrangements of non-overlapping (”hard core”) inclusions can be characterized in

different ways.

First, the so called second-order intensity function (Bulsara et al. [1999]; Pyrz [1994a]) may

be used, which is defined as

K(r) =
n̄(r)

NV
=

1

NV

NV
∑

k=1

Ik(r)

NV
, (3.6)

where n̄(r) is the mean number of inclusions within a spherical volume of radius r around

a particle center, Ik(r) is the number of particle centers within this region and NV is the

total number of particle centers within the viewing region (= unit cell). So K(r) gives the

average number of particles within a radius r of an arbitrary particle of the diameter D and

should be able to differentiate between different (more or less regular) arrangements (Pyrz

[1994a]). For two arrangements of fifteen particles each, one created by the RPC method

and one by the RSA method, the comparison with the Poisson pattern is given in figure 16.

The differences are not too significant, even with the small number of particles, and the

K(r) computed for the unit cells deviate from the reference Poisson arrangement only by

about 5% within one unit cell distance.

Second, the intensity distribution of inter-inclusion distances is of interest, to answer the

question of what are the most (less) frequent distances of particles in the arrangements.

With the definition of a Pair Distribution Function (PDF) of the particle centers,

g(r) =
1

NV

dK(r)

4πr2dr
, (3.7)

where dK(r) = K(r + dr) − K(r) is the number of particle centers within the spherical

shell 4πr2dr at the distance r and NV is the number of the particles within the viewing

volume, a correlation length r0 can be determined. Following Pyrz [1994b] r0 is defined as

the distance beyond which the PDF g(r) ceases to deviate strongly from unity, provided a

statistically homogeneous particle center distribution is given (note that g(r) = 1 represents

the random Poisson point distribution).

In the two diagrams in figure 17 g(r) is given as a function of the non-dimensional

radius r
D

, where r is the distance and D the particle diameter, respectively: the left diagram

represents the PDF for one RPC-generated unit cell and for one RSA-generated unit cell.

Even after averaging the PDFs of five different RPC-generated arrangements of hard core
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inclusions and doing the same for the PDFs of RSA-generated arrangements, see figure 17,

right, noticeable peaks in g(r) are present, which are due to the periodic arrangement of

unit cells containing a small number of particles (a much smoother behavior is evident when

a unit cell containing some 5000 particles is evaluated). Whereas averaging different RSA-

generated PDFs shows a clear tendency towards smoothing the g(r)-function, the average

of the PDFs of RPC-generated unit cells continues to demonstrate their regularity. Naturally

this is a consequence of the method itself, arranging particles on quite a low number of

possible positions within the cell, in contrast to the RSA approach, where the particle

positions are in principle statistically equivalent (every point within the unit cell may be a

particle center). This means that within the unit cells created by the RPC-method, certain

particle distances are quite probable and averaging over a number of arrangements does

not reduce this geometrical regularity. In contrast, averaging the PDFs of some unit cell

arrangements generated by the use of the RSA-approach shows the deterministic nature of

these geometries.

Nevertheless it should be noted that even unit cells sized either to the estimates of Dru-

gan and Willis [1996] or to the correlation length generally are not RVEs in a strict sense,

and the homogenized behavior of each cell will usually differ from the corresponding en-

semble average over a number of cells.

For RSA unit cells with a side length l0 = 1 that contain fifteen particles at particle vol-

ume fractions of ξ = 6.3% (15%), the side lengths normalized to the particles’ diameter,

dø = 0.2 (0.268) are l0/dø ≈ 5.0 (3.7), which is in the range given by Drugan and Willis

[1996] to obtain overall elastic behavior within errors of a few percent. However, the rela-

tively low number of particles provides only a rather coarse approximation of the particle

arrangement statistics as is indicated by the diagrams in figure 17. Accordingly, the results

are best interpreted as pertaining to periodic model composites that approximate but do

not attain the microstructures of actual composites.

3.3 Implementation

3.3.1 Modeling Assumptions

In order to keep the study reasonably simple and in accordance with the aims stated in

section 3.2, idealized models of PRDMCs were generated and studied. Simplifications

in terms of the constituent material response took the form of prescribing isotropically
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elastic material behavior for the particles, assuming perfect bonding between matrix and

particles, and describing the matrix by a J2 continuum plasticity model with a modified

Ludwik hardening law of the type

σy = 0σ(m)
y + h · (ε(m)

eq,p)
n, (3.8)

where σy is the actual flow stress, 0σ
(m)
y the initial yield stress of the matrix, ε

(m)
eq,p the

accumulated equivalent plastic strain in the matrix, and h and n stand for the hardening

coefficient and the hardening exponent, respectively. All analyses were carried out for

initially stress free and virgin materials, i.e. the residual stress states that are typically

present in PRDMCs (Ho and Lavernia [1995]) were not accounted for (even though this is

in principle possible with the methods used). Because the thermal residual stress states of

the reinforcements of PRDMCs typically are compressive, the latter assumption may lead

to some underestimation of the strength with respect to particle failure.

Brittle failure of the particles under uniaxial tensile loading was modeled as “instan-

taneous total cleavage” along predefined fracture surfaces, which in the undeformed state

are assumed to be planar, to be oriented normal to the macroscopic loading direction

and to pass through the particles’ centers. These assumptions, while not unreasonable,

neglect perturbations to the local stress fields caused by both intact and fractured neigh-

boring inclusions, which may influence the position and orientation of cracks within the

inclusions (for more detailed considerations distinguishing between polycrystalline parti-

cles and monocrystalline particles would be necessary, where for the latter specific cleavage

planes must be regarded). While always leading to total splitting of the involved particle,

cracks were assumed to be arrested immediately after starting to penetrate into the ma-

trix. Damage and crack growth by interfacial decohesion or ductile matrix damage were

not accounted for. This modeling approach is related to the one proposed in Ghosh and

Moorthy [1998]. It limits the evolution of damage to the sequential failure of particles and

clearly constitutes a major simplification compared to the complexities of microscale dam-

age in actual PRDMCs. It is, however, very suitable for studying the influence of various

parameters on particle fracture.

Weibull-type (Weibull [1951]) fracture probabilities were evaluated for each particle j

at each load increment by using the expression given by eqn. (2.21). The use of Weibull

fracture probabilities for modeling the brittle failure of particles embedded in ductile ma-

trices can account for effects of the absolute size of the inclusions and is well established

in the literature, see e.g. Antretter and Fischer [1998]; Bréchet et al. [1991]; Lewis and
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Withers [1995]; LLorca et al. [1997]. A detailed discussion of the strengths and weaknesses

of such approaches can be found in Wallin et al. [1987]. It should be noted, however,

that Mummery et al. [1993] found that Weibull-type criteria for failure could not account

for the dependence of experimentally measured acoustic emission events on the particle

size in a particle reinforced MMC (in their work, particle and interfacial failure are brittle

and thus amenable to detection by acoustic emission methods).

A further simplification was introduced by approximating the microgeometry of an

actual composite by an infinite periodic arrangement of particles described by three-

dimensional unit cells that contain a limited number of identically shaped inclusions.

Within this modeling strategy, the failure of a single inclusion in the unit cell corresponds

to a material in which a periodically repeating pattern of local damage occurs. Two model-

ing schemes were used to generate unit cell geometries that approach statistically isotropic

particle arrangements, as was described above, see sections 3.1.1 and 3.1.2.

3.3.2 Particle Cracking Model

The particles in the multi-inclusion unit cell model are assumed to be fully intact and

initially stress-free when no loading has been applied to the material. This ”virgin state”

serves as the beginning of the simulations (however, the influence of thermal residual

stresses can be considered in future investigations). Furthermore an inclusion is supposed

to have two different exactly defined geometrical states, which may be called intact state,

with the probability p (one sphere), and cracked state, probability q (two halves of a

sphere). The intact particle can be treated as ”one piece”, in our case of spherical shape

with elastic material properties. On the other hand the cracked particle is split into ”two

halves”, load transfer across the crack(planes) within the particle being impossible.

Each of the particle states has a certain probability; one state excludes the other, i.e. for

the probabilities of both possible states

p + q = 1 (3.9)

must hold. The question now is the determination of the probability q of the cracked state.

As mentioned in chapter 2, in the literature the Weibull approach is well established

for probabilistic descriptions of particle fracture. On the one hand, the Weibull fracture

probability Pfr,j of particle j, computed with eqn. (2.21) can be directly interpreted as the

probability of the cracked state, q. A criterion for deciding that the particle fails, would
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be the comparison of the actual particle fracture probability with a critical fracture proba-

bility limit P
(tol)
fr,j . Because the particle fracture probability is directly related to the stress

distribution inside the particle, this method is equivalent to a comparison with a particle

averaged critical stress limit, that is sensitive to the particle size. In this work this type of

particle failure activation, frequently used in literature (e.g. see LLorca [1996]), is referred

to as a Weibull Rankine method (WR-method).

On the other hand, additional considerations lead to an alternative method for activating

particle failure, the so called Monte Carlo Weibull method (MCW-method): As the applied

load on a composite is increased, the Weibull fracture probabilities of the individual par-

ticles also tend to increase. It should be noted, however, that due to load redistribution

effects, caused e.g. by plastic yielding of the matrix or by the failure of other particles, the

Weibull fracture probability of any given particle does not necessarily grow monotonically,

even for strictly monotonically increasing radial macroscopic loading and neglecting other

damage mechanisms. In the present simulations a Random Walk procedure decides for

each inclusion at which step of the numerical loading process the change from state p to

state q happens (after the change no ”healing” of the intact particle is allowed, so no more

Random Walk procedure is required). The question is the relation between the probability

p of the intact state and the probability q of the cracked state which must change in de-

pendence on the loading state of each individual inclusion. For this relation the following

method is used:

The probability of failure Pfr,j of particle j is given by the Weibull relation

eqn. (2.21), as described in chapter 2.

Within the Random Walk model employed in the present work it is assumed,

that Weibull fracture probabilities previously survived by a given particle will

not give rise to fracture later on. Accordingly, it is the increase in the Weibull

fracture probability with respect to highest previous value, ∆Pfr,j, which is used

to determine of a given particle fails under a given applied load, compare Pan-

dorf [2000].

This modeling assumption appears to be realistic for approximately radial load

paths. For different stress distributions within a given particle that lead to sim-

ilar fracture probabilities (e.g. under radically different applied loads), however,

the validity of the concept may be questionable, because different populations

of flaws may be activated.

Thus, assuming that previously survived stress levels within the particles will

not lead to particle failure, only the effects of increases in the stresses in the
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particles must be considered. This means, based on the maximum Weibull frac-

ture probability P
(max)
fr,j survived, the increment ∆Pfr,j to the actual probability

P
(actual)
fr,j has to be taken into account and we define (compare figure 18 for an

explanation of a difference ∆Pfr,j of probabilities related to two different stress

states σi and σi+1)

∆Pfr,j = P
(actual)
fr,j − P

(max)
fr,j (3.10)

if ∆Pfr,j ≥ 0 then p = 1 − ∆Pfr,j and q = ∆Pfr,j. (3.11)

With a Random Walk procedure the failure of a particle is decided, where

the probability for the cracked state q is determined by the difference given

by the actual Weibull fracture probability and the previously survived fracture

probability. The implementation actually employed is described in section 3.3.4.

One benefit of using the Random Walk method for the activation of particle failure is the

possibility of using the same particle arrangement for a number of simulations to obtain

statistically more relevant results for the material simulated. Of course, each application

of the Random Walk procedure leads to a different sequence of failure events for the same

particle arrangement and the same load history, in accordance with the assumed statistical

nature of particle fracture (in the meaning of having different critical flaw distributions

within each particle). In the present study the combination of the generation of different

geometrical arrangements and the Random Walk procedure applied to particle fracture for

the same geometrical arrangement is used for generating statistically relevant data.

3.3.3 Finite Element Model

The microscale stress and strain fields in the unit cells were evaluated with the FE-code

ABAQUS/Standard V.5.8 (Hibbitt et al. [1998]) using modified tetrahedral elements with

quadratic shape functions (3D10M) to avoid possible volume locking in yielded matrix

regions. Contour plots of the stress fields were generated with the ABAQUS/Post Processor

V.5.8. based on the computed integration point data. Note that the ABAQUS/Post

Processor does not average across element set and material set boundaries. This can be

seen in stress field images, where two element sets of the same material are adjacent and

the contour plots are not continuous across the element set boundary, see e.g. figure 31.

Meshing was carried out either with the preprocessor PATRAN V.8.0 (MacNeal-Schwendler

Corp. [1998]) or with the preprocessor NETGEN (Schöberl [1997]), a fracture surface (or

a set of three perpendicular fracture surfaces) as described above being provided for each
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particle. The analyses in the present study were carried out as displacement controlled

geometrically nonlinear incremental-iterative computations describing loading by uniaxial

tension and the incrementation was chosen automatically by ABAQUS. The models are

prepared for general loading conditions (tension, biaxial tension, shear, hydrostatic tension

and compression), but particle failure can only take place along the predefined crack planes,

presently modeled parallel to the unit cell faces.

For leading to valid results both in the deformed and undeformed geometry states, the

usage of unit cells requires the correct formulation of boundary conditions for all nodes

lying at the unit cell surfaces, giving rise to a periodically repeating model that avoids gaps

and overlaps. Thus periodic displacement boundary conditions were used throughout:

ui(xk + li) = ui(xk) + ci . (3.12)

Here li represents the edge lengths of the unit cell, ci = li − l0,i the overall deformation of

the unit cell in i−direction and ui are displacements at the node with the coordinates xk.

Typical element counts for a model as shown in figure 12 were about 50000 10-node tetra-

hedra (for RPC-arrangements good mesh qualities are obtained with about 40000 tetrahedra

per unit cell, shown in figure 11).

Particle failure on the predefined fracture surfaces (perpendicular to the global load-

ing direction) was modeled by a node release technique and was controlled by the Weibull

fracture probabilities of the individual particles as discussed above. The actual implemen-

tation used the ABAQUS user subroutines MPC, UVARM, and UEXTERNALDB (described in

section 3.3.4) to identify particles fulfilling the failure conditions, to instantaneously dis-

connect all degrees of freedom across the fracture surface within such a particle, and to

subsequently reestablish equilibrium within the next load increment. Despite the numerical

difficulties associated with the reduction in overall stiffness and the marked rearrangement

of local stresses upon the instantaneous release of a considerable number of degrees of

freedom, the above procedure was found to be reliable in obtaining convergence. In the

present model particle cleavage occurs at actual loads which evidently depend on the local

stress distributions and thus on the chosen arrangement of particles, and in the case of MCW-

models, additionally on the statistics of each simulation run. Accordingly, an important

point in the implementation was the development of a fully automatic algorithm, in which

no user intervention is required during a run involving successive fracture of a number of

particles. The calculation of the inclusions’ Weibull fracture probabilities made use of a

feature of ABAQUS that allows the approximate evaluation of volume integrals of some



3.3 Implementation 38

function f over some subvolume, in this case particle j, by a weighted sum of the type

〈f〉j =
1

Vj

∫

Vj

f(r )dV ≈ 1

V
(int)
j

Nj
∑

l=1

flVl with

Nj
∑

l=1

Vl = V
(int)
j . (3.13)

Here fl stands for the value of the function f(r) at integration point l, which is weighted

by the volume Vl associated with this integration point and V
(int)
j is the particle volume.

N j is the total number of integration points within particle j.

Note that in the FE-meshes generated by the automatic mesher of the preprocessors the

node positions typically are in full agreement with the prescribed geometry, but between

the nodes the geometry is interpolated by triquadratic functions. For spherical particles

this typically leads to meshes in which the discretized particle volume V
(int)
j is slightly

smaller than the prescribed volume V
(geom)
j , i.e.

V
(int)
j ≤ V

(geom)
j . (3.14)

For the RPC unit cells used in the present work (arrangements A and B) the actual particle

volume fraction (as evaluated from the corresponding integration point volumes) is about

ξ(int) = 6.1% (instead of a nominal value of ξ(geom) = 6.3%). The corresponding values

for the RSA models are ξ(int) = 14.7% for arrangement C, ξ(int) = 14.8% for arrangement

D, ξ(int) = 14.4% for arrangement E and ξ(int) = 14.6% for arrangement F, the nominal

particle volume fraction being ξ(geom) = 15%. The relatively high differences of up to

4% of the particle volume fraction in arrangements E and F are due to the presence of

smaller particles, the relatively high curvature of the surface of which is approximated by a

relatively small number of quadratically interpolated triangular facets. It should be noted

that differences in the volume fractions of the above order of magnitude typically have

the consequence that numerical predictions for the elastic moduli using the discretized

geometry tend to lie somewhat below variational bounds evaluated for the nominal volume

fraction, compare sections 4.1 and 4.2.2.

Evaluation of Homogenized Stress and Strain

Predictions of the overall responses of the model materials were characterized in terms

of the effective (elastoplastic) stress vs. strain curves, the effective Young’s moduli and

the effective Poisson’s ratios, all of which were evaluated as the homogenized responses of

the unit cell. Within the displacement based FE-formulation used by ABAQUS the unit

cell responses to applied strain were obtained in terms of their overall displacements ui

(i = 1, 2, 3, coordinate).
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For reasons of convergence the simulations were carried out under displacement control,

i.e. the load was applied in form of an uniaxial displacement prescribed to an appropriate

master node, where |u| = uii in direction i and i = 1, 2, 3 (the ujk ∀j, k = 1, 2, 3 and

j, k 6= i result out of the Poisson effect). The corresponding overall logarithmic strains

were evaluated as (where for the present study only uniaxial loading states in i-direction

are considered and therefore only the i-components are of interest)

εii =

∫ li

l0,i

dl

l
= ln

li
l0,i

, (3.15)

where l0,i is the initial length (reference length) of a side of the unit cell and li = l0,i+ui is the

corresponding length in i-direction in some deformed state. The actual stress components

then can be obtained from the predicted reaction force F acting on the unit cell surface

area A(i). The area A(i) is defined by the unit cell lengths in the deformed state

A(i) = |l(j) × l(k)| i, j, k = 1, 2, 3 i 6= j 6= k . (3.16)

Hence for all directions i, and where again in fact only the components i = j are of interest,

the stress components follow as

σij =
Fi

A(j)
(3.17)

and for uniaxial strains εii 6= 0 in i-direction this means σii 6= 0 and σkl,k 6=l = 0.

The logarithmic strain and the true stress formulation are used, because for some

computations considerable macroscopic strains are involved. Piecewise linear stress-strain

curves were obtained from the increment-wise predictions for the homogenized stresses and

strains. The overall Young’s moduli E∗ were evaluated by numerically differentiating the

overall stress-strain curves.

Evaluation of Porosity

Following fracture the fragments of particles tend to be pulled apart, which gives rise

to voids. With the actual overall model volume V
(geom)
model = l1 · l2 · l3 (where l1, l2 and

l3 correspond to the actual edge lengths of the unit cell) and the sum of all element

volumes, the overall integration volume V
(int)
model =

∑

i V
element
i (where the element volume

V element
i =

∑

l V
(i)
l is the sum of the integration point volumes V

(i)
l of element i, compare

eqn. (3.13)), the overall void volume fraction can be obtained as

fv = 1 − V
(int)
model

V
(geom)
model

. (3.18)
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Together with the applied strain data the evolution of the pore volume fraction (due to

particle cleavage) can be observed. The growth of these voids into the matrix, however,

was not evaluated in the present study.

Evaluation of the Matrix Damage Indicator

In section 2.2 a ductile damage indicator is explained. Within the present study an user

defined ABAQUS subroutine UVARM was implemented, which evaluates this damage in-

dicator in each of the integration points of the matrix elements, but does not affect the

local stiffness of the matrix material, i.e. it provides an uncoupled damage description of

the matrix state. With the ABAQUS/Post Processor V.5.8 (Hibbitt et al. [1998]) critical

integration point volumes in the meaning of having a damage indicator of D
(m)
i ≥ 1 can

be shown via contour plots. Thus, at least qualitative predictions can be obtained on the

basis of the prescribed material data (tables 3 and 4) and regions in the unit cell, where

matrix damage may be expected, are identified.

Evaluation of Interfacial Tractions

For a qualitative discussion of the situation within the interfaces between particle and

matrix the magnitudes of the normal and tangential tractions were evaluated using the

stress data available in the integration points of elements adjacent to the interface (Hibbitt

et al. [1998]). However, stiffness loss due to interfacial damage was not activated in the

studies presented here.

Within each integration point of the FE mesh close to the particle’s surface (more precisely

it is the nodes lying on the particle surface that are associated to the interface particle–

matrix) a coordinate system was defined as follows. First a unit radius vector of the particle

(which is by definition a normal vector of the surface of a spherical particle), n, pointing

outwards, was defined. Second, a unit vector t1 oriented perpendicularly to n, and thus

lying in the tangent plane to the particle surface, was chosen. Finally a second tangent

unit vector t2 was obtained as t2 = n× t1, so that a tangent plane at the integration point

is defined by t1 and t2. With the stress tensor σ, given in the integration point, and with

the unit vectors of the local coordinate system, n, t1 and t2, the components of the traction

vector are obtained as:

Tn = (σ · n) n Tt,1 = (σ · t1) t1 Tt,2 = (σ · t2) t2 . (3.19)
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The results can then be visualized as separate contour plots with the ABAQUS/Post

Processor V.5.8 (Hibbitt et al. [1998]), which extrapolates these integration point data

onto the particle surfaces, i.e. the interface particle–matrix. These contour plots on the

one hand show the magnitude of the normal traction, Tn, and, on the other hand, the

magnitude of the tangential tractions,

Tt =
√

T 2
t,1 + T 2

t,2 . (3.20)

For referring to positions on the particles’ surface, the poles of the particles are defined

as the points on the particle surface for which the coordinates have minimum or maximum

values in the direction of the global maximum principal stress. Consequently the equatorial

plane coincides with the predefined crack plane.

3.3.4 Routine for Simulating Particle Cleavage

Figure 19 schematically shows the algorithm implemented for controlling particle frac-

ture, the user defined ABAQUS subroutines MPC, UVARM and UEXTERNALDB being employed.

Within the ABAQUS subroutine UVARM the required stress values and the integration point

volumes of each integration point within the model are available. For each element within

a particle the risk of fracture (eqn. (2.4)) is computed for every iteration. At the end

of each increment (after finding a new equilibrium state after increasing/decreasing the

applied uniaxial strain) with this data the fracture probabilities of each of the particles

are accumulated, using the subroutine UEXTERNALDB. At this position in the program the

decision on particle failure is made.

If the ”Rankine Procedure” WR (section 3.3.2) is used, the actual Weibull fracture proba-

bility of particle j is simply compared with a limit, P
(tol)
fr,j (green path in figure 19). On

exceeding this threshold, particle fracture is activated.

Alternatively the ”Monte Carlo Method” MCW can be used. Following the red path in

figure 19, this method stipulates, that particle failure can take place only if the actual

Weibull fracture probability, P
(actual)
fr,j , exceeds the maximum Weibull fracture probability

previously survived by the particle. The difference ∆Pfr,j (eqn. (3.11)) is compared with a

random number z. When the value of ∆Pfr,j is higher than z the particle fails. Otherwise

the actual survived Weibull particle fracture is updated to P
(max)
fr,j = P

(actual)
fr,j . This is done

for each of the modeled particles, failure of multiple particles being possible. Within the

next increment stress redistribution takes place and a new equilibrium has to be found.

This method implies that a strong increase of the maximum principal stress inside some
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particle within one load increment increases the probability of the particle to fail.

Once a particle has been flagged for fracture, the Multi Point Constraints (MPCs),

which tied together the crack planes of the two halves of the particle up to this point,

are released via the subroutine MPC before applying the next load increment. This ”node

release” results in a reduction of stiffness, stress redistribution has to take place within the

model, and therefore a new equilibrium state must be found in the next increment. For

the latter task three different schemes may be used: In the case of load controlled analyses

a ”zero load increment” can be specified, i.e. a new equilibrium strain at the current load

level is solved for. This gives rise to horizontal sections (i.e. jumps in overall strain) in the

stress-strain diagram, compare A in figure 20. Typically this strategy leads to considerable

numerical difficulties and convergence problems, especially in the highly non linear range.

Accordingly, analyses using load control typically are not the best choice for the particle

fracture simulations. Instead, the simulations were carried out under displacement con-

trol, i.e. overall displacements were applied instead of forces. Applying a ”zero displacement

increment” for reestablishing equilibrium, leads to a global stress-strain behavior marked

as B in figure 20, i.e. a sudden drop in the overall stress. In the present study a third

alternative for the step control was used, which consists of letting the auto incrementation

algorithms of ABAQUS select an appropriate displacement increment following the node

release event. This gives rise to equilibria that lie between those activated by ”freezing”

either the applied stress or the applied strain. These solutions are perfectly valid, but

some care may be required in interpreting the resulting stress-strain diagrams, where par-

ticle fracture gives rise to reductions in stress with a finite negative derivative, compare

figure 20. Besides being relatively simple to code this approach has the advantage that the

standard ABAQUS incrementation algorithm is disturbed as little as possible, typically

leading to a relatively low total number of increments (and thus reduced computational

effort).

It is worth noting that with some minor modification the same set of user subroutines

may also be used to simulate interfacial decohesion between particles and matrix, see

appendix C. This option, however, was not explored in depth in order to concentrate on

modeling particle fracture.



Chapter 4

Results – Discussion

The unit cell models were used for studying the material behavior of materials with spherical

reinforcements. The assumption of spherical reinforcing particles, on the one hand, is mo-

tivated by the emphasis of the present study on powder metallurgically produced PRDMCs,

which in many cases show sphere-like reinforcements and, on the other hand, is a con-

sequence of the need to minimize the modeling effort and to facilitate the interpretation

of the results. For the materials covered, certain aluminium matrix MMCs and powder

metallurgically produced HSSs, it is known from experiments that particle cleavage plays

an important role in the initiation of damage and failure. In this section unit cell models

are used for numerical materials characterization, mainly in terms of generating overall

stress-strain diagrams and for studying ”particle damage relevant parameters” such as max-

imum principal stresses and particle fracture probabilities. Furthermore, in the course of

the simulations the evolution of the matrix behavior and the interface conditions are ”ob-

served” via the evaluation of the damage indicator and the magnitudes of interface traction

components, respectively. In addition, the evolution of porosity due to particle fracture is

followed.

Due to the considerable number of results presented in this chapter, a unified scheme

for designating the unit cell models is used. All unit cell results, which are typically

ensemble averages over a number of equivalent geometries and/or load cases, are identi-

fied by a designator of the type AAbb
vol.% − X/CCC. ”AAbb

vol.%” informs about the material

43
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to be modeled, where ”vol.%” gives the total particle volume fraction (ξ = 6.3 vol.% or

ξ = 15 vol.%) and ”bb” denotes the information on the modeled microstructure. For the

material AA2618/SiCp-T4 (section 4.1) this takes the form of either uniformly sized (”eq”)

or bidispersely sized (”bi”) reinforcements. For HSS, a total of nine groups of results (”µ1”

up to ”µ9”) are distinguished, which differ in particle volume fraction particle size distri-

bution and particle material properties, see section 4.2. The descriptor ”X” denotes the

individual unit cells and arrangements used, which are introduced in sections 3.1.1 and

3.1.2 and are classified alphabetically from ”A” to ”F”. ”CCC” provides information on the

type of particle failure triggering method used (”WR” or ”MCW”, refer to section 3.3.2).

Listings of the two groups of constituent material parameters used in the simulations

are given in tables 3 and 4, where E denotes the Young’s modulus, ν the Poisson’s ratio,

σ0 stands for the average strength of the particles and m is the particles’ Weibull modulus.

For the elastoplastic matrices J2 continuum plasticity models are used, the strain hardening

behavior being described by a modified Ludwik hardening law as given in eqn. (3.8). This

isotropic hardening law does not take into account for effects of the grain structure of the

matrix. The effects of submicrometer inhomogeneities, such as secondary carbides in the

case of HSS, are assumed to be included within the constitutive behavior of the matrix.

Time dependent or rate effects of the matrix behavior, which play a negligible role for

the scenarios considered here, were not taken into consideration. The reinforcements are

treated as isotropic elastic continua.

In the present studies on the one hand a deterministic (Rankine-type) failure criterion

was used, in which a particle j is assumed to fail when its fracture probability according

to eqn. (2.21) exceeds values of P
(tol,1)
fr,j = 0.593 or P

(tol,2)
fr,j = 0.632. In the case of highly

dilute inclusions (within which the stresses and strains are uniform (Eshelby [1957])), these

choices correspond to failure occurring when the maximum principal stress in the particle

reaches 90% or 100% of the characteristic strength σ0, respectively. On the other hand, as

discussed in section 3.3.4, triggering of particle fracture by the Monte Carlo Weibull model

was carried out.
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4.1 Simulation of a MMC:

AA2618-T4 reinforced by SiC-Particles

The constituent material properties used for the AA2618/SiCp-T4 MMC, see table 3, follow

closely the data given in Elomari et al. [1998] and LLorca and González [1998]. In the

latter work the characteristic strengths of the particles were estimated to lie in the range

σ0 = 0.9 GPa to σ0 = 1.5 GPa and Weibull moduli of m = 1, 3 and 6 were considered.

Similar estimates for the Weibull modulus of SiC were published by other authors, too,

compare Bréchet et al. [1991]. For the present work the median of the reported data was

chosen, see table 3.

The modeled three microstructures studied for the MMCs differ in total particle volume

fractions and in the (relative) particle sizes:

• Microstructure AA2618/SiCeq
6.3p-T4: aluminium matrix reinforced by uniformly sized

SiC particles of a total volume fraction ξ = 6.3 % arranged in RPC-generated unit

cells, e.g. arrangement A as shown in figure 11.

• Microstructure AA2618/SiCeq
15p-T4: aluminium matrix reinforced by uniformly sized

and randomly arranged SiC particles, total particle volume fraction ξ = 15 %. The

modeled arrangements C and D are shown in figures 12 and 14.

• Microstructure AA2618/SiCbi
15p-T4: aluminium matrix reinforced by bidispersely sized

and randomly positioned SiC-particles, total particle volume fraction ξ = 15 %; see

figures 13 and 15 for arrangements E and F.

For the computations on AA2618/SiCp-T4-type materials both the WR- and MCW-

particle cleavage activation models were used.

Predictions of Microscale Phase Averages of Stresses and Strains

The different reinforcement volume fractions directly affect the overall materials’ stiff-

nesses and the effective Young’s moduli are predicted as E∗ = 76.78 GPa for microstruc-

ture AA2618/SiCeq
6.3p-T4, and E∗ = 87.41 GPa and E∗ = 86.75 GPa for microstructures

AA2618/SiCeq
15p-T4 and AA2618/SiCbi

15p-T4, respectively. The latter are quite similar, be-

cause the microstructures have the same total particle volume fractions and differ only

in the particle sizes and arrangements. Generally, the predicted phase averages of the
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microscale stresses for an applied strain of εa = 0.0005, i.e. in the linear elastic range,

are higher in the microstructures with higher total particle volume fractions, see tables 5

and 6. There is some tendency for the stresses to be somewhat higher for geometries with

uniformly sized inclusions, microstructure AA2618/SiCeq
15p-T4, than in those with parti-

cles of two sizes, microstructure AA2618/SiCbi
15p-T4. The former microgeometries also

show somewhat stronger intra-particle stress fluctuations as evidenced by the higher stan-

dard deviations. For the smaller total particle volume fractions differences between the

predicted particle stress averages for unit cells A and B (both represent microstructure

AA2618/SiCeq
6.3p-T4) are not recognizable. A comparison of tables 5 and 6 shows that

the numerical predictions for the Young’s moduli fall slightly below the lower Hashin-

Shtrikman bounds. This behavior is due to meshing effects, the actual volumes of the

particles as meshed being slightly smaller than those of the spheres used in generating the

microgeometries (to which the nominal particle volume fractions pertain), see eqn. (3.14).

Similar trends are predicted for an applied strain of εa = 0.22 when no particle fracture

has been activated (table 7), the corresponding overall stresses being listed in table 10. As

expected the matrix is yielded at this strain level. The microscale stress averages and

standard deviations computed for the matrices for all three microstructures lie in similar

ranges, with only slightly smaller magnitudes for AA2618/SiCeq
6.3p-T4. Marked differences

are predicted for the average stresses in the particles. Especially the von Mises stresses and

the maximum principal stresses are computed to be higher in AA2618/SiCeq
6.3p-T4. The

high standard deviations of the stresses are due to two effects: On the one hand, there

are significant stress gradients in some particles (”intra-particle fluctuations”) and on the

other hand different particle can be subject to very different stress levels (”interparticle

fluctuations”). For a short discussion of these considerations see Böhm et al. [2002].

While for suppressed particle failure the highest overall stresses resulting for an ap-

plied overall strain of εa = 0.22 are predicted for microstructure AA2618/SiCeq
15p-T4, the

most significant reduction of the homogenized stresses due to particle fracture is com-

puted for microstructure AA2618/SiCbi
15p-T4, about 12%, compared to about 5% (for

AA2618/SiCeq
6.3p-T4, by the use of unit cell A, and AA2618/SiCeq

15p-T4) and about 3%

(AA2618/SiCeq
6.3p-T4 using model B), see table 10. Comparison with table 9 shows, that

this can be interpreted as a size effect. Big particles are expected to fail more easily

(Weibull theory) and the failure of a big particle has a larger effect on the response of the

unit cell. However, despite some differences in the standard deviations, for all three models

the stress averages of the remaining intact particles are predicted to be of the same range.

The comparison of the matrix microscale responses obtained for the models where particle
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cleavage occured (table 8) with the results obtained with the damage-free model (table 7)

for the same applied overall strain εa = 0.22 shows similar values with small reductions

in the stress averages in the case of particle damage. However, the predicted equivalent

plastic strains are more significantly reduced in microstructures AA2618/SiCeq
15p-T4 and

AA2618/SiCbi
15p-T4. For the higher particle volume fraction a higher proportion of the

overall strain of εa = 0.22 is due to particle failure, but, locally, the strains in the matrix

are increased and this means locally high strain gradients.

The same microstructure also gives rise to the largest volume of pores caused by fractured

particles, compare table 9. The same table also gives the average stresses of the remaining

intact particles, which, of course, are considerably higher than the averages over all parti-

cles listed in table 8. They do not, however, reach the stress levels predicted in the model

without particle fracture, table 7, mainly on account of the smaller overall load.

In the next sections (4.1.1,4.1.2,4.1.3) some individual simulation results are discussed

in detail for each of the modeled microstructures.

4.1.1 Uniaxial Loading of Microstructure AA2618/SiCeq
6.3p-T4

Particle Failure Triggered by the Weibull Rankine Model (WR)

Uniaxial tensile loading up to overall nominal strains of some 20%, which may exceed

the strain range of the actual material, was simulated for the RPC phase arrangement

(Al2618-T4 reinforced by SiC-Particles, compare table 3) shown in figure 11b. For loading

in the 1-direction and using critical Weibull fracture probabilities of P
(tol,1)
fr,j = 0.593 and

P
(tol,2)
fr,j = 0.632 the model predicted failure by brittle cleavage of 7 particles, the sequence of

fracture being B15, A09, B14, D03, C07, C01 and D05 (Eckschlager et al. [2001b]). The end

states of the deformation process are displayed in figure 21, where the fractured particles

can be easily discerned. Figure 22 shows an analogous result for arrangement B.

The corresponding overall uniaxial stress vs. strain relationships obtained by homogenizing

the response of unit cell A using the above two critical Weibull fracture probabilities are

given in figure 23. Each of the curves shows sudden reductions of the overall stress at 5

different strain values, the first three of which correspond to failure of a single inclusion,

whereas the other two were each caused by the fracture of 2 particles in quick succession.

These marked drops in the homogenized stress, which are not found in experimentally

obtained stress vs. strain curves, are a direct consequence of using a periodically repeating

microgeometry that contains only 15 particles per unit cell – the failure of a single inclusion
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in the unit cell accordingly corresponds to the simultaneous fracture of approximately 6.7%

of all particles in the composite. Comparison between the two stress–strain relations shows

that for given material properties and a given geometrical arrangement of the spherical

particles within the unit cell only the different critical Weibull fracture probabilities control

the occurrence of particle cracking at certain overall strains. In figure 23 the sequence of

particle cracking is the same for both values of P
(tol)
fr,j , which indicates that for this geometry

and for the material properties used here the nonlinear behavior of the matrix does not

give rise to major stress redistribution in the load range where particle fracture takes

place. As expected, the maximum load carrying capacity of the model composite under

uniaxial loading in the 1-direction depends on the critical Weibull fracture probability; for

the present example it is coincident with the failure of the third particle (B14) at nominal

overall strains of approximately 16.6% and 17.8%, respectively.

Because a unit cell description was used, the evolution of damage relevant parameters

due to particle cracking could be followed in some detail in the present model. Figure 24

shows the evolution of the Weibull fracture probabilities of 5 selected particles, D14, C01,

B15, B14 and A09 (the numbering of the particles follows figure 11), the same abscissa

scaling being used as in figure 23. The first four of these particles fail within the load

sequence under study, whereas the last one is not subjected to sufficiently high loads.

Generally, the Weibull fracture probabilities of the particles depend nonlinearly on the

overall strain and there are rapid increases of the P j
fr in terms of the overall stress once

the matrix has yielded. In addition, there is a marked dependence on the position of a

given inclusion, indicating considerable inter-particle variations of the maximum principal

stresses. Load redistribution effects upon fracture of a particle are predicted to be fairly

complex. The first failure of a reinforcement (B15) leads to marked unloading of particle

B14, which is a direct neighbor in loading direction and causes a very small increase of the

failure probability of inclusion A09, which also is a close neighbor due to periodicity, but

is somewhat offset. As a consequence, initial trends in fracture probability are changed

and particle A09 fails considerably earlier than B14. Failure of both particles B15 and A09

gives rise to small decreases of the fracture probability for particle C01, but increases for

particle D14, both of which are situated relatively far away from the fractured inclusions.

The latter reinforcement does not become critical for the loads considered here.
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Particle Failure Triggered by the Monte Carlo Weibull Model (MCW)

As mentioned in chapter 3, the probabilistic behavior inherent in the MCW model causes

it to give different results for each simulation run, see figure 25. Predictions for overall

stress-strain diagrams are accordingly best obtained by averaging over a number of indi-

vidual analyses. An example showing the averaged response of 10 runs using two different

arrangements, A and B, is shown in figure 26, the result being a relatively smooth overall

stress-strain curve, which shows a considerable loss in stiffness compared to the damage

free case.

4.1.2 Uniaxial Loading of Microstructure AA2618/SiCeq
15p-T4

The RSA-Unit Cells containing 15 spheres presented in section 3.1.2 are used for the FE-

simulations presented in this section, adapted for a particle volume fraction of ξ = 15%,

see figures 12 and 14 (arrangements C and D).

In figure 27, which shows predictions for uniaxial loading in each of the three coordi-

nate directions of the same particle arrangement, unit cell C, the dependence of the Weibull

fracture probabilities on the particles’ position in relation to neighbors is recognizable. In

all three load cases the highest value of the fracture probability is attained for different

particles (marked by yellow color). Nevertheless, this situation could change with increas-

ing load, i.e. when additional regions between the particles yield, the stress transfer to the

particles varies and another particle is the one with the highest fracture probability.

Figure 29 shows a prediction for the state after failure of some particles within model

C (figure 28) at an overall strain of εa = 0.155, obtained by loading in 2–direction and using

the MCW method. A number of stress-strain curves predicted for the same unit cells are

shown in figure 30, the runs leading to different results due to the use of the MCW algorithm

to trigger particle failure. Each of the stress-strain responses shows the sudden reductions

of the overall stress indicating particle failure. In analogy to figure 25 (averaged result of

five different runs obtained by microstructure AA2618/SiCeq
6.3p-T4) the effects of individual

failure events are less marked in the ensemble averaged curve. With the averaging of three

results a clear trend of the reduction in overall stress caused by particle failure is given,

which for an overall applied tensile strain of εa = 0.22 amounts to a reduction of about 5%

compared to the damage free predictions.

In the following a more detailed discussion is given for the run corresponding to the
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blue curve in figure 30, where at the end of the load history just two particles (inclusions

number 2 and 3) of the unit cell have failed (for particle designations compare figure 12).

Figure 31 shows a series of sections through inclusion 3 (the viewing direction is sketched in

the bottom right corner of the figure), the first to fracture in this simulation. The maximum

principal stresses are indicated in the form of a contour plot (legend is given) and an arrow

plot (only the relative sizes and orientations of the arrows within each individual plot are

relevant for the considerations here), corresponding to three overall loading conditions, two

representing the predicted situation within the intact particle at different load states and

the bottom one showing situation in the cracked particle.

In both plots showing states where the particle is intact some inhomogeneity of the stress

field can be recognized. The general orientation of the maximum principal stresses before

any particle cleavage, however, is as expected. The inclusion acts as a stress concentrator

and the assumption of maximum principal stresses acting in perpendicular direction to the

predefined crack plane (oriented here to lie parallel to the 1-3-plane) is fulfilled. The higher

stress level in the lower left part of the section through the inclusion can be attributed to

the influence of the closest neighbor, here inclusion 8. After particle failure the contour plot

shows a totally changed situation, where increased stress gradients within the particle are

present. Note the orientation of the maximum principal stresses, which are oriented almost

tangentially to the particle surface close to the crack plane, but remain approximately

normal to the particle surface elsewhere.

For this sequence additionally the relative movement of the particle, with respect to the

particle’s initial position (grey colored, the crack planes are schematically displayed as

red lines), are depicted in the right column of figure 31. Beside the translation of the

particle due to the overall deformation of the unit cell a noticeably rotation of the inclusion

(the images are magnified five times) before damage can be seen. After cleavage each of

the particle fragments is translated into loading direction and is further rotated, but,

interestingly, the crack planes remain parallel.

The particle cracking model used here assumes the crack planes in the particles to

be oriented normally to the averaged maximum principal stress in the particles, the ori-

entations of which is approximated by the direction of the applied overall uniaxial stress.

In this paragraph a closer look is taken on the orientations of the stress tensors in the

particles.

The histograms given in figures 32 and 33 display the predicted distributions of the orien-

tations of the maximum principal stresses (evaluated at the integration points) within the

closely neighboring particles 3, 4 and 8, right before the failure of particle 3 and imme-
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diately afterwards, respectively. The similarly distributed orientations before the failure

event indicate that the conditions are very similar in these particles, the orientations of

the maximum principal stresses overwhelmingly deviating from the global load direction

by less than ten degrees (note that there is a tendency for the orientations of the maximum

principal stresses to deviate to some extent from the overall loading direction close to the

surface of the particles).

Interestingly, the failure of particle 3, while totally changing the situation in that inclusion,

has little effect on the distributions of the orientations of the maximum principal stresses

in the closest neighbors. The maximum principal stresses after particle cleavage, figure 31,

bottom, show the highest values close to the particle-matrix interface, especially in the

vicinity of the crack tip, which in this model is positioned in the immediately surrounding

matrix region. The orientations of the maximum principal stresses remain approximately

parallel near the poles of the particle, but are almost tangential to the interface closer to

the crack.

A somewhat different picture emerges when the distributions of the magnitudes of

the maximum principal stress distributions within the particles are considered. Before the

failure of particle 3 the distributions are predicted to be very similar, see figure 34, even

though some intra-particle variations of the stresses are evident. The failure of particle 3

can be seen in figure 35 to lead to some unloading of its closest neighbor, particle 8, while

somewhat higher stresses are carried by the next nearest neighbor, particle 4. Interestingly,

the inhomogeneity of the maximum principal stress is somewhat reduced in inclusion 8

and somewhat increased in 4. It is also noteworthy that failure does not lead to a total

unloading of particle 3, parts of which continue to carry considerable loads.

Even though local failure by interfacial decohesion and by ductile damage of the matrix

are not a primary topic of the studies reported here, it is possible to assess some of the

effects of the brittle cleavage of a particle on the above damage modes by studying the

microfields near the failed inclusion. Figure 36 shows a sequence of images corresponding to

three global load states in the form of contour plots of the normal components (eqn. (3.19))

and of the magnitude of the tangential components (eqn. (3.20)) of the interfacial tractions

acting on particle 3. The view orientation is the same as used in figure 31 (note, however,

that the situation on the particle’s surface and not in a section through the particle is

shown). The highest tensile normal traction components are predicted in the regions of

the particle’s poles, whereas the equatorial regions are subjected to compressive normal

interfacial tractions, for both the intact state and the failed state of the particle. With

the load acting in the polar axis, the compressive normal tractions can be understood as a
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consequence of the stiffness (and Poisson’s ratio) mismatch between the constituents. The

actual maximum values of the tensile normal tractions occur at positions slightly offset

from the poles, evidently due to the proximity of neighboring particles and in accordance

with the images showing the sections through the particle with maximum principal stress

contour plots (figure 31). The tangential interfacial tractions also show perturbations

due to neighboring particles, the details of their distributions, however, being different.

The highest magnitudes of the tangential components predicted for this loading condition

(applied strain εa = 0.017, corresponding to an overall stress of σa = 301.8 MPa) are found

in ring-shaped regions at angles of approximately 45o from the direction of the applied

load.

With the material data given in table 3 a ductile damage indicator, see eqn. (2.25),

was evaluated for the matrix region surrounding the particle to obtain some data on matrix

damage, see figure 37. The damage indicator, which can be interpreted only for the two

states failure (D = 1) or no damage (D = 0) and not for states between these values,

is depicted for the global tensile strain of εa = 0.017 (σa = 301.8 MPa) and confirms

the above predictions by the maximum principal stress plots and the interfacial traction

plots: the critical matrix regions in the vicinity of particles, on the one hand, are situated

closely to the poles defined by the direction of the overall loads, and, on the other hand,

preferentially occur at positions where there are close neighboring particles.

To give a more global view of regions susceptible to matrix damage, figure 38 shows all

elements in which the damage indicator reaches a value of at least 0.90 in at least one

integration point for the same conditions as figure 37, i.e. an overall uniaxial strain of

εa = 0.017 acting in 2-direction. The very inhomogeneous distribution of initial matrix

damage in a particle reinforced MMC is immediately evident.

The fact that figure 37 and 38 show initial matrix damage at a fairly low applied strain,

which is in contradiction to the experimental result that damage in AA2618-T4 PRDMCs is

initiated by particle failure, indicates that the material parameters available for the present

study are not sufficiently realistic to capture the competition between the damage modes

involved. Further inaccuracies may be due to the fact that the size of the load increments

used may be rather coarse for integrating the damage indicator (which was a by-product

of the analyses). Despite the lack of appropriate strength data it can be expected that

with a full material damage model (including all three damage mechanisms) damage may

be expected in this region quite early in the loading sequence, either within the interface,

see figure 36, and/or in the closely neighboring matrix.
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Accumulated Equivalent Plastic Strain in the Matrix

Figures 39 and 40 depict isosurfaces of the equivalent plastic strain for the same load state

as studied in figures 37 and 38, i.e. εa = 0.017 in 2-direction. For these conditions, the

maximum value was evaluated as εeq,p = 0.165, i.e. about ten times the macroscopic strain.

In figure 39 only one isosurface is shown, that for εeq,p = 0.053 (green). Evidently, for the

relatively low overall plastic strains of the load state considered, the local plastic strains

tend to be highest close to the particles, even though some regions of elevated plastic strains

have also started to develop in the inter-particle matrix bridges. This becomes more evident

in figure 40, top, where isosurfaces for equivalent plastic strains ranging from εeq,p = 0.031

(light blue) to εeq,p = 0.053 (green) are given. This plot also allows a contiguous region

of elevated plastic strains to be discerned, which crosses the unit cell in loading direction.

Such ”tube-like” structures characterize the distribution of plastic strains at higher load

levels (see also figure 65). Finally, figure 40, bottom, gives isosurfaces for εeq,p = 0.0006

(dark blue). Interestingly, even though the overall stress of σa = 301.8MPa is clearly in

excess of the overall yield stress of the composite, considerable regions of the matrix remain

elastic.

Interparticle Distances – Further Considerations

Even though it is known that the particle interaction in PRDMCs works in a rather compli-

cated way, it appears worthwhile to discuss the evolution of damage within the periodically

arranged unit cells by simply determining the geometrical distances between the particles.

To evaluate the minimum widths of the matrix bridges between neighboring particles the

interparticle distances must be computed for all unit cells and their periodic neighbors.

Furthermore, a ”virtual string” may be fixed at a certain particle position and connected

to the corresponding partner particle position one period apart (in loading direction).

Stretching the string to all other particle positions lying between the above chosen pair of

particles in all possible combinations, leads to a number of different possible string lengths.

Summing up all interparticle distances for such a string, that is the accumulated width of

the matrix bridges within one particle arrangement period (=unit cell), doing this for all

possible strings of the periodic unit cell arrangement, and comparing them to each other

using their lengths gives at least one smallest value. In figure 41 the scheme of comput-

ing the interparticle distances is sketched on the basis of periodically arranged 2D unit

cells and considering loading direction 1: for the example arrangement the interparticle

distances within a ”period” of the inclusion named 1 and 1’ are A1 + A2, B1 + B3 and
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B1 + B2 + A2.

Particles lying on such a string with the shortest ”matrix length with respect to the over-

all loading direction”, are drawn in figure 42, different colors being used for the different

loading directions. A comparison with figures 39 and 40 shows a clear correlation in that

matrix damage appears more probable in regions of small interparticle distances in loading

direction, where there are load paths in which there is a series of small interparticle dis-

tances. The predicted Weibull fracture probabilities for the same model composite, shown

in figure 27, show a similar behavior. Note, however, that the Weibull fracture probabilities

of particles embedded in a ductile matrix increase in a nonlinear and position dependent

way with growing applied loads, so that different particles may have the maximum Weibull

fracture probability during the load history even before the onset of damage.

Thus in the damage-free composite a clear tendency can be discerned for elevated local

stress levels to occur along strings of particles that are closely spaced along the direction of

an applied uniaxial stress. Such regions show a increased vulnerability to microscale dam-

age in matrix, particles and interface. The above procedure tended to be quite successful

in indicating regions susceptible to damage in the relatively small periodic phase arrange-

ments considered in the present study. Its extension to larger unit cells or to nonperiodic

microgeometries, however, is not clear.

4.1.3 Uniaxial Loading of Microstructure AA2618/SiCbi
15p-T4

For the investigations on MMCs with nonuniform particle sizes reported in this section the

unit cell models E and F, see figures 13 and 15, were used. For the material properties of

the constituents refer to table 3.

Loading the unit cell model E in 2-direction up to an applied strain of εa = 0.095 and

using MCW triggered particle failure resulted in the state shown in figure 43. Due to the

cracking sequence the crack surfaces of the first failed particle, here 15, are most widely

separated. Note that all failed particles are big ones, 6, 7, and 15. The matrix, see some

regions on the unit cell’s surface (regions A and B in figure 43), tends to be particularly

highly strained in the neighborhood of the bigger particles. The apparent rising of some

particles (region A) above the unit cell surface is due to this effect and to the periodicity of

the unit cell, whereas the rising of the matrix region around particle 7 (which is positioned

in this unit cell such that the crack plane is identical with the unit cell face) is caused by

the failure of the particle.

Figure 44 compares the distributions of the maximum principal stresses evaluated for
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all large and for all small particles at two applied uniaxial tensile loads. At a small load,

where all particles remain intact and the matrix shows elastic behavior, the distributions of

the maximum principal stresses are very similar, the one predicted for the smaller particles

being slightly wider and shifted slightly to higher stresses. In the high strain regime the

average of the maximum principal stresses can be seen to be higher for the small particles,

some of the larger ones having failed by this time. In figure 45 the stress states in the

large particles are shown in more detail for the latter state by separately evaluating the

distributions of those particles which have failed and those which remain intact. While the

latter particles clearly carry higher stresses, it can again be seen that substantial stresses

are carried by the fractured reinforcements, in which, of course, there is a marked tail of

the distributions of the maximum principal stresses towards lower values. In fact, small

regions of the failed particles can be seen to be in hydrostatic compression, the maximum

principal stress being negative.

It is noteworthy that for both stress states shown in figure 44 the small particles

show higher stresses than the large ones. Due to the size sensitivity of the Weibull model,

however, the fracture probabilities of the large particles are generally much higher. This

is evident in figure 46, which shows the evolution of the Weibull fracture probabilities

within each of the particles. In all cases the fracture probabilities of the large particles

grow significantly faster than those of the small ones, particle positions effects playing a

secondary role. Due to the differences in volume fraction, the failure of large particles also

has a much larger effect on the overall stress-strain relations, see figure 47, where failure

events of small particles occured for loading in 1- and 3-direction, but can hardly discerned.

Figures 48 to 51 show the magnitudes of the normal and tangential interfacial tractions

at the particles’ surfaces within the unit cell at four points in the loading history, in analogy

to section 4.1.2. Generally the normal tractions are highest for all particles in their polar

regions, the uniaxial macroscopic load being applied in the 1-direction. As in the case of

equally sized particles, the maxima of the tangential tractions can be found in ring-shaped

regions at angles of about 45o with respect to the loading directions, see figure 48. A trend

can be discerned for perturbations due to the presence of neighboring particles to be more

marked in the tangential than in the normal tractions.

The situation after the cleavage of one big particle and when some matrix regions have

yielded is depicted in figure 49. Here the maxima of the normal tractions have shifted from

the poles of some particles. This is clearly an effect of the particle positions within the

unit cell. Furthermore, the maxima of the tangential tractions of the failed particle 7 are

now positioned close to the crack, in contrast to the state before failure. The neighboring
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inclusions seem to be hardly influenced by the failure of particle 7. Qualitatively similar

predictions were attained for higher applied strains of εa = 0.095, where the failure of

particle 11, a small particle, has taken place, see figure 50, and for an applied strain of

εa = 0.155, where a third inclusion, particle 4, has failed, see figure 51. Interestingly,

especially for small particles the positions of the maxima of the normal tractions tend to

change under conditions of large scale matrix plasticity, see e.g. particle 2 (for numbering

refer to figure 48) in figures 50 and 51.

Generally, for relatively soft matrix material such as aluminium, the failure of a particle

tends to have only a very limited effect on the principal stress orientations within the

closely neighboring particles. Evidently all variables of interest, such as the maximum

principal stress in the particles, the interfacial tractions, and the equivalent plastic strain

in the matrix show considerable inhomogeneity in all stress ranges, the effects being most

marked in the highly plastic regime of the matrix. Finally, figure 52 shows results obtained

from a uniaxial loading-unloading-sequence on the MMC AA2618/SiCbi
15p-T4 using the unit

cell arrangement F (for particle designations refer to figure 15).

The sequence of particle cleavage events, which show up as reductions in the overall stress in

the macroscopic stress-strain curve, can be seen from the numbers of the particles involved,

the numbering scheme following figure 15. As mentioned earlier, there is a marked trend

for large particles to fail before small ones. Nevertheless, the latter type of fracture event

can occur with a significant probability, compare particles 8, 13, 12 in figure 52. However,

the cleavage of a big particle, 15, reduces the composites’ elastic modulus from initially

E∗ = 87.6 GPa to E∗
A

= 83.7 GPa, the corresponding generated pore volume fraction

being fA = 0.063%. The following two unloading-loading sequences result in overall elastic

moduli of E∗
B

= 75.5 GPa (when four additional particles have failed), and E∗
C

= 75.4 GPa

(no further particle failure occured). Approximating the failed particles by voids and using

the Mori-Tanaka Method for calculating the corresponding stiffnesses, one obtains values

of E∗
A

= 82.0 GPa, E∗
B

= 70.8 GPa and E∗
C

= 70.8 GPa. Noting that the Mori-Tanaka

Method predicts the Young’s modulus of the damage free material as E∗ = 87.6 GPa,

i.e. with excellent accuracy, the above results again show that broken particles continue to

carry loads.

Focusing, for example, on the last load reversal (marked by C in figure 52), it is evident

that a very small pore volume fraction of about 0.8% gives rise to a marked reduction in

the overall stress of about 14% compared to the damage-free case. This behavior, which

may be surprising at the first look, is due to the fact that all voids correspond to cracks

within the stiff particles. These, of course, carry a high proportion of the applied load,
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especially after large scale yielding of the matrix.

Within this simulation run the unloading processes were continued into the overall

compressive range. Even though isotropic hardening was specified for the matrix, reverse

plasticity occurred at relatively low compressive macrostresses, i.e. a pseudo-Bauschinger

effect is present in the macroscopic material behavior. In addition, the fragments of previ-

ously failed particles approach more and more closely and may touch (note that overlapping

of the fragments was precluded by the formulation of the node release algorithm), so they

can carry compressive loads. Such a behavior was found for particle 4.
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4.2 Simulation of HSS reinforced by MxCy-Particles

Modeled Material

The constituent material properties used in this section are listed in table 4. The material

properties of the matrix and of the MC-type carbides designated here as carbide A cor-

respond to those used in Plankensteiner [2000] for describing the matrix and the primary

carbides in a S 6-5-2-5 HSS. These carbides are rather stiff and strong, similar to VC or

TiC (see e.g. Miodownik [1994]). A second population of carbides is also considered in

some of the models, designated as carbide B (table 4); these are rather softer and weaker,

with material properties similar to those of M6C and M7C3. (Note that similar mate-

rial properties were used in studies of HSS by Gross-Weege et al. [1996] and Lippmann

et al. [1996]). The elastoplastic behavior of the matrix, which is taken to include the ef-

fects of the secondary carbides, is described by J2 plasticity plus a Ludwik hardening law,

compare eqn. (3.8). Note that the above material models cause the predicted mechanical

behavior of the HSS to be independent of particle size before the onset of particle failure.

Overview of Modeled Microstructures

A number of different types of microstructures are studied in order to allow some assess-

ment of the influence of a number of parameters on the particle fracture behavior of HSS

(compare table 11):

• HSS microstructure 1 (HSSµ1
6.3%): stiff particles (e.g. VC- or TiC-carbides) of the same

size, total particle volume fraction ξ = 6.3 vol.%.

• HSS microstructure 2 (HSSµ2
15%): stiff particles (e.g. VC- or TiC-carbides) of the same

size, total particle volume fraction ξ = 15.0 vol.%.

• HSS microstructure 3 (HSSµ3
15%): soft particles (e.g. M7C3-carbides, M6C-carbides) of

the same size, total particle volume fraction ξ = 15.0 vol.%.

• HSS microstructure 4 (HSSµ4
15%): larger stiff particles with smaller soft particles, total

particle volume fraction ξ = 15.0 vol.%.

• HSS microstructure 5 (HSSµ5
15%): larger soft particles with smaller stiff particles, total

particle volume fraction ξ = 15.0 vol.%.
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• HSS microstructure 6 (HSSµ6
15%): large and small stiff particles, total particle volume

fraction ξ = 15.0 vol.%.

• HSS microstructure 7 (HSSµ7
15%): large and small soft particles, total particle volume

fraction ξ = 15.0 vol.%.

• HSS microstructures 8/9 (HSSµ8
15%/HSSµ9

15%): soft and stiff particles of equal size in two

different arrangements with slightly different volume fractions, total particle volume

fraction ξ = 15.0 vol.%.

For all models a nominal reinforcement volume fractions of ξ = 15.0 vol.% was used

with the exception of HSSµ1
6.3%, for which a nominal volume fraction of ξ = 6.3 vol.%

was studied. For all of the computations on HSS-type materials the MCW particle cleavage

activation model was used.

4.2.1 Microstructure HSSµ1

6.3%

For modeling microstructure HSSµ1
6.3% the particles’ material properties were set to carbide

A (compare table 4). The case of ξ = 6.3 vol.% particles was investigated by RPC-unit cells.

As expected, compared to the case of aluminium based particle reinforced MMCs, the

particles are exposed to higher stresses and the likelihood of particle failure before the

onset of large-scale yielding is increased. Figure 53 shows data obtained by sets of two

simulations, each done with arrangement A (orange) and with arrangement B (green) as

well as the averaged behavior obtained for all four runs (black). Both configurations show

the same elastic modulus of E∗ ≈ 219.7 GPa (table 13), which is in good agreement with

analytical estimates given in table 12.

Microscale stresses and strains obtained from models using unit cells A and B are listed

in tables 13 and 14, for elastic and elastoplastic matrix states, respectively. The results

are given in terms of phase averages ± the corresponding standard deviations. Only very

small differences in the predictions are present (mainly in the standard deviations), which

indicates that the unit cells follow very similar arrangement statistics in the damage free

regime. In table 15 predictions for the phase averaged microfields are given for models in-

corporating particle failure, the applied strain being equal to that used in table 14. Slight

reductions are present in the phase average of the equivalent plastic strain, but the plas-

tic strains are much more inhomogeneous (as evident by the markedly increased standard

deviations). This behavior is caused by the presence of high plastic strains in the vicin-
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ity of the cracked particles (the cracks being assumed to be stopped in the matrix) in

combination with some unloading in other regions. Note that such a marked increase of

the fluctuations of the equivalent plastic strains was not found in ”analogous” modeling

runs for AA2618/SiCp-T4 MMCs, see table 8, where particle fracture typically occurs at

much higher average plastic strains in the matrix. The phase averages of σ
(m)
eq , σ

(m)
1 , and

σ
(m)
H are similar for models with and without particle fracture, with somewhat lower values

predicted for the former case. As expected the failure of some carbides leads to a consid-

erable reduction in the phase averages of the particle stresses, but to considerably higher

standard deviations of the stress distributions. Because the different failure sequences in

the modeling runs lead to a considerable difference in the overall stresses of arrangements

A and B, there are also clear differences in the phase averaged particle stresses, especially

in σ
(p)
H , in table 15.

In table 16 stress measures averaged over the remaining intact particles at the same applied

strain of εa = 0.032 are listed together with predictions for the volume fraction of the voids

generated between the fragments of broken particles. Again markedly lower stress levels

are found for arrangement A compared to arrangement B, even though the relative differ-

ences are slightly smaller than those shown by the phase averages in table 16. Especially

noteworthy are the high standard deviations of the stress measures for the intact particles

in arrangement A. The much higher pore volume fraction in the latter microgeometry can

be conjectured to allow for the low phase averages of the mean stress noted above. For

the matrix stresses only minor differences can be observed in table 15, but the accumu-

lated equivalent plastic strains in the matrix with lower pore volume fraction are slightly

increased. For the model with fewer failed particles at the overall strain of εa = 0.032

( σa

0σ
(m)
y

= 1.08, arrangement B) the values for the listed parameters show smaller standard

deviations. Generally, it may be stated that the results for the two RPC arrangements

are surprisingly difficult to interpret: whereas they lead to quite similar behavior in the

damage free case, models A and B gave rather different predictions once particle failure was

activated. From the limited number of simulation runs carried out it is not clear if these

differences are statistically significant.

4.2.2 Microstructures HSSµ2
15%

and HSSµ3
15%

Microstructures HSSµ2
15% and HSSµ3

15% are based on the same microgeometries, which com-

prise 15 randomly positioned spherical particles of equal size, the volume fraction of each

particle being 1% and the total nominal particle volume fraction 15%. For the simulations
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arrangements created on the basis of the RSA approach and presented in figures 12 and 14

were used (i.e. arrangements C and D). The difference between the two microstructures

lies in the different material properties employed for the carbides, stiff and strong parti-

cles (carbide A) being used in HSSµ2
15%, whereas for microstructures HSSµ3

15% softer and

weaker particles of type carbide B were specified. The latter microstructures show only a

very small elastic contrast between matrix and carbides (compare table 4 for the material

parameters).

The different stiffnesses of the particles in the two microstructures show up directly

in the effective Young’s moduli, which are predicted as 234 GPa for HSSµ2
15% and 212 GPa

for HSSµ3
15%, see table 18. Both values are in good agreement with the Hashin-Shtrikman

type lower bounds given in table 17, the numerical results falling slightly below the bounds

on account of the particle volume fraction in the unit cells being slightly lower than the

nominal value of 15% due to meshing effects (see eqn. (3.14)). For a given applied strain in

the elastic range, both the overall stresses and the phase averaged stresses are significantly

higher in microstructure HSSµ2
15% for both matrix and particles.

As expected, microstructure HSSµ2
15% shows a stiffer overall response throughout the con-

sidered strain range, which reached to an applied strain εa = 0.032 ( σa

0σ
(m)
y

= 1.15), i.e. well

into the elastoplastic range. At the latter strain the overall tensile stress carried by

model HSSµ2
15% exceeds that of model HSSµ3

15% by about 1.3% (see table 26). For this

applied strain both the phase averaged stresses in the particles and the equivalent plastic

strain in the matrix are predicted to be significantly higher in model HSSµ2
15%, while the

averaged stresses in the matrix are almost of the same value, despite the markedly higher

standard deviation computed for model HSSµ2
15%, compare table 21.

In figure 54 predicted uniaxial stress-strain diagrams of microstructures HSSµ2
15% and

HSSµ3
15% are shown, which were obtained by ensemble averaging over the results of simula-

tion runs in which particle failure activated by the MCW method was considered. In both

cases the first carbides were predicted to fail early in the loading history, especially so

for model HSSµ3
15%, where the particle damage starts before yielding of the matrix (this,

of course, is a consequence of the low strength of these particles). At the maximum

strain considered, εa = 0.032, all particles had failed in the simulation runs performed for

model HSSµ3
15%, the stress carried at this point being reduced by more than 18% compared

to the damage free case — in fact, they are lower than the yield stress of the unreinforced

matrix ( σa

0σ
(m)
y

= 0.93). Microstructure HSSµ2
15% is less susceptible to particle fracture and at

the above applied strain shows a reduction in the stress carried of some 11%, the overall

stress being σa

0σ
(m)
y

= 1.02, compare also table 26.
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The higher number of failed particles at the applied strain of εa = 0.032 also has a

marked influence on the microfields in microstructure HSSµ3
15%, the phase average of the

maximum principal stress for the particle phase being halved compared to the damage

free case and the phase average of the mean stress being in the compressive rather than

in the tensile range, see table 24. Similar, although much less marked effects are present

for model HSSµ2
15%. In both cases the high standard deviations of the stress measures

indicate strongly fluctuating microstresses in the fractured particles, a behavior that was

also evident in the studies of aluminium based MMCs, see e.g. figure 31. Interestingly, for

model HSSµ2
15% both the averages and the standard deviations of the microstresses in those

particles that have survived an applied strain of εa = 0.032, see table 25, are comparable

to the corresponding values evaluated from simulations in which damage was not activated

(table 21), most of the differences between the two sets of results being consequences of the

different overall stress levels obtained with and without damage. Table 25 also shows that

the higher number of failed particles together with the earlier occurence of the failure events

in the loading sequence leads to a significantly higher level of porosity in microstructure

HSSµ3
15% at the reference overall strain of εa = 0.032. This opening up of the voids between

the fragments of fractured particles provides an explanation for the reduced levels of the

phase averaged equivalent plastic strains in the matrix predicted for the simulation with

particle damage (table 24) compared to the damage free cases (table 21) at the same

applied strain.

Because of the similar material combinations the differences between the predictions

attained for HSSµ2
15% and HSSµ1

6.3% (section 4.2.1) are just mentioned here with a few words.

Of course, because the same number of particles per unit cell is used to describe a higher

particle volume fraction, the failure of these particles in microstructure HSSµ2
15% has a

greater impact on the overall stiffness of the material compared to arrangement HSSµ1
6.3%.

Due to the higher elastic stiffness of microstructure HSSµ2
15% with a carbide volume fraction

of 15 vol.% compared to the case of ξ = 6.3 vol.%, somewhat higher phase averages of

the stresses in matrix and carbides are reached at the same applied strain in the former

material, compare tables 13 and 18. Not surprisingly, the higher reinforcement volume

fraction also results in increased stresses and strains within the matrix when no failure is

activated, compared to the situation predicted with the use of microstructure HSSµ1
6.3%, see

tables 18 and 19, at the same elastic strain. Sequential particle cleavage affects the results

in such a way that the effective stresses, the maximum principal stresses and the hydro-

static stresses in the matrix have similar values in both microstructures (see tables 15 and

24), but the plastic strain is somewhat higher in microstructure HSSµ2
15%. Averaging over
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all particles (intact plus failed) results in approximately the same hydrostatic stresses as

for the microstructure HSSµ1
6.3%, but their effective stresses and maximum principal stresses

are smaller in HSSµ2
15%. The higher reinforcement volume fraction together with the higher

number of fractured particles at the reference strain cause the pore volume between the

fragments of fractured particles to be significantly larger in arrangement HSSµ2
15%, where it

shows a value of fv = (0.43 ± 0.05) %, compare table 25.

Generally it can be stated that reinforcement of the present very stiff matrix with rela-

tively soft and weak particles as exemplified by microstructure HSSµ3
15% is not an attractive

proposition.

4.2.3 Microstructures HSSµ4
15%

and HSSµ5
15%

These two microstructures were specifically designed to shed some light on the influence

of particle size and material properties on particle fracture. In both microstructures the

same geometrical arrangements are used (arrangements E and F, see figures 13 and 15),

which contain 7 large and 8 small randomly positioned spherical particles, the volumes

of which differ by a factor of 8. In HSSµ4
15% the large particles are of the stiff and strong

(”hard”) type, carbide A, and the small ones are softer and weaker, carbide B, whereas in

HSSµ5
15% the relationship between particle size and material properties is reversed, i.e. large

soft and small stiff carbides. For the corresponding material parameters refer to table 4.

Because the total volume fraction of the small particles of approximately 2 vol.% only

amounts to about 13% of the total particle volume fraction, the overall Young’s modulus

of microstructure HSSµ4
15% (13 vol.% large stiff particles) is considerably higher at 230.5

MPa than that of HSSµ5
15% (2 vol.% small stiff particles), which reaches only 214.6 MPa,

compare table 18. This relationship between the two microstructures is continued into

the elastoplastic range in the absence of microscale damage, the overall stresses carried at

an applied strain of εa = 0.032 being 3.15 GPa ( σa

0σ
(m)
y

= 1.15) for HSSµ4
15% and 3.12 GPa

( σa

0σ
(m)
y

= 1.14) for HSSµ5
15%, see table 26.

As expected the averages of the stresses in particles and matrix for given applied strains

are higher in HSSµ4
15% in both the elastic and elastoplastic ranges (damage free cases) on

account of the higher overall loads carried by that microstructure, see tables 18 and 21.

Due to the greater volume fraction of stiffer particles the plastic strains in the matrix are

slightly larger for HSSµ4
15% in the elastoplastic regime. A more detailed picture on the stress

states of the carbides can be obtained from tables 19 and 22, where separate averages and
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standard deviations of the microstresses for the large and the small carbides are given. In

both the elastic and the (damage-free) elastoplastic regimes the stiffer particles are more

highly loaded in both microstructures. However, whereas in the elastic case the maxima

of the averages of σeq, σ1 and σH are obtained in the large stiff particles of HSSµ4
15%, in the

damage-free elastoplastic case the highest von Mises and maximum principal stresses occur

in the small stiff particles of HSSµ5
15%. Interestingly, the standard deviations of the stresses in

the small particles are much higher than in the large ones for all cases considered, i.e. the

small carbides show a marked tendency towards intra-particle and inter-particle stress

fluctuations.

When damage due to particle fracture is activated, qualitatively different stress-strain

responses are predicted for the two microstructures, see figures 55 and 56. For HSSµ4
15% the

lower strength of particles of type carbide B slightly outweighs their smaller size for the

material parameters and the Weibull model used, so that their fracture probabilities are

somewhat higher than (but of comparable magnitude to) those of the large particles con-

sisting of the stronger material, carbide A, see figure 57. As a consequence the smaller

particles tend to fail first in simulation runs using the MCW fracture activation model and

fracture events that involve large particles also occur throughout the strain range consid-

ered, see figure 55 (note that this figure shows results from two runs in which applied strains

up to εa = 0.032 were reached and from one run in which applied strains of εa = 0.052

were modeled, by which time all of the 15 carbides had failed). In contrast to the above

behavior, the Weibull fracture probabilities of the large weak particles in microstructure

HSSµ5
15% are much in excess of those of the small strong ones, see figure 58. The big parti-

cles’ fracture probabilities increase at all positions within the unit cell and for all loading

directions, leading to a high propensity for particle fracture to occur before large scale

yielding and, after their cleavage, no noticeable reinforcement effect by the small particles

is present on account of their low volume fraction. This leads to a considerable reduction

in the maximum load carried by microstructure HSSµ5
15% compared to HSSµ4

15%. A further

consequence of the early failure of large particles in HSSµ5
15% is the highest pore volume

fraction at an applied strain of εa = 0.032 of all microstructures considered, see table 25.

An assessment of the phase averages and standard deviations of the microscale stresses

and strains listed in table 24 leads to analogous conclusions as obtained for microstructures

HSSµ2
15% and HSSµ3

15%, i.e. the stresses carried by the failed particles are significantly reduced

whereas the surviving particles continue to carry loads comparable to those predicted for

the damage-free case. Due to the large contribution of the large particles to the total volume

fraction, the stress and strain averages predicted for HSSµ4
15% and HSSµ2

15% are of comparable
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magnitudes (table 21) for the damage free case and at the overall strain of εa = 0.032.

The same is valid for the phase averages obtained for the microstructures HSSµ5
15% and

HSSµ3
15%. When particle cleavage is activated, microstructure HSSµ5

15% shows predictions for

the microfields that are quite similar to those obtained with HSSµ3
15%, the main difference

being somewhat higher phase averaged stresses in the former case. Evidently, the behavior

of both microstructures is dominated by the large weak carbides (the total volume fractions

of which are quite similar in both cases), the small stiff particles playing only a minor role.

When microstructures HSSµ2
15% and HSSµ4

15% are compared, the presence of the small weak

particles has clear consequences on the microfields despite their low volume fraction, this

being a consequence of their considerable tendency to fail.

4.2.4 Microstructures HSSµ6
15%

and HSSµ7
15%

Microstructures HSSµ6
15% and HSSµ7

15% make use of the same particle arrangements as mod-

els HSSµ4
15% and HSSµ5

15%, i.e. there are 7 large and 8 small randomly positioned spherical

particles, refer to arrangements E and F, which are displayed in figures 13 and 15. In model

HSSµ6
15% all of these particles are treated as stiff and strong MC-like carbides, whereas in

model HSSµ7
15% they correspond to softer and weaker M6C-like carbides.

As expected both the predicted Young’s modulus and the phase averaged microstresses

are very similar to the results obtained for microstructures HSSµ2
15% and HSSµ3

15%, which

contain carbides of the same material properties at very similar total volume fractions, all

of which are of identical size. The same tendency is present for the microscale stresses and

strains evaluated for uniaxial tensile loading into the elastoplastic range without particle

damage, see table 21. For the elastic range table 19 shows that very similar stresses are

carried by the large and the small particles at a given overall strain. For the damage-free

elastoplastic case, however, a trend can be discerned in table 22 for the equivalent and

maximum tensile stresses to be higher in the smaller particles. The trend towards higher

stress fluctuations in the smaller particles noted in section 4.2.2 is again evident.

In the present series of unit cell studies, for particles of the same material behavior

but of different sizes the larger particles always had larger fracture probabilities, leading

to their preferential failure in MCW analyses. This behavior leads to responses of the type

shown in figure 59, where stress-strain diagrams predicted for model HSSµ6
15% are displayed

(some hardly noticeable decreases in the overall stress due to the failure of small particles

are marked by A ). The reduction in the stress carried compared to the damage-free mi-

crostructure, the stress-strain behavior of which is indicated by a dashed curve, is evident.
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In figures 60 to 64 some aspects of uniaxial loading sequences consisting of loading-

unloading-reloading processes are studied for models HSSµ6
15% and HSSµ7

15%. Figure 60 shows

results from a single MCW simulation run together with predictions from a damage-free

analysis, both pertaining to microstructure HSSµ6
15%. Whereas in the damage free case the

elastic modulus obtained for unloading from an overall applied strain of εa = 0.032 is

equal to the ”initial” Young’s modulus, damage due to the fracture of nearly 50% of all

particles gives rise to a reduction in the elastic stiffness from about 233 GPa to about 184

GPa. The behavior of the reloading curve in the latter case, which deviates from a linear

response before the flow stress is reached, is an artifact of the incrementation algorithm

and should be disregarded in interpreting the results. In figure 63 an ensemble average

of results obtained with the MCW algorithm for microstructure HSSµ7
15% is given together

with a prediction for the corresponding damage-free case. Failure events of small particles

are marked by B . Again, the elastic response of the unit cells in the presence of particle

damage is much softer than for the damage-free material (Young’s moduli of 169 GPa versus

212 GPa). It is worth noting that the volume fraction of the voids between the particle

fragments remains below 1% in both cases, which is much too small for explaining the

reduction in elastic stiffness in the spirit of continuum damage mechanics of homogeneous

materials.

In figure 62 a prediction for the evolution of the volume fraction of the voids between

the fragments of broken particles in the course of the loading-unloading-reloading sequence

is presented for microstructure HSSµ6
15%, an analogous plot for model HSSµ7

15% being given

in figure 64. In both cases there is a rapid initial increase of the pore volume fraction

once particles start to break, followed by a slower void growth as the particle fragments

are pulled apart. Whereas the former behavior is thought to approximate the behavior of

actual materials reasonably well, the behavior in the growth phase is a consequence of the

modeling assumption that cracks are stopped quickly in the matrix. Unloading leads to

a reduction of the void volume fractions, but total closure of the voids is far from being

achieved by reducing the overall stress to approximately zero.

Figure 61 follows the evolution of the ”instantaneous” Weibull fracture probabilities

in the particles of microstructure HSSµ6
15% through the above loading sequence. During the

initial tensile loading section the fracture probabilities of the large particles can be seen

to be much higher than those of the small particles, stress redistribution effects upon the

failure of some particles being fairly prominent. Unloading leads to a rapid reduction of

the maximum principal stresses in the particles and, consequently, of the Weibull fracture

probabilities, whereas reloading causes them to rise again to their former level. The loop
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in the fracture probabilities of the surviving particles, e.g. particle 13 represented by a

solid blue curve, which figures prominently in the diagram, is due to local plasticity effects.

Overall unloading reduces the fracture probability of particle 13 to zero at some point,

i.e. no substantial tensile stresses are present in the particle. Further unloading may

lead to compressive microstresses in the particles, but does no longer affect the fracture

probabilities. Upon reloading the particle carries tensile stresses again and the fracture

probabilities rise, giving rise to the loops in figure 61. Because the incrementation scheme

used was optimized for numerical efficiency rather than for resolving details of the evolution

of the Weibull fracture probabilities, some care has to be exercised in interpreting the latter.

Note that while the principal stresses in the particles decrease linearly during the (elastic)

unloading sequence, the Weibull fracture probabilities, which scale as Pfr,j ∼ − exp σm
1 , do

not, even though such a behavior might be read from the few data points present in the

loading-unloading region of figure 61.

For an applied overall strain of εa = 0.032 particle failure leads to a reduction in the

predicted overall stress about 21% for microstructure HSSµ7
15% (and about 15% for HSSµ6

15%),

compared to the damage-free case, see table 26. As expected, microstructure HSSµ7
15% also

shows a rather high volume fraction of pores due to particle failure. As a consequence,

the equivalent plastic strains are a little bit smaller in the above microstructure than in

HSSµ6
15%, and the microstresses are somewhat lower.

In figure 65 the predicted distributions of the accumulated equivalent plastic strain

εeq,p in the damage-free model HSSµ7
15%at an applied strain of εa = 0.032 (corresponding

to an overall stress of σa = 3.12GPa) are visualized in terms of isosurfaces. Blue surfaces

represent equivalent plastic strains of εeq,p = 0.023. For the top image additional isosurfaces

are colored dark green, εeq,p = 0.046, and light green, corresponding to εeq,p = 0.069. In

the bottom image the highest value displayed is εeq,p = 0.031, represented by the light

blue isosurface, and between these two limiting values extra isosurfaces are depicted, with

distance values differing in steps of εeq,p = 0.002. With these images the formation of

contiguous regions of elevated plastic strains in the matrix between the particles can be

seen, which are oriented roughly parallel with the applied loads and pass through the unit

cell. This is a qualitatively similar behavior to the one previously discussed for MMCs,

but the load transfer to the particles is different due to the different material properties

involved.
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4.2.5 Microstructures HSSµ8
15%

and HSSµ9
15%

The final two microstructures considered, HSSµ8
15% and HSSµ9

15%, are again based on the

same microgeometries, in which there are 15 randomly positioned equally sized spherical

particles of a total volume fraction of 15% (figures 12 and 14, arrangements C and D).

Out of these particles 7 are randomly selected to form group one, which is assigned the

material properties of stiff and strong carbides (carbide A) for model HSSµ8
15% (marked

with (h) in tables 20 and 23), the other 8 particles being softer and weaker (carbide B,

marked with (w) in the tables). In microstructure HSSµ9
15% the same sets of particles are

given interchanged material properties, so that there are 7 vol.% of softer ((w)-designation

in tables) and 8 vol.% of harder particles (marked by (h)).

The above assignments of material properties to the particles lead to predictions of a

slightly smaller Young’s modulus in model HSSµ9
15%, compare table 18. The homogenized

uniaxial stress-strain response of the damage-free unit cells continues to be very similar

in the elastoplastic range, see table 21, and there are only minor differences in the phase

averages of the stresses and strains. The average stresses are higher in the stiffer particles

both in the elastic (table 20) and the elastoplastic (table 23) regimes, the differences being

more pronounced in the former case (interestingly, even though the total volume fractions

of hard and soft particles are not the same for those microstructures the microscale stress

averages are very similar for the elastoplastic case; even the standard deviations are the

same and arrangement effects do not seem to be evident in the damage-free case, see tables).

The data show that the effects of the particle stiffness tend to be more pronounced for the

von Mises than for the hydrostatic stress contributions. In addition a tendency for a higher

variability of the stresses in the stiffer particles can be discerned.

The results obtained when considering particle cleavage are illustrated in the stress-

strain relations obtained for both microstructures, figure 66. For HSSµ9
15% the overall stress

at a strain of εa = 0.032 is reduced to σa = 2.65GPa ( σa

0σ
(m)
y

= 0.96), the corresponding

value for HSSµ8
15% being 2.66GPa ( σa

0σ
(m)
y

= 0.97), see table 26.

Three snapshots of the distributions of the equivalent plastic strains in the matrix

and of the maximum principal stresses in the particles are depicted in figures 68 to 70

for a typical MCW-triggered simulation run using microstructure HSSµ9
15% (the corresponding

stress-strain relation is shown in figure 67). The states correspond to applied strains

of εa
A = 0.010 (where all particles remain intact), of εa

B = 0.013 (where the first nine

particles have fractured), and of εa
C = 0.032 (the maximum applied strain considered
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here), respectively.

At the lowest load level, the maximum principal stresses are consistently higher in the

stiffer particles (yellow color coding) than in the softer ones (light green and dark green

color coding) and a clear correlation between particle material and maximum principal

stresses in the particles is evident. A first region with equivalent plastic strains in excess

of ε
(m)
eq,p = 0.0017 can be seen to form between particles 2 and 14, both of which are of the

stiffer type (particle set (h), refer to table 11). The irregular stress distributions on the face

of particle 14 are an artifact of the mesh and constraint conditions used.

In figure 69, which pertains to a somewhat higher applied strain in which nine of the

particles have failed (just one of the soft particles remains intact and three of the stiffer

particles have also failed), such a clear distinction between stiffer and softer particles can

no longer be made. Note that in those particles which happen to be sectioned by a face of

the unit cell failure can be easily recognized by the low levels of the maximum principal

stress in the interior (blue regions); as noted in figure 31 for the MMC model the zone

close to the interface continues to carry considerable loads in fractured particles. In the

matrix considerable regions with significant levels of plastic strains are evident. It is

worth noting that the region where yielding was evident at a lower strain in figure 68 has

grown noticeably (as evidenced by the blue isosurface of ε
(m)
eq,p = 0.034), and large scale

but incomplete yielding has occured, forming a contiguous plastified region in the matrix

(compare with the results shown for the damage-free MMC models in section 4.1.2). While

the present results are too limited in scope to allow definite statements, it appears probable

that this behavior is a consequence of the failure of some particles, which leads to high

plastic strains in the matrix regions adjoining the crack tip (note that the cracks are

assumed to be stopped in the matrix close to the particle). These trends are even more

pronounced in figure 70, which shows the situation predicted for a considerably higher

applied strain (predominantly yielded matrix, isosurfaces illustrating lower values of the

equivalent plastic strain are not displayed).
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4.3 General Discussion

In the preceding sections results on the mechanical behavior of two groups of particle rein-

forced ductile matrix composites were reported, special emphasis being put on the fracture

of the reinforcing particles. Cube shaped unit cells were used, in which a number of spheri-

cal particles are dispersed, which represent SiC reinforcements in AA2618/SiCp-T4 MMCs

or primary carbides in high speed tool steels. A number of different microgeometries of

this type were considered and, in the latter case, a number of variations in the carbides’

material properties were studied.

As is well known from the literature, models of the above type give very good agreement

with analytical estimates and bounds in the elastic range on the basis of the actual phase

volume fractions in the discretized unit cell models. The material parameters of the con-

stituents of the two groups differ in that the elastic contrast between the phases, i.e. the

elastic stiffness mismatch between matrix and reinforcements, is about E(p)

E(m) = 6.3 for the

MMC and lies between E(p)

E(m) = 1.1 and 2.1 for the HSS. Much higher contrasts in terms

of instantaneous stiffnesses, of course, are present under conditions of large scale yielding

in the matrix. As a consequence of the different degrees of material inhomogeneity in the

two materials in the damage free case, the differences between the phase averaged stress

levels in particles and matrix are generally more pronounced in the results obtained for

AA2618/SiCp-T4 than in those pertaining to HSS, compare tables 6 to 21. The abso-

lute levels of the phase stresses, of course, are much higher in the high speed steel for a

given macroscopic strain state. The more pronounced inhomogeneity of the AA2618/SiCp-

T4 MMCs also gives rise to a clear tendency towards higher standard deviations of the

stresses in the reinforcement at the volume fractions considered, both interparticle and

intraparticle stress fluctuations being increased.

The considerations of microscale damage concentrated on the brittle fracture of the

reinforcing particle, whereas ductile damage of the matrix and decohesion at the interface

between particles and matrix were not considered in depth in the models. The comparison

of the relations of the characteristic strengths of the reinforcements, σ0, to the matrix

yield strengths, 0σ
(m)
y , shows a significant difference in the investigated particle reinforced

composites. Due to the much lower yield stress ( σ0

0σ
(m)
y

= 5.43) of the AA2618-T4 matrix

of the SiC/Al MMC the present Weibull fracture concept predicts that particles in this

material have a low probability of failing before matrix yielding sets in (Eckschlager et al.

[2001a]; Eckschlager and Böhm [2002]). In contrast, particle fracture events were found

to be much more likely in the HSS ( σ0

0σ
(m)
y

= 1.33), especially when weak (e.g. M7C3, M6C,
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σ0

0σ
(m)
y

= 0.65) carbides are present. For materials of the latter type, in some simulation

runs all particles failed at applied uniaxial tensile strains of less than εa = 0.032, leading

to decrease in the overall stress of up to 21% compared to the damage free case. In the

SiC/Al MMC the number of failed particles at the maximum applied strain considered,

εa = 0.22, remained limited, but the loss in the macroscale stress carried by the material

nevertheless reached up to 15%, the more marked concentration of the stresses in the

particles of the MMC giving rise to a higher (relative) reduction in the overall stress per

failed particle. Generally, these results reflect the much higher ductility of SiC/Al MMCs

compared to high speed tool steels. It should be noted, however, that the above reductions

in overall stress underestimate those occurring in actual materials, where ductile damage

of the matrix and interfacial decohesion also contribute to the degradation of the overall

material behavior.

In assessing the results obtained for the fracture behavior of carbides in HSS, where a

number of combinations of relative particle size and of material property data sets for the

carbides were considered, some special features of the microgeometries used must be taken

into account. In the phase arrangements HSSµ2
15% to HSSµ9

15% a nominal particle volume

fraction of 15% was attained from 15 spherical particles randomly positioned in the unit

cell. Accordingly, in geometries with two particle sizes the small particles have about 23%

and the larger about 184% each of the volume of each carbide in an arrangement with

equally sized particles. Within the present Weibull framework these larger particles are

the most liable ones to break for a given local load level. Even when this bias is accounted

for, however, arrangements of equally sized strong particles (HSSµ2
15%) tended to give the

most favorable behavior, both the overall stress at the maximum strain and the number

of fractured particles (which, of course, are focal points for the initiation and evolution of

interface and matrix damage) remaining limited. Among materials that contain both strong

and weak carbides, the best behavior tends to be obtained when the weaker particles are

smaller, so that the fracture probabilities of both types of carbides are roughly comparable

(HSSµ4
15%). Within the present modeling approach the presence of large weak particles is

always detrimental, many of them tending to fail early in the loading process, leading to a

considerable level of damage even at relatively moderate applied loads.

Finally some interesting aspects of the microscale behavior of ductile matrices reinforced by

spheres were found. Whereas in two-dimensional models the plastic strains in the matrix

tend to concentrate in band-like regions angled at about 45o to the loading direction, a

qualitatively different pattern of the microstrains was consistently predicted by the three-

dimensional unit cells, in which contiguous regions of elevated plastic strain (which may
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also enclose some particles) pass through the unit cell roughly aligned with the applied

load. Also it was interesting to notice that even though the load carrying capability of

broken particles is severely curtailed, they are nevertheless subject to rather high local

shear stresses.



Chapter 5

Conclusions

Finite Element based three-dimensional multi-inclusion unit cell models were discussed,

which allow studying the successive failure of a number of particulates due to brittle cleav-

age in particle reinforced ductile matrix materials such as MMCs and HSSs. The fracture

of any given particle was controlled either deterministically via a Weibull-based Rankine

fracture model or by a Monte-Carlo extension of the Weibull particle failure concept. Par-

ticle failure was assumed to take place instantaneously along a predefined fracture surface

and was implemented via a node release technique. This modeling strategy allows to ac-

count for stress redistribution effects upon the failure of any particle in three-dimensional

microgeometries. Results from computational runs on a number of simplified particle ar-

rangements were presented as proof of concept.

To keep the complexity of the model at a reasonable level and to allow to concentrate

directly on the effects of particle fracture, two central assumptions were made in the mod-

els. One of them is the use of periodic phase arrangements which is implicit with unit

cell approaches and which automatically leads to periodic distributions of microscale dam-

age. The other lies in neglecting ductile damage in the matrix and interfacial decohesion

between particles and matrix, two damage mechanisms which in actual materials interact

and compete with particle fracture.

Among the microgeometries used, randomly pruned cubic arrangements (section 3.1.1)

are rather regular, but phase arrangements based on random sequential adsorption algo-

rithms (section 3.1.2) allow realistic descriptions of statistically isotropic microgeometries,

even though the number of particles per unit cell had to be limited to 15 on account of com-

putational requirements. Both a Rankine type algorithm and a fully statistical cleavage

73
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model for the particles implemented by triggering cleavage by Monte-Carlo-type procedures

based on the Weibull fracture probabilities of each inclusion, were implemented. Perform-

ing a number of runs of the latter type for a given microgeometry and evaluating ensemble

averaged stress vs. strain diagrams reduces the effect of each individual particle failure

event on the predicted overall response, leading to more realistic results. The microscale

stress and strain fields in the unit cells were evaluated by the Finite Element method,

which also provided a convenient platform for implementing the particle fracture model.

The use of a continuum mechanical description essentially implies that all physical mech-

anisms acting on smaller length scale, such as the interaction of dislocations with small

dispersoids in the matrix, are considered to be subsumed in the constitutive descriptions

of the constituents.

The investigations are intensively discussed in section 4.1 regarding the MMC SiC/

AA2618-T4, where microgeometries with equally sized particles of different total particle

volume fraction as well as microgeometries with bidispersely sized particles are treated,

and in section 4.2 for the HSS, where a number of variations of reinforcement material

properties and particle sizes are presented. General trends are summarized in section 4.3.

As is well known, for the damage-free case due to the higher stiffness of the particles com-

pared to the matrix a reinforcing effect results because of the increased load carried by the

particles. With the Weibull based models used in the present work a clear size dependence

of the brittle fracture of the particles is found: bigger particles have a higher probability of

failing and, in addition, give rise to larger flaws in the material upon failure. This influence

becomes more significant, when the stiffness mismatch between matrix and reinforcement

phase is higher (for MMCs compare sections 4.1.2 with 4.1.3, for HSS microgeometries

HSSµ2
15% with HSSµ6

15%, or HSSµ3
15% with HSSµ7

15%, refer to section 4.2). Experiments on simi-

lar materials, albeit at higher total particle volume fraction, support a size effect in which

the composite yield stress decreases with increasing particle size, see Kouzeli et al. [2001].

If two reinforcement phases are present, the effect on the particle failure probability strongly

depends on their respective material properties. For example, a combination of large strong

particles with weaker smaller ones may have the consequence that the fracture probabilities

of small and big particles may lie in the same range up to the first particle failure, see the

results in section 4.2.3.

The main practical difficulty with the present modeling approach lies in its high com-

putational costs, so that improvements of the numerical efficiency of the algorithms are

clearly of interest. For improved realism it may be worthwhile not to use predefined frac-

ture planes, but to generate appropriate fracture surfaces before failure, so influences of the
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stress state at the particles in question on their orientation and position can be accounted

for.

Future work is planned, on the one hand, to include modeling of the other failure

modes of the composite. On the other hand, it is important to study phase arrangements

that contain higher numbers of particles to obtain more realistic descriptions of actual

materials. Other long term goals are to account for more general particle shapes and

for the presence specific cleavage planes in monocrystalline particles. Furthermore, the

influence of thermal residual stresses on the failure of PRDMCs is of considerable interest.



Tables

Table 1: Chemical composition of AA2618-T4 (following the International Alloy

Designation System (IADS)), which is used as matrix material in modeling MMCs in

the present work (Polmear [1995]).

grade Si Fe Cu Mg Zn T i Ni

Al2618 0.10–0.25 0.9–1.3 1.9–2.7 1.3–1.8 0.10 0.04–0.10 0.9–1.2

T4 solution treatment, quenching and natural ageing

Table 2: Chemical composition of a typical representative of a conventionally produced

high speed steel S 6-5-2-5 (Böhler S705), its primary metallic carbides, and its martensitic–

austenitic steel matrix (as–hardened) and of a powder metallurgically produced HSS (S390

Isomatrix). Data (in wt.%) estimated by Böhler (compare Antretter [1998]; Plankensteiner

[2000]).

grade C Cr W Mo V Co Fe

S 6-5-2-5 0.92 4.2 6.1 4.9 1.9 5.1 balance

MC 14.0 4.0 21.0 12.0 45.0 — 4.0

M2C 6.0 8.0 40.0 28.0 12.0 — 6.0

M6C 2.0 4.0 35.0 20.0 3.0 — 36.0

Matrix 0.64 4.2 2.7 2.8 1.1 5.1 balance

S390 Isomatrix 1.6 4.8 10.5 2.0 5.0 8.0 balance
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Table 3: Material parameters used for modeling AA2618/SiCp-T4 MMCs (modified Ludwik

hardening law) and elastic reinforcements (SiC, compare LLorca and González [1998];

LLorca and Poza [1995]).

E ν 0σ
(m)
y h n m σ0 V0 ε0

[GPa] [1] [MPa] [MPa] [1] [1] [GPa] [1] [1]

Al2618-T4 matrix 70 0.30 184 722.7 0.49 — — — 0.2

reinforcement 450 0.17 — — — 3.0 1.0 0.01 –

Table 4: Material parameters used for modeling HSS (modified Ludwik hardening law) and

elastic carbidic inclusions.

E ν 0σ
(m)
y h n m σ0 V0 ε0

[GPa] [1] [GPa] [GPa] [1] [1] [GPa] [1] [1]

HSS matrix 0.1

(Plankensteiner [2000])
210 0.30 2.75 1.5 0.5 — — —

(Lippmann [1995])

Carbides A

(Plankensteiner [2000])
450 0.25 — — — 5.0 3.66 0.01 —

Carbides B 225 0.25 — — — 5.0 1.80 0.01 —
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Table 5: Analytical predictions for overall and microscale elastic responses of Al2618-T4

reinforced by SiC (15 particles) subjected to a uniaxial tensile strain of εa = 0.0005. The

Mori-Tanaka method (MTM) was used for evaluating lower (LB) and upper bounds (UB),

with the former corresponding to the standard Mori-Tanaka estimates (note that phase

averaged stresses are estimates, not bounds). For constituent material properties used see

table 3.

E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

[GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

LB 76.9 2.94 36.56 36.88 12.51 66.54 61.80 17.45

UB
6.3 vol.%

84.39 2.90

LB 87.58 2.87 38.99 39.78 13.78 70.96 66.53 19.22

UB
15.0 vol.%

105.51 2.79

Table 6: Numerical predictions for overall and microscale elastic responses of Al2618-T4

reinforced by SiC (15 particles) subjected to a uniaxial tensile strain of εa = 0.0005. Par-

ticles are uniformly sized (arrangement A, arrangement B, arrangement C) or bidispersely

sized (arrangement E). Microstresses are given as phase averages ± standard deviations.

For the constituent material properties used see table 3.

E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
Hvol.%

/

arr. [GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
6.3/A 76.78 2.95/2.93 36.4 ± 4.0 36.7 ± 5.5 12.5 ± 3.1 68.1 ± 4.6 62.5 ± 4.3 17.2 ± 1.7
6.3/B 76.78 2.94/2.94 36.4 ± 4.1 36.7 ± 5.5 12.5 ± 3.1 68.0 ± 4.7 62.5 ± 4.3 17.2 ± 1.9
15.0/C 87.41 2.85/2.87 39.7 ± 6.9 39.9 ± 8.7 13.7 ± 4.5 72.3 ± 7.3 67.6 ± 6.8 19.4 ± 2.7
15.0/E 86.75 2.87/2.87 39.7 ± 6.5 39.9 ± 8.3 13.7 ± 4.4 70.8 ± 4.6 66.0 ± 4.2 18.9 ± 1.9
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Table 7: Numerical predictions for the microscale elastoplastic responses of Al2618-T4

reinforced by SiC (15 particles) subjected to a uniaxial tensile strain of εa = 0.22 (pre-

dominantly yielded matrix, for corresponding homogenized stresses see table 10), particle

failure being suppressed. Particles are uniformly sized (arrangement A, arrangement B, ar-

rangement C) or bidispersely sized (arrangement E). For the constituent material properties

used see table 3.

ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
Hvol.%

/

arr. [×10−1] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
6.3/A 2.06 ± 0.47 0.51 ± 0.04 0.52 ± 0.21 0.19 ± 0.21 1.34 ± 0.33 0.99 ± 0.20 0.13 ± 0.16
6.3/B 2.06 ± 0.46 0.51 ± 0.04 0.52 ± 0.21 0.19 ± 0.20 1.33 ± 0.35 0.98 ± 0.21 0.12 ± 0.16
15.0/C 2.39 ± 0.81 0.54 ± 0.06 0.55 ± 0.19 0.21 ± 0.18 1.16 ± 0.14 0.93 ± 0.11 0.16 ± 0.07
15.0/E 2.39 ± 0.70 0.54 ± 0.05 0.55 ± 0.22 0.21 ± 0.20 1.17 ± 0.15 0.92 ± 0.11 0.15 ± 0.09

Table 8: Numerical predictions for the microscale elastoplastic responses of Al2618-T4

reinforced by SiC (15 particles) subjected to a uniaxial tensile strain of εa = 0.22 (pre-

dominantly yielded matrix, for corresponding homogenized stresses see table 10) and after

the cleavage of some particles during the loading process. Particles are uniformly sized

(arrangement A, arrangement B, arrangement C) or bidispersely sized (arrangement E). For

the constituent material properties used see table 3. Note that the overall stresses carried

by the material are somewhat lower than in table 7.

ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
Hvol.%

/

arr. [×10−1] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
6.3/A 2.05 ± 0.44 0.51 ± 0.04 0.51 ± 0.19 0.18 ± 0.19 1.09 ± 0.38 0.73 ± 0.40 0.03 ± 0.03
6.3/B 2.04 ± 0.48 0.51 ± 0.04 0.51 ± 0.21 0.18 ± 0.20 1.16 ± 0.47 0.78 ± 0.44 0.03 ± 0.03
15.0/C 2.31 ± 0.96 0.53 ± 0.06 0.54 ± 0.22 0.20 ± 0.21 1.12 ± 0.35 0.82 ± 0.35 0.10 ± 0.24
15.0/E 2.28 ± 0.69 0.53 ± 0.06 0.54 ± 0.25 0.20 ± 0.24 0.96 ± 0.44 0.64 ± 0.42 0.03 ± 0.26
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Table 9: Continuation of table 8: Numerical predictions for the microscale elastoplastic

responses of the remaining intact SiC reinforcements (Al2618-T4 reinforced by SiC (15

particles)) subjected to a uniaxial tensile strain of εa = 0.22 (predominantly yielded matrix,

for corresponding homogenized stresses see table 10) and after the cleavage of some particles

during the loading process. Additionally, for this overall strain the evaluated average

overall pore volume fraction due to particle cleavage is given. Particles are uniformly sized

(arrangement A, arrangement B, arrangement C) or bidispersely sized (arrangement E).

σ
(intact)
eq σ

(intact)
1 σ

(intact)
H fvvol.%

/

arr. [GPa] [GPa] [GPa] [%]
6.3/A 1.12 ± 0.26 0.93 ± 0.18 0.14 ± 0.15 0.43 ± 0.20
6.3/B 1.19 ± 0.45 0.81 ± 0.41 0.05 ± 0.28 0.64 ± 0.15
15.0/C 1.17 ± 0.14 0.91 ± 0.11 0.15 ± 0.09 1.00 ± 0.14
15.0/E 1.13 ± 0.19 0.86 ± 0.18 0.12 ± 0.10 1.18 ± 0.32

Table 10: Predicted overall stresses at an overall uniaxial tensile strain of εa = 0.22

for AA2618/SiCp-T4 (predominantly yielded matrix). Values are given, first, for the case

when no particle failure is present, and, second, for analyses where particle failure is acti-

vated (averages of at least two simulations). See table 3 for the material properties used.

σa
(failure suppressed)

σa
(failure suppressed)

0σ
(m)
y

σa
(failure activated)

σa
(failure activated)

0σ
(m)
yvol.%

/

arr. [GPa] [1] [GPa] [1]
6.3/A 0.547 2.98 0.518 ± 0.005 2.82
6.3/B 0.546 2.97 0.526 ± 0.008 2.86
15.0/C 0.596 3.24 0.565 ± 0.009 3.07
15.0/E 0.593 3.23 0.521 ± 0.039 2.83
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Table 11: List of the variations of constituents and microgeometry (equally sized particles,

particles of two different sizes) considered in modeling HSS. The unit cells and phase ar-

rangments are presented in section 3; nominal volume fraction data are given in volume

percent. For designations of inclusions see figures 11 for the models marked by a), figures 12

and 14 for the models marked by b) and figures 13 and 15 for the models marked by c),

respectively. In the ”inclusions” column the carbides are additionally marked with (b),

representing big inclusions, and with (s), representing small inclusions, for the case of bidis-

persely sized inclusion models. For microstructures HSSµ8
15% and HSSµ9

15% the designations

name certain inclusion sets of certain material properties, namely (h) for hard and strong

particles, and (w) for weak and soft, respectively. For material data refer to table 4.

micro- matrix elements inclusionsa),b)

structure – unit cell (arr.) material – vol.% material – vol.% material – vol.%

HSSµ1
6.3%– RPCeq (A,B)a) HSS – 93.7% carbide A – 6.3%

HSSµ2
15%– RSAeq (C,D)b) HSS – 85.0% carbide A – 15.0%

HSSµ3
15%– RSAeq (C,D)b) HSS – 85.0% carbide B – 15.0%

HSSµ4
15%– RSAbi (E,F)c) HSS – 85.0% carbide A – 13.0% (b) carbide B – 2.0% (s)

HSSµ5
15%– RSAbi (E,F)c) HSS – 85.0% carbide B – 13.0% (b) carbide A – 2.0% (s)

HSSµ6
15%– RSAbi (E,F)c) HSS – 85.0% carbide A – 13.0% (b) carbide A – 2.0% (s)

HSSµ7
15%– RSAbi (E,F)c) HSS – 85.0% carbide B – 13.0% (b) carbide B – 2.0% (s)

HSSµ8
15%– RSAeq (C,D)b) HSS – 85.0% carbide A – 7.0% (h) carbide B – 8.0% (w)

HSSµ9
15%– RSAeq (C,D)b) HSS – 85.0% carbide B – 7.0% (w) carbide A – 8.0% (h)



Tables 82

Table 12: Microstructure HSSµ1
6.3%: Analytical predictions for overall and microscale elastic

responses of HSSs (ξ = 6.3 vol.% nominal) subjected to a uniaxial tensile strain of εa =

0.0005. The Mori-Tanaka method (MTM) was used for evaluating lower (LB) and upper

bounds (UB), with the former corresponding to the standard Mori-Tanaka estimates (note

that phase averaged stresses are estimates, not bounds). The particles are spheres of type

carbide A (see table 4 for constituent material properties).

E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

[GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

LB 219.98 2.969 107.25 107.73 36.23 150.79 143.60 43.07

UB 221.44 2.963

Table 13: Microstructure HSSµ1
6.3%: Numerical predictions for overall and microscale elastic

responses of HSSs (ξ = 6.3 vol.% nominal, 15 particles, arrangements A and B) subjected

to a uniaxial tensile strain of εa = 0.0005. Carbides are uniformly sized spheres of type

carbide A (see table 4 for constituent material properties).

arr. E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

[GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

A 219.712.972
/

2.967
106.7 ± 5.7 107.3 ± 7.7 36.2 ± 4.4 152.0 ± 4.7 144.0 ± 4.2 42.7 ± 1.7

B 219.712.971
/

2.967
106.7 ± 5.8 107.2 ± 7.9 36.2 ± 4.3 151.9 ± 4.6 143.9 ± 4.3 42.7 ± 2.0



Tables 83

Table 14: Microstructure HSSµ1
6.3%: Numerical predictions for the microscale elastoplastic

responses of HSSs (ξ = 6.3 vol.% nominal, 15 particles, arrangements A and B) subjected

to a uniaxial tensile strain of εa = 0.032 (predominantly yielded matrix, for corresponding

homogenized stresses see table 26). The uniformly sized particles are of type carbide A,

see table 4, and particle cleavage was suppressed.

arr. ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

[×10−2] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

A 1.87 ± 0.49 2.95 ± 0.03 2.97 ± 0.31 1.02 ± 0.29 5.04 ± 0.30 4.18 ± 0.26 0.83 ± 0.13

B 1.87 ± 0.47 2.95 ± 0.03 2.97 ± 0.31 1.02 ± 0.29 5.02 ± 0.31 4.15 ± 0.26 0.81 ± 0.14

Table 15: Microstructure HSSµ1
6.3%: Unit cell predictions for the microscale elastoplastic

responses of HSSs (ξ = 6.3 vol.% nominal, 15 particles of type carbide A, see table 4,

arrangements A and B) subjected to a uniaxial tensile strain of εa = 0.032 (for corresponding

homogenized stresses see table 26), a number of particles having failed.

arr. ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

[×10−2] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

A 1.80 ± 1.04 2.92 ± 0.06 2.94 ± 0.39 1.00 ± 0.36 4.08 ± 1.09 3.03 ± 1.47 0.34 ± 0.93

B 1.83 ± 0.82 2.95 ± 0.05 2.95 ± 0.35 1.01 ± 0.32 4.58 ± 0.92 3.65 ± 1.23 0.61 ± 0.74

Table 16: Continuation of table 15: Microscale responses averaged over all intact particles

after tensile loading of HSSs (ξ = 6.3 vol.% nominal, arrangments A and B) up to a uniaxial

strain of εa = 0.032, a number of particles having failed (for corresponding homogenized

stresses see table 26). Additionally, for this overall strain the evaluated average overall

pore volume fraction caused by particle cleavage is given.

arrangement σ
(intact)
eq σ

(intact)
1 σ

(intact)
H fv

[GPa] [GPa] [GPa] [%]

A 4.59 ± 0.71 3.77 ± 0.89 0.72 ± 0.51 0.19 ± 0.02

B 4.96 ± 0.30 4.18 ± 0.30 0.88 ± 0.18 0.09 ± 0.01
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Table 17: Analytical predictions for overall and microscale elastic responses of HSSs

(ξ = 0.15 nominal) subjected to an uniaxial tensile strain of εa = 0.0005. For microstruc-

tures HSSµ2
15% and HSSµ3

15% the MT-method has been used to evaluate lower (LB) and upper

(UB) Hashin Shtrikman-type bounds, with the standard MT-estimates corresponding to

the former (note that phase averaged stresses are estimates, not bounds). For the other

microstructures the standard MT-estimates are given. In the three-phase cases the rein-

forcement stresses are given separately. For the microstructures with equal sized spheres

the superscripts (h), for hard and strong, and (w), for weak and soft, are added. For the

microstructures with bidispersely sized spheres superscript (b) marks the values evaluated

for the big particles and (s) the ones computed for the small particles. For the two-phase

HSSs the stress values are given as phase averages, superscript (p). Material data and

designations follow table 11.

E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

LB 234.53 2.928 110.54 111.70 38.03 155.41 148.795 45.19

UB
HSSµ2

15% 237.85 2.913

LB 212.28 2.930 105.25 105.87 35.70 111.23 107.72 33.57

UB
HSSµ3

15% 212.32 2.930

σ
(b)
eq
/

σ
(s)
eq

σ
(b)
1

/

σ
(s)
1

σ
(b)
H

/

σ
(s)
H

HSSµ4
15% 231.44 2.928 109.78 110.89 37.69 154.38

/

116.03
147.72

/

112.80
44.81

/

35.44

HSSµ5
15% 215.13 2.930 105.92 106.61 35.999 148.93

/

111.94
142.08

/

108.48
42.79

/

33.85

σ
(h)
eq
/

σ
(w)
eq

σ
(h)
1

/

σ
(w)
1

σ
(h)
H

/

σ
(w)
H

HSSµ8
15% 222.39 2.929 107.65 108.52 36.76 151.35

/

113.76
144.59

/

110.40
43.69

/

34.56

HSSµ9
15% 223.87 2.928 108.00 108.90 36.91 151.85

/

114.13
145.11

/

110.79
43.87

/

34.71
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Table 18: Numerical predictions for overall and microscale elastic responses of HSSs

(ξ = 0.15 nominal, 15 particles) subjected to a uniaxial tensile strain of εa = 0.0005.

Designations follow table 11.

E∗ ν∗ σ
(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [×10−1] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

HSSµ2
15%234.00 2.927 110.8 ± 9.5 111.6 ± 12.0 37.9 ± 6.3 156.9 ± 8.2 149.8 ± 8.6 45.2 ± 4.1

HSSµ3
15%212.08 2.930 105.2 ± 0.8 105.8 ± 1.1 35.7 ± 0.8 111.2 ± 4.3 107.5 ± 4.9 33.4 ± 2.5

HSSµ4
15%230.47 2.931 110.3 ± 8.4 110.9 ± 10.5 37.6 ± 5.5 148.1 ± 12.7 141.9 ± 12.2 43.2 ± 4.2

HSSµ5
15%214.58 2.931 105.9 ± 3.5 106.5 ± 4.5 35.9 ± 2.4 116.1 ± 12.7 112.2 ± 11.8 34.8 ± 3.6

HSSµ6
15%233.31 2.929 110.9 ± 9.2 111.7 ± 11.6 37.9 ± 6.0 154.4 ± 6.1 147.6 ± 6.6 44.7 ± 3.3

HSSµ7
15%212.08 2.930 105.2 ± 1.5 105.8 ± 1.8 35.7 ± 1.1 110.9 ± 3.1 107.3 ± 3.9 33.4 ± 2.1

HSSµ8
15%221.91 2.929 107.8 ± 6.2 108.5 ± 7.9 36.7 ± 4.1 131.4 ± 18.6 126.2 ± 17.4 38.6 ± 5.5

HSSµ9
15%223.41 2.977 108.1 ± 6.7 108.8 ± 8.5 36.8 ± 4.4 134.8 ± 19.3 129.4 ± 18.2 39.6 ± 5.7

Table 19: Continuation A of table 18: Numerical predictions for the microscale elastic

responses of HSSs subjected to a uniaxial tensile strain of εa = 0.0005. Average stresses

are given for big particles, (b), and small particles, (s), for unit cells containing bidispersely

sized particles. For designations and corresponding material data refer to table 11.

σ
(b)
eq σ

(b)
1 σ

(b)
H σ

(s)
eq σ

(s)
1 σ

(s)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

HSSµ4
15% 152.5 ± 3.8 146.1 ± 3.3 44.5 ± 1.5 117.2 ± 10.6 112.6 ± 12.5 34.6 ± 6.3

HSSµ5
15% 111.7 ± 1.0 108.2 ± 0.9 33.8 ± 0.3 147.7 ± 12.9 140.1 ± 15.6 41.7 ± 7.2

HSSµ6
15% 153.9 ± 3.5 147.4 ± 2.9 44.8 ± 1.4 157.6 ± 14.4 148.9 ± 16.9 43.9 ± 8.6

HSSµ7
15% 111.0 ± 0.4 107.5 ± 0.3 33.5 ± 0.1 110.3 ± 8.7 106.0 ± 11.2 32.6 ± 5.8
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Table 20: Continuation B of table 18: Numerical predictions for the microscale elastic

responses of HSSs subjected to a uniaxial tensile strain of εa = 0.0005. Average stresses

are given for hard and strong particles, (h), and weak and soft particles, (w). For designations

and corresponding material data refer to table 11.

σ
(h)
eq σ

(h)
1 σ

(h)
H σ

(w)
eq σ

(w)
1 σ

(w)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

HSSµ8
15% 150.3 ± 6.3 143.6 ± 7.1 43.4 ± 3.6 114.9 ± 5.6 111.0 ± 5.7 34.5 ± 2.7

HSSµ9
15% 151.8 ± 6.8 145.1 ± 7.4 43.9 ± 3.7 115.4 ± 6.2 111.5 ± 6.5 34.6 ± 3.0

Table 21: Unit cell predictions for the microscale elastoplastic responses of HSSs (ξ =

15.0%, 15 particles) subjected to a uniaxial tensile strain of εa = 0.032 (for correspond-

ing homogenized stresses see table 26), particle cleavage being suppressed. The spherical

carbides are uniformly sized spheres, models HSSµ2
15%, HSSµ3

15%, HSSµ8
15% and HSSµ9

15%, and

bidispersely sized spheres, models HSSµ4
15%, HSSµ5

15%, HSSµ6
15% and HSSµ7

15%, respectively. For

definition of the microstructures see table 11.

ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[×10−2] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

HSSµ2
15%2.17 ± 1.05 2.97 ± 0.05 3.02 ± 0.42 1.08 ± 0.39 4.86 ± 0.33 4.17 ± 0.34 0.90 ± 0.25

HSSµ3
15%1.99 ± 0.60 2.96 ± 0.03 3.02 ± 0.29 1.07 ± 0.27 4.39 ± 0.22 3.81 ± 0.24 0.88 ± 0.15

HSSµ4
15%2.14 ± 0.78 2.97 ± 0.04 3.02 ± 0.40 1.08 ± 0.37 4.79 ± 0.26 4.07 ± 0.26 0.88 ± 0.18

HSSµ5
15%2.01 ± 0.53 2.96 ± 0.03 3.01 ± 0.30 1.07 ± 0.28 4.43 ± 0.29 3.84 ± 0.24 0.89 ± 0.12

HSSµ6
15%2.17 ± 0.82 2.97 ± 0.04 3.02 ± 0.42 1.08 ± 0.39 4.87 ± 0.26 4.11 ± 0.26 0.88 ± 0.19

HSSµ7
15%1.99 ± 0.50 2.96 ± 0.03 3.02 ± 0.29 1.07 ± 0.28 4.38 ± 0.18 3.79 ± 0.19 0.87 ± 0.12

HSSµ8
15%2.08 ± 0.82 2.96 ± 36.9 3.02 ± 0.36 1.08 ± 0.33 4.61 ± 0.33 3.96 ± 0.31 0.89 ± 0.20

HSSµ9
15%2.09 ± 0.86 2.96 ± 0.04 3.02 ± 0.36 1.06 ± 0.34 4.65 ± 0.36 3.99 ± 0.33 0.89 ± 0.21
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Table 22: Continuation A of table 21: Unit cell predictions for the microscale elastoplastic

responses of HSSs subjected to a uniaxial tensile strain of εa = 0.032 (for corresponding

homogenized stresses see table 26), particle failure being suppressed. Average stresses are

given for big particles, (b), and small particles, (s), for unit cells containing bidispersely

sized particles. For designations and corresponding material data refer to table 11.

σ
(b)
eq σ

(b)
1 σ

(b)
H σ

(s)
eq σ

(s)
1 σ

(s)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

HSSµ4
15% 4.83 ± 0.19 4.09 ± 0.19 0.88 ± 0.16 4.54 ± 0.43 3.85 ± 0.48 0.85 ± 0.28

HSSµ5
15% 4.35 ± 0.13 3.80 ± 0.12 0.90 ± 0.08 4.94 ± 0.54 4.10 ± 0.55 0.83 ± 0.23

HSSµ6
15% 4.84 ± 0.19 4.11 ± 0.19 0.89 ± 0.16 5.06 ± 0.50 4.17 ± 0.55 0.82 ± 0.31

HSSµ7
15% 4.37 ± 0.12 3.79 ± 0.12 0.88 ± 0.09 4.48 ± 0.38 3.81 ± 0.45 0.83 ± 0.24

Table 23: Continuation B of table 21: Unit cell predictions for the microscale elastoplastic

responses of HSSs subjected to a uniaxial tensile strain of εa = 0.032 (for corresponding

homogenized stresses see table 26), particle failure being suppressed. Average stresses are

given for hard and strong particles, (h), and soft and weak particles, (w). For designations

and corresponding material data refer to table 11.

σ
(h)
eq σ

(h)
1 σ

(h)
H σ

(w)
eq σ

(w)
1 σ

(w)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

HSSµ8
15% 4.82 ± 0.30 4.09 ± 0.31 0.88 ± 0.23 4.43 ± 0.24 3.84 ± 0.26 0.89 ± 0.17

HSSµ9
15% 4.84 ± 0.31 4.13 ± 0.31 0.91 ± 0.24 4.43 ± 0.26 3.82 ± 0.28 0.88 ± 0.17
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Table 24: Predicted responses at the microscale for HSSs (ξ = 15.0%, 15 particles) sub-

jected to a tensile load up to a uniaxial strain of εa = 0.032 (for corresponding homoge-

nized stresses see table 26), particle fracture being activated. The spherical carbides are

uniformly sized spheres (models HSSµ2
15%, HSSµ3

15%, HSSµ8
15% and HSSµ9

15%) and bidispersely

sized spheres (models HSSµ4
15%, HSSµ5

15%, HSSµ6
15% and HSSµ7

15%), respectively. Designations of

microstructures follow table 11.

ε
(m)
eq,p σ

(m)
eq σ

(m)
1 σ

(m)
H σ

(p)
eq σ

(p)
1 σ

(p)
H

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[×10−2] [GPa] [GPa] [GPa] [GPa] [GPa] [GPa]

HSSµ2
15%1.92 ± 1.70 2.92 ± 0.16 2.94 ± 0.52 1.05 ± 0.46 3.80 ± 1.08 2.83 ± 1.48 0.35 ± 0.92

HSSµ3
15%1.57 ± 1.84 2.90 ± 0.15 2.90 ± 0.55 1.03 ± 0.49 2.39 ± 0.80 1.35 ± 1.06 −1.85 ± 0.77

HSSµ4
15%1.70 ± 1.55 2.91 ± 0.15 2.91 ± 0.61 1.03 ± 0.55 3.19 ± 1.19 2.10 ± 0.49 0.04 ± 0.96

HSSµ5
15%1.58 ± 1.44 2.90 ± 0.14 2.91 ± 0.58 1.03 ± 0.52 2.56 ± 0.98 1.49 ± 1.24 −0.17 ± 0.79

HSSµ6
15%1.67 ± 1.59 2.90 ± 0.16 2.90 ± 0.61 1.03 ± 0.55 3.03 ± 1.07 1.86 ± 1.40 −0.09 ± 0.96

HSSµ7
15%1.51 ± 1.60 2.87 ± 0.20 2.85 ± 0.62 1.01 ± 0.54 2.22 ± 0.74 1.17 ± 0.99 −0.25 ± 0.74

HSSµ8
15%1.71 ± 1.85 2.91 ± 0.14 2.91 ± 0.56 1.03 ± 0.51 3.03 ± 1.15 2.05 ± 1.44 0.09 ± 0.85

HSSµ9
15%1.72 ± 1.89 2.92 ± 0.14 2.92 ± 0.57 1.04 ± 0.52 3.03 ± 1.13 2.05 ± 1.39 0.08 ± 0.87
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Table 25: Continuation of table 24: Microscale elastoplastic responses of the surviving

intact particles after uniaxial tensile global straining to εa = 0.032 (for corresponding

homogenized stresses see table 26) of HSS (volume fraction ξ = 15.0 vol.%). Additionally,

for this overall strain the evaluated average overall pore volume fraction caused by particle

failure is given.

σ
(intact)
eq σ

(intact)
1 σ

(intact)
H fv

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [GPa] [GPa] [%]

HSSµ2
15% 4.59 ± 0.39 3.94 ± 0.44 0.91 ± 0.28 0.43 ± 0.05

HSSµ3
15% all failed all failed all failed 0.74 ± 0.02

HSSµ4
15% 4.64 ± 0.36 3.93 ± 0.41 0.86 ± 0.28 0.70 ± 0.08

HSSµ5
15% 4.55 ± 0.65 3.89 ± 0.55 0.90 ± 0.31 0.97 ± 0.32

HSSµ6
15% 4.51 ± 0.35 3.76 ± 0.42 0.80 ± 0.27 0.58 ± 0.18

HSSµ7
15% 3.46 ± 0.22 3.03 ± 0.26 0.75 ± 0.27 0.82 ± 0.01

HSSµ8
15% 4.51 ± 0.37 3.81 ± 0.38 0.85 ± 0.29 0.61 ± 0.02

HSSµ9
15% 4.30 ± 0.55 3.58 ± 0.45 0.73 ± 0.25 0.62 ± 0.02
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Table 26: Summary of the predicted overall stresses under overall uniaxial tensile strain of

εa = 0.032 of all modeled HSS microstructures (reinforcement volume fraction and unit cell

model are given). Values are given, first, for the case where particle failure was suppressed,

and, second, where particles were allowed to fail during the loading (data involving par-

ticle fracture are averages from at least two simulation runs, the corresponding standard

deviations being also given). For the definitions of the microstructures see table 11.

σa
(failure suppressed)

σa
(failure suppressed)

0σ
(m)
y

σa
(failure activated)

σa
(failure activated)

0σ
(m)
y

vol.%
/

arr.

m
ic

r
o
-

s
t
r
u
c
t
u
r
e

[GPa] [1] [GPa] [1]
6.3/A HSSµ1

6.3% 3.04 1.11 2.90 ± 0.03 1.05
6.3/B HSSµ1

6.3% 3.04 1.11 2.98 ± 0.01 1.08
15.0/C HSSµ2

15% 3.16 1.15 2.81 ± 0.02 1.02
15.0/C HSSµ3

15% 3.13 1.14 2.55 ± 0.02 0.93
15.0/E HSSµ4

15% 3.15 1.15 2.55 ± 0.15 0.93
15.0/E HSSµ5

15% 3.12 1.14 2.53 ± 0.03 0.92
15.0/E HSSµ6

15% 3.16 1.15 2.68 ± 0.12 0.98
15.0/E HSSµ7

15% 3.12 1.14 2.47 ± 0.22 0.90
15.0/C HSSµ8

15% 3.14 1.14 2.66 ± 0.01 0.97
15.0/C HSSµ9

15% 3.15 1.15 2.65 ± 0.03 0.96
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Figure 1: Beginning with initial damage (a) creation of additional pores and pore growth

occur (b). Further increasing the load (c) results in coalescence of pores and microcracks

(d).
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Figure 2: Damage of AA6061/Al2O3/10p caused by pore growth within the matrix, from

Pandorf [2000].

Figure 3: Damage of AA6061/Al2O3/10p caused by debonding at elongated Al2O3-

particles, from Pandorf [2000].
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Figure 4: Damage of AA6061/Al2O3/10p caused by broken Al2O3-particles (at elevated

temperatures, from Pandorf [2000]).

Figure 5: Particle cleavage initiates interfacial and matrix failure (microcrack propagation

after carbide cleavage in steel SAE-D3, from Gross-Weege [1996]).
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Figure 6: Weibull fracture probability distribution: the logarithmic risk of fracture

ln n(σ) = ln
(

ln 1
1−Pfr

)

as function of the applied stress ln σ. The solid curves represent

samples with same m but different volumes V2 > V1: the curves with the same slope m

move towards lower stress of fracture for increasing specimen volumes.
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Figure 7: The standardized Weibull distribution function Pfr = Pfr(σ|σ′
u = 0, σ′

0 = 1, m′)

(two parametric) for different shape parameters m (Weibull parameter), see also eqn. (B.2).
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Figure 8: Schematic diagram of the relative frequency density per volume, g, of the defect

size a in a brittle material. The function g = g(a) is approximated by an inverse power

law h = h(a) in the interesting part of the curve. The shaded area represents the density

of critical defects n(σ), corresponding to the probability of failure per volume unit.

τ
σ

γ

a

V

Figure 9: Schematic crack model of a circular crack in a 3D medium. σ⊥ represents the

normal stress vector acting on the crack plane, τ‖ is the in-plane shear stress, respectively.

The angle γ describes the position of a point on the crack front contour of a crack with

the length 2a.
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Figure 10: Two micrographs of the same scale of two powder metallurgically produced

HSSs, the top image corresponding to the K190 Isomatrix and the bottom one to the S390

Isomatrix HSS (images and designations by Böhler), obtained by a Scanning Electron

Microscopy (SEM).
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Figure 11: a) Unit cell with edge length of l1,2,3 = 1.00 containing 64 particles of diameter

d = 0.2 in a simple cubic arrangement (ξ = 26.9 vol.%). b) RPC-model with 15 spheres

chosen to have carbide material properties (for volume fraction ξ = 6.3 vol.%), embedded

in the elastoplastic matrix (model A, matrix elements are not displayed).
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Figure 12: Unit cell C with 15 spherical particles of identical size in a random arrangement

(nominal particle volume fraction ξ = 15 vol.%, arrangement obtained by RSA-method;

particle numbers are given for later reference).
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Figure 13: Unit cell E with 15 spherical particles of two different sizes, r1 = 2r2 in a random

arrangement (nominal particle volume fraction ξ = 15 vol.%, arrangement obtained by RSA-

method; particle numbers are given for later reference).
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Figure 14: Unit cell D with 15 spherical particles of identical size in a random arrangement

(nominal particle volume fraction ξ = 15 vol.%, arrangement obtained by RSA-method;

particle numbers are given for later reference).
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Figure 15: Unit cell F with 15 spherical particles of two different sizes, r1 = 2r2 in a random

arrangement (nominal particle volume fraction ξ = 15 vol.%, arrangement obtained by RSA-

method; particle numbers are given for later reference).



Figures — Chapter 3 100

 0
.0

 5
.0

 1
0.

0
 1

5.
0

K
(r

) 
[1

]

 0.0  2.0  4.0  6.0  8.0

r/D [1]

Figure 16: Second-order intensity function, K(r), vs. non dimensional radius, r
D

, for

an RPC (dashed) and an RSA (dash-dotted) unit cell. The volume fraction was chosen as

ξ = 6.3 vol.% and 15 particles are arranged within one unit cell (D = 0.2). For comparison

the second-order intensity function of a Poisson arrangement (solid) is shown.
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Figure 17: Pair distribution functions, g(r), vs. non dimensional radius, r
D

: The left dia-

gram gives examples for one RPC (dashed) and one RSA (solid) arrangement of 15 inclusions

in a unit cell (volume fraction ξ = 6.3 vol.%). The right diagram shows the averages of

g(r) of five RPC (dashed) and five RSA (solid) arrangements (15 inclusions arranged within

a unit cell, volume fraction of ξ = 6.3 vol.%) and an example RSA arrangement of 5000

particles (dotted).
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Figure 18: Schematic depiction of the difference in fracture probablities, ∆Pfr,j, for particle

j evaluated from a stress measure at the increments i and i + 1.
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Figure 19: Flowchart of the two particle crack activation procedures used within this work.

The green path represents the Weibull Rankine model (WR-model), where the actual parti-

cle fracture probability is directly compared with a tolerance P
(tol)
fr,j and the red path shows

the procedure described in section 3.3.2, using the Monte Carlo Weibull (MCW) model. N

particles are modeled, the number of the particle being actively considered is j.
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Figure 20: Effects on the resulting overall stress-strain behavior of three different incre-

mentation strategies following the fracture of a particle. Searching for equilibrium at a

constant overall stress in load controlled simulations, A, searching for equilibrium at a

constant strain in displacement controlled simulations, B and using the ABAQUS auto

incrementation algorithm in displacement controlled analyses (other solutions).
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Figure 21: AA2618/SiCeq
6.3p-T4–A/WR (P

(tol,2)
fr,j = 0.632): Undeformed as well as deformed

unit cell model (arrangement A) of an MMC with 15 spherical particles of identical size

and shape and total volume fraction ξ = 6.3 vol.% after 7 particles have failed by cleavage

under a tensile overall strain in the 1-direction of εa = 0.22, σa = 515.9 MPa (dark shade

and solid lines mark initial state, light shade and dotted lines mark deformed state).
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Figure 22: AA2618/SiCeq
6.3p-T4–B/MCW: Undeformed as well as deformed unit cell model

(arrangement B) of an MMC with 15 spherical particles of identical size and shape and

total volume fraction ξ = 6.3 vol.% after 6 particles have failed by cleavage under a tensile

overall strain in the 1-direction of εa = 0.22, σa = 520.3 MPa (dark shade and solid lines

mark initial state, light shade and dotted lines mark deformed state).



Figures — Chapter 4 104

 0
.0

 1
00

.0
 2

00
.0

 3
00

.0
 4

00
.0

 5
00

.0
T

R
U

E
 S

T
R

E
S

S
 [

M
P

a]

 0.00  0.04  0.08  0.12  0.16  0.20

LOGARITHMIC STRAIN [1]

P        =0.593fr
(tol,1)

P        =0.632fr
(tol,2)

Figure 23: AA2618/SiCeq
6.3p-T4–A/WR: Overall uniaxial tensile stress-strain curves predicted

by the 15-particle unit cell model (arrangement shown in figure 11b) using Weibull fracture

probabilities of P
(tol,1)
fr,j = 0.593 (orange) and P

(tol,2)
fr,j = 0.632 (green) to trigger particle

cracking. Figure 21 shows the particle states at the end of the simulation run represented

by the orange stress-strain curve.
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Figure 24: AA2618/SiCeq
6.3p-T4–A/WR: Predicted evolution of Weibull fracture probabilities

(particle failure activated by the use of the WR-method at a particles’ Weibull fracture

probability of P
(tol,1)
fr,j = 0.593) under uniaxial tensile loading for selected particles within

the arrangement A (numbering of the particles follow figure 11).
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Figure 25: AA2618/SiCeq
6.3p-T4–A/MCW: Predicted stress-strain curves obtained by individual

runs using the MCW-method and phase arrangement A under unidirectional tensile loading

in 1-direction. The ensemble average is shown by the black solid curve.
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Figure 26: AA2618/SiCeq
6.3p-T4–A/MCW: Predicted unidirectional tensile stress-strain behav-

ior without particle damage (green) compared to response accounting for particle damage

(orange), obtained by ensemble averaging 5 runs with arrangement A (compare figure 25)

and five runs with arrangement B.
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Figure 27: AA2618/SiCeq
15p-T4–C: Comparison of particles’ Weibull fracture probabilities

due to uniaxial tensile loading in 1-, 2- and 3-directions of unit cell C. The applied strain

is εa = 0.095 (σa = 466.4 MPa) in all three cases, and particle failure is not activated.
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Figure 28: AA2618/SiCeq
15p-T4–C/MCW: Particles in unit cell model C (ξ = 15%) in unde-

formed state, compare with figure 12 for designations of particles.
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Figure 29: AA2618/SiCeq
15p-T4–C/MCW: Predicted state of particles in the unit cell subjected

to uniaxial tensile loading in 2-direction (applied global strain εa = 0.155, correponding to

an overall stress of σa = 496.5 MPa) and the overall stress-strain relation obtained for this

simulation. Five particles have undergone failure due to brittle fracture.
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Figure 30: AA2618/SiCeq
15p-T4–C/MCW: Predicted stress-strain relations and averaged stress-

strain relation (solid black curve) for three different MCW-triggered runs of arrange-

ment C loaded in 2-direction. In addition, two limiting behaviors are shown, the upper

one corresponding to the case of no particle failure and the lower one to the case where

all particles are cracked from the onset (dashed black curves). The end of the green curve

corresponds to the particle state shown in figure 29.
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Figure 31: AA2618/SiCeq
15p-T4–C/MCW: Sections through particle 3 (com-

pare figure 12) at three states corresponding to increasing loads in global

2-direction. The maximum principal stresses are visualized by a contour

plot (left) and a vector plot (center). In the right column the corre-

sponding stress-strain curves and a sequence of the relative movements

of the particle (magnification=5) with respect to the grey marked ini-

tial positions are given. The top and the center images correspond to

applied strains of εa = 0.017, σa = 301.8 MPa, (top) and εa = 0.095,

σa = 468.8 MPa, (center), respectively, at which the particle is in-

tact. The bottom figure shows the final situation at a global strain of

εa = 0.155, σa = 512.3 MPa, where the particle has failed (and the closely

neighboring particle 2, too).
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Figure 32: AA2618/SiCeq
15p-T4–C/MCW: Orientation distributions of the maximum principal

stresses for the closely neighboring particles 3 (red-solid), 8 (green-dashed) and 4 (orange-

dotted) within arrangement C before any particle failure (εa = 0.095, σa = 468.8 MPa).

Compare figure 12 for particle numbering.
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Figure 33: AA2618/SiCeq
15p-T4–C/MCW: Predicted orientation distributions of the maximum

principal stresses for the closely neighboring particles 3 (red-solid), 8 (green-dashed) and

4 (orange-dotted) after the failure of particles 3 and 2, the overall applied strain being

εa = 0.155, and the predicted overall stress σa = 512.3 MPa. For particle numbering refer

to figure 12.
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Figure 34: AA2618/SiCeq
15p-T4–C/MCW: Predicted distributions of the magnitudes of the

maximum principal stresses for the closely neighboring particles 3 (red-solid), 8 (green-

dashed) and 4 (orange-dotted) before the failure of particle 3, (εa = 0.095, σa = 468.8

MPa). Compare figure 12 for particle numbering.
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Figure 35: AA2618/SiCeq
15p-T4–C/MCW: Predicted distributions of the magnitudes of the

maximum principal stresses for the closely neighboring particles 3 (red-solid), 8 (green-

dashed) and 4 (orange-dotted) after the failure of particle 3 (εa = 0.155, σa = 512.3 MPa).

Compare figure 12 for particle numbering.
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Figure 36: AA2618/SiCeq
15p-T4–C/MCW: Predicted interfacial tractions for particle 3 before

failure (top: εa = 0.017, σa = 301.8 MPa, center: εa = 0.095, σa = 468.8 MPa) and

after failure (bottom: εa = 0.155, σa = 512.3 MPa). Global load applied in 2-direction.

Contour plots are given for the normal component (left, with corresponding legend) and

for the magnitude of the tangential components (right, with corresponding legend).
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Figure 37: AA2618/SiCeq
15p-T4–C/MCW: Predicted ductile damage indicator in matrix regions

close to the interface of particle 3. The particle is removed, so that two halves of the

resulting hole in the surrounding matrix regions are visible (consider the view orientations).

Regions with D > 1 are expected to be subjected to ductile failure. Applied overall tensile

strain in 2-direction εa = 0.017 (corresponding overall stress σa = 301.8 MPa).
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Figure 38: AA2618/SiCeq
15p-T4–C/MCW: Model loaded in 2-direction at a global strain of

εa = 0.017 (σa = 301.8 MPa) and where all particles are still intact. The elements within

the model where in at least one integration point the damage indicator is D ≥ 0.90 (thus

assumed to be close to ductile failure) are shown.
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Figure 39: AA2618/SiCeq
15p-T4–C/MCW: Model loaded in 2-direction at a global strain of εa =

0.017 (σa = 301.8 MPa) and where all particles are still intact. Isosurfaces of equivalent

plastic strain εeq,p = 0.053, green surfaces (the maximum value in the model evaluated as

εeq,p = 0.165). Note that particles are shown in magenta.



Figures — Chapter 4 115

2

1

3

3

2

1

Figure 40: AA2618/SiCeq
15p-T4–C/MCW: Model loaded in 2-direction at a global strain of

εa = 0.017 (σa = 301.8 MPa) and where all particles are still intact. Series of five isosurfaces

of the equivalent plastic strain running from εeq,p = 0.031 (light blue) to εeq,p = 0.053 (light

green, corresponding to figure 39) in the upper plot and from εeq,p = 0.0006 (dark blue) to

εeq,p = 0.031 (light blue) in the lower plot.
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Figure 41: Schematic image (for periodically arranged unit cells UC of length a0 in two

dimensions) explaining the particle distance evaluation as described in the text.
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Figure 42: Shortest interparticle distances for unit cell C (left column) and for unit cell

E (right column). The inclusions, lying on the ”string” of smallest length, with respect to

the overall loading direction, are colored: orange color corresponds to loading in 1-direction

(top), green color corresponds to loading in 2-direction (center) and blue to loading in 3-

direction (bottom), respectively. For further discussions see text.
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Figure 43: AA2618/SiCbi
15p-T4–E/MCW: Particles in unit cell arrangement E after global

uniaxial tensile loading in 2-direction to an overall strain of εa = 0.095 (σa = 468.8 MPa);

for the corresponding stress-strain relation see figure 47, green curve. Particles 6, 7 and 15

have failed during the load history. Note that in this unit cell model particle 7 happens to

be positioned such that the fracture surface is identical with a face of the unit cell.
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Figure 44: AA2618/SiCbi
15p-T4–E/MCW: Predicted relative frequencies of the maximum prin-

cipal stresses within the particles of model E in the elastic range (global strain in 2-direction

εa = 0.001 (σa = 86.7 MPa)) and after (global strain in 2-direction εa = 0.017 (σa = 288.2

MPa)) the failure of some particles. The green curve in figure 47 shows the corresponding

stress-strain behavior.
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Figure 45: AA2618/SiCbi
15p-T4–E/MCW: Predicted relative frequencies of maximum principal

stresses within the failed and within the intact big particles of the model at an overall tensile

strain in 2-direction of εa = 0.017 (σa = 288.2 MPa), see also figure 44.
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Figure 46: AA2618/SiCbi
15p-T4–E/MCW: Predicted evolution of the Weibull fracture prob-

abilities of the 15 particles in the model for applied tensile strains up to εa = 0.095

(σa = 430.1 MPa). Inclusions 6, 7 and 15 (for designations see figure 43) fail during the

loading process, the stress-strain diagram of which is shown as a green line in figure 47.
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Figure 47: AA2618/SiCbi
15p-T4–E/MCW: Stress-strain relations predicted with unit cell E for

uniaxial tensile loading in 1-direction (orange), in 2-direction (green) and in 3-direction

(blue). The averaged curve is shown in black and the damage-free curve is displayed as a

dashed line.
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Figure 48: AA2618/SiCbi
15p-T4–E/MCW: Predicted normal compo-

nents (left) and magnitudes of the tangential components (right)

of the interfacial tractions at the particle surfaces at an applied

strain in 1-direction of εa = 0.001, σa = 86.6 MPa. The situation

corresponds to the elastic range.  0
.0
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Figure 49: AA2618/SiCbi
15p-T4–E/MCW: Predicted normal compo-

nents (left) and magnitudes of the tangential components (right)

of the interfacial tractions at the particle surfaces at an applied

strain in 1-direction of εa = 0.017, σa = 289.8 MPa. At this point

particle 7 has just failed and there is some matrix yielding.  0
.0
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Figure 50: AA2618/SiCbi
15p-T4–E/MCW: Predicted normal compo-

nents (left) and magnitudes of the tangential components (right)

of the interfacial tractions at the particle surfaces at an applied

strain in 1-direction of εa = 0.095, σa = 447.9 MPa. At this point

particle 11, a small inclusion, has just failed and there is large scale

matrix yielding.
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Figure 51: AA2618/SiCbi
15p-T4–E/MCW: Predicted normal compo-

nents (left) and magnitudes of the tangential components (right)

of the interfacial tractions at the particle surfaces at an applied

strain in 1-direction of εa = 0.155, σa = 469.6 MPa. Both images

correspond to the final point of this simulation run, where also the

big particle 4 has undergone failure.
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Figure 52: AA2618/SiCbi
15p-T4–F/MCW: Stress-strain relations predicted with unit cell F for

uniaxial tensile loading in 2-direction (top left), corresponding reductions of the composite’s

elastic modulus being depicted in a bar diagram (top right), and predicted evolution of

pore volume fraction (bottom) in the course of the uniaxial loading-unloading-sequences.

The dashed parts of the curves display overall unloading sequences, which were introduced

at uniaxial strains of εa
A

= 0.017, εa
B

= 0.05 and εa
C

= 0.09 (the corresponding pore volume

fractions, fA, fB and fC, are given). The thinner dashed lines mark the expected stress-strain

curves, which would be obtained with smaller incrementation steps during the simulation

runs. The maximum homogenized stress, σa = 533.8MPa, was reached in this simulation

at the overall strain of εa = 0.22 (the pore volume fraction being fv = 2.42% at this state).
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Figure 53: HSSµ1
6.3%–arrangements A and B/MCW: Predicted overall stress-strain behavior of

HSS containing uniformly sized spherical carbides (black): Average out of four simulations

using arrangement A (orange, average of two runs) and arrangement B (green, average of

two runs). The dashed black curve represents the materials’ uniaxial stress-strain behavior

when particle cleavage is suppressed.
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Figure 54: HSSµ2
15%–C/MCW and HSSµ3

15%–C/MCW: Predicted overall stress-strain behavior of

HSS containing uniformly sized spherical carbides. Orange curve: particles of type carbide

A (”HSSµ2
15%”) — Green curve: particles of type carbide B (”HSSµ3

15%”), refer to table 11.

The curves are averages of three simulations in both cases and the black dashed curves

show the behavior when particle cleavage is suppressed.
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Figure 55: HSSµ4
15%–E/MCW: Predicted overall stress-strain response using model E (big par-

ticles are of type carbide A, ξbig = 13 vol.%, small particles are of type carbide B,

ξsmall = 2 vol.%). Green curves: loading in 2-direction, blue curve: loading in 3-direction,

black: averaged response, black dashed curve: particle cleavage suppressed.
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Figure 56: HSSµ5
15%–E/MCW: Predicted overall stress-strain response using model E (big par-

ticles are of type carbide B, ξbig = 13 vol.%, small particles are of type carbide A,

ξsmall = 2 vol.% modeled). Orange: Loading in 1-direction, green: loading in 2-direction,

blue: loading in 3-direction, black: averaged response, black dashed curve: particle cleavage

suppressed.
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Figure 57: HSSµ4
15%–E/MCW: Evolution of the Weibull fracture probabilities corresponding

to the particles within model E with particle material properties coupled to particle size.

Blue: big particles of material type carbide A, ξbig = 13 vol.%, green: small particles of

type carbide B, ξsmall = 2 vol.% modeled, orange: first failing big particles, see text.
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Figure 58: HSSµ5
15%–E/MCW: Evolution of the Weibull fracture probabilities corresponding

to the particles within model E with particle material properties coupled to particle size.

Blue: big particles are of type carbide B, ξbig = 13 vol.%, green: small particles are of

type carbide A, ξsmall = 2 vol.% modeled, orange: first failing big particles, see text.
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Figure 59: HSSµ6
15%–E/MCW: Predicted overall stress-strain behavior of HSS with differently

sized particles of same material type, carbide A. Orange curve: uniaxial loading in 1-

direction, blue curve: loading in 3-direction, black curve: average response, dashed curve:

particle cleavage suppressed.
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Figure 60: HSSµ6
15%–E/MCW: Predicted overall stress-strain behavior for a loading-unloading-

loading process applied to arrangement E with particles of type carbide A (dashed black

curve: particle cleavage suppressed – blue curve: loading in 3-direction).
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Figure 61: HSSµ6
15%–E/MCW: Weibull fracture probability evolution of big (blue curves; the

solid blue curve refers to particle 13) and small (green curves) particles (corresponding to

the blue colored stress-strain behavior in figure 60). The particle fracture probability of

the first failing particles are drawn as cyan (big particles) and as orange (small particle)

curves, respectively.
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Figure 62: HSSµ6
15%–E/MCW: Predicted evolution of pore volume fraction in the course of

the loading-unloading-loading process, corresponding stress-strain behavior is depicted in

figure 60.
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Figure 63: HSSµ7
15%–E/MCW: Predicted overall stress-strain behavior of HSS with bidispersely

sized paricles of material type carbide B. At a uniaxial strain of about εa = 0.032 the

material is unloaded and reloaded again. Black solid curve: Average of responses obtained

for loading in 1-, 2- and 3-directions. Dashed curve: particle cleavage suppressed.
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Figure 64: HSSµ7
15%–E/MCW: Predicted evolution of pore volume fraction in the course of

the uniaxial loading-unloading-loading processes in 1(orange curve)-, 2(green curve)- and

3(blue curve)-directions, of which the averaged stress-strain relation is shown in figure 63.
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Figure 65: HSSµ7
15%–E/MCW: Equivalent plastic strain isosurfaces within the damage-free

model after loading in 2-direction up to overall tensile strain of εa = 0.032, corresponding

to an overall stress of σa = 3.12 GPa. The blue colored isosurfaces correspond to an

equivalent plastic strain of ε
(m)
eq,p = 0.023 (the data corresponding to the other isosurfaces

is given in the text). Particles are shown in magenta.
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Figure 66: HSSµ8
15% and HSSµ9

15%–C/MCW: Predicted overall stress-strain behavior. The green

curve corresponds to microstructure HSSµ8
15% (7 vol.% of particles of type carbide A,

8 vol.% of type carbide B) and the orange curve to microstructure HSSµ9
15% (8 vol.% of

particles of type carbide A, 7 vol.% of type carbide B). Both curves are averages of three

simulations in three different loading directions.
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Figure 67: HSSµ9
15%–C/MCW: Predicted stress-strain curve for model C (HSS with equally

sized particles, a volume fraction of 8 % were modeled as type carbide A and 7 % as

type carbide B, respectively) loaded in 1-direction (for the averaged behavior of a number

of runs see figure 66, orange solid curve).
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Figure 68: HSSµ9
15%–C/MCW: Isosurfaces of equivalent plastic strain within the matrix (top,

ε
(m)
eq,p = 0.0017 is colored in turquoise; maximum value in this image: ε

(m)
eq,p = 0.014) and

maximum principal stresses within the particles (bottom). Tensile loading in 1-direction

(overall strain: εa
A = 0.010, σa

A = 2.22 GPa – compare figure 67).
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Figure 69: HSSµ9
15%–C/MCW: Isosurfaces of equivalent plastic strain within the matrix (top,

ε
(m)
eq,p = 0.013 is colored in blue and ε

(m)
eq,p = 0.040 in light blue; maximum value in this

image: ε
(m)
eq,p = 0.19) and maximum principal stresses within the particles (bottom) after

the failure of nine particles. Tensile loading in 1-direction (overall strain: εa
B = 0.013,

σa
B = 2.29 GPa – compare figure 67).
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Figure 70: HSSµ9
15%–C/MCW: Isosurfaces of equivalent plastic strain (top, ε

(m)
eq,p = 0.034 is

colored in blue and ε
(m)
eq,p = 0.14 in turquoise; maximum value in this image: ε

(m)
eq,p = 0.52)

and corresponding maximum principal stresses within the particles (bottom) after overall

loading in 1-direction up to εa
C = 0.032 (σa

C = 2.67 GPa) and after failure of eleven particles.

For the corresponding stress-strain curve see figure 67.



Figures — Chapter 4 135

 0
.0

0
 0

.0
4

 0
.0

8
 0

.1
2

F
R

A
C

T
U

R
E

 P
R

O
B

A
B

IL
IT

Y
 [

1]

 0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

LOGARITHMIC STRAIN [1]

Particle 1
Particle 2
Particle 4
Particle 6
Particle 7
Particle 11

3

5
4

6 2

1

Figure 71: AA2618/SiCeq
6.3p-T4–A/MCW: Comparison of different methods for evaluating par-

ticle fracture probabilities. Tensile loading in 1-direction (one selected run out of the set

presented in figure 25). Designations of curves correspond to the following methods: First

Principal Stresses (1), All Principal Stresses (2), Complanar Energy Release Rate Criterion

(3), Maximum Tangent Stress Criterion (4), Maximum Energy Release Rate Criterion (5),

Richard Criterion (6). For detailed explanations see appendix A.3.

 0
.0

 0
.4

 0
.8

F
R

A
C

T
U

R
E

 P
R

O
B

A
B

IL
IT

Y
 [

1]

 0.00  0.01  0.02  0.03  0.04

LOGARITHMIC STRAIN [1]

Particle 4
Particle 7
Particle 10
Particle 12
Particle 13
Particle 15

3

6

1

2

4
5

1
3

2
6
5
4

Figure 72: HSSµ6
15%–E/MCW: Comparison of different methods for evaluating particle fracture

probabilities. Tensile loading in 3-direction (results correspond to overall stress-strain

curve (blue colored) given in figure 59). Designations of curves correspond to the following

methods: First Principal Stresses (1), All Principal Stresses (2), Complanar Energy Release

Rate Criterion (3), Maximum Tangent Stress Criterion (4), Maximum Energy Release Rate

Criterion (5), Richard Criterion (6). For detailed explanations see appendix A.3.
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Figure 73: The standardized Weibull distribution density function f = f(σ|σ ′
u = 0, σ′

0 =

1, m′) (two parametric) for different shape parameters m (”Weibull modulus”), see also

eqn. (B.1), schematically drawn.
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Figure 74: Separation relations for purely normal interfacial debonding (i = n) ”Needleman

1”, from Needleman [1987] and ”Needleman 2”, from Needleman [1990], left diagram, in

comparison to the separation relations implemented within this work (valid for normal

i = n and tangential i = t separation relations), right.



Appendix A

Overview and Comparison of

Implemented Particle Failure Criteria

Within this work particle fracture probabilities are evaluated within the assumption of a

mode I failure mechanism and fracture criteria based on Weibull-type statistics are used,

the maximum principal stress being relevant for the Weibull fracture statistics. For compar-

ison fracture criteria established in the literature are discussed, considering the predefined

crack plane of each particle in the FE model (see chapter 3) as a loaded critical crack.

Next the particle fracture criteria implemented in the ABAQUS subroutines are listed. The

different properties of these methods are discussed in appendix A.3.

A.1 Methods Using Principal Stress Criteria

The density of risk of fracture, n(σI,eq), can be used to evaluate the risk of fracture, B, of

some volume V as

B =

∫

V

n(σI,eq) dV , (A.1)

so that the fracture probability can be rewritten as

Pfr = 1 − exp(−B) . (A.2)

137



A.1 Methods Using Principal Stress Criteria 138

In the following a number of methods for determining the equivalent mode I stress, σI,eq,

and consequently the risk of fracture, B, are introduced and compared.

Throughout the present work overall uniaxial tensile loading was applied for all sim-

ulations. Thus, as explained in detail in chapter 2, the so called First Principal Stress

- 3 Parameter Method formulated as

Bj(σ1) =
1

V0

∫

Vj :σ1(r)≥0

(

σ1(r)

σ0

)m

dV (A.3)

was used. This method is valid for calculating the fracture probability of particle j, if

mode I failure, a dominant maximum principal stress in the tensile range, and limited

deviation of the orientation of the local principal stresses from the global load direction

can be expected. For comparison, and to account for stress multiaxiality effects, an All

Principal Stresses - 3 Parameter Method, based on the PIA was also tested. It

evaluates the risk of fracture as

Bj(σ1, σ2, σ3) =
1

V0

∫

Vj

[(

σ1(r)

σ0

)m

+

(

σ2(r)

σ0

)m

+

(

σ3(r)

σ0

)m]

dV, (A.4)

where the intermediate and minimum principal stresses, σ2 and σ3, are also taken into

account.

Based on these two equations, eqn. (A.3) and eqn. (A.4), in the literature sometimes

variants that use a lower limit strength σu are used, to give the First Principal Stress -

4 Parameter Method

Bj(σ1) =
1

V0

∫

Vj :σ1(r)≥0

(

σ1 − σu

σ0 − σu

)m

dV (A.5)

and the All Principal Stresses - 4 Parameter Method

Bj(σ1, σ2, σ3) =
1

V0

∫

Vj

[(

σ1(r) − σu

σ0 − σu

)m

+

(

σ2(r) − σu

σ0 − σu

)m

+

(

σ3(r) − σu

σ0 − σu

)m]

dV.

(A.6)

However, all these methods are based on a ”direct relation” of the principal stress distribu-

tion within a particle to the fracture probability of a particle and do not regard any crack

mechanism (only assuming mode I crack). Furthermore, only tensile principal stresses

are considered, so the difference between eqns. (A.3) and (A.4) and between eqns. (A.5)

and (A.6) are expected to be small for the present case of uniaxial tensile loading. In

order to explicitly consider crack extension mechanisms Thiemeier [1987] and Heger [1993]

suggested extensions as follows:
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A.2 Methods Considering Fracture Criteria

For evaluating the risk of fracture Bj of particle j the equivalent stress for mode I fracture,

σI,eq, is evaluated considering a critical crack to occur in a plane the orientation of which

is described by the angles ϕ (angle in xy-plane) and θ (angle to the positive z-axis). With

the stress tensor σ at position r and the crack orientation n,

σ =







σ1 τxy τxz

τyx σ2 τyz

τzx τzy σ3






n =







sin θ cos ϕ

sin θ sin ϕ

cos θ






, (A.7)

the stress vector, σ, and its component normal to the crack plane, σ⊥ (see figure 9), are

determined as:

σ = σ · n σ⊥ = σ · n (A.8)

whereas the shear stress in the crack plane (the in-plane component of σ) is

τ‖ =
√

σ · σ − σ2
⊥ . (A.9)

For a planar circular crack in a 3D volume the stress intensity factors for loading in

mode I, II and III can be written as

KI = σ⊥

√
a YI KII = τ‖

√
a YII KIII = τ‖

√
a YIII , (A.10)

the geometry factors being known analytically (Sih and Liebowitz [1965]) as

YI =
2√
π

(A.11)

YII =
4√
π

1

2 − ν
cos γ (A.12)

YIII =
4√
π

1 − ν

2 − ν
sin γ , (A.13)

Here ν stands for the Poisson’s ratio and γ for the angle between the crack contour and

the orientation of the shear stress τ‖, see figure 9.

The standard procedure for obtaining a failure criterion under pure mode I load-

ing, which consists in comparing KI to some critical stress intensity factor KI,c, can
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be extended to more general load cases by defining an equivalent stress intensity factor

KI,eq(KI, KII, KIII) which is assessed with reference to KI,c. Alternatively, an ”equivalent

mode I stress” σI,eq can be compared to a critical mode I stress σI,c, i.e.

KI,eq(KI, KII, KIII) ≥ KI,c

σI,eq

(

σ⊥(ϕ, θ), τ‖(ϕ, θ), YII

YI
, YIII

YI

)

≥ σI,c

}

=⇒ failure (A.14)

In the present work the equivalent mode I stress is evaluated with the use of one of

the methods listed in the following and used for the computation of the particle fracture

probability based on Weibull’s method. Due to the modeling technique just one crack plane

is given for each particle, which is oriented normally to the overall maximum principal stress

(see detailed explanations in chapter 2). For simplicity this crack plane is defined as the

”critical” crack plane, so that the evaluation of the crack plane normal stresses σ⊥ and the

shear stresses τ‖ acting in the crack plane is trivial.

The following fracture criteria are well established in the literature (see Thiemeier

[1987]), and were originally formulated for linear elastic multimode fracture. Here they are

used for evaluating the failure probabilities of particles and are therefore rewritten in the

”stress form” (normally these criteria are given in the stress intensity factor formulation

using eqn. (A.10)):

Complanar Energy Release Rate Criterion: The most used criterion in the liter-

ature (the maximum value of σI,eq occurs at γ = 0, and therefore this value is used, see

figure 9), that sets KI,c = KII,c, is, rewritten for the equivalent mode I stress

σI,eq =

√

√

√

√σ2
⊥ + τ 2

‖

(

YII

YI

)2

+

(

τ 2
‖

1 − ν

)

(

YIII

YII

)2

. (A.15)

Maximum Tangent Stress Criterion: Based on the hypothesis that crack growth

occurs in the direction of the maximum tangential component of the stress tensor close to

the crack tip:

σI,eq =

√
8

[

(2σ⊥ + 6

√

σ2
⊥ + 8

(

YII

YI
τ‖

)2
]

(

YII

YI
τ‖

)3

[

σ2
⊥ + 12

(

YII

YI
τ‖

)2

− σ⊥

√

σ2
⊥ + 8

(

YII

YI
τ‖

)2
]1.5 (A.16)
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Maximum Energy Release Rate Criterion: The crack growth orientation is given

as a result of the maximum energy release rate:

σI,eq =
4

√

σ4
⊥ + 6σ2

⊥

(

YII

YI
τ‖

)2

+

(

YII

YI
τ‖

)4

(A.17)

The empirical Richard Criterion:

σI,eq =
1

2



σ⊥ +

√

σ2
⊥ + 4

(

YII

YI
τ‖α1

)2


 0.5 < α < 1.3 (found by experiment)

(A.18)

α =
KI,c

KII,c
is chosen as 1.0 in the present context.

The next section shows some typical results obtained with these methods.

A.3 Comparison of Different Methods for Evaluating

Fracture Probabilities

In the main body of the present work the particle Weibull fracture probabilities are com-

puted with the formulation given in eqn. (2.21), considering particle cleavage primarly as

a classical mode I failure. In appendix A.1 a number of different methods for evaluating

Weibull fracture probabilities are listed, closely following Thiemeier [1987], that are based,

on the one hand, on simple combinations of principal stresses via the PIA and, on the other

hand, consider different classical crack failure criteria. In this section a comparison of the

methods is carried out by observing the Weibull fracture probabilities evaluated with the

different methods.

First the unit cell model, arrangement A, with material properties of aluminium rein-

forced by silicon carbides is considered. The evolution of the fracture probabilities using

the mentioned methods and predicted for a number of particles within the model during

uniaxial loading, is shown in figure 71 (for the corresponding overall material response refer

to figure 25). There the evolution of the fracture probabilities are shown for particles 7, 11,

1 and 6 (which fail in this sequence) as well as 2 and 4 (which survive the applied strain of

εa = 8%). By using the same random seed, different methods for evaluating the fracture

probabilities could be compared. The different methods do not give noticably different re-

sults until after the first two particles have failed. From then on small differences between
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the different curves can be discerned, which correspond to the methods ”First Principal

Stresses (1 )”, ”All Principal Stresses (2 )”, ”Complanar Energy Release Rate Criterion

(3 )”, ”Maximum Tangent Stress Criterion (4 )”, ”Maximum Energy Release Rate Crite-

rion (5 )”, and ”Richard Criterion (6 )”, which are described in appendices A.1 and A.2.

In the investigation discussed here, using RPC unit cells and Al2618-T4 material proper-

ties, the small influence of the second and third principal stresses might be ascribed to the

relatively low particle volume fraction and to the relatively large inter-particle distances.

However, the same behavior was found for different unit cell models and different material

properties, see figure 72. Despite the higher volume fractions (unit cell C) and the use of

different material properties, the effects lie in the same same range and the influence on

the intact particles’ fracture probabilities, which are plotted for inclusions 12 and 13, is

recognizeable only after the failure of a number of particles.

Generally it can be stated that, when no particle failure occurs, all the introduced meth-

ods lead to very similar fracture probability values for globally uniaxial tensile load cases

(which is in fact not surprising, as only one critical crack, oriented normal to the loading

direction, is considered). With respect to the influence of the method used for evaluating

the fracture probabilities of intact particles after the failure of some neighboring particles,

methods 1 and 2 (First Principal Stresses and All Principal Stresses) give nearly identi-

cal results, method 3 (Complanar Energy Release Rate Criterion) predicts slightly lower,

and methods 4 (Maximum Tangent Stress Criterion), 5 (Maximum Energy Release Rate

Criterion) and 6 (Richard Criterion) predict slightly higher fracture probabilities.

For the present problem, i.e. modeling particle damage in uniaxially loaded parti-

cle reinforced metal matrix composites and disregarding other damage modes, method 1

evidently is sufficient for describing the macroscopic and microscopic material responses.



Appendix B

Some Mathematical Considerations

on the Weibull Distribution

A continuous random variable σ satifies a three parameter Weibull-Distribution function

with the parameters m > 0 and σ − σu > 0, when the distribution density is given as

f(σ|σu, σ0, m) =







m
σ0

(

σ−σu

σ0

)m−1

exp
{

−
(

σ−σu

σ0

)m}

∀ σ ≥ σu

0 ∀ σ < σu

. (B.1)

Consequently the distribution function (F (σ) =
σ
∫

−∞

f(t) dt) is given as

F (σ|σu, σ0, m) :=

{

1 − exp
{

−
(

σ−σu

σ0

)m}

∀ σ ≥ σu

0 ∀ σ < σu

(B.2)

m ∈ R+ stands for the shape parameter (here Weibull parameter), σu ∈ R+ is the location

or threshold parameter, and σ ∈ R+ is the scale parameter. σu is often chosen as zero.

The mean value and the variance are obtained as (Gross and Seelig [2001]; Bronštein

et al. [1999]):

〈σ − σu〉 = σΓ(1 +
1

m
) var(σ − σu) = σ2[Γ(1 +

2

m
) − Γ2(1 +

1

m
)] (B.3)

In figures 7 and 73 the standardized (i.e. σu = 0 and σ0 = 1) Weibull density function

and the Weibull distribution function (Ashby and Jones [1986]), respectively, are plotted:

F (σ|0, 1, m) = 1 − exp{−σm} (B.4)
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In the following the Weibull function is discussed. Setting m = 1 reduces the function

to the exponential distribution. In the literature the case of m = 2 is called Rayleigh-

Distribution (Bosch [1996]; Reidinger [1989]). For the present application of Weibull func-

tions only the region m > 0 is of interest (figures 7, 73).

• m → 0: the smaller m is chosen, the more the density curve is concentrated to the

ordinate and becomes a Dirac-distribution.

• 0 < m < 1: the Weibull density f(σ|m) falls monotonously and convexly (Reidinger

[1989] shows, that for m ≤ 1
5

the zero points are not real and therefore inflection

points do not exist).

• m = 0: the monotonous, convexly falling density-function of the exponential distri-

bution is obtained. The inflection points are in the origin.

• 1 < m ≤ 2: one inflection point exists for positive σ. The maximum of the density

function (Bosch [1996]) moves to the right side with increasing m.

• m > 2: two inflection points are now in the positive region, one on each side of the

maximum of the density function. The curve becomes more and more symmetric.

• for m → ∞ the density becomes a Dirac-distribution at σ = 1:

lim
m→∞

f(max|m) = ∞ (B.5)

where ”max” represents the maximum of the density function. The corresponding

distribution function is a step function at σ = 1.



Appendix C

Interfacial Decohesion

With the user subroutines implemented within the present work, and if the FE-model

is approximately prepared, also interfacial debonding can be modeled. The nodal stress

components and the magnitudes of the normal and tangential components of the tractions

are evaluated, and node release is triggered by a separation function similar to the ones

used in the Cohesive Zone Models (note that implementations of the latter type using

ABAQUS, e.g. that by Scheider [2000], have employed User defined ELements (UEL)

(see Hibbitt et al. [1998]) instead). Concentrating on the interfacial failure and assuming a

crack orientation within the boundary defined by the particle’s surface and the surrounding

matrix makes a crack orientation treatment as carried out e.g. by Ohmenhäuser et al. [1999]

unnecessary.

In Needleman [1987] the mechanical response of the interface is described via a con-

stitutive relation that gives the dependence of the tractions Ti on the separation ui. This

response in terms of a polynomial potential Φ dependent only on the displacement differ-

ence across the interface is chosen in such way, that during the interface separation the

tractions increase, achieve a maximum and fall to zero when complete separation has oc-

cured. For purely normal separation (no shear is present) the normal interfacial tractions

− Tn

Tn,0
are related to the separation dn = un

δn,0
as presented in figure 74, curve ”Needleman

1”, where the maximum interfacial stress is achieved at un = δ and complete separation

occurs when un = δn,0 (i.e. a well defined decohesion point). The modification of the

traction-separation relation, as given in Needleman [1990]; Scheider [2000], where expo-

nential forms in the style of atomistic calculations of interfacial separation are introduced,

leads to the correlation ”Needleman 2” in figure 74 for purely normal decohesion. The

exponential potential vanishes only at un → ∞ and the separation work done between
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un = 0 and un = δ would be about 0.95 Φsep.

In contrast to the above approaches within the present work a node release technique is

used and a separation relation is used in the reverse direction. The traction values at nodes

lying in the interface affect individual separations dn, dt, evaluated by a simple correlation

of ”virtual displacement” and ”actual traction” fulfilling the conditions of (i = n, t)

• full separation di = ui

δi,0
at ui = δi,0 and

• a limiting traction for Ti = Ti,0.

For the first assumption the separation relations for normal debonding are the same as for

tangential separation and we chose to closely approach the rising part of the d = d(T )-

relations of Needleman [1990]. The three implemented separation relations (normally the

parameters are chosen to fulfill Mi = Mn = Mt = M2) are:

Method A (compare figure 74: A1:Mi = 0.5, A2:Mi = 3):

di = 1 −
(

1 − Ti

Ti,0

)
1

Mi

(C.1)

Method B (compare figure 74: Mi = 0.5):

di = 1 −
(

− ln

∣

∣

∣

∣

Ti

Ti,0

∣

∣

∣

∣

)
1

Mi

(C.2)

Method C (compare figure 74: C1:Mi = 0.5, C2:Mi = 3):

di =
1

1 +
(

− ln
∣

∣

∣

Ti

Ti,0

∣

∣

∣

)
1

Mi

(C.3)

In figure 74 the separation relations are compared with the relations given by Needleman

[1987, 1990] for some values of Mi. The individual expressions for normal and tangential

separation are combined (mostly using M1 = 2) to a total separation d with

d =
(

dM1
n + dM1

t

)
1

M1 . (C.4)

The algorithm is implemented at the interface nodes and at neighboring matrix nodes

(in the direction of expected matrix crack growth) assuming the knowledge of the crack

path. Interface (matrix) failure (i.e. node release) occurs, if d is close to 1 (mostly d ≥ 0.98
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was chosen). An implemented procedure limits the motion of the released nodes to gliding

on the inclusion surface or movement away from it and penetration of matrix nodes into

the inclusion is prevented. For numerical reasons mainly method A1 was used.

Without doubt the specific choice of the potential has limited physical interpretation

(equal to a problem of a body lying on a surface with friction) and is mesh dependent

(averaged stress values at the element nodes are used for calculation). Nevertheless it has

been used for first investigations in developing interfacial failure node release modeling and

seems to be a promising principle.
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modellen für duktile Metalle, Ph.D. thesis, TU Berlin.

Suresh, S., Mortensen, A. and Needleman, A. (1993); Fundamentals of Metal Matrix Com-

posites, Butterworth-Heinemann, Boston, MA.

Sutherland, L. S., Sheno, R. A. and Lewis, S. M. (1999); Size and Scale Effects in Com-

posites: I. Literature Review, Comp. Sci. and Tech., 59: 209–220.

Thiemeier, T. (1987); Lebensdauervorhersage für keramische Bauteile unter mehrachsiger

Beanspruchung , Ph.D. thesis, Universität Karlsruhe.

Tohgo, K. and Weng, G. J. (1994); A Progressive Damage Mechanics in Particle-Reinforced

Metal-Matrix Composites under High Triaxial Tension, J. Eng. Mat. Technol., 116: 414–

420.

Tvergaard, V. (1982); Influence of Void Nucleation on Ductile Shear Fracture at a Free

Surface, J. Mech. Phys. Solids, 30/6: 399–425.

Tvergaard, V. and Needleman, A. (1984); Analysis of the Cup-Cone Fracture in a Round

Tensile Bar, Acta Metall., 32/1: 157–169.
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