
Maintaining Consistency of
Data on the Web

Dissertation

Conducted for the purpose of receiving the academic title
"Doktor der Sozial- und Wirtschaftswissenschaften"

Advisors

Gerti Kappel
Vienna University of Technology

Institute of Software Technology and Interactive Systems (E188)
Business Informatics Group

Michael Schrefl
Johannes Kepler University at Linz
Department of Business Informatics

Data & Knowledge Engineering

Submitted at the Vienna University of Technology
Institute of Software Technology and Interactive Systems

Business Informatics Group
by

Martin Bernauer
9455260, Steinergasse 1/6, 1170 Vienna

Vienna, December 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Dissertation
selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt und die aus anderen Quellen entnommenen Stellen als solche
gekennzeichnet habe. Diese Dissertation habe ich bisher weder im Inland
noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt.

Wien, im Advent 2004

m

Abstract

Increasingly more data is becoming available on the Web, estimates speaking
of 1 billion documents in 2002. Most of the documents are Web pages whose
data is considered to be in XML format, expecting it to eventually replace
HTML, the current lingua franca of the Web, e.g., by XHTML.

A common problem in designing and maintaining a Web site is that data
on a Web page often replicates or derives from other data, the so-called
base data, that is usually not contained in the deriving or replicating page.
Two properties of Web sites account for this situation. First, the hypertext
structure of a Web site not necessarily coincides with the structure of its
underlying conceptual domain model, thus it may be necessary to present
a single data item on several pages. Second, the content of pre-generated
Web pages is often drawn from legacy systems, usually relational databases.
In this case Web pages replicate data items from databases.

Consequently, replicas and derivations become inconsistent upon modi-
fying base data in a Web page or a relational database. For example, after
modifying a product's price in the database, already pre-generated Web
pages offer the product at an out-dated price. Or, after assigning a thesis to
a student and modifying the Web page that describes it in detail, the thesis
is still incorrectly contained in the list of offered thesis, missing in the list
of ongoing thesis, and missing in the advisor's teaching record.

The thesis presents a solution by proposing a combined approach that
provides for maintaining consistency of data in Web pages that (i) replicate
data in relational databases, or (ii) replicate or derive from data in Web
pages. Upon modifying base data, the modification is immediately pushed
to affected Web pages. There, maintenance is performed incrementally by
only modifying the affected part of the page instead of re-generating the
whole page from scratch.

The proposed approach provides for consistent, up-to-date Web pages
any time. It is efficient by providing incremental page maintenance tech-
niques, generic by maintaining consistency of XML data in general, flexible
by reacting to modifications in Web pages of other businesses, transparent
by maintaining a business' autonomy in managing its data, open by allow-
ing future extensions to be built on top of it, and extensible by enabling the
integration of arbitrary legacy systems.

Kurzfassung

Im Web sind zunehmend mehr Daten verfügbar, wobei Schätzungen eine
Milliarde Dokumente im Jahr 2002 nennen. Es wird davon ausgegangen,
dass die meisten dieser Dokumente im XML Format vorliegen, da zu er-
warten ist, dass HTML von XML als Lingua franca des Webs abgelöst wird,
z.B. in der Form von XHTML.

Ein verbreitetes Problem im Entwurf und der Wartung von Websites liegt
darin, dass Webseiten sehr oft andere Daten replizieren oder aus anderen
Daten abgeleitet werden. Diese anderen Daten, die auch als Basisdaten
bezeichnet werden, sind für gewöhnlich nicht Bestandteil der replizierenden
oder ableitenden Seite. Zwei Eigenschaften von Websites zeichnen für dieses
Problem verantwortlich. Erstens muss sich die Hypertext-Struktur einer
Website nicht notwendigerweise mit dem darunterliegenden konzeptuellen
Domänenmodell decken. Daher kann es notwendig sein, ein und dasselbe
Datenelement auf mehreren Seiten darzustellen. Zweitens wird der Inhalt
vorgenerierter Seiten oft aus Legacy Systemen bezogen, wie relationalen
Datenbanken. Webseiten replizieren in diesem Fall Datenelemente von
Datenbanken.

Folglich werden Replikas und Ableitungen inkonsistent, wenn sich Basis-
daten ändern, die in Webseiten oder relationalen Datenbanken gespeichert
sind. Zum Beispiel zeigt eine vorgenerierte, ein Produkt anbietende Seite
nach der Änderung des Preises in der Datenbank dieses zu einem falschen
Preis an.

Die Dissertation bietet eine Lösung an, indem ein kombinierter Ansatz
zum Erhalt der Konsistenz jener Webseiten vorgeschlagen wird, die (i) Daten
aus relationalen Datenbanken replizieren, oder (ii) Daten aus Webseiten
replizieren bzw. sich aus ihnen ableiten. Werden Basisdaten geändert, wird
die Änderung sofort zu betroffenen Webseiten weitergeleitet. Dort wird
deren Wartung inkrementell vollzogen, indem nur die von der Änderung
betroffenen Teile modifiziert werden, anstatt die Seite komplett von neuem
zu generieren.

Der vorgeschlagene Ansatz bietet so konsistente und aktuelle Seiten zu
jeder Zeit. Er ist u.a. effizient durch die Anwendung inkrementeller Seiten-
Wartungstechniken, generisch durch den Erhalt der Konsistenz in XML
Daten im Allgemeinen und flexibel durch das Reagieren auf Änderungen
in Webseiten anderer Unternehmen.

vn

Contents

1 Introduction 1
1.1 Definitions 2

1.2 Problem Statement 8

1.3 Contribution 14

1.4 Related Work 22

1 Consistency between Relational Databases and the
Web 31

2 Self-Maintaining Web Pages (SMWP) 33
2.1 A Quick Tour of the SMWP Approach 33

2.2 Schema Definition Language 39

3 SMWP: From Theory to Practice 45
3.1 Relational Representation of Fragments and Pages 46

3.2 Maintaining Fragments and Pages 52

3.3 Predicate Based Parameters 65

3.4 Performance Evaluation 69

II Consistency within Data on the Web 75

4 Active XML Schema (AXS) 77
4.1 Active Extension of XML Schema 78

4.2 Advanced Concepts 90

4.3 Distributed Events 98

4.4 Managing Active XML Schemas 106

ix

x CONTENTS

5 Composite Mutation Events 109
5.1 Introduction 110
5.2 Refined Event Algebra 112

5.3 Extended Event Algebra 120
5.4 Implementation 130

6 Realizing the Metaschema 133
6.1 Introduction 134
6.2 Evaluation Criteria 135

6.3 Approaches 136
6.4 Comparison 145

6.5 Related Work 146

6.6 Employing a Mixed Approach for AXS 147

III Consistency in Document Flows on the Web 155

7 Traceable Document Flows (TDF) 157
7.1 Infrastructure Model and Ontological Framework 158

7.2 Application Scenarios 166

7.3 Implementation 169

7.4 Related Work 170

8 Enriching TDFs with Active Behavior (ATDF) 173
8.1 Enriching the Infrastructure Model 173
8.2 Optimization 181

8.3 Related Work 186

9 Outlook 189

List of Figures 193

List of Tables 195

Bibliography 197

Appendix 209
A SMWP 209
B ATDF 212

CONTENTS xi

Acknowledgements 215

Curriculum Vitae 217

Chapter 1

Introduction

Contents

1.1 Definitions 2

1.1.1 Data on the Web 3

1.1.2 Consistency of Data on the Web 6

1.2 Problem Statement 8

1.2.1 Consistency between Relational Databases and

the Web 8

1.2.2 Consistency within Data on the Web 10

1.2.3 Consistency in Document Flows on the Web 12

1.3 Contribution 14
1.3.1 Maintaining Consistency between Relational

Databases and the Web 15

1.3.2 Maintaining Consistency within Data on the Web 17

1.3.3 Maintaining Consistency in Document Flows on

the Web 20

1.4 Related Work 22

1.4.1 Views in Relational Databases 22

1.4.2 XML Views over Relational Databases 24

1.4.3 Data-intensive Web Sites 25

1.4.4 Distributed Databases 25

1.4.5 XML Views over XML Data 28

Increasingly more data is becoming available on the Web. Statistics
report 4.8 million Web sites providing 500 million documents as of 2000 [124]
or 9 million Web sites1 providing almost 1 billion2 documents as of 2002.

1 Reported by Online Computer Library Corporation (OCLC), available at h t t p : / /
www.oclc.org/research/projects/archive/wcp/stats/size.htm.

2The number of documents is estimated using the site/document ratio as of 2000.

2 1. INTRODUCTION

Most of the data is contained in Web pages and is often change-dependent
on data in other Web pages or relational databases. Thus, changes to a Web
page or database should entail modifications in change-dependent Web pages
to maintain consistency. While maintaining consistency is a topic that has
been extensively addressed in the database literature, such research is still
rare in the area of the Web. The aim of this thesis is to explore consistency
maintenance in the realm of the Web.

The thesis3 comprises three parts, each dealing with one of the three
settings in which consistency of data on the Web should be maintained. As
will be discussed in detail in this chapter in course of the definitions and the
problem statement, these settings address consistency between Web pages
and relational databases, within Web pages, and in document flows. The
latter refers to the exchange of XML documents in business transactions
and personal ad-hoc data exchange.

Part I introduces an approach that maintains consistency between Web
pages and relational databases (Section 2), and subsequently presents the
approach's realization with off-the-shelf relational database technology (Sec-
tion 3). Part II proposes an approach that maintains consistency within
Web pages (Section 4), with a focus on composing events that may cause
inconsistencies (Section 5), and realizing the metaschema with XML (Sec-
tion 6). Part III presents a two-layered approach for maintaining consistency
in document flows, which consists of a generic layer to trace document flows
(Section 7), and a layer that adapts the approach from Part II to maintain
consistency in document flows (Section 8).

The rest of this chapter is devoted to underlying definitions (Sec-
tion 1.1), the problem statement (Section 1.2), the proposed contribution
(Section 1.3), and related work (Section 1.4).

1.1 Definitions

Before problems and solutions in maintaining consistency of data on the
Web can be discussed, we need a clear understanding of the notions of
"data on the Web" and of "maintaining consistency" of it. This section
aims at providing that understanding in the following subsections. For the
reader who is already familiar with the area, the following paragraphs, which
summarize the section, may suffice as definitions.

The notion of "data on the Web" refers to static data stored in Web
pages, where the data is XML data that appears in all three design dimen-
sions of Web applications, i.e., content, hypertext, and presentation. Data
in the content and hypertext dimension may originate from relational data-
bases. In the realm of this thesis, only those Web pages are considered that
are a view over other data. This notion applies to Part I and II of the thesis,

3The thesis is based on a number of papers, namely [19, 20, 21, 22, 23, 132, 133].

1.1 DÉFINITIONS 3

while Part III uses an extended notion of data on the Web, namely one that
refers to XML documents that may be arbitrarily moved around on the Web
instead of being allocated statically at a Web server, thus forming document
flows on the Web. For more details see Subsection 1.1.1.

The notion of "consistency of data on the Web" refers to view consis-
tency, meaning data being consistent with data it is derived from. With the
above notion of data on the Web, consistency is threefold: (1) consistency
between relational databases and the Web, (2) consistency within data on
the Web, and (3) consistency within document flows on the Web. Figure 1.1
on page 8 depicts the first two aspects graphically. For more details see Sub-
section 1.1.2.

1.1.1 Data on the Web

Data on the Web has been semi-structured from its beginning [7, 35]. And
although the Web was intended to be able to handle arbitrary data formats,
which is reflected in the content negotiation feature of the Hypertext Trans-
fer Protocol (HTTP [60]), the main data format used turned out to be the
Hypertext Markup Language (HTML [148]). According to its inventor, the
design of HTML was a bit of a hack [24], which, however, did not hinder its
success. It has been tidied up later on by defining it as a document type
definition specified in the Standard Generalized Markup Language (SGML
[87]). Semistructured data is often referred to as "self-describing", allowing
it to come along without a schema, and usually mixes structured data with
unstructured data, i.e., text, making it an ideal format for data on the Web.
The structure of semi-structured data usually varies among data instances
due to lacking schémas or appropriately designed schémas.

Throughout the thesis, the notion of "data on the Web" refers to static
data on the Web. Static means that the data requested by a user has been
stored in the same form before the request is made. Data on the Web
is contained in Web pages being the units that users request and servers
deliver. Static Web pages are Web pages that contain only static data and
are stored on Web servers and are delivered as-is upon requesting them.
On the contrary, dynamic data or dynamic Web pages are generated by an
application upon a user's request. They are also said to be generated on-the-
fly. During generation, various sources may be taken into account such as a
user's input, her profile, and data residing in relational legacy databases.

Static Web pages are predominant in two settings. First, when a legacy
database is not employed to store the data contained in Web pages but the
data is stored directly in the pages themselves. This is common for small
to medium sized Web sites. Second, when a legacy database is employed
and Web pages are not generated on-the-fly but are pre-generated before
users' requests, mainly to increase performance and reduce response laten-
cies. Such techniques are employed for large Web sites only. Generally,

4 1. INTRODUCTION

delivering Web pages with minimal response latencies upon a user's request
is considered to be the most important design requirement for Web pages
[117]. Thus, and because databases are widely used to store a Web site's
content, efficiently publishing database content on the Web is a key success
factor for Web sites.

On the contrary, with dynamic Web pages response latencies are likely
to occur, because dynamically generating pages is expensive [49, 137, 170].
Most Web sites experience problems of response latencies, because they use
the naive approach of generating Web pages on-the-fly. To improve the
situation, several techniques have been proposed in theory and practice to
speed up the construction of Web pages, such as pooling database connec-
tions, using prepared statements, or employing load balancing. However,
these techniques have two major shortcomings. First, when they focus on
efficient database access, they ignore that constructing an HTML or XML
page is often more expensive than retrieving its content from a database
[170]. Second, when they focus on efficient page construction, they ignore
that dynamically generating a page is more expensive than reading a pre-
generated page from disk.

In literature, pre-generation of static web pages is a topic of data-
intensive Web sites with pre-generation being considered a design princi-
ple [42]. When pre-generating pages, one has them ready built upon users'
requests whereby the shortcomings of generating pages on-the-fly are over-
come. Furthermore, approaches for pre-generating Web pages often feature
a schema-based approach for defining Web pages (e.g., see [137, 170]). Thus
they provide for a more declarative way of specifying Web pages, drastically
easing definition and maintenance of pages compared to programmatically
generating them on-the-fly. Approaches for data-intensive Web sites can be
divided into two categories, ones that support data integration from vari-
ous sources such as relational databases and the Web, and others that do
not. The first category needs an internal data model, to which integrated
sources are mapped. Giving two early examples of such approaches, Araneus
[10, 110] and Strudel [58] use an internal semistructured data model. Aside
of concentrating on how to integrate and model Web sites, both provide for
pre-generation of Web pages. The second category comprises approaches
dealing with pre-generation of semistructured data, i.e., Web pages directly
from relational databases without any intermediate representation, such as
[23, 99, 125, 133, 137, 170]. These approaches discuss alternatives in realiz-
ing the pre-generation process and their implications. For more information
on data-intensive web sites the interested reader is referred to [64].

Nowadays, data on the Web seen by users can be considered to be mostly
XML data, i.e., data in the format of the Extensible Markup Language (XML
[147]). The data is either already in XML format or likely to be transformed
to XML in the future to eventually replace HTML (see [114]). Since 1998,
when XML was first standardized by the W3C, research has been active on

1.1 DEFINITIONS 5

XML issues. As such, for example, Araneus switched to XML (see [109])
and the pre-generation of Web pages directly from XML databases has been
addressed (e.g., in [5]).

Looking at the structure of a Web site as a set of Web pages in more
detail, it can be characterized by three design dimensions, namely content,
hypertext, and presentation (e.g., see [11, 40, 129]). The content dimension
describes the data and relationships between pieces of it provided on Web
pages, i.e., the Web site's content, while the hypertext dimension describes
the composition of data to Web pages and navigation paths between them.
Finally, the presentation dimension describes how Web pages are presented
to the user. These dimensions are reflected in hypermedia design methods
that deal with them in separate phases in their process model, e.g., OOHDM
[135], RMM [86], and the Araneus Design Methodology [11]. Consequently,
languages for modelling Web applications distinguish between these dimen-
sions as well, e.g., WebML [41].

Data in the three design dimensions may appear in different formats.
Under above premise that data seen by users is XML data, data in the
hypertext and presentation dimension is XML data. Data in the content di-
mension can be XML data, however, since XML is a rather new format and
data is often stored in legacy systems such as databases, it can be relational
or other data as well. Due to commonplace ad-hoc constructions of Web
pages, data in the hypertext dimension does not necessarily have a counter-
part in the content dimension, being referred to as "Web-only content', e.g.,
data describing a lecture may solely be stored in the hypertext dimension.
Moreover, it is not necessary that a dedicated document stores a Web page's
data in each dimension. For example, a single XML document, such as an
XHTML document and an XML document that includes its own stylesheet
as a part of it, comprises data from a page's hypertext and presentation
dimension.

Various vocabularies can be used to express XML data in the respective
design dimension. Data in the content dimension can be expressed in a vo-
cabulary addressing the Web application's domain or a domain-independent
general purpose vocabulary. This also applies for data in the hypertext di-
mension, where additionally navigation can be expressed using standard
linking vocabularies like XLink [155] and XPointer [156]. Finally, data in
the presentation dimension can be expressed using standard vocabularies
like XHTML [159], CSS [146], SVG [162], or XSL [152] (also known as XSL-
FO). Data in the presentation dimension confers not only to data that is
directly visible to the user, but also to data used in constructing the Web
site's presentation.

Data in the hypertext dimension often originates from relational legacy
databases as indicated earlier. This has led to several approaches for pro-
viding XML views over relational databases in the database literature. In
the context of the Web this has led to the aforementioned approaches for

6 1. INTRODUCTION

data-intensive Web sites that are capable of pre-generating Web pages from
relational database content. Both kind of approaches aim at publishing
relational data as XML, however, with a different focus. For details see
Subsection 1.4.2.

Finally, only Web pages are relevant that are denned as a view over other
data. Together with the characteristics of data on the Web discussed so far,
this implies that data in a Web page's hypertext or presentation dimension
must be a view, i.e., dependent on data possibly contained in other Web
pages or in relational databases. Note that Web pages that are not at least
partially a view are not of interest, while the amount of data that is a view
may vary from very little to the complete Web page. Most likely, data in
a Web page's hypertext dimension will be a view (a) on data in other Web
pages' hypertext dimension or (b) on data in the content dimension. One
may safely assume that data in the presentation dimension or data defining
navigation will be dependent on other data less frequently.

The last part of the thesis (Part III, see also Subsection 1.2.3) uses an
extended notion of data on the Web. It relaxes the characteristics of data
discussed so far in that it abandons the necessity of data being contained in
Web pages and rather deals with XML documents in general. Thus talking
of data appearing in any design dimension is not appropriate anymore when
the refined notion of data is used. Moreover, it extends the notion of data
in that it deals with documents that are stored on varying locations in a
network, thereby forming document flows. This resembles the flow of data
in the course of business transactions or ad-hoc data exchange.

Summarizing, if not stated otherwise, the notion of "data on the Web"
subsumes the following characteristics: (i) static data stored in Web pages,
where (ii) the data is XML data, which (iii) may appear in all three design
dimensions of Web applications, i.e., content, hypertext, and presentation,
where (iv) data in the content and hypertext dimension may originate from
relational databases, and finally, where (v) only Web pages are relevant that
are a view over other data.

1.1.2. Consistency of Data on the Web

This subsection briefly surveys different notions of consistency, especially
those common in the database area, and subsequently identifies the notion
of consistency that is addressed by the thesis.

The notion of consistency, generally meaning an "agreement or harmony
of parts or features to one another or a whole"4, has different meanings in
different research areas. For example, in the area of interorganizational
workflows, a consistent workflow execution refers to participating businesses
having the same knowledge of whether an interaction as part of the workflow

4Merriam-Webster Online Dictionary, http://www.m-w.com

1.1 DEFINITIONS 7

has failed or succeeded. Differently, in the area of Web caching, consistency
refers to cached Web pages having the same content as their original counter
Web page, regardless of whether the latter is a static or dynamic Web page.

Looking at the notion of consistency in the database area, it has the
following overloaded meanings.

First, type consistency means that data is consistent with types and addi-
tional constraints. Thus, the data's structure adheres to the type's structure
(e.g., a tuple has a value for each of its schema's attributes), the data's values
adhere to the type's definitions (e.g., 124 is a valid ssnr number (10)), and
the data's values adhere to additional constraints (e.g., 123 satisfies CHECK
ssnr<999). For details on type consistency see, e.g., [36].

Second, view consistency means that data is consistent with data it is
derived from, i.e., with data it is a view of. This means that view data
dv, which depends on base data db due to replication or derivation, must be
updated upon modification of the base data. Defining dv using view function
v as dv := f(<4) this means that upon modifying db to d'b, the view data is
only consistent with the base data if its value is d'v = v(d'b). For details on
view consistency see, e.g., [75].

Third, consistency under concurrent access means that data is consistent
after concurrent access to it. This means that if two or more applications
access the same data concurrently (not simultaneously but interleaved) the
value of the data after the applications end is the same as it would have
been if the applications had been executed sequentially. Database theory
deals with this kind of consistency in serializability theory [73, 168].

Type consistency and consistency under concurrent access are already
widely dealt with in the XML (database) literature. Moreover, these two
notions of consistency are closer linked to the area of databases than to the
Web. Briefly sketching existing solutions, several schema languages allow to
express types in XML such as DTD [147], XML Schema [157,158], and Relax
NG [118]. In addition, constraints may be specified by these languages as
well, or special purpose languages such as Schematron [89] and SchemaPath
[108]. Protocols for serializable concurrent access to XML data are under
development, such as the ones proposed in [76, 77], which leverage ideas
from relational databases.

Remembering that data on the Web refers to Web pages that are views,
one easily recognizes that the notion of view consistency neatly provides the
needed characteristics for describing consistency of data on the Web. As
such, it provides for the notion of consistency the thesis addresses. As will
be pointed out later in Section 1.4, this is not an area without any research
results, however, we have approached the issue differently from others.

Figure 1.1 summarizes the notion of maintaining consistency of data on
the Web by depicting its first two aspects: (1) consistency between relational
databases and the Web, and (2) consistency within data on the Web. The
third aspect, (3) consistency within document flows on the Web, is left

server)

1. INTRODUCTION

presentation

^•^maintaining consistency R8&&I data on the Web

Figure 1.1: Maintaining Consistency of Data on the Web

out for conciseness. The figure depicts consistency maintenance by arrows
pointing from base data to derived data. As one can see, consistency is to be
maintained across and within the design dimensions of Web pages and across
and within different Web servers. Note that maintaining view consistency
within legacy systems such as relational databases is not addressed, since
this has been dealt with extensively in database literature and elsewhere.

1.2 Problem Statement

Now having the definition of "consistency of data on the Web" at hand,
we can break down the problem of maintaining consistency of data on the
Web into the following three parts, each one being dealt with in a separate
subsection.

1.2.1 Consistency between Relational Databases and the
Web

When pre-generating Web pages from relational databases, it has to be de-
cided on how to model Web pages, how to model the database, and how
to map between the two, having far-reaching consequences. First, the ex-
pressivity of the models and the mapping determines the kind of Web pages
that can be modelled. Moreover, the models determine the kind of mappings
that can be designed. Second, the kind of mapping determines the main-
tainability of a Web site in terms of the amount of manual action that needs
to be performed upon a modification in the database to adjust the map-
ping. Third, the models and the mapping determine possible consistency
techniques, varying in their update granularity and kind of consistency they

1.2 PROBLEM STATEMENT 9

can provide. All of these aspects in pre-generating Web pages and their
consequences are discussed in the following.

The database can be modelled either instance-based or class-based. This
addresses the possibility to modularly design the chunks of data that repre-
sent the content of Web pages. A simple approach will allow to define such
chunks individually only, i.e., being instance-based. An approach should
employ a class-based technique, generating the corresponding instances au-
tomatically. This will reduce the complexity of underlying database queries
and simplify mapping knowledge and its maintenance in terms of easily de-
termining "dirty" pages, i.e., pages that contain out-dated content.

Also Web pages can be modelled either instance-based or class-based.
Instance-based refers to modelling every single page by its own, while class-
based refers to modelling only classes of Web pages. A class of Web pages
(short a "page class") comprises a set of pages that share the same structural,
navigational, and presentational features, just like the extent of a class in
an object-oriented database collects objects of the same kind. An approach
should support class-based models, because they again simplify mapping
knowledge and its maintenance. In addition, an approach may also support
instance-based models, however, this is less important.

Possibilities to define the mapping knowledge between the database and
Web pages can be distinguished along two dimensions. First, the map-
ping may be implicit, e.g., defined within database queries for determining
the content of a page, or explicit, e.g., in the form of metadata. Explicit
mapping knowledge facilitates the maintenance of and reasoning about it.
Second, following the models for databases and Web pages, mappings may
be instance-based, mapping database instances to Web pages, or class-based,
mapping database classes to page classes. Class-based mappings result in
the least amount of mapping knowledge, minimized design and maintenance
costs, and lowest coupling between the database and Web pages.

The maintained consistency between Web pages and database content
can be weak or strong. Under weak consistency Web pages may contain
out-dated content, while strong consistency ensures up-to-date content on
Web pages. Weak consistency is usually solved by periodically polling for
database updates and carrying out re-generation of affected pages in case
of detected updates. If an implicit mapping knowledge is used it is likely
that only weak consistency can be maintained (e.g., as in [170]). Mainte-
nance of weak consistency is also said to be "pull-based". Strong consistency
mechanisms ensure immediate updates of Web pages upon a database mod-
ification. The mechanism usually exploits explicit mapping knowledge to
determine the pages that need to be modified. Strong consistency is usually
"push-based", pushing database modifications to dirty pages. If only one
kind of consistency is supported by an approach, strong consistency is ob-
viously more important. With either consistency, special attention needs to
be drawn to update all affected pages upon a single database modification

10 1. INTRODUCTION

and that those changes become visible to users at once, so that the Web
pages are consistent among themselves. This is also referred to as multiple
view consistency in the literature [174].

Web pages can be modified to be up-to-date with different update gran-
ularities. First, a dirty page can be re-generated from scratch by "pulling"
the page's content from the database and generating a new page replacing
the dirty one. This involves execution of many unnecessary queries and
maintenance by completely re-generating Web pages that contain for their
largest part unchanged content, resulting in high maintenance costs. Sec-
ond, a dirty Web page can be modified incrementally by only updating the
"dirty" part of it. This is likely to reduce maintenance cost, because no
unnecessary data needs to be read from the database.

Summarizing, the problem in maintaining consistency between rela-
tional databases and the Web lies in (i) designing the languages for mod-
elling relational databases and Web pages, so that (ii) a mapping that is
easy to maintain can be designed, i.e., an explicit and class-based mapping,
which (iii) allows to design a mechanism that at least provides for strong
consistency with incremental update granularity.

1.2.2 Consistency within Data on the Web

Data on the Web can be change-dependent on other data in different orga-
nizational settings. The base data, i.e., the data depended on may reside
within the same Web page, or on other Web pages within the same business
or on Web pages of another business. If base data does not reside within
the same Web page, it is referred to as "remote data". If other businesses
are involved, they may be cooperating, i.e., agreeing and supporting repli-
cation or derivation of data, or not cooperating, being neutral or hostile to
others replicating or deriving data from theirs. Intuitively, the organiza-
tional setting that is to be supported by an approach influences its technical
realization. The thesis' focus is on base data within the same business or
in cooperating businesses, while also allowing the integration of data from
hostile businesses.

Various examples for change-dependencies in different organizational set-
tings come to mind. Within the same business, an employee's data, e.g.,
his/her phone number or job title is often replicated on several Web pages.
Across businesses, a travel agency selling trips that use a certain accommo-
dation may want to raise the price of the trips if the price for an overnight
stay in that accommodation rises. Or, an author or reader of a book may
be interested when a review is added at Amazon, a university department
may want to publish job offers at its Web site provided by a job agency that
could be interesting to its students, or a citation index like CiteSeer5 may

5http://citeseer.nj.nee.com

1.2 PROBLEM STATEMENT 11

want to derive its citations directly from publication announcements made
at universities' Web sites. An example for a possibly hostile derivation is
Geizhals6, a service that collects and compares offers of different businesses
for the same product.

Reasons for change dependencies are manyfold. Technically, the intent is
to adapt data according to remote data, to have data replicated or derived
from remote data available in a new context, or to combine and/or compare
remote data locally. More concrete, it can be used for example to add value
by presenting remote data in a new context, like publishing relevant job
offers at a department's Web site; to provide a preview of linked content or
an annotated link; to provide a navigation context in order not to get lost
in hyperspace; to promote remote data by presenting it on several pages;
and finally to add value by combining and/or comparing remote data, e.g.,
comparing products.

To achieve consistency, storing data in a relational database and using
approaches for maintaining consistency between the database and Web pages
is often not a viable option. This would only be viable in the organizational
setting of a single business, and even there it may not be easy to negotiate
and run a shared database. Moreover, there exists content for which it is
not reasonable to store it in a database. For such Web-only content, i.e.,
content in Web pages that is not drawn from underlying databases, a light-
weight Web-based solution to Web content management would be a better
alternative. This should not replace but complement database functionality.

Additional kinds of change dependencies exist to the ones on data in
other Web pages. First, data may be change-dependent on time. An ap-
proach should support for adapting Web pages to points and periods in time,
e.g., for automatic adding of up-to-date content or removing out-dated con-
tent. For example, an announced job offer on a department's Web site is to
be removed after the application deadline is over. Second, data may also be
change-dependent on data in legacy systems such as relational databases or
workflow systems. This resembles the functionality of data-intensive Web
sites as far as data in relational databases is concerned. Nevertheless, a
uniform interface to maintain consistency to arbitrary legacy systems is de-
sirable. And third, data may be change-dependent on a Web page's history,
i.e., on previous states of a page. For example, a department publishes jobs
announced by a job agency, which may announce a job multiple times, only
if the department has not published the job before.

Based on the above considerations and the properties of the Web, four
desired characteristics can be derived that an approach for maintaining con-
sistency of data on the Web should feature. First, change dependencies be-
tween Web pages are usually characterized by autonomous control over par-
ticipating pages, since they often belong to autonomous businesses. Thus,

http ://www.geizhals.at

12 1. INTRODUCTION

businesses being involved in replication or derivation of data must not be
constrained in their autonomy in how they store and manipulate pages in
any way. Second, ideally there exists low coupling between the systems that
maintain consistency, so that one business is not (vitally) affected by actions
another business undertakes, such as adding/removing a Web page or going
offline for some period. Third, the possibility to integrate legacy systems
in a uniform way should be supported to adapt Web pages according to,
e.g., data residing in relational databases or workflow systems. Fourth, the
approach should be general so that it can be applied to manage data in any
of the three design dimensions of content, hypertext, and presentation.

Summarizing, the problem in maintaining consistency within data on
the Web lies in designing an approach supporting change dependencies on
data in Web pages, on data in legacy systems, on time, and on Web pages'
histories. It should (i) preserve businesses' autonomy in managing their Web
site, (ii) result in a low coupling between systems holding dependent data,
(iii) provide a uniform interface to legacy systems, and (iv) maintain con-
sistency in all design dimensions of Web pages, namely content, hypertext,
and presentation. As with consistency between relational databases and the
Web, such an approach should provide at least for strong consistency with
incremental update granularity.

1.2.3 Consistency in Document Flows on the Web

This subsection uses an extended notion of data on the Web, as described
at the end of Subsection 1.1.1. Thus, when talking of an approach herein
that shall maintain consistency of data on the Web, it is referred to data in
the refined sense.

Web pages often change their location, i.e., their URL over time, a prop-
erty of Web pages not considered in this thesis yet. An approach providing
for consistency of data on the Web, however, should consider this property,
which is supported by the following observations. First, every person who
is using the Web regularly will admit that she is often confronted with "404
Not Found" or similar due to links to pages whose locations have been mod-
ified. Second, there are prominent calls to refrain from modifying URLs
of Web pages or at least to handle them properly [25, 160]. Third, URI
schemes have been proposed to hide changing locations of pages by provid-
ing for location-independent identifiers that can be translated to location-
dependent identifiers (for an overview see [153, 169]). Examples are URNs
[79] and DOIs [85].

Looking at XML documents in general instead of Web pages, it can be
observed that in certain situations XML documents also change their loca-
tion over time. Thereby they form physical document flows between nodes
in the network, being externally observable. This is different from many
systems that seem to support such flows, which, however, in fact only pro-

1.2 PROBLEM STATEMENT 13

vide for virtual document flows. They allocate documents permanently at
a central repository and provide access from varying nodes, e.g., a work-
flow engine usually stores workflow data in a central repository, causing the
workflow data to flow only virtually between nodes, i.e., clerks' desks. Con-
trarily, on the Web there is a physical document flow where documents are
moved physically from node to node. Note that documents participating in
virtual document flows do not change their location and that consistency
management is thus already covered by dealing with the problems in the
previous two subsections.

Today, physical document flows take place via the Web in business trans-
actions and personal ad-hoc data exchange. First, rather recently, in the area
of Web services, approaches such as BPEL [17] and ebXML [2] provide for
the specification of business transactions between businesses. In the realm
of a business transaction XML documents such as a purchase order and an
invoice are exchanged. Second, since the advent of the Web, ad-hoc data ex-
change between individuals has become a daily routine. The data exchange
is carried out by handing over documents in situations where people want
to exchange documents but cannot rely on the same information infrastruc-
ture, e.g., because they are working for different businesses. Instead, they
use emails with attachments, instant messaging, or filesharing applications
such as FTP.

Physical document flows have the following advantages over virtual doc-
ument flows: First, they provide for lower coupling because participants do
not rely on a central repository which is a possible central point of failure
and which is usually difficult to provide when documents flow across busi-
ness' boundaries. Second, they provide for higher mobility in manipulating
documents going hand in hand with emerging mobile computing devices,
assuming that the functionality otherwise provided by the central repos-
itory, such as active behavior and versioning, is available locally at each
involved node of the document flow. Third, they provide for higher auton-
omy by allowing to implement security aspects such as authentification and
authorization locally where documents are stored. Fourth, lower coupling
and higher autonomy result in higher flexibility in whether and how a docu-
ment flow takes place, thus providing among others for spontaneous ad-hoc
document flows.

A peer-to-peer (P2P) infrastructure is a pre-requisite for supporting
physical document flows. Thus an approach for physical document flows
has the disadvantages connected to P2P infrastructures, which are the fol-
lowing. Above all, global properties are hard to guarantee in P2P systems,
such as global availability of shared data and globally constrained access to
data according to security policies. It is also difficult to maintain a globally
consistent state in P2P systems, a topic distributed consistency protocols
are aiming at. Therefore, a P2P system is usually more complex to design
and implement and has to deal with several challenges connected with P2P

14 l. INTRODUCTION

systems, such as maintaining network control, guaranteeing network secu-
rity, and avoiding freeloaders (see [131]). Thus, if the extended approach
is not the approach of choice in a given setting, one may switch to virtual
document flows instead. However, if physical document flows are to be used,
a P2P infrastructure cannot be circumvented.

An approach that maintains consistency of data on the Web should be
capable of maintaining consistency of data participating in document flows.
As such it should provide consistency across and agnostic to document flows,
where "across" addresses consistency between documents of which at least
one participates in a document flow, and "agnostic" means that it should
be possible to access a document transparently of whether it participates
in a document flow or not, referred to as document flow transparency. Ex-
amples are consistency between Web pages irrespective of changes to the
page's URLs and consistency between XML documents irrespective of their
participation in document flows.

Summarizing, the problem in maintaining consistency in document
flows on the Web lies in designing a P2P infrastructure that preserves the
properties of the original approach for providing autonomy, low coupling,
and strong consistency with incremental update granularity in spite of the
extension. Additionally, the extended approach must provide access to doc-
uments transparently of whether they participate in document flows or not.

1.3 Contribution

The thesis provides approaches that solve the problems described in Sec-
tion 1.2. Its contributions are providing for the following:

• Maintaining consistency between relational databases and the Web by
realizing an already proposed approach called "Self-maintaining Web
Pages" (SMWP), first described in [134]. The conceptual model pre-
sented therein and detailed in [133] is mapped to a (relational) real-
ization model and implemented using off-the-shelf relational database
technology. Moreover, a performance evaluation compares SMWP to
related approaches. For details see Subsection 1.3.1.

• Maintaining consistency within data on the Web by proposing an ap-
proach called "Active XML Schema" (AXS). It provides for enriching
XML schémas7 with specifications to maintain consistency upon oc-
curring events reflecting modifications in XML instances. By dealing
with XML documents in general, the approach can be used for any
design dimension of Web pages. For details see Subsection 1.3.2.

7Throughout the thesis, "XML Schema" refers to the schema language proposed by the
W3C in [157, 158], and "XML schema" refers to a schema expressed using XML Schema.

1.3 CONTRIBUTION 15

• Maintaining consistency in document flows by proposing a two-layered
approach, extending AXS to deal with XML documents that are phys-
ically moved across a network. The first layer provides for "Traceable
Document Flows" (TDF), which allows to trace the flow of a docu-
ment across a network, while the second layer employs AXS on top of
it. For details see Subsection 1.3.3.

All approaches use event-condition-action (ECA) rules as a technique
to maintain consistency. An ECA rule is triggered upon an event occur-
rence that matches its event description. If its condition applies, its action
is executed. ECA rules are more commonly referred to as "triggers" and
are well known in relational databases where they have proven useful (see
Subsection 1.4.1 for an application).

1.3.1 Maintaining Consistency between Relational Data-
bases and the Web

The SMWP approach solves the problem of maintaining consistency between
relational databases and the Web as described in Subsection 1.2.1.

For class-based modelling of relational databases, the SMWP approach
exploits and extends well established concepts from distributed database
systems (DDBS). The analogy between a database-backed Web site and a
distributed database, which has one central site and several remote sites,
is the following: While the database containing content to be published on
Web pages is seen as the database at the central site, Web pages are seen as
databases at remote sites at which content from the central site is replicated.
In particular, the concepts of fragmentation and allocation [43, 122] are used
to build subsets of relations and allocate them on Web pages.

Web pages in SMWP are defined using class-based models by exploiting
the observation that most often they display content according to some pa-
rameters. For example pages enlisting products in categories with one page
per category, or publications in departments with one page per department.
A page class is used to describe the structure of its instances at the schema
level and is parameterized, while a page is an instance of the class with
bound parameter values. For example, a publications page for the depart-
ment "Business Informatics Group" is an instance of its page class that has
"department" as its parameter.

The SMWP approach has the following advantages, compared to closely
related approaches (for more information on closely related approaches see
Subsection 1.4.3):

• Class-based database design: in contrast to other approaches, which
do not explicitly model the underlying database and see every tuple
as a single instance (thus being instance based), SMWP is class based

16 1. INTRODUCTION

in that it introduces an explicit data fragmentation design defining
classes. A class comprises defined chunks of content (i.e., sets of tu-
ples) each forming an instance and representing parts of Web pages.
Class-based modelling has the advantages of providing re-usable data-
base components, simplifying queries to retrieve a page's content, and
simplifying the mapping knowledge, thus easing definition and main-
tenance of pages.

• Class-based Web page design: by modelling pages at the class level,
definition and maintenance of pages is simplified. Related approaches
partly model pages at the instance level.

• Class-based mapping knowledge: the amount of the database to Web
mapping knowledge is significantly reduced by using a class-based
mapping. This is possible by class-based modelling of both the data-
base and the Web site. Thus design and maintenance costs are min-
imized. Consequently, by defining the database to Web mapping be-
tween classes (not instances), the SMWP approach features the lowest
coupling between the database and Web pages.

• Incremental update granularity: while other approaches update a
page by completely re-generating it from scratch, causing unneces-
sary server-load, the SMWP approach incrementally updates a page
by only modifying XML elements that are to be updated due to a
database modification.

• Strong consistency: by pushing database updates immediately to af-
fected Web pages, they contain up-to-date content any time. More-
over, this takes off server-load originating in periodically polling the
database for updates. Updates to multiple pages caused by a single
database update become visible to the user at once.

The thesis shows how the SMWP approach can be realized using off-
the-shelf relational database technology. After a quick tour of the approach
(see Section 2.1), it presents a declarative language for data fragmentation
and Web page design and the maintenance of both (see Section 2.2). It
shows how statements, which are issued using this language, are translated
into SQL statements on the employed database (see Section 3.1 and 3.2).
It presents predicate based parameters, which are a conceptual extension to
the SMWP approach increasing its modelling power, and their realization
(see Section 3.3). Finally, a performance evaluation is presented, comparing
the SMWP approach to related approaches (see Section 3.4).

The work presented in the thesis accompanies previous theory papers
on SMWP (see [133, 134]). The conceptual model presented therein,
which comprises among others two kinds of fragment classes, fragments,

1.3 CONTRIBUTION 17

page classes, pages, and algorithms for incremental maintenance thereof, is
mapped to a realization model that employs an off-the-shelf relational data-
base system, thus comprising relations (see Section 3.1) and triggers (see
Section 3.2). This work marginally overlaps the theory papers in that it
deals with algorithms that have the same intent, i.e., with algorithms that
provide for incremental maintenance of data. The trigger algorithms pre-
sented herein, however, substantially differ from algorithms presented in the
theory papers because they operate within a different, i.e., the realization
model. Moreover, additional algorithms necessary for realization are pre-
sented in this thesis (see Subsections 3.2.1 and 3.2.2). Furthermore, the
schema evolution problem is addressed. It is explained how the set of main-
tenance triggers has to be modified with each schema modification state-
ment. We show this explicitly for the creation of new fragments. Dropping
a fragment requires to undo the changes made when creating the fragment.

Several approaches have been proposed in literature for publishing rela-
tional data as XML. For more details on these distantly related approaches
see Subsection 1.4.2. They can be considered distantly related because none
of them provides for self-maintainable, incremental maintenance of materi-
alized XML views. Even more important, none of these approaches deals
with modelling the database or modelling Web pages. Using [145], the clos-
est of the distantly related approaches, to solve the problem of maintaining
consistency between relational databases and the Web instead of developing
SMWP from scratch was not an option for one simple reason: SMWP was
proposed two years before [145]. Still, after an extension of [145] to support
class-based modelling of databases, Web pages, and the mapping, it would
not provide for a self-maintainable view maintenance, i.e., one that uses
the update as only information to modify the XML view. A property from
which one can expect increased efficiency compared to a mechanism that
additionally uses base tables and auxiliary data structures for incremental
maintenance.

SMWP as an application of relational database triggers is a so called gen-
erated extender, according to [39]. For details regarding triggers in relational
view maintenance see Subsection 1.4.1. Extenders provide enhanced data-
base functionality, e.g., for maintaining replicated data. In case of SMWP,
triggers are generated, i.e., derived from declarative specifications given by
means of SMWP's schema definition language. While [44] derives triggers
for incrementally maintaining views that are defined by SQL statements,
SMWP can be seen as its equivalent for replicated fragments, i.e., deriving
triggers for maintaining (horizontal and derived) fragments.

1.3.2 Maintaining Consistency within Data on the Web

The Active XML Schema (AXS) approach solves the problem of maintaining
consistency within data on the Web as described in Subsection 1.2.2.

18 1. INTRODUCTION

First, AXS is general in that it can be used to maintain consistency
in any of a Web page's design dimensions, i.e., in the content, hypertext,
and presentation dimension. Since data on the Web is XML data in all
design dimensions, this is simply achieved by designing AXS to maintain
consistency of XML documents in general.

Second, AXS provides for strong consistency with incremental update
granularity by providing for ECA rules or triggers. By denning a trigger
one can manually specify how to update a physical data item (by the ac-
tion) upon the modification of another physical data item (represented by
an event). That is why triggers are said to provide re-active behavior (or
short active behavior). We have chosen to use triggers instead of other
view definition mechanisms such as queries because usually more complex
views can be incrementally maintained using triggers than when defined by
queries. Moreover, triggers for incremental maintenance can be derived from
arbitrary declarative definitions of views, not just queries, e.g., from view
correspondence assertions proposed in [144], being a good starting point for
future extensions. By bringing triggers to XML also other application areas
of triggers are brought to XML such as implementing business rules. Old
techniques for providing active behavior in XML are replaced, like imme-
diate checking a document after an event occurred, or periodically polling
a document for changes. Other approaches for providing triggers in XML
data have been proposed (see Subsection 1.4.5), all being referred to as
approaches for "active XML".

AXS per se does not provide for class-based modelling of data as SMWP
does. Instead, AXS only provides for instance-based modelling of XML
documents because we were not able to identify general replication and
derivation patterns in XML documents that are so prominent as the ones in
SMWP. Nevertheless, providing for instance-based models is a good starting
point for later extensions by domain-dependent class-based models.

Active behavior is provided by extending XML schémas such that active
behavior comes with an XML schema and is used for all document instances
of it. This is line with the current trend in Web-based information systems
to learn from years of research in conceptual modelling and to apply schémas
for modelling and implementing Web content. Such an approach provides
for the reuse and interoperability of not only structure, but also of active
behavior. Moreover, active behavior defined at the schema level is easier to
design, to implement, and to maintain than it would be if it was defined
separately. Related approaches for active XML do not store active behavior
with a schema.

Third, by employing an event based model, AXS supports all kinds of
change dependencies. Regarding the events themselves, the approach builds
on experience from conceptual modelling of business rules by the means
of situation/activation diagrams [101]. These diagrams are characterized
by modelling events as first class objects that have an event type and are

1.3 CONTRIBUTION 19

collected into event classes. Beyond supporting different kinds of events
(e.g., mutation events, calendar events, and abstract events), they allow to
schedule future events. Thereby change dependencies on data in Web pages
and change dependencies on time are supported by AXS, being extensible
by specializing abstract events.

AXS provides a rich set of event kinds to be able to define rules on a
most extensive set of events. AXS provides for (a) calendar events which
occur at points in time; (b) method events which occur upon performing
operations defined with AXS schémas (see Subsection 4.1.1); (c) primitive
mutation events which occur upon a data modification, e.g., upon insertion
of an element; (d) composite mutation events which are composed from prim-
itive mutation events by a special event composition language, as it is the
case with active database systems [123]; (e) logical events which are defined
declaratively by querying the extension of other event classes; (f) abstract
events which can be specialized to represent arbitrary events not addressed
by (a)-(e). Opposite to [30], which derives rules to be triggered from the
code that performs a data modification (i.e., an XQuery query), AXS de-
termines the rules directly from occurred mutation events representing data
modifications due to the code's execution, being a more natural approach.
The latter applies for all kinds of events, not just mutation events. The set
of event kinds provided by AXS is by far more extensive than in any related
approach for active XML, which only provide for primitive mutation events.

By taking a document centered approach, change dependencies on a Web
page's history are supported. This means that events occurring at a doc-
ument are stored in the document, forming its event history. This mimics
traditional paper form processing, where all events related to a business case
are recorded with its form and can be queried when decisions on the case
have to be made.

Fourth, Autonomy of participating businesses is maintained by utilizing
the publish/subscribe protocol from event based systems for event commu-
nication. Thereby events that occur at publishing documents are delivered
to subscribing documents, allowing them to react accordingly. Moreover,
by communicating events asynchronously, the loosely coupled nature of dis-
tributed Web pages is taken into account. Pessimistic transaction protocols
from distributed databases (for details see Subsection 1.4.4), which guaran-
tee consistency, are not suited for an adaption to AXS since they restrict
autonomy. On the contrary, because optimistic protocols do not limit au-
tonomy, adapting them for consistency management on the Web seems a
viable option. After optimistic transaction executions, however, a roll-back
by means of compensating transactions may still occur due to the behav-
ior of other participants. Since this is considered a harmful interference,
optimistic protocols are not adapted either. Nevertheless, extending the
proposed AXS approach with support for optimistic protocols for use in
restricted environments may be desirable.

20 1. INTRODUCTION

Fifth, systems storing dependent documents have a low coupling by using
an event-based infrastructure and constraining relationships between doc-
uments. The latter refers to defining all components of a rule (i.e., event,
condition, action) local to the document they are specified for. Local means
that a rule may only react to a local event, a condition may only test the lo-
cal document including its event history, and an action may only modify the
local document. Aside of providing for low coupling this maximizes design
autonomy. Sharing events and actions is only possible via asynchronously
communicating events between documents.

The two related approaches that provide materialized XML views over
XML data (see Subsection 1.4.5) are not well suited for maintaining consis-
tency of data on the Web. They are intended rather for database-internal
use. [55] uses auxiliary data structures to maintain relationships between
tuples in the algebra tree and the base XML data, assuming internal iden-
tifiers on base XML data. This would result in an undesired high coupling
between Web pages. [144] does not provide for self-maintainable views, re-
sulting in a higher coupling due to necessary access to base data in case of
an update.

Seventh, the event based infrastructure also provides for support of
change dependencies on data in legacy systems using a uniform interface to
legacy systems. A wrapper for a legacy system, e.g., a relational database,
makes modifications or other events within the system available as AXS
events. Depending on the functionality provided by the wrapped legacy
system, the wrapper may need to periodically poll the legacy system for
changes. Rules in AXS which react to events need not be aware of the
source of the triggering event (i.e., the wrapped system), thus providing
event source transparency.

Compared to related approaches for active XML (again, for details see
Subsection 1.4.5), AXS has several unique features. First, active behavior
is specified with XML schémas, while related approaches leave this question
open. Second, the event-based infrastructure and asynchronous event de-
livery provides for reacting to events that have occurred remotely. Third,
AXS's event set is the richest one, also due to provision of user-definable
composite mutation events. On the negative side, AXS has not yet dealt
with rule analysis as Bailey et al. did, e.g., in [12].

1.3.3 Maintaining Consistency in Document Flows on the
Web

The approach for traceable document flows that is enriched with active
behavior (ATDF) solves the problem of maintaining consistency in document
flows on the Web as described in Subsection 1.2.3. Since document flows use
an extended notion of data on the Web (see the end of Subsection 1.1.1), it
is only natural that the ATDF approach extends the Active XML Schema

1.3 CONTRIBUTION 21

(AXS) approach which maintains consistency of data in the not extended
sense. The extension is two-layered because the first layer is useful on its
own, i.e., without the active extension of the second layer.

The first layer provides for traceable document flows (TDFs). Trace-
ability is important for various aspects. In commercial settings traceability
provides for legally relevant properties, such as non-repudiation. Prom an
application's point of view it may be useful to have traces of a document
flow available, not only to influence an application's behavior, e.g., by a doc-
ument's location, but, assuming that documents are persistent, to have a
document's history available. Finally, from a user's point of view, she simply
may want to discover where a document has been moved to after accessing
it last time. The layer was designed to be applicable for any document not
just XML documents, because traceable documents are useful on their own,
as is exemplified in Chapter 7.

TDFs proposes an infrastructure model, defining how document flows
can take place, in parallel with an ontological framework. The infrastructure
model for document flows is a P2P model so that a shared, central informa-
tion infrastructure is not necessary for document exchange. Basically, every
document has a globally unique identifier which is preserved when sending it
across the network. Because a document may be edited by its current owner
and re-distributed afterwards, the model keeps track of various versions of
the document spread across the network. When re-distributing a document,
metadata describing its flow so far and metadata describing the document
itself are distributed along with it. Moreover, an ontological framework is
presented for describing document flows and documents, revealing the flows
and descriptions of the documents (referred to as annotations) by using an
open data format for their representation. With it, users can query meta-
data describing document flows, can query annotations, and can determine
the past and current content of documents. By employing Semantic Web
technology, i.e., OWL [165], the metadata is described non-proprietarily and
can be used by any application.

The second layer extends traceable document flows with active behavior
by employing AXS on top of the first layer (ATDF). Since AXS commu-
nicates events from publishing to subscribing documents according to the
publish/subscribe protocol, and documents as part of TDFs are stored at
varying locations over time, events are published in documents at varying lo-
cations and have to be delivered to documents at varying locations. Therefor
an event routing algorithm is proposed that ensures event delivery despite
of varying locations, using a hybrid P2P model, i.e., a P2P model with some
form of centralization. Event routings can be manually adjusted. Moreover,
two optimized event routing algorithms are presented, which make event
delivery more robust to offline peers and minimize network traffic.

ATDF ensures peers' autonomy by providing access to documents irre-
spective of other document flows and of the behavior of other peers. Low

22 l. INTRODUCTION

coupling is maintained by using appropriate data structures to store doc-
ument flows. By providing event routing algorithms that deliver events
from publishing to subscribing documents irrespective of document flows
they participate in, strong consistency with incremental update granularity
(already provided by AXS) is maintained across document flows. ATDF
provides for document flow transparency by providing access to a document
and delivering events to/from it irrespective of its participation in document
flows.

1.4 Related Work

This section surveys related work. After giving an introduction by provid-
ing a general overview of views in relational databases in Subsection 1.4.1,
related work for the problem of maintaining consistency between rela-
tional databases and data on the Web is described in Subsection 1.4.2 and
1.4.3. Subsequently, related work for the problem of maintaining consis-
tency within data on the Web is described in Subsection 1.4.4 and 1.4.5.
Additional references to related work are given along the description of the
proposed approaches in Parts I, II, and III where applicable.

1.4.1 Views in Relational Databases

Dealing with consistency of data it is natural to look at relational data-
bases in general to see which techniques they have developed. Databases
provide for (i) view consistency aside of providing for (ii) type consistency
by relational schémas and constraints (among others defined by SQL as-
sertions) and (iii) consistency under concurrent access by transactions and
their ACID properties, which refer to atomicity, consistency, integrity, and
durability. The consistency for which "C" in ACID stands for refers to a
database state that is consistent in terms of all three notions of consistency
(where view consistency is only guaranteed as far as the database provides
for it).

Views are widely used in relational databases. Their intent is usually
to separate the way users and applications see the data from the way the
data is represented, as dealt with by the ANSI/SPARC three-level schema
architecture [142]. Thus, the users' view, also referred to as external schema,
may remain unchanged in case of modifications to the logical schema (logi-
cal data independence) and physical schema (physical data independence).
Among others, views can be used to gain data independence, to control data
access, to integrate data, and to increase performance.

In database systems a view is defined by an SQL statement over base
tables. Since a view itself has a relational schema, they can be reused by
other views and queried using SQL. When a query is issued against a view,
the database's query processor rewrites the query and issues the rewritten

1.4 RELATED WORK 23

query against the base tables if the view is a virtual view. On the opposite,
the view can be a materialized view, i.e., the tuples contained in the view are
physically stored on disk like tuples contained in tables. Then the query can
be issued directly against the materialized view. Performance is increased
if the cost of maintaining the materialized view and query execution is less
than the cost of rewriting queries and their execution on base tables, where
the cost of queries on the materialized view is usually less than the cost of
their rewritten equivalent on base tables.

Several ready-made techniques for maintaining materialized views in
databases have been proposed. Most easily, a view can be re-generated
from scratch upon a modification in a base table. Alternatively, only parts
of the view can be updated that are affected by the base table modification.
The latter is also referred to as incremental view maintenance. Several
approaches for incremental view maintenance of relational data have been
proposed. For an overview the interested reader is referred to [75]. The
approaches differ in various aspects, for example in the amount of infor-
mation used to determine an incremental update: the modification may be
used in combination with base relations and/or with the view, and possibly
with auxiliary data structures. Views that are maintained using only the
modification, the view, and key constraints are called self-maintainable. All
approaches impose restrictions on the definitions of views, e.g., restrict to
SPJ queries8 to ensure incremental maintainability.

Maintenance of complex views, however, often has to be manually imple-
mented using database triggers. This applies when more expressive power is
needed in their definition than SQL provides, if non-relational data struc-
tures are to be held consistent with base data, or if applications maintaining
external views are to be informed of modifications of the database to main-
tain a consistent state. An overview of trigger applications is given in [39],
classifying triggers in one dimension along the categories (i) triggers em-
bedded into the database kernel, (ii) triggers providing extended database
functionality, and (iii) triggers supporting external applications. Examples
are maintaining materialized views for the first category, maintaining repli-
cated data and external data for the second, and keeping Web applications
consistent for the third. The second dimension classifies whether triggers
are (a) hand crafted or (b) generated. The latter refers to the common sit-
uation where procedural triggers are derived from declarative specifications
to exhibit some behavior, as for example in [44], where triggers are derived
from SQL statements to maintain materialized views. A brief introduction
to materialized view maintenance using triggers can be found in [56].

Select-project-join queries, an algebra without operators such as U, —, and p.

24 1. INTRODUCTION

1.4.2 XML Views over Relational Databases

Integration of XML data with relational data is approached in literature
from two directions. First, starting from XML data, it is stored in a rela-
tional database to reuse the relational database's functionality in building a
transactional persistent XML database. Here, it has to be decided on how
the XML data is stored and indexed and how XML queries on the loaded
(virtual) XML data are translated to queries on the relational data (e.g.,
see [74]). Obviously, the storage model influences query translation and ex-
ecution. Second, starting from relational data, it is published as XML data
to make it available on the Web or to facilitate data integration with other
sources. Here, the focus lies on designing the mapping from relational to
XML data and on how to efficiently generate XML from arbitrary relational
schémas. This is different from the first area where the mapping is often
fixed, however, the two areas are not distinct in the issues they address. For
an overview of integrating XML with relational data, e.g., see [91].

Clearly, the area of publishing relational data as XML is related to the
thesis' aim of maintaining consistency between relational data and Web
pages. Several approaches have been proposed in literature in this area,
the most prominent ones being SilkRoute [59] and XTABLES [65], which
was formerly known as XPERANTO [37]. SilkRoute and XPERANTO use
a query language to define views, while recent approaches also use differ-
ent techniques, i.e., [18] uses attribute translation grammars and [145] uses
view correspondence assertions. As of today, commercial database products
of major vendors IBM, Microsoft, and Oracle support defining restricted
XML views over the database (see [65, 91] for an overview). While none of
the products from practice take materialization of XML views into account,
two approaches from literature do, namely SilkRoute, which supports ma-
terialization of XML views including heuristics to optimize database access,
and [145], which derives triggers from view definitions for incremental view
maintenance.

The approaches for XML views, however, lack necessary properties for
maintaining consistency between relational databases and the Web as de-
scribed in Section 1.2.1. First, the approaches do neither model the database
nor Web pages, thus allowing for an instance-based mapping only. The ap-
proaches could be adapted to support class-based modelling and mapping.
And second, most important materialization of views, i.e., pre-generation of
Web pages, is missing in all approaches except two. Materialization could,
however, be added naively by storing the evaluated view on disk and trig-
gering a re-evaluation upon a database update. A more sophisticated ex-
tension could determine whether a database update makes a re-evaluation
of the view necessary. Still, this would only provide for a complete, not an
incremental update granularity, which is only provided by [145] (SilkRoute
re-generates materialized views from scratch). [145], however, does not pro-

1.4 RELATED WORK 25

vide for self-maintainable view maintenance.

1.4.3 Data-intensive Web Sites

Several related approaches for data-intensive Web sites have been proposed
that support pre-generation of Web pages [49, 99, 137, 170]. An in-depth
comparison of these approaches with SMWP has already been published in
[133], thus the interested reader is referred thereto for further information.

Table 1.1 summarizes the differences between the approaches. Most of
the properties have already been discussed when Subsection 1.2.1 intro-
duced the problem of maintaining consistency between relational databases
and the Web. The three new properties are the following. First, materi-
alization policy defines which data can be materialized, being data in the
database (relational) or data on the Web as XML or HTML pages. Sec-
ond, materialization flexibility refers to whether and who chooses among
the different materialization policies. Third, maintenance flexibility refers
to whether and who chooses to maintain a Web page either by complete re-
generation or incrementally. The last column of the table denotes an "ideal"
approach, which supports all desired property values. This does not show
which of a property's possible values are the most desirable ones, e.g., that
a class-based database design is more desirable than an instance-based one
(important in case only one is supported). For such details the reader is
referred to [133].

1.4.4 Distributed Databases

Naturally view consistency is also an issue in distributed databases (DDBS).
Distributed databases can be divided into two categories. First, in a top-
down DDBS a new distributed application is created by implementing and
distributing the local applications and systematically distributing data along
with them. The intent is to allow each local application to access the needed
data at minimal cost. The cost model usually takes network traffic as most
important, regarding remote access more expensive than local one, and re-
mote writes more expensive than remote reads. An example for a top-down
DDBS is an airline reservation system. Second, a bottom-up DDBS is created
for data integration purposes, i.e., to make already distributed data available
in terms of a global mediated schema. Examples are data warehousing in
general or integrating Web data from different sites and integrating a busi-
ness' legacy systems like databases, ERP, and CRM systems in particular.

Consistency issues, however, do not arise in every DDBS but depend
on the kind of distributed data. Partitioned data, as the name indicates,
refers to a set of disjunct data partitions which are allocated at different
nodes. In particular, fragmentation [43, 122] (with disjoint fragments) has
been proposed as a technique to partition data in DDBS. Since partitioning

2
O
H
ü
D
Q
O
a*
H

Table 1.1: Approaches for Data-Intensive Web Sites with Pre-Generation of Web Pages

Database Design

Web Design

Mapping Knowledge

Materialization Policy

Materialization Flexibility

Maintenance Policy

Maintenance Flexibility

Maintenance Mechanism

Page Freshness

-

instance-based
class-based
instance-base
class-based
implicit
explicit
relational
XML
HTML
user-defined
system-determined
pull-based
push-based
user-defined
system-determined
complete
incremental
with delays
w/o delays

[49]

/

/

/

/
/

/
—

/

/

[99]

/

/

/
/

/

/

/

/

:

App
[137]

/

/

/

/
—

/

/

:

roaches
[170]

/

/
/

/
/
/
/
/
/

—

[133]
/
/

/

/
/
/

/

/
/
/

/
/
/
/

ideal
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/
/
/

Legend: / . . . supported, —... not supported

1.4 RELATED WORK 27

does not result in data being replicated, view consistency is not an issue.
Replicated data constitutes the general case of distributed data, where copies
of a logical data item are distributed. Then, mutual consistency among the
copies has to be maintained. Derived data can be seen as special case of
replicated data, where not a carbon copy of a data item is distributed but
aggregated or derived data based on it.

Distributed databases designed bottom-up have special interest in view
materialization. This stems from the fact that queries against the mediated
schema, most likely the ones in a data warehouse, are often complex and
time consuming, making view selection and subsequent view materialization
attractive. Because literature on view maintenance, however, has dealt with
relational views over relational data, it is not applicable for maintaining
consistency of data on the Web.

Distributed databases have proposed several distributed transaction pro-
tocols to maintain mutual consistency in replicated data. For the execution
of operations on logical data items it is necessary to translate them into oper-
ations on replicated copies. To maintain consistency, concurrent executions
of operations on replicated data must be equivalent to a serial execution on
a non-replicated data item, a property known as one-copy serializability. It
guarantees for view consistency and consistency under concurrent access in
replicated data. For an overview of protocols in non-partitioned networks
see [26, 27], for protocols in partitioned networks [53, 54]. Partitioning oc-
cur due to communication failures which fragment the network into isolated
subnetworks.

Each protocol has different properties regarding the trade-off between
correctness and availability. As noted in [54]: "Since it is clearly impossible
to satisfy both goals simultaneously, one or both [correctness or availabil-
ity] must be relaxed to some extent, depending on the application's require-
ments." Davidson et al.'s notion of correctness subsumes mutual consistency
of replicated data, and their notion of availability refers to the extent of be-
ing able to locally execute a transaction despite of a partitioned network.
In the context of this thesis these notions are similar to (view) consistency
and autonomy, thus there is a trade-off between consistency and autonomy.

Autonomy is an absolute requirement for maintaining consistency of data
on the Web (see Subsection 1.2.2). As the trade-off indicates, this comes at
the cost of consistency. In DDBS, optimistic protocols have been proposed
that do not limit autonomy, allowing access to local data irrespective of other
locations being off-line and network partitioning. However, compensating
transactions may be necessary to restore global consistency. Contrarily,
pessimistic protocols prevent inconsistencies by limiting autonomy, e.g., an
update of a logical data item may only be performed if all or a majority of
the locations storing a copy of it are available, excluding them from being
adapted to maintain consistency of data on the Web.

28 1. INTRODUCTION

1.4.5 XML Views over XML Data

Approaches for incremental view maintenance of XML views over XML data
have been proposed lately. First, [55] uses their proprietary query algebra
XAT to internally represent XQuery queries. After evaluating a query, every
operator in the algebra tree stores its results from applying the operator on
its input data. After an update to base data, the modification is propagated
through the algebra tree, yielding in an incremental update of the view.
The maintenance algorithms take as input the update and auxiliary data
structures, which store among others dependencies between tuples in the
algebra tree. Second, [144] uses view correspondence assertions, which ex-
press equivalence between portions of the base data's schema and the view's
schema, for view definition. Therefrom triggers are derived to incremen-
tally update the view upon a modification to base data. The view definition
technique has limited expressiveness compared to XQuery queries, e.g., it
does not provide for aggregation and natural joins and allows only limited
restructuring. More distantly related, [8] proposes incremental maintenance
of views over semi-structured data in the context of the Lore database and
OEM data model. Views are defined using extended Lorel queries and the
maintenance algorithm takes as input the update, auxiliary data, and the
post-update database state for maintenance.

Alternatively, as in relational databases (see Subsection 1.4.1), triggers
can be used for view maintenance. A range of approaches have been pro-
posed to provide for triggers on XML documents. Bonifati at al. demon-
strate the use of the active paradigm for the implementation of alerters,
personalization of web pages, and for view maintenance in [31]. In [30] they
propose XQuery triggers resembling semantics of SQL triggers. Algorithms
are presented that expand XQuery queries that modify whole subtrees to
determine which triggers will be triggered, even before actually executing
the query. Bailey et al. [12, 13] propose triggers for XML as well, but
focusses on trigger analysis and optimization. This work is related to trig-
ger analysis in relational databases using triggering graphs and activation
graphs [15]. Commonly these approaches use the notion of "active XML" to
refer to XML extended by triggers. It should not be mixed up with Abite-
boul's notion of active XML [6], which refers to XML documents extended
by Web service invocations.

Finally, in the context of software engineering, [176] proposes an ap-
proach to define consistency rules between XML documents. A consistency
rule identifies portions of a source document and portions of a destination
document and defines a set of conditions on them that must apply. The
approach does not provide for maintaining consistency (only for detecting),
however, the declarative specification by consistency rules may be a good
starting point for alternative view definitions in the context of data on the
Web and for derivation of procedural triggers on the XML documents to

Part I

Consistency between
Relational Databases and the

Web

31

Chapter 2

Self-Maintaining Web Pages
(SMWP)

Contents

2.1 A Quick Tour of the SMWP Approach 33
2.1.1 Data Fragmentation Design 34

2.1.2 Web Page Design 38

2.2 Schema Definition Language 39

2.2.1 Data Fragmentation Design 39

2.2.2 Web Page Design 42

The chapter gives a quick-tour of the Self-Maintaining Web Pages
(SMWP) approach and its underlying concepts in Section 2.1. In partic-
ular, it briefly presents the concepts of fragmentation schémas for data frag-
mentation design and of page schémas for web page design. The interested
reader is referred to [133, 134] for more detailed descriptions. Subsequently,
a novel language is presented in Section 2.2 that allows to easily define and
maintain fragmentation and page schémas.

2.1 A Quick Tour of the SMWP Approach

We illustrate newly introduced concepts throughout the section by applying
them to an exemplary online wine shop, whose conceptual model is depicted
on the left hand side of Figure 2.1 by an UML [130] model. The wine shop
manages contents concerning wines on sale (class Wines), the wineries they
are produced by (class Wineries), and regions the wineries are located in
(class Regions). A transformation of the UML model to a relational model is
depicted in the middle of Figure 2.1. It comprises relations Wines, Wineries,

33

34 2. SELF-MAINTAINING W E B PAGES (SMWP)

and Regions (primary keys are underlined, foreign keys in italics), which are
referred to as application relations throughout the rest of the thesis' Part I.

2.1.1 Data Fragmentation Design

As mentioned before, the SMWP approach utilizes concepts from DDBS. In
particular, the concepts of fragmentation and allocation are exploited and
extended.

Simple Fragmentation

To decompose relations into fragments, three different kinds of fragmen-
tation, namely horizontal fragmentation, comprising primary and derived
fragmentation, and vertical fragmentation as well as combinations thereof,
called mixed or hybrid fragmentation, have been proposed [43, 122]. In the
following, we will focus on horizontal fragmentation, since the other kinds
of fragmentation can be integrated straightforwardly in the same way.

Primary fragmentation builds subsets of the tuples (rows) of a relation
or fragment, called the fragmentation base, by applying a selection predicate
which must evaluate to true for the tuple to be part of the primary fragment.
Derived fragmentation takes into account that in some cases the fragmenta-
tion of a relation cannot be based on a property of its own attributes, but
is derived from another relation, called the derivation base.

© Example 1. The wine shop wants to provide web pages, each enlisting
wineries that are categorized as premium and their wines of a given region (cf.
Figure 2.1). Therefore primary fragments of Wineries are defined for each
region, e.g., primary fragment PremWineries-rioj builds a subset of applica-
tion relation Wineries by applying selection predicate category= "premium"
and region= "rioj", collecting all premium wineries that are located in Ri-
oja. Fragmentation of Wines by regions cannot be based on a property of
its own attributes, thus derived fragmentation is used to build subsets of
Wines according to the primary fragments of Wineries, e.g., derived frag-
ment PremWines_rioj builds a subset of Wines, collecting all wines that are
produced in Rioja by a premium winery. Finally fragments are mapped to
web pages, using a canonical mapping to serialize tuples as XML elements.

Fragmentation Schema

The fragmentation approach as introduced for distributed databases [43,
122] is rather inflexible and not fully adequate for its use in the web setting.
If relations are split into logical fragments for presentation on web pages,
the number of fragments will typically be large with each fragment being
relatively small. Problems arise if the addition of a tuple gives rise to new

UML

Wines
id
name
year
flavour
price

T producedBy *
1

Wineries
id
name
address
description
category

• locatedln ;
Regions
id
name
state
description

Application Relations
Wineries(id,name,.., region,..)

1 Bodegas Lan
4 Finca Allende

.. rioj

.. rioj

.. rioj
7 Barone Ricasoli .. chia
2 Cinciole .. chia

.. chia

Wines (id,name, year,. .,producedBy,price)
2 Culmen
3 Rioja Aurus

2001.. 1 €3.10
2001 .. 4 €5.49

Formulae
Chianti Classico

2001.. 7 €3.50
2001 .. 2 €2.50

Regions(jd,name,state,..)
chia Chianti ITA
rioj Rioja ESP
styx_Styria AITT

Fragments

primary
fragmentation

Web Pages

I Prem Wineries_rioj

| PremWineries_chia|^

| PremWineries_sty7|\,'

I \ \
derived

fragmentation

PremWines_rioj

PremWines_chia

PremWines_styr

PremWines_rioj.xml

PremWines chia.xml

PremWines_styr.xml

JO
c
o
pi

o
G

33
H

13

>
O
33

Figure 2.1: Simple Fragmentation

w
en

36 2. SELF-MAINTAINING W E B PAGES (SMWP)

fragments or if a relation should be partitioned" alternatively according to
some new criterion. For example, if wineries and wines of a new region
are added to the product line of the wine shop, a new primary fragment of
Wineries, a new derived fragment of Wines, and a new web page as well as
the mapping knowledge for mapping these fragments to the web page must
be defined.

This inflexibility is addressed by introducing parameterized fragment
classes. Like similar objects are collected into classes in object-oriented
design, similar fragments are collected into fragment classes. They define
common characteristics of their fragments, such as selection predicate and
schema. To define the contents held by fragments at the class level, frag-
ment classes are parameterized. A fragment class comprises a fragment for
each parameter value from the parameter domain. A fragment is created by
instantiating a fragment class with a parameter value; it contains those tu-
ples of some fragment of the fragmentation base class for which the selection
predicate applies and that "match" the parameter's value.

0 Example 2. Using fragment classes instead of fragments, the wine
shop can define data fragmentation more easily. Figure 2.2 depicts the wine
shop's fragment classes PremWineries<region> and PremWines<region>
whose instances are created and maintained automatically, resembling the
fragments depicted in Figure 2.1. Fragment class Regions<id> is newly
introduced, each of its fragments stores contents about a single region. Fig-
ure 2.2 uses UML and stereotypes to model fragment classes. Stereotype FC
marks fragment classes, frag-base marks associations to fragmentation base
classes, and deriv-base marks associations to derivation base classes.

In order to treat application relations and fragment classes uniformly,
we assume that an implicit fragment class with no parameters is defined for
each application relation, which contains this relation as a single fragment.
Because these fragment classes constitute the "roots" of a fragmentation
schema, each possibly serving as a fragmentation base class, they are called
root fragment classes.

0 Example 3. As depicted in Figure 2.2, root fragment
classes RegionsO, WineriesO, and WinesO represent application re-
lations Regions, Wineries, and Wines. They serve as fragmentation
base classes for fragment classes Regions<id>, PremWineries<region>, and
PremWines<region>.

A modification of a relation has to be propagated to all fragment classes
that contain the modified tuple as a replica. The SMWP approach provides
algorithms for propagating these modifications incrementally. Thereby only
the replicated tuples are modified, there is no need to regenerate fragments
from scratch to reflect the modifications.

Figure 2.2: Parameterized Fragmentation

>

«o
G
O

schémas and mappings defined manually • ••.

i

Fragmentation Schema

« |lj
"> II

«FC»

Winerieso

«foundation-fc»-

—«foundation-fc»-'

«FC»
PremWineries<region>

mapped-to»-

«FC»
PremWines<region>

• L I - -
•- O : ! O : . . O i : . . .
0) i j '—] :wineries<> | i | '•~|:premWineries<rioi> |] g |%—|:premWines<rioi> \~~
Si 5 I App. Relation Wineries 5 i l- £-! •• «mappePto»-;

:DremWines<rioi> [~J j j i
. Relation Wineries £ j ' l - ^ - j - «mapped-to»-r' PremWlnes_rlo).xml * '' ""

!Q « i i—-wjneso—I c '—l :P r e m W i n e l" ie s < chia > h c !" |:premWines<chia>1 '."f\:premWines<chia>
g *l App'. Relation Wines' T . . : , L ' | T " «™Pped-t
£ | . . —1:premWineries<styr> h ~ :premWines<styr>
^ — | :regions<>] ' ' i .' •

App. Relation Regions

['} tuple selection predicate := category=°premlumn Fragments

Page Content Schema

«PC»
Regions<region>

_

«links-to»

«PC»

PremWines< region >il
M l
MM

PremWines_chla.xml j '

:premWines<styr>|- '
PremWines_styr.xml

Web Pages

o
P3

B

>
13

>o
X

to
-a

38 2. SELF-MAINTAINING WEB PAGES (SMWP)

A brief introduction to primary and derived fragment classes is given in
Section 2.2 along with the presentation of a schema definition language.

2.1.2 Web Page Design

Like similar fragments are collected into fragment classes, pages of the same
kind are collected into page classes. A page class is specified by a page
schema, comprising a page content schema and one or several page presen-
tation schemata. Page classes comprising more than one page are defined
with one or several parameters, where the parameter's values uniquely iden-
tify one page of the page class.

Bringing database contents to the web, fragments are allocated to web
pages. Instead of defining this allocation for individual fragments and in-
dividual pages, fragment classes are mapped to one or several page classes.
A page content schema defines among others, which fragment classes are
mapped to this page class. A page class then comprises one page for each
fragment from a distinguished mapped fragment class, called the foundation
fragment class. Pages are pre-generated upon the definition of their page
content schema. The contents of a page is determined by reading fragments
of mapped fragment classes (including the foundation fragment class) and
by transforming them into XML. We use a simple canonical mapping to
serialize fragments and tuples therein as XML elements (cf. [134]):

0 Example 4- The wine shop's page class PremWines<region> is de-
picted in the right upper half of Figure 2.2. As with fragment classes,
UML stereotypes are used to model page classes in Figure 2.2. Stereotype
PC marks page classes, foundation-fc marks associations to foundation frag-
ment classes, mapped-to marks associations to mapped fragment classes, and
link-to marks links between page classes. Page class PremWines<region>
comprises a page for each fragment from its foundation fragment class
PremWineries<region>, containing a fragment from the latter and an ac-
cording fragment of fragment class PremWines<region>.

A modification of a fragment has to be propagated to all pages it is
mapped to. Instead of re-generating affected pages completely, as previous
approaches [49, 99, 137, 170] do, the SMWP approach incrementally mod-
ifies pages. Thereby only those XML elements of a page are modified that
represent the modified tuple. As performance evaluations have shown [133],
propagating modifications on fragments incrementally to pages generally
outperforms re-generating pages from scratch.

For each page class one or several page presentation schémas define the
presentation of its pages by the means of XSLT [150] or CSS [146]. The
separation of content from presentation is common practice and enables one
to define several presentations for the same content to take different user
capabilities and preferences into account. Due to the focus of this chapter,

2.2 SCHEMA DEFINITION LANGUAGE 39

we do not discuss page presentation schémas further but assume a default
XSLT stylesheet that is used to format pages.

2.2 Schema Definition Language

Definition and maintenance of fragmentation and page content schémas is
supported by a declarative schema definition language, providing statements
for creating, modifying, and deleting fragment classes and page classes. To
realize fragmentation with off-the-shelf database technology, issued state-
ments are translated into SQL-DDL and PL/SQL statements. How this is
done in detail is described in later sections. In the following we give a brief
overview of the language and shortly review the concepts of fragment classes.
A full definition of the language in EBNF is presented in the Appendix.

2.2.1 D a t a Fragmentat ion Design

A primary fragment class is defined upon a fragmentation base class. It
comprises fragments and tuples therein that are taken over from the frag-
mentation base class. A primary fragment class "inherits" the parameters
of its fragmentation base class and possibly adds new parameters. If a new
parameter is added, fragments from the fragmentation base class are fur-
ther partitioned according to the added parameter, where the number of
sub-partitions is defined by the domain of the added parameter.

A selection predicate can be used in the definition of a primary fragment
class to narrow the contents that is taken over from the fragmentation base
class. First, a fragment selection predicate can be used to narrow the set
of fragments that are taken over. It is specified by an SQL expression that
may only refer to parameters of the fragment class. Second, a tuple selection
predicate can be used to narrow the set of tuples contained in fragments that
are taken over. Again, it is specified by an SQL expression, but this time it
may only refer to tuple's attributes that are not used as parameters.

The statement to define a primary fragment class has the following
syntax1: CREATE PRIMARY FRAGMENT CLASS G<KL>

FRAGMENTATION BASE CLASS F<L>
[FRAGMENT SELECTION PREDICATE SQLExpr]
[TUPLE SELECTION PREDICATE SQLExpr).

0 Example 5. To partition relation Wineries into fragments, where for
each region a fragment exists that comprises all premium wineries of the
respective region, primary fragment class PremWineries<region> is defined

*In the following F<>, F<L>, G<KL>, H<K>, and P<K> are variables. P<K>
conforms to non-terminal symbol PCSignature, while the others conform to non-terminal
symbol FCSignature.

40 2. SELF-MAINTAINING WEB PAGES (SMWP)

upon fragmentation base WineriesO using tuple selection predicate cate-
gory "premium", adding parameter region (as depicted in Figure 2.2 and
shown below).

CREATE PRIMARY FRAGMENT CLASS PremWineries<region>
FRAGMENTATION BASE CLASS WineriesO
TUPLE SELECTION PREDICATE {category= "premium"};

O Example 6. To illustrate the use of fragment selection predicates,
imagine that PremWineries<region> should only contain wineries from re-
gions starting with the letter "A". To accomplish this, one would append
the fragment selection predicate clause "FRAGMENT SELECTION PRED-
ICATE {region LIKE 'A%'}" to the statement shown in Example 5.

A parameter must be defined before it can be used by a primary frag-
ment class. Parameters become re-usable by defining them on root fragment
classes. Once defined on a root fragment class, they can be used in the defi-
nition of any primary fragment class that is defined directly or indirectly via
its fragmentation base classes upon the root fragment class. Furthermore,
to achieve independence of a parameter's domain from the contents of the
root fragment class upon which it is defined, the values of the primary key
attribute of a reference relation keep the values of the parameter's domain.
The statement to define a parameter has the following syntax:

CREATE VALUE BASED PARAMETER Ident ON F<>
((USE REFERENCE RELATION Ident{Ident)) \
(CREATE REFERENCE RELATION)).

O Example 7. Parameter region must be defined upon root fragment
class WineriesO, before it can be used in the definition of primary fragment
class PremWineries<region> (cf. Example 5). Because attribute region of
WineriesO references the primary key attribute id of application relation
Regions, the latter is used as the reference relation to define the parameter's
domain (as shown below).

CREATE VALUE BASED PARAMETER region ON WineriesO
USE REFERENCE RELATION Regions(id);

When defining a parameter two special cases may occur. First, the
application relation of the root fragment class the parameter is defined upon
may be used as the parameter's reference relation itself. This is possible if
the parameter's domain is defined by the values of the primary key attribute
of this application relation.

O Example 8. Parameter id must be defined before it can be used in the
definition of fragment class Regions<id>. Because the values of primary key

2.2 SCHEMA DEFINITION LANGUAGE 41

attribute id of application relation Regions define the parameter's domain,
this application relation is used as the reference relation (as shown below).

CREATE VALUE BASED PARAMETER id ON RegionsO
USE REFERENCE RELATION Regions(id);

The second special case occurs when for a given parameter no application
relation can be used as a reference relation. This happens if all application
relations have inappropriate primary key attributes. In this case a reference
relation has to be created by using the CREATE REFERENCE RELATION
clause with the statement to create the parameter (as shown below).

0 Example 9. To illustrate this situation, imagine that parameter state
is defined upon root fragment class RegionsO to be used in the definition
of primary fragment class Regions<state>. Because no application relation
has an appropriate primary key attribute for state, a new reference relation
has to be created as shown below.

CREATE VALUE BASED PARAMETER state ON RegionsO
CREATE REFERENCE RELATION;

A derived fragment class is defined upon a fragmentation base class and
a derivation base class. It comprises fragments and tuples therein that are
taken over from the fragmentation base class, where each fragment from the
fragmentation base is further partitioned according to the derivation base.
The number of sub-partitions is determined by the domain of the derivation
base's parameters. The fragment into which a tuple from a fragment of
the fragmentation base class belongs is determined by joining it with tuples
from fragments of the derivation base class. The derived fragment class
"inherits" the parameters of both its fragmentation and derivation base
class. The statement to define a derived fragment class has the following
syntax, where "AS Ident" is used to define an alias (like in SQL) that can
be used in SQLExpr.

CREATE DERIVED FRAGMENT CLASS G<KL>
FRAGMENTATION BASE CLASS F<L> [AS Ident}
DERIVATION BASE CLASS H<K> [AS Ident}
JOIN BY SQLExpr.

0 Example 10. Derived fragment class PremWines<region> is de-
fined upon fragmentation base class WinesO and derivation base class
PremWineries<region> (as depicted in Figure 2.2 and shown below).
Thereby single fragment wineso is partitioned according to the fragments
of PremWineries<region>. The derived fragment class then comprises sev-
eral fragments, each containing wines that were produced in the respective

42 2. SELF-MAINTAINING WEB PAGES (SMWP)

region by a premium winery (e.g., premWines<rioj> contains wines that were
produced in Rioja).

CREATE DERIVED FRAGMENT CLASS PremWines<region>
FRAGMENTATION BASE CLASS WinesO AS wines
DERIVATION BASE CLASS PremWineries<region> AS premWineries
JOIN BY {wines.producedBy=premWineries.id};

2.2.2 Web Page Design

The page content schema defines page classes and the mapping of fragment
classes to page classes.. A page class is denned upon a foundation fragment
class, which must possess the same parameters as the page class. For each
fragment of the foundation fragment class, a page containing the fragment
is created. Furthermore other fragment classes can be mapped to a page
class, whereas the mapped fragment classes' parameters must be a subset
or equal the page class' parameters. The statement to define a page class
has the following, shortened syntax, where non-terminal symbol PCFCMap-
ping details the mapping of a fragment class (see the Appendix and later
explanations in this section):

CREATE PAGE CLASS P<K>
FOUNDATION FRAGMENT CLASS PCFCMapping
{ FRAGMENT CLASS PCFCMapping } .

0 Example 11. Page class Regions<region> is defined upon foundation
fragment class Regions<id> (as shown below). A parameter map (PARA-
METER MAP clause as defined by PCFCMapping) defines the parameter id
of the foundation fragment class to equal parameter region of the page class.
The page class then comprises a page for each fragment of fragment class
Regions<id>.

CREATE PAGE CLASS Regions<region>
FOUNDATION FRAGMENT CLASS Regions<id>

PARAMETER MAP id AS region;

When defining a page content schema it is possible to specify links
between fragment classes (with symbol PCFCMapping), which are either
mapped to the same page class (internal link) or different page classes (ex-
ternal link). Such meta data about links is used during the formatting

2.2 SCHEMA DEFINITION LANGUAGE 43

process for proper nesting of fragments contained in the same page and
determining links between pages.

0 Example 12. Page class PremWines<region> is defined upon founda-
tion fragment class PremWineries<region> and fragment class PremWines-
<region> (as shown below). Each tuple of PremWineries<region> links in-
ternally to corresponding tuples of PremWines<region> (as specified by the
INTERNAL LINK clause), and externally to a fragment of fragment class
Regions<id> contained in a page of page class Regions<region> (as speci-
fied by the EXTERNAL LINK clause). Link targets, which are specified at
the class level, are determined at the instance level as defined by the JOIN
BY clause.

CREATE PAGE CLASS PremWines<region>
FOUNDATION FRAGMENT CLASS PremWineries<region>

AS premWinery
INTERNAL LINK TO FRAGMENT CLASS PremWines<region>

AS premWines
JOIN BY {premWines.producedBy=premWinery.id}

EXTERNAL LINK TO PAGE CLASS Regions<region> AS pc_region
CONTAINING FRAGMENT CLASS Regions<id> AS fc_region
JOIN BY {premWinery.region=pc_region.region

AND premWinery.region=fc_region.id}
FRAGMENT CLASS PremWines<region>;

Chapter 3

SMWP: From Theory to
Practice

Contents

3.1 Relational Representation of Fragments and Pages 46
3.1.1 Parameters 48
3.1.2 Primary Fragment Classes 48
3.1.3 Derived Fragment Classes 51
3.1.4 Storing Page Classes 52

3.2 Maintaining Fragments and Pages 52
3.2.1 Maintaining Primary Fragment Classes 55
3.2.2 Maintaining Derived Fragment Classes 58
3.2.3 Maintaining Page Classes 63

3.3 Predicate Based Parameters 65
3.4 Performance Evaluation 69

3.4.1 Overview of the SMWP Prototype 69
3.4.2 Benchmark Architecture 70
3.4.3 Benchmark Goal and Expectations 72
3.4.4 Benchmark Results 72

The chapter shows how the SMWP approach can be realized using off-
the-shelf relational database technology. It describes the realization of sta-
tical aspects by the relational representation of fragments and the storage
of pages in Sections 3.1. Next, it shows the realization of dynamical aspects
by triggers that maintain fragments and pages in Section 3.2. Subsequently,
Section 3.3 presents how the SMWP approach known from [133, 134] is ex-
tended by the concept of predicate-based parameters and how they are real-
ized. Finally, Section 3.4 describes the implemented prototype and presents
results of a performance evaluation.

45

46 3. SMWP: FROM THEORY TO PRACTICE

Several advantages are gained by employing the database system that
stores contents published on Web pages to realize the SMWP approach. In
particular, by using the same database system to also store meta data (e.g.,
about fragmentation) and Web pages, as well as to execute application code,
the following advantages are gained. First, no proprietary software other
than the database system itself has to be installed and maintained (opposed
to previous approaches). Second, access to database contents is more effi-
cient from inside the database than from outside, possibly from a remote
computer. Third, by using the same storage system for relations, fragments,
and pages, fragments and pages are modified in the same transaction as the
triggering modification of a relation. Thereby modifications to several pages
that were caused by a single modification to a relation become "visible" at
once, resulting in consistent pages any time (contrarily, [99, 137, 170] do not
deal with this aspect of consistency). Fourth, database tuning techniques
(such as clustering) can be applied to meta data as well as database contents.

3.1 Relational Representation of Fragments and
Pages

Off-the-shelf relational database technology is used to store fragments and
pages as instances of fragment classes and page classes respectively. Because
the number of fragments will be typically large with each fragment being
relatively small, we do not realize each fragment but all fragments of one
fragment class by a single relation. To be able to determine the fragment
a tuple is contained in, fragment parameters are stored as part of the tu-
ple. Thus a fragment is read by selecting tuples that have the fragment's
parameter values.

It is crucial to determine well-suited techniques for realizing fragment
classes. Database views would be a reasonable option, because primary and
derived fragment classes build views over their fragmentation and deriva-
tion base classes. Unfortunately, triggers, which would have to be used to
incrementally propagate updates on fragments to web pages, cannot be de-
fined on views in major database products (such as Oracle or Microsoft SQL
Server). However, some products allow to define triggers on a variation of
views, known as materialized views. But they present another drawback: an
incremental update mechanism (i.e., only the affected tuple is updated) for
materialized views that join master tables is not provided but only a com-
plete update mechanism (i.e., re-constructing the materialized view from
scratch). Again, this prevents from incremental update propagation to web
pages.

Therefore we have chosen to realize fragment classes by relations and
associated update mechanisms between dependent fragment classes. Frag-
ments f<l> of fragment class F<L> are stored in a single, so called content

3.1 RELATIONAL REPRESENTATION OF FRAGMENTS AND PAGES 47

relation, named FC.F-L after the fragment class it represents. Application
relations are the starting point for newly defined fragment classes in that
they serve as content relations of fragmentation base classes. In order to be
able to use uniform prefixes (i.e., "FC_") for names of root fragment classes
(which are application relations) and other fragment classes, synonym FC-F
is defined for each application relation F representing root fragment class

0 Example 13. Figure 3.1 depicts the realization of the wine shop's frag-
mentation schema (cf. Figure 2.2). For the three application relations syn-
onyms FC-Wines, FC.Wineries, and FC_Regions are defined to uniformly treat
them like content relations FC_PremWineries_region, FC_PremWines_region,
and FC_Regions_id, which store the respective fragment class' tuples.

To provide for independence of fragmentation from fragment class' cur-
rent contents, meta data about fragmentation is stored separately from con-
tent relations. For each content relation FC-FJi, holding tuples of frag-
ments, fragmentation relation FR^F-L stores the domain of parameters L.
In that way fragments that currently do not comprise any tuples are sup-
ported as well. Such a fragment will be listed with its parameter values in
FR-F-L but will posses no tuples in FC-F.L.

© Example 14- Figure 3.1 depicts fragmentation relations FR.Prem-
Wineries_region, FR-PremWines_region, and FR_Regions_id, which store the
respective fragment's parameters. To better motivate the use of fragmen-
tation relations, imagine region sa ha in which no premium wineries are lo-
cated. If no fragmentation relation had been used, fragments of fragment
class PremWineries<region> would have been determined by content rela-
tion FC_PremWineries_region. Because no premium winery is located in re-
gion saha, the content relation would not contain tuples having saha as the
value of attribute region. Thus fragment premWineries<saha> and page
premWines<saha> would not have existed. On the other hand, by storing
the parameter's domain in fragmentation relation FR_PremWineries_region,
a tuple with the value saha exists therein independent of content rela-
tion FC_Prem_Wineries, and thus fragment premWineries<saha> and page
premWines<saha> exist. This prevents a user who follows the link from page
region<saha> to page class PremWines<region> to experience a HTTP 404
(Not Found) error or similar.

As described in Subsection 2.2.1, a parameter is re-usable by defining it
on a root fragment class and independent of the fragment class' contents by
using a reference relation to store the values of the parameter's domain. An
application relation may serve as a reference relation (e.g., see Example 7 and
Example 8), otherwise a reference relation is created (e.g., see Example 9).
In either case, the reference relation for parameter P defined upon root
fragment class F<> is named RV-F-P (via a synonym if an application

48 3. SMWP: FROM THEORY TO PRACTICE

relation is used as a reference relation).

0 Example 15. Figure 3.1 depicts reference relations RV_Wineries_region
and RV_Regions_id, which store the values of the domains of parameters re-
gion and id (both reference relations being a synonym for application relation
Regions).

In the following subsections we describe how fragmentation schémas are
realized by content, fragmentation, and reference relations in detail.

3.1.1 Paramete r s

Pre-requisite for the definition of a parameter P upon root fragment class
F < > with content relation FC.F(X) is that PEX. If P is the primary
key of FC-F, the latter can be used as the parameter's reference relation,
which stores the parameter's domain. Otherwise, to achieve independence
of parameter P's domain from contents held by FC-F, another application
relation can be used as the reference relation, where PeX must reference
the primary key attribute of this relation.

0 Example 16. In the definition of parameter region upon root frag-
ment class WineriesO, application relation Regions is used as reference
relation (cf. Example 7), because region is an attribute of FC-Wineries
and attribute region references primary key attribute id of relation Re-
gions. The parameter's domain is defined by primary key attribute val-
ues 7Tid(FC_Regions). In order to treat reference relations uniformly, syn-
onym RV_Wineries_region is defined for relation Regions. If analogously to
PremWineries<region> (cf. Example 5) fragment class StdWineries<region>
was defined upon fragmentation base class WineriesO using tuple selection
predicate category= "standard", the parameter definition of region would be
re-used.

If no application relation can be used as a reference relation, a reference
relation has to be created. Such a reference relation is named RV-F-P, has
schema P, and is initialized with current values from the content relation
of the root fragment class (i.e., with np(FC-F)). Furthermore, a foreign
key constraint is defined on attribute PEX, referencing the newly created
relation.

0 Example 17. Reference relation RV_Regions_state would be created
for parameter state, which was introduced in Example 9 for illustrative pur-
poses.

3.1.2 P r imary Fragment Classes

When primary fragment class G<KL> is defined upon fragmentation base
class F<L> a new content relation and a new fragmentation relation are

V) ,

11 wiWines(id, name,..,producedBy)
2 Culmen .. [1 \
3 Rioja Aurus .. \4 \
6 Formulae .. \7\
8 Chianti Classico .. \2\

10 Zweigelt .. \9\
11 Sauvignon Blanc .. \S\

fraaBase

FCJ/Vines«?...--

•Wineries(id,name,reg/on,..)

Bodegas Lan irioj \
Finca Allende \rioj !
Barone Ricasoli \chia\
Cinciole ;\chia\
Polz f\styr\
Tement / \styrj

FC Wineries""

fraaBase

;-:Regions(jd,name,..)
\'à{
''A

refRel

\rioj j Rioja
[chial Tuscany/Chianti
\styr] Styria

refRell

fragBâse

RV_Wineries_region"n

RV_Regions_id"n

FC_Reg ions'1"1

FC_PremWines_region(id,name,..,producedß/,reg/on)
2 Culmen
3 Rioja Aurus
6 Formulae
8 Chianti Classico

10 Zweigelt
11 Sauvignon Blanc

1 Bodegas Lan irioj \ ..
4 Finca Allende \rioj \ ..
7 Barone Ricasoli \chia\ ..
2 Cinciole Ichial ..
9 Polz istyri... ..
5 Tement \styrj ":;•

FR_PremWines_region(region)

\5j \styri

FC_PremWineries_region(id,name,reg/on,..)

FR_PremWineries_region(region)

FC_Regions_id(id(name,..)
•4 definedBy

\rioj i Rioja
\chia\ Tuscany/Chianti
[styr] Styria

FR_Regions_id(jd)

fragRel
noj ;

ichiaj
styr;

^ definedBy

Roles: refRel .. reference relation, fragRel .. fragmentation relation, fragBase .. fragmentation base, derivBase .. derivation base;

• foreign key constraint, n n . . Synonym

Figure 3.1: Realization of a Fragmentation Schema

Oz>

Pi
H

CO
H
Z

o
z

>

1
>za

5?o
B
CO

CO

50 3. SMWP: FROM THEORY TO PRACTICE

created. They are initialized with tuples from the content and fragmenta-
tion relation of the fragmentation base class and with tuples from reference
relations.

In the definition of a primary fragment class a fragment selection pred-
icate PF and a tuple selection predicate pr can be used to narrow the set
of fragments and tuples therein that are taken over from the fragmentation
base class. For accurate presentation we introduce the notion of selection
predicate p, which is defined as P=PF^PT-

New content relation FC.G-KL(X) then stores all fragments of the
primary fragment class. It holds tuples from FC-FJL{X) for which selection
predicate p applies. Its primary key attributes equal the ones of the content
relation of the fragmentation base class.

0 Example 18. Content relation FC_PremWineries.region realizes pri-
mary fragment class PremWineries<region> (which is created as shown in
Example 5). It holds tuples from FC.Wineries for which tuple selection pred-
icate category = "premium" applies. A fragment is retrieved by selecting all
wineries of a certain region, e.g., fragment PremWineries_rioj is retrieved by
evaluating cr7.esi0n="rioj"(FC-PremWineries_region). Attribute id is the pri-
mary key attribute of both of the aforementioned content relations.

New fragmentation relation FR.G-KL(KL) stores the domain of the
fragment class' parameters KL, dom(KL)=dom(K)xdom(L), and thus de-
fines the fragments. For each parameter value the fragment selection pred-
icate PF must apply. Because doTn(Ä")=ni=i Ki is defined by a reference
relation RV-E-Ki for each parameter K^K (with primary key attribute
(pRV-E-Ki1) and dom(L) is defined by FR.F-L, data held by FRJ3.KL is
defined by dom(KL)={t e ((Y]}^[n<i>RV_E_Ki(RV-EJ<:i))xFR.Fj:)\pF(t)}.

0 Example 19. Fragmentation relation FR_PremWineries_region(region)
defines the fragments of PremWineries<region>. Its data is defined by RV_-
Wineries_region only, because the fragmentation base class is a root frag-
ment class and no parameters other than region are introduced. All primary
key attribute values from RV_Wineries_region are taken over to FR.Prem-
Wineries_region because no fragment selection predicate is defined.

To ensure data consistency, foreign key constraints are defined on both
the content relation, referencing the fragmentation relation, and the frag-
mentation relation, referencing fragmentation and reference relations it de-
pends on.

1In the following expression <pR is used to denote the primary key attributes of relation
R.

3.1 RELATIONAL REPRESENTATION OF FRAGMENTS AND PAGES 51

3.1.3 Derived Fragment Classes

When derived fragment class G<KL> is defined upon fragmentation base
class F<L> and derivation base class H<K>, a new content relation and a
new fragmentation relation are created. The content relation is initialized
with tuples from the content relation of the fragmentation base class, while
the fragmentation relation is initialized with tuples from the fragmentation
relations of both the fragmentation and derivation base class.

New content relation FC-G-KL(Z) stores all fragments of the de-
rived fragment class. It holds tuples from FC-F-L(X) that join with
tuples from FC-H^K(Y), where the join is defined by an equi-join
FC-FJJ[JF—JH]FC-H-K. Derived fragmentation is employed whenever
fragmentation by properties of attributes X of FC-F-L is not possible,
i.e., KC\X=$. To store additional parameters K, FC-F-L's schema X is
extended by K, i.e., Z=XUK. A tuple teFC-F-L may qualify for sev-
eral derived fragments (i.e., it may join with multiple tuples sGFC-H-K).
Therefore tuple t from the fragmentation base class results in set V of tu-
ples in the derived fragment class, where V=TIz{t[JF=JH\FC-H-K). Con-
sequently the primary key attributes of FC-G-KL consist of the primary
key attributes of FCJF-L extended by K.

© Example 20. Content relation FC_PremWines_region of derived frag-
ment class PremWines<region> (which is created as shown in Example 10)
contains tuples from the fragmentation base's content relation FC_Wines that
join with the derivation base's content relation FC_PremWineries_region on
FC_Wine[producedBy=id]FC_PremWineries_region. The schema of FC_Prem-
Wines_region comprises attribute region additionally to attributes from
FC_Wines, its primary key attributes comprise attributes id and region.

New fragmentation relation FR.G-KL(KL) stores the domain of para-
meter set KL, dom(KL)=dom(K)xdom(L). Because dom(L) is defined by
FR.F-L and dom(K) by FR.H.K, data held by FR.G.KL is defined by
dom{KL)=FR.FJL x FR.HJC.

0 Example 21. Fragmentation relation FR_PremWines_region defines
the fragments of PremWines<region>. Its data is defined by FR.Prem-
Wineries-region only, because the fragmentation base class is not parame-
terized.

To ensure data consistency, foreign key constraints are defined on both
the content relation, referencing the fragmentation relation, and the frag-
mentation relation, referencing the fragmentation relations of the fragmen-
tation and derivation base.

The presented realization of fragment classes is not optimal with respect
to disk space because it stores fragment class' contents redundantly. How-
ever, unlike main memory, disk capacity is usually not a limiting resource
that must be managed wisely [99, 127]. Nevertheless, optimizations of disk

52 3. SMWP: FROM THEORY TO PRACTICE

space usage are possible at the expense of processing time. E.g., one pos-
sibility is not to store complete tuples in content relations but only their
primary key attributes and attributes representing parameters, and to con-
struct fragments by joining such tuples with the appropriate application
relation. The employed configuration has to be determined when deploy-
ing the SMWP approach, either being optimized with respect to disk space
usage or processing time.

3.1.4 Storing Page Classes

When page class P<K> is defined upon foundation fragment class F<L>,
its pages are pre-generated and stored inside the database in attributes of
type CLOB. Pages are pre-generated as follows: for each fragment /</>
of the foundation fragment class, a page p<k> is generated (the mapping
between parameter names I and A; is specified with the definition of a page
class, e.g., see Example 11). Furthermore, all fragments that are mapped to
a page are read through SQL queries from the content relations of mapped
fragment classes and transformed to XML, using a simple generic mapping
(cf. [133, 134]).

O Example 22. A page of page class PremWines<region>
is pre-generated for each fragment of its foundation fragment class
PremWineries<region> and stored inside the database. For each page
mapped fragments are read from content relations representing fragment
classes. The fragments and tuples contained therein are transformed to
XML, forming the page's content. An exemplary tuple contained in frag-
ment premWineries<rioj> is shown below.

<fragment id="premWineries<rioj>" ..>
<tuple ..>

<attribute name= "id" >4</attribute>
<attribute name="name">Finca Allende</attribute>
<attribute name= "region" >rioj</attribute> ..

</tuple> ..
</fragment>

3.2 Maintaining Fragments and Pages

Once fragments and pages have been created, later fragment modifications
need to be propagated to dependent fragment classes and affected page
classes to modify their data accordingly. A fragment class is dependent
on another fragment class if the former contains a tuple of the latter as a
replica or if a tuple's membership in the former depends on the existence of a

3.2 MAINTAINING FRAGMENTS AND PAGES 53

"joining" tuple in the latter (i.e., in the derivation base class). Furthermore,
by mapping fragment classes to page classes, modifications on fragments
need to be propagated to affected pages (i.e., those pages that contain the
tuple serialized as XML).

In this section, we show how the algorithms presented in [133, 134] at
the conceptual level for the maintenance of fragments' content can be im-
plemented in a relational database setting by database triggers maintaining
content relations. In addition we also present triggers for the maintenance
of fragment relations. These triggers are extenders (in terms of [39]) since
they are generated automatically according to declaratively defined fragment
classes to maintain their contents according to modifications of application
relations.

With respect to the different kinds of relations that realize fragment
classes and parameters, different kinds of triggers are distinguished as fol-
lows. Content triggers are defined on content relations to propagate modifi-
cations on fragments' content. Serialization triggers deal with update prop-
agation from modified fragment classes to affected pages. They are defined
on both content and fragmentation relations of fragment classes that are
mapped to page classes. Fragmentation triggers are defined on both refer-
ence and fragmentation relations to propagate modifications on parameters
and fragments to dependent fragmentation relations.

To provide for easy definition and maintenance of triggers, they are mod-
ularly designed in that each trigger propagates updates to a single dependent
relation only. Such a relation is either a content or fragmentation relation
of a fragment class that is defined upon the fragment class of the updated
content relation (via its fragmentation or derivation base). The benefits of
this approach are as follows: (a) triggers are easily created by using a tem-
plate, thus a small set of algorithm templates can be used irrespective of an
actual fragmentation schema, (b) triggers are easily added or deleted in case
of new fragment classes are created or existing fragment classes are deleted.

Furthermore, to be able to use the same algorithm templates for frag-
mentation triggers on reference and fragmentation relations, their algorithms
abstract from differences in structure and usage between reference and frag-
mentation relations.

To avoid a fragmentation schema's realization to influence legacy ap-
plications, newly created reference relations (such as RV_Regions_state, cf.
Example 17) need particular attention. With the creation of a reference
relation, a foreign key constraint is introduced on the according application
relation referencing the reference relation to ensure data consistency. This
brings up the problem of foreign key violations when legacy applications
modify the application relation. Therefore, with the definition of a parame-
ter that creates a new reference relation, a synchronization trigger is created
on the application relation that keeps the contents of the reference relation
synchronized.

tû

o
<

O

O
H
EC

H

Wines(Jd,name,..,producedBy)

CL
<

2
3
6
8

10
11

Culmen
Rioja Aurus
Formulae
Chianti Classico ..
Zweigelt
Sauvignon Blanc ..

1
4.
7\
2\
9
5

FC.Wines5*"

Wineries(M,name,reg/on,..)
1 Bodegas Lan rioj
4 Finca Allende rioj
7 Barone Ricasoli chia
2 Cinciole chia
9 Polz styr
5 Tement styr

FC_Wineriessv

Regions(id,name,,.)
rioj Rioja
chia Tuscany/Chianti
styr Styria . . i C T -

RV_Wineries_region«"
RV_Regions_ids'm

FC_Regionstyn

FC_PremWines_region(id,name,..,producedß/,reaiPi7)
2 Culmen
3 Rioja Aurus
6 Formulae
8 Chianti Classico

10 Zweigelt
11 Sauvignon Blanc

FC_PremWineries_region(id,name,reg/on,..

1 Bodegas Lan rioj
4 Finca Allende rioj
7 Barone Ricasoli chia
2 Cinciole chia
9 Polz styr
5 Tement styr

FC_Regions_id(id,name,..)
rioj Rioja
chia Tuscany/Chianti
styr Styria

FR_PremWines region(region)

FR_PremWineries_region(region)

Regions<region>

CT .. content trigger, FT .. fragmentation trigger, ST .. serialization trigger

Figure 3.2: Realization of Incremental Push-Based Data Delivery

3.2 MAINTAINING FRAGMENTS AND PAGES 55

In short, modifications on content, fragmentation, and parameters are
propagated incrementally by database triggers to maintain actual fragmen-
tation and web pages. For each primary fragment class one content trigger
(on the fragmentation base class' content relation) and several fragmentation
triggers (one on the fragmentation base class' fragmentation relation and one
on each introduced parameter's reference relation) propagate modifications.
For each derived fragment class two content triggers (one on each of the
fragmentation and derivation base class' content relation) and two fragmen-
tation triggers (one on each of the fragmentation and derivation base class'
fragmentation relation) propagate modifications. To maintain web pages
according to database modifications, two serialization triggers are created
(one on the fragment class' content relation and one on its fragmentation
relation) for each fragment class that is mapped to at least one page class.
They propagate modifications to affected pages.

0 Example 23. Figure 3.2 depicts the realization of incremental push-
based data delivery of the wine shop's fragmentation and page content
schema by content, fragmentation and serialization triggers.

3.2.1 Maintaining Primary Fragment Classes

With the definition of primary fragment class G<KL> upon fragmentation
base class F<L>, using selection predicate p, and parameters KL, which are
defined upon root fragment class E<>, a new content trigger on FC-F.L,
a new fragmentation trigger on FR-F-L, and a new fragmentation trigger
on RV-E-Ki for each K{EK are created as described in the following.

Content Trigger

First, a content trigger is created on the content relation of the fragmenta-
tion base class (i.e., on FC-F-L) to propagate modifications thereon to the
content relation of the primary fragment class (i.e., FC.G.KL), considering
the selection predicate. Its algorithm template is described in this section.

Algorithm templates are depicted by pseudo-code mixed with SQL state-
ments throughout the chapter. For better readability placeholders and vari-
ables are denoted in italics. While placeholders are replaced by actual values
when the template is instantiated to implement a trigger, actual values of
variables are determined at run time. Variables old and new are used in
all templates. They are bound to the old and new tuple values as defined
by SQL and are thus called bindings. For a concise presentation of the
templates, we make use of the following abbreviations: (a) X=Y is used to
test two sets of attributes X and Y that both comprise the same attributes
a\..an for equality of their respective attribute values (i.e., to test whether
X,ai=Y.a\A..AX.an=Y.an), (b) analogously the same applies for testing in-
equality by X^Y, (c) in SQL Update statements "UPDATE ... SET X=Y"

56 3. SMWP: FROM THEORY TO PRACTICE

is used to set attributes X.a\=Y.a\..X.an=Y.an, and (d) whenever a vari-
able that comprises a set of attributes (e.g., binding new) is used without
further specification of attributes it refers to all attributes (e.g., new refers
to new.ai,.., new.an).

The algorithm template for content triggers for primary fragment classes
distinguishes the following three cases: (a) If a tuple is inserted (line 4) and
the tuple selection predicate applies (X' denotes X\KL) as well as the
fragment selection predicate applies (lines 5), the tuple is inserted into the
primary fragment class (line 6). (b) If a tuple is updated (line 7), selection
predicates for the old (line 8) and new tuple (line 9) are determined. If both
the old and new tuple qualify for fragments of the primary fragment class
(line 10), the affected tuple is either updated if the fragment it is contained
in remains identical (lines 11 and 12), or deleted and inserted if the fragment
changes (lines 13 to 15). If the tuple does not qualify for any fragment of the
primary fragment class any longer, it is deleted (lines 16 and 17). Vice versa,
if the tuple newly qualifies for a fragment, it is inserted (lines 18 and 19).
(c) If a tuple is deleted (20) and it qualified for a fragment of the primary
fragment class (line 21), it is deleted therefrom as well (line 22).

1 TRIGGER CT_FragBaseToPrimaryFC-FC_GLKL
2 AFTER INSERT OR UPDATE OR DELETE ON FC.FX
3 FOR EACH ROW
4 if INSERTING
5 if pT(new.X') AND pF(new.KL)
6 INSERT INTO FC.G.KL VALUES new;
7 if UPDATING
8 poid:=pT(old.X') AND pF(old.KL);
9 pnew:=pr{new.X') AND pp(new.KL);
10 if poid AND pnew

11 if old.K=new.K
12 UPDATE FC-G-KL AS G SET G.X=new.X

WHERE G4G=old4G;
13 if old.K^new.K
14 DELETE FROM FC.G.KL AS G WHERE G4G=old.(j)G;
15 INSERT INTO FCJG.KL VALUES new;
16 if Pou AND NOT pnew

17 DELETE FROM FC.G.KL AS G WHERE G.<j>G=old.(j)G;
18 if NOT Pold AND pnew

19 INSERT INTO FC.G.KL VALUES new;
20 if DELETING
21 if pT{old.X') AND pF(old.KL)
22 DELETE FROM FC.G-KL AS G WHERE G.(j>G=old.(j)G;

0 Example 24- With the definition of primary fragment class Prem-

3.2 MAINTAINING FRAGMENTS AND PAGES 57

Wineries<region>, which is defined upon fragmentation base class Prem-
Winerieso, a content trigger is created on FC.Wineries to propagate mod-
ifications to FC-PremWineries_region.

Fragmentation Trigger

Second, a fragmentation trigger is created on each relation SiE.S, where S
is the set of reference and fragmentation relations, FR.G.KL depends on.
S comprises reference relations RV-E-Ki for each parameter Ki£K and
fragmentation relation FR-FJL, if |L|>0. By abstracting from differences in
structure and usage between reference and fragmentation relations, the same
algorithm template is used for fragmentation triggers on reference relations
as well as fragmentation triggers on fragmentation relations.

In the following the algorithm template for fragmentation triggers for
primary fragment classes is described. Insert, Update, and Delete SQL
Statements on reference and fragmentation relations reflect creation, modi-
fication, and deletion of fragments, activating fragmentation triggers. Such
a trigger is created on each relation SiES. Variable 5', which is used in the
template, is defined by S\Si. In case of fragment modification or deletion
(line 4), fragments of the primary fragment class that show corresponding
parameter values are deleted (line 5). In case of fragment modification or
creation (line 6), new fragments are determined by building the cartesian
product of the new parameter value by the domains of the remaining pa-
rameters and inserted if the fragment selection predicate applies (line 7).
Note that the modification of a fragment's parameters causes the creation
and deletion of fragments.

1 TRIGGER FT_FragBase-5i-ToPrimaryFC-FiLGJTL
2 BEFORE INSERT OR UPDATE OR DELETE ON St

3 FOR EACH ROW
4 if UPDATING OR DELETING
5 DELETE FROM FRJ3.KL WHERE <pSi =old.4>Si \
6 if UPDATING OR INSERTING
7 INSERT INTO FR-G.KL

(SELECT new^, S'^s'^ ••> S'n4sk FROM S[, .., S'n
WHERE pF(new4Si, S[4s^ ••> S'n4s>J)'

0 Example 25. Fragmentation relation FR_PremWineries_region of pri-
mary fragment class PremWineries<region> depends on reference relation
RV_Wineries_region (i.e., application relation Regions) only. It does not de-
pend on any fragmentation relation, because its fragmentation base class
WineriesO is not parameterized. Therefore, a fragmentation trigger is cre-
ated on RV_Wineries_region only to propagate modifications to the domain
of parameter region.

58 3. SMWP: FROM THEORY TO PRACTICE

3.2.2 Maintaining Derived Fragment Classes

With the definition of derived fragment class G<KL> upon fragmentation
base class F<L> and derivation base class H<K>, a new content trigger on
FC-F-L, a new content trigger on FC-H-K, a new fragmentation trigger
on FRJPJL, and a new fragmentation trigger on FR-H-K are created as
described in the following.

Content Triggers

Because the derived fragment class is defined upon, and thus dependent on,
its fragmentation and derivation base class, a content trigger is created on
FC-F-L(X) and FC-H-K{Y) to propagate modifications to FC-G-KL(Z)
(where Z=Xl)K). While the fragmentation base class provides contents to
be held by the derived fragment class, the derivation base class defines how
this data is to be further partitioned. Due to these different roles, content
triggers on FCJ?-L and FCJi-K have different algorithms.

First, the algorithm template for the content trigger that is created on
the content relation of the fragmentation base class is described in the fol-
lowing. It distinguishes the following three cases: (a) If a tuple is inserted
(line 4) it is inserted into all fragments of the derived fragment class it qual-
ifies for as well (line 5). (b) If a tuple is updated (line 6) and the join
attribute values did not change (line 7), tuples of the derived fragment class
can be updated as well (line 8). If the join attribute values changed (line
9), fragments the tuple qualifies for change as well. Thus it is deleted from
fragments it is contained in but no longer qualifies for (line 10), updated in
fragments it is contained in and still qualifies for (line 11), and inserted into
fragments it newly qualifies for (line 12). Remember that old.L and new.L
never differ, because updates to L would have been translated to according
delete and insert statements by another trigger before (cf. Section 3.2.1). (c)
If a tuple is deleted (line 13) it is deleted from all fragments of the derived
fragment class it is contained in (line 14).

1 TRIGGER CT.FragBaseToDenvedFC-FC-GLtfL
2 AFTER INSERT OR UPDATE OR DELETE ON FC-FJL AS F
3 FOR EACH ROW
4 if INSERTING
5 INSERT INTO FC.GJ^L

(SELECT DISTINCT new, R.K FROM FC.HJC AS H
WHERE H.JH=new.JF);

6 if UPDATING
7 if old.Jp—new.Jp
8 UPDATE FC-G-KL AS G SET G.X=new.X

WHERE G.4>F=old.(j)F;
9 if old.

3.2 MAINTAINING FRAGMENTS AND PAGES 59

10 DELETE FROM FC.G.KL AS G
WHERE G4F=old.(j)F AND G.K NOT IN (

SELECT K FROM FCJÎ-K WHERE JH=new.JF)\
11 UPDATE FC-G-KL AS G SET G.X=new.X

WHERE G.<pF=old.<ßF;
12 INSERT INTO FC-G.KL

(SELECT DISTINCT new, H.K FROM FCJI.K AS H
WHERE H..JH=new.JF AND NOT EXISTS (

SELECT * FROM FC.G.KL AS G
WHERE G.(ßF=new.(f>F AND G.K=B.K));

13 if DELETING
14 DELETE FROM FC.G.KL AS G

WHERE G.cj)F=old4F\

© Example 26. A content trigger is created on FC.Wines to prop-
agate modifications thereon to FC_PremWines_region of derived fragment
class PremWines<region> with fragmentation base WinesO and deriva-
tion base PremWineries<region>. For example, the insertion of a new wine
w into FC_Wines entails the insertion of tuple u=7r^(t[producedBy=id]FC_-
Wineries_region) into FC_PremWines_region(Z), thus enriching the new wine
with information about the region it is produced in.

Second, the algorithm template for the content trigger that is created
on the content relation of the derivation base class is described in the fol-
lowing. It needs to detect upon a tuple modification whether another tuple
contained in the same fragment has the same join attribute values as the tu-
ple being modified. If not, tuples from the fragmentation base do no longer
qualify for the derived fragment class and have to be removed. Thus this
trigger needs to access bindings old and new as well as the content relation
it is defined upon. However, while the bindings can only be accessed from
row-level triggers (created as "FOR EACH ROW"), the content relation
can only be accessed from statement-level triggers (created as "FOR EACH
STATEMENT"), because for a row-level trigger the content relation is mu-
tating and thus not accessible. Since a trigger can be either row-level or
statement-level but not both, this problem needs to be solved specifically to
SMWP.

The solution to the problem of mutating content relations is the follow-
ing: (a) The content trigger is defined as a statement-level trigger (opposite
to the other two content triggers CT_FragBaseToPrimaryFC-FC_G_K'L and
CT.FragBaseToDerivedFC-FC-G-R'L) to be able to query the content re-
lation, (b) To achieve that the content trigger is triggered once for each
modified tuple (i.e., to be able to use statement-level triggers instead of
row-level triggers), all content triggers use cursors to modify several tuples
by issuing a single SQL statement for each tuple being modified (and not

60 3. SMWP: FROM THEORY TO PRACTICE

a single SQL statement to modify several tuples as used in their algorithm
templates for presentational purposes) and root fragment classes cannot be
used as derivation base classes, (c) An auxiliary trigger is used to make the
bindings available to the content trigger. It is a row-level trigger that is
triggered before a tuple modification and stores the bindings in an auxiliary
relation, named SMWP_Worktrace (which is in NF2). By these means the
content trigger can read bindings old and new from SMWP_Worktrace as
well as the modified content relation FC-H-K.

The algorithm template of the auxiliary trigger, which is triggered before
each row is shown below. It inserts the following data into SMWP_Worktrace:
the name of the derived fragment class to distinguish between potentially
several derived fragment classes that have H<K> as derivation base class
(needed by algorithm template CT-DerivBaseToDerivedFC-FCGL.ft'L, see
later in this section) and bindings old and new where applicable.

1 TRIGGER ATJDerivBaseToDerivedFC-FC-G-ÄX
2 BEFORE INSERT OR UPDATE OR DELETE ON FCJÎ-K
3 FOR EACH ROW
4 if INSERTING
5 INSERT INTO SMWP_Worktrace(fcName,old,new)

VALUES ("FC-G-KL", NULL, new);
6 if UPDATING
7 INSERT INTO SMWP_Worktrace(fcName,old,new)

VALUES ("FC-G-KL", old, new);
8 if DELETING
9 INSERT INTO SMWP.Worktrace(fcName,old1new)

VALUES ("FC.G.KL", old, NULL);

The algorithm template of the content trigger, which is triggered after
each statement, is shown below. Before performing any action, bindings old
and new are read from SMWP_Worktrace where applicable (lines 5, 10, and
19). The algorithm distinguishes the following three cases: (a) If a tuple is
inserted into the derivation base (line 4) and no other tuple with the same
join attribute values already exists in the same fragment (lines 6, 7), the
tuples from the fragmentation base that additionally qualify for the derived
fragment class are determined and inserted (line 8). (b) If a tuple is updated
(line 9) and the values of the join attributes have changed (line 11), tuples
from the fragmentation base may no longer or may newly qualify for frag-
ments of the derived fragment class. In case no other tuple with the same
join attribute values as the old ones exists in the same fragment (line 12, 13),
the tuples that do no longer qualify are determined and deleted (line 14).
In case no other tuple with the same join attribute values as the new ones
existed in the same fragment before (lines 15, 16), tuples that additionally
qualify are determined and inserted (line 17). Remember that old.K and

3.2 MAINTAINING FRAGMENTS AND PAGES 61

new.K never differ, because updates to K would have been translated to
according delete and insert statements by another trigger before (cf. Sec-
tion 3.2.1 and earlier in this section), (c) If a tuple is deleted (line 18) and
no other tuple with the same join attribute values exists in the same frag-
ment (lines 20, 21), tuples from the fragmentation base do no longer qualify
for fragments of the derived fragment class and are thus deleted (line 22).
Finally, temporary buffered bindings old and new are removed from relation
SMWP_Worktrace (line 23).

1 TRIGGER CT-DerivBaseToDerivedFC-FC-G-KX
2 AFTER INSERT OR UPDATE OR DELETE ON FCJÏ-K
3 FOR EACH STATEMENT
4 if INSERTING
5 SELECT new INTO new FROM SMWP_Worktrace

WHERE fcl\lame= "FC-HJC";
6 SELECT COUNT(*) INTO count1 FROM FC-H-K AS H

WHERE R.(f>H^new.(f>H AND B..JH=new.JH AND H.K=new.K;
7 if count*—0
8 INSERT INTO FC.G.KL

(SELECT *, new.K FROM FC-FJL WHERE JF=new.JH);
9 if UPDATING
10 SELECT old, new INTO old, new FROM SMWP.Worktrace

WHERE fcName="FC_# Jf ' ;
11 if old. Jn^new.Jn
12 SELECT COUNT(*) INTO county FROM FCJIJC AS H

WHERE B..<pH^old.(j)H AND R.JH=old.JH AND H.K=old.K;
13 if countf=0
14 DELETE FROM FC-GJCL

WHERE K=old.K AND JF=old.JH;
15 SELECT COUNT(*) INTO county FROM FCJÏ.K AS H

WHERE E..<f>H^new4H AND B.JH=new.JH AND H.K=new.K;
16 if coun<2=0
17 INSERT INTO FC.GJiL

(SELECT *, new.K FROM FCJFJu WHERE JF=new.JH);
18 if DELETING
19 SELECT old INTO old FROM SMWP_Worktrace

WHERE fcName="FC_#_fr';
20 SELECT COUNT(*) INTO countd FROM FCJÎJC AS H

WHERE R.(pH^old.(f)H AND B..JH=old.JH AND H.K=old.K;
21 if countd=0
22 DELETE FROM FCGJCL

WHERE K=old.K AND JF=old.JH\
23 DELETE FROM SMWP.Worktrace WHERE fcName="FC\G-KV;

62 3. SMWP: FROM THEORY TO PRACTICE

© Example 27. To propagate modifications on PremWineries<region>
to derived fragment class PremWines<region>, an auxiliary trigger and a
content trigger are created on FC_PremWineries_region. While the auxiliary
trigger is triggered before each row and insert bindings old and new into rela-
tion SMWP_Worktrace, the content trigger is triggered after each statement
and accesses content relation FC_PremWineries_region and auxiliary relation
SMWP_Worktrace.

Fragmentation Triggers

Furthermore, one fragmentation trigger is created on the fragmentation re-
lations of the fragmentation base class (i.e., FR-F-L if |£|>0) and one on
the derivation base class (i.e., FR-H-K). These triggers propagate creations
and deletions of fragments to FRJ3-KL. They do not propagate modifi-
cations of fragments, because fragmentation triggers on reference relations
(cf. the algorithm in Subsection 3.2.1) translate updates on reference re-
lations to equivalent creations and deletions of fragments as soon as they
occur. Notice that derived fragment classes do not depend on any reference
relation, because they do not introduce new parameters.

The algorithm template for fragmentation triggers for derived fragment
classes is described in the following. It differs from the one presented in
Subsection 3.2.1 in that |5|<2, because S comprises FR.HJC and possibly
FR-F-L only, and in that it does not need to treat updates to fragmenta-
tion relations for the reasons mentioned before. A fragmentation trigger is
created on each relation Si€S. Variable S', which is used in the template, is
defined by S\S{ and may be empty. The algorithm template distinguishes
the following two cases: (a) If a fragment is deleted (line 4), fragments of
the derived fragment class that have corresponding parameter values are
deleted (line 5). (b) If a fragment is created (line 6), new parameter values
are determined by forming the cartesian product of the new parameter value
by the domain of the other parameters and fragments are created (line 7).

1 TRIGGER FT_Frag/DerivBase-Si-ToDerivedFC-FÄ_G_KL
2 BEFORE INSERT OR DELETE ON St

3 FOR EACH ROW
4 if DELETING
5 DELETE FROM FR.G-KL

W H E R E 4>Si=old.<l>si\
6 if INSERTING
7 INSERT INTO FR.G.KL

(SELECT new.<j>Si, S'.foj FROM S[);

0 Example 28. Fragmentation relation FR_PremWines_region of de-
rived fragment class PremWines<region> depends on fragmentation relation

3.2 MAINTAINING FRAGMENTS AND PAGES 63

FR_PremWineries_region of the derivation base class only, because fragmen-
tation base class WinesO is not parameterized. Therefore the only frag-
mentation trigger created is the one on FR_PremWineries_region to propagate
modifications thereon to FR_PremWines_region.

3.2.3 Maintaining Page Classes

Pre-generated pages contain contents drawn from a database and have there-
fore to be synchronized with it. For automatic synchronization, modifica-
tions to fragment's contents are propagated to pages, entailing equivalent
modifications on XML serializations of tuples. Analogously modifications to
fragmentation are propagated to pages, entailing equivalent modifications of
XML serializations of fragments as well as the creation and deletion of pages.

A fragmentation serialization-trigger translates creations and deletions
of fragments to equivalent operations on pages. It is created on fragmenta-
tion relation FR-F-L if F<L> is mapped to at least one page class. Such a
trigger iterates over all page classes the modified fragment class is mapped
to. If the modified fragment class is the current page class' foundation frag-
ment class, a page is either created (comprising existing empty fragments
of mapped fragment classes) or deleted. Otherwise all existing pages the
fragment is mapped to are determined by comparing parameter values, tak-
ing parameter maps (e.g., cf. Example 11) into account, and a fragment is
added (if not yet existent) or deleted thereon.

Besides modifications to fragmentation also modifications to fragments'
content have to be propagated to pages. A tuple insert, update, or delete
entails the according modification of affected pages. A content serialization-
trigger is created on content relation FC-F-L if F<L> is mapped to at least
one page class. It propagates modifications to fragment's contents to affected
pages. Because the logic of both serialization triggers basically corresponds
to the algorithms presented in [133], the interested reader is referred to there
for their algorithms.

0 Example 29. A fragmentation serialization-trigger is created on
FR_PremWineries_region to propagate modifications on fragmentation to
pages. Since fragment class PremWineries<region> is the foundation frag-
ment class of page class PremWines<region>, pages are created or deleted
whenever a tuple is inserted into or deleted from the fragmentation relation.
Furthermore, a content serialization-trigger is created on FC_PremWineries_-
region to propagate modifications on fragments' content to according pages.

Serialization triggers comprise extensive generic logic for translating op-
erations on fragments to equivalent operations on pages, and are thus im-
plemented in Java. They are loaded into and executed within the database
and use Oracle's XML Parser [121] and Xalan's Serializer [62] to perform

64 3. SMWP: FROM THEORY TO PRACTICE

operations on pages. To efficiently translate operations, serialization triggers
need efficient access to fragmentation and page content schémas. Therefore
auxiliary meta data relations are used to store this information.

Operations on pages are carried out by a SAX [111] filter in our proto-
type. The page to be modified is parsed by a SAX parser, which generates
events for each recognized XML element. The filter listens to the event
stream and passes events on to Xalan's Serializer, which constructs an XML
document from its incoming event stream. If an event concerns an element
that is to be modified, the filter modifies the event before passing it on. To
efficiently identify elements that are to be modified, Oracle's rowid attribute,
which is a database wide unique identifier of a tuple, is stored along with
each XML element that represents a tuple. After parsing the original page
is replaced with the newly constructed one, thus reflecting the fragment
modification.

Summarizing the presented triggers, the following example shows the
effects of modifying an application relation. The activation sequence of
triggers is ordered by ascending numbers, however, the order may vary since
the execution order of triggers created on the same relation may be undefined
(in particular, step 1 and 2 may be interchanged).

O Example SO. When region "South Australia" is added to the parame-
ter domain of region, i.e., when a tuple with "saus" as the value of attribute
id is inserted into application relation Regions (cf. Figure 3.2), (1) one
of the two fragmentation triggers defined on Regions inserts the region into
FR_PremWineries_region, (1.1) the fragmentation trigger defined on FR_Prem-
Wineries.region inserts the region into FR_PremWines_region, (1.1.1) the se-
rialization trigger defined on FR_PremWines_region does not perform any
action since the page the fragment is mapped to does not yet exist, (1.2) the
serialization trigger defined on FR_PremWineries_region creates page prem-
Wines<saus> containing empty fragments premWineries<saus> and prem-
Wines<saus>, (2) the other one of the two fragmentation triggers defined
on Regions inserts the region into FR_Regions_id, (2.1) the serialization trig-
ger defined on FR_Regions_id creates page regions<saus> containing empty
fragment regions<saus>, (3) the content trigger defined on Regions inserts
the region into FC_Regions_id, and finally (3.1) the serialization trigger de-
fined on FC.Regions.id inserts the region into the page's fragment created
in step 2.1. When a region is deleted, the activation sequence above ap-
plies as well, except that pages, fragments, and tuples are deleted rather
than newly created or inserted. When a region is updated, a deletion and
insertion of a region is performed by the fragmentation triggers defined on
relation Regions.

The number of triggers that are involved in incremental propagation
upon a modification of an application relation by a legacy application de-
pends on the kind of data being modified (i.e., contents, fragmentation, or

3.3 PREDICATE BASED PARAMETERS 65

parameters), the fragmentation schema, the page content schema, and the
modification itself (i.e., in which respect data is modified). Thus only a gen-
eral statement can be made about the number of triggers involved as follows
(for an empirical performance evaluation see [133]):

• Upon modification of a fragment class F<L>, (a) one content trigger
is involved per dependent fragment class G<KL>, possibly causing
multiple modifications of G<KL>, e.g., when join attribute values in
a derivation base class are modified, and (b) one serialization trigger
is involved if F<L> is mapped to at least one page class.

• Upon modification of parameter P's domain dom(P), one fragmenta-
tion trigger is involved per fragment class F<L> that introduces pa-
rameter P, causing maximally 2*\dom(L\P)\ modifications of FR-F-L
(since an update of a parameter is translated to an according deletion
and insertion of fragments).

• Upon modification of the domain of fragment class F<L>'s parame-
ter set L, (a) one fragmentation trigger is involved per dependent
fragment class G<KL> causing maximally \dom{K)\ modifications of
FR-G-KL, and (b) one serialization trigger is involved if F<L> is
mapped to at least one page class.

3.3 Predicate Based Parameters

Experience has shown that sometimes a fragment class cannot be parame-
terized as desired, since it would need a parameter that is not part of the
class' schema. In such cases one would fall back to on the fly generation
or use other less flexible page pre-generation techniques. However, in many
cases it is just sufficient to define a parameter on a derived attribute (i.e.,
an attribute whose value is derived from existing attributes). To provide for
this kind of parameters, we introduce in this section the concept of predicate
based parameters by extending our previous work and refer to parameters
mentioned so far as value based parameters. Like the latter, predicate based
parameters are defined upon root fragment classes to provide for reusable
parameter definitions featuring consistent semantics.

Predicate based parameter Q can be introduced for primary fragmenta-
tion and is defined by a set of label-predicate pairs, Q=(l,q)- If predicate
<7i applies for a given tuple, it is "tagged" with the according label li, thus
enriching it with derived information. To determine the label of predicate
based parameter Q for tuple t, function getLabel(Q,t) is used. For each
tuple exactly one predicate must apply. The domain of a predicate based
parameter is determined by the set of its labels.

a
o
H
O
<
ai
d,
O

OH
as

2o
ai

En

Ôi

co

(/ML Fragmentation Schema

1—|:rankinas<51-100>|..

Fragments
m rCateg = «Top20\ rank<21),

Page Content Schema

('21-50', rank>20&rank<51),
('51-100', rank>50&rank<101),
('other', rank>l00)};

fragment selection predicate := [rCateg^'other1];

tB:topWines<51-100>f—
TopWines_51-100.xml

Web Pages

Figure 3.3: Parameterized Fragmentation using Predicate Based Parameters

co

3.3 PREDICATE BASED PARAMETERS 67

0 Example 31. The wine shops stores, additionally to wines, winer-
ies, and regions, contents about wine magazines (class Magazine), which
publish annual rankings of newly available wines (ternary association Rank-
ings), as depicted on the left of Figure 3.3. It wants to provide web
pages enlisting wines that have been ranked in given ranking categories
Top20, 21-50, and 51-100. However, the schema of application relation
Rankings(magazine,year,wine,rank) (implementing UML association Rank-
ings) does not contain an attribute for ranking categories. To derive the
latter from attribute rank, a predicate based parameter rCateg is defined
upon RankingsO (as shown below).

CREATE PREDICATE BASED PARAMETER rCateg ON RankingsO
PREDICATES {("Top20", {rank<21}), ("21-50", {rank>20Arank<51}),

("51-100", {rank>50Arank<101}), ("other", {rank>100})};

The introduction of predicate based parameters slightly affects the de-
finition of primary fragment classes and their content relations as pre-
sented in Subsection 3.1.2 as follows. Primary fragment class G<KLM>
with FC-G-KLMÇY) is defined upon fragmentation base F<L> with
FC-F-L(X) using selection predicate p. The primary fragment class intro-
duces, additionally to value based parameters L (where |£|>0 and LeX),
predicate based parameters M (where |M]>0 and M(~\X=$).

O Example 32. Predicate based parameter rCateg is used to define
primary fragment class Rankings<rCateg>, which partitions rankings into
fragments according to ranking categories as defined by parameter rCateg
using fragmentation selection predicate rCateg^ "other" (as shown below).

CREATE PRIMARY FRAGMENT CLASS Rankings<rCateg>
FRAGMENTATION BASE CLASS RankingsO
FRAGMENT SELECTION PREDICATE {rCateg^ "other"};

To smoothly integrate predicate based parameters into the presented
realization of the SMWP approach, a predicate based parameter's label
is stored, like a value based parameter, as part of a fragment's tuple to
define the fragment it is contained in. Thereby fragment classes that do not
introduce predicate based parameters can handle their parameters equally
irrespective of whether they are value or predicate based.

However, when primary fragment class G<KLM> introduces predicate
based parameters M, they are not part of the schema of the fragmentation
base class' content relation FC-FJL{X). To hold these parameters, schema
X is extended by M. Thereby the primary fragment class' content relation
FC-G-KLM has schema Z=Xl)M. While tuple selection predicate pr

68 3. SMWP: FROM THEORY TO PRACTICE

may still reference X\KL, fragmentation selection predicate pp may only
reference introduced predicate based parameter set M additionally to KL.

0 Example 33. Content relation FC_Rankings_rCateg of primary
fragment class Rankings<rCateg> comprises attribute rCateg additional
to attributes of fragmentation base class Rankingso. Finally, to pro-
vide web pages enlisting wines that have been ranked in a ranking cat-
egory as denned by Rankings<rCateg>, derived fragment class Wines-
<rCateg> is defined upon fragmentation base WinesO and derivation base
Rankings<rCateg> (cf. Figure 3.3). Thereby fragment class WinesO,
which comprises a single fragment, is partitioned according to the fragmen-
tation of Rankings<rCateg>. Thereafter, fragment class TopWines<rCateg>
is mapped to page class TopWines<rCateg>, which is defined upon founda-
tion fragment class Rankings<rCateg>.

Only the algorithm template CT-FragBaseToPrimaryFC-FCGLRX pre-
sented in Subsection 3.2.1 needs to be slightly adapted to support predicate
based parameters. It needs to be modified to determine the label of the
tuple whose modification is to be propagated. The remaining algorithm
templates can be left unchanged for the following reasons: a) a content
trigger in derived fragmentation can handle predicate based parameters like
value based ones, b) fragmentation triggers are robust to the introduction of
predicate based parameters, because they abstract from differences between
reference and fragmentation relations, c) serialization triggers are concerned
with incrementally modifying pages, thus they are not affected at all.

The adapted algorithm template for content triggers on the content re-
lation of the fragmentation base class of a primary fragment class is shown
below. The line numbers are identical with the line numbers of the original
algorithm presented in Subsection 3.2.1. Lines that are modified or newly
inserted are marked by the symbol " *", and opposed to original or modified
lines, newly inserted lines are numbered alphabetically starting from "a"
(e.g., a*). Basically, the algorithm considers predicate based parameters M
additionally to parameters KL. The actual label of M for a given tuple
is determined by function get Label (lines a* through d*). These labels are
considered when dealing with parameters, e.g., when testing the selection
predicate (line 5*), or when inserting a tuple (line 6*).

1 TRIGGER CT-FragBaseToPrimaryFC-FC-GLtfZ,
2 AFTER INSERT OR UPDATE OR DELETE ON FC.FJL
3 FOR EACH ROW
4 if INSERTING
a* mnew:=Yii=i9etLabel(Mi,new)
5* if pr(new.X') AND pp(new.KLxmnew)
6* INSERT INTO FC.G-KL VALUES new, mnew;
7 if UPDATING

3.4 PERFORMANCE EVALUATION 69

b* ^ l
c* mnew:=Yli=lgetLabel(Mi,new)
8* poid:=pr(old.X') AND pF(old.K Lxmold)
9* pnew:=pT(new.X') AND pF(new.KLxmnew)
10 ifpoid AND pnew

11* if old.K—new.K AND moid=mnew

12 UPDATE FC-G-KL AS G SET G.X=new.X
WHERE G4G=old.<j)G;

13* if old.K—new.K AND moid^mnew

14 DELETE FROM FC.G.KL AS G WHERE G.4>G=old.<f)G;
15* INSERT INTO FC-G-KL VALUES new, mnew;
16 if paid AND NOTPnew

17 DELETE FROM FC.G.KL AS G WHERE G.(j)G=old.(j)G;
18 if NOT poid AND pnew

19* INSERT INTO FC-G-KL VALUES new, mnew\
20 if DELETING

d* moid=YYi=[getLabel{Mi,old)
21* \îpr{old.X') AND pF(old.KLxmold)
22 DELETE FROM FC.G-KL AS G WHERE G.(f>G=old.<f>G;

3.4 Performance Evaluation

This subsection presents a benchmark comparing the SWMP approach with
triggered pull-based maintenance (cf., e.g., [137]). The benchmark descrip-
tion is preceded by a brief description of the SMWP prototype.

3.4.1 Overview of the SMWP Prototype

We implemented a prototype of the SMWP approach on top of Oracle9i DBS
for storing and maintaining data in fragment classes as well as metadata de-
scribing frag-mentation schémas and page schémas. The prototype provides
a generic framework in that it can be used with arbitrary relations, frag-
mentation schémas, and page schémas. Currently pages are stored in the file
system, however the modular architecture allows to change the page storage
system, e.g., using an XML database. Generated pages can be viewed with
an arbitrary Web-browser that is capable of formatting XML documents by
the means of CSS [146] or XSLT [151]. Processing XML is carried out by
Java, which is loaded into and executed inside the DBS, and based solely on
SAX [111] in order to minimize memory needs, which lead to performance
problems when using DOM [164] in an earlier prototype. Employed tools
are Oracle's XDK [121] (its XML parser and XSQL) and Apache's Xalan
[62], which is used for serializing documents from SAX event streams, be-
cause to the best of our knowledge XDK does not support this functionality.

70 3. SMWP: FROM THEORY TO PRACTICE

A modular architecture allows to change the employed XML tools to more
efficient ones as they become available. The prototype is available on the
Web2 for download.

Pages of a page class P<K> are pre-generated as follows: By reading
the page content schema (e.g., Figure 7 in [133]) the foundation fragment
class F<K> as well as the other mapped fragment classes are determined.
For each fragment f<k> of the foundation fragment class a page pjk ,̂ is
generated. The content of a page is generated by read-ing the fragments
through SQL queries and transforming the queries' results into an XML
document (e.g., see Figure 10 for a sample document) according to the Page
Content DTD (see Figure 9 in [133]).

Active behavior for maintaining fragment classes and page classes as de-
scribed by the algorithms in Subsection 3.2 is implemented using PL/SQL
database triggers which propagate a modification of a fragment class to
dependent fragment classes and affected page classes. An incremental mod-
ification of a page that is affected by a fragment modification is carried out
by a SAX filter. The affected page is parsed by a SAX parser, which gener-
ates events for each recognized XML element. The filter listens to the event
stream and passes events to Xalan's SAX Serializer [62], which constructs
an XML document from its incoming event stream. If an event concerns an
element that is to be modified, the filter modifies the event before passing
it on. The original page is replaced with the newly constructed one after
parsing, thus reflecting the fragment modification.

For benchmarking the triggered pull-based approach, we extended the
prototype by a simple mechanism that invalidates "dirty" web pages by
inspecting modifications on relations.

3.4.2 Benchmark Architecture

The benchmark setting consisted of 28 fragment classes, 10 page classes
(each com-prising up to 7 fragment classes), and 19,600 pages with page
sizes between 2kB and 500kB. The Oracle database operates on an Ultra-
60 machine (UltraSPARC-II 360MHz processor, 512MB of RAM) running
Solaris 7.

The architecture of our benchmark is depicted in Figure 3.4. A modi-
fication of a relation in the database (i.e., inserting, updating, or deleting
a tuple) causes corresponding modifications of affected pages. We bench-
marked three approaches for maintaining pre-generated web pages (cf. [133],
Section 4.3):

(1) Pre-generation of web pages, using for maintenance

a) incremental push-based data delivery via fragments ("core
SMWP")

2at http://www.dke.jku.at/smwp/

3.4 PERFORMANCE EVALUATION 71

-Update on relation Fragments updated -1 Pages updated-i

Relations I Fragments

Maintenance approaches:
(la) incremental push-based, tm(push)

(lb) mixed (triggered "pull of fragments"), tm(m,x)

(2) triggered pull-based, tm(pull)

_ push (of relation/
fragment modifications)

••> pull (of relations/fragments)

Figure 3.4: Benchmark Architecture

b) a mixed approach in which triggers initiate complete re-
generation of "dirty" web pages by pulling data from fragments
(referred to as "triggered pull of fragments")

(2) triggered pull-based data delivery with complete regeneration of
"dirty" web pages from base relations like [49], [99], and [137]. We
have chosen to benchmark this approach with respect to SMWP, rep-
resented by options (1) a) and b). We did not benchmark the "on
the fly generation" approach mentioned in [133] (Section 4.3), because
its running time equals that one of the triggered pull-based approach.
Both approaches differ only in whether page generation is triggered by
a modification of a fragment or by a user's request respectively.

For comparing the running time of the different page maintenance ap-
proaches we are interested mainly in maintenance time tm

3, which denotes
the time needed for modifying affected pages once a base relation has been
modified. Dependent on the employed maintenance approach, tm comprises
the time needed for maintaining fragments (not effective in the case of trig-
gered pull-based maintenance), the time needed for retrieving data from
the database (not effective in the case of incremental push-based mainte-
nance), and the time needed to modify affected pages accordingly. As tm

3An additional lower index put in brackets is used to distinguish between different
maintenance approaches: "push" for incremental push-based, "mix" for mixed, and "pull"
for triggered pull-based maintenance, e.g. £m(pun) or tm(miXed)-

72 3. SMWP: FROM THEORY TO PRACTICE

does not include update time of relations, the benchmark times of the trig-
gered pull-based approach basically coincide with the times needed for on
the fly generation of a web page.

3.4.3 Benchmark Goal and Expectations

The goal of the benchmark was to compare the maintenance time of the core
SMWP approach against other page maintenance approaches. We expected
the core SMWP approach to outperform triggered pull-based maintenance or
on the fly generation, as incremental propagation of changes to web pages via
fragments does not involve complex queries and complete re-constructions
of web pages. This expectation was nourished by Sindoni, who determined
page generation to be the main cost factor in his approach, and Yagoub et al.
[170], who experienced that retrieving web page content from the database
takes up to 90% of the maintenance time.

The rationale behind considering the mixed approach was as follows:
On the one hand, queries retrieving web page content are very simple (they
just select all tuples from the according fragments) reducing query time
compared to the triggered pull-based approach. On the other hand, parsing
existing web pages for incremental modification might be more costly than
simply re-generating the page from its fragments.

3.4.4 Benchmark Results

Figure 3.5 presents total maintenance times for a single page class with
pages of different size . The page content schema of this page class is com-
posed of 7 fragment classes which we experienced to be a typical number of
fragment classes according to the common design rule "seven plus or minus
two". To achieve representative results, each measurement point depicts the
average of the maintenance times of a single page due to repeated changes
to a base' relation. Similar measurements with other page classes have been
undertaken and show similar results: The graph (interpolation line) for in-
cremental push-based maintenance re-mains identical, but the graphs for
mixed and triggered pull-based maintenance vary in offset and gradient, al-
though they never meet. Due to these variations, the intersection point of
the graphs for incremental push-based and mixed maintenance varies be-
tween 5kB and 50kB, while the graphs for the triggered pull-based and the
incremental push-based approach never meet.

Further measurements have shown that with decreasing database cache
hit ratio the graphs for mixed and triggered pull-based maintenance increase
in offset and gradient. Also, the intersection point between the graphs of
their maintenance times moves, with respect to the graphs in Figure 3.5,
towards larger page sizes (such as 250kB) with increased database load.

3.4 PERFORMANCE EVALUATION 73

O mixed

• incremental push

A triggered pull

5000 10000 15000 20000 25000 30000 35000 40000

Page Size [byte]

Figure 3.5: Maintenance Time

The benchmark results carried out for a single page class met our ex-
pectations. The incremental push-based (core SMWP) approach generally
outperformed the other approaches. In the case of large web pages and high
database cache hit ratios the mixed approach may be the better choice, be-
cause parsing a larger page by SAX can take longer than re-generating the
page from fragments.

The advantage of incremental push-based and, also, mixed maintenance
over triggered pull-based maintenance increases when more than one page
is affected by a modification of a relation, since fragments need to be only
modified once. With each additional affected page the graph for triggered
pull-based maintenance moves, with respect to the graphs in Figure3.5, fur-
ther up the y-axis than the graphs of the other approaches do.

A major goal of the SMWP approach was to come up with a declarative
design architecture that simplifies the mapping between database entities
and web pages and, thus, reduces design and maintenance complexity of
pre-generated web pages. The competitive performance further justifies the
use of the core SMWP approach. Should a particular application face per-
formance problems with the core SMWP approach, one can flexibly switch
to other page generation options as described in [133] (Section 4.3).

Part II

Consistency within Data on
the Web

75

Chapter 4

Active XML Schema (AXS)

Contents

4.1 Active Extension of XML Schema 78
4.1.1 Passive Behavior 79
4.1.2 Event Types and Event Classes 81
4.1.3 Import and Export of Event Classes 86
4.1.4 Rules 87

4.2 Advanced Concepts 90
4.2.1 Event Timestamps 90
4.2.2 Scheduling Events 92
4.2.3 Composite and Logical Events 92
4.2.4 Exception Rules 98

4.3 Distributed Events 98
4.3.1 Causal and Temporal Order 99
4.3.2 Time Service Levels 102
4.3.3 Ordering Distributed Events 104

4.4 Managing Active XML Schemas 106
4.4.1 Reactive Service 107
4.4.2 Communication Transparency 108
4.4.3 Event Source Transparency 108

The chapter presents the basic Active XML Schema (AXS) approach.
More advanced topics regarding the AXS approach are discussed in the
following Chapters 5 and 6.

First, basic concepts of provided active behavior are presented in Sec-
tion 4.1. They comprise event types, event classes, import and export of
events, and rules. Second, advanced concepts of AXS are discussed in Sec-
tion 4.2, comprising timestamping of events, scheduling events, composite

77

78 4. ACTIVE XML SCHEMA (AXS)

and logical event classes, and exception rules. Third, the problem of defin-
ing an order on distributed events caused by possibly unsynchronized clocks
in distributed environments and how it is dealt with in AXS is shown in
Section 4.3. Fourth, Section 4.4 concludes the chapter by discussing briefly
how active XML Schemas can be managed.

4.1 Active Extension of XML Schema

Adhering to an object-oriented approach, XML Schemas are enriched with
additional components to provide for active and passive behavior of XML
documents. While several schema languages have been proposed recently
(e.g., [118, 89]) to replace XML 1.0 Document Type Definitions [147], we
use XML Schema [157, 158].

An active XML Schema defines a distinguished global complex type, the
active document type, that defines the structure and behavior of its instance
documents. This is done by enriching a global complex type as defined by
XML Schema with the definition and implementation of operations (i.e.,
passive behavior), with a set of definitions of event types and event classes,
with a set of import and export statements defining the publication and
subscription of event classes, and with a set of rules (i.e., active behavior).

To assure interoperability with legacy applications (i.e., applications that
are not capable of interpreting active XML Schemas) the enrichments are
transparent to those applications. Transparency is obtained by enriching
complex type definitions via annotations that hold data defining active and
passive behavior. XML schémas are instances of the XML Schema schema
for XML Schemas (i.e., the metaschema [157]). To be able to validate
an active XML Schema with a conventional XML Schema validator, this
metaschema is enriched with metatype definitions for active and passive be-
havior, constituting the Active XML Metaschema. Like active XML schémas
are instances of the active XML metaschema, active XML documents are
instances of active XML schémas. They comprise, aside of static data, data
representing events as well as subscriptions. These additions belong to a
separate namespace, which is referenced by namespace-prefix act: in this
chapter.

Along with the description of Active XML Schema concepts we repeat-
edly formalize the according part of the metaschema by an UML class dia-
gram showing the contents of the dedicated UML package. The intention is
to clarify details and to provide a concise representation of the metaschema.
The datatypes of attributes are those defined by XML Schema Datatypes.
For brevity we omit the namespace name when referring to a type, e.g., in-
stead of xs:QName we write QName. The implementation of the metaschema
in XML is discussed in Chapter 6.

In the examples for active XML Schemas throughout the chapter we use

4.1 ACTIVE EXTENSION OF XML SCHEMA 79

two notation to depict active XML Schemas: UML and XML. First, we use
an extended UML [130] notation. This form of presentation is favored over
object diagrams that model instances of the metaschema for conciseness.
It is necessary to extend UML to model Active XML Schema concepts not
originally present in UML. We introduce new compartments that an UML
class can feature, and tag each compartment by a letter to reflect its se-
mantics. While we do not use the compartments for structural attributes
in the thesis, we tag the operation compartment by "O". The newly intro-
duced event class compartment is tagged by"E", the exported event class
compartment by "Î", the imported event class compartment by "!", and
the rule compartment by "R". Second, XML snippets show the serialization
of the active XML Schema examples as part of XML Schema documents. In
these, unprefixed elements are in the default namespace of the Active XML
Metaschema1, elements prefixed actf are in the namespace of the Active
XML Framework2 (cf. Section 6.6).

The metaschema for active document types is depicted in Figure 4.1,
which shows package axs. It depicts active document type ActiveDocTp
specifying definitions and implementations of operations by psv::Interface
and psv::lmplementation, event types by evts::EventType, event classes by
evts::EventClass, and rules by rule::Rule. Regarding the import and export
of event classes, ixe::Proxy is the only metaschema class of package ixe that
is referenced in package axs, the other necessary classes are derived from
evts::EventType and evts::EventClass. For detailed descriptions of these con-
cepts and the metaschema packages psv, evts, ixe, rule, and cle, see the
following sections. An active document type has a name, a targetNamespace
similar to an XML schema, and import/include relationships to other active
document types, which have the same semantics as import/include relation-
ships in XML Schema. Moreover, class NamespacePrefix represents declared
namespace prefixes that are used in defining the active document type, and
NativeCode is an auxiliary datatype which describes an expression or source
code in another, native language such as an XQuery expression or Java code.
NativeCode is used in other packages.

In the following, we describe the basic behavioral components of Active
XML Schema.

4.1.1 Passive Behavior

So far passive behavior for XML documents is specified procedurally, i.e.
separately from the data, falling behind the prevailing object-oriented par-
adigm that integrates structure with behavior. This is the case with DOM,
SAX, or XSLT [150]. However, XML databinding can be utilized to narrow
the gap between definition of data and behavior. In particular Sun's JAXB

'which is http://big.tuwien.ac.at/axs/metaschema/l .0
2which is http://big.tuwien.ac.at/axs/framework/l.O

80 4. ACTIVE XML SCHEMA (AXS)

psv:: Interface [_

psv::Implementation|_

{abstract}
evts::EventType

I evts::EventClass

I ixe : : Proxy I

rule:: Rule

defines declares

ActiveDocTp
name: QName
targetNamespace: anyURI

* < /defines

imports»

includes»

NamespacePrefix
prefix: NCName
namespace: anyURI

«datatype»
NativeCode

lang: anyURI
code: String

Figure 4.1: Metaschema for Active XML Schema (Package axs)

[139] can be used to define a mapping from XML to Java classes, behavior
can be added by extending these classes.

Whereas XML databinding does not allow to integrate the definition of
data and behavior, active XML Schemas define operations at XML docu-
ment types in an object-oriented manner. They enrich XML types, which
before described only structure, with passive behavior. Interfaces and im-
plementations of operations are separated as in common practice in object
oriented design.

In this chapter, implementations are illustrated by XSLT templates,
which can access an operation's parameters via variables. They are, be-
fore being applied to an active XML document, embedded into a default
stylesheet that performs a carbon copy (they override the default stylesheet's
templates). The transformation's output document replaces the original ac-
tive XML document, thus performing the modification as described by the
operation's templates.

The metaschema for passive behavior is depicted in Figure 4.2, which
shows package psv. An active document type may define several interfaces
(class Interface) and implementations (class Implementation), where each im-
plementation realizes a single interface, which is possibly defined by a differ-
ent active document type. As in object-oriented programming languages, an
interface defines a set of operations (class Operation), where each of them is
described by its name, parameters (attribute params of datatype ParamTp),
and return type. For every operation, up to two operation event types can
be defined (see Subsection 4.1.2). Operations defined by interfaces have ac-
cording implementations (class Operationlmpl), an implementation is obliged
to implement all operations defined by its interface (expressed by the con-
straint in the figure's bottom left).

O Example 34- A job agency provides an active XML Schema defining
active document type j:JobAnnounce and a document academicJobs.xml hav-
ing that type, which comprises a list of current job offers (cf. Figure 4.3). A
new job offer is announced by the invocation of operation announce(j:Job),

4.1 ACTIVE EXTENSION OF XML SCHEMA 81

axs::ActiveDocTp|
4

1

defines T

*

n

defines •

Interface
name: QName

i
1

*

defines»-
•

1 *

implements A

Implementation

name: QName
defines» *

• —
{Implementation.Interface.Operation equals

îvts: :OperationEvtTp

0..2

1
for •

Operation

paramsf*]: ParamTp
returnType: QName

i
1

*

>

implements A

Operationlmpl

code:
axs::NativeCode

«datatype»

name: NCName
type: QName

Figure 4.2: Metaschema for Passive Behavior (Package psv)

which adds a new job offer at the end of the list. The part of the active XML
Schema document representing document type j:JobAnnounce that defines
the interface of operation announce(j:Job) is depicted in snippet la. The
operation's implementation with XSLT is depicted in snippet lb. The type
or object a snippet is part of, is represented by references to snippets in the
extended UML model.

4.1.2 Event Types and Event Classes

Events are happenings of interest to a document. They are collected into
event classes and are stored with documents as "first class XML elements"
as any other XML element. Each event class has a member type that defines
the structure of its member events.

Events can be distinguished into several event categories, which are:
mutation events, operation events, calendar events, abstract events, and
imported events.

• Operation events reflect the execution of an operation.

• Mutation events reflect changes to XML documents as according to
the DOM Level 2 Event Module Specification. They are relevant in
particular when a document is manipulated by means of legacy ap-
plications and not by predefined operations. Because the mutation
events provided by the DOM Event Module may be too fine-grained
fine-grained for directly defining rules on them, an approach has been
developed to combine these events to so called composite mutation
events, or short composite events (see Chapter 5).

CO

X

<
H
X
ü

CO

X

o

<

j:JobAnnounce

announce
announce(j:Job)

Jobs.xsd

j:JobAnnounce
E I announce

academicJobs.xml

Legend:

/ A \ snippet A
, 'i reference to

i. A\ snippet A

<interface name='j:JobAnnounce'>
<operationlntf name='announce'>

<param name='job' type='j:Job'/>
<return type='void'/>

</operationIntf>
_</interface>

•«implementation name='j:JobÄnnounceImpr ..
<operationlmpl>

<operationRef operationNm='announce'>
<parameter name='job' type='j:Job'/>

</operationRef>
<codelang='http://www.w3.org/1999/XSL/.

<xsl:template match='j:currenUobOffers'>
<xsl:copy-of select='j:job'/>
<xsl:copy-of select='$job'/>

</xsl:template>
</code>

</operationImpl>
</implementat]on>

'>

<actf:staticDocument>
<j:currenUobOffers>

<j:job id='jOOl'>
<j:field>CS<j:field>
<j:title>Application Engineer</j:title>
<j:appDeadline>2001-12-21</j:appDeadline>

<eventClass name='announce'..
hasMemberType='j:TExecAnnounceEvtTp'/>

</j:currenUobOfFers>
</actf:staticDocument>
<j:announce>

<actf:event id='el71' status='occured'>
<actf:occurrenceTime pt='2004-05-01T12: ..'/>
<actf:return xsi:nil='true'/>
<j:job id='j2001-12-01_18'>

<j:field>CS</j:field>
<j:title>Database Administrator</j:title>
<j:appDeadline>2002-01-31</j:appDeadline>

</actf:event> ..
</j:announce>

Figure 4.3: Operations and Event Classes at Schema and Instance Layer

00

4.1 ACTIVE EXTENSION OF XML SCHEMA 83

• Calendar events constitute past, current, or future calendar entries.

• Abstract events comprise any other event explicitly raised or scheduled
by users or rules.

• Imported events wrap remote events and are discussed in the next
subsection.

Event types form a type hierarchy. The hierarchy at the metaschema
layer (M2) is depicted in Figure 4.4 and is described in detail later in this
section. Instances of the metaschema layer represent event types at the
schema layer (Ml). Instances of event types at Ml represent occurred events.
Event types at Ml form a type hierarchy which is not shown for space
limitations. Each event type at Ml defines various parameters reflecting
the environmental setting in which it occurs. E.g., an operation event type
will provide a parameter for each of the operation's parameters. The root
event type defines the lowest common denominator of parameters (such as
an identifier and an occurrence timestamp). For examples of event types at
Ml see Subsection 6.3.3 and Section 6.6.

An event class is either a basic event class or a queried event class. The
extension of a basic event class is defined by collecting every detected event
of its member type. The extension of a queried event class is defined by a
query over other event classes. A queried event class is either a composite
event class or a logical event class which are discussed in Subsection 4.2.3.

Events are stored as "first class elements". As such they are part of a
document and are thus persistent. This is different to most active database
systems, whose events have a life span ending with the transaction in which
they occurred. The extensions of all event classes of a document reflect the
document's event history. Rules can query event classes and, thus, react
according to the event history reflecting the document's past as well as the
documents future as determined by scheduled events.

Event classes are modelled explicitly at the schema layer with document
types and define the collections of events that are of interest at the instance
layer. When an event class is defined with a document type, each document
instance of that document type will maintain its extension of the event class.

The metaschema for event types and event classes is depicted in Fig-
ure 4.4, which shows package evts. An active document type defines several
event types and event classes, represented by instances of classes EventType
and EventClass respectively. Every event class has a name (attribute name),
may be exported (indicated by attribute exported), and has an event type
as its member type (association hasMemberType). An event class's name
must be unique within all event classes of an active document type. Class
EventType is the root of the type hierarchy of event types at the metaschema
layer. Its name (attribute name) must be unique like the name of an event
class. Its subclasses reflect the event categories mentioned above:

84 4. ACTIVE XML SCHEMA (AXS)

• Operation events are represented by the operation event type, Oper-
ationEvtTp. For a single operation (class psv::Operation) up to two
operation event types can be defined per active document type, one
for events that occur before and one for events that occur after the
execution of the operation.

• Mutation events are represented by the mutation event type, Muta-
tionEvtTp. Events of a mutation event type occur in a certain part
of the document defined by the event type's path type (attribute
pathTp). Subclass PrimitiveMutEvtTp describes so called primitive
mutation events, which reflect modifications of an XML document's
contents, e.g., as defined by the DOM Event Module, while subclass
CompositeMutEvtTp represents composite mutation events, which are
detected according to the declarative specification of the accompanying
composite event class. For details on composite events see Chapter 5,
for details on composite event classes see Subsection 4.2.3.

• Calendar events are represented by the calendar event type, Calen-
darEvtTp. Calendar events can be either periodical (class Periodic-
CalEvtTp), meaning that they occur between a start time and an end
time every given interval, or absolute (class AbsoluteCalEvtTp) mean-
ing that the event occurs at a single point in time. Undefined calendar
event types (class UndefinedCalEvtTp) are special in that their events
are not specified at the schema layer. Instead, absolute events can
be raised in event classes having this member type, e.g., by a rule's
actions. Special control events, which again can be raised, e.g., by a
rule's action, allow to initiate and cancel periodic events that occur in
such event classes.

• Abstract events are represented by the abstract event type, Ab-
stractEvtTp. The serialization of events of an abstract event type
must accord to the schema defined in attribute instanceSpec which is
expressed using the schema language identified by instanceSpec.lang.

• Finally, imported events are represented by the imported event type,
ixe::lmportedEvtTp. For details see (the following) Subsection 4.1.3
and Figure 4.6 therein.

O Example 35. Figure 4.3 shows the definition of event class announce
with document type j:JobAnnounce, collecting all announce operation events
representing invocations of operation announce (cf. snippet 2), and the ma-
terialization of this event class in document instance acadamicJobs.xml (cf.
snippet 3).

Storing occurred events with documents as first class XML elements
causes the documents to grow in size with modifications to them. To control

f ixs: :ActiveDocTp|

-«defines 1 | J 1 defines»

psv::Operation

for

*
{abstract}
EventType

name: QName

^ hasMember
1 Type *

1*
EventClass
name: QName
exported: boolean

{id(ActiveDocTp,name)} {id(ActiveDocTp,name)}

OperationEvtTp
timeSpec: TmMod

{abstract}
MutationEvtTp

pathTp: String

{abstract}
CalendarEvtTp

AbstractEvtTp
instanceSpec:

axs::NativeCode

op: MutationOp
timeSpec: TmSpec

PrimitiveMutEvtTp | CompositeMutEvtfp]

{name = op '(' pathTp ')'}

1
UndefinedCalEvtTp
kind: TmPeriod

PeriodicCalEvtTp
start: dateTime
end: dateTime
interval: duration

1
AbsoluteCalEvtTp
at: dateTime

>
o
a
Hx
H
H
z
œ
O
2
O
X

o
EC

«enumeration*
TmSpec

before
after

«enumeration*
MutationOp

insert
update
delete
any

«enumeration»
TmPeriod

absolute
periodic

Figure 4.4: Metaschema for Event Types and Event Classes (Package evts)

oo

86 4. ACTIVE XML SCHEMA (AXS)

a document's size, one can express size constraints on event classes and
the document as a whole, which are enforced by the reactive service the
document is stored at (see Subsection 4.4.1). If the constraints on event
classes are satisfied, but the one on the document is not, the reactive service
enforces the latter constraint by following some procedure to reduce the size
of event classes. A size constraint on an event class can be specified in
terms of maximum kilobytes, number of events, or age. The latter can only
be enforced if the location provides time service level tsl-2 or tsl-3. A size
constraint on a document can be specified in terms of maximum kilobytes.

4.1.3 Import and Export of Event Classes

Not only events that occur at a document locally may be of interest, but also
events that occur in another document. Prom a document's point of view,
one can distinguish between local events and remote events. A local event
happens at the document itself; a remote event happens at another, remote,
document. To be able to react to remote events locally, remote event classes
can be imported if they are exported by the document type of the remote
document. In such a case, a local event, referred to as imported event,
wraps a copy of the remote event. Replication ensures that the imported
event is available independently of the remote document, which is especially
of importance if the remote document is not under control of the owner of
the local document, a common setting in the Web environment.

Documents will often import several event classes from the same doc-
ument. Modelling import relationships between documents at the schema
level can support such a setting by separating the establishment of an im-
port relationship between document types from the definition of which event
classes are imported in that relationship. This separation is achieved by
defining a typed document proxy at the schema level that acts as an in-
termediary between the importing document type, which defines the proxy,
and a document of the proxy's type. A proxy's value specifies the document
the event classes are imported from, it is bound at the instance level. Thus,
to import an event class from another document the following steps are re-
quired: (1) at the schema level: (a) export the event class at the exporting
document type, (b) define a document proxy at the importing document
type, and (c) import the event class at the importing document type, and
(2) at the instance level: at the importing document, bind the document
proxy to the URI of a particular document,

O Example 36. Figure 4.5 depicts an import scenario. As a courtesy to
its staff and students, a faculty posts relevant job offers supplied by a job
agency at its document of active document type u:Faculty. To provide others
access to newly announced jobs via an event class, the job agency exports
event class announce (cf. snippet 1). Active document type u:Faculty imports
this event class, using proxy jobSite to refer to the document from which the

4.1 ACTIVE EXTENSION OF XML SCHEMA 87

remote event class is imported (cf. snippet 2). Its value is bound in instance
science.xml to document academicJobs.xml (cf. snippet 4). Announced job
offers are now locally available within a faculty's page in the form of events.

Often a document needs to import event classes from several documents
of the same document type, which corresponds to a "l:n" relationship in
conceptual modelling terms, while we considered only "1:1" relationships so
far. In such a case, a set proxy is defined at the schema level and bound
to multiple URIs at the instance level. Imported event classes of the same
kind are collected into an event class family. When querying event class
families, member qualifiers are used for selecting specific event classes. An
unqualified reference to an event class family refers to the union of all events
of all family members.

O Example 37. A faculty comprises several departments, each one
featuring its own document of type u: Department. A publication is added to
such a document by invoking operation published(u:Pub). A faculty wishes
to get notified whenever a publication is added to one of its departments'
documents. Thus it imports event class family published, using set proxy
depts to refer to its departments' documents, as depicted in Figure 4.10.

The metaschema for import and export of event classes is split over
two figures. First, since any event class can be exported, the part of the
metaschema dealing with the export of events is depicted in Figure 4.4. An
event class is exported, if the flag EventClass.exported is set to true (afore-
mentioned step l.a). Second, the part of the metaschema that deals with the
import of events is depicted in Figure 4.6. A proxy is defined by instantiating
class Proxy (step l.b). A proxy has a name, a type, which specifies whether
it is a single or set proxy (enumeration ProxyTp), and acts as a placeholder
for a specific document type. The import of an event class (step l.c) is mod-
elled by instantiating class ImportedEvtCs, which is a special event class. Its
member type is an imported event type (class ImportedEvtTp), which wraps
the remote event type. A filter expression (attribute filterExpr) allows to fil-
ter events based on their content. This can be used to minimize event traffic
between documents, if the filter is evaluated at the publishing document,
and/or to reduce the amount of events that are stored in the event history.
The binding of a proxy to a concrete document takes place at the instance
level and has thus no effects on the metaschema.

4.1.4 Rules

Active behavior is defined by ECA rules with a document type. Each rule
is defined upon an event class, and consists of a condition and an action.
If an event of the event class occurs, all rules defined on that event class

CO

X

a
K
Ü

CO

>

ü

•<*
j:JobAnnounce '--'

0
announce
announce(j:Job)

u:

E
0
R

Faculty '-r.V

(j:JobAnnounce) jobSite
iobSite.announce
postJob

jiosUobü:Job)
ON jobSite.announce
IF job's field is of

interest
DO post job to

document
Jobs.xsd Faculty.xsd

i:JobAnnounce

•T* I announce
academicJobs.xml

u:Facultv
r 4 i

jobSite=
'academicJobs.xml'

iobSite.announce
sdenee.xml

<eventClass name='j:announce' exported='true'..

<proxy name='jobSite' forDocType='j:JobAnnounce'..
<importedEventClassname='jobSite.announce'

rernqteEytÇsNm=|annpunçe^ .̂ l> A
<rule definedOn='jobSite.announce' name='announceJobRule'>

<condition lang='http://www.w3.org/1999/XSL/Transform'>
<xsl:value-of select="$evt//j:job

rj:field=$staticDoc//u:fieldOfInterest]"/>
</condition>
<action lang='http://www.w3.org/1999/XSL/Transform'>

<invokeOperation name='postJob'>
<parameter name='job'>

<xsl:value-of select='$cond'/>
</parameter>

</invokeOperation>
</action>

</rule>

<actf:proxyBinding proxy='jobSite' to='academicJobs.xmr/>

Figure 4.5: Export and Import of Event Classes and Rules

00
oo

4.1 ACTIVE EXTENSION OF XML SCHEMA 89

/defines ••

I axs::ActiveDocTp|-L. •* forDocTp

definesT

Proxy
name: QName
type: ProxyTp

•* remoteEvtCs

| evts::EventClass

hasMember
Type

K\—
ImportedEvtCs
filterExpr:

{abstract}
evts::EventType

uses»

hasMember
Type

<^1 | ImportedEvtTp

•* remoteEventType

«enumeration»
ProxyTp

single
set

Figure 4.6: Metaschema for Im-/Export of Event Classes (Package ixe)

are triggered. After a rule is triggered, its condition is evaluated, and if the
condition applies, the action of the rule is executed.

To ensure loosely coupling between documents, rules are restricted to
have a local scope, which means that event class, condition, and action may
refer only to the document with whose document type the rule is denned.
This corresponds to the "Law of Demeter" [103], which suggests a restricted
scope for type's operations in object-oriented design and is generally con-
sidered beneficial. If a rule shall be triggered upon events of a remote event
class, the event class has to be imported. If a rule shall be triggered upon
rule execution in remote documents, an event must be defined upon the
rule's action, exported to and imported by the other document, which can
react to this imported event by a local rule. Furthermore, conditions can
only access data from the local document, in order to be completely indepen-
dent from other documents, and actions of rules may only invoke operations
that modify data of the local document.

Conditions are queries on the static data and the event history of a
document. The latter two are available to the query as bindings staticDoc
and evtHistory respectively. The event that triggered the rule is available
as binding evt. Conditions apply when the query's result is not empty.
We utilize XSLT for the definition of conditions because of the widespread
support and knowledge of XSLT. Alternatively, XQuery can be used as well,
if XQuery queries are translated to XSLT by an XQuery-to-XSLT translator
[102].

Actions can invoke operations on the local document and raise or sched-
ule events in a local event class (scheduling events is described in Subsec-

90 4. ACTIVE XML SCHEMA (AXS)

tion 4.2.2). As is the case for conditions, the document's data, its event
history, and the triggering event are available to the action as bindings.
Moreover the result of the condition evaluation is available as binding cond.

Rules denned at the schema level with document types may need to
react specifically depending on the document instance they are triggered at.
Document-specific reactions can be achieved without introducing explicit
rule parameters by specifying rule conditions that query the document's data
the rule is triggered at. It is, however, reasonable from a design perspective,
to group elements which are employed to implicitly parameterize rules into
a separate part of the document.

The metaschema for rules is depicted in Figure 4.7, which shows package
rule. A rule (class Rule) has a name and priority, and is defined upon a single
event class. No two rules may have the same priority, rules with higher
priority are executed before rules with lower priority. A rule comprises a
condition (class Condition) and an action (class Action). Both are specified
(attribute spec) using some language (identified by attribute language).

O Example 38. Figure 4.5 shows the active document type for faculties,
which defines rule announceJobRule on the imported event class announce
(cf. snippet 3). Its condition tests whether the job's field is of interest
to the specific faculty by querying elements fieldOflnterest, whose content is,
e.g., 'CS' (computer science) and 'EE' (electrical engineering) for the science
faculty science.xmI. If the condition applies, the new job is posted to the
faculty's document by invoking operation postJob(j:Job).

4.2 Advanced Concepts

In this section, we motivate and discuss advanced concepts of Active XML
Schema: event timestamps, scheduling events, composite and logical events,
and exception rules.

4.2.1 Event Times tamps

When an event occurs (at its occurrence time) that is stored in an exported
event class, it is subsequently delivered to subscribing documents. Such a
communication is characterized by two timestamps, the publication time,
which records the time when the remote document publishes the event, and
the delivery time, which records the time the event is delivered. These
timestamps may be of different importance to different applications, like
the time of the post mark (corresponding to publication time) is relevant
to meet the deadline of a postal vote or the time of delivery to meet an
application deadline.

To comply with these three notions of timestamps, every local event is
described by an occurrence time while every imported event is described by

comprises

axs::ActiveDocfpV /d e f i n e s > - *

defines T

Rule
name: QName
priority: int

evts::EventClass~l 1

{id(name)}

d e f i n e d O n

comprises

Condition
spec:

axs::NativeCode

Action
spec:

axs::NativeCode

|

o
a
Q
O
z
o
T3

Figure 4.7: Metaschema for Rules (Package rule)

92 4. ACTIVE XML SCHEMA (AXS)

all three timestamps. The occurrence time of an imported event reflects the
time the event is stored in the imported event class opposed to the other
two timestamps which describe the communication. An example given later
shows how the distinction between publication time and delivery time can
be used in an exception rule.

Timestamps are defined with event types at the schema layer, as already
mentioned in Subsection 4.1.2. How this can be done is discussed in Chap-
ter 6 in detail, which briefly describes how it has been done in Section 6.6.
As will be shown in more detail in Subsection 4.3.2, a timestamp comprises
several components, recording, e.g., a logical clock count and a physical
clock count.

4.2.2 Scheduling Events

Comprehensive support for web content management requires not only to
handle event occurrences that were caused by modifications to the document
or were explicitly raised, but also to schedule events in the future. A typical
application is to schedule an event in the future to trigger removal of then
outdated content. With active XML Schemas, events can be scheduled by
operations or rules. Such a scheduled event has an occurrence time in the
future.

O Example 39. To remove a job offer from a faculty's document when
its application deadline is over, rule scheduleJobRemovalRule is defined on
event class postJob, which collects invocations of operation postJob(j:Job)
(as depicted in Figure 4.8). The rule schedules the removal of a job offer by
adding an event that is scheduled to occur when the application deadline
ends to event class jobExpired. Rule removeJobRule defined on event class
jobExpired removes an expired job offer, whose identifier was bound to the
event, by invoking operation unpostJob(xs:ID).

4.2.3 Composi te and Logical Events

Active database system provide operational languages for defining a com-
posite event from other events [45, 48, 67, 70, 123, 173, 175] based on their
occurrence time. E.g., sequence event C = A ; B occurs if event B occurs
after event A has occurred. As events of types A and B may occur several
times, the notion of event context has been introduced to indicate which of
these occurrences are used to detect an occurrence of C. E.g., in the "recent"
context the last occurrences of A and B are used, and in the "chronical" con-
text the i-th occurrence of A is paired with the i-th occurrence of B. Various
techniques based on Petri nets, state machines, and event graphs have been
introduced to detect composite events incrementally. E.g., in the example
of the above sequence event, an occurrence of A would start the incremental
detection of an occurrence of composite event C.

to
>

a
|

j:JobAnnounce

f'
0

announce
announce(1:Job)

Jobs.xsa

u:

E

0

R

Faculty ' ' -£ '3 i
(j:Jobs)jobSite
jobSite.announce
posUob
jobExpired
posUob(j:Job)
unpost(xs:ID)

ON jobSite.announce

ON posUob
DO schedule removal

of job in jobExpired
ON jobExpired
DO remove job from

web page
Faailty.xsd

<eventdass name='jobExpired' /
hasMemberType='u:JobExpiredEvtTp7> / \

<rule definedOn='posUob' name='scheduleJobRemovalRule'> '
< action >

<scheduleEvent in='jobExpired'>
<actf:eventxsi:type='u:JobExpiredEvtTp'>

<actf:occurrenceTime pt='{$evty/j:job/j:appDeadline}'.. /> ..
<u:jobExpired id='{$evt//j:job/@id}'/>

</actf:event>
</scheduleEvent>

</action> /
</rule> /"l

<rule definedOn='jobExpired' name='removeJobRule'>
< action >

<invokeOperation name='unpost'>
<parametername='id'>$evt/u:jobExpired/@id</parameter>

</invokeOperation>
</action> /

</rule> / 3

|
o
H
D

o
O
2
O
B
T5

Figure 4.8: Scheduling an Event

GO

94 4. ACTIVE XML SCHEMA (AXS)

Experience in modelling business rules at the conceptual level has shown
that a declarative approach for denning composite events is better suited
for end users (i.e., schema designers) than an operational approach, which
is more appropriate for database internal usage. Therefore, active XML
Schemas provide the functionality of composite events being defined by
querying a document's event history, e.g., using XQuery. Such events are
called logical events. Different to operational languages, which detect com-
posite events incrementally by observing events as they occur from the past
till "now", logical events query from the perspective of "now" the past his-
tory of events and may also query future scheduled events. Furthermore,
this approach allows to waive consumption policies, whose effect is some-
times hard to grasp for end users, especially when several contexts need to
be combined. The query approach can also cope very easily with multiple
timestamps provided by active XML Schemas, avoiding a difficult adaption
of the notion of "event context" to multiple timestamps. Finally, the goal
of having a "light-weight" approach in the web setting suggests to reuse
already available query languages rather than providing an additional com-
posite event detector and cluttering web documents with many unfinished
event detections.

Logical events are defined by logical event classes, which specify a query
over the document's event history. A logical event class can be event pre-
serving, in which case it selects members from other event classes, or event
generating, in which case its member events are newly built from other
events. The specification of a logical event class identifies next to its mem-
ber type a set of terminating event classes and participating event classes. A
logical event occurs if a member of a terminating event class occurs and the
stated query over terminating and participating event classes is satisfied.

The metaschema for logical event classes is depicted in Figure 4.9, which
shows package loev. The metaschema class representing logical event classes
is LogicalEvtCs. It is derived from the abstract class QueriedEvtCs, which
represents event classes that collect events that are derived from the event
history by defining a query (attribute querySpec) in some language (attribute
language) over the document's event history. LogicalEvtCs adds two associ-
ations, one for terminating event classes and one for participating event
classes. For each of these classes, an alias can be specified that can be used
in the query.

Depending on whether the logical event class is event preserving or gen-
erating, it may have different member types. If it is preserving, its member
type must be one of the member types out of the union of terminating and
participating event classes. In case it is event generating, its member type
can be an arbitrary subclass of evts::EventType except imported event types
and mutation event types. Events of the former are "generated" by import-
ing it from remote documents while events of the latter are "generated" by

*».

I axs::ActiveDocTp|

defines

alias: NCName alias: NCName

1.."

•* terminatingEvtCs I

•* participatingEvtCs

evts::EventClass

• /defines

]<}•

{abstract}
evts::EventType

/hasMember
'Type

{abstract}
OueriedEvtCs

querySpec:
axs::NativeCode

-I LogicalEvtCs | | CompositeMutEvtCs]

| evts::CompositeMutEvtTp|_ •* hasMemberType

{name=
hasMemberType.name}

|

o
a
Ooz
o
B
13
H
zn

Figure 4.9: Metaschema for Composite and Logical Events (Package cle)

to

96 4. ACTIVE XML SCHEMA (AXS)

composite mutation event classes, as described later in this section.

© Example 40. A faculty publishes the active researcher status of its
employed researchers at the beginning of each year, which depends on a
researcher's number of publications he/she published the year before. Each
publication is reflected by a published event that is imported by the faculty's
document from its departments' documents. The active researcher status
is determined by operation publishActResStatus(u:Researcher, xs:gYear) for a
given researcher and year. Due to failures, a published event may be delivered
after the active researcher status has already been determined, although the
event was published in time (i.e., in the year before the current year). Log-
ical event class pubDeliveredLate collects published events that should have
been considered when determining a researcher's active researcher status.
This is the case if a published event (terminating event) is delivered and a
publishActResStatus event (participating event) exists such that (1) the pub-
lishActResStatus event occurs before the published event is delivered - notice
that such a comparison is necessary, since in general a participating event
class may also contain future events -, and (2) the published event occurred
the year before and concerns a paper published by a researcher the year be-
fore, for whom the publishActResStatus operation has already been executed
for that year (cf. Figure 4.10).

Defining composite events by querying the event history, however, is
only an appropriate means of definition if the meaning of queried events is
near to the application domain, i.e., if terminating and participating event
classes collect other events than mutation events, such as operation and
calendar events. To support the detection of composite events from mutation
events, which are especially of interest when they occur in the course of
manipulations by a legacy application, a dedicated operational language
has been developed, which is presented in Chapter 5. Such events are called
composite mutation events (or short composite events).

The construction of composite mutation events is restricted so that it
does not result in the undesired properties mentioned before (in the course
of motivating logical events). First, the complexity of choosing the right
consumption policies, which are also referred to as contexts, does not apply,
because the operational language presented in this thesis introduces a new
context which is sufficient for most usage scenarios. Second, an adaption of
contexts to multiple timestamps is not an issue, since the presented opera-
tional language is intended to compose events that occur within the same
document. Finally, documents are not cluttered with unfinished event detec-
tions by waiving them when the manipulation of a document ends. Because
the operational language is intended to compose mutation events only, the
behavior described in the latter two arguments is reasonable.

The metaschema for composite event classes is depicted in Figure 4.9.
An event class for composite mutation events is represented by an instance

t o

u:Department

0
published
published(u:Pub)

u:Faculty ' " - ^
N|>

E

0

R

(u:Department*) depts
depts.published
pubDeliveredLate
publishActResStatus
publishActResStatus

(u:Researcher,xs:qYear)
ON pubDeliveredLate
DO redetermine author's

active researcher status

1

Departmentxsd Faculty.xsd

u: Department
•T* I published

compSd.xml

u:Department
I published

ee.xml

u: Department
I published

depts[cs]='compSci.xmr
depts[ee]='ee.xmr
depts[is]='is.xml'
depts.published

sclence.xml

is.xml

<logicalEventClassname='pubDeliveredLate'
hasMemberType='u:TPublishedEvtTp'>

<querySpec>
<xsl:value-of select='$p[deliveryTime/pt >

$a/occurrenceTime/pt and
act:year(publicationTime/pt)=act:currentYear()-l and
.//u:year=act:year(publicationTime/pt) and .//u:researcher=
$a//u:researcher and .//u:year=$a//u:year'/>

</querySpec>
<terminatingEvtCs name='depts.published' alias='p'/>
<participatingEvent name='publishActResStatus' alias='a'/> A

</logicalEventClass> / \ \

<rule name='redetermineÄctResRule'
definedOn='pubDeliveredLate'>

<action>
<invokeOperation name='pubActResStatus'>

<parameter name='researcher'>
<xsl:value-of select='$evt//u:researcher'/></parameter>

<parameter name='year'>
<xsl:value-of select='$evt//u:year'/></parameter>

</invokeOperation>
</action> A

/2\

>
oI
o
D
O
O
z
o
M
T3

Figure 4.10: Logical Event Class and Exception Rule

CO

98 4. ACTIVE XML SCHEMA (AXS)

of the metaschema's CompositeMutEvtCs class, the language attribute holds
the namespache of the operational language3 and the querySpec attributes
defines the according event expression. Terminating and participating event
classes could be derived from the event expression, but are not since this
information is not explicitly required in the metaschema. The event class's
member type is a mutation event type (evts::CompositeMutEvtTp), refining
the association hasMemberType inherited from class QueriedEvtCs.

4.2.4 Exception Rules

Situations that do not constitute "standard" situations during deployment
of active XML Schemas may occur. They originate in effects of an active
XML Schemas' environment. In particular extraordinary behavior in com-
municating events between documents, such as the delayed delivery of a
subscribed event, builds the ground for these situations. Exceptional sit-
uations can be anticipated in schema design and should be dealt with by
exception rules, providing a meaningful design distinction. No additional
concepts are necessary to model exception rules. They react to specific log-
ical events, which determine exceptional situations, and trigger necessary
corrections.

O Example 1^1. Figure 4.10 shows event class pubDeliveredLate, which
collects exceptional situations, i.e. published events that are delivered late.
Exception rule redetermineActResRule (cf. snippet 2) defined on pubDeliv-
eredLate reacts to the late delivery by redetermining the researcher's active
researcher status by invoking operation publishActResStatus.

4.3 Distributed Events

AXS as a distributed system is inherently different from centralized systems,
in particular, two characteristics of distributed systems affect event detec-
tion. First, each location has its own clock, potentially being incompatible
with other clocks in the system or showing a drift. Second, messages sent
over a network can be delayed depending on transmission behavior of the
sender, receiver, and the network itself. In AXS these two characteristics
make it difficult to determine whether an event ej that occurred at location
loci, denoted as eu, occurred before or after event another e%j.

This section describes the kinds of orders that are distinguished in dis-
tributed systems in general (Subsection 4.3.1), the infrastructure that sup-
ports event ordering in AXS (Subsection 4.3.2), and the orders that can
be established between events in AXS and the conditions that must apply
(Subsection 4.3.3).

3which is http://www.big.tuuien.ac.at/reseeirch/composite-events for the oper-
ational language presented in this thesis (cf. Chapter 5)

4.3 DISTRIBUTED EVENTS 99

4.3.1 Caused and Temporal Order

In AXS it may be necessary to order events when testing a rule's condition,
determining events stored in a logical event class, or forming composite
events. Remember, only those events can be accessed thus ordered by queries
that are contained in a document's event history. To make events that
occur remotely available in a document's event history additional to local
events, AXS provides for the import of event classes from remote documents.
When an event occurs in a remote event class that is imported into a local
document, the event that occurred remotely, the so-called remote event, is
sent via a message to the local document. There it is wrapped in a so-called
imported event which provides timestamps reflecting when the message was
sent (publication time), when it was received (delivery time), and when it
was stored in the document (occurrence time).

0 Example J^2. An exemplary situation of event occurrences and their
exchange between documents is depicted in Figure 4.11 as a time diagram,
where time advances from left to right. Each horizontal line represents a
document stored at a different location on the Web and each arrow represents
a sent message, i.e., the import of a remote event. For instance, event e\2
is imported by document di and is available therein as imported event e22,
which wraps the remote event eyi-

Figure 4.11: Time Diagram of Distributed Events

Between events occurring at different locations in a distributed environ-
ment only a partial order can be established, as will be described later in
more detail. Thus it may be undecidable for two events en and e2j, which
occur at different locations, whether en occurred before e^j or vice versa. In
case the order is undecidable, the events are said to have occurred concur-
rently, which is denoted as en \\ e^j- Otherwise either en happened before
e2j, denoted as en < e2j, or en happened after e2j, denoted as en > e.2y
Two events can only be determined to have occurred at the same time if
they have occurred at the same location, denoted as en = £\j- Between
events occurring at the same location a total order can be established, i.e.,
concurrent events always occur at different locations.

100 4. ACTIVE XML SCHEMA (AXS)

Events occurring at different locations can be ordered based on causality
or time. They are characterized as follows:

• Causal order reflects whether an event emi may have causally affected
the occurrence of another event enj, which is the case if knowledge
about emi is available in the document at location locn before enj
occurs therein.

• Temporal order assumes a physical clock at each location with which
the occurrence time of events is measured. Temporal order reflects
whether an event emi occurred before or after another event enj solely
by comparing their occurrence time. Temporal order assumes the
clocks at distributed locations to be synchronized.

Lamport defines causal order using logical clocks in [100]. A logical clock
means a counter that is incremented with every event occurrence. He defines
a "happened before" relation between events, denoted as "—>". The relation
satisfies the following conditions4: (1) If &m% and enj are events that occur
at the same location, i.e., m = n and emi occurs before enj, then emi —» enj.
(2) If enj is the imported event that encapsulates the remote event emj, then
emi —• enj. (3) If emi —• enjAenj —» eok then emi —* eok- Two distinct events
emi and enj occur concurrently if ->(emi —> enj V enj —> emi). The happened
before relation reflects causal order, i.e., emj —> enj reflects that em; may
have causally affected enj. Viewed differently, when looking at Figure 4.11,
an event happens before another if there exists a path from the former to
the latter.

O Example 43- For events at different locations there must exist a
path between the events to determine a causal order between them, e.g.,
ei2 —* e22, 623 —* ei4 (since e23 —> e^A A e24 —> en), and en —> 044. If a
path does not exist, the events happen concurrently, e.g., en || e2i, e2i ||
633, and e4i || e25- Two events occurring at the same location never occur
concurrently. Looking at Figure 4.11, e.g., this applies for en —* e\2 and
e 2 i —>• e25-

Furthermore, Lamport derives conditions on the local logical clocks from
the happened before relation. In [100] it is stated that the strongest rea-
sonable condition that can be derived from emj —* enj is that emi should
happen at an earlier time than enj, i.e., if emj —> enj then emi-occTime <
enj.occTime should apply (where emi.occTime denotes the occurrence time
of event emi as observed by the local logical clock at location locm). To
satisfy this condition, logical clocks at different sites are synchronized in the
course of exchanging messages between them. For details see Example 44.
Lamport's main motivation for the clock condition is for introducing a rela-
tion that establishes a total order among all events that occur distributed.

4adapted from [100], p. 559

4.3 DISTRIBUTED EVENTS 101

While a total order is not of particular interest in AXS, a side effect of
the clock condition which is of interest is that it allows for checking the
possibility of causal order simply by comparing occurrence times since if
->(emi.occTime < enj.occTime) then ->(emj —* enj) (see Subsection 4.3.3 for
details).

d2@loc2 - ë - , -, -
e 2 l e22 e 2 3 / e24\ e2S

d3@loc3 • ^ " ^ ^ 3 - ^ ^s

d4@loc4

Figure 4.12: Time Diagram with Exemplary Timestamps According to Lam-
port

0 Example 44- Figure 4.12 exemplifies Lamport's clock condition.
Since ei2 —• 022, e\2.occTime < e22-occTime must apply, thus in course of
the import of ei2 as e22 and storing it in di the clock at I0C2 is increased
from 1 to 3. Analogously, the import of eu at I0C4 as 643 causes the clock
at location 4 to be increased from 2 to 8 upon storing it in d$.

The 2g-precedence model proposed by [96] defines a temporal order on
distributed events. The model assumes synchronized physical clocks at each
location, whereby any two local clocks may have a maximum deviation of n.
A global occurrence time can then be determined by reducing the granularity
of every local clock to the global clock granularity gg, whereby gg > n must
apply. A clock's granularity refers to the duration of a single clock tick. Two
events that occur at different sites at the same time thus have timestamps
that differ at maximum one clock tick from each other, measured by global
time. Thus two events that are > 2 clock ticks apart can be temporally
ordered.

In the 2g-precedence model, the global occurrence time of an event upon
which an order is defined is determined as follows. Assuming that the ref-
erence clock's granularity gz is 1 millisecond (for presentation purposes),
precision TT, which is the maximum difference between two corresponding
ticks of any two local clocks as observed by the reference clock, is measured
in milliseconds too. For all locations a maximum granularity of local time
gi can be determined, gi = Max({^i}) (where g^ denotes local clock granu-
larity at location i). Since global clock granularity gg must be greater than
both gi and TT, gg = n * gi such that gg > TT and gg — gi < TT (if gi < n). The
global occurrence time of a remote event is its local occurrence time divided
by granularity of global time gg.

102 4. ACTIVE XML SCHEMA (AXS)

The 2g-precedence model was adapted to distributed active systems in
closed networks by [136, 172]. It is employed by various approaches, such
as EVE [71] which provides for event-driven workflow execution. It has
been refined by [104] in that the network time protocol (NTP) and global
positioning system (GPS) time servers have been used to guarantee local
clocks to be synchronized with global reference time. They define groups of
locations (called strata) where each group's clock shows a defined maximum
deviation from the reference clock (called accuracy interval). The farer a
group is located from a GPS time server, the larger is its accuracy interval.
By introducing stratas, the authors claim to have modified the 2g-precedence
model so that it can be used in loosely coupled distributed systems like the
Web, for which they claim the 2g-precedence model does not scale.

Causal and temporal order differ in focusing on orthogonal aspects of
ordering, being either causality or time. Regarding their weaknesses, causal
order lacks expressing causal relationships that are established through other
channels than the observed message passing and is less robust to long net-
work partitionings while temporal order lacks causal relationships. Both
orders have a notion of time and in both orders an event occurs before an-
other one if its timestamp is smaller than the other one's. Note, however,
that in causal order this is a necessary conditions while in temporal or-
der this is a sufficient condition. Temporal order overcomes causal order's
limitation of not representing real world time.

4.3.2 T ime Service Levels

To provide maximum flexibility, AXS provides for both causal ordering and
temporal ordering of events. This is in-line with the reasonable assumption
that not all clocks at all locations in a Web environment can be synchronized
and in-line with the expectation that not every location features a physical
clock. Providing for both kinds of order is achieved by introducing time
service levels that identify the kind of clock by which the occurrence time
of an event is measured and thereby allow to determine the kind of order
that can be established between any two events. A location determines
occurrence times of events according to a single time service level. The
levels differ in the kind of clock they feature:

• Level tsl-1: logical clock constrained by Lamport's clock condition (for
establishing causal order);

• Level tsl-2: physical clock without any synchronization (for causal
order);

• Level tsl-3: synchronized physical clock with a guaranteed maximum
deviation from a reference clock (for temporal order).

4.3 DISTRIBUTED EVENTS 103

Every time service level subsumes the functionality of clocks provided by
lower levels. Thus, a tsl-2 clock provides for unsynchronized physical time
and logical time according to tsl-1, and a tsl- 3 clock provides for synchro-
nized physical time and logical time according to tsl-1. As one can easily
see, a logical clock is provided by every time service level. The physical
clocks of tsl-2 and tsl-3 measure time with a certain granularity, depending
on the location's hardware and software. AXS defines 1 ms as the reference
time's granularity gz, because it is assumed that a smaller granularity in
an internet setting is not reasonable and because AXS is not intended for
applications that are in need of a higher granularity. Moreover many oper-
ating systems measure time in units of tens of milliseconds5. Thus, opposite
to [136, 172], granularity of local time gi may be larger than granularity of
reference time gz.

AXS provides for defining groups of synchronized clocks because it can-
not be assumed that all tsl-3 clocks are synchronized within a single precision
vr, or 7T might become large otherwise. Within a group r* any two clocks
have a maximum deviation of irri from each other as observed by the group's
reference clock gZr.. Thus two events that occur at different tsl-3 locations
can be ordered temporally only if the locations they occurred at belong to
the same group, otherwise they are ordered based on causality.

Grouping is favored over accuracy intervals as proposed in [104], be-
cause it provides for autonomously creating and maintaining groups within
controlled environments on the Web. For a brief description of [104] see Sub-
section 4.3.1. Moreover, it seems unlikely that all tsl-3 clocks on the Web
implement the protocol proposed in [104]. AXS can be extended, however,
to allow a group to use the protocol described in [104], thereby separating
the group into stratas with defined accuracy intervals and ordering events
based on these. This would avoid the drawback of grouping that a temporal
order cannot be established between events occurring at locations that are
not member of the same group.

An event's timestamp records clock counts of all clocks the location the
event occurs at provides. Having provided a logical clock by all time service
levels, an event's occurrence timestamp, denoted as e.occTime, records the
count of the logical clock, denoted as e.occTime.lt. Moreover, if the level
is tsl-2 or tsl-3, the count of the physical clock is recorded as well, denoted
as e.occTime.pt. Prom the perspective of ordering events that occur at dif-
ferent locations, ordering using tsl-2 equals tsl-1 because in both cases only
causal order can be determined using the time stamps' logical clock counts.
From the perspective of semantic expressiveness, however, tsl-2 differs sig-
nificantly from tsl-1 in that the time between two events occurring at the
same site can be determined, affecting the expressiveness of timestamps. Fi-

5E.g., cf. http : //java. sun. com/j 2se/l. 4.2/docs/api/java/lang/System. html#
currentTimeMillis()

104 4. ACTIVE XML SCHEMA (AXS)

nally, an event's timestamp records the identifier of the location it occurred
at, the time service level provided by the location, and the tsl-3 groups
the location was member of denoted as e.occTime.pid, e.occTime.tsl, and
e.occTime.gids respectively.

4.3.3 Ordering Distributed Events

Events are ordered differently depending on the locations they occur at and
the time service levels provided by these locations. If two events occur at
the same location, they can be ordered totally establishing a temporal order,
otherwise they are ordered partially. In the latter case, i.e., if two events
occur at different locations, a temporal order can be established by default
if both time service levels are tsl-3, otherwise a causal order is established.
The default order is established if operators =, >, <, and || are used when
comparing events. In addition to these operators, subscripted variants exist
that can be used to enforce causal order or temporal order (denoted by
subscripts c and t respectively, e.g., < c and <t). If one tries to enforce a
temporal order, but at least one time service level is not tsl-3, the operator
falls back and determines causal order.

First, two events emi and enj that occurred at the same location, i.e.,
where m = n, are ordered as follows:

• if emi.tsl 7̂ tsl-3

- emi < c enj iff emi.occTime.lt < enj.occTime.lt

- Cmi >c enj iff emi.occTime.lt > enj.occTime.lt

- emi =c enj iff emi.occTime.lt = enj-occTime.lt

• if emi.tsl = tsl-3

~ e-mi <t emj iff emi.occTime.pt < emj.occTime.pt

- emi >t emj iff emi.occTime.pt > emj.occTime.pt

~ emi —t emj iff emi-occTime.pt = emj.occTime.pt

Second, two events em% and enj that occurred at different locations, i.e.,
where m ^ n, are ordered as follows:

tsl-3 V emi.occTime.gids D• if
enj

Gmi-tsl
.occTime

- emi <c

^ tsl-3
.gids = 0

enj lrl emi

V enj .tsl

.occTime.lt enj .occTime.lt A emi —> enj
6Note that the first condition (emi -occTime.lt < enj .occTime.lt) is a necessary con-

dition while the second condition (emj —» enj) is a sufficient one. Thus an evaluation of
the first condition may be detected obsolete if the second evaluates to true. However, it
is expected that testing the first condition first pays off because it can be evaluated more
easily and may make evaluating the second condition obsolete if it is false. The same
applies for the next sub-bullet.

4.3 DISTRIBUTED EVENTS 105

>c Cnj iff enj .occTime.lt < emj.occTime.lt A enj —» emj

<c enj V emj > c enj)

• if emi.tsl = tsl-3 A enj.tsl = tsl-3 A emi.occTime.gids D
enj .occTime.gids ^ 0

- emj < t enj iff Lenj-occTime.pt/3gJ - [emi-occTime.pt/gg\ >2*gg

- emj >t enj iff [emj.occTime.pt/g9J — \enj.occTime.pt I gg\ >2*gg

- emi ||t enj iff -i(emj < t enj V emj > t enj).

Causal order between two events determined from the view of a docu-
ment may differ from causal orders determined from other views. This is
caused by using only events that are stored locally in a document to de-
termine causal order between distributed events, which is in-line with the
Web's loose coupling and in-line with redundantly storing events by import-
ing them as presented in Section 4.1.3. For example, Figure 4.13 shows the
events stored at document cfo and d^. Because the set of events a document
stores, i.e., the set of events that occurred locally or were imported, is a sub-
set of all globally occurring events, it may be the case that two events have
a different order (a) from a document's view than they have from the global
view, or (b) between two documents' views. For better results, all events
stored in the documents at a given location could be used. This limitation
does not apply for temporal order.

jview from d3 (22 view from d„

Figure 4.13: Different Views on Distributed Events

O Example 1^5. The following examples show different causal orders
depending on the point of view (see Figure 4.13): (1) the global view and
the local view from d$ equal each other in ei3 ||c e42, but 633 < c 634 which
are the respective imported events wrapping ei3 and e42, and 041 < c 042; (2)
the global view and a local view differ in e42 ||c eis from the view of d±, but
e42 <c eis from the global view; (3) two local views differ in e4i ||c 634 from
the view of d^, but e4i < c 634 from the view of cfo. The difference between

106 4. ACTIVE XML SCHEMA (AXS)

j:JobAnnounce

E
0

R

(j:JobAnnounce*) n
n.announceScholar..
(j:JobAnnounce*) p
p.apply
announceScholarsh..
apply
selectApplicants
announce(j:Job)
announce(j:Schola..)
apply(xs:ID,j:Appli..)
ON announceSchol..
DO schedule selec-
tion in selectApplic.
ON selectApplicants
DO select applicants
considering order

j:JobAnnounce
•I n[par]='paris.xml'

n[vie]='vienna.xmr
n.announceScholar..
announceScholarsh..
apply

i:JobAnnounce
•I n[nyc]='nyc.xml'

n[vie]=Vienna.xmr
n.announceScholar..
announceScholarsh..
apply

paris.xml

Jobs.xsd

j:JobAnnounce

1*

E

p[par]='paris.xmP
p[nyc]='nyc.xmr
p.applv
announceScholarsh..
apply
selectApplicants

vienna.xml

Figure 4.14: Distributed Events in AXS

causal and temporal order is exemplified when ordering e25 and 634 which
is e34 ||c e25, but e34 <t e2s-

0 Example J±6. An international corporation uses an extended ver-
sion of active document type j:JobAnnounce to announce internal job offers
and scholarships for training programs at their subsidiaries in New York,
Paris, and Vienna (as depicted in Figure 4.14, where event classes with-
out any events are not shown for presentation purposes). Offers for jobs
and scholarships are published at the headquarters in Vienna (vienna.xml)
and replicated in the other subsidiaries (paris.xml and nyc.xml) by import-
ing event class announceScholarship. An employee can apply for a job or
scholarship by locally invoking apply(xs:ID, j:Application) through some user
interface. An according event is stored in event class apply which is imported
by vienna.xml.

After the application deadline for a scholarship is over, rule selectAppli-
cantsRule is executed to select the people to which the scholarship is granted.
If the number of applicants is larger than the number of scholarships, a
ranking is established based on a) the applications, and b) the order of their
application if two applicants have the same qualification.

If all three locations provide time service level tsl-3, a temporal order
between applications can be established, otherwise a causal order will be
used.

4.4 Managing Active XML Schemas

Concluding this chapter, we briefly discuss the management of active XML
Schema documents.

4.4 MANAGING ACTIVE XML SCHEMAS 107

4.4.1 Reactive Service

Since XML documents are static by nature, they need to be complemented
by a reactive service that handles the presented behavioral extensions (for
passive behavior as well as active behavior). Various components of a re-
active service, such as an event detector and a rule manager, can be built
upon experience from active database systems. The management of simple
active XML rules based on mutation events has been already discussed in
[31]. Due to the higher-level approach taken with active XML Schemas, new
issues arise, which we sketch in the following.

First, the occurrence of an event does not correspond to the addition of
an event to an event class, but to the event's occurrence time matching wall
clock time (system time), since event classes may contain scheduled events.

Second, the delivery time of a remote event needs not be past the event's
occurrence time, because a remote event may be delivered to subscribing
documents before its occurrence time. This is similar to employers deliver-
ing salary payment records ahead of the payment day to employees' bank
accounts, which also list such transactions on account statements with a
future effective date (occurrence time).

Third, events need not be added to a document's event classes when they
occur. When a document is checked out from a reactive service to be edited
in a legacy application, an edit script as a collection of mutation events (cf.
[31]) reflecting the document changes is added to the document only when
it is checked in again. In a similar way, subscribed remote events may be
collected by a behavior service in an "in-box" before these events are added
to a document. All these events, which are added delayed, should be added
to a document's event classes before any rule is triggered.

Fourth, as documents may not be accessed for some time, event occur-
rences need not to trigger rules immediately (eager mode), but may trigger
rules only before a document is accessed next time (lazy mode). In lazy
mode or when events are added delayed, rules can inquire by querying event
classes what other events are "pending". This approach may be compared
to skimming all e-mails in a mail box before answering in order to avoid a
reply that would have been different if an already delivered later e-mail had
been read. This enables designers to realize a "net effect" policy as known
from active databases [123].

Fifth, rules may also need to react according to events reflecting active
behavior, i.e. rule executions, complementary to events reflecting passive
behavior, i.e. operation executions. To inquiry the status of rule executions,
for each event and each rule defined on the event's class a rule trace records
whether the rule has not yet been processed, is being processed, or has
been processed successfully. For easy checking whether all rules that are
defined on an event class have been considered or processed for a given
member event, each event provides information reflecting its event status.

108 4. ACTIVE XML SCHEMA (AXS)

The status of an event is "occurred" after its addition and it is "processed"
after all rules denned on the event class the event is member of, have been
considered. An event that occurs in the future, but is already added to an
event class, shows status "scheduled".

4.4.2 Communication Transparency

Import and export of event classes between documents is specified declara-
tively, disregarding the delivery approach chosen. To provide for communi-
cation transparency, the delivery of subscribed events is delegated to a pub-
lication handler associated with the exporting document and a subscription
handler associated with the importing document. The delivery approach
may be specified separately for each document type or document and states
whether a pull or pushed-based approach is taken, what the polling period
is in the case of a pull-based approach, how delivered events are buffered, or
whether events are pre-filtered by the publication handler if not all events of
an exported event class are needed by the subscribing document (techniques
outlined in [32] for pushing reactive services to the XML repositories may
be employed for pre-filtering). Similar to physical data independence, which
hides changes to the internal storage structure of a database from database
applications, communication transparency hides changes from the delivery
semantics from event classes and rules.

4.4.3 Event Source Transparency

Events that occur within legacy applications may as well as active XML
documents give raise to active behavior. Therefore, and because an active
XML Schema should be shielded from changes to its event sources, we pro-
vide for event source transparency by which changes to event sources are
hidden from event classes and rules.

For example, an active XML document may contain data drawn from
a database. Database changes need to be propagated to the document.
In such a situation, an active XML Schemas adapter can be defined for
the database, which exports appropriate event classes reflecting database
updates.

Chapter 5

Composite Mutation Events

Contents

5.1 Introduction 110
5.2 Refined Event Algebra 112

5.2.1 Path Types and Path Instances 112
5.2.2 Event Types and Events 114
5.2.3 Motivating Example 117

5.3 Extended Event Algebra 120
5.3.1 Hierarchical Context 120
5.3.2 Multiplicity Operator 125
5.3.3 Operator Modifiers 127

5.4 Implementation 130

The chapter discusses the functionality of the Active XML Schema
(AXS) approach to compose occurred primitive mutation events to more
complex ones, as already mentioned in Subsections 4.1.2 and 4.2.3. After
introducing and motivating the problem of composite events in XML in
Section 5.1, the refinement of an event algebra and a motivating example is
shown in Section 5.2. The event algebra that is refined is one from active
database literature, where event algebras have been commonly used to define
the composition of primitive events. The main contribution of this chapter
is made in Section 5.3, where the algebra's extension is presented. Finally,
Section 5.4 briefly discusses the implementation of a proof-of-concept pro-
totype.

Note that this chapter, opposite to Chapter 4, uses the notion of "type"
to refer to both intensional and extensional aspects of events, because this is
how the active database literature dealing with composite events uses it (e.g.,
cf. [48, 67, 70, 173, 175]). The reason may be that a clear distinction between
intensional and extensional aspects is not required to describe the semantics

109

110 5. COMPOSITE MUTATION EVENTS

of composite events. Moreover, it is expected that this loss in precision
results in a presentation that is more concise and better readable. How the
notion of "event type" as used in this chapter subsumes the notions of "event
type" and "event class" from Chapter 4 is clarified in Subsection 5.2.2.

5.1 Introduction

Recently, several approaches for active XML, i.e., for enriching XML doc-
uments with active behavior have been proposed, comprising Active XML
Schema (AXS, see Chapter 4) and the ones described in Subsection 1.4.5.
All provide for the definition of ECA rules on primitive mutation events,
which occur upon, e.g., element insertions and attribute modifications.

In parallel, the W3C standardized the Document Object Model (DOM)
Event Module [161]. It provides for detection of events in DOM documents
so that application programs can react accordingly. Defined events comprise
among others mutation events, which are events that represent modifications
of XML data. The Event Module may thus be used to provide the propri-
etary approaches for active XML and custom applications with mutation
events.

When using any of the approaches for active XML, however, it is some-
times impossible to decide upon which event to react. The reason is that
often not a single event but a combination of multiple events determines a
situation where some action has to be executed. A potential work-around
in such a situation is to use the event that always occurs at last of multi-
ple events or to use another event that usually occurs after multiple events.
Using such a work-around, however, makes rules dependent on applications
which define the order of event occurrences.

Obviously, a technique is needed to detect occurrences of combinations
of multiple events, i.e., to detect so called composite events. This has long
been studied in the active database literature where event algebras have been
proposed for the description of composite events (e.g., cf. [48, 67, 70, 173,
175]) and several techniques for realizing detection of composite events have
been proposed, namely event graphs [46], state automata [70], and petri nets
[68].

Events in XML, however, differ from the concept of events in literature
as follows:

(1) XML events are not only ordered by time but also by hierarchical
structure. It is mostly undesired to use hierarchically unrelated events
to form composite events as previous approaches do.

(2) An XML schema may constrain the number of element and attribute
occurrences in documents. Existing approaches do not support the
detection of when such constraints are satisfied.

5.1 INTRODUCTION 111

(3) Event types, which are descriptions of events at the schema level, are
hierarchically related as their events are. This allows for more ex-
pressive and more reusable event type definitions than in previous
approaches.

Due to the above peculiarities of XML events, existing approaches for de-
tecting composite events, such as [48, 67, 70, 173, 175], cannot be reasonably
employed for XML events because one encounters the following problems:
(i) depending on the order of multiple modifications that all result in the
same XML data different composite events are detected, (ii) most of the
detected composite events are meaningless since they are not hierarchically
related, they have to be filtered out by application code, (iii) it cannot be
detected when multiplicity constraints defined by an XML schema are sat-
isfied, and (iv) event types are unrelated and their extents are disjunct,
limiting expressiveness and reusability of composite event type definitions.
For a motivating example that shows problems i and ii when using a refined
existing approach see Subsection 5.2.3.

The contribution of the chapter is to present an approach to detect
composite events in XML that takes the above peculiarities of XML events
into account. It refines an event algebra known from literature by defining
the employed abstract model for XML data, XML events, and XML event
types. Thereby it provides for more expressive and reusable event type
definitions (addressing peculiarity 3). Moreover, it extends the semantics of
the refined event algebra by introducing the hierarchical context to combine
events according to hierarchy (addressing peculiarity 1), by introducing the
multiplicity operator to detect when multiplicity constraints are satisfied
(addressing peculiarity 2), and by introducing operator modifiers to provide
for more expressive event type definitions.

In particular, the presented approach refines and extends the event al-
gebra Snoop [46, 48], because it is both extensible and well suited for
XML. Snoop is extensible because it uses contexts to define the seman-
tics of an event expression, thus by defining a new context semantics can
be extended. Snoop is well suited for XML because event trees are used to
realize event expressions and demonstrate event detection. Event trees fit
well for processing XML events because they are hierarchically ordered as
well. Moreover, Snoop is used in the Sentinel active DBMS, is prominent
among [67, 70, 173, 175] according to CiteSeer1, and is still subject to active
research [9].

Jhttp://citeseer.nj.nee.com

112 5. COMPOSITE MUTATION EVENTS

5.2 Refined Event Algebra

This section shows how the event algebra Snoop is refined so that it can be
used with XML events. First it presents the employed abstract model for
XML data, a syntax for referrers to portions of XML data at the schema
and instance level, and operators on referrers in Subsection 5.2.1. Second, an
abstract model for events and event types is introduced in Subsection 5.2.2.
Finally, Subsection 5.2.3 briefly introduces Snoop and shows an example
that uses the refined event algebra with contexts from Snoop.

5.2.1 Path Types and Path Instances

An XML document is represented by a tree of nodes where an XML docu-
ment's elements, attributes and text is represented by the tree using element,
attribute, and text nodes respectively. As such it is a subset of the XML
Infoset [154]. Each node has an identifier.

A path type identifies a node of a tree by using type information, i.e.,
independently of concrete documents. A path type accords to a restricted
XPath expression [149] that refers to either element, attribute, or text nodes
in each of its steps via respective axis and node tests. A path type is absolute
or relative with respect to the root of the tree, e.g., /order/item/price denotes
an absolute path type while item/price denotes a relative path type to ele-
ment price. Path type pt is a tuple comprising a kind e {absolute, relative}
and an ordered set of steps, thus pt = (kind, steps) or pt = null. Two single
steps are equal if they equal in their respective axis (child or attribute) and
node test (test for an XML-QName or text()).

A path instance identifies a node of a tree representing a concrete docu-
ment. For node pricei its path instance comprises an ordered set of identifiers
that starts with the identifier of the tree's root node and ends with pricei's
identifier and is thus always absolute. A path instance is denoted similar to a
path type by using "/" to separate nodes, e.g., /orderi/itemi/pricei denotes
a path instance to node pricei. Path instance pi is a tuple comprising its
absolute path type and an ordered set of node identifiers, thus pi = {pt, ids)
or pi = null.

To compare and operate on path types, operators for testing for equality
(=), containment (c), ending (ce), and intersection (flit,, nab) are defined.
The operators complement the ones defined by XPath which operate on path
instances only, such as = [149] and intersection [163]. The result of applying
operators on path types are defined as follows (where m = \pt\. steps | and
n = \pt2-steps]):

• pti = pt2

P a t h t y p e p t \ e q u a l s p t i iff p t \ . k i n d = p t ^ . k i n d A m = n A V l < i <

5.2 REFINED EVENT ALGEBRA 113

m : pt\.steps[i] = pt2-steps[i].

© Example 4?- item/price = item/price,
/order = /order,
order / /order.

• pti C pt2

Path type pÊ2 uniquely contains path type pti iff VI < i < m :
pti.steps[i] = pt2-steps[c+i) where c is a constant offset and m+c < n.
No d T̂ c may exist for which the expression above applies as well.
Additionally, if pti and pt2 are both absolute c = 0 A m < n must
apply, if both are relative only m < n must apply. A relative path
type cannot contain an absolute one.

0 Example 48. item/price C /order/item/price,
order/item C /order/item/price,
/order <f. order/item.

Ph Ce

Relative path type pti ends path type pt2 if the end of pt2-steps con-
tains pti.steps and p<2 is more special than pti, i.e., pti Ce pt2 iff
pti.kind — relative A (m < n V {pt2-kind = absolute A m = n)) A VI <
i < m : pti.steps[i] = pt2.steps[n — m + i\.

0 Example 49- item/price Ce /order/item/price,
price Ce item/price,
order/item ^ e /order/item/price.

r := pti flib pt2

The left-bound intersection operator is commutative and determines
for path types pti and pt2 equal steps at the beginning of pti.steps and
pt2-steps. If pti.kind = pt2-kind, r.kind := pti.kind, otherwise it is
absolute. Resulting r.steps :— {pti.steps[i]\pti.steps[i] = pt2-steps[i]}
where 1 < i < j where j is either the largest index for which
pti.steps\j] = pt2-steps\j] applies or the minimum out of m and n.
The result is null if pti = nullVpt2 = null\/pti. steps [1] ̂ pt2.steps[l].

0 Example 50. order/item (lb /order/billTo = /order,
item/@partnum Dib item = item,
order fl|b item = null.

r := pti nab pt2

The absolute-path intersection is not commutative and makes path
type pti absolute according to absolute path type pt2- If pti C
pt2 V pti = pt2, r is defined by r.kind := absolute and r.steps :=

114 5. COMPOSITE MUTATION EVENTS

|l < i < j} where j is the last index where pti contains
pt\. The result is null iipt\ = nulNpt2 = nullV(jpt\ <(_ ptit\pt\ ^ p^)-

O Example 51. item nab /order/item/price = /order/item,
item nab /order = null.

To compare and operate on path instances, operators for testing for
equality (=) and projection (?r) are defined. The result of applying operators
on path instances are defined as follows:

• pii = pi2

Two path instances pi\ and p%2 equal iff pi\.pt = pii.pt A VI < i <
\pii.ids\ : pi\.ids[i\ = pi2-ids[i\.

0 Example 52. /orderi/itemi = /orderi/itemi.

• r := -ïï
A projection of path instance pi on path type pt is a path instance iff
pt C pi.pt V pt = pi.pt. Then r.pt := pt and r.ids := {pz.zds[z]|j < i <
k} where j and k are the indexes between which pi.pt.steps contains
pt.steps. The result is null if pi = null y pt = null\/ (pt <f_ pi.pt Apt ^
pi.pt).

O Example 53. TTjtemC/orderi/itemi/pricei) = itemi,
7r/order(/orderi/itemi) = /orderi,
TTjtem (/orcleri) = nu/Z.

5.2.2 Event Types and Events

The DOM Event Module defines among others event types for mutation
events, which reflect modifications of DOM documents' data. They basically
comprise one event type for the insertion of nodes, one for the deletion of
nodes, one for manipulation of attributes, and one for manipulations of text
nodes.

While the DOM event types are sufficient for a procedural handling of
occurred events, they are too coarse grained for a declarative handling by
an event algebra. Hence, for every path type pt the presented approach
distinguishes three primitive event types, denoted as \ns(pt), upd(pt), and
del(pt). Like in the DOM Event Module, ins and del events reflect insertions
and deletions of element, attribute, and text nodes, while upd events reflect
modifications of text nodes and attribute nodes. Moreover, instead of an
operation wildcard "*" can be used. The path type defines where events of
that type occur. It can be relative or absolute. Primitive event type et is a
tuple comprising an operation, which is one of {ins, upd,del, *}, and a path
type, thus et = (op, pt).

5.2 REFINED EVENT ALGEBRA 115

A primitive event occurs whenever a node is manipulated. Primitive
event e is represented by a tuple comprising its identifier id, timestamp ts,
event type et, and path instance pi which identifies the manipulated node,
thus e = (id, ts, et,pi). The event type's operation does not equal wildcard
"*", its path type is absolute, and the path instance's path type pi.pt equals
et.pt.

A composite event type, i.e., the event type of a composite event, is a
tuple that comprises a unique name and a path type, thus et = (name,pt).
Wildcard "*" can be used instead of a name, referring to any composite event
type having the path type. A composite event type is denoted as name(p£)
analogously to a primitive one. The path type of a composite event type
defines, like the path type of a primitive event type, where events of that
type occur. It can be relative or absolute.

A composite event is formed by combining primitive and other composite
events, which are referred to as constituent events. Composite event ec is
represented by a tuple comprising its identifier id, composite event type et,
path instance pi, which identifies where the event occurred, and a set of
constituent events cevts, thus ec = (id,et,pi,cevts). The composite event
type's name does not equal wildcard "*", its path type is absolute, and the
path instance's path type ec.pi.pt equals ec.et.pt.

The notion of "event type" as used in this Chapter subsumes the notions
of "event type" and "event class" from Subsection 4.1.2 as follows:

1. A tuple representing a primitive event type denotes an instance of
metaschema class evts::PrimitiveMutEvtTp. The instance's attribute
timeSpec, which defines whether the event should be detected before
or after the respective manipulation takes place, is not of relevance in
the context of detecting composite events and is thus not dealt with
in this chapter. The same applies for the instance's attribute name,
which is derived as the concatenation of operation op and path type
pathTp (cf. Figure 4.4).

2. A tuple representing a composite event type denotes an instance of
metaschema class de::CompositeMutEvtTp. The tuple's name corre-
spond to the instances name, and pt to pathTp.

3. An event expression denotes an instance of metaschema class
cle::CompositeMutEvtCs. Conceptually, the expression specifies a
query over event classes with mutation events, thereby defining the
extension of the composite event class. It thus corresponds to the
instance's attribute querySpec. When an event expression refers to
another event expression via its assigned composite event type (see
Subsection 5.3.1), it uses the latter type to refer to the class's exten-
sion (thus using the notion "type" to refer to both intensional and
extensional aspects). To assure that an event class with the composite

116 5. COMPOSITE MUTATION EVENTS

event type's name exists, a constraint is specified with metaschema
class clexCompositeMutEvtCs (see Figure 4.9).

The logical clock of time service level tsl-1 (see Subsection 4.3.2) is suf-
ficient for detecting composite events. Primitive events occur at distinct
points in time and for simplicity it is assumed that the detection of compos-
ite events takes no time. Therefore one primitive and multiple composite
events may be detected at a single point in time.

Primitive as well as composite event types are hierarchically related via
their path type and lead to more expressive composite event type definitions
than in Snoop. Most important this allows to constrain the combination of
event types by an operator to related event types. For the constraints on
operator nodes see Subsection 5.3.1.

An event can be an instance of more than one event type, providing
for more reusable composite event type definitions than in Snoop. Event e
is a direct instance of its type e.et and an indirect instance of event types
eU 7̂ e.et to which the event's type is compatible to, denoted by e.et >; et\
(not commutative). Primitive event type et\ is compatible to primitive event
type e<2) i-e., et\ >z e*2 iff ((et\.op = et2-op) V (et2-op ="*")) A {{et^.pt Ce

et\.pt) V [et^.pt = et\.pt)). Analogously, for two composite event types
et\ >z et\ iff ({et\.name = et%.name) V (et^.name ="*")) A ((et^.pt Ce

etl.pt) V (et\.pt = et\.pt)). For more details on reuse see Subsection 5.3.1,
especially Examples 59 and 60.

0 Example 54- Primitive event ePl reflecting an insertion in path
type ePl.et.pt = /order/item/price is an instance of event types such as
Ei = ins(/order/item/price) and E^ = *(price) since ePl.et >z E\ and
ePl.et y E%. Analogously, composite event e^ with path type e^.et.pt =
/order/item and name Nm is an instance of composite event types such as
E\ = l\lm(/order/item) and E\ = *(item) since e^.et >z E\ and e^.et >: E^.

Like in Snoop, composite event types are defined by event expressions
according to an event algebra. An expression combines events by the alge-
bra's operators. The presented approach uses operators A, y , and ; from
Snoop to form conjunction, disjunction, and sequence of events. An expres-
sion is realized by an event tree, e.g., Figure 5.2 depicts the event tree that
realizes the expression described in Subsection 5.2.3.

An event tree comprises event type nodes and operator nodes. An event
type node is a tuple (et, evts) which stores a set of events evts. All events
in evts are a direct or indirect instance of event type et. An operator node
combines events from child nodes nds to events of composite event type et
according to operator opr and stores them in a set of composite events evts,
and is thus a tuple (opr, nds, et, evts). Leaf nodes in an event tree are event
type nodes while inner nodes are operator nodes.

5.2 REFINED EVENT ALGEBRA 117

In the presented approach the event type of an event tree node (i.e., of
an event type node or operator node) can be compared to the static type of
a variable in strongly typed object-oriented programming languages (e.g.,
Java), while the event type of an event can be compared to the dynamic
type of an expression, e.g., an object. An occurred event is stored in all leaf
nodes that have a compatible event type. By using the ending operator in
the definition of type compatibility a leaf node only stores events that occur
directly in the node's path type and not in descendants.

0 Example 55. Continuing Example 54, when primitive event ePl with
(dynamic) event type ePl.et occurs, it is stored in event type nodes that
have compatible (static) event types such as E\ and E2. Analogously, when
composite event e^ is raised, it is stored in event type nodes that have event
types such as Ef and E\-

5.2.3 Motivat ing Example

This section exemplifies the need for composite events in XML and demon-
strates the application of the refined event algebra. Consider an XML docu-
ment that represents a purchase order (document element order) comprising
items to be ordered (element item), each in turn described by a price (ele-
ment price) and a quantity (element quantity). When defining a rule that
reacts on the insertion of an item and re-calculates the overall order value by
multiplying price by quantity of each item and summing it up, one encoun-
ters the problem to decide which primitive mutation event to react upon.
Upon the insertion of element item it does not comprise any of the necessary
child elements, and upon the insertion of element price the quantity element
may not be available and vice versa.

The problem can be overcome by using composite events. A compos-
ite event is raised according to its definition after certain primitive events
have occurred. In the example, a composite event should occur after the
occurrence of events reflecting insertions of an item, a price, and a quantity
element (where the latter two are children of the first) so that a rule can be
defined on it. This can be achieved by event expression "Ej ; (Ep A Eq)",
where Ej := ins(item), Ep := ins(item/price), and Eq :— ins(item/quantity).

Figure 5.1 shows the example's active XML schema. It defines composite
event class Insertltem whose query is set to the mentioned event expression.
Thereby detected composite events are stored in the event class upon their
occurrence. Upon occurrence of a such a composite event, rule recalculate-
OrderValueRule is executed, recalculating the overall order value by invoking
operation calculateTotal().

The event tree realizing the example's event expression is depicted in
Figure 5.2. The event tree's behavior when using contexts from Snoop,
i.e., its processing of four sequences of primitive events S1..S4 is shown in

1>
H
z
o

I
D
H
h
55
o
o,
O
Ü

Table 5.1: Raised Composite Events when using Contexts from Snoop

00

- h *2 *3 U 1 *5
Cumulative Context

Si

s2
S3

s4

e i i

e i i

e i i

e i i

ep.
ei2

ei2

ei2

p J p • p p l^*
9i ' l l i Pl 9i /

ePl

e p 1

e p i

ei2

6 p 2

p J p • p - p p L1-""
^Ql J lc 'llc 'l2c 'Plc '9l /

f \c
92 ' \ 1\ 12 Pl 92 i

eP2

691) {eii e i 2 ePi eP2 e g ,}

eP2

eP2

e92i {ei2eP2eq2J

e 9 2
p f/p p IC1)

921 VI P2 92J /

°9l ' V\°P2''9l / /

Chronicle Context
Si

s2
S3
SA

ei i

e i i

ei!

e i i

e P i

ei2

ei2

ei2

e9l' {eiiepiegi}c

e p i

e P i

e p 1

ei2

eP2
P < P • P P \

9 l ' V *i P l 9 l J
p J p • p p \^

92 Î L i l P l 92 J

eP2

9l ' L l l P\ 9l J

6 p 2

eP2

692» Xei2eP2eq2)
p i p • p p \c

92 ï \ 12 P2 92 /

92 ' \ *2 P2 92 J

e9i> Xei2eP2eqif

Recent Context
Si

s2
S3
Si

ei i

ei,

ei .

ei.

ePl

ei2

ei2

ei2

91' V i\ Pl 91 /

e P l

e p 1

e p i

ei2

6 p 2

p i p • p p \^
9l ï 1 ^ 2 P l 9 l J

92 ' \ Î2 Pl 92 J

691) Xei2eP2eqi J

P2 ' L î2 P2 91J

92 î L î2 P2 92 J

92 ' \ î2 P2 92 /

692) Xei2eP2eq2i

eqi) iei2ep2eq! j

Continuous Context
Si

s2
S3
Si

ei .

e i .

e i ,

e i .

e p i

ei2

ei2

ei2

e9i) Xei\eP\eq\)C

e p 1

e p i

e p i

ei2

eP2

e9i , t2

692 > t3

6p2> Xei2eP2eqiJ

e9i.ti
6p2.({6p2egi}

c)
ep2)({ep2eg2}c)

p f/p p \C\
92' \lc'P2 92J /

e 9 2

e (ie e)c)
e9i.({ep2e9i}c)

t2: {ei,ePle(7l}
c,{ei1ep2egi}

c,{ei2ep1egi}
c,{ei2ep2egi}

c t2
: {ei ie^e^} 0 , {e i 2eP leg i}

c f3: {e^ep^Y, {ei2ePleq2}
c

5.2 REFINED EVENT ALGEBRA 119

po:Order ' ' - - '
E
0
R

Insertltem
calculateTotalO
ON Insertltem
DO recalculate

overall order value

<compositeMutEventClass name='lnsertltem'
hasMemberType='actf:TCompositeMutEvtTp' ..>

<querySpeclang='http://www.big.tuwien.ac.atyresearch/corn..7>
ins(item) SEQ (ins(item/price) AND ins(item/quantity))

i_</cornp_ositeMutEvtCJass>

<rule definedOn='ïnsertïtem' name='recalculateOrderValueRule'>
anOrder.xsd \ <action>

<invokeOperation name='calculateTotal7>
</action>

</ruje>

Figure 5.1: Recalculate Order Value upon Insertion of an Item

Table 5.1. The sequences reflect the insertions of item (abbreviated as in),
price (pn), and quantity (qn) elements. Numerical index n of an element
represents its hierarchical position, meaning that elements with the same
numerical index are hierarchically related, e.g., p\ is a child of i\. In case
two numerical indices are separated by a dot, the first number represents the
element's hierarchical position and the second one the time of its insertion,
e.g., the insertion of q\\ occurs before the insertion of q\2-

Briefly and informally introducing the contexts from Snoop, a composite
event is raised by a conjunction operator node as soon as a child node's set
of stored events is modified, i.e., an event is added (the so called "termi-
nator") and every child node contains at least one event. Note that only
the conjunction operator is described here, however, sequence and disjoint
operator are defined analogously. A raised composite event's constituent
events are defined as follows:

• in cumulative context they comprise all events from every child node
wherefrom they are removed.

• in chronicle context they comprise the oldest event from every child
node wherefrom they are removed, i.e., all constituent events are con-
sumed in chronological order of occurrence.

• in recent context they comprise the most recent event from each child
node. All events that cannot be the earliest constituent event of sub-
sequently raised composite events (i.e., that cannot be an "initiator")
are removed from child nodes.

• in continuous context its constituent events comprise the terminator
and the most recent event from every child node except the one of
the terminator. Subsequently all constituent events are removed from
child nodes except the terminator. The procedure is repeated until
there are no events left to be combined with the terminator. Finally

120 5. COMPOSITE MUTATION EVENTS

the terminator is removed if it cannot be an initiator of subsequently
raised composite events.

The rationale of Table 5.1 is to introduce the unfamiliar reader to Snoop's
contexts and to exemplify that incorrect composite events are raised when
any of Snoop's contexts is used (for which one falsifying event sequence
would suffice). Incorrect events are raised because events are selected only
by their occurrence time and not their hierarchical position. Where under a
correct composite event it is referred to a composite event whose constituent
events are hierarchically related. Composite events raised by the root of the
tree are shown by their constituent events, e.g., {ei1ePlegi}

c. Unconsumed
composite events that remain in the tree after t& are shown at the time
they are raised, but in brackets, e.g., ({eP2eg2}

c). The table does not show
the unrestricted context which basically forms the cartesian product of all
events. Naturally, it raises even more incorrect composite events.

Summarized, the refined event algebra as presented in this section is still
not applicable to detect composite events in XML when used with contexts
from Snoop. The reason is that the requirements on applications using such
an event algebra are inadequate, which would have to use the unrestricted
context and filter out huge amounts of incorrect events or manipulate XML
data in a defined temporal order so that some context only detects correct
events. Still, the satisfaction of multiplicity constraints cannot be detected
using the refined algebra.

5.3 Extended Event Algebra

This section presents an extension to the refined event algebra. The exten-
sion comprises the hierarchical context presented in Subsection 5.3.1, the
multiplicity operator in Subsection 5.3.2, and operator modifiers in Subsec-
tion 5.3.3. Event trees which are generated from event expressions are used
for presentational purposes throughout the section.

5.3.1 Hierarchical Context

The hierarchical context is introduced since it is necessary to combine events
according to their hierarchical position, which is not supported by existing
contexts. It raises only correct composite events, i.e., composite events
whose constituent events are hierarchically related.

To combine events according to their hierarchical position an event tree
maintains data concerning hierarchy. Therefore, as mentioned earlier, every
node n in an event tree has an assigned path type n.et.pt. Naturally, an
event type node specifies a path type, however, the path type of an operator
node, if not specified by the event expression, has to be derived from its
child nodes c\,C2,---,Cn by evaluating ci.et.pt Dib C2.et.pt D|b ... flib Cn.et.pt

5.3 EXTENDED EVENT ALGEBRA 121

(left-bound intersection is used for simplicity). The derivation of path types
for all operator nodes is done bottom up. For an event tree to be valid,
every node n must have a non-null path type whose steps are not empty
and do not violate the constraints on child nodes (cf. later in this section).

0 Example 56. Figure 5.2 shows an exemplary event tree on the left
defining composite event type Ef := E; ; (Ep A Eq) for the insertion of
item elements and the derivation of path types for operator nodes on the
right. The derivation is done bottom up, step 1 determines the path type
of operator node A by evaluating item/price Pl|b item/quantity = item. Sub-
sequently, step 2 determines the path type of operator node ; by evaluating
item D|b item = item.

ins(item/price) ins(item/quantity)

item

item/price item/quantity

(j) event type node Q operator node

Figure 5.2: Derivation of Operator Nodes' Path Types

An operator node raises a composite event by selecting events from its
child nodes that satisfy certain conditions. Basically, (a) at least one child
node of a disjunction operator node must hold an event, (b) all child nodes
of a conjunction operator node must hold an event, and (c) all child nodes of
a sequence operator node must hold an event and they must have occurred
in the specified order.

If operator node o combines multiple events from child nodes they must
all have the same ancestor node, i.e., VI < i < m — 1 : iro.et.pt(ei-pi>) =
Tro.et.pt(ei+i-pi) where m is the number of events in o's child nodes that
are to be combined. Events for which the projection evaluates to null are
not combined. Raised composite event ec's path instance, which must be
absolute, is derived from constituent events by TTo.et.ptn3bei .pi.pt (ei-P*)- Event
ei is the first constituent event, however, any other constituent event ê could
be used instead because if all constituent events e* equal in TTo.et.pt{e-i-pi) they
equal in iro_etptnahei,pi,pt(ei.pi) as well.

O Example 57. How the event tree in Figure 5.2 forms composite
events in hierarchical context is shown in Figure 5.3. Its status after the
occurrence of the event sequence e^, ej2, ePl, eP2, eQl is shown on the left. In
path instances and event indices, o abbreviates order, i abbreviates item, p
abbreviates price, q abbreviates quantity, and the numerical index indicates

122 5. COMPOSITE MUTATION EVENTS

the hierarchical position, e.g., p\ is a child of i\. Events ePl and eqi are
combined by operator A to form composite event ec

hi, since 7r;tem (ePl .pi) =
Litern(eqi .pi) (= ii). With the creation of ec

hi the two primitive events are
consumed (step 1). Subsequently, e^ and e\ are combined by operator ;
since 7ritem(ei1.pz) = 7r;tem(e^.pi) (= ii) (step 2). Upon the occurrence of e92

later on the same combination process starts over again.

(1)

e,=ins(/oA) ! ^ ^ N &

Op.-'InoC/oAVPi) Oq,"lno(/oA-/qi)

(2) e ^

Figure 5.3: Event Selection and Event Consumption in Hierarchical Context

Constraints on operator node o's path type are enforced so that the
projection of an event's path instance on o's path type is likely to return
a non-null value, i.e., so that for child event ej expression iro.et.pt(ej-pi) ^
null applies. The constraints seek a compromise between the operator's
expressiveness for the reuse of event trees (see later in this section) and
restrictions on child nodes and do thus not guarantee a non-null value.
They are as follows (where Ej refers to a child node's event type): (a) if
both o.et.pt and Ej.pt are absolute, o.et.pt f)\b Ej.pt ^ null must apply, (b)
if only Ej.pt is absolute, o.et.pt C Ej.pt must apply. If Ej.pt is relative no
constraints must apply so that it may contain only a single step that is not
contained in o.et.pt. In such cases one must rely that an event's (dynamic)
event type is compatible to the operator's (static) event type so that the
event's path instance can be projected on the operator's path type. This can
be compared to a type-cast in strongly typed object-oriented programming
languages where an object's dynamic type must be compatible to the static
casted type which can only be determined at runtime. For examples see
Example 59 and 60.

Operators combine events with interval-based semantics not detection-
based semantics, since composite events detected with the latter are not
always exactly as, presumably, intended (cf. [9, 66]). Basically, this means
that operators do not combine events according to their detection time but
take the intervals during which the events occurred into account. A primitive
event detected at td occurs in interval [td, td], and a composite event starts at
the beginning of the smallest interval and ends at the end of the latest one.
Comparing intervals, [t'a,t'^\ < [t'b,tb'] iff t'a < t'b. Interval-based semantics

5.3 EXTENDED EVENT ALGEBRA 123

only affect the sequence operator, so that expression E{ ; Ej combines two
hierarchically matching events e\ and ej only if the occurrence interval of
the former is smaller than the other.

The hierarchical context is orthogonal to existing contexts from Snoop,
because selection by XML hierarchy is orthogonal to selection by time. Thus
it can be combined with any existing context, acting like a filter. For oper-
ator node o, first the hierarchical context groups all events from child nodes
according to o's path type, and second o selects and consumes events within
each group according to its context from Snoop.

O Example 58. To detect when both price and quantity informa-
tion of an order item are modified, event expression *(item/quantity) A
upd(item/price) can be used. Table 5.2 shows raised composite events, rep-
resented by their constituent events for the above expression in the hierar-
chical variants of Snoop's contexts. Events that remain in the event graph
after £5 are shown in the rightmost column for completeness.

A composite event type definition can reuse other, existing event type
definitions, i.e., and event tree can reuse other event trees. All event trees
together form the event graph. A composite event e£ of type Ef raised by an
event tree is reused in another tree by an event type node with a compatible
event type, i.e., if e\.et >z Ej, presuming that Ef.name = Ej.name. It may
be the case that the node's parent operator node o's path type o.et.pt cannot
be derived from its child nodes, because the left-bound intersection of Ej.pt
with the path types of o's other child nodes is null, e.g., if their path types
are of different kind or Ej.pt contains only a single step. In either case o's
path type must be specified explicitly.

O Example 59. The order element has aside from item elements a billTo
and a shipTo child element. When two composite event types E£ and E£
for complete insertions of the latter two elements are defined in addition to
Ef (from Example 56), a fourth composite event type can use the three to
define a composite event that occurs after both addresses and at least one
item have been inserted by Ef AE£ AE£. Since, e.g., Ef .ptD^El.ptD^E^.pt =
item D|b shipTo fl|b billTo = null, the conjunction operator's path type must
be specified explicitly, e.g., as order. Because the (dynamic) event types
of occurred events have absolute path types, the projection of their path
instances on order is not null.

Reuse of event type definitions is facilitated by using type compatibility
instead of type equality for storing occurred events in event type nodes,
as mentioned before and in Subsection 5.2.2. The reason is that the more
leaf nodes with "general" event types an event tree has (i.e., nodes with
event types that have relative path types and/or wildcard "*" as operator
or name), the more events will be stored in it because an event's "special"
event type (i.e., one with absolute path type and given operation) may be

CO
H
a
W
z
o

I
a
55oa.
o
Ü

10

-

Table
*i

5.2: Combination of the Hierarchical Context with Contexts from Snoop
*2 u *5 unconsumed events

Hierarchical Cumulative Context
55 e9i.l e92

egi.2
r 1 c

Pi ' \ Pi Ql 1 9l 2 J
-

Hierarchical Chronicle Context

s5
e9l.l e g 2

e9l.2 ep2.{ep2e92}c P / p p \C
CPD \cpicgi.i/

egi.2

Hierarchical Recent Context

£5 e9l.l e92
egi.2

P ip p \C
P2 ' I P2 92 / ePi> iepiegi.2/ Gpi) ̂ 91.2) ̂ P2 ' 92

Hierarchical Continuous Context

s5
e9l.l e92 egi.2

g | g g | c e le e \c ie e \c
&Pii i^Pi^çi.i/ ' i'-'Pi^'gi^/ p p°Pl ! C'P2

5.3 EXTENDED E V E N T ALGEBRA 125

compatible to a general one but not to another special one. The more events
are stored, the more composite events are raised, and the more the tree, i.e.,
the event definition is reusable.

ES(address)(7\:=

O Iins(address) /

o
ins(address/street)

events /

events /~/'

- \ \ ins(billTo)

- o (- /
ins(address/city) (~~\

ins(shipTo)

7) Ec
b(billTo)

>o
E|(billTo/address)

7) E^shipTo)

y-\
E|(shipTo/address)

Figure 5.4: Reuse of Event Trees

0 Example 60. The order's shipTo and billTo elements both have an
address child element that comprises other elements such as street and city.
By defining composite event type E£ for the insertions of address elements
and using only relative path types that start with address, the according
event tree in Figure 5.4 raises composite events for complete insertions of
address elements as childs of both shipTo and billTo. Thus Ê can be reused
by both Ej; and E£ from Example 59.

5.3.2 Multiplicity Operator

Because an XML schema can define multiplicity constraints on XML ele-
ments and attributes it is desirable to be able to detect when multiplicity
constraints are satisfied by observing occurred events. A multiplicity con-
straint is defined by lower bound I and upper bound u (I < u), meaning
that between / and u child elements or attributes with the same name may
occur as child of a parent element. After I events reflecting insertions the
multiplicity constraint is satisfied (if the parent element did not contain any
such child elements before). The operator from Snoop that closest resembles
the required functionality is the ANY operator. It detects a fixed number > 0
of events of distinct event types, however, in XML the required number is
> 0, since 0 events reflect optional elements, and the events are of the same
event type.

To detect when multiplicity constraints are satisfied unary multiplicity
operator "x" is introduced, denoted as x [I, u\Ei. It raises a composite event
as soon as / events of E{ occurred, thereby indicating the constraint's satis-
faction. The consumption of the composite event, however, may take place
after other events of Ei occurred. To provide composite events with most

126 5. COMPOSITE MUTATION EVENTS

extensive sets of constituent events, the multiplicity operator has integrative
semantics.

Event integration starts after composite event e\ is raised upon the oc-
currence of the Ith event of Ei. A subsequently occurring event gives rise to
the new composite event e\ which integrates e^'s constituent events. Event
e\ is waived because it has been integrated and is thus assumed not to be
of interest any longer. If u is reached or the integrating composite event is
consumed, integration is suspended and starts over after the Ith occurrence

When employed in a hierarchical context, the multiplicity operator shows
the above behavior for every distinct path instance of its path type. If
not specified explicitly, a multiplicity operator's path type is set to the
child node's path type omitting the last step. The same constraints on
a multiplicity operator's path type must apply as on other operator's path
types (see Subsection 5.3.1). Multiplicity operator o raises a composite
event e\ as soon as there exist I child events that equal in TTo.et.pt(eij -pi) for
1 < j < I. Thereafter it raises new composite event e\ upon the occurrence
of child event eik where Ko.et.pt{eik-pi) = ^o.et.pti^i-pi) if ef has not been
consumed yet, where e\.cevts is defined by the union of e\.cevts and eik.

0 Example 61. The event tree depicted in Figure 5.5 allows multi-
ple insertions of quantity elements as childs of element item. For two in-
sertions of quantity elements eqi 1 and eQl2 the multiplicity operator first
raises composite event eqi upon the occurrence of eqi x. If eqi has not
been consumed upon the occurrence of eqi 2 new composite event eq2 is
raised, where eq2.cevts = {eqil,eqi2}, and eqi is waived. Otherwise, i.e., if
eqi has been consumed new composite eq2 is raised as well, however, with
ec

q2.cevts = {eqi2}.

tm:earliest

(1) tm:earliest
(2) tm:non-local

tm: earliest

_ ..•• (a) tm:earliest
ins(item) / TPN; P ^ tm:n°n-l°cal

r^(/ ^ \ c V > i

ins(item/price) Jto.iMi,»]

O Ô
ins(item/comment) ins(item/quantity)

tm ... termination mode

Figure 5.5: Event Tree using a Multiplicity Operator

A multiplicity operator in hierarchical context with a lower bound of

5.3 EXTENDED EVENT ALGEBRA 127

zero raises a composite event without the occurrence of a child event. In-
stead, composite event e\ is raised with the event representing the creation
of (absolute) path instance pi that satisfies the constraint of multiplicity
operator o by having o.et.pt Ce pi.pt V o.et.pt = pi.pt. It does not comprise
any constituent event, its path type is set to pi.pt, and its path instance to
pi. Analogously, such composite events are raised when an event graph is
registered with a document for every path instance pi in the document that
satisfy the condition above. When event ej with 'ïïo.et.pti&i-pi) = ^o.et.ptfei-pi)
subsequently occurs in o's child node before e\ is consumed, new composite
event e\ which integrates e\ is raised. If composite event e\ is consumed
later on and e\.pi still exists, new composite event e\ is raised since o's
constraints are still satisfied.

0 Example 62. The event tree depicted in Figure 5.5 allows optional
element comment as child of element item. With the insertion of item element
ii composite event ec

Cl occurs with e%x.et.pt = /order/item and e^.pi =
/oi/ii. Thereafter, the conjunction operator raises composite event e^ as
soon as matching events are stored in its other child nodes, i.e., as soon as
Pi and qi are inserted as childs of ii. If matching comment element ci is
inserted before both elements pi and qi are inserted, event ec

C2 integrating
ec

Cx is raised which becomes a part of e^ later on.

5.3.3 Opera tor Modifiers

To enrich the expressiveness of event type definitions, operator nodes are
parameterized by two modifiers to exactly define the points in time when
composite events are raised. When an operator node detects events in child
nodes that satisfy the operator's semantics, a "potential composite event",
which is not stored in the tree, is detected. A composite event, which is
stored in the tree, is raised with the detection of the potential event or is
deferred to a later date. This is of importance, e.g., when a multiplicity
operator or the hierarchical cumulative context is used, because the later a
composite event is raised the more constituent events it will possibly have.
Thus applications can react to deferred composite events comprising a rich
set of constituent events and can determine the net-effect [123], i.e., overall
effect of multiple events more easily.

First, the operator's termination mode determines when a composite
event is raised relative to the detection of a potential event. If the termi-
nation mode is earliest, composite event e£ is raised with the detection of
potential composite event e£. If it is non-local, e\ is raised after the detection
of ep and the first occurrence of event ej, where iro.et.pt(ep- pi) i1 ^o.et.pti^j -pi) •
This means that operator node o waits until an event occurs that reflects a
manipulation in another subtree of the document, i.e., it assumes that the
manipulation of a document is done hierarchically. If the termination mode

128 5. COMPOSITE MUTATION EVENTS

is custom, composite events are raised upon flushing or closing the event
tree (cf. later in this section).

O Example 63. For the event tree depicted in Figure 5.5 and four
exemplary event sequences SQ..S$ Table 5.3 shows when composite events
are raised depending on the termination mode of (i) the conjunction operator
node and (ii) the multiplicity operator node of the quantity element. The
other two operator nodes have termination mode earliest. To clearly point
out the consequences of termination modes the table shows composite events
raised by any operator node. A composite event is denoted by ec with an
alphabetical index indicating its event type and a numerical index indicating
its hierarchical position. Note that due to the order of occurred events in
Se..Sg the same composite events are raised irrespective of the context from
Snoop that is combined with the hierarchical context.

Second, the operator's termination condition must be fulfilled for a com-
posite event to be raised. It is a condition on the subtree of the XML doc-
ument with root node e^.pi in the form of an arbitrary XPath expression
which is evaluated relative to the subtree's root.2 The XPath expression
must evaluate to boolean. The termination condition differs from operators
and termination modes in that it is used to test the instance document, not
events. Termination conditions can be arbitrarily used. E.g., they can ease
the handling of events representing modifications of text nodes in case an el-
ement's text content may consist of multiple adjacent text nodes as in DOM
(for which we have implemented a prototype, see Section 7.3). In this case,
termination conditions can be used, e.g., to test if an element's child text
nodes contain any or certain text such as a number. In certain situations,
a termination condition can also be used to resemble the NOT operator from
Snoop by using an XPath expression with a negation and a node test.

O Example 64- Instead of adding event type nodes and operator nodes
that test for the insertion of text nodes to the event tree depicted in Fig-
ure 5.5, termination condition "item/price > 0 A item/quantity > 0" can be
defined on the root node so that a composite event is only raised when
both price and quantity element contain a value that is a number. This has
also the advantage that text nodes can be arbitrarily inserted, updated, and
deleted because its their value that matters, not the operations that lead to
it.

The presented approach does not provide for termination conditions that
test potential events themselves for two reasons. First, this requires a de-
fined binding of data to events that is more detailed than the one presented

2The restriction of querying the subtree only can be waived easily so that the condition
is an arbitrary XPath expression which is evaluated relative to node ejj.pi. This, however,
negatively affects performance because it is necessary to evaluate the termination condi-
tion in processTree(£,£?) with every modification to the document, not only with every
modification to the subtree.

Table 5.3: Raised Composite Events in Hierarchical Context when different Termination Modes are used
- h *3 <4

(la) A : earliest, x[l,oo] : earliest
Se

s7
S8

S9

eh > eci
p. pC

* 1 ' C l . l
p. pC
e*DeCi.i

ei\ i ec\

ePl

e P i

e P i

p pC pC P C
°9l ' °9i ' c/ii ' cii

eci)eci.2
p pC pC _ C
C 9i . i ' c 9i . i ' c/ii ' c i i

ei2 ! eC2

p . pC
CÎ2 ! CC2

p pC pC o c

e9l ' e9l ' e/ii ' e i i
p pC

Cl' C1.2

eP2

-

p . pC
e l 2) eC2

p pC
°9l.2i °9i.2

p pC pC p C
e 9 l) e 9 i ' e / i i ' e i T

-

-

e i 2) eC2
p pC pC pC
C92) C92 ' c / i^ ' c i 2

(lb) A : earliest, x[l,oo] : non-local
Se

s7
s8
Sg

ei\ > eci

e »i ' e ci . i
p. pC
°t l J cCl.i

ei\ > eci

epi

epi

epi

epi

e 9 i
p pC

°i ' C1.2
e9l.l

p . pC
°*2 ' °C2

p. pC pC pC p C
c l2> °C2' C9l> ^/ll ' C i i

e 9 l
p pC
cCl) cCl.2

eP2

-

p . pC pC pC ~C
ct2) c c 2 '

 e 9 l ' / i i ' i i

e9l.2

e 9 l

-

-

p. pC „C pC pC
cl2> CC2' ° 9 l ' /ll ' il

p pC pC pC
C92) ct/i i c / i ,) c i !

(2a) A : non-local, x[l,oo] : earliest
Se
Sr
Ss

s9

eii) eci

e*i'eci.i
p . pC

l l ' Cl.l

e i l > e C !

epi

epi

epi

epi

p pC
C9l ' C9i

e c i) e c i .2

P PC
C 9 l . l ' C9i.i

ß l2 > eC2

e i 2 ! eC2 ! e / l i 1 e i i
p pC
C9l ' °9l

eCl>eci.2

eP2

-

p . PC pC CC
C l2 ' CC2 '

 C/ll ' C i i
p P c

C9l.2! C9l.2
p pCC9l ' °9l

-

-

ei2 I eC2 ' ehl ' efi

p Pc P c

e92) e/ii ' e i i

(2b) A : non-local, x[l,oo] : non-local
Se

s7
SB

sQ

ei\) eci
e*i'eci.i

eii) eci.i

eii) eci

ePl

epi

epi
e P i

e 9 i

e ° l ' eCl.2

e 9i . i

e î 2 I eC2

p . pC pC pC pC
C»2) CC2' C 9 l ' /ll ' il

e 9 l

ecu ̂ ci.2
e P 2

-
p . pC pC pC _C
c »2 ' °C2 ' C 9 l ' /ll > i l

e9l2

e 9 l

-

-

ei2! eC2' e9l' e/ll ' e i !

e92) e<7i 1 e / i ,) e i i

Ox
co
H
X
H
M
Z
O
H
a
M
H

r
O
M
03

SX3

130 5. COMPOSITE MUTATION EVENTS

in Subsection 5.2.2, a denned representation of the binding and/or a denned
syntax for expressing conditions. This is, however, outside the focus of this
work. Second, related approaches for detecting composite events in the ac-
tive database literature (e.g., cf. [48, 67, 70, 173, 175]) do not provide this
capability too. There usually the environment in which composite event
detection is employed provides this capability, i.e., the condition of an EC A
rule may usually test the composite event in active databases [123]. The
second reason also applies for termination conditions that test the docu-
ment (provided by the approach), however, only partially because there are
differences in semantics: While a termination condition that tests events
and resembles a rule's condition is intended to avoid an action's execution
by avoiding raising a composite event, a termination condition that test the
document may be also intended to defer raising a composite event.

An event tree/graph can be opened, flushed, and closed by an applica-
tion. After opening (or "registering" with a document) it stores occurring
primitive and composite events. If it is flushed, remaining composite events
are raised by operator nodes with non-local or custom termination mode.
Closing an event tree/graph first flushes it and afterwards takes it out of
order, e.g., when an XML document is closed after manipulation. An event
tree/graph is automatically closed if the document is unloaded3.

5.4 Implementation

The implemented proof-of-concept prototype extends the DOM event mod-
ule of Apache's Xerces [63] and thus provides Java applications with com-
posite events. Detected composite events are dispatched to the DOM node
identified by the event's path instance. This has the advantage that the API
to react to composite events is the same as for DOM mutation events (com-
prising event listeners etc.). This section briefly describes the prototype's
execution model.

Every occurred primitive event is inserted into the event graph, which
is processed to detect composite events. To determine the order in which
the event trees of the graph are processed, which remains the same as long
as neither the graph nor the trees are modified, the notion of event tree
dependency is introduced. Event tree £& directly depends on event tree ta,
denoted as ta —» ift, iff £& uses composite event type et;, to which event
type eta defined by ta is compatible to, i.e., if eta >z e%. Naturally, direct
dependency is not transitive. The transitive closure of a tree ta refers to
the set of trees that directly and indirectly depend on it and is denoted by
(t a)+ . An event tree may not be in its own closure, i.e., it may not depend
directly or indirectly on itself.

3cf. DOM event http://www.w3.org/2001/xml-eventsttunload [161])

5.4 IMPLEMENTATION 131

Algorithm processGraph for processing event graph G upon the occur-
rence of primitive event e is shown below. It processes every event tree of
the graph exactly once. Line 2 determines the ordered set of event trees
that do not directly depend on any other event tree and assigns it to T.
Subsequently, the set of occurred and raised events E is initialized to e (line
3). While there are event trees left that need to be processed (line 4), every
event tree U G T is processed (line 5-6, see later in this section), where
ti denotes the ith element of T. Subsequently, all event trees that directly
depend on any t G T and thus need to be processed are determined and
assigned to T (line 7). Finally, T is purged (line 8, see later in this section).

1 processGraph(e)
2 T := {t G G\ ßu G G : u -» t)
3 E := {e}
4 while T ̂ 0 do
5 for i = 1 to \T\ do
6 E := processTree(tj, E)
7 T := {t' G G\3t €T:t^t'}
8 T : = purge (T)

Algorithm processTree(t,.E) processes event tree t with the set of
events E as follows. The tree is traversed in postorder (a form of depth-
first traversal) during which (a) every visited event type node n is tested
for type compatibility with the event type of every event e € E and if they
are compatible, i.e., e.et >z n.et, e is stored in n.evts (but not taken out of
E), and (b) every visited operator node o is evaluated if (i) an event was
stored in a (direct) child node, (ii) if o specifies a termination condition and
for the primitive event e € E it applies that o.et.pt C e.pt V o.et.pt = e.pt,
(iii) if o has non-local termination mode, or (iv) if o is a multiplicity op-
erator node with I = 0 and for the primitive event e G E it applies that
o.et.pt Ce e-pt V o.et.pt = e.pt. Finally, composite events that are raised in
the root node of event tree t are added to E to be processed by dependent
event trees later on.

Algorithm purge (T) removes every event tree t^ G T from T if it is
contained in the transitive closure of another event tree tj G T. Executing
purge (T) in processGraph above guarantees that an event tree is processed
exactly once at the latest time possible.

1 purge(T)
2 T' := {}
3 for i = 1 to |T| do
4 if ptjETj^i-.ue (tj)+

5 T := V U U
6 return T

132 5. COMPOSITE MUTATION EVENTS

The prototype including additional examples is available on the Web4.
Naturally the approach for composite mutation events is independent of an
implementation and can be used by any application in need of composite
events in XML, presumably, such as [12] and [32].

at http ://www.big.tuwien.ac.at/research/prototypes/composite-events/

Chapter 6

Realizing the Metaschema

Contents

6.1 Introduction 134
6.2 Evaluation Criteria 135
6.3 Approaches 136

6.3.1 Proprietary Schema Approach 136
6.3.2 Side by Side Approach 138
6.3.3 Framework Approach 140
6.3.4 Specialized XML Schema Approach 143

6.4 Comparison 145
6.5 Related Work 146
6.6 Employing a Mixed Approach for AXS 147

The chapter discusses the realization of the metaschema of the Active
XML Schema (AXS) approach, which was presented in Chapter 4. As de-
scribed in Section 4.1, AXS defines active behavior within XML schémas
along metadata, and stores traces of active behavior such as occurred events
within XML documents along data. The semantic expressiveness of XML
Schema, the schema language recommended by the W3C, however, is not
sufficient to define the active semantics of Active XML Schema concepts.
The contribution of this chapter is to identify, explore, and evaluate ap-
proaches to implementing AXS with XML Schema, discussing the trade-off
between semantic expressiveness and interoperability. Assuming that AXS
may be seen as representative for tailored schema languages, the findings of
this chapter can be applied for arbitrary tailored schema languages.

The chapter is organized as follows. After giving a brief overview of the
problem in Section 6.1, Section 6.2 defines criteria by which the approaches
are evaluated, which are presented in Section 6.3. Subsequently, the four
approaches are ranked according to the criteria. Section 6.4 summarizes

133

134 6. REALIZING THE METASCHEMA

the approaches by directly comparing them to each other. For a better
understanding of the presented approaches, Section 6.5 discusses examples
from theory and practice. Finally, Section 6.6 gives an in-depth example of
applying a mixed approach for realizing AXS.

6.1 Introduction

Tailored schema languages define domain concepts thus semantics once and
for all across schémas. In relational databases for example, the schema lan-
guage defines concepts such as tables and foreign keys, constituting mod-
elling primitives for database schémas. Applications exhibiting event driven,
active behavior are another example where the use of a dedicated schema
language is favorable. Such a tailored schema language defines the seman-
tics of active concepts such as event-condition-action (ECA) rules and event
types independent of individual application schémas.

As the usage of XML increases, the need for tailored XML schema lan-
guages, which go beyond the semantic expressiveness of XML Schema, arises.
This goes in parallel with the emerging practice to define an XML syntax
both for schémas and instances (e.g., as RDF does).

For instance, the Active XML Schema (AXS) approach provides an XML
syntax both for schémas and instances. Its schema language1 allows to
define circumstances having intensional aspects and/or extensional aspects.
While the former refers to circumstances that only affect a schema, such as
ECA rules, the latter refers to circumstances that only affect instances of a
schema, such as the structure of occurred events.

Using XML for schémas and instances instead of using other data for-
mats is beneficial with respect to interoperability, openness, and integration.
This means that schémas and instances described with XML syntax are ac-
cessible under various platforms and environments, they can be extended by
employing XML namespaces, and they can be integrated with other XML
standards such as XLink, XSLT, and RDF.

The contribution of this chapter is to identify, explore, and evaluate
approaches to implementing tailored metaschemas with XML Schema. In
particular, four approaches with distinct characteristics are presented. They
are explored and applied to Active XML Schema, giving insight into their
respective implications. Furthermore, the approaches are evaluated with
respect to criteria that have been identified to be relevant for the quality of
a tailored metaschema's implementation.

Since Active XML Schema comprises concepts that have intensional and
extensional aspects, it can be assumed to be a representative for tailored

1For the purpose of readability, we use the term metaschema instead of schema language
throughout the rest of the chapter. If we talk about a schema expressed in XML Schema,
we concisely call it XML schema.

6.2 EVALUATION CRITERIA 135

metaschemas. Thus the chapter generalizes statements about Active XML
Schema to statements about tailored metaschemas. However, keep in mind
that the findings presented in this chapter, except for the approaches and
evaluation criteria themselves, are based on experiences in implementing the
metaschema of Active XML Schema.

The running example is described in Example 65, which summarizes
Examples 34, 35, and 36 from Chapter 4.

0 Example 65. A job agency provides an Active XML schema defining
active document type j:JobAnnounce and a document academicJobs.xml hav-
ing that type, which comprises a list of current job offers. A new job offer is
announced by an invocation of operation announce(j:Job), which is defined
by the active document type. It adds new job offer j at the end of the list.
A university's science faculty posts, as a courtesy to its staff and students,
relevant job offers supplied by the job agency at its document science.xml
of active document type u:Faculty. The latter imports event class announce,
using proxy jobSite to refer to the document from which the remote event
class is imported. The proxy's value is bound in instance science.xml to
document academicJobs.xml. Announced job offers are now locally available
within a faculty's page in the form of events contained in the imported event
class.

6.2 Evaluation Criteria

This section presents criteria to determine the quality of the different ap-
proaches. These quality criteria, which we have identified to be relevant in
the narrow context of implementing tailored metaschemas, are related to
quality factors proposed in literature [29, 88] to facilitate a better under-
standing of their implications. This is only done informally since it is not
the focus of this chapter.

Semantic expressiveness describes how much semantics is expressed for-
mally and concisely by a schema. Since semantics is defined by the tailored
metaschema, a schema expressed therein is most expressive. When using
XML Schema instead, semantics of the tailored metaschema need to be
mapped to XML Schema. Because usually not all semantics can be mapped,
schémas expressed in XML Schema are less expressive. The more semantics
is explicit in a schema, the better the schema can be verified against an
explicit metaschema such that errors can be detected at design time. Se-
mantic expressiveness influences quality factors such as understandability,
maintainability, testability, and reusability.

Schema interoperability in general describes the ability of a system to ex-
change schémas with other systems and interpret them. Interoperability also
affects design time of a system in that it allows to reuse schema components
from interoperable schémas and to reuse software components implemented

136 6. REALIZING THE METASCHEMA

for interoperable schémas and metaschemas. In the case of AXS, schema
interoperability describes the ability of standard XML software to process
schémas that have been created following each of the presented approaches.
Thus it directly affects the extent of reusing standard XML software when
writing applications that process such schémas. This criteria influences qual-
ity factors such as interoperability, flexibility, and portability.

Locality of change describes the self-containedness of a schema such that
a change in one schema component does not require subsequent changes in
dependent schema components in the same or other schémas. It is negatively
affected by redundantly modelled schema components (i.e., components that
model the same circumstance by different concepts) and non-atomic schema
components (i.e., a circumstance is modelled by several dependent com-
ponents). Locality of change is influenced by two aspects: First by the
schema's environment (i.e., the employed metaschema and its imposed us-
age), and second, by the design of a given schema. Because the second aspect
is application specific and thus independent of the presented approaches, we
focus on the first aspect. Locality of change influences quality factors such
as understandability, maintainability, and integrity.

6.3 Approaches

This section describes four approaches to implementing a tailored
metaschema and ranks them with respect to the evaluation criteria pre-
sented in Section 6.2.

6.3.1 Proprietary Schema Approach

This approach expresses schémas directly in terms of the tailored meta-
schema, constituting the most "natural" approach with respect to schema
design. As shown on the left of Figure 6.1, schema s (an XML document)
is created by instantiating tailored metaschema m (e.g., an XML schema).
Instance data in turn is created by proprietarily instantiating schema s.

For intensional aspects, i.e., aspects that apply for all instances but have
no corresponding materialization at the instance level, it is not necessary to
consider an XML syntax for MO.

0 Example 66. The tailored metaschema and the exemplary propri-
etary schema below show how rules are defined and expressed by element
actm:rule. A rule is identified by its name and is defined upon an event
class (attributes name and definedOn), it comprises a condition and an ac-
tion (elements actnrcondition and actm:action). Since ECA rules only have
intensional aspects, no XML syntax needs to be considered for MO.

6.3 APPROACHES 137

m
tailored
metaschema

|M2

i «instance-of»

proprietary
schema

[M l
! «instance-of»

XML
document fjvjrj

Figure 6.1: Proprietary Schema Approach

(M2) Tailored metaschema with target namespace actm:
01 <xs:element name="rule" ..> ..
02 <xs:sequence>
03 <xs:element name= "condition" . . />
04 <xs:element name= "action" .. />
05 </xs:sequence>
06 <xs:attribute name="name" type="xs:QName" ../> ••
07 <xs:attribute name="definedOn" type="xs:QName" . . /> ..
08 </xs:element>

(Ml) Exemplary proprietary schema:
09 <actm:rule definedOn="u:jobSite.announce" name="announceJobRule" ..>
10 <actm:condition>..</actm:condition>
11 <actm:action>..</actm:action>
12 </actm:rule>

For extensional aspects it is necessary to define so-called instance trans-
formation function TQ\ I^XML. It defines how a proprietary instance is
transformed into an XML document. Moreover an inverse function T^1 must
exist to transform an XML document back into a proprietary instance. Note
that TO is defined at M2, i.e., independent of a particular schema. Therefore
it can be reused across applications.

0 Example 67. The tailored metaschema below defines the import of an
event class by element actnrimportedEventClass. The exemplary proprietary
schema imports event class announce from a remote document represented
by proxy u:jobSite. Finally, the imported event class and events contained
therein materialize at the instance level.

138 6. REALIZING THE METASCHEMA

(M2) Tailored metaschema with target namespace actm:
01 <xs:element name="importedEventClass" ..>
02 <xs:complexType>
03 <xs:attribute name="name" type="xs:QName" .. />
04 <xs:attribute name="hasMemberType" type="xs:QName" .. /> ..
05 <xs:attribute name= "proxy" type="xs:QName" ../>
06 <xs:attribute name="remoteEvtCs" type="xs:QName" .. />
07 </xs:complexType>
08 </xs:element>

(Ml) Exemplary proprietary schema:
09 OctmiimportedEventClass name="jobSite.announce"
10 proxy="u:jobSite" remoteEvtCs="j:announce" .. / >

(MO) Exemplary instance:
11 <jobSite.announce>
12 <actf:event id="el9" ..> ..
13 <atcf:deliveryTime pt="2003-03-01T12:14.00.07" ../>
14 <actf:remoteEvent id="r47" ..> ..
15 <actf:occurrenceTime pt="2003-03-01T12:13:14.15" .. />
16 </actf:remoteEvent>
17 </actf:event>
18 <actf:event id="e20" ..> .. </event> ..
19 </jobSite.announce>

Semantic expressiveness is high because using a tailored metaschema
makes all semantics explicit at the schema level. However, since these
schémas are expressed in a proprietary format, schema interoperability is low
because standard XML software cannot interpret the proprietary schema.
This also affects implementation aspects, since standard XML software can-
not be reused to validate instance documents against the proprietary schema.
Locality of change is high, because the tailored metaschema does not impose
redundant or non-atomic schema components.

6.3.2 Side by Side Approach

This approach is similar to the Proprietary Schema approach in that it
uses an explicit tailored metaschema to define schémas. However, an XML
schema is provided in addition, which does not replace the proprietary one
but stands side by side to it. Likewise, instance transformation function TO
is still used to serialize instances as XML.

The transformation of a proprietary schema into an XML schema is
defined at M2 by so-called schema transformation function T\\ S-^XSD and
applied at Ml as depicted on the right of Figure 6.2. Function T\ can be
derived from TO, since the latter defines the structure of XML documents
implicitly. While TO is used at runtime, i.e., when documents are processed,
T\ is used at design time, i.e., when schémas are created. Because only
extensional aspects of the proprietary schema are transformed to an XML

6.3 APPROACHES 139

schema, T\ is partial.

tailored
metaschema

proprietary
schema

TQ:I-»XML

•

! «instance-of»

S

XML Schema

I «instance-of»

s'
XML
schema

A [Ml
! «instance-of»

XML
document f |V/|Ö

Figure 6.2: Side by Side Approach

0 Example 68. The result of transforming extensional aspects of pro-
prietary schema s (cf. Example 67) to XML schema s' by T\ is shown below.
It defines the imported event class as element u:jobSite.announce, which con-
tains a sequence of u:event elements, each representing an imported event
and in turn containing the wrapped remote event as element u:remoteEvent.

(Ml) Exemplary XML schema with target namespace u:
01 <xs:element name="jobSite.announce" actm:eventClass="jobSite.announce" >
02 <xs:complexType><xs:sequence>
03 <xs:element name= "event" ..>
04 <xs:complexType><xs:sequence>
05 <xs:element name="remoteEvent" ..> .. </xs:element>
06 </xs:sequence></xs:comp!exType>
07 <xs:attribute name="id" type="xs:ID" . . />
08 <xs:attribute name="deliveryTime" ../>
09 <xs:attribute name="publicationTime" . . />
10 <xs:attribute name="deliveryTime" ../>
11 </xs:element>
12 </xs:sequence></xs:complexType>
13 </xs:element>

Still using a tailored metaschema to model schémas results in high se-
mantic expressiveness. But in contrast to the Proprietary Schema Approach,
this approach provides an XML schema for extensional aspects, resulting in
higher schema interoperability. Thus standard XML software can be used
to validate instance documents at the cost of implementing T\ to transform
schémas. Implementation of applications is supported by providing explicit

140 6. REALIZING THE METASCHEMA

links from components in s' to components in s (cf. attribute actm:eventClass
in Example 68). Having two schémas expressing the same circumstances
redundantly by components in terms of different metaschemas makes it nec-
essary to keep them synchronized. Thus locality of change is low.

6.3.3 Framework Approach

This approach uses only an XML schema that expresses all circumstances
formerly modelled by the proprietary schema as shown on the left of Fig-
ure 6.3. Thus it eliminates the need for proprietary schema s, transformation
ri, and synchronization of s with s'.

«inherits-from»/"?^ ! «instance-of»c
XML Schema
framework

XML schema

JMl

! «instance-of»

XML
document |M0

Figure 6.3: Framework Approach

Since intensional aspects are orthogonal to XML Schema, they can be
expressed easily using XML Schema extension mechanisms (annotations and
foreign attributes). Expressing extensional aspects is more complicated as
they must be expressed solely with concepts provided by XML Schema.

The framework concept as known from object-oriented programming [90]
can help in this situation. A framework is a means to provide a base schema
common to all applications, along with conventions for its adaption and
usage in the design of particular schémas. XML Schema provides a set
of concepts that can be employed in framework design, such as abstract
types, type derivation, abstract elements, and substitution groups (see [106]
for a brief overview). Therefore an XML Schema framework comprises a
set of reusable and/or specializable elements and types, which form the
base schema, and a set of informal conventions describing their reuse and
specialization.

0 Example 69. The Active XML Schema framework below defines
the structure of event classes which are represented by actf:eventClass ele-

6.3 APPROACHES 141

merits that are of abstract type actfTEventClass. Moreover, abstract type
actf TEventType describes events, which comprise an identifier (attribute
id), occurrence time (element occurrenceTime), and status (attribute sta-
tus). Type actfTEventType is directly or indirectly extended by specialized
event types which are provided by the framework for all kinds of events (e.g.,
actf:TOperationEvtTp for operation events and actf:TlmportedEvtTp for im-
ported events). Finally, in addition to event types, reusable event classes
are provided by the framework (e.g., actf:TEvtCs_lmportedEvtTp is a special
event class having event elements of type actf:TlmportedEvtTp, a specialized
actfTEventType).

(Ml) XML Schema framework with target namespace actf:
01 <!— Abstract base event type and class —>
02 <xs:element name="eventClass" type= "actfTEventClass"/>
03 <xs:complexType name="TEventClass" abstract="true"/>
04 <xs:complexType name= "TEventType" abstract="true">
05 <xs:sequence>
06 <xs:element name= "occurrenceTime" type="actf:TTimestamp"/>
07 </xs:sequence>
08 <xs:attribute name="id" type="xs:ID" . . />
09 <xs:attribute name= "status" type= "actf TEvtStatus" ..>
10 </xs:complexType>
11 <!— Event type and class for operation events —>
12 <xs:complexType name="TOperationEvtTp" abstract="true"> ..
13 <xs:extension base= "actfTEventType" ><xs:sequence>
14 <xs:element name= "return" nillable="true"> .. </xs:element>
15 <xs:element name="diff nillable="true" minOccurs="0"> .. </xs:element>
16 </xs:sequence></xs:extension> ..
17 </xs:complexType>
18 <xs:complexType name="TEvtCs_OperationEvtTp"> ..
19 <xs:extension base= "actfTEventClass" ><xs:sequence>
20 <xs:element name= "event" type="actf:TOperationEvtTp" .. />
21 </xs:sequence></xs:extension> ..
22 </xs:complexType>
23 <!— Event type and class for imported events —>
24 <xsxomplexType name="TlmportedEvtTp" abstract= "true" > ..
25 <xs:extension base= "actf TEventType" ><xs:sequence>
26 <xs:element name= "remoteEvent" type= "actf TEventType"/>
27 </xs:sequence> .. </xs:extension> ..
28 </xs:complexType>
29 <xs:complexType name="TEvtCs_lmportedEvtTp"> ..
30 <xs:extension base="actf TEventClass"Xxs:sequence>
31 <xs:element name= "event" type="actf:TlmportedEvtTp" .. />
32 </xs:sequence></xs:extension> ..
33 </xs:complexType>

To some extent, conventions defining the reuse and specialization of
schema components provided by an XML Schema framework can be en-
forced by mechanisms of XML Schema. For example, an abstract type must

142 6. REALIZING THE METASCHEMA

be specialized before it can be used, or an abstract substitution group's head
has to be substituted by an element of an appropriate type. Unfortunately,
in many cases these mechanisms are not sufficient to enforce a correct us-
age of the framework. Therefore, schema designers must know and follow
informal conventions regarding the use of framework components.

0 Example 70. Modelling the exemplary schema based on the XML
framework requires the definition of the following (as shown below). First,
event type j:TExecAnnounceEvtTp_lmported is defined for imported events,
which is done by extending event type actf:TI m ported EvtTp. Since element
actf:remoteEvent cannot be refined by the exemplary schema because it is not
in the framework's namespace, an annotation is provided that indicates that
elements representing remote events shall be of type j:TExecAnnounceEvtTp
in instance documents. Second, a corresponding event class (element
j:jobSite.announce) is defined by making it part of the substitution group
headed by actfeventClass. The type of the event class's actfevent elements
is defined in an annotation as j:TExecAnnounceEvtTp_lmported, due to the
same reasons as with the event type for imported events. Proxy u:jobSite,
which is an intensional aspect, is defined within an annotation. Note that
the use of the annotation as well as the definition of parallel type hierarchies
comprising event types and event classes are informal conventions, i.e., not
enforceable by the XML Schema framework.

(Ml) Exemplary XML schema with target namespace u:
01 <!— Imported event type —>
02 <xs:complexType name="TExecAnnounceEvtTpJmported"> ..
03 <xs:extension base="actf:TlmportedEvtTp">
04 <xs:annotation><xs:appinfo>
05 <actm:remoteEvtTp="j:TExecAnnounceEvtTp"/> ..
06 < /xs:annotation></xs:appinfo>
07 </xs:extension> ..
08 </xs:complexType>
09 <!— Imported event class —>
10 <xs:element name= "jobSite.announce"

type= "actfTEvtCsJmportedEvtTp" substitutionGroup= "actfeventClass" >
11 <xs:annotation><xs:appinfo>
12 <actm:proxy name="jobSite" forDocType="j:JobAnnounce" type= "single"/ >
13 <actm:hasMemberType="u:TExecAnnounceEvtTp_lmported"/> ..
14 </xs:appinfo></xs:annotation> ..
15 </xs:element>

Regarding the characteristics of the framework approach, most notably
is the lack of semantic expressiveness of extensional aspects. This is exem-
plified by comparing the import of an event class by the proprietary schema
shown in Example 67 with the above schema. Furthermore, informal con-
ventions that must be followed when using a framework severely impact

6.3 APPROACHES 143

semantic expressiveness. On the positive side, schema interoperability is
high since schémas (and frameworks) are expressed solely in XML Schema.
Locality of change is medium since the framework may impose modifica-
tions of multiple schema components in order to achieve the modification of
a single circumstance.

6.3.4 Specialized XML Schema Approach

This approach extends XML Schema with new concepts of the tailored
metaschema as shown in Figure 6.4 opposed to the framework approach,
which expresses new concepts of the tailored metaschema by XML Schema
concepts. To relate new concepts to XML Schema concepts the mechanisms
provided by XML Schema itself are used, because XML Schema at M2 is
defined by an XML schema, (cf. [157]), which in turn assumes XML Schema
at M3 (as one can see, XML Schema is meta-circularly defined [105]). Thus
plenty of possibilities exist to relate concepts, such as element composition,
type composition, or type derivation. Also redefinition as shown in [126] is
an option. Note, however, while [126] focusses on restricting XML Schema,
this approach focusses on extending it.

«inherits-from»

specialized
A XML Schema

XML Schema

|M2
i «instance-of»

specialized
XML schema

IMI
i «instance-of»

XML
document MO

Figure 6.4: Specialized XML Schema Approach

Depending on whether XML Schema is to be extended by intensional or
extensional aspects, different procedures are followed. An extension with in-
tensional aspects is simply a matter of adding new concepts to XML Schema
without the need to relate them to existing concepts. On the contrary, ex-
tensional aspects must be defined as specializations of existing concepts such
as elements and attributes, in order to inherit the extensional semantics of
those concepts. Intensional aspects thus have no standard meaning, i.e.,
they can be safely ignored by standard XML Schema validators.

144 6. REALIZING THE METASCHEMA

This approach has the advantage that an XML Schema validator can
interpret specialized XML schémas, because it is possible to derive the basic
meaning of a schema component of a specialized concept from the XML
Schema concept it is based on. Or in different terms, it is possible to perform
a downcast according to the principle of type substitutability. Unfortunately,
standard XML Schema validators currently do not provide for a plug-able
XML Schema necessary for a downcast.

0 Example 71. In XML Schema, group xs:schemaTop defines the content
of element xs:schema, the document element of every XML schema. The
group defines a choice of elements xs:element, xs:attribute, and others. It is
redefined2 by the specialized XML Schema to include elements actm:rule and
actnrimportEventClass. Because a rule has only intensional aspects, element
actnrrule can be declared by referencing the respective element declaration of
the tailored metaschema depicted in Example 66. Because an imported event
class has extensional aspects, element actnrimportedEventClass is indirectly
derived from xs:topLevelElement (via xs:actm.EventSequence), the type of a
global element declaration in XML Schema. The two schema documents
with different namespaces shown below form the specialized XML schema.

(M2) Specialized XML Schema with targetNamespace xs:
01 <xs:redefine schemaLocation="XMLSchema.xsd">
02 <xs:group name="schemaTop"Xxs:choice>
03 <xs:group ref="xs:schemaTop"/>
04 <xs:element ref="actm:rule/>
05 <xs:element ref="actm:importedEventClass"/> ..
06 </xs:choice></xs:group>
07 </xs:redefine>
08 <xs:complexType name="actm.EventSequence"> ..
09 <xs:restriction base= "xs:topLevelElement" > .. </xs:restriction>
10 </xs:complexType>

(M2) Specialized XML Schema with targetNamespace actm:
01 <xs:element name="importedEventClass"> ..
02 <xs:extension base="xs:actm.EventSequence'> ..
03 <xs:attribute name= "proxy" type="xs:QName" use= "required"/>
04 <xs:attribute name="remoteEvtCsName" type="xs:QName" use= "required"/>
05 <xs:attribute name= "exported" type="xs:boolean" use= "required"/>
06 </xs:extension>
07 </xs:element>

On the negative side, the power of a downcast is very limited compared to
an explicitly defined schema transformation r\. In particular, a specialized

2The redefinition of xs:schemaTop is a group redefinition that contains a reference to
itself. Thus, it is semantically equivalent to a derivation by extension, being applied to an
element group instead of a complex type.

6.4 COMPARISON 145

concept can not arbitrarily modify extensional semantics of its base concept.
For instance, the extensional semantics of a specialized element is always
limited to that of exactly one element. Therefore it is not possible to define
a particular composition of elements by means of one specialized element.

Overall semantic expressiveness is medium, whereby the semantic ex-
pressiveness of intensional and extensional aspects differ. It is high for
intensional aspects because they are expressed in terms of their uncon-
strained metaschema. It is medium for extensional aspects, because their
metaschema is constrained by the concepts of XML Schema. If standard
XML Schema validators provide for a plug-able XML Schema, schema in-
teroperability will be high since they can interpret specialized XML Schemas.
Unfortunately, in practice this is not yet the case causing low interop-
erability. Concerning locality of change it is advantageous that only one
metaschema is employed. However, one concept of the tailored metaschema
is possibly expressed by several concepts of XML Schema, producing several
dependent schema components. Therefore locality of change is medium.

6.4 Comparison

When comparing the approaches' characteristics summarized in Table 6.1,
it gets evident that there is a tradeoff between semantic expressiveness and
schema interoperability. The Proprietary Schema approach defines new con-
cepts at M2 not defined by XML Schema and thus imposes proprietary
schémas at Ml, resulting in high expressiveness but low interoperability.
The Side by Side Approach tries to overcome this by defining a transforma-
tion from new concepts to XML Schema concepts at M2 and applying it to
proprietary schémas at Ml. This increases interoperability, however, at the
cost of locality of change. The Framework approach goes one step further
by expressing new concepts by XML Schema concepts at Ml, having pos-
itive effects on interoperability and locality of change, but negative effects
on expressiveness. Finally, the Specialized XML Schema approach directly
extends XML Schema with the new concepts at M2. It suffers from the lack
of support by existing XML Schema validators and the constraints of the
underlying XML Schema.

Since there is no single best approach, one has to choose the most appro-
priate one based on given requirements. In case schémas will change often,
locality of change is the primary criterion with the Proprietary Schema ap-
proach being favorable. In case instance documents have to be shared with
other partners, schema interoperability is the primary criterion with the Pro-
prietary Schema Approach falling behind. In practice it may be beneficial
to use a mixed approach (for an example see Section 6.6).

146 6. REALIZING THE METASCHEMA

Table 6.1: Characteristics of the Presented Approaches

/ / / /iß
Criteria <o °? *V -V
Semantic expressiveness high high low med.
Schema interoperability low med. high high*
Locality of change high low med. med.

t Assuming standard XML validators provide for a plug-
able XML Schema

6.5 Related Work

Examples for approaches employing the Proprietary Schema approach are
RDF and JavaBeans Persistence [138]. The RDF standard defines RDF's
tailored metaschema and a syntax of RDF instances as XML by an EBNF
grammar. This grammar can be seen as a declarative specification of TQ. In
addition, the RDF Schema (RDFS) standard defines a proprietary schema
language for RDF. Going beyond XML, JavaBeans Persistence provides for
serialization of JavaBean objects as XML documents. It realizes To by
a dedicated Java class. Here, the Java language constitutes the tailored
metaschema.

Among approaches following the Side by Side approach are [95, 112,
120, 128]. [95] describes transforming OIL [78] ontologies to XML schémas
by textually describing T\ that transforms OIL concepts to XML Schema
concepts. Independent of XML, Microsoft's ADO.NET DataSet [112] im-
plements among others a generic mapping between the relational model
(constituting the tailored metaschema) and XML. It allows to read rela-
tional data and to write XML data with its XML schema and vice versa,
thus implementing TQ, T\, and their inverse. The Side by Side approach has
been also extensively explored in [128] recently, yielding an abstract alge-
bra for model mapping [28] (the notion of "model" in [28] corresponds to
"schema" in our approach). OMG's XMI [120] is distantly related, because
it does not exactly fit the side-by-side approach's structure. However, it has
in common that XMI defines a schema transformation, but of metaschemas
(i.e., instance of MOF [119]) into XML Schemas. Thus the transformation
takes place at M2 instead of Ml and the transformation function, which
could be named T^, is defined at M3. The intention of XMI is for example to
transform the UML metamodel into an XML Schema, and UML models into
XML documents. Aligning XMI's intention with the side-by-side approach,
the resulting XML document of the former could be seen as the proprietary

6.6 EMPLOYING A MIXED APPROACH FOR AXS 147

schema of the latter.
The Framework approach has not been employed in the XML field yet.

We suspect that a major reason for not employing it is that frameworks
usually evolve from simple XML schémas instead of being created from
scratch by implementing a tailored metaschema. Going beyond XML, an
example of fostering the Framework approach is UML with its extension
mechanisms [130]. Thus, instead of extending the UML metaschema at M2
(called metamodel in UML), the extension mechanisms provide a means
to customize UML at Ml. Extension mechanisms are the main concepts
to build reusable frameworks, called profiles in UML. Another example of
providing a new semantic concept at Ml is the role pattern [16, 93]. For
example, it has been implemented in Smalltalk in terms of a predefined
framework [72].

The Specialized XML Schema approach, as the Framework approach, has
not been employed in the XML field yet. A major reason could be not want-
ing to lose interoperability. However, tailoring metaschemas is well known
in the non-XML literature. So-called open data models have been proposed
in the past (e.g., [94, 107]), which consist of a few built-in concepts but
which can be extended by additional modeling concepts at M2 for specific
application needs.

6.6 Employing a Mixed Approach for AXS

When implementing Active XML Schema we decided to follow a mixed ap-
proach, mixing Side by Side and Framework approach. We employed the
Side by Side approach to provide maximum semantic expressiveness for hu-
man modelers. Extensional aspects of proprietary schémas are transformed
to XML schémas adhering to a dedicated framework by an XSLT stylesheet
representing T\. Thus we are fully interoperable and able to reuse standard
XML software. Employing both approaches in combination minimizes the
required transformation functionality that has to be provided by T\. The
mixed approach is shown in Figure 6.5. Since Active XML schémas are
assumed not to change often, low locality of change is not considered a
problem.

In the following the different components of AXS's implementation
and its use in the context of the chapter's running example are shown.
AXS's implementation comprises its tailored metaschema, the Active XML
Metaschema m, and its XML Schema framework, the Active XML Frame-
work f. The namespace prefixes that are used for them are actm3 and actf4

respectively. The exemplary use of m and f for representing a rule and the
import of an event class are shown by a proprietary schema s which is an

3denoting http ://big.tuwien.ac.at/axs/metaschema/1.0
4denoting http : //big. tuwien. ac. at/axs/f ramework/1.0

148 6. REALIZING THE METASCHEMA

instance of m, and an XML schema s' resulting from a transformation of s
to an instance of f.

Active XML
Metaschema m

•

«instance-of» j

proprietary
schema s

T0:I-*XML

«inherits-from»^-^

K

s'

XML Schema

A [M2
i «in

f

»tance-of»

Active XML
Framework

XML schema
fMÎ

! «instance-of»

XML
document ! MO

Figure 6.5: Realizing Active XML Schema using a Mixed Approach

First, the Active XML Metaschema for rules is shown below, forming a
part of metaschema m. Here, the metaschema for rules, which is depicted in
Figure 4.7 as an UML diagram, is expressed as an XML schema. The tailored
metaschema has already been sketched in Example 66. A rule comprises a
condition and an action, is described by a name and a priority, and is defined
on an event class.

(M2) Active XML Metaschema for rules (with target namespace actm):
<xs:element name="rule">

<xs:complexType>
<xs:sequence>

<xs:element name= "condition" type="actm:NativeCode" minOccurs="0"/>
<xs:element name= "action" type="actm:NativeCode"/>

</xs:sequence>
<xs:attribute name="name" type= "xs:QName" use= "required"/>
<xs:attribute name= "priority" type="xs:integer" use= "optional"/>
<xs:attribute name="definedOn" type= "xs:QName" use= "required"/>

</xs:complexType>
</xs:element>

Second, the exemplary use of the above metaschema for defining a rule
is shown below, forming a part of proprietary schema s. Again, the schema
has already been sketched in Example 66. Here, it shows the complete rule
introduced in Example 38 and shown in Figure 4.5. All unprefixed elements
are in the namespace of the Active XML Metaschema, the condition and
action are expressed using XSLT. Imported event class u:jobSite.announce

6.6 EMPLOYING A MIXED APPROACH FOR AXS 149

on which the rule is defined on, is described later in this section. The
actm:invokeOperation element is an XSLT extension element that is used
to invoke an operation defined by AXS. Bindings $evt represents the event
that triggered the rule, $cond represents the value resulting from the con-
dition's evaluation, and SstaticDoc represents the contents of the "static"
XML document.

(Ml) Proprietary schema defining rule announceJobRule (with target namespace u):
<rule name= "announceJobRule" definedOn="u:jobSite.announce"

xmlns= "http://big.tuwien.ac.at/axs/metaschema/1.0" >
<condition lang= "http://www.w3.org/1999/XSL/Transform" >

<xsl:value-of select="$evt//j:job[j:field=$staticDoc/u:fieldOflnterest]"/>
</condition>
Oct ion lang= "http://www.w3.org/1999/XSL/Transform" >

<invokeOperation name= "postJob" >
<parameter name="job">

<xsl:value-of select= "$cond"/>
</parameter>

</invokeOperation>
</action>

</rule>

Third, the Active XML Metaschema for event types is shown below,
forming a part of metaschema m. Here, the metaschema for event types,
which is depicted in Figure 4.4 and Figure 4.6 as UML diagrams, is expressed
as an XML schema. This part of the tailored metaschema has not been
sketched in this chapter yet.

(M2) Active XML Metaschema for event types (with target namespace actm):
<!— Base event type —>
<xs:element name="eventType" type="actm:EventType"/>
<xs:complexType name="EventType" abstract="true">

<xs:attribute name="name" type="xs:QName" use= "required"/>
</xsxomplexType>
<!— Operation event type —>
<xs:complexType name= "OperationEvtTp" >

<xs:complexContent>
<xs:extension base= "actm:EventType" >

<xs:sequence>
<xs:element ref= "actmoperationRef / >

</xs:sequence>
<xs:attribute name="timeSpec" type="actm:TmSpec" use= "required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<!— Imported event type —>
<xs:complexType name= "ImportedEvtTp" >

150 6. REALIZING THE METASCHEMA

<xs:complexContent>
<xs:extension base= "actmrEventType" >

<xs:attribute name="remoteEvtTp" type= "xs:QName" use="required"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Fourth, the exemplary use of the above metaschema for denning an op-
eration event type is shown below, forming a part of proprietary schema
s. The schema has not been sketched in this chapter yet. It defines oper-
ation event type j:TExecAnnounceEvtTp for events that are signalled after
the execution of operation announce(j:Job) of interface j:JobAnnounce.

(Ml) Proprietary schema defining event type TExecAnnounceEvtTp (with target
namespace j):

<eventType name= "TExecAnnounceEvtTp" timeSpec= "after"
xsi:type= "actnrOperationEvtTp"
xmlns= "http://big.tuwien.ac.at/axs/metaschema/1.0" >
<operationRef interfaceNm= "j:JobAnnounce" operationNm= "announce" >

<parameter type="j:Job"/>
</operationRef>

</eventType>

Fifth, the Active XML Metaschema for event classes is shown below,
forming a part of metaschema m. Here, the metaschema for event classes,
which is depicted in Figure 4.4 and Figure 4.6 as UML diagrams, is expressed
as an XML schema. The tailored metaschema has already been sketched in
Example 67.

(M2) Active XML Metaschema for event classes (with target namespace actm):
<!— Base event class —>
<xs:element name= "eventClass" type="actm:EventClass"/>
<xs:complexType name= "EventClass" >

<xs:attribute name="name" type="xs:QName" use= "required"/>
<xs:attribute name= "exported" type="xs:boolean" use= "required"/>
<xs:attribute name="hasMemberType" type="xs:QName" use= "required"/>

</xs:complexType>
<!— Proxy —>
<xs:element name= "proxy" >

<xs:complexType>
<xs:attribute name="name" type="xs:QName" use= "required" / >
<xs:attribute name="forDocType" type= "xs:Name" use= "required"/>
<xs:attribute name="type" use= "required" type="actm:ProxyTp"/>

</xs:complexType>
</xs:element>
<!— Imported event class —>
<xs:element name="importedEventClass" type="actm:lmportedEvtCs"

6.6 EMPLOYING A MIXED APPROACH FOR AXS 151

substitutionGroup="actm:eventClass"/>
<xs:complexType name= "ImportedEvtCs" >

<xs:complexContent>
<xs:extension base= "actm:EventClass" >

<xs:sequence>
<xs:element name="filterExpr" type="actm:NativeCode"

minOccurs= "0" maxOccurs="l"/>
</xs:sequence>
<xs:attribute name= "proxy" type="xs:QName" use= "required"/>
<xs:attribute name="remoteEvtCs" type="xs:QName" use= "required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Sixth, the exemplary use of the above metaschema for defining an im-
ported event type and an imported event class is shown below, forming a
part of proprietary schema s. The schema has already been sketched in Ex-
ample 67. It defines remote event type j:TExecAnnounceEvtTpJmported for
wrapping events of operation event j:TExecAnnounceEvtTp. Proxy u:jobSite
is used in importing remote event class j:announce as imported event class
u:jobSite.announce.

(Ml) Proprietary schema defining an imported event type and event class (with target
namespace u):

<actm:eventType name= "TExecAnnounceEvtTpJmported"
remoteEvtTp="j:TExecAnnounceEvtTp" xsi:type="actm:lmportedEvtTp"/>

<actm:proxy name="jobSite" forDocType="j:JobAnnounce" type= "single"/>
<actm:importedEventClass name= "jobSite.announce" exported= "false"

proxy= "ujobSite" remoteEvtCs— "j:announce"
hasMemberType="u:TExecAnnounceEvtTp_lmported"/>

Seventh, the Active XML Framework for event types is shown below,
forming a part of framework f. The framework has already been sketched in
Example 69. Here, the complete definitions of the abstract base event type
actfTEventType and the abstract operation event type actf:TOperationEvtTp
are shown, where the latter is derived from the former. These types are
part of the event type hierarchy at the schema layer (Ml) mentioned in
Section 4.1.2.

(Ml) Active XML Framework for event types (with target namespace actf):
<xs:element name= "event" type="actf:TEventType"/>
<xs:complexType name="TEventType" abstract= "true" >

<xs:sequence>
<xs:element name="occurrenceTime" type="actf:TTimestamp"/>

</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use= "required"/>

152 6. REALIZING THE METASCHEMA

<xs:attribute name= "status" type= "actf:TEvtStatus" use= "optional"/>
</xs:complexType>
<xs:complexType name= "TOperationEvtTp" abstract="true">

<xs:complexContent>
<xs:extension base= "actfTEventType" >

<xs:sequence>
<xs:element name= "return" nillable="true">

<xs:complexType mixed="true">
<xs:sequence>

<xs:any namespace= "##any" processContents="lax"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="difP' nillable="true" minOccurs="0">

<xs:complexType mixed="true">
<xs:sequence>

<xs:any namespace= "##any" processContents= "lax"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Eighth, XML schema s' as the result of transforming the part of propri-
etary schema s that defines an operation event type (cf. fourth), is shown
below. It defines how the extensional aspects of events are represented at
the instance layer (MO).

(Ml) XML schema for operation event type TExecAnnounceEvtTp (with target
namespace j):

<xs:complexType name= "TExecAnnounceEvtTp" >
<xs:complexContent>

<xs:extension base= "actf:TOperationEvtTp" >
<xs:sequence>

<xs:element name="job" type="j:Job"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Ninth, the Active XML Framework for imported event types and im-
ported event classes is shown below, forming a part of framework f. The
framework has already been sketched in Example 69. Here, the complete
definitions of the abstract imported event type actf:TlmportedEvtTp and ab-
stract imported event class actf:TEvtCs_lmportedEvtTp are shown. As one
can see, the event class stores events of the imported event type, i.e., its
member type is the imported event type.

6.6 EMPLOYING A MIXED APPROACH FOR AXS 153

(Ml) Active XML Framework for imported event types and classes (with target
namespace actf):

<!— Imported event type —>
<xs:complexType name="TlmportedEvtTp" abstract="true">

<xs:complexContent>
<xs:extension base= "actfTEventType" >

<xs:sequence>
<xs:element name="publicationTime" type="actf:TTimestamp"/>
<xs:element name="deliveryTime" type="actf TTimestamp"/>
<xs:element name="remoteEvent" type= "actfTEventType"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>
<!— Imported event class —>
<xs:element name="eventClass" type="actf:TEventClass" abstract="true"/>
<xs:complexType name= "TEvtCsJmportedEvtTp" >

<xs:complexContent>
<xs:extension base= "actf TEventClass" >

<xs:sequence>
<xs:element name= "event" type="actf:TlmportedEvtTp" minOccurs="0"

maxOccurs= "unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Tenth, XML schema s' as the result of transforming the part of pro-
prietary schema s that defines an imported event type and imported event
class (cf. sixth), is shown below. It defines how the extensional aspects of
imported events and imported event classes are represented at the instance
layer (MO).

(Ml) XML schema for an imported event type and class (with target namespace u):
<xs:complexType name= "TExecAnnounceEvtTp.Imported" >

<xs:complexContent>
<xs:extension base= "actf:TlmportedEvtTp" / >

</xs:complexContent>
</xs:complexType>
<xs:element name= "jobSite.announce" type= "actf TEvtCsJmportedEvtTp"

substitutionGroup= "actf eventClass" / >

Part III

Consistency in Document
Flows on the Web

155

Chapter 7

Traceable Document Flows
(TDF)

Contents

7.1 Infrastructure Model and Ontological Framework 158
7.1.1 Documents and Versions 158

7.1.2 Locations 161

7.1.3 Interactions on Documents and Versions 163

7.2 Application Scenarios 166
7.2.1 Traceable Email 166

7.2.2 Collaborative Authoring 167

7.2.3 Workflows 168

7.2.4 Information Exchange 169

7.3 Implementation 169
7.4 Related Work 170

This chapter describes the first layer of the two-layered extension to
AXS. It provides for traceable document flows, abbreviated TDFs, and is
also referred to as layer IM-1.

To exemplify the layer's, i.e., TDFs' usefulness, consider the following
problems with which on is regularly confronted in today's personal ad-hoc
data exchange, e.g., via email. First, it is hardly possible to determine where
a document in one's file system originated. Usually answers to this question
are found after human inquiries using one's email system. Second, it is even
more difficult to determine who read or edited a document before. Usu-
ally this involves lengthy inquiries and requires interviewing other people.
Third, metadata about the document, if not stored proprietarily as part of
the document, e.g., as it is the case with documents in Sun StarOffice or

157

158 7. TRACEABLE DOCUMENT FLOWS (TDF)

Microsoft Office format, are lost during data exchange between individuals.
Again, harvesting metadata is a human task carried out by determining and
interviewing people who read or edited the document before.

Section 7.2 continues to exemplify TDFs' usefulness by describing four
application scenarios where TDFs can be beneficial. The first scenario in
Subsection 7.2.1 shows how TDFs can be used to trace documents exchanged
via email, e.g., for the use by a program chair who sends papers and review
forms to program committee members. The second scenario in Subsec-
tion 7.2.2 describes the use of TDFs for collaborative authoring, e.g., when
editing or writing a book. The third scenario in Subsection 7.2.3 shows how
TDFs can be used as a light-weight infrastructure to support workflows, ei-
ther to discover existing workflows (bottom-up) or to model workflows and
constrain document flows (top-down). The last scenario in Subsection 7.2.4
shows how TDFs can be utilized to share papers in a scientific community,
e.g., to share metadata about papers and determine domain experts.

The chapter is organized as follows. Section 7.1 presents the infrastruc-
ture model for traceable document flows. It comprises documents, versions,
locations, and interactions thereon. In parallel, an ontological framework is
presented with which artifacts such as a concrete document or a concrete ver-
sion can be described. Section 7.2 presents the above application scenarios,
Section 7.3 sketches a prototypical implementation and finally Section 7.4
discusses related work.

7.1 Infrastructure Model and Ontological Frame-
work

This section presents the infrastructure model for TDFs, which employs
versioning as known from configuration management [52]. To make instan-
tiations of the model's concepts interoperable and thus available for other
applications, we employ Semantic Web technology to describe them, i.e.,
OWL [165]. We define an ontological framework for document flows com-
prising these concepts, which are used when describing instantiations. Being
a framework, any other ontology can be used in addition, e.g., for annotat-
ing documents. The use of additional ontologies is influenced by the given
application as is exemplified in Section 7.2.

7.1.1 Documents and Versions

A document is identified by a document identifier (DID) and keeps its iden-
tity across modifications. Since the model is intended to be implemented
on the Web, a DID is a URI [80]. Between two subsequent modifications
a document is represented by a static concrete occurrence having certain
contents. In the presented model a document exists both as an abstract

7.1 INFRASTRUCTURE MODEL AND ONTOLOGICAL FRAMEWORK 159

concept represented by its DID (referred to as document) and as set of con-
crete occurrences (referred to as versions).

A version is identified by a version identifier (VID) which is a URI.
A modification to a version in the presented model does not necessarily
result in a new version, i.e., a version's content may change over time. All
versions of a document together represent its history. A version's VID is
globally unique, i.e., unique across documents so that it suffices to identify
and retrieve the version.

0 Example 72. A document representing a purchase order and con-
taining items to be ordered is identified by its DID, e.g., d^der- Each time
an order item is added, modified, or deleted, a version of the document is
modified. Selected versions may be made persistent and have an assigned
VID, e.g., v\ and V2-

The underlying version model is organized as a two-level acyclic version
graph (cf. [52]) that is composed of branches, each consisting of a sequence
of versions. This model is employed in several version management sys-
tems such as WebDAV [81, 82] and CVS [1]. While versions constitute the
nodes in the graph, three relationships between versions are distinguished,
namely successor, offspring (starting a new branch), and predecessor. Each
version has at most one successor and possibly several offsprings in differ-
ent branches. Successor and offspring versions together are also referred to
as following versions. Because a version can be merged into a version of
another branch, a version can have several predecessors.

Additionally to the used concepts known from version models, we in-
troduce the concepts of a current version and a frozen version. A current
version is a version that has no succeeding version. Multiple current versions
may exist per document in different branches. To provide for a consistent
version graph, versions that are non-current can be frozen to prevent them
from further being modified, avoiding that they become inconsistent with
succeeding versions. Whether non-current versions are frozen is determined
by configuration for each document separately (see below). By not freezing
a version a very unconstrained exchange of versions can take place, because
a succeeding version does not prevent the version from being modified.

0 Example 73. An exemplary version graph of d^der is depicted on
the left of Figure 7.1, showing five versions and three branches. Version
numbers used throughout the thesis have an odd amount of numbers (digits)
separated by periods, whereas numbers at odd digits count versions (e.g.,
V2 for the second version) and numbers at even digits count branches (e.g.,
1̂.2.3 refers to the third version in branch v_2, which is the second branch

following version v\). In Figure 7.1 versions v\, i>i.i.i) 1̂.2.11 and V2 are
frozen, while V3 is a current version.

To talk about the topology of a version graph, path p = (vi,...,Vj) is

160 7. TRACEABLE DOCUMENT FLOWS (TDF)

O frozen version ® current version

Figure 7.1: Exemplary Version Graph

defined as a sequence of versions starting with vi and ending with Vj, where
version Vk (i < k < j) is followed by fjt+i in the version graph. Since
version v/- can have one successor and multiple offspring versions, several
paths between Vi and Vj may exist.

O Example 74- Concerning the version graph of document d^der shown
in Figure 7.1, paths pi = (yi,v 1.1.1,̂ 2,̂ 3), V2 = («i, «1.2.1,^2,^3), and p3 =
(^1,^2,^3) exist between v\ and V3.

Documents and versions are modelled as classes tdf:Document1 and
tdfVersion and are described by several properties. At minimum
a document as wells as a version must be described by properties
tdf:title and tdf:description. Being URIs, a document's DID as well
as a version's VID are used directly as identifiers in semantic descrip-
tions. Each document must be additionally described by property
tdffreezeNonCurrentVersions, which defines whether its non-current versions
are frozen. Its value is specified when the document is created. Each
version must be additionally described by property tdf:isVersionOf, which
relates it to the document it is a version of. Moreover, a version may
have successor versions (property tdf:hasSuccessorVersion), offspring ver-
sions (property tdf:hasOffspringVersion), and preceding versions (property
tdfhasPrecedingVersion). A version may be stored at a peer (property
tdf:isStoredAt). Of course, additional ontologies can be used to further de-
scribe documents and versions, i.e., to describe a user's annotations.

Classes and properties describing documents and versions are closely
linked to elements and qualifiers of the Dublin Core [84], thereby grounding
them on commonly understood semantics. The relationships are as follows:

prefix "tdf denotes
documentflows/1.0/

namespace http : //www. big. tuwien. ac. at/research/

7.1 INFRASTRUCTURE MODEL AND ONTOLOGICAL FRAMEWORK 161

1. tdf:name Ç dctit le2 ,
tdfrtitle Ç dctit le, and
tdfdescription Ç dc:description;

2. tdfisVersionOf Ç dcterms:isVersionOf3;

3. tdfhasSuccessorVersion Ç tdfhasFollowingVersion,
tdfhasOffspringVersion Ç tdfhasFollowingVersion, and
tdfhasFollowingVersion Ç dcterms:isReplacedBy;

4. tdf:hasPrecedingVersion Ç dcterms:replaces, where
tdf:hasPrecedingVersion = tdfhasFollowingVersion", and
dcterms: replaces = dcterms: isReplacedBy".

7.1.2 Locations

Since a document as an abstract concept cannot be allocated itself, versions
are allocated at locations. Each version is allocated at a single location, while
one location can host multiple versions of the same document. Note that the
concept of location is new to version models and thus makes the presented
version model more expressive. Locations form the basis for modelling the
distribution aspect of documents.

The meaning that is associated with a location can be very diverse. It
is assumed, however, that a location is in a close relationship to a natural
or juristic person such as a version's creator and owner. This relationship
may also be "weaker", e.g., to persons who process a version or are simply
interested in its contents. Usually, locations have autonomy in how to handle
allocated versions, e.g., in how to store, to version, and to control access.
Thus a modified relationship to a person, such as modified ownership, is
likely to go in parallel with a modified location.

A location is represented by a document peer, short peer, that serves
as a repository for versions, communicates with other peers, and performs
interactions requested by users on versions. Peers may differ in the interac-
tions they support, however, they must minimally support the interactions
described in Subsection 7.1.3. A peer is identified by a peer identifier (PID)
which is a URL

A peer is modelled by class tdf:Peer and described by properties tdf:name
and tdf:description. Moreover, property tdf:serves has a peer as its domain
and class tdf:ServedEntity as its range. The latter is the superclass of a
set of predefined classes wdn:Person4, wdn:Social_group (in turn superclass
of, e.g., wdn:Organization), and wdn:Role. The set of predefined subclasses

2prefix "dc" denotes namespace ht tp: / /purl .0rg/dc/elements/ l . l / , see [83]
3prefix "dcterms" denotes namespace http:/ /purl .org/dc/terms/, see [83]
4prefix "wdn" denotes namespace http://xmlns.eom/wordnet/l.6/ and identifies con-

cepts denned by WordNet [98]

162 7. TRACEABLE DOCUMENT FLOWS (TDF)

can be extended (by adding sibling classes) as well as further refined (by
adding subclasses). The predefined classification reflects addressees to whom
document delivery in real life is targeted: (1) to persons; (2) to social groups
such as organizations, departments of organizations, or clubs; and (3) to
roles that are fulfilled by agents as in workflows. If a peer does not have
property tdfserves, the entity the peer serves is unknown as it is the case with
post office boxes. By using classes defined by WordNet [98] the description
is based on commonly understood semantics.

To maintain a document's version graph, the dependencies between mul-
tiple versions, which are likely stored at different locations, have to be main-
tained. Following a P2P model, the version graph is maintained distributed.
Because of the requirement of low coupling in a Web context, only references
to directly preceding and following versions are maintained with each ver-
sion stored at a peer. This decision is also influenced by the assumption
that navigation and communication from a version to its directly preceding
and following versions is more likely to be possible (e.g., by a firewall con-
figuration) and will occur more often than therefrom to other versions, e.g.,
the initial one.

Having introduced locations, the rationale behind employing versioning
can be refined which is different from the rationale in version management.
While in the latter capturing modifications and identifying configurations
is of primary concern, i.e., the evolution aspect of documents, the presented
model employs versions to distinguish between and keep track of versions
stored at different locations in a network, i.e., the distribution aspect of
documents. Nevertheless, because the presented model is more expressive
than known version models, it captures the evolution aspect as well.

A peer stores semantic descriptions of individuals of the concepts pre-
sented so far - documents, versions, and peers - and of interactions (see
Subsection 7.1.3). It can be queried about locally stored individuals of
these concepts, e.g., remote versions can be discovered by querying a local
version to determine its preceding versions, offspring versions, and successor
version. Aside of querying for other versions, semantic descriptions with
application semantics of local versions can be queried as well.

The presented approach can well be combined with related approaches
to provide enhanced functionality. First, for the replication of semantic
descriptions which are currently only available locally, e.g., Edutella's repli-
cation service [116] can be used. Second, for answering queries that search
for an arbitrary version (i.e., not by navigating, starting from a known ver-
sion), existing discovery mechanisms, e.g., provided by Gnutella5 or JXTA
[113] can be used. Third, for the resolution of a DID to a VID, e.g., of
the initial version or current versions, existing mechanisms for resolving
location-independent identifiers, e.g., URNs, can be used (cf. [169] for an

http ://rfc-gnutella.sourceforge.net

7.1 INFRASTRUCTURE MODEL AND ONTOLOGICAL FRAMEWORK 163

overview). Fourth, for querying semantic descriptions of a set of peers, re-
lated approaches such as Edutella [116] can be used.

7.1.3 Interactions on Documents and Versions

Because the presented model for TDFs is based on a version model, the
interactions that are provided by peers mostly have counterparts in version
management systems such as WebDAV and CVS, however, there are major
differences. First, the presented model is richer by dealing with locations,
and second, there is no central control. Thus the semantics of interactions
with counterparts differ to cope with locations and decentralization. More-
over, interactions without counterparts are introduced.

Depending on a version's environment it is in a certain state. When being
allocated at a peer, the version is checked-in. Using appropriate interactions,
a following version can be retrieved from a peer. The retrieved version
has status checked-out. A checked-in version is online when the peer it is
allocated at can communicate with other peers. Otherwise, or when the
version is checked-out, it is offline. A checked-out version can be checked in
using interaction checkin.

On checked-in version V{ basically three basic interactions can be per-
formed. First, interaction read retrieves the version's content (or in Web
terms a "representation" of the version). Second, interaction checkout re-
trieves successor version Vi+\ or offspring version Vi.j.i when used with option
successor or offspring, respectively. Third, checked-in version v^ that
resides in another branch than Vi can be merged into V{ using interaction
merge. Thereby, Vi becomes the successor of Vk- The merged versions may
be allocated at different peers. Merging the versions' contents can be done
manually or automatically by approaches such as [61].

When a version is checked out two files are retrieved from the peer its
predecessor is allocated at. The first file contains the contents of the ver-
sion and is thus called the data file. The second file comprises semantic
descriptions concerning the version and the version graph (i.e., at least a
single statement that uses the tdf:precedingVersion property). The file is
thus called the metadata file. Semantic descriptions that are available for
the checked-out version's predecessor are taken over to the metadata file
of the checked-out version. Which data is taken over depends on (a) what
the user performing the checkout is allowed to read from the data available
for the checked-out version's preceding version, and (b) which data the user
performing the checkout is interested in. For a checkin at a later date, both
the data and the metadata file are necessary. The descriptions that were
taken over are marked as such using appropriate statements.

Note that different to WebDAV and CVS the checkout interaction in
the presented model retrieves a following version not a representation, thus
creating a following version at checkout time instead of the time when the

164 7. TRACEABLE DOCUMENT FLOWS (TDF)

modified representation is checked-in at a later date. It is essential to check
out a version, which has its own VID assigned to it, so that it can be
recognized as a version by humans and machines, making it possible, e.g.,
to send it to other people via email and most important to make statements
about it using an appropriate language, e.g., RDF or OWL. Moreover, if
non-current versions are frozen, a checked-out succeeding version cannot
become inconsistent with its predecessor. Whereby consistency means that
the succeeding version cannot lack modifications that have been performed
on its predecessor.

Aside of the interactions presented so far, which allow to construct ver-
sion graphs, two interactions allow to modify version graphs. First, interac-
tion delete removes a version from the version graph. Second, interaction
real locate stores a version at another peer which may involve modifying
its VID if the VID is a location dependent identifier. A user who requests to
perform an interaction on a version which has been deleted or reallocated is
notified of the modification. Both interactions have to be used with caution,
since external references to the version become "broken".

The effects of a delete interaction are more complex than at first sight.
When version V{ is deleted, the event graph has to be modified accordingly
by connecting versions from the set of preceding versions Vp with versions
of the set of following versions Vf. If Vi is an offspring version of preceding
version vp € Vp, then vp is connected with each vj € Vj by an offspring
relationship. If vi is the successor version of preceding version vp, and a fol-
lowing version Vf is the successor version of vi, vp and Vf are connected by a
successor relationship, otherwise by an offspring relationship. This is shown
in Figure 7.2, where the upper part depicts version graphs before performing
interaction delete t>2 and the lower part after the deletion. Furthermore,
on the left side 1:1 connections are shown, while on the right side other
combinations (n:l, l:n, and m:n) are shown which can be inferred from
from 1:1 connections. Note that, while the descriptions of preceding and
following versions are updated automatically, replications of descriptions of
the affected part of the version graph maintained by other applications may
become inconsistent.

For convenience three interactions are provided that are composed of
previously mentioned interactions and which are therefore called composite
interactions. Like the previously mentioned interactions, to which we refer
to as simple interactions henceforth, composite interactions are atomic, i.e.,
they are performed as a whole or not at all. Composite interactions deter-
mine the flow of a document, which is caused by allocating following versions
at possibly different peers, more directly than simple interactions. Namely,
interaction proceed proceeds a version with a succeeding version, branch
proceeds a version with an offspring version, and copy copies a version to
a new document. As one can easily see, each of proceed and branch com-
poses a checkout and checkin interaction, while copy composes a read and

7.1 INFRASTRUCTURE MODEL AND ONTOLOGICAL FRAMEWORK 165

Qvi
0 S

s/o

p

delete v2

S O O S 0 S 0 S

Ôv Ôv Ov> OV" Ov> OV" Ov> OV"
V3 V3 V3 V3 V3 V3 V3 V3

vi q>vi çvi y qtf pv" c^î pv" tfi tfï

3 &v3 K3 \ ®v3 Ov3 Ov3' OV'- 6v- D^- 6^

Figure 7.2: Effects of delete Interaction on Version Graphs

checkin interaction. The composite interactions correspond to how paper
forms and documents are handled in real life, i.e., they can be handed on
or copied and distributed. For a more precise characterization of composite
interactions see the Appendix.

A peer does not only store semantic descriptions of documents and
versions it hosts but also of semantic descriptions of interactions it
has performed. An interaction is represented by an individual of class
tdf:Interaction, which is described by the user or peer who issued the in-
teraction (property tdfislssuedBy), by the peer that performed the interac-
tion (property tdf:isPerformedBy), by the date and time it was performed
(property tdf:isPerformedAt), and by the version the interaction is tar-
geted at (property tdf:hasTargetVersion). Particular interactions are rep-
resented by pairwise disjunct subclasses, e.g., tdf:Read Ç tdf:Interaction and
tdfCheckln Ç tdflnteraction, where tdf:Read fl tdf:Checkln = 0. Interac-
tions tdf:CheckOut, tdfReallocate, and tdf:Merge are additionally described
by property tdfhasSourceVersion, which identifies (a) the preceding version
of the target version being checked out, (b) the version being merged into
the target version, or (c) the version being reallocated to the target version
in case the VID changes due to reallocation (i.e., if the VID is a location de-
pendent identifier). Composite interactions are represented by individuals
of class tdf:Compositelnteraction and are composed of two simple interac-
tions (property tdfisComposedOf). Three pairwise disjunct subclasses are
distinguished for each particular composite interaction, e.g., tdf:Proceed Q
tdfCompositelnteraction.

Like with documents and versions, additional semantic descriptions can
be stored along each interaction. They can can be either application-
independent, such as a comment in natural text (e.g., using property
dcdescription), or application-specific, e.g., if the interaction corresponds
to some state change in a workflow description.

Semantic descriptions of interactions can be useful in several situations.
This strongly applies for descriptions of reads, which can be used, e.g.,

166 7. TRACEABLE DOCUMENT FLOWS (TDF)

for recommendations (see Subsection 7.2.4), as well as for descriptions of
deletes and real locates can be used to inform users of deleted versions or
to navigate to reallocated ones. Descriptions of checkins, checkouts, and
merges are less useful (which, however, depends on the application domain),
because they also manifest in the version graph, which is not entirely the
case for reads, deletes, and reallocates. Therefor, their semantic descrip-
tions primarily enable one to query versions' histories describing performed
interactions.

7.2 Application Scenarios

This section present four exemplary application scenarios for TDFs. Namely,
these are traceable email, collaborative authoring, workflows, and informa-
tion exchange. In the second and the third scenario, it can safely be assumed
that the contents of versions are not private and that people are willing to
let others know where their documents originated, i.e., it is agreed that user
specific data is available for others. In the first and the fourth scenario,
however, privacy concerns may arise. There are several possibilities which
can be used alone or in combination to resolve them: First, user data can
be made anonymous while still exploiting its value. This is possible by ag-
gregating the metadata and providing statistical data interpretation, e.g.,
for features like "users who read this document also read...". Second, one
can implement authentification and authorization to specify and reveal what
users are allowed to read. It is not dealt with details of privacy issues, which
is assumed to be outside the focus of this work.

7.2.1 Traceable Email

Usually when sending and receiving files via email knowledge is lost. This
knowledge comprises, among others, who originally created the file, who else
received and read or edited the file before or after myself, and what other
people know about this file in the form of semantic annotations. The loss
is caused by (1) missing support of file systems, e.g., for globally unique
identifiers; (2) by missing support of email clients, e.g., for functionality like
querying where a file originated or querying remotely stored annotations;
and (3) by missing integration of the two, e.g., for determining whether I
have sent a file to someone else or for determining that a received file is a
successor version of a locally stored file.

By providing a component that transparently enables people to use TDFs
for files they have sent and received via email we provide them with traceable
email. The component we have developed is described in more detail in
Section 7.3. Basically it filters outgoing email messages and in case it detects
a version's datafile attached to an email, a succeeding version is checked out
from the sender's peer and sent to the recipient. There, an agent filters

7.2 APPLICATION SCENARIOS 167

incoming email messages and in case a version is attached to an email it
automatically checks it in at the recipient's peer.

When using traceable email for tracing files that are exchanged via email
otherwise lost knowledge is preserved and new knowledge is unveiled. Using
traceable email, users can easily determine not only from whom a file was
received, but also where it originated and who else was in possession of the
file before. Users can determine to which persons a file they have sent is
re-distributed further on. They can also read the contents of any of these
versions of the file. Moreover, traceable email provides a non-proprietary
possibility for storing and querying also remotely stored annotations about
files that were received or sent as email attachments, thereby unveiling an-
notations of other people.

An exemplary use of traceable email is the management of a paper re-
view process. After submission, e.g., via a web application, which created a
document and an initial version, the program chair checks out a following
version of each paper and sends it (i.e., the data file) and the review form
(i.e., the metadata file) to program committee members. Note that the
review form is an annotation to the version, expressed according to an on-
tology for reviews. Committee members possibly forward received papers to
additional (sub-) reviewers. After each reviewer has filled out his/her review
form, he/she sends it back to the super-reviewer or to the chair where it is
checked. This approach is very flexible and allows the chair to query for the
status of each review at any time. Also an aggregated report summarizing
all reviews of a paper can be easily created by querying the annotations.

Comparing traceable email with related work [57], the latter focusses on
defining machine-processable email contents, while we focus on revealing a
document's flow that is established via email.

7.2.2 Collaborative Authoring

TDFs can be employed for coUaboratively editing documents like version
systems in general can be used for this purpose. Different from version sys-
tems, however, TDFs do not imply the need for a central shared document
repository, which may be not available. Moreover, the annotation mecha-
nism of TDFs is superior compared to the log facility of version systems
such as CVS. While in both cases annotations marked up using an ontol-
ogy can be made, where the ontologies used can be freely chosen, only with
TDFs the annotations are hooked into the provided ontological framework.
Thereby, semantic descriptions of version graphs, not available in CVS, are
provided along and aligned with annotations.

For example, consider the complex collaborative task of writing an edited
book. For each book chapter, there are multiple authors working together.
Hence it is necessary to create a document for each chapter. For all of these
documents, df:Freezel\lonCurrentVersions is set to true. Thus only the author

168 7. TRACEABLE DOCUMENT FLOWS (TDF)

in possession of a current version owns the "edit token". She/he can edit
the draft of the chapter and hand it on to a co-author afterwards. It is also
possible that authors work in parallel on branched versions and merge their
changes afterwards. At any moment, the editor can determine the status of
each chapter. In addition, the authors can have a look at the current versions
of the other chapters, e.g. to align their terminology or their references.

7.2.3 Workflows

In environments where a workflow management system (WfMS) is not avail-
able and/or where it is impossible to deploy one (e.g., when a shared, central
WfMS cannot be negotiated) or where it is unreasonable to deploy a WfMS
(e.g. too costly or time-consuming), TDFs are a light-weight alternative
infrastructure for workflow management. Such environments are faced more
and more often with the increase of workflows crossing organizational bound-
aries. And, starting from the observation that documents are the basis of
collaborative work applications, it is natural to think about documents as
basic coordination entities for workflows.

Employed top-down, TDFs enables one for the definition of workflows in
the form of document flows. In particular, a workflow type at the schema
level is defined by describing a document flow type to which certain docu-
ment flows must adhere to. This assumes that the workflow can be modelled
in term of a document flow, however, if a document flow from the applica-
tion domain cannot be used, an artificial "control" document flow can be
introduced. As an example (assuming every user has its own peer), user A
can instruct user B to proofread a document by handing it over to him, fol-
lowed by user C who has to add a reference into an internal library catalog,
and user D who has to give her permission for its publication (e.g., stored as
signed annotation), where user C and D can work in parallel. With TDFs,
users can query for subsequent steps at any time and peers can restrict the
document flow to a valid one, i.e., to one that accords to its type.

Obviously, an extension to TDFs is needed to model and execute docu-
ment flow types. First, for modelling document flow types, an appropriate
ontology has to be defined and used. One could start from the workflow
patterns defined in [143] and map the control flows defined there to docu-
ment flows. This may involve defining the concept of composite document or
record, which contains multiple documents and might control the document
flow, e.g., by using reactive rules as described in [92] and the functionality
provided by the active extension to TDFs described in Section 8.1. Second,
for executing document flow types, peers must be extended to either inter-
pret descriptions of document flow types directly or indirectly. A possibility
for the latter would be, as mentioned before, to map document flow types to
reactive rules and to interpret the rules as provided by the active extension
to TDFS described in Section 8.1.

7.3 IMPLEMENTATION 169

TDFs can also be used in a bottom-up way for workflows. Since the meta-
data describing document flows logs how versions were distributed across a
network, it can be analyzed ex post to discover document flows that took
place regularly. They can be possibly abstracted to document flow types
further on. This way, workflow analysis can be carried out by investigating
existing document flows.

7.2.4 Information Exchange

This scenario is comparable to well-known P2P filesharing applications like
Gnutella6. The focus is on exchanging static documents, meaning that all
versions of a document have the same content. Thus annotations are not
longer specific for a single version of a document but for all of them. Here,
the revelation of document flows, the possibility to annotate versions, and
the possibility to query this metadata distinguishes TDFs from other file-
sharing applications. Of course users are not forced to annotate their docu-
ments,but decide by themselves how much time they spend for annotation.

An example of this application scenario is that of scientists working on
the same subject. Typically, they all use a folder in their local file system
to store and manage their collection of scientific papers related to their re-
search field. If they use TDFs to share their folder and annotations with
others, every user can benefit from observing which documents other users
have read, e.g., for answering questions like "users who read this document
also read..." or for determining researchers working in the same field. Fur-
thermore, using TDFs it is possible to find out all existing versions of a
given document or all documents having at least a single version that share
the same datafile. The total number of these can then be used to rank
documents, and the peers where these are stored may form a list of po-
tential contact addresses for comments and questions. Summarized, most
value of employing TDFs for information exchange can be expected to come
from sharing annotations and semantic descriptions of stored files, not from
revealing particular document flows.

7.3 Implementation

We have implemented a proof-of-concept prototype using JXTA as our P2P
platform. Regarding identifiers, PIDs are URNs in the jxta namespace, DIDs
and VIDs are UUIDs expressed as URNs. Thereby the prototype is indepen-
dent of physical network addresses, i.e., peers and versions can be physically
moved on a network without affecting their identifiers. The resolution of
URNs to network addresses is provided by JXTA. Using the prototype, the
user can navigate to preceding and following versions starting from any peer

http ://rfc-gnutella.sourceforge.net

170 7. TRACEABLE DOCUMENT FLOWS (TDF)

a.l) send

Message Notification

User A\
attaches \
data and
sends email

UserB
reads notification,

• ;• has data and sem.
.. descriptions at

her/his disposal

Figure 7.3: Sending and Receiving Traceable and Queryable Email

and any version, can retrieve more information including annotations about
the version, and can read the version's contents. Because, among others,
peers and versions are published using so called JXTA advertisements, they
can be dynamically discovered using JXTA's Peer Discovery Protocol as
well.

For a different user interface to peers and a seamless integration with
standard email clients, we have implemented a dedicated component. It
comprises an SMTP-Filter and an IMAP/POP3-Agent, as shown in Fig-
ure 7.3. They are transparent to users and operate in a non-intrusive way.
When a user wants to re-distribute a version to another user, she simply
creates an email and attaches the version's data file to it. The SMTP-Filter
checks out a following version on behalf of the user, thereby receiving the
data- and metadata file from the peer. Subsequently it either sends the
version to the recipient by email (step a.l in the figure) or checks it in at
the destination peer (alternative step b). In the former case, the recipient's
IMAP/POP3-Agent detects the received email and checks the version in on
behalf of the recipient (step a.2). In either case the recipient is notified by
an email which also contains the original message sent by user A (not com-
prising the attached file). Other user interface to peers, such as via HTTP
and Web Services, are reasonable, but have not been implemented yet.

7.4 Related Work

Regarding traceable document flows many distantly related approaches exist
which provide the generic functionality of exchanging documents. Among
them are e-Mail systems, ebXML, BPEL, and SOAP. When using any of
these, however, identities of exchanged documents are not preserved and
thus the flow is not traceable. Approaches that are closer related are those
from office information systems in the 1980s dealing with form management,
e.g., [141] presents among others forms that can flow through an organiza-
tion. It differs from traceable document flows with respect to flowing arti-

7.4 RELATED WORK 171

facts (only proprietary forms can flow), the data model (versioning is not
employed), and the architecture (using central nodes).

Traceable document flows are new to P2P applications, which provide for
distributed computing, file sharing, and online collaboration [115]. Among
them, the closest related application is instant messaging, but again, iden-
tities of exchanged documents are not preserved. Nevertheless, techniques
of existing approaches can be employed, e.g., for version discovery using a
central index as in Napster7, flooded requests as in Gnutella8, or distributed
index structures using super-peers as in FastTrack9. Approaches for directed
routing using distributed hash tables (DHTs), which assign an identifier to
a version based on a hash of its content and name and store it at peers with
similar identifier (cf. [14, 115] for an overview), cannot be used for discovery
because versions in our model cannot be allocated freely.

Concerning distributed concurrent versioning systems, the most promi-
nent existing systems are CVS up [4] and DCVS [3]. However, both of them
are based on the client/server-paradigm and provide repository replication.
They can thus only provide for virtual document flows and can not be com-
pared to TDFs which are based a P2P model and support physical document
flows.

There is a model for encoding semantic information in P2P networks,
namely the SWAP metadata model [34] that takes a similar approach of an-
notating information with metadata about its origin. Unlike our approach
which does not change the format of documents, all information is addi-
tionally converted to RDF representations. The SWAP model assumes that
data is not physically replicated between peers but rather queries are used
for information exchange. Since document distribution is an important en-
abler for TDFs, this a a major difference. An interesting approach is the
query routing algorithm REMINDIN' [140] designed for the SWAP plat-
form. It uses observation of other peers' queries and answers to determine
their domain knowledge and to decide who is the right peer to answer a
certain query. An adaption of this algorithm for TDFs would be useful for
the information exchange scenario presented in Subsection 7.2.4.

7http://napster.com
8http://rfc-gnutella.sourceforge.net
9http://www.fasttrack.nu

Chapter 8

Enriching TDFs with Active
Behavior (ATDF)

Contents

8.1 Enriching the Infrastructure Model 173
8.1.1 Employing Active XML Schema 175

8.1.2 Interactions on Active Documents and Versions . . 176

8.1.3 Basic Event Routing (Layer IM-2.1B) 177

8.2 Optimization 181
8.2.1 Maintaining Version-Graph Indices (Layer IM-2.2) 181

8.2.2 Optimized Event Routing (Layers IM-2.1R/RL) . 183

8.3 Related Work 186

The chapter describes the second layer of the two-layered extension to
AXS. It provides for traceable document flows that are enriched with active
behavior, abbreviated ATDF, and is also referred to as layer IM-2.

The chapter is organized as follows. First, Section 8.1 describes the
enrichment of TDFs with active behavior by employing AXS. Therefore,
additional interactions on documents and version are introduced (see Sub-
section 8.1.2) and a basic event routing algorithm is presented (see Subsec-
tion 8.1.3). Second, Section 8.2 presents event routing algorithms that use
local indices of version graphs to optimize event routing. Finally, Section 8.3
discusses related work.

8.1 Enriching the Infrastructure Model

This section presents layer IM-2 on top of the layer for document flows (IM-
1) to enrich them by active behavior, thus providing for active traceable

173

174 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

document flows. Basically, it is the result of mapping the publish/subscribe
protocol to a P2P model. By implementing this layer, peers become active
and are henceforth called active peers. To define active behavior, the layer
employs Active XML Schema (AXS).

The running example is a document flow from the workflow domain as
mentioned in Subsection 7.2.3.

• branch
Purchaser Supplier

V merge •

'accnt

I I peer • document flow O frozen version ® current version

Figure 8.1: Exemplary Document Flow

O Example 75. The procurement department quarterly determines the
need for higher priced office supplies of operating departments. Therefore, it
creates order document dm-der arid initial version v\. Furthermore, offspring
versions vi.i.i, ui.2.i> etc. are created, one for each operating department
and sent to them as shown in Figure 8.1. After a month, the offspring
versions are merged into version vi which succeeds vi, consolidating the
overall need (they cannot be merged into v\ since this would cause cycles
in the version graph). Different locations represent different departments,
i.e., lproc denotes the procurement department and lopi, lop2, etc. denote
operating departments. Versions are persistent and can be used at a later
date, e.g., operating departments can use vi.i.i, wi.2.i) etc. later on to look
up office supplies ordered in that quarter.

To perform this document flow, the procurement department performs
multiple interactions "checkout offspring of v\" of document d^-der to
retrieve offspring version üi.i.i for each operating department lopi. These ver-
sions are checked in at lopi using interaction checkin. A successor version
V2 of v\ is retrieved by performing "checkout successor of v\" followed
by a checkin at the same location. After one month branched versions i>i.i.i
are merged into V2 by performing "merge ui.i.i into v-i " for each branched

8.1 ENRICHING THE INFRASTRUCTURE MODEL 175

version, resulting in a single version V2 at the procurement department com-
prising all items to be ordered. Instead of using simple interactions as above,
composite interactions proceed, branch, and copy can be used to perform
the same document flow as done in Figure 8.1.

After determining the overall need in office supplies the procurement de-
partment sends the order to the distribution department of a supplier com-
pany at ljistr (again, cf. Figure 8.1). To assure that the supplier company
can handle the order independently of the purchasing company, the latter
performs interaction "copy V2 to uj at l^istr

n > which copies the version to
the distribution department, assigning it to a new document. Throughout
the rest of the chapter, locations, documents, and versions of the supplier
company are marked by an superscripted asterisk.

8.1.1 Employing Active XML Schema

Active XML Schema (AXS) is employed on top of layer IM-1. Since AXS
provides active behavior to XML documents only, the format of data files
participating in document flows for which active behavior can be provided
is restricted to XML.

Briefly recalling AXS, it allows one to specify active behavior by ECA
rules and passive behavior by operations with XML schémas, thereby spec-
ifying behavior of XML documents that are valid instances of the schema.
When an operation is executed on an XML document, an according event
occurs, being of an event type (the event's intensional aspect) and stored
in an event class (the event's extensional aspect). The event class in turn
is stored as part of the XML document. When an event occurs, all rules
defined upon the event class it is stored in are triggered, i.e., executed.

O Example 76. AXS is used to define operations with the docu-
ment type of dorder- Among others, operation addltem(my : OrderltemType)
adds the item given via the parameter to an order and operation
removeltem(xs: integer) removes the item with the given part-number
from an order. When one of these operations is invoked on an XML docu-
ment, an event occurs therein which is stored in an event class of the same
name.

In addition to the event types already provided by AXS new interaction
event types are specified. Where the event types already provided by AXS
comprise operation events, mutation (primitive and composite) events, and
calendar events (see Subsection 4.1.2). The new interaction event types are
defined as specialization of the abstract event type. When an interaction is
performed, being either one on TDFs (see previous Subsection 7.1.3) or on
ATDFs (see following Subsection 8.1.2), an according event occurs which is
stored in an event class.

176 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

In AXS an event class of an XML document can be subscribed by remote
XML documents which replicate the event class. Events that subsequently
occur in the subscribed document are delivered to the subscribing docu-
ments. This provides for distributed active behavior, allowing a document
to react to events that occurred in other documents. By using the pub-
lish/subscribe protocol documents are loosely coupled.

Summarized, an active peer is capable of detecting events occurred in a
version, of receiving events from versions of subscribed documents, of distrib-
uting events to versions of subscribing documents, of executing operations,
and of executing ECA rules. In the following, Subsection 8.1.2 introduces
new interactions on active documents and versions, and Subsection 8.1.3
presents the realization of the publish/subscribe protocol on top of the P2P
model of layer IM-1 and describes the event routing algorithm.

8.1.2 In terac t ions on Active Documents and Versions

Three additional interactions are provided by active peers to deal with ac-
tive behavior defined by AXS. First, interaction invoke executes an oper-
ation on a checked-in current version. Second, interactions subscribe and
unsubscribe are used to establish and release subscriptions between doc-
uments. The latter two are special in that subscriptions have effects on
possibly all versions of a document (depending on the employed event rout-
ing model, see Subsection 8.1.3 and Subsection 8.2.2), i.e., when document
ds subscribes document dp, possibly all versions of ds are notified of events
that occur in some version of dp. A document may subscribe itself.

Interactions subscribe and unsubscribe can only be issued against a
particular version of the subscribing document, called the event recipient.
Thereupon this version notifies a particular version of the publishing doc-
ument, called the event distributor (see Subsection 8.1.3 for these two par-
ticular versions). This ensures that data can be exchanged freely between
those two versions. Moreover, restricting the versions these interactions can
be issued against facilitates control over authentification, authorization, etc.
by centralization, which accords to having effects on all current versions.

A peer stores semantic descriptions of interactions on active doc-
uments and versions as it stores descriptions of interactions on (pas-
sive) documents and versions (see Subsection 7.1.3). Each of the
above interactions are represented by an according class, namely
tdf:lnvoke, tdfSubscribe, and tdf:Unsubscribe which are all subclasses of
tdf:Activelnteracion Ç tdf:Interaction. Thus they are described by the
properties describing tdf:Interactions (see Subsection 7.1.3). Moreover,
the invocation of an operation is described by the name of the invoked
operation (property tdfofOperation), by the passed parameters (prop-
erty tdfwithParamValue), and by the operation's return value (property
tdf:hasReturnValue). Interactions subscribe and unsubscribe are described

8.1 ENRICHING THE INFRASTRUCTURE MODEL 177

by property tdfofPublishingDocument.
When an interaction is performed an according event occurs. Every

AXS schema defines per default an event type for each interaction from
Subsection 7.1.3, be it simple or composite, except for operation invocations,
and for interactions subscribe and unsubscribe. Event classes storing
events of those types can be materialized on demand, they must be named
after the invoked interactions their events represent, e.g., Checkln or Merge.
For operation invocations an event type is defined for every single operation
specified by the AXS schema (and not for the invoke interaction). An event
representing an interaction is stored in an event class of the version it was
targeted at. Interested documents can subscribe these event classes to be
informed of interactions.

0 Example 77. Because the procurement department wants to be
alerted when a department has orders above average or when the overall
budget is used up, it creates document daiert and an initial version. This
document subscribes event classes of document d^der that reflect executions
of operations addltem and removeltem. Thus, if any current version of
dorder is modified, the initial version of daiert is notified of the occurred event.
By aggregating data of such events alerting situations can be detected.

It is possible to embed interactions on documents and versions in opera-
tions and rules defined by AXS. Thus interactions cannot only be performed
by users but also by versions, enabling them to automatically perform an
interaction in reaction to occurred events.

O Example 78. Upon copying V2 to ldistr, which creates v\ of newly
created document d*order at ^ i s t r , the purchaser's document d^der subscribes
the supplier's document d^der to be informed of the order's acceptance,
shipment, and billing, which are represented by invocations of operations
accept, reject , ship, and b i l l .

8.1.3 Basic Event Routing (Layer IM-2.1B)

As shown in Figure 8.2, layer IM-2.1B provides for event routing by adding
a layer on top of the base of layer of IM-2.

A document plays multiple publisher and subscriber roles during its life-
time, producing and consuming events. Since a document's current versions
may be allocated at changing locations, events have to be routed from pub-
lishers to subscribers dynamically.

A naive event routing algorithm would be to send an event from the
version of a document in publisher role where the event occurs to all current
versions of all subscribing documents. This would involve determining all
target versions (a) either ad-hoc, i.e., by querying the P2P network using
some discovery mechanism, (b) to store an index of all target versions with

178 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

event graph indices '

event routing •
(basic, optimized)

ECA rules, subscriptions, -
interactions,...

traceable document -
flows

„IM-2.1B
IM-2.1R/RL

IM-2.2

IM-2 base

IM-1

Figure 8.2: Architectural Layers of ATDFs

each current version of a document in publisher role, or (c) a mixture of
both. While alternative (a) would result in high network traffic, alternative
(b) would yield high complexity in maintaining the indices. The deficiency
that all alternatives share is that a version is not notified of an event because
it is off-line, not reachable due to the P2P overlay network topology or a
firewall, or because of an out-dated index structure.

Instead, the presented event routing algorithm tries to find a balance
between network traffic and complexity while guaranteeing event delivery
to all subscribers. This is achieved by employing a form of centralization as
in hybrid P2P systems such as FastTrack1 and [38]. Therefor, two central
nodes are introduced for each document, namely two distinguished versions,
the event distributor and event recipient (see later in this section). It is
based on the following two assumptions. First, there exists a network path
between at least two distinguished versions of different documents so that
data can be exchanged between the two documents via these versions. A
network path may be defined explicitly, e.g., by a firewall configuration.
Second, data can be exchanged between two directly following versions of
the same document.

The initial version of a document in publisher role is called the docu-
ment's event distributor. It is responsible of distributing occurred events to
event recipients of subscribed documents and thus has to maintain an index
on them. If the event distributor is followed by other versions and an event
occurs therein, the event is forwarded to the event distributor. This is done
by forwarding the event to the respective preceding version until the event
distributor is reached. If a preceding version was offline when an event was
to be forwarded to it, the peer that tried to forward the event buffered it
until the version was back online. In case of a merged version, which has
n preceding versions (n > 1), a peer decides autonomously on the subset
of them to which an event is forwarded (the number of the subset's mem-
bers is defined by the peer's configuration parameter p). If p > 1 events

'h t tp ://www.fasttrack.nu

8.1 ENRICHING THE INFRASTRUCTURE MODEL 179

are duplicated and have to be filtered out when the first common version is
reached (which performed the branch). When an event is forwarded from
the version where it occurred towards the event distributor it is said to be
in the sending phase.

0 Example 79. After acceptance of the order by the supplier's distribu-
tion department, v{ is proceeded at the storage department by v% as shown
in Figure 8.3. Upon the order's shipment by the storage department, op-
eration ship is invoked, causing an operation event to occur in v\ at l*si(rr^
which is forwarded to the event distributor v\ at l^istr- Thereafter, v\ is
proceeded at the accounting department laccnt by v% where operation b i l l
is invoked later on. Again, an operation event occurs which is forwarded via
V2 a* ̂ store *° the event distributor v\ at l^istr- Both events are distributed
to subscribing documents by v\ at

Purchaser j Supplier

a 'accnt

peer — ~ ^ ^ event flow

(a) default event flow
(b) after relaying event distribution to i
(c) after relaying event reception to v3

document flow O frozen version 0 current version

Figure 8.3: Exemplary Event Flows

The initial version of a document in subscriber role is called the doc-
ument's event recipient. It receives events from event distributors of sub-
scribed documents and is responsible of forwarding them to all current ver-
sions. If the event recipient is followed by other versions, received events are
forwarded to its successor version and offspring versions. This is recursively
applied until all current versions are reached. By forwarding events to the
successor version as well as to offspring versions, events are duplicated and
have to be filtered out when versions are merged. Duplication by forwarding
events to all following versions is necessary because a version cannot deter-
mine whether all its offspring versions are (indirectly) merged into a single
version later on. If a directly following version was offline when an event was
to be forwarded to it, the peer that tried to forward the event buffered it un-

180 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

til the version was back online. When an event is forwarded from the event
recipient towards current versions it is said to be in the receiving phase.

© Example 80. After shipment the procurement department's current
version V2 is proceeded by v$ at the accounting department laCcnt> which
awaits the supplier's billing before booking and paying. The event repre-
senting the invocation of operation b i l l at l*accnt in Example 79 is delivered
to event recipient v\ at Zproc which forwards it to ui.i.i, ^i.2.i) and v^. The
latter version filters out the same event it subsequently receives from i>i.i.i
and ui.2.1- Finally, version V2 forwards the event to V3 at laCcn.t- The event
routing is shown in (a) of Figure 8.3.

Network traffic caused by event routing as described before can be re-
duced by manually optimizing event flows. This is supported by interaction
relay (see the Appendix for the interaction's definition). Because relay
can modify a document's event distributor and event recipient, active peers
provide for querying a version of whether it is the event distributor or event
recipient.

First, network traffic can be reduced by relaying event distribution from
Vi to Vj, where the latter becomes the new event distributor. This makes
forwarding events that occur in versions (indirectly) following Vj from Vj
to Vi obsolete. /To relay event distribution from v\ to Vj, every path (cf.
Subsection 7.1.1) between every current version and Vi must contain Vj.
This ensures that events can be routed from current versions where they
occur to the event distributor after relaying.

O Example 81. Relaying event distribution from version v\ to v% saves
forwarding events occurring at l^ccnt via l*stcrre *° ̂ istr- Events originating
at llccnt thus flow directly via Zproc, lopi, and lop2 to laCcnt as shown in (b) of
Figure 8.3.

Second, network traffic can be reduced by relaying event reception from
Vi to Vj, where the latter becomes the new event recipient. This makes
forwarding events that occur in subscribed documents from Vi to Vj obsolete,
because events are delivered from event distributors directly to Vj instead
of Vi. To relay event reception from vi to Vj, a path must exist from Vj to
every current version. This ensures that all current versions can be notified
of newly occurred events after relaying.

O Example 82. Relaying event reception from version v\ to v$ of
document dorder makes event distributor v% send occurred events directly to
V3, which saves forwarding events from v\ via V2, wi.1.1, and U1.2.1 to ̂ 3 as
shown in (c) of Figure 8.3.

8.2 OPTIMIZATION 181

8.2 Optimization

The model for document flows in Section 7.1 as well as the model for event
flows in Subsection 8.1.3 assume high availability of peers, however, this as-
sumption restricts peers in their autonomy. Moreover, low coupling of peers
is gained at the cost of network traffic, since events can only be forwarded
to directly preceding or following versions, resulting in unnecessary event
forwarding. This section presents an optimized model that overcomes these
two properties. First, it provides for higher autonomy of peers by waiv-
ing the expectation of high availability, and second, it provides for event
flows that are in need of less network traffic by avoiding unnecessary event
forwarding.

Both improvements of the optimized model are gained by having version
graph indices available locally at each peer. Thereby each peer does not
only know a version's direct predecessors and successors but also indirect
ones. Version graph indices are maintained by employing active behavior
provided by layer IM-1 and the basis of IM-2 so that the infrastructure
model presented so far does not have to be adapted. How version graph
indices are maintained is presented in detail in Subsection 8.2.1.

The improvement of higher autonomy is gained by by-passing offline
peers. By by-passing them in the sending and receiving phase of event
forwarding a peer can be offline without blocking event flows. By by-passing
offline peers during manual version discovery, a peer can be offline without
preventing people from determining an online version's (indirectly) following
versions, e.g., when one wants to determine current versions by querying a
frozen version she knows of.

The improvement of reduced network traffic is gained by by-passing peers
that have no responsibilities regarding event distribution of a certain doc-
ument. Having a version graph available locally at each peer, it is possible
to forward an event not only to a directly preceding or following version as
employed in the basic model for event flows, but to any version. Thereby
unnecessary event forwarding can be avoided and network traffic reduced.

How the active extension is employed to realize the optimized model is
described in detail in the following two subsections.

8.2.1 Maintaining Version-Graph Indices (Layer IM-2.2)

This layer, which is situated side-to-side with the basic event routing model
in layer IM-2.1 (see Figure 8.2), maintains a version graph index at each peer
for every version the peer stores, which is a local view on the version graph
the version is part of. To be able to construct the version graph index,
denoted as GVi, for every version V{ of document d the peer stores, the
document subscribes event classes that reflect document flows of itself, i.e.,
d subscribes d. Thereby each of the document's versions receives an event

182 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

upon a modification of the version graph. Subscription of the set of event
classes EG := {Checkln, Checkout, Merge, Delete, Reallocate} is sufficient to
construct GVi. Note that due to outstanding event deliveries caused by
offline peers, version graph GVi at one peer may differ from version graph
GVj of the same document at another peer.

A version graph index is defined as a view over the set of event classes EG.
Simplified, the view defining query selects the latest event for each version
from the CheckOut and the Merge event class to determine dependencies
between versions, the latest from Checkln and Reallocate to determine the
version's location, and uses Delete to filter out deleted versions. As views in
databases, a version graph index can be either virtual or materialized. If it
is materialized it may be maintained incrementally, depending on the peer's
capabilities, meaning that with a newly imported event e € EG the view is
updated according to e without access to any other event in EG.

0 Example 83. Consider the version graph depicted in Figure 8.1 when
comprising v\, un. i , and vi- Further assume that the document subscribes
the set of event classes EG of itself that reflect document flows. Version
wi.i.i then comprises a checkin event reflecting interaction "checkin v\ of
d", and a checkin and checkout event reflecting each of the two interactions
"branch v\ to fi.i.i" and "proceed v\ by V2". Upon performing inter-
action "branch v\ to V1.2.1", two according events are imported into and
stored in ui.1.1. From the events in event classes Checkln and CheckOut
version graph index GVl 11 can be constructed.

If a peer is not capable of maintaining version graph indices incremen-
tally, frozen versions need special attention. By definition, these versions
are immutable and thus cannot store any event that occurred after the time
they became frozen. Such events, however, are necessary to construct GVi

for frozen version v% if the index is not maintained incrementally. To resolve
this issue, a peer stores such events in so called auxiliary event classes in
addition to the event classes of a frozen version. By providing an integrated
view over these event classes, a version graph index can be transparently
specified over them as if all event classes were stored within the version.

0 Example 84- Continuing Example 83, when version vi.1.1 is merged
into t>2 next, an according merge event occurs, which is first forwarded to
the document's event distributor v\ which is also the event recipient. From
there it is delivered to current version V2 and ^1.2.1- The event also passes
frozen versions v\ and ui.1.1 where the event is stored as well (possibly in
auxiliary event classes).

Summarized, the optimized model for document flows provides higher
autonomy for peers with respect to their availability. The model offers the
advantage of having a version graph index available at each peer where a
version of the document is allocated at. This allows to query a version

8.2 OPTIMIZATION 183

arbitrarily about its version graph an not only about directly preceding and
directly following versions. The model, however, inherently provides version
graph indices only for versions that (indirectly) follow the event recipient.
Thus one can only benefit from this layer when looking for related versions
that (indirectly) follow the event recipient. Note that this layer assumes that
the event routing layer IM-2.1 guarantees that an imported event (caused
by self-subscription) passes every version following the event recipient either
during the event distribution or event reception phase.

8.2.2 Optimized Event Routing (Layers IM-2.1R/RL)

This section presents two optimized event routing algorithms provided by
layers IM-2.1R and IM-2.1RL which both reduces network traffic and deliver
events more robustly (i.e., unaffected by offline peers) compared to basic
event routing IM-2.1B presented in Subsection 8.1.3. For short we refer
to the event routing algorithms as {B|R|RL} event routing. The layers
are intended to supplement IM-2.1B, nevertheless, for a single document a
dedicated event routing algorithm has to be chosen. Optimization builds
upon version graph indices and can thus only supplement IM-2.1B if IM-2.2
is deployed (also see Figure 8.2).

R event routing provides Robust event delivery by forwarding imported
events from the event recipient directly to all versions (indirectly) following
the event recipient using its version graph index. Thus event delivery can no
longer be blocked by offline peers. Network traffic in R routing is reduced
by forwarding an event occurring in some version immediately to the event
distributor, i.e., without using intermediate versions.

RL event routing is equally robust as R routing and moreover results in
Lowest network traffic. In principal, its event routing is a specialized form
of R routing, in that imported events are only delivered to current versions,
resulting in the lowest network traffic possible.

The optimized event routing models need to know which version in a ver-
sion graph index is the event distributor and which one is the event recipient.
Thus in addition to the event classes mentioned in Section 8.2.1, a document
subscribes event class Relay of itself. Then, due to self-subscription, this data
is available at every version (indirectly) following the event recipient (and of
course the event recipient itself). If the event distributor precedes the event
recipient, it has to observe the events it distributes to keep track of possible
reallocations or relays affecting the event recipient.

A choice between the event routing models is likely to depend on an
application's requirements because they differ in whereto events are deliv-
ered. Remember, R event routing delivers events to all versions following
the event recipient, while RL only delivers them to current versions to min-
imize network traffic. If non-current versions are frozen, which is defined by
property tdf:freezeNonCurrentVerions (see Subsection 7.1.1), it is likely that

184 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

RL event routing will be employed, since frozen versions are immutable and
can neither store events nor trigger rules. Vice versa, if non-current versions
are not frozen, it is likely that R event routing will be employed, since events
may be of interest at every version, e.g., to keep the versions consistent.

Optimizing the sending phase in R and RL event routing, events are
forwarded directly from the version where they occur to the event distributor
instead of using other version as intermediaries (as shown in Figure 8.4).
This works well as long as the event distributor is online, however, it may
change its status to offline and vice versa. Thus the following two cases
have to be dealt with (remember that peers hosting event distributors and
recipients should be online most of the time):

1. Event distributor Vd may be offline. If an event is to be forwarded to
Vd from current version vc, the version's peer which tries to forward
events buffers them until Vd is back online, except when the event is
a checkin event. In the latter case, the event is forwarded to the
vc's directly preceding version, so that some other version "knows"
about it and buffers it. This version is then responsible of forwarding
events during the receiving phase to vc as long as vj is offline. If the
directly preceding version is offline as well, the same action is applied
to some other current version. If neither Vd nor any current version
is online, the peer of the checked-in version periodically tests whether
one of them went online. As soon as this happens, an appropriate
action is performed so that the checked-in version becomes part of the
version graph and is notified of events. If an event is to be forwarded
from a non-current version to (offline) Vd, it is forwarded to a current
version's peer and is buffered there so that it is forwarded to the event
distributor later on (see below).

2. If event distributor Vd goes online after being offline, it performs the
following steps: (1) it notifies all peers that host a current version
according to the version's (possibly out-dated) GVd to receive buffered
events therefrom, (2) if such received events reflect changes to the
version graph, e.g., reveal new versions, step 1, i.e., the notification
and reception is recursively applied to those versions as well. Thereby
GVd becomes up-to-date and buffered events are harvested from the
versions where they occurred. And (3) harvested events are sent to
event recipients of subscribing documents.

Optimizing the receiving phase, one has to distinguish between R and
RL event routing. In R event routing, all events are forwarded from event
recipient vr directly to all (indirectly) following versions using GVT instead
of using other versions as intermediaries. In RL event routing, events that
do not reflect modifications to vr's version graph are forwarded from vr

directly to current versions (as shown in Figure 8.4). If a version is offline

8.2 OPTIMIZATION 185

Purchaser Supplier

1/ 1 mergeV1.2.l I X
Y / i

Deratina-J/ ! / proceed 'proc
scent

Vaccountingy

'accnt

document flow O frozen version % current version
© event distributor © event recipient

I I peer — • " • event flow —

Figure 8.4: Optimized Event Flow using RL Event Routing

when events are to be forwarded to it, event recipient vr buffers them until
the version is back online. Again, an event recipient's peer may go offline
(although it should not or only rarely), thus the following two cases have to
be dealt with.

1. Event recipient vT may be offline. If an event is to be forwarded to it
from an event distributor, the latter buffers the event until vr is back
online.

2. If event recipient vr goes online after being offline, it performs the fol-
lowing steps: (1) it notifies the peers of subscribed documents' event
distributors to receive buffered events, (2) it updates GVr on the basis
of events that reflect document flows which have been received during
step 1 due to self-subscription (if vr / Vd), and (3) it forwards events
directly to (indirectly) following versions (in R routing) or directly to
current versions only (in RL routing). In RL routing, events that re-
flect modifications to vr 's version graph are delivered to all (indirectly)
following versions using B or R routing (configured with the document,
see below).

If event distributor Vd is offline while event recipient vr is online and
both belong to the same document, GVr may be outdated and thus events
that are received by vr from subscribed documents are possibly sent to
(a) versions that are no longer a current version, in which case the receiving
version forwards it to its directly following versions, i.e., falls back to B event
routing; (b) versions that have been reallocated, in which case the receiving

186 8. ENRICHING T D F S WITH ACTIVE BEHAVIOR (ATDF)

peer is responsible of forwarding the event to the reallocated version, or (c)
versions that have been deleted, in which case vr is notified which sends the
event to the (online) preceding version that is closest to the deleted version
instead; that version in turn forwards the event to its directly following
versions, i.e., falls back to B event routing.

For layer IM-2.2 to maintain version graph indices, events that reflect
modifications to the version graph have to be delivered to every version
(indirectly following the event recipient) of the version graph. While this
naturally happens when using B or R event routing, this is not the case with
RL event routing. Hence B event routing has to be employed for forwarding
events in the sending phase and/or B or R event routing Choosing B/R
event routing in both phases makes event delivery more robust to offline
event distributors and offline event recipients by keeping the version graph
indices up to date irrespective of the two versions' online status. Thus a fall
back to B event routing in the receiving phase is less likely to occur. We
expect B/R routing employed in both phases to result in less network traffic
if the peers are more likely to be offline, however, this remains to be proved
by experiments. Meanwhile it can be stated that it suffices to employ B/R
event routing in either the sending or receiving phase.

The event routing chosen to deliver events is specified by configuration
with the document. There, property tdf:useEventRouting with a value out of
{B|R|RL} defines the event routing employed. If it is RL, the two additional
properties tdf:uselnSendingPhase and tdfuselnReceivingPhase with a possible
values of {B|R} define the according routing algorithms to use in the sending
and receiving phase, respectively, of which one must be specified.

Summarized, the optimized event routing model for event flows automat-
ically makes event delivery more robust and reduce network traffic, while
still being manually controllable by relay interactions. The optimized algo-
rithms, however, assume that a document's event recipient and event distrib-
utor can exchange data with any (current) version (not an assumption in B
event routing). A mixture of the two models, where events are forwarded to
the most distant version of those with which data can be exchanged, would
not be based on this assumption and may be the most appropriate one in a
given setting. Note that such a mixed model does not have to be developed
necessarily, but can be partly achieved manually by employing the optimized
model and setting event distributors and event recipients accordingly.

8.3 Related Work

The ATDF approach employs Active XML Schema (AXS) as an approach
for active XML on top of the TDF approach. It was chosen because it pro-
vides the most comprehensive set of feature that are useful in a distributed
environment. For brief disussions of these approaches see Subsection 1.3.2

8.3 RELATED WORK 187

and Subsection 1.4.5.
Regarding distributed active behavior related approaches focus on dif-

ferent aspects of distribution. First, [47, 97] independently propose systems
that support distributed event sources which are integrated by a central
server. The server is responsible of event composition, condition evaluation,
and rule execution. Second, the idea first presented by [69] to unbundle
databases' active behavior into software components is applied to distrib-
uted environments by [50, 51]. They propose among others distributed ser-
vices for the tasks that [47, 97] assign to a central server. Different from
all of these approaches we propose a P2P architecture and focus on issues
when the data for which active behavior is defined for is distributed, i.e.,
dynamically allocated in a network.

The presented event routing algorithm is tailored to the application,
i.e., it uses version graphs to route events between versions. It cannot be
compared to other algorithms, e.g., used by Gnutella and FastTrack, because
they do not employ the publish/subscribe protocol and thus cannot ensure
that messages are received by all recipients. Comparing it to P2P approaches
that use the publish/subscribe protocol, it is different from [171], which uses
a single centralized event server to handle subscriptions. However, while
[38]'s underlying model uses DHTs and thus cannot be directly compared,
it is similar in that it is a hybrid P2P model by using multiple central nodes
(there, one for each topic).

Chapter 9

Outlook

The thesis presented a combined approach for maintaining consistency of
data on the Web. While the SMWP approach is considered mature, there
are still some research issues that seem worth addressing in the area of Active
XML Schema (AXS) in general and in the area of composite mutation events
and active document flows (ATDF) in particular. These are enlisted in the
following.

• In the area of AXS, triggers are a procedural way of manually defining
the logic for incremental view maintenance. Naturally, a more declar-
ative way is desirable. Prom a declarative view definition, triggers
could be derived that realize view maintenance, as it has been done in
[44] by deriving triggers for view maintenance from SQL queries. For
the declarative definition of views, a query language such as XQuery
[167], consistency constraints such as in [176] and view correspondence
assertions such as in [144] could be used.

• An extension to AXS to provide for class-based modelling would ease
the definition of data replication and maintenance. Again, procedural
triggers could be derived from declarative class-based models and view
definitions to maintain consistency. As we were not able to identify
general replication patterns in XML documents for designing class-
based models, it is likely that they will be domain dependent. A good
starting point may be [33], which describes a fragmentation technique
for XML documents. Employing this technique, one could analogously
to SMWP define an approach for parameterized fragments and map
them to parameterized page classes, e.g., to define a Web site on top
of a native XML database.

• A promising extension to the proposed approach for composite muta-
tion events is the automatic derivation of composite event type defini-
tions from XML schémas. With these event type definitions, an appli-
cation engineer can start working with. We assume that if schémas use

189

190 9. OUTLOOK

XML schema concepts such as type definitions, type hierarchies and
model groups in a meaningful way, automatically derived composite
event type definitions will be meaningful as well.

• There is still work to be done in fine-tuning the approach for composite
events. The model and implementation can be optimized, e.g., often
it is sufficient when an operator node does not compare whole path
instances but only its last step. Moreover, one can think of various
extensions to the model, such as how to handle wildcards in path
types and path instances, or how to deal with phantom events, i.e.,
composite events that are raised although a constituent event reflects
a modification that has been undone by a subsequent event.

• To better understand requirements for composite mutation events, and
thus being better able to judge on the approach's possible extensions,
a case study is currently undertaken. It uses composite events to de-
serialize RDF/XML documents as specified in [166] into RDF graphs.
The specification uses events to define the deserialization (see Sec-
tion 6 and 7 therein) and thus neatly fits the functionality provided
by composite mutation events.

• A work worth exploring in the area of composite mutation events is
the combination of the hierarchical context with contexts from Snoop.
This is possible since the presented approach is fully compatible with
Snoop and thus provides for combined expressiveness. First, the hi-
erarchical context presented herein is orthogonal to Snoop's contexts
and can thus be arbitrarily combined with the latter, providing for si-
multaneous event combination by hierarchical position and time. Sec-
ond, composite XML event types can be combined by operators from
Snoop, providing for subsequent event detection based on time (e.g.,
NOT detects non-occurrences of events in time intervals).

• To explore the usage of traceable document flows in personal ad-hoc
data exchange, we are currently undertaking a case study by employ-
ing the approach to support communication within student teams who
are collaboratively working on software engineering projects. We hope
to detect frequent patterns in document exchange and get useful feed-
back. Moreover, we are experimentally evaluating the prototype, com-
paring the presented basic event routing algorithm to an approach that
solely uses the JXTA [113] infrastructure. The latter supports flooded
requests only, meaning that one peer in order to communicate with
another one sends a message to all peers he knows, which in turn for-
ward the message to all peers they know so that finally the message
reaches the peer it was targeted at. By the experimental evaluation

191

we hope to gain insight into the algorithm's implications on network
traffic.

• To explore the use of ATDF in a workflow setting, mapping work-
flow patterns that define control flows as, e.g., proposed in [143], to
document flows. Thereby existing flow constructs such as sequence,
exclusive choice, and synchronization would be leveraged to document
flows. The idea is to describe document flows top down using an ap-
propriate ontology, i.e., the patterns, and to derive necessary events
and rules on distributed documents to enforce the document flow.

List of Figures

1.1 Maintaining Consistency of Data on the Web 8

2.1 Simple Fragmentation 35
2.2 Parameterized Fragmentation 37

3.1 Realization of a Fragmentation Schema 49
3.2 Realization of Incremental Push-Based Data Delivery 54
3.3 Parameterized Fragmentation using Predicate Based Parame-

ters 66
3.4 Benchmark Architecture 71
3.5 Maintenance Time 73

4.1 Metaschema for Active XML Schema (Package axs) 80
4.2 Metaschema for Passive Behavior (Package psv) 81
4.3 Operations and Event Classes at Schema and Instance Layer 82
4.4 Metaschema for Event Types and Event Classes (Package evts) 85
4.5 Export and Import of Event Classes and Rules 88
4.6 Metaschema for Im-/Export of Event Classes (Package ixe) . 89
4.7 Metaschema for Rules (Package rule) 91
4.8 Scheduling an Event 93
4.9 Metaschema for Composite and Logical Events (Package cle) 95
4.10 Logical Event Class and Exception Rule 97
4.11 Time Diagram of Distributed Events 99
4.12 Time Diagram with Exemplary Timestamps According to

Lamport 101
4.13 Different Views on Distributed Events 105
4.14 Distributed Events in AXS 106

5.1 Recalculate Order Value upon Insertion of an Item 119
5.2 Derivation of Operator Nodes' Path Types 121
5.3 Event Selection and Event Consumption in Hierarchical Con-

text 122
5.4 Reuse of Event Trees 125
5.5 Event Tree using a Multiplicity Operator 126

193

194 LIST OF FIGURES

6.1 Proprietary Schema Approach 137
6.2 Side by Side Approach 139
6.3 Framework Approach 140
6.4 Specialized XML Schema Approach 143
6.5 Realizing Active XML Schema using a Mixed Approach . . . 148

7.1 Exemplary Version Graph 160
7.2 Effects of de l e t e Interaction on Version Graphs 165
7.3 Sending and Receiving Traceable and Queryable Email 170

8.1 Exemplary Document Flow 174
8.2 Architectural Layers of ATDFs 178
8.3 Exemplary Event Flows 179
8.4 Optimized Event Flow using RL Event Routing 185

List of Tables

1.1 Approaches for Data-Intensive Web Sites with Pre-
Generation of Web Pages 26

5.1 Raised Composite Events when using Contexts from Snoop . 118
5.2 Combination of the Hierarchical Context with Contexts from

Snoop 124
5.3 Raised Composite Events in Hierarchical Context when dif-

ferent Termination Modes are used 129

6.1 Characteristics of the Presented Approaches 146

A.I Prefixes used in Naming SMWP Artifacts 211

195

Bibliography

[1] Concurrent Versions System (CVS) Homepage, http://cvshome.org, 2003.

[2] ebXML Homepage, http://www.ebxml.org, 2003.

[3] Distributed Concurrent Versions System (DCVS) Homepage, ht tp : //www.
elegosoft.com/dcvs/, 2004.

[4] The CVS-Optimized General-Purpose Network File Distribution System
(CVSup) Homepage, http://www.cvsup.org/, 2004.

[5] S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. Active
Views for Electronic Commerce. In International Conference on Very Large
DataBases (VLDB), Edinburgh, Scotland, 1999.

[6] S. Abiteboul, O. Benjelloun, T. Milo, I. Manolescu, and R. Weber. Active
XML: A Data-Centric Perspective on Web Services. In Proceedings of the
Conference sur les Bases de Donnes Avances (BDA), 2002.

[7] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web. Morgan Kaufman
Publishers, 2000.

[8] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener. Incremental
Maintenance for Materialized Views over Semistructured Data. In Proceedings
of the 24rd International Conference on Very Large Data Bases, pages 38-49.
Morgan Kaufmann Publishers Inc., 1998.

[9] R. Adaikkalavan and S. Chakravarthy. Event Operators: Formalization, Al-
gorithms, and Implementation. Technical Report CSE-2002-3, Department of
Computer Science and Engineering, University of Texas at Arlington, 2002.

[10] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In M. Jarke, M.
Carey, K. Dittrich, F. Lochovsky, P. Loucopoulos, and M. Jeusfeld, editors,
Proceedings of the 23rd International Conference on Very Large Data Bases,
Athens, Greece, pages 206-215. Morgan Kaufmann, 1997.

[11] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data-
Intensive Web Sites. In H.-J. Schek, F. Saltor, I. Ramos, and G. Alonso,
editors, Proceedings of the 6th International Conference on Extending Data-
base Technology (EDBT), Valencia, Spain, volume 1377 of Lecture Notes in
Computer Science, pages 436-450. Springer, 1998.

[12] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action
Language for XML. In Proceedings of the 11th International Conference on
World Wide Web (WWW 11), Honolulu, USA, pages 486-495. ACM Press,
2002.

197

198 BIBLIOGRAPHY

[13] J. Bailey, A. Poulovassilis, and P. T. Wood. Analysis and Optimisation of
Event-Condition-Action Rules on XML. Computer Networks, 39(3):239-259,
2002.

[14] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Looking up Data in P2P Systems. Communications of the ACM (CACM),
46(2):43-48, 2003.

[15] E. Baralis. Active Rules in Database Systems, chapter Rule Analysis, pages
51-67. Springer, 1999.

[16] D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, and H.
Ziillighoven. Framework Development for Large Systems. Communications
of the ACM (CACM), 40(10):52-59, October 1997.

[17] BEA, IBM, Microsoft, SAP, and Siebel. Business Process Execution
Language (BPEL) for Web Services Version 1.1. http://www.ibm.com/
developerworks/library/ws-bpel, May 2003.

[18] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and A. Zhou. DTD-
Directed Publishing with Attribute Translation Grammars. In Proceedings of
29th International Conference on Very Large Data Bases, Hong Kong, China,
pages 838-849, 2002.

[19] M. Bernauer, G. Kappel, and G. Kramler. Approaches to Implementing a
Tailored Metaschema in XML. In Proceedings of the Forum for Short Contri-
butions at the 15th Conference on Advanced Information Systems Engineering
(CAiSE), Velden, Austria, pages 133-136, 2003.

[20] M. Bernauer, G. Kappel, and G. Kramler. Approaches to Implementing
Active Semantics with XML Schema. In Proceedings of the 14th International
Workshop on Database and Expert Systems Applications (DEXA), Workshop
on Web Semantics (WebS), Prague, Czech Republic, pages 559-565. IEEE
Computer Society Press, 2003.

[21] M. Bernauer, G. Kappel, and G. Kramler. Composite Events for XML. In
Proceedings of the 13th International Conference on the World Wide Web
(WWW13), New York, U.S.A. ACM Press, 2004.

[22] M. Bernauer, G. Kappel, and G. Kramler. Traceable Document Flows. In
Proceedings of the l^th International Workshop on Database and Expert Sys-
tems Applications (DEXA), Workshop on Web Semantics (WebS), Zaragoza,
Spain. IEEE Computer Society Press, 2004.

[23] M. Bernauer and M. Schrefl. Self-Maintaining Web Pages: from Theory to
Practice. Journal on Data & Knowledge Engineering, 48(l):39-73, 2004.

[24] T. Berners-Lee and M. Fischetti. Weaving the Web. Harper San Francisco,
1999.

[25] Tim Berners-Lee. Cool URIs Don't Change, http : //www. w3. org/Provider/
Style/URI.html,1998.

[26] P. A .Bernstein and N. Goodman. Concurrency Control in Distributed Data-
base Systems. ACM Computing Surveys (CSUR), 13(2):185-221, 1981.

BIBLIOGRAPHY 199

[27] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.

[28] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A Vision of Management of
Complex Models. SIGMOD Record, 29(4):55-63, 2000.

[29] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of
Software Quality. In Proceedings of the 2nd International Conference on
Software Engineering, San Francisco, United States, pages 592-605, 1976.

[30] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proceedings
of the 18th International Conference on Data Engineering (ICDE), San Jose,
USA, 2002.

[31] A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML: A New
Paradigm for E-Services. The VLDB Journal, 10(l):39-47, 2001.

[32] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing Reactive Services to XML
Repositories using Active Rules. In Proceedings of the 10th International
World Wide Web Conference (WWW 10), Hong Kong, China, pages 633-
641. ACM Press, 2001.

[33] J. Bremer and M. Gertz. On Distributing XML Repositories. In Proceedings
of the 6th International Workshop on Web and Databases (WebDB), San
Diego, U.S.A., pages 73-78, 2003.

[34] J. Broekstra, M. Ehrig, P. Haase, F. van Harmelen, A. Kampman, M. Sabou,
R. Siebes, S. Staab, H. Stuckenschmidt, and C. Tempich. A Metadata Model
for Semantics-Based Peer-to-Peer Systems. In Proceedings of the 1st Work-
shop on Semantics in Peer-to-Peer and Grid Computing, WWW2003, Bu-
dapest, Hungary, pages 23-42, 2003.

[35] P. Buneman. Semistructured data. In Proceedings of the 16th ACM Sympo-
sium on Principles of Database Systems, pages 117-121, 1997.

[36] L. Cardelli. The Computer Science and Engineering Handbook, chapter Type
Systems. CRC Press, 1997.

[37] M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasundaram, E. J.
Shekita, and S. N. Subramanian. XPERANTO: Publishing Object-Relational
Data as XML. In Proceedings of the 3rd International Workshop on the Web
and Databases (WebDB), May 2000, Dallas, USA, pages 105-110, 2000.

[38] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A Large-
Scale and Decentralized Application-Level Multicast Infrastructure. IEEE
Journal on Selected Areas in communications (JSAC), 20(8):1489-1499,2002.

[39] S. Ceri, R. Cochrane, and J. Widom. Practical Applications of Triggers and
Constraints: Success and Lingering Issues (10-Year Award). In Proceedings
of 26th International Conference on Very Large Data Bases (VLDB), Cairo,
Egypt, pages 254-262. Morgan Kaufmann, 2000.

[40] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML):
a Modeling Language for Designing Web Sites. In Proceedings of the 9th
International Conference on the World Wide Web, Amsterdam, Netherlands,
2000.

200 BIBLIOGRAPHY

[41] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Cornai, and M. Matera.
Designing Data-Intensive Web Applications. Morgan Kaufmann Publishers,
2003.

[42] S. Ceri, P. Fraternali, and S. Paraboschi. Design Principles for Data-Intensive
Web Sites. SIGMOD Record, 28(l):84-89, March 1999.

[43] S. Ceri and G. Pelagatti. Distributed Databases - Principles and Systems.
McGraw-Hill, 1984.

[44] S. Ceri and J. Widom. Deriving Production Rules for Incremental View
Maintenance. In Proceedings of the 17th Conference on Very Large Databases
(VLDB), Barcelona, Spain, pages 577-589. Morgan Kaufman, 1991.

[45] S. Chakravarthy. SENTINEL: An Object-Oriented DBMS With Event-Based
Rules. In Proceedings of the International Conference on Management of Data
(SIGMOD), Tucson, USA, pages 572-575. ACM Press, 1997.

[46] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. In Proceed-
ings of the 20th International Conference on Very Large Data Bases (VLDB),
Santiago de Chile, Chile, pages 606-617. Morgan Kaufmann, 1994.

[47] S. Chakravarthy, R. Lee, and R. Dasari. EC A Rule Processing in Distributed
and Heterogeneous Environments. In International Symposium on Distrib-
uted Objects and Applications, Edinburgh, United Kingdom. IEEE Computer
Society, 1999.

[48] S. Chakravarthya and D. Mishra. Snoop: An Expressive Event Specification
Language for Active Databases. Data & Knowledge Engineering, 14(l):l-26,
November 1994.

[49] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed. A Publishing
System for Efficiently Creating Dynamic Web Content. In Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), March 2000, Tel Aviv, Israel, pages 844-853, 2000.

[50] M. Cilia, C. Bornhövd, and A. P. Buchmann. Moving Active Functional-
ity from Centralized to Open Distributed Heterogeneous Environments. In
Proceedings of the 9th International Conference on Cooperative Information
Systems (CoopIS), Trento, Italy, volume 2172 of Lecture Notes in Computer
Science. Springer, 2001.

[51] M. Cilia, C. Bornhövd, and A. P. Buchmann. CREAM: An Infrastructure for
Distributed, Heterogenous Event-Based Applications. In Proceedings of the
11th International Conference on Cooperative Information Systems (CoopIS),
Sicily, Italy, volume 2888 of Lecture Notes in Computer Science, pages 482-
502. Springer, 2003.

[52] R. Conradi and B. Westfechtel. Version Models and Software Configuration
Management. A CM Computing Surveys (CSUR), 30(2):232-282, June 1998.

[53] S. B. Davidson. Distributed Systems, chapter Replicated Data and Partition
Failures, pages 265-292. ACM Press, 1992.

[54] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in Partitioned
Networks. A CM Computing Surveys (CSUR), 17(3):341-370, 1985.

BIBLIOGRAPHY 201

[55] M. El-Sayed, L. Wang, L. Ding, and E. Rundensteiner. An Algebraic Ap-
proach for Incremental Maintenance of Materialized XQuery Views. In Fourth
ACM CIKM International Workshop on Web Information and Data Manage-
ment (WIDM), LcLean, U.S.A. ACM, 2002.

[56] S. Embury and P. Gray. Active Rules in Database Systems, chapter Database
Internal Applications, pages 339-366. Springer, 1999.

[57] O. Etzioni, A. Y. Halevy, H. M. Levy, and L. McDowell. Semantic Email:
Adding Lightweight Data Manipulation Capabilities to the Email Habitat. In
Proceedings of the Workshop on Web and Databases (WebDB), San Diego,
U.S.A., 2003.

[58] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. STRUDEL: A
Web Site Management System. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD '97), Tucson, AZ,
USA, pages 549-552, 1997.

[59] M. Fernandez, A. Morishima, D. Suciu, and W.-C. Tan. Publishing Relational
Data in XML: the SilkRoute Approach. IEEE Data Engineering Bord, Special
Issue on XML Data Management, 24(2):12-19, June 2001.

[60] R. Fielding, J. Gettys, H. Frystyk, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt,
1999.

[61] R. La Fontaine. Merging XML Files: a New Approach Providing Intelligent
Merge of XML Data Sets. In Proceedings of the XML Europe International
Conference, 2002.

[62] Apache Software Foundation. Xalan-Java. http://xml.apache.org/
xa lan- j / , jun 2002.

[63] Apache Software Foundation. Xerces-Java. http://xml.apache.org/
xerces2-j/,2003.

[64] P. Fraternali. Tools and Approaches for Developing Data-intensive Web Ap-
plications: A Survey. ACM Computing Surveys (CSUR), 31(3):227-263,1999.

[65] J. Funderburk, G. Kiernan, J. Shanmugasundaram, E. Shekita, and C. Wei.
XTABLES: Bridging Relational Technology and XML. IBM Systems Journal,
41(4):616-641, 2002.

[66] A. Galton and J. C. Augusto. Two Approaches to Event Definition. In Pro-
ceedings of the 13th International Conference on Database and Expert Sys-
tems Applications (DEXA), Aix-en-Provence, France, number 2453 in LNCS,
pages 547-556. Springer, 2002.

[67] S. Gatziu and K. R. Dittrich. Events in an Active Object-Oriented Data-
base System. In Proceedings of the 1st Intl. Workshop on Rules in Database
Systems (RIDS), Edinburgh, Scotland, pages 23-29. Springer, 1993.

[68] S. Gatziu and K. R. Dittrich. Detecting Composite Events in Active Data-
base Systems Using Petri Nets. In Proceedings of the 4th Intl. Workshop
on Research Issues in Data Engineering (RIDE): Active Database Systems,
Houston, Texas, 1994.

202 BIBLIOGRAPHY

[69] S. Gatziu, A. Koschel, G. von Biiltzingsloewen, and H. Fritschi. Unbundling
Active Functionality. SIGMOD Record, 27(l):35-40, March 1998.

[70] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event Specification
in Active Databases: Model & Implementation. In Proceedings of the 18th
International Conference on Very Large Databases (VLDB), 1992.

[71] A. Geppert and D. Tombros. Event-Based Distributed Workflow Execution
with EVE. In Proceedings of International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware 98), September 1998,
Lake District, England, 1998.

[72] G. Gottlob, M. Schrefl, and B. Rock. Extending Object-Oriented Systems
with Roles. ACM Transactions on Information Systems (TOIS), 14(3):268-
296, 1996.

[73] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[74] T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath Evaluation
in Any RDBMS. Transactions on Database Systems (TODS), 29(1):91-131,
March 2004.

[75] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems,
Techniques, and Applications. IEEE Data Engineering Bulletin, 18(2):3-18,
1995.

[76] S. Helmer, C. Kanne, and G. Moerkotte. Lock-based protocols for cooperation
on XML documents. In International Workshop on Web Based Collaboration,
2003.

[77] S. Helmer, C. Kanne, and G. Moerkotte. Timestamp-based Protocols for
Synchronizing Access on XML Documents. In Proceedings of the 15th Inter-
national Conference on Database and Expert Systems Applications (DEXA),
Zaragoza, Spain, 2004.

[78] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F.
van Harmelen, M. Klein, S. Staab, R. Studer, and E. Motta. The Ontology
Inference Layer OIL. Technical Report IR-479, Vrije Universiteit Amsterdam,
2000.

[79] The Internet Engineering Task Force (IETF). URN Syntax, http://www.
ietf .org/rfc/rfc2141.txt , 1997.

[80] The Internet Engineering Task Force (IETF). Uniform Resource Identifiers
(URI): Generic Syntax, h t tp : / / ie t f .org/ r fc / r fc2396. tx t , 1998.

[81] The Internet Engineering Task Force (IETF). HTTP Extensions for Dis-
tributed Authoring - WebDAV. http://www.ietf.org/rfc/rfc2518.txt,
1999.

[82] The Internet Engineering Task Force (IETF). Versioning Extensions to Web-
DAV. http://www.ietf.org/rfc/rfc3253.txt, 2002.

[83] Dublin Core Metadata Initiative. Namespace Policy for the Dublin
Core Metadata Initiative (DCMI). http://dublincore.org/documents/
dcmi-namespace/, 2001.

BIBLIOGRAPHY 203

[84] Dublin Core Metadata Initiative. Dublin Core Metadata Element Set, Version
1.1: Reference Description, http://dublincore.org/documents/dces/,
2003.

[85] Interntational DOI Foundation. The Digital Object Identifier (DOI) System.
http://doi.org.2004.

[86] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM: A Methodology
for Structured Hypermedia Design. Communications of the ACM (CACM),
38(8), 1995.

[87] ISO. International Standard ISO 8879, Information Processing - Text and
Office Systems - Standard Generalized Markup Language (SGML), 1986.

[88] ISO. International Standard ISO/IEC 9126, Information Technology - Soft-
ware Product Evaluation - Quality Characteristics and Guidelines for their
Use, 1991.

[89] Rick Jelliffe. The Schematron, an XML Structure Validation Language using
Patterns in Trees, http://xml.ascc.net/resource/schematron/, 2001.

[90] Ralph E. Johnson. Frameworks = (Components + Patterns). Communica-
tions of the ACM (CACM), 40(10):39-42, 1997.

[91] G. Kappel, E. Kapsammer, and W. Retschitzegger. Integrating XML and
Relational Database Systems. World Wide Web Journal (WWWJ), Kluwer
Academic Publishers, 7(4):343-384, December 2004.

[92] G. Kappel, P. Lang, S. Rausch-Schott, and W. Retschitzegger. Workflow
Management Based on Objects, Rules, and Roles. IEEE Bulletin of the
Technical Committee on Data Engineering, 18(1):11—17, March 1995.

[93] G. Kappel, W. Retschitzegger, and W. Schwinger. A Comparison of Role
Mechanisms in Object-Oriented Modeling. In Proceedings Modellierung'98,
pages 105-109, 1998.

[94] W. Klas and M. Schrefl. Metaclasses and Their Applications - Data Model
Tailoring and Database Integration, volume 943 of Springer LNCS. Springer-
Verlag, 1995.

[95] M. Klein, D. Fensel, F. van Harmelen, and I. Horrocks. The Relation between
Ontologies and Schema-Languages: Translating OIL-specifications in XML-
Schema. In Proceedings of the Workshop on Applications of Ontologies and
Problem-solving Methods, 14th European Conference on Artificial Intelligence
(ECAI), Berlin, Germany, 2000.

[96] H. Kopetz. Sparse Time versus Dense Time in Distributed Real-Time Sys-
tems. In Proceedings of the 12th International Conference on Distributed
Computing Systems (ICDCS), Yokohama, Japan, 1992.

[97] B. Krishnamurthy and D. S. Rosenblum. Yeast: A General Purpose Event-
Action System. IEEE Transactions on Software Engineering, 21(10):845-857,
1995.

[98] Princeton University (Cognitive Science Laboratory). WordNet - A Lexical
Database for the English Language, http://wordnet.princeton.edu/.

204 BIBLIOGRAPHY

[99] A. Labrinidis and N. Roussopoulos. WebView Materialization. In Proceed-
ings of the 2000 ACM SIGMOD International Conference on Management
of Data, Dallas, U.S.A., pages 367-378. ACM, 2000.

[100] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558-565, July 1978.

[101] P. Lang, W. Obermair, and M. Schrefl. Modeling Business Rules with Sit-
uation/Activation Diagrams. In Proceedings of 13th International Confer-
ence on Data Engineering (ICDE), Birmingham, U.K., pages 455-464. IEEE
Computer Society Press, 1997.

[102] S. Lechner, G. Preuner, and M. Schrefl. Translating XQuery into XSLT.
In Proceedings of the ER Workshops 2001 (HUMACS, DASWIS, ECOMO,
and DAMA), Yokohama, Japan, volume 2465 of Lecture Notes in Computer
Science, pages 239-252, 2001.

[103] K. J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method
with Propagation Patterns. PWS Publishing Co., 1995.

[104] C. Liebig, M. Cilia, and A. P. Buchmann. Event Composition in Time-
dependent Distributed Systems. In Proceedings of the 3rd International Con-
ference on Cooperative Information Systems (CoopIS), Edinburgh, Scotland,
pages 70-78. IEEE Computer Society, 1999.

[105] P. Maes. Concepts and Experiments in Computational Reflection. In Pro-
ceedings on the International Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), Orlando, Florida, 1987.

[106] A. Malik. Create Flexible and Extensible XML Schemas, http://www-106.
ibm.com/developerworks/library/x-flexschema/, November 2002.

[107] F. Manola and S. Heiler. A 'RISC' Object Model for Object System Interop-
eration: Concepts and Applications. Technical Report TR-0231-08-93-165,
GTE Laboratories Incorporated, August 1993.

[108] P. Marinelli, C. S. Coen, and F. Vitali. SchemaPath, a Minimal Extension
to XML Schema for Conditional Constraints. In Proceedings of the 13th
International Conference on the World Wide Web (WWW 13), New York
City, U.S.A. ACM, 2004.

[109] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the Era of XML. Data
Engineering Bulletin, 22(3):19-26, September 1999.

[110] G. Mecca, P. Merialdo, P. Atzeni, and V. Crescenzi. The (Short) ARANEUS
Guide to Web-Site Development. In Informal Proceedings of the ACM SIG-
MOD Workshop on the Web and Databases (WebDB), Philadelphia, USA,
1999.

[Ill] D. Megginson. SAX: The Simple API for XML. http://www.megginson.
com/SAX/, May 2000.

[112] Microsoft. XML and the DataSet. http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpguide/html/cpconxmldataset.
asp, 2001.

[113] Sun Microsystems. JXTA. h t tp : / / jx ta .org , 2003.

BIBLIOGRAPHY 205

[114] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In
Proceedings of the 12th International Conference on the World Wide Web,
pages 500-510. ACM Press, 2003.

[115] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-
57, Hewlett Packard Laboratories, 2002.

[116] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch. EDUTELLA: a P2P Networking Infrastructure
based on RDF. In Proceedings of the 11th Conference on World Wide Web
(WWW 11), 2002.

[117] J. Nielsen. Designing Web Usability. New Riders Publishing, 1st edition,
2000.

[118] OASIS. RELAX NG Specification. http://www.oasis-open.org/
committees/relax-ng/spec-20011203.html, December 2001.

[119] Object Management Group (OMG). OMG Meta Object Facility (MOF)
Specification. OMG Document formal/2000-04-03, http://www.omg.org/
technology/documents/f ormal/mof .htm, March 2000.

[120] Object Management Group (OMG). XML Metadata Interchange (XMI)
Specification. OMG Document formal/03-05-02 http://www.omg.org/
cgi-bin/doc?formal/2003-05-02, May 2003.

[121] Oracle. XML Developer Kit. http://technet.oracle.com/tech/xml/
xdkhome.html, June 2002.

[122] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice Hall, 1999.

[123] N. Paton and O. Diaz. Active Database Systems. A CM Computing Surveys
(CSUR), 31(l):63-103, March 1999.

[124] L. Press. The State of the Internet: Growth and Gaps. In Proceedings of the
10th Annual Internet Society Conference (INET), Yokohama, Japan, 2000.

[125] B. Pröll, H. Starck, W. Retschitzegger, and H. Sighart. Ready for Prime
Time: Pre-Generation of Web Pages in TIScover. In Proceedings of the 1999
ACM CIKM International Conference on Information and Knowledge Man-
agement, Kansas City, Missouri, USA, pages 63-68. ACM, 1999.

[126] W. Provost. Working with a Metaschema. http://www.xml.eom/lpt/a/
2002/ 10/02/metaschema.html, October 2002.

[127] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison
Wesley, 2002.

[128] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4):334-350, 2001.

[129] W. Retschitzegger and W. Schwinger. Towards Modeling of Data Web Ap-
plications - A Requirements' Perspective. In Proceedings of the Americas
Conferenc on Information Systems (AMCIS), Long Beach, U.S.A., 2000.

206 BIBLIOGRAPHY

[130] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[131] D. Schoder and K. Fischbach. Peer-toPeer Prospects. Communications of
the ACM (CACM), 46(2):27-29, February 2003.

[132] M. Schrefl and M. Bernauer. Active XML Schemas. In Proceedings of
the Workshop on Conceptual Modeling Approaches for e-Business (eCOMO)
at the International Conference on Conceptual Modeling (ER), Yokohama,
Japan, volume 2465 of LNCS. Springer, 2001.

[133] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W. Retschitzegger, and
T. Thalhammer. Self-Maintaining Web Pages. Journal on Information Sys-
tems (IS), 28(8): 1005-1036, 2003.

[134] M. Schrefl, E. Kapsammer, B. Pröll, and W. Retschitzegger. Self-Maintaining
Web Pages - An Overview. In Proceedings of the 12th Australasian Database
Conference (ADC 2001). IEEE Computer Society, 2001.

[135] D. Schwabe, G. Rossi, and S. Barbosa. Systematic Hypermedia Application
Design with OOHDM. In UK Conference on Hypertext, pages 116-128, 1996.

[136] S. Schwiderski. Monitoring the Behaviour of Distributed Systems. PhD thesis,
University of Cambridge, 1996.

[137] G. Sindoni. Incremental Maintenance of Hypertext Views. In Proceedings
of the International Workshop on the Web and Databases (WebDB), 1998,
Valencia, Spain, pages 98-117. Springer, 1998.

[138] Sun. JSR 57 Long-Term Persistence for. the JavaBeans™ Specification,
http://www.jcp.org/en/jsr/detail?id=57, dec 2002.

[139] Sun. Java Architecture for XML Binding (JAXB). http://java.sun.com/
xml/jaxb/,2004.

[140] C. Tempich, S. Staab, and A. Wranik. REMINIDIN': Semantic Query Rout-
ing in Peer-to-Peer Networks based on Social Metaphors. In Proceedings of
the 13th World Wide Web Conference (WWW2OO4), New York, USA, 2004.

[141] D. Tsichritzis. Form Management. Communications of the ACM (CACM),
25(7):453-478, 1982.

[142] D. Tsichritzis and A. C. Klug. The ANSI/X3/SPARC DBMS Framework
Report of the Study Group on Dabatase Management Systems. Information
Systems, 3(3), 1978.

[143] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
Patterns. Journal on Distributed and Parallel Databases, 14(3):5-51, 2003.

[144] V. Vidal and M. Casanova. Efficient Maintenance of XML Views using View
Correspondence Assertions. In Proceedings of the 4th International Confer-
ence on E-Commerce and Web Technologies (EC-Web), Prague, Czech Rep-
bulic, 2003.

[145] V. Vidal, M. Casanova, and V. Araujo. Generating Rules for Incremental
Maintenance of XML View of Relational Data. In Proceedings of the 5th ACM
CIKM International Workshop on Web Information and Data Management
(WIDM), New Orleans, U.S.A., 2003.

BIBLIOGRAPHY 207

[146] W3C. Cascading Style Sheets, Level 2. http://www.w3.org/TR/REC-CSS2/,
May 1998.

[147] W3C. Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/
REC-xml,1998.

[148] W3C. Hypertext Markup Language (HTML) 4.01 Specification (W3C Rec-
ommendation). http://www.w3.org/TR/html4/, December 1999.

[149] W3C. XML Path Language (XPath) (W3C Recommendation), http://www.
w3. org/TR/xpath, November 1999.

[150] W3C. XSL Transformations (XSLT) (W3C Recommendation), http://www.
w3.org/TR/xslt, November 1999.

[151] W3C. XSL Transformations (XSLT) (W3C Recommendation), http://www.
w3.org/TR/xslt, November 1999.

[152] W3C. Extensible Stylesheet Language (XSL), Version 1.0 (W3C Recommen-
dation). http://www.w3.org/TR/xsl/, October 2001.

[153] W3C. URIs, URLs, and URNs: Clarifications and Recommendations 1.0
(W3C Note). http://www.w3.org/TR/uri-clarification/, 2001.

[154] W3C. XML Information Set (W3C Recommendation), http://www.w3.org/
TR/xml-inf oset, October 2001.

[155] W3C. XML Linking Language (XLink) Version 1.0 (W3C Recommendation).
http://www.w3.org/TR/xlink/, June 2001.

[156] W3C. XML Pointer Language (XPointer) Version 1.0 (Last Call Working
Draft). http://www.w3.org/TR/WD-xptr, January 2001.

[157] W3C. XML Schema Part 1: Structures (W3C Recommendation), h t tp :
//www.w3.org/TR/xmlschema-l, May 2001.

[158] W3C. XML Schema Part 2: Datatypes (W3C Recommendation), h t tp :
//www.w3.org/TR/xmlschema-2/, May 2001.

[159] W3C. XHTML™ 1.0 The Extensible HyperText Markup Language (W3C
Recommendation). http://www.w3.org/TR/xhtmll/, August 2002.

[160] W3C. Architecture of the World Wide Web (W3C Working Draft), h t tp :
//www.w3.org/TR/2003/WD-webarch-20031209, December 2003.

[161] W3C. Document Object Model (DOM) Level 3 Events (W3C Working Group
Note). http://www.w3.org/TR/D0M-Level-3-Events/, March 2003.

[162] W3C. Scalable Vector Graphics (SVG) 1.1 Specification (W3C Recommen-
dation). http://www.w3.org/TR/SVG/, January 2003.

[163] W3C. XQuery 1.0 and XPath 2.0 Functions and Operators (W3C Working
Draft). http://www.w3.org/TR/xpath-functions, May 2003.

[164] W3C. Document Object Model (DOM) Level 3 Core Specification (W3C
Recommendation), ht tp : //www. w3. org/TR/DOM-Level-3-Core, April 2004.

[165] W3C. OWL Web Ontology Language Guide (W3C Recommendation), h t tp :
//w3.org/TR/owl-guide/, February 2004.

208 BIBLIOGRAPHY

[166] W3C. RDF/XML Syntax Specification (W3C Recommendation), h t tp :
//w3.org/TR/rdf-syntax-grammar/, February 2004.

[167] W3C. XQuery 1.0: An XML Query Language (W3C Working Draft), h t tp :
//w3.org/TR/xquery/, July 2004.

[168] G. Weikum and G. Vossen. Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control. Morgan Kaufmann,
2001.

[169] T. Werf-Davelaar. Identification, Location and Versioning of Web-Resources.
http://www.kb.nl/coop/donor/rapporten/URI.html, March 1999.

[170] K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. Caching Strategies for
Data-Intensive Web Sites. In Proceedings of 26th International Conference
on Very Large Data Bases (VLDB), September 2000, Cairo, Egypt, pages
188-199. Morgan Kaufmann, 2000.

[171] J. Yang, M. Papazoglou, and B. Krämer. A Publish/Subscribe Scheme for
Peer-to-Peer Database Networks. In Proceedings of the 11th International
Conference on Cooperative Information Systems (CoopIS), Sicily, Italy, num-
ber 2888 in LNCS, pages 245-262. Springer, 2003.

[172] S. Yang and S. Chakravarthy. Formal Semantics of Composite Events for
Distributed Environments. In Proceedings of the 15th International Confer-
ence on Data Engineering, March 1999, Sydney, Austrialia, pages 400-407.
IEEE Computer Society, 1999.

[173] R. J. Zhang and E. A. Unger. Event Specification and Detection. Technical
Report CS-96-8, Department of Computing and Information Sciences, Kansas
State University, 1996.

[174] Y. Zhuge, J. L. Wiener, and H. Garcia-Molina. Multiple View Consistency
for Data Warehousing. In Proceedings of the 13th International Conference
on Data Engineering (ICDE), Birmingham, U.K., pages 289-300, 1997.

[175] D. Zimmer and R. Unland. On the Semantics of Complex Events in Active
Database Management Systems. In Proceedings of the 15th International
Conference on Data Engineering (ICDE), Sydney, Australia, pages 392-399.
IEEE Computer Society Press, 1999.

[176] A. Zisman, W. Emmerich, and A. Finkelstein. Using XML to Build Consis-
tency Rules for Distributed Specifications. In Proceedings of the 10th Inter-
national WOrkshop on Software Specification and Design (IWSSD). IEEE,
2000.

Appendix

A SMWP

Schema Definition Language

This section contains a complete specification of the schema definition lan-
guage as introduced in Section 2.2. Terms "/*" and "*/" are used to delimit
comments.

SMWPStmt := (CreateStmt | DropStmt | ShowStmt | AlterStmt) ";"•

/ * Create Statement */
CreateStmt :=

"CREATE" (FCCreateStmt | PCCreateStmt | ParamCreateStmt).
FCCreateStmt : = PFCCreateStmt | DFCCreateStmt.
PFCCreateStmt :=

"PRIMARY FRAGMENT CLASS" FCSignature
"FRAGMENTATION BASE CLASS" FCSignature
["TUPLE SELECTION PREDICATE" SQLExpr]
["FRAGMENT SELECTION PREDICATE" SQLExpr].

DFCCreateStmt :=
"DERIVED FRAGMENT CLASS" FCSignature
"FRAGMENTATION BASE CLASS" FCSignature ["AS" Ident]
"DERIVATION BASE CLASS" FCSignature ["AS" Ident]
"JOIN BY" SQLExpr.

PCCreateStmt :=
"PAGE CLASS" PCSignature
["FILENAME" FileName]
"FOUNDATION FRAGMENT CLASS" PCFCMapping
{"FRAGMENT CLASS" PCFCMapping}.

PCFCMapping := FCSignature ["AS" Ident]
[ParameterMap] {InternalPageRef | ExternalPageRef}.

Parameter Map :=
"PARAMETER MAP" Ident "AS" Ident {"," Ident "AS" Ident}.

209

210 APPENDIX

InternalPageRef :=
"INTERNAL LINK TO FRAGMENT CLASS" FCSignature
["AS" Ident] "JOIN BY" SQLExpr.

ExternalPageRef :=
"EXTERNAL LINK TO PAGE CLASS" PCSignature ["AS" Ident]
"CONTAINING FRAGMENT CLASS" FCSignature ["AS" Ident]
"JOIN BY" SQLExpr.

PammCreateStmt :- VBPCreateStmt | PBPCreateStmt.
VBPCreateStmt :=

"VALUE BASED PARAMETER" Ident "ON" FCSignature
(UseReferenceRelationStmt | CreateReferenceRelationStmt).

UseReferenceRelationStmt :=
"USE REFERENCE RELATION" Ident "(" Ident ")".

CreateReferenceRelationStmt := "CREATE REFERENCE RELATION".
PBPCreateStmt :=

"PREDICATE BASED PARAMETER" Ident "ON" FCSignature
"PREDICATES {" "("" Ident ""," SQLExpr ")"
{"," "("" Ident ""," SQLExpr ")"} "}" .

SQLExpr— "{" {ANY} "}" .

/ * Drop Statement */
DropStmt := "DROP" (FCDropStmt | PCDropStmt | ParamDropStmt).
FCDropStmt := "FRAGMENT CLASS" FCSignature.
PCDropStmt := "PAGE CLASS" PCSignature.
ParamDropStmt := "PARAMETER" Ident "DEFINED UPON" FCSignature.

/ * Show Statement */
ShowStmt := "SHOW" (FCShowStmt | PCShowStmt | ParamShowStmt).
FCShowStmt := "FRAGMENT CLASS" (FCSignature | "*").
PCShowStmt := "PAGE CLASS" (PCSignature | "*").
ParamShowStmt := "PARAMETER" (Ident | "*")

["DEFINED UPON" FCSignature].

/ * Alter Statement */
AlterStmt := "ALTER" PCAlterStmt.
PCAlterStmt :=

"PAGE CLASS" PCSignature (PCAlterAddStmt | PCAlterDropStmt).
PC AlterAddStmt :=

[PCAlterAliasStmt] "ADD FRAGMENT CLASS" PCFCMapping.
PC AlterAliasStmt :=

"REFERRING TO FRAGMENT CLASS"
FCSignature "AS" Ident {"," FCSignature "AS" Ident}.

ASMWP 211

Table A.I: Prefixes used in Naming SMWP Artifacts
Prefix Description

FC

FR

RV

Content relation storing a fragment class' data, e.g., FC.PremWines.re-
gion stores data of fragment class PremWines<region>.
Fragmentation relation storing fragmentation, e.g., FR.PremWines.re-
gion stores fragmentation of fragment class PremWines<region>.
Reference relation storing a parameter's domain, e.g., RV_Wineries_re-
gion stores the domain of parameter region defined on root fragment
class Winerieso.

AT

CT
FT

ST

Auxiliary trigger used in propagating modifications of a derivation base
class' content relation to a derived fragment class' content relation.
Content trigger propagating modifications between content relations.
Fragmentation trigger propagating modifications between fragmentation
relations and from reference relations to fragmentation relations.
Serialization trigger propagating modifications of data and fragmenta-
tion to pages.

PCAlterDropStmt := "DROP FRAGMENT CLASS" FCSignature.

/ * Miscellaneous */
/* Signature of a fragment class */
FCSignature := FCName "<" [ParamName {"," ParamName}] ">".
/ * Signature of a page class */
PCSignature := PCName "<" [ParamName {"," ParamName}] ">".
ParamName := Ident. / * Name of a parameter */
FCName :— Ident. / * Name of a fragment class */
PCName := Ident. / * Name of a page class */
FileName := Ident "." Ident. /* Filename-Template for pages */
Ident := letter {letter | digit | "_" | "-"}.
letter := "A|B|..|Z|a|b|..|z".
digit— "0|l|..|9".

Naming Conventions

When referring to artifacts of the SMWP approach such as fragment classes
and content relations, placeholders and variables are written in italics (e.g.,
F<L> or FC-F-L) while concrete artifacts are denoted in sans-serif (e.g.,
PremWines<region> or FC_PremWines_region).

Artifacts of the realization model (i.e., relations and triggers) are named
using prefixes to explicitly distinguish their kind. Table A.I describes the
prefixes used.

212 APPENDIX

B ATDF

This section shows the syntax of interactions to control active document
flows by EBNF productions. Comments are used for annotation and are
enclosed between "/*" and "*/".

After opening a connection to a peer by using interaction open, arbitrary
interactions can be issued by a user affecting local versions, which are stored
at the peer the user is connected to, and remote versions, which are stored
at other, remote peers. While every interaction affects a local version, e.g.,
by modifying its content or deleting it, interactions that may affect remote
versions are limited to read, checkin, reallocate, merge, and relay.

The implemented prototype takes advantage of the interactions' struc-
ture and implements a basic security mechanism by authenticating the user
upon opening a connection which authorizes her/him to manipulate local
versions arbitrarily. When an interaction is issued that affects a remote
version, the remote peer tests whether the user is authorized to perform it.

Stmt := (ConnectStmt | DocFlowStmt | ActiveDocFlowStmt) ' ; '.
/ * Connect to a peer */
ConnectStmt := ('open' PID | 'close').
/ * Basic Artefacts */
DID := xs:anyURI.
VID := xs:anyURI.
RemoteVID := VID ('at' | '«') PID.
RemoteDID := DID ('at' | '<3') PID.
PID := xs:anyURI.
Variable := '$' Ident.
Ident := ('A'..'Z'|'a'..'z') {'A'..'Z'|'a'..'z'|'0'..'9'|'-'|'_'|'.'}.
Filename := ' f i l e : / / ' {'A'..'Z'|'a'..'z'|'0'..'9'|'-'|'_'|'. ' | 7 ' | ' : '}.
/ * Document flows */
DocFlowStmt :=

CheckinStmt | CheckoutStmt | ReadStmt |
MergeStmt | DeleteStmt | ReallocateStmt | BindStmt |
ProceedStmt | BranchStmt | CopyStmt.

Simple Interactions

CheckinStmt := 'checkin' (VID | RemoteVID) ['of DID] 'from' Variable.
CheckoutStmt :=

'checkout' ('successor' | 'offspring') 'of VID ['into' Variable].
ReadStmt := 'read' (VID | RemoteVID) ['into' Variable].
MergeStmt := 'merge' (VID) ' into' (VID | RemoteVID).
DeleteStmt := 'delete' VID.
ReallocateStmt := ' reallocate ' VID 'to' (VID | RemoteVID).
BindStmt := 'bind' Filename 'to' Variable.

B ATDF 213

Composite Interactions

ProceedStmt := 'proceed' VID 'by' (VID | RemoteVID).
BranchStmt := 'branch' VID 'to' (VID | RemoteVID).
CopyStmt := 'copy' VID ' to ' (VID | RemoteVID) ['of DID].
/ * Composite interactions are formed from basic ones as follows:

proceed V\ by V2 =
checkout successor of V\ into $ / ; checkin V2 from $ / ;

branch v\ to V\.i.\ =
checkout offspring of v\ into $ / ; checkin i>i.i.i from $ / ;

copy v\ to V2 of d,2 =
read v\ into $ / ; checkin V2 of d,2 from $ / ;

V

Interactions on Active Documents and Versions

ActiveDocFlowStmt := InvokeStmt | SubscribeStmt | RelayStmt.
InvokeStmt := 'invoke' Operationlnvoc 'on' VID ['into' Variable].
Operationlnvoc := Ident (LiteralValue {',' LiteralValue}).
LiteralValue := "" String "" | Number | .. | XML | Variable.
SubscribeStmt :=

('subscribe' | 'unsubscribe')
EventClass 'of (DID | RemoteDID) 'by' DID.

EventClass := Ident.
RelayStmt :=

'relay' ('distribution' | 'reception')

'from' VID 'to' (VID | RemoteVID).

Acknowledgements

Es war einmal vor langer Zeit und das war eine sehr gute Zeit da war eine
Muhkuh die kam die Straße herunter gegangen und diese Muhkuh die da die
Straße heruntergegangen kam die traf einen schönen tleinen Tnaben und der
hieß Tucktuck-Baby...

Indem ich also den Einstieg, den ersten Satz, mit obigem Zitat antrete,
das übrigens seinerseits der erste Satz eines Buches von James Joyce ist, habe
ich den für mich schwierigsten Teil der Danksagung bewältigt. Dass durch
die Auswahl des einen eine Unzahl anderer nicht berücksichtig werden kann,
muss verziehen werden. Dabei ist unter Umständen zu bedenken, dass die
Wissenschaft einer persönlichen Eigenschaft förderlich zu sein scheint, die
Flaubert in seinem Wörterbuch der Gemeinplätze den Advokaten zuschreibt:
"Vor lauter Für und Wider ist ihre Urteilskraft verdorben".

Wem mein Dank gilt, ist ungleich einfacher zu bestimmen, denn alleine
hätte ich diese Arbeit nicht zu Stande gebracht:

Ich danke meinen Betreuern, Gerti Kappel und Michael Schrefl, die einen
wesentlichen Beitrag zu dieser Arbeit, direkt und indirekt, geleistet haben.
Danke für euren Einsatz, eure uneingeschränkte Hilfsbereitschaft, für das
produktive Umfeld, in dem es ausreichend Freiheit für die Erfüllung abwech-
slungsreicher und ambitionierter Aufgaben gab, und für das Vorleben eines
wissenschaftlichen Enthusiasmus und eines Ideenreichtums, der ständiger
Motivator war.

Danke meinen Kolleginnen und Kollegen, für die interessante Zusam-
menarbeit in Forschung und Lehre. Für die fruchtbaren Diskussion, die
ausgetauschten Ideen, für die sinnvollen als auch die sinnlosen, die Anre-
gungen und die Unterstützung. Namentlich bedanke ich mich bei Margit
Brandi, Sabine Graf, Stefan Lechner, Elke Michlmayr, Günther Preuner,
Michael Schadler, Sonja Willinger und insbesondere meinen jahrelangen
Bürokollegen Gerhard Kramler, der mir durch seinen Blick hinter die Dinge
sehr viel gezeigt hat, und Thomas Thalhammer, der mir mit seiner typischen
Tatkraft beim Einstieg immer hilfsbereit zur Seite stand.

Danke auch an die Studierenden, die durch die prototypische Real-
isierung der Ansätze und ihr Feedback ihren Anteil an der Arbeit haben, na-
mentlich Werner Enser, Jan Wenger, Florian Sonntag und Christian Sokop.

215

Curriculum Vitae

Personal Record

Education

Job Experience

Publications

Martin Bernauer
born on April 28, 1975
in Salzburg, Austria.
mailto:bernauerQbig.tuwien.ac.at

Feb. 2001 - Jan. 2005
Ph.D. studies in Business Informatics
at the Johannes Kepler University Linz and
at the Vienna University of Technology.

Oct. 1994 - Oct. 1999
M.S. studies in Business Informatics
at the Johannes Kepler University Linz.

Jul. 2002- Jan. 2005
Faculty member at the Business Informatics Group,
Institute for Software Technology and Interactive Systems,
at the Vienna University of Technology.

Feb. 2001 - Jun. 2002
Faculty member at the Data and Knowledge Engineering Group,
Institute for Business Informatics,
at the Johannes Kepler University Linz.

Oct. 1999 - Jan. 2000
Consultant for Web-Technologies at
Porsche Informatik Austria, Salzburg.

see ht tp ://www.big.tuwien.ac.at/research/publications

217

