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Kurzfassung

Die vorliegende Arbeit befaßt sich mit der Simulation duktiler Schädigung in Metall-

Matrix-Verbundwerkstoffen (MMCs) mit Hilfe der Finiten Elemente Methode.

Bei den untersuchten Materialien handelt es sich um eine duktile Matrix mit eingebette-

ten Verstärkungen in Form von Partikeln mit Größen von einigen Mikrometern. Das Ziel

dieser Arbeit ist die Untersuchung des Einflusses der Partikelanordnung und -große auf die

Schädigung der Matrix und somit auch auf das Versagen des gesamten Verbundwerkstoffes.

Da es sich bei den in MMCs auftretenden Schädigungsmodi (Matrixschädigung. Partikel-

bruch und Interfaceversagen) um lokale Phänomene handelt, muß eine Strategie gewählt

werden, mit der sowohl die Matrix als auch die Verstärkungen im Finiten Elemente Netz

modelliert werden können. Aufgrund der vorherrschenden Längenskala sind solche Simu-

lationen auch als mikromechanische Berechnungen bekannt. Mit einem solchen Ansatz ist

es möglich, das globale Verhalten des untersuchten Materials in unterschiedlichen Bela-

stungsfällen zu berechnen ("Materialcharakterisierung").

Um die gestellte Aufgabe erfüllen zu können, wurden Materialroutinen in das kommerzielle

Finite Elemente Programm ABAQUS/Standard implementiert, welche in der Lage sind,

das Verhalten von elasto-plastischen Materialien sowohl im ungeschädigten als auch im

geschädigten Zustand zu beschreiben.

Es ist allerdings aus der Literatur bekannt, daß solche Schädigungsmodelle eine Netz-

abhängigkeit aufweisen, welche dazu führen kann, daß die errechnete Lösung von der

gewählten Netzgröße bestimmt wird, was natürlich einen inakzeptablen Zustand darstellt.

Ein nichtlokaler Ansatz wurde herangezogen und implementiert, um dieses Problem zu

verringern.

Die vorliegende Arbeit beinhaltet eine kurze Einführung in Metall-Matrix-Verbundwerk-

stoffe und deren Versagensmodi, eine Diskussion der bekanntesten in der Literatur zu fin-

denden duktilen Schädigungsmodelle, eine detaillierte Beschreibung der Implementierung

von drei nichtlokalen Schädigungsmodellen in ABAQUS/Standard und eine Diskussion von

mit Einheitszellenanalysen erzielten Resultaten.



Abstract

The present work deals with the simulation of ductile damage in metal matrix composites

(MMCs) by the finite element method. The materials studied consist of a ductile matrix

with embedded particulate reinforcements the size of which is of the order of a few microns.

The aim of this work encompasses research on the influence of particle arrangement and

size on matrix damage and, hence, the failure of the whole composite.

The observed failure modes of MMCs - matrix damage, particle fracture and interface

debonding - act as local phenomena. Accordingly, an obvious modeling strategy consists

in resolving the matrix as well as the reinforcements in a finite element mesh. Due to the

governing length scale this kind of simulations are also known as micromechanical models.

This approach provides the capability of investigating the global behavior of the material

under a wide range of thermomechanical loads ( "material characterization" ).

In order to fulfill the above task, a number of material subroutines were implemented into

the commercial finite element program ABAQUS/Standard. These subroutines have the

capability of describing the behavior of elastoplastic metallic materials in their undamaged

as well as in their damaged states.

It is well known from the literature that such damage models in their basic form show

an inherent mesh dependence as a consequence of which the results of simulations may be

governed by the finite element mesh size. Because such behavior is evidently not acceptable,

a nonlocal approach was applied and implemented that allows to mitigate or prevent the

above problem.

This work contains a short introduction to metal matrix composites and their failure modes,

a description of some important ductile damage models available from the literature, a

detailed explanation of the implementation into ABAQUS/Standard for three models, and

a discussion of results obtained with finite element analvses.
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Chapter 1

Introduction

1.1 General Remarks on Metal Matrix Composites

A composite can be defined as a material that consists of at least two different constitu-

ents that are bonded together along their interfaces. In this context, a material will be

called metal matrix composite (MMC), if the matrix of the composite that encloses the

reinforcements consists of a metal. MMCs can contain continuous fibers, short fibers or

particles acting as reinforcements which may consist of metallic or non-metallic materials

(in most of the cases ceramics and metal-carbides). Three sketches of the different kinds

of reinforcements are shown in fig. 1.1.

The excellent ductility and formability of the metal matrix and the high stiffness and load

carrying capacity of the reinforcement give rise to a global material behavior (e.g. stiff-

ness and strength enhancement, increased creep and wear resistance, density reduction)

that is of interest in many industrial applications. The combination of the high thermal

conductivity of the metal matrix and the very low thermal expansion of the reinforcement

have also drawn the attention of researchers towards investigating the mechanisms acting

in such composites.

The material behavior of MMCs depends strongly on the behavior of the involved constitu-

ents and on the distribution, orientation and volume fraction of the reinforcements. If one

is able to manipulate these properties in manufacturing processes, one can "design" high-

tech materials that show targeted values of material parameters, such as Young's modulus,

yield stress or coefficient of thermal expansion.

Due to the high cost of many MMCs, their applications have been limited to industrial
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fields where the benefit of the improved material behavior yields an appropriate cost re-

duction in the use of the material. The aerospace industry is an important consumer in

that case, but further applications have been developed in the automotive, tool, electronic

packaging and sports industries as well.

Three processing methods have been primarily used to develop MMCs: high-pressure dif-

fusion bonding, casting, and powder-metallurgy techniques. More specifically, diffusion-

bonding have been predominately used for monofilament fiber reinforced MMCs. Particle

reinforced MMCs are mainly produced by powder metallurgy, whilst preforms in the

squeeze infiltration process are employed in the production of all three kinds of reinforce-

ments.

Two typical metal matrix composites that differ considerably in their mechanical proper-

ties will be explained in the following sections.

continuous fibers

particles

Figure 1.1: Three different kinds of reinforcements
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1.1.1 Aluminum Reinforced by SiC Particles

Aluminum and aluminum alloys have become very important engineering materials in the
last century especially due to their low density and their good specific material properties.
They have experienced considerable use as matrix materials in composites reinforced by
silicon carbide (SiC) or aluminum oxide (AI2O3) particles that increase the stiffness, wear
resistance, strength, and fatigue resistance. Furthermore, the coefficient of thermal expan-
sion of aluminum is reduced while the material retains the high thermal conductivity and
low density.
Aluminum Silicon Carbide (Al/SiCp) metal matrix composite materials offer a variety
of outstanding properties for use in high performance electronic packaging, such as high
thermal conductivity, low coefficient of thermal expansion and low density. The resulting
advantages include higher possible power density, a longer chip life time, higher reliability,
and substantial weight savings compared to alternative packaging concepts.
Cast aluminum composite brake drums and rotors, driveshafts and tire studs can be found
in automotive applications. In the sports industries, aluminum composites are used for
bike and golf components for instance.
A typical microstructure of the above composite material is shown in fig. 1.2.

Figure 1.2: Microstructure of a typical aluminum silicon carbide (Al/SiC/20p) metal matrix
composite material



CHAPTER 1. INTRODUCTION

1.1.2 High Speed Steel (HSS) Produced by Powder Metallurgy
Methods

Tool steels are special steels used in the manufacture of tools for machining and processing
other materials and can be classified into cold-work tool steels, hot-work tool steels and
plastic mould steels.
Even though they are not metal matrix composites in the usual sense, tool steels are similar
to MMCs in many aspects of their thermomechanical behavior and they can be studied
with similar models.
They consist of a steel matrix reinforced by carbidic particles and, like particle reinforced
MMCs, they show a matrix-inclusion microtopology.
Tool steels are characterized by a high wear resistance, red hardness, corrosion resistance
and compressive strength, all of which are necessary to guarantee a long tool life and good
tool precision and, as a consequence, an increased productivity (reduced unit cost).
The most important alloying elements in tool steels are vanadium, chromium, nickel, tung-
sten, cobalt and molybdenum. The reinforcement of "classical" tool steels consists of hard
carbidic particles (MXC3/), also called the primary carbides, that develop during solidi-
fication, the final shapes and sizes of the carbides being obtained by thermomechanical
processing. For this reason these materials are often called in-situ composites. In con-
ventionally produced tool steels the distribution of the particles is highly inhomogeneous
and their size varies within a wide range. This implies anisotropy effects, and impairs the
material properties. As a consequence, the more expensive powder metallurgical (PM)
routes have been developed in which the arrangement and geometry of the carbides can be
better controlled which allows improved materials to be manufactured, compare fig. 1.3.

Figure 1.3: Microstructure of conventionally cast and hot deformed tool steel (left) and
powder-metallurgy tool steel (right), Böhler [1]
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1.2 Failure of Metal Matrix Composites

Damage and failure of ductile matrix composites are due to three local mechanisms, viz. de-

bonding of the matrix-reinforcement interface, brittle fracture of the reinforcing fibers or

particles, and ductile failure of the matrix. Local damage due to any of the above mech-

anisms is triggered by high local values of the stresses and strains in matrix and/or rein-

forcements, which are a consequence of the marked inhomogeneity of the composite.

Examples of the three failure modes are depicted in fig. 1.4.

interfacial debonding matrix damage

particle cracking

Figure 1.4: The three local failure modes in metal matrix composites, Pandorf [2]
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1.3 Simulation of the Thermomechanical Behavior of
Composites at Different Length Scales

The simulation of the deformation behavior of mechanical components consisting of com-
posite materials leads to reliable results only if appropriate material models and parameters
are used. This requirement leads to the necessity of understanding the architecture of com-
posites and the behavior of their constituents at different length scales.
Figure 1.5 depicts a schematic overview of the different length scales in a structural element
beginning at the macroscale and going down to the atomistic scale. The macroscale is the
length scale of the structure, whereas the mesocale describes intermediate length scales,
e.g. the lamina level in layered composites and reinforcement rich clusters in MMCs. The
length scale where the different constituents of the composite (matrix and reinforcements)
can be distinguished is called microscale 1 in this context. Microscale 2 deals with the inner
structure of a given phase of the composite, where grains, voids, dispersoids or precipitates
may be identifiable. The behavior of the different molecules or atoms contained in the
material is described in the atomistic scale, which represents the lowest length scale in the
figure. The idea of this multiscale approach is to take into account the material properties
and the phase arrangement at the lower length scales to obtain the behavior of the higher
length scale. This can be done through all the length scales to get the response of the
structure due to thermal and/or mechanical loads at the macroscale. If this procedure,
known as homogenization, has been performed, the way into the other direction can be
tackled. It consists of applying the evaluated stresses at the upper length scale and finding
the resultant stresses of the next lower length scale, a procedure known as localization, see
e.g. Mura [3], Torquato [4] and Böhm [5].
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macroscale

mesoscale

atomistic scale

microscale 2

microscale 1

Figure 1.5: Different length scales in a fictitious MMC



Chapter 2

Modeling of Ductile Damage

Literature Research

This chapter gives an overview of the most important ductile damage models used in the
literature and presents a discussion about the applicability of the models in order to fulfill
the requirements pertinent to this work, that are listed below. The model

• must be able to handle the initiation of ductile cracks,

• must be able to handle complex crack paths (in the matrix of ductile matrix com-
posites),

• must give results that are independent of the employed FE mesh,

• must accommodate a wide range of stress triaxialities, and

• must allow the implementation into the finite element code ABAQUS [6].

The above conditions must be met for micromechanical analyses of ductile matrix compos-
ites, where irregular meshes are typically required to discretize multi-particle or multi-fiber
arrangements, and high stress and strain gradients as well as high stress triaxialities are
the rule rather than the exception. Furthermore, the periodic displacement, stress and
strain fields that are characteristic of unit cell analyses must be accommodated.
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2.1 Mechanism of Ductile Failure

Ductile damage and failure of metals generally occur by the nucleation, growth and coales-
cence of voids.
Figure 2.1 shows a schematic sketch of a typical micro-structure in metals containing voids
and/or inclusions (dispersoids or precipitates) at a size of the order of nanometers. The
size of the inclusions is much smaller than of the reinforcements discussed in the previous
section. Due to the current stress state in such a material void growth and the development
of new voids by debonding of the metallic "matrix" from the inclusions can be observed.
After the voids have grown by a certain extent they coalesce to form microcracks that can
grow to become macrocracks that lead to the failure of the specimen or structure.
A number of ductile damage models can be found in the literature which are suitable for de-
scribing ductile failure processes via appropriate constitutive equations that consider void
growth. The advantage of such models can be explained in the fact, that individual voids
do not have to be resolved, i.e. they are homogenized models in the sense of section 1.3.
Appropriately formulated smoothed-out descriptions of this type can be used as material
models at the integration point level in finite element programs. At present, two major
groups of models for describing ductile failure within a finite element framework can be
found in the literature. On the one hand, there are volume-oriented descriptions in which
damage within planar or three-dimensional continuum elements leads to the loss of their
stress carrying capacity and/or to their removal from the finite element model ("element
death models"). On the other hand, the progress of ductile cracks can be modeled by
decohesion between the continuum elements or along internal discontinuities provided by
special elements, i.e. by surface-oriented algorithms.
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Figure 2.1: Schematic depiction of the microstructure in a ductile material and the failure
mechanisms acting within (black: inclusions, empty circles: voids)

2.2 Surface Based Models

The main idea of surface based models is to describe the interaction between two lines in
2D or two surfaces in 3D that represent the so called "process zone" of a crack, shown
in fig. 2.2, and the stress distribution at the crack tip. The constitutive description of
this behavior takes the form of appropriate traction, T, vs. separation, Ö, laws, the prin-
cipal material parameters (in this case given for the normal direction N) typically being a
cohesive strength, T^tmax, and a cohesive energy, FN?0,

sN,

N? (2.1)
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where ö^itnax describes the displacement in normal direction at complete failure, where the

tractions vanish. A damage value

^ (2.2)j
"N,max

can be introduced to indicate the progress of damage in such models, where D = 1 stands

for complete failure.

Figure 2.3 depicts some typical traction-separation laws used in the literature, which were

proposed by Needleman [7], [8] and Scheider [9]. Figure 2.4 shows the laws for concrete,

polymethyl-methacrylate (PMMA) and steel proposed by Elices et al. [10]. With the

increase of the separation distance the traction between the two cohesive surfaces increases

rapidly at first, reaches a maximum value, and then decreases more gradually to zero in

fig. 2.3, whereas the curves in ßg. 2.4 start at a nonzero traction when the separation 6^ is

zero. The traction at zero separation plays an important role when the crack path is not

known in advance as will been seen in the following section.

The subsequent decrease of the traction-separation curve (also called the softening regime)

corresponds to the stiffness reduction of the material, in the case of metals, due to the

growth of voids and a reduction of the load carrying capacity of the process zone.

To consider combinations of normal and shear loading of the process zone appropriate

assumptions must be made on the damage value, such as

•>T,max

where N stands for normal and T for tangential directions, respectively. The parameter

m describes the interaction between the normal and shear separation as shown in fig. 2.5.

Applications of this kind are presented by Scheider and Brocks [11].

After complete failure between the two cohesive surfaces a friction model must be applied

if compressive loads are to be considered.

Surface based models can be subdivided into two groups on the basis of the type of imple-

mentation in the finite element code described in the following sections.
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Figure 2.2: Crack and process zone in a real material (left) and modeled with the sur-
face based approach (right); in the diagram on the right, the distribution of the normal
component of the traction, 7N, along the process zone path, s, is sketched
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Figure 2.4: Some traction-separation laws proposed for concrete, PMMA and steel by
Elices [10] (^N,I, 5N,2 and 5^3 are material parameters)
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Figure 2.5: Possible combinations between normal and shear separation at different levels

of the effective damage value, D, with m = 1 and m = 2, compare eqn. (2.3)

2.2.1 Cohesive Zone Models

The first group of surface based models is known as cohesive zone or cohesive surface mod-

els. They use interface elements that essentially consist of two opposite surfaces that must

be separated for a crack to grow, its initial thickness, 6o, being zero in the load-free and

damage-free state.

Cohesive zone models were originally proposed for brittle material behavior by Baren-

blatt [12] and they were later adapted for handling elastoplastic and elastic-viscoplastic

materials, see e.g. Siegmund and Brocks [13] and Siegmund and Needleman [14]. Recent

studies by Siegmund and Brocks [13] and Chen et al. [15] have shown that in ductile ma-

terials the cohesive strength and energy in general depend on the stress triaxiality.

Cohesive zone models have been widely used in micromechanical studies of composite ma-

terials for describing the fracture of reinforcements and the interfacial decohesion between

matrix and reinforcements, see e.g. Finot et al. [16] and Tvergaard [17]. In these situ-

ations the crack paths are either known a priori or suitable assumptions can be made for

them. When there is no prior knowledge of the crack path, however, cohesive zone ele-

ments must be provided for all interfaces between the continuum elements that make up a
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ductile constituent. On the one hand, this tends to noticeably reduce the overall stiffness
as all cohesive surfaces open up slightly under load due to the finite initial slopes of typical
traction-separation laws of the type depicted in fig. 2.3, a situation that is sketched in
fig. 2.6. This difficulty can in principle be remedied by allowing crack opening only beyond
a certain traction threshold as discussed by Elices et al. [10]. On the other hand, with such
a model crack paths are by definition constrained to follow element surfaces, which can
introduce a considerable mesh dependence of the generated crack surface, compare fig. 2.7,
a difficulty that can play a considerable role in continuum micromechanics, where complex
mesh geometries are typically required to resolve the constituents. A very interesting ap-
proach to overcome this problem was reported by Bouchard et al. [18], where a remeshing
algorithm was applied to generate an "appropriate" mesh near the crack that allows the
crack to propagate along the finite element boundaries in the previously calculated direc-
tion. At present, however, this model is applicable to purely elastic materials only.
The above considerations essentially rule out cohesive zone models for the present purpose.

Figure 2.6: Sketch of cohesive zone elements located along all boundaries of elastoplastic
continuum elements
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Figure 2.7: Sketches of crack paths that depend on details of two meshes

2.2.2 Embedded Discontinuity Approaches

The limitation caused by the restriction of crack paths to the interfaces between elements
can be resolved by embedded discontinuity methods. The main idea of such approaches
is to allow the crack to propagate through the finite elements in arbitrary direction and
at an arbitrary position in the element. This goal can be reached by element enrichment
(elements with embedded discontinuities, EWED, see Armero and Garikipati [19] and
Dvorkin et al. [20]) or nodal enrichment (extended finite elements based on the partition
of unity, X-FEM, see Belytschko et al. [21], Wells and Sluys [22] and Dolbow et al. [23]),
both described in the following.
In the EWED as well as the X-FEM approach, the standard displacement approximation

u(x) = (2.4)

used in the finite element method is enriched by additional degrees of freedom, e^, and
takes the form

u(x)= (2.5)
i=\

Here iVnode is the number of nodes of the finite element model, u(x) is the interpolated
vector of local displacement, U* describes the displacement vector at node i and Ci C
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{1 ,2 , . . . , TO} is a set of integers that indicates which enrichment functions are activated at

node i. The global enrichment function in the EWED formulation is defined as

M(x) = H(x) - J2 Ni(x), (2.6)

where H(x) stands for the Heaviside function characterizing the discontinuity (unity in

12+ and zero in ü_) . The difference between the EWED and X-FEM approaches is shown

in fig. 2.8 for the example of a one-dimensional problem. In this case, there is only one

additional degree of freedom, e, in the EWED method, whereas two (e2i and e3i) will be

generated in the X-FEM approach with the global enrichment function

M (x) = H(x) (2.7)

applied only to the shape functions, N, associated with those nodes that are separated by

the discontinuity (nodes 2 and 3 in the example). Beside a local failure criterion (e.g. a

traction-separation law) as required in the cohesive zone elements, an additional criterion

for determining the direction of the crack must be provided in both methods (e.g. making

the propagation of the crack orthogonal to the maximum tensile stress).

An additional problem that must be solved with such algorithms is to make cracks propag-

ate in a compatible way across neighboring elements, see fig. 2.9 and compare the dis-

cussions in Jirasek and Zimmermann [24], where it is pointed out that the generated

cracks will, in general, not coincide at element boundaries, see fig. 2.9(a) and additional

algorithms must be applied to provide a correct crack propagation from one finite element

to the other, as depicted in fig. 2.9(b). As mentioned by Wells and Sluys [25] the direction

of the crack must be determined at the boundary of the finite element where the stresses

are not known accurately and a nonlocal (averaged) stress tensor must be calculated to

overcome this problem.

From the author's point of view, the above problems can be tackled with self-written FE-

codes only and an implementation into a user element in ABAQUS/Standard will be very

difficult, especially the provision of a correct crack transition through finite element bound-

aries. Accordingly, this class of models was not chosen for the present work, even though

they are one of the most promising approaches for modeling crack propagation with the

finite element method.
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Figure 2.8: Standard shape functions and enrichment functions for the EWED (left) and
the X-FEM (right) approaches

Figure 2.9: Incorrect (left) and correct (right) crack propagation crossing different finite
element boundaries
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2.3 Continuum Based Models

In this group of models ductile damage and failure are treated on the basis of a process
zone, i.e. finite-sized volumes in which the nucleation, growth and coalescence of voids can
be described in a smeared-out manner. Following such a continuum damage mechanical
concept in micromechanical analyses of composites implies that the characteristic length
of the voids is much smaller than that of the reinforcements, so that the effects of damage
can be homogenized in the matrix.
In such a framework cracks that are of comparable (or greater) size to the reinforcements
take the form of "failed regions" of the ductile phase and can be described by continuum
finite elements with low stiffness or by element elimination in the completely damaged
stage.
In the following models the yield function, <ï>, is treated in extension of ^-plasticity theory
so that expressions of the type

$ = Ueq - D<jf = 0 or $ = - ^ - < 7 f = 0 or $ = — - D = 0 (2.8)
D <7{

may be used to describe the yield condition. Here creq stands for the von Mises equivalent
stress, <7f is the flow stress, and D is a parameter that indicates the progress of damage and
varies between 1 and 0. D depends on different variables, like the void volume fraction, / ,
the equivalent plastic strain, ££q, the mean stress, <rm, or the stress triaxiality, r\ = crm/creq,
and a number of material parameters, m^ specific to the applied model. A completely
damage-free material (i.e. one in which no voids are present) is indicated by D = 1 and is
treated by standard ^-plasticity theory. When D reaches zero, ductile failure occurs and
the von Mises stress, <req, vanishes at the same time, so that the term aeq/D in eqn. (2.8)
remains finite. The increasing or decreasing of the equivalent stress, aeq, depends on the
development of D, which gives rise to softening, and the flow stress, <7f, which represents
the hardening term in the yield function. The actual behavior accordingly depends on the
"competition" between hardening and softening terms. Figure 2.10 shows a typical evolu-
tion of the involved variables during deformation driven by a continuum damage model.
Note that the above definitions differ from the ones commonly used for damage parameters
in continuum damage mechanics.

Formally, the ductile damage models discussed in the following differ only in the definition
of D, with the mean stress, am, (and, consequently, the stress triaxiality, r\ — crm/aeq) play-
ing an important role in determining D in most of the models. For this reason these models
can be classified as pressure-dependent plasticity models, in which the first invariant of the
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stress tensor must be considered in order to obtain a closed yield surface in stress space.

i i i i i i i i

D = <7eq/<7f

i i i i i i i i

0 0.1 0.2 0.3 0.4

Displacement U2

0.5
.0

Figure 2.10: Typical evolution of am, aeq, oi and D during deformation

2.3.1 Ductile Damage Indicators

Ductile damage indicators. D, have been widely used in the literature, especially due to
their simple handling and the low number of material parameters they require. The main
idea of such models is to indicate the failure of a material point, if the value of the ductile
damage indicator is equal to or exceeds a critical value. Once this point is reached in a
"standard" elastoplastic analysis, the simulation must be stopped because the damaged
region would influence the behavior of the entire structure due to stress redistribution.
For this reason the idea of element removal techniques for simulating crack propagation
based on damage indicators, see e.g. Wulf et al. [26], arose about a decade ago. In such
algorithms a material point where the ductile damage indicator, D, exceeds a critical
value, Dcr\t, is treated as failed. The stiffness and strength of the corresponding element
is then drastically reduced or the element is removed from the mesh if such an option is
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provided. Accordingly, D as defined in eqn. (2.8) takes the form

° r < crit . (2.9)
0 for D > Drri

> Dcrit

A number of different ductile damage indicators have been proposed in the literature and

the most important ones will be described in the following.

Cockcroft and Latham [27] assumed that fracture in ductile materials occurs when the

integrated value

DCL= [eq!vide£ (2.10)

equals or exceeds a critical value, Dcrit. Here o\ stands for the maximum instantaneous

principal stress and e^ for the accumulated equivalent plastic strain whereas e^q f describes

the equivalent plastic strain at failure.

Another ductile damage indicator was proposed by McClintock [28] who observed the micro

voids in detail. In his work an integral containing two principal stresses o\ and o\\ was

determined. The ductile damage indicator in this model is defined as follows,

AT

DMcC= I l â ( Ï T ^ ) 8 i n h
'eq

VHl-n)al + uU , ou, - „„ , ̂  ^ ^
4 a,eq

where n stands for the hardening exponent.

The importance of the stress triaxiality um/creq in the void nucleation and growths process

in ductile materials is evident in the ductile damage indicator criterion of Ayada et al. [29]

O °eq

and in the one introduced by Oyane [30]

DOy= / 1 + A f - ^ < (2.13)

which employs an additional material parameter Af. A semi-empirical damage indicator

using the maximum stress and the mean stress was formulated by Brozzo et al. [31] and

takes the form

£>Br =
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The ductile damage indicator most commonly used in continuum micromechanics was

introduced by Gunawardena et al. [32] for assessing the vulnerability of structures to ductile

failure on the basis of postprocessing operations after "standard" elastoplastic FE runs.

This damage indicator, which is based on work of Rice and Tracey [33] and of Hancock

and Mackenzie [34] and was thoroughly studied by Fischer et al. [35] concentrates on void

growth and is capable of accounting for the history of the loads acting at any given point

in an elastoplastic material. It can be written as

• / u ceq,cntv'//

where 77 = crm/creq is the stress triaxiality also considered in this model. The reference

failure strain, £0, acting as a material parameter in this ductile damage indicator can be

calibrated by appropriate tensile tests. This model is also known in the literature as the

Rice-Tracey damage model.

The main idea of this ductile damage indicator is evident in fig. 2.11, where, on the left side,

the critical equivalent plastic strain, £eqcrit, is shown in dependence of the triaxiality, 77,

(failure curve) and two points, one of them representing the corresponding stress state with

cfePq and j] and the second giving the critical value of £ q̂ for the actual triaxiality, 77, (lying

on the failure curve). On the right side, the figure depicts a Wöhler diagram used for cyclic

loading in a mechanical component at the macroscale, that can be seen as an analogy to the

above ductile damage indicator and is mentioned in this context for a better understanding

of eqn. (2.15) only. In the Wöhler concept, the critical number of load cycles, -/Vcrit, depends

on the applied stress amplitude, <7a, and final failure of the specimen at cycle number N{

is given by

The diagram shows the Wöhler line and the considered cycles, dN, and the corresponding

critical cycle number, iVcrjt, for the present stress amplitude, a^ both used in eqn. (2.16).

A comparison of the above ductile damage indicators shows that DQL, eqn. (2.10), has

the dimensions of a strain energy density, whereas DMCC, DAY, -Doy, £>Br, DGU , eqn. (2.11)

to (2.15) are dimensionless numbers.

The material behavior enters into .DCL, AMCC; D^y, -Doy a n d D%r via the critical values of

the damage indicators, which are different for each expression and are difficult to evaluate

experimentally. DQU, however, is formulated on the basis of Rice and Tracey's void growth
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model such that the critical value is unity1 and the material behavior enters via the refer-

ence strain, £Q, which can be directly evaluated experimentally, see Fischer et al. [35].

The latter property is the main reason why DQU
 n a s s e e n much more use in micromech-

anical studies than other ductile damage indicators and also forms the basis of one of the

present implementations.

Models that use a ductile damage indicator, especially eqn. (2.15), to trigger "element

death", either by setting the stiffness to very low values or by removing the element from

the mesh, are referred to as ductile damage indicator triggered (DDIT) models in the fol-

lowing.

It is worth noting, however, that the above damage indicators cannot be correlated to

physical levels of damage, e.g. void volume fractions, in the range 0 < D < DCTit and the

material is described by standard J2 plasticity within this range in contrast to the damage

progress models described in the next section.

D, a

b

O
• - - -0—-\

\

T] \ogNcrit,\ogdN

Figure 2.11: Failure curve related to the damage indicator based on Gunawardena [32]

(left) in analogy to the Wöhler diagram (right)

2.3.2 Damage Progress Models

A second approach for describing growth and coalescence of voids in ductile materials

consists in modifying the von Mises yield function in dependence on the volume fraction of

the voids, / . Such "ductile rupture" models can be adapted to account for void nucleation

1In some works reported in the literature the critical value for £>Gu has been used as an additional
material parameter to fit experimental data, see e.g. Bernauer and Brocks [36].
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as well.

The best known model of this type was developed by Gurson [37] and was extended by

Tvergaard [38] as well as Tvergaard and Needleman [39] to include effects of void nucleation

and coalescence. For the resulting GTN model the parameter D according to eqn. (2.8)

can be denoted as

D = J-2qxf* cosh {^f) + 1 + ft/*2, (2.17)

where <7( is the flow stress and qi, c]2 as well as q% are adjustable parameters. The internal

variable /* accounts for the rapid loss of stiffness due to void coalescence beyond some

critical volume fraction. /c , and is defined as

/ ^ for / < / c ( 2 1 g )

fc + K(f-fc) for / >/c '

where K is a function of / c and of the void volume fraction at failure, } \ .

The rate of increase of the void volume fraction consists of two contributions, nucleation

of new voids and growth of existing voids, which can be approximated as

f = Aé?q + (l-f)èp, (2.19)

where A(e^l) is a material parameter. £p stands for the rate of the first invariant of the

plastic strain tensor, epl.

Gurson-like models incorporating the influence of void shape (ellipsoidal voids) were given

by Gologanu et al. [40] and by Pardoen and Hutchinson [41], where the critical void volume

fraction. fc, is not treated as a constant and can be calculated in dependence on the tri-

axiality. the microstructure of the voids and on the deformation state of the material.

An alternative approach for describing ductile damage and failure was proposed by Rousse-

lier [42] in the form of a thermodynamically based continuum damage mechanics method.

For this model D takes the form (Rousselier [43])

D = p- p—fDexp ( — ) , (2.20)

where the variable p is defined as p = (1 - / ) / ( l - /o), /o is the initial porosity of the

ductile material, and <Ti as well as D are material parameters. The material loses its stress

carrying capacity when a void volume fraction of /p is reached. The rate of increase of

the void volume fraction can be calculated in analogy to the GTN model, but to handle

void coalescence an additional variable B may be introduced into eqn. (2.19) as proposed
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in Rousselier [43] to give

(2.21)

B =
1 for/</c

3 for/>/c

Another isotropic continuum damage model available in the literature was derived by

Lemaître [44], [45] in a thermodynamical framework by using the concept of effective stress

written as

<T —
1-/'

(2.22)

where / is the void volume fraction, and serves as the damage variable of the model. It is

denned as

/ = / c

-eq o,eq

(2.23)

where fc describes the void volume at failure, v being the Poisson ratio, and £D and £R

stand for the equivalent plastic strain at damage initiation and final failure, respectively.

The parameter D in eqn. (2.8) can be written as

D = i/)+3 (l-2i/) —

-1/2

(2.24)

for the Lemaître model.

2.3.3 Step Size Dependence

The step size dependence of material softening models within an incremental-iterative

FEM-framework has not been discussed very often in the literature but should be men-

tioned and considered before implementation work is started. DDIT models are much more

sensitive with respect to this kind of dependence than the damage progress models. The

main problem is due to the fact that integration points of the model may fail in an analysis

with a large load increment which would never fail if the same simulation were done with

a smaller load increment. Such behavior can influence the crack path and the global force-

displacement response of the structure, and must be avoided in order to obtain a unique

solution. A remedy can be found in a strategy to get the largest possible load increment
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where only one integration point (or a small number of integration points) will fail in this

increment. If the load increment is chosen excessively small the simulation will take more

time and if the load increment is set too large a considerable number of integration points

may fail giving rise to a step size dependence of the result. Appropriate algorithms can be

implemented in ABAQUS/Standard by checking the number of failed integration points

after reaching an equilibrium and repeating the increment with a reduced load increment

if more than a specified number of integration points are marked for failure. However, this

strategy is practical in models with a small number of integration points only, otherwise

the simulation time will increase drastically. Figure 2.12 shows a mesh and the failed ele-

ments (rendered in gray) after some increments done with small and large load increments,

respectively. A detailed description of a possible procedure to overcome the step size de-

pendence in ABAQUS/Standard is given in Zarco-Gonzalez et al. [46], who triggered the

element removing technique in such a way, that only the integration point showing the

highest maximum damage variable can be eliminated in any given increment.

Figure 2.12: Damaged elements (gray) evaluated in large (left) and small (right) load

increments showing an example of step size dependence of ductile damage

2.3.4 Mesh Dependence

Among the models discussed in sections 2.3.1 and 2.3.2 a version of the Gurson model is

provided in ABAQUS/Standard, and the others can be implemented into this code via
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user material subroutines (UMATs). All of these models, however, suffer from the drawback

that their results tend to show a marked mesh dependence in terms of both the predicted

force-displacement responses and the configurations of the predicted ductile cracks. This

behavior is due to the loss of ellipticity of the governing partial differential equations once

local softening sets in. The loss of ellipticity is indicated by the acoustic tensor denned by

the double contraction

Qij = Cijkinkni (2.25)

of the tangential material tensor, C, and the normal vector, n, which indicates possible

wave propagation directions, becoming negative definite, see e.g. the discussion by Baaser

and Gross [47].

The mesh dependence of the predicted ductile failure behavior can be easily demonstrated

by considering a test case that consists of a column of initially rectangular cross section

that contains a non-central axial hole of the form of an initially circular cylinder of volume

fraction £ = 0.8%. The arrangement is subjected to tensile loading in the y-direction,

constant displacements being prescribed on the y=const boundaries whereas the x=const

boundaries are traction free. The column's elastoplastic material behavior is taken to

correspond to A12618-T4, hardening being described by a modified Ludwik law of the type

a( = a(fi + k-(e^r, (2.26)

where a^o is the initial flow stress, k and n stand for the hardening coefficient and the

hardening exponent, respectively. For the elastic material parameters and those required

for eqn. (2.26) see tab. 2.1. where E stands for the Young's modulus and v for the Poisson

ratio. For testing purposes the following values were employed for the material parameters

of the ductile damage models, eqns. (2.15) to (2.20): £o=O.2, çi=1.5, Ç2=l-0, 93=2.25,

/c=0.12, / f=0.2, /o=7.0xlO-3 , /F=0.9, a,=165 MPa and 0=2.0 (note that these material

parameters were not obtained by parameter identification procedures and do not give rise

to directly comparable damage responses). Three different meshes, with approximately

2.500, 6.000, and 21.000 quadratic triangular plane strain elements, respectively, were used

to check for mesh dependences.

The crack paths predicted for this test case by the DDIT model based on eqn. (2.15) are

shown in fig. 2.13. Similar results were obtained with the GTN and Rousselier models,

only the former being shown in fig. 2.14. For the GTN model the crack essentially always

consists of one row of elements only, i.e. the volume of material affected by ductile failure

depends markedly on the FE mesh. The DDIT model, in contrast, displays a tendency for
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the mesh dependence to affect the shapes of the cracks in addition to the volume of the
failed metal. Figure 2.15 displays the corresponding predicted force-displacement curves,
which are normalized with respect to the maximum load carried, -RF2]max, and the max-
imum applied displacement, £/2,max- The mesh dependence of the force-displacement paths
obtained by both the DDIT and GTN models is evident, with the Rousselier model giving
a response very similar to fig. 2.15(b). One can see that the energy required for failure
decreases with increasing mesh refinement and the crack propagates earlier and faster in
the finer mesh.

Mesh dependence effects of the above type are well known in the literature, see e.g. de
Borst et al. [48], and are clearly not acceptable for damage modeling within composite
micromechanics.

E [GPa] v a(>0 [MPa] k [MPa] n
70.0 0.3 184.0 722.7 0.49

Table 2.1: Elastic and elastoplastic material parameters for A12618-T4
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Figure 2.13: Column with a hole under tensile loading in the y-direction: configurations
of ductile cracks predicted by the (local) DDIT model for three different meshes
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Figure 2.14: Column with a hole under tensile loading in the y-direction: configurations

of ductile cracks predicted by the (local) GTN model for three different meshes



CHAPTER 2. MODELING OF DUCTILE DAMAGE - LITERATURE RESEARCH 31

1.2

2

2.500 el.
6.000 el.

21.000 el.

0.2 0.4 0.6
Displacement-ratio

(a)

1.2

X 1
03 1

S

0.8 -

0.6 -

2 0.4
O

I 0.2

1 1

^*—rr\v

increasing number
1 of elements1

« 2
« 6

^« 21

\ \

V

.500

.000

.000

\

\

1 .Cl.
el.
el.

-

vx
0.80 0.2 0.4 0.6

Displacement-ratio

(b)

Figure 2.15: Normalized overall force-displacement responses obtained for the column with
a hole under loading in vertical direction using local versions of (a) the DDIT model and
(b) the GTN model
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2.3.5 Regularization Techniques

A number of approaches have been reported in the literature for avoiding the above mesh
dependence by regularizing the governing equations. All of them introduce an (absolute)
internal length scale (characteristic length) but do so in different ways. Physically this
internal length scale of the material may be interpreted as the size of a process zone, as a
function of the distance between individual voids, or as the distance between dimples in
the fracture surfaces. Publications on the calibration of characteristic lengths are rare and
it seems that there are only two approaches to tackle this problem. On the one hand, the
calibration can rely on inverse analysis (Bellègo et al. [49]). In this procedure, analyses
with different sets of material parameters (the internal length being treated as "ordinary"
material parameter as well) must be performed and compared with experimental results.
Preferentially an optimization tool is used to provide suggestions for the next set of ma-
terial parameters to attain a fast convergence between experiment and simulation. On the
other hand, models employing resolved voids of denned distance - which defines a length
scale - can be compared with smeared-out models employing nonlocal damage descriptions
to evaluate a characteristic length, see Tvergaard and Needleman [50] and Tvergaard and
Hutchinson [51].

In addition, there are questions about the evolution of the characteristic length during
the deformation of the material. In most of the works in the literature this value is held
constant, whereas the idea of a growing internal length scale that depends on the void
volume fraction, / , on some other damage variable (Ferrara and di Prisco [52]), or on the
equivalent plastic strain, e^, (Pijaudier-Cabot [53]) has arisen in the past years.
The most important localization limiter techniques will be explained in the following.

Integral-type Nonlocal Method

Nonlocal theories are based on the assumption that the local state of the material at
any point is insufficient for evaluating damage relevant parameters in that point. This
can be explained by the fact that no real material is an ideal continuum and that on a
sufficiently small length scale the effects of heterogeneity and discontinuous microstructure
become nonnegligible. For further discussions about the necessity of nonlocal models see
Pijaudier-Cabot and Bazant [54] as well as Bazant [55].
Integral-type nonlocal methods are based on smoothing the rate of an appropriate damage
variable q for a material point located at x by a moving averaging scheme taking into
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account the adjacent material points placed at positions y. Leblond et al. [56] proposed a

relationship of the form

(2.27)

for nonlocal averaging with the normalizing factor W(x) being defined as

W(x)= fw(x,y,L)dV. (2.28)

v

Here q^ and </NL a r e the rates of the local and nonlocal damage variables, respectively. As

mentioned above, such approaches introduce an additional material parameter in the form

of a characteristic length 2L. Two smoothing functions have been frequently used in the

literature. The first one

(2.29)

follows Tvergaard and Needleman [39], and the second is a Gauss distribution (see e.g. Ba-

zant and Pijaudier-Cabot [57])

w(x,y,L) =
1

(2TT)3/2L3 exp 2L2

Here

= |x y|

(2.30)

(2.31)

is the distance between the points x and y. The factor (2n) 3/2L 3 in eqn. (2.30) normal-

izes the function W(x) in eqn. (2.28).

Both smoothing functions are depicted in fig. 2.16. Successful implementations and ap-

plications for this kind of regularization technique in damage mechanics and plasticity can

be found e.g. in Tvergaard and Needleman [39], Tvergaard and Needleman [58], Cham-

bert et al. [59], Baaser and Tvergaard [60], Jackiewicz and Kuna [61], Comi and Perego [62]

as well as Rodriguez-Ferran et el. [63].
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0 0.5 2.5 3

Figure 2.16: Two smoothing functions for the nonlocal approach ([39], [57])

Gradient - type Method

A second regularization technique can be used if the rate of the damage variable q is

sufficiently smooth. In that case the integral relation in eqn. (2.27) can be rewritten in

terms of gradients of q by expanding (/L(Y) into a Taylor series (Bazant et al. [64] and

Peerlings et al. [65])

(2.32)

3! d

Using, for example, the Gauss distribution for the smoothing function w, eqn. (2.30), and

substituting the Taylor series, eqn. (2.32), into eqn. (2.27) yields after some calculations

9NL(X) = <?L(x)
o

(2.33)

where the Laplacian Vn is denned by V2 = £<92/do;2 and V2n = (V2)n . Some of the
i

expressions resulting from the substitution were evaluated by Mathematica [66] and are
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given in appendix A. All odd derivative terms in eqn. (2.33) vanish as a result of the

isotropy of the weight function. By neglecting terms of order four and higher we obtain

9NL(X) - 9L(X) + ^L2V2qL(x) (2.34)

which is an explicit gradient formulation that may be used as a smoothing procedure to

overcome the mesh dependence.

An alternative gradient formulation that can be found in the literature can be derived

from eqn. (2.34) by applying the Laplacian operator V2 to it, multiplying by L2/2, and

subtracting the result from eqn. (2.34)

çNL(x) - iL2V2çNL(x) = gL(x) + \L2V2qh - (2.35)

4L(X) L V ç L ( x ) .

By neglecting terms of order four and higher again, we obtain the implicit gradient formu-

lation

ÇNL(X) - ^L2V2<?NL(x) = gL(x). (2.36)

Accordingly, the gradient formulations can be viewed as approximations to the integral-

type nonlocal method and should be used in situations with a smooth ç-field only. Applica-

tions of the explicit and implicit gradient formulations are presented in de Borst and Mühl-

haus [67], Kühl and Ramm [68], Peerlings et al. [69], Addessi et al. [70], Engelen et al. [71],

Yuan and Chen [72] as well as Voyiadjis and Dorgan [73]. An extended Gurson-based

ductile damage model with a gradient-type regularization technique implemented into

ABAQUS/Standard was published by Reusch et al. [74], where the temperature field vari-

able is used for the nonlocal damage variable and for evaluating the necessary gradient

field.

Overviews on nonlocal and gradient formulations of plasticity and damage are given in de

Borst [75], Peerlings et al. [76], Bazant and Jirâsek [77] and Jirâsek and Rolshoven [78].

Viscoplastic Regularization

A further possibility for keeping the field equations well posed consists of the introduction of

viscous terms into the governing equations (temporal gradients instead of spatial gradients)
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as shown in Needleman [79], Harireche and Loret [80] and Loret et al. [81]. The viscoplastic

regularization procedure first proposed by Duvaut and Lions [82] retains the hyperbolicity

of the system and allows the development of shear-bands in plasticity or of a process zone

in continuum damage mechanics of finite thickness. A characteristic length

L = ctC, (2.37)

is defined by the elastic wave speed, c®, and by the relaxation time, (. As observed in

Loret et al. [81] the width of shear-bands is influenced by this viscoplastic regularization

technique and is typically of the order of 10L. The introduction of rate dependence has

been claimed to have a regularization effect not only in dynamic analyses but also in the

quasi-static analyses where inertia terms can be neglected, see Sluys and Wang [83], who

also tested a combination of the viscous and gradient regularization. This claim, however,

may be open to discussion in view of the observations in Wang and Sluys [84], where mesh

dependence reappeared despite of the use of viscoplastic regularization at very low dis-

placement rates and mesh independent results were obtained only at high strain rates.

Cosserat Continuum

A completely different approach to nonlocal theories was first proposed by the Cosserat

brothers [85] in 1909, the first implementation of the theory into a finite element code be-

ing reported by de Borst [86]. This theory has two main characteristics. First, rotational

degrees of freedom are taken into account in addition to the translational ones and lead

to the existence of momentum stresses (momentum per area). Second, an internal length

scale that couples stresses to micro-curvature is introduced into the constitutive equations.

To give a short introduction the equations of the general theory of elastic two-dimensional

Cosserat continuum are given in the following. In this case one rotational degree of free-

dom, «3, around the 3 axis is used in addition to the traditional degrees of freedom uy and

«2- The normal and shear strains in a Cosserat continuum are defined as

*• - k< <2-38>
- - £;• <
<Ti2 = ^ - « 3 , (2.40)

OX i

£21 = P" + a3. (2.41)
OX
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dx,'

In contrast to the classical continuum, the micro-curvatures

(2.42)

(2.43)

are introduced that are conjugate to the couple stress components (TO12 and 17123) of the
stress tensor. The force and momentum equilibrium then yields:

da 21

OXx

ÔOX2

r
ÖX2

= 0

= 0

drnxs <9m23

ÔX\ ÔXy
cr12 = 0

(2.44)

(2.45)

(2.46)

As can be seen from eqn. (2.46), the stress tensor is generally not symmetric due to the
presence of couple stresses. The internal length scale, L, appears in the vectors of the
stress and strain components, as

Ce =

= [en,

(T=[axx,o

tiffness matrix

E

1-1/
\-2y

y

\-2v
y

\-2y

0

0

0

0

£22, £33

22)C33 j

, £ i 2 , e

7l2,CT2

is defined as

y

l-2y
1-1/

l - 2 i /
y

l - 2 i /

0

0

0

0

V

l - 2 i /
y

l - 2 i /
1—1/

l - 2 i /

0

0

0

0

21,

L)1

1
2
1
2

Ki3L,K

H13L, n

0

0

0

+ mc

- mc

0

0

i23zf.

0

0

0
1
2 c
| + mc

0

0

0

0

0

0

0

1

0

0 "
0

0

0

0

0

1

(2.47)

(2.48)

(2.49)

(2.50)

where me is an additional material parameter.
Finite elements taking into account the additional rotational degrees of freedom can be
implemented into ABAQUS/Standard via the user element subroutine utility (UEL), see
e.g. Alsaleh [87] and Grammenoudis [88], who used elastoplastic constitutive laws in their
implementations.
The approach of the Cosserat theory is a promising tool for avoiding mesh dependence
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in softening materials, after strain localization has set in, when the finite element method
is used. A problem, however, is that the rotational degrees of freedom are activated
under shear loading only and will be inactive under pure tension. In that case the micro-
curvatures remain zero and the couple stresses vanish. Numerical experiments suggest that,
when decohesion is the predominant failure mode rather than frictional slip, the Cosserat
effect is generally too "weak" to preserve ellipticity of the boundary value problem (de
Borst and Mühlhaus [67]).

Ad-hoc Method

The last method for dealing with mesh dependence presented here consists in adjusting
the mesh size to an appropriate characteristic length, 2L. This method cannot be seen
as a localization limiter but can be found very often in the literature if no regularization
technique is available, see e.g. Reusch et al. [89], Bernauer and Brocks [36], Hambli [90],
Imad [91] as well as Nègre et al. [92]. This method can be used with reasonable success only
if the generation of a regular mesh with constant element size is possible for the structure
to be studied and if the stress and strain gradients are small. If the finite elements contain
more than one integration point the process zone will localize in one row of integration
points (only a part of the finite elements being involved in the failure process) and the edge
length of the elements no longer corresponds to the characteristic length.
This kind of ad-hoc approach is not suitable for analyses in metal matrix composites at
the micro-scale due to the irregular meshes typically used and the high gradients of the
microfields typically encountered.

General Remarks

As mentioned above nonlocal damage laws explicitly introduce an absolute length scale
into finite element models. This is of special interest in continuum micromechanics, where
nearly all standard approaches are inherently scale independent (the main exception being
certain embedded cell models that study the tips of macrocracks), whereas experimental
results typically show a dependence of the overall elastoplastic and damage behavior on
the size of the reinforcements. Material models that introduce an absolute length scale
into micromechanical schemes are the only physically consistent means for resolving this
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situation.
It is also interesting to note that continuum micromechanical studies of ductile matrix
composites are a nearly ideal field of application of nonlocal ductile damage models be-
cause the microscale of the composite and the size of pertinent process zones are typically
comparable. This allows, on the one hand, to use homogenized damage models with good
confidence, while, on the other hand, finite element meshes that are sized for capturing the
stress and strain fluctuations on the composites' microscale usually are sufficiently fine to
have a reasonable number of integration points within the nonlocal scheme's region of in-
fluence. Nonlocal averaging schemes are less well suited for macro mechanical applications,
where the mesh size would be driven by the requirements on nonlocal averaging which
would give rise to an excessive number of degrees of freedom.



Chapter 3

Implementation of the Ductile

Damage Models into

ABAQUS/Standard

The implementation of the DDIT model, the Gurson-Tvergaard-Needleman (GTN) model

and the Rousselier model into ABAQUS/Standard with a nonlocal regularization technique

will be discussed in the following. The user defined material subroutine (UMAT) provided in

ABAQUS/Standard for applying user-written material laws is employed for this purpose.

In addition, the DDIT model can be handled via a user defined field subroutine (USDFLD1) as

well, which in many cases provides convergence within a smaller number of iterations than

the UMAT implementation. A further user defined subroutine (UEXTERNALDB) is necessary

for handling the nonlocal approach.

The meaning of the "colon" and the "dot" operators used in the following depends on the

order of the tensors involved and is given by

A : B = AijBij, (3.1)

(A : B)tj = AijktBkU (3.2)

(A : B)^fc/ = AijmnBmnki, (3.3)
1The USDFLD user subroutine in ABAQUS/Standard allows the user to define material properties

(e.g. the Young's modulus) depending on the spatial location and the local material state.

40
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and

(A • B)ik = Ai3Bjk. (3.4)

The symbol CS> indicates the dyadic tensor product, e.g.

{A®B\jkl = AxjBkl. (3.5)

3.1 Return Mapping Algorithm

Return mapping algorithms are necessary tools in nonlinear analyses involving incremental

plasticity models with or without damage. They serve to find stress updates if the yield

condition is violated.

The implementation of new material models into ABAQUS/Standard can be carried out

by a user defined material subroutine, called UMAT, and must be written in FORTRAN

code. The most important variables that are passed into the UMAT, and can be accessed

by the user, are the stress tensor, a, the strain tensor, £, and the increment of the strain

tensor, Ae, at the beginning of an increment. The user must provide an algorithm to com-

pute the stress tensor, a, at the end of the increment as well as the (hopefully consistent)

tangent matrix (Jacobian)

C~ = §£ (3.6)
of the constitutive model. The derivation of a consistent tangent matrix, Ccons, will

be described in section 3.3. The update of the stress tensor, cr, for pressure-dependent

elastoplastic models proposed by Aravas [93] was applied in this work and will be dis-

cussed in more detail in the following, some corrections with respect to the original paper

by Aravas being introduced.

When dealing with elastoplastic material models, the deformation gradient, F, can be split

into elastic and plastic contributions. In general one can write

F = Fel • Fp l , (3.7)

where

is a tensor of second order describing the total deformation gradient with x and X being

the actual and the initial position of the point under consideration, respectively, F e l is
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the fully recoverable contribution and Fpl stands for the unrecoverable part described by

jpeij-i . p j^ decomposition of the strain increment (and thus of the strain rate) into the

elastic contribution, ee, and plastic contribution, epl, in the form

Ae = Aee + Aepl (3.9)

is assumed, which is a consistent approximation to eqn. (3.7) if the elastic strains are

negligible compared to unity and are small compared to the plastic strains.

In order to find the solution for the stress tensor at the end of the increment, an elastic

predictor step is applied at the beginning of the increment and provides the trial stress

tensor

a}* = C%kl(e
e
kl + Aekl), (3.10)

where £%l are the components of the elastic strain tensor, ee, and the elastic stiffness matrix

is denned as

Ctju = (K ~ \G\ Sijöu + 2G5ik6jh (3.11)

where G stands for the shear modulus and K for the bulk modulus, isotropic elastic material

behavior being assumed, öij is the Kronecker delta. It is worth noting, that in the following

discussion the shear components of ee are the shear strains, e^, whereas ABAQUS uses

the shear angles

7ij = £ij + £ji for i ^ j, (3.12)

which must be accounted for in the actual implementation.

In case the yield condition is violated in the predictor step ($ > 0), a return mapping

algorithm must be started in a corrector step to update the stress tensor in such a way

that the yield condition is fulfilled (<& = 0). For elastic states ($ < 0) the trial stress

tensor is valid and can be used to update the stress tensor at the end of the increment and

Ccons = Ce. In other words, the following return mapping algorithm will lead to a solution

where the strain tensor increment, Ae, is split into an elastic and a plastic tensor to fulfill

the yield condition $ = 0.

Pressure dependent elastoplastic models are characterized by a yield function

<5> = $ { a m , a e q , H l ) i = l , . . . , n (3.13)

that depends on the first stress invariant, that is the mean stress

m̂ = \<r : I, (3.14)
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on the second stress deviator invariant, the equivalent von Mises stress

aeq = j Q s i s ) , (3.15)

and on a set of scalar state variables Hi, i = 1 . . . . . n. Here I stands for the second order

identity tensor defined by /^ = <5y and

S = a - <rml = 2Gee
D (3.16)

is the stress deviator, where the deviatoric part of the elastic strain tensor can be expressed

as

eb = e*-±e$ = e*-±e*iiI, (3.17)

£y being known as the volumetric part of the elastic strain tensor ee.
A proof of eqn. (3.16) is given in appendix B.
The increment of the plastic strain tensor epl can be calculated from the flow rule as

(3.18)
da \dam da daeq da

where g = g(crm,creq, Hi) is the flow potential and AA is a positive scalar. Aepl can be
split into two parts, the increment of the volumetric plastic strain tensor, Ae^j =
and the increment of the deviatoric plastic strain tensor, Ae^, to give

A £ + Aeg. (3.19)

The evaluation of the terms in eqn. (3.18)

JL (\a , i) = Ii (3.20)
da \3 J 3 v '

and

= \ ß (<r - aml) : (a- - aml)) ' 2 \ (<r - <r„I) = ^ S

and the introduction of the tensor

n = - ^ - S , (3.22)
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leads to a new description of the increment of the plastic strain tensor

(3.23)

1

3

in terms of the increment of the first invariant of the plastic strain tensor

Aep = AA^p- = A41 = A41 (3.24)

and the increment of a scalar

Aeq = AA——, (3.25)

that is related to the deviatoric part of the plastic strain tensor by

Aeg = Afqii. (3.26)

The elimination of the unknown AA can be carried out by using the relationship

d2f(x,y) d2f(x,y) _ Q

dxdy dydx '

which, when applied to AAg, leads to the relationship

- A A ^ - = Aeq^- - A e p | ^ = 0, (3.28)
dada Hda oa^ ^ eq ̂  ^ m ^ ^ m ̂  ^ eq ^ ^ m wu eq

that links Aep and Aeq.

Splitting the stress tensor into volumetric, am, and deviatoric, S, contributions in analogy

to eqn. (3.19) gives

2
a = am + S = am l + -<reqn. (3.29)

The stress tensor can be expressed in terms of the trial stress, <rtr, as

a = C e : ee = Ce : (e tr - Aepl) = <rtr - C e : Aepl, (3.30)

compare the schematic sketch in fig. 3.1, and the new term on the right hand side of

eqn. (3.30) can be evaluated by means of eqn. (3.23) as

Ce : Aepl = Ce : (^A£PI + Aeqn) (3.31)
O
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with

Ce : I = Cfjkllkl = (K - ^G\ ôijôulu + 2Gtfifcfy/jM = 3KI (3.32)

and

C e : n = ^ - C e : S = 2 G - ^ - C e : ee
D = 2 G - ^ - S = 2Gn. (3.33)

2aeq 2(Teq 2aeq

Accordingly, the stress tensor is given by the expression

a- = CTU - KAepI - 2GAeqn, (3.34)

which shows that in the deviatoric stress space the return to the yield surface is along n.

This implies that S t r and S are co-axial and, therefore, n can be simply calculated from

the elastic predictor <rtr as

n = — S = -4-S t r . (3.35)

A comparison between expressions for the stress tensor in eqn. (3.29) and eqn. (3.34) gives

2
a = <jml + - a e q n (3.36)

= atr - KAepI - 2GAeqn (3.37)

= <l + ^ < n - A-Aepl - 2GA£qn

which provides the equations for calculating the new mean stress

am = a« - KAep (3.38)

and the new equivalent stress

aeq = o% - 3GAsq (3.39)

in the corrector step of the return mapping algorithm. The full system of equations required

in the corrector step is given in tab. 3.1 and can be solved by standard Newton iteration.

An application of the above algorithm to the Gurson-based damage model was presented

by Zhang [94] and pressure-dependent plasticity models including kinematic hardening are

discussed by Mühlich and Brocks [95].

The return mapping algorithm for pressure-independent elastoplastic models, e.g. in the

case of "standard" ^-plasticity, that are characterized by -j^- = -^- = 0 and a vanishing
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first invariant of the plastic strain tensor. e?\ = 0, can be treated with the above algorithm

as well, by introducing the corresponding conditions. Return mapping procedures for pure

pressure-independent elastoplastic constitutive relations are given e.g. by Ortiz et al. [96].

input : <J^,

^(aeq,am,Hi)--

am = a

AHi = AHi(Aep,Asq,

unknowns: am, aeq, Ae

output: a

T-tr n —Jeq> u 2c

= 0 i =

m - K&Sl

% - 3GAe

p, Affq, /fj

= a m l + |

= l , . . . , n
= 0

>

) z, j = 1 , . . . ,n

(state variables)

aeqn

Table 3.1: The full set of equations required for the corrector step in a pressure-dependent

plasticity model

-Ce : = -AAC e

inc+l = 0

Figure 3.1: Geometric interpretation of the return mapping algorithm in stress space with

stress states in two increments
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3.2 Constitutive Equations of the Implemented Dam-

age Models

In the following the constitutive equations for the implemented ductile damage models are

given in a notation that can be used directly for the implementation into ABAQUS/Stan-

dard. Associated plasticity, where the yield function <3> and the flow potential g are

identical, is assumed unless explicitly stated otherwise.

The DDIT model based on the damage indicator of Gunawardena et al., see subsec-

tion 2.3.1, follows standard J2-plasticity throughout the "sub-critical" state, i.e. the ductile

damage indicator

D - V \e«/inc V " * / i n C - l A pi
D ~ 2 A £1.6560 2

inc=l

is evaluated after each increment, inc. using a trapeze rule, but does not influence the

material behavior until the critical value is reached. Once D reaches the critical value, DCTiU

the material point is treated as having failed, the stress is set to a very small number, and

a linear elastic material behavior with an extremely small Young's modulus (10~8 times

that of the damage-free material) is activated. This material model was implemented both

into a user defined material routine (UMAT) and into a user defined field routine (USDFLD).

All equations necessary for implementing this model into a UMAT are collected in tab. 3.2,

and only eqn. (3.40) is required to trigger the reduction of stiffness in a given integration

point in the USDFLD.

A discussion of the responses obtained with the UMAT and the USDFLD subroutines is given

in section 3.6.

It is worth noting that the DDIT model will not indicate failure in loading scenarios in

which the local stress state is hydrostatic and does not give rise to yielding with the

J<i theory used. Accordingly, the overall response remains linear elastic and no growth

of the damage indicator is obtained from eqn. (3.40) since the increment of the plastic

strain, Ae^qinc, remains zero.

The full set of equations making up the GTN model discussed in subsection 2.3.2 is listed in

tab. 3.3. It consists of 8 explicit and 2 implicit equations for 10 unknowns. This nonlinear

system must be solved for each integration point in each iteration. The modified void
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volume fraction

' / for 0 < / < fc

f*={ f o r /c</</f , (3-41)

is defined in three stages depending on / , where j \ is the void volume fraction at failure.

The third of these stages was introduced by the author to avoid numerical difficulties.

Beyond / = 1, where complete loss of stiffness takes place, the integration point can be

treated in analogy to the failed state in the DDIT model. The relation between / and /*

is depicted in fig. 3.2. Note that the relations in tab. 3.3 also include an evolution equation

for the void volume fraction, / , which follows the original paper of Gurson [37].

An alternative strategy for handling damaged integration points was suggested by Zha-

ng [97]. In this "fixed Gurson-based model" the load-carrying capacity for / > f) is

controlled by a GTN-based non-hardening material behavior that no longer evolves. Ac-

cordingly, the yield surface is kept constant and the corrector step in the return mapping

algorithm has to return the stress to the same yield surface after each elastic predictor

step. The author found that this approach can give rise to an unfavorable convergence

behavior due to ill-posed Jacobians.

The second damage progress model that was implemented into ABAQUS/Standard is the

Rousselier model presented in subsection 2.3.2. The evolution of the void volume fraction

in this model can be calculated in the same way as for the modified Gurson model, compare

tab. 3.3, and an additional variable B may be introduced for handling void coalescence in

loose analogy to the GTN model with

A /

B

= (1

f
=

—
1

1

0

f)BAep,

i 4 ( f
IF~/C ^ J

.5

forO

fc) for/c

for f\

< / < /c

: < / < / F ,

(3.42)

(3.43)

see also fig. 3.3. With this extension the void volume fraction in the Rousselier model

increases rapidly for / > fc but reverts to a very slow rate of growth once /p is reached.

This behavior is similar to the one enforced by eqn. (3.41) for /* in the GTN model.

The initial void volume fraction, /o, required by the Rousselier and GTN models can

be obtained by summing over the volume fractions of the preexisting voids and of any

inclusions that can be assumed to be weakly bonded to the matrix.

A total of 2 implicit and 6 explicit equations are available for the 8 unknowns of the

standard Rousselier model, see tab. 3.4. One can see, that the variable Aeq explained
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in eqn. (3.25) is treated as the increment of the equivalent plastic strain, Ae{^, in the

Rousselier model, whilst in the Gurson model Aeq is an additional unknown that can be

evaluated from the equivalence of the overall rate of plastic work

a : Aepl = amAep + aeq&eq = (1 - /)<rfAejJ. (3.44)

The difference between the GTN and Rousselier models in the behavior at final failure is

worth noting. The GTN model is designed such that the yield surface shrinks to the origin

of the stress space (am = 0, creq = 0) when /* reaches 1/qi, provided that the material

parameter q^ is equal to q2. Otherwise, due to the quadratic form of the yield function,

$ = % + 2qxP cosh (£-) - 1 - q3f*
2 = 2qJ* - 1 - qzf*

2 = 0, (3.45)
of \ ô~f /

two solutions are obtained for the void volume at failure

- — + —. (3.46)
93 93

This explains why the assumption of 93 = q2 can be found very often in the literature.

The Rousselier model, in contrast, shows no comparable restrictions, the state of com-

plete failure being determined by both void volume fraction and yield stress (or equivalent

plastic strain) so that it cannot be calibrated in advance. To account for this aspect of the

Rousselier model a modification proposed by Aboutayeb [98] was used in the present work,

where a replacement of the material parameter o\ by the expression q^a^ was suggested, 94

being a new material parameter. The equations corresponding to this modified Rousselier

model are listed in tab. 3.5. These modifications lead to a unique void volume fraction at

failure, / F , depending on the material parameter q^ and on D.

In the DDIT model, of course, ductile failure is unequivocally described by D = 1. Table 3.6

gives the conditions for total failure for all three models and for the modified Rousselier

model.

A direct comparison between the above ductile damage models can be obtained by re-

arranging the yield condition <3> = 0 such that the equivalent stress, aeq, is expressed as a

function of the mean stress, am. Figure 3.4 shows the o-eq-am-diagram for the DDIT, GTN

and Rousselier models. First, it can be seen that the DDIT model does not depend on the

mean stress because it follows ^-plasticity theory if D < Dcrit. Second, whilst the GTN

model shows an infinite slope at aeq = 0, a vertex can be observed for the Rousselier model

in that point. Furthermore, a completely different behavior is evident for yielding under

compressive hydrostatic loads.
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The vertex of the Rousselier model plays an important role when tensile hydrostatic stress

states occur. The use of the relation

aeq = a^ - 3GA£q (3.47)

in the return mapping algorithm in eqn. (3.39) as listed in tab. 3.2, 3.3, 3.4 can then lead to

negative values of the equivalent stress, which, of course, is not acceptable. Interestingly,

if negative results from eqn. (3.47) are nevertheless plugged into eqn. (3.15), the obtained

stress tensor has a (positive) equivalent stress of the same magnitude, but does not satisfy

the governing set of equations. From the above discussion it is evident that appropriate

measures must be taken to make the Rousselier model a robust and practical proposition for

analyses where hydrostatic or nearly hydrostatic stress states can occur, as is often the case

in micromechanical models. To the authors knowledge a solution for this problem has not

been given in the literature. Figure 3.5 shows a number of modifications to the Rousselier

flow surface that were tested by the author for removing the vertex of the yield surface on

the hydrostatic axis. All these modifications aim at removing the vertex while modifying

the Rousselier flow surface as little as possible. The extension # 1 of the Rousselier model

depicted in fig. 3.5 introduces a segment of a circle in the aeq-crm plane

! - (am - u)2, (3.48)

where r and u stand for the radius and the offset of the center of the circle along the

<7m-axis, respectively. A smooth transition between the Rousselier flow function and the

circle was provided at a stress triaxiality of r\ = 4. Two equations for r and u can be

obtained by enforcing the intersection at 77 = 4

r in t

< x exp j ^ - j = 0 * - (a«? - uf (3.49)

and by requiring it to be smooth

d^Jr2 _ {(J™x _ uf

The point of transition

rint / <Jlnt

J2_ = o-f - Dfox exp ( -2!- ) (3.51)

can only be found iteratively. The above approach seems to be the best method from

the point of view of "removing" the vertex, of guaranteeing an infinite slope at <7eq = 0
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and of causing no problems in the return mapping algorithm. In practice, however, the
introduction of the four additional, nonlinear equations for the four new unknowns r,
u, a™1 and a^ increases the complexity of the whole set of equations dramatically and
convergence for nearly hydrostatic loads was obtained only in cases where the predictor
step in the return mapping procedure was very small. If the predictor step provides a
stress state in the vicinity of i] = 4, switching between the Rousselier flow surface and the
circle may occur during iteration, which can cause additional numerical difficulties.
The next two ways of removing the vertex are based on the idea of using a continuous
function in the whole domain so that the introduction of an intersection point is not
necessary. Extensions #2 and #3 use smooth penalty functions that are activated in the
vicinity of aeq = 0 only. The yield functions obtained this way are

arctan
$ = 0eq - a( + ( D +

for algorithm #2 and

I ( i \ m 5 \ tw x

^ (3.53)

for algorithm #3, respectively. Both reduce aeq considerably in the neighborhood of the
hydrostatic case, where

a,>eci = 0) = ax In (-£-) • (3.54)
\Df<7iJ

The chosen parameters m,i are given in tab. 3.7. These two approaches definitely provide
smooth yield functions but give rise to similar numerical difficulties as observed with ex-
tension # 1 .
Modification #4 replaces the Rousselier yield function with an elliptic function as used in
the GTN approach. The Rousselier model is used to obtain the mean stress, a^, and the
equivalent stress,

(3.55)

which are used to define an elliptic yield function

u u
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This algorithm works very well and stably, but cannot be considered to be a Rousselier

model in the strict sense.

A workable compromise was found in extension # 5 . where the Rousselier flow function, <&.

listed in tab. 3.4 is combined with an elliptic now potential, g, that follows eqn. (3.56), i.e.

a non-associated flow rule is used. This preserves the main features of the original Rousse-

lier model (the yield function, $, will be unaffected) and avoids the unrealistic calculation

of <req.

The full set of equations for the extended (extension #5) and modified (following Abou-

tayeb [98]) Rousselier model that was applied for part of the simulations in this work is

given in tab. 3.5.

The sets of nonlinear equations given in tab. 3.2, 3.3, 3.4, 3.5 can be solved by Newton-

methods. The considerable number of equations and their nonlinearity, however, give rise

to numerical difficulties. The marked differences in the absolute values of the coefficients

in the above sets of equations (compare e.g. the orders of magnitude of the increment of

the equivalent plastic strain, AeJ^, and of the flow stress, O{) lead to ill posed problems in

inverting the corresponding system matrices. For that reason, the introduction of normal-

izing factors into the involved equations is necessary for obtaining a suitably conditioned

systems of equations. A further problem was detected in the criterion for finding the

"correct" solution and hence stopping the Newton algorithm. The criterion

Ax,-
< TOLER, (3.57)

where Xi stands for the unknown i and TOLER for a tolerance of the order of 10 5, was not

sufficient for ensuring convergence. Accordingly, an additional criterion was introduced in

such cases. If the equation is of the form

N

f = = 0, (3.58)

where cti(xfc) are the terms of the sum containing the unknowns, the decision when the

function / is sufficiently close to zero is difficult, because it depends on the order of mag-

nitude of each summand. A criterion, where the absolute value of the residuum is required

to be below an appropriate bound,

/ =
N

< 10"

N

i=\

N
(3.59)
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was found - in combination with eqn. (3.57) - to provide a robust indication of convergence.
It was accordingly applied in this work to solve the above equations for each integration
point.

D

$ = g = <7eq - <7f =

r p l _ Fpl,t;r , A -piceq eq ' ceq

aeq = < - 3GA£v
a( = a{(e?q)

= D(am/aeq,AePq) is defined

unknowns: aeq, <Tf, e^q, A

0

i

in

c-pl
c e c

eqn. (3.40)

Table 3.2: The full set of equations for the DDIT model based on Gunawardena's damage
indicator

/*

unknowns: am,

2qJ*c

A e p ^
A4q =
A/ =

/ =
_pi
£eq -

O"m =

<7eq —

O s h(2SD 1)-1-93
- Ae q^=0

(1 - /) Aep

/tr + A/
egtr + Aeg
^ - KAep

a% - 3GAeq

is defined in eqn. (3.41)

ö"eq, O-f )

= O"f(f^)

/" Af f* epl A£pl Z
J i L-1J i J ; ' -eq ' c e q '

/*2 = o

\eq,A£p

Table 3.3: The full set of equations for the GTN model
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i

A /

unknowns:

>ec

te
is

C

a

a

dg

defined

/ =
'eq ~
rm =

eq =

(7f

nu ^e

= / t r

:pPl,
eq

a e q

jqjO'f

Ae

in

+
tr _

— .

tie

,f

fDexp(^) =

q ^ - = 0

eqn. (3.42)

A/
t- AcTq

/^AfTp

^GAeq

pl)
,A/,£ePq,Aeq, Asp

Table 3.4: The full set of equations for the Rousselier model

Ö — n^̂  ^eq

A /

unknowns: am.

-<Tf +

9 =

A £ P Ä
*

o 4 c T f / ' Z ) e x p ( - Z m - 1 = 0

eq m

- - A e q | 2 _ = 0

<Tf(l — Dfq4)

is denned in eqn. (3.42)

/ =

^ePq =

^ m =

^ e q =

Vf

= / t r + A/
= £Pq-

tr + A e q

a m — A A e p

_.tr Q / ^ A /~
U — .it T / \ r Q

= ^f(4q)

/,A/,4^A£q!A£p,p,a;!0-:q

Table 3.5: The full set of equations for the extended, modified [98] Rousselier model
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Model

Rousselier

mod. Rousselier

GTN

DDIT

damage variable at failure
for $ ( a m = 0, CTeq = 0) = 0

* ~ (71 Z?

f — 1

/* = £ with q3 = q\

D = Dcrit

Table 3.6: Conditions at final failure for the considered ductile damage models

777.1

777-2

m-i

1714

7775

m6

100

100

100

20

8
2

Table 3.7: Parameters 7T7,J for the extended Rousselier models #2 and

CQ

0 /c /F 1

Figure 3.2: Relation between /* and / in Figure 3.3: Relation between B and / in
the GTN model, eqn. (3.41) the modified Rousselier model, eqn. (3.43)
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Figure 3.4: <7eq-crm-diagram of the GTN, Rousselier and DDIT models at an arbitrary state
described by eg = 1(T2 and / = 10"2
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ext. #3
ext. #4

0 5e+07 le+08

am [Pa]
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Figure 3.5: "Extended" Rousselier models that avoid the vertex in the flow surface at
c"eq — 0 (fffq = 0.36 and / = 0.58 are set in this case and extension #5 differs from the
original model in the definition of the flow potential, g, only)
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3.3 Consistent Tangent (Jacobian)

In the ABAQUS/Standard UMAT a consistent tangent (DDSDDE array in the parameter list

of the UMAT routine)

rcons dAa da
^ = ~^7T~ = ~^~ (3.60)

dAe de
must be determined by the user. The component Cijki of the Jacobian defines the change in
the ij stress component at the end of the increment caused by an infinitesimal perturbation
of the kl strain component. The ABAQUS manual states that an incorrect value of the
material Jacobian only affects the rate of convergence, but not the obtained results. For
calculations in the softening regime, however, the author found that the predictions for the
displacement, stress and strain fields can depend markedly on the choice of the Jacobian.
This can be shown by a single element test performed with the GTN model and a 20 node
element (27 ips=integration points), where a consistent and an incorrect (in this case, the
elastic) material Jacobian were used, see figs. 3.6 and 3.7, respectively. A unique solution
for all integration points in the simulation using the consistent tangent was found for all
integration points as can be seen from the figures, whilst different results were obtained for
different integration points when an incorrect tangent was applied. This example shows
the importance of a consistent derivation of the Jacobian from the governing constitutive
equations.
The procedure for determining a consistent tangent for pressure-dependent elastoplasticity
models proposed by Aravas [93] and improved by Zhang [97] is presented in the following.
Due to some errors in both publications the derivations were redone to obtain the correct
set of equations.
Note that the definitions of the tensor operators ":" and "<8>" used in the following are
given at the beginning of chapter 3.
In order to calculate the consistent tangent, the total derivative of the stress tensor

a = Ce : (e - epl) (3.61)

= Ce : (e - ef - Aepl)

= Ce : (e - ef - ^Aepl - Aeqn)

must be calculated, where the index H" indicates the beginning of the increment. This
total derivative takes the form

da = Ce : (de - ^dA£pI - dA£qn - Aeq^- : da] . (3.62)
\ 3 da J
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Note that ef is a constant and, accordingly, does not contribute to the differential.

To calculate the two unknowns dAep and dAeq, the differentiation of eqn. (3.13) and

eqn. (3.28) must be performed to obtain

Fin ' Flrr ft* I ' " " ' / ' *TT ^ " l ~~ w (3.63)

m aa oaeq oa J

and
(3.64)

t uBirfiÏ) = 0,
respectively, with

f^El^A ^^Elf)A , fdAHjdam , dAHjdaeq\ \
ij ——^-dAep + ——-̂ dAeq + ^r—J-—— + ——J-—-* : der . (3.65)

^ \ dAep
 v dAeq

 M \ dam da daeq da J J

Here ĉ - is the inverse of the tensor

^ J (3-66)
and is derived in appendix C for the case of n = 2 and AHi = AHi(am, aeq, Aep, Aeq, Hj).

By reformulating eqn. (3.63) and eqn. (3.64) the expressions

= (Bnl + Bx2n) : da, (3.67)

= (B21l + B22n) : da, (3.68)

are obtained, from which dAsp and dAeq can be solved by inverting A to Ä = A" 1 , which

leads to

dAep = {(ÄnBn+Äl2B2l)l+(ÄuB12 + Ä12B22)n):d<T, (3.69)

dAeq = ((Ä2lBn + Ä22B2l) I + (Ä2iB12 + Ä22B22) n) : da. (3.70)

In the notation of Aravas these relations can be expressed as

dAep — (mpil + mpnn) : da, (3-71)
dAeq = (mqll + raqnn) : da. (3.72)
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Inserting eqn. (3.71) and eqn. (3.72) into eqn. (3.62) and rearranging yields the relationship

(J + Ce : M) : da = Ce : de (3.73)

where

M = - m p l l <g> I + - m p n l <g> n + m^n <g> I + mq nn <g> n + A e q — (3.74)

and J is the fourth order identity tensor denned by Jjkim = Sßökm-

The inversion of (J + C e : M) leads to the consistent tangent

^ (J Ce M)" 1 C e ( M C 6 " 1 ) 'Ccons - — - = ^ = (J + Ce : M)" 1 C e = ( M + C6"1) . (3.75)

Zhang [97] proposed a method to avoid the above inversion by using the expression

d(T = Z:de- KWAep - 2GndAeq (3.76)

with

^ ( f ^ ) ^ ® n . (3.77)^ ( f ^ ) ^
°eq \ ö aeq/ aeq

where crtr is the trial stress tensor denned in eqn. (3.10).

By substituting eqn. (3.76) into eqn. (3.67) and eqn. (3.68), one obtains

dAep = (Cnl + Ci2n) : Z : de, (3.78)

dAeq = (C2il + C22n) :Z:de, (3.79)

so that only an inversion of a 2x2 matrix

(An+ZKBn A^ + SGB^Y
\ A2l + 3KB2i A + 3GB J

must be performed in the entire calculation procedure of the consistent tangent to obtain

the two unknowns <9Aep and <9Aeq. Note that Zhang, who claimed that no inversion is

required in this approach, gave the above inverse in analytical form

where C = C~ l . The stress tensor can then be written as

da = Ccons:de (3.82)

= (J - Kl ® (CuI + C21I1) - 2Gn ® (C21I + C22n)) :Z:de,
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and the consistent tangent can be extracted in the form

Ccons = ( j _ K l ^ (C i i j + C 2 i n ) _ 2 G n 0 (C,2ij + C 2 2 n ) ) . Z ( 3 g3)

Equation (3.83) can be formulated in index notation as

— ^ijmn (o.o4J

— K lijCnlklZklrrm

— 2Griij C21

— 2Gnij

Using an abbreviation of eqn. (3.77) in the form

and applying the relations

- 2GC21 (a + 36) n y / m n

- 2GC22 \ a + nC) nijnmn-

The relations

eq \ ° aeq

hihi = 3, (3.86)
3

(3.87)= ,
= 0, (3.88)

h/Jklmn — Iran, (3.89)

(3.90)

the consistent tangent can be rewritten as

a + 36 - 2G^ + 3 fK-^^=3K, (3.92)

(3.93)
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lead to the expression of the consistent tangent given by Zhang as

= Q-Jijmn * ulijlmn + CTlijTlmn (

— 3K Culijlmn

The consistent tangent for the "standard" J2 plasticity (pressure-independent) model with

an isotropic hardening rule as used for the DDIT model in the undamaged state, see

tab. 3.2, described by the yield function

$ = aeq - orf (eg) = 0 (3.96)

and the state variable Hi = efq, can be derived by the above algorithm as well. Plugging

the above yield function into eqn. (3.63) will lead to

with

S (3-98)
This equation can be transformed into the above framework by setting the following con-

stants of eqn. (3.67) and eqn. (3.68):

Au = 1 A12 = 0 A2i = 0 A22 = -o\

Bn = 0 £12 = 0 B2i = 0 £22 = - 1

The algorithm proposed by Zhang then leads to a consistent tangent of the form

- l + ^ ) » e „ . (3,9)

Note that all necessary derivations for the evaluation of a consistent tangent for the GTN

model and for the extended Rousselier model (#5) are given in appendix D and in ap-

pendix E, respectively.
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Figure 3.6: Geometry for single element test with periodicity boundary conditions
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Figure 3.7: Single element test with consistent (top) and incorrect tangent (bottom)
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3.4 Implementation of the Nonlocal Regularization

Technique

The present work employs an integral-type nonlocal averaging approach which is based on

smoothing the increment of an appropriate damage variable, Aq, according to an algorithm

given by Leblond et al. [56]. The method is described by eqn. (2.27) and eqn. (2.28) and

can be rewritten in combination with eqn. (2.29) as

-, 2

1

1 +
(3.100)

with

W (x,) =
1 +

(3.101)

in order to use the algorithm in a numerical procedure.

Here qi is the local damage variable and ÇNL is its nonlocal counterpart, |XJ — Xj| stands

for the distance between two integration points i and j , Vj is the volume associated with

integration point j , and the sums run over all integration points j within a distance L from

a given integration point i as sketched in fig. 3.8.

The user subroutine UEXTERNALDB available in ABAQUS/Standard allows the user to per-

form any operations at the

• beginning of an analysis (LOP = 0),

• beginning of a restart analysis (LOP = 4),

• beginning of an increment (LOP = 1 ) ,

• end of an increment (LOP = 2),

• end of an analysis (LOP = 3),

where LOP stands for a variable provided by ABAQUS/Standard that indicates the actual

state when UEXTERNALDB is called.

The averaged increment of the damage variable in eqn. (3.100) is evaluated only at the

end of each increment, where the local values, Aqi, are available and equilibrium has been
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achieved. While this constitutes a considerable restriction when compared to research

codes, where averaging may take place for each iteration, compare e.g. Baaser and Tver-

gaard [60], tests showed good agreement between the two types of algorithms as can be

seen in fig. 3.9, where shear band localization was induced by a small imperfection in the

right bottom corner of a plane strain tensile test specimen loaded in the vertical direction.

For efficient nonlocal smoothing" via eqns. (3.100) and (3.101) it is obviously desirable to

have suitable information on those neighbors of any given integration point available that

lie within the half of the characteristic length, L. Such data, comprising e.g. integration

point volumes and the distances between pairs of integration points, can be evaluated and

stored at the start of the analysis and may be updated as required. The ABAQUS vector

COORD (coordinates) and the variable IVOL (integration point volume) can be extracted via

the c++ or python scripting interfaces that provide access to the data stored in the ODB

files of ABAQUS. These scripts must be started at the beginning of the nonlocal analysis

in any case to obtain the necessary relations between the integration points and can be

employed during the simulation as well to get an actual setting. For that reason, lists of

data for each integration point are stored in a FORTRAN common block and are thus kept

in memory to ensure efficient access throughout the analysis. For each integration point i

the list identifies all neighbors j that lie within the distance L and gives the factors

- 2

1
Pi =

1 +
Vs (3.102)

that are required for evaluating eqn. (3.100). Figure 3.10 shows a short section of such a

list and considerations about the expected memory requirements depending on the mesh

size h and the characteristic length 2L is given in subsection 4.2.1.

Following each load increment the nonlocal increment of the damage variable, Aq^1,

can then be evaluated from the local values, Aq\^. The smoothened value of the damage

variable is obtained as

#LA'- = 4NL + A # L
A i , (3.103)

and is available for the next increment, compare the sketch in fig. 3.11 and fig. 3.12. New

values for q^ are evaluated during each equilibrium iteration, the corresponding Ag[ must

be transferred from the UMAT into the UEXTERNALDB and the new values of Aq^1 must be

passed back. This is again achieved via common variables (see subsection 3.6 for important

notes on the usage of common variables within ABAQUS user subroutines).

In order to provide correct results, the smoothing algorithm must ignore all integration

points that have reached failure. In analyses where both ductile and elastic materials
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are present, as is the case in micromechanical studies of MMCs, the smoothing must be

restricted to the ductile constituent. Furthermore, appropriate provisions must be made

for the symmetry or periodicity boundary conditions that are typically employed in unit

cell analyses, compare fig. 3.13. There the basic unit cell is drawn in bold lines, thin lines

designate "copies" of the unit cell, a given integration point is marked by a "+", and a

circle of radius L centered on it indicates the characteristic length within which integration

points contribute to the nonlocal averaging. In the case of symmetry boundary conditions

the "mirror images" of the integration points with respect to each symmetry plane must be

included in the averaging procedure, and periodicity boundary conditions require that unit

cells shifted by multiples of the vectors of periodicity must be considered. Note that the

"integration regions" typically do not follow mirror symmetries in the case of symmetry

boundary conditions.

It is worth pointing out that it is absolutely necessary to employ the increments of the

damage variable for averaging according to eqn. (2.27) rather than the damage variable

itself. In the latter case regions where elastic unloading occurs due to stress redistribution

(Aq = 0, but q ^ 0) can influence the nonlocal averages in an unphysical way.

• integration point i

X n integration points (j's)
considered for the evaluation
of integration point %

Figure 3.8: Finite element mesh with integration points considered in the nonlocal aver-

aging algorithm for integration point i lying within the characteristic length 2L
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Figure 3.9: Shear band localization — comparison of (a) results from the present nonlocal

Rousselier procedure and (b) predictions published in [60]
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Figure 3.10: A small section of a list s toring the spat ia l relat ion between integrat ion points

used for handl ing the integral- type nonlocal averaging within A B A Q U S / S t a n d a r d
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Figure 3.12: Sequence of operations performed by the smoothing algorithm
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Figure 3.13: Unit cell geometries with periodicity (pbc) and symmetry (sbc) boundary
conditions. Regions contributing to the nonlocal averages of A^NL for given integration
points "+" are marked as circles

3.5 Single Element Tests and Comparisons

Comparisons were carried out between unit cell models containing resolved voids in a
simple cubic arrangement, compare fig. 3.14, and smeared-out models employing the three
ductile damage algorithms described above (the Rousselier model was used in both its
original form and in the extended version #5). A similar test was used by Prahl et al. [99]
for calibration of the material parameters of the ductile damage models. Furthermore, the
influence of selected material parameters of the three ductile damage models was explored
for different kinds of load cases.
The material of the unit cell with the resolved void was assumed to be elastoplastic and
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the flow stress was described by the Ludwik hardening law given in eqn. (2.26). The elastic

and elastoplastic material parameters are listed in tab. 2.1 on page 28.

The additional material parameters for the ductile damage models are listed in tab. 3.8.

The initial void volume fraction was chosen as /o=7 x 10~3, which determined the size of

the single void in the unit cell in fig. 3.14.

Four different loading scenarios corresponding to different displacement controls were ap-

plied to both the unit cell and the single elements using the different damage models.

Periodicity boundary conditions were used in all cases.

The force-displacement responses predicted with the three damage models for the four

sets of loading conditions are displayed in fig. 3.15 and fig. 3.16. The numbers beside the

arrows in the inserted sketches of the unit cell indicate the multipliers of the displacement

amplitudes.

The load cases can be seen to comprise two nonsymmetric triaxial load cases (#1 , #2) , a

uniaxial tensile load case (#3), and tensile hydrostatic loading (#4). The DDIT model was

not used in the latter scenario, because this model cannot handle ductile damage under

purely hydrostatic loading, compare section 3.2.

The yield surface of the "original" Rousselier model shows a vertex for purely hydrostatic

stress states as mentioned in section 3.2, so that associated flow descriptions run into prob-

lems at high stress triaxialities (which occur commonly under the constrained plasticity

conditions typical of micromechanical analyses) and no result was obtained with this model

in loading scenario #4, whilst the extended Rousselier model described in section 3.2 can

handle this stress state without any problems. Furthermore, it is worth noting, that the

above extension of the Rousselier model does not markedly change the results in compar-

ison to the original Rousselier model, with the exception of loading scenario # 3 , where

softening occurs at quite different loads. While not fully satisfactory this behavior was as-

sessed as acceptable for micromechanical analyses where a wide range of stress triaxialities

is present at the microscale for any given macroscopic load state.

By correlating the overall responses obtained, on the one hand, from the three ductile dam-

age models and, on the other hand, from the unit cells containing a single void, suitable

values for the modeling constants in the above models can also be estimated, see tab. 3.8.

The best agreement to the behavior predicted by the unit cell model was obtained with the

GTN model2, followed by the Rousselier model. The DDIT model can resolve the onset of

damage, but does not correctly describe the behavior of the unit cell containing a single

void after that point. The unit cell model does not show the inflexion points observed in

2This is not surprising, because the GTN model is based on a single-void unit cell.
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the Rousselier and GTN models, which are due to void coalescence.

Such comparisons between unit cell and damage models, while shedding light on many

features of the behavior of the latter, cannot, of course, take the place of full-blown para-

meter identification procedures for a given material as reported e.g. by Springmann and

Kuna [100], [101].

In addition it must be kept in mind that the unit cell shows cubic symmetry and, accord-

ingly, anisotropic overall behavior, whereas the damage models are designed to be isotropic.

After varying the material properties in all models, the author concluded that it appears

impossible to find sets of material parameters that allows to obtain identical or nearly

identical results with the different ductile damage models for a set of different loading

scenarios. Furthermore, it turns out that materials characterized by a ductile behavior in

the softening regime (e.g. A12618-T4, the matrix of Aluminum Silicon Carbide (Al/SiCp)

metal matrix composite) can be described quite well by the Rousselier model, whilst the

DDIT model is best applied for materials where the damage behavior shows limited macro-

scopic ductility even though dimples are present at the fracture surface, indicating a ductile

failure mechanism. The GTN model should be used for materials showing a very ductile

stress strain behavior, even more so than materials suitable for the Rousselier model.

One can see that the implemented damage models are sufficient for simulating crack initi-

ation and propagation in a wide range of different kinds of ductile materials.

In order to get a better insight into the behavior of such damage models once the material

parameters are varied, a number of single element tests were performed with different sets

of material parameters using the loading condition of scenario # 1 . These tests were based

on the material parameters listed in tab. 3.8, but one parameter was varied at a time to

see the corresponding effect. Three material parameters, q\, q-2 and /o in the GTN model3,

Q4, D and /o in the extended, modified Rousselier model (#5) and the only material para-

meter e0 of the DDIT model were changed independently and the results are depicted in

fig. 3.17, fig. 3.18 and fig. 3.19. It is evident from the force-displacement diagrams that

the variation of any one of the three material parameters in the GTN model leads to a

nearly parallel shift of the force-displacement curves towards higher or lower forces and

hence mainly influences the maximum load carrying capacity and the energy required for

crack growth. Among the parameters considered, changes of </2 influence the results most

markedly (giving changes of up to 20% in maximum force for a 10% change in q-2). The

results performed with the extended Rousselier (#5) model shows a completely different

3Variation of q\ leads to a modification of 93 following the relation «73 = q\ as mentioned in subsec-

tion 3.2.
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behavior. On the one hand, the maximum force i2i*2imax is influenced by changing the val-

ues of the material parameters, and. on the other hand, the point of final failure {RF2 — 0)

varies within a wide range. The initial void volume fraction, /o, has only a small influence

on the local behavior of the element as also observed with the GTN model. The initiation

of ductile failure in an element driven by the DDIT model depends on EQ and can be delayed

by using a higher number of the material parameter in accordance with eqn. (3.40).

GTN qx q2 93 /c /f

orig. and ext.

1.5 0

Rousselier

.9

0

2.25 0.

-! [MPa]

320

12

94

1.2

0.25

D
2

7 x

/ c

0.15

10"3

h
0.9 7

/o
x 10~3

DDIT

(X2

Table 3.8: Material properties obtained by comparing unit cell with pore and smeared-out

models

Figure 3.14: Unit cell containing a single central void
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Scenario # 1 : nonsymmetric triaxial tensile loading
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Figure 3.15: Force-displacement responses obtained with loading scenarios # 1 and # 2
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Figure 3.16: Force-displacement responses obtained with loading scenarios #3 and #4
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Figure 3.17: Force-displacement responses obtained by varying individual material para-

meters for the GTN model using loading scenario



CHAPTER 3. IMPLEMENTATION OF THE DUCTILE DAMAGE MODELS INTO
ABAQUS/STANDARD 75

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Displacement

0.1 0.2 0.3 0.4

Displacement U2

/o = 0.005
/ o = 0.007 .
/ o = 0.009

0.05 0.1 0.15 0.2 0.25

Displacement C/2

0.3

Figure 3.18: Force-displacement responses obtained by varying individual material para-
meters for the extended Rousselier (#5) model using loading scenario
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Figure 3.19: Force-displacement responses obtained by varying individual material para-

meters for the DDIT model using loading scenario # 1

3.6 Technical Details

The author wants to point out the difference between using state variables, STATEV, and

common variables, C0MV, in ABAQUS/Standard user subroutines. The state variables are

managed by AB AQUS in such a way that the previous ( "old" ) values of the variable are

available when convergence is not reached and a new iteration or new attempt4 has to be

performed. Common variables, in contrast, must be organized by the user and provision

must be made to hold the old and the new values in memory. The difference can be

explained in a simple example:

Assume that the state variable STATEV and the common variable C0MV are equal to 1 at

the beginning of an increment, then the equations

STATEV = STATEV+ 1,

C0MV = C0MV + 1,

(3.104)

(3.105)

which are assumed to be implemented in the ABAQUS/Standard user subroutine UMAT

will lead to the values of STATEV — 2 and C0MV = 1 1 after the solver has performed 10

iterations for finding the state at the end of the increment.

4An attempt in ABAQUS/Standard can be explained as a new start of an increment if the previous
one did not converge.
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Furthermore, the different handling of state variables in a user defined subroutine UMAT

and in a user defined field subroutine USDFLD should be outlined. This difference can be

explained in an example where the equivalent plastic strain, e^, is calculated. The UMAT

subroutine is called at the beginning of the increment inc at time t and the old value of

££q stored in STATEV can be used to calculate the new value at the end of the increment at

time t + Ai:

STATEVt+At = STATEV,. + Ae^inc (3.106)

The USDFLD subroutine, in contrast, is called at the beginning of the increment as well, but

the increment of the equivalent plastic strain, Aej^, is calculated during the increment by

AB AQUS in an internal procedure and cannot be accessed at the beginning of the increment

by the user, who can only store Ae^ inc_1 into STATEV from the previous increment to give

STATEVt+At = STATED + A ^ ^ . (3.107)

This leads to a "delayed" behavior of the ductile damage indicator in eqn. (3.40) calcu-

lated with the USDFLD in comparison to the UMAT as shown in fig. 3.20. Nevertheless, the

differences between the two results were found to be limited in a number of tests provided

that the load increments are chosen sufficiently small.

It should be mentioned that the implementations of the above local ductile damage models

into an ABAQUS/Standard UMAT require the removal of damaged elements after a number

of increments, because otherwise the low stiffnesses of the "failed" elements can lead to

numerical difficulties which manifest themselves in ABAQUS failing to reach convergence

and breaking off the analysis. This procedure can be applied in a restart analysis by using

the MODEL CHANGE command of ABAQUS/Standard to remove the elements from the

finite element mesh that have reached the final failure criterion.

A more convenient way for removing such elements is provided in ABAQUS/Explicit where

each integration point can be deactivated during the simulation by a flag accessible in the

user defined material subroutine (VUMAT). However, ABAQUS/Explicit does not offer the

broad range of user subroutines available in ABAQUS/Standard and hence it was not

possible to implement the nonlocal averaging method presented in section 3.4 into the

ABAQUS/Explicit framework.

It is worth noting that special provisions are required for applying the nonlocal averaging

approach to a composite where two or more constituents are involved not all of which are
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to be considered in the smoothing process0. Figure 3.21 depicts such a composite material

in 2D, two locations where the averaging will occur being pictured by two circles. Circle 1

is located in material 1 only and all integration points in the circle are considered, whilst

circle 2 spans both constituents and only integration points of material 1 are involved in

eqn. (3.100). Nonlocal averaging in only one phase can be implemented in a fairly straight-

forward way. It should be kept in mind, however, that the resulting smoothing domains

may be very small in some situations, leading to a nearly local solution at such points.

Furthermore, when the above nonlocal algorithm is used, one has to decide if a completely

damaged integration point in the finite element mesh should be considered in eqn. (3.100)

or not. Although the increment of the damage variable, A<?L, is equal to zero for an integra-

tion point that has reached final failure, this integration point would influence eqn. (3.100)

by the factor W(xi) defined in eqn. (3.101) that remains finite. In both cases a problem

arises that is sketched in fig. 3.22, where two regions of the material that are connected by

"deleted" elements (a crack) are still able to "communicate" via the nonlocal procedure,

which is an unphysical behavior. At present such situations are not taken into account,

because integration points in close neighborhood to failed elements (i.e. to a crack) have

a high likelihood of unloading elastically, in which case, of course, the increment of the

damage variable is zero.

Simulations including softening in quasi-static problems as treated in this work are best

handled in ABAQUS/Standard with the STABILIZE option that adds artificial damp-

ing to the system of equations to deal with load redistribution effects upon the failure of

elements. This procedure introduces viscous forces of the form

VFi = cM^Vj, (3.108)

where M* is an artificial mass matrix calculated with unity density, V is the vector of

nodal velocities

V- = ^ (3.109)

calculated from the displacement increment AU and the time increment At that corres-

ponds to the load increment in a quasi-static analysis and has no physical meaning in

this context. The parameter c in eqn. (3.108) is the so-called damping factor, which is

determined automatically at the beginning of the simulation unless specified otherwise by

5At present the nonlocal averaging is implemented for one constituent only (i.e. the ductile matrix, the
reinforcements being assumed not to fail in a ductile mode). If more than one ductile phase is present, it
appears physically reasonable to apply the smoothing to each phase separately.
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the user. In order to obtain a useful prediction of the damping factor, ABAQUS assumes

that the problem to be stable at the beginning of the step, where the calculation of c will

occur. If this stabilizing utility is used, it is important to compare the viscous forces, VF,

and the calculated nodal forces. RF, to make sure that the viscous forces do not dominate

the solution. In a restart analysis, the damping factor of the previous run should be used

and can be detected in the ABAQUS message file.

o

ts
o
-3C
• 1—H

<D
GO

S
03

'S
• i—H

"o

Q

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-

—
-

-

-

-
i

5

1

y

10

Increment

i i i

TTIV/T A T
Ulvl/\l

USDFLD _

/ /

-

i i i

15 20 2

inc

Figure 3.20: "Time shift" in the evaluation of a ductile damage indicator using the UMAT

and the USDFLD subroutine



CHAPTER 3. IMPLEMENTATION OF THE DUCTILE DAMAGE MODELS INTO
ABAQUS/STANDARD 80

circle 1
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c i r c l e 2

Figure 3.21: Nonlocal averaging in a composite material

completely damaged elements

Figure 3.22: Unphysical averaging including the process zone and regions (hatched) that

are separated from the active integration point by failed elements



Chapter 4

Simulation of Ductile Damage in

Metal Matrix Composites

The nonlocal damage routines discussed in chapter 3 were applied to modeling the behavior

of the matrix of composites containing elastic reinforcements to observe the influence of the

reinforcement size and arrangement on matrix failure. In the following the material prop-

erties of the ductile matrix correspond to A12618-T4 and those of the fibrous or particulate

reinforcements to SiC. The material parameters necessary for the ductile damage models

are given in tab. 3.8 on page 71 with the exception of the initial void volume fraction which

was randomly seeded at the integration point level in the range 4 x 10~3 < /o < 8 x 10~3

to account for the inhomogeneity of real materials.

The Young's modulus of the fibers and particles was set to £=450 GPa and the Poisson

ratio to ^=0.17; these values were kept for all simulations of this chapter.

The modified Ludwik hardening law presented in eqn. (2.26) on page 27 was used to de-

scribe the flow stress o"f of the matrix as a function of plastic strain. The necessary material

parameters are given in tab. 2.1 on page 28.

Simulations of two-inclusion and multi-inclusion unit cells are presented in the following,

which were performed in 2D (the reinforcement being fibers) and in 3D, where the partic-

ulate reinforcements are modeled by spheres.

81
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4.1 Fiber Reinforced Metal Matrix Composites

(2D Models)

4.1.1 Two-fiber Unit Cells

Two periodic configurations of fibers embedded in a ductile matrix as illustrated in fig. 4.1
were studied to test the nonlocal damage models. The fiber volume fraction of both ar-
rangements is £ = 0.14, the characteristic length. 2L, was set to 17.5% of the fiber diameter.
Uniaxial tensile loading in the vertical direction was simulated and periodicity boundary
conditions were used in both cases.
The overall load-displacement responses displayed in fig. 4.2 show very different predictions
obtained with the three ductile damage models as expected according to the observations
in the single element tests in section 3.5. The DDIT model gives rise to the least ductile
behavior, whereas the GTN model leads to the highest maximum loads and, in the case of
the staggered arrangement, a very ductile response. The Rousselier model provides predic-
tions between the above extremes. All three models, however, lead to the same conclusions
regarding the behavior of the staggered and the stacked fiber arrangements. The unit cell
with the stacked fiber configuration consistently shows a higher tangential stiffness at the
beginning of the loading history, whereas the unit cell reinforced by staggered fibers can
carry a higher maximum load and has a higher failure strain.
Finally, fig. 4.3 displays the deformed unit cells obtained with the nonlocal Rousselier
model for the two arrangements. It is worth noting that the process zone is formed by two
rows of finite elements as a consequence of the nonlocal approach and the chosen charac-
teristic length.
Slightly non-symmetric results are obtained with the stacked fiber model due to the in-
homogeneous distribution of the initial void volume fraction /o at the beginning of the
analysis.
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stacked fibers staggered fibers

Figure 4.1: Undeformed meshes
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Figure 4.2: Predicted force-displacement responses of two unit cells containing two fibers

each (the insert shows details of the curves)
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Figure 4.3: Deformed meshes

4.1.2 Multi-fiber Unit Cells

Further simulations were realized in order to show the applicability of the presented ductile

damage models to multi-fiber micromechanical models for metal matrix composites. An

arrangement following Nakamura and Suresh [102] is used, in which 60 aligned fibers with a

volume fraction of 25% are randomly distributed in a ductile matrix. Periodicity boundary

conditions and a generalized plane strain formulation were used. Uniaxial tensile loading

was applied in a direction transverse to the fibers. The user defined field (USDFLD) version

of the nonlocal DDIT model (compare section 3.6) was used to describe the damage beha-

vior of the matrix, whereas the fibers were as treated linear elastic as done in all simulations

in this chapter. The characteristic length, 2L, was set to 8.1% of the fiber diameter, which

corresponds to approximately double the standard element size h.

The crack paths (completely damaged finite elements are removed from the mesh) in a

loading state close to final failure of the composite are depicted in fig. 4.4. A sequence of

images that show the crack propagation through the matrix of the MMC in different load-

ing states is given in fig. 4.5. In most of the cases crack initiation occurs in finite elements

located at or close to the interface between matrix and fibers. Regions where neighboring

fibers approach closely can be seen to be susceptible to ductile damage. Furthermore, the

first failed integration points are not aligned with the fiber's center points and the loading
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direction but are observed to be slightly offset laterally.

The effect of periodicity boundary conditions can be seen in fig. 4.6 where nine unit cells

are shown together and the correct transition of the crack from one unit cell to the other

can be observed.

The periodic crack pattern that is typical of unit cell analyses involving damage is clearly

evident. Because such behavior is rarely if ever found in actual composites, embedded

cell models which can handle single cracks, are much better suited for studying the pro-

gress of damage, see e.g. Böhm [5]. Despite this idealization, however, the analysis serves

as a clear proof of the applicability of nonlocal ductile damage models to fiber reinforced

composites. The force-displacement response of the multi-fiber unit cell is shown in fig. 4.7.
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Figure 4.4: Crack propagation in a loading state close to final failure of a multi-fiber unit
cell representing a unidirectional metal matrix composite subjected to uniaxial transverse
loading in the vertical direction (finite elements in black represent the matrix, the fibers
are rendered in gray)
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Figure 4.5: Crack propagation in a unidirectional fiber reinforced metal matrix composite

subjected to transverse uniaxial loading at different loading states (the finite elements in

black represent the damaged matrix material, the fibers are rendered in gray)
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Figure 4.6: Nine unit cells showing the periodicity of the crack in a loading state close to

final failure of a unidirectional fiber reinforced metal matrix composite (the finite elements

in black represent the damaged matrix material, the fibers are rendered in gray)
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Figure 4.7: Force-displacement response of the fiber reinforced metal matrix composite
under transverse unidirectional loading

4.2 Particle Reinforced Metal Matrix Composites

(3D Models)

A number of applications of DDIT-type approaches and of the GTN ductile rupture model
to micromechanical studies of composite materials have been reported in the literature, see
e.g. LLorca et al. [103], Wulf et al. [26], Geni and Kikuchi [104], Mishnaevsky et al. [105],
Segurado [106], all of which, however, employed local versions of the ductile damage models.
Micromechanical studies of ductile matrix composites involving nonlocal ductile damage
descriptions at the constituent level are a recent development, see Drabek and Böhm [107],
Böhm et al. [108], Hu et al. [109], Drabek and Böhm [110], which is somewhat surprising
because the high spatial resolutions of the stress and strain fields obtained on the micro-
scale are well matched with the requirements of nonlocal smoothing.
Results based on three-dimensional unit cells are presented, which pertain to the behavior
of composites reinforced by equiaxed particles. Periodicity boundary conditions were em-
ployed in all cases and all presented predictions were obtained with the nonlocal extended
Rousselier model (#5).
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4.2.1 Two-particle Unit Cells

Arrangement Effects

Two three-dimensional unit cells containing spherical particles in aligned and staggered

periodic configurations that may be viewed as being analogous to the stacked and staggered

arrangements used in subsection 4.1.1 are displayed in fig. 4.8. Uniaxial tensile loading in

the vertical direction was applied in both cases.

Figure 4.9 shows the failed regions of the three-dimensional unit cells containing two spher-

ical particles in the undeformed state. In fig. 4.10, which presents the corresponding load-

displacement curves, the aligned sphere configuration can be seen to give a more compliant

response in the elastic range, to reach a lower maximum stress and to be considerably more

ductile than the staggered arrangement of the spheres.

A comparison with the force-displacement diagrams obtained for the two dimensional unit

cells of the same volume fraction, fig. 4.2, shows major differences. Whereas in the 3D cell

the aligned arrangements are predicted to be more ductile, for the 2D models the staggered

arrangement shows a higher ductility for all damage models considered.

The qualitative differences in the responses predicted for these two sets of simple phase ar-

rangements indicate that the use of two-dimensional microgeometries for modeling particle

reinforced materials (which is known to be problematic in the elastic and, especially, the

elastoplastic regimes, see Weissenbek et al. [Ill] and Böhm and Han [112]) should be

avoided as far as possible in analyses involving ductile matrix damage in composites.

aligned particle arrangement staggered particle arrangement

Figure 4.8: Undeformed meshes of three-dimensional two-particle unit cells
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«

aligned particle arrangement staggered particle arrangement

Figure 4.9: Completely damaged elements predicted with the nonlocal Rousselier model
by three-dimensional two-particle models (undeformed geometries)

aligned
staggered _

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Displacement-ratio U2/U2,max

Figure 4.10: Force-displacement responses from the three-dimensional two-sphere simula-
tions (the insert shows details of the curves in the elastic range)
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Mesh Dependence

In order to show the effect of the nonlocal averaging algorithm on the mesh dependence of

the results, two additional finite element meshes with different mesh size were generated for

the aligned particle arrangement. The same loading scenario was applied to these meshes

as described above and the characteristic length, IL = 17.5% of the particle diameter, is

held constant in all three cases. The average element sizes, h, of the three models are 0.1,

0.075 and 0.062 times the unit cell length which results in meshes with «6.600, «10.400

and «22.900 elements, respectively.

All three meshes are depicted in fig. 4.11, where only the surface mesh of the continuum

finite elements representing the matrix of the composite is shown in order to picture the

arrangement of the particles. Figure 4.12 gives the force-displacement response of all three

meshes with the same micro topology and turns out nearly the same results in regimes of

positive and negative tangential stiffness. Especially the same value of the maximum load-

ing capacity, RF2:„mx, is calculated in all three cases and the initiation of the rapid stress

drop at high deformation differs only to a minor degree.

This test clearly indicates that the implemented nonlocal damage models can closely ap-

proach the stated requirement of markedly reducing or removing the mesh dependence in

micromechanical studies of ductile matrix composites.

At this point it is appropriate to consider the additional memory requirements that are due

to the use of a list of "neighbor data" (storing the spatial relation between the integration

points) that is held in memory in the present implementation. For the meshes shown in

fig. 4.11 additional RAM (random access memory) or swap space required for saving the

neighbor data list is 26 MByte, 65 MByte and 340 MByte for the models with «6.600,

«10.400 and «22.900 finite elements (four integration points per element), respectively.

A further reduction of the mesh size, say to half that used in the coarsest mesh in the

comparison, would give rise to «48.200 finite elements and a neighbor data list that needs

approximately 2 GByte RAM (which exceeds requirements for the coarsest mesh by a

factor of more than 70) when the characteristic length, 2L, is kept at the same value.

Evidently, especially in 3D analyses the size of the neighbor data array grows quickly as the

element sizes decreases relatively to the averaging radius L. This is not surprising because

the number of integration points in the ductile phase is proportional to (^) and the num-(^)

ber of neighbors per integration point scales with (^) , so that the number of entries grows

with ^e. i.e. proportionally to the square of the number of elements. In 2D analyses the

number of entries also scales as the square of the elements, but the latter is proportional

to (^) . Accordingly, with the present implementation the use of the elements that are
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much smaller than the characteristic length, 2L, quickly becomes inefficient. These scaling

properties are purely geometrical and cannot circumvented by algorithmic improvements.

6.600 el. 10.400 el.

« 22.900 el.

Figure 4.11: Undeformed meshes of two-particle unit cells (aligned particle configuration)

with different mesh size h
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1.2

S

ttî

?
O

Displacement-ratio U2/U2,max

Figure 4.12: Force-displacement responses from two-sphere simulations performed with

three different finite element meshes and constant characteristic length, 2L

4.2.2 Multi-particle Unit Cells

At present one of the most powerful methods for simulating the thermomechanical behavior

of particle reinforced composites are multi-particle unit cell models, see e.g. Gusev [113],

Böhm and Han [112], Segurado [106], in which periodic homogenization is carried out on

volume elements that contain a number of particles that are positioned according to the

relevant arrangement statistics.

In this light, exploratory studies of ductile matrix damage in particle reinforced metal mat-

rix composites were carried out by combining multi-particle unit cells with the nonlocal

extended Rousselier ductile damage model (#5).

It should be noted that the responses obtained from these simulations are not directly

comparable with experimental results on SiC/A12618-T4 because particle fracture, which

plays an important role in initiating damage in this composite system if the particles are

rather aged, see LLorca and Gonzalez [114], is not accounted for in the models.

The choice of proper reference volume elements (RVEs) that are statistically represent-

ative of actual composites in the presence of damage is an unsolved problem at present.

It is clear, however, that periodic homogenization must always give rise to periodically
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repeating patterns of damage and, accordingly, is not suitable for handling the emergence

of macrocracks. The interpretation of the results obtained from periodic models involving

damage, accordingly, may be difficult because effects of damage and approximations in

terms of the phase arrangement can be closely intertwined.

Such behavior is evident in the responses of a set of three microgeometries, each contain-

ing 5, 10 and 20 spherical particles of equal size, respectively, at a total reinforcement

volume fraction of 20%. The undeformed meshes of the corresponding unit cells are shown

in fig. 4.13 and the predicted force-displacement responses under uniaxial tensile loading

are presented in fig. 4.14. For overall displacements up to Ui = 0.4[/2,max the cell with 5

particles gives the softest and that with 20 particles gives the stiftest response, which is

most probably an artefact of the low number of particles used in the cells. In the softening

regime the trend reverses, which may be a size effect.

Unit cells that are too small for being proper RVEs tend to give rise to an anisotropic

overall behavior and the responses of different "sub-RVE" cells that contain equal num-

bers of particles typically differ significantly. Such effects can be seen by comparing the

overall responses of a second set of three periodic microgeometries. Figure 4.15 shows the

three unit cells, each of which contains 5 spherical particles of equal size, the total particle

volume fraction being 20%. The corresponding predicted macroscopic force-displacement

responses are displayed in fig. 4.16 and can be seen to differ considerably in terms of their

hardening behavior, of the maximum load carried, and of the softening behavior due to

ductile matrix damage. Improved predictions can be obtained by ensemble averaging over

results obtained from a number of different but equivalent microgeometries.

A third group of phase arrangements containing 10 spherical particles each are depicted

in fig. 4.17. The three unit cells shown use identical positions of the particle centers and

the particle radii are adjusted to obtain total particle volume fractions of 5.3%, 11.1%,

and 20%, respectively. The corresponding predicted force-displacement curves for uniaxial

tensile loading are presented in fig. 4.18. They show that among the reinforcement volume

fractions studied the highest one gives rise to the highest elastic stiffness, the strongest

strain hardening in the elastoplastic range and the highest maximum stress, the latter being

reached at the lowest strain. The opposite tendencies are predicted for the lowest volume

fraction in the series. These results are in qualitative agreement with experimental trends,

viz. that increases in the particle volume fraction of MMCs lead to improved stiffness and

strength but to reduced ductility. Additional simulation runs with other microgeometries

are, however, needed to bolster the statistical significance of these results.

Finally, it is worth noting that all of the above simulations involving three-dimensional

arrangements of spherical particles consistently predicted that, in the absence of other mi-
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croscopic damage modes, ductile matrix damage occurs in the immediate neighborhood of

the particles in regions that are situated in the direction of the global load with respect to

the particles, see the contour plot of the void volume fraction in fig. 4.19, where the black

regions indicate the maximum value, and fig. 4.20, which shows the completely damaged

finite elements rendered in dark gray located at the poles of the particles. The author

wants to point out that the periodicity of the unit cells considered in the implemented

nonlocal averaging algorithm as discussed in section 3.4 can be observed in fig. 4.20 quite

well by looking at the damaged elements at the boundaries.

The resulting regions of local ductile damage showed little tendency to coalesce at reason-

able macroscopic loads, giving rise to a very ductile homogenized behavior. A considerably

less ductile overall response can be expected to arise when damage due to particle fracture

is taken into account.
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Figure 4.13: Undeformed meshes of unit cells containing 5 (left), 10 (center) and 20 (right)

particles, respectively, at a particle volume fraction of 20%

o
Pu,

particles
10 particles - -
20 particles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Displacement-ratio UI/UI^Q^

Figure 4.14: Force-displacement relations predicted for the three unit cells shown in

fig. 4.13 under macroscopic uniaxial tensile loading
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Figure 4.15: Undeformed meshes of three unit cells containing 5 particles each at a volume

fraction of 20% (the left unit cell was used in the previous simulation as well, see the left

model in fig. 4.13)

.1
0

particle configuration 1 —-
particle configuration 2
particle configuration 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Displacement-ratio !,max

Figure 4.16: Force-displacement relations predicted for the three unit cells shown in

fig. 4.15 under macroscopic uniaxial tensile loading
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Figure 4.17: Undeformed meshes of three unit cells containing 10 particles each; particle

positions are identical in the three cells and particle radii are chosen to obtain particle

volume fractions of 20% (left), 11.1% (center), and 5.3% (right)
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5.3% pvf
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Displacement-ratio £/2/£^2,max

Figure 4.18: Force-displacement relations predicted for the three unit cells shown in

fig. 4.17 under macroscopic uniaxial tensile loading
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~ -

H
Figure 4.19: Contour plot of the void volume fraction, / , in a cross-section of the unit cell

in the center of fig. 4.17 plotted with (top) and without (bottom) particles



CHAPTER 4. SIMULATION OF DUCTILE DAMAGE IN METAL MATRIX
COMPOSITES 101

\

Figure 4.20: Completely damaged finite elements (rendered in dark gray) located at those
poles of the particles that are aligned with the macroscopic load applied in the vertical
direction (the different gray scales are caused by shading only)



Chapter 5

Summary

The present work concentrates on the modeling of ductile damage and failure of the matrix

of composite materials and provides a building block for use in comprehensive models of

the failure behavior of ductile matrix composites.

Following an introduction on metal matrix composites and the failure mechanisms acting in

them at the microscale, a number of different damage models that are capable of describing

crack initiation and crack propagation in ductile materials are presented in a literature

survey. The work then concentrates on models of the continuum damage type, three

of which were implemented into ABAQUS/Standard via user denned subroutines. The

inherent mesh sensitivity of such models in the softening regime is accounted for by a

regularization technique based on nonlocal averaging.

The full sets of equations for three ductile damage models, the Gurson-Tvergaard-Needle-

man and Rousselier ductile rupture models and an element elimination scheme triggered by

a ductile damage indicator, are given and the pertinent algorithms are presented in detail.

The return mapping algorithms, which must be capable of handling pressure-dependent

yielding behavior in two of the models used, and the evaluation of the material Jacobian

are discussed in depth. It is found that the use of Jacobians that are not consistent not only

gives rise to slow convergence, but can actually lead to incorrect results in the softening

regime.

The Rousselier damage model is modified by the author to handle purely hydrostatic stress

states which is not possible in its basic form due the vertex of the yield surface.

Furthermore, a detailed description of the strategy for implementing the integral-type

nonlocal algorithm into the ABAQUS user subroutines is given.

A number of single element tests are performed to compare the different models in order

102
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to identify appropriate fields of application for them.

In the final part of the thesis the algorithms are applied to studying matrix damage in

continuously and particle reinforced metal matrix composites. Qualitative differences in the

predictions from 2D and 3D models are found, which shows that 2D descriptions are not a

proper tool for studying ductile damage in particle reinforced composites. The implemented

algorithm, on the one hand, introduces an absolute length scale into micromechanical

models and, on the other hand, is shown to be capable of reproducing the influence of

the particle volume fraction on the macroscopic stiffness, strength and ductility typically

found in MMCs.

Future work is planned to consider combinations of the different failure modes of metal

matrix composites, viz. ductile failure of the matrix, brittle fracture of the reinforcements,

and interfacial decohesion. The ultimate aim of such models is to understand the failure

behavior of MMCs at a depth that is sufficient for supporting the design of microstructures

towards specified goals in terms of the overall behavior.



Appendix A

Some Auxiliary Expressions

Required for Linking Integral and

Gradient Type Nonlocal Models

The following relations are required for obtaining the gradient relationship, eqn. (2.33),

from the Taylor expansion of the damage variable, eqn. (2.32):

oo oo oo
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oo oo ooan
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Appendix B

Proof of the Relation S = 2Gef)

The relation between the stress deviator S and the strain deviator e^, eqn. (3.17), can be

derived as follows:

2G6ikoj]etl (B.I)

IT s — r*e ce — r<e ( ce -<re
 A, , i fR o\

<->m°ij — ^ijkl£Dkl — ^ijkl \ £kl ~ Q
£V°A;/ I \°-z)

6 J
' — (f?e 4- ce 4- ce

For the 11-component of the stress deviator one accordingly obtains

•S'il = Cfifcz ( 4 / - ^ £ v 4 / 1 (B-3)
V ö

= 2G (e*n - \ (£e
u + e%2 + ee

33)) + U - \G\ U \

+ I A - - G I I £2 2 - - ( £ u + £22 + £33J I + I A - - G I I £33 - - (.£11 + £22 + £33

= 2G (e*n - 1 (e?! + ee
22 + se

33)) = 2G£°D

and the other components can be handled in analogy.
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Appendix C

Derivation of the Tensor ĉ - for n = 2

The tensor ĉ - which is required for evaluating the consistent tangent tensor, see eqn. (3.66)

to (3.75) can be derived for the case of 2 scalar state variables (n = 2) as follows.

The relation

i = dAHi, (C.I)

the dependence of

AHi = AHi(am,aeq,A£p,A£q,Hj) for i, j = 1,... ,n (C.2)

and setting n — 2 lead to

Öcrm acr a<7eq da

+

\ dam da dae(i da
dAH2

(C.4)
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Rearranging leads to

(C.5)
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1
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1- — — : Ocr -\

)
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and moving the unknowns dHx and Öi/2 to the left hand side gives

(C7)
( C 7 )

i m ^ ^ o
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dAH2 d&H2„A fdAH2 dam dAH2daeq\= ^r—dAep + —-—dAeq + — r— + — —^ : da =< Q2 >,
dAep dAeq
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or, in an abbreviated form

= < Q i > , (C.9)

The unknowns dHx and ö i^ can now be calculated as

, = c ^ , (C.ll)
dH2 \<Q2>r

where c is the inverse of the tensor c with the components



Appendix D

Expressions that are Used in

Evaluating a Consistent Tangent for

the GTN Model

An expression for the consistent tangent of the GTN model (compare tab. 3.3) can be

derived as follows.

Derivatives of the GTN yield function and flow potential, $ = g = ^-+2qif cosh ( ̂ §f- J -

1 ~ 93/2 = 0, with respect to various variables take the form

dg 2 aeq

daeq
(D.I)

dg _Jf<h g2 s inh(4y )
<9<7m <9<7m <Tf

<9$ 3 Oo (7

^ = -2/ % + 2 7 l cosh(^^), (D.3)

0$ 0$ öaf Ö$ ; , (-2 o-eg2 3 / 9 l g2 gm sinh(3-f^p,
= ^ T a f = CTf Ti Tl ' ( D 4 )
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d g = J_±±___^^^ (D_5)
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co- = ^ ' ( D ' 6 )
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Derivatives of the increment of the void volume fraction, A / = AHi, and of the equivalent

plastic strain, AeJ^ = AH2, can be given as

1 - / , (D.ll)
c>A£p

dAf =dA£=dAl = dAl==Q

dAeq dam da^ deïq

(D.14)
(1-/) ^

(D.15)
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Appendix E

Expressions that are Used in

Evaluating a Consistent Tangent for

the extended Rousselier Model

An expression for the consistent tangent of the extended Rousselier model (see tab. 3.5)

can be derived as follows.

Derivatives of the Rousselier yield function, <£> = aeq — <7f + qAorf'D exp ( -^- J = 0, and the
2 9

flow potential, g = f̂f + - ^ — 1, with respect to various variables take the form

= 1, (E.I)

( E . 3 )

°'i = I DfqA exp ( -^- J a ' ^ ' ^E'4^
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Derivatives of the increment of the void volume fraction, A/ = Aü/i, and of the equivalent
plastic strain, Ae^ = Aif2; can be given as

dAf
dAep

= B(l-f), (E.14)
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