
Technische Universität Wien

DIPLOMARBEIT

Information Extraction – Utilizing Table Patterns

ausgeführt am Institut für
Softwaretechnik und Interaktive Systeme

der Technischen Universität Wien

unter der Anleitung von
Univ.-Prof. Dr. Silvia Miksch und Mag. Kathi Kaiser

durch

Burcu Yıldız
Matrikelnummer 9926103

Informatik (E881)
Weyringergasse 32/11, 1040 Wien

Wien, im August 2004

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2

Table of Contents
Acknowledgements ..5
Introduction..6
Outline ...6
CHAPTER 1 ..7
Information Processing...7

1.1 Information Retrieval..8
1.1.1 History ..8
1.1.2 Steps of the IR-Process..11

1.1.2.1 Indexing ..11
1.1.2.2 Searching ..12

1.1.3 Evaluation...13
1.2 Information Filtering...14
1.3 Information Extraction..15

1.3.1 History ..15
1.3.2 Evaluation...18
1.3.3 Architecture of an IE System...18
1.3.4 Approaches ...19

1.3.4.1 The Rule-Based Approach...19
1.3.4.2 The Active Learning IE-Approach...19
1.3.4.3 Comparison of the Approaches..20

1.3.5 Challenges ..20
1.3.5.1 Higher Precision and Recall...20
1.3.5.2 Portability..20
1.3.5.3 Scalability ...21

1.4 Information Integration ...22
1.4.1 Application Areas of II..24
1.4.2 Challenges ..25

1.4 Wrapper..26
1.4.1 Wrapper Generation ..27
1.4.2 Wrapper Maintenance ...27

CHAPTER 2 ..28
Information Processing with PDF Files ..28

2.1 The Portable Document Format (PDF)..28
2.2 Main Architecture of a PDF File ...29
2.3 Strengths and Weaknesses of PDF ..29
2.4 Extracting Information from PDF ...31

CHAPTER 3 ..32
Information Processing with XML Documents...32

3.1 History and Description of XML...32
3.2 Architecture of an XML Document...33
3.3 Complementary Specifications..35
3.4 Application Areas of XML ...36
3.5 XML in Information Processing..37
3.6 Limitations of XML..37

CHAPTER 4 ..39
Comparison of Existing PDF Extraction Tools ...39

4.1 Comparison of PDF to HTML Converters...40
4.1.1 PDF 2 HTML..40

3

4.1.2 PDF2HTML by VeryPDF ...42
4.1.3 Adobe Online Conversion Tool ...44

4.2 Comparison of PDF to XML Converters ...44
4.2.1 PDF to XML Converter...44

CHAPTER 5 ..47
Task Description and Implementation ..47

5.1 Table Extraction ...47
5.1.1 Common Behaviour of Tables...47
5.1.2 Extraction..48

5.2 The Implementation ..49
5.2.1 Initial State..49
5.2.2 The Approach ...51
5.2.3 Limitations of the Approach..53
5.2.4 The Graphical User Interface (GUI) ..54
5.2.3 Experimental Results...59

Bibliography ..63

4

List of Figures
Figure 1: Fallout values for the several tasks at the MUC-7 ..20
Figure 2: Example for a XML document ..33
Figure 3: A possible DTD for the XML document in Figure 2..34
Figure 4: Example for a simple table ..39
Figure 5: Example for a complex table ...40
Figure 6: User interface of the pdf2html tool ..40
Figure 7: Extended user interface of the pdf2html tool..41
Figure 8: The resulting HTML-code for the table in Figure 4 ...41
Figure 9: The resulting HTML code for the table in Figure 5..42
Figure 10: User interface of the PDF2HTML tool by VeryPDF..42
Figure 11: HTML code for the table in Figure 5 ...43
Figure 12: The HTML code for the table in Figure 4 ..44
Figure 13: The XML code for the first table in Figure 4 ...46
Figure 14: Snapshot of a table about conjunctivitis ...50
Figure 15: XML code of the table in Figure 14. ..51
Figure 16: Pseudo-code for the first classification step ...52
Figure 17: Example for a single-line that not indicates the end of a multi-line block.............52
Figure 18: XML code of the table fragment in Figure 17. ...52
Figure 19: Pseudo-code of the second classification step ..53
Figure 20: User interface of the extraction tool ...54
Figure 21: An example for a table with spanning columns..55
Figure 22: User interface that appear after extracting the paper [Riloff, 1999]55
Figure 23: The interface that enables the user to change the table structure...........................56
Figure 24: Source of the extracted information in Figure 22 ...56
Figure 25: Part of the user interface for the extracted information of the table in Figure 21...57
Figure 26: Content of the cell at position [3,5] in Figure 25. ...57
Figure 27: Interface for changing the properties of a header cell with an active pop-up menu58
Figure 28: Part of the result after applying the changes in Figure 2758
Figure 29: Example for a table with spanning columns...59
Figure 30: Output of my implementation for the table in Figure 29.......................................59
Figure 31: Example for a table with a simple structure but with much text............................60
Figure 32: Output of my implementation for the table in Figure 31.......................................61
Figure 33: Example for a table with a more complex structure..61
Figure 34: Output of my implementation for the table in Figure 33 without any post-
processing ..62
Figure 35: Output of my implementation for the table in Figure 33 after post-processing with
the GUI ..62

5

Acknowledgements
I would like to take this chance to thank all those who have supported me during this work,
directly and/or indirectly.

I would first like to express my sincere thanks to my advisor Univ.-Prof. Dr. Silvia Miksch for
guiding me through my work, giving me constructive critics, and for encouraging me to write
this master thesis in English.

Second, I would like to thank Kathi Kaiser for giving me ideas to make my application better
and for correcting my written work.

Third, I would like to thank my family for supporting me through my life and helping me to
finish my study and this thesis.

Last, but definitely not least, I would like to thank God, for guiding and helping me through
almost 23 years on earth. Without His help I would not have reached where I have.

6

Introduction
With the wide spread use of computer and internet technologies we face a huge amount of
information in digital and mostly unstructured form. The problem to make use of “relevant”
information for a specified purpose from such documents is getting harder and harder. In this
context there arise research areas about retrieval, filtering, extraction, and integration of
information which comprise the field of Information Processing.

Approximately 80% of the information in our world is textual. To find a way to store this
information in a widely usable form became more important every day. There exist many
document structures and formats. One of them, the portable document format (PDF), is
commonly used in almost all areas. The main benefit of this format is that it enables users to
easily and reliably exchange and view electronic documents independent of the environment
in which they were created. There is another development with the same aim - to create
completely portable data - named XML. It stands for EXtensible Markup Language and
marks up a document so that a reader can identify each piece of the document, whereby a
reader can be a human being or a program. That makes it easier to handle the stored data, for
example to extract relevant information from the file, or to do further processing on it.

The task of this master thesis is to develop a tool for extracting table information from PDF
files and store this information in a structured XML file. Thus, the initial state at the
beginning of my work, my approach and it limitations are explained.

Outline
Chapter 1: Information Processing – contains a detailed introduction to the fields related to
Information Processing. These fields are Information Retrieval, Information Filtering,
Information Extraction, Information Integration, and Wrappers.

Chapter 2: Information Processing with PDF Files – looks at the main architecture and the
strengths and weaknesses of the PDF file format. Further, the question of how well is PDF
suitable for Information Processing in general and for Information Extraction in special is
explored.

Chapter 3: Information Processing with XML Documents – contains the historical
background, the architecture, and the application areas of XML. Further, some
complementary specifications to XML that could be of interest for Information Processing
purposes are listed. And last, the question of how well is XML suitable for Information
Processing is explored.

Chapter 4: Comparison of Existing PDF Extraction Tools – compares some tools that extract
information from PDF files and stores it in either HTML files or XML documents.

Chapter 5: Task Description and Implementation - contains an explanation of the task of this
thesis. First, the task of table extraction is being introduced. Then, the implementation itself
and the graphical user interface are being presented. Further, the limitations of the approach
and future work that could be done are listed.

7

CHAPTER 1

Information Processing
Today, we are overwhelmed with data from different sources and of various formats as we
were never before. Although not each data contains relevant information, the need of turning
data into information is of enormous importance for almost anyone. This is the driving force
for research in fields concerned with the acquisition, management and processing of
data/information. The field of Information Processing is the theme of this chapter.

Like many other terms in the information theory, there is no exact definition of the term of
Information Processing (IP). Sometimes the synonym Data Processing is used instead. A
definition of IP on the website of the “Free Dictionary”1, describes IP as: “the sciences
concerned with gathering and manipulating and storing and retrieving and classifying
recorded information”.

I must note that thereby, information can mean anything, not only digital data in computer
systems. I will only analyse the processing of digital data and more restricted, the processing
of text documents.

I will take a look on some of the sciences that build a part of IP. Their common aims are to
assist the user by her search for information. The first step of such a process is to search for
documents that are relevant to the user’s request. Thus, the first fields I will take a look on are
the fields of Information Retrieval and Information Filtering. Information Retrieval is
concerned with the selection of relevant documents in a document collection, whereas
Information Filtering is concerned with the selection of relevant documents in an incoming
stream of documents. Once a user gets the potentially relevant documents, she must search for
the parts of these documents, which are relevant for her specific purpose, or she must
integrate these documents into a given environment. That leads to the fields of Information
Extraction and Information Integration. Information Extraction is concerned with the location
and extraction of relevant data in a document, whereas Information Integration is concerned
with the integration of the extracted data or the document in a different information resource.
Then, for the sake of completeness, I will take a look at the field of wrappers, a restricted
field of Information Extraction, which is concerned with the extraction of information from
web documents.

1 http://www.thefreedictionary.com

8

1.1 Information Retrieval
Information Retrieval (IR) is a field concerned with the structure, analysis, organisation,
storage, searching, and retrieval of information. In this context, information can mean
anything, for example, text files, sound files, images, and so on. In the current time, many
Information Retrieval Systems (IRS) exist. The most of them handle only textual information,
where the most common types of textual data are technical reports, newspaper articles, books,
etc. The task of such an IRS is to search through a large set of documents and to return the
documents that are predicted as potentially relevant to a user’s information need. [Salton &
McGill, 1983]

In the last few years, the importance of image or video retrieval also increases. Such IRSs are
referred to as Visual Information Retrieval Systems. Del Bimbo [1998] describes the purpose
of this field as: “to retrieve, from a database, images or image sequences that are relevant to a
query. It is an extension of traditional information retrieval so to include visual media.”
Although, this field becomes more important, there are only a few commercial products to
date. Some of them allow the user to search with a simple image for similar ones, and others
allow the user to build complex visual queries, supporting the user in every query-building
step.

Anyway, I will confine my explanation to the retrieval of text documents only. This restricted
field is also known as Document Retrieval (DR) or Text Retrieval (TR), but I will use the
more general term.

1.1.1 History
In the past, card catalogues in libraries were the most established IR “systems”. In these
catalogues, a user could find the books about a specific theme searching for related key words
registered in the cards. The goal of these “systems” was to enable people a fast access to the
available data. You will surely agree that today the available data is more then ever, especially
data in digital form. Thus, effective and efficient retrieval systems are needed to assure that
relevant data not get lost.

The Defense Advanced Research Projects Agency (DARPA) was interested in this field and
originates the TIPSTER text program. The goal of this program was to advance the state of
the art in text processing technologies and was formally ended in 1998. The Text Retrieval
Conference (TREC) was started in 1992, as part of the TIPSTER text program and was co-
sponsored by the National Institute of Standards and Technology (NIST) and the U.S.
Department of Defense (DoD). On the website of the TREC2, the goals of this workshop
series are listed as follows:

 To encourage research in information retrieval based on large test collections;

 To increase communication among industry, academia, and government by creating an open
forum for the exchange of research ideas;

 To speed the transfer of technology from research laboratories into commercial products by
demonstrating substantial improvements in retrieval methodologies on real-world problems;

 To increase the availability of appropriate evaluation techniques for use by industry and
academia, including development of new evaluation techniques more applicable to current
systems.

There were twelve conferences to date, and the next will be held in 2004. The first TREC
should be seen as a first step in the development of IRSs using a large test collection. Because

2 http://trec.nist.gov/

9

the test collection that was made available by the TRECs was about 100 times larger than any
other test collection used by the developers in the past, the participants had to rebuild their
systems to be able to handle such a vast amount of test documents. TREC-3 provided the first
platform for more complex experimentation. [Voorhees, 2003]

The test collection used in the TRECs is large enough to be seen as an operational
environment. Test collections consist of a set of documents, a set of information needs called
topics, and of relevance judgements (i.e., an indication whether a document is relevant to a
topic or not). The relevance judgements used in TRECs were binary – either a document is
relevant or it is not. Relevance judgements can be made in three ways [Harman, 1993]:

1. Relevance judgements could have been made on all documents in the test collection.
This way is clearly impossible, because of the large amount of documents in the
collection. It would take hours, when not days, to complete the judgements.

2. Relevance judgements could be done on a random sample of documents.

3. Relevance judgements could have been made on a sample of documents selected by
the participating systems. This way is called pooling.

Harman lists the steps to construct the ‘pool’ of documents as follows [Harman, 1993, p.39]:

1. Divide each set of results into results for a given topic.

2. For each topic within a set of rules, select the top 200 ranked documents for input to the pool

3. For each topic, merge results from all systems

4. For each topic, sort results based on document numbers

5. For each topic, remove duplicate documents

All of the retrieval conferences had two main tasks, the ad hoc task and the routing task.

• The ad hoc task can be explained as the task where a static set of documents is
searched with new queries. This task is comparable to a search process of a user in a
library environment. The books represent the static set of documents and it is known,
but the search queries of the user are not known.

• The routing task can be seen as a filtering process where only the relevant documents
pass through. Here, it is assumed that the questions (filter profile) are always the same,
but the incoming documents are changed. The system must decide for each incoming
document whether it is relevant or not. [Harman, 1993]

The TRECs consist of subtasks called tracks. This tracks focus on areas in which particular
retrieval tasks are defined. On the website of TREC3 the purposes that tracks serve are
described as follows:

First, tracks act as incubators for new research areas: the first running of a track often defines what
the problem really is, and a track creates the necessary infrastructure (test collections, evaluation
methodology, etc.) to support research on its task. The tracks also demonstrate the robustness of
core retrieval technology in that the same techniques are frequently appropriate for a variety of
tasks. Finally, the tracks make TREC attractive to a broader community by providing tasks that
match the research interests of more groups.

These tracks are listed and described on the website of TREC4 as follows:

3 http://trec.nist.gov

10

1. Cross-Language Track

A track that investigates the ability of retrieval systems to find documents that pertain to a
topic regardless of the language in which the document is written. While the last cross-
language track in TREC was run in TREC 2002, cross-language retrieval tasks are studied in
both Cross-Language Evaluation Forum (CLEF), and the NTCIR workshops.

2. Filtering Track

A task in which the user's information need is stable (and some relevant documents are
known) but there is a stream of new documents. For each document, the system must make a
binary decision as to whether the document should be retrieved (as opposed to forming a
ranked list).

The filtering track was last run in TREC 2002.

3. Genomics Track

A track introduced in TREC 2003 that will run again in TREC 2004. The purpose of the track
is to study retrieval tasks in a specific domain, where the domain of interest is genomics data
(broadly construed to include not just gene sequences but also supporting documentation such
as research papers, lab reports, etc.).

4. HARD Track

Another track introduced in TREC 2003 that will also run in TREC 2004. The goal of HARD
is to achieve High Accuracy Retrieval from Documents by leveraging additional information
about the searcher and/or the search context, through techniques such as passage retrieval and
using very targeted interaction with the searcher.

5. Interactive Track

A track studying user interaction with text retrieval systems. Participating groups develop a
consensus experimental protocol and carry out studies with real users using a common
collection and set of user queries. The interactive track was run as an adjunct to the Web Track
in TREC 2003, and is not slated to run in TREC 2004.

6. Novelty Track

A track to investigate systems' abilities to locate new (i.e., non-redundant) information. This
track will run in TREC 2004.

7. Question Answering Track

A track designed to take a step closer to information retrieval rather than document retrieval.
The QA track will run in 2004, with a focus on definition, list, and factoid questions.

8. Robust Retrieval Track

A track that includes a traditional ad hoc retrieval task, but with the focus on individual topic
effectiveness rather than average effectiveness. The robust retrieval track first ran in TREC
2003 and will run again in TREC 2004.

9. Terabyte Track

A new track for TREC 2004. The purpose of the terabyte track is to investigate whether/how
the IR community can scale traditional IR test-collection-based evaluation to significantly
larger document collections than those currently used in TREC. The retrieval task will be an
ad hoc task using a static collection of approximately 1 terabyte of spidered web pages
(probably from the .GOV domain).

10. Video Track

4 http://trec.nist.gov/tracks.html

11

TREC 2001 and 2002 contained a video track devoted to research in automatic segmentation,
indexing, and content-based retrieval of digital video. Beginning in 2003, the track became an
independent evaluation (TRECVID).

11. Web Track

A track featuring search tasks on a document set that is a snapshot of the World Wide Web.

1.1.2 Steps of the IR-Process
Rijsbergen wrote [Rijsbergen, 1979, p.3]:

In principle, information storage and retrieval is simple. Suppose there is a store of documents and
a person (user of the store) formulates a question (request or query) to which the answer is a set of
documents satisfying the information need expressed by this question. He can obtain the set by
reading all the documents in the store, retaining the relevant documents and discarding all the
others. In a sense, this constitutes ‘perfect’ retrieval. This solution is obviously impracticable. A
user either does not have the time or does not wish to spend the time reading the entire document
collection, apart from the fact that it may be physically impossible for him to do so.

As Rijsbergen [1979] mentioned in his book, a manual retrieval process is impracticable. In
order to simplify the retrieval process it is split in two main steps: indexing and searching

Indexing is the process of assigning descriptive items, named key words, to documents. The
choice of good key words is an essential problem that significantly affects the efficiency of
the retrieval system. I will give an overview of different indexing methods and will point at
their advantages and disadvantages.

Searching is the process where the potentially relevant documents are being located.
Rijsbergen [1979] gives a good overview over all search strategies and additionally points at
ways to implement these strategies. I will only give a brief introduction on different search
strategies and will list their advantages and disadvantages. For more detailed information I
refer to the book [Rijsbergen, 1979].

1.1.2.1 Indexing
Indexing is the process of assigning descriptive key words to documents. This process is
difficult and can be done either by a human or automatically.

If the indexing process is done by a human indexer, the indexer goes through all the
documents and assigns each document a set of key words. It is clear that the performance of
the process is highly based on the skills of the indexer, and that the process is time
consuming. These are the main disadvantages of the manual indexing process. The main
advantage of the manual indexing process is that if the human indexer is familiar with the
domain, he can find key words that represent the document quite good. [Nohr, 2003]

To avoid the disadvantages of the manual indexing, ways to automate this process are being
searched. By the automatic indexing process, the system splits the text into strings delimited
by white spaces. There are three methods to automatically select key words [Mresse, 1984]:

1. Selection of key words from a thesaurus: To avoid inconsistency and to reduce the
variability of the vocabulary, it’s became common that the key words are selected
from an index vocabulary, called a thesaurus. Such a controlled vocabulary must, first
of all, tackle synonyms (i.e. words with similar or identical meanings). If a user
searches for documents about cars then it is desired that the system also retrieves
documents indexed with the key word “automobile”. The thesaurus must further
assign acronyms to the terms pointed by these acronyms. This would allow the user to

12

use acronyms in her query, like “MIPS” (million instructions per second), instead of
writing the whole notion. Antonyms must be also tackled, because such words
became synonyms if one of them would be negated. For example “slow” means in
some way “NOT fast”, thus they had to be handled as synonyms. Another class of
terms, which are more difficult to handle, is the class of homonyms (i.e. words with
the same form but different meaning). Such terms must be viewed in the context in
which they appear. For example the term “virus” can mean different things in different
contexts, e.g., “computer virus” or “flu virus”, etc. [Pollitt, 1989]

2. Selection with stop-word lists: All the words in a document that also exist in a stop-
word list (so called anti-thesaurus) are removed and the rest are selected as key words.
This method has two advantages. First, all non-significant words are removed from the
document. Second, because many words are removed, the file size can be reduced by
between 30 and 50 per cent. [Rijsbergen, 1979]

3. Weighted Selection: By this selection method, the descriptors are handled with
respect to its context in the environment. The environment can be the document, the
query or the whole document collection. The weighting of key words, have the aim to
attach the key words importance.

There is another way of indexing, which combines the human skill and the computer aid,
called computer-based indexing. By means of this indexing process, the system searches for
key words and asks the human indexer whether a word should be a key word or not.

1.1.2.2 Searching
Searching represents the actual step in which the documents are being classified as relevant
and being returned. I shall give you an overview of the mostly used search strategies in IR.

Boolean search: The earliest retrieval systems required requests in form of Boolean
expressions. The user has to build a sequence of index terms (key words) combined by the
logical connectives (AND, OR, and NOT). The system then uses this expression for retrieving
the relevant documents for which the query expression is ‘true’. Some disadvantages of this
model are stated here:

• Boolean expressions have either the value true or false. For that reason it is not
possible to order the returned documents according to its relevance because a
document is either relevant or not, no other states are between true and false. This
property leads also to the result that documents with a high probability of relevance
are disregarded too. For example, if a user searches for the key words “information”,
“retrieval”, “filtering” connected with an AND operator and a document only consists
the first two key words, the document would be disregarded because the hole
expression has the value ‘false’.

• Furthermore, to build Boolean expressions is not always easy. Many queries need
highly complex expressions, which “normal” users cannot build.

• This model does not allow the use of weighted indexing and the weighting of the
search terms.

• The amount of the return set is not predictable.

Fuzzy Search: This model tries to avoid some of the disadvantages of the Boolean model.
The user can weight the search terms in the expression and the model can make use of
weighted indexing, but the difficulty of building complex expressions holds. Because now
states between 0 and 1 can exist, an ordering according to its relevance is possible.

13

Vector-space Search: In this model documents and queries are represented by vectors in an
n-dimensional vector-space and each dimension corresponds to an index term. If a user sends
a query, the vectors similar to that query-vector are searched and the results are ordered using
a metric. To build a query in that model is easier as the two models I mentioned above.
Another advantage is that the usage of that model for other collections is relatively easy.
[Ingwersen, 1992]

Clustering Model: This model tries to make use of the similarity of the documents in the
collection. The idea is simple: when a document is relevant to a query, other documents
similar to this one can also be relevant with a high probability. For that reason, all documents
in the collection are checked for their similarity to one another. Clusters are built of similar
documents and these documents are saved physically near to one another, which improves the
access speed. For each cluster a centroid element with minimal distance to each document in
the cluster is created. All centroids are saved together. If a request comes from the user, the
centroid with the highest similarity is selected and the documents in the belonging cluster are
listed.

The main advantage is that the similarity of the documents is important. This leads among
other things to faster systems because less input-output costs occur.

1.1.3 Evaluation
There is a common agreement between the people that are concerned with IRSs, that the
systems have to be analysed in terms of performance, but there is still not an agreement about
which quantities of an IRS has to be involved in the evaluation process and how the
evaluation functions must look like, exactly. [Rijsbergen, 1979]

This disagreement is, in my opinion, a result of the fact that the evaluation process can be
affected by a large number of variables and that the researchers attach the importance to
different variables. Some of these variables are for example the type and coverage of the
document collection (i.e. the extent of relevant documents in the document collection), the
used indexing tools, the analysis and search methods incorporated into the system, the input-
output equipment used, time lag and costs needed to produce answers, the operating
efficiency, and so on. [Salton & McGill, 1983]

To put the evaluation process in a more standardized platform the Text Retrieval Conference
(TREC) was established. There have been twelve conferences to date. These conferences try
to encourage the research in IR based on large test collections, because only large test
collections are able to model operational settings realistically.

All the IRSs, participated in these conferences, are evaluated, among others, with the standard
two measures: precision and recall. Precision is the number of relevant documents retrieved
to the total number of documents retrieved.

Precision = | relevant documents retrieved | / | documents retrieved |

Recall is the number of relevant documents retrieved to the total number of relevant
documents in the collection, both retrieved and not retrieved.

Recall = | relevant documents retrieved | / | relevant documents in the collection |

There are other measures too, but I will only mention one more, namely the fallout measure.
Fallout is the proportion of non-relevant documents retrieved. [Rijsbergen, 1979] Let L be the
number of retrieved documents, R the number of relevant retrieved documents, N the number
of documents in the collection, and C the number of relevant documents in the collection.
Then, the formula of the fallout measure is as follows:

14

Fallout = (L – R) / (N – C)

The first measure, precision, requires no other knowledge about the other documents in the
collection that are not retrieved, because a user can simply classify the retrieved documents as
relevant or non-relevant and compute the measure value. But the other two measures recall
and fallout require knowledge about all the documents in the collection, because these
measures require the number of relevant respectively non-relevant documents in the entire
collection. One way can be, to classify all the documents in the collection after every query, in
relevant and non-relevant documents. This way is understandably time consuming and
therefore only applicable on small document collections and impossible in operational
systems. [Mresse, 1984]

In the next chapter, I will give a brief introduction in the field of Information Filtering, which
is also a way to get potentially relevant documents in an Information Processing process.

1.2 Information Filtering
Belkin and Croft describe the task of Information Filtering as the task of removing
irrelevant information from an incoming stream of unstructured textual information according
to user preferences. [Belkin & Croft, 1992]

The filtering process can be either on the server side or on the client side. If the filtering is on
the server side, the server predicts whether a document is relevant for the user or not, and
sends the user only the relevant documents. An example for such server-side filtering systems
can be news filters, which send to its users just the news the users are interested in. If the
filtering is on the client side, the filtering system on the client side decides whether a
document will be removed from the input stream or passed through to the user. An example
for such client-side filtering systems can be simple e-mail filters, which may route spam-mails
to the trash folder or group e-mails in different folders regarding to its contents.

In both filtering systems, the user’s needs are in the centre of attention. Describing the user
needs can be accomplished in two ways:

First, the user describes her needs by herself, easily by specifying key words that describe the
field of interest. While it seems to be very easy to specify key words, this approach brings
some disadvantages with itself. The user may choose key words that do not describe her
interests in the best way; the selected key words have more than one meaning; or the selected
key words describe also some irrelevant fields.

Second, the filtering system can build a user profile regarding to the user’s previous activities.
This system improves the ability known as adaptive filtering, which means that the filtering
system is able to adapt itself if the user’s interest has changed. Some work on making filtering
systems adaptive is done, for example, by Klinkenberg and Renz [1998].

There are three ways to adaptive information filtering:

1. Cognitive (Content-based) filtering: As the name implies, this filtering technique
makes use of the content of a document and compares it with the user profile to decide
whether to remove it or to save it. The feedback of the user about whether a decision
was right or wrong improves the efficiency of this filtering technique. The main
advantage of this technique is that the system can discover new interesting information
if it is similar to previously encountered documents. This technique has the problem of
“serendipity”, which means that the system removes interesting documents if they did
not previously encounter. [Olsson, 1998]

15

2. Social filtering: This filtering technique makes use of other user’s profiles that are
similar to a specific user profile. For example, imagine that I will be informed about
new books in the category of science fiction. The filtering system can then decide that
I will probably also be interested in crime novels, if other users with the same interest
read also crime novels. Because this technique does not rely on the content of
documents, systems using this technique can discover new documents of a sort
previously not encountered. The main disadvantage of this technique is that it requires
a significant amount of users in the system before it can make decisions based on their
opinions. Another disadvantage is that it can happen that I am really interested in
crime novels too, but because there is no user who reads science fiction books and
crime novels I get no information about crime novels. [Olsson, 1998]
It might require quite a few users in the system before it starts to work well, but when
there is a sufficient amount of users, new users can benefit from the previous users’
ratings. This means that the problem of cold-start is reduced when the system does not
have to start from scratch every time a new user begins to use it.

3. Hybrid filtering: This technique tries to combine the two filters described above to
take advantage of the pros and to avoid the contras.

Now you can think that IR and Information Filtering just do the same thing. In some issues
you may be right, but Belkin and Croft [1992] list three main differences among them:

1. The user profiles in Information Filtering systems represent long-term interests, while
in IR the queries represent short-term interest.

2. In Information Filtering systems the input is a stream of documents, while in IR
systems the input is a collection of documents.

3. The filtering process tries to decide, which documents have to be removed, while the
retrieval process tries to find relevant documents.

1.3 Information Extraction
“Information Extraction (IE) is a form of natural language processing in which certain
types of information must be recognized and extracted from text.” [Riloff, 1999]

An Information Extraction System (IES) analyse the input text in order to extract relevant
portions. IESs do not attempt to understand the meaning of the text, but they do only analyse
portions of input text that contains relevant information. [Bagga, 1998]

In the past, this work of extracting information of interest from text was done by hand. A
person has read all documents and created a database with the information. This task was very
time consuming and difficult. Furthermore, the evaluation of the results was difficult, too.
Thus, the interest of a computer system for this task was increasing. This interest leads in the
development of IESs, whose historical background is explained in the next subsection.

1.3.1 History
In the late 1980’s the U.S. government funded different research groups to work on message
understanding systems. A number of these different groups decided to come together to
compare their message understanding projects and to understand the approaches of the other
groups better. This leads to the first of an ongoing series of message understanding
conferences. To get a basis of comparison these groups decided to work on a set of common
messages.

16

There have been seven Message Understanding Conferences (MUC). The term “message
understanding” disappeared and the more accurate term of “Information Extraction” has taken
its place.

A MUC builds a platform to evaluate the performance of different IE projects developed by
different sites, both from academic and industrial research areas. You can detect a significant
improvement of the IE systems over the years at the MUCs. This is one of the most
interesting aspects of these conferences.

Participants of a MUC evaluation work on a given description of the current scenario with a
set of documents and a training corpus (i.e., templates to be extracted from these documents).
Then they get some time (1 to 6 months) to adopt their system to the new scenario. After this
time, the participants get a new set of documents (test corpus) to test their systems with. After
this testing procedure the participants return their extracted templates to the conference
organizer, who manually builds the answer key (i.e. set of templates for the test corpus).
[Grishman, 1997]

I will give you an overview of these conferences to show how the field of IE grew over the
years. [Gaizauskas & Wilks, 1998]

MUC-1 (1987): This conference builds just a platform to compare the participated systems.
The texts were naval operation reports. There was no task definition and there were no
evaluation criteria.

MUC-2 (1989): The task at this conference was to fill a template, which had ten slots. The
domain was again tactical naval operation reports. Inadequate evaluation criteria were defined
and the scoring was done by the participating sites.

MUC-3 (1991): The domain consists of articles reporting terrorist activities in Latin America.
The defined template was more complex as the template used at MUC-2; it consisted of 18
slots. Formal evaluation criteria were introduced. A semi-automated scoring program was
developed and made available for use by participants during development. Official scoring
was done by the organizers.
The two earlier conferences were initiated, designed, and carried out by Beth Sundheim under
the auspices of the Navy and focused on extraction from military messages. Since the third
conference, the conferences had been carried out under the auspices of the TIPSTER Text-
Program and focused on extraction from newswire articles. [Chinchor, 1998]

MUC-4 (1992): The domain remained essentially unchanged. Just the template complexity
increased to 24 slots.

MUC-5 (1993): The systems were tested in two different domains: financial newswire stories
about joint ventures among two or more entities (companies, governments, and/or people) and
product announcements in the electronic circuit fabrication area in two languages: English
and Japanese. For the first time, nested templates were used. Scoring was modified to include
new evaluation metrics and the scoring program enhanced.

Over the course of the five MUCs, only the tasks and templates had become increasingly
complex. A meeting in December 1993, following the fifth MUC, defined a set of objectives
for the forthcoming MUCs: to push IE systems towards greater portability to new domains,
and to encourage more basic work on natural language analysis by providing evaluations of
some basic language analysis technologies.

17

Some sites have needed more than six months to adapt their systems for the fifth MUC,
whereas the most effort was invested in the adaptation of the system into the new domain.
This leaded to the question, whether this effort was justifiable or not.

MUC-6 (1995): The domain consists of articles regarding changes in corporate executive
management personnel. A set of four evaluation tasks was specified, which I will explain later
on:

1. Named entity recognition

2. Co-reference

3. Template elements

4. Scenario templates (traditional IE)

MUC-7 (1998): One more task was added to the previous tasks: the template relation task.
For the first time, the multilingual named entity evaluation was applied using training and test
articles from comparable domains for all languages. The domain for all languages for training
was airline crashes and for testing was launch events.

Over the years, several tasks introduced at the MUCs. I will give you an overview of these
tasks, referring to the work of Marsh and Perzanowski [1998].

The named entity task (NE) represents the lowest level of IE tasks, defined in the MUC. It
comprises of identifying and categorization of proper names appearing in a text. The entities
defined in the MUC guidelines were entities (organization, person, location), times (date,
time) and numbers (money, percent)

The problem of syntactical or semantic variability in texts is a challenge of the NE task. The
different formats in which a date can appear in the text (e.g., 12/02/2001, 12.02.2001, 12-02-
2001) is an example for the syntactical variability. The usage of identical words that refer to
different things like person names and company names is an example for the semantic
variability. Another source of problem can be the appearance of abbreviations in the text (e.g.,
“J.K. Rowling”, “Joanne K. Rowling”, “Joanne Kathleen Rowling” stand for the same
person).

Another task was introduced, which is the same as the NE task, but for Chinese and Japanese,
called the multi-lingual entity task (MET).

The template element task (TE) is about extracting basic information related to organization,
person, and artefact entities, drawing evidence from anywhere in the text. It separates domain-
independent from domain-dependent aspects of extraction. Answer keys contain objects for
all organizations, persons, and vehicle artefacts mentioned in the texts, whether relevant to
scenario or not.

The task of extracting relational information among entities is called the template relation
task (TR). It is first introduced for the seventh MUC.

The top-level IE task is the scenario template task (ST). It is required to extract pre-specified
event information and it related the event information to particular organization, person, or
artefact entities involved in the event.

The co-reference task (CO) captures information on co-referring expressions (i.e., all
mentions of a given entity). In a text, the same entity can appear in several ways. For
example, a text about a person, let’s call him Prof. X, can consist several references such “he
is …”, “Mr. X was …”, “the Professor has …”, etc. The co-reference task claims that the
system can capture all these references using content und context of all these appearances.

18

1.3.2 Evaluation
The evaluation of an IES is a non-trivial issue, because of the fact that the performance of an
IES depends on different factors. Some of those factors that may affect the performance of an
IES are the complexity of the extraction task, the quality of the knowledge bases available to
the system, the syntactic and semantic complexity of the documents to be processed, the
regularity of the language in the documents, and so forth. The MUC’s scoring program
represents an important first step by showing that it is possible to rigorously evaluate some
aspects of an IES. [Cardie, 1997]

From the third MUC on, organizers developed an official scoring program to score the results
of the participated IE systems. The most used evaluation measures are the following ones:

Recall = | correct slot-fillers in output template | / | slot-fillers in answer key |

This value is a measure of completeness.

Precision = | correct slot-fillers in output template | / | slot-fillers in output template |

This value is a measure of correctness.
F-score = 2 x Precision x Recall / (Precision + Recall).

The F-score is a function that combines recall and precision values in a single measure.

1.3.3 Architecture of an IE System
Cardie [1997] points out that the architecture of IESs varies from system to system, but they
have some main functions in common.

The first phase of an IE process is the tokenization and tagging phase. In this phase the text is
first divided into sentences and words. This can be trivial for languages such as English,
where the words are separated by white spaces. But for many languages this is not so easy, for
example for Chinese or Japanese, where words are not delimited with white spaces. For such
languages an additional segmentation module has to be included in the system.

Once, the text is divided into sentences and words the sentence analysis phase begins. In this
phase, one or more stages of parsing are applied that together identify noun groups, verb
groups, prepositional phrases, and other simple constructs. IE systems generally use partial
parsing instead of full-parsing, where for each sentence a whole parse tree is created. The
full-parsing method was tested also in some earlier IES, but it come out that this method
brings not a significant improvement of performance. It is a Natural Languages Processing
(NLP) method, more exactly using in the meaning understanding (text understanding) task,
whose aim was to “understand” what a text was talking about. IE is just about extracting
pieces of relevant information. Generally, text documents contain just a few sentences of
interest. If the IE system would use a full-parser, all the other sentences that can be ignored in
fact, would be parsed for nothing. Thus, there is no need for the full-parsing method.

After the sentence analysis phase, comes the first entirely domain-specific component of an
IES, called the extraction phase. During this phase, the system identifies relations among
entities of interest. The merging phase tries then to combine entities that refer to each other.
For that purpose, all entities, which were identified in the extraction phase, were checked
whether an entity is new or refers to an existing entity.

The last phase in an IES is called the template generation phase. In this phase, the system
determines the total number of events in the text and maps the pieces of information onto each
event to generate finally the output templates.

19

1.3.4 Approaches
There are two main approaches by building IE systems: a rule-based approach and an active
learning approach. Both have significant advantages and disadvantages. You must choose
between them recording to your own requirements.

1.3.4.1 The Rule-Based Approach
This approach requires expertise about the IE system itself and about how to build rules to
extract the desired information for a specific domain. Thus, one or more knowledge engineers
are needed to build the grammar and the rules for the IE system, mostly by hand. Therefore,
the performance of the entire system depends on the skill of the knowledge engineers.

The rule-building process is an iterative process, where first some initial rules are created. The
system first runs with this initial corpus of rules on some training data. According to the
results a decision is made where the rules are under-generated or over-generated. Afterwards,
the knowledge engineers make modifications to the rules and iterate the process.

The main advantage of this approach is that the performance of such handmade systems is
very good. The main disadvantage of this approach is that it is difficult to adapt the system to
new requirements in the specification. For example, if a system is built for only upper or
lower case texts and then it is decided that the system must also handle multi-case texts all the
rules must be rewritten. But this disadvantage takes not always place. For example, if the
system was originally build to extract city names and then it is decided that additionally
mountain or river names must be extracted, the adaptation of the system is relatively easy,
because this change requires only some more rules that can be written without much effort.
But no one can guarantee that a specification is not changed in the future or that it is not
changed in a manner that the adaptation process takes much time. [Kauchak et al, 2002]

1.3.4.2 The Active Learning IE-Approach
This approach differs from the rule-based approach in the sense of the expertise that is needed
to build the system. No knowledge engineers are required, but someone who knows about the
specific domain. This person has to only annotate the parts of a text that are relevant to build a
corpus of training data with annotated texts. The learning algorithm is applied on this corpus,
which automatically builds rules for a specific domain. The process of building rules can also
be more interactive. The user can be involved in the process to decide whether the hypothesis
of the system for a text is right or wrong. Thus, the learning algorithm can change its rules by
using the new information. [Kushmerick & Thomas, 2002]

The main advantage of this approach is that no expertise is required to build the IES. This
would allow people without knowledge about the process of building an IES or about the
process of creating rules to adopt an IES for their specific purpose.

Another significant advantage is the easy adaptation to new domains. If we take a look at the
example mentioned in 1.3.4.1 we see that this approach acts different depending on the
situation. The active learning approach acts similar. In the example about multi-case texts, an
IES based on the active learning approach can easily adapt its rules just by applying the
learning algorithm again. But for the example about the change in the specification to extract
additionally mountain or river names the adaptation is not so easy. Someone must go through
all the training data and annotate the additional parts of interest in the texts.

The main disadvantage of this approach is that training data may not exist or cannot be found.
Such a case would wipe out the whole benefit. It can also be possible that the domain is too
complex and is not so easy to find and annotate the parts of relevance. Another disadvantage

20

comes from the example mentioned above, namely by some changes in the specification all
the training data must be annotated again.

Thus, the performance of this approach highly depends on the training data and if the training
data cannot fit some conditions, the whole approach makes no sense anymore.

1.3.4.3 Comparison of the Approaches
Besides the description of the advantages and disadvantages of the approaches we can say that
the choice of the right approach depends on the requirements and on the sources that are
available.

If a high performance system is needed and there does not exists a lot of training data, or the
domain is too difficult, the right choice would be the rule-based approach, because a
knowledge engineer can create rules for patterns, even if these are not available in the training
corpus. Furthermore, the knowledge engineer can write rules just in the right generality for
the specific domain and requirements.

On the other hand, if a system is needed for a task and enough training data is available and
the domain is not too complex, for example for a named entity task, the right choice would be
the active learning approach, because it saves much time in the rule building process.

1.3.5 Challenges
The IE development has to face several challenges that build barriers to make it a practical
technology. Some of them are described in this subsection.

1.3.5.1 Higher Precision and Recall
The precision and recall value of the evaluated IE systems, for example, at the seventh MUC,
differs according to the specific tasks. The according F-values (measure with recall and
precision weighted equally) are observed in the following table.

Tasks Named
Entity [NE]

Co-reference
[CO]

Template
Element [TE]

Template
Relation [TR]

Scenario
Template [ST]

MUC-7 F < 94% F < 62% F < 87% F < 76% F < 51%
Figure 1: Fallout values for the several tasks at the MUC-7

It is clear that the question of the acceptability of these values differs also according to the
specific tasks. Cowie and Lehnert [1996] suggest that 90% precision will be necessary for IE
systems to satisfy information analysts. Thus, just one task, namely the NE task, achieved this
value. There is much work to do to reach this value for all of the other tasks.

Improvements in precision and recall are high priority challenges for IE systems. No one can
expect a wonder that takes the development many steps forward, but there exists a hope also
to getting better precision and recall values step by step.

1.3.5.2 Portability
IE systems in general were developed for a specific scenario and for a specific language. To
adapt such systems to a new scenario requires mostly months of effort, as we see at the
developed/adapted systems for the fifth MUC. This fact builds one of the major barriers to
make IE systems a practical technology. Systems and tools are needed that can be adapted by
the user for new scenarios in days or weeks, not months.

21

Adaptation can be required in the following terms: [Ciravegna, 2001]

1. Adapting an IES to a new domain

It is clear that IESs can only become a common-use technology if they provide the
extraction of text from different domains. No one would spend his money to get a system
that works only for a single domain, thus in many cases for a certain time, because the
interest in a domain can disappear. Extracting information about a new domain requires
new rules, and so on. This problem affects systems with different approaches in different
ways. Adapting rule based systems, for example, is often harder than adapting an active
learning system.

2. Adapting an IES to a new languages
Most of the existing IE systems are designed for textual data in a single language, in
general English (in special cases in Chinese or Japanese). The task to make an IE system
able to handle textual data in other languages is in many cases a very difficult one. Some
of the Asian languages, like Chinese, are good examples to illustrate this difficulty. In
Chinese, words are not delimited by a white-space. That makes an additional step in the
process of IE necessary, namely the word segmentation step. Word segmentation is in
many cases not a trivial task, because it requires an original lexicon. It is clear that it is not
easy and feasible to build an original lexicon for a language each time. Additionally the
grammar has to be changed, too. Some works on automating these steps are ongoing.

3. Adapting an IES to different text genres

It is a common practice that IESs are trained on a corpus of documents with a specific
genre. But a portable IES has also to be able to handle documents with different genres,
because specific text genres (e.g. medical abstracts, scientific papers, police reports) may
have their own lexis, grammar, discourse structure, etc.

4. Adapting an IES to different types of data

One can broadly say that an IE system has to extract relevant information from text. The
term of “text”, in fact, is not restricted and can have any behaviour. Thus, text can be in
form of emails, newswire stories, military reports, scientific texts, and so on, which have
very different formats. An email, for example, does not have a pre-defined or predictable
format. It is only a free natural language text. Newswire stories, in contrast to emails, have
a specific format. They have a title and mostly abstract the principle topic in the first
paragraph.

Additionally, there is the fact that the widespread use of the internet makes texts in
different structural forms available, such as (semi-)structured HTML or XML files. To
adapt an IES, which was initially developed for a specific type of text, is a non-trivial task
even if the various types of text are about the same domain.

1.3.5.3 Scalability
The problem of scalability of an IES has two relevant dimensions. First, an IE system must be
able to process large document collections. This dimension causes often no problems because
IESs use in general simple shallow extraction rules, rather than sophisticated slow techniques.
Second, an IE system must be able to handle different data sources. For example, weather
information from different forecast services can have different formats; therefore, the
extraction rules of the system must contain customized rules for such different sources. An IE
system that is able to master both dimensions would use, with a high probability, the active
learning approach. [Kushmerick & Thomas, 2002]

22

1.4 Information Integration
In a time in which we are overwhelmed with information from various data sources (e.g.
databases, documents, e-mails, etc.) in very different formats, it is a big deal to make use of
all this data in an efficient way. Thus research in the field of Information Integration (II)
becomes more important today. Information Integration: “is the process of extracting and
merging data from multiple heterogeneous sources to be loaded into an integrated information
resource.” [Angeles & MacKinnon, 2004]

To point at the differences of II today compared to the past, I quote the following [Halevy &
Li, 2003, p.3]:

First, we noted that the emergence of the WWW and related technologies completely changed the
landscape: the WWW provides access to many valuable structured data sources at a scale not seen
before, and the standards underlying web services greatly facilitate sharing of data among
corporations. Instead of becoming an option, data sharing has become a necessity. Second,
business practices are changing to rely on information integration – in order to stay competitive,
corporations must employ tools for business intelligence and those, in turn, must glean data from
multiple sources. Third, recent events have underscored the need for data sharing among
government agencies, and life sciences have reached the point where data sharing is crucial in
order to make sustained progress. Fourth, personal information management (PIM) is starting to
receive significant attention from both the research community and the commercial world. A
significant key to effective PIM is the ability to integrate data from multiple sources.

We can distinguish between several kinds of II [Brujn, 2003][Breu & Ding, 2004]:

1. Technical Information Integration: This kind of integration can be split into two
levels: the hardware (platform) level and the software (platform) level. The hardware
level encompasses differences in the computer hardware, the network architecture, the
used protocols, etc. The software level encompasses differences in the used operating
system, the database platform, etc.

2. Structural Information Integration: The structure of the data may be based on
different principles, as for example relational database tables, hierarchical trees, etc.

3. Syntactical Information Integration: This encompasses differences of the data
formats, as for example databases, plain text, etc. The different naming of the same
entity in different databases can be also an example for this kind of integration
problem (personal_id in one database and p_id in another database to name the same
entity, namely the identification number of a person).

4. Semantic Information Integration: This kind of integration is the most difficult one.
It encompasses different intended meanings of similar concepts in a schema. It
becomes a standard to give concepts self-describing names. But the meanings that
different users understand by looking only at the names are often not unique. It is
possible, that two concepts with the same name are assigned really to different
meanings (homonyms) or, that the same concepts are named differently in two
schemas (synonyms).

We can distinguish between two fundamental aspects of II: Data Integration, and Function
Integration. The definition I used above for II can also be used for Data Integration, because
Data Integration deals with the problem of making heterogeneous data sources accessible by
using a common interface and an integrated schema. A “common interface” should pretend
the user that the collection of data is from a single data source. Function Integration tries to
make local functions from disparate applications available in a uniform manner. Such an

23

integration solution has to pretend the user that the collection of functions is homogeneous.
[Leymann & Roller, 2002]

An important derivative of Function Integration is used in enterprises and is named Enterprise
Application Integration (EAI). In the centre of an EAI system is an integration broker, which
acts as a hub between connected applications and routes the messages between them. Because
of the behaviour of EAI systems, their capabilities for data integration are limited. EAI
solutions, often, only provide access to one source at a time. But because of the fact that
business transactions become more complex and often require information distributed across
multiple data sources, data integration platforms has to be developed to complement EAI
solutions. [Nimble]

A system that provides its users a uniform interface to a multitude of heterogeneous,
independently developed data sources is called an Information Integration System (IIS). A
user of such a system has not to locate the data sources, to interact with each one in isolation
and to manually combine data from multiple sources. [Halevy & Li, 2004]

There are two paradigms for II: ad-hoc integration and global integration.

For better understanding, I will give you first an example for an ad-hoc integration process
from everyday life. Assume that you have developed an optimization algorithm for a graph
drawing problem and have implemented it. In the next step, you will test your implementation
with simple test graphs to get an idea of whether your implementation works or not.
Therefore, you have created some test graphs in a format that your implementation can
handle. After the first testing, you will test your implementation thoroughly with real world
test graphs of higher complexity. But, the test graphs you can find are all in a different format
than your program is prepared for. At this point you have two options: you can either rewrite
your implementation to be also able to handle this input format, or you can write a script to
transform the unsuitable test graphs into a suitable format. Both options are equally hard, but
if you are only a user of an implementation and have no access to the source code or you have
not the knowledge to make the required changes, you have just the latter option. For each
graph format that the implementation cannot handle you must write a new script. This kind of
integration is known as ad-hoc information integration.

Ad-hoc information integration solutions are not scalable and portable, because they are
established for a single case with certain requirements and they are not applicable in different
cases with different requirements. It is even harder to maintain such a solution, because if the
requirements change the solution has also to be changed. This might not be requiring much
effort for a personal user with simple demands but the situation is quite different in a business
environment. First, the requirements for an II solution are complex and underlie continuous
changes. Second, the amount of different applications that must operate together is large.
With every new application that has to be integrated, new integration solutions must be
established.

Global integration tries to overcome the disadvantages of the ad-hoc information integration
and works quite different. An IIS, designed with this approach consists of a global schema,
source schemas, and a mapping between the global schema and the source schemas that acts
like a mediator.

We can distinguish between four kinds of mapping approaches [Lenzerini, 2002]:

1. Local-as-View (LAV) or source centric: The sources are defined in terms of the
global schema.

2. Global-as-View (GAV) or global-schema-centric: The global schema is defined in
terms of the sources.

24

3. GLAV: A mixed approach.

4. Point-to-Point (P2P): The sources are mapped with one another without a global
schema.

To choose one of these approaches we have to consider the advantages and disadvantages of
each one. In the following, I will give an overview of the pro and contras of the LAV
approach, the GAV approach, and the P2P approach.

In the LAV approach, the quality depends on how well the sources are characterized. This
approach promises high modularity and extensibility, because if one source is changed, only
the definition of the source has to be changed. [Lenzerini, 2002] This approach is best suited
when many and relatively unknown data sources exist and there is a possibility for adding or
deleting data sources. [Borgida, 2003]

In the GAV approach quality depends on how well the sources are compiled into the global
schema through the mapping. Because the global schema is defined in terms of the sources,
the global schema has to be reconsidered every time a source changes. [Lenzerini, 2002] This
approach is best suited when few and stable data sources exist. [Borgida, 2003]

P2P integration addresses only an isolated integration need and is therefore not suitable for
reuse. For each pair of sources, a different mapping must be developed, which requires many
hours of effort. Even then the mapping may fail to deliver the full range of the desired results.
Each time a source is changed or a new source has to be integrated new mappings must be
developed which means additional effort. With every new source, the number of links that
must be added, tested, deployed, and maintained grows geometrically. Integrating 2 data
sources require 1 link, 3 sources require 3 links, 4 sources require 6 links, and 5 sources
require 10 links, and so on. [Nimble]

1.4.1 Application Areas of II
Among other information technology (IT) areas the field of database systems was one of the
first fields that show interest in II research. The reason may be that database systems become
the most commonly used structured data storage systems. The increase of the amount of such
systems takes with it the interest in integrating databases from different systems.

II has become a recent issue also in business areas. I have quoted the following list to give an
overview of IT and business areas that often create requirements for II [Alexiev, 2004, p.5, 6]:

The following IT and business areas often create requirements for data integration:

• Legacy application conversion and migration: convert data to a new application before retiring
the old application.

• Enterprise Application Integration and Application-to-application (A2A) integration, where
applications existing within the enterprise should be made to inter-operate.

• Business/executive reporting, OLAP, multidimensional analysis: regular loading of
operational data to a data warehouse for easier analysis and summarization.

• Business-to-business (B2B) integration between business partners.

• Business Process Integration: coordination (“orchestration”) of separate business processes
within and across enterprises in order to obtain a more synergistic and optimized overall
process. Includes needs for Business Process Modelling, enacting, workflow, data modelling
and integration.

25

1.4.2 Challenges
According to [Jhingran et al., 2002], II has three dimensions that make the task of managing
the data more complex: heterogeneity, federation, and intelligence. I will shortly describe
these three dimensions.

1. The heterogeneity of data: Currently, IISs have to deal with structured (e.g.
databases, etc.), unstructured (e.g. text, audio, video, etc.), and semi-structured content
(e.g. XML documents, etc.).

2. The federation of data: Today, data sources needed to be integrated are mostly
distributed over multiple machines in different organizations. The federation problem
encompasses the question of who owns and controls the data and the access on the
data. Privacy and security issues become also important, because every organization
has different security and privacy policies.

3. Intelligence: Another important issue is that of analyzing the data to turn the data into
information, and more precisely into intelligence (e.g. detecting trends in a business,
etc.).

Because of the mentioned three dimensions many challenges arise. Some of them are long
term-challenges and others are challenges that currently occupy the attention of II researchers.

The long-term goal of II and the capabilities of systems reached this goal are explained in
[Halevy & Li, 2004, p.3, 4]:

The long-term goal of information integration research is to build systems that are able to provide
seamless access to a multitude of independently developed, heterogeneous data sources. These
systems should have the following capabilities:

• integrate sources at scale (hundreds of thousands of sources),

• support automated discovery of new data sources,

• protect data privacy,

• incorporate structured, semi-structured, text, multimedia, and data streams, and possibly
inconsistent data,

• provide flexible querying and exploration of the sources and the data,

• adapt in the presence of unreliable sources, and

• support secure data access.

In [Halevy & Li, 2004] there is also a list of specific challenges. I will explain these
challenges here, to give you an idea about what work has to be done in the future. Hence,
architectures are needed that enable large-scale sharing of data without no central control.

Reconciling heterogeneous schemas/ontologies: The fundamental problem of II is that the
sources are heterogeneous, which means that the sources have different schemas and underlie
different structuring methodologies. To integrate such heterogeneous sources, a semantic
mapping is needed (often referred to as schema matching or ontology alignment). Today,
these mappings are generated by humans. Because this task is time consuming and error
prone, tools have to be developed to aid the human designer by its work.

Data-sharing with no central control: In many cases data cannot be shared freely between
connected parts. Central control is therefore not possible in many environments. For such
cases architectures are needed that enable large-scale sharing of data with no central control.

26

On-the-fly-integration: Currently, IIS’s cannot be easily scaled up with new data sources.
Thus, a challenge is to reduce the time and skill needed to integrate new data sources. This
would make it possible to integrate any data source immediately after discovering it.

Source discovery and deep-web integration: Over the past few years the information
(mostly stored in databases) behind the websites, which are queried on the fly when a user
makes a request, deepened the web dramatically. To integrate these information sources is a
very big deal and have potential. To discover these sources automatically, to integrate them
appropriately, to support efficient query processing of user queries, etc. are some of the
challenges that arise in that context.

Management of changes in data integration: IISs need to be able to handle updates of the
data sources.

Combining structured and unstructured data: Currently, IISs are often not able to handle
structured data sources (e.g. databases, XML documents, etc.) and unstructured text (e.g. web
pages, etc.). This problem arises because the querying methods for both kinds of data sources
are quite different. Whereas, structured data is queried by predefined query languages (e.g.
SQL, XQL, etc.) unstructured text is queried by keyword searching. Thus, languages that are
appropriate for such queries and efficient methods for processing them are needed.

Managing inconsistency and uncertainty: In an IIS, it often occurs that the data sources are
inconsistent or uncertain. Methods must be developed to locate inconsistencies or
uncertainties and to reconciling them.

The use of domain knowledge: The usability of IISs can be increased by using domain
knowledge. Such knowledge can be used to guide the user by his work.

Interface integration and lineage: Often the data sources that are needed to be integrated in
the system have its own user interfaces that give users easy access to the data. Hence,
integrating such sources requires also combining the different visualisations.

Security and privacy: Data sources have often different security and privacy policies. By
integrating multiple data sources this differences in the policies must be considered to ensure
security and privacy.

1.4 Wrapper
In order to understand the usefulness of so-called wrappers better, the notion of “semi-
structured documents” must be explain first.

As the term “semi-structured” implies, this kind of structure is a form between free text and
fully structured text. The best-known examples for semi-structured documents are HTML
documents. HTML is a mark-up language that contains text and predefined tags to bring more
structure into the document. The text in such documents is often grammatically incorrect, and
does not always contain full sentences. This makes it difficult to apply standard IE techniques
on such documents, because IESs use linguistic extraction patterns. Thus, to extract
information from such documents specialised IE systems are needed. Programs with the aim
to locate relevant information in semi-structured data and to put it into a self-described
representation for further processing are referred to as wrappers. It seems, as if IESs and
wrappers do just the same, but the application areas are different.

The most widespread application area of wrappers is the World Wide Web with its unlimited
amount of web sites that are mostly semi-structured. The differences between the structure of
each document in the web and the fact that even sites of, for example, the same company are
changed periodically, makes it obvious that building such programs by hand is not a feasible

27

task. This lead to two main problems in this field: wrapper generation and wrapper
maintenance. [Chidlovskii, 2001]

1.4.1 Wrapper Generation
Manual wrapper generation means that the wrappers are written by hand using some sample
pages. This procedure is time-consuming, error prone and labour-intensive. It is not scalable
that means, even a little change in the page structure demands a re-writing of the extraction
rules. The automatic or semi-automatic generation approach is a result of this search for ways
to overcome these limitations.

The approaches of automatic or semi-automatic wrapper generation use some machine
learning techniques based on inductive learning. These can base on heuristics or domain-
knowledge. Although, the heuristic approach is relatively simple, it can only extract a limited
number of features. The knowledge-based approach, on the other hand, tries to make use of
the domain knowledge and so to build powerful wrappers. [Yang et al, 2001]

1.4.2 Wrapper Maintenance
Wrapper maintenance is the challenge of keeping a wrapper valid. Because, a wrapper cannot
control the sources from which it receive data. A little change in the structure of a web site
can make the wrapper useless (non-valid). The fact that some web sites change its structure
periodically makes the task only harder. There are two key challenges to wrapper
maintenance: wrapper verification (i.e., determining whether the wrapper is still operating
correctly), and wrapper re-induction. The second challenge is more difficult, because it
requires the change of the rules used by the wrapper. Even the wrapper verification task is not
a trivial one, because the sources may have changed either the content or the formatting, or
both, and the verification algorithm must distinguish this two. [Kushmerick & Thomas, 2002]

28

CHAPTER 2

Information Processing with PDF Files
In this chapter, I will give a short description of the Portable Document Format (PDF), the
native file format of the Adobe™ Acrobat™ family. My aim is just to introduce this file
format and not to give a full description of it. This chapter is based highly on the “PDF
Reference Manual” written by Bienz and Cohn [1996]. For more detailed information I refer
to this manual.

2.1 The Portable Document Format (PDF)
Bienz and Cohn defined PDF as follows: “PDF is a file format used to represent a document
in a manner independent of the application software, hardware, and operating system used to
create it.” [Bienz & Cohn, 1996, p.5]

Further, Merz describe the PDF file format as: “PDF is a file format for saving documents
which are graphically and typographically complex. PDF ensures that layout will be preserved
both on screen and in print. All layout-related properties are fixed component of a PDF file
and do not allow any variation in its interpretation – the appearance of a PDF document is
completely fixed.” [Merz, 1998, p.4]

The PDF file format is the successor of the PostScript page description language which was
also initiated by Adobe™, and came out in the early 1990’s. The PostScript page description
language is a programming language like BASIC or C++, but is designed only to describe
extremely accurately what a page have to look like. During the development of PDF, Adobe
tries to avoid the weaknesses of the PostScript format. For example, PDF uses the same
imaging model as PostScript but does not use the programming constructs to keep the
simplicity of the format.

PDF is a layout-oriented representation format. Layout-oriented means, that the human
readability is in foreground, rather than the machine readability. As you will see later on,
layout-oriented representation formats are not that suitable for further processing. It could be
hard to extract even text from PDF files, because the text can be, in the worst case, saved as a
graphic, which would require the use of more complex algorithms, such as text recognition
algorithms. [Gartner, 2003] I will give you a more detailed overview of the challenges of
extracting information from PDF files later in 2.4.

29

2.2 Main Architecture of a PDF File
PDF files consist of four sections: a one-line header, a body, a cross-reference table, and a
trailer.

1. Header: The header line is the first line of each PDF file. This line specifies the
version number of the PDF specification to which the file adheres.

2. Body: The body of a PDF file consists of a sequence of indirect objects representing
the document. In the body, there can also be comments. Comment can appear
anywhere in the body section.

3. Cross-reference table: This table contains information about where the objects in the
PDF file can be found. Every PDF file has only one cross-reference table, which
consists of one or more sections.

4. Trailer: The trailer enables an application reading a PDF file to find the cross-
reference table and thus the objects in the file.

No line in a PDF file can be longer than 255 characters long. The last line of a PDF file
contains the string “%%EOF” to indicates the end of the file.

There are three kinds of PDF files [Weisz]:

1. PFD Normal: If you produce your text in a word processing or publishing system,
with a PDF output capability, the PDF file you get is a PDF Normal file. That means
that your file contains all the text of the page. Such files are relatively small.

2. PDF Image Only: This type is easy to produce. It is only an image of the page and
contains no searchable text. Such files are fairly large and there is no possibility to
search for text. The image quality depends on the quality of the source document and
on the scanning operation.

3. PDF Searchable Image: Such files contain the image of the page and the text
portions of the image. This enables a user to search for text. These files are usually
larger than PDF Normal files.

2.3 Strengths and Weaknesses of PDF
If we surf the web we can find PDF files in heaps. Once technical details of an amazing five
mega pixel digital camera, once a statistic about the last two years incomes of an enterprise,
and once a brilliant crime novel of Sir Arthur Conan Doyle is saved in a PDF file. The
widespread use of this file format must have its reasons. Thus, I will try to explain you the
strengths of this file format shortly.

I mentioned that the PDF file format was created for a special purpose – to make it possible to
build a document in an environment and view it in a, maybe, completely different
environment without any difference. This specificity implies that PDF is not the file format
par excellence for all purposes. Thus, I will try to explain the weaknesses of this file format,
too.

The PDF format has a lot of properties, which makes it a demanded format to use in mostly
all hardware environments and operating systems.

• Portability: This is the most exciting property of PDF. PDF files use only the
printable subset of the ASCII character set which leads to the fact that PDF files are
extremely portable across diverse hardware and operating systems environments.

30

• Compression: PDF supports a number of compression methods to keep the file size
within limits, even if the document contains images or other storage impressive data.

• Font independence: The fact that people like to use different fonts in their
documents, sometimes very extraordinary ones, is a challenge in document exchange.
It could happen that the receiver of a document has not the fonts to re-create the
document in her environment. PDF brings a solution to this problem, by saving a font
descriptor for each font used in the file. Such a descriptor includes the font name,
character metrics, and style information. This additional information does not affect
the file size, because one font descriptor takes only 1-2K of storage and contains all
the information needed to simulate missing fonts on the receiver side. This does not
apply for so called symbolic fonts (i.e., a font that does not use the standard ISOLatin1
character set).

These three properties are more important in the reader’s point of view. There are several
other properties which are important for PDF developers (i.e., for people who want to build or
change PDF files):

• Random access: Every PDF file has one cross-reference table which contains
information about the locations of the objects in the file. This permits random access
to each object in the file, thus the whole file needs not be read to locate any particular
object. Because of the fact that the cross-reference table has a fixed location, namely
the end of the file, a developer can easily get the information she wants about the
location of a specific page or another object and must not go through the whole
document to find what she wants.

• Incremental update: This property allows a user to easily change a file. Every time a
change is made, the cross-reference table will be updated and the changed objects will
be added to the file. The original data will remain unchanged. This allows a user to
simply undo changes by deleting one or more added objects and cross-reference
entries.

All of the mentioned properties form the strengths of the PDF format. On the other side there
are some weaknesses, too. Merz explains the main disadvantage of PDF as follows [Merz,
1998, p.6]:

PDF’s biggest advantage is also its biggest drawback: it is purely layout-oriented and is not
concerned with the text and overall structure of a document. The basic unit of a PDF document is
the page. It can contain text, graphic and hypertext elements. The text is not saved as structural
objects like paragraphs or headings, but, as in PostScript, in layout-related elements: as characters,
words, or lines. This makes it much more difficult to modify or edit the text later on, as the
structural information can not easily be recreated.

This disadvantage implies that it is hard to use a PDF file for further processing. It is
understandable that many people are interested in further processing of PDF files, because
today a lot of information is saved in PDF files and must be extracted in some way or another.
Several tools are available, both commercial and free, to extract information from PDF files
and save it into a more structured file format such HMTL or XML. I will present some of
these conversion tools in CHAPTER 4.

31

2.4 Extracting Information from PDF
I mentioned that the PDF file format fits not the needs of all people, because it is hard to
extract information from these files. The term “information” can be mean several things in the
context of a PDF file, because PDF files can contain text, graphic and hypertext elements.
PDF was designed to be a print-layout format, and not intended to be editable. Thus, an
extraction tool would have a lot of problems to face.

There are several elements of PDF that may produce errors during the conversion process
[Gross, 2003]:

1. Word Spaces,

2. Hyphens,

3. Emphasis, Super and Subscripting, and

4. Special Characters and sub-fonting.

After looking at this possible error sources, we can say that we might consider that the
converted information is correct, but we can never be sure of it. Therefore, it would be
meaningful to use some correction algorithms to overcome such situations.

Extraction structure from a PDF file is another non-trivial issue, because PDF specifies only
the position of elements in a page, and tell us nothing about the structure of the documents. A
conversion tool that wants to store the extracted documents in a structured file format must
use additional algorithms to rebuild the structure of the original document.

Some structural elements cause usually problems [Gross, 2003]:

1. Multiple Columns: Many documents have structured their page layout in form of two
or more text columns. Such a form is usually seen in newspaper articles, or technical
reports. This problem is not so hard to solve, but in some cases (e.g., too short
columns) it would be harder to detect multiple columns, which would lead in a
completely wrong extraction.

2. Paragraph Delineation: In PDF there is nothing that indicates the end of a paragraph.
The extraction tool must guess where a paragraph ends.

3. Page Header and Footer: In PDF there is nothing that marks a text as footer or
header. The extraction tool can only make use of the fact that such elements appear on
every page to state that an element is a page header or footer.

4. Tables: These elements are one of the hardest elements to extract and even to
recognize. There are no rules for creating tables, which means that a table have no
predictable structure. The extraction tool must use heuristics to recognize and
decompose the table structure. In Section 5.1.2, I give a detailed explanation about the
problems of table extraction.

5. Graphics: Graphics are often used elements in PDF files. Sometimes the whole PDF
file consists of only graphic elements, for example, if you scan some paper and save it
as a PDF file. Extracting text from such files requires special recognition algorithms.
In other cases, if the graphic is really a graphic, it may be still hard to guess which part
of the file belongs to the graphic or not.

6. Mathematical Equations: These elements are highly complex elements that are not
so easy to extract. The simplest way is to leave these elements as images.

32

CHAPTER 3

Information Processing with XML
Documents
In this chapter I will give an introduction to the famous extensible mark-up language (XML).
The information in this chapter highly depends on the book “Learning XML”. [Ray, 2001]
More detailed information about XML can be found in this book.

Furthermore, I will point out the properties of XML that makes it desirable for IP.

3.1 History and Description of XML
At the beginning, there was the standard generalized mark-up language (SGML), a
descendent of the generalized mark-up language (GML), developed by Charles Goldfarb,
Edward Mosher, and Raymond Lorie. SGML is a powerful meta-language (i.e., it can be used
to build a mark-up language for documents) but it is also complex and was used generally by
organisations that can afford both the software and the cost of maintaining complicated
SGML and had complex publishing requirements. Thus, we cannot define SGML as a
language for everyday use, for example, for web publishing.

XML was developed by an XML Working Group formed under the auspices of the World
Wide Web Consortium (W3C) in 1996 as a subset of SGML, to simplify SGML and to make
it applicable for general purpose. This consortium was created in October 1994. Their aim is
described on their website as follows: “to lead the World Wide Web to its full potential by
developing common protocols that promote its evolution and ensure its interoperability.”
W3C publishes Recommendations, which are specifications or sets of guidelines that are
reviewed by the members or other interested parties and received their endorsements of the
Director. The Recommendation for XML contains, among other things, the design goals for
XML. If you are interested in the complete recommendation, you are referred to the website
of the W3C.5 The design goals for XML are:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

5 http://www.w3c.org

33

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

XML itself is, despite its name, not a mark-up language. XML is, like SGML, a meta-
language, which means that the user can use it to build her own mark-up language. A mark-up
language is a set of symbols (tags) that can be placed in the text indicating the role of a
portion of text.

Whereas, mark-up languages, like HTML, focus on how to display data, XML focus on what
the data actually is. HTML contains an amount of predefined tags that a web designer can use
to give the web site the look she wants. The web designer is limited by those predefined tags
and cannot use other ones. XML is different. In XML there are no predefined tags, you must
create your own tags.

3.2 Architecture of an XML Document
The basic unit of XML information is the XML document. An XML document is composed of
elements and other mark-up. Those elements nest inside each other and shape the content of
the document. Each document has a document element or root element at the top level which
contains the other elements. Thus, an XML document has a hierarchical tree-like structure.

XML elements can have additional information in form of attributes, which are name-value
pairs and are positioned in the start tag of an element.

Assume that I want to make an XML document to store the information about the books I
have read over the years. And assume that I want to require for each book a title. Such an
XML document may look as follows:

<?xml version="1.0" ?>

<mybooks>

 <book year=’1998’>

<title> The Kreutzer Sonata </title>

<author>

<name> Leo </name>

<surname> Tolstoy </surname>

 </author>

 </book>

 <book year=’2003’>

 <title> The Adventures of Sherlock Holmes </title>

 <author>

 <name> Sir Arthur Conan </name>

 <surname> Doyle </surname>

 </author>

 </book>

</mybooks>

Figure 2: Example for a XML document

34

There are two ways to create a mark-up language with XML:

1. Freeform XML

In this form, there are just a few rules about how to form and use tags. Such a rule can
be, for example, that each start tag must have an end tag, and so forth. But there is no
restriction about the ordering or the naming of the tags. An XML file that satisfies
these rules is called a well-formed document. This way is highly error-prone. Let’s
look at the previous example with the books. It is possible that I forget somewhere to
write the title of a book. I would not recognize it until maybe a software would fail,
because of the absence of the title tag.

2. Document Modelling

The process of defining a language in XML formally is called document modelling.
There are two document modelling standards used with XML, the Document Type
Definition (DTD) and XML Schema. Both of them are used to create specifications that
lay out the rules for how a document has to look like.

A DTD consists of a set of rules or declarations that specify which tags can be used in a
document, and what they can contain. If you use such a DTD, you must add a reference to this
DTD in your XML document. This reference declares your desire to have the document
validated. The DTD can be included in the XML document. In such a case the DTD is called
an internal DTD. The DTD can also be specified in a separate file. In this case the DTD is
called an external DTD.

Another document handling standard is known as XML Schema and provides an interesting
alternative to DTDs. XML Schema allows you to design fields in more detail than DTDs can
do. For example, you can specify the exact number of nested elements of an element. Another
difference is that XML Schema use XML as its encoding syntax.

There is no reason to have only one standard for document modelling. The fact, that there are
two of them increases the flexibility of the user. The user can choose what she wants in
respect of her purpose.

A DTD for the previous example may look as follows:

<?xml version=”1.0” ?>

<!ELEMENT mybooks (book*) >

<!ELEMENT book (title, author) >

<!ATTLIST book

year CDATA #REQUIRED

>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (name,surname)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

Figure 3: A possible DTD for the XML document in Figure 2

The language that I describe by this DTD contains several rules:

 The root element is mybooks and can contain zero or more book elements.

 Each book element must have two elements, one title and one author element.

35

 Each book element must also have an attribute named year.

 Each author element must have two elements, one name element and one surname
element.

An XML document is called valid, if the document conforms to the rules of the DTD,
referenced in this document. If a document has no reference to an external or internal DTD
but conforms to the XML syntax, the document is called a well-formed. Thus, we can say that
each valid document is also well-formed, but the opposite statement, that each well-formed
document is also valid, is not always true.

3.3 Complementary Specifications
There are some specifications that complement XML like XSLT, XPath, XLink, and so forth.
I mention here only those that are related with the presentation and transformation of XML
documents.

The presentation of an XML document is another important issue that would interest all the
people who think about preparing a document for viewing by human beings. One of the most
important properties of XML is that it separates content and style. The content is the essence
of the information and it is saved in an XML document. The style information is saved in a
stylesheet file and describes the form of output the XML document can take. Thus, the XML
documents and their stylesheets are complementary. The separation of content and style yields
in a number of noticeable properties:

1. You can use one stylesheet for an unlimited amount of XML documents. That
ensuring a consistent look over the documents and reducing the costs in case of an
update. Assuming you want to change the look of your documents. In such a case you
do not have to change all the documents one by one, you must only change the
stylesheet.

2. You can support more than one versions of the same content in different designs. This
could be useful, for example, if you want to support several output devices with
different display sizes like a mobile device (e.g., handheld), or a printer.

3. The work of the author who builds the document and of the designer who builds the
stylesheet is also separated. Thus, the author can concentrate on his writing while the
designer can build the stylesheet without worrying about each others work.

4. The documents are more readable and manageable, because they have no additional
styling elements in it.

The transformation (i.e., to convert an XML document from one form to another) of an XML
document is one of the most exciting issues. Documents can be transformed by using the
Extensible Style Language for Transformations (XSLT). The ability to transform XML
documents increases your flexibility:

1. It allows you to store the data in one format and display it in another. For example,
you can transform your content in a HTML file and display it in a web browser.

2. It allows you to extract the information you needed. For example, you get a document
with detailed information about the books of a bookstore but you only need the titles
and the authors. By means of XSLT you can extract only those parts you need and
store it in a different document. (add)

36

3.4 Application Areas of XML
Because of the benefits of XML, it becomes a widely used technology in a large variety of
areas like document publishing, data exchange, etc. Zisman, further, points at the usefulness
of XML for the creation of vocabularies, depending on its flexibility. For a list of such XML
applications, I quote the following [Zisman, 2000]:

Because of its flexibility, XML allows the creation of many vocabularies, as standards for various
domains. XML can be seen as the grammar and a particular application as the vocabulary.
Examples of some XML application can be found in the following domains:

 Finance/commerce: Open Financial Exchange (OFX), Open Trading Protocol (OPT),
Financial Information eXchange Markup Language (FIXML).

 Push publishing technology: Channel Definition Format (CDF).

 Web automation: Web Interface Definition Language (WIDL), Web-based Distributed
Authoring and Versioning (WebDAV).

 Multimedia: Synchronized Multimedia Integration Language (SMIL), Precision Graphics
Markup Language (PGML).

 Software distribution: Open Software Description (OSD).

 Scientific data: Chemical Markup Language (CML), Mathematical Markup Language
(MathML).

 Software Engineering: UML eXchange Format (UXF), XML Metadata Interchange (XMI).

 Language oriented: Ontology Markup Language (OML), Conceptual Knowledge Markup
Language (CKML).

 Metadata: Research Description Framework (RDF), XML-Data, XML Metadata Interchange
(XMI).

The benefits of using XML in the business area are also of great importance. This leads from
the ability of XML to cover most of the business related tasks which have generally high costs
when used old methods. One of these tasks is, for example, the exchange of data between
organisations or even between departments of the same organisation. Organisations have
generally different data formats in which they store their business relevant information. If two
organisations have to interchange messages (or more generally data) an exchange standard
must be established to guarantee correct and effective data exchange.

Another important area is the area of Web Services (i.e. tools that enable software to
interoperate automatically). Some of the standards which are based on XML are, for example,
the Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL),
and Universal Description, Discovery and Integration (UDDI).

Web designers also see the potential in XML and try to make use of this technology. The
main reason is that XML separates content and layout. Thus, a web designer could build
several layouts with XSLT for the same XML document with not much effort. This makes it
easier for the web designer to create layouts for different devices (like Personal Digital
Assistants (PDAs), a computer monitor, etc.) with the same XML document. [Roy &
Ramanujan, 2000]

The application area of XML that I’m interested in is the area of IP. Thus, the next subsection
will contain the benefits of XML usage for IP purposes.

37

3.5 XML in Information Processing
As I mentioned earlier, XML is a structure based language. This makes it attractive for further
processing, either manual or automatic.

Manual processing with XML documents is much easier than with unstructured documents,
because a human being can recognize the logical structure and make use of it. One can also
make use of several complementary specifications of XML.

The complementary specifications of XML are also useful for IP purposes. XSLT is a good
example for this because it can be used for each of the following types of tasks [Alexiev,
2004, p.60]:

 Transform from XML to a simple textual format (extract data).

 Transform from XML to a publishing format for printing. Here we target document that has
little if any logical relation to the input document, so usually we go through the intermediate
step of generating Formatting Objects (XSLT-FO). Then the FOs are transformed to printer-
ready output (PDF, PCL, etc) by a FO Processor (e.g. Apache-FOP).

 Transform from XML to an XML format for publication, such as XHTML (and its poor
cousin HTML), SVG, MathML, etc. Here the target document may contain some “garbage”
(presentation stuff), but a lot of it has logical relation to the source.

 Transform from one XML schema to another XML schema. Here almost all of the generated
data is logically related to the source.

Most relevant to data integration are the first and last tasks in the list above:

 Extraction can pick up data fields from a semi-structured document and use them in further
processing (e.g. to save to database).

 Transformation of data-centric XML schemas is key to XML data processing.

The interface between an application and an XML file is the parser. A parser reads an XML
file and gives the application access to the content and structure of this XML file. There are
two common types of XML parser application programming interfaces (APIs): Document
Object Model (DOM) and Simple API for XML (SAX). These parsers have different
properties and are suitable for different purposes.

The DOM parser, for example, is a parser that represents an XML document as a tree,
whereas each element in the document is a node. DOM allows an API to access and modify
parts of the document and to navigate in the document. DOM requires the document’s entire
structure in memory. Thus, it uses much memory and is slow.

The SAX parser, on the other hand, doesn’t build the whole structure of an XML document,
but scans an XML document and fires the events, such as element start or end. The handlers,
implemented by the application programs, receive these events and do appropriate processing.
SAX is fast and good suited for large documents, but it allows no re-processing.

There are many free parsers available in different programming languages which makes the
work of the programmers much easier. [Jaideep & Ramanujan, 2000]

3.6 Limitations of XML
So far we have seen what XML actually is, how XML documents look like, what possibilities
it offers, and its application areas. Now it is time to look at the limitations of XML, because it
cannot be said that XML is the perfect solution for every purpose. It is limited in terms of the
data types it supports: XML is a text-based format and has no means for supporting complex
data types such as multimedia data. Further, XML is limited in terms of security: XML has no

38

facilities to ensure a secure exchange of XML documents. XML documents are only simple
text documents without any encryption facilities. [Roy & Ramanujan, 2000]

39

CHAPTER 4

Comparison of Existing PDF Extraction
Tools
I will give you a short report about how good existing conversion tools work. There exist just
a few pdf-to-xml converters, thus I will begin with the comparison of pdf-to-html converters.
The reason why I actually look for a conversion tool that converts a PDF file to an XML or a
HTML file is that they are more structured (marked-up) documents and more useful for
further processing.

Because I work with the extraction of table information from PDF-files, I will only compare
the tools in respect of their ability to extract table information and not in respect of all the
features they have. I will apply the tools on two tables. The first one is a “simple” table with
only a few disjoint rows and columns. The second one is a more “complex” table with
spanning rows and columns. Both tables are stem from the paper [Pinto et al, 2003]. The first
table is on page six and the second is on page three of the cited paper.

Figure 4: Example for a simple table

40

Figure 5: Example for a complex table

4.1 Comparison of PDF to HTML Converters
There are a few PDF to HML converters available on the web. Some of them are commercial
and others are for free. I tried some of them to see whether they produce usable results or not.

4.1.1 PDF 2 HTML
This tool was developed by Gueorgui Ovtcharov and Rainer Dorsch. It is an open source tool
that you can download for free6. The installation is quite simple. You just have to download
and extract the zip-file, and the program is ready to run. On the website there is also a GUI for
this program, in case you do not want to run the program from the command line.

You can see the standard look of the tool in Figure 6. With the “More Options” button you get
the look in Figure 7, where you can additionally choose the creation of an XML document,
otherwise the tool creates only HTML documents.

Figure 6: User interface of the pdf2html tool

6 http://pdftohtml.sourceforge.net/

41

Figure 7: Extended user interface of the pdf2html tool

The resulting HTML-code for the table in Figure 4 is as follows:

Label
of Labels
Recall
Precision

NONTABLE
14118
.979
.954

BLANKLINE
6186
.993
.998

SEPARATOR
492
.896
.942

TITLE
192
.542
.897

SUPERHEADER
92
.652
.909

TABLEHEADER
236
.462
.340

SUBHEADER
49
.918
.616

SECTIONHEADER
186
.441
.701

DATAROW
4497
.864
.912

SECTIONDATAROW
716
.547
.678

TABLEFOOTNOTE
163
.687
.896

TABLECAPTION
20
.000
.000

Table 4: CRF Continuous on Test Set

Figure 8: The resulting HTML-code for the table in Figure 4

The resulting HTML-code for the table in Figure 5 is as follows:

Principal Vegetables for Fresh Market:

Area Planted and Harvested

by Crop, United States, 1997-99 1/

(Domestic Units)

--

:
Area Planted
:
Area Harvested

Crop
:--

:
1997
:
1998
:
1999
:
1997
:
1998
:
1999

--

42

:
Acres

:
Artichokes 2/
:
9,300
9,700
9,800
9,300
9,700
9,800

Asparagus 2/
:
79,530
77,730
79,590
74,030
74,430
75,890

Beans, Lima
:
2,700
3,000
3,200
2,500
2,000
2,900

Beans, Snap
:
90,260
94,700
98,700
82,660
87,800
90,600

Broccoli
2/
:
130,800
134,300
137,400
130,800
134,300
137,300

:
2/
:
3,200
3,200
3,200
3,200
3,200
3,200

Cabbage
:
77,950
79,680
79,570
75,230
76,280
74,850

Figure 9: The resulting HTML code for the table in Figure 5

The only tags in these HTML-codes are the
 tags, thus the result gives us no information
about the table structure. We cannot distinguish between “normal” text and table content.

4.1.2 PDF2HTML by VeryPDF
This program is a standalone tool for converting PDF files into continuous HTML files. You
can download a trial version for free.7 The installation is very easy. You must only double-
click on the file you have downloaded and then the program is ready to run as in Figure 10.

Figure 10: User interface of the PDF2HTML tool by VeryPDF

The HTML-code that this tool produces for the table in Figure 5 is stated below. I do not list
the result for the first table, because the program returns very similar results.

<div style="position:absolute;top:101;left:210"><nobr> Principal
Vegetables for Fresh Market: Area Planted and Harvested</nobr></div>
<div style="position:absolute;top:113;left:304"><nobr> by Crop, United
States, 1997-99 1/</nobr></div>
<div style="position:absolute;top:125;left:357"><nobr> (Domestic
Units)</nobr></div>

7 http://www.globalpdf.com/pdf2htm/index.html

43

Units)</nobr></div>
<div style="position:absolute;top:138;left:75"><nobr>-----------------------
---</nobr></div>
<div style="position:absolute;top:150;left:257"><nobr>
:</nobr></div>
<div style="position:absolute;top:150;left:322"><nobr> Area
Planted</nobr></div>
<div style="position:absolute;top:150;left:451"><nobr>
:</nobr></div>
<div style="position:absolute;top:150;left:504"><nobr> Area
Harvested</nobr></div>
<div style="position:absolute;top:162;left:204"><nobr> Crop :-------------
---</nobr></div>
<div style="position:absolute;top:175;left:257"><nobr> : 1997 : 1998 :
1999 : 1997 : 1998 : 1999</nobr></div>
<div style="position:absolute;top:187;left:75"><nobr> ----------------------
--</nobr></div>
<div style="position:absolute;top:199;left:257"><nobr>
:</nobr></div>
<div style="position:absolute;top:199;left:433"><nobr>
Acres</nobr></div>
<div style="position:absolute;top:212;left:257"><nobr>
:</nobr></div>
<div style="position:absolute;top:224;left:75"><nobr>Artichokes 2/ :
9,300 9,700 9,800 9,300 9,700 9,800</nobr></div>
<div style="position:absolute;top:236;left:75"><nobr>Asparagus 2/ :
79,530 77,730 79,590 74,030 74,430 75,890</nobr></div>
<div style="position:absolute;top:249;left:75"><nobr>Beans, Lima :
2,700 3,000 3,200 2,500 2,000 2,900</nobr></div>
<div style="position:absolute;top:261;left:75"><nobr>Beans, Snap :
90,260 94,700 98,700 82,660 87,800 90,600</nobr></div>
<div style="position:absolute;top:273;left:75"><nobr>Broccoli 2/ :
130,800 134,300 137,400 130,800 134,300 137,300</nobr></div>
<div style="position:absolute;top:286;left:75"><nobr>Brussels
:</nobr></div>
<div style="position:absolute;top:298;left:75"><nobr>Sprouts 2/ : 3,200
3,200 3,200 3,200 3,200 3,200</nobr></div>
<div style="position:absolute;top:310;left:75"><nobr>Cabbage</nobr></div>
<div style="position:absolute;top:310;left:257"><nobr> : 77,950 79,680
79,570 75,230 76,280 74,850</nobr></div>

Figure 11: HTML code for the table in Figure 5

The HTML-code contains a more informative tag, namely the <div tag>, which has useful
attributes like the absolute coordinates of the table entries. But as you can see, many of the
numerical entries are handled as entries of an entire row. Thus it is not useful for my
purposes.

44

4.1.3 Adobe Online Conversion Tool
Adobe® provides a service on his website, where users can have their PDF-files converted
into HTML-files simply by specifying the URL of the PDF-file8. Then, the browser shows the
resulted HTML-file.

For the table in Figure 4 this online-tool returns the following result:

<P>Label # of Labels Recall Precision

NONTABLE 14118 .979 .954

BLANKLINE 6186 .993 .998

SEPARATOR 492 .896 .942

TITLE 192 .542 .897

SUPERHEADER 92 .652 .909

TABLEHEADER 236 .462 .340

SUBHEADER 49 .918 .616

SECTIONHEADER 186 .441 .701

DATAROW 4497 .864 .912

SECTIONDATAROW 716 .547 .678

TABLEFOOTNOTE 163 .687 .896

TABLECAPTION 20 .000 .000

<P>
Table 4: CRF Continuous on Test Set

<P>

Figure 12: The HTML code for the table in Figure 4

As you can see, this HTML-code contains no information about the table structure or even
about the occurence of a table.

4.2 Comparison of PDF to XML Converters
The conversion of PDF files to XML documents is a new field. The importance of this field
increases with the increasing usage of PDF files, because of its environment independent
representing features, and XML, because of its abilities to bring more structure in a document.
Despite its importance, there are not many conversion tools available. The ones available are
commercial tools, who do not even provide a demo version of the tool. The only possibility to
test them is to send the organisation that provide the tool the PDF files you want converted
and wait for a reply. I have done this, and I did not get a reply to date. Therefore, this
subsection contains the results of only one tool instead of many tools for comparison as I had
planned earlier.

The only free available tool I found was the PDF 2 HTML converter which also gives the
ability of an XML output.

4.2.1 PDF to XML Converter
As I mentioned in 4.1.1, this tool can also be used to convert PDF-files to XML-files and it
can be downloaded for free9.

The result of this tool for the table in Figure 4 is as follows:

8 http://www.adobe.com/products/acrobat/access_simple_form.html
9 http://pdftohtml.sourceforge.net/

45

 <text top="465" left="483" width="34" height="12" font="0">Label</text>
 <text top="465" left="636" width="71" height="12" font="0"># of Labels</text>
 <text top="465" left="722" width="37" height="12" font="0">Recall</text>
 <text top="465" left="776" width="54" height="12" font="0">Precision</text>
 <text top="481" left="483" width="79" height="12" font="0">NONTABLE</text>
 <text top="481" left="672" width="34" height="12" font="0">14118</text>
 <text top="481" left="735" width="24" height="12" font="0">.979</text>
 <text top="481" left="806" width="24" height="12" font="0">.954</text>
 <text top="497" left="483" width="84" height="12" font="0">BLANKLINE</text>
 <text top="497" left="679" width="27" height="12" font="0">6186</text>
 <text top="497" left="735" width="24" height="12" font="0">.993</text>
 <text top="497" left="806" width="24" height="12" font="0">.998</text>
 <text top="512" left="483" width="86" height="12" font="0">SEPARATOR</text>
 <text top="512" left="686" width="21" height="12" font="0">492</text>
 <text top="512" left="735" width="24" height="12" font="0">.896</text>
 <text top="512" left="806" width="24" height="12" font="0">.942</text>
 <text top="528" left="483" width="43" height="12" font="0">TITLE</text>
 <text top="528" left="686" width="21" height="12" font="0">192</text>
 <text top="528" left="735" width="24" height="12" font="0">.542</text>
 <text top="528" left="806" width="24" height="12" font="0">.897</text>
 <text top="543" left="483" width="107" height="12" font="0">SUPERHEADER</text>
 <text top="543" left="693" width="14" height="12" font="0">92</text>
 <text top="543" left="735" width="24" height="12" font="0">.652</text>
 <text top="543" left="806" width="24" height="12" font="0">.909</text>
 <text top="559" left="483" width="107" height="12" font="0">TABLEHEADER</text>
 <text top="559" left="686" width="21" height="12" font="0">236</text>
 <text top="559" left="735" width="24" height="12" font="0">.462</text>
 <text top="559" left="806" width="24" height="12" font="0">.340</text>
 <text top="574" left="483" width="88" height="12" font="0">SUBHEADER</text>
 <text top="574" left="693" width="14" height="12" font="0">49</text>
 <text top="574" left="735" width="24" height="12" font="0">.918</text>
 <text top="574" left="806" width="24" height="12" font="0">.616</text>
 <text top="590" left="483" width="124" height="12"
font="0">SECTIONHEADER</text>
 <text top="590" left="686" width="21" height="12" font="0">186</text>
 <text top="590" left="735" width="24" height="12" font="0">.441</text>
 <text top="590" left="806" width="24" height="12" font="0">.701</text>
 <text top="605" left="483" width="73" height="12" font="0">DATAROW</text>
 <text top="605" left="679" width="27" height="12" font="0">4497</text>
 <text top="605" left="735" width="24" height="12" font="0">.864</text>
 <text top="605" left="806" width="24" height="12" font="0">.912</text>
 <text top="621" left="483" width="137" height="12"
font="0">SECTIONDATAROW</text>
 <text top="621" left="686" width="21" height="12" font="0">716</text>
 <text top="621" left="735" width="24" height="12" font="0">.547</text>
 <text top="621" left="806" width="24" height="12" font="0">.678</text>
 <text top="637" left="483" width="128" height="12"
font="0">TABLEFOOTNOTE</text>
 <text top="637" left="686" width="21" height="12" font="0">163</text>
 <text top="637" left="735" width="24" height="12" font="0">.687</text>

46

 <text top="637" left="806" width="24" height="12" font="0">.896</text>
 <text top="652" left="483" width="113" height="12"
font="0">TABLECAPTION</text>
 <text top="652" left="693" width="14" height="12" font="0">20</text>
 <text top="652" left="735" width="24" height="12" font="0">.000</text>
 <text top="652" left="806" width="24" height="12" font="0">.000</text>
 <text top="682" left="522" width="265" height="12" font="0">Table 4: CRF
Continuous on Test Set</text>

Figure 13: The XML code for the first table in Figure 4

As you can see, this tool returns an XML file with, among others, “text” objects and
informative attributes, like the width and height of the text-object.

47

CHAPTER 5

Task Description and Implementation
If I have to describe my task in one sentence I would say: “My task is to implement a tool for
extracting table information out of PDF files and for storing the extracted information in an
XML document.”

In the previous chapters, I first gave you an overview of IP in general and of IE in more detail.
My aim was to make clear what approaches exist actually, and how the architecture of an IES
looks like. These realisations should assist me to implement a tool that fits the requirements
best. Further, I gave you an overview of the two document formats that my tool must handle,
PDF and XML. And at least I made a comparison of existing extraction tools, to see which of
them gives me the best result to work with. After this comparison I decided to use the
“pdf2html” tool. As I had mention in 4.2.1, this tool outputs XML documents with all the text
elements of a PDF file in the ordering they occur in the original file. Thus, my task changed to
“implement a tool for extracting table information out of an XML document and storing the
extracted information in another XML document.”

Now, it would be meaningful to give you an overview about tables in general and about table
recognition and table extraction in special.

5.1 Table Extraction
Table extraction is not a trivial task, indeed. It is important for IP purposes because tables are
one of the most used elements for structuring information. Tables attract the attention of IP
researchers because they contain in general information with a high density.

For better understanding the task of table extraction and its challenges, I will first give an
overview of the common behaviour of tables. Then, I will describe the task of table
recognition, because before table extraction can take place, the tables in a document must be
identified. And last, I will explain the task of table extraction, its approaches and challenges.

5.1.1 Common Behaviour of Tables
The most common definition for tables is that “tables are a means for presenting and
structuring data”. Tables can help the author of a document to present a piece of data in a
structured form that helps the reader to better understand relationships between table entries.
You can meet tables in almost any context, for example, in books, in scientific journal
articles, in financial reports, on web sites, and so forth. [Tupaj, et. al, 1996]

48

There are no rules for creating tables. Thus, it is hard to classify tables, although some forms
of tables have a fixed semantic such as truth tables (i.e., tables used in logic to determine
whether an expression is true or whether an argument is valid).
Although, there is no unified theory of tables we can list some properties of tables as follows
[Ramel et al, 2003]:

1. Tables are ad hoc:

Every author creates her own table in a form and complexity so that it represents her
data best.

2. Tables have no identifying characteristics in common:

I mentioned that tables are ad hoc. Thus, there is no limitation or a predefined standard
to build tables. Because tables can vary in structure as their authors, to identify
common characteristics for tables is not possible.

3. Tables have mostly a complex structure:

The simplest kind of table is that one where each entry spans over one cell and one
row, and for each cell there exists a single header. But the information that authors like
to put in tables are often not of a structure that they can be filled in such a simple
format. Thus, many tables contain spanning rows or cells which increases their
complexity.

4. Tables have varying formats:

Some authors create tables with boundary lines (i.e., lines that points out the boundary
of the table and/or the separation areas between rows and cells), whereas other authors
just use spaces to achieve a table view. These tables are the most difficult ones to
extract. On the one hand there is the recognition task. To detect such tables, many
assumptions and rules are needed (e.g. if more than two tabs occur on the same line
this line might be a data row). The decomposition task is even harder, because to
correctly assign the texts between the tabs requires reliable rules. The developer of an
extraction algorithm can build a rule, based on the assumption that there are so many
tabs in the line as cells in a table. But when the algorithm has to face a table with a
different format it would fail and the decomposition would be not correct.

5. Tables contain different types of content:

Many tables contain text, figures, mathematical formulas, and so forth.

These properties make it harder to extract table information from documents and must be
always keep in mind while implementing an extracting tool.

5.1.2 Extraction
In order to extract table information from a document, the first thing to do is to locate the
table in the document. This task is referred to as table recognition. The difficulty of this task
depends on the document structure in which the table is embedded. Table recognition in
structured documents is easier than table recognition in unstructured documents.

Assume that we work with HTML files. HTML has a tag called table that indicates the
presence of a table. But in the case of HTML files, we have to face the problem that many
authors uses table tags for layout purposes only. These kinds of tables are not tables in the
common sense and have to be classified as such. Thus, we are again back on square one and
must find other methods to detect a table.

49

An example for unstructured documents can be PDF files. A number of works are done in the
field of table extraction from layout based document formats. Some of them focus on methods
that rely solely on layout based features such as boundary lines or separator lines between
rows and columns. Such methods are not applicable if we have to face tables with no line
elements, but spaces, which the author has used to achieve a table-like look.

Many people are interested in the field of table extraction, because tables have in general a
high information density. The task of extracting table information from documents is not
trivial indeed, and different problems show up depending on the document behaviour.
Several approaches exist in the field of table recognition and extraction (also called table
understanding) [Wang, 2002]

1. Predefined layout based approach: The idea of this approach is to use templates of
some table structures. The documents are checked and piece of data that match such a
template are identified as tables.

 This is a simple approach and can have a satisfying performance, but it is hard to
extend, because it would fail if any table with a different structure than those
appearing in the template set.

2. Heuristics based approach: In this approach some predefined rules are created (e.g.,
tables with less then 3 rows are not really tables, and so forth) to use it as a decision
base to check whether a piece of data is a table or not.

 It is clear that such a rule set must contain a lot of rules, to cover all the shapes a table
can take. As the latter approach, this approach suffers also if a completely different
form of a table appears and there is no applicable rule in the rule set.

3. Statistical or optimization based approach: This approach either requires no
parameters or the needed parameters are obtained via training processes. These
parameters are then used in the decision making process.

5.2 The Implementation
In this subsection, I will inform you about the work I had to do, about the initial state at the
beginning of my development, and about my approach. Further, I will give an overview of the
features of the Graphical User Interface (GUI) that I have implemented to give the user the
ability to change the results of the extraction process.

5.2.1 Initial State
After the comparison of different conversion tools I have decided to work with the pdf2html
converter, because it also allows the conversion in the XML format and this output is the most
useful for my purposes. The output is an XML document that contains the text of the PDF file
in form of text elements. I will explain you this by an example. The following figure is a
snapshot of a part of a table, saved in a PDF file.

50

Figure 14: Snapshot of a table about conjunctivitis

The pdf2html tool returns for this part of the PDF file the following XML output:

<text top="541" left="522" width="67" height="18" font="0">Table 1</text>
<text top="579" left="412" width="288" height="18" font="0">Risk Factors for
Conjunctivitis</text>
<text top="647" left="258" width="58" height="14" font="3">Type of </text>
<text top="665" left="258" width="99" height="14" font="3">Conjunctivitis</text>
<text top="665" left="469" width="87" height="14" font="3">Risk Factors</text>
<text top="692" left="258" width="55" height="14" font="3">Allergic</text>
<text top="719" left="258" width="56" height="14" font="1">Seasonal</text>
<text top="719" left="469" width="165" height="14" font="1">Environmental allergens.*</text>
<text top="743" left="258" width="41" height="14" font="1">Vernal</text>
<text top="743" left="469" width="342" height="14" font="1">Hot, dry environments such as West Africa;
parts of </text>
<text top="761" left="469" width="331" height="14" font="1">India, Mexico, Central, North, and South
America; </text>
<text top="779" left="469" width="183" height="14" font="1">and the Mediterranean area.</text>
<text top="806" left="469" width="321" height="14" font="1">Environmental allergens for acute
exacerbations.*</text>
<text top="833" left="258" width="42" height="14" font="1">Atopic</text>
<text top="833" left="469" width="209" height="14" font="1">Genetic predisposition to atopy.</text>
<text top="860" left="469" width="306" height="14" font="1">Environmental allergens and irritants for
acute </text>
<text top="878" left="469" width="97" height="14" font="1">exacerbations.*</text>
<text top="905" left="257" width="121" height="14" font="3">Ocular cicatricial</text>
<text top="905" left="469" width="294" height="14" font="1">Unknown (genetic predisposition may
exist).</text>
<text top="923" left="257" width="134" height="14" font="3">pemphigoid (OCP)</text>
<text top="932" left="469" width="342" height="14" font="1">(Topical drugs may produce OCP-like
disease, with </text>

51

disease, with </text>
<text top="950" left="469" width="320" height="14" font="1">spectrum of severity ranging from self-limited
to </text>
<text top="968" left="469" width="312" height="14" font="1">progressive disease indistinguishable from
OCP.</text>
<text top="986" left="469" width="327" height="14" font="1">Associated drugs include idoxuridine,
pilocarpine,</text>
<text top="1004" left="469" width="272" height="14" font="1">epinephrine, timolol, and
echothiophate.)</text>
<text top="1143" left="841" width="8" height="14" font="1">5</text>

Figure 15: XML code of the table in Figure 14.

We can see some properties of the output data:

1. The tool returns all of the text chunks in the PDF file as text elements.

2. The tool returns the text elements in the order they appear in the original file.

3. Each text element has five attributes: top, left, width, height, and font. These attributes
give information about the exact position of the text in the original file and its size.

4. Text elements that were formatted as bold or italic have additional or <i> tags.

5. The tool processes the PDF file line by line and splits text chunks that logically belong
together. For example, the first row in the table “Type of Conjunctivitis” is split into
two text elements, the first one contains the text “Type of” and the second contains the
text “Conjunctivitis”.

5.2.2 The Approach
After all these considerations I decided to make use of the heuristic based approach. For that
purpose, I build a rule set which can be considered in two parts. The first part contains the
rules about the table recognition task and the second one contains the rules about the table
decomposition task.

The properties of the output data of the pdf2html tool listed in 5.2.1, affect the algorithm to
recognize and decompose the tables. Before I give detailed information about the algorithm, I
will explain some terms that I will use later on.

 Single-Line: A line with only one text element (i.e., just one element with the same
top-value).

 Multi-Line: A line with more than one text elements (i.e., more than one consecutive
text elements has the same top-value).

 Multi-Line Block: Group of consecutive multi-lines.

 Average distance of a multi-line block: The average distance between the top values
of the lines in a multi-line block.

 Maximum number of elements in a multi-line block: The maximum number of
elements in a multi-line in a multi-line block.

My algorithm extracts the table information in two steps. I called the first step first
classification and the second step second classification. In the following, I will give the
pseudo-codes of these two steps.

First classification:

1. Go through all the text elements on a page.
2. For each text element check whether there are other text elements that follow the first

one having the same top value, or not.

52

one having the same top value, or not.
3. Put the text elements with the same top value together and mark this line as multi-line.
4. If there are no other text elements with the same top value, mark this line as a single-

line.
5. The occurrence of one multi-line starts a multi-line block.
6. The occurrence of a single-line ends a multi-line block.

Figure 16: Pseudo-code for the first classification step

Sometimes it can be that the occurrence of a single-line has not to mean that a multi-line
block ends. I will explain this on the following example.

Figure 17: Example for a single-line that not indicates the end of a multi-line block

Here the text elements “Vernal” and “Hot, dry environments such as West Africa; parts of”
build together a multi-line. Then, the text element “India, Mexico, Central, North, and South
America;” follows. In this case, this element not indicates the end of the multi-line block, but
belong to a text element in the previous line. To take account of such cases, another rule
comes into action:

If a single-line occurs directly after a multi-line, check whether this single text element
belongs to any of the text elements in the previous multi-line.

A text element belongs to one text element of the previous line if it lies under one of these text
elements.

<text top="743" left="258" width="41" height="14" font="1">Vernal</text>
<text top="743" left="469" width="342" height="14" font="1">Hot, dry environments such as West Africa;
parts of </text>
<text top="761" left="469" width="331" height="14" font="1">India, Mexico, Central, North, and South
America; </text>

Figure 18: XML code of the table fragment in Figure 17.

As you can see the left value of the mentioned single text element and the second text element
of the multi-line are the same, namely “469”. In such cases the multi-line block goes on,
indicating that the single-line belongs logically to the multi-line block.

After the first classification the multi-line blocks are identified. The next step is to combine
multi-line blocks that belong to each other.

Second classification:

1. Go through all the multi-line blocks.
2. Determine the number of lines between each pair of multi-line blocks.
3. If the lines that lie between two multi-line blocks are less or equal than three, the two

multi-line blocks belong together with a high probability. Thus, these two blocks are
merged (i.e. the second block is attached at the end of the first block).

4. If the lines that lie between two multi-line blocks are greater than three and less or equal
than five, these two blocks might belong together but with a less probability. The lines
between these two blocks are tried to be assigned to the first block. If this process
succeeds and there are no lines left between them, these two blocks are merged.

5. // Once the multi-line blocks are identified, the structure of each multi-line block has to
// be determined. First, the lines that belong together (e.g., parts of the same sentence)

 // has to be identified.

53

6. Go through all lines in the multi-line block.
7. Compare the text elements on one line with the text elements on the next line.
8. If two text elements on continuous lines have almost the same left value, the same

format and the difference of their top values are not that big, these text elements
assumed to belong together. The difference of their top values has to be less than the
average distance of this multi-line block. If two text elements fit these requirements they
are merged. To merge two lines, all the text elements on the second line must be merged
to the text elements on the previous line.

9. // Once the belonging lines are merged, we have to find a title if there is one.
10. Go maximal ten lines backward and look whether this line contains a title.
11. For each of these lines, check whether the text element on this line lies approximately at

the centre of the multi-line blocks side boundaries or the text contains the string “table”.
12. // Whether or not a title is found, the next step is to determine the header part of the
 // table.
13. The first line with the amount of elements equal to the maximum number of elements in

this multi-line block is the last line of the header. Thus, the next line is the first data row.
14. The lines going backward from the last line of the header are being explored.
15. For each text element on the header lines there are two possibilities: this element is itself

a super-header (i.e. a header at the top of the hierarchy), this element has a super-header
that lies above him. For the latter case the super-header for this element must be
determined. There are four possibilities:
a. The text element lies directly under a text element on the previous line.
b. The left-point of the text element lies under a text element on the previous line.
c. The right-point of the text element lies under a text element on the previous line.
d. The text element lies completely on the left of a text element on the previous line.
e. The text element lies completely on the right of a text element on the previous line.

16. If case d or e occurs the text element is assigned to the element that is nearest to this
one.

17. // After constructing the header part, the data-rows are explored to assign each text
 // element to a header element.
18. For each line from the first data row line on, assign the elements on this line to a header

element on the last header line using the rules listed above.
Figure 19: Pseudo-code of the second classification step

5.2.3 Limitations of the Approach
Because of the complexity of the task, the bugs in the pdf2html tool, and the heuristic based
approach which cannot cover all table structure, you cannot assume that this tool returns you a
perfect conversion for each table. You should expect that a post-process in form of changes in
the user interface must be done in almost each case. Therefore, you should always control the
output of the tool and you should use the “with interaction” option of the interface, because to
correct the false points as early as possible is the best solution.

All these steps and rules, explained in 5.2.2 have the aim to construct the table as good as
possible and likely to its original. But this is often not reached because of several reasons:

The tool that I used for getting the text elements out of the PDF file contains a number of bugs
that affect the result of my heuristic based approach. This is a direct result of the nature of this
approach. Namely, all the rules are based on assumptions. The basic and most important
assumption is that the XML code returned from the pdf2html tool contains correctly extracted
data. If that is not the case, the result of my implementation would suffer.

54

The pdf2html-tool has some known bugs that are listed in the readme-file of the
implementation. But the worst bug is the following: “Plain (non-complex) output might not
preserve the order of text sometimes.” This is the worst bug, because all the rules I have set,
are based on the assumption that the text elements in the pdf2html output file are in the same
order as in the original PDF file.

To meet these bugs I decided to implement a graphical user interface which can be used to
make changes on the extracted tables.
But there are limitations of the pdf2html tool that cannot be addressed with the GUI. For
example, the pdf2html tool has no facilities to extract text from a graphic in a PDF file. Thus,
if a table in a PDF file is actually a graphic, no information can be extracted and my algorithm
also cannot extract anything.

5.2.4 The Graphical User Interface (GUI)
The graphical user interface (GUI) allows the user to make changes on the extracted table. I
will explain the usage and the benefits of this GUI by an example.

After starting the program, the following interface appears on the screen:

Figure 20: User interface of the extraction tool

Using this interface, the user can browse for a source PDF file and for a directory where the
resulting files should be saved. The output of this tool consists of five files saved in the given
directory. For a PDF file with the name “example.pdf” the resulting files would be:

1. example.xml: This file is the result of the used pdf2html conversion tool.

2. pdf2xml.dtd: This is the DTD for the example.xml file.

3. output.xml: This file contains the extracted table information in XML form.

4. tables.dtd: This is the DTD for the output.xml file.

5. table_view.xsl: This file contains the style-sheet for the output.xml file.

The user can set the interval of pages of the source file, which the program has to explore for
finding tables. Depending on the selection of the “interactive extraction” checkbox, the
program can either extract the tables and then can terminate, or can allow the user to make
changes on the extracted tables. I will explain you the latter by an example.

As the source file, I will use the paper [Riloff, 1999] with setting the page interval between
page 4 and page 18. On page 18 there is the following table, which is the table I want to be
extracted.

55

Figure 21: An example for a table with spanning columns

As you can see, this is a complex table in the sense that it contains spanning columns and a
header part with hierarchy level two.

After the program has extracted the tables in the file, the following interface appears.

Figure 22: User interface that appear after extracting the paper [Riloff, 1999]

As you can see, the GUI consists of a panel where the extracted information is displayed, and
of seven buttons which have various functionalities. First, I will explain the functionalities of
the buttons and then the part with the extracted information.

Next Table: There is always the possibility that a file contain more than one table. In such
cases the user might want to go through all the extracted tables to control and perhaps correct
them.

Previous Table: In some cases the user might want to go back and take a look at a previous
table and perhaps make additional changes on it.

56

Delete Table: Sometimes it can happen that the extracted information is not a real table or of
not interest for the user. If the user don’t want this part to be in the output file, a click on this
button is sufficient.

Merge with Previous Table: Many files contain tables that are laid out on consecutive pages.
Although the program consists of some rules for detecting such cases, it could happen that the
program fail in such a situation. With this button, the user can easily merge a table which
originally belongs to the previous table. In this context merge means that the actual table is
attached to the end of the previous table.

Apply Changes: After making changes to the table structure, the user must click this button
before closing the GUI or going to the next/previous table to apply these changes.

Edit Table: After clicking this button the following interface appears:

Figure 23: The interface that enables the user to change the table structure

This interface allows the user to insert additional rows/columns or to delete rows/columns in
the table, by easily setting the index number of the row or column.

Close: A click on this button terminates the extraction process for the actual input file and
closes the GUI.

Now, its time to explain the extracted information displayed in Figure 22. As you can see, the
extracted content is not a real table. In fact, it is the part of the file displayed in Figure 24.

Figure 24: Source of the extracted information in Figure 22

57

This part is extracted as a table because the pdf2html tool has extracted the string “2” as one
text element and the string “Trends in Information Extraction” as another text element, both
with the same top value. The same, for the line pointed at with the other arrow. Therefore, my
heuristic identifies the lines pointed at with arrows, as multi-lines. The texts between these
two multi-lines are identified as single-lines, and thus the heuristic merges the two multi-lines
and creates the look in Figure 22. In this case the “Delete Table” button could be used by the
user.

After deleting the table the next table appears on the screen.

Figure 25: Part of the user interface for the extracted information of the table in Figure 21

As you can see, this is the extracted information for the table in Figure 21 and it is extracted
correctly. Now, the user can change the table if she wanted to. There are several possible
changes. Either the properties of the cells or the structure of the table (i.e. number of rows and
columns) could be changed. To change the properties of a cell, the user has simply to click on
it. After clicking on a cell, for example on the cell at position [3,5], the following interface
appears.

Figure 26: Content of the cell at position [3,5] in Figure 25.

58

The user can change the following properties of a cell:

Content: The content of the cell can be easily changed by clicking on the text area and
change the text within.

Header: The pop-up menu allows the user to change the header to which the cell belongs to.
This pop-up menu is not accessible for all kinds of cells, but only for cells that are in the
header part of the table. If the cell is a header cell, it can be assigned to another header cell in
the hierarchy level above.

Assume, that the user will change the super-header (i.e., header element at the top level of the
hierarchy of the header part) of the cell at position [2,2] in Figure 25. After clicking on the
cell, the following interface appears where the pop-up menu is activated.

Figure 27: Interface for changing the properties of a header cell with an active pop-up menu

Now the user selects the entry that is empty which refers to the first cell in the table. After
applying the changes and closing the cell editing interface the following result is shown in the
GUI.

Figure 28: Part of the result after applying the changes in Figure 27

59

Columns spanning: The user can change the amount of columns the cell is spanning. If the
user increases the amount of the column spanning, the cell would only be extended and the
other cells originally been on the right side of the cell would be shifted to the right. The
program don’t verifies the new structure of the table, thus the user must be sure that the table
has, in the end, the structure he wants.

The location of the content of the cell: It could happen that some text that was identified by
the program as a cell, is not really a cell on its own, but belongs to another neighbour cell. In
such cases the user can easily merge the content of this cell to a cell above, below, left or
right. Whereas, merging means again attaching the content at the end of the neighbouring cell.

5.2.3 Experimental Results

I will add some source-result pairs which are the results of the testing process.

Figure 29: Example for a table with spanning columns

Figure 30: Output of my implementation for the table in Figure 29

60

Figure 31: Example for a table with a simple structure but with much text

61

Figure 32: Output of my implementation for the table in Figure 31

Figure 33: Example for a table with a more complex structure

62

Figure 34: Output of my implementation for the table in Figure 33 without any post-processing

Figure 35: Output of my implementation for the table in Figure 33 after post-processing with the GUI

63

Bibliography
Alexiev W. Data Integration Survey. Sirma AI Corp, 2004.

Angeles M.del P, MacKinnon L.M. Solving Data Inconsistencies and Data Integration with a
Data Quality Manager. Technical Report, Doctoral Consortium at BNCOD, 2004.

Bagga A. A Short Course on Information Extraction: A Proposal. Department of Computer
Science, Duke University, Durham, 1998.

Belkin N, Croft, B. Information Filtering and Information Retrieval: Two Sides of the Same
Coin?. Communications of the ACM, 35(12):29-38, 1992.

Bienz T, Cohn R. Portable Document Reference Manual / Adobe Systems Incorporated
(second printing). Reading, England: Addison-Wesley, 1996.

Borgida A. Information Integration. 2003.

Breu M, Ding Y. Modelling the World: Databases and Ontologies. Whitepaper by IFI,
Institute of Computer Science, University of Innsbruck, 2004.

Brujn J.d. Semantic Information Integration Inside and Across Organizational Boundaries.
Master thesis, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology, Netherlands. Digital Enterprise Research Institute, October 2003.

Cardie C. Empirical Methods in Information Extraction. Al Magazine, 18(4):65-80, 1997.

Chidlovskii B. Automatic Repairing of Web Wrappers. Proceeding of the Third International
Workshop on Web Information and Data Management, p.24-30, New York, NY: ACM Press,
2001.

Chinchor N.A. Overview of MUC7/MET-2. In Proceedings of the Seventh Message
Understanding Conference (MUC7), San Diego, GA, 1998.

Ciravegna F. Challenges in Information Extraction from Text for Knowledge Management.
IEEE Intelligent Systems and Their Applications, 16(6):88-90, 2001.

Cowie J, Lehnert W. Information Extraction. Communications of the ACM, 39 (1):80-91,
1996.

Del Bimbo A. A Perspective View on Visual Information Retrieval Systems. Proceedings of
the IEEE Workshop on Content-Based Access of Image and Video Libriaries. Washington,
DC: IEEE Computer Society, 1998.

Gaizauskas R, Wilks Y. Information Extraction: Beyond Document Retrieval. Journal of
Documentation, 54(1):70-105, 1998.

Gartner H.J. Extraction of Semantic Information from Layout-Oriented Data. Master's Thesis,
Graz University of Technology, Graz, Austria, October 2003.

64

Grishman R. Information Extraction: Techniques and Challenges. In Maria Teresa Pazienza
(Ed.), Information Extraction. Lecture Notes in Artificial Intelligence. München, Germany:
Springer Verlag, 1997.

Gross M, Converting From PDF To XML & MS Word: Avoiding The Pitfalls. Whitepaper,
2003.

Halevy A, Li C. Information Integration Research: Summary of NSF IDM Workshop
Breakout Session. Seattle, Washington, 2004.

Harman D. Overview of the First Text REtrieval Conference (TREC-1). National Institute of
Standards and Technology, Gaithersburg, Maryland, 1993.

Ingwersen P. Information Retrieval Interaction. London, UK: Taylor Graham Publishing,
1992.

Jhingran A.D, Mattos N, Pirahesh H. Information Integration: A Research Agenda. IBM
Systems Journal, 41 (4), 2002.

Kauchak D, Smarr J, Elkan C. Sources of Success for Information Extraction Methods.
Technical Report. Dept. of Computer Science, University of San Diego, 2002.

Klinkenberg R, Renz I. Adaptive Information Filtering: Learning in the Presence of Concept
Drifts. In learning Text Categorization, p: 33-40. Menlo Park, California: AAAI Press, 1998.

Kushmerick N, Thomas B. Adaptive Information Extraction: Core Technologies for
Information Agents. In Intelligent Information Agents R&D in Europe: An AgentLink
perspective, 2002.

Lenzerini M. Data integration: A Theoretical Perspective. Proceedings of the Twenty-First
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, New
York, NY, USA: ACM Press, 2002.

Leymann F, Roller D. Using Flows in Information Integration. IBM Systems Journal, 41 (4):
732-742, 2002.

Marsh E, Perzanowski D. MUC-7 Evaluation of IE Technology: Overview of Results. 1998.

Merz, T. Web Publishing with Acrobat/PDF. München, Germany: Springer Verlag, 1998.

Mresse, M. Information Retrieval – Eine Einführung. Stuttgart, Germany: Teubner, 1984.

Nohr, H. Grundlagen der Automatischen Indexierung: Ein Lehrbuch. Berlin, Germany: Logos
Verlag, 2003.

Olsson T. Information Filtering with Collaborative Interface Agents. Department of
Computer and Systems Sciences, The Royal Institute of Technology, 1998.

Pinto D, McCallum A, Wei X, Croft B.W. Table Extraction Using Conditional Random
Fields. SIGIR’03 Toronto, Canada, p.235-242. New York, NY, USA: ACM Press., 2003.

Pollitt A.S. Information Storage and Retrieval Systems: Origin, Development and
Applications. Chichester: Horwood, 1989.

65

Ramel J.-Y, Crucianu M, Vincent N, Faure C. Detection, Extraction and Representation of
Tables. Proceedings of the Seventh International Conference on Document Analysis and
Recognition (ICDAR’03), 2003.

Ray E.T. Learning XML. O’Reilly & Associates, Inc, 2001.

Rijsbergen C.J. van. Information Retrieval. London: Butterworths, 1979.

Riloff E. Information Extraction as a Stepping Stone toward Story Understanding.
Department of Computer Science, University of Utah, Salt Lake City, 1999.

Roy J, Ramanujan A. XML:Data’s Universal Language. IT Pro May 1 June 2000, p.32-36,
2000.

Salton G, McGill M.J. Introduction to Modern Information Retrieval. New York, NY:
McGraw-Hill, 1983.

Tupaj S, Shi Z, Dr.Chang C.H, Alam H. Extracting Tabular Information From Text Files.
1996. EECS, Tufts University, Medford, USA, 1996.

Voorhees E.M. Overview of TREC 2003. National Institute of Standards and Technology.
Gaithersburg, Maryland, 2003.

Wang Y. Document Analysis: Table Structure Understanding Zone Content Classification.
Doctoral dissertation, Washington University, 2002.

Weisz L. Adobe PDF Conversion: How, For Whom, And When?. Whitepaper, Data
Conversion Laboratory, www.dclab.com/pdf-conversion.pdf

Yang J, Kim J, Doh K.-G, Choi J. Wrapper Generation by Using XML-Based Domain
Knowledge for Intelligent Information Extraction. Proceedings of IJCAI-2001 Workshop on
Adaptive Text Extraction and Mining, 2001.

Nimble. Next-Generation Data Integration: Harnessing Data for Business Advantage.
Whitepaper, Nimble Technology, Inc. www.nimble.com.

Zisman A. An Overview of XML. Computing & Control Engineering Journal, p.165-167,
2000.

