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Kurzfassung

Diese Arbeit beschiftigt sich mit zwei stark vereinfachten Modellgleichungen
von Systemen geladener Teilchen.
Kapitel 1 behandelt ein Modell fiir Plasma in einem Kometenschweif:

atf+vvxf:QUf(f) :-Puf(f)_f (1)

Die kinetische Beschreibung der Teilchenverteilungsfunktion f(¢,x, v) mit den
unabhéngigen Variablen Zeit, Ort und Geschwindigkeit erlaubt die Einbezie-
hung von mikroskopischen Streuprozessen. Der konkrete Term Qu, (f) ist eine
Relaxationszeitapproximation komplizierter Streuintegrale [Stix|, [EJM], die
die Ablenkung von Teilchen aufgrund von zufilligen UnregelméfBigkeiten des
umgebenden Magnetfeldes modellieren. Der nichtlineare Projektionsoperator
(S%1 bezeichnet die Einheitskugel in R?)

1
Ry () = g [, Py Iv =yl do,

bildet auf Verteilungsfunktionen ab, deren Geschwindigkeitsverteilung isotrop
um die mittlere makroskopische Geschwindigkeit der Teilchen ist:

o (L) (o)

Ein verwandtes Modell stellt die BGK-N&dherung der Boltzmann-Gleichung fiir
die Dynamik von verdiinnten Gasen dar [Per|, [PP], [D].

Die erzielten Resultate basieren unter anderem auf [DP], [DLP], wo for-
male Eigenschaften und der formale hydrodynamische Limes von (1) zu den
Euler-Gleichungen fiir ideale Gase gezeigt wurden. Die Existenz von schwa-
chen Losungen von (1) wurde in [DLPS] fiir solche Anfangsdaten gezeigt, die
das Auftreten von Vakuum verhindern.

In Abschnitt 1.3 wird zunichst das Existenzresultat auf milde Lésungen
mit moglichen Vakuumsanteilen und auf allgemeinere Anfangsverteilungen er-
weitert. Die Beweise sind fiir (1) auf einem beschrinkten Gebiet mit glattem
Rand ausgefiihrt, lassen sich jedoch direkt auf den Ganzraum R¢ iibertra-
gen. Weiters werden lokale bzw. globale Erhaltungssitze fiir Masse, Impuls
und Energie sowie Entropiedissipationsgleichungen fiir Anfangsverteilungen
gezeigt, bei denen die auftretenden Flussterme wohldefiniert sind. Zentrale
Beweismethoden stellen “Averaging Lemmata” [GLPS] fir starke Konver-
genz von Momenten schwach konvergierender Losungsfolgen sowie die Lem-
mata von Egoroff und Gronwall dar. Abschnitt 1.4 zeigt die Konvergenz der
Losung auf kompakten, gegen unendlich verschobenen Zeitintervallen gegen ei-
ne Equilibriumsverteilung, d. h. eine Verteilungsfunktion die sowohl die linke
als auch die rechte Seite von (1) annulliert. Dieses Resultat wird ergidnzt durch
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die Konstruktion aller glatten Equilibriumsverteilungen (Abschnitt 1.5) und
deren Klassifizierung anhand ihrer geometrischen Struktur (Abschnitt 1.6).
Abschnitt 1.7 diskutiert die Einschrinkungen dieser Struktur, wenn zusétz-
lich reflektierende Randbedingungen erfiillt werden miissen. Im abschlieen-
den Abschnitt 1.8 werden aufgrund der formalen Verbindung zu den Euler-
Gleichungen fiir ideale Gase explizite Losungen ebendieser konstruiert.

Das Thema, des Kapitels 2 ist ein nichtlineares, dispersives Modellproblem

U + Uy = P, (2)
Prx = @ + u, (3)

(genannt Burgers-Poisson (BP)-System) fiir die Dichten u und ¢ abhéngig von
den skalaren Variablen Zeit ¢t und Ort z. Man kann (2), (3) als Studienmodell
von Zwei-Teilchen-Euler-Poisson-Systemen in der Plasmaphysik ansehen. An-
dererseits, wenn die Poissongleichung (3) mittels Green’scher Funktion gelost
und in die Burgers-Gleichung (2) eingesetzt wird, ergibt sich ein skalarer Er-
haltungssatz, der auch als Modell von Flachwasserwellen auftritt [Whi, Kapitel
13.14].

Abschnitt 2.2 zdhlt zunichst formale Eigenschaften des BP-Systems auf:
Die Erhaltung der Masse fR u dz, die Entropie fR u? dz, die Hamilton-Struktur
sowie die Galilei-Invarianz und die Verwandtschaft mit den Gleichungen von
Camassa-Holm [CH] und Benjamin-Ono [Ben], [Ono|. In Abschnitt 2.3 wer-
den die Wandernde-Wellen-Lésungen von (2), (3) konstruiert, die starke Ahn-
lichkeit zu jenen von Zwei-Teilchen-Euler-Poisson Systemen zeigen [CDMS1],
[CDMS2]. In Abschnitt 2.4 wird zunichst die Existenz und Eindeutigkeit von
lokalen, glatten Losungen fiir Anfangsdaten in H*(R) mit &k > % gezeigt. Des
weiteren wird die Existenz von globalen, schwachen Entropielésungen fiir An-
fangsdaten mit beschriankter Variation bewiesen. Im letzten Abschnitt 2.5 wird
der Limes € — 0 in BP-system mit umskalierter Poissongleichung

62(,0;$ — (,OS 4 us

betrachtet. Eine Chapman-Enskog-Entwicklung ergibt als Grenzgleichung eine
Burgersgleichung mit dispersivem Stérterm. Die Korteweg-deVries-Gleichung
tritt als Limes eines rdumlich und zeitlich umskalierten BP-Systems auf. So-
lange die Losung der Grenzgleichung glatt bleibt, kann die Konvergenz der
Losungen im Grenziibergang ¢ — 0 gezeigt werden.
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Chapter 1

The Cometary Flow Equation

1.1 Introduction

We investigate the following kinetic equation (called cometary flow equation)

at.f+v'vxf:Quf(f) :le(.f)_f, (1'1)

where f(t,x,v) denotes a nonnegative particle distribution function, depend-
ing on time ¢ > 0, on position x € @ C R? (d € IN, Q is either R? or a bounded
domain with piecewise C' boundary), and on velocity v € R?. The collision
operator Qu, is used in quasi-linear plasma theory as a simplified model for
wave-particle interaction in cometary flows. The map F, is a projection onto
the set of distribution functions isotropic around the mean velocity u:

RN = gy [, P v = ulu) do

with $%~1 and |S¢~!| denoting the unit sphere in R¢ and its (d—1)-dimensional
Lebesgue measure, respectively. By uy(t,x) we denote the mean velocity of
the distribution function f, which is defined as the fraction of the momentum
density my(t,x) through the mass density py(t,x):

2
Pf =/ fdv,  myp=pruy =/ vfdv,  prey =/ %fdv
R3 R3 R3
(1.2)
In the last therm of (1.2), ef(¢,x) denotes the specific internal energy. The
kinetic equation (1.1) is considered subject to initial conditions

f(O,X,V) = fO(XaV) ’ (13)

for (x,v) € Q x R For the initial data we shall use at least the following
assumptions:

Ip>1: foe (xR, fo>0, (1.4)
Ir>1: (1+]|v[")foe L'(Q xR, (1.5)

2
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while for a well-defined internal energy r > 2 is required. We impose reflecting
boundary conditions

f(t, x’ v) = f(t’ x, v,) ? (1'6)

for t > 0, x € 99, with specular or reverse reflection, i.e.,
a) v/ = v — 2(n(x)-v)n(x), orb) v = —v, (1.7)

where n(x) denotes a unit normal along 9€2.

For the physics modeled by (1.1), we refer, for example, to [EJM], [WJ1],
[WJ2] and [WSJG]. Let us only remark that the collision operator describes
the scattering of cosmic rays (energetic particles) against irregularities of the
ambient magnetic field in an astrophysical plasma [EJM]. These irregularities
are usually caused by plasma electromagnetic turbulence which generates a
random spectrum of waves and the resulting collision operator is thus referred
to as a waves-particle collision operator. The quasi-linear theory of plasma
[Stix] provides complex expressions of such operators. Here, we shall con-
sider a simplified relaxation time model, comparable to the BGK model of
gas dynamics [Per|, [PP]. We are treating a dimensionless version where the
relaxation time has been chosen as reference time.

A mathematical treatment of (1.1) has been started in [DP] and [DLP],
where (among other macroscopic limits) the hydrodynamic limit (i.e. the
limit ¢ — 0 after rescaling the variable ¢ — t/¢ and x — x/¢) has been com-
puted formally. They showed that the distribution functions f. converge in
the limit towards a function g(¢,x,|v — u|?/2) with the remarkable property
that the density p, and the internal energy e, together with u satisfy the Eu-
ler equations for ideal gases. In [DLPS], the whole space problem (2 = R%)
was considered and existence of weak solutions of the initial value problem is
proven. Also, macroscopic conservation laws, an entropy dissipation equality,
and the propagation of higher order moments is shown. For the initial data,
several strong assumptions are used in [DLPS], such as boundedness, exis-
tence of moments up to the second order and, most importantly, a positivity
assumption guaranteeing that vacuum is avoided.

In this chapter, we state firstly in section 1.2 Preliminaries, several previous
results on the cometary flow equation. In section 1.3 FEuxistence and Conser-
vation Laws, an existence theorem under milder assumptions than in [DLPS]
is proven. In particular, the occurrence of vacuum is allowed. Also the result
is stronger compared to that in [DLPS] in the sense that weak solutions are
shown to be mild solutions. Although the proofs are carried out for bounded
position domains with reflective boundaries, our results can be directly trans-
fered to the whole space problem. Moreover in section 1.3, we prove results on
the propagation of moments and on the validity of macroscopic conservation
laws, formally derived in section 1.2.

In section 1.4 Convergence to equilibrium, we prove that, on a compact
time interval shifted to infinity, the solution of (1.1)—(1.6) converges to an
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equilibrium distribution satisfying the boundary conditions (1.6). Equilibrium
distributions of the cometary flow equation are functions, which annihilate
separately both sides of (1.1), i.e. satisfy the free-streaming equation and lie
in the null-space of the collision operator Qu,(f).

This result is complemented in section 1.5 Smooth equilibrium solutions
by the computation of all smooth equilibrium solutions of (1.1). Assuming
differentiability, we show, that the equilibria of the cometary flow equation
are generalizations of the Maxwellian equilibria of the gas dynamics Boltz-
mann equation [D], [Cer] in the sense that they involve an arbitrary smooth
function 1/ instead of the exponential function of the Maxwellians. Contrary
to the Boltzmann equation, where Desvillettes [D] showed that the arbitrar-
ily large velocities components of the Maxwell distributions prohibit vacuum,
the equilibria of the cometary flow equation with compactly supported 1 may
include vacuum regions.

In the section 1.6 Classification, we classify all smooth equilibria in R?
by distinguishing four types according to different geometrical appearances.
Symmetry transformations are exploited to state simplified normal forms of
each type. For each type we discuss the behavior of the solutions especially
with respect to possible vacuum parts.

In section 1.7 Equilibria touching reflective boundaries, we identify firstly
all smooth equilibria on a bounded domain which satisfy the boundary con-
ditions (1.6) in a non-vacuum way. Secondly, we investigate equilibria where
non-vacuum parts are only locally in contact the boundaries.

It is a consequence of the hydrodynamic limit of the cometary flow equa-
tion that solutions of the Euler equations for ideal gases can be obtained as
moments (density, mean velocity and internal energy) of any cometary flow
equilibrium distribution. In section 1.8 Ezplicit solutions of 3D Fuler equa-
tions, we construct explicit solutions of the 3D Euler equations for ideal gases
and discuss them using the previous results.

1.2 Preliminaries

First, we collect some formal properties of the linear and nonlinear collision
operator (see, e.g., [DLPS]).

Lemma 1 (Linear collision operator) For arbitrary u € R%, f, g €
D(R?), ¢ € C%([0,00)),

(i) o(|v —u|) is a collision invariant of Qu:
[, Qe b av =0 (1.9

(ii) Qu is symmetric with respect to the L?(R%)-inner product:

Lautneav == [ auneuaav=[ rouar  09)
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(iii) By has the monotonicity property
a<fV)<b = a<R()v) <b (1.10)

Lemma 2 (Nonlinear collision operator) For arbitrary f € D(RY) with
pr >0, ¢ € C([0,00)),

(i) p(|v —uy|) and v are collision invariants of Qu,:
L QuO®elv ~ushav = [ Qu(Dvav=0, (111
Re Rd

(i3) Equilibrium: Qu,(f) = 0, if and only if there exist u € R? and F €

C§°([0,0)), such that f(v) = F(|v —u|?/2).

(iii) the following H-theorem holds: for monotonically increasing x,

QuUixn) v == [ 17 = Pup] ()~ x(Pals))] dv < 0.
Rd R4

The special choice x = pfP~ !, p > 1, leads to the entropy dissipation

equality
81:/ / fpdvdx = —p/ / [f —Puf(f)] [fp—l _Pu(f)p—l] dvdx ,
Q JRd q Jrd
(1.12)
playing a central role in our study of the convergence to equilibrium be-
low.

Remark 1 The statements of the above lemmata can be extended for less
reqular functions by density arguments, whenever the involved integrals are
well defined. This is the way those results and similar lemmata will be used in
the following.

Since the collision invariants of the form ¢(|v — us|) depend non-locally
on the distribution function they do not lead to conservation laws. The only
f-independent collision invariants of Qu, are linear combinations of 1, the
components of v, and |v|? since |v|> = |v — us|*> — |us|? + 2u;-v. Local
conservation laws (for mass py, momentum my, and energy Ey = fRd @ fdv)
are only produced by these:

Ps v
Oy | my —I—Vx-/ VRV fdv=0. (1.13)
E; RE\ y|v|2/2
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Note that, by the symmetry of the momentum flux tensor, we also have con-
servation of the d(d — 1)/2 components of angular momentum:

Bt/ (zivj — zjv;) fdv + Vx-/ v(ziv; — zjv;)fdv =0, (1.14)
Rd Rd

1 <4 < j < d. For the determination of globally conserved quantities in
(1.1)-(1.6), we have to consider the effect of the reflexive boundary. The
boundary conditions (1.6) conserve mass and energy such that these quantities
are globally conserved:

/Q(pEff )dxz/gz(?;o )dX- (1.15)

For reverse reflexive boundaries (1.7) b) no other conserved quantities are
known. In the case of specular reflection (1.7) a) the component of angular mo-
mentum corresponding to the index pair (i, 7) is globally conserved, if © has the
corresponding rotational symmetry, i.e., for (z1,...,2;,...,2;,...,24) € Q, all
points (z1,...,Tiy ... Tjy--.,Ta), T; = /T2 —I—x?cosw, Tj = \/2? —i—x?sin(p
and ¢ € R, also belong to 2. Then, for the flux of angular momentum through
the boundary 92 we have

/(,m /Rd(n v)(zivj; — zjv;) f dvdo 2/69($sz zjn;) /Rd(n v)“fdvdo =0,

since x;n; — xjn; = 0 in the rotationally symmetric case. Consequently,

/Q /R (g — o) f dvdx = /Q /R (v — a)fodvix. (116

More generally, every (d — 2)-dimensional affine space in R? can serve as 'ro-
tation axis’ instead of the subspace {z; = z; = 0}. Summarizing, the number
of globally conserved quantities in (1.1)—(1.6) is between 2 and 2+ d(d —1)/2
(the latter, when € is a ball with specularly reflecting boundary).

In the existence analysis, we shall use continuity properties of the collision
operator (derived in [DLPS)):

Lemma 3 (Continuity and stability of the projection operator)
Let 7>0,1<p,qg<o0, f€LI0,7); LP(Q x RY)). Then,

(Cont.) [[Pu(f)llLa(0,r); Le(axray) < I fllLaqo,r); Lr(axray) -
Let 1 < p,q < 0o, limy e uy, = u in LY((0,7) x Q). Then,
(Stab.)  lim Py, (f) = Pu(f) in LI((0,7); LP(Q x R%)).

To remove the restriction of positive densities as in [DLPS], we extend the
definition of the nonlinear projection operator.
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Definition 1 (Extended projection operator) Let f satisfy (1.4), (1.5).
Then Q(f) is defined as P(f) — f with

_ [ Ry(f) Jor pr>0
P(f) _{ 0" o s (1.17)

The pointwise definition of P(f) is obviously also well-defined in the LP sense.
Although u; is unbounded for p; — 0, the following lemma ensures the inte-
grability of the extended projection operator.

Lemma 4 Let f € LP(R?) with 1 < p < co. Then,

Jm IR, =0 (1.18)

Proof: Let ¢ € D(R?) be supported within a ball B(v,, R). Then,

2R

llelloo _ _
Rlo)) < T [ p O(<|vo—u|

2
) ) as [vo —u| - oo (1.19)
implies Timjy 00 1R ()lloo = 0. Since IRu(¢)lly = llells for all u € RY, we
know (1.18) for all testfunctions ¢ and the proof is completed by a density
argument. O

Lemma 5 Let f € L((0,7); LP(Q x RY)) for 1 < p,q < oo. Then, the
continuity property Lemma 3 (Cont.) remains true for P (instead of Py). Also
the statements of the lemmata 1 and 2 obviously remain true for @Q (instead

Of Qu and Qllf)'

In the existence analysis below, we use the semigroup 7(t) generated by
the free streaming equation

atf + V'fo - O,

subject to the initial data (1.3) and the boundary conditions (1.6). As shown in
[CIP], [BP], the unique solution f(t,x,v) = (T'(t) fo)(x,v) remains positive for
positive initial data fy and satisfies || f(¢,x, V)|, < | fo(x, V]|, for 1 <p < oo.
For 1 < p < oo, the solution operator T'(t) is a strongly continuous positivity
preserving contraction semigroup on LP(2 x R?).

A mild formulation of (1.1)-(1.6) is then given by the Duhamel formula

t
F(t) = et T (1) fo + /0 Ut — 5) P, (f)(s) ds. (1.20)

Note that solutions of (1.20) are also weak solutions on finite time intervals
(0,7) in the sense that [BP]

/ / f(Orp +v-Vxp) dvdxdt+// fop(t =0) dvdx
0 Jaxrd Q Jrd

:/O"T /{;XRd fQuf((p) dvdxdt, (1.21)
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for all testfunctions ¢ € D, which is defined as the set

P Cse([0,7) x Q x RY),
4 ¢ satisfies the boundary conditions (1.6).

We remark that since the boundary conditions are included in the set of test-

functions, we avoid the question of traces of the weak solutions [CIP, section
9.2].

1.3 Existence and conservation laws

The existence proof follows the approach of [DLPS] extended by a final step
where solutions with vacuum regions are allowed. As a first step we solve a
linearized problem.

Lemma 6 (Ezxistence of the linear problem) Let (1.4) hold and u €
L*>((0,00) x Q)3 be given. Then

t
ft) =e'T(t) fo + / ST (t — s)Pu(f)(s) ds (1.22)
0
has a unique nonnegative solution f € C(]0,00); LP(Q x R?)) satisfying

If Ol @xray < [[foll Loiaxmrey - (1.23)

Proof: Existence and uniqueness are the consequence of a standard contrac-
tion argument using the iteration

g1 (ta X, V) =e! (T(t)f())(x’ V)
gk(t) = €T (t) fo + [y e+ T(t — 5)Rulg—1(s)) ds,

where T'(t) denotes the solution operator of the free-streaming equation. The
iteration process ensures the nonnegativity. The estimate (1.23) follows from
the contractivity ||T°(¢)|| < 1, Lemma 3 (Cont.), and an application of the
Gronwall lemma. Continuity in ¢ is a straightforward consequence of (1.22)
and of Lemma 3. O

The next result is concerned with the propagation of moments in the linear
problem.

Lemma 7 (Propagation of moments in the linear problem) Let the
assumptions of Lemma 6 and (1.5) hold. Then, for the solution of (1.22),
(14 [v|")f € L§C.([0,00); L*(Q x RY)) holds.

loc
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Proof: In the weak formulation

/f(@tgo-i-v-vx(p) dvdxdt+// fop(t = 0)dvdx (1.24)
D Q JRre
~ [ Quipg dvixat,

D

of (1.22) we choose as a test function ¢(t,x,v) = 0(t)®(|v|?/V)(1+|v|") € D,
with 8 € C§°([0,7)), ® € C§°([0,0)), ®(y) =1 for y < 1, V > 0. Using
(@a+b)" <cp(a" +b"), we estimate

[ vnPanv<e [ 14 —ul +[aPuHdy (125
R4 Rd

= o / 1+ v —ul +[uf)fdv < C, / (1+ V[ + [u")f dv,
R4 Rd

where C, = ¢ + ¢, is a constant depending only on r. Since u is bounded, we
estimate further

Cr/ (14 |v]" + |u|")fdv < c/ (1+|v|]")fdv (1.26)
R4 R4

to show that the limit of (1.24) as V' — oo implies a differential inequality of
the form

G| [aswnhravacs<e [ [ o svax,

The proof of the lemma is now completed by an application of the Gronwall
lemma. O

Our first result for the nonlinear problem (1.1) assumes vacuum avoiding
initial data (like in [DLPS]).

Theorem 1 (Ezxistence on bounded domains without vacuum)

Let (1.4), (1.5) hold. Moreover, assume fo(x,v) > g(|v|) with g having
strictly positive density pg, > v > 0. Then (1.1) has a mild, global, non-
negative solution f € C([0,00); LP(Q x R?)) satisfying (1.23), (1 + |v|")f €
LE2([0,00); L' x BY), and uy € LiS,([0,00); L1(%).

loc

Proof: As in [DLPS], we introduce a velocity truncation

on(u) =

n‘% for |u| > n,

{ u for |u| < n,

(see also the temperature truncation in [Per] for the BGK-model). Let B, be
the closed ball with center at the origin and with radius n in L®((0,7n) x Q)¢.
Then a fixed point map G : B, — B, is defined in the following way: For
u € B, let f denote the solution of the linear problem (1.22) on the time
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interval (0,n). By Lemma 7, ps,my € L*°((0,n); L'(Q2)) holds. By the
positivity of the semigroup 7'(¢) and above positivity assumption we have

ft) > e T(t)fo > e ' T(t)g=e"g

and, thus,
pr®) > ety (1.27)

implying uy € L®((0,n); L'(2)). We define then the image G(u) := pn(uy).
As next step we prove compactness of the moments py and my. By Lemma
3 (Cont.), we estimate for the solution of the linear problem (lemma 6) that
the collision operator @, is uniformly bounded on (0,7) in LP(Q x R?) and
therefore

Of +v-Vyif € L®((0,n); LP(Q x RY)).

Moreover, we have |v|"f € L'((0,n) x © x R?) (lemma 7) and a velocity
averaging lemma [GLPS] implies that p; and m; belong to a compact set
in L'((0,n) x Q). Since p; is bounded away from zero and the truncation
¢n is continuous, G is compact with respect to the L!((0,n) x Q)-topology.
Continuity of G is a straightforward consequence of Lemma 3. The Schauder
theorem now guarantees the existence of a fixed point of GG, corresponding to
a solution f, of

fn(t) = e T (t) fo + /Ot SV (t — 5)Py, (fr)(s) ds, (1.28)

with u,, = ¢, (uy,). For passing to the limit n — oo, we need uniform bounds
on moments of f,. We proceed as in the proof of Lemma 7 with u, and f,
instead of u and f and the testfunction (¢, x,v) = 8()®(|v|?/V)(1 +|v|") €
D; with 6 € C§°([0,7)), ® € C§°([0,00)), ®(y) =1 for y < 1, V > 0. The
estimate (1.25) holds unchanged:

[+ MIPa ) dv < e [ (v = ual + 0l P (fa) dv

R R

e /d(l 1V = "+ [ frdv < G, /d(l V[ + [l v
R R

where C, = ¢ + ¢, is a constants only depending on 7. Only the estimate
(1.26) needs to be redone without using boundedness of the velocity u,,. Since,
obviously, |u,| < |uy,| holds, we estimate

C, / (L4 V7 + [unl) fndv < ¢ / (1 + [v[") fudv,
R4 Rd

where we have used
priugl < [ fav,
Rd
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an application of Jensen’s inequality (for the convex function v — |v|” with
the measure f/py) which applies here and avoids the use of more elaborated
controls like Perthame and Pulvirenti in [PP] for the BGK-model. As in
the proof of Lemma 7, the Gronwall lemma leads to uniform-in-n bounds
for moments of f, up to the order r in L®((0,7); L'(Q)). Since, by (1.27),
pr.(t) > e Ty for 0 < t < 7, uy, is also bounded in L*®((0,7); L'(f))
uniformly in n. Compactness of uy, is deduced as above using an averaging
lemma and therefore a subsequence converges strongly in L!((0,7) x Q). The
convergence in L'((0,7) x Q) of u, = ¢, (uy,) to uy (where f is the weak limit
of f) is shown as in [DLPS]. The limit n — oo in the weak version of (1.28)
(compare (1.21)) can now be carried out (applying Lemma 3), and the proof
is complete. W
The next theorem removes the positivity assumption on the density.

Theorem 2 (General existence on bounded domains) Let (1.4), (1.5)
hold. Then (1.1) (with Qu, replaced by Q) has a mild, global, nonnega-
tive solution f € C([0,00); LP(Q x R?)) satisfying (1.23) and (1 + |v|")f €
Li5,([0,00); L'(©2 x RY)).

Proof: For n € IN, the modified initial data

fon(x,v) = fo(x,v) + %6_“"2

satisfy the assumptions of Theorem 1 guaranteeing the existence of a weak
solution f, of (1.20) (with fy replaced by fo,). Note that fo, satisfies (1.4)
and (1.5) uniformly in n.

By (1.23), fn is bounded in L*((0,00); LP(Q2 x R%)) uniformly in » and,
thus, a subsequence converges weakly to a limit f. Compactness of the mo-
ments up to order 1 is deduced as above using the bounds of the moments
of the solution (theorem 1) and a velocity averaging. Hence, for a subse-
quence we have strong convergence of p;, — py and my, — my in LY(Q) with
G = (0,7) x Q. By the Egoroff theorem, we extract a further subsequence
pf., which converges almost uniformly on G, i.e., for every ¢ > 0 there exists
A, C G with |A;| < € such that pj, converges to p; uniformly on G\ A.. The
set G\ A¢ is now further decomposed into subsets

Ve i={(t,x) € G: ps(t,x) < e}, N, = {(t,x) € G: ps(t,x) > ¢e}.

For a test function ¢ € D;, the integral

/ (P(fa) — P(f))pdtdxdv (1.29)
GxRd

is split into three contributions according to the decomposition G = V, U N; U
A.. For the first “almost vacuum” part, we have the estimate

/A Rd(P(fn) — P(f))pdtdxdv| < (26 + a,)T|Q| sup |p],
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with a, — 0 as n — oo, by Lemma 3 (Cont.) and the uniform convergence
of the density. In N, u, = my, /py, is well defined for n large enough and
converges to uy in L'(N.). By the symmetry property Lemma 1 (ii), the
second “non-vacuum” contribution to (1.29) can be written as

/ (fnPu, (¢) = fPu,(p)) dt dx dv
N, xRd

which converges to zero for n — oo by the weak convergence of f,, the strong
convergence of u,, and by Lemma 3 (Stab.). Finally, the third contribution
to (1.29) is estimated by

[P - PO)pdedx s
A xR

< suplwI/A (bt +py)didx.

The right hand side and, thus, (1.29) tend to zero for n — oo, ¢ — 0 by the
convergence of py, to ps and by |N,| < e. This proves that we can pass to the
limit in the weak formulation of the problem for f,. B

In the last result of this section the formal computations of section 2 con-
cerning entropy dissipation and conservation laws are justified.

Theorem 3 (Propagation of moments) Let the assumptions of Theorem
2 hold. Then:

(i) The entropy dissipation equation (1.12) holds.

(ii) Let v > 2 for the initial data in (1.5). Then, the global conservation of
mass and energy (1.15) and the global conservation of angular momen-

tum in the case of specular reflection and rotational symmetry (1.16)
hold.

(iii) Let v > 3 for the initial data in (1.5). Then, the local conservation laws
(1.13), (1.14) hold in the distributional sense.

Proof: To show the entropy dissipation equation (1.12) we note that the
H-theorem (2) (iii) with x = pfP~! holds by lemma (3) (Cont.) since f €
C([0,00); LP(Q x R4)) and

<plIPA P72, + 2l < 2017115

/ QUf)pfP "t dv
Rd

and an analogous estimate for [(f—p(f))(f? !—P(f)?"!) dv on the right hand
side of (2) (iii). We multiply now (1.1) with pfP 1. Since f and 8;f + v-Vyf
belong to C([0,00); LP(©2 x R?)) we have as in [DLPS]

(Ouf + V-V f)pfP~! = O f? +v-Vx fP.
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Integration with respect to x and v gives then (1.12). As example for a
global conservation laws we consider the conservation of energy in the weak
formulation

/ / f(8t<p+v-Vx<p)dtdxdv-|—/ /deQ(f)dtdxdv:
0 JaxRre 0o Ja

/ fop(t =0)dxdv.
QOxR4

As in lemma 7 we choose as testfunction (¢, x,v) = 0(t)®(|v|?/V)(1+|v|") €
D, with 0 € C§°([0,7)), ® € C§°([0,0)), ®(y) =1 fory <1, V > 0. In the
limit V' — 0 the second and the third term on the left hand side vanish which
completes the proof. For the local conservation laws we remark that we need
the assumption r > 3 to control the energy flux since a dispersion result as
used in [DLPS] applies only for the whole space problem.

1.4 Convergence to equilibrium

The following theorem corresponds to the results of Desvillettes [D] for the
gas dynamic Boltzmann equation.

Theorem 4 Let the assumptions of Theorem 2 hold with r > 2 in (1.5).
Then, for every sequence t, — 0o, there exists a subsequence (again denoted
by tn), such that, for every T > 0, fn(t,x,v) := f(t,+1,x,V) converges weakly
in LP((0,T) x Q x RY) to fuoo(t,x,Vv). Moreover, foo(t,x,v) is an equilibrium
solution of the free streaming equation satisfying the reflection boundary con-
ditions:

Q(foo) = O,
f(O,T)xQled foo(Orp + v-Vxp) dvdxdt =0,

for every ¢ € C§°((0,T) x Q x R?) satisfying the boundary conditions (1.6).

Proof: We first prove the result with a subsequence possibly depending on
T. Then the statement of the theorem follows from a diagonal procedure.

The weak convergence of f,, (up to a subsequence) to a limit f., follows
from the boundedness of ||f(t,-, )| 1r(oxre) uniformly in time. By Theorem
3 (ii), py, and Ey, are bounded in L'((0,T) x ) uniformly in n. The same
holds for my, by the interpolation

pr+ Ef
=

For passing to the limit n — oo we proceed exactly as in Theorem 2. Using
a velocity averaging lemma for strong converges of moments and a vacuum-
nonvacuum parts decomposition we prove that

Otfoo + V- Vxfoo = Q(foo)

lmy| < \/prEf <
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and the boundary conditions hold in the weak sense indicated in the formu-
lation of the theorem. To prove f,, to be an equilibrium distribution, we
apply the entropy dissipation equation (1.12) (valid by Theorem 3 (i)). As
a first step we note that the assumptions (1.4), (1.5) imply the validity of
assumption (1.4) also for every g between 1 and p by interpolation. Let us
pick, in particular, ¢ = min{p,2}. The entropy dissipation equation (1.12)
then implies

/ooo /Q /R [£ = PO[17! = P(F)T] dvdxdt < oo,

and, hence,

/oT/Q/Rd [fo = P(f)][f4" = P(fa)" "] dv dxdt

converges to zero. The convexity and definiteness of the function C(z,y) =
(r —y)(z9 !t —y? 1) for 1 < ¢ <2 and the weak convergence of f, and P(f,)
allow to pass to the limit and conclude

foo:P(foo)a

completing the proof. B

Let us remark that we could not show stronger convergence results in-
cluding the rate of convergence by an entropy-entropy dissipation approach
for non-homogeneous kinetic equations, recently developed and carried out for
linear Fokker-Planck equations by Desvillettes and Villani [DV]. The reason
relies on the nature of the collisions, for which in the homogeneous case all
isotropic functions are solutions. As a consequence the set of equilibria, con-
structed in next section 1.5, is infinite dimensional. On the other hand, we
have only a finite number of conserved quantities and the large time limit
cannot be determined uniquely from the initial data which inhibits attempts
like in [DV].

1.5 Smooth equilibrium solutions
In this section we compute all smooth solutions of the system
of+v-Vxf =0, Q(f)=0. (1.30)

We remark that we do not see how to close the gap between the above weak
convergence result and the consideration of smooth solutions.

We distinguish between subsets of (¢,x)-space where the density p; (and,
thus, the distribution function f) vanishes and where p; is positive. The
following arguments holds for a connected component D C R¥1 of {pf >
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0}. Then, by Q(f) = 0, there exists a mean velocity u(t,x) and a function
F(t,x,€) such that

_ [v —u(t,x)|?
fit,x,v)=F <t,x, f) .

Substituting this representation into the free streaming equation and intro-
ducing the change of variables v +— (§,w) € [0,00) x S% 1, defined by
vV =u+ w2, gives

—(260: F)w'" (Vxw)w + /2 w-(Vy F — 8:FDyu) + D,F =0, (1.31)
3 3

where w'" is the transpose of w and the material derivative is denoted by
Dy = 0y + u-Vx. We exploit this equation using the following simple linear
algebra lemma.

Lemma 8 Let A € R4 gnd b € RY. Then
w"Aw+wb =10 for allw € S%1 (1.32)
holds iff b =0 and A is skew-symmetric.

Proof: The matrix A can be replaced by its even part A = 2(A+A") in
(1.32). The odd part can be arbitrary. By a rotation of w, A can be assumed
as diagonal. The choices w = +e;, j = 1,...,d prove A=b=0. 1

Keeping (t,x,¢) fixed and varying w € S%~! in (1.31), we deduce that

Vs F = 0¢FDyu (1.33)
holds, and that the matrix
A = D,F1-20:FVyu
is skew-symmetric. Application of the curl to (1.33) leads to
0 = (B¢Op, F Dyu; — g0, F Dyui;) + O F (0, Dyuj — Oy, Dyus)

for 1 <4 < j <d. Using (1.33) again for the computation of the components
of V4 F shows that the first term vanishes. Also the existence and positivity
of the macroscopic density in D implies that for every (¢,x) € D there exists
& > 0 such that 0¢F(t,x,§) # 0. Thus, the second term, curl of D;u vanishes
in D. This implies that locally in D a potential g(¢,x) exists such that

Diu = Vxg

holds. Inserting the above relation into (1.33) gives Vi F — 0¢FVyg = 0 for
which the method of characteristics implies directly that F' can be written as

F(t,x,¢) = Fy(t, 2) with  z=&+g(t,x). (1.34)
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The fact that the diagonal elements of A vanish, imply that the diagonal
elements of Vyu are identical: Oy ,ui(t,x) = o(t,x). Using D,F = 0,Fp +
0,FyDig and £ = z — § we calculate

A, = OuFpy + BzFo(Dtg + 209 — 202’) =0. (135)

Similarly to above, we argue that for every ¢ in the projection of D onto the
t-axis there exists a z-interval of positive length, such that 0, Fy(¢,z) # 0. This
implies that the coefficients D;g + 20§ and o in (1.35) are independent of x.
We may apply now the following lemma,

Lemma 9 Let 0;Fy + 0,Fy ((Dg + 20g)(t) — 20(t)z) = 0. Then,

Fo = ¢(a(t)z + B(1)), (1.36)
where |a|(t) = exp(— f(f 20(7)dt) and thus cannot become zero.

Proof: Assume as Cauchy data Fy;(¢) on a non characteristic curve I' =
{(t0(¢), 20(¢))}. With the notations A(t) = f(f 20(7) dt and B(t) = ffo(O(Dthr

20§)(7)e A7) dr, the method of characteristics defines the coordinate trans-
formation

2(t,¢) = 20(¢)e~At(QA®) 4 g(1)eA) (1.37)

At least within a region where the method of characteristics succeeds, we
may follow the characteristic lines to transform the general Cauchy data into
equivalent data given on #y(¢) = const and the constant can be set to be zero.
By (1.37) we have then ¢ = 2z, ' (a(t)z+8(t)) and the method of characteristics
implies Fy = Fp;(¢) = ¥ (a(t)z + B(t)). O

Combining the above lemma together with (1.34) shows that F(¢,x,v) can
be written as function ¥ («a(t)¢ + ¢(t,x)) with ¢ = ag + S. Returning to the
equation (1.35) A;; = 0, we deduce by comparing the coefficients in ¢

da — 20a (1.38)
Dig=0. (1.39)

More information on the form of a(t) and g(t, x) is derived similarly to Desvil-
lettes [D]. We define the vector field u(¢,x) — o(¢)x and observe by 0, u; = o
and the off-diagonal elements of A that the gradient of the vector field is
skew-symmetric. Hence, lemma 1 in [D] ensures

u(t,x) =o(t)x + A(t)x + C(t)

with a skew-symmetric A(t) and a vector field C(¢). This representation is
inserted in
Vxg = aDu, (1.40)
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which is a consequence of (1.33). It is then necessary for the right hand side
of (1.40) to be a gradient that the skew-symmetric part must vanish. Using

(1.38) and the abbreviation % =’ this leads to:

!
A+ %A —0 = A(l) = Ag/alt),

where Ag is an arbitrary constant skew-symmetric matrix. Next, (1.40) is
integrated with respect to x:

" "2 !
g(t,x) = (O‘I - %) Ix|? % (Aox)* + <aC' +5C +A0-C> x -+ go(t),
(1.41)
where go(t) is the constant of integration. In a final step, (1.41) is substi-
tuted in (1.39) where the left hand side becomes a quadratic polynomial in x.
Equating coefficients to zero gives:

a"=0 = aft) = at? +2bt + ¢
1
(@C)" =0 = C(t)=—(A+B(t+¢)
e’
ag() ]. 2 I_ . (67 2
5 + 5 (aC?) =0 = go(t) = _EC + const.

Altogether, a smooth equilibrium distribution function can be written in the

form
|V B ll(t, X)|2

x,v) = (o™= 1 g (142

There exist three constant scalars a,b, ¢ € R, two constant vectors A,B € R?,
and a constant skew-symmetric matrix Ay € R4*¢ such that

alt) = at’+2bt+c,

ac — 2 X2 X2
g(t,x) = a(t)b %—'?ao(tg (1.43)

Lo ‘X_|At+B|2
+ (A + o) (Ao — at — b)(At + B)) “oa()
u(t,x) = ﬁ((at +b)x+ Aox + At + B).

So far this holds only locally in D. We intend to make the result global. Let
us consider the intersection of the domains of two local representations of the
form (1.42), (1.43). We shall prove that the function % and the constants
have to be the same in both representations. However, an obvious source of
non-uniqueness has to be eliminated first. We require a normalization of the
coefficients of a(t): a® + b2 + ¢ = 1. This can be achieved by a rescaling of
the argument of .
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The mean velocity u(t,x) has to be the same in both representations and,
thus, also the diagonal elements o/ /(2a) of its gradient. With the normaliza-
tion condition this implies that «(t) and therefore also the coefficients a, b,
and c are the same. Now it is an easy consequence of the formula for u in
(1.43) that also the other coefficients Ay, A, and B are the same. Finally, we
conclude that the functions ¢ in both representations have to be identical.

Summarizing, we have proven the following.

Theorem 5 Let f be a smooth solution of (1.30), and let D be an open con-
nected subset of R4 where py is positive. Then f can be written as

F(t,x,v) = ¢ (a(t)é(t,x,v) + g(t, %)), (1.44)
where 1 € CL(R) is an arbitrary function. It depends on a(t)
aft) = at® + 2bt + ¢, a,b,c € R, (1.45)

the quadratic form g(t,x)

1 1 1
g(t,x) = 2—xT-(acI +A%)x+ (A + E(A —at) (At + B)) xX— o (At + B)?,

¢ (1.46)

R3*3 is a skew-symmetric

where A, B € R? are two constant vectors and A €
constant matriz and on the velocity modulus

£(tx,v) = %|v — (1.47)

The wvelocity dependence (1.47) reflects the isotropy of F around it’s mean
velocity

u(t,x) = — (A-x+ (at + b)x + At + B). (1.48)

1
e
Remark 2 The above formulas are only valid for times t such that a(t) # 0.
Without loss of generality, we restrict ourself to a(t) > 0 which requires either
a>0,ceRora=0,c>0. Ifc <0, we consider solutions only for times

t € (\/|c|/a,00).

1.6 Classification of smooth equilibria in R?

The number of relevant parameters in (1.44)-(1.48) can be minimized by means
of four symmetry transformations:

S1 Invariance under translations in time ¢t — ¢ + tg, top € R,
S2 Invariance under rotations R € O(3) in phase space x — R-x,v = R-v,

S3 Qalilean invariance x — x + xg + vot, v = v + vg, with xg, vo, € R® and
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S4 Invariance under rescalings (t,x, v) — (kat, k1 kox, k1v) and ki, ko € R\{0}.
The invariance under time translations S1 allows to set
b=0

in (1.45).

A skew-symmetric matrix in 3D has an eigenvector L associated to the zero
eigenvalue and defines the vector product z x L = Az for z € R? provided that
we normalize L such that |L| = ||A]|. The rotational symmetry S2 permits to
choose a coordinate system in which L = (A,0,0) with A := |L| = ||A]|. It is
useful to define a orthogonal decomposition for vectors z according to L and
it’s orthogonal complement:

z = u,L + Pz, pz = Loz /)2,

where P+ denotes the projection of z on the orthogonal complement of L. For
the matrix of the quadratic form (1.46), we use A%2.z = —\2P1z and obtain

(acl + AZ) -z = acp,L + (ac — )\2) Plz. (1.49)

Hence, the matrix acl + A? is regular if and only if ac # A? and ac # 0.

It is convenient to classify all equilibrium distributions into four types
corresponding to the rank of acl + A? in {3,2,1,0}. Each type will be further
simplified to a normal form using the symmetry transformation S3 and S4.

Type 1 denotes the case where acl + A? is regular. We firstly apply the
Galilean transformation S3 in order to determine xy and v such that the
linear x-terms in (1.46) vanish. Using (acl+A?)~! = (I — A?/(ac — A?)) /(ac)
(a consequence of (1.49)), we calculate xg = (acl + A%2) " !(—cA — AB) and
vo = (acl + A?)~}(aB — AA) and obtain

g(t,x) = 5=xT (acl + A?)-x, (1.50)
u(t,x) = %x + éA-x + vy, (1.51)

where we have dropped a constant term in (1.50), which can be drawn into
1. Rescaling S4 allows to normalize a,c¢ and v in (1.50) and (1.51). In the
generic case vo € R3/{0}, we set ko = /|c|/a and ki = |vo|. Then, after
rescaling A to \/M ), the factor |c|k? appears as a common multiplier of a¢
and g in (1.44) and thus can be drawn into the arbitrary function ¢. In the
special case vg = 0, k1 can be chosen arbitrarily. Altogether we have

Proposition 1 (Type 1: Normal Form) Assume ac # 0, ac # \? and
s = sign(c) in (1.44)-(1.48). Then, by using the symmetry transformations
S1-S4 with L = (\,0,0), the equilibrium distributions (1.44)-(1.48) can be
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Figure 1.1: Type 1: Hyperboloid shaped quadrics

Fig. 1.1.1: Hyperboloid Q(—6) for Fig. 1.1.2: Hyperboloid Q(1) for (1.52)
(1.52) with A=2,s=1,t; = 0,42 =5 with A\=2,s=1,t, = 0,ts = 7.5

transformed to

F=4(a+g),
at) =(s+1%),  &=|v-ul/2
u(t, x) = (%t LalAzs wst;*“) +vo (1.52)

9(t,x) = 55 (27 + (s — A?)(23 + 23))

with the parameters 1 # X\ € R, vo € S?2(R*) U {0} and s € {-1,1}. (1.52)
is valid for times t such that a(t) > 0.

To visualize equilibrium distributions we use that F(t,¢,x) depends on
x only through the quadratic form g(¢,x). Hence, the distribution function
F(t,&,x) is the same for all z € Q(g(t,x)), where

Qlg) :== {x e R’ : g(t,x) = g}

denotes the level sets of g(¢,x), which are closed quadrics for all types of g(t,x)
in (1.46). We remark that considering F'(t,v,x) we know only F(t,v,x) =
F(t,w,y) with |[v —u(¢,x)| = |w — u(t,y)|.

In this work, we are especially interested in equilibrium distributions ' =
P(a€ + g) with supp(¢) C (00, go] and gg < oo, since then ¥ (aé + g(t,x)) =0
for all x where g(t,x) > go: i.e. vacuum expands from the boundary Q(go) to
the side where g(t,x) > go-

For equilibrium distributions of type 1, the quadrics QQ are hyperboloids for
A2 > s =1 (Fig. 1.1.1, Fig. 1.1.2) and ellipsoids for A2 < s = 1 (Fig. 1.2.1)
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and for s = —1 (Fig. 1.2.2). All these four pictures show one quadric at two
times t1 < t5. Q@ at time t; is drawn in the brightest grey-level, while Q) at to
is plotted with differently colored in- and outside to indicate side of possible
vacuum (darkest gray-level). Fig. 1.1.1 shows expanding vacuum due to strong
rotation around the z; axis. In Fig. 1.1.2, the vacuum is pushed outside by
rotating particles expanding from the center. In Fig. 1.2.1, the influence of
the rotation is weaker and the particles spread out into all directions. The
case s = —1 (Fig. 1.2.2) is different and shows an expanding vacuum ellipsoid,
since all particles have outgoing velocities. One could imaging an explosion at
time ¢ = 1 which forces the particles outward and leaves nothing than vacuum
at the origin.

Figure 1.2: Type 1: Ellipsoid shaped quadrics

Fig. 1.2.1: Ellipsoid Q(9) for (1.52) Fig. 1.2.2: Ellipsoid Q(—20) for (1.52)
with A = 05,8 = 1,t; = 0,45 = /2 with A=1,s = —-1,t; =1.2,¢2 = 1.7

Type 2 denotes the case rk(acl + A%) = 2, where ac = 0 and A\? # 0. By
(1.49), the matrix (acl + A?) has a one-dimensional kernel in the direction of
L. As a consequence, the Galilean invariance only permits to find coordinates
such that P+ A, P'B vanish in the linear part of (1.46).

Firstly, if @ = 0 (implying ¢ > 0) we set xo = A72 (cPYA + AB) and
vo = A"2AA and obtain

u(t,x) = %A-x + v+ % (ALt + psL), (1.53)
g(t,x) = £xT-A?-x + paL-x — o (+palit + pBL)?, (1.54)

where pa,puB € R and vg € PH(R3). In the generic case pa # 0 and ug # 0,
we normalize (1.53) and (1.54) by setting k1 = pa, k2 = pn/ua and rescaling
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A to |¢/ke|A. If either o = 0 (where we set k1 = pup/c,ke = ¢) or ug = 0
(k1 = pa, ke = c¢) or pua =0 = pp (k1 = 1,k2 = ¢), we obtain normalized
forms of (1.53) (1.54) without the corresponding vanishing terms.

Secondly, if ¢ = 0 (and therefore a > 0), we choose vo = A\"2AA — \~2aB
and xg = A"2AB and calculate

u(t,x) = # (A + at)-x + vo, (1.55)
g(t,x) = gozxT-A%.x — EBL.x, (1.56)

where up € R and vo € R®. If ug # 0, we set k; = pus+/a, k2 = 1/y/a and
rescale A to A\y/a to normalize (1.55) and (1.56). If ug = 0, we set k; = 1.
With the notation m4, mp € {0,1} as normalization of ua, us, we collect the
two above cases in

Proposition 2 (Type 2: Normal Forms) Firstly, assume a = 0, ¢ >
0, A2 # 0 and s = sign(uaps) in (1.44)-(1.48). Then, after applying the
symmetries S1-S4 with L = (X,0,0), the equilibrium distributions (1.44)-
(1.48) have the form

F=4(v-ul+g),
u(t,x) = (mart + mpA, sAz3, —sAz2) + vo (1.57)
g(t,x) = 2madzy — N2(23 + 22) — A2(mat +mp)?,

with the parameters X\ € RT, vo = (0,v,w) with v,w € R, ma,mp € {0,1}
and s € {—1,1}. Secondly, assume a >0, c =0 and A2 # 0. Then,

F=14(t*v—u|l+g),

u(t,x) = (%, 2EAS TR 4y, (1.58)
g(t,x) = —2mpAZ — % (23 + 23),

with the parameters A € RT, vo € R, mp € {0,1} and t # 0.

The quadrics @Q of type 2 are either paraboloids (m4 =1 in (1.57) and mp =1
in (1.58)) or cylinders (my = 0 in (1.57) and mp = 0 in (1.58)). (1.57)
covers situations with expanding particles while (1.58) deals with expanding
vacuum solutions. As example, Fig. 1.3.1 shows a vacuum paraboloid being
overwhelmed by particles from the right. The cylinders in Fig. 1.3.2 may
include vacuum and expand due to the rotation of the particles outside.
Type 3 where rk(acl+A?) = 1 is complementary to the second type, since
now ac # 0 and ac = A\2. The Galilean transformation simplifies only in the
direction of L. We choose vo = A 2augL and xg = —A2cuaL to obtain:

u(t,x) = %x—l— éAx +vo + é (Pt (At+B)),
g(t,x) = 5= (x-L)* + 1 (—aP'Bt+cP*A+ A(At+B))-x —
2
> (PL(At+B))”,
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Figure 1.3: Type 2: Paraboloid and Cylinder shaped quadrics
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Fig. 1.3.1: Paraboloid Q(—18) for Fig. 1.3.2: Cylinder Q(—2) for (1.58)
(1.57) with A = 0.9,ma = 1,mp = with A\=1,mp =0,t =2,t, =5
0,t1 =0,t2 =5

with the parameters: a > 0, ¢ > 0, ug € R and P*A, P'B € P-(R3). We
normalize by setting k1 = 1/y/ac, ko = /c/a in S4, where we rescale A to
vach and B to kyB.

Proposition 3 (Type 3: Normal Form) Assume ac # 0 and ac = N2 in
(1.44)-(1.48). Then, using the symmetries S1-S4 and setting L = (A,0,0),
P+A = (0,a9,a3), P*B = (0,by,b3) and vo = (v,0,0), the equilibrium dis-
tributions (1.44)-(1.48) have the normal form

F=94(1+#)|v-—u|+g),

t t t+b t— t+b
u(t, x) = (Zbige, wlisrtprit sttt ) (1.59)

g(t,x) = liﬁ ()\%% +2((az — b2)t + ag + b3)z2
—2((a2 + b3)t —asz+ bz)mg — (azt + b2)2 — (agt + b3)2),

with the parameters as,a3 € R, by,bg € R, A € RT and vy € R.

As shown in Fig. 1.4.1 for (ag,a3) = (1,0) and (b, b3) = (0,1), the quadrics
Q@ of type 3 are parabolic shaped hyperplanes, which rotate around an axis
orthogonal to the symmetry plane of the parables. Vacuum is created and
erased by the rotation.

In type 4 with rk(acl + A%) = 0, the quadratic form g(t,x) degenerates
to a linear function. In the case a = 0, we use the rotational symmetry such
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Figure 1.4: Type 3 and 4: Parabolic shaped hyperplanes and planes

10+

—10 1

Fig. 1.4.1: Q(—2) for (1.59) at times Fig. 1.4.2: Planes Q(0) for (1.60) with
t1 =0,t2 =0.5,t3 =1,t4 = 1.5 me = 1 at times ¢t; = 0,2 = 4.5

that A = (|A|,0,0) and set vo = %B for the Galilean invariance to obtain
1 1 2.9
u=vo+-At,  g(t,x) = |Alz — |4t
c 2c

If |A| # 0, we normalize applying rescaling S4 with k1 = 1 and k2 = ¢/|A|.
In the other case ¢ = 0, we rotate the coordinates such that B = (|B|, 0, 0)
and set xg = —1 A which implies
x 1 |B| 1
-24+_-B t,x) = -z, — —_|B
u=g B b =—Tra el
If |B| # 0, we normalize with k&; = |B| and ky = 1/4/a in S4. With the
notation m4,mp € {0,1} as normalization of |A| and |B| we state

%

Proposition 4 (Type 4: Normal Forms) Assume a = 0 and A = 0 in
(1.44)-(1.48). Then, the equilibrium distributions (1.44)-(1.48) reduces to

F=¢(v—-ul+g),
u(tax) = (mAtaO,O) + Vo, g(tax) =2maz; — mAtza (160)
with the parameters ma € {0,1},vg € R3. Ifc = 0,A = 0 in (1.44)-(1.48),
then

F:¢(t2‘v_u|+g),

u(tax) = (ZItj—ZmBa %a J;Ts)a g(t,x) = _2mBJ;5_1 - TTB, (161)

with the parameter mp € {0,1} and t # 0.
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For m4 = 1 and mp = 1, type 4 describes planar fronts of particle, as depicted
in Fig. 1.4.2. In the trivial cases m4 = 0 and mp = 0, the equilibrium is
homogeneous.

For the sake of completeness we finally discuss briefly the coexistence of
two (or more) equilibrium distributions where the non-vacuum regions are
separated by vacuum. Suppose the equilibrium F' is written as sum of two
equilibria 11 and 12 which are disjunctly supported at some time 3. Consider
moreover the generic case where 101 and 19 are described by differently shaped
quadrics Q(g(t,x)) in the (¢,x,&)-variables. Then the particles cease to be in
equilibrium as soon as the formerly separated particle regions merge. The
argument is a contradiction which has to be expected since the nonlinear
equilibrium condition Q(f) = 0 shall not permit superposition. Assume the
merged particles are in equilibrium. Then, their equilibrium distribution is
describted by quadrics defined by the intersection of the quadrics of 4, and
9. But since these quadrics are different, the intersection quadrics cannot
coincide with the original quadrics outside.

A special case where the above contradiction does not apply is the example
of a ball of expanding particle (as in Fig. 1.2.1 with A = 0) centered inside a
ball of expanding vacuum as in Fig. 1.2.2, since here the quadrics of ¥; and 1,
are identical. Let 77(t) = 1/gbv/12 + 1 be the radius (see (1.52)) of the inner
particle ball and r¥(t) = \/—gJVt? — 1 denote the radius of the expanding
vacuum ball. At time ¢y > 1, we have that rP(ty) < r¥(¢o), which implies

2 -1
g§U< 9 <1.

But since two curves k1vt2 + 1 and k9ovt2 — 1 with ki < ko intersect only
once for ¢ > 1 and z"(tp) has already crossed zP(ty), we conclude that the
particle balls will stay separated by vacuum. The same is true for a cylinder
of particles centered inside an expanding cylindric vacuum. By continuity,
the above argument remains true for ellipsoids of particles inside expanding
vacuum ellipsoids, hyperboloids or cylinders provided that the centers of the
quadrics are not too far away from each other.

1.7 Equilibria touching reflective boundaries

We study the effects of reflective boundary conditions. In the work of Desvil-
lettes [D] on the Boltzmann and the BGK equations it is shown that for
Maxwellian equilibria (i.e., ¥(y) = e™¥) solving the free streaming problem
within closed reflexive boundaries, vacuum cannot occur locally. The proof
can easily be extended to any strictly positive ¥. It essentially relies on the
fact that particles are spread with arbitrary velocities. In the more general
situation discussed here, where 9 may have compact support, vacuum regions
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can be part of an equilibrium distribution. The following theorem shows that
the presence of boundaries implies time independent equilibrium distributions
by transferring the arguments of [D] to the present situation as far as possible.

Theorem 6 (Equilibria inside a bounded domain) Let f be an equilib-
rium solution like in Theorem 5. Suppose the boundary of the x-component
of a non-vacuum region D (as above) Q(t) = {x € Q: (t,x) € D} contains
the boundary of Q: that is O C OQ(t), for t, <t < to. Then f satisfies the
boundary conditions (1.6), if and only if it is of the form

f(t,x,v):¢(|v|2), thh<t<ty, x€EQ,

except in the case of specular reflecting boundaries on domains with rotational
symmetries, whence

ft,x,v) =9 (|v]* + v Ao (x — x0)) , 1 <t<ty, (t,x)€D, (1.62)

where the skew symmetric matriz Ay and the point x¢ can be chosen arbitrarily
such that Ag(x —x¢) = 0 defines one of the symmetry azes of Q. In particular,
Ao is an arbitrary skew symmetric matriz if ) is a ball.

Proof: Firstly, in the case of the reverse reflexive boundary conditions (1.7)
b), where v/ = —v relates the particle velocities before and after the contact
with the boundary, it follows that u(¢,x) = 0 the mean velocity vanishes along
the boundary. In the general expression (1.48) this means

(at +b)x+ Apx+ At +B =0, thh<t<ty, x€O00,

and implies immediately ax + A = 0 for x € 02, and, thus, a = A = 0,
as well as bx + Agx + B = 0 for x € 012, and, thus, b = Ag = B = 0. As
a consequence, the solution does not depend on x and, by our smoothness
assumption, vacuum cannot occur.

The argument is a bit more involved for specular reflection (1.7) a), where
v = v — 2(n(x)-v)n(x) and n(z) denotes the unit inner normal along 9. In
this case the mean velocity satisfies the weaker condition u(¢, x)n(z) = 0 along
the boundary. Comparing the coefficients in time implies (ax + A)-n(z) =0
and (bx + Agx + B)-n(z) = 0 for x € 9. Therefore solutions of the ODEs
%:ax—}—A, Z—jsz—l—on—{—B (1.63)
with initial data on 02 remain on 0f2, which is a bounded set. However,
solutions of (1.63) only remain bounded iffa = b= A = 0 and B € rgAj. The
solutions of the second ODE then describe rotations around an axis determined
by Ag(x — x¢) = 0, where we have set B = —Apx,. B

In the following we relax the condition that the complete boundary of a
bounded domain is in contact with one non-vacuum part of an equilibrium
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distribution. We shall only assume that the particles in equilibrium touch
locally a nonempty part 0O of a not necessary closed boundary during a
nontrivial time interval (¢, t2).

For reverse reflective boundaries this implies u(t,x) = 0, for (¢,x) €
(t1,t2) x 00 and therefore as in the above theorem that all constants of u
in (1.48) are zero. Hence, equilibria, which are locally in contact with re-
verse reflecting boundaries, must be stationary of the form F = (|v|?) and
therefore global.

For specularly reflective boundaries, we have only u(t,x)-n(x) = 0 locally
for (t,x) € (t1,t2) x @0. In particular, the blow up argument in the proof of
theorem 6 cannot succeed. For a refined discussion of (1.63), it is convenient
to treat seperatly the different types of equilibria as introduced in section 1.6.
Comparing the coefficients in time of u(¢,x)-n(x) = 0 leads to conditions
restricting the admissible geometries of the boundaries and collected in table
1.7. As in the proof of theorem 6, it is useful to consider curves remaining on

t? t 1
Typel: | vpn=20 xn=0 x-Ag-n=0
Type 2a: puaL:n =0 —x-Ag'n+ (vop+ L) n=0
Type 2b: | vorn=20 xn=0 x-Agn=0
Type3: |vomn=0|xn+P-An=0 —x-Ag:n+ PB.n=0
Type 4a: An=0 voprn=20
Type 4b: xn=20 B-n=0

the boundary if the starting points xg lies on the boundary. For the types 1,
2b, 3 and 4b, we set
dx(s)
ds
where X denotes different separately vectors for different types. The solutions

=x(s) + X,

x(s) = (xo + X)e — X

are lines spanning either a cone with center in X or a plane containing X.
Hence the boundary must be locally either a cone or a plane or equilibria of
the types 1, 2b, 3, 4b cannot satisfy the specular reflective boundary condition.
For the types 1, 2a, 2b and 3, we define

dx(s)

o= A-(x(s) + P1X) + uxL

with solutions

x(s) = M- (xg + P*X) + uxLs — P*X
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describing either spiral lines (in the case ux # 0) or circles (ux = 0) both
rotational symmetric around the L-axis. Hence the boundary has to be ro-
tationally symmetric around the L-axis containing either spirals or circles,
respectively.

We combine the above arguments in the following theorem:

Theorem 7 (Equilibria locally in touch with reflective boundaries)
Let F be an equilibrium distribution touching the boundary locally for (t,x) €
(t1,t2) X 00 where t1 < to and 0O is a non empty part of a not necessary
bounded, peace-wise C' boundary 0.

Then, for reverse reflective boundaries (1.7) b), F has to be of the form
F=9(v[).

For specularly reflective boundaries, we distinguish according to section 1.6:

Type 1, 2b: Equilibria of type 1 (1.52) or type 2b (1.58) can satisfy specu-
larly reflective boundary conditions if and only if vo = 0 and the bound-
ary is a rotationally symmetric cone with center 0.

Type 2a: In the case ua = 0 of type 2a (1.57) any rotationally symmetric
boundary with azis through Prvq in the direction of L is admissible. In
the other case ua = 1, the boundary has to be a plane containing L.

Type 3: For equilibria of type 3 (1.59), the boundary has to be a cone with
center PLA = P1B.

Type 4a, 4b: Admissible boundaries for equilibria of type 4a (1.60) are
planes spanned by A and vg. In the special case A = vg = 0, where
we have F = v(|v|?), any boundary is admissible. For type 4b (1.61),
the boundary has to be a plane containing B.

We remark that for specular reflective boundaries, equilibria of type 2a are
the only space dependent equilibria, which are compatible with more complex
geometries than planes or cones. This case covers examples like a ring of par-
ticles inside a spherical boundary, where the particles rotate around a cylinder
of vacuum.

1.8 Explicit solutions of 3D Euler equations

We consider the 3D Euler equations for ideal gases with p = pT" and e = %T:

pt + V- (pu) =0,
. = _Vp
u +u-Vu=—-=¢, (1.64)
e; +u-Ve + %V-u =0,
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As explained in the introduction, the moments ppr and ep calculated from an
equilibrium distributions F' of the cometary flow equation

v —upf’
pPF = / F(t,x,v)dv, er = / ——F(t,x,v)dv
R3 R3 2

together with the mean velocity ur are solutions of the Euler equations (1.64).
In theorem 5 (section 1.5), we showed that smooth equilibrium distributions
have the form F' = 9(af +g). For solutions with finite energy we shall assume
Jrs |v|2F dv < oo which is equivalent to fgoo £3/24p(€) dé < oo for all g > —oo.
The above moment integrals pr and er suggests the introduction of a function
h(g) defined as

o) =82 [ " ehule+a)de, (1.65)
since with o
Wlo) = ~4v2r | ehie+g)ds. (1.66)
the solutions of (1.64) can be written as:
p=—alt) M (g(t,x), w=ult,x), p=pl=alt) 2h(g(tx)).
(1.67)

The function h has the following properties:

Lemma 10 (Properties of h) Let ¢ € C'(R) with [>° £3/24p(€)dE < oo for
all ¢ > —o0 be positive with supp®y € (a,b) and a < b < co. Define h(g) as in
(1.65). Then,

(i) h(g) € C3(R) is strictly positive, strictly monotone decreasing and strictly

convez on its support (—oo,b), such that lim h(g) = oo, lim h(g) = 0.
g——00 g—b

(if) For ¢ > —oo there is [°(1 4 g)h"(g9)dg < oo as well as [°(1+ g +
g2 )h"(g) dg < oo, but ffooo h"(g) dg = co.

(iii) We have the inversion formula

b(t) = —2\/1%2% /t ” h;(f)tdg. (1.68)

Proof: (i) The signs h > 0 and A’ < 0 on the support of h are clear from
(1.65) and (1.66) since 9 > 0. Moreover, we have

H'(g) = 22 /0 E3p(Erg)de >0,  K'(g) = 2/or /0 €3 (E4g) d,
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where the last integral is bounded and thus continuous in g since 1 € C' and
f 3 'w' &) d¢ < oo implies that also f 3 ¢'(§) d¢ < oo and thus A" (g).
(ii) We substitute (g,£&) — (r =€+ g,s = £ — g) and calculate for ¢ > —o0

| a9ty dg - / h / T+ ) Bp(E +g)de dg =

0o pr _ 3
//(1+r23)(r"2”) drds—/ O(r) 39 (r) dr < oo.

On the other hand, f h'(g)dg = [;° 5_1/2||1/1||L1(R) d¢ = oo. An analogous
argument shows [*°(1+ g + gQ)h"' (9)dg < oc.
(iii) Since h"(g) € L*((c,00)) N C*(R) there is

2\/_71'/ / (§+g)d£dg /too\}/i%dg<oo

We substitute £ + g = z and change the parameterization of variable-range.

-

/ / Ttedo = [ v (/ﬁ” :
Using

= T.

f##@%

/tooj"(_)d —2\/_7r/ P(z

and the regularity of h” allows to differentiate with respect to ¢. O

In order to discuss solutions of the Euler equations it is convenient to con-
sider directly functions h(g) instead of calculating h(g) for given distributions
9. Therefore, we use the following lemma.

we conclude

Lemma 11 (Inversion of h) Let h(g) satisfy the properties (i) and (ii) of

lemma 10. Then,
1 d [* h'(g)
t) = — — d
=g | A

is continuous and satisfies [ ° t%1ﬁ(t) dt < oo.

Remark 3 The counterezamples h(g) = e 9(1—csin(g)) with vV2—1<c < }
show that the properties (i) and (ii) of lemma 10 do not imply the positivity
of . On the other side, the sufficient condition h"'(g) < 0 implying 1 > 0 is
not satisfied for the example (&) = &2 exp(—|¢]).
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Proof: The continuity is clear. To show [ tgqp(t) < oo, we substitute
r=2z+1t,s=2z—1as in lemma 10 (ii)

IR R | e " 3 -1
/ tZ/ z 2h (z+t)dzdt:§/ h (r)/ (r—s)2(r+s) 2dsdr,
c 0 c

-

which is bounded due to lemma 10 (ii). O

The following examples of explicit solutions of the 3D Euler equations
(1.64) are characterized by the geometry of the level sets Q(g) (section 1.6)
and by the profiles of the density 2h'(g) and the temperature —h/h' describing
the variation of p and T normal to the level sets Q(g) for fixed time t. We
start with the introductory example

_[g—9" g<ec
o ={ I 95

for a constant ¢ > 0 and with g(¢,x) chosen from equilibria of type 1 (1.52) in
the case s=1and A <1

1

ﬂT:§5@?+ﬂ—A5w%+ﬁD=:J4G@)zm (1.69)

a(t)

such that the level sets Q(g) are expanding particle ellipsoids as in Fig. 1.2.1.
The profiles Fig. 1.5.1 and Fig. 1.5.2 determine the decay of p (cubical) and
T (linear) from the center of the ellipsoid Q(g = 0) to the boundary Q(g = ¢).
The solutions are

g(t’x) =

Figure 1.5: Example 1: algebraically decaying h

1 = °7 -n/h (D

p:{—m@%@@@—& G(x) < aft)c
0 G(x) > a(t)c

_ —l(g(t,x) —o)a(t)™! G(x) < alt)c
= { ) 0 G(x) > a(t)c
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While the particles expand outwards, the density p and the temperature 7" at
a fixed point x may increase intermediately as long as g(¢,x) — ¢ > —ﬁ and
g(t,x) — ¢ > g(t,x), respectively, while for ¢ — oo both p and ¢ tend to zero.
For instance if a vacuum point is reached by the expanding particles, p and T'
grow in the beginning continuously from zero until they start to decay due to
the expansion process.

The associated velocity field u consists of three components: a linearly
decelerating expansion ¥, a quadratically decelerating rotation around the
L-axis and a constant offset velocity vo € S%(R?) U {0}.

For other choices of h(g) with other density and temperature profiles, we
observe different behavior of p and T during the expansion of the particles.
The exponentially decaying h(g) = exp(—g) leads to an exponentially decaying
density profile —h' = exp(—g) as in Fig. 1.6.1, while the temperature profile

—h/h' =1 is constant Fig. 1.6.2.

Figure 1.6: Example 2: exponentially decaying h

-h (a2 3 -/ (oD
a or]
—— =
Fig. 1.6.1: Density profile Fig. 1.6.2: Temperature profile

Since the support of h(g) is R, the solutions

1
p= a(t)_%e_g(t’x), u= % + t—2A-x + vo, T =at)™!,

do not include a vacuum part. The density p may increase intermediately
before tending to zero. The temperature 7" is homogeneous and decaying.
A third class of profiles is deduced from

h(g)=(g+¢c)" g>—-c+0

withy > 0and ¢ > § > 0. For g < —c+ 6 < 0, h is somehow extended to
h(—o00) = oo according to the properties of lemma 10.
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Figure 1.7: Example 3: reciprocally decaying h

7 - 7°Y -/t (oD

o
so ]
a0
=0

=20

Fig. 1.7.1: Density profile Fig. 1.7.2: Temperature profile

Since we have g(t,x) = % > 0 in (1.69), we explicitly calculate the solutions

x -
p=a) (% +c) ', (1.70)

The temperature 7" is unbounded as g(t,x) — oo (Fig. 1.7.2). For fixed x, it
decays to zero independently of v as ¢ — oo as well as the density p and the
pressure p.

More general profiles of density and temperature can be composed from
the above three examples 1.5-1.7 by peace-wise smooth connection according
to the properties of lemma 10. In that way, we can produce temperature
profiles which are locally decreasing, constant or increasing in g. As example,
we can compose profiles, such that locally h(g) = ¢~ for g(¢,x) > §. The
associated solutions are found as limit ¢ — 0 in (1.70). For fixed x,

p=0(®)™2,  T=0(®)?  p=O0()

Hence, the density p and the pressure p decay in time for v < 5% For % <y < %,

the density decreases and the pressure increases and for 7y > 2 both the density
and the pressure increase in time.

All profiles, which are defined for g € R such as 1.5 or 1.6 may be com-
bined with other quadrics Q(g) to compose solutions with different geometric
structure. Taking

2

1 2

g(t,x) = ) (23 — (W* = 1)(23 +23)) € R, (1.71)

with A > 1, where Q(g) define hyperboloids as plotted in Fig. 1.1.1 or Fig.
1.1.2, the properties of A in lemma, 10 imply that the density p is unbounded



CHAPTER 1. THE COMETARY FLOW EQUATION 34

for g — —o0. To illustrate these solutions, we remark that the level set Q(0)
is a cone separating the x-space into two parts with g > 0 and g < 0, where p
and T tend either to 0 or to co according to their profiles. For fixed x, since
g — 0 for t — oo, the density p and the temperature 7' decay asymptotically
towards p(0) and T'(0), the values at Q(0), which tend to zero for ¢ — oco.

Similar solutions are found in the case of the cylindrical quadrics of type
2b and equilibria of type 3 and type 4b, where also ¢ — 0 as t — oo and Q(0)
may be consider as asymptotic quadric.

For solutions constructed from type 2a or type 4a, we have either g(¢,x) —
—oo for t — oo (in the case ma = 1) or, rather uninteresting, g(¢, x) is constant
in time (ma = 0). In the first case, the quadrics of type 2a are paraboliods
as in Fig. 1.3.1 and the density increases increases as the particles approach
from x = oo where p is unbounded. In the other type 4a, the quadrics are
planes Fig. 1.4.2 showing similar behavior.

1.8.1 More solutions

Straightforward insertion shows that functions of the form (1.67) are still
strong solutions of the 3D Euler equations (1.64) provided only that h(g)
is in C2(R). This allows a much large variety of density and temperature
profiles. As long as the inversion formula (1.68) is still well-defined, we can
even calculate an “equilibrium” distribution associated to h, although ¢ will
no longer be positive or smooth in general.

In particular without the growing of h', we have bounded solutions for
quadrics Q(g) where g € R. Further, by choosing non-monotone functions
h, k', we find oscillating solutions.

We can even construct weak solutions whenever A’ is such that the involved
integrals are defined. One example is g = 1 — %tQ from type 4 together with
h(g) = max(0, —g), where we find

1 1
sz(itQ—wl), u = (¢,0,0), T = max (O,EtQ—a:l),

and H denotes the Heavyside function. In this solution, a planar front of
particles spreads out into vacuum in the direction of the z;-axis.

Although a large amount of solutions can be constructed like above, there
exist more solutions, which seem related to the above structure, but not com-
pletely. As example
«a B X

&2 "y
with «, 8 arbitrary in R, reminds of solutions constructed from type 2b with
A =0 and vo = 0 and «(t) = 2. Nevertheless, there is not function h such
that « = —h' and 8 = —h/H'.



Chapter 2

The Burgers-Poisson system

2.1 Introduction and Motivation

In this chapter, a nonlinear dispersive model problem is proposed, the Burgers-
Poisson (BP)-system:

U + Uy = Oy, (2.1)
Yzz = ¢ + U, (2.2)

where u and ¢ depend on (t,z) € (0,00) x R, and subscripts denote partial
derivatives. The Burgers equation (2.1) is driven by the right hand side ¢y,
which is determined by solving the Poisson equation (2.2).

Using the Green’s function G(z) = —3e~1 (of 92 — 1) to define the con-
volution operator

lile) = (G + (@) = | Gla—)ulv) dy (2.3
the BP-system reduces to the single BP-equation
wt + Uty = @glul, (2.4)
with the obvious notation @, [u] := (¢[u]),-

A rescaled version of (2.4) was considered by Whitham [Whi, Chapter
13.14] as a shallow water equation featuring weaker dispersivity than the
Korteweg-de Vries (KdV)-equation.

The study of (2.1), (2.2) has been motivated by earlier work [CDMS1],
[CDMS2] on two-species-Euler-Poisson (2SEP)-systems modeling the dynam-
ics of 2 oppositely charged species of particles subject to Coulomb interaction.
A simple version in dimensionless form is given by

pt+ (pu)e =0, (2.5)
w +uty + 2 = ¢,

EQgz =p—e€ %. (2.7)

35
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Here, the unknowns p, u and ¢ depend on position z € R and time ¢t > 0. The
system (2.5), (2.6) are the isothermal Euler equations for the first species of
particles with density p and velocity u. In the Poisson equation (2.7) for the
electrostatic potential ¢, the density of the second species is modeled by the
equilibrium approximation e ?, resulting from an equation like (2.6) with the
first two terms neglected and the opposite sign on the right hand side. The
dimensionless parameter £ denotes the scaled Debye length.

In view of the formal similarities between the BP- and the 2SEP-system,
we shall use the terms position, time, velocity and potential for the variables
z,t,u and @, respectively. Note that the velocity (instead of the density)
appears on the right hand side of the Poisson equation. Nevertheless one can
think the BP-system as a caricature of the 2SEP-system with Burgers equation
replacing the Euler equations, and the potential terms in (2.2) coming from a
linearization of the two-species Poisson equation (2.7).

The BP-system has a number of interesting formal properties, collected in
section 2.2. In particular, we mention its relation to the Camassa-Holm equa-
tion [CH], [CHH] and the Benjamin-Ono equation [Ben]|, [Ono], its Galilean
invariance, its Hamiltonian structure as well as the existence of an entropy.

In section 2.3, a general traveling wave analysis of the BP-system is per-
formed recovering the result of Fornberg and Whitham [FW] in the particular
case of solitary waves. It turns out that the traveling wave structure of the
BP-system and several versions of the 2SEP-system (see [CDMS1], [CDMS2])
are qualitatively equivalent. The section is completed with some numerical
experiments.

In section 2.4, existence and uniqueness of smooth solutions locally in
time for smooth initial data are proven. Recently, for two related problems,
the Euler-Poisson system [ELT] and the Camassa-Holm equation [CE], [RoB],
global existence of smooth solutions has been shown under certain conditions
on the initial data. The methods employed there do not apply to the BP-
system. Also our numerical experiments with the BP-system indicate that
comparable results are not true. A global existence result for weak entropy
solutions with initial data in BV (R) is also derived. A comparable result has
recently been shown for a radiating gas model [LM], which is obtained from
the BP-system replacing u by —u, in the right hand side of (2.2).

Finally, the rescaling © — z/e,t — t/e,0 < ¢ < 1, is introduced in (2.1),
(2.2), leading to

uf g = ¢, (2.8)

45, = ¢f +u. (2.9)

A Chapman-Enskog expansion of (2.8), (2.9) recovers the Burgers equation
with flux (uf+1)%/2 and the leading order perturbation e2us,,. For a rescaled
system, there exists a direct asymptotic towards the KdV-equation for ¢ — 0.

The traveling wave analysis and numerical simulations suggest that the quasi-
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neutral limit € — 0 in general is a weak limit, both for the 2SEP- and the BP-
systems. Here, a result is shown for the BP-system which has been proved for
a 2SEP-system in [CG] and for the radiating gas model in [LM]: convergence
to smooth solutions of the formal limit problem. In general this is only a
local-in-time result since the limiting inviscid Burgers equation can develop
singularities in finite time. The situation is the same for 2SEP-system, but
not for the radiating gas model, where the limiting equation is the viscous
Burgers equation with global smooth solutions.

2.2 Formal Properties

Firstly, we rewrite the BP-system as a single differential equation for u. By
applying 1 — 82 to (2.1) and using (2.2) on the resulting right hand side, we
calculate:

Ut — Uggt + Uy + VU = SUgUgpy + Ullgprs- (2.10)

The terms in (2.10) correspond to those in the Camassa-Holm equation [CH]:
Ut — Uggt + 26Uz + Uy = 2UgUzy + Ulgrs, (2.11)

where the constant x > 0 is related to the critical shallow water wave speed.
Vice versa, the Camassa-Holm equation (2.11) can be written in “BP form”:

U + Uy = Qg , (2.12)
Oz = @ + 2ku +u? + %ui . (2.13)

Note that for k = 1/2 the BP-system is recovered by neglecting the two
quadratic terms in (2.13).

The Camassa-Holm equation was introduced by Fokas and Fuchssteiner
[FF| as formally integrable bi-Hamiltonian generalization of the Korteweg-
DeVries equation. Camassa and Holm [CH] rediscovered it as shallow water
equation by approximating the Hamiltonian for the vertically averaged incom-
pressible Euler equations. By the bi-Hamiltonian property, they derived an
infinite sequence of conservation laws and showed that the associated flows of
this hierarchy are iso-spectral and, thus, completely integrable.

Most commonly (cf. [CHH], [CE], [Con], [RoB]), the Camassa-Holm equa-
tion (2.11) is considered with K = 0. Then the Camassa-Holm equation pos-
sesses peaked soliton solutions (called peakons), attractive traveling waves of
the form u(z,t) = cexp(—|z — ct|) and other breaking phenomena, which is
desirable for a shallow water equation and in contrast to the KdV-behavior.
For some initial data (e.g. with sufficiently large negative slope [Con|, [RoB])
the solution develops verticality within finite time. On the other hand, global
well-posedness was proved ([CE], [RoB]) for initial data ug € H*(R) with
s > 3/2 provided that [ |up|dz < oo and (1 — 92)uy does not change sign.
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The Camassa-Holm equation is remarkable since it combines complete inte-
grability with the formation of singularities.

In the existence analysis of section 2.4, (2.4) will be considered, subject to
the initial conditions

u(z,0) = uo(z), z€eR (2.14)

Note that (2.4) contains additional information compared to (2.1), (2.2), since
for bounded u, (2.3) is the unique bounded solution of the Poisson equation
(2.2). The properties of the solution operator of the Poisson equation in a
L?-setting will be used, in particular the smoothing

lolulll esr @y < lullgr@y, — w€ HY(R),k >0 (2.15)

and the symmetry

/(p[u]'u dr = / p[v|ude, u,v € L*(R), (2.16)
R R

following from the evenness of the Green’s function G.
The BP-equation (2.4) becomes the Benjamin-Ono equation when ¢[u] is
replaced by —2H [uy], where H is the Hilbert transform:

HMZPM%/WU@)@

o Y — T

The Benjamin-Ono equation arises in the study of long internal gravity waves
in stratified fluids of great depth [Ben], [Ono]. It is a completely integrable
Hamiltonian system [KLM] which possesses multi-soliton solutions [BK], [Cas].
There exists also the analogue of the inverse scattering method [AF] and Béck-
lund transformations [Nak]. Although the dispersive regularization by the
Hilbert transform is weaker compared to KdV (cf. [KPV]), the dispersion is
strong enough that the Benjamin-Ono equation has globally smooth solutions
for initial data ug € H*(R), k > 3/2 (see [Ior], [Pon]), and even for sublinearily
growing initial data [FL].

The BP-system (2.1),(2.2) is Galilean invariant, i.e. it is invariant under
changes of the reference frame of the form

T — x + xo + uot, U — U+ up, $ — Y — ug-

Note that the potential transforms like a velocity. The Galilean invariance will
simplify the traveling wave analysis in section 2.3.

The dispersion relation of the BP-equation (2.4) linearized at u = c is
given by .

B P

. (2.17)
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with the frequency w and the wave number k. The group velocities lie between
c and ¢ + 1, the limits for large and small wave numbers, respectively. The
existence of a finite limit for large wave numbers indicates that (2.4) does not
have smoothing properties.

Finally, we look for conservation laws. Obviously, (2.4) can be written in
conservation from:

ug + (“; - go[u])w =0 (2.18)

As a consequence, fRud:t is conserved for weak solutions with sufficiently
strong decay for z — +o0o. Multiplication of (2.1) by u = ¢, — ¢ leads to the
second conservation law

2
(u?): + (§u3 +¢? - wi) = 0. (2.19)
x

Since we shall consider weak solutions based on the conservation law (2.18),
the quantity fR u? dz will only be conserved for smooth solutions. By the
boundedness of the operator ¢z[-], we expect (as for the Burgers equation)
non-uniqueness of weak solutions, which can be eliminated by an entropy
condition. In section 2.4, weak solutions will be constructed satisfying the
entropy condition (2.19) with the equality sign replaced by <. Thus, for weak
solutions, the entropy [ u? dz is non-increasing. Note that, in contrast to the
Burgers equation, not every convex function of u is an entropy density.

The jump conditions for entropic shocks with velocity s are those of the
Burgers equation:

1
§= 5 (Ul + u”l‘) ) up > Ur, (220)

where u; and u, denote the left-sided and, respectively, right-sided limit of u
at the shock.

The BP-equation has an Hamiltonian structure similar to the Benjamin-
Ono equation. The bi-Hamiltonian structure of the Camassa-Holm equation
is completely destroyed by dropping the quadratic terms in (2.13). With the

Hamiltonian
H(u) = / ) d
=32/ olu]u 3 x,
(2.4) can be written as
(&)
Ut + | — = 03
ou /),
6H _

where 5~ = —@[u]+ % is the L2-representation of the Frechet-derivative of H.
Note that this relies on the symmetry property (2.16) of ¢[:]. Conservation of
the quantity [, H(u)dz corresponds to the third local conservation law

’U,3 U2 >
(—wu + §> + | Pzt — PPt — (—w + 7) =0
¢ T

which (as (2.19)) can only be expected to hold for smooth solutions.
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2.3 Traveling Wave Analysis

The results of this section should be compared to those of [CDMS1] and
[CDMS2] for different versions of the Euler-Poisson system. The qualitative
similarities of the results have been one of the main motivations for this work.

By the Galilean invariance it suffices to consider only traveling waves with
velocity 0, i.e. steady states. Traveling waves with velocity ¢ are then found
by adding the constant ¢ to the velocity u (and —c to the potential ¢). After
integration of the steady state version of (2.1) and using the result in (2.2),
the steady state equations can be written as

uuy, = F, (2.21)
w2
B, = 5 tu-d, (2.22)

where we have used the notation ¢, = E and d is the constant of integration.
The system (2.21), (2.22) will be studied in the (u, E')-phase-plane. We shall
also allow shocks (of course with velocity s = 0) satisfying the jump conditions
(2.20):

—u, =u; > 0.

By (2.22), E is continuous across shocks.

Also worth mentioning is the line of singularities u = 0. In general, tra-
jectories end (or begin) there with square root behavior. By (2.21), smooth
trajectories can only cross u = 0 through the origin of the (u, E')-plane. Our
analysis will be restricted to d > —1/2, whence there are two stationary points

re= () = (avrm )

It is easily seen that u_ is always negative and a saddle. The second stationary
point u is negative and a center for —1/2 < d < 0. It becomes positive and
a saddle for d > 0.
By separation of variable, a first integral of (2.21), (2.22) can be found:
E?2 ot w3 du?
A= _ - 2 4 2.23
2 8 3 + 2 (2:23)
Besides the stationary points, this family of curves (parameterized by A) has
the origin as a critical point. Only away from the line w = 0, these curves can
be seen as trajectories (with opposite orientation on opposite sides of u = 0).
Depending on the value of d, three generic cases of phase portraits occur.

Solitary Waves for —1/2 < d < —4/9:

The phase portraits for —1/2 < d < —4/9 are characterized by a homoclinic
orbit (pulse, solitary wave) connecting P_ to itself (see Fig. 2.1.1, Fig. 2.1.2).
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Figure 2.1: Solitary Wave

Fig. 2.1.1: Phase portrait for —% <d< Fig. 2.1.2: Solitary wave

4

9

Its interior is filled with periodic solutions around P,. These features are
reminiscent of the KdV-equation. By the singularity, the origin is a point of
non-uniqueness for the initial value problem. Taylor expansion shows a pair
of smooth trajectories passing through the origin. An implicit formula for the
solitary waves has already been calculated in [FW] together with a numerical
simulation of the soliton like interaction of two solitary waves.

In the critical case d = —4/9, the trajectories through the origin coin-
cide with the stable and unstable manifolds of P_. As a consequence of the
non-uniqueness, we can switch from the unstable to the stable manifold at
the origin, producing a non-smooth solitary wave, reminiscent of the peakon
solutions of the Camassa-Holm equation. It can be computed explicitly:

u(z) = % (e*‘g”‘/2 — 1)

Peaked periodic solutions for —4/9 < d < 0:

In this case the solitary wave disappears and the trajectories passing through
the origin connect to themselves (see Fig. 2.2.1). This closed curve in the left
half plane corresponds to a peaked periodic solution (see Fig. 2.2.2). Again,
these solutions can be computed explicitly. Taking the derivative of (2.21) and
using (2.23) for the evaluation of u2, we obtain (with A=0):

—+

A~
[SCRNE

Ugy =
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Figure 2.2: Peaked periodic solution
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Fig. 2.2.1: Phase portrait for —% <d<0 Fig. 2.2.2: Peaked periodic solution
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The peaked periodic solution is given by

4 (cosh(z/2)
=3 (e )

for —p < z < p and by periodic continuation with period 2p. The length of
the period is connected to the parameter d by

p 9 \~1/2
cosh (5) = (1 + Zd) .
Heteroclinic connections for d > 0:

In this case, the stationary points are saddles and lie on opposite sides of the
line u = 0 (see Fig. 2.3.1). A heteroclinic connection (front wave) between
them can be constructed using an entropic shock. There is a unique pair of
points P, = (u, By) = (V1 + 2d,+/11/12 + 2d), P, = (—uy, E;), satisfying the
jump conditions, with P, lying on the unstable manifold of P, and P, on
the stable manifold of P_. The u-component of the heteroclinic solution is
depicted in Fig. 2.3.2.

Remark 4 The question arises, if two arbitrary constant states u_qo, Uso CAN
be connected by a front wave. The answer is negative. The set of admissible
Pairs (U—oo,Uoo) 48 constructed by shifting pairs (uy(d),u—(d)), d > 0, (ez-
ploiting the Galilean invariance). This leads to the requirement teo —U—oo > 2.
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Figure 2.3: Shock solution
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Fig. 2.3.1: Phase portrait for d > 0 Fig. 2.3.2: Shock solution

Transient Behavior, Numerical Experiments

We have studied numerically the transient behavior of solutions of the BP-
equation (2.4). A MATLAB program was written employing a straightforward
explicit discretization: In a first step, the Poisson equation is solved for given
u at the old time step. A centered difference scheme is used on a bounded
interval with boundary conditions ¢ + u = 0 at both ends. The result is
used for the evaluation of the right hand side of (2.4). Alternatively, we used
an implicit spectral method (cf. [CS, Part II, Chapter 8]) and obtained very
similar results. This spectral method is due to the use of FFT between 3-4
times faster but it applies only for specially periodic situations.

The Burgers-flux term is discretized by the Lax-Friedrichs method. Time
steps are chosen according to the CFL-condition. As initial data, linear ramps
connecting two constant states are prescribed. Recalling remark 4, we are
interested in the behavior depending on the difference between the asymptotic
states at £ = £o0.

Our results for downward ramps of height larger than 2 suggest the con-
jecture that the heteroclinic waves constructed above are attractive. For a
typical example see Fig. 2.4.1 and Fig. 2.4.2. For a ramp with height 3
and the constant states lying symmetric with respect to u = —1, we observe
numerical convergence to the stationary solution of type of Fig. 2.3.2. The
development of shocks seems not to depend on the steepness of the ramp.

A completely different behavior is observed for initial ramps with a height
less than 2: in this case, there exists no stationary solution connecting the
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Figure 2.4: Time development of two initial ramps

Fig. 2.4.1: Initial ramp: 0.5\, —2.5

Fig. 2.4.2: Numerical stationary solu-
tion

e

. 2.4.3: Initial ramp: —0.5 \( —1.5

Fig. 2.4.4: Numerical quasistationary
solution

44
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asymptotic states. The observed behavior is a reminiscent of the KdV-equation
and shows typical dispersive effects with oscillations at the left side of a
smoothed ramp. This is in accordance with the dispersion relation (2.17)
showing that high frequency components travel with lower velocities. The ex-
ample depicted in Fig. 2.4.3 and Fig. 2.4.4 involves an initial ramp of height 1.
Again, long time convergence has been observed. However, this is a numerical
artefact, since no steady state solution of the continuous problem with the
qualitative behavior shown in Fig. 2.4.4 exists.

2.4 Existence
In this section, the initial value problem

Ut + uug = @glul, u(z,0) = ug(x) (2.24)
is considered, where the operator ¢[] is defined in (2.3).

Theorem 8 (Local strong solution) Assume ug € H¥(R) with k > 3.
Then, there exists a time T > 0 and a unique solution

u € L°°((0,T); H* (R)) N c([o,T]; H’“_l(R))

of (2.24).

Proof: The proof is based on a contraction argument similar to [Tay, Section
16.1]. We define the iteration map St as follows: for any function v € Br
with

Br = {wer=((0,7), H*®) nc(0,7) B 1(R)) :
supyefo, 1w, Dl ey < 2ol ey §
the image St (v) is the unique solution u of
Ut + vy = @g[v], u(t = 0) = up. (2.25)

First, we show that St maps By into itself for T" small enough. We apply 0%
to (2.25) for a < k and take the L?-scalar product with 0%u:

%%”anoc[u”;(ﬂg) + /Bﬁ(uuw)a,‘fud:v = /wx[agv]a,‘fudw
&R _ R ,

A B

(2.26)

The first factor in the integrand of A is differentiated by the product rule:

05 (uus) —uogu+ Y (7 ) ohuogt tu

=1
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Accordingly, A is split into two parts which are estimated separately:

/ u (09 u) (02u) dx
R

1 a, |2 1 2
5 /Ruax(axu) dz| < §||ua:||L°°(R)||u||Hk(R)‘

(2.27)
For the second part of A, we use the Cauchy-Schwartz inequality and the
interpolation estimate

| (o1 (037'a)

(see [Tay, Chapter 13, Proposition 3.6]) to obtain:

/ o2u Z (?) gy 09 My da
R 1=1

with some constant ¢ which depends only on k. By the Sobolev embedding
WHR(R) — H¥(R) for k > 3/2, we calculate

Al < cllull - (2.28)

L2(R) <c (HszLO"(R)“gHHa(R) + ||f||HG(R)||gz||Loo(R))

< CHUH%Ik(R)HU:UHLw(R) ;

For B, we apply the Cauchy-Schwartz inequality and (2.15):

1B| < llp2[0c 0l 2wy 0% ull 2 (r) < cllvll gy llull 1t () - (2.29)
Using (2.28) and (2.29) in (2.26) gives

d
Nl gy < ¢ (Il ey + I0llmeey) -

For T' small enough, a comparison principle shows [|u (-, )| gx () < 2lluol| gx ()
for 0 <t < T. Since u € C([0,T]; H*"}(R)) is an obvious consequence of
(2.25), we conclude that Sy : By — Bp. In a second step, we prove Sy to be
a strict contraction. Therefore, we consider two functions v; and ve in B and
set u; = St(v1), ue = Sr(vz) and u = u; — u2, v = v1 — v9. The difference of
the equations for uy, ug reads as

up + u(u1)z + uguy = Pz [v] u(t =0) = 0.
We proceed similarly to (2.25) using B from (2.26):

%%HB%“”%?(R) + /Rag(uaxul)a;:uda: + /Raﬁ(uQuz)afgudm =B

vl

4, 4,
In contrast to (2.27), the highest order term of A; is not bounded in terms of

the H*(R)-norm. Therefore, we are obliged to reduce the order of differenti-
ation to @ < k — 1 and estimate as above for the second part of A:

| A1

IA

ellal =1y (110wt o oy Il s gry + el ooyl sy )

IA

cllulZ-s gyl 75 .
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For As, we proceed as in (2.27)-(2.28).

o
/ <u2 O (0gu)?/2 + 0gu >y ((;‘) ALusy a;g—lux) dz
R =1

ellulcs gl ey

|| =

IN

Since [lu1,2]| grw) < 2[|uoll gr(r), this leads to

d
=l g1y < e (el sy + 0] meercey )

and the Gronwall lemma implies that for 7' small enough, St is a strict con-
traction with respect to the topology in C ([0, T]; H*"1(R)). W

Theorem 9 (Global weak solution) Assume uy € BV (R). Then, there
exists a global weak solution

u € Lz ([0,00); BV(R)) (2.30)

of (2.24), satisfying the entropy condition

2
(u?); + (gu?’ N goi) <0 (2.31)
T

in the distributional sense.

Proof: The proof is based on the viscosity method similarly to [Tay]. Instead
of (2.24), we consider the regularized equation

ut + Uty = @gu] + Vg, (2.32)

with Vyu > 0. Local existence of a unique smooth solution of the initial
value problem for (2.32) with u(t = 0) = uyp € BV(R) can be shown by
standard arguments. The next step is an L!-stability result for (2.32). Let
u1,uz denote solutions of (2.32) with initial data fi, fo € L'(R). Then, the
difference v = uy — u9 satisfy

v + (wv), = @z[v] + Vg, v(t=0) = f1 — fo, (2.33)

with w = (u1 + ug) /2. Let abss(+) be a convex regularization of the modulus,
uniformly converging to |- | as § — 0, and satisfying |absj(v)| < 1. Multipli-
cation of (2.33) with absjj(v) and integration with respect to z leads to

d
— [ abss(v)dz = /'uw absy (v)vy dw—/absﬁ;(fu)@z[v] dz
dt Jr R R

_V.u / abs!!(v) (vy)? da. (2.34)
R
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Since the function fov sabsj(s) ds converges to zero uniformly as § — 0, we
have for the first term on the right hand side of (2.34):

v
/ wv absj (v)v, dz = —/ wac/ sabsy(s)dsdz — 0 as 6 — 0.
R R 0

Boundedness of the operator @[] : L'(R) — L!(R) can be shown easily. With
the properties of abss, we obtain from (2.34) in the limit 6 — 0:

d

EHUHD(R) < cflv][1 (w)- (2.35)

Analogously to [Tay, Chapter 16, Lemma 6.1], it can be shown that

L ollsy @ < ol
dt VI BV(R) = ClV|IBV (R)-

holds for the solution of (2.32) as a consequence of (2.35). This is suf-
ficient for proving that the solution of (2.32) is global and bounded in
L ([0,00); BV(R)) uniformly in Vyu. This again is sufficient for passing
to the limit Vyxu — 0 in (2.32). For the details we refer to [Tay]. The entropy
inequality (2.31) follows from a standard argument. H

2.5 Asymptotics and the Quasi-neutral Limit

In this section, we investigate the rescaled (z — z/e,t — t/c) BP-system

u; +utu, = ¢, (2.36)
e2p5, = o +uf, (2.37)

with € < 1. In accordance with the terminology taken from the Euler-Poisson
system, the limit £ — 0 will be called the quasi-neutral limit. With the rescaled
potential operator

olulla) = 5 [ew (-5 utay.

the initial value problem

uj + utu = plu], uw (t=0)=ugp, (2.38)
will be compared to its formal limit

ud + (u® + )ul =0, u’(t = 0) = u - (2.39)

The limit is the inviscid Burgers equation for the unknown u® + 1. Even for
smooth initial data its solution can develop shocks in finite time. The traveling
wave analysis of section 2.3 can be seen as an attempt to approximate solution
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profiles in the neighborhood of shocks of (2.39). The heteroclinic connections
computed in section 2.3 are such profiles connecting two states u; and u,
satisfying the jump conditions

1
s:ﬁ(ul+ur+2), Uy > Uy -

However, these connections only exist for u; — u, > 2. For a better under-
standing of the situation, we expand the potential operator

©°[u] = —u — %ugy + O(e?).

Thus, an O(e*)-approximation of (2.38) is given by the Korteweg-de-Vries
equation (for the unknown u + 1)

up + (w4 g + Uggy = 0. (2.40)
Actually, the Korteweg-de-Vries equation can be obtained as a formal limit of
(2.38). If (2.38) is rescaled by
t
t— —, uf = -1+ U,
€
then the formal limit of the resulting equation for U is
U +UUg +Ugzz =0.

In analogy to the well known results concerning the limit as € — 0 of (2.40), we
expect that in general the limits of solutions of (2.38) are weak limits, which
do not satisfy the formal limiting equation (2.39). In our last result, however,
we prove that — as long as the solution of the limiting equation remains
smooth — it is the strong limit of the solution of (2.38). For uy € C%'(R)
there exists a 7' > 0, such that the Burgers equation (2.39) has a solution
u® € C ([0,T); C¥Y(R)). Also, if ug € H*(R), then u® € L®((0,T); H*(R)).

Theorem 10 Assume uy € CY(R) N H*(R) with s > 1. Then, for a time
interval (0,T) as mentioned above, the solutions of (2.38) and (2.39) satisfy

lu® — ]l oo mysrzmy = O(€7) , v =min{2,s — 1}.

Proof: Let v = u® — u® with initial data v(t = 0) = 0. We subtract (2.39)
from (2.38) to obtain an equation for v:

2

v

et (g u0) =l gl = s ol
T

By taking the L?-scalar product with v and by integration by parts, we cal-
culate

ld, o v’ 2 £ 1,0
§EH’UHL2(R) + R;umdw:s Rv%w[uz] dz,



CHAPTER 2. THE BURGERS-POISSON SYSTEM 50
which implies

d L o 2 ¢ 1.0

EHUHH(R) < §||Uz||L<>°(R)||U||L2(R) + [le S%;c[uz]HH(R)- (2.41)

With the Fourier transform @(k, t) of u%(z,t), the last term can be estimated:

RV TPl L IV Y
ez Uz]lIL2(R) 1+ e2k2 . = ek (14 e2k2)(1 + k2)5/2

The factor on the right hand side is obviously O(e?) for s > 3. For s < 3, it
can be estimated by

€2|k|3 :Es—l |8k|3is — (63_1)
(1 +&%k?)|k[* 1+ [ek|? ’
and, thus,
€% 5 s [ualllr2m) < ce” [[ul |l s (w) -

The statement of the theorem is now a direct consequence of the Gronwall
lemma applied to (2.41). W
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