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Kurzfassung

Ziel der vorliegenden Arbeit ist es, Beitrdge fiir eine numerisch effiziente Simulation des
Kollapsverhaltens diinnwandiger Strukturen zu liefern. Dazu wird zunichst ein Uberblick
iiber die Literatur zu dieser Thematik gegeben. Anschliefend werden die theoretischen
Grundlagen fiir die vorgeschlagenen Simulationsalgorithmen dargelegt. Dabei wird, neben
einer Einfiihrung in die Grundlagen der Kontinuumsmechanik bei grofien Deformationen
und einer Darstellung plastischer Extremalprinzipien, besonderes Augenmerk auf die Her-
leitung und Beschreibung der exakten Ilyushin Fliefifliche gelegt. Diese auf der von Mi-
ses Flielbedingung basierende FlieBfliche beschreibt den Grenzzustand einer voll durch-
plastizierten Platte/Schale bei ideal-plastischem Materialverhalten in Abhéngigkeit von
spannungs- bzw. verzerrungsbezogenen resultierenden Gréflen und erlaubt, insbesondere
in Verbindung mit kinematisch-orientierten Berechnungsmethoden der Plastizitédtstheorie
(z.B. Markov Theorem oder oberer Traglastsatz), eine sehr genaue und effiziente Berech-
nung der inneren Energiedissipation. Die exakte Ilyushin Fliefifliche stellt daher einen
wesentlichen Bestandteil fiir die in dieser Arbeit vorgeschlagenen Simulationsalgorithmen
dar.

Um einen Einblick in das Kollapsverhalten diinnwandiger Strukturen zu geben, wer-
den anschlieend Ergebnisse von experimentellen Untersuchungen présentiert sowie in der
Literatur vorgeschlagene semi-analytische Kollapsmechanismen fiir das quasistatische pro-
gressive Beulen von diinnwandigen kreisféormigen und prismatischen Profilen unter axialer
Druckbeanspruchung analysiert. Aufbauend auf diesen Untersuchungen wird im folgenden
ein Computerprogramm zur vereinfachten numerischen Simulation des Kollapsverhaltens
axialsymmetrischer Strukturen entwickelt und programmtechnisch umgesetzt. Der defi-
nierte Algorithmus basiert auf dem oberen Traglastsatz der Plastizitétstheorie, wobei die
aktuelle Traglast fiir einen augenblicklichen Verformungszustand als Losung eines Opti-
mierungsproblems gefunden wird. Ein gesamter Kollapsprozel kann dabei als Folge sol-

cher Optimierungsprobleme simuliert werden (“sequential limit analysis method”). Die
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kinematische Beschreibung, der eine Diskretisierung in Teilbereiche (“Finite Elemente”)
zugrunde liegt, erlaubt sowohl das Auftreten kontinuierlicher als auch diskontinuierlicher
plastischer Deformationen (“Fliefigelenkslinien”). Beziiglich des Materialverhaltens wird
die exakte Form der Ilyushin-Fliefliche verwendet, in deren Rahmen eine sehr genaue
Berechnung der inneren Energiedissipation erméglicht wird. Es wird weiters gezeigt, daf
mit der vorgeschlagenen Methodik innerer Kontakt auf einfache und numerisch effiziente
Weise beriicksichtigt werden kann. Anhand mehrerer Beispiele wird die Allgemeinheit der

Methode, aber auch deren Eignung fiir vereinfachte Kollapsanalysen, bestatigt.

Zur numerisch effizienten Kollaps- und Traglastanalyse von Schalenstrukturen mit Hilfe
der Methode der Finiten Elemente wird anschliefend ein Schalen-Plastizitdtsalgorithmus,
basierend auf der exakten Ilyushin FlieBbedingung, untersucht. Hauptprobleme dabei er-
geben sich v.a. aufgrund der speziellen Darstellungsform der Fliefifliche, die keine Anwen-
dung von Standardalgorithmen ermdglicht, sowie numerisch sehr sensibler Bestimmungs-
gleichungen. Losungsmoglichkeiten fiir eine numerisch stabile und effiziente algorithmische
Umsetzung werden vorgeschlagen, und dabei auftretende Probleme werden diskutiert. Die
erzielten Ergebnisse bestdtigen, dafl der vorgeschlagene implizite Plastizitdtsalgorithmus
fiir einen praktischen Einsatz in FE-Strukturanalysen prinzipiell geeignet ist und bei geeig-
neter Implementierung des Materialgesetzes auch tatsichlich Rechenzeitvorteile gegeniiber

einer numerischen Dickenintegration zu erwarten sind.



Abstract

The subject of the work is to provide contributions towards an efficient numerical analysis
of the plastic collapse process of thin-walled structures. Starting from a survey on the state
of research the theoretical foundations underlying the proposed algorithms are summarized.
Here, besides large deformation continuum mechanics and plastic extremum and bounding
principles, special emphasis is put on the derivation and description of the exact Ilyushin
yield criterion, providing an important ingredient for the proposed algorithms. This plastic
limit yield criterion (which is based on perfectly plastic material behaviour obeying the von
Mises yield condition) provides a number of advantageous features, rendering the definition
of both accurate and numerically efficient simulation tools for plastic collapse analysis
of slender beams, thin plates and shells possible. Furthermore, due to the assumptions
underlying the derivation of the yield surface it is fully consistent with plastic extremum and
bounding principles, where it may in particular be utilized in combination with kinematics-

oriented theorems, e.g. the Markov theorem or the upper bound theorem of limit analysis.

To gain more insight into the principles of the crushing phenomenon in a next step
experimental results are presented and simplified analytically based collapse mechanisms
proposed in the literature, which describe the quasistatic progressive buckling process of
circular and multicornered prismatic profiles, are investigated in some detail. As a general-
ization of these simplified tools a computational model based on the upper bound theorem
of limit analysis (“sequential limit analysis method”) in combination with a finite element
discretization is presented afterwards, which allows to study the large deformation crushing
behaviour of general axisymmetric shell structures. The kinematic description is chosen
such that both continuous and discontinuous plastic deformations can be considered. The
large deformation process is described in an incremental manner, where each increment is
solved by mathematical programming techniques. Within the framework of the application
of the exact Ilyushin yield surface the power of internal forces can be taken into account

very accurately. It is also shown that frictionless internal contact can be accounted for
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easily in the algorithm developed in this thesis. Several examples confirming the generality
and suitability of this novel method for simplified plastic collapse analysis are included,

too.

For conventional finite element based collapse and limit load analyses of shell structures
a “full section material model”, which is based on the exact Ilyushin yield criterion, is
investigated afterwards. Many features considered as being essential for the definition of
both a numerically stable and a computationally efficient formulation are proposed and the
main difficulties concerned with the implementation are discussed. This not only includes
the reformulation of standard plasticity algorithms (being required, because the exact
Ilyushin yield criterion may only be stated in parametric form), but also an appropriate
definition and choice of internal parameters used for the local stress update. The test
examples confirm that the proposed full section material routine is in principle applicable
for general finite element analyses and even has the potential of speeding up FE based

limit and collapse analyses.
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Chapter 1
Introduction

The study of the energy absorption and crashworthiness behaviour of structures and struc-
tural components has received considerable attention in recent years. This field is of
particular interest for the design of all kinds of vehicles (cars, buses, trains, aircraft, ships,
etc.) for transport of both passengers and goods, but also for the design of devices which
have to withstand collisions with moving objects (e.g. offshore structures) and for a wide
range of safety components. Continuing progress towards the optimization of engineering
structures, leading to lighter components and vehicles (driven, among others, by environ-
mental issues), again increases the importance of crashworthy designs, and the requirement
to estimate the actual failure loads of various systems. Thus it is likely that the field of
structural crashworthiness, and its numerical simulation in particular, will continue to grow

in the future.

Motivated by these facts, the present work mainly aims at providing contributions
to a simplified numerical analysis of crush elements (forming an essential part in many
energy absorption devices), which are intended to assist the future development of reliable,
yet weight efficient crashworthy structures. Before the main objectives of the work are
presented in detail, however, a brief overview on structural vehicle crashworthiness for
cars, trains and aircraft as well as certain considerations for a crashworthy vehicle design

are given.
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1.1 A Brief Overview on Vehicle Crashworthiness

In the automotive field systematic crash safety research started in the early 1950’s and
crash protection has meanwhile become a well established car design requirement. Mainly
driven by consumer pressure and legislation, a crashworthy automotive structure in com-
bination with active and passive crash safety systems is substantial for the today’s vehicle
design process. Full scale tests prescribed by law (e.g. frontal and side impact tests),
which typically are performed with impact velocities ranging from 4 to 50-55 km/h, have
to validate the effectiveness of occupant protection, but must also ensure some function-
ality of the vehicle structural components (e.g. the fuel system must remain sealed, doors
should still to be opened, etc.). In the last years crashworthiness also has become a strong
marketing argument and automotive industry, consumer consulting services and trade jour-
nals have defined and are performing additional testing to provide consumers with further

information with respect to the impact performance of cars [Anselm, 1997; Seiffert, 1997].

Over the last decade the subjects of passive safety and the crashworthy characteristics
of structural components have also become issues of growing importance for the railway
industry. Administrations and railway research institutes are currently active in defining
relevant recommendations and standards, and in many countries requirements are already
mandatory for the crashworthy design of new rail vehicles (see e.g. [Lewis, 1998]). An anal-
ysis of “structurally significant” railway accidents reveals that most fatalities and serious
injuries of occupants occur as a result of end-on collisions, where the collision speeds are
generally less than 60 km/h, often accompanied by overriding of the coach bodies [Lewis,
1994]. Consequently, the most effective means of reducing passenger and crew casualties
in railway accidents is to concentrate on the design of crashworthy vehicle body ends and
to avoid overriding, which is also reflected in the mandatories. For example, the current
design requirements for new rail vehicles in the UK, set out in the Railway Group Standard
GM/RT 2100 [GMRT2100, 1997] stipulate that, before any deformation of the main body
takes place, a minimum of 1 MJ must be absorbed by the end section over a maximum
collapse distance of 1 m. The impact force must not exceed a certain limit (3000 kN) in
order to keep the maximal deceleration forces sufficiently low and thus to avoid fatalities
for the passengers [Kirk et al., 1998|.

Particular emphasis with respect to passive safety of rail vehicles has to be put on
high speed trains, which have become more and more popular in recent years (TGV, ICE,
Shinkansen, etc.). Although high speed rail is accepted to be one of the safest forms of
transport (such types of trains use modern equipment and the design already includes
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advanced safety concepts, see e.g. [Cléon, 1993]), their high cruising speeds (typically more
than 200-250 kmm/h) are mainly responsible for the fact that even minor defects may end
in fatal accidents. This was unfortunately proven to be true in summer 1998 in Germany,
where more than 100 people lost their lives, when an ICE high speed train traveling at a

speed of about 200 km/h was derailed and struck a road overbridge.

Crashworthiness is also a topic of increasing interest in aeronautics. Experience with
crashes of small aircraft (light fixed-wing general aviation aircraft, small passenger air-
planes, helicopters, etc.) shows that there are a number of accidents that could possibly
be survived by the passengers if certain sources of danger were eliminated. Besides exces-
sively high deceleration peak loads such events are e.g. fire, collapse of the cabin structure
or collision of hard protruding objects with occupants bodies [Bisagni, 1998]. However,
there is the problem that small aircraft, especially with retracted landing gear, in general
have little crushable airframe structure. Therefore, besides designing crashworthy fuel sys-
tems, passenger cabins, energy absorbing landing gears, etc., particular emphasis must be
put on the design of crashworthy subfloor systems. The structural collapse of the subfloor
structure shall allow for a controlled energy dissipation and also limit the vertical loads
to human tolerance levels for potentially survivable accidents [Kindervater and Georgi,
1993; Bisagni, 1998]. With respect to the definition of standards first structural design re-
quirements for better crash protection of aircraft were established for military helicopters
and light fixed-wing aircraft in the form of the MIL-STD-1290 A [MilStd1290, 1988| and
the Aircraft Crash Survival Design Guide [Desjardins et al., 1989]. For all other aircraft
categories further progress can be expected in the future to improve the requirements for

structural crash resistance [Kindervater et al., 1998].

1.1.1 Some Principles of a Crashworthy Vehicle Design

The main goals of a crashworthy structural design are to limit vehicle deformation to
areas where there are no passengers, and to absorb the kinetic energy of the collision
in these regions in a controlled way. In practice, very often a modular design concept
is adopted, which has to ensure that, depending on the impact velocity and the kinetic
energies, respectively, different parts of these energy absorption devices are activated. In
Figure 1.1 the optimal overall impact force versus deformation characteristics for a rail
vehicle during a frontal collision is sketched, which reflects this necessity for a modular
crash design concept of the vehicle body ends. At the beginning (and for small impact

forces, respectively) energy should be dissipated mainly by buffers and couplers without
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First crushing of the

main vehicle body . . .
Required crushing resistance
for the main vehicle bo

3 N v
8
g
o
E

Maximum impact force without

damage of the occupied zones

M aximum impaci
force without Maximal amount of kinetic energy,
any damage which may be dissipated before
damaging the occupied zones
Deformation

/ / T / Acceptable limit for crushing of

Buffer Buffer and Energy dissipation owing to the occupied zones
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coupler response Start of deformation
Activation of energy absorption zones of the occupied zones

Figure 1.1: Optimal impact force versus deformation characteristics for a rail vehicle (from
[Cléon and Lagneau, 1993])

any damage to the vehicle structure. Larger kinetic energies are to be dissipated in energy
absorption zones, ideally having a constant force level over a wide range of deformations.
In order to efficiently protect the part of the rail coach which is occupied by passengers, the
required crushing resistance of the main vehicle body must markedly exceed the crushing

force level of the energy absorption zones [Cléon and Lagneau, 1993].

In a similar manner, Anselm [1997] points out recommendations for the design of the
optimal energy dissipation management for a modern car structure with respect to a frontal

impact against a rigid wall:

e between 0-8 km /h collision speed the whole energy should be absorbed in a reversible
way (e.g. by applying hydraulic, pneumatic or elastomeric systems) without causing

any damage of the car structure,

e from 8-12 km/h the kinetic energy should be dissipated in plastically deforming

energy absorption elements, which are easily exchangeable,

e between 12-15 km/h the capacity of the energy absorption elements will in general
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be exhausted and the frontal part of the side members will also start to deform,

e above 15 km/h the whole side members of the frontal chassis will deform plastically.

Whereas the first three requirements rather come from demands of an easy and inexpensive
repair of the car structure, the energy absorption and deformation characteristics of the
frontal side members are essential for an effective occupant protection at higher collision
speeds. A crashworthy design of these primary structural parts (they also have to carry
the motor, etc.) ensures that a large amount of energy is dissipated by controlled plas-
tic deformations in the frontal area of the vehicle. In order to ensure such a controlled
deformation behaviour, however, the individual parts of the frontal chassis are in general
composed of thin-walled structures (open and closed sectioned tubular members, etc.),
where plastic collapsing (postbuckling, crushing) leads to efficient energy dissipation in

well defined, localized regions.

As an example (where the above mentioned collapse speed limits are already exceeded),
Figure 1.2 shows the all-aluminium space frame of the Audi A8. The frontal chassis is
arranged such that up to 8 km/h collision speed a front bumper with impact absorber
dissipates the kinetic energy without damaging any structural parts. Up to 20 km/h the
energy is dissipated by plastic buckling of a tubular crush element. Permanent deformations
of the frontal side member (essentially having a hexagonal cross-section) occur after a
collision speed of 20 km/h [Paefgen et al., 1994]). Even higher critical collision speeds are
reported for the frontal chassis of the BMW 850i, where specifically designed frontal side
members with octagonal cross-sections are stated to be able to suffer collapse speeds of up
to 30 km/h without essentially damaging the frontal area of the car [Haberl and Eichinger,
1990].

The practical design of the energy absorption zones at the front and rear ends of the
engine of the french TGV 2N high speed train is shown in Figure 1.3. These crash zones
(and also the energy absorption zones at the front and rear ends of the passenger car
set) are also composed to a great extent of thin-walled tubular structures. During frontal
crashes these components are to absorb the essential part of the kinetic energy by plastic
buckling in an efficient, yet controlled way, before the region occupied by passengers is
affected.
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Figure 1.2: Audi A8: aluminium chassis (space frame concept) and repair of front chassis
member after 15 km/h frontal impact (from [Paefgen et al., 1994))

Energy absorption
elements

Figure 1.3: TGV 2N: energy absorption zones at the frontal and rear ends of the locomotive
(from [Cléon, 1993))
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1.2 Objectives of the Work

The present work aims at providing contributions to an efficient (i.e. simplified, but still
sufficiently accurate) numerical analysis of the collapse process of thin-walled structures.
Starting from a survey on the state of research (chapter 2) the theoretical foundations
are summarized in chapter 3. To gain more insight into the principles of the crushing
phenomenon in a next step experimental results are presented (chapter 4) and simplified
analytically based collapse mechanisms proposed in the literature, which describe the qua-
sistatic progressive buckling process of circular and multicornered prismatic profiles, are
investigated (chapter 5). Comparisons with experiments and FE computations show that
the ability of such mechanisms to describe the force-deflection characteristics of the whole
deformation process is rather limited, even if the underlying kinematics seem to be well
suited for the description of actual crushing processes. When the requirement for obtaining
analytical solutions is dropped, several refinements and generalizations are possible. These

essentially include:

e a refined description of the constitutive behaviour by application of a general stress
resultant yield surface instead of simplified yield conditions (in the present work the
Ilyushin yield surface, which is exact for rigid-perfectly plastic material behaviour, is
applied),

e a more generalized kinematic description of the deformation mechanisms (e.g. an

“FE-like” discretization of the geometry and the deformation field, respectively).

Starting from these considerations a “sequential limit analysis method” is presented in
chapter 6 for the axisymmetric collapse analysis of general axisymmetric shells. Herein the
large deformation process is described in an incremental manner, where each increment
is solved by mathematical programming techniques. Due to the application of the exact
Ilyushin yield surface the power of internal forces can be taken into account very accu-
rately. It is also shown that with the proposed method frictionless internal contact can be
accounted for easily. Furthermore, most of the analytically based kinematic mechanisms
proposed in the literature for the concertina mode buckling of cylindrical shells can be
regarded as special cases, thus allowing to study the effects of different simplifications used

in these models.

In order to study the principal phenomena and to keep the kinematic description as

simple as possible, the refinements and derivations are restricted to axisymmetric shells.
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The description of the exact Ilyushin yield surface (chapter 3), however, is given for general
shell geometries and it is worth studying if this yield criterion could also be used advan-
tageously for the definition of a material law for FE-shell elements. Besides the fact that
such a stress resultant constitutive model is interesting from the theoretical point of view,
its application in FE-based collapse and limit load analyses could eventually speed up the
FE calculations (because no numerical thickness integration must be performed), while
retaining the necessary accuracy for these types of problems. This topic is investigated in

some detail in chapter 7.

Conclusions are finally summarized in chapter 8.



Chapter 2
Literature Overview

In the past, certain types of crush elements have been developed which dissipate energy in a
variety of ways, e.g. by friction, fracture, plastic bending or torsion, crushing, cyclic plastic
deformation, metal cutting, etc. However, as was already pointed out in the introduction,
the elastoplastic buckling and postbuckling behaviour of thin-walled structures (collapse,
crushing) may in particular be utilized to define efficient and versatile energy absorption
devices. Thin-walled structures (and axially compressed tubular members in particular)
are capable of carrying substantial loads for deflections far beyond those corresponding
to ultimate or buckling loads. These large deflections can be accommodated through the
formation of deformation mechanisms that concentrate the energy dissipation in relatively
narrow zones, while the remainder of the structure is almost unaffected from plastic strains.
Due to this advantageous plastic postbuckling behaviour such types of structures meet

several requirements of an optimal energy absorption device:

e the crushing loads do not exceed certain limits over a long crushing distance (e.g. for
axially compressed, progressively buckling tubes the forces fluctuate around more or

less constant values),

e the stroke lengths, i.e. the maximal distances that may be utilized for energy dissi-
pation, may reach markedly high values (e.g. up to 80% of the original length may

be used for the progressive buckling of axially compressed cylindrical shells),

e deformations are localized in well defined regions (the locations may additionally be

triggered by a proper design of the crush elements),

e thin-walled structures made of conventional materials (steel, aluminium, etc.) are

9



CHAPTER 2. LITERATURE OVERVIEW 10

inexpensive and versatile and, for many applications, they may also be designed to
carry operational loads,

e thin-walled structures are weight efficient, thus fulfilling demands for a lightweight
vehicle design for both operational and crash loading conditions.

In the following, a survey on the state of research is given on methods and solution tech-
niques, used for studying the deep plastic collapse behaviour of thin-walled structures.
In addition, special attention is focused on methods which have the potential (but are
not applied up to now) to set up some basis for the future development of numerically
efficient simulation tools for crashworthiness calculations. The overview, which is essen-
tially restricted to metallic structural devices, is classified into experimental, numerical

and analytically based methods.

2.1 Experimental Methods

Besides crash tests, which are prescribed by law, there are a number of reasons why in
practice a lot of time and cost intensive testing is still inevitable, even if numerical analyses

are carried out. These include:

e The complexity of crashworthiness simulation results from the underlying problems of
arbitrary geometries, large deformations with contact, nonlinear, strain rate sensitive
constitutive behaviour, dynamic loading, fracture, etc. Because crushing is affected
by so many parameters, there arises the difficulty of obtaining and considering all the
relevant data for general numerical analyses. For example, much effort is required for
obtaining material data related to high rates of strain, see [Harding, 1991; Nemat-
Nasser et al., 1994]).

e Even solely mechanically based numerical algorithms have to be validated by exper-
iments [Haug et al., 1983; Berstad et al., 1995; Zaouk et al., 1998].

e Analytically based solution methods in general have to use many simplifying assump-
tions or are even based on experimental observations. Therefore, testing is inevitable

for the definition and validation of these types of simulation strategies.

e In some cases selected component testing may still be more appropriate (and reliable)

than performing detailed numerical simulations [Kecman, 1997|. This holds especially
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true, if there are to investigate simple geometries in combination with very restricted

parameter variations.

Test methods with respect to crashworthiness of structures may principally be divided
into static and dynamic test procedures. The main reason why (quasi-)static testing can
also be appropriate for approximately investigating dynamic processes is that the unstable
response of structural members at relatively low impact velocities often is closely related
to their static behaviour — that means, the pattern of deformation is similar for both static
and dynamic loading [Jones, 1989a; Kecman, 1983; Aamlid et al., 1993]. The reason for this
is that inertia effects do not yet play a significant role (even if some strain rate sensitivity
of the material may cause differences). Accordingly, for moderate impact velocities tests
can often be done quasistatically, which considerably simplifies the testing procedures
(e.g. uniaxial universal testing machines can be used for axial compression of tubular
members). Furthermore, it follows that analytical and numerical models can be derived
excluding inertia forces (quasistatically) and applied to quasistatic dynamic simulation,
possibly considering some strain rate sensitivity [Kecman, 1983; Jones, 1989b]. Examples
for “static crash testing” can, among many others, be found in [Gupta and Khullar, 1993;
Gupta and Velmurugan, 1995; Cimpoeru and Murray, 1993]. Analytically based simulation
techniques often rely on experimental results obtained from static tests. The experiments
which were conducted for the present work (axial compression of tubular crush elements),
and also the proposed simplified numerical methods, are, therefore, restricted to quasistatic

loading conditions.

Besides the crash tests performed e.g. in the automotive industry, which are prescribed
by law and typically are full scale dynamic tests under well defined conditions (frontal, side
or rear impact test, rollover test, etc. — for an overview on currently required test methods
in Europe and the US see e.g. [Anselm, 1997] — dynamic component testing can be carried
out in different ways. One method is the “drop weight” or “drop hammer” test, where some
rigid weight falls down on the test specimen (e.g. [Berstad et al., 1995; Bravo et al., 1993;
McGregor et al., 1993]). Although this kind of testing is relatively simple to use there are
uncertainties in the measured results arising from interaction between the rigid mass and
the specimen (e.g. uncontrolled stress wave propagation effects may markedly influence the
measurements). To obtain more accurate experimental results (e.g. for comparison with
numerical analyses), more advanced test methods were developed. Maier et al. [1990] de-
scribe test arrangements for dynamic crash testing, where the rigid mass and the specimen
become decoupled immediately after impact. Albertini et al. [1993] use the Hopkinson bar

method, which was originally developed for high strain rate characterization of materi-
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als, for a more accurate measurement of the load-displacement characteristics of full scale
thin sheet metal structures. The authors state that such a specialized arrangement allows

control and clear measurement of the stress waves due to impact loading.

2.2 Numerical Methods

Finite element programs today offer the most general way of simulating the crash behaviour
of structures. From the methods point of view there are no intrinsic limitations, and
practical constraints are rather due to computer resources and the huge amount of data
generated with fine meshes. In fact even on supercomputers a compromise has to be

achieved between “accuracy” and efficiency.

There are a number of specialized finite element codes, designed especially for modelling
the large deformation dynamic response of inelastic solids and structures, e.g. DYNA-3D,
LS-DYNA3D, MSC/DYTRAN, PAM-CRASH, PLEXIS-3C or ABAQUS/Explicit.

The time integration of the nonlinear equations of motion in these programs is gen-
erally based on explicit schemes, usually using the central difference method [Chung and
Lee, 1994]. One main advantage of an explicit formulation is that no assembling of a stiff-
ness matrix and only simple vector calculations are required (provided mass and damping
matrices are diagonal). Therefore, storage and computational costs per time step are gen-
erally much less than for implicit methods. Furthermore, no iterations have to be carried
out. Because the explicit scheme is only conditionally stable, however, severe time step size
restrictions apply. The time step has to be smaller than the travel time of a stress wave
across the smallest element within a given FE discretization (Courant limit). In general
this results in an extremely large number of increments, but each increment is relatively
inexpensive [Haug et al., 1983; HKS, 1998b].

Due to the dynamic nature of impact explicit codes offer an economical way of carrying
out crash calculations (as compared to implicit time integration codes). Furthermore,
static and slow motion dynamic problems, which are highly nonlinear or even discontinuous
(very large deformations and strains, rate dependent plasticity, and frictional contact), also
require small time steps, and, hence, they are also often solved efficiently by using explicit
codes (see e.g. [Hu et al., 1994]). But even for slow motion smooth nonlinear problems the
explicit procedure may become more economical for very large models. The reason for this
is that due to the efficient incremental solution technique of explicit methods (without the

need of matrix inversions, etc.) the computation time increases in a direct proportion to
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the problem size, whereas implicit methods become less efficient for larger problems [HKS,
1997].

Much effort has been put into the development of efficient element formulations, es-
pecially for plates and shells which are mainly used for modelling thin-walled structures.
These elements have to be simple and computationally “cheap”, must handle large rota-
tions properly, should work for thick and thin shell applications, must be robust, i.e. free
of unnatural stiffening effects such as shear locking, and should consider thickness changes
due to in-plane deformations. An example for such an element formulation can be found
in [HKS, 1998a]. Whereas this element uses a numerical through thickness integration,
formulations working only in terms of stress resultants, even for plastic deformations, are
desirable. Among others, Simo et al. [Simo and Fox, 1989; Simo et al., 1989, 1990a,b; Simo
and Kennedy, 1992; Simo et al., 1992; Simo, 1993a], Ibrahimbegovi¢ and Frey [1993, 1994]
and Auricchio and Taylor [1994] presented plate and shell elements, where the elastoplas-
tic constitutive models are formulated directly in terms of stress resultants. Using such
formulations for the constitutive behaviour may lead to improvements in computational
costs, but is often accomplished at the expense of introducing considerably more complex
functional forms in the constitutive response functions and restricts the generality of the
material description. Furthermore, most stress resultant yield criteria are approximate
because the spreading of the plastic zone over the thickness of the shell section is neglected
(plastic limit yield functions) or is considered only in a simplified way (see e.g. [Crisfield,
1980; Basgar and Kritzig, 1985]). In addition, the theoretical derivations of such yield cri-
teria are mostly based on perfectly plastic material behaviour, even if extensions to include
hardening have been proposed (see e.g. [Chou et al., 1994] or the FE plate and shell for-
mulations cited above). Crisfield [1997] suggests to use full section yield criteria for quick
approximate studies — for final detailed analyses (as well as for very imperfection sensitive

shell structures) a numerical thickness integration should always be used.

Despite all these disadvantages the application of elastoplastic stress resultant consti-
tutive laws may be suitable for a certain type of problems — limit and collapse analyses of
thin-walled structures, which are dominated by plastic deformations. Because the present
work just deals with the simplified analysis of the plastic collapse behaviour of thin-walled
shells, the application of approximate stress resultant constitutive laws appears to be highly
appropriate. In section 3.4, therefore, the derivation and description of the exact Ilyushin
yield surface (which is applied for these purposes) is presented in detail. With respect to
FE analyses, an algorithmic structure for the definition of a full section constitutive model,

based on the exact Ilyushin yield surface, is proposed, too (chapter 7).
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Notwithstanding all the progress made in further developing the conventional, displace-
ment based finite element method there exists the principal problem that strain localization
(for crushing this corresponds to the development of plastic hinges or yield lines) can only
be considered properly through very fine meshing, and in general the localization zone will
not be known a priori. For strain localization representable by displacement (strong) dis-
continuities (e.g. shear bands) Larsson et al. [1993] used mesh adaption or mesh realignment
procedures, where regularized displacement discontinuities are allowed along inter-element
boundaries. A further strategy for displacement discontinuities, which in recent years be-
came the subject of considerable research, is the formulation of enhanced assumed strain
elements, where the continuous deformation field inside an element domain is enriched by
discontinuous displacements. With such a formulation mesh size and mesh alignment de-
pendencies can be removed when computing strong displacement discontinuities [Larsson
et al., 1995; Armero and Garikipati, 1995; Oliver, 1995]. Although these developments seem
to be very useful for analyses of displacement discontinuities (shear bands, slip lines, ... ),
in general the material behaviour must fulfill certain conditions (damaging, softening, see
[Armero and Garikipati, 1995; Oliver, 1995]) and it is questionable if this methodology is
applicable to the analysis of plastic hinge or yield line mechanisms, where the displacements

remain continuous and generally no material softening occurs.

Toi et al. [Toi and Yang, 1991; Toi and Isobe, 1996] proposed a technique to consider
plastic hinges in framed structures by shifting the integration points in linear and cubic
beam elements. This procedure is based on the comparison of the strain energy approx-
imations of these finite element formulations with rigid body — spring models, which are

the discrete elements suitable for plastic collapse analysis.

Shi and Atluri [1988] presented a stress based element formulation for space frames,
where plastic hinges can develop at discrete points and the rest of the element remains
purely elastic. Shi and Voyiadjis [1992] extended this plastic node technique to assumed
strain elements for shear flexible plates. In their work a modified Ilyushin yield function
considering transverse shear as well as the progress of yielding across the plate thickness is
used. The plastic deformations, however, are restricted to the positions of the nodes of the
element whereas the interior always remains elastic. Eventhough the beam element is valid
for large deformations, the plate element formulation is based on the assumption of small
strains and, therefore, not applicable to crushing analysis. In [Vasudevan et al., 1995],
however, a brief outline for the formulation of a frame element, which is also based on a

mixed variational principle and stated to be specialized for crash analysis, was proposed
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(following the definition of the hybrid frame element cited above).

Rather classical methods for computing the ultimate loads of plastically deforming
structures are a direct outcome of the theory of plasticity. Plastic extremal and bounding
principles (Hill theorem, Markov theorem, limit analysis theorems, ... , see e.g. [Washizu,
1968; Ismar and Mahrenholtz, 1979; Lubliner, 1990]) may serve to find solutions for the

plastic limit state and may also provide estimates for the actual collapse loads.

The bounding principles of limit analysis (lower and upper bound theorem) are gen-
erally based on rigid-perfectly plastic material behaviour, small deformations, monotonic
and proportional loading conditions, etc. The problem consists in finding statically and
plastically admissible stress configurations (lower bound theorem) and/or kinematic mech-
anisms (upper bound theorem), which are as close as possible to the actual configuration
at collapse. Jones [1989b] used the theorems to investigate the limit behaviour of beams,
plates and shells under static as well as dynamic loads and different boundary conditions.
Gao [1995] presented bounding theorems for plastic shells undergoing large deformations
and suggested a penalty-duality variational technique for the numerical evaluation of the
optimal load factor. A “sequential limit analysis” method for large deformation analy-
sis of truss and frame structures, which is based on a duality theorem, was proposed by
Yang [1993]. There the solutions for large deformations are obtained in an incremental
manner without losing the advantages of limit analysis which are numerical stability, effi-
ciency, modelling simplicity, etc. Furthermore, hardening or softening, loading-unloading,
bifurcation of solutions, etc., can be accounted for in this method.

The numerical implementation of limit analysis in general leads to mathematical pro-
gramming methods (e.g. [Smith, 1990; Zouain et al., 1993; Zhang et al., 1994; de Buhan
and Maghous, 1995; Turgeman et al., 1998]), often combined with some finite element dis-
cretization of the geometry [Li et al., 1993; Yu et al., 1994; Zhang et al., 1994; Zwolinski,
1995; Borges et al., 1996; Seitzberger and Rammerstorfer, 1998a]. The FE formulation,
which is mostly based on the upper bound theorem or (in a very similar, but more general
way) on the Markov theorem and related extremum principles [Washizu, 1968; Ismar and
Mahrenholtz, 1979; Smith, 1990], may also be used advantageously to set up a nonlinear
system of equations in the unknown velocity parameters instead of directly solving an op-
timization problem [Kobayashi, 1977; Ismar and Mahrenholtz, 1979; Tsuta et al., 1993;
Mori et al., 1996; Hwan, 1997; Capsoni and Corradi, 1997a,b]. Besides the numerical ef-
ficiency, which is stated to be achievable by such a solution method, its formulation and
programming are in general simpler than those for conventional elastoplastic FE codes.
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Non-steady-state large deformation problems (which even may include frictional contact,
see e.g. [Ismar and Mahrenholtz, 1979; Hwan, 1997]) are generally solved by adopting a
step-by-step procedure. Discontinuous velocity fields can also be accounted for without
fundamental difficulties. The rigid plastic finite element method is widely applied to the
simplified numerical simulation of metal forming processes (see e.g. [Kobayashi, 1977; Feng
and de Saxcé, 1996; Mori et al., 1996; Hwan, 1997; Bonet, 1998|).

The methods discussed in the present section are concentrated on the finite element
method and on plastic extremum and bounding principles. The reason for this is that the
first methodology offers a very general and widely used tool. Extremum and bounding
principles, however, are intended for investigating plastic limit states and ultimate loads,
respectively, and, therefore, serve as a direct and natural approach to collapse analysis of
structures. In the subsequent chapters, contributions to both types of numerical methods
are given. Besides the full section constitutive model for conventional FE analyses, which
was mentioned above, a sequential limit analysis method is investigated in the present work.
Chapter 6 includes the description of a computer program for the simulation of the large
deformation collapse behaviour of axisymmetric shells (including internal contact), which
is based on the upper bound theorem of limit analysis. In order to retain some modeling
generality (and to restrict the programming effort), however, the incremental solutions are
found by applying general mathematical programming techniques instead of resorting to
a (numerically certainly more efficient) direct solution method (see also [Seitzberger and
Rammerstorfer, 1998a,b]).

2.3 Analytically Based Methods

Experiments show that the collapse process of thin-walled structures is in general accom-
panied by the development of localized plastic mechanisms, i.e. the formation of a more
or less complicated pattern of folds and wrinkles. Based on these observations simplified
kinematic mechanisms were proposed for predicting the crushing response of thin-walled
members of simple geometry under different loading conditions. Many of these models
lead to simple computer codes or even to closed-form solutions and, therefore, can be used

efficiently in the preliminary design of energy absorbing systems.

The proposed models are mostly based on kinematics-oriented methods of plasticity,

suitably generalized to large deformation problems. Starting point is the selection of a
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kinematically admissible velocity field, which is piecewise continuous allowing stationary
and moving yield lines to develop. Taking into account the constitutive behaviour the
internal rate of energy dissipated within such a collapse mechanism can be computed
(mostly rigid-perfectly plastic material behaviour is assumed). Global equilibrium is in
general expressed by the power equation, from which external loads and load parameters,
respectively, are obtained, after the unknown parameters (if there are any) are determined
by some minimization procedure. This minimization may be based on a power principle,
e.g. the Markov theorem or the upper bound theorem. For progressive buckling processes,
however, often an energy principle is applied, leading to the minimization of the mean
crushing force over one crushing cycle (see e.g. [Abramowicz, 1996]). Depending on the
kinematic description and on simplifications with respect to the computation of the power
of internal forces closed-form solutions may be obtained, which can be solved analytically
[Wierzbicki and Abramowicz, 1989].

Many mechanisms were proposed for describing the axisymmetric progressive buckling
of circular tubes (“concertina” mode buckling). Examples can be found in [Alexander,
1960; Abramowicz and Jones, 1986; Grzebieta, 1990; Wierzbicki et al., 1992; Gupta and

Velmurugan, 1995] — see also section 5.2.

Wierzbicki and Abramowicz [1983] and Hayduk and Wierzbicki [1984] presented two
basic folding elements (collapse modes) for the axial crushing of thin-walled structural
members, which can account for internal energy dissipation not only due to local bending
but also due to membrane deformations in the corner regions. These elements were used
to predict the axial collapse behaviour of a cruciform member [Hayduk and Wierzbicki,
1984] and the symmetric collapse of rectangular and square box columns [Wierzbicki and
Abramowicz, 1983]. In [Abramowicz and Wierzbicki, 1989] a combined mechanism was
proposed for multicorner prismatic columns with an even number of corners, where both
collapse modes are allowed to act in series (also denoted as “superfolding element” by
the authors). A further extension of this generalized model to square tubes filled with
polyurethane foam is described in [Abramowicz and Wierzbicki, 1988]. An application
(and further extension) of the latter to study the axial crushing behaviour of square,
hexagonal and octagonal members, which are fully or partially filled with aluminium foam,
is described in [Willminger, 1999]. Wierzbicki and Huang [1991] presented a model which
is able to describe the transition from the postbuckling phase (immediately following the
bifurcation) to the crushing deformation phase (leading to localized plastification) in box
columns. Reddy and Al-Hassani [1993] and Reid [1993] suggested (among other energy

absorbing systems) simplified kinematic mechanisms for the progressive crushing of axi-
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ally compressed square metal tubes filled with polyurethane foam and wood. In contrast
to the model proposed by Abramowicz and Wierzbicki [1988], however, these kinematic

mechanisms are not able to account for some interaction between filler and tube.

Concerning the force-deflection characteristics during the formation of a single fold in
progressive crushing of tubes it must be said that none of the cited mechanisms is able to
describe this behaviour sufficiently accurately. Therefore, for practical use and comparison
with experiments mostly the mean force-deflection characteristics or only parts of this

curve are used.

Kecman [1983] investigated the characteristics of the bending collapse of rectangular
and square section tubes experimentally as well as theoretically and presented a kinematic
mechanism for the prediction of the moment-rotation curve of such tubes. In [Kotelko
and Krélak, 1993| the collapse behaviour of triangular cross-section girders subject to
pure bending was examined. Wierzbicki et al. [1994a,b] proposed a model for combined
bending/compression loading of multicorner columns based on a purely axial compression
mechanism [Abramowicz and Wierzbicki, 1989]. It is interesting to note that they used not
only experimental observations but also the finite element method to study the crushing
process in detail and to propose their mechanism (which in analogy to the underlying

“superfolding element” for axial compression, is denoted as “superbeam element”).

The “superfolding” and the “superbeam” elements essentially form the basis of CRASH-
CAD [CrashCad, 1995], a simplified design code intended for rapid prototyping and design
of energy absorbing components and structural arrangements. The design code in its
current version not only includes the axial and bending response of tubular members,
but may also be used to investigate torsional as well as combined loading conditions.
Furthermore, the main variables of influence are suggested for a preliminary design of whole
structural devices (including the choice of the optimal cross-section, the wall thickness, the
location of spot welds, etc.). However, CRASH-CAD has been set on a commercial basis
and, though still being developed further, theoretical foundations of progress have not been
published since the early 90’s. An example for the use of CRASH-CAD for a preliminary
design study of energy absorption devices made of aluminium can be found in [McGregor
et al., 1993].

Murray [1985] presented results for the collapse behaviour of different open and closed
sections. He proposed that even the most complicated local plastic mechanisms can be
decomposed into a number of basic mechanisms. Following Murray [1995] two general prin-

ciples can be stated which determine what kind and shape of mechanism will be adopted
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during collapse. The first principle is that the mechanism becomes locked into a certain
shape determined by the location of the zones of first yielding (influenced by initial imper-
fections). Therefore, the actual mechanism is not necessarily the one which would minimize
the load during collapse. The second principle is that the structure always tries to develop

a mechanism which is dominated by bending and avoids membrane yielding.

Most of the mechanisms cited above assume rigid-perfectly plastic material behaviour.
Elasticity, hardening, strain rate effects, etc., could eventually be considered, but often at
the expense of obtaining much more complex equations, and closed-form solutions can in
general no longer be obtained.

Many of the kinematic models use moving hinges or yield lines to describe the de-
formation process. Lu and Sherbourne [1992] and Sherbourne and Lu [1993] presented
contributions towards the physical understanding of the moving hinge concept in large-

displacement problems.

Many of the analytically based models give rise to closed-form solutions for the force-
displacement or moment-rotation characteristics of thin-walled tubes and, therefore, are
well suited for use as special elements in numerical algorithms as described in section 2.2
(but often only the mean force-deflection behaviour is used in practice, see the remarks
above). For example, Drazétic et al. [1993, 1995] used the compression and pure bending
models developed by Abramowicz and Wierzbicki [1989] and Kecman [1983] as translational
and rotational springs in connection with elastoplastic beam elements as well as with rigid
elements for the evaluation of the global crash behaviour of an “S”-frame undergoing a
collision against a rigid block. In [Drazétic et al., 1995] a modelling tool was described,
which allows the determinination of the number and locations of the springs in the rigid
body-spring model. Sonzogni and Géradin [1994] presented a hinge model for transient
beam response analysis allowing a variety of moment-rotation characteristics. For consid-
ering section instability of rectangular thin-walled sections they also employed Kecman’s
bending mechanism. The combined compression/bending element presented in [Wierzbicki
et al., 1994a,b| is also intended as special beam element for simplified crushing analysis of
arbitrary framework structures (and as such is used in the design code CRASH-CAD, see
above).

Due to the fact that most mechanisms based on analytical techniques generally use
many simplifying assumptions, results are mainly useful for preliminary design studies
(see e.g. [McGregor et al., 1993]). In [Wierzbicki and Abramowicz, 1989] a scenario for
linking the proposed analytically based folding elements with the finite element method
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is sketched. It is stated that for practical use the folding elements have to be suitably
generalized to allow an incorporation into “hybrid” FE codes. Directions of future research
have to include improvements of existing mechanisms, e.g. by removing the requirement of
obtaining analytical solutions. Such a formulation may open the way for extensions of the
existing mechanisms (elastic behaviour, inertia forces, hardening, etc., could be accounted
for) to form a hybrid shell model for efficient crash calculations of arbitrarily shaped shells.
This task, however, requires deeper insight into the plastic folding process of thin-walled

metal structures.

2.4 Summary

The goal of the present research work is to provide contributions towards an effective
numerical simulation of the collapse process of thin-walled structures. From the summary
on the state of research presented above some conclusions may be drawn, which seem to

be important for obtaining this goal:

e In a first step the development of simplified numerical tools can be performed with-
out considering dynamic effects. However, this restriction to static problems should
not be stringent, i.e. the possibility of including dynamic effects (at least in an ap-
proximate way) should be provided by the chosen methodology.

e A definition of effective and accurate algorithms should be based on stress resultant
yield surfaces, which can account for some interaction between the stress resultant
components while avoiding a numerical thickness integration. The application of
plastic limit yield surfaces is in particular suited for rigid plastic solution methods,
because the definitions of such surfaces usually also rely on the assumption that elastic

deformations can be neglected, thus being consistent with rigid plastic analysis.

e The application of approximate “full section” constitutive laws, which are based on
stress resultant yield surfaces, is appropriate for conventional FE collapse analyses

of shells, which are dominated by plastic deformations.

e The kinematic description of crushing processes of thin-walled structures, either
within analytically based models or within a more general finite element discretiza-
tion, should allow for the development of stationary or moving plastic hinges and yield
lines. For FE-based solution techniques this ensures that relatively coarse meshes can

be used while still considering localization of plastic deformations.
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e For simplified plastic collapse analyses kinematics-oriented extremum or bounding
principles (Markov theorem, upper bound theorem of limit analysis) are ideally suited
and, therefore, mainly applied in practice. A generalization of the analytically based
simulation models will certainly lead to some kind of a sequential limit analysis or
rigid plastic finite element method, respectively (both methodologies are essentially
based on the same theoretical foundations, see chapter 3). The sequential limit anal-
ysis method for axisymmetric shells presented in chapter 6 shows that many of the
analytically based mechanisms can be regarded as special cases, while the general-
ized method is able to deliver results which are comparable to that of conventional

elastoplastic FE analyses.

e With respect to the conventional, displacement based FE method especially hybrid
element formulations, which are set on the basis of multifield variational principles,
seem promising (see e.g. [Shi and Atluri, 1988; Vasudevan et al., 1995; Seki and
Atluri, 1995]). For example, the beam element proposed by Shi and Atluri [1988] is
based on assumed stress resultants within the element and allows plastic hinges to
develop on a number of fixed positions within the element domain in order to account
for plasticity. With proper extensions concerning the position of the plastic hinges
as well as the kinematics this formulation could also serve as a basis for defining a
hybrid axisymmetric shell element where plastic hinges are allowed and elasticity as
well as dynamic behaviour can be accounted for. This approach, however, though

very interesting, is not investigated further in the present work.



Chapter 3
Theory

In the following, several theoretical foundations are stated, which are needed for the de-
velopments in the subsequent chapters. Starting with a brief introduction into large defor-
mation continuum mechanics (section 3.2) some principles of the mechanics of rigid plastic
materials, including the kinematics-oriented plastic extremum and bounding principles, are
presented in section 3.3. Furthermore, the derivation and description of the exact Ilyushin

yield criterion is summarized in section 3.4.

The theoretical fundamentals included in this chapter are mainly taken from [Malvern,
1969; Lai et al., 1993; Crisfield, 1997; HKS, 1998a| (continuum mechanics) and [Washizu,
1968; Ismar and Mahrenholtz, 1979; Lubliner, 1990; Kreiflig, 1992] (plastic material be-
haviour), respectively. The representation of the exact Ilyushin yield surface is closely

related to the work of Burgoyne and Brennan [1993b].

3.1 Notation

In the next two sections on continuum mechanics and the plastic extremum and bounding
principles (sections 3.2 and 3.3) tensors and vectors are denoted in boldface letters without,
in general, referring to the individual components (e.g. @, A). This kind of notation
(“direct matrix notation”) allows a very compact and convenient representation of tensorial
quantities without reference to a particular coordinate system. For the main body of
the work, however, matrix notation is used, being more convenient for the formulation
and computer implementation of several algorithms. According to this kind of notation
the components of second and fourth order tensors are arranged as vectors and matrices,

22



CHAPTER 3. THEORY 23

respectively (where vectors and matrices are again written in boldface).

In any case, all quantities are defined and designated when first used, and the type of
notation will in general be obvious from the context.

3.2 Some Basic Principles of Continuum Mechanics

3.2.1 Deformation, Rate of Deformation and Strain Increment

A material particle of a body in its reference configuration is given by the position vector
X. The motion of this material particle is described by the mapping

x=x(X,t), (3.1)

where & stands for the current position of the material particle at time ¢. The relation
between a material element in the current and in the reference configuration (de and dX,
respectively) is given by
oz

de = 8—XdX =FdX, (3.2)
where the unsymmetric second order tensor F is the deformation gradient. Because of
the one-to-one correspondence between particles in the reference and the current config-
uration (material cannot appear or disappear) the deformation gradient is invertible and
accordingly, the determinant J = det F # 0. The determinant of F may be shown to be
a measure for the volume change between current (dv) and reference (dV') infinitesimal

volumes:
dv=JdV (3.3)

from which it becomes evident that not only J # 0 but also J > 0 holds. The deformation
gradient F in general includes both continuum deformations and rigid body motions and,
therefore, is not suited to directly describe strains in continuum mechanics. However,
most common strain measures for large deformation problems may be defined via the

deformation gradient (for details see e.g. [Lai et al., 1993]).

Due to the path dependency of plastically deforming materials constitutive equations (of
the flow theory of plasticity) are typically stated in rate form, thus requiring the definition
of a measure for the strain rate. The velocity of a material particle is given by

ox

'U—E.

(3.4)
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The velocity difference between two neighbouring particles in the current configuration is

dv:g—de:V'vdw:ldw, (3.5)

where [ is the velocity gradient in the current configuration. It is noted, however, that by
applying the definition of the deformation gradient (see Eq. (3.2)) one may alternatively

obtain the velocity gradient as
I=FF!, (3.6)

where F denotes the time derivative of F.

l is in general an unsymmetric tensor, which may be decomposed into a symmetric and

a skew-symmetric part,

l=d+w, (3.7)
with
1 ry _ 1 T
d:E(l—f-l):E(V'v—i-V'v), (3.8)
w:E(l—lT)zé(Vv—V'uT). (3.9)

The skew-symmetric part w is the spin tensor, characterizing the rate of rotation of da
without changing its length (rigid body rotation), whereas the symmetric tensor d is de-
noted as the spatial rate of deformation tensor (sometimes also called stretching tensor,
velocity strain, etc.). It is an appropriate measure of strain rate. Omitting the proof the
following relation holds (ds = vdaTdex):

4 L

E(ds) = dsmed de | (3.10)

that means that the rate of change of an infinitesimal material element ds is determined by
the spatial rate of deformation tensor d. Furthermore, from Eq. (3.8) it may be seen that for
small deformation problems the definition of d corresponds to the elementary definition of
the time rate of “small strains”. However, whereas the time derivative of the “small strain
tensor” is based on the assumption that the displacements and the displacement increments
are small (and thus, the strain definition is related to the (undeformed) reference state)
the rate of deformation tensor d is related to the current configuration and is also useable
in situations where the displacements are not small, e.g. fluid flow or metal forming such

as drawing, extrusion, etc. [Malvern, 1969].
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For the special case that the principal strain directions do not rotate with respect to the
material, d is integrable into a common strain measure, namely the logarithmic or natural

strain. For example, in one dimension, the rate of deformation is given by

d11 = 5 (311)

d.’L‘l ’

from which (with the stretch A; = dz;/dX;) the logarithmic strain follows as

i
€11 = / d11 dt =1In )\1 . (312)
0

3.2.2 Equilibrium Statements

A body (or a part of a body), given in its current configuration (volume v, boundary surface
a), is loaded by surface tractions ¢ (force per unit of current area) and body forces f (force

per unit of current volume). Then, (static) force equilibrium of the body is written as

tda+ [ fdv=0. (3.13)
froes |

The “true” or Cauchy stress tensor & at a point of the surface is defined by
t=on, (3.14)

where m is the unit outward normal to a at the point. Using this definition, Eq. (3.13)

may be expressed as

/ao"n,da—i-/vfd'u:O. (3.15)

In order to transform a surface integral into a volume integral, the integral identity

/Tn da = /divT dv , (3.16)

with T being a tensor field, may be applied (for the integral transformation of a vector
instead of the tensor field this is known as the Gauf} theorem). Using this, it follows for
Eq. (3.15):

/ [dive + f] dv=0. (3.17)

v
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Since the volume is arbitrary, this equation must apply pointwise in the body, thus pro-
viding the differential equation of translational equilibrium:

dive+f=0. (3.18)

Moment equilibrium for the body under consideration, written as

L@xﬂdw+/@xfﬁwzo, (3.19)

v

finally simply delivers that the Cauchy stress tensor is symmetric, i.e.
o=o", (3.20)

so that at each point there are only six independent stress components. Conversely, by
taking the stress tensor to be symmetric, moment equilibrium is identically satisfied, and,

therefore, Eq. (3.18) is sufficient to explicitly write the equilibrium equations.

Principle of Virtual Velocities

A scalar equilibrium statement for the entire body (a “weak form”) may be obtained by
multiplying Eq. (3.18) with a suitable vector-valued test function and integrating over the
whole body. If the test function is imagined to be a “virtual” velocity field dv (which is
completely arbitrary except that it must obey any prescribed kinematic constraints and
have sufficient continuity — i.e., it must be “kinematically admissible” ), then the “principle

of virtual velocities” may first be stated as

/[diva’ + fldvdv=0. (3.21)
With the chain rule
div(odv) = divedv + o : Vv (3.22)
it follows for Eq. (3.21)
/[div(a'é'v) —o:Vév+ fév] dv=0. (3.23)

The first term of this equation may be transformed using the Gaufl theorem. By addition-
ally considering the definition and the symmetry for the Cauchy stresses (Egs. (3.14) and
(3.20)) this gives

div(oév) dv = [ (o6v)n da = [ tév da . (3.24)
/ / /

v a a
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From the definition of the spatial velocity gradient (see Eq. (3.5)) it follows that Vdw is the
virtual velocity gradient in the current configuration, which may, according to Eq. (3.7),

be partitioned into a virtual strain rate and a virtual rate of spin:
Vv =6l = 6d + dw . (3.25)
Since o is symmetric and dw is skew-symmetric, the relation
oc:Viv=c:(dd+éw)=0:0d+0=0:4d (3.26)

holds, and the principle of virtual velocities may finally be written as

/té’u da+/f6v dv:/a':éd dv . (3.27)

Equation (3.27) represents an integral or “weak” form of static equilibrium for a body —
the rate of work done by the external forces subjected to any virtual velocity field is equal
to the rate of work done by the equilibrating stresses on the rate of deformation of the

same virtual velocity field.

It is remarkable that no restrictions are placed on the magnitudes of the virtual veloci-
ties, that means they may be arbitrary finite values. Because the virtual velocity field may
be regarded as the difference between two kinematically admissible velocity fields, however,
(with each one fulfilling the kinematic boundary conditions), év vanishes on the part of
the boundary, where velocities are prescribed (a, C a). Therefore, the surface integral in
Eq. (3.27) has to be evaluated only over a,, where surface tractions are given (here and in

the following it is assumed that the whole boundary may be partitioned into a = a, U a,).

Power Principle

Instead of applying a virtual velocity field dv for deriving an integral equilibrium statement
a kinematically admissible velocity field »* may directly be used in Eq. (3.21). Following

the same derivation procedure as sketched above this finally delivers

/t'u* da—i—/f’u* d’u:/a':d* dv (3.28)

d' =

with

(Vo* + (Vo*)T) (3.29)

DO | =
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and the given boundary conditions

t =on on a, (static boundary conditions) ,
: : .. (3.30)
v* =v on g, (kinematic boundary conditions) .
In contrast to the principle of virtual velocities, Eq. (3.27), however, the surface integral
now additionally has to include reaction forces that do work, i.e. the integration must be
performed not only over a,, but also over that part of the surface a, where the velocities
are not constrained to be zero. Furthermore, it is to be noted that the left and right hand
sides of Eq. (3.28) will only equate the actual external and internal power, respectively, if

v* coincides with the actual velocity field v at each material point of the body.

3.2.3 Work Conjugacy

The principle of virtual velocities, Eq. (3.27), expresses equilibrium in terms of Cauchy
(“true”) stresses and the conjugate virtual strain rate, the spatial rate of deformation tensor
(where conjugate means that the product of stress and strain rate defines the rate of work
per current volume). For the definition of constitutive models (e.g. in a displacement based
finite element formulation), however, it is often more convenient to describe the equilibrium
conditions in a state to which the body would return upon unloading (an elastic reference
state). Then, work conjugate quantities should rather be referred to this elastic reference
state than to the actual configuration. With this the internal power may be rewritten as an
integral over the natural reference volume V (now represented by actual instead of virtual

quantities) as

Dint:/a':ddv:/Ja:ddV, (3.31)
v \4

where J is the ratio of the material’s volume in the current and the elastic reference
configuration (see Eq. (3.3)). The stress measure defined by

T=Jo (3.32)

is (with respect to the reference state) conjugate to the spatial rate of deformation tensor
d. This measure of stress, which is often used for constitutive developments (see e.g.
[Simo, 1993a,b; HKS, 1998a]) is called Kirchhoff stress. Other conjugate stress and strain
rate measures are e.g. the (unsymmetric) first Piola-Kirchhoff stress tensor and the time
derivative of the deformation gradient, F, or the often used second Piola-Kirchhoff stress

tensor and the rate of the Green-Lagrange strain tensor (see e.g. [Malvern, 1969]).
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3.2.4 The Additive Strain Rate Decomposition

In chapter 7 a full section constitutive model for elastoplastic shells is presented, which
is implemented into the nonlinear FE code ABAQUS/Standard. For the definition of
such a user defined material routine the (corotational) stress/strain quantities provided by
ABAQUS are by default measured in a local, orthonormal coordinate system. According to
the work conjugacy considerations mentioned above the Kirchhoff stress together with the
spatial rate of deformation tensor are used for geometrically nonlinear analyses. Further-
more, it is assumed that for small amounts of elastic strain the elastic and inelastic parts
of the strain rates (and increments, respectively) may be decomposed in an additive way
— analogous to the “classical” strain rate decomposition of small deformation plasticity.
The argumentation for this and the basic definition of the elastic and plastic parts is as
follows [HKS, 1998a]:

In (elastoplastic) large deformation plasticity the total deformation is decomposed mul-

tiplicatively:
F = F°F? | (3.33)

where F¢ and FP denote elastic and plastic part of the deformation gradient, respectively.
The spatial velocity gradient I, which may be expressed as a function of the deformation
gradient (see Eq. (3.6)), can thus be written as

[ =FF ! =F(F°)~! + FFP(FP)"}(F°)7L. (3.34)
The elastic and plastic velocity gradients are (according to Eq. (3.6)) defined as
I°=FF°)™" and I?=FP(FP)7!, (3.35)
and Eq. (3.34) may be expressed as
l=1°+FeP(Fe)". (3.36)

The definition of I? in this way, however, in fact means that I” is related to some interme-
diate configuration instead of the final configuration. Essentially based on the assumption
that the difference between these two configurations is given by the elastic deformations
(and these are assumed to be small), the spatial velocity gradient in the current position

may finally be written approximately as

L1+ 1P (3.37)
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From this it follows immediately that the spatial strain rate tensor d may also be decom-
posed additively to give

d~d°+d?, (3.38)
where

d° = % (°+@)") and d" = (IP+(P)7) (3.39)

N | =

are defined according to Eq. (3.8).

A slightly different argumentation for the additive strain rate decomposition is given in
[Crisfield, 1997, chapter 19]|. Starting from Eq. (3.34) the plastic velocity gradient in the
current configuration is directly defined as

IP = FeFP(FP)~1(Fe) !, (3.40)

concluding that by using this definition the above relations, Eq. (3.37) and (3.38), are

fulfilled not only in an approximative but even in an exact way.

A formulation and algorithmic treatment of finite strain plasticity for isotropic materials
based on the multiplicative decomposition (Eq. (3.33)) was presented by Simo [1992], which
leads to a format identical to the standard return mapping algorithms of the infinitesimal
theory (thus including the additive strain rate decomposition). Besides the appropriate
choice of stress and strain rate measures the key point therein is the transformation of the
finite strain plasticity problem to the principal stress and strain directions of the current

configuration, which coincide for isotropic materials.

For more details concerning these topics see e.g. [Simo, 1992; Crisfield, 1997; HKS,
1998a]. The main conclusion which may be drawn for the present work, however, is that,
essentially based on the assumption of small elastic deformations, the algorithmic structure
of a material routine for ABAQUS/Standard is not affected whether geometrically linear
or nonlinear theory is concerned, thus considerably simplifying the constitutive description

(see chapter 7).

3.3 Plastic Extremum and Bounding Principles

The computational models presented in the subsequent chapters for the simplified analysis

of collapse processes of thin-walled structures are essentially based on kinematics-oriented
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plastic extremum and bounding principles, respectively. These are, therefore, stated in
the following. Before, however, the principle of maximum plastic dissipation is specified,

forming the basis for the validity and proof of the theorems.

For the following it is assumed that the material is rigid-perfectly plastic, isotropic and

incompressible. Rigid or plastic states of stress are determined by the inequality
flo)<o0, (3.41)

where the boundary f(eo) = 0 is the (general form of the) yield condition, which describes
a convex surface in stress space. All states of stress lying inside this surface denote rigid
material behaviour, whereas stress states on the yield surface characterize a plastic state

of stress for the material point under consideration.

For a given plastic stress state the flow rule determines the direction of the (plastic)
strain rates d. For the following the normality rule is assumed to be valid, which means
that (in the coaxial space of stresses and strain rates) the direction of the plastic strain

rates is directed towards the outward normal of the yield surface f:

d:'ﬁ.

- (3.42)

The consistency parameter £ is a positive scalar, which again may be expressed as a function
of the (plastic) strain rate tensor d.

3.3.1 Principle of Maximum Plastic Dissipation

For rigid plastic materials the maximum plastic dissipation principle (stating a necessary

condition for stable materials, see e.g. [Lubliner, 1990]) may be written as
(0 —0"):d>0. (3.43)

The stress & denotes a point on the yield surface (f(e) = 0) and is associated with the
(plastic) strain rate d. o* is any plastically admissible state of stress, lying on or within
the yield surface (f(o*) < 0). With the definition of plastic dissipation per unit volume,

D,(d)=0:4d, (3.44)
Eq. (3.43) may alternatively be written as

Dy(d)> 0" : d. (3.45)
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For a given (plastic) strain rate d the actual stress state o delivers, among all plastically
admissible stress states, a maximum of plastic dissipation (“principle of maximum plastic
dissipation”). From Eq. (3.43) both the normality rule and the convexity of the yield

surface can be derived.

D, is a pure function of the plastic deformations and does not depend on the stress
o. This dependency can be explained from geometrical considerations concerning the
convexity of the yield surface and the normality rule. For example, if the yield surface is
strictly convex at o, then this is the only stress that corresponds to a given strain rate
d. If the yield surface has a flat portion, however, then all points of this portion have
the same normal, that is, the different stresses correspond to the same plastic strain rate,
and the scalar product o : d is the same for all of them. Such states of stress are called
plastically equivalent. For a material obeying the von Mises yield criterion plastically
equivalent stresses differ at most by a hydrostatic pressure, but in a “Tresca material” all
stresses, which lie on the same facet of the hexagonal cylinder in the principal stress space,

are plastically equivalent.

3.3.2 Kinematic Extremum and Bounding Theorems
Kinematic Extremum Principle

The kinematic extremum principle, first proposed by Markov [1947] for a von Mises mate-

rial, may be stated as:

Among all kinematically admissible velocity fields v* (satisfying the conditions
of compatibility and incompressibility, as well as the geometrical boundary

conditions on a,) the actual solution renders the functional
I(v*) = / Dy(d") dv — / Fo dv— / tv* da (3.46)
to become an absolute minimum.

To prove this theorem at first the power principle, Eq. (3.28), is stated for the actual and

some kinematically admissible velocity field (v and v*) as

/a:ddv:/t'vda+/t'uda+/f'udv,
/a’:d*dv:/tv*da+/tvda+/fv*dv.

(3.47)
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*

where for the second relation the kinematic boundary conditions (v* = v on a,) have

already been taken into account. Elimination of the surface integral over a, gives

/va:d*dv:/va:ddv—ir/a t('v*—'v)da+/vf('u*—'v)dv. (3.48)

Now, by subtracting this equation from the identity
/a’*:d*dv:/a*:d*dv, (3.49)

where o* and d* are associated via the normality rule!, the relation

/U(O'*—a'):d*dv:/vcr*:d*d'v—/va':dd'u—/a t('u*—'v)da—/vf('v*—'v)dvzo
(3.50)

is delivered. Because the integrand on the left side just states the principle of maximum
plastic dissipation (Eq. (3.43)), it follows that each side of Eq. (3.50) may not become

negative. Consequently,

/a*:d*dv—/ tv*da—/fv*de/a':ddv—/ t'vda—/f'vdv (3.51)

holds, and because o* and d*as well as o and d are associated via the normality rule, this

gives

/UDp(d*) dv—/a to* da—/vf'v* dvz/va(d) dv—/a t da—/va A (3.52)

and

['(v*) >T'(v), (3.53)

respectively, thus proving the kinematic extremum principle stated above. It is to be noted,
however, that it is not possible, in general, to strengthen the inequality (3.53) by asserting
that the equality only holds when v* = w, but only that such a solution is plastically
equivalent to the actual one. For example, for the von Mises yield criterion (or any other
plastically incompressible material with a smooth yield surface) this means that the entire
deformation-rate field is determined to within a scale factor. The indeterminacy, however,

may be eliminated if a nonzero velocity is prescribed anywhere on a, [Lubliner, 1990].

MIf the velocity fields involves regions that move as rigid bodies (rigid regions), then the strain rate
there is, of course, zero and the question of association does not arise.
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Upper Bound Theorem of Limit Analysis

The upper bound theorem of limit analysis (kinematic theorem) may directly be derived
from the kinematic extremum principle. If from each side of Eq. (3.51) the power of

external forces acting on a, (with v* = v),

/ tv" da = / tv da, (3.54)
is subtracted, then one obtains

/0'*:d*dv—/tv*da—/fv*dvz/a’:dd’u—/tvda—/f'vdvzo, (3.55)

where the right hand side of this inequality just represents the difference between actual
internal and external power, which equals zero. Therefore, the upper bound theorem may
first be expressed as

/0'* :d* dv > /t'v* da +/f'v* dv . (3.56)

If all external forces acting on the body can be expressed in terms of a single load parameter
and a given set of reference loads (i.e. surface forces t = Aty, volume forces f = A\f,), then

the upper bound theorem may alternatively be written as

Dini(v*) [, o d" dv

A <\ (v*) = =
< AT Dexso(v*) [ tov* da+ [ fov* dv’

(3.57)

where A1 is an upper bound for the actual limit load multiplier A, which is obtained by

dividing the power of internal forces, Djy, by the power of external reference forces, Deys -

The relation

/0'* cdf dv = )\+(/ tov” da + /fo'v* dv) (3.58)

v a

and
Dint(’v*) = )‘+Dext,0 ’ (3-59)

respectively, formally introduced in Eq. (3.57), is known as the power equation, which is

often used as a statement of global equilibrium of a structure.
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Figure 3.1: Transition zones for pure shear (a) and bending deformations (b)

Remarks

The principles stated above have been derived under the assumption that the kinematically
admissible velocity fields are continuous and continuously differentiable. Plastic deforma-
tions, however, are typically characterized by a strong localization of deformations, which
practically leads to the formation of discontinuous velocity fields (e.g. shear bands) and
derivatives (e.g. plastic hinges and yield lines), respectively. These types of discontinuities,
however, are just idealizations of a continuous distribution in which the velocity rapidly
changes across a very small region. Consequently, the theorems remain valid in the limit
as the dimensions of such deformation regions approach zero, with the rate of dissipation
approaching finite values. For example, a transition zone for pure shear is sketched in

Figure 3.1a. The plastic dissipation due to these deformations is given by
D, = kjc = ke = kv (3.60)
c

(herein k£ means the yield stress in simple shear, 4 and c are defined in Figure 3.1a). In a
similar way, a beam subjected to pure bending is sketched in Figure 3.1b. With the plastic
bending moment M, the whole energy dissipation D,,. of the deforming circular part is

given by

Dave = Mofis = My2s = Moy | (3.61)
S
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where £ is the time derivative of the curvature, ¢ the angular velocity and s the arc length
of the plastically deforming part.

In both cases it can be seen that the evaluation of the plastic energy dissipation does
not depend on the dimensions of the plastic zone and thus can be performed even for

vanishing lengths ¢ and s, respectively.

3.4 Exact Ilyushin Yield Surface

In 1948, Tlyushin published the derivation of a stress resultant yield surface (in Russian),
describing the case where a point of a shell is fully plastified and thus reaches its load
capacity. This yield surface, however, may only be described in parametric form and the
parametrization originally proposed by Ilyushin [1948] is not amenable to structural ap-
plication. This is the main reason why in practice mostly approximations have been used
up to now, e.g. a linear approximation proposed by Ilyushin himself (which in many pub-
lications is simply denoted as “Ilyushin yield surface”), the Ivanov yield surface, etc. The
derivation and description of the exact Ilyushin yield surface presented in this section is
closely related to the work of Burgoyne and Brennan [1993b]. In their work the authors
propose a reparametrization of the yield surface, allowing a more convenient description,
which opens the way for practical use of the exact Ilyushin yield surface in structural cal-
culations. In a companion paper [Burgoyne and Brennan, 1993a] a strategy for calculating
elastoplastic rigidities (and the tangential stiffness matrix, respectively) when using the ex-
act Ilyushin yield surface, is discussed and presented. This work, however, will be referred

to when describing the full section constitutive model in section 7.

3.4.1 Definitions

With the yield stress o, and a reference strain ¢, stresses and strain increments are ex-

pressed in normalized vectorial form as

011 dsll
o=—| 09 and de = — dEgz . (362)

012 2d612
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Herein 0,45 and deos (o, 8 € {1,2}) are the components of the physical stress and of the
strain increment tensor for a state of plane stress.? The position along the normal coordi-
nate of the shell (thickness h) is described by a dimensionless coordinate zZ € [—1/2,1/2].

According to the definition of normalized stresses and strain increments generalized

normalized stress and strain increment vectors are introduced:

Ny M, deqy dk11
1 1 1 B 1
n=—|Np|, m=—F|Myp|, de=—| déxp , dk=—| dkg )
Ny M, €0 Ko
N12 M12 2d§12 2dl‘612

(3.63)

with Ny = oyh and My = o,h*/4 being the sectional limit load in uniaxial tension and
uniaxial bending, respectively. For convenience, the reference curvature kg is chosen such
that it fulfills the condition Nogg = Myko (from which it follows that kg = 4e9/h). Nag,
Mg, deop and dk,.p are the physical section force and bending moment as well as the
midplane strain and curvature increment components of a Kirchhoff shell, respectively
(de = de(z = 0)).

A summary concerning the definition of the normalized quantities, its use to state
several equations of shell theory, and the derivation of the relations between physical and

normalized values are given in Appendix B.1.

3.4.2 Derivation

The derivation of the exact Ilyushin yield surface is based on the following assumptions:

e perfectly plastic isotropic material behaviour obeying the von Mises yield criterion,

e validity of the normality rule for the plastic deformations,?

2In order to keep consistent with the presentation of the exact Ilyushin yield surface in [Burgoyne and
Brennan, 1993b], incremental instead of strain rate quantities are used in the following. It is to be noted,
however, that the stated relations are not affected, if strain rate quantities are used throughout, provided
the reference values €9 and kg are replaced by reference strain and curvature rates £y and kg, respectively

(thus ensuring that dimensionless quantities are used throughout).
3For the derivation and representation of the yield surface, an additive decomposition of the strain

increments into elastic and plastic parts, de = de® + de?, is assumed, which is used for the description
of the FE full section constitutive model in chapter 7. For rigid plastic material behaviour, however, de®
vanishes and, accordingly, de? equates de (in terms of strain rates: d” = d).
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e plane stress conditions in each material point,

e validity of the Kirchhoff hypothesis for both total and plastic strains.

In the limit, each material point through the thickness has plastic material behaviour.

Therefore, both the von Mises yield condition and the normality rule, are valid:

1 —3 0
fe)=o'Pe—-1=0, P=|-1 1 o], (3.64)
0o 0 3
of
de? = dé— . .
e 3 95 (3.65)
From Egs. (3.64) and (3.65) & and d¢ can be expressed as functions of de?:
1
o(de?) = ———— P! de? :
o(deP) 20€(der) e (3.66)
and
1
de (deP) = \/ 7 (de?)" Pt dev (3.67)

The Kirchhoff hypothesis in normalized form is expressed as (see Appendix B.1, Eq. (B.14))
de(z) = de + 4z dk . (3.68)

Now, it is assumed that the plastic strain increment resultants also obey the Kirchhoff
hypothesis.* Therefore:

deP(z) = de? + 4z dk? . (3.69)

This equation can be used to express de? in Eq. (3.67), resulting in

1
d¢ = %\/Pﬁ +2P.,zZ+ P27, (3.70)

with
P, = 2(d€p)TP_1 d& (>0),
P.. = 3(de’)TP * dkP (3.71)
P, =12(dk?)"P~ ' dk? (>0).

4This distinction, however, must only be made for nonvanishing elastic strain increments — for rigid
plastic material behaviour Eq. (3.69) is identically satisfied by Eq. (3.68).
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These incremental plastic strain resultant intensities are subject to the condition
P.P, > P2 . (3.72)
Substitution of Egs. (3.70) and (3.69) in Eq. (3.66) gives
3

1
T=—— P~!(de? + 4z dkP) , 3.73
2 \/P. +2P..z + P.7’ ( ) (3.73)

from which the non-dimensional stress resultants can be obtained. With

1/2 1/2
n = / odz  and m=4 / oz dz (3.74)
—-1/2 -1/2

(see Appendix B.1, Egs. (B.7)) the stress resultants may finally be written as

3( Pt 4P de?
=20 ! 1, (3.75)
m 2 4J1P71 16J2P71 dkP
where the integrals J; depend only on the incremental plastic strain resultant intensities
P., P, and P;:

1 1/2 5

Ji Z, (3.76)

= — d
\/g ~1/2 \/Ps +2P..z + P.7?

which may be evaluated analytically.

Equation (3.75) can be regarded as a six-dimensional stress resultant yield surface for
the limit that the shell is wholly plastic and thus in each point over the thickness the von
Mises yield criterion and the normality rule are satisfied. If the direction of the plastic
strain increment resultants is given, the stress resultants can be obtained from Eq. (3.75),
provided the integrals J; can be evaluated numerically (if P. P, — an =0 and P, > 0, then
these integrals may become infinite — for a numerical treatment of this case see Appendix
B.2).

3.4.3 Three-Dimensional Representations

The set of six equations given in Eq. (3.75) can be reduced to three by introducing quadratic

stress resultant intensities
Q:=n"Pn (>0),
Qun =n"Pm | (3.77)
Qm=m"Pm (>0).
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Together with the definition of P., P, and P, (Eq. (3.71)) this leads to

Qt Jg J()Jl J12 Pe
Qun/4 | =3 | hoJr (JoJo+J7)/2 Jida| | 2Pk | - (3.78)
Qm/16 J12 J1Js J22 P,

The yield surface is subject to the condition

QiQm > Qt (3.79)

with the boundary given by the equality sign (and corresponding to the case that P.P, —
P2 =0). Equation (3.78) describes a surface in the three-dimensional Q-space and, there-
fore, can be represented in parameter form as a function of two independent parameters.
An implicit form of Eq. (3.78), i.e. F = F(Q¢, Qtm,Q@m) = 0, however, cannot be obtained.
In order to avoid the complexity of the parametrized exact form of the yield surface pro-
posed by Ilyushin (see below), in practical computations mainly approximations, leading
to implicit forms, where used up to now. Ilyushin [1948] himself proposed a linear approx-
imation, consisting of two planes in ()-space:
1

V3

This often used approximation introduces a discontinuity at the line Q;,, = 0. Figure 3.2

F1 :Qt+ |th‘+Qm—1:0. (3.80)

shows a graphical representation of the exact and the linear approximation of the yield
surface in ()-space. As can be seen, the surface is symmetrical with respect to the Q¢-Q,,-
plane. It can also be plotted in two-dimensional form as @, against Q; — Q,, without loss
of clarity [Burgoyne and Brennan, 1993b], see Figure 3.3.

A quadratic approximation of the exact Ilyushin yield surface was proposed by Ivanov

[1967):
N2
F2=Qt+%+\/Q%/4+Q%m—i<%>—1:0. (3.81)

The yield surface F, always lies within 1% of the exact one and avoids discontinuities
at Qum = 0 (except at the point Q; = 1, where the exact yield surface also has a slope

discontinuity).

Further suggestions of approximate full plasticity yield surfaces, partly including the
effect of transverse shear as well as hardening effects, can be found e.g. in [Robinson, 1971].
In order to take into account the spreading of the plastic zone over the thickness, stress
resultant based approximations where suggested, too (see e.g. [Crisfield, 1980, 1997; Basar
and Krétzig, 1985; Auricchio and Taylor, 1994)).
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Figure 3.2: Three-dimensional view of the exact and the linear approximation of the

Ilyushin yield surface (from [Burgoyne and Brennan, 1993b))

Ilyushin’s Parametrization

For the description of the exact Ilyushin yield surface in parametrized form, Ilyushin [1948]

introduced the following parameters:

‘- P.— P, + P./4\'?
~ \P.+P,+P,/4 ’

P.P. — P2 1/2
"= (PAPE + P, +Pn/4>> '

(3.82)
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The resulting equations for the exact yield surface are:

sziﬁmwﬂ+wu

A
2
Qim = A—I?,(U2A¢2 + A + P + 9x) (3.83)
4
Qm = (WP (0 + A%) + @ (4" + A%) + 207 Mgy — 2u'Px + 280x + X7)
1
where
Y= C -1 )
= | A+v1-p?) | (C+VE—p?)
p p ’
X:‘ T— 12+ ¢/ — 12|, (3.84)
M= VITEEVE R,
1-¢2
A=
Ay
subject to the conditions
0<pu<1,
=H= (3.85)
p<¢<1.

The boundary is given by p = 0. Ilyushin’s original parametrization makes it necessary to
divide the surface into four regions, each region characterized by different equations (due
to the alternative signs). Within one half of the surface (e.g. Qu, > 0) one has to divide
into “in-plane dominant” and “bending dominant” regions. Besides, lines of constant (
and p are virtually parallel in many cases and, therefore, a numerical algorithm based on
these parameters will be ill-conditioned and numerically unstable [Burgoyne and Brennan,
1993b).

Parametrization of Burgoyne and Brennan

In order to overcome some of the problems arising with the parametrization described

above, Burgoyne and Brennan [1993b] introduced the parameters

PE Pé‘ﬁ

R TR

and y=a-p3%, (3.86)
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and proposed to apply 8 and 7 as independent parameters for the description of the yield
surface. 4 has the physical meaning of being the position within the thickness of the shell,
where the consistency parameter d¢ (being a measure for the equivalent plastic strain

increment) is a minimum. With 8 and + the yield surface takes the following form:

Qi = (BKo — K1)> + 7K, |
Qim = 4(BKy — K1)(BK1 — K3) + 4vKo K , (3.87)
Qm = 16(BK; — K»)* + 167K,
where the integrals K; are given by
1/2 i
K; = \/3P, - J; :/ ‘ dz . (3.88)

~1/2 v/ (Z—B)* + 7

The yield surface (Eq. (3.87)) is subject to the limits

0<p*<a<o,

(3.89)
0<y<o0.

Figure 3.3 shows a two-dimensional representation of one half of the yield surface (Q¢n < 0)

in terms of the two parameters 5 and 7.

The integrals K; (Eq. (3.88)) may be integrated analytically to give

. V(0.5 = B8)2+ v+ (0.5 - B)

(05+B8)2+v—(0.5+7)
K= /(058 +7~(05+ )+ 7+ 6Ky,

2K, = (0.5 + 8)1/(0.5 — B)2+ v+ (0.5 — B)\/(0.5+ B)2 + v + 28K, — 7K, .

0= )

(3.90)

The boundary curve is given by Q:;Q,, = Q2 and 7 = 0, respectively.® For v = 0 and
|B| < 0.5 the factors K; become

Ky =00,
K, =0.25 — 332 + 3K, .

5Physically, the boundary represents the case, when the directions of de? and dk” and n and m,
respectively, coincide (de? ~ dk?, n ~ m).
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Figure 3.3: One half of the exact Ilyushin yield surface (@, < 0) constructed in terms of
B and v (from [Burgoyne and Brennan, 1993b])

By inserting these values into the definition for the yield surface, Eq. (3.87), the K,-term

cancels and the yield surface can be expressed as

Qt = 4ﬂ2 ’
th = _2:8(1 - 452) ’ (392)
Qm = (1 - 4,32)2
or in implicit form as®
Qm=(1-Q,). (3.93)

In all cases, when v > 0 or |3| > 0.5, the integrals K; are well defined and thus can be

evaluated numerically (even if precautions must be taken to avoid numerical difficulties,

6The interaction between axial force and bending moment of an uniaxially loaded rectangular beam
(see e.g. [Chen and Han, 1988]) is also contained in Eq.(3.93). With n; and m; being the only components
of the generalized stress vectors m and m, which are not equal to zero, Eq.(3.93) just delivers the yield
criterion |mq| +n? —1=0.
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which may arise for in-plane dominant loading conditions — for details see the proposed
algorithmic structure for the numerical evaluation of the J;-integrals in Appendix B.2).

3.4.4 Normality Rule

Regarding the normality rule Burgoyne and Brennan [1993b] have shown that this also

holds in stress resultant space.

In the three-dimensional ()-space the normal direction onto the yield surface may be

found as
oF
F, = — = C(16K.
‘= 50, C(16K,) ,
oF
P p— —_ - 4
F, 80 C(—8K;), (3.94)
oF
F, = —an = C(K,) ,

where C is a constant defining the magnitude of the normal vector. Using this, the nor-

mality rule in stress resultant space is expressed as
de? _ i OF/on i 2F,P F,,P n\
de? ) T \oF/om | " \FE,P 2F,P) \m)
— [ 16K,P —4KP
_ o0dg [ 10K ! .
—4K]_P K()P m

This six-dimensional form of the normality rule (with d¢ already determined), however,

(3.95)

can directly be obtained from the six-dimensional representation of the exact Ilyushin yield
surface. Inversion of Eq. (3.75) to get de® and dkP delivers

deP 1 16J2P —4J1P n
= , (3.96)
dk? ) 24(JoJo — JP) \—4J, P JoP m
and because the J;-integrals are directly related to the K;-terms by Eq. (3.88), this form

is just an alternative statement of the normality rule given in Eq. (3.95).

It is remarkable that the terms J; = J;/(JoJ2 — J?) are definite values at any point of
the yield surface, including the boundary. For v = 0 and || < 0.5 one obtains (using Egs.
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(3.91))
- K, 1
=V Pn = K )
Jo= V3l g, - K?2 a5+
— K B
h=Vihpk, —xr = Vi e (3.97)
— K, B’
= /3P, = /3P,
J2 3 *KoK, — K2 3025 + 32

In all other cases the integrals for J; can be evaluated numerically and even the factors J;
are well defined. For the special point P, = 0 (and @Q; = 1, respectively), describing pure

in-plane loading, the J;- and J;-terms take the simple form

1 1
Jy = , J=0, Jo=—
= /3P, ! >~ 12./3P, (3.98)
_ 1 — — 1 )
= — = 12 P = = — = Pg .
To 7 3P, J.=0, J, I 3

With regard to changes of the slope Burgoyne and Brennan [1993b] have shown that
there is a strong but continuous change of the normal directions along the boundary of the
yield surface — at the point Q; = 1, however, there is a true slope discontinuity (see also
chapter 7).

3.4.5 Power of Internal Forces

The derivation and description of the exact Ilyushin yield surface presented above was
performed with incremental strain quantities. For the evaluation of the power of internal
forces, however, a description in terms of strain rate quantities is more convenient. As was
already mentioned above, the consistent use of strain rate quantities (instead of the actually
used strain increments) does not affect the stated relations, provided the reference values
€0 and kKo are substituted by reference strain and curvature rates €q and kg, respectively.
According to Eq. (3.63), therefore, dimensionless generalized strain rate vectors € and k'

are defined:
£ K
R ' p [
€= —| €2 s k=— K22 ’ (399)
o . Ko .
2512 2"312

replacing the generalized strain increments de and dk.
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The plastic dissipation for a shell-like structure may be written as

D T
_ n e
dy= —> = I 3.100
- (m) (7) 3:100)

where Ep is the physical and Ep the normalized plastic dissipation per unit area of the

shell’s midplane (herein, the validity of the condition Nyoéy = Myky is assumed). With the
six-dimensional representation of the exact Ilyushin yield surface, Eq. (3.75) (written in

rate form), Ep may be expressed as a pure function of the strain rate resultant quantities

€ and k™
. T .
L, 3 (& JoPt 4P 1) (€
d, (& k) =21 . 3.101
(€ k) 2(k”) <4J1P—1 16,P1 ) \ i (3.10)

Analytical evaluation of this relation delivers

1/2

2
\/g ~1/2

dy = 2(JoP, + 2, P.r + JoP,) = V/P. +2P..z + P22 dz, (3.102)

which finally may be written as

24/ % for P, =0,

d, = 3 (3.103)
VvV (61\/6%+7+/32\//3§+7+7K0) for P, > 0.
Herein, besides the parameters v and K, the auxiliary variables
1 1
Pp=5-8 and  Br=o+p (3.104)

have been used. For cases, in which K, may become infinite (y — 0), it can be shown that
the term vKj cancels, and hence, Eq. (3.103) is amenable to a numerical evaluation for all
values of € and k” (even without regularization of points at the boundary).

Equation (3.103) is formulated such that a direct numerical evaluation of the plastic
dissipation is possible, once the generalized plastic strain rates are given. For the se-
quential limit analysis method presented in chapter 6, which relies on a general numerical
optimization of the power of internal forces, this equation is, therefore, directly applied.
It is to be noted, however, that this method may also be formulated analogously to the
conventional displacement based finite element method, leading to the solution of a set of
nonlinear equations for the unknown velocity parameters (see e.g. [Kobayashi, 1977; Ismar
and Mahrenholtz, 1979; Capsoni and Corradi, 1997b]). For such a formulation, it will
certainly be more convenient to directly use the quadratic form, Eq. (3.101), for deriving

and stating the relevant finite element equations.



Chapter 4

Experiments

This chapter summarizes results of experiments, which have been conducted in order to
study the progressive buckling behaviour of axially compressed circular and square steel
tubes under quasistatic loading conditions. In order to provide material data for the cold
deformed (and strain hardened) profiles, results of uniaxial tension tests, which have been
performed on the actual tube materials, are included, too. The test results presented in the
following are mainly intended to show several phenomena related to progressive buckling
of tubes and to allow some validation of the numerical simulation tools described later on.
Further experimental studies as well as comparisons with analytical and numerical analyses
are summarized in [Wintschnig, 1996; Seitzberger et al., 1997b]. In addition, results of an
extensive experimental (and a restricted numerical) study on the axial crushing behaviour
of foam-filled crush elements, where empty profiles of different cross-sectional shapes and

dimensions were also investigated, may be found in [Seitzberger et al., 1997a, 1999].

4.1 Experimental Setup

The tested steel tubes were obtained from square and circular profiles. The outer side
length of the cross-section of the cold deformed and welded square tubes was 40 mm, the
wall thickness 1.4 mm. The weldless, extruded cylindrical tubes had an outside diameter
of 40 mm and a wall thickness of 1.0 mm. All samples used for the compression tests had

a length of 155 mm.

The profiles were made of different grades of mild steel. Material tests, which were
performed on the actual tube materials (uniaxial tension tests on sheet samples taken from

48
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Figure 4.1: Square and circular steel tubes: actual uniaxial tension behaviour

the square tubes, uniaxial tension tests on the circular members themselves) according to
the standard OEN 10002-1, are summarized in Figure 4.1 and Table 4.1.

A uniaxial universal testing machine was employed for carrying out the experiments.
Axial force and crossbeam displacement were measured using PC based data recording
equipment. Special constraints at the ends were mostly used to ensure well defined,

clamped boundary conditions.

Two different loading velocities, 1 mm/s and 8.4 mm/s were applied for performing
the compression tests. With respect to the deformation behaviour these loading rates can
certainly be regarded as quasistatic, i.e. inertia effects will not influence the buckling pat-
terns. Nevertheless, the velocities are sufficiently high to reveal some strain rate sensitivity
of the materials, leading to somewhat elevated force values when compared to static com-
pression tests (and for the circular tubes even changing the mode of progressive buckling,

see below).
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Table 4.1: Square and circular steel tubes: summary of uniaxial tension test results (og.
. yield stress, o, ... ultimate strength, As¢s5, Ai13 ... strain at break, A, ... strain

corresponding to oy)

Sample 00.2 Ou Ases Az Ag
[N/mm? [N/mm?’] [%] [%] [%]

Square tubes

SM1 296 333 — 396 21.1

SM2 288 328 — 40.6 24.0

SM3 311 339 — 412 16.3
Circular tubes

CM1 509 563 9.79 — 1.74

4.2 Test Results

Photographs of some deformed specimens are shown in Figures 4.2 to 4.4, and Figures 4.5
and 4.6 contain the measured force-compression curves for the square and circular tubes,
respectively. A summary of some characteristic quantities describing the collapse process

of the investigated tubular members is given in Table 4.2.

All tested samples showed the typical progressive buckling behaviour, characterized
by the sequential formation of adjacent local folding patterns, with the buckling always
starting at one of the two ends. A folding mode characteristic for multicorner columns,
which is dominated by inextensional bending deformations (where the individual lobes
around the circumference alternatively move inwards and outwards, this way avoiding
large hoop strains), can be seen from the crushed square tube shown in Figure 4.2.
Concerning the buckling modes of the circular profiles, marked differences are observed
for the two different loading rates. Although the geometry of these specimens has been
chosen such that an axisymmetric “concertina mode” buckling could be expected,! only
those samples tested with higher loading rate showed this buckling mode throughout the
deformation process (Figure 4.4). The specimens subjected to the lower loading rate (1
mm/s) started to buckle axisymmetrically. However, after the formation of the first lobes

they switched to a non-axisymmetric “diamond mode”, as can be seen in Figure 4.3. The

1For thicker tubes with a radius to thickness ratio of less than 40-45, approximately, axisymmetric
buckling is likely to occur, whereas thinner tubes rather tend to buckle into a non-axisymmetric “diamond
mode” [Jones, 1989b].
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Figure 4.2: Square tubes: axially crushed specimen S2

Figure 4.3: Circular tubes: axially crushed specimen C2

strain rate sensitivity of the material was the reason that no switching into this mode
(which is accompanied by larger local strain rates due to the development of strongly

deformed “corner regions”) occurred for the specimens loaded at 8.4 mm/s.

From the measured force-compression curves, shown in Figures 4.5 and 4.6, several
features, which are characteristic for progressive buckling processes, immediately become
obvious:

e the first load peak F*

max)’

markedly exceeds the load maxima according to the formation of the subsequent folds,

being associated with first local collapse of the crush element,

e the progressive formation of the subsequent folds is associated with a more or less re-
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Figure 4.4: Circular tubes: axially crushed specimen C3

peated force-deflection pattern, fluctuating around an approximately constant mean

force value,

e very similar force-deflection curves are obtained for those specimens, which buckle
into the same modes, affecting not only the local force maxima and minima, but
even the effective crushing distances u.g, i.e. the compression distances between these
repeated local load peaks,

e quite large compression distances (as compared to the total length of the specimens)
may be utilized without essentially changing the mean force levels.?

A comparison of the results for the different test samples, listed in Table 4.2, clearly
reveals the strain rate sensitivity of the material, where markedly higher first load max-
ima, but for the (comparable) square tubes also slightly elevated mean force levels, are
observed for the higher loading velocity. The reproducibility of the measurements within

the individual test configurations is also reflected by the results.

In order to directly compare the energy absorption capacity of the investigated profiles,
the structural effectiveness parameter 7, defined here as the mean force F;, with respect
to the ultimate load Ao, (A is the cross-sectional area, o, the ultimate strength of the

material) can be used [Jones, 1989b]. From this it can be seen that the energy absorption

2With respect to this it is to be noted, however, that none of the tested samples was loaded up to the
stroke length (i.e. the maximum compression distance, which may be utilized for energy dissipation before
the crushing forces begin to increase steeply).
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Table 4.2: Summary of compression test results for square and circular steel tubes
(ve ... loading rate, F. _ ... first load peak, Fy ... mean force, n ... structural
effectiveness parameter, A ... cross-sectional area, o, ... ultimate strength, ueg ...

effective crushing distance)

Sample Ve Fl.. Fu n Uet® Remarks

[mm/s] [kN] [kN] (= Fn/Ao,) [mm]

Square tubes

S1 1.0 74.9 26.5 0.37 33
S2 -7 752 26.9 0.37 33
S3 -7— 751 271 0.38 33
ST 8.4 79.0 28.1 0.39 30 ends not constrained
S8 -7— 79.2 284 0.39 35.5
Circular tubes
C1 1.0 70.8 32.0 0.46 14.5 switching to diamond mode
C2 -7— 709 324 0.47 15.5 - 7=
C3 8.4 73.0 33.2 0.48 9 concertina mode
C4 -7— 727 333 0.48 9 - 7=

2The values of the effective crushing distances are taken as the distance between

two repeated load-compression patterns in the postbuckling range.

capacity of the circular profiles is distinctly higher than that of the square ones. The
difference between diamond and concertina mode buckling of the circular tubes, however,

is much less pronounced.
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Figure 4.5: Load versus compression curves for square steel tubes
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Figure 4.6: Load versus compression curves for circular steel tubes



Chapter 5

Folding Mechanisms

Experiments show that the collapse process of thin-walled structures is, in general, accom-
panied by the development of localized plastic mechanisms, i.e. the formation of a more
or less complicated pattern of folds and wrinkles (see chapter 4). Based on these observa-
tions simplified kinematic mechanisms were proposed to predict the crushing response of
thin-walled members of simple geometry under different loading conditions. Many of these
models lead to small computer codes or even to closed-form solutions and therefore can be
used efficiently in the preliminary design of energy absorbing systems (see section 2.3 for

an overview).

In the following, several collapse mechanisms describing the concertina mode buckling of
circular tubes [Abramowicz and Jones, 1986; Grzebieta, 1990; Wierzbicki et al., 1992; Gupta
and Velmurugan, 1995| and the progressive crushing of multicornered prismatic columns
[Abramowicz and Wierzbicki, 1989] are sketched and discussed. Besides pointing out the
principles of the underlying theory (for a more detailed description see e.g. [Wierzbicki and
Abramowicz, 1989]), the suitability and accuracy of these approaches for crushing analysis
of structures is investigated with respect to both the axial force-compression characteristics
and the prediction of the mean force levels. The test results presented in the last chapter

are used for assessing the numerical results.

5.1 General Formulation

All of the investigated collapse models are based on a kinematics oriented method of plas-
ticity, suitably generalized to large deformation problems (i.e., according to the statement
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of the plasticity theorems in section 3.3, spatial integrations are performed over the current
configuration, and the Cauchy stress tensor o together with the work conjugate spatial
rate of deformation tensor d are used for the constitutive description). Starting point is
the selection of a kinematically admissible velocity field v*(x, x,t), describing the forma-
tion of individual folds. This velocity field may be chosen to be piecewise continuous, thus
allowing stationary and moving yield lines to develop, and in general is fully determined or
described by only a few degrees of freedom (collected in general form by the n-dimensional
vector x used above). The spatial rate of deformation tensor d* = d(v*) is obtained from

the underlying velocity field according to Eq. (3.8).

Taking into account the constitutive behaviour,! the plastic dissipation per unit vol-
ume, D,(d"), and thus the total internal rate of energy dissipated within such a collapse

mechanism,

Dina(v") = /a’* L' dv = /Dp(d*) dv | (5.1)
can be computed. For axial crushing processes, the power of external forces is given by
Dext = Fa’Uc ) (52)

where F, is the axial crushing force and v. the conjugate compression velocity. With the
upper bound theorem, Eq. (3.57), it follows

Fov, < Fyue = Dipg(v™) (5.3)
and
- Din *
Ful < R = —f("" ) (5.4)
Ve

respectively, being a condition of the minimum of the actual instantaneous crushing force,
|F.|. The unknown kinematic parameters (if there are any) may thus be obtained for each
instant by minimizing |F,| according to Eq. (5.4). Because for the progressive buckling
processes described herein, however, the unknown parameters (e.g. the length of a folding
wave) are assumed not to change with time, an alternative principle was postulated for the
determination of x. Time integration of Eq. (5.3) over the whole crushing process (time
limits ¢ = 0 to ¢ = t) delivers

— tf
quf S quf - I/I/vint: - Dint(v*) dt ) (55)
0

1The formulation described herein is based on the plastic extremum and bounding principles stated in
section 3.3. Accordingly, the same constitutive description, namely rigid-perfectly plastic, isotropic and
incompressible material behaviour with a convex yield surface and an associated flow rule, is assumed.
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and
I/Vint

‘Fm| < |Fm| = .
|us

(5.6)

Herein F,, and F,, denote minimum and upper bound for the mean crushing force, respec-
tively, us is the axial shortening and Wy, the internal plastic work for the deformation cycle
under consideration. According to Eq. (5.6), the unknown parameters x may therefore be
obtained by extremization of the mean crushing force, i.e.

o (1) = 5 () —o, 6.7

leading to a set of n equations for the n degrees of freedom.

Once the kinematics of the deformation process is fully determined, the instantaneous
crushing force (and thus the axial force-compression curve) is given by the power equation
(see Egs. (5.3) and (5.4)).

The minimum condition stated in Eq. (5.5) is a requirement for the minimum of the
total internal work dissipated over a plastic deformation process. For arbitrary large de-
formation processes, however, it may not be assumed that this global minimum condition
holds in general. Some considerations justifying the validity of Egs. (5.5) to (5.7) for the
special case of steady-state and quasi steady-state deformation processes (with special em-
phasis put onto the progressive crushing of tubes), however, are presented and discussed
in [Abramowicz, 1996].

So far the strategy for treating plastic collapse of axially compressed tubular members
is quite general. Depending on the appropriate choice of deformation mechanisms, nu-
merical solutions quite close to the actual crushing behaviour may be obtained. A major
concern for the definition of most of the proposed collapse models, however, was to state
simple techniques for estimating the global parameters of the crushing process (folding
wave length, mean crushing force, etc.), which are computationally inexpensive or even
lead to closed-form solutions. Therefore, a number of simplifying assumptions are used
in general, affecting both the kinematic description and the computation of the internal
energy dissipation. For example, many of the proposed collapse models are based on the
assumption that only one fold is forming at a time and thus may be isolated from the rest
of the structure, which is assumed to behave in a rigid manner. Furthermore, interaction
effects between the individual stress (and strain rate) components are often treated in a
simplified way or are even totally disregarded, this way delivering simplified, but analyti-

cally tractable relations between the main variables of influence.
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T NN

Figure 5.1: Axisymmetric collapse model of Alexander [1960]

The principles of this strategy are illustrated in the next section by first discussing
the model of Alexander [1960], who proposed a rather simple deformation pattern for
the axisymmetric crushing behaviour of axially compressed circular tubes (Figure 5.1).
Extensions of this collapse model to cater for various effects, but also a (geometrically
much more involved) kinematic model for the axial crushing of multicornered prismatic

columns, are sketched afterwards.

5.2 Axisymmetric Crushing of Circular Tubes

5.2.1 Model of Alexander

The deformation pattern underlying the first of the proposed collapse mechanisms for
axisymmetric crushing of axially compressed circular tubes is shown in Figure 5.1. Starting
from an initially straight meridional curve, Alexander assumed that the meridian of the
active fold may be idealized by two straight line elements and three circumferential plastic
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hinge lines. The “folding half wave length”, H, used in Figure 5.1, is an initially unknown
parameter, which has to be determined in the course of the analysis.

With regard to the internal energy dissipation, it is assumed that this can be decom-

posed into two parts,
Dy = Dy + Dy (5.8)

owing to bending at the plastic hinge lines and circumferential membrane stretching of the

line segments.

The contribution due to bending, Dy, is given by
Dy = 2 X 21ro M8 + 27 (ro + H sin §) M2 . (5.9)

For the plastic bending moment at the hinge lines the validity of the von Mises yield
condition and constrained circumferential deformations are assumed. With this, M}, is

given by
2 2 o,h?
My=-—"—~My=—"" 5.10
h= M= = (5.10)
The energy dissipation due to bending is then written as
2 o,h? .
Dy = 4r—22" (27, + Hsin B)3 . (5.11)

For the determination of the contribution of membrane deformations to the internal
energy dissipation, a mean circumferential strain rate in the line segments is assumed
(the parallel action of all other generalized stress and strain rate components in the line
segments, however, is disregarded). With the circumferential strain rate

dyy — T % (ro +Hg sin ) _ T cosp B (5.12)
r To + 5 sin 3 ro—i—gsinﬂ’
there follows
D,, = Nydoo2m(rg + gsin B)2H
(5.13)

gcos,BB

H
—=——— 927(ro + —sin §)2H ,
r0+§sin,8 (ro 8)

= oyh 5

and finally

Dy = 2no,hH?cos B 3 . (5.14)
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With Egs. (5.11) and (5.14) the internal energy dissipation may be expressed as

h .
Diyy = Dy, + Dy, = 2moyh [—(27"0 + Hsin B) + H? cos 5} B . (5.15)

V3

The total internal energy dissipated within one crushing cycle is then given by
te
I/I/vint = / Dint dt
0

w/2
= 27royh/0 [% (2r¢ + Hsin 8) + H? cos ,6’] ag (5.16)

= 2mo,h [(%(row +H) + H2] :

According to Eq. (5.6), the folding length H is determined by minimization of the mean

crushing force, i.e. by extremization of the function

I/I/vint h’l"oﬂ' h :|
Fon=—=m0h|——+—=+H]| . 5.17
= oy | T T (5.17)
With
oF, hrom
— hl——— +1| = 5.18
5H ~ " [ J3H? + ] 0 (5.18)
the optimal folding length follows as
hrom
H = = 1.347+/hry , 5.19
O = 1.347 /g (5.19)
and the mean crushing force is finally given by
h hrom h
F,=mno,h |2H + —| = mo,h |2 + — 5.20
! [ \/5} ! l V3 \/?7] (520

In addition to the collapse mode shown in Figure 5.1, where all folds go outwards,
Alexander [1960] investigated an alternative collapse mechanism with all lobes moving
inwards. In view of the approximative character of the analysis, however, the author
proposed that for the computation of the mean crushing force an average value between

these two folding modes should be used,? which is given by

h’l‘gﬂ'
Fo = 2moyhH = 2moyh, | v (5.21)

2A comparison of the plastic wave length H with that of an elastic buckling analysis on axially com-

pressed circular tubes led to further slight modifications for Fy, which, however, are not discussed here
(for details see [Alexander, 1960]).
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For the determination of the axial force-compression curve (which, however, was not
considered in [Alexander, 1960]) the power equation may be used. With the axial short-

ening
ue = 2H(1 — cos ) (5.22)
the compression velocity follows as
v, = 2H sin 883 . (5.23)
Application of the power equation
Fove = D (5.24)

and insertion of Egs. (5.15) and (5.23) finally delivers for the instantaneous axial crushing

force:

_ h 2’)"0 H
Fa(B) = moyh [% (Hsinﬁ + 1) + tanﬁ} . (5.25)

The corresponding axial compression, u.(83), is given by Eq. (5.22).

A typical axial force-compression curve obtained this way is shown in Figure 5.25,
sketched for several folding cycles. At the beginning of each deformation cycle (8 = 0)
the crushing load starts at infinity, and reduces to quite small values when (3 approaches
m/2, with the minimal load values lying markedly below those of comparable experimental
results. From Eq. (5.20) the mean crushing force follows as 19.9 kN, which underestimates
the measured values (33.3 kN, see Table 4.2) by about 40%. The measured crushing
distance u.g = 9 mm, however, is overestimated by the collapse model which predicts a
value of 2H = 11.9 mm.

5.2.2 Refined Single Active Fold Models

In order to overcome some drawbacks of the Alexander model (strongly idealized deforma-
tion pattern, neglecting of the meridional stress components, underestimation of the mean
force levels, etc.), several refinements were proposed. In the following three single active
fold models are discussed, which retain the assumption that only one fold is forming at a

time (“single active fold models”):
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Figure 5.3: Circular tubes: deformation profiles for axisymmetric crushing: a) model
of Abramowicz and Jones [1986], b) model of Grzebieta [1990], ¢) model of Gupta and
Velmurugan [1995]

AMC1: model of Abramowicz and Jones [1986],
AMC2: model of Grzebieta [1990],

AMC3: model of Gupta and Velmurugan [1995].

A further collapse model for concertina mode buckling of circular tubes, which suggests

that folding is characterized by the simultaneous deformation of two folds,
AMC4: model of Wierzbicki et al. [1992],

is presented in the next section.

The kinematics underlying the single active fold models AMC1 to AMC3 are shown
in Figure 5.3. What immediately becomes obvious is that, due to the use of circular
arc segments for discretizing the meridional curves, more realistic deformation patterns
(compared to the model of Alexander, Figure 5.1) are obtained. AMC1 describes the

3In [Abramowicz and Jones, 1986] only the mean crushing load is examined. In order to determine
the load-deflection curve the method described in [Grzebieta, 1990] is used here and also applied for the
evaluation of the mean crushing force.
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Figure 5.4: Single active fold models AMC1 to AMC3: variables definition

collapse process with meridional arc segments of a length of H/2 and H, respectively,
whereas the other two models assume this circumferential bending to be more concentrated
(with a meridional length of H/3 and 2H/3), which should be more realistic for thinner
tubes (ro/h > 20). The main difference between AMC2 and AMC3 is that the latter
assumes a small amount of deformation inwards to account for the predeformation due
to the last folding cycle. Furthermore, the length of one arm of the plastic folds, H,
is assumed to be given by the formula derived by Alexander, Eq. (5.19), and thus, the
kinematics of these collapse models is fully determined and may be described by a single

process parameter a(t).

For the computation of the internal energy dissipation the strategy proposed by Alexan-
der [1960] is essentially retained. This means that plastic hinge lines are assumed at points
A, B and C (see Figure 5.3), where the bending deformations are determined by the time
rate of the angle o subtended by an arc element (for the definition of the kinematic variables

used in the following see Figure 5.4). Hence, Dy, is given by
Dy = 47TMh(7'A + TB)éz . (526)

Concerning the membrane deformations, an idealization of the deformation pattern by
straight line segments of length H,. each, is assumed for the kinematic models AMC1 and
AMC2. Because, however, such a collapse pattern just coincides with that proposed by

Alexander, Eq. (5.14) may directly be applied for evaluating the energy dissipation caused
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by the hoop stresses oss:
Dy, = 21095hH? cos 8 3 (5.27)

(the variable 8 is a given function of «, see Figure 5.4). For AMC3, however, no such
idealization is assumed. Here, the energy dissipation due to membrane deformations in

circumferential direction is given by
2

H .
D, = 27r022h? cosB . (5.28)
The derivation of this expression, however, is also based on the assumption that a mean

hoop strain rate acts over the folding half wave length H.

In the Alexander model no reductions of the plastic bending moments M} and the
hoop stresses 099 due to the parallel action of the meridional stresses are accounted for
(leading to infinite axial load values for the starting configuration, § = 0). In order to
take into account these effects, somewhat “specialized” yield conditions are applied for the
investigated single active fold models. The moment capacity of the hinge lines is coupled
with the external axial force according to

2
a2 [ 3 (F,
V3 1\ F,

(Fy = 2mro Ny is the axial “squashing load” of the tubular member), and with the relation

(5.29)

o F, —
- _“%cosa=—Fcosa (5.30)
Oy FO

(011 denotes the meridional stress component) and the plane stress von Mises yield condi-

tion
05 = 02| — 011099 + 0%, (5.31)

the (reduced) hoop stresses og are finally given as

Oy = % [—F cos o + \/4 — 3F" cos? a| : (5.32)

Accordingly, finite values for the axial force are obtained even if the tube is perfectly
straight.?

4Concerning the derivation of Eq. (5.32) it is to be noted that Eq. (5.30) utilized therein in fact is
a condition of local equilibrium. With the theory underlying the kinematics-oriented solution strategy,
however, local equilibrium will in general not be enforced, but equilibrium is rather fulfilled in a global
sense. The advantageous use of Eq. (5.30) for stating the problem, therefore, is to be regarded as an
additional input entering the solution procedure, but as such is not really consistent with the general
description of the solution strategy sketched in section 5.1.
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Because for a given fold length H the whole deformation process and, hence, the internal
energy dissipation may be described as a function of the process parameter « only (which

also determines the axial compression velocity v, = v.(a(t)), the power equation
F,v. = Dy + Dy, (5.33)
may be used to set up a scalar nonlinear equation in terms of F,
9(Fy, ) =0, (5.34)

from which the instantaneous crushing force for each (predetermined) configuration o may

be obtained numerically.

In order to determine a complete load-compression curve, however, Grzebieta [1990]
proposed that the mechanisms are only used for describing the descending part of one load
cycle, and further assumptions are made to determine the remaining parts of the curve,
including the first load cycle (associated with first local collapse of the crush element) as
well as the lower and upper load peaks in each subsequent crushing cycle — in order to
fit the models to experimental results. A typical “constructed” force-compression curve is
shown in Figure 5.5. The essential assumptions used therein are (for details see [Grzebieta,
1990] or the diploma thesis [Wintschnig, 1996]):

e After an elastic response at the beginning first yielding is described by an axial force
Fy - Fo.

e The load maximum for the first loading cycle is determined by F.. = 2F,/+/3.

e The effective crushing distance u.g is assumed to be given by 2H — h. This value,
however, is quite larger than the “crushable amount” of axial deformation due to the

underlying kinematic deformation pattern, us.

e Concerning the evaluation of the descending part of the curve, which is determined
by the kinematics of the collapse model used, the authors propose to replace the yield
stress, o, (= 092), by the ultimate strength of the material, o,, (in order to account

for hardening).

e the upper peak load for each but the first crushing cycle, F,, is determined by a
small amount of radial predeformations A. Suggested values are: 79/h < 20: A = h,
ro/h > 20: A = 1.5h.
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Figure 5.5: Single active fold models AMC1 to AMC3: details for the “construction” of

the axial load versus compression curves

In Figure 5.6 the axial force-compression curves obtained this way for the different
single active fold models are compared with each other and with a typical experimental
result. Table 5.1 lists several characteristic quantities related to the measurements and
the numerical predictions. It becomes obvious from the results that, due to the use of
the additional assumptions described above, the force-compression behaviour can be fitted
relatively closely to experiments. A comparison between models AMC1 and AMC2 reveals
only slight differences in the force-compression curves, whereas the load fluctuation as well
as the mean crushing force of model AMC3 are clearly higher (the mean forces in Table
5.1 are evaluated here directly via the force-deflection diagrams). The maximal differences
between measured and predicted mean force values are about 10%, and also the effective

crushing distances agree reasonably well with the experimental observations.

Essentially based on a refined evaluation of the internal energy dissipation, which takes
into account the parallel action of the axial crushing force and the corresponding meridional
stresses, respectively, the collapse models are shown to be able to describe the unloading
part of a crushing cycle with some realism. The very beginning of each loading cycle,

however, may not be captured by the collapse models itself — this must, therefore, be
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Figure 5.6: Single active fold models AMC1 to AMC3: comparison of measured and pre-

dicted load versus compression curves
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Table 5.1: Single active fold models for circular tubes: summary of results

Sample / FlL.. Fn  Ueg
Model  [kN] [kN] [mm]
Experiments
C3 73.0 33.2 9
C4 72.7 33.3 9
Analytical models
AMC1 72.0 295 10.9
AMC2 -7"- 303 -"-

AMC3 -7"- 336 -7"-

approximated by additional assumptions as sketched above.

5.2.3 Two Active Folds Model of Wierzbicki et al.

In contrast to the single active fold models AMC1 to AMC3 the mechanism proposed
by Wierzbicki et al. (AMC4) suggests that folding is characterized by the simultaneous
deformation of two (half) folds, described by two circular arcs of fixed length H each
(Figure 5.7).> This initially unknown length is determined through minimization of the
mean crushing force, whereas the eccentricity, i.e. the inward movement A, has to be
assumed in advance. Corresponding to outside and inside folding, a total repeated folding
cycle is to be divided into two parts, accompanied by a shifting of the active transition
region by 2H, after the first fold has formed completely. This is shown schematically
in Figure 5.8, where several subsequent deformation stages during the formation of one
repeated crushing cycle are sketched. Each of these subcycles, however, may be described

by a single process parameter a(t).

In order to obtain closed form solutions for H and the mean crushing force Fy,, mem-
brane forces and bending moments are assumed not to interact and are decoupled from the
external axial force. Furthermore, (small deformation) engineering definitions are used for
the hoop strain rates, and spatial integrations are performed over the initial undeformed
configuration, both essentially being based on the assumption that the fold lengths are

sufficiently small, and r ~ ry may be set for simplicity.

5Note that now the total folding wave length is described by 4H instead of 2H as done before.
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Figure 5.7: Circular tubes: deformations profile for axisymmetric crushing: model of
Wierzbicki et al. [1992]

First subcycle | Second subcylce

Figure 5.8: Model of Wierzbicki et al. [1992]: subsequent deformation stages for one re-

peated crushing cycle
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With the meridional curvature rate ko2 (and the local meridional coodinate s) the
energy dissipation due to bending is given by

D, = / Myfina| 270 ds = dmroMo(|6] + 1)) | (5.35)
ABCDE

and the energy dissipation owing to membrane deformations in hoop direction follows as®

Du= [
ABCDE

where, according to the different active arc elements, the spatial integration for D, (which

Ny~

277y ds = 27TN0/ 7| ds (5.36)
To

ABCDE

is not described here) must be performed by parts.

After stating all geometric dependencies in terms of the process parameter o, the power
equation is used for defining the instantaneous crushing force, which may formally be
expressed as

Fa 2H To

— =pi(a)— + p2(a)= . 5.37

= =) (@) (537
Here p; () and py(c) are known functions of o. The unknown parameter H is obtained
by extremizing the mean crushing force. After some calculation, the final values for H and

F.,, which are found not to depend on the chosen eccentricity A, are found as

H = 0.9263+/hry

o (5.38)
Frp = 44.80My1 |+ .

The advantage of the kinematic description underlying AMC4 is that several features
of a crushing cycle, observed in experiments, can be captured. These are finite values of
load peaks and predeformations at the beginning of one load cycle (provided A # 0), two
peaks, which may be unequally spaced and of different heights (corresponding to contact of
the folds inside and outside of the tube) and (at least for thicker tubes) a realistic deformed
shape of the crushed members. However, as can be seen from Figure 5.9, the two active
folds model must be stated to fail in describing the force-deflection curve of an actual

crushing cycle. The peak loads are in general markedly higher than the squash loads of the

61t is to be noted, however, that with respect to the membrane contributions the final expression would
not be affected if the spatial rate of deformation is used for defining the hoop strain rates and the spatial
integration is performed over the current configuration. In any case, the radius cancels out from the
integrand function.



CHAPTER 5. FOLDING MECHANISMS 73

tube (for the chosen eccentricity A = 1.5k a peak load of 165.3 kN is obtained, whereas
the maximal measured force value is 73 kN) and even the effective crushing distance is
overestimated (ueg = 13.3 mm). According to Eq. (5.38) the mean force prediction is 25.2

kN, which underestimates the measured values by about 25%.

Although this model shows shortcomings the kinematics seem to be well suited for
describing the crushing process of thicker tubes. In comparison to the other models no
additional assumptions have to be made to account for several phenomena which are typ-
ical for progressive buckling processes of tubular members, but cannot be captured by
the single active fold models. The main drawback, however, is that, in order to obtain
closed-form solutions, a very simple material description is used, which totally disregards
interaction effects between different stress and strain rate components. Without changing
the kinematic description, essential improvements of the two active folds model are there-
fore expected by removing the requirement for obtaining analytical solutions and resorting
to a numerical solution strategy — this way allowing the application of more refined yield

conditions while still keeping the computational effort sufficiently low.

5.3 Axial Crushing of Multicorner Columns

As a further example for the application of the solution strategy described in section 5.1,
a single active fold model for the progressive buckling of multicornered prismatic columns

is outlined in the following.

Starting from two basic collapse modes, a quasi-inextensional [Wierzbicki and Abram-
owicz, 1983] and an extensional deformation mode [Hayduk and Wierzbicki, 1984], Abram-
owicz and Wierzbicki [1989] proposed a kinematic model, which combines the features of
both mechanisms and allows the description of the crushing process of axially compressed
columns having an even number of corners. The deformation pattern of a representa-
tive corner element, which is shown in Figure 5.10, is composed of rigid flat parts and
continuously deforming elements, which are connected by stationary and moving hinge
lines. During the first phase of deformation (0 < a < @) the quasi-inextensional mode,
as sketched in Figure 5.10a, is assumed to act. This mode consists of four trapezoidal
elements each moving as a rigid body, a section of a toroidal surface, subjected to ex-
tensional deformations, two sections of a cylindrical surface with horizontal moving hinge

lines and two sections of a cylindrical surface, in which material is bent and rebent again
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versus OOB@HmmmwOU curves
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b)

Figure 5.10: Multicorner columns: deformation modes: a) quasi-inextensional, b) exten-

sional, c) generalized folding mechanism

by moving hinge lines, inclined between the trapezoidal elements.” At the configuration &
the inclined travelling hinge lines cease to move (i.e. they become stationary with respect
to the material), and an extensional folding mode takes over for the second part of the
crushing process (@ < a < ay = 7/2), characterized by the (additional) formation of two
conical surfaces, as shown in Figure 5.10c.

Unknown parameters of the deformation process are the fold length H, the switching
angle @ between the two modes and a small bending radius b, used for describing the

cylindrical and toroidal surfaces. Because all these variables are assumed not to change

"Likewise, a conical surface, as sketched in Figure 5.10c, could also be assumed for the latter part
without affecting the energy dissipation (see e.g. [Wierzbicki and Abramowicz, 1983]).
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with time, they may (according to Eq. (5.7)) again be determined by minimization of the
mean crushing force.

The use of elements with moving instead of fixed boundaries allows to describe a rather
complex deformation behaviour, inherent to this type of failure, with a very limited num-
ber of degrees of freedom by the proposed collapse model, and even the (approximate)
evaluation of the internal energy dissipation may be performed very efficiently. Without
going into details of the derivation (the final expressions for the individual energy and
energy rate terms are summarized in Appendix A.1l), the internal energy dissipation for
each folding mode may be confined to only three different contributions:

e Mode 1 (quasi-inextensional mode, 0 < a < @):

D,: flow over the toroidal surface,
D,: bending along horizontal hinge lines,

Dj;: bending along inclined travelling hinge lines,
e Mode 2 (extensional mode, @ < a < ay):

D,: stretching in a conical surface,
Ds5: bending along horizontal hinge lines,

Dg: bending along inclined stationary hinge lines.

With respect to the evaluation of these terms, most effort has to be put on a convenient
kinematic description for defining the strain rates acting in the individual parts. In order
not to complicate the analysis, however, it is assumed that for each of the contributions
D; the rates of plastic deformation may be restricted to one dimension, and Ny and M,,
respectively, act in the directions of these nonzero plastic strain and curvature rates. Details
of the derivation, however, are omitted here. These may e.g. be found in [Abramowicz and
Wierzbicki, 1989] or the diploma theses [Wintschnig, 1996; Willminger, 1999].

With D; to Dg the power equation is formally written as

3 _
Py — ney . D;i for0<a<ua, (5.39)
avc — .

nch:4D,- foro<a<ay,
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where n. denotes the number of corners of the column under consideration. Integration
over the whole crushing cycle delivers

3 a 6
ap. ar nD.
Fous = ne [§ / E’da-l— > / Ezda] (5.40)
i=1 V0 i=4

a

and
Fu(H,@,b)=—> Wi, (5.41)

respectively, from which the unknown kinematic parameters may be obtained by apply-
ing a numerical optimization procedure. Analytical derivations, however, have also been
provided for special configurations, see e.g. [Abramowicz and Wierzbicki, 1989; Wierzbicki
and Abramowicz, 1989]. Having determined the unknown variables, F,, is finally given by

Eq. (5.41), and the instantaneous crushing forces follow from Eq. (5.39).

A force-compression curve obtained with this collapse model, together with a typical
experimental curve, is shown in Figure 5.11., where the actual yield stress oy is replaced
by o, = 0.920, (as proposed for mild steel) in order to account for hardening of the
material, and the crushing distance u¢ (= 2H) is replaced by an effective crushing distance
of ueg = 0.73 - 2H [Abramowicz and Wierzbicki, 1989]. A comparison of the predicted and
experimental curves reveals that, without additional considerations, this model must also
be stated to fail to describe the actual force-deflection behaviour of the progressive crushing
process. The instantaneous crushing force starts with an infinite load peak (provided the
tube is perfectly straight) which is followed by a strong decrease of the forces down to
values below the measured ones at the end of each crushing cycle. The effective crushing
distances, however, agree reasonably well with the experimental observations, and also the
mean force predictions have some value for design purposes. The mean force predicted by
the model is 22.6 kN, which is about 15% lower than the measured ones (if compared to

the results for loading rate 1 mm/s, see Table 4.2).

5.4 Conclusions

A comparison of the different investigated single active fold models for describing the
crushing process of circular and multicorner columns has shown that without additional
assumptions (mainly based on experimental observations) they are not suited for describ-

ing complete load-compression curves. For a prediction of the mean forces, however, these
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models are applicable. If additional considerations are taken into account, then even rela-
tively simple kinematic descriptions allow quite accurate predictions of the load-deflection
behaviour. The two active folds model for circular tubes, proposed by Wierzbicki et al.
[1992], seems to be highly qualified for the kinematic description of the whole crushing
process, but without further improvements it is also only applicable for the prediction of
mean crushing forces. A generalization of this model, however, is expected to deliver more
accurate predictions even for a complete load cycle. When the requirement for obtaining
analytical solutions is dropped, essential improvements are expected by using a more re-
fined stress resultant yield surface. In a first step this could be realized by utilizing yield
conditions like those used for the single active fold models AMC1 to AMC3 (Egs. (5.29)
and (5.32)). If set on a proper numerical foundation, however, further improvements are

possible. These essentially include:

e application of a general yield condition (e.g. the exact Ilyushin yield condition de-

scribed in section 3.4),

e consideration of all active strain rate components, i.e. not only bending and hoop
strain rates, but also meridional strain rates and bending rates in circumferential

direction,

e generalization of the kinematic description to a system of more degrees of freedom.

A simulation strategy taking into account all these refinements, which is based on the upper
bound theorem of limit analysis in combination with an incremental solution procedure, is

proposed in the next chapter (“sequential limit analysis method”).



Chapter 6

Sequential Limit Analysis Method

The comparisons of the simplified axial crushing mechanisms with experiments, which are
presented in the previous chapter, reveal that the ability of these semi-analytical models
to describe the force-deflection characteristics of the whole deformation process is rather
limited, even if the underlying kinematics seem to be well suited. When the requirement
for analytical solutions is dropped, however, several improvements can be obtained. To
account for the interaction between the different stress resultant components, a general
yield criterion (e.g. the exact Ilyushin yield criterion, described in section 3.4, which is
exact for rigid-perfectly plastic material behaviour) instead of simplified yield conditions
can be used. Furthermore, there is no need to describe the kinematics of a single fold by
only one degree of freedom, so the division into “finite elements”, where the boundaries
may be described by plastic hinge lines (which even could be allowed to move), should lead

to further improvements.

Starting from these considerations a “sequential limit analysis method” for the axial
collapse analysis of general axisymmetric shells (i.e. not restricted to cylindrical ones) is
proposed in the present chapter. Herein the large deformation process is described in
an incremental manner, where each increment is solved by mathematical programming
techniques. Due to the application of the exact Ilyushin yield surface the power of internal
forces can be taken into account very accurately. It is also shown that with the proposed
method frictionless internal contact can be accounted for easily, fitting into the kinematics-
oriented solution strategy. Furthermore, the kinematic description is chosen such that most
of the analytically based kinematic mechanisms proposed in the literature for the concertina
mode buckling of cylindrical shells can be regarded as special cases, thus allowing to study

the effects of different simplifications used in these models.

80
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6.1 Fundamentals

As mentioned in the literature overview the plastic extremum and bounding principles,
which are intended for investigating plastic limit states and ultimate loads, respectively,
may serve as a direct and natural approach to collapse analysis of structures. Advantages
of these methods (which use an inequality form of the constitutive equations), compared
to the conventional FE method, are that the ultimate loads are evaluated directly without
considering details of incremental elasto-plastic constitutive relations and internal loading
and unloading conditions, thus delivering computational attractivity. In particular, the
kinematics-oriented theorems (Markov theorem, upper bound theorem of limit analysis, see
section 3.3) are conceptually simple and may be applied to advantage for defining numerical
(rigid-plastic) simulation tools. Due to the kinematics-driven formulation stresses do not
explicitly enter the algorithmic problem, and the methods fit very well into the basic
concepts of the conventional kinematics-oriented finite element method. Examples are FE
based upper bound limit analysis or the rigid-plastic finite element method mentioned
in section 2.2, but also the semi-analytical collapse models described in chapter 5 are

essentially based on the same theoretical foundations.

The numerical implementation of the upper bound theorem for axisymmetric shells,
which is proposed in the following, also relies on a finite element discretization of the
underlying structure. Numerical solutions, however, are directly found by applying general
optimization routines instead of resorting to a specialized solution procedure, this way
maintaining modeling generality while restricting the coding effort. Before details of the
kinematic description as well as the algorithmic structure are given, however, the basics of

the method are sketched in the following.

6.1.1 Upper Bound Theorem

The upper bound theorem of limit analysis (the derivation of which is given in section 3.3),
is stated in its traditional form (Eq. (3.57)) as

Dint (’U*)

A<M (v) = Dexio(v*) -

(6.1)
Because both the power of internal and external reference forces, Diy and Dey o, are
functions of the velocity field »* only, the problem of calculating the optimal load propor-

tionality factor A reduces to the search for the optimal (kinematically admissible) collapse
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mechanism v (= v}, ), leading to a (constrained) minimum of A*. If the power of the ex-
ternal reference forces is kept constant,’ then the upper bound theorem may alternatively

be written as the constrained optimization problem [Capsoni and Corradi, 1997b]:

Dy (v*) — min ,
subject to:  Dexto(v*) = const , (6.2)
v

*
=0 at a =a, ,

which may be solved directly by applying general optimization routines. It is to be noted,
however, that in general the objective function Dj,(v*), although convex, is not only
nonlinear, but may also become non-smooth,? and special optimization routines, which are

able to treat such problems, must be adopted for such cases (see below).

6.1.2 Large Deformation Analysis

The upper bound theorem, Eq. (6.2), is used to determine the “optimal” instantaneous
velocity field v describing the actual collapse behaviour for a given geometrical configura-
tion & at time ¢. In order to simulate a large deformation solution, however, a stepwise
procedure may be adopted. In each step, a limit analysis problem is solved and afterwards
the velocity field is integrated in a small time step t — t + At to update the geometry:

z(t+ At) ~ x(t) + At v . (6.3)

This way a “sequential limit analysis” [Yang, 1993; Hwan, 1997], which produces a non-
linear cumulative sequence of (quasistatic) deformations, may be performed. Since stress
quantities do not enter the upper bound formulation explicitly, the sequence involves ge-
ometrical updating only, which may be achieved relatively simply, and in general larger
time steps as compared with those used in an incremental analysis based on stress updat-
ing may be used. If contact has to be considered, too, then after each geometrical update
kinematic contact search algorithms must be applied for locating regions of contact and
interpenetrations, respectively. If regions of interpenetrations are found, the time step At
is reduced accordingly (in order to ensure valid contact without interpenetrations), and

additional constraints are activated for the optimization problem to be solved in the next

'Without loss of generality Deyi o = 1 may be assumed.
2This is the case if some regions of the structure do not deform plastically but move as rigid bodies.

Then, depending on the kinematic description, the partial derivatives of the objective function become
discontinuous.
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step. These kinematic constraint inequalities have to ensure that (for frictionless contact)
the time derivative of the normal distance between the contacting surfaces does not become
negative, this way maintaining the purely kinematic characteristics of the methodology. It
is worth noting, however, that hardening could also be accounted for in an incremental
manner by updating the local yield stress step by step with the deformation history. In
a similar way, material strain rate sensitivities, and even inertia forces (and thus dynamic
effects) could approximately be considered without giving rise to leading to fundamental
difficulties.

6.1.3 Internal Energy Dissipation

Concerning the application of the upper bound limit analysis method for shell structures
it is necessary to evaluate the power of internal forces as a function of kinematic quantities
only. For a Kirchhoff shell obeying the von Mises yield criterion, however, this may advan-
tageously be achieved by applying the energy dissipation function according to the exact
Ilyushin yield criterion, the derivation of which is given in section 3.4.5 (see Eqs. (3.100)
to (3.103)).

Provided the shell structure under consideration (described by its (current) middle
surface S) can be decomposed into continuously and discontinuously deforming regions,

the total internal energy dissipation Dy, is given by

Dy, = Df§2 + Di(:t) = /s (NagEap + Maghiag) dS + Z |Mj,3j|lj . (6.4)

J

N,os and M,z denote the stress resultants (section forces and moments) and £,5 and Kqp
are the rates of the work conjugate (plastic) midplane strains and curvatures, respectively,?
with («, 8) € (1,2) for Kirchhoff shells (see also section 3.4). The second part sums up all
contributions with respect to energy dissipation due to the presence of plastic hinge lines.
Here it is already assumed that the angular velocities, i.e. the jumps in the rate of rotation,
,Bj, as well as the corresponding plastic moments, M;, are constant over the length /; of

each yield line j.

With the normalized power of internal forces of a shell section, d, (Eq. (3.103)), the

3Due to the basic assumption of rigid-plastic material behaviour no distinction between total and plastic

strains is made.
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internal energy dissipation follows as
Dint = / Noéo Ep(é, k) dsS + E |M]B]|l] , (65)
S -
j

and because the normalized midplane strain and curvature rate vectors € and k are given
functions of the underlying velocity field, Eq. (6.5) is a convenient definition for the objec-

tive function in terms of kinematic quantities only.

With respect to a discretization of the geometry into a number of (continuously de-
forming) elements, Eq. (6.5) may be written as

e Se

Di =Y [ Nogody(€,k) dSe+ Y [M;3;l; (6.6)
J

(element related quantities are denoted by a subscript e), where, as in the conventional
finite element method, the element integrations may be performed numerically (e.g. by
applying a Gauf integration procedure).

From a computational point of view it is worth mentioning that the evaluation of
Ep(é, k) according to section 3.4.5 not only avoids a numerical thickness integration, but

also gives the exact power of internal forces for the shell section under consideration.

Remarks

For the special case of a shell with constant thickness and consisting of one material only,

a dimensionless form for the objective function may also be obtained:
dn = =3 [ @@ k) as.+ o 3 Imibyl (6.7)
int Noéo - ’ P ) e k/g - g/ A .

with the dimensionless plastic moments m; being defined as m; = M; /M, (and assuming
that Noéog = Mok holds, see section 3.4). An interesting fact becoming obvious from this
equation is that the normalized internal energy dissipation of the shell structure, d;,;, does
not depend on the actual yield stress of the material. Because, in addition, the power of
the external reference forces, Dey o (entering the optimization problem (6.2) as an equality
constraint), is not affected by oy, it is furthermore found that solutions of the upper bound
limit analysis problem may be obtained as pure functions of the geometrical configuration
of the structure, with the actual yield stress just acting as a scaling factor (Ny = o,h). For

large deformation collapse analysis of structures this, however, implies that the predicted
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characteristics of the whole system response (e.g. the progression of the force-deflection
curve during axial crushing) is fully determined by the geometrical configuration of the

underlying structure, regardless of the material actually used.

6.2 Sequential Limit Analysis of Axisymmetric Shells

The sequential limit analysis method sketched above (which is applicable to shell struc-
tures of general geometry) is implemented in a specialized computer program to analyze
the crushing behaviour of axisymmetric shells. Herein, the main emphasis is put on the
numerical generalization of simplified kinematic mechanisms for the concertina mode buck-
ling of circular cylindrical shells proposed in the literature (as those described in chapter
5). Therefore, the meridian of the shell structure is discretized using circular arc elements
(which are also used in analytically based mechanisms), and the external loading is re-
stricted to axial compression only. Further assumptions, used in the current version of the

computer program, are:

e the shell structure consists of one material only and has a constant thickness,
e the thickness does not change with time,

e meridional strain rates are constant within each element (this is realized by treating
the meridional length of each element as an independent parameter, which may
change with time),

e between the arc elements stationary plastic hinge lines may be allowed.

The Kirchhoff hypothesis (together with the assumptions of rigid-perfectly plastic material
behaviour and the validity of the von Mises yield criterion) furthermore ensures that the
energy dissipation function according to the exact Ilyushin yield surface, Eq. (3.103), may
be applied for the evaluation of the internal energy dissipation.

6.2.1 Kinematic Description
Nodal Quantities

The geometry of the meridional curve of the axisymmetric shell structure is described

using n circular arc elements. The discretization of an arbitrary intermediate configuration
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Figure 6.1: Finite element discretization of the meridional curve

(which is, starting from the initial geometry, given in advance for each time step) can be
seen schematically in Figure 6.1, where the used variables (and the orientation of the
element’s local coordinate system, given by the unit vectors e; to e3) are also shown.
The stationary plastic hinges, which may be allowed between individual elements, are
characterized for node k by an angle ;. Starting from node 1, the position of each node &
(up to node n + 1) is described using the curvatures x; and the lengths I; of the elements
as well as the nodal angles 3; (i € [1,k]) as independent parameters (the rates of these
quantities are used as the degrees of freedom for the optimization problem, see below).
For given values of ¢g, r; and 2; (and with ¢; = ¢y + 3;) the following equations hold
(k € [1,n]):

Vi = @k + kil ,

Ok+1 = Ve + Brt1

Tk41 = Tk + P (cos g — cos k) (6.8)
k

1 . .
2kl = 2 = (sin @ — sin ) -
k
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The time derivatives of these equations have the form
Yo = Qr + Fpl + Frly
Ort1 =Y+ Bk+1 )

. . Kk 1 L. o
Tre1 = Tk — —5 (COS @ — €OSYg) — — (P sin g — Y sinyi) , (6.9)
K Kk
: . Rk /. . 1 . .
Grar = 2+ (sin g — sinye) — - (x 08 g — i cOS )
k k

where the boundary values at node 1 are given by ¢y (= ¢1 = ¢o + ,5’1), 71 and 2z, which,

in the general case, are active degrees of freedom.*

For a straight element (k; = 0) the above equations for r, z, 7 and 2 are indeterminate.
Application of the de L’Hospital rule, however, delivers simplified expressions in this case,

which are given as

Tkt1 = Tk + g sin ¢y,

(6.10)
Zg41 = 2k + i cos gy,
and
. . : Frly ;o
The1 = Tk + | @rly + | CoSPr + I sin @y,
. l2 (6.11)
. . . Kby . ;
Rk+1 = Zk — (@klk + T) sin ¢ + I cos gy ,
respectively.

With respect to the definition of the constraint equations for the optimization problem
(kinematic boundary conditions, power of external reference forces, but also the contact
constraints derived in section 6.2.3) it is interesting to note that all relations defined in
Egs. (6.9) and (6.11) show a linear dependence between the different velocity quantities.
This functional dependence, however, is also reflected by the linearity of the constraint

equations entering the optimization problems, which all are defined in rate form.?

Element Quantities — Strain Rate Definition

The strain rate measure used for stating the kinematics-oriented plastic extremum and

bounding theorems is the spatial rate of deformation tensor d, defined in general form in

4For the investigations described here, however, clamped boundary conditions are assumed at node 1,
which means that ¢, 71 and 2; are (without restriction to generality) all set to zero.
SFor example, a radial fixation of point n + 1 is enforced by the constraint equation 7,1 = 0, etc.
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Eq. (3.8). Using this (and considering that the meridional strain rates are assumed to be
constant within an element), the midplane strain rates for an axisymmetrically deforming

shell section are given by

3 l
11 = 7,
U
- 7 6.12
€22 = —, ( )
T
é12 =0 )

where 1 denotes the meridional and 2 the circumferential direction (see Figure 6.1). Because
of the assumption of constant meridional strain rates within an element, however, ;; may

likewise be stated as
g1 = = s , (6.13)
from which the relation

§=—ly (6.14)

(which is needed below) is obtained.

The curvature vector for the current configuration is defined by the components

K11 = —Kg ,
Ccos
KRog = , (615)
T
ki2 =0,

and thus the curvature rates follow as

I%/ll - _k'k 3

. .cosa . sina

[{22 = —Tr 5 — ) (616)
T T

’%12 = O .

According to Egs. (6.12) and (6.16), the following kinematic quantities must, therefore,
be evaluated at some point s in element &k (s € [0,l;]) in order to fully determine the
midplane strain and curvature rates (and thus the vectors € and ic, used for computing the
internal energy dissipation of the shell section):

a(s) = ¢or + Kis ,

1 (6.17)
r(s) =rg+ - (cos g — cos )
k
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Table 6.1: Evaluation sequence for the determination of the position related quantities

1. | Independent variables
= (Iy,..., )T

K
l
ﬂ = (Bl’ R aﬂ'n+1)T

7= (71;- "’f)’n)T
9 Compute node related position vectors @ = (00, n41)"
" | (Egs. (6.8) and (6.10), resp.) P = (71, )T
z=(2z1,.s2n11)"
3. Evaluate element quantities o(s),(s)

(Egs. (6.17) and (6.19), resp.)

OA(S) = (,Dk -+ l.i’,kS + K/k..é s

: . Fu 1L, . (6.18)
7(s) = T, — —5 (cos g — cosa) — — (Prsin gy — asina) .
Again, simplified formulas for 7 and 7 are valid for straight elements (kj = 0):
r(s) =7 + ssingy (6.19)
: : . fips® .
7(s) =7k + | oxs + cos g + §sin gy . (6.20)

The quantity $ used in Egs. (6.18) and (6.20) is given by Eq. (6.14).

A summary concerning the evaluation of the kinematic quantities, required for de-
termining the midplane strain and curvature rate vectors €(s) and k(s) (and thus the
normalized internal energy dissipation for the shell section, d,(s)) is contained in Tables
6.1 and 6.2 (divided into position and velocity related quantities). Due to the fact that
no displacement changes take place within an increment (i.e. the geometrical configuration
is fixed for each step of the sequential limit analysis algorithm), the dependent position
quantities listed in Table 6.1 must only be evaluated once per increment. The velocity
terms summarized in Table 6.2, however, have to be computed for each iteration step of
the optimization process.
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Table 6.2: Evaluation sequence for the determination of the velocity related quantities and

the internal energy dissipation, respectively

@0, ’fila 'él
) Independent variables (degrees of freedom ko= (... kn)T
" | for the optimization problem) 1= (il, o ,[n)T
B = (61a e a/Bn-H)T
Y= (;Yl""a;yn)T
5 Compute node related velocity vectors @ = (o, s Pns1)t
" | (Egs. (6.9) and (6.11), resp.) 7= (F1y. ey )T
i - (2':1, ey ,én+1)T
5 Evaluate element ql.lantities (Egs. (6.18) a(s), #(s)
and (6.20), resp., with Eq. (6.14))
n Determine midplane strain and curvature &(s), i (s)
rate vectors (Egs. (6.12), (6.16), (3.99))
5 Evaluate the normalized plastic dissipation a,(s)
of the shell section (Eq. (3.103)) ’

Remarks

It was mentioned in section 3.2 that time integration of the spatial rate of deformation
tensor (used here) does in general not deliver a strain measure. For the special case that
the principal strain directions do not rotate with respect to the material, however, the
logarithmic or natural strain is obtained. For the axisymmetric shells considered here, the

(nonzero) midplane strains are, therefore, given as

_ Ix(2)

=1
€11 n lk(to)
r(s,t

7

)

(s, o)

(time to denotes an arbitrary, but fixed reference state), and differentiation with respect to

(6.21)

522 =In

time just delivers the strain rate components stated in Eq. (6.12). Likewise, the sequential

limit analysis method could also be regarded as being based on small deformation theory,
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where (regardless of the deformation history) for each step an upper bound solution (which
is related to the current “reference configuration” at time t.) is to be solved. In this case,

the midplane strains would be defined as

Le(t) — I (te)

€11 = W 5
S r(s,t) — r(s,t.) (6.22)
2= r(s,t.) ’

and time differentiation yields exactly the same results as above.

6.2.2 Internal Energy Dissipation

According to Eq. (6.7) the internal energy dissipation of the discretized axisymmetric shell
is given by

n+1

dint = Z dl(ICﬂ)Z k + Z dmt,]
e n—|—1
:Z27r/0 dy(s) ds—i—Z |m,,8]|r] ,
k=1

(6.23)

where d(c) x and df,‘ft) j denote the normalized internal energy dissipation owing to continu-
ous deformations of element £ and discontinuous deformations of the plastic hinge line 7,

respectively.

Element Contributions

For the numerical evaluation of the element integrals an m-point Gauf-Legendre integration
is applied. With the Gauf-Legendre points si; and the corresponding weights c;; (for
details see e.g. [Press et al., 1992; Bronstein et al., 1995]) d\ , follows as

int,k

dl(gt p =27 Z Ck idp(Sk,i)7 (k) - (6.24)

This numerical integration procedure is implemented such that the integration order m

may be chosen arbitrarily.5

6For the examples presented below, however, m = 5 is set in all cases.
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Figure 6.2: Approximation of plastic hinge line j by a continuously deforming transition

region

Contributions of the Plastic Hinge Lines

When totally disregarding the effects of interacting stresses at the plastic hinge lines, m;
is equal to one (i.e. M; = M,). Because for axisymmetric shells, however, deformations
in circumferential directions are constrained, a rotation rate ,Bj at the plastic hinge will
induce plastic moments also along the circumference. When accounting for this bending

interaction, the plastic bending moment M; is given by M; = %Mg (see also the collapse
(d)

model of Alexander, described in the preceding chapter). Accordingly, d;; ; follows as
AT .
d9 . = 7y 6.25
int,j \/gﬁo |16.7| J ( )

and this relation is implemented in the current version of the sequential limit analysis

program.

The main drawback of Eq. (6.25), however, is that no reduction of the bending moments
due to the additional action of in-plane forces is accounted for. Especially for higher
section forces Eq. (6.25) must, therefore, be regarded as a crude approximation, essentially
overestimating the energy dissipation at the yield line. A possible refinement, which also
fits into the algorithmic structure of the proposed solution strategy, is to treat the plastic
hinge line as a small, but continuous transition region of meridional length [, as sketched
in Figure 6.2. When approximately assuming midplane strain and curvature rates as

constant within the element,” the “hinge element” integration can be reduced to a one-

"Without activating additional degrees of freedom, the unknown parameters £; and ¢, needed for fully
determining &(s) and k(s), could possibly be estimated from the corresponding values of the adjacent

“large” arc elements.
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point integration, thus keeping the additional computational costs sufficiently low while
considering interaction of stress components in the most general way. For the limiting case
of pure bending at the yield line (i.e. &, = Bj/lh is the only term, which is not equal to
zero), however, it may be shown that this strategy just delivers the currently used definition
for d¥ .. Eq. (6.25).

int,j°

6.2.3 Consideration of Contact

Typical progressive crushing processes of tubular structures show self contact of both outer
and inner surfaces due to the formation of subsequent folds and wrinkles. In order to
account for these phenomena within the proposed, kinematics-oriented limit analysis pro-
cedure for axisymmetric shells, an algorithm based on the master-slave concept (see e.g.
[Zhong, 1993|) is applied for the location of active contact regions. Geometric constraint
inequalities are activated afterwards in order to ensure that (frictionless) contact is ac-
counted for in the next step of the analysis. Without going into details of implementation,
the principles of the applied strategy are sketched in the following.

Kinematic Contact Search

The contact search algorithm uses a spatial discretization, where each arc element is sub-
divided into a number of straight lines (with the auxiliary nodes lying on the elements, see
Figure 6.3). All nodes connected with these contact segments (i.e. auxiliary and elemental
nodes) form the contact node set.® The position of slave node j (given as point p;) with

respect to a master element ¢ is determined using the relations
— T _ T
9i; =+(p; —pi) esi, sy = (P —P;) €. (6.26)

Here, g;; denotes the normal distance between slave node and master element (positive
and negative signs are used for outside and inside contact, respectively), and s;; gives the
corresponding tangential offset on the master element (Figure 6.3). Vectors e;; and es;

are tangential and normal unit vectors of line segment i. In terms of the slope «; these are

8 All quantities used for describing contact are functions of the underlying shell kinematics and may
conveniently be derived when adopting the relations given in section 6.2.1. The individual expressions for
obtaining these values are, therefore, omitted in the following.
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Figure 6.3: Basic configuration of the master-slave contact algorithm (inside contact)

cos o —sin oy
€1 = . ) €3; = . (6-27)
S1n ¢ COS ¢;

One problem when applying Egs. (6.26) for checking contact is that in general it is not

given as

known in advance whether the contact node under consideration approaches the contact
element from outside or from inside (and thus, wether the + or — sign has to be used when
computing the normal distances g;;). For the kinematic description used here, however,
a quite simple strategy may be applied, which allows to distinguish both cases and even

enables a common treatment of both outside and inside contact.

Provided the angles o; are determined without a 27-modulation,? these may be used
to advantage for deciding whether outside or inside contact occurs. As can be seen from
Figure 6.4, outside contact requires that the angle «; (i.e. the directional slope of the
contact segment, which is connected to slave node p;) is larger than «;, whereas for inside

9That means that, starting from a reference angle ag, each angle o; is uniquely given by the evolution
of the meridional curvature of the shell structure (see e.g. the definition of a(s) in Eq. (6.17)). The a;-
values meeting these requirements may conveniently be derived from the kinematics of the underlying arc
elements, because the angles oy and 7 are defined in the same unique manner (see Eq. (6.8)).
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z

Figure 6.4: Evolution of the slope « for outside (left) and inside contact (right)

contact the difference between these angles,
Aoyj = o — 0y, (6.28)

must be less than zero. With this, a simple combined criterion for checking both outside

and inside contact may be expressed as
9ij = sign(Aaij)(p; — pi) " es;i - (6.29)

The flowchart presented in Figure 6.5 summarizes the algorithmic structure of such
a combined contact search strategy, which allows to locate active outside/inside contact
pairs and interpenetrations, respectively. Because with the sequential limit analysis method
changes of the geometrical configuration are restricted to incremental updates between the
individual steps (see Eq. (6.3)), these contact checks are of pure incremental nature, too.
Intersections (i.e. g;; < 0) may, therefore, simply be removed by reducing the time step At
such that at the end of the increment the minimum of the normal distances of all active

contact pairs just equals zero.!0

Definition of Contact Constraints

Once an active contact pair [7, j] has been located, it must be ensured that g;; does not
become negative for the next increment (which is a sufficient condition for frictionless
contact). Therefore, inequalities of the form

gij = sign(Aayj) [(p; — P;)"esi + (p; — ;) €3] >0, (6.30)

0Provided the geometrical configuration at the start of the increment does not have any interpenetra-
tions (and all contact pairs active at this time are constrained not to penetrate each other) a time step
fulfilling these requirements can always be found.
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Compute tangential offset
Sij = (Pj - pz’)Tel,'i

no . }
No active contact pair

yes

Compute normal distance

Gij = sign(Aaij)(pj - pi)Te3,i

@ 1o No active contact pair
@ no Active contact pair

Propose time step reduction such that g;; =0

Figure 6.5: Algorithmic structure of the kinematic contact search algorithm for locating

both outside and inside contact

which linearly depend on the chosen velocity degrees of freedom, pass into the following

optimization problem.

Remarks

e Despite the conceptual simplicity of the proposed contact procedure the formulation
is quite general and suitable for the consideration of (frictionless) internal contact for
axisymmetric shell structures of arbitrary geometry. Due to the fact that the contact
constraints are linear functions of the velocity degrees of freedom, they also do not
complicate the numerical optimization procedure. This is in strong contrast to the
solution behaviour of conventional finite element analyses when including contact.

Because contact conditions may change within each iteration step there, the global
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finite element equations to be solved show a strong nonlinear behaviour, strongly
affecting the overall convergence behaviour.

e Consideration of the shell thickness (although not implemented yet) is straightfor-

ward.

e In a similar manner as described above, the circular arc elements used for discretizing
the meridional curve of the axisymmetric shell structure may be used directly for
defining contact conditions of the form of Eq. (6.26) without resorting to linear master
line segments. Although the kinematic description becomes more complicated in this
case, the linear dependence of the resulting inequalities on the velocity degrees of
freedom (and thus the convergence behaviour of the optimization routines) is still

maintained.

e The contact algorithm sketched above was presented without going into details of im-
plementation. Although the principles of the algorithmic structure are quite simple,
however, some additional tuning work has to be done in order to define a numerically
robust algorithm. For example, appropriate tolerances must be set to avoid spuri-
ous contact changes. The main reasons for such not physically motivated “contact

changes” are:

— Even if an active contact pair would keep closed actually, the numerical solution
may deliver g;;-values that are not exactly zero but small positive numbers. This,
however, means that in fact a slight separation of the contact partners will take
place within each incremental update.

— Due to the discretization of the meridional curve by linear master line segments
tangential movements of the slave nodes across the boundary nodes of the con-
tact elements may lead to some intermediate “drop off” of the contact nodes
from the contact surface.

— The contact search algorithm may fail to uniquely determine contact pairs, if

the slave nodes lie near the points of interpenetration of the contact segments.

The current version of the contact algorithm allows for some control of these prob-
lems. However, the main emphasis for the definition of the proposed sequential limit
analysis program was put on testing the principles and the suitability of the method-
ology, and, therefore, its applicability is restricted to small scale problems (which
typically consider the formation of individual folds only). Therefore, a rather sim-

plified version of the contact algorithm is currently implemented, which still requires
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some refinements in order to deliver a numerically robust tool for general axisymmet-
ric crushing problems. The suitability and numerical efficiency of the proposed con-
tact algorithm, when used in combination with the sequential limit analysis method,

however, already becomes obvious from simple test runs on small scale problems.

6.2.4 OQOutline of the Solution Procedure

In the following the flow diagram of the computer code, which was defined for the (large

deformation) crushing analysis of axisymmetric shells, is sketched:

1. Read input (initial geometry, FE discretization, control parameters, etc.),
2. set starting values for the independent parameters i, K and ,8 for the first increment,
3. for each increment do:

(a) solve the nonlinear optimization problem with linear constraints
dine(1, 2, B) — min ,
subject to: 7 =0,
%2 =0,
=0,
Tnt1 =0,
Zn1+1=0,
$nt1 =0,

Gij >0 for all active contact pairs [z, j] ,

(b) perform geometrical update

. At?..
lnew:lold+Atl (‘}—Tl—}—),

2

. At®
Bnew = Koid + At K (+Tn+...),

. A2 ..
IBnew:ﬂold+Atﬂ (+TB+)’
(c) check contact/interpenetration of elements,

i. if contact without interpenetration appears, activate contact conditions for

the next increment,
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ii. if interpenetration appears, reduce time increment At accordingly and go
to step 3D,

(d) write incremental output,
(e) if a break-off condition is satisfied, go to step 4,

(f) go to step 3a.

4. end of solution.

Discussion

Statement of the Optimization Problem (Step 3a): The definition of the opti-
mization problem is based on the assumption that external loading is restricted to axial

compression at node n + 1 only. With

Dext,O = Fa,02n+1 =1 (631)
and an axial reference force F, o = —1 this, however, just delivers the kinematic constraint
equation

Zny1+1=0 (6.32)

used above. The axial compressive force Fy(t) may finally be obtained from the converged

values for the objective function, di,(¢). Using Eq. (6.31) one obtains

Ey Din
x(t) == tt(?
ext,

= Dini(t) = No€odins(2) , (6.33)
and thus

Fy(t) = Mt)Fap = —Nooding (£) - (6.34)

Concerning the kinematic boundary conditions, the shell structure is (without restric-
tion to generality) assumed to be clamped at both ends.!! Other types of boundary condi-

tions, however, may simply be obtained by changing the constraint equations accordingly.

11 Although the boundary conditions fixing node 1 are formally listed as constraint equations, it is to be
noted that, because the kinematic description of the meridional curve just starts at node 1, these quantities
may directly be substituted into the corresponding equations (see Egs. (6.9)), this way reducing both the
number of active degrees of freedom and the constraint equations entering the optimization problem.
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Numerical Solution (Step 3a): It was mentioned earlier that in general the objective
function for the optimization problem, di,, is convex but not everywhere differentiable
[Capsoni and Corradi, 1997b]. Non-differentiability at the optimal point is typically present
if individual elements (and plastic hinge lines, respectively) behave in a rigid manner (for
axisymmetric problems this means that only rigid movements in axial direction may occur
for such an element). In order to allow a direct solution of the nonlinear, nonsmooth, con-
strained optimization problem, the freeware SOLVOPT [Kuntsevich and Kappel, 1997] is
currently used. This optimization code is based on a minimization method with space di-
lation, working with subgradients (Shor’s r-algorithm [Shor, 1985]). Constraints are taken
into account by an exact penalization method (for details see [Kuntsevich and Kappel,
1997]).

For the constrained optimization of smooth problems (but also for a regularized eval-
uation of non-smooth objective functions), however, further optimization routines were

implemented:

e FFSQP [Zhou et al., 1997] is a set of subroutines for the minimization of the maximum
of a set of smooth objective functions subject to general smooth constraints.!> The
optimization code is based on the method of “Sequential Quadratic Programming”,
modified so as to generate iterates feasible with all constraints, yielding a globally

convergent, locally superlinearly convergent algorithm.

e A robust but computationally less efficient (compared to FFSQP) smooth optimiza-
tion code is the optimization algorithm CONMAX| provided via the internet service
NETLIB. This set of optimization routines is also intended for solving general (non-
linearly constrained) minimax problems, with the solution strategy resting upon an
ODE-based!? approach (for details see [Kaufman et al., 1995]).

Although these optimization codes are restricted to smooth problems an approximative
treatment of non-smooth problems can e.g. be achieved by enforcing that the internal
energy dissipation within each element (and plastic hinge line) is strictly positive, thus
actually solving a smooth problem instead (see e.g. [Achtziger, 1998]). Because the con-
vergence behaviour of smooth optimization methods is in general superior to that of non-
smooth ones, such a strategy may be more computationally efficient than directly solving

non-smooth problems.

12The provision of the optimization routines by the authors is gratefully acknowledged.
130DE ... Ordinary Differential Equations
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For the (small scale) test examples presented below, all algorithms were found to work
satisfactorily. Concerning a numerically efficient solution of the proposed sequential limit

analysis method for larger problems, however, further work remains to be done.

With respect to the starting values for each optimization problem, the vectors of inde-
pendent parameters of the last increment are taken for each but the first step (which is

implicitly included in the above flowchart).

Geometrical Update (Step 3b): A geometrical update, which is restricted to the
velocity terms, will deliver accurate results for larger time steps only if the higher derivatives
of I, k and B are sufficiently small. This may generally be assumed for increments, where
no changes in the contact conditions take place. However, improvements may be achieved
by taking into account the acceleration terms, too. These terms may e.g. be approximated
at time ¢ by backward difference quotients of the form

it ~ l(t)—lA(i—At) |

etc., (6.35)

and can then additionally be applied for the geometrical update, as indicated in step 3b.

6.2.5 Examples

The test examples presented in the following are mainly intended to point out several
features of the proposed sequential limit analysis (SLA) method. First, the formation
of an individual fold during concertina mode buckling of an axially compressed circular
cylinder is investigated in some detail (including the activation of internal contact, but
also demonstrating the possibility of obtaining the internal generalized stress state as a
pure postprocessing feature). The generality and achievable accuracy of the method also
comes out from the next example, where the large deformation axial compression of a
conical shell is presented and compared with a detailed FE analysis. A confirmation that
most of the analytically based collapse mechanisms presented in chapter 5 may be regarded
as special cases of the proposed SLA program is shown by the last two examples, where
both the simple collapse model of Alexander and the two active folds model of Wierzbicki

et al. are reexamined.
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Figure 6.6: Axially compressed circular cylinder: normalized axial force versus compression

curve (left), deformation diagram (right)
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Axial Crushing of a Circular Cylinder

A numerical crushing simulation for a circular cylinder (cylinder radius ry = 19.5 mm, wall
thickness h = 1 mm) was performed, where only continuous deformations were allowed, i.e.
no plastic hinge lines could occur at the nodes. The deformable length of the cylinder was
assumed to be 25 mm, which was discretized with 10 arc elements, and the cylinder was
clamped at both ends. Figure 6.6 shows some results. The normalized axial force versus
compression characteristics during the buckling process can be seen in the left diagram,
and the right diagram shows a sequence of states of deformation, obtained with the SLA
method. The axial force acting on the cylinder, F;, is normalized with respect to the axial
squashing load of the tubular member, Fy = 2779 Ny. A comparison of this normalized force
versus compression curve with a typical experimental result and results of a conventional
FE analysis (which are included in the left diagram) shows a very good agreement with
respect to the actual force level as well as the consideration of internal contact, delivering
even the fold length accurately. A detail of the active contact region for the last increment,
showing the principles of the implemented master-slave contact algorithm, is included in
the right diagram, too (the discretization of the arc elements used there corresponds to

that applied for considering contact).

The results of this simple example already show that the proposed sequential limit
analysis method in principle allows the numerical simulation of axisymmetric crushing
processes in a general way, being able to meet the accuracy of conventional FE calculations,

even if internal contact has to be taken into account.

One of the features of the upper bound limit analysis method is that the whole solution
procedure is kinematically driven, and stresses do not explicitely enter the algorithmic
problem. The reason for this is that due to the validity of the principle of maximum
plastic dissipation the internal energy dissipation (being the objective function for the
optimization problem) is given as a pure function of the plastic strain rates, which in turn
are determined by the underlying velocity field. Because the plastic strain rates, however,
also determine the corresponding stress state on the yield surface,' the internal stresses
may, therefore, be evaluated from the converged kinematic quantities within a simple
postprocessing step. The relation conveniently used for these purposes for Kirchhoff shells

has already been derived in section 3.4. The six-dimensional representation of the exact

4For plane stress von Mises plasticity this dependence, which is determined by the yield surface in
combination with the normality rule, is unique, see section 3.3.
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Ilyushin yield criterion, Eq. (3.75), is of a form that, once the (plastic) midplane strain
and curvature rate vectors & and k are given for some shell section, the normalized section
force and moment vectors m and m may directly be evaluated.'® Although the stress state
obtained this way will in general not fulfill local equilibrium (in contrast to the lower bound
theorem of plasticity this is not enforced for upper bound solutions), approximations quite
close to the actual state are usually delivered, provided the kinematic description is chosen
suitably. Besides providing information on the stress distribution within the structure, the

results may, therefore, also be used for validating the accuracy of the underlying velocity
field.

Results of such a postprocessing are shown in Figure 6.7 for an axially compressed
circular cylinder, where the total length, 16 mm, was discretized with 4 arc elements. A
sequence of several states of deformation is included in the left diagram, and the progression
of the corresponding section force and moment components evaluated along the meridional

curve of the shell structure can be seen in the right diagram.

Concerning the evaluated force and moment distributions for the investigated example
it can be seen that at the beginning (i.e. for a straight shell structure) the meridional
section forces mi; dominate the energy dissipation, whereas with progressing deformations
the meridional moments m;; take control over the buckling process. The jumps in the
section force components, which occur at the element boundaries, are mainly due to the
assumption of constant meridional strain rates within each element, pointing out that fu-
ture refinements with respect to the assumed meridional strain rate distributions should
be made. A further result becoming obvious from the diagrams is that a distinct reduction
of the total length of the meridional curve occurs. This may partly be traced back to the
axial (and meridional) compression, which, in combination with the extensional circum-
ferential deformations due to the outward folding process, will lead to such a reduction of
the meridional length of the shell. Some overestimation of these meridional deformations,
however, must also be expected. The reason for this is that in the current version of the
SLA program the volume constancy of the rigid-plastic deformations (leading to changes
of the shell thickness) is not enforced numerically. Therefore, some volume reduction may

take place with the ongoing crushing process.

150f course, the validity of this relation is restricted to nonzero plastic deformations, with the (gener-
alized) stress point lying on the yield surface. Stress states within the yield surface (subjected to rigid
movements of the corresponding material point) may not be determined with this strategy.
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Figure 6.7: Axially compressed circular cylinder: deformation diagram (left), section forces

and moments (right)
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Plastic Collapse of an Axially Compressed Conical Shell

In order to demonstrate that the proposed sequential limit analysis method is not restricted
to circular cylinders, but may be applied for studying the large deformation crushing
behaviour of general axisymmetric shells, results for an axially compressed conical shell
are shown in Figure 6.8. Again, the ends of the shell structure are clamped, and only
continuous deformations are allowed. The reference quantity used for normalizing the
axial force is in this example given by Fy = 279Ny, where ry stands for the radius of the
smaller end of the cone. The comparison of the SLA simulation with results, which were
obtained by a detailed FE analysis (and are included in Figure 6.8), confirms that not only
the force-compression behaviour, but also the final deformed configuration are predicted
with a high degree of accuracy by the SLA method.

Comparison with Analytically Based Collapse Models

In Figures 6.9 and 6.10 results for two cases are presented, where the SLA program was
specialized in order to allow a direct comparison of the proposed numerical scheme with
that of analytically based collapse models — the model of Alexander and the two active
folds model of Wierzbicki et al. Both collapse models were described in chapter 5 (sections
5.2.1 and 5.2.3).

Model of Alexander: According to the collapse model of Alexander (the kinematics of
which is sketched in Figure 5.1) the internal energy dissipation can be decomposed into two
parts, owing to bending at concentrated plastic hinge lines and circumferential stretching
within the line elements (see section 5.2.1). In order to put these assumptions into the
SLA code, the following adaptions have to be made:

e Meridional and curvature rate deformations must be deactivated, i.e. l= 0,x=0.

e Within each element only the hoop strain rates must be taken into account for eval-
uating the internal energy dissipation. Accordingly, the normalized internal energy

dissipation for the shell section under consideration, Ep, is given by

_ 1 . 1|7 -
dp = Noéo |N0822‘ = 5 ‘;‘ = ‘622| y (636)

where €5, denotes the physical and €55 the normalized hoop strain rate for the section

point.
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e In order to avoid numerical problems for the initially straight meridional curve (where
the crushing force would approach infinity), a starting angle of 3° is used for defining

the initial geometry.

Concerning the energy dissipation owing to bending at the plastic hinge lines the current
implementation coincides with the assumptions used for the collapse model of Alexander
(where a constant bending moment of M = 2M;/+/3 is assumed). Accordingly, no changes
have to be made for this. The break-off condition is set such that the analysis stops when

first contact is encountered.

The results, which are summarized in graphical form in Figure 6.9, reveal that the
numerical simulation delivers exactly the same results as the analytical model (where the
force-compression curve is given in closed form by Eq. (5.25)). The optimal folding length,
being predicted by the Alexander model as 2H = 11.9 mm for the given geometry, also
comes out from the numerical solution. This may be seen from the right diagram of Figure
6.9, where the numerical prediction for the mean force is shown as a function of the folding

length, and again, the minimum is found at 11.9 mm.!®

In addition to this reexamination of the original Alexander model with the SLA method,
a refined investigation was performed. For this instead of applying the simplified relation,
Eq. (6.36), for evaluating the internal energy dissipation within the elements, the exact form
(considering not only hoop strain rates, but circumferential curvature rates and meridional
strain rates as well) is used. It can be seen from the force-compression curve that in
this case the axial load no longer starts from infinity,!” but has a value of F, ~ 1.1F,
and the minimum of the optimal folding length of the tube is shifted to slightly higher
values (2H = 13.6 mm). A similar progression of the instantaneous crushing force during
axial compression (obviously dominated by the localized bending deformations at the hinge

lines), however, may also be observed.

Two Active Folds Model of Wierzbicki et al.: For reexamining the two active folds
model of Wierzbicki et al. (the deformation sequence of which is sketched in Figure 5.8)

some major adaptions must be made to the kinematic description of the SLA program.

16With regard to the the mean crushing forces shown in the diagram, however, it should be taken
into account that because of the predeformations used here the absolute values do not coincide with the

analytical predictions (where no such predeformations are assumed).
"However, some predeformation at the beginning must also be used, because otherwise the plastic hinge

lines (at which currently no moment reduction due to the presence of axial forces is taken into account)
would not be activated but the whole structure would only be compressed axially.



CHAPTER 6. SEQUENTIAL LIMIT ANALYSIS METHOD 109

0 ,,w
[1°4/74
To) < ™ I — o
™ ™ ™ ™ ™ c ™
o o o o o o
T T T T m m_
N ©
N ™
N —
3 // _H_ i
g // 2/
3 <
- 8 \ R
© \
M N\
< \
! \ —
35 \ =
non N E
_ ] T
/l E N
/| E ]
2
—
gL s/ - 19
S e 1
T - S
o | \\\ [qV]
1S -
IS \\\
5 \\
OJ. 8
—
__0
.
e}
=
=
(8]
R
>
S — —
= €
O S
=
o e
&g =
81 S
COAY) 0
- = )
g3 o
T e~ o
S _E e
c o £ o
2« O
| | @ G —
<5 o
5 T X
g ! < <
8355
=nwm
i
I
Ey)
—

Figure 6.9: Kinematics of the Alexander model: normalized axial force versus compression

curve (left), normalized mean force versus folding wave length (right)



CHAPTER 6. SEQUENTIAL LIMIT ANALYSIS METHOD 110

Starting from a predeformed geometry (described by the first, i.e. lower four arc elements,
see Figure 6.10) the whole structure has to be divided into upper and lower parts moving
as rigid bodies, which are connected by some active zone. The deformations in this active
zone, which is composed of four elements, are restricted such that pairs of elements share
their degrees of freedom (however, with different signs for the meridional curvature rates).
With these adaptions the implemented contact algorithm may be applied to determine the
end of the first crushing subcycle, at which time the active zone is shifted by two elements
and the second subcycle is performed until contact occurs a second time, indicating the

end of one total crushing cycle.

Concerning the computation of the internal energy dissipation it is assumed for this
collapse model that only the meridional bending moments and the section forces in hoop di-
rection provide contributions — without, however, assuming any interaction between these
generalized stress components. Accordingly, the normalized internal energy dissipation is
given as

Ep = NL (|N0522| + |Mol:611|) = |é22| + |i311| . (6'37)

0o
(Here the relation Noég = Mk, introduced in section 3.4, has been utilized.) In contrast
to the definition of the hoop strain rates used for the general SLA model (8 = 7/r),
however, these are now assumed to be based on small deformation theory and hence, they

are replaced for this collapse model by &y = 7 /7o (see section 5.2.3 for details).

The left diagram shown in Figure 6.10 includes several normalized axial force versus
compression curves, the computation of which is based on different assumptions. The first
curve, denoted as “Model of Wierzbicki et al.”, was obtained with the formulas originally
proposed by Wierzbicki et al. [1992], whereas the second one (“SLA — Model of Wierzbicki
et al.”) was evaluated with the SLA method considering the adaptions mentioned above.
It becomes obvious from these results that both curves in fact coincide, confirming that
the two active folds model may be treated as a special case by the proposed SLA program.

The third force-compression curve included in the diagram (“SLA”) is also based on
the kinematics of the two active folds model (i.e. a coupling of the velocity degrees of
freedom for pairs of elements of the active zone (e.g. k3 = —f4, I3 = l4, etc.)). The internal
energy dissipation, however, is now obtained in an exact way, considering not only all
strain and curvature rate components, but also accounting for interaction effects between
these quantities. With this it is found that the load peaks, markedly overestimated by the
analytically based model, are essentially reduced to reasonable values, being comparable

with the measurements. The subsequent crushing force progression according to this refined
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axial force versus compression curve (left), deformation diagram (right)



CHAPTER 6. SEQUENTIAL LIMIT ANALYSIS METHOD 112

evaluation, however, is comparable to that of the analytically based collapse model.'®
This may certainly be traced back to the fact that with ongoing deformations the energy
dissipation becomes dominated by meridional bending — a fact which did already come
out from the inspection of the section force and moment distributions shown in Figure 6.7.
These bending contributions, however, are an essential part of the energy dissipation taken
into account by the analytically based collapse model.

Several stages of one total crushing cycle corresponding to the refined two active folds
crushing analysis are shown in the right diagram of Figure 6.10. A comparison of the final
deformation states for the original and the refined collapse model (which is also included
in the right diagram) again reveals that a considerable meridional shortening is obtained
when taking into account meridional strain rates within the elements. This phenomenon,

however, has already been discussed above.

6.3 Summary, Conclusions

A major goal of the present study was to work out a possible strategy for an efficient (i.e.
simplified but still sufficiently accurate) numerical analysis of the plastic collapse process of
thin-walled structures. With regard to this a simulation tool for the axial crushing analysis
of axisymmetric shells has been presented in this chapter, which is based on the upper
bound theorem of limit analysis in combination with an incremental solution procedure.
Several features inherent to this kind of simulation strategy could be demonstrated (or

may be concluded). These include:

e Plastic extremum and bounding principles provide a sound theoretical basis for the
definition of simplified, though general numerical simulation tools, even if large de-
formation problems are to be solved. For one parameter loadings these may be
based on the upper bound theorem. More general loading conditions, however, are
conveniently solved with the more general kinematic extremum principle presented
in section 3.3 (Eq. (3.46)), also forming the theoretical basis for rigid-plastic finite

element codes proposed in the literature.

e The consideration of (frictionless) contact complicates neither the solution formalism

nor the convergence rate of the algorithmic problem in a major way.

18Tn both cases the same (initial) folding length, provided by the analytically based collapse model, was
assumed (see Eq. (5.38)).
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e Plastic hinge lines (or, more generally, discontinuous deformations) may be accounted
for without fundamental difficulties. This was shown for stationary hinge lines. Con-
cerning the consideration of moving hinge lines additional degrees of freedom (i.e.
the velocities of the moving hinge lines with respect to the material) and additional
constraint equations must be activated. The latter have to enforce the compatibility
conditions at the lines of discontinuity (see e.g. [Wierzbicki and Abramowicz, 1983]).
A kinematic description, where not only continuous but also discontinuous deforma-
tions may be accounted for, however, also ensures that relatively coarse meshes may
be applied (if compared to a conventional FE analysis) without markedly reducing

the accuracy of the results.

e The application of a general numerical solution algorithm opens the way for describ-
ing the constitutive behaviour in a quite general way. For thin-walled shell structures
the application of the exact Ilyushin yield surface has been shown to be highly suit-
able, providing an important ingredient for the definition of both an accurate and a

numerically efficient simulation tool.?

e Due to the incremental solution strategy hardening, material strain-rate sensitivities
and even inertia forces could be accounted for in an iterative way without fundamental
difficulties.

Although the chosen methodology is quite general, the proposed computational model
in its current version is specialized for carrying out detailed studies on axisymmetric buck-
ling processes of axisymmetric shells. With regard to this simulation tool, further improve-
ments may be obtained e.g. by considering changes in the shell thickness due to plastic
deformations, allowing the meridional strain rates to change within an element, or to enable
moving instead of stationary plastic hinge lines at the nodes. If larger problems are to be
solved, then the kinematic description used for conventional axisymmetric finite elements,
which is based on nodal degrees of freedom and a local instead of a global kinematic de-
scription as used here, may be advantageous. As already mentioned above, multiparameter
loadings may conveniently be considered by resorting to the kinematic extremum principle,
Eq. (3.46). In conjunction with the proposed kinematic model this delivers the generalized

objective function (the “Lagrangian function”)

L(#1, %1, ¢0, 1, 5, B, F,) = Dy — FXv, — FT (v — %) — min, (6.38)

19This, however, presumes that the Kirchhoff hypothesis and the von Mises yield condition, used for
deriving the exact Ilyushin yield criterion, are suitable approximations for the shell structure under con-

sideration.
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where the generalized reaction force vector F', contains the “Lagrange parameters” for
the optimization problem, forming part of the solution. The vectorial quantities v and v
are the corresponding generalized velocity unknowns and prescribed boundary conditions
(which e.g. may contain values for 7, 2 and ¢ at the boundary nodes 1 and n), respectively.
F, and v,, also used in Eq. (6.38), denote prescribed external loads and their unknown

kinematic counterparts, respectively.

Based on such a solution strategy, however, even a connection with the conventional FE
method seems possible, where typically the system response (elemental force and stiffness)
is to be determined as a function of (increments of) the nodal degrees of freedom. Within
such a framework the proposed collapse model could e.g. be applied as a special user
defined element, with the global degrees of freedom being given by the displacement and
rotation increments at nodes 1 and n. A detailed investigation of the suitability of such

an application, however, remains to be done.



Chapter 7

On the Definition of a Stress
Resultant Constitutive Law Based on
the Exact Ilyushin Yield Surface

In chapter 6 it was shown that plastic collapse simulation of shell-like structures, based on
kinematics-oriented extremum or bounding principles, may be performed advantageously
when applying the exact Ilyushin yield criterion. Because with this methodology the plastic
strain rates are given in advance for each iteration step, the internal energy dissipation may
be evaluated in a straightforward manner, without causing numerical difficulties due to the
application of this yield criterion. Within an elastoplastic FE material routine, however, the
plastic strain increments and the final position on the yield surface during plastic loading
are not given in advance, but have to be evaluated within the material routine. This in
general requires the solution of (a set of) nonlinear equations for each integration point and
it seems worth studying if the exact Ilyushin surface can also be utilized for this purpose,
and possibly even offer advantages as compared to other, more approximative full section
yield criteria for shells. Besides the fact that such a “material model” is interesting from the
theoretical point of view, an efficient implementation could also speed up the calculation
time of FE based collapse and limit load analyses and, therefore, be of practical interest.
In this chapter a possible algorithmic structure for such a stress resultant constitutive law
is proposed and the main difficulties concerned with the implementation are discussed in
some detail. Even though first test results are encouraging some problems remain to be
solved to make the material model fit for practical use and, therefore, the results presented

in this chapter must be regarded as tentative only.

115
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7.1 Introduction

Finite element shell formulations, which are used for elastoplastic analyses, in general rely
on a layerwise treatment of plasticity in combination with a numerical thickness integration.
This, however, means that the elastoplastic material behaviour has to be evaluated at a
number of integration points over the thickness. Accordingly, such a solution strategy,
though allowing modeling generality and being able to deliver a high accuracy of results
(which, of course, depends on the chosen number of integration points), is computationally
expensive. Therefore, element formulations, in which plasticity is treated directly in terms
of stress and strain resultant quantities, have been proposed in the past (see section 2.2 of

the literature overview).

The application of elastoplastic stress resultant constitutive laws, however, in gen-
eral restricts both modeling generality and accuracy. As was mentioned in the literature
overview, most stress resultant yield criteria are approximate because the spreading of the
plastic zone over the thickness of the shell section is neglected (plastic limit yield functions)
or is considered only in a simplified way and the derivation of such yield criteria is often
based on a specific material behaviour (e.g. isotropic, perfectly plastic). Nevertheless, for a
certain class of problems the application of stress resultant constitutive laws is appropriate,
namely plastic limit load and collapse analyses of thin-walled structures. Because for such
problems the governing plastic behaviour can, in general, be considered with reasonable
accuracy, the application of approximate full section constitutive laws is at least suited for
quick preliminary analyses with a numerical thickness integration being reserved for final
detailed studies. For highly imperfection sensitive shell structures, however, a numerical
thickness integration should be used in any case, because in this case loss of stability is
often associated with the early loss of stiffness induced by “fibre-yield” [Crisfield, 1997].

In the following, an algorithmic structure for the definition of an elastoplastic consti-
tutive model is discussed, which is based on the exact Ilyushin yield criterion presented in
section 3.4. Compared to the application of other full section yield criteria for shells, which
have been proposed in the literature and often rely on approximations of this yield surface,
its use is expected to deliver more accurate results! while retaining their stated numerical
efficiency. This, however, first requires that numerical solutions may be obtained at all.

The presentation, therefore, mainly intends to point out the basic ingredients for the for-

!Burgoyne and Brennan [1993a] have shown that, although the yield surface itself may be approximated
with reasonable accuracy by the Ivanov yield surface, Eq. (3.81), the corresponding surface normals may
differ significantly.
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mulation of an efficient and stable computational algorithm, that is capable of handling a
yield surface, which may only be stated in parametric form. This comprises the definition
of the system of equations for the plastic correction step (including an appropriate choice
of the “free” variables), the numerical treatment of points at the boundary, the definition

of the tangential stiffness matrix, etc.

The proposed constitutive model is implemented into the commercial finite element
code ABAQUS/Standard via the user subroutine UGENS, a “material routine” intended
for defining the constitutive behaviour of shells in terms of generalized stress and strain
quantities.? The formulation of the material routine is based on the use of conjugate
stress and strain measures (measured in a local, orthonormal coordinate system) and an
additive strain rate decomposition, as generally used for geometrically linear theory. For
a discussion of the requirements for the validity of such a formulation for geometrically

nonlinear theory see chapter 3.

According to the presentation of the exact Ilyushin yield surface in section 3.4 the algo-
rithmic structure is formulated with normalized stress and strain quantities. In Appendix
B.1 several statements with respect to the definition of the normalized quantities and the
dependencies between physical and normalized values are summarized, to which it will be
referred in the text. In particular, the reference strain gy, which was left undetermined in

section 3.4, is now set to

oy (1 —1?)

7 , (7.1)

Ep =

in order to keep consistent with the derivation of the normalized form of Hooke’s law used

here (see Appendix B.1).

7.2 Algorithmic Structure

The essential task of a finite element material routine is the incremental time integration of
the constitutive equations. The subroutine typically is provided with the state at the start
of the increment (stresses and strains®, solution dependent state variables, temperature,

2Unfortunately, ABAQUS/Explicit, which would be more appropriate for doing structural collapse
analyses, has a very limited number of user subroutines and does not offer such an option.
3For a full section material routine of shells, of course, generalized (resultant) stress and strain quantities

are used.
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predefined fields, etc.), the increments in temperature and predefined field variables, the
strain increment and the time increment. The subroutine must perform two functions. It
must update the stresses and the solution dependent state variables to their values at the
end of the increment, and it must generate the tangential stiffness matrix, which is needed

for the compilation of the global finite element equations.

An often applied method for the time integration of the relevant elastoplastic con-
stitutive equations from increment n to n + 1 is the elastic predictor/plastic corrector
algorithm. An elastic predictor step is performed first by assuming that no plastic strains
develop during the increment, i.e. the total strain increment is treated as being elastic.
Accordingly, the new stress state may be obtained by applying the elastic constitutive
equations (Hooke’s law). If the trial stress state obtained this way lies outside the yield
surface, then the initial assumption of a purely elastic increment was incorrect, and plastic
flow takes place. A plastic correction step has to be performed to account for these plastic
deformations and to find the final stress state » + 1, which necessarily lies on the yield
surface. According to this strategy the following flowchart includes the essential steps,

which have to be performed within the full section material routine:

1. Normalize the (given) stress/strain resultant quantities:*

= (). (&)

2. Compute the elastic predictor:

tr _ 1 v
n _[n n E Ae E— )
m \m %E Ak)’ B e

n+1 n 0 0

(E is the normalized elastic stiffness matrix for plane stress conditions. For the
derivation of this normalized form of Hooke’s law see Appendix B.1, Eq. (B.19)).

3. Check the yield condition:
Fiy =F(ng.,my,) >07?

If (Fl, <0) go to step 6.

4To account for the fact that finite instead of infinitesimal increments are considered, in the following
the strain increments are denoted as A€ and Ak instead of dé and dk (as done in section 3.4).
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4. Perform the plastic corrector step (section 7.2.1):

n Ae?
— y .
(m) (Akp )
n+1 n+1

5. Define the elastoplastic stiffness matrix C; at the end of the increment (section 7.2.2):

dn _ ¢, de ’
dm dk
n+1

6. Compute the non-normalized stiffness matrix and stress resultants.

The check for yielding of the trial state (step 3) can be performed in a straightforward
manner only if the yield condition is described in terms of stresses. Because the exact
Ilyushin yield condition may only be stated in parametric form (with the parameters being
functions of the plastic strain increments), however, step 3 would require the solution of a
nonlinear system of equations. In order to avoid this, the approximate Ivanov yield surface,
Eq. (3.81), which lies within 1 % error band of the exact Ilyushin yield surface, is adopted
for this initial check.

7.2.1 Description of the Plastic Corrector Step

Concerning the “return mapping” of the trial state onto the yield surface (step 4), the
following equations have to be solved:

tr

E AeP
n [ B ) e , (7.2)

m m 3B/ \ AKP

n+1 n+1
n o 3 J()P_l 4J1P_1 AeP (7 3)
m/)  2\4J,P ! 16J,P ! AkP )’ '
n+1 n+1

which, for a general Kirchoff shell, state a nonlinear system of equations in twelve unknown

parameters — the components of the vectors 1,1, m, i, Ae? and AkP.5

Equation (7.2) directly follows from the incremental form of Hooke’s law,

() () (7 o) ) - (32)

SFor an axisymmetric Kirchhoff shell the third term in each vector (the “shear” term) is omitted and

, (7.4)

actually only a reduced system in eight unknown parameters has to be solved. This, however, may be
regarded as a special case, without affecting the algorithmic structure of the full section material routine.
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and from consideration of the elastic predictor step (step 2 of the above step description),
whereas Eq. (7.3) is the six-dimensional form of the yield surface, Eq. (3.75), for the state
n+ 1.

General Notes

Equation (7.3) enforces that the stress state at the end of the increment lies on the yield
surface, but implicitely also that the flow rule is fulfilled at the end of the increment, i.e.
both

AeP — [ OF/on
Fpir = F(fups1,Mns1) =0 and =A 75
#1 = F(fnst, M) . (Akp) ¢ (aF/8m> B (7:5)

are met (see section 3.4). Because, however, the flow rule is included at state n + 1, the
plastic corrector step, given by Egs. (7.2) and (7.3), in fact represents a backward Euler
integration scheme, which, for associated plasticity, is also known as the closest point
projection algorithm. This often used implicit time integration algorithm is known to
be unconditionally stable provided the elastic region is convex, but it is only first order
accurate [Ortiz and Popov, 1985]. Due to the specialized representation of the exact
Ilyushin yield surface, however, the backward Euler integration algorithm in the form stated
above is a suitable choice for performing the return mapping. The application of a forward
Euler integration algorithm, for example, would lead to the necessity of solving a nonlinear
system of equations in each subincrement, which, of course, is computationally inattractive

(subincrementation is needed because this integration scheme is only conditionally stable).

The two (vectorial) equations, Egs. (7.2) and (7.3), represent a nonlinear system of
equations in twelve unknown parameters. It is shown below that an analytical reduction
to six and to a minimum of three® independent parameters, respectively, may be performed.
Concerning the possible choice of these independent variables several quantities were intro-
duced in section 3.4. Not all of them, however, are qualified for use in a general numerical
solution procedure. Although the boundary of the yield surface may be treated in a “reg-
ularized” way, the parameters 8 and vy, but also the integral values Ky, K; and K, (which
all have been introduced by Burgoyne and Brennan [1993b]) are not suitable for treating

pure in-plane loading (P, = 0) numerically, because § and 7 are not defined for this case.

6Without regard to the actual choice of these quantities two parameters are always needed for the
description of the final stress state on the yield surface (also fixing the normal direction), and a third one
determines the “length” of the plastic strain increment vector.



CHAPTER 7. A STRESS RESULTANT CONSTITUTIVE LAW 121

Without regard to any numerical efficiency considerations (convergence behaviour, etc.) a
computational algorithm should, therefore, resort to a parametric description in terms of
the plastic strain increment intensities P,, P., and Py, or the integrals J; (= J;/(JoJo—J?)),
delivering well defined values at any point of the yield surface — but also the J;-terms may
be used provided their boundary values are evaluated in a regularized way (see Appendix
B.2).

Introduction of Generalized Deviatoric Quantities

Before details concerning the analytical reduction and numerical solution of the plastic
correction step are given, “deviatoric” stress/strain vectors are introduced in the following.
These quantities may be utilized to rearrange the governing equations and to improve
computational efficiency, but also to simplify an analytical treatment of individual steps of
the computational algorithm (see also [Simo and Taylor, 1986; Simo and Kennedy, 1992]).

The matrices P and E, used for stating the von Mises yield condition and Hooke’s law

for a state of plane stress,

1 -0 1 v 0
P=|-1 1 0 and E=1|v 1 0|, (7.6)
0 0 3 0 0 L2
both have the same characteristic subspaces:
) -1 0
P = QApQT, E = QAzQT, with Q=—=1]1 1 0| . (7.7)

‘/500\/5

Q is orthogonal (Q~! = Q”, det Q = 1), and the diagonal matrices Ap and Ag are given

by
100 1+v 0 0
Ap=10 2 0], Ag=| 0 1-v 0 (7.8)
003 0 0o
If the diagonal matrix Ap is written as a product
o B Vi oo
Ap=ApRp, Ar=[o0 /8 0], (7.9)
0 0 3
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and the quantities
f=ApQTn, A =X, Q7A@

— U (7.10)
m=ApQTm, Ak’ =A, QTAK?,

are defined (analogous for the generalized trial stress and the other strain quantities), then

the equations to be solved in the plastic correction step, Egs. (7.2) and (7.3), may be

tr ~
n AgAp A€’
n+1 n+1 3 M ELP
n\ 3 Jols 4 A€ (7.12)
m T2 \41; 1645015 AR '
n+1 n+1

where now all submatrices have diagonal form (I3 is the 3 x 3-identity matrix). The stress

rewritten as

n
m

resultant and plastic strain increment intensities (Eqgs. (3.77) and (3.71)) are obtained as

3

Q=n"n, P. = Z(Aéf”)TAéf” :
Qun =7, Py = 3(AYT AR (7.13)
~T A ~ ~
Qm =m"m, P, = 12(AK")TAR"

which means that these parameters are simply defined as (scaled) scalar products of the
“deviatoric” stress and plastic strain increment vectors, introduced in Eq. (7.10). All equa-
tions and definitions, however, which were based on those intensity values in section 3.4,
remain unchanged! Furthermore, it directly follows from Egs. (7.13) that the parameters
Qt, Qm, P- and P, cannot become negative, and also that the conditions (3.79) and (3.72),

QtQm Z Q?m and PEPK Z P2

ERK )

(7.14)

bounding the exact Ilyushin yield surface, must hold.”

Reduction to a System of Six Nonlinear Equations

An ad hoc way to reduce the number of parameters for the solution of the return mapping
algorithm immediately follows from Egs. (7.11) and (7.12). Elimination of the section

"The latter may simply be proved by applying the Schwarz inequality, which, for two arbitrary vectors
a and b (having the same dimension) is stated as |a||b| > |aTb|.
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forces 1 and m (by simply equating both relations) delivers a reduced system of equations
in terms of the plastic strain increments, which may be stated as

ir ~
p e 7 Q Q) (A |
AL AR =[] [ o] =0, 7.15
g:(Ae ) ( a, 0, \ak (7.15)

with the diagonal submatrices €2; being defined as

3
Q1 =ApAp + §JOI3 )
92 - 6J1 13 3 (716)
4
04 = gAEAP +24J213 .
This system of equations may be solved numerically. In the current version of the full
section material routine, a general Newton/Raphson solver — with the Jacobian matrix

being replaced by forward difference quotients — is applied. The individual steps, which

have to be performed for one function evaluation, are summarized in Figure 7.1.

Definition of a Fixpoint Algorithm

Besides the possibility of solving the return mapping step with a general equation solver
(like the Newton/Raphson algorithm mentioned above), Eq. (7.15) may also be utilized
for the definition of a fixpoint algorithm, the iteration sequence of which (iteration step
k — k+1) is given by

Ak

N k+1 -1 tr __ __ tr
A& (”_ o® P A\ (a¥ aP\ [« (718)

respectively. The flowchart for this solution strategy is presented in Figure 7.2.3

A€ (k41 k k
( ) = gy(8&"™, A" (7.17)

and

8Tt is remarkable that — due to the evaluation of the plastic strain increment intensities P., P, and
P, as well as the integral terms J; within the iteration loop — the algorithm could likewise be regarded
as being defined with either of these sets of parameters. This way actually a system of equations in only
three unknowns is stated.
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A AK°

l
P. = Z(Aé”)%@”

P.. = 3(Ae")TAK’
P, = 12(AE")T AR’
l

Ji - Ji(PeaPsmPn)
(see Appendix B.2)

'
3
Ql = AEAP + §J013

92 - 6J113

4
Q= zApAp +247T;
!

tr N

S ? Q, O A€’
AL AR = (") -0 ©
g:(Ae ) ('rh Q Q N

Figure 7.1: Return mapping step: flowchart for the evaluation of gl(Aép, Al::p)

The stated fixpoint algorithm delivers a fairly simple method for solving the plastic
correction step without the need for evaluating any derivatives. Furthermore, because all
submatrices €2; are given in diagonal form, the matrix inversion to obtain the submatrices
Q; may be coded very efficiently (see Appendix B.2, Eq. (B.29)), and the computational
effort per iteration step is remarkably low. The convergence rate, however, strongly depends
on the partial derivatives of g,,° and for the given functions it is in general markedly below
that of the full Newton/Raphson algorithm (where a quadratic convergence rate is ensured
near the solution). Therefore, in general much more iteration steps have to be performed for
obtaining solutions with the fixpoint algorithm than with a comparable Newton/Raphson
solution procedure. The implementation of this strategy into the full section material
routine, however, shows that solutions can be obtained for any point of the yield surface

9Roughly speaking — the smaller the partial derivatives the higher the rate of convergence [Bronstein
et al., 1995].
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k=0

~ k ~ star
A€’ ()_ AR
AR \Ak’

3 “ -
P® = 3(A&")T Ak

p(k))TAkp

p(k)

P®) =12(Ak
!

JE = J(PW, PR, PM)
(see Appendix B.2)

I
3
O = ApAp + §Jék)13 k=k+1
o) = 679 1,

4
o) = JAsAr +24J91,

!

Compute Q2 (Eq. (B.29))
I

AR (ORI S

AR =

Bt L Pt
!

Check convergence

|
Exit

{O

next iteration step

Figure 7.2: Flowchart for the solution of the return mapping step with a fixpoint algorithm
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without fundamental difficulties (except near the singular point Q; = 1, where all solution
algorithms presented here run into problems, see below).

An advantage of both formulations sketched above is that the plastic strain increment
intensities P., P., and P, (which are needed for the numerical evaluation of the J;-integrals)
are obtained directly from the plastic strain increments and thus the constraints imposed

onto these parameters:
P.>0, P.>0 and P.P,>P2 (7.19)

are fulfilled identically.!® This may in general not be assumed if a system of equations
in terms of only three parameters is formulated. The main disadvantage, however, is the
computational inefficiency due to the need for solving a nonlinear system in six variables

and, in case of the fixpoint algorithm, a low convergence rate.

Reduction to a System of Three Nonlinear Equations — Preliminaries

It was mentioned above that the return mapping algorithm may be formulated with a
minimum number of three independent parameters, e.g. in terms of the plastic strain
increment intensities P., P., and P,, the integrals J; or the integral terms J;. A comparison
with conventional plasticity algorithms in stress space, however, leads to the supposition
that a very suitable choice will be given by generalized plastic consistency parameters,
which are defined directly via the J;-terms. The inverted form of the exact Ilyushin yield
surface (and the statement of the normality rule), given in Eq. (3.96), may be written in

transformed form as

A€e” = 2A&R + Ayt

. 7.20
AR = A&, 1+ 2AE 1 (7.20)

with the A&;-terms

—_— 1_

1 1—
A = §J2 ) A& = —6«71 and Abm = 48J0 (7.21)

being known functions of the plastic strain increments (and having definite values at any
point of the yield surface, see section 3.4.4). This form is quite similar to the normality rule

in stress space. For example, for plane stress von Mises plasticity (forming the basis for the

10Tf these constraints are violated during the iteration process, then a further evaluation of the equations,
i.e. the integration, which has to be performed to obtain the J;-values, is no longer possible.
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derivation of the exact Ilyushin yield surface) the normality rule is given in transformed
form by

A&® = At—5 = 2A¢T (7.22)

of
oo
and A¢ is the usual parameter to be determined within the return mapping step [Simo
and Taylor, 1986; Crisfield, 1991].

A physical interpretation (and the subscript nomenclature) for the A¢;-terms follows
from the definition of the normalized incremental plastic work Aw,. When using Eq.
(7.20), Aw, is expressed as

T T Ap T
am (7)) (A% _ (7) (A€ _ (A (2865 ALl (4
= () ()= () (30) = () (G 2) )
(7.23)

from which follows:

Awp = 2(A£tQt + Agthtm + Angm) ’ (724)

revealing that the A¢;-terms may — in analogy to Af in stress space — be regarded as
a generalized scalar measure for the plastic strain increments of a plastically deforming
Kirchhoff shell section, representing the kinematic counterpart to the generalized stress
intensities Q¢, Qm and Q.

Definition of a System of Three Nonlinear Equations

The strategy for the definition of the return mapping algorithm in terms of the three
unknown parameters A;, A&y, and A, is closely related to the backward Euler scheme
for plane stress von Mises plasticity. The formalism, which is usually applied there for
defining the resulting scalar equation (which has to be solved for A¢), is sketched in Table
7.1. However, because the implicit form of the yield surface is applied, Table 7.2 contains a
slightly different strategy, where the yield criterion is replaced by the relation between the
plastic consistency parameter and the plastic strain increment, i.e. the transformed form
of Eq. (3.67) (which, of course, implicitely includes the yield criterion, see section 3.4.2).
It is obvious that for plane stress von Mises plasticity both formalisms lead to the same
resulting equation for A£. The strategy sketched in Table 7.2, however, is also convenient
for the definition of a return mapping algorithm for the full section material routine in
terms of A&, A&y, and AE,,, as described in the following.



CHAPTER 7. A STRESS RESULTANT CONSTITUTIVE LAW 128

Table 7.1: Plane stress von Mises plasticity without hardening: conventional formulation

of the backward Euler integration algorithm

1. | Plastic correction o= ?tr — AgApAé?
. ~D af -
2. | Normality rule AeP = A= =2Alo
o
A 2T~
3. | Yield condition fle) = d—-1=0

Use 1 and 2 to express the
4. | stresses at the end of the

increment

F(A) =2 5"
B(AE) =T; + 2A6ApAp

atr !

Use 4 in 3 to set up a scalar | f(A¢) = ()T T2 6" —1=0
equation in terms of A& = A¢

The statement of the algorithmic problem for the full section material routine is given
by Egs. (7.11), (7.20) and the definition of the A;-terms, Eq. (7.21):

R R tr ~p
n) _(#n) _ (ApAp Ae (7.25)
™ ™ IAsAp) \AK") ' '

A%Z _ (2861 A&y v:z | (7.26)
Ak A& Iz 2A6,,15 m
A&, LT2(A&", AR
Al | = | =171 (AE, AK") | . (7.27)
A&, LTo(AE, AR

Combining Egs. (7.25) and (7.26) one obtains

- AgAp 20615  A&,Is n)y _ (n " (7.28)
6 IApAp) \A&Ts 206.15) | \sin) ~ \m) |
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Table 7.2: Plane stress von Mises plasticity without hardening: formulation of the back-

ward Euler integration algorithm without explicit use of the yield criterion

1. | Plastic correction o= ?tr — AgApAé?

. ~D af -

2. | Normality rule AeP = Ag P =2A¢o
o

1

Plastic consistency A = ’ (A&P)TAer

parameter (Eq. (3.67))

Use 1 and 2 to express the
4. | stresses at the end of the

increment

_q1atr

(A =2 o
B(AE) = I3 + 2A¢AgAp

5 Use 4 in 2 to express the A&P(AE) = 2A§2,1étr

plastic strain increment

1 A tr atr

A€ = Z4AE (@) TS T

Use 5 in 3 to set up a scalar 4 . . '
equation in terms of A& g A = 'S T —1=0

= A

With the diagonal submatrices

21 == 13 + 2A§tAEAp )
3y = AéimAsAp ,

4 7.29
2:3 = §A§thEAP ) ( )

8
Yy=I3+ gASmAEAP .
the stress resultants are given by
R > > -1 S\ tr E E N\ tr
”Al _ 1 2 ’VAL _ [ 2 ”Al ’ (7.30)
m 3 3y m s 3y m

and thus only depend on the parameters A&;, A&, and A¢,, (compare with step 4 in Table
7.2). The stress resultants obtained this way may now be used to evaluate the plastic strain
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increments A€’ and Ak’ from Eq. (7.26), which again, are sufficient to define new values
for the plastic consistency parameters A&, A&, and A&, according to Eq. (7.27). This

way a nonlinear system of equations of the form

Agt % 2(A§ta Agtma A&m) \
93(A&s, Abim, Abn) = | Al | — | —5T1(A&;, Al Alr) | =0 (7.31)
Aé-m 41_870(A£ta Aé-tma Aé-m)

is set up, which, in the current version of the full section material routine, is solved with
a general Newton/Raphson solver. Again, the partial derivatives are replaced by forward

difference quotients.

Figure 7.3 contains a summary of the individual steps, which are to be performed for
each function evaluation. Due to the definition of the return mapping with deviatoric
stress/plastic strain increment quantities each step of this flowchart is computationally
inexpensive, including the matrix inversion to obtain the (diagonal) submatrices X;. Con-
cerning the evaluation of points at the boundary of the exact Ilyushin yield surface it may
in addition be utilized that the J;-terms (and thus the A¢;-terms) have definite values
there, which may be evaluated without the need for computing regularized values for J;

internally (see section 3.4.4).

Test runs with this return mapping algorithm show that the convergence behaviour
is comparable to that of the Newton/Raphson algorithm in terms of the plastic strain
increments (i.e. the numerical solution of g,(Ae?, Ak?), Eq. (7.15)). Due to the fact that
the independent parameters are integral (and numerically well defined) values, iterative
changes remain sufficiently small, and no problems with violating any constraints onto
the variables (e.g. A& and A&, are to be positive (semi)definite values) are observed in
general.!’ This is in contrast to a return mapping scheme, which was investigated in terms
of the plastic strain increment intensities P,, P,. and P,, where practically no solutions
could be obtained without making precautions against violating the constraint equations
(7.19).

Definition of Starting Values

According to Crisfield [1991] appropriate starting values for a return mapping algorithm
may be found by performing a first-order Taylor expansion of the yield surface about the

1 Except near the singular point Q; = 1 (see restrictions below).
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A&ty A, Alm
!
=13 + 2A&ApAp

E2 = Agtmle-AP

4
23 = §A§thEAP

8
Y=L+ gAgmAEAP
|
Compute ; (Eq. (B.29))
!
Al

Ml

MI MI

n
r
l
A€ = 2A&h + Aéymn
AK" = AP + 2AE i
!
P. = Z(Aé”)%@”

Ml

n
m

P.. = 3(Ae)TAK’
P, = 12(AE")T AR’
I
ji(Pe, Py, Pn) =

S
Jods — J2
(see section 3.4.4)

!

A& 572
93(A&:, Abpm, Aém) = | Ay | — _%Jl
Agm 41_8‘]0

Figure 7.3: Return mapping step: flowchart for the evaluation of g;(A&;, Ay, Aém)
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trial state. For a full section yield criterion this is written as

T
OF/on dn
F(n,m) ~ F(R", m") + =0. 7.32
(72, 1m) ~ F( ) (aF/am) ) (drh) (7.32)
With
ir ~
z 2 7 AgA A€’
S N 0 I i Y ). (33)
dm m m EAEAP Ak
A€ _ [ OF /o7
€| = ag(2F/on) (7.34)
Ak OF/0m
and the abbreviations
i n OF/0n AgAp
Fp=F@®",m"), an= , A= , (735
= F( ) ! (aF/am) N ( gAEAp) (7:33)
it follows from Eq. (7.32):
F,, — AfalAay, ~0. (7.36)
The starting values are thus given by
—(start) F’tr
A = 7.37
¢ al Aay, (7.37)
and
~ (start)
Aép —(start
(Al&”) — AFT g, (7.38)

respectively. These starting values, however, may only be evaluated if the yield surface is
defined implicitely (i.e. as a pure function of the stress state), which is not the case for the
exact Ilyushin yield surface. Thus, the approximate Ivanov yield surface is utilized again.

For the Ivanov yield surface (Eq. (3.81)) the normal direction is expressed as

0F;/0n _ 2F 13 Fp,I; n (7.39)
0F;/0om F,. I3 2F, I3 \m )’ ’
with the matrix coefficients given by
o0 _ 1 Qn 1 QQnm—Qin
T 4(Q:+0.48Qm)  4(Q:+0.48Q,)%"
an th 1 th
Fm = = + _ , .
" 0Qum Q24+ Qh,  2(Qi+0.48Qy) (7.40)

Pl OF 11 Qn 1 @ 012Q@n-h)

0Qm 2 4JQr 4t Qh  A(Qrt048Qn) | (Qr+0.48Qn)
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The sketched method for evaluating starting values can be viewed as a form of the backward
Euler scheme, and for three-dimensional von Mises plasticity in fact it coincides with the
(first step of the) “radial return mapping algorithm” [Crisfield, 1991]. With respect to the
full section material model described here, test runs show that the starting values generated

this way deliver approximations quite close to the final state.

Restrictions

All proposed return mapping schemes for the full section material model reveal that so-
lutions may principally be obtained for any point of the yield surface. Use of the pure
Newton/Raphson algorithm furthermore ensures a quadratic convergence rate near the
solution (which is confirmed by the test runs), and, due to the application of accurate
starting values only a few iteration steps are needed in general. This holds not only true
for general points on the yield surface, but also for points of the boundary and for pure

in-plane and pure bending conditions.

Regardless of the algorithm actually used, however, convergence problems arise for in-
plane dominant loading conditions, when approaching the point (); = 1. This may partly
be traced back to an ill-conditioning of the equations to be solved'? (here an analytical
derivation of the Jacobian matrix may become essential). However, as can be seen from
Figure 7.4, at Q; = 1 there is even a slope discontinuity and numerical solution algorithms
working with derivatives (like a Newton/Raphson procedure) may simply not be able
to treat such a case correctly — but also the fixpoint algorithm fails in obtaining valid
solutions. The apparent discontinuity along the boundary (i.e. strong, but continuous
changes of the normal directions), on the other hand, which is also shown in Figure 7.4,
seems to engender no principal numerical difficulties, provided the evaluation points are
not too close to the point of singularity. In any case, a detailed investigation of the actual
convergence behaviour in terms of A, A&, and A&, in the in-plane dominant region, but
also along the boundary, should be performed. Furthermore, the problem of an appropriate

treatment of the slope discontinuity remains to be solved.

12The parameters 3 and 7, introduced by Burgoyne and Brennan [1993b], which are used as internal
parameters for the return mapping step, become almost parallel near @Q; = 1, even if the angles between
these curves are quite different for the most part of the yield surface (see Figure 3.3).
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Apparent discontinuity

‘1:-/ of normals at edge

-~

Olr|'|

True discontinuity
of normels at corner

Figure 7.4: Three-dimensional view of the exact Ilyushin yield surface showing normals to
the yield surface, discontinuity at one corner and “lip” at the edge (from [Burgoyne and
Brennan, 1993b])

7.2.2 Determination of the Tangential Stiffness Matrix

The determination of the tangential stiffness matrix (which provides the contribution of the
shell section to the global stiffness matrix) is required when an implicit time integration
is used and the Newton/Raphson method is applied for solving the global equilibrium
equations. A proper and accurate definition of the elastoplastic section stiffness is the most
important factor for a rapid convergence behaviour of the overall equilibrium iterations
[HKS, 1998c|.

In the following the commonly used strategy for the definition of the tangential stiff-
ness matrix within an elastoplastic material routine is presented (see e.g. [Simo et al., 1988;
Crisfield, 1991; Simo and Kennedy, 1992; HKS, 1998a]. By performing an algorithmically
consistent linearization of the nonlinear incremental equations (i.e. the backward Euler
integration algorithm described above) the “consistent” — as opposed to the continuum
— elastoplastic tangent matrix is obtained. This algorithmically consistent linearization,

which may be performed in closed form, is essential for retaining the quadratic conver-
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gence rate inherent in the full Newton/Raphson procedure also for finite increments of
elastoplastic deformations. For the limit of infinitesimally small increments, however, this
matrix reduces to the continuum tangential matrix, which relies on the assumption that

changes of the plastic strain increments are negligible within an individual increment.
The total differential of

An _(E ) Ae) IN; O0F/0n (7.41)
Am 3B Ak 0F/0m
dn de —. [ OF/on - O’F dn
=C, —d(A —Af—— , 7.42
(im) = | (40) - acs (grrom ) - agyZr (am) | e
where the elastic stiffness matrix is abbreviated as

e (® ) o,

gives

From Eq. (7.42) it follows that

1 .= O°F dn) _ (de) - [0F/on
[Ce +A€8(n,m)2] (dm) - (dk) d(A¢) (aF/am) (7.44)

dn\ <~ |(de) _ —. [ OF/on
O (T

respectively. The algorithmic elastic stiffness matrix, C,, defined therein, is given by the

and

expression

8271?)2] o (7.46)

_ 1 _
e — A
c [ce + AEg

For the determination of d(A¢) the plastic consistency condition is used. To remain on

the yield surface, the total differential of the yield function must be zero, i.e.

oF/on\ [dn)
(o) () . o
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With Eq. (7.45) it follows that

oFjon\ — (de\ . - (oF/on)\ ~ (0F/on
(6F/8m) C. (dk) = d(Ag) (BF/am) C. (aF/am) ’ (7.48)

( OF /o ) ! - (dé)

_ OF /0m ‘\dk

d(Ag) = 7 ; (7.49)
OF/on el OF/on
(6F/6m) ‘ (8F/8m>

respectively. Inserting Eq. (7.49) into Eq. (7.45) finally delivers the tangential elastoplastic

dn de
() e (%), -

with the consistent tangential stiffness matrix being given by

T
C. OF/on OF/on G
_ OF/0m | \OF/0m
th == Ce - T B (751)
OF/on o) 0F/0n
OF /dm ‘\oF/om
It is obvious that this definition is not affected by the “length” of the gradient of the yield

surface. Therefore, when considering the normality rule, an alternative statement for the

and

material law

algorithmic elastoplastic tangential matrix is given by

T
=D =P
c. Ae Ae c.
_ AK? AK?
=C, — ; (7.52)

Aer Tﬁe Ae?
AK? AKP

This definition may directly be evaluated once the plastic strain increments are obtained

tc

from the return mapping step — regardless whether the yield function is given in implicit

or in parametric form.

In contrast to the algorithmic or consistent stiffness matrix, which accounts for the fact

that finite instead of infinitesimal elastoplastic increments are considered, the continuum
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tangential stiffness matrix is obtained from Eq. (7.46) by omitting the second derivative
of the yield function, i.e. omitting the changes of the gradient of the yield function within
the increment. From the derivation procedure sketched above it follows, therefore, that
the structure of Eq. (7.51) and (7.52), respectively, remains unchanged — the algorithmic
elastic stiffness matrix C., however, is simply replaced by the elastic stiffness matrix C,,
given by Eq. (7.43).

Remarks

e For the evaluation of the algorithmic elastic stiffness matrix C, the second deriva-
tives of the exact Ilyushin yield surface are needed. An analytical derivation of
0?F/d(m, m)? is, however, still lacking. For the current implementation, therefore,
a locally quadratic approximation for the yield surface (in (n,m)-space) is assumed,
leading to

C.~ |C.' + (7.53)

206P  AGmP

e A drawback of the derivation of the tangential stiffness matrix for a full section
material routine is that (regardless if the consistent or the continuum tangential
matrix is concerned) the off-diagonal submatrices are in general not symmetrical
(although the stiffness matrix itself is). For example, for the continuum tangential

stiffness matrix

o= o) an
the submatrices are defined as
T
C*zE—%EZ—i(?—i)TE, (7.55)
4 F (oF\T
D*:gE—gES—m(g—m) E,

with the scalar factor R given as

oF\T _oF 4 (0F\T_ OF
R—<%) E%+§(%) L (7.56)
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It becomes obvious from Eq. (7.55) that the submatrix B* is symmetrical only if

F F
OF _ 9

= , (7.57)

om
which would occur at the boundary of the yield surface (but there the matrix B*
should even become zero, see Appendix B.3). Burgoyne and Brennan [1993a] have
argued that this unsymmetry comes from incompatible assumptions regarding the
relative magnitudes of the elastic and plastic strain increment components.!® There-
fore, the authors proposed a different strategy for determining the tangential stiffness
matrix, which is shown to deliver results which are compatible with that of a mul-
tilayer analysis. The main deficiency of their revised derivation (which is given in
Appendix B.3), however, is that only the continuum tangential material matrix may
be obtained in closed-form — for a generalization to determine the consistent tan-

gential material matrix one must resort to a numerical integration procedure.

7.3 Examples

For testing the material routine several single element tests were performed, the results of
which are discussed in the next section (section 7.3.1). Results for the numerical simulation
of the (bending dominated) collapse behaviour of a simply supported plate under uniform
transversal loading conditions (where analytical upper and lower bounds for the limit
load are also available) are presented afterwards (section 7.3.2). For all these examples the
three-dimensional return mapping algorithm (in terms of A¢;) was applied. In section 7.3.3,
finally, results of a crushing simulation of an axially compressed square tube are shown. In
order to obtain valid solutions for this numerically sensitive problem (which, for an initially
straight tube, is almost exclusively confined to inplane loading conditions), the numerically
more robust six-dimensional Newton/Raphson based return mapping algorithm (for the
solution of the system of equations g,(A€", Ak")) was applied.

For all examples included here the four noded shell elements S4R. provided by ABA-
QUS/Standard with reduced integration and hourglass control were used, which allow for

finite membrane strains and thickness changes. Because the S4R elements are, however,

13For a full section material routine an infinitesimal “movement” in stress resultant space in general
does not imply that changes in the plastic strain resultants are of the same order of magnitude, i.e. such
changes will in general not be small (for details see [Burgoyne and Brennan, 1993a]).
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shear flexible shells, an (elastic) transverse shear stiffness had also to be defined.!* Values
for this, but also for the hourglass stiffness of the elements, must, therefore, be provided
explicitely (see [HKS, 1998c]).

7.3.1 Single Element Tests

The (displacement driven) single element load cases presented in the following, are:

1. pure inplane loading (Q; = 1 (P, = 0)),
2. pure bending (Q,, =1 (P. =0)),

3. loading at general points at the boundary of the yield surface (7 = 0, 8 between 0.39
and 0.45),

4. loading at general points away from the boundary of the yield surface (8 between
-0.42 and -0.53, v between 0.005 and 0.35).

The input data as well as the boundary conditions applied for each load case are summa-
rized in Table 7.3. Maximum time increments are prescribed, leading to a total number of
20 (load case 1), 100 (load cases 2 and 3) and 200 (load case 4) equally spaced increments
for the individual test examples. Figures 7.5 to 7.8 show the internal section force and
moment progressions evaluated with the user subroutine UGENS and comparisons with
results being based on a numerical thickness integration.

The approximative character of the full section material routine, where only for pure
inplane loading conditions (Figure 7.5) the results of the numerical thickness integration
are met, becomes obvious from the numerical results. Uniaxial bending (Figure 7.6) is
characterized by neglecting the spreading of the plastic zone over the thickness, i.e. the
material behaves elastic up to the point where the moment capacity of the shell section
is reached. The numerical thickness integration, however, reveals the gradual stiffness
reduction of the shell section due to fibre yield. Similar differences for the section force and
moment progressions owing to the (approximative) analytical and the numerical thickness
integration can also be seen in Figures 7.7 and 7.8 for load cases 3 and 4, i.e. “boundary

loading” and general loading conditions.

14Tn ABAQUS/Standard the transverse shear strains of the shear flexible shells are always treated as
linear elastic and cannot be used or updated within the user subroutine.
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Figure 7.5: Single element test: uniaxial tension

Concerning the number of iteration steps for the return mapping a maximum of two to
three iterations is needed in general. The only exception is the first elastoplastic increment
of load case 4, where 5 iteration steps are required to return back onto the yield surface.
Some CPU-time reductions (of up to 20%) owing to the use of the full section material

routine are also observed.!®

7.3.2 Uniformly Loaded, Simply Supported Plate

A simply supported plate, loaded by a uniform transversal load ¢ is considered next. The
plate, which is discretized with 1224 four noded elements (see Figure 7.10), is assumed to
have a side length a of 100 mm and a thickness h of 3 mm. The material data taken for the
computations are: Young’s modulus £ = 210 000 N/mm?, yield stress o, = 600 N/mm?,
Poisson’s ratio v = 0.3. Geometrically linear as well as nonlinear analyses were performed.

Results of the computations are shown in Figures 7.9 to 7.11.

15The current implementation, however, is intended rather for testing purposes than for providing a
computationally efficient code. When “tuning” the source code appropriately, therefore, further efficiency
improvements can be expected.



CHAPTER 7. A STRESS RESULTANT CONSTITUTIVE LAW

141

Table 7.3: Single element tests: input data, boundary conditions (applied as (linear) ramp

functions between ¢t = 0 and t = 1)

Input Data

Young’s modulus: 210 000 N/mm?

Poisson’s ratio

Yield stress
Side length [

Shell thickness

0.3

600 N/mm?

100 mm

7 mm

®

@

@

2l_»l

Magnitude of the prescribed boundary conditions

(u; ... displacement in j-direction [mm)],
¢; ... rotation about j-axis [rad))

Uniaxial tension Uniaxial bending
Node 1 2 3 4 |Node 1 2 3 4
vww 005 0 05| vz 0 — — —
w2 0 0 — — | uw 0 — 0 —
u3 0 — — — | u3 0 — — —
$p 0 — — —| & 0 — — —
o 0 — — — | ¢ 0 05 0 0.5

“Boundary” loading General loading
Node 1 2 3 4 |Node 1 2 3 4
wp 0 05 0 05| »w, 0 1.0 0 1.0
4 0 — — — | uwp 0 0 — 06
U3 o — — — U3 o — — —
¢ 0 — — —| &6 0 — — 03
¢ 0 01 0 01| ¢ 0 02 0 0.2
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Figure 7.6: Single element test: uniaxial bending
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Figure 7.7: Single element test: general “boundary loading”
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Figure 7.8: Single element test: general loading conditions

The uniformly loaded plate is a typical example for a (bending dominated) limit anal-
ysis problem, where approximate solutions for the upper and lower bounds of the critical
collapse load are available. The corresponding values included in Figure 7.9 are taken from
[Chen and Han, 1988].

It can be seen from the transversal load versus central deflection curves presented in
Figure 7.9 that for geometrically linear analysis the application of the full section material
routine leads to a markedly earlier approach to the elementary upper bound solution than
the results based on a numerical thickness integration. For larger deflections, however, a
close correspondence of these curves can also be observed. With respect to the position of
the generalized stress points on the exact Ilyushin yield surface, these are for geometrically
linear analysis confined to the point @Q; = 0, Qs = 0, @, = 1, i.e. no membrane effects are
activated. For geometrically nonlinear analysis (and all boundary nodes totally constrained
with respect to their displacement degrees of freedom), however, in-plane tensile forces are
activated immediately. These membrane effects are essentially responsible that a much
stiffer system response is observed in this case. Again, the results for the user subroutine
UGENS reveal a stiffer force versus displacement behaviour than the results obtained by

numerical thickness integration (which may also be traced back to neglecting fibre-yield



CHAPTER 7. A STRESS RESULTANT CONSTITUTIVE LAW 144

within the full section material routine). With ongoing plastic deformations, however,

some agreement between the simulation curves becomes visible again.

With respect to the kinematic mechanism underlying the analytical upper bound so-
lution, a pyramidal mode of deformation, with plastic hinge lines developing along the
diagonals of the plate, is assumed. The progression of the plastic zone, shown in Figure
7.10 for geometrically linear analysis, also shows this formation of plastic hinge lines very
clearly. A larger spreading of the plastic zones (again being oriented along the diagonals of
the square plate) is evident for the geometrically nonlinear results (Figure 7.11). In both

cases, first yielding in the corner regions is caused by large twisting moments acting there.

Concerning the convergence behaviour of the return mapping step for these examples
one to three iteration steps are needed in general. The CPU-time reductions due to the
use of the full section material routine are about 33% for geometrically linear analysis and
22% for the geometrically nonlinear collapse simulation. Because the chosen number of in-
tegration points used for the numerical thickness integration is rather high (15 integration
points were used to obtain a high resolution of fibre-yielding), however, the numerical effi-
ciency improvements will (at least with the current implementation of the user subroutine)

be less pronounced in practice.

7.3.3 Axial Crushing of a Square Tube

As a final example the large deformation plastic collapse behaviour of an axially compressed
square tube is considered. Because for an initially straight column, however, the (gener-
alized) internal stress state during axial compression is essentially restricted to inplane-
loading (which, for the full section material routine, is critical from the numerical point
of view, see above), with major bending contributions only developing with the ongoing
crushing process, this example is a serious test for the proposed material routine.

Tube geometry and material behaviour are given by: side length ¢ = 38.6 mm, wall
thickness h = 1.4 mm, yield stress o, = 300 N/mm?, Young’s modulus £ = 210000
N/mm?2, Poisson’s ratio v = 0.3. Because only the formation of the first fold of a progressive
crushing process is considered (without taking into account internal contact), a tube length
of 60 mm is assumed for the simulations. The lower end of the tube is totally fixed. For the
upper end a maximal axial displacement (10 mm) is prescribed, ramped linearly during
the step — all other degrees of freedom of these boundary nodes are constrained to be

zero. Due to the symmetry of both the geometry and the loading and boundary conditions
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Figure 7.10: Uniformly loaded, simply supported plate — geometrically linear: progression
of the plastic zone (light ... elastic, dark ... elasto-plastic material state)
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Figure 7.11: Uniformly loaded, simply supported plate — geometrically nonlinear: pro-
gression of the plastic zone (light ... elastic, dark ... elasto-plastic material state)
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only one quarter of the tube is modelled (with 180 equally spaced elements). Buckling is
triggered by initial imperfections. Initial and final FE geometry as well as the resulting
axial load versus compression curves (obtained with the full section material routine and
with a comparable numerical thickness integration material model) are shown in Figure
7.12.

It can be seen from the numerical results that the errors made by applying the full sec-
tion material model remain rather small — only a slight overestimation is present compared
to the results based on a numerical thickness integration. The reason for this good agree-
ment may certainly be traced back to the fact that the collapse problem investigated here
is essentially restricted to plastic deformations (leading to the formation of plastic hinge
lines and a kinematic collapse mechanism, respectively). These dominant plastic deforma-
tions, however, are taken into account by the full section material model — confirming
the initial statement that the application of such an approximative material description is

appropriate for this type of problems.

With respect to the convergence behaviour of the return mapping algorithm (for this
example the six-dimensional form in terms of A€’ and AE’ in combination with a New-
ton/Raphson integration scheme was applied), up to a maximum number of 7 iteration
steps were required for in-plane dominant loading conditions, but valid solutions could al-
ways be obtained. Concerning the global convergence behaviour, however, some problems
arose for very small imperfections, where the postbuckling range could not be reached in
practice. For the solution included in Figure 7.12 a relatively large shift of 0.7 mm outside
and inside from the perfect tube geometry was, therefore, applied on one circumferential
row of nodes to initiate the progressive buckling mode (as can be seen from the FE models
included in Figure 7.12). Besides this, the global convergence rate of the analysis must also
be stated to be markedly below that of the numerical thickness integration material model
(even leading to an increase in computing time). This, however, indicates that refinements
with respect to the definition of the tangential stiffness matrix for the full section material
routine should be considered. Furthermore, the principal applicability of a plastic limit
yield criterion for plastic instability phenomena should also be investigated in more detail.
The “parallel occurrence” of the singularity of the global stiffness matrix in combination
with the full section material model (which also provides a singular stiffness contribution
for the integration point under consideration) might be a major cause of numerical diffi-
culties for this type of problems. Because collapse problems, however, are in general more
conveniently solved with explicit codes (where neither equilibrium iterations are performed

nor a tangential stiffness matrix has to be provided), the latter problems could possibly be
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Figure 7.12: Axially compressed square tube: comparison of load versus compression
curves, including the initial FE model and the deformed state after an axial compression
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avoided if the proposed full section material routine is used in combination with an explicit

time integration scheme.

7.4 Summary, Concluding Remarks

A full section material model, which is based on the exact Ilyushin yield criterion, was
presented in this chapter. Many features considered as being essential for the definition of
both a numerically stable and a computationally efficient formulation have been proposed
and the main difficulties concerned with the implementation have been discussed. The
basic requirements, pointed out for a successful implementation of the material routine

(which is based on a predictor/corrector scheme), are:

e The application of a backward Euler integration scheme for the return mapping step
is a natural choice because of the specific representation of the yield surface.

e The formulation of the subroutine in terms of deviatoric (i.e. transformed) quantities
provides a computationally efficient, but (in parts) also an analytically tractable

algorithmic structure.

e Several possible formulations for performing the return mapping step have been pro-

posed. Experience reveals that

— the six-dimensional formulations (in terms of Ae” and Ak’) provide rather
robust algorithms, which are especially useful for development and testing pur-
poses (the fixpoint algorithm, however, does not seem to offer advantages if
compared to the Newton/Raphson solution procedure). For these formulations
the numerical difficulties may essentially be confined to the nonlinear behaviour
of the yield surface.

— For the definition of a numerically efficient algorithm a formulation with (a
minimum number of) three independent parameters should be applied. The
formulation in terms of the (newly introduced) integral parameters A&y, Aéyn
and A&, but also the proposed algorithmic structure for the return mapping
step (the formulation of which is closely related to standard plasticity algo-
rithms) both seem to be appropriate for obtaining this goal. In contrast to the

six-dimensional formulation, however, restrictions, which are imposed onto the
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parameters, are not fulfilled identically. These must, therefore, also be taken

into account if a general numerical solution scheme is applied.

e The fact that the exact Ilyushin yield criterion may only be stated in parametric
form, renders it difficult to efficiently perform the initial check for yielding, but also
to obtain accurate starting values for the return mapping algorithm. Here, however,

the Ivanov yield criterion has proved to be applicable.

e Starting values quite close to the actual state are obtained with the proposed strategy,
being essential for a good convergence behaviour of the applied numerical solution

procedures.

e Use of the algorithmically consistent tangent stiffness matrix C,. is a basic require-
ment for a rapid convergence behaviour of the overall equilibrium equations. A proper
definition for Cy., being applicable for use with the exact Ilyushin yield surface, has
also been proposed.

The test examples shown in the last part of this chapter confirm that the full section
material routine is applicable for general finite element analyses, having the potential of
markedly speeding up elastoplastic FE calculations (if compared to analyses which rely on
a numerical thickness integration). This could clearly be shown for bending dominated
problems, where maximal CPU-time reductions of more than 30% have been obtained.
For in-plane dominated analyses, however, the convergence behaviour of the return map-
ping algorithm becomes markedly lower (mainly caused by the stronger nonlinearity of
the yield surface). Hence, even for an “optimized” implementation, minor computational
improvements must be expected for such load cases. In addition, the problem of an appro-
priate treatment of the slope discontinuity at the point (); = 1 remains to be solved. This
is, however, expected to be one of the essential tasks for providing a practically useable

implementation, delivering distinct CPU-time savings for all possible loading conditions.



Chapter 8
Summary and Conclusions

The subject of the present work is to provide contributions towards an efficient numeri-
cal analysis of the collapse process of thin-walled structures. Starting from a survey on
the state of research the theoretical foundations underlying the proposed algorithms are
summarized afterwards. Here, besides large deformation continuum mechanics and plastic
extremum and bounding principles, special emphasis is put on the derivation and descrip-
tion of the exact Ilyushin yield surface, providing an important ingredient for the proposed
algorithms. This plastic limit yield criterion (which is based on perfectly plastic material
behaviour obeying the von Mises yield condition) provides a number of advantageous fea-
tures, rendering the definition of both accurate and numerically efficient simulation tools
for plastic collapse analysis possible. For example, interaction effects between the different
stress resultant terms in shell structures are accounted for and the power of internal forces
of a (rigid-perfectly plastic) Kirchhoff shell section may even be obtained in an exact way.
Furthermore, due to the assumptions underlying the derivation of the yield surface it is
fully consistent with plastic extremum and bounding principles, where it may in particular
be utilized in combination with kinematics-oriented theorems, e.g. the Markov theorem or

the upper bound theorem of limit analysis.

To gain more insight into the principles of the crushing phenomenon in a next step
experimental results are presented and simplified analytically based collapse mechanisms
proposed in the literature, which describe the quasistatic progressive buckling process of
circular and multicornered prismatic profiles, are investigated in some detail. Compar-
isons with experiments and FE computations show that the ability of such mechanisms to
describe the force-deflection characteristics of the whole deformation process is rather lim-

ited, even if the underlying kinematics seem to be well suited for the description of actual
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crushing processes. When the requirement for obtaining analytical solutions is dropped,
several refinements and generalizations are possible. These essentially include a refined
description of the constitutive behaviour (e.g. by application of the exact Ilyushin yield
surface), and a more generalized kinematic description of the deformation mechanisms (e.g.

an “FE-like” discretization of the geometry and the deformation field, respectively).

Starting from these considerations a computational model based on the upper bound
theorem of limit analysis (“sequential limit analysis method”) is presented in chapter 6,
which allows to study the large deformation crushing behaviour of general axisymmetric
shell structures. The kinematic description is chosen such that continuous and discontin-
uous plastic deformations can be considered. The large deformation process is described
in an incremental manner, where each increment is solved by mathematical programming
techniques. Due to the application of the exact Ilyushin yield surface the power of internal
forces can be taken into account very accurately. It is also shown that with the proposed
method frictionless internal contact can be accounted for easily. Furthermore, most of
the analytically based kinematic mechanisms proposed in the literature for the concertina
mode buckling of cylindrical shells can be regarded as special cases, thus allowing to study
the effects of different simplifications used in these models. Several examples confirming
the generality and suitability of the method for simplified plastic collapse analysis are

included, too.

As a final possible tool for simplified (however, general) finite element based collapse
and limit load analysis of shell structures a full section material model, which is based on
the exact Ilyushin yield criterion, is investigated in chapter 7. Many features considered as
being essential for the definition of both a numerically stable and a computationally effi-
cient formulation are proposed and the main difficulties concerned with the implementation
are discussed. This not only includes the reformulation of standard plasticity algorithms
(being required, because the exact Ilyushin yield criterion may only be stated in parametric
form), but also an appropriate definition and choice of internal parameters used for the
local stress update. The test examples confirm that the proposed full section material rou-
tine in principle is applicable for general finite element analyses and even has the potential
of speeding up FE based limit and collapse analyses. This holds especially true for bending
dominated problems, where marked improvements could be obtained. For in-plane dom-
inated loading conditions, but also for elastoplastic buckling phenomena, however, such
improvements are not pronounced and further investigations to refine the implemented

algorithms are required.
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Appendix A

Folding Mechanisms — Detalils

A.1 Axial Crushing of Multicorner Columns

This chapter summarizes the essential relations required for describing the axial crushing
process of multicornered prismatic columns (energy rate and energy terms, D; and W;, axial
compression kinematics), as outlined in section 5.3. The input variables characterizing the
corner element (side length C, wall thickness h, opening angle m — 21),), are shown in
Figure A.1. Initially unknown parameters, which are determined by minimization of the
mean crushing force, are the folding length H, the switching angle @, and a small bending
radius b, used for describing the cylindrical and toroidal parts of the mechanism. The
rotation angle « is used as the process parameter, ranging from 0 to oy = 7/2. For details
of the derivation and the kinematic description the reader is referred to the literature (e.g.
[Abramowicz and Wierzbicki, 1989] or the diploma theses [Wintschnig, 1996; Willminger,
1999]).

Extension in the toroidal surface

bH B(c) 1
Dy =16My— cosa/ do &, (A1)
h o y/tan®¢ + cos? ¢

where ¢ is the integration variable and §(«) is given by

B(a) = arctan (tana) ; (A.2)

sin ’(/)0
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Figure A.1: Generalized folding mechanism for multicorner columns: variables definition

bH

W1 = 16M07I1(7,Z10,6) y (A3)
with
o) = [ " LI I (A4)
I , Q) = / cos o / . 4
e 0 o y/tan®¢) +cos? ¢
Bending along horizontal hinge lines
W2 + W5 = 4MOCO£f . (AG)

The derivation of these relations is based on the assumption that clamped boundary con-
ditions act at the upper and lower end. Other types of boundary conditions, however, may

simply be realized by appropriately changing the numerical coefficients.
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Bending along inclined travelling hinge lines

H2
D; = 4MOT cot? 1)y cos a\/tan2 o +sin®a & ; (A.7)
H2
W3 = 4M07]3(’d]0,a) 3 (A8)
with
I3(tby, @) = cot? 4y / Cos Oz\/tan2 Yy + sin® o do . (A.9)
0

Remark: In [Abramowicz and Wierzbicki, 1989] the resulting equations for D3 and I3,
respectively, are stated with a linear dependence with respect to coty,. A rederivation
of the kinematics of the crushing process, which was performed by Willminger [1999],
however, indicates that a quadratic dependence, as included above, should be used instead.
Because all other kinematic quantities used for the derivation of expressions (A.7) and (A.9)

coincide, it is plausible that the difference may just be traced back to some printing error.

Stretching in the conical surfaces

H2
.D4 = SMOT@(CM,E, ¢0) o ) (A]_O)
with
- sin @ tan g sin 2«
® = — A.11
(2 %0, @) 2(sin® @ + tan? v sin® @) +($(e) — o) cos v, ( )
where
¥(a) = arctan (anf tan 7,/10> ; (A.12)
sin@
H2
W4 = 8M07I4(¢0,E) s (A13)
with

afs

I4(7,/10,6) = / (I)(O!, ’Qbo,a) do . (A14)

a
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Bending along stationary inclined hinge lines

sin@ (sin” @ + tan?¢)p) |

sin? @ + tan? ¢, sin® o

D6 = 4MOH cot l/)()

I

W6 - 4M0HIG(QT/JO,E) ,

with

®f sin@ (sin” @ + tan® )
I , ) = cot -
o(Y0, @) Yo /5 sin? @ + tan? ¢, sin? o

Axial compression kinematics

The axial crushing distance u. is given by
ue =2H(1 — cosa)
from which the compression velocity follows as

v, =2H sina & .

da
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

With these, the final crushing distance would be given as u¢f = 2H. In order to account

for the finite bending radii of the crushing mechanism, however, a correction factor may

be included for evaluating the external energy dissipation. Effective crushing distance and

compression velocity are, therefore, given by

Uc,eff = 5effuc )

Vceff = 6eﬁ"vc ’

(A.20)

replacing u. and v, respectively. A value of d.g = 0.73 has e.g. been proposed for square

columns [Abramowicz and Wierzbicki, 1989].



Appendix B

Exact Ilyushin Yield Surface —
Detalils

B.1 Normalized Shell Quantities

The representation of the exact Ilyushin yield surface and the descriptions of its applications
for limit load and collapse analyses are given in terms of normalized stress and strain
quantities. In the following, therefore, several relations between physical and normalized

values, which were used in the preceding chapters, are derived.

Reference Quantities

Section forces and moments are normalized with respect to the plastic limit loads in uniaxial
tension and bending, respectively (yield stress oy, shell thickness h):

h2
N() = O'yh y MO = O'yX . (B].)

Physical strain values are referred to a reference strain £y3. A convenient measure for &

(also used by Burgoyne and Brennan [1993b]) is given by

oy(1—1v?%)

% , (B.2)

Eo =

with E being the Young’s modulus and v the Poisson’s ratio of a linear elastic, isotropic

material. €9 corresponds to the plastic limit strain of an uniaxially stretched plate.
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The reference curvature x¢ is defined by assuming the relation

N0€0 = M()K,O (B3)
to hold, which delivers
480
= —. B.4
Ko 3 ( )

A dimensionless thickness coordinate Z is used for through-thickness integrations. The
relation between Z and the thickness coordinate s3 is given by
33

iy (B.5)

z =

Stress Quantities

Physical and normalized (dimensionless) stress vectors for a state of plane stress are given
by

011 1 011
o = | 022 and o=— 092 , (B6)
Oy
012 012

respectively. From these, the normalized section force and moment vectors n and m can

be obtained according to

N. h/2 1/2 1/2
1 1 1 _ L
n=—/|Ny|=— odsys = —- ohdz = odz,
Ny J _

No h/2 oyh -1/2 1/2
12
(B.7)
) My 1 [ 4 1/2 1/2
m=— | M :—/ os3 ds; = / O'hEth=4/ ozdz.
M, 2 My —h/2 oyh? —1/2 —1/2

12

The terms Nys (o, 8 € {1,2}) are the physical section force and moment components of a
Kirchhoff shell (their arrangement in vector form being denoted as N and M).

The quadratic form of the plane stress von Mises yield condition,

1 -3 0
2
flo)=0"Po -0, =0, P=|-1 1 0], (B.8)
0o 0 3

directly follows from the definition of the normalized stress vector, Eq. (B.6), as

fl@) =P —-1=0. (B.9)
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Strain Quantities

The physical strain and curvature vectors

€11 K11
e=| €9 and K= | Ko (B.10)
2¢e19 2K12

are normalized with respect to €9 and kg, which gives

1 €11 1 K11
e = — E92 and k = — K99 . (Bll)
€0 Ko
2612 2’€12

With the physical midplane strain vector € (= €(s3 = 0) the Kirchhoff hypothesis in its

standard (non-normalized) form is written as
e(s3) =€+ s3 K. (B.12)

Introduction of Z (Eq. (B.5)) and division by ¢ gives

1 1 4
—e=—€+72—K, (B.13)
€o €o Ko

where, in addition, the relation €y = hko/4 (Eq. (B.4)) has been used. It follows that the

Kirchhoff hypothesis may in normalized form be written as

e(z)=e+4z k. (B.14)

Stress-Strain Relations

For elastoplastic material behaviour the tangential stress-strain relations for a Kirchhoff

@))%

where B, C and D are submatrices of the physical tangential stiffness matrix (all assumed

shell may be stated as

to be symmetric). Introduction of the normalized generalized stress and strain quantities

dn) _(#C B (de) _(C* B (de) (B.16)
dm 2B D/ \dk B* D*/ \dk

gives
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i.e. the normalized stiffness matrix (submatrices B*, C* and D*) is obtained from the

physical one by multiplying the submatrices with

€0 11—02 Ko 41—12
~N — 7 9 _:_27a
go 41-v ko 161—v
My, h2 E M, h FE

For purely elastic material behaviour, the stiffness matrix is given by

B=0,
E 1 v 0
C=h—07E, with E=|[v 1 0], (B.18)
R 00 %5
12(1—12)

from which the elastic constitutive law in normalized (and incremental) form follows as

(dn) _ (E 40) (d‘e) | (B19)
dm 0 3E/ \dk
B.2 Algorithmic Details

Numerical Evaluation of the J;-Integrals

A crucial point when using the exact Ilyushin yield surface in its general form is the
numerical evaluation of the integral terms
1 [u2 i
Ji=— dz (B.20)
" V3Joi2\/P. + 2Pz + P22
for any point of the yield surface, including the boundary.! The essential ingredients for a

subroutine allowing for such a numerical treatment are discussed in the following.

A) P, =0:
For P, = 0 (and consequently, P, = 0) the integrals are simply given by

1 1
Ji=0 and Jy=
3D, ! an 2= 123D,

Jo = (B.21)

(see also Egs. (3.98)).

1 As was noted in section 3.4 the integral values J; may become infinite there.
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B) P, > 0:

The numerical evaluation of the J;-integrals for P, > 0 is conveniently performed via

the K;-terms, all being related by

1
30 (B-22)

(see Eq. (3.88)). From Eq. (3.90) it becomes obvious that the only critical term which
has to be controlled for the evaluation of the K;-terms is the integral K. In terms

of B8 and 7y this is written as

1/2 1
—12 /(2= B)*+ 7

This equation, however, reveals that within the integration limits (z € [—1/2,1/2])

the integrand function will become indefinite (at Z = ) and, accordingly, Ky = oo,
only if both |3| < 0.5 and v = 0 are fulfilled. Consequently, as long as <y is not
exactly set to zero, but to some small positive number, a “regularized” evaluation of
points at the boundary may be obtained. For example, with 3 = 0.3 and v = 1072
the evaluation of Egs. (3.90) delivers Ky = 27.185, Ky = 7.555 and K, = 2.427.

A further numerical difficulty arises at the boundary (7 = 0), when 8 becomes larger
than 0.5. In this case Eq. (3.90) leads to

—hn (6-05)+(05-8)| _, 0 (B.24)

0.5+ 5)—(0.5+P) 0’

and even for small, but positive y-values a numerically ill-conditioned expression is

obtained, if 3 becomes sufficiently large.? Because, however, the identities

Ko(B) = Ko(—B) ,
K\(B) = —Ki(-B) , (B.25)
K>(B) = Ka(-p)
hold, and for 8 < —0.5 and v = 0 the Kj-integral is well defined,

Ko=1In 05-5+05=-5) | | 1-28 (B.26)

(0.5 — B) — (0.5 + B) —1-28"

numerical evaluations for the K;-terms, which are restricted to one half of the yield

surface (8 < 0) are sufficient to avoid the above mentioned difficulties.

2Tt is interesting to note that |3| > 0.5 and v = 0 just describe the point of discontinuity of the yield
surface (at @Q; = 1), where each 3-value corresponds to a definite normal direction at this singular point.
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Based upon these restrictions, a simple routine for computing J;(P;, P.x, Px) may thus
be defined as follows:

IF (P. > OumaxP.) THEN
— Compute J; according to Eqs. (3.98) Pure plastic inplane deformations
ELSE

— Compute § and v (Egs. 3.86)

—cg=1 Ensure that the the numerical evaluation
— IF (8 > 0) THEN of the J;-terms is always done for one
B8 =—-p3 half of the yield surface (8 < 0)
cg=—1
ENDIF
— IF ((y < 6,).AND.(|B] < (0.54+dg))) v=146, Regularization step

Compute K; according to Egs. (3.90)
- Ki = c3K; Account for actual half of yield surface

— Compute J; = =K (Egs. (3.88))

ENDIF

Here a threshold value amax is used to distinguish between general and pure plastic in-
plane deformations, dg and 4., are tolerance parameters, and cg is a parameter containing

information for a possible internal change of the sign of 3 (as described above).

Inversion of a Square Matrix Composed of Diagonal Submatrices

The introduction of generalized “deviatoric” stress/plastic strain increment vectors for
the full section material routine (described in chapter 7) leads to matrices, which are
composed of four diagonal submatrices each. Provided these matrices are nonsingular, a
componentwise and thus computationally very efficient inversion may be performed. From

ERER-C) e
D3 D4 D3 D4 0 I

the general statement
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(D; and D; are square matrices of dimension n/2, I is the corresponding identity matrix)
the inverted submatrices D; may be obtained according to

D, = —[D;, — D,D,'D,] 'D,D,!,
D; = —[D, — D3D;{'D,]"'D;D; !,
D, = D;![I - D,D;],
D, =D,![I - D;D,].

(B.28)

If now all submatrices are diagonal, then it finally follows that each (diagonal) component
of the inverted submatrices is given by (the diagonal components D, ;; are written as D,
etc.)

_ Dy
Dy; = - ’

" DyiDyi — Do ;D3
_ —Dy;
D2,i 2 ’

Dy ;D,; — Dy;Ds; (B.29)

_ "Dy, |

7 Dy;Dy; — Dy;Ds;
_ Dy,
Dy, » ’

delivering exactly the same algorithmic structure (for each component 7) as the analytical
matrix inversion of a (2 x 2)-matrix. A simple Fortran implementation may thus (without

checking for singularity) be realized as:

DO i=1,n/2
const=D1(i)*D4(i)-D2(i)*D3(i)
DINV1(i)=D4(i)/const
DINV2(i)=-D2(i)/const
DINV3(i)=-D3(i)/const
DINV4(i)=D1(i)/const

ENDDO
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B.3 Revised Derivation of the Continuum Tangential
Stiffness Matrix

The tangential stiffness matrix, which relates changes of strain resultant increments to

changes of stress resultant increments, is of the general form

(dn) ¢ (d@) _ (C* B*) (dé) | (B.30)
dm dk B* D*) \dk

For perfectly plastic material behaviour, the submatrices B*, C* and D* are symmetric and
indeterminate. The following derivation of the continuum tangential stiffness matrix does
not make use of the stress resultant yield surface and the normal direction to it (Burgoyne
and Brennan [1993a] showed that in this case the matrix B* is not itself symmetrical, see
the remarks in section 7.2.2), but is related to the stresses and the normality rule in stress
space. The only assumption used here is once again the validity of the Kirchhoff hypothesis

for the plastic strain resultant increments, Eq. (3.69).

When plastic loading takes place, in the limit in each point over the thickness of a shell

the incremental form of Hooke’s law,

of
do = E(de — dé — B.31
7 = B(de — dé 1), (B.31)
and the plastic consistency condition
af\" _
i (aw) 7 (B32)

are valid. These equations are sufficient for determining the plastic multiplier d¢ and to

establish a relationship of the form

do = E*de, (B.33)
where
E Y (2R
E'=E-—% (Ta”)af (B.34)
(80’) E Fra

If the assumption of linearly varying strains (Eq. (3.69)) is put into Eq. (B.33), and the

stress increments are integrated over the thickness (in order to obtain dn and dm), then
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the submatrices B*, C* and D* can be obtained as

1/2
C = / E* dz

1/2
1/2
B* = 4/ E*z dz (B.35)
—1/2
1/2
D* = 16/ E*Z% dz ,
—1/2

which all are symmetric and indeterminate (because of the properties of E*).

For a single layer analysis it should be possible to obtain the stiffness matrix as a
function only of stress or strain resultant quantities. Therefore, the term 0f /0@, which is
necessary for obtaining E*, must be expressed with such quantities. This can be done by
simply expressing the plastic strain increments in the normality law in stress space with

the corresponding strain resultant increment quantities:

of . _
P = dé— = de® + 4z dkP B.
de? = d¢ = d zd (B.36)
and, therefore,
of 1 b e
— = —(de? + 4 P) . B.37
= df( € Z dkP) ( )

After inserting this relation in Eq. (B.34) E* can be expressed as

E. + 8E.,.zZ + 16E,z2

B =B R SR.z+16R. (B-38)
with
E. = E de?(de’)"E ,
E., = %(E de?(dk")TE + E dkP(de”)"E) , (B.39)
E, = E dk*(dk”)"E |
and

R, = (de?)TE de* (>0),
R.. = (de®)"E dk? , (B.40)
R, = (dk*)TE dk* (>0),
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subject to the condition
R.R.> R, . (B.41)

With Eq. (B.34) the integrals for the determination of the elastoplastic stiffness matrix
(Egs. (B.35)) can be evaluated analytically to obtain
C*=E — (LyE, + 2L, E,, + L.E,) ,

B* = _(LlEs —+ 2L2Een + LgEn) y (B42)

4
D* = 3B — (LB + 2LsEe, + LiEy)

where

1/2 (47)
L; = dz . B.43
/1/2 R, +8R..z + 16R522 ‘ ( )

The integrals L; are well defined for R.R, — Rgn > 0. For R.R, — R?K = 0 (which
corresponds to the boundary of the exact yield surface) the matrix E* can be shown to be

independent of Z, in which case

C'=E', B'=0 and D= %E , (B.44)
with
E,
E'=E-" for dk*£0,
B, (B.45)
E*ZE—ﬁ for dk? =0.

The derivation procedure sketched above relies on the assumption of infinitesimally
small increments, leading to the continuum tangential material matrix. If finite increments
are to be considered, then the algorithmically consistent tangential material matrix should
be used in order to retain the quadratic convergence rate of the overall Newton/Raphson
scheme. With respect to the definition of the consistent tangential stiffness matrix accord-
ing to this revised derivation procedure, the elastic stiffness matrix E in Eq. (B.34) must
be replaced by the algorithmic elastic stiffness matrix E:

E(z) = (E ' + 2d¢(2)P) " . (B.46)

Because, however, the plastic consistency parameter d§, used therein, depends on the
through-the-thickness position z (see Eq. (3.70)), an analytical thickness integration is no
longer possible and one must resort to a numerical evaluation of Egs. (B.35) in order to

obtain the consistent tangential stiffness matrix for the plastically deforming shell section.
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