
TECHNISCHE
UNIVERSITÄT
W I E N

VIENNA
UNIVERSITY OF
TECHNOLOGY

DISSERTATION

Designing multimodal interaction
for configurable distributed systems

ausgeführt
zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

unter der Leitung von
Univ.-Prof. Dr. Ina Wagner

Institut für Gestaltungs- und Wirkungsforschung
Arbeitsbereich CSCW

eingereicht
an der Technischen Universität Wien

Fakultät für Informatik

von
Dipl.-Ing. Thomas Psik

Piaristengasse 2-4
1080 Wien

Matr.-Nr. 9125243

Wien, im Oktober 2004

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Designing

multimodal interaction for

configurable distributed systems

Thomas Psik - Dissertation

Reviewers:

Ina Wagner
Dieter Schmalstieg

Abstract
Designing multimodal interaction for configurable distributed systems is a
challenge that originates from the early work of M. Weiser in 1991 described
in the article "The Computer for the 21st Century". Each of the aspects
- multimodal interaction and configurable distribution - is being actively
researched by different research communities. A number of projects also
attempt to combine these aspects, with the goal of creating a flexible and
usable system.

Multimodal interfaces described in this thesis are: graphical user inter-
faces (GUI), tangible user interfaces (TUI), gesture-based interaction, and
speech recognition. Real-time response and feedback are important issues
for the interaction with a system. Configurable and tailorable applications
allow users to adapt the system to their needs, hence increasing performance
and improving the ability to cope with different types of users (novice, be-
ginner, intermediate and expert users), or different hardware. Distribution
of applications allows gains in processing speed as well as support of multi-
ple users, interacting with each other in real-time and across time and space
boundaries.

Interaction design patterns have been developed that ensure a proper
design of the interfaces, especially important when developing applications
that support ubiquitous interfaces. Rules that enforce these patterns, can be
used by developers to verify the usability of the interfaces created.

This thesis is based on the experience of working on two different systems:
the ATELIER project and the STUDIERSTUBE framework. Several applica-
tions of both systems are discussed from a technical and interaction design
view. Based on these applications and on the experience gained during the
work on the two systems some design patterns are described.

These design patterns are often not dealt with by developers, but are
important for creating a usable system that supports users working with
multimodal, configurable, and distributed applications.

Kurzfassung
Das Design von multimodaler Interaktion für konfigurierbare verteilte Sys-
teme ist eine Herausforderung, die auf das frühe Werk von M. Weiser im
Jahr 1991 beschrieben im Artikel "The Computer for the 21st Century"
zurückgeht. Jeder der Aspekte - multimodale Interaktion und konfigurier-
bare Verteilung - wird von aktiv von verschiedenen Gruppen erforscht. Eine
Reihe von Projekten versucht diese Aspekte zu vereinen, mit dem Ziel ein
flexibles und brauchbares System zu erstellen.

Multimodale Schnittstellen die in dieser Arbeit beschrieben werden sind:
Grafische Benutzerschnittstellen, "begreifbare" Schnittstellen (Tangible In-
terfaces), Interaktion, die auf Gesten basiert, und Spracherkennung. Eine
unmittelbare Reaktion und aussreichende Rückmeldungen vom System sind
wichtige Voraussetzungen für interaktive Systeme. Konfigurierbare Applika-
tionen erlauben es dem/der Benutzer/in das System an die persönlichen
Vorlieben anzupassen, dadurch können verschiedenen Typen von Benutzern
(Anfänger bis Experte) optimal unterstützt werden, ebenso ist die Verwen-
dung von unterschiedlichen Hardware-Konfigurationen möglich. Die Verteilung
von Applikationen kann die Geschwindigkeit der Programme erhöhen, erlaubt
aber auch den Benutzer/inne/n in Echtzeit bzw. über Raum- und Zeit- gren-
zen hinweg zu kommunizieren.

Beim Entwickeln von Programmen, die allgegenwärtige Schnittstellen
(ubiquitous interfaces) unterstützen, müssen grundlegende Interactions-Design
Regeln beachtet werden. Diese Regeln können verwendet werden, um die Be-
nutzbarkeit der erstellten Schnittstellen zu überprüfen.

In dieser Arbeit werden die durchgeführten Arbeiten an zwei unterschiedlichen
Systemen (ATELiERund STUDIERSTUBE) beschrieben. Mehrere Applikatio-
nen der beiden Systeme werden hinsichtlich ihrer technischen und interak-
tionsspezifischen Umsetzung vorgestellt. Basierend auf den Erfahrungen, die
bei der Erstellung dieser Applikationen und dem Arbeiten mit den Systemen
gewonnen wurden, werden Design-Muster vorgestellt.

Die in dem letzen Kapitel beschriebenen, teilweise in den beiden Projek-
ten umgesetzten Funktionalitäten, sind für die erfolgreiche Umsetzung eines
multimodalen, interaktiven, konfigurierbaren, und verteilten Systems von Be-
deutung.

11

Acknowledgements
During the work for this thesis I worked together with great group of people
{great in the sense of a large number of people and also personally great).

I want to thank my family for their support and for not keeping me busy
during the work on this thesis.

Special thanks go to Prof. Wagner and Prof. Schmalstieg for giving me a
(paid) workspace to develop my ideas and letting me be part of their project
teams, the ATELIER team and the STUDIERSTUBE team. Also for the valu-
able discussions and giving me the chance to see things differently.

Prof. Wagner helped me to understand that there also other impor-
tant things - besides frame-rates and sophisticated technical solutions, Prof.
Schmalstieg showed me what the scope of scientific work is.

From all the people I had the great pleasure to work with, I want to thank
- first of all - my dear colleague Kresimir Matkovic, who helped me in so
many ways: discussions on software-design, interaction-design, for sharing
economic and scientific work, writing papers and for having fun while work-
ing.

The people I worked with through the years, each contributed to the way
I work, mentioning them in historical order seems to be appropriate:

Prom Imagination (though not part of the ATELIER team) I want to thank
Reinhard Sainitzer, for showing me how to write software that is designed
properly, can be debugged, and then actually works ©. Also from Imagi-
nation: Thomas Gatschnegg, because he is hardly ever mentioned, though
he did a marvellous job in the ATELIER project, and for having interesting
discussions about scientific versus economic work practices.

Prom the ATELIER project team I want to mention - Giulio Iacucci for
discussing with me my suggestions and then creating working prototypes.
Antti Juustila, Pekka Pehkonen, Toni Raisanen all from University of Oulu,
Finnland for their prompt help on various software problems with the Ker-

IV

nel. Peter Warren from II Malmö, Sweden for keeping up the spirit in the
ATELIER project and his never ending efforts to keep the developments tech-
nically synchronised, and Marco Loregian from University of Milano Bicocca,
Italy for never giving up on the ontology support and for our fruitful coop-
erative scientific work.

Andreas Rumpfhuber for organising all ATELIER related stuff at the Academy
of Fine Arts, Vienna (fighting with administrators,...), making pictures, and
his strife for thoroughly documentation.

From the STUDIERSTUBE team I want to thank Gerhard Reitmayr, for
being a living STUDIERSTUBE and OpenTracker manual ©, his enormous
knowledge about software design and the will to share this knowledge, and
for the KTßX 2g template from his thesis. Florian Ledermann for letting me
use parts of his Master thesis, but also for the discussions about configura-
bility. Istvân Barakonyi and Hannes Kaufmann for discussing their projects
with me and letting me collaborate. Daniel Wagner for helping me with my
personal handheld and the discussions about computer games and movies ©.
Joseph Newman for proof-reading our papers, Tamer Fahmy, Thomas Pin-
taric for their general help on various occasions.

Thanks go to our student Valerie Maquil for the work on the STUDIER-
STUBE PUC framework and to Jeffrey Nichols - the developer and maintainer
of the PUC framework at the Mellon University, USA for granting us access
to the PUC source.

Thank you all.

For my grandfather Prof.Dr. Franz Weiler

for being my never-ending inspiration.

Contents

Abstract i

Kurzfassung ii

Acknowledgements iv

Table of Contents ix

List of Figures xi

1 Introduction 1
1.1 Problem Statement 1
1.2 Contribution 2
1.3 The Systems 3

1.3.1 The Atelier framework 3
1.3.2 The Studierstube framework 3

1.4 Applications analysed in this thesis 4

2 Setting the Frame: Systems 7
2.1 The Atelier framework 8

2.1.1 Infrastructure 10
2.1.2 Hypermedia Database (HMDB) 10

2.2 The Studierstube framework 11
2.2.1 OpenTracker 12
2.2.2 Open Inventor 13
2.2.3 Application areas 13

2.3 Comparing Atelier and Studierstube 14
2.4 Survey of Interaction Design Rules 16

2.4.1 Sensible, sensable and desirable 17
2.4.2 Properties of Instruments 18
2.4.3 Affordances 19
2.4.4 Eight Golden Rules of Interface Design 19

vi

Contents vii

2.4.5 Five Questions for Designers and Researchers 21
2.4.6 Error handling 22

Setting the Frame: Applications 23
3.1 Infrastructure 23
3.2 Hypermedia Database (HMDB) 24
3.3 Configurator 25

3.3.1 Input devices 25
3.3.2 Presentation devices in ATELIER 27
3.3.3 Handling media content 29
3.3.4 HMDBLookup 32
3.3.5 DisplayManager 32

3.4 Web (HTML) Interface 33
3.5 Sensitive Samples 34
3.6 Tangible Image Query 37
3.7 Ontology Integration 39
3.8 Texture Painter 40
3.9 Invisible Person 42
3.10 APRIL Framework 43
3.11 AR Puppet Framework 46
3.12 PUC Framework 47
3.13 Construct3D 50

Distributed and Configurable Aspects 54
4.1 Distribution of Input and Output 54

4.1.1 Input and Output abstraction 55
4.2 Distributed Input 58
4.3 Distributed Output 59
4.4 Distribution in the Systems 60

4.4.1 Systems with Distribution 60
4.4.2 Distribution in Atelier 61
4.4.3 Distribution in Studierstube 62

4.5 Distributed Processing 63
4.5.1 Sensitive Sample 63
4.5.2 Distribution in Invisible Person 65

4.6 Distributed Context 67
4.6.1 Saving and loading in distributed systems 68

4.7 Global Repository 69
4.7.1 HyperMedia DataBase (HMDB) 70
4.7.2 Messages versus HMDB 70

4.8 Distributed User Identification 71

Contents viii

4.8.1 Distributed Undo 73
4.9 Configurability 73

4.9.1 Studierstube 76
4.9.2 Atelier 77

5 Multimodal and Interactive Aspects 81
5.1 Graphical User Interfaces 82
5.2 Tangible Interaction 84

5.2.1 Tangible Image Query 84
5.3 Physical Handles to Digital Content 89

5.3.1 Barcodes and RFID Tags 90
5.3.2 Persistency as a Quality of Tangible Interfaces 91

5.4 Gesture-based Interaction 92
5.4.1 Sensitive Sample 92
5.4.2 MaterialKammer concept 93
5.4.3 The human body as an interface 94

5.5 Sound and Speech Interaction 99
5.6 Construct3D improvements 100

5.6.1 Displaying the state 101
5.6.2 Tooltips and Speech-output 101
5.6.3 Speech input 102

6 Results and Discussion 103
6.1 Qualities of Input Devices 103

6.1.1 Matching qualities and requirements 107
6.2 Dealing with conflicting inputs 108
6.3 Undo - Qualities 110
6.4 Input and Output Abstraction I l l

6.4.1 Input Abstraction I l l
6.4.2 Output Abstraction 113
6.4.3 Connection between Selection and Output components 113
6.4.4 Combining the Search Methods 114
6.4.5 Applications versus Assemblies 116

6.5 Discussion - Invisible Person 117
6.6 Discussion - Tangible Image Query 118
6.7 Configuring 121

6.7.1 Discussion - DisplayManager 122
6.7.2 Improving the DisplayManager 123
6.7.3 Configuring physical handles 125
6.7.4 Configuring the context 126

6.8 Distribution 127

Contents ix

6.9 Discussion - Sensitive Sample 128
6.10 Conclusions 129

7 Design Patterns 130
7.1 Keep Functionality simple 131
7.2 Abstraction of Input and Output 132

7.2.1 Provide concurrent multimodal access 132
7.3 Global repository 132

7.3.1 Physical Handles to digital media 133
7.3.2 Global save and restore 133

7.4 Configuration possibilities 134
7.5 Keep the Golden Rules in Mind 134
7.6 Support Undo 134
7.7 Provide Feedback 135
7.8 User Identification 135
7.9 Record evaluation data 136
7.10 Answering the "Why" Question 136
7.11 Conclusions 138

Bibliography 138

Curriculum Vitae 154

List of Figures

3.1 The E-Diary in action 26
3.2 The three large displays 27
3.3 The table 28
3.4 The wind and fog output 29
3.5 The Path Creator 30
3.6 The HTML Upload applet 31
3.7 The thumbnail page 31
3.8 HMDB Lookup Schema 32
3.9 DisplayManager Schema 33
3.10 Using the Sensitive Sample 34
3.11 Sensitive Sample: artefacts with sensors 35
3.12 Sensitive Sample: Control Cube 36
3.13 Query by Example 38
3.14 The Tangible Image Query 39
3.15 Student Ontology 40
3.16 Texture Painter pictures 41
3.17 Exchanging the material of a model 41
3.18 Invisible Person Installation 42
3.19 APRIL workflow 45
3.20 Overview of the AR Puppet framework 47
3.21 Pip and Pen 48
3.22 PUC: diagrammatic overview 49
3.23 PUC: architectural diagram 49
3.24 PUC example definition 50
3.25 Students work with Construct3D 51
3.26 Construct3D evaluation results 52

4.1 3 Layers of Input abstraction 56
4.2 A Atelier configuration 62
4.3 Sensitive Sample: micro-controller board 64
4.4 Photo-game of the Invisible Person application 67

List of Figures xi

4.5 Recreating a physical setup 78
4.6 Different projection planes in space 78
4.7 Different configurations of barcodes 79
4.8 Configuring the context of a model 79
4.9 Student captures a setup 80

5.1 PUC and AR Puppet 83
5.2 The Atelier HTML interface 83
5.3 Image Query: technical background 85
5.4 Students experimenting with the new interface 87
5.5 RFID tags and barcodes in use 91
5.6 Detected Actions of Sensitive Sample 93
5.7 MaterialKammer multimodal concept 94
5.8 Invisible Person game pads 96
5.9 Invisible Person Vision Module 98
5.10 Construct3D: available commands 101
5.11 §dtxt: tooltips 102

6.1 Development of the Wireless Pen 105
6.2 Use a GUI to configure a system 116
6.3 Image Query: Sketch and Results 120
6.4 DisplayManager Barcodes 123
6.5 Using barcodes to augment models 125
6.6 Physically rearranging barcodes 126
6.7 Using the barcodes during the presentation 126
6.8 Experimenting with scale 127
6.9 Experimenting with different contexts 127

Chapter 1

Introduction

1.1 Motivation and Problem Statement
The aim of this thesis is to provide a framework for discussing multimodal
interaction for configurable distributed systems. Based on the systems de-
scribed and on our own experience in creating such systems insights are
provided that should help and encourage researcher aiming at creating or
modifying such systems. '

• Interactive means that the system should directly and immediately
react on a user input. Design issues are response time, feedback and
handling errors. Interactive also incorporates the meaning of users and
the system being "active" and that a communication between both is
actually taking place.

• Multimodal in this thesis has the meaning of different input and output
channels. Users can interact with a computer system using different
means: through keyboards, pointing devices, speech and gestures. The
computer system on the other hand can respond to the interaction in
many ways: sounds, text-to-speech, images, videos, haptic feedback
- like vibration or wind -, even olfactory, and gustatory outputs are
possible outputs in an augmented environment. Multimodal output -
especial the later ones - are uncommon in current setups, yet research
is conducted in finding out what "augmenting an environment" really
means and how to address those senses.

• Configurable means that the users have control how the systems inter-
prets the interaction they are performing. In general the users should
be in control, meaning that they can control: which input and output

1.2 Contribution 2

components are being used, how much feedback is displayed by the sys-
tem, connecting functionalities and changing the interaction patterns,
which ultimately results in designing their own system. This possibility
(for the users to design their own way of working) blurs the distinc-
tion between user and system designer and demands for a new type of
system design.

• Distributed computer systems in this thesis, means that more than one
computer is used simultaneously, that input and output are distributed,
and that any number of users (one to many) can make use of the
distributed input and outputs. Distribution also has the meaning of
spatial distribution, meaning that actions and reactions are spread over
the space, allowing the users to create their own working places.

1.2 Contribution
Pierre Weller et al. stated in 1993 in the article "Back to the real world" [151]:

Computer-augmented environments raise many issues, both tech-
nical and social. They may require a complex, distributed in-
frastructure, precise alignment between the real and electronic
worlds, novel input and output devices, . . .

In the scope of this thesis principles will be described and discussed that
should be applied when creating multimodal distributed systems. These
principles were developed during the work on two different frameworks ATE-
LIER and STUDIERSTUBE. Both projects aim at creating a system as de-
scribed in [151]. ATELIER and STUDIERSTUBE represent two quite different
strategies for implementing such a computer-augmented environment.

Additional to the discussion of those two systems, literature that has been
published in the field of multimodal interaction, human computer interaction
(HCI), computer supported collaborative work (CSCW), interaction design,
tangible interaction (tangible user interfaces - TUI), distributed systems,
augmented reality (AR), and software design is presented to set a frame for
the discussion.

To be an expert in all of these fields is nearly impossible, but all of them
are needed if a good and usable system has to be created.

1.3 The Systems 3

1.3 The Systems
In the last three years I had the opportunity to work on two projects that
focus on creating such a system. Each of these projects has its own goals,
while the focus of the ATELIER project is creating a flexible ubiquitous en-
vironment used by design students, the STUDIERSTUBE project is devoted
to building a framework and application programming interface (API) for
various applications in the field of augmented reality, to be used by software
developers. A short description of each project is now presented followed by
a list of applications that will be discussed in this thesis.

1.3.1 The Atelier framework
The ATELIER project (architecture and technology for inspirational learning)
aims to make a contribution to our understanding of inspirational forms of
learning and to building augmented environments. The project has studied
design education practice, developed prototypes to enhance such education,
introduced prototypes to different real use settings (design and architecture
classes), and partly in collaboration with the students reflected upon the in-
terventions to learn both about how to improve architecture (of the learning)
space, technology and the learning situation.

The ATELIER experiences are related to the general field of ubiquitous
computing and especially to ideas of embodied interaction as a new stance
for understanding of both, social and physical, interaction with artefacts and
space. The concept 'configuration of mixed objects' forms an interesting
challenges for the design of inspirational learning environments beyond the
physical-digital divide.

1.3.2 The Studierstube framework
The STUDIERSTUBE framework was created in 1996 at the Vienna university
of technology [123]. This framework is used to create multimodal, multi-user
augmented reality (AR) applications. The focus of AR lies in overlaying the
Real and the Virtual. A vast number of applications have been created using
this framework and have also been published in the past. The evolution of
this system is still going on and I am thankful to be part of that ongoing
process.

The goal of the development of STUDIERSTUBE is a software
framework to support the technical requirements of augmented
reality applications. It is a set of extension nodes to the Open

1.4 Applications analysed in this thesis

Inventor [131] rendering library and an additional layer of ob-
jects that provide advanced runtime functions. It includes sup-
port for interaction based on 3D tracking events, rendering and
output modes for all available virtual and augmented reality out-
put devices, tools for developing distributed applications, and
user management functions to support multiple users in a single
setup, (from [115]).

1.4 Applications analysed in this thesis
Several applications have been developed for both of these systems. An
overview of the discussed applications is presented in the table 1.1. I par-
ticipated in the design and implementation of most of them, therefore this
thesis includes personal experience gained during the realisation of those ap-
plications.

The AR Puppet Framework [6] is the work of Istvân Barakonyi and will
be part of his PhD thesis. The APRIL framework was created by Florian
Ledermann and was described in detail in his master thesis [76]. Con-
structSD was created by Hannes Kaufmann and is the topic of his PhD
thesis [69].

The work on these applications led to the concepts discussed in this the-
sis. Actually implementing those applications provided us with insights and
understanding of the issues that are being raised during the development.
We believe that proving the concepts through implementing and testing is
the best method of exploring these issues and gaining new insights.

The development of prototypes helps both software designers and users
to discuss about the solutions. Through the feedback of the users progress is
ensured, sometimes leading to a total redesign of the concepts, and sometimes
the users also redesign their work practices due to solutions presented. This
design process is formally called "user-centred design".

The work presented here contains material previously published in:

• T. Psik, K. Matkovic, R. Sainitzer, P. Petta, and Z. Szalavâri. The
Invisible Person: Advanced interaction using an embedded interface.
In Proceedings of the workshop on Virtual environments 2003, pages
29-37. ACM Press, 2003.

• K. Matkovic, T. Psik, and I. Wagner. The Sensitive Sample. In
Proceedings of the workshop Beyond Wand and Glove 2004, VR2004,
pages 21-24, 2004.

1.4 Applications analysed in this thesis

Application

Configurator

Sensitive Samples

Texture Painter

Tangible Image
Query

Ontology Integra-
tion

HMDB2HTML

Invisible Person

APRIL Framework

AR Puppet
Framework

PUC Framework

Construct3D
Redesign

Project

ATELIER

ATELIER

ATELIER

ATELIER

ATELIER

ATELIER

TMW

STUDIERSTUBE

STUDIERSTUBE

STUDIERSTUBE

STUDIERSTUBE

Issues addressed
Interaction Design, Physical Han-
dles, Multimodal Interaction, Dis-
tribution, Configurability, I/O Ab-
straction

Tangible Interaction, Mixed objects,
Physical Handles, Interaction De-
sign, I/O Abstraction

Physical Handles, Distribution,
Mixed objects

Tangible Interaction, Feedback, Dis-
tribution

Physical Handles, Feedback, Distri-
bution

Software Design, Multimodal Inter-
action

Multimodal Interaction, Distribu-
tion, Software Design

Distribution, Configurability

Mixed objects, Multimodal Interac-
tion, Distribution, Software Design

Software design, Multimodal Inter-
action, I/O Abstraction, Distribu-
tion

Interaction Design, Multimodal In-
teraction, I/O Abstraction

Table 1.1: Overview of the discussed applications.

• K. Matkovic, T. Psik, I. Wagner, and W. Purgathofer. Tangible Image
Query. In Proceedings of Smart Graphics: J^th International Sympo-
sium, S G 2004, Banff, Canada, May 23-25, 2004- Proceedings, pages
31-42. Springer-Verlag Heidelberg, 2004.

• I. Barakonyi, T. Psik, and D. Schmalstieg. Agents that talk and hit
back: Animated agents in augmented reality. In Proc. ISMAR 2004,
page to be published, Washington, USA, October 2004. IEEE.

1.4 Applications analysed in this thesis 6

T. Binder, G. De Michelis, M. Gervautz, G. Iacucci, K. Matkovic,
T. Psik, and I. Wagner Supporting Configurability in a Tangibly Aug-
mented Environment for Design Students, In Special Issue on Tangible
Interfaces in Perspective, Pers and Ubiq Comp Journal, Springer Ver-
lag, forthcoming.

G. Iacucci, K. Matkovic, T. Psik, and I. Wagner. Configurability in
and integration with the environment: Diverse Physical Interfaces for
Architecture Design. In Online Proceedings of Physical Interaction
(PI03), Workshop on Real World User Interfaces, 2004.

Chapter 2

Setting the Frame: Systems

Both projects aim at providing multimodal interaction for a configurable dis-
tributed system and have proved that they are suitable for creating useable
applications that incorporate all these qualities.

ATELIER and STUDIERSTUBE. The work on these two systems has been
demanding as both systems have their own way of providing solutions to a
problem. Before starting to work with a system one has to understand the
basic concepts and but also studying the details, to be able to use the full
power of a framework. Both systems are fundamentally different in concept
and even in the programming language.

STUDIERSTUBE is implemented (mainly) in C++ [29], while ATELIER is
implemented using Java[132]. Both are designed "object oriented" providing
the programmer a large number of objects, that can be used to implement
individual solutions.

Both systems make use of XML[148], the extensible Markup Language,
which is the emerging standard primarily aimed at web-based applications
and software systems. XML is a markup definition language that allows
to define hierarchical markup languages. There are a number of software
libraries and tools available for creating, parsing and validating XML struc-
tures.

STUDIERSTUBE and ATELIER are based on fundamentally different de-
sign paradigms for interactive systems: While STUDIERSTUBE, with its typ-
ical real-time tracking and rendering task for delivering a high quality AR
experience can be characterized as being predominantly a stream processing
framework, ATELIER is the classic case of an event processing framework,
which uses individual events for coordinating the behaviour rather than fre-
quently recurring information items such as tracker position updates.

2.1 The Atelier framework 8

2.1 The Atelier framework
The 1ST Project ATELIER (Architecture and Technology for Inspirational
Learning Environments, IST-2001-33064 [136]), develops a set of architec-
tures and technologies in support of inspirational learning in two areas -
architecture and interaction design. ATELIER is an EU-funded project that
is part of the Disappearing Computer Initiative.

The mission of the initiative is to see how information technology
can be diffused into everyday objects and settings, and to see how
this can lead to new ways of supporting and enhancing people's
lives that go above and beyond what is possible with the computer
today, {from [137]).

Being part of the "Disappearing Computer Initiative" [137], which en-
couraged user interfaces that will hide computer interfaces in a manner that
"computers disappear", our approach was to implement a number of different
tangible interfaces, where, because of the physical aspect of the interaction,
the actual processing is naturally happening in the background. Single com-
puter interfaces were also created, the most successful implementations were
distributed setups.

It involves partners from Austria, Finland, Italy and Sweden. The project
started in 2001 and ended after 30 months in May 2004. The great approval
from the EU IST project reviewers encouraged us to continue the work on
the project and on the framework that was created.

The last few years has seen increasing interest in tangible user
interfaces. ATELIER is among the global leaders (and perhaps
the leader) in developing this kind of work systematically for a
useful and usable application, (from the final review of the 1ST ATE-
LIER project [18])

The aim of the ATELIER project is to build a digitally enhanced environ-
ment supporting creative and inspirational learning. The functionalities, de-
scribed in this thesis, were developed, because of the different work-practices
at the two sites. One being an interaction design school in Malmö, Sweden
the other an architecture school in Vienna, Austria.

Students in both locations share the need for computational support
working on their projects. While the students in Malmö are focusing on
designing how to interact with a system, the students in Vienna use the
system to communicate their ideas and concepts (among themselves and to
their supervisors). The group of users, we developed the system for, needs
both: means to create a system and means to work with a system.

2.1 The Atelier framework

Nevertheless both groups study design and how to express and model the
results of their creativity. Exploring the results and concepts, redefining the
goals and finding new solutions. They share the need for content creation,
management and presentation [digital: images, videos, sounds and physical:
mock ups, models, prototypes).

We observed how students configured and reconfigured their workspace
as well as the relationships between design representations. This motivated
a design approach, which focuses on configurability as an important feature
of tangible computing environments.

The presence of inspirational resources - images, music, metaphors, at-
mospheres, film, samples of materials and everyday objects - stimulates the
learning process in inspirational learning environments. Inspiration emerges
through the particular qualities of objects, people, ambience, and place.

As a result of the initial field trials the project identified particular atmo-
spheric, material and spatial qualities that should be created and supported.
These qualities were: the transient and ephemeral, materiality and the di-
versity of materials and representations, creative density, re-programming
and the "different view", experience of dimensionality and scale, forging con-
nections and multiple travels, configuring, tempo and rhythm. The project
has contributed to architecture and technology for inspirational learning by
development of artefacts captured in the tension between generic design pat-
terns and concrete working demonstrators.

The major demonstrators that were developed are:

• The Mixed Object Table with the texture painter for painting com-
puter generated visual overlays as texture on physical models using a
physical-digital brush,

• The Tangible Image Query and Ontology for physical and informal
search in a database,

• The Interactive Stage combining element of a theatrical space with
technological augmentation to manipulate media and events,

• The E-Diary for recording and navigating field visits combining posi-
tional information with picture material,

The components of these demonstrators were integrated via a shared
platform, an independent infrastructure and a hypermedia database.

Weiser's Ubiquous Computing vision was that the computers becoming
invisible among the objects of everyday life. The same goal has been postu-
lated in the Disappearing Computer Initiative of the European 1ST project

2.1 The Atelier framework 10

[137]. In ATELIER - as one project of this call - we tried to create a frame-
work to create such interfaces.

Ubiquitous Computing and Pervasive Computing propose an environ-
ment that can be controlled by the users in different ways. This includes
HTML pages for remote access to content, Pocket or Handheld PCs to con-
trol the system and also "tangible interfaces", thus a multimodal interaction
system.

2.1.1 Infrastructure
The infrastructure software platform in ATELIER environment is a generic
platform that allows different kinds of technologies to be added to the envi-
ronment, thus extending and also changing the functionality of the environ-
ment. The platform is open in a sense that different kinds of technologies,
display systems and mobile devices (that may in themselves contain advanced
functionalities) can be brought into the space, as long as the technologies con-
form to specified interfaces of the Infrastructure. ATELIER itself has been
build with Java, but components or systems built with other technologies
can be integrated into the system.

The ATELIER infrastructure acts as a mediator between the ATELIER com-
ponents that provide the separate functionalities that the components en-
close. A component can be a simple piece of technology or a large system by
itself. The infrastructure itself contains functionality that is needed across
components, and it also provides context for requirements that are not nec-
essarily functional (such as the need for location independence).

2.1.2 Hypermedia Database (HMDB)
The HMDB is an essential element in the whole ATELIER technical environ-
ment. It acts as a central database for multimedia content. All images, video
files, sound files and any other types of digital documents can be stored in
the HMDB. It has an application programming interface to allow Component
builders to add, search, browse and modify multimedia data. There are also
tools developed in the project for browsing the database by the user. The
HMDB is also used for storing other types than multimedia data. Because of
the complexity and size of the HMDB, it is implemented as a separate server
software.

2.2 The Studierstube framework 11

2.2 The Studierstube framework
A number of target hardware platforms and various input and output compo-
nents are supported by STUDIERSTUBE. Following interaction patterns have
been implemented or integrated and used in various applications: Direct
Manipulation of 3D content, multimodal - multi-user interaction, physical
handles to digital media, presentation creation and management, GUI wid-
gets, distributed output, and teleconferencing.

The STUDIERSTUBE framework has been redesigned a number of times
in the past and a new design is just at the beginning. The constant work
of a large group of people that contribute to the functionality of STUDIER-
STUBE, has created a complex and versatile system that allows to explore the
usage of AR in many application areas. Another strength of the STUDIER-
STUBE framework is that a number of other frameworks have been integrated
or a way to access the functionality has been implemented (DWARF, PUC,
S API).

Several course at the university present the STUDIERSTUBE framework
and computer science students can attend lab's, where they make use of the
STUDIERSTUBE framework to implement augmented reality applications. A
reduced version of STUDIERSTUBE was developed to present them an easier
access to the functionality and reduce the learning effort. At the same time
the full scope of STUDIERSTUBE is used to teach software design patterns
and explore new concepts both for software and interaction design.

STUDIERSTUBE is a framework based on Open Inventor (at the time on
CoinSD from Systems in Motion [134]), which uses OpenGL to render three
dimensional scenes. The purpose of STUDIERSTUBE is to create a frame-
work for implementing interactive collaborative Virtual Reality (VR) and
Augmented Reality (AR) applications. To achieve this goal, an interaction
framework has been implemented. To be able to process the input from
many devices and to add a level of abstraction between different devices
OpenTracker [117] was designed and implemented.

The Open Inventor (OIV) [131] rendering library is the basic software
layer upon which STUDIERSTUBE is build. It is a framework of C++ classes
that implement a scene graph based rendering library using OpenGL. To be
able to create multi-user setups a method of sharing nodes in distributed
scene graph were implemented. The Distributed Inventor (DIV [52, 124, 51,
125] module is necessary to create multi computer - multi user applications.

Collaboration between different users requires distribution of the
application's state among different setups. To simplify develop-
ment of such distributed applications, we have implemented Dis-

2.2 The Studierstube framework 12

tributed Open Inventor, a powerful object-oriented distributed
shared scene graph. Changes to a distributed part of the scene
graph are transparently communicated to other instances of the
application without exposing this process to the application pro-
grammer. Consequently, the development of multi-user applica-
tions is not much harder than developing for a single user.

Collaborative applications benefit from the augmentation of the real world,
because they allow to naturally interact with a partner while working to-
gether on a task. By sharing the physical working space or being connected
through a teleconferencing environment the partners can use natural real-
world collaboration strategies like pointing, gesturing and explaining issues
they are working on.

A large number of areas in computer science are combined in the develop-
ment of augmented reality systems. Sensor technology is required to measure
the state of the real world such as the position and view direction of a user,
position and orientation of objects or interaction devices to augment them.
Advanced computer graphics are necessary to render convincing images of
virtual information. Finally, collaborative applications are implemented us-
ing distributed systems to support several users. Therefore, a comprehensive
AR system (like STUDIERSTUBE) needs to address all of these aspects and
build upon a scalable design that combines the individual areas.

2.2.1 OpenTracker(OIV)
OpenTracker is both a separate project, as well as a part of STUDIERSTUBE.
The purpose of OpenTracker is to implement an abstraction layer between
tracking hardware and tracking data. In general OpenTracker is a data flow
management system. The generic concept of a data flow graph is used to de-
scribe the processing of the data. Various nodes have been implemented that
allow to define data sources, data sinks, data filters, and data calculations.

OpenTracker is configured by supplying a XML file that allows the de-
velopers to define the processing graph. Network protocols have been imple-
mented that allow to receive and send tracking data over the network. Calcu-
lation nodes allow to insert offsets, perform matrix operations and combine
static and dynamic data, filter nodes can be defined that smooth tracking
errors or decide between different tracking sources based on e.g. the quality
of the tracking data.

The data that can be processed by the OpenTracker framework has static
structure, but a new version of OpenTracker will allow to define an arbitrary
data structure.

2.2 The Studierstube framework 13

2.2.2 Open Inventor
Since the early developments of computer graphics scene graphs have been
used to describe a graphical scene. Nodes represent

• objects - that can be rendered

• transformations - to move, scale and transform the objects

• materials - that will be used by the subsequent objects

• separators - that limit the properties like transformations, materials,
. . . , to a part of the scene graph

• switches - that allow to select between different scene graphs

Nodes can incorporate sub-nodes and fields, where the fields represent
values that belong to the nodes like e.g. the centre and radius of a sphere or
the transparency value of a material. In OIV these fields can be connected
(through field-connections), that will ensure that when ever a field in the
source object is changed, the connected field will also change it's value. A
software designer can use sensors to detect changes in a field (or node) and
react on the change.

Based this framework STUDIERSTUBE was implemented, using nodes and
fields to introduce tracking data (by the way of OpenTracker) into the scene
graph and reacting on changes using sensors.

OIV also contains a concept for scripting (semi-programming interface)
that provides means to describe a scene graph and field connections in a text
file. When implementing new nodes the definition for the scripting interface is
automatically created and therefore does not pose additional implementation
effort. APRIL for example is mainly based on the scripting interface, adding
only a few general purpose nodes [76].

For a more detailed discussion of these concepts, see the Inventor Tool-
maker [152].

2.2.3 Application areas
Following application areas (among others) have be investigated and demon-
strators to evaluate the use of AR in these fields have been created.

Tourist Guide. The Outdoor Collaborative Augmented Reality (OCAR)
framework based on STUDIERSTUBE was created to support individuals
or a group of tourist by supplying them with navigation tools and
information about sites in a city [118].

2.3 Comparing Atelier and Studierstube 14

Machine Maintenance. With the AR Puppet framework based on STUDIER-
STUBE a virtual character support for machine setup and maintenance
was implemented. The virtual character provides guidance and can
interact with the user to build or repair a physical device [6].

Construct3D. This application focuses on a learning environment for ge-
ometric education. A group of students and a teacher are supported
through AR to solve various geometric construction exercises [71].

Video Conference. By adding tangible interaction and realtime 3D visu-
alisation techniques to a standard video conference (video and audio
transmission) a powerful remote collaboration tool for medic was cre-
ated [5].

Virtual Showcase. This is a system targeted at presentations in museums
to augment real artefacts and supply additional information. It also
includes a tool for creating interactive presentations (APRIL) [77].

To process the input of the users the STUDIERSTUBE framework makes
use of the OpenTracker framework. With this framework any tracking tech-
nology can be used to enable the users to interact in 2D and 3D. Devices
supported by OpenTracker are: tangible tracked objects (using ARtoolkit),
tracking hardware like ARTtracker, acceleration sensors, . . . but also speech
input and the integration of simple buttons and switches.

Multimodal output of STUDIERSTUBE supports 2D and 3D screen out-
put, sound and speech output, and through the AR Puppet framework also
physical device control (e.g. LEGO robot integration).

2.3 Comparing Atelier and Studierstube
STUDIERSTUBE and ATELIER are based on fundamentally different design
paradigms for interactive systems. STUDIERSTUBE, is a typical real-time
tracking and rendering system, that delivers a high quality AR experience
and can be characterized as being mainly a stream processing framework.

In ATELIER event processing is the base for the framework, which uses
individual events for coordinating the behaviour of the different components.

This difference is actually very fortunate, because it is complementary.
Combining both project will result in a versatile framework that incorporates
functionality for ubiquitous computing and augmented reality, two research
fields that have much in common, and at the same time have quite different
requirements on the used software framework.

2.3 Comparing Atelier and Studierstube 15

AR needs fast update rates of sensors, displays and complex calculations
to present the "illusion" of merging real objects with virtual ones. This goal
can only be reached by extensive usage of computer devices and massive
computing power. Though the final goal is to hide the computers and just
leave the view of the augmented reality. With the development of more
powerful, small, and light weighted computers, smaller and higher quality
see-through displays, and improvements in the sensoric devices this goal will
become reality.

Ubiquitous computing focuses on embedding interaction devices in the en-
vironment, also making use of already available output devices (like stereos,
television, watches, . . .). The development of ubiquitous computing environ-
ments struggle more with interaction design problems than with missing (or
too big) hardware.

A problem that is shared by both research fields is getting hold of the
technology. While consumer products become smaller and more powerful, the
technical knowledge and effort to achieve these enhancements, become more
and more inaccessible for (interaction) researchers. The special hardware
needed for AR systems is targeted at a very small group of researchers,
which makes them expensive, and furthermore technical development for this
application field is making only marginal progress. Big consumer electronic
companies sell HMD's, but these are more focused on providing means to
watch TV or VR setups for entertainment (non-see-through), than the for
AR needed see-trough displays [89].

Due to the long history of STUDIERSTUBE (nearly 8 years) and the large
number of people contributing to the framework, STUDIERSTUBE covers a
wide field of use, but also due to the history of the project some structures
are inflexible, an issue that is tackled constantly and leads to re-designing of
the framework (in two to three year intervals).

In ATELIER we were "fortunate" to only have 30 months time to develop
the system. Leading from the first independent prototypes, to a system
that incorporates nearly all ideas we wanted to realise. Also - due to the
short time - the number of people that contributed to the development was
limited, which eases the consistency, as the different work practices of all the
STUDIERSTUBE contributors sometimes leads to software design problems.

ATELIER and STUDIERSTUBE can hardly be compared, but each project
has unique advantages:

• STUDIERSTUBE is a huge project with an enormous variety of appli-
cations, software designs, being open to the public, well documented
and tested as API for educational use, and is maintained by competent
group of people.

2.4 Survey of Interaction Design Rules 16

• ATELIER has the advantage of a consistent global storage facility (see
HMDB 3.2, p. 24), the consistent integration of tangible interaction
patterns, and a small set of applications. Furthermore ATELIER was
developed in conjunction with the users in a participatory design ap-
proach, defining a clear and small set of use scenarios.

2.4 Survey of Interaction Design Rules
Designing and implementing interactive systems requires understanding the
users of the system [47]. Interaction between the user and the system is
actually just a method for communicating with the designer of the system,
by the means of using a computer system. The designer defines what and
how the work can be done. A lot of principles and rules have been developed
and described in the vast field of research that is concentrating on interaction
design. Note that interaction design is not only limited to computer systems
but also to the real world and objects of daily use [97]. There are also rules
and methods to evaluate a particular interaction design, some concentrate
on graphical user interfaces (GUI) [9] and some are more abstract and can
be applied to any interface.

Many authors have published rule collections that can be applied to ver-
ify that an interaction pattern meets certain requirements. Some of these
rules have to be adopted to fit a special application area, some of them are
so generic that they will always fit. Rules and guidelines provide a good
framework for thinking and reflecting about a system, choosing the "right"
guidelines however also reflects already the focus of a system.

Some of the rules that we have used and compared our work with are
now presented. Please note that a lot more guidelines are available and that
each year new guidelines are published.

Interaction frames. Bellotti describes in her article [10] that Goffman [43]
developed a notion of frames, that are social constructs (like 'performance'
or 'games'), that allow humans to make sense of otherwise incoherent human
actions. Explicitly setting a HCI frame - for both the system and the user
- will ensure that both sides understand the actions.

Communication theory. In the beginning of computer systems the inter-
action was centred at the capabilities of the machines. With the development
of more powerful computer systems the interaction can be centred at the hu-
man again. Human to human communication (HHI) can be very complex

2.4 Survey of Interaction Design Rules 17

and is based on languages that people share. With language every kind of
communication is meant like sounds, facial or body gestures. These lan-
guages are normally used in conjunction. For human-computer interaction
similar languages have to be developed.

As in human to human communication both communication partners
have to have an understanding and learn how to interact [41, 42, 44]. When
people have to use a language that is not their mother tongue, the partners
reduce the complexity until a stable communication is achieved. Often peo-
ple ask questions to verify they understood each other correctly. All these
communication patterns can also be found in human computer interaction.

As humans are more adaptive, one may assume that they are willing
to accept restrictions in the complexity of the communication, as long as
they are able to verify that they have been understood. In this thesis a
system is proposed that makes use of the ability of humans to learn. The
goal is to help the users to learn the human computer interface language by
enabling them to verify the system understood and giving them insights into
the functionality of the system.

A strong statement against automatic adaptation of computer programs
was presented by B. Sheiderman [126]. The author proved that spontaneous
adaptation of applications is disrupting the work flow. Actually users do
not expect that an application changes or adapts the way of communicating
with the user. Like all machines a computer is seen as a static object, which
should have a static interface that does not change.

2.4.1 Sensible, sensable and desirable

Benford et al. in [12] describes a framework for designing physical interfaces.
This framework especially concentrates on the physicality of the interface
(keyboard and mice also have a physical representation) and on the means
of sensing the users input (keyboard - buttons, gesture detection - vision).

• Sensible are movements that users normally would perform. These
movements are shaped by the physical appearance of the physical in-
teraction objects [97, 98].

• Sensable are movements that can be measured by the device that is
being used. This category depends on the technical realisation of the
sensors used in the device. The accuracy of the sensors also influence
what can be sensed by the system.

• Desirable are those movements that are wanted by an application. In-
dependent from the used sensors and what is sensible the application

2.4 Survey of Interaction Design Rules 18

designers envision a particular use of the device.

Benford states that only the design space where all three categories over-
lap are in general inspected by the designers of a system or device. Yet the
design field where only some, one, or none category is covered by the de-
vice incorporates opportunities for design. This framework is especial useful
when evaluating a device or system that will be used by untrained staff - as
trained persons tend to respect the scope of the usage. In a public context
however nearly all fields outside the sensible, sensable and desirable design
space will be explored by the users.

2.4.2 Properties of Instruments
Beaudouin-Lafon discussed in [9] that user interfaces can be evaluated using
the terms: degree of indirection, degree of integration, degree of compati-
bility. Although the original publication focuses on widgets, it can also be
adopted for tangible user interfaces.

• Degree of indirection. The degree of indirection is a measure of the
spatial and temporal offsets generated by an interface. The spatial
offset is the distance between the input part of the interface and the
object it operates on. The temporal offset is the time difference between
the physical action on the interface and the response of the object.

• Degree of compatibility. The degree of compatibility measures the sim-
ilarity between the physical actions of the users on the interface and
the response of the object.

• Degree of integration. The degree of integration measures the ratio
between the degrees of freedom (DOF) provided by the logical part of
the instrument and the DOFs captured by the input device. The term
degree of integration was introduced in integral tasks [62].

These terms have a very general character and are especial helpful, when
comparing different interfaces for the same or similar interaction design.
Beaudouin-Lafon concentrates on GUI interfaces and demonstrates his frame-
work on different widgets, where he proves that the new widgets are "better"
- when applying his measure criteria.

2.4 Survey of Interaction Design Rules 19

2.4.3 Affordances, Feedback, Constraints,
Mappings

[15] Norman in his book The Design of Everydays Things [97] concentrates
on design of devices. Based on his concepts Bowman and Hodges [15] created
User Interface Constraints for Immersive Virtual Environment Applications.
They proposed that the guidelines of Norman [97], p. 48 should be applied
to interaction objects in virtual environments (VE).

• Affordances. The object must inform the user of the way it can be
used, by visual or other clues (like handles) the user should immediately
understand the interaction pattern that should be used with the object.

• Feedback. The object must supply feedback when it is used, displaying
the change in the state of the object (e.g. like highlighting, changing
visual appearance .. .).

• Constraints. This refers to the limitations on the use of the object that
supports the user to use it in a proper way (e.g. like a slider that can
only be moved along one axis).

• Good Mappings. The conceptual model, on which an object is based,
should be easy to understand. Setting the frame (see [10], p. 416)
or situation, in which an object is being used, plays and important
role in building a conceptual model for the users. If the user does
not understand the specific usage model, then the interaction with the
object will not lead to the expected results.

Norman stated those requirements should be satisfied by physical devices.
In a ubiquitous environment, although the computational background should
be hidden, these properties ensure that the users will understand that they
are actually using a device. So the way the device has to be used must be
visible, while hiding the complex system in the background.

2.4.4 Eight Golden Rules of Interface Design

Shneiderman [126], p. 67-78 proposes 3 principles: Recognise the Diversity
referring to the diversity of users (novice, beginner, intermediate, expert) and
the different work practices of the users (command language, visual focused).
Use the Eight Golden Rules of Interaction Design and Prevent Errors the
later meaning that meaningful messages should be provided (not "SYNTAX
ERROR" for every error etc.) and designs that in itself prohibit users to
make errors (by sketching a very rigid approach), or at least help them to
avoid errors.

2.4 Survey of Interaction Design Rules 20

The Eight Golden Rules of Interface Design [126], p. 74-75

1. Strife for consistency. The actions, the interfaces and the terminology
should be kept consistent, while allowing a limited number of excep-
tions for specific situations (e.g. asking for confirmation when a delete
command is issued)

2. Enable frequent users to use shortcuts. To allow a beginning user to
advance to be an expert, shortcuts and macro recording functionality
should be provided.

3. Offer informative feedback. "For each user action, there should be a
system feedback. ". This rule actually enforces the notion of "interac-
tion" as the action-reaction pattern is stressed.

4. Design dialogs to yield closure. With "dialogs" general user - system
dialogs are meant. If an action requires a number of steps (e.g. saving
and specifying a filename) these should be designed to have a beginning,
middle, and end to

"give operators the satisfaction of accomplishment, a sense
of relief, . . . and an indication that the way is clear to prepare
for the next group of actions".

5. Offer error prevention and simple error handling. The system should
prevent errors, by only allowing valid entry of data (e.g. only digits
for numerical fields) "If users make an error, the system should detect
the error and offer simple, constructive, and specific instructions for
recovery. "

6. Permit easy reversal of actions. This feature relieves anxiety and there-
fore helps the users to explore the possibilities of the system without
the fear of making a irreversible error. This rule enforces the try and
error principle. A discussion about this specific rule is presented in the
section (see Undo Qualities 6.3, p. 110).

7. Support internal locus of control. Gaines [40] described this with his
rule avoid acausality and his statement that users should be the ini-
tiators of actions rather than respond to actions. Users should always
have the feeling that they are in control and are able to produce the
action they desire.

2.4 Survey of Interaction Design Rules 21

8. Reduce short-term memory load. Provide easy access to help, and ex-
planations of how tasks can be accomplished, provide clear and consol-
idated interfaces that limit the information processing needed. Inter-
faces should be easily perceivable and provide clear groupings.

These explicit rules create a framework to discuss about different solutions
and also help to think about usability when it comes to interface design. The
rules - as they are described in [126] - focus on traditional (if the last 10-15
years already provide something like a tradition) user interfaces, hence the
single user workstation with display, keyboard, and mouse.

When new interface devices should be developed, questions that seem to
be solved (at least in GUIs) pop up again.

2.4.5 Five Questions for Designers and
Researchers

Bellotti et al. in [10] provides in the paper "Making Sense of Sensing Sys-
tems" the Five Questions for Designers and Researchers. She compares the
solutions in different genres, meaning a set of design conventions anticipating
particular usage contexts with their own conventions, by asking these ques-
tions and also providing solutions from the GUI genre (and simpler genres
like cell-phones, microwaves, . . .).

Five Questions for Designers and Researchers [10]

1. When I address a system, how does it know I am addressing it?

2. When I ask a system to do something how do I know it is attending?

3. When I issue a command (such as save, execute or delete), how does
the system know what it relates to?

4. How do I know the system understands my command and is correctly
executing my indented action?

5. How do I recover from mistakes?

These five questions raise following issues, which are based on Norman's
"seven stages of execution" [97], p. 45-48, but are more focused on communi-
cation than on cognition. Those basic issues expose challenges that are solved
in GUI interaction, but have to be solved in a ubiquitous environment:

• Address. How to filter the signal from the input stream (signal-to-
noise), how can the user avoid to address the system?

2.4 Survey of Interaction Design Rules 22

• Attention. What feedback is presented to display that the system is
ready for input, and how is this feedback directed to the zone of user
attention?

• Action. How to identify and select objects, how to avoid unwanted
selections, how to perform complex operations (multiple objects, save,
selective save)?

• Alignment. How to make the system state perceivable, persistent or
queryable? How to provide timely feedback and how is this feedback
presented?

• Accident. How to interrupt a system action, how to undo an action,
how to intervene when a user made an obvious error?

These issues where addressed by us in both systems, and are described
in the next chapters. In STUDIERSTUBE - through the direct manipulation
method and the use of PIP and GUI like widgets - the solution to these issues
is easier than in ATELIER, where the ubiquitous character of the interfaces
raise these problems.

2.4.6 Error handling
Stressing the issues error handling and error recovery in 2.4.4 and 2.4.5 is
based on the strong statement of Norman [97], p. 105-140 that people make
(a lot of) mistakes, where some of the may be hard to detect (even for
themselves).

Some computer systems lack detection of errors, handling of errors, or
providing means of error correction. As Norman describes it "When someone
makes an error, there usually is a good reason for it." [97], p. 131.

Also an error should not be replied on "harshly" by the system, but with
help how to proceed and correct what went wrong. This is only true for errors
that can be detected by the system - or more correctly: have been foreseen
by the designer of the system. Sometime like issuing a "print" command,
was just a slip of the user. Undoing or interrupting an ongoing action is also
a sort of "error handling".

Chapter 3

Setting the Frame: Applications

Each application will be shortly introduced, describing the setting, how the
applications axe being used and sketching the concepts behind each applica-
tion. In the following chapters the related aspects of distribution and con-
figurability and multimodal interaction axe being discussed referring to these
applications. Therefore this chapter is important to get an understanding
for the applications.

First the basic elements of the ATELIER will be described, then the ap-
plications will be presented.

3.1 Infrastructure
The infrastructure software platform in ATELIER project is a generic plat-
form that allows different kinds of technologies to be integrated to the en-
vironment. This allows to extend and also change the functionality of the
environment. The platform supports to bring different kinds of technologies,
display systems and mobile devices into the space. Each of these components
most conform to the specified interfaces of the Infrastructure. Although the
Infrastructure itself is implemented in Java, components and systems built
with other technologies can be integrated into the system.

The ATELIER infrastructure acts as a mediator between the ATELIER com-
ponents, a component can be simple or a large system by itself. For example,
an infrared remote controller device, such as a TV remote controller, with
associated component software can be used as a component in the system
to control any other component or system in the environment. Components
themselves can be combined into applications, larger wholes of functional
entities.

The infrastructure contains functionality that is needed across compo-

23

3.2 Hypermedia Database (HMDB) 24

nents, and it also provides context for requirements that are not necessarily
functional (such as the need for location independence). The infrastructure
itself is based on Microkernel software architecture pattern, and can be ex-
panded by providing new internal or external services. The services are then
available to all components, that are connected to the ATELIER environment.
Examples of ATELIER external services are the Hypermedia Database service
- for storing hyperlinked multimedia information - and the Email Entrance
service - for entering new media into the hypermedia database service by
sending e-mail attachments from any kind of interned enabled device.

The main advantage of the infrastructure is flexibility and configurabil-
ity; it is possible, for example, to replace a positioning (tagging) technology,
display or a mobile device with another kind, without losing the interop-
erability of the ATELIER environment. This is feasible as long as the new
technology is able to communicate with the ATELIER environment using In-
ternet technologies and XML messages. If the technology per se does not
have this ability, it is possible to write adapters to enable the connectivity.
This architecture thus allows us to build more than just one implementation
usable in a specific context, but an environment that is reconfigurable and
also extensible in future experiments utilizing different technologies.

Because of the requirements for flexibility and extensibility, the specifica-
tions and design of the ATELIER Infrastructure software has been based on
the principles of expandability and abstract interfaces. The use of messag-
ing enables in this goal, as system elements communicate by sending XML
messages, that are routed by infrastructure Kernel. This mechanism ensures
that the elements are efficiently isolated from each other.

3.2 Hypermedia Database (HMDB)
The HMDB acts as a central database for multimedia content like images,
video files, sound files. Any other type of digital documents can also be
stored in the HMDB. A application programming interface allows Component
builders to add, search, browse, and modify the data stored in the database.
Components for browsing the database by the users were also implemented.
Because of the complexity and size of the HMDB, it is implemented as a
separate server software.

There is also the possibility of creating hierarchies and add meta-inform-
ation to each element in the database. The meta-information is a list of key
and value strings that can be used in different ways. There are also methods
for searching the database for specific elements (using the meta-information)
and retrieving whole parts of the hierarchy. Two generic interfaces have been

3.3 Configurator 25

developed to edit and manage the content of the database. The Path Creator
is a part of the E-Diary setup and a HTML-Access, which enables the users
to retrieve information and modify the database from any computer equipped
with an internet browser.

3.3 Configurator
The Configurator is actually not an application, but some sort of meta con-
trol mechanism for the ATELIER project. As described in the next section
3.3.1 and 3.3.2, the input and output of components of the ATELIER platform
provide abstracted representations of the input and output possibilities. The
Configurator allows the users to combine these components into a meaningful
system. Here the Configurator, as it was implemented in the ATELIER project
is described, a more advanced version will be presented in the chapter Con-
figurability (4.9, p. 73) that incorporates the experience we have gained in
studying the users and their problems with the Configurator.

As stated above the main task of the Configurator is to supply the stu-
dents with the means to configure the ATELIER environment (see Configura-
bility 4.9, p. 73). Based on the experience we gained from the first experi-
ments at the Academy of Fine Arts, we developed a system that allows the
students to connect different functionalities of the ATELIER project and also
presents them a consistent interface to the ATELIER environment.

3.3.1 Input devices
In the ATELIER project we incorporated support for a number of input de-
vices. Due to the commitment of the Disappearing Computer Initiative we
focused on tangible interaction devices. Nevertheless also other input devices
are supported.

RFID tags are supported to allow the students to issue commands and also
to access content from the HMDB (see 3.2).

Barcodes can be read with a barcode reader and are also used to issue
commands and to access content.

Various Sensors are uses to detect gestures and - based on the gesture
- perform an action. The Sensitive Sample is a development of the
ATELIER team, while the SoapBox is developed by VTT Electronics
[142, 30, 147].

3.3 Configurator 26

IR Remote Control (infrared remote control) is a well known interface to
a number of devices. Using a simple IR receiver connected to a PC
the buttons of the remote control are used as input component for the
ATELIER environment.

HTML access grants access to the HMDB by the means of a web inter-
face. Any workstation that is connected to the internet and has a web
browser can be used to add, view and manipulate data of the HMDB.

Tracking of various markers (ARTtoolkit and retro reflective markers) is
being used in the ATELIER project. The tracking of the retro reflective
markers was realised using the DynaSight Sensor from Origin Instru-
ments [102] and GPS to record the position of e.g. photos.

A complex "input device" was developed by our Finish partners: the
E-Diary [55]. A short description will now be presented.

The E-Diary. The typical activities of a student includes visits to some
location at the beginning of a project. She takes a lot of digital pictures,
captures outdoor ambient sound, records video clips and writes some notes on
the site. Once the student gets back in the ATELIER space the data gathered
has to be brought into the system, and the student can start to explore the
data, combine them with the items already present in the system, and work
on the concepts. Various ATELIER components support the student at each
different stage of the work.

Figure 3.1: The E-Diary in action

3.3 Configurator 27

The simplest way to collect data is to take a digital camera, go to the site
of interest and take photos. The students usually have to write notes for each
photo taken, stating at least where and when the photo was taken. In order
to make this cumbersome task of matching pictures and notes easier, the
El-Diary application has been developed. The E-Diary application runs on a
personal digital assistant that is equipped with a GPS card and a compass,
using the SoapBox (see figure 3.1). The position and orientation of the user
during the whole trip is recorded on the PDA using the attached sensors.
Additionally the students can record sounds or take notes that will also be
stored on the PDA. Once the student gets back in the ATELIER environment,
the GPS data, time and orientation will be automatically assigned to each
photo or note taken, by matching timestamps of the recorded data and the
photos taken.

3.3.2 Presentation devices in ATELIER

Figure 3.2: The three large displays

We developed a series of display components that can be used to present
digital material that are stored in the HMDB.

In the ATELIER room we provide several large screens to project on (i.e.
a three-screens wall), where the display planes can be adjusted to form a
closed space or a flat wide screen or anything between those extremes (see
figure 3.2). To reach a higher degree of immersion in our environment also
sliding projection screens that can be shifted along the room and be placed
with different angles were introduced. A rail grid was installed on the ceiling
of the room at the Academy of Fine Arts, these screens are hanging from
the grid and can easily be moved back and forth on the grid. Creating
an immersive environment is important both for learning and presenting.

3.3 Configurator 28

Another relevant factor is the easiness to configure such an environment and
the possibility to have different, flexible arrangements not only of the global
projection surface (multiple screens) but also of the inner parts of each screen.

We provide the users with physical handles, that are paper sheets, or
posters, to control the inner layout of single projecting panels (this facility
will be discussed later in more detail). For example each of the three screens
in figure 3.2 may be used as a single canvas or split into up to a number
of smaller regions for presenting search results (described in DisplayMan-
ager 3.3.5, p. 32).

Figure 3.3: The table

Additionally there is a table on which the designer can place their arte-
facts. On the surface an image can be projected from underneath, changing
the visual appearance of the table surface (see Figure 3.3). The Texture
Painter (see figure 3.16 and the following section) is used to create compo-
sitions of several images and textures to augment artefacts. Having large
and various displays allows exploring all possibilities given by workspace and
material, moreover it allows great creativity and freedom for presentations.

We also included a fan that could be activated by the students and a fog
generator. The fog generator was only used once, but enhanced the atmo-
sphere of the presentation (it was about a football game, where the audience
sometimes - though it is forbidden - throws fireworks on the playground),
see figure 3.4 .

A simple application that could play audio files was included, we experi-
mented with positioned sound (using 4 loudspeakers), but we soon found out
that the students had to concentrated on the visual content, and - although
all of them found that sound is an important quality of architecture - just a
few of the actually had the time to investigate and make use of sound médias.

Additionally printers were used as output devices, paper is still the ma-
terial with the most appealing affordances in a learning environment. Apart

3.3 Configurator 29

Figure 3.4: The wind and fog output

from producing sketches and images printouts, printers were used to print
pages that include both: an image and its barcode, which is the physical han-
dle to access the picture (see figure 3.7). Moreover printers themselves can
be accessed using physical handles, removing thus the necessity of accessing
a personal computer for printing.

3.3.3 Handling media content
We already stated that the main users of the ATELIER environment are
Information Technology (IT) novices and this factor deeply influenced our
design efforts. We also aimed to build a disappearing computer environment
so it is undesirable to populate the room with numerous computer work
places that can only be used with keyboards and mice. Our students do not
know how the HMDB works, and actually they do not have to. They have
to concentrate on their primary goal, learning of architecture and design. In
order to facilitate content manipulation, we provide a physical handle (e.g.
a barcode) for each added image. The students continually collect content
for their project.

Adding content to the HMDB. Once the data is gathered the next step
is to bring it into the system so that it can be accessed and manipulated.

Data can be added to the database in several ways. In case a digital
camera is used without the E-Diary application, then the fastest method
is to connect the digital camera to a computer, which runs the Entrance
component: an application that adds all pictures in the camera memory
card automatically to a new collection. Such a collection is then available
to all the members of the workgroup. Otherwise, if the E-Diary application
is used, then a component called Path Creator is the most suitable way of
adding the data to the system.

3.3 Configurator 30

The Path Creator downloads the data both from the camera and from the
PDA. Additional information is then assigned to each photo (using the time-
stamp of the photo and that of the GPS and orientation data) and stored in
the system. Furthermore, the Path Creator makes it possible to use a map
of the visited area. The path travelled during the site visit is depicted on the
map (see Figure 3.5) and locations where photos were taken are marked by
red dots. Using a HTML access it is possible, to retrieve the map again and
click on the red dots to browse all the pictures taken on that particular spot.

Figure 3.5: The Path Creator

Remote access to the system, to be used for example in case one of the
members is far from the ATELIER room and there is the urgent need to
show something to other workgroup members, is also available. By sending
images to a particular email address, pictures are automatically added to the
HMDB and meta-information is extracted from the email message body.

We also implemented a HTML upload component that can be used with
any (JAVA enabled) web browser to add content to the HMDB (see figure
3.6).

After uploading images to the HMDB in any of before mentioned ways
thumbnail pages are printed out (see Figure 3.7). For each "upload session"
the users get pages with thumbnails of each picture they added, with a bar-
code printed underneath each of them. These barcodes may be used as a
starting point for all actions in the ATELIER environment.

Physical Handles to digital media. Barcodes are easy to produce and
inherit all affordances of paper they are printed on (i.e. lightness, flexibil-
ity,. ..). Nevertheless barcodes have some downsides as well (such as their
fragility and visual intrusiveness). As a complementary way for physically

3.3 Configurator 31

File
C:\Protecswiue7OaabatemoTesliM04 0328 092708wi|...
C:\ProimtsWlellaiOttabMeCTrOTetlOT04 J)32B_23381O»A|...
C1Prote«SW«lleiOatabts»VnOTesll2004 0327J)00227M.|...
C1Pro|ecKWellerOatabas»<TIQTe£Tl2004 0327 153831MJ...
C3Pro|e«sWlelleiDaBbaseïTlOTes10004..0327J S4329MJ...
CN>re|oetsWtell8l0atabase\TiaTe««2OO4 0327.154332MJ...
C1Pnj)8eBlMelletOatabaseniaTe«Ti2004_0327_164348AlM...
C:\Pro]eclsWeli8tOaUbM«mOTesta00< 0327 164351MJ .
CWro]etteWell8iOaUl>.se>naT.»M00< 0327.1 «4353MI .

Keywords
H c i K W f
(ami* house
brtontsoate

firniß house

border

ClProlectsWsuwDatatuseVnOTesMOO« 0327 1643SM/M...I

Status

_ _ .

GtaUMyaadt

TTiu Aug 1911:15:05 CEST 2004

site visit protect TENT

11
upoad

Figure 3.6: The HTML Upload applet

Karlsplatz Visit

Figure 3.7: The thumbnail page

handling data and control devices, RFID technology is also widely used in
the ATELIER project. Barcodes showed to be more suitable to be applied
for augmenting large scale, heavyweight objects or fixed ones, such as three
dimensional models or wall mounted enriched maps. RFID technology is
used to create three dimensional controllers that are more robust. Moreover,
thanks to the possibility of placing RFID tags inside other objects, it is possi-
ble to explore physical dimensions of objects and to investigate the properties
of object compositions. Additionally RFID tags are used to analyse gestures
and actions performed in the learning environment. Using either barcodes
or RFID tags we are able to identify both objects in the HMDB and actions
performed in the environment.

Once images are stored in the system HMDB, and physical handles (e.g.
barcodes) for each image are available to students, we explored suitable ways
of exploring, accessing and displaying contents. In the ATELIER environment
there are many devices that are enabled to present multimedia content and

3.3 Configurator 32

several ways of browsing the database. We aimed at building up a config-
urable space in the sense that those devices could easily be put together
according to user needs.

3.3.4 HMDBLookup
This component of the ATELIER system is used to convert inputs into refer-
ences to the HMDB, serving as an abstraction layer for the different input
components that were included in the project.

Figure 3.8: HMDB Lookup Schema

As the name states it simply performs an lookup to the HMDB searching
for content that is associated to the input. Based on the type of the input
and the ID (barcode, tag ID, action performed with cube, . . .) an element
from the HMDB is retrieved. Based on the meta-information of this element
a command or content message is send. The content can be any digital
content, a configuration setting, or a saved session. In case that it is a saved
session, the content will be sent to the component that stored the information
in the HMDB.

Due to the introduction of this component, the method for accessing the
mentioned content is not bound to a specific input device. This component
forwards an abstract information to the DisplayManager, that will (based on
the state of the system) react accordingly.

3.3.5 DisplayManager

The DisplayManager serves as an abstraction layer for output devices. It has
a state that defines the "active" display and also controls the layout of the
(layout-able) displays. When a content should be displayed the identification

3.4 Web (HTML) Interface 33

ID of that content is send to the DisplayManager. Based on the configur-
ation, the ID (or a component specific content ID) will be forwarded to the
specific output component. Please note that this includes not only images
and movies, but also sound and haptic output.

This component manages displaying of results of the Ontology Search (3.7,
p. 39) and Tangible Image Query (3.6, p. 37), and the cross-search feature,
described in Combining the Search Methods (6.4.4, p. 114).

Figure 3.9: DisplayManager Schema

It also serves as a FeedbackManager that can display feedback on any
display. Depending on the context the users are able to define the display
that should be used for the feedback - eventually use sound as a feedback
method.

Due to the combination of the HMDBLookup and the DisplayManager
the system is highly flexible and allows easy integration of new input and
output components.

3.4 Web (HTML) Interface
The HTML access was implemented as a set of Java-Servlets, which create
the HTML documents that represent the interface to the HMDB. It can be
used to add and manage content in the HMDB, to change keywords or to
extend the ontology by adding new keywords. It was mainly used as a tool
to print out the physical handles (barcode thumbnails), that were then used
in the ATELIER environment.

The main advantage of the HTML access is that it is independent of the
JAVA runtime environment (and some libraries like the Java Media Frame-
work - JMF). The only software needed to use the HTML access is an inter-
net browser and the right URL. This is the main difference to the described

3.5 Sensitive Samples 34

Path Creator that must be installed on each machine, where this component
should be used.

This component will be discussed in more detail in the section HTML as
a User Interface (5.1, p. 83).

3.5 Sensitive Samples
The Sensitive Sample concept combines a hardware solution and some pro-
totypes that are being presented. The main goal of Sensitive Sample is to
provide means for the students to include their physical models in their pre-
sentations, making them interactive. The German word "begreißar" means
both "touchable" and "understandable", which expresses exactly what we
aimed for, helping the students to better explain the physical aspects of
their concept.

Knock, knock, knocMn*
ion hNMKib door«

Computer noaMno rign* on
tBfW port, Hocprefing thorn, and

T m n f t t v , touch, snd
s Incwoodsn

Figure 3.10: A typical configuration of the system using sensitive samples.

The main idea of the Sensitive Sample is to make common artefacts, found
in architecture studios or the office, become part of a computer interface. In
order to fulfil this requirement, the electronic device has to to be small enough
to fit inside objects of various sizes. The electronic device should also support
a wide range of sensors and simultaneous use of more than one device. The
communication with the computer system has to be wireless, and in our case
the device had to be inexpensive even in small production runs. Once the
device is installed the artefacts can be used as input devices. Figure 3.10
illustrates a typical configuration.

3.5 Sensitive Samples 35

A Sensitive Sample is any object enriched with various sensors, that can
sense the environment. Sensors are completely hidden inside the object, and
the actual sensitive artefacts do not appear to be different from their non
sensitive counterparts as shown in figure 3.11. We have experimented with
various samples ranging from a simple paper cube to architecture models.
The use of Sensitive Samples instead of traditional user interfaces was a new
experience for the architecture students. We have developed an electronic
device which supports various sensors. Tilt switches and touch sensors were
mostly used. The idea of making a small device, which can be incorporated
into real objects in order to make them a part of interface is not new. The
SoapBox [142], Smartlts [53, 128], and Navigational Blocks [22] are some
well known examples. The Sensitive Sample device is a low-cost alternative,
which supports arbitrary sensors and multiple samples simultaneously.

Figure 3.11: a) Concept model with touch-sensors mounted underneath, b) a
model made of cement, with touch sensors embedded in the cement

Programmable objects were also deployed by Resnick et. al. [119] in stu-
dent and school classes to allow them to explore more complex concepts like
e.g. context sensitive processing. The difference to the Sensitive Sample is
that the Toys to Think With are deployed in casings (meaning finished ob-
jects), that can not be changed by the users. The actual target of the Toys to
Think With is enhancing the building blocks in kindergarten, by letting the
students explore different combinations of software - like children explore the
different configurations of building blocks. On the other hand the Sensitive
Sample should be hidden inside an object - that has to be provided by the
students - and enhance it, they are not programmable, but configurable (see
(see Configurability 4.9, p. 73)).

Three example applications, were some details of which will be described
later are:

3.5 Sensitive Samples 36

• the ControlCube - a device to control the ATELIER environment and
select states

• the NavigationBox - a device to navigate in the HMDB

• the MaterialKammer - a concept for experiencing qualities of different
materials

ControlCube. The ControlCube is a simple cube, which can detect which
side of the cube is facing up. This device can be used to switch between
different configurations and modes in the ATELIER environment. Figure 3.12
shows an example of a ControlCube created by the students.

Figure 3.12: The ControlCube made by the students.

NavigationBox. As an alternative method for navigation control, the Nav-
igationBox was developed. Sometimes students wanted to browse through
their images, sounds, and videos and then select a certain image. For such
a purpose we have build a box with two touch sensors on one side. If the
side with the sensors is facing up, the user can browse through the content
by touching the places which correspond to previous and next. Once the
user has found the content she wanted, the NavigationBox is turned up-side
down. With this gesture the media is send to an other applications in the
system (see Configurator 4.9.2, p. 79).

MaterialKammer. Since materials play a crucial role in architecture, it is
very important for the students to explore and to get familiar with various
materials and their qualities. MaterialKammer is a room filled with material
samples, which is envisioned to be an inspiring and learning environment.

3.6 Tangible Image Query 37

The material samples are of various sizes and shapes. A concrete block
has to be big and heavy, it's not something the user can take in her hands to
play with it. On the other hand a brick can be easily picked up and explored
using different manners. All samples are sensitive, and can sense various
user actions. Based on these actions the whole environment will be changed,
using all the output possibilities available, to create an atmosphere, that
provides information and inspiration for the students (see MaterialKammer
concept 5.4.2, p. 93).

3.6 Tangible Image Query
In ATELIER our students had to handle a large number of images. Conven-
tional ways of data retrieval became just insufficient for large amounts of
visual material. Popular thumbnail views are useless, if we have thousands
or tens of thousands of images.

Content based image retrieval, which has been a subject of extensive
research in the last decade, tries to offer a solution for retrieving images
from large databases. The original and still often used idea is the query
by example method. This means that the user supplies an image, and the
system tries to find similar images. In this case the central problem is the
definition of similarity. As humans themselves can not always agree on what
is similar and what is not (and also what is more similar), the results of
image retrieval are often unexpected and sometimes disappointing. Figure
3.13 shows an example where such a system was used to search for images
similar to the bird image. If the user understands that the system tries to
find images with similar colour layout, and not content (bird in this case),
results are much more satisfactory. On the other hand if the user expects
birds she might be really disappointed.

The next step in image retrieval was not to search only for overall similar-
ity, but rather to find images containing a specific pattern. A company logo
is a good example. Imagine a company searching for images containing their
logo. The logo can be anywhere in the image, it can be taken under various
lighting conditions, it can be distorted due to the perspective projection and
so on. Clearly this is not a trivial task. Furthermore, if one tries to find all
images containing a bird, for example, the whole search becomes practically
impossible - when using a query by example approach.

There are numerous systems capable of various kinds of image queries
available. IBM's QBIC System [104] was one of the first systems, and it
can be tested online at [59, 114]. The VIR Image engine [46] from Virage,
Inc. and the Photobook Project [103] developed in the MIT Media Lab are

3.6 Tangible Image Query 38

-IDIXI

• • • • <
• • • • •
• • • • <

» 300781

Figure 3.13: Query by Example can be disappointing if the user does not under-
stand the underlying algorithm. Here the system searches for a similar colour-
layout, and not for birds. The number underneath the pictures states the calculated
difference to the image provided.

two also well known examples. The work of Jacobs at al. [63] is especially
well known in the computer graphics community. All of these as well as
[33, 73, 145], represent the query by example approach. There are systems
like Blobworld [11, 24] or ICONA [14, 34] which represent another group of
systems, they go beyond simple query by example, and try to find similar
shapes, textures, and other features.

Some systems offer a possibility for the user to sketch the query image.
A user might remember how the image looked like (but cannot remember
the image's name), so the user sketches the image, and the system finds
matching images from the database. Another possible scenario of use comes
from the designers' and architects' perspective. In the concept design phase of
a project it is common practice to browse through image collections in order
to be inspired, to see some unexpected connection between images. Visual
image query can be used for such a browsing. The drawback of the method
described above (see Figure 3.13) suddenly becomes an advantage. Asking
for a parrot, and getting a flower can be either: frustrating or inspiring,
depending on the user and the context.

This project is based on such a system, and a new kind of user interface

3.7 Ontology Integration 39

Figure 3.14: The Tangible Image Query

for sketching images is introduced. Instead of using a mouse to draw, users
are provided with small cubes of various sizes and colours, and they try to
sketch an image using the colour cubes. Cubes are placed on a semitrans-
parent glass surface. Besides the cubes, users may use any coloured objects.
This kind of "sketching" using currently available artefacts is particularly
common among designers and architects. We implemented the method, built
a prototype and tested it with users (see figure 3.14). We will compare the
results with conventional sketching using a mouse (see Image Query Mouse
Interface 5.2.1, p. 86).

3.7 Ontology Integration
To lead the learning process and facilitate conceptualization on one hand and
indexing material on the other, an ontology was provided to be used by the
students. An ontology can be roughly defined as a hierarchically organized
set of keywords that can be applied for giving descriptions of items in the
HMDB. The hierarchy captures different kinds of relation among terms (e.g.
the part-of or the is-a relations). We built several facilities around the
ontology [21] and the way the ontology is dynamically built and maintained
is described in [78]. The most important thing to be noticed is the way the
ontology is intended to be used in our environment. While students work is
in progress, teachers aim to show them unconventional ways for seeing the
materials they are working with, in order to open their minds to new ideas
and conceptualizations.

It is therefore not useful to provide some kind of exhaustive ontology in
advance and to force students to stick upon it. They usually start from a very
short list of keywords that are rather uncommon and through them they give
non-trivial descriptions of collected items. Ontology is thus enriched and hier-

3.8 Texture Painter

Figure 3.15: Ontology used by Sophie at a presentation. She used printed pictures
and her own keywords, sorted into a drawer.

(used with permission.)

archy is modified during students projects according to their understandings
and agreements. In order to make this refinement process easier to handle it
is necessary to provide also an easy to understand interface to maintain the
ontology. We initially created an Ontology Interface Component that is a
personal computer GUI devoted to these tasks (i.e. adding new keywords, re-
arranging the hierarchy, modifying image descriptions...). We will describe
later in more details some other ways, we experimented with, for applying
keyword-based descriptions to multimedia contents without the need of such
an interface (see Multiple Ways of manipulating keywords in Atelier 6.4.4,
p. 115).

3.8 Texture Painter
The Texture Painter is an example of a non-trivial device for showing pictures
on multiple projection planes. It basically consists of a projector, a camera
and a brush. A software component tracks the movements of the brush in
front of the camera and this information is used to virtually paint a physical
model in front of the projector using digital textures, which can be any digital
picture or even video clips.

While painting, a texture palette, with ten different textures, is displayed
and users choose one of them by placing the brush upon the selected slot
in the palette. Functionalities for altering textures (rotating, scaling and
moving) are also available to extend graphical possibilities (see figure 3.16).

The Texture Painter can be used by the DisplayManager (3.3.5, p. 32)
as an output device, in this way it can be directly controlled using physical
objects: for example textures can be switched by using the described handles
to digital media (see figure 3.17).

3.8 Texture Painter

Figure 3.16: Left: the Texture Painter in action, Right: double Texture Painter setup.
Bottom: the texture palette

When an image is sent to one of the Texture Painters the currently active
texture is replaced by the new image. In this way the part of the artefact,
that was painted with that texture, changes its look, creating a new vision
of the artefact. Using the Texture Painter mixed objects, meaning objects
that inherit properties and affordances both from their physical and digital
components, are created. Properties of physical models are deeply investi-
gated and architecture students are moreover allowed to experiment and to
test different possibilities before realizing final (coloured, textured) models
of objects they are working on. Actually in some experiments students re-
quested two Texture Painters to project both on the vertical and horizontal

Figure 3.17: Exchanging the material of a model.

3.9 Invisible Person 42

faces of their artefacts.

3.9 Invisible Person
Based on body movement and posture an advanced user interface was devel-
oped enabling even playing games in an immersive virtual environment. The
users presence in the environment, movements, and body postures are the
available tools for interaction. Furthermore, a publicly accessible installation
in the Vienna Museum of Technology implementing such an advanced envi-
ronment was created. In this installation computers are completely hidden,
and it is one of the most popular exhibits in the museum, which has been
accessed by more than 200,000 visitors since September 1999. The new "In-
visible Person" interactive installation, which is on exhibit in the Technisches
Museum Wien (TMW , Vienna Museum of Technology) is an interactive, im-
mersive virtual environment installation. The system is placed in a publicly
accessible place, where a lot of users access the system. Therefore high de-
mands on stability and robustness are required than those required for a lab
prototype. The installation consists of a stage, with a sizeable (2.5 x 3.8 m)
display on one side. Figure 3.18 shows the actual installation in the TMW.

Figure 3.18: Pictures of the installation displaying the working scheme of the vir-
tual mirror. Displaying the IP and the users

A camera is placed above the display, and the video of the stage is shown
in real time on the screen, creating some sort of mirror effect. The mirror
image does not only show the mirrored stage, but includes "The Invisible
Person" living in the mirror (it is "invisible" only in the real world). "The
Invisible Person" (IP) tries to interact with the users in real time. The
only interaction tools available for both are their movements and full body
postures. No facial gestures, hand gestures or use of fingers are traced. This
makes it simpler for the user and also lessens the computational demand on

3.10 APRIL Framework 43

the system. Actually, this setup has been in the museum since September
1999, when the original IP installation was set up. Petta et al. [105] described
the original installation. It was up and running from September 1999 to June
2001. The original installation was based on the ALIVE system [27] from
the MIT Media Labs. The ALIVE uses a virtual mirror metaphor and an
additional virtual character, which looks like a dog and interacts with user.
The users can play with that virtual dog by throwing virtual sticks that are
brought back, and additional "doggy" behaviour was implemented.

For the original installation in the TMW a child-like virtual character
was designed. An artificial intelligence (AI) module controlled the behaviour
of the virtual character forming IP. The IP installation allows real-time in-
teraction, the visitor's movements are displayed immediately and interaction
with the IP is direct and instant. This real-time requirement puts hard con-
straints on the realization of the system and even more on the design of the
AI that has to react within just a moment.

An important feature of all characters living in virtual environments is
their "intelligence". There is a lot of research done on modelling emotional
and intelligent virtual characters populating virtual environments. Petta et
al. [105], ALIVE system [27], and Tu and Terzopoulos [141], describe the
emotional model of virtual characters.

Body movements were used to create an advanced interaction schema,
which makes it possible for users to step beyond simple interaction, and even
play games with the IP. In order to give a brief insight into the complex-
ity of such an interactive real-time immersive virtual environment installa-
tion the actual application will be described. Especial the distributed (4.5.2,
p. 65) and multimodal (5.4.3, p. 94) aspects of this installation will be pre-
sented.

The system was developed by Imagination [58], the Computer Graphics
institute from Vienna's University of Technology [25] and the AI-Group [4].

3.10 APRIL Framework
The APRIL framework for STUDIERSTUBE was created by Florian Ledermann
in the scope of the 1ST Project VirtualShowcase.

To support users in creating content-rich applications for AR sys-
tems, we wanted to create a language especially designed for the
needs of this task.

Authoring interactive, dynamic presentations is a process of vary-
ing complexity that may include several professionals working

3.10 APRIL Framework 44

with different tools, but may also be performed by a single indi-
vidual with more limited resources. The authoring process should
therefore be scalable, offering all the possibilities to model sim-
ple presentations or prototypes quickly, and offering a structured
workflow to teams working on larger presentations, incorporating
various tools for modelling and content creation. APRIL sup-
ports such a workflow by separating presentations into different
parts (story, components, media objects, hardware description,
behaviours and user interaction are the main aspects). [76]

A language similar to HTML [149], and UML [100] was created to allow
users (with users the story authors are meant) to describe an AR presenta-
tion. This language is based on XML [148] and has a rich set of elements for
media presentation, dynamic interaction, and scripting functionalities. The
strength of this framework is the abstraction of input and output, and the
flexibility to adapt the created presentations to different environments.

Due to this abstraction any target system (VirtualShowcase, HMD, Screen,
.. .) can be used to experience the presentation/story. The flexibility is based
in the design, because new elements of the language can be defined by the
users. Ledermann also sketches different roles during the creation of a pre-
sentation:

The APRIL authoring process helps a single author to structure
the work, and teams of specialists working together to coordinate
their efforts. For the authoring process, it is possible to define
various roles of people contributing to the presentation. These
roles may be embodied by distinct professionals (or teams of pro-
fessionals), or by fewer or even a single person authoring a simple
presentation. The following roles of people that contribute to a
VS presentation have been analyzed:

• Domain Expert. The domain expert is the individual or
group with the necessary knowledge about the presentation's
subject. For history presentations, this might be an archae-
ologist or historian, for scientific presentations an expert on
the given subject.

• Story Author. The story author is the person who comes
up with the ideas of how the subject should be presented
in an interactive way, and defines the storyboard for the
presentation. In our model, the story author is also the
communicator between the domain experts and the content
creation people.

3.10 APRIL Framework 45

Content Creator. Content creators design and deliver multi-
media content for the presentation, following the storyboard
as a specification document. Content creators deliver im-
ages, graphics, video, sound and 3D-models to be used in
the presentation.
Component Implemented For sophisticated presentations,
static media content has to be turned into components that
can expose behaviour and react to user input. Additionally,
custom components may be needed to realise complex user
interaction or behaviours.

Story Integrator. Finally, the story integrator puts together
the components and media elements according to the sto-
ryboard, and specifies interaction techniques offered to the
user. This is a similar, integrative position as the story au-
thor, and might well be performed by the same person. But
while the story author acts a priori to the content creation
to specify the details of the presentation, the story integra-
tor takes the results of the content creation phase and puts
them together, (from [76]).

• • • • •

D

•
D

Flow of MbnnsQoo

FtoxHcontM

ExtandTod

APRIL PiocnsSkp

DoaiMrt

tation

Hardware
Description -~

Confi-
guration

i

— Playback

Figure 3.19: The APRIL workflow for creating a presentation.
(used with permission.)

Using the definition of roles given above, we get a sequence of steps to
create an APRIL presentation, using the various tools that have been inte-
grated. A graphical representation of this workflow is given in 3.19. The first

3.11 AR Puppet Framework 46

step in the APRIL workflow is research of the subject of the presentation.
Raw material (text, images, video, sound, models) is collected, and the idea
for the presentation is developed, possibly in sessions with domain experts
and museum staff. This brainstorming phase results in the story document,
the UML model of the flow of the presentation.

This structure does not necessarily mean that each of them must be a
separate person, it is merely a distinction of different work-stages and also
defines a clear interface between those stages. Using APRIL these stages can
be separated, with an exactly defined interface that allows each of the stages
to be worked on without having to think about the other stages. This is
especially helpful for designers that do not have to knowledge to implement
an AR system, while on the other hand help the programmers to implement
general solutions that can be reused easily.

3.11 AR Puppet Framework
Based on ideas from Invisible Person and previous work on virtual characters
and agents Barakonyi developed the AR Puppet Framework for STUDIER-
STUBE. This framework defines the separation between different layers of
control in a character enriched application. Together with the flexible APRIL
language complex interaction patters between the users (meaning the presen-
tation consumers) and a set of characters in the presentation are possible.

In digital storytelling it is common to use a hierarchical structure
similar to that used in a theatre [129] since these terms, which
often represent complex system components, are familiar even to
non-technical people. Although the comparison is not novel, we
found that tasks to control AR agents can be divided into discrete
groups which closely match the layers of a puppet theatre's mul-
tilevel structure. We therefore borrowed the stage metaphor for
AR spaces, story metaphor for applications, puppet metaphor for
AR agents and puppeteer, choreographer and director metaphors
for various control logics. Interaction is performed by the sto-
ryteller, who also assures that the story proceeds in the desired
direction. These components build up our hierarchical animation
framework (see figure 3.20), which we call AR Puppet, (from [6]).

The Puppet as the bottommost component stands for one representation
of an agent. It can be physical or virtual, for agents that have multiple
representation, one puppet for each has to be implemented.

3.12 PUC Framework 47

Storyteller

A story

, U s e r - > f Director | abstract view
Interaction ^ ")

TJT abstract, high-level instructions

Choreographer I global view
A concreteThigh-level instructions

Puppeteer local view

X concrete, low-level instructions

Puppet I low-level details

Figure 3.20: Overview of the AR Puppet framework.
(used with permission.)

The Puppeteer is the component that groups puppets together and con-
trols a selected set of agent representations at the same time. It knows
exactly "which strings to pull", that is how to implement higher-level
instructions for each puppet to obtain the desired effect.

The Choreographer has a general overview of all puppeteers and their at-
tributes. This level does not deal with character-specific details, but
focuses on higher-level concepts like motion planning (to avoid colli-
sions), and synchronisation between the puppeteers.

The Director drives the "story" (the application) forward based on chore-
ographer events and feedback, user interaction and scripted behaviour.

Through the introduction of the AR Puppet framework to STUDIER-

STUBE a consistent concept has been found to combine real and virtual rep-
resentations of active components. This also includes devices like lights,
printers or robots, which can now be represented and controlled in a uniform
manner. With this framework it is possible not only to change the virtual
augmentation of the reality, but reality itself (through the physical active
components).

3.12 PUC Framework
One of the most used interaction concept in STUDIERSTUBE is the use of
the personal interaction panel (PIP) and pen introduced by Szalaravri et.al.
[135]. The pen is a tracked artefact with at least one button, PIP is a tracked
plane that allows the user to perform two handed interaction with the system

3.12 PUC Framework 48

- one hand holds the PIP and the other the pen as shown in figure 3.21. As
described in [64] two handed input generally improves the accuracy of aim
and hit actions. The PIP is used to display widgets similar to GUI widgets
to enable the user to interactively change system parameter. Based on the
metaphor of the PIP some other interface tools where also created like a
virtual camera (to take pictures of the 3D scene with the PIP, using it as a
window), a magic lens metaphor and also a Drag and Drop collector (selecting
objects on the PIP and putting them into the scene).

Figure 3.21 : Pip and Pen

To further extend the input possibilities of STUDIERSTUBE, a bridge be-
tween the Personal universal controller (PUC) framework [96] and STUDIER-

STUBE was implemented. With this extension the separation between input
and functionality is possible. The PUC framework was actually designed to
provide GUI on mobile devices for real devices that do not have a GUI.

Nichols et al. describe in [95, 96] a system developed as an approach for
improving the interfaces to complex appliances by introducing an interme-
diary graphical or speech interface. This system automatically generates a
graphic or speech interface with which the user can interact and control any
appliance.

The PUC architecture consists of appliance adaptors, a specification lan-
guage, a communication protocol and interface generators. The appliances
allow connection to the PUC by means of the appliance adaptor, which repre-
sents a translation layer to its built-in protocol. The communication between
PUC devices and appliances is enabled by a two-way communication proto-
col and a specification language that allows each appliance to describe its
functions to an interface generator. The specification language constitutes
the separation of the appliance to the type of interfaces it uses. The interface
generator builds then the interface for the device that is going to control it,
such as a graphical interface on a handheld or a pocket PC or a speech in-
terface on a mobile phone. A diagram of this architecture is shown in figure
3.23.

3.12 PUC Framework 49

ADAPTOR
(publishes description +

^appliance state *• controls appliance)

ii (device specification
4-state f control)

Figure 3.22: A diagrammatic overview of the PUC. A graphical or speech interface
is introduced and communicates with the appliance by means of the specification
language.

rt-tr-ew*K* fart-'flack'

Figure 3.23: An architectural diagram of the PUC system showing one connection.

The PUC framework explicitly allows multi device scenarios using any of
the possible interaction methods - using the buttons of the device, using a
handheld PC or a smart-phone - each device can be used independently and
even at the same time. No conflict handling is implemented, so the inputs are
handled in the order they arrive at the device. If someone mutes the device
and another user using the PocketPC changes the volume, it just depends on
which command is received last, so either the music will be louder or muted
(with a louder volume).

Using a handheld PC or a desktop program the states in the STUDIER-

STUBE can be controlled. For the PUC framework each STUDIERSTUBE ap-
plication is just another appliance providing the necessary interfaces. So a
GUI is generated for all the states that are defined by the application. These
states can also be changed by the application, which allows displaying data
on the handheld device. As STUDIERSTUBE is a framework for rendering 3D
content normally most of the data will be visualised by the application using
the graphic tools available, but some times is useful to display data also on
the handheld.

3.13 ConstructSD 50

DEF CIRCLE_COMMAND SoPucCommand {
labels ["circle", "add c i rc le"]
act ivelf SoPucActivelfNode {

explanation ["You have to se lec t at least 2 points" ,
"to be able to add a c i rc le . "]

act ivelf SoPucActivelfClause {
s ta te = USE NUMBER_POINTS.value
op GREATER_THAN value 1 }

} #end activelf
explanation ["Adds a Circle , based on 2 points",

"that define center and a point on the c i rc le"]
} # end c i rc le command

Figure 3.24: An example how a command is defined using the PUC framework in
STUDiERSTUBE(taken from the Construct3D definition file). The activelf structure
defines that this command is only available if at least 2 points are selected. The
explanation defines the tooltip text that will be shown.

Using the PUC framework to describe an interface, allows to rapidly
develop and change the interface for an application. It also allows to represent
internal application states in the interface by defining conditions, under which
a command or value may be changed. Also values can be displayed in a
"read-only" manner, so that the value can be perceived by the user, but not
changed (see figure 3.24).

In STUDIERSTUBE a similar auto GUI generation algorithm has been
implemented [84]. By specifying the states and their interdependency an
automatic layout of widgets is created. These widgets are then being dis-
played on the PIP and can be used to control the application. This way
an abstraction layer between input and functionality is introduced to the
STUDIERSTUBE framework, allowing the application builders to concentrate
on the functionality of the program.

3.13 Construct3D
The ConstructSD project started in the September 2000.

In order to solve three dimensional mathematical but especially
geometrical problems, spatial abilities are an important prereq-
uisite [16, 35, 45]. Many students have difficulties solving tasks
that require spatial visualization skills and spatial thinking. To
get passing grades they use strategies such as learning construe-

3.13 ConstructSD 51

tion steps by heart without fully understanding spatial problems
and their solutions in 3D space...

ConstructSD [67, 68, 70, 72] is a three-dimensional dynamic ge-
ometry construction tool that can be used in high school and
university education. It is based on the STUDIERSTUBE AR sys-
tem and uses augmented reality to provide a natural setting for
face-to-face collaboration of teachers and students. The main ad-
vantage of using AR for constructing geometric objects is that
students actually see three dimensional objects which they until
now had to calculate and construct with traditional (mostly pen
and paper) methods.

Mid- to long-term plans are to integrate ConstructSD and the
concept of teaching geometry with Augmented Reality in high
school and higher education by collaborating with Austrian schools
and external partners such as the Institute of Geometry at Vienna
University of Technology, {from [69]).

Figure 3.25: Students work with Construct3D.
(used with permission.)

The project was evaluated twice (and will be evaluated again in the near
future). In the second evaluation (documented thoroughly in the PhD thesis
of Kaufmann [69], p. 111-126) interaction issues could be clearly observed
from the questionnaire.

As a standardized usability questionnaire we used the ISONORM
questionnaire by Prümper [112] and adapted it to our needs.
The ISONORM questionnaire was derived from the software er-
gonomie standard DIN EN ISO 9241 Part 10 (German Industry

3.13 Constructs'D 52

Standard). This questionnaire is designed to test the usability
quality of software following the ISO 9241 part 10 principles. It
represents an operationalism of the seven dialog principles in the
ISO-standard: suitability for the task, self-descriptiveness, con-
trollability, conformity with user expectations, error tolerance,
suitability for individualization as well as suitability for learn-
ing, (from [69]).

The second field trials displayed clearly that some points of the applica-
tion need improvement. With a rating between -3 (very bad) to +3 (very
good) the overall score was 1,44 (see figure 3.26). For some issues, where
rating was not satisfying (lower than 0,5), can be tackled with the latest
developments in STUDIERSTUBE. In the table 3.1 parts of the questionnaire
are presented. Beginning with the some of most positive results, followed by
the issues that are dealt with in the redesign.

ISONORM Usability Questionnaire

1,8)

D Suitability for the Task

• Self-Descriptiveness

• Controllability

D Conformity with User
Expectations

• Error Tolerance

• Suitability for Learning

0,00 0,50 1,00 1,50 2,00 2,50

Figure 3.26: Overall results from the questionnaire.
(from [69]). (used with permission.)

Based on the improvements of the widgets capabilities in STUDIERSTUBE
and the integrated PUC framework, we (the author and Kaufmann) decided
to deal with these problems and add new features that were requested during
the field trials.

Though it must be noted that students did not feel the need for improve-
ments in the field of interaction design (as most users are not aware that the
design is causing them having problems, with a system [97], p. 1-33). Sug-
gestions for improvements were mostly concerning the physical configuration
of the HMD and software speed and stability.

3.13 ConstructSD 53

Question

is complex/easy to use
offers no/all functions to solve tasks efficiently
uses incomprehensible/comprehensible terms in
menus
allows no/an easy change between menus
quires a lot/very little time to learn

informs sufficiently/does not inform about valid and
invalid input
informs insufficiently/sufficiently what it currently
does
informs too late/immediately about wrong inputs
does not/does give concrete tips for error correction
is difficult/easy to learn without somebody's help or
a manual

Mean
Value

2,36
2,14
2,29

2,50
2,29

0,29

0,36

0,00
-0,57
0,57

Standard
Deviation

0,50
1,10
0,47

0,52
1,07

1,64

1,82

2,12
1,83
1,34

Table 3.1: Some results of the ISONORM usability questionnaire.
{from [69], p. 122-124)- (used with permission.)

The improvements will be described in the section Construct3D improve-
ments (5.6, p. 100).

Chapter 4

Distributed and Configurable
Aspects

The meaning of distributed computer systems in this thesis is that more than
one computer and device is used simultaneously. But distributed has also
the meaning of spatial distributed, that the space is divided into different
workplaces (see Configuring the Space 4.9, p. 74). Distribution also allows to
create multi-user applications that allow real time collaboration over space
boundaries.

Early work on distributed systems was published by Morris et.al. [90]
who described a system that has been develop for universities. Most con-
cerns (about 20 years ago) are about networking and global repositories.
The principles that he proposed are still valid, although computing power,
network capabilities and personal and local storage space has increased.

Selected related work from the field of distributed systems and distributed
aspects of the applications is presented in this chapter.

4.1 Distribution of Input and Output
The exchange of data between different machines is performed using com-
puter networks. Due to the rapid development of wired and wireless net-
works the transport of data from one computer to another is no longer a
major problem. Distribution has some advantages while at the other hand
it increases the complexity of a system. Synchronisation is just one of the
many issues that arise from a distributed setup, also the system design is
heavily influenced by the decision to create a distributed system. The soft-
ware designers have to create simple interfaces between the distributed parts
of the system to ease the development of the network protocols. Further

54

4-1 Distribution of Input and Output 55

more decisions have to be made, which functionalities will be available and
in which part of the system those functionalities will be implemented (see
Display Manager 6.7.1, p. 122).

"Distributed" means that input, output and processing are distributed.
While distributed input is quite common - special computers to handle and
calculate tracking - distributed output is a complicated research field. Part
of the research is focusing on "intelligent" systems that try to automate the
selection of an appropriate output device, based on heuristics and learning
from users interactions, sometimes implementing peripheral displays [80, 20,
50, 92].

When distributed input is available the binding between action and reac-
tion is also a issue. When a user interacts with a input device in a distributed
system the meaning of the user can be unknown or even confusing (for the
system). Some systems try to solve this by applying heuristics or predefined
behaviour [23], if the heuristic is based on the location of the user this is
known as "location based service". Other systems allow the users to create
this binding using various patterns (see Configurability 4.9, p. 73).

4.1.1 Input and Output abstraction

Before the data is send over the network, the representation of the data is
abstracted, which means that a general description for that data has to be
created. In this way differences that originate in the different hardware and
software used, can be made transparent for the application developers.

Input abstraction When creating a system that incorporates multiple in-
put devices, the input interaction must be abstracted using different layers.
Input abstraction on a low level is already present in most frameworks [117].

The PUC Framework (3.12, p. 47) uses a abstract description of the inter-
face that consists of states and commands. The different input possibilities
are then implemented in the clients that allow changing the states or issuing
commands. Each of the states has a name that should describe the state's
meaning, but the real meaning of the state or command is grounded in the
reaction of the application. The PUC Framework lacks of a concept of dis-
tributed interaction as it was created to control appliances that are normally
integrated into one device. Multiple devices can be controlled, but they nor-
mally do not influence each other, also it is not possible to create one global
interface for a number of (distributed) devices.

We propose that "input abstraction" should be extended to "interaction
abstraction" meaning that high level interaction events are created and pro-
cessed by the system.

4-1 Distribution of Input and Output 56

While input abstraction is quite common in most implementations, inter-
action abstraction is rather seldom. To get the most out of the abstraction a
three layered abstraction is suggested. The first layer hides the actual hard-
ware from the system - generating hardware independent low level events.
Examples for these events are orientation of an object, state of a button and
so on (see OpenTracker 2.2.1, p. 12).

These events are then processed by the second layer to generate high
level events that do not depend on the application context. Such events
are Button 'Save' pressed, or Object X, side 3 facing up (changed
from side 2).

The third layer takes the context of the current situation into account and
creates messages like save data of Device 'Screen 3 ' , or save data of
a l l active Screens, or switch to configuration mode, and display Im-
age 254 on Screen 2. This final message then triggers a functionality that
performs an action based on the content, or to an output device that displays
the content.

Physical Device
Abstraction Layer

e.g. OpenTracker,
HMDBLookup

'save', 'load',
select object,

change value,...

position, orientation,
button state,...

Physical
Device

ical ^ f
ice J î

Physical
Device

Figure 4.1: The three layers of input abstraction, in the topmost layer the "interac-
tion abstraction" is realised.

In the APRIL language this kind of "high-level" information is partly
described, still a presentation author would specified that a object has to be
"selected" (where the "how" to select that object is left to the actually target
platform) to get additional information. The "high level" information, that
the user wants to have additional information displayed (where the users is
communicating that by "selecting" the object) is the type of information we
propose to use in a framework.

OpenTracker: The approach of STUDIERSTUBE is to use the OpenTracker
framework to merge different input sources into one graph that includes all

4-1 Distribution of Input and Output 57

the input devices. The merging of more than one input source is also possible
and transparent for the application developer. Up to now this has to be done
at the start of the application, but already the development of a more flexible
framework has started.

Atelier: In ATELIER the different input devices are abstracted as Com-
ponents that communicate their state over the network. This means that
they can all run on one machine or each component on a separate computer
(or something between that) . This approach is very flexible but rises some
issues that have to be solved, like conflicting inputs (6.2, p. 108) and the
problem of uniquely identifying similar input devices. Also the abstraction
of the data being distributed has to be defined. This ranges from very ba-
sic information like "key pressed" too complex information like "the string
'Hello' was entered". In ATELIER we tended to make all abstraction levels
available by sending the basic information to another component that would
process the input and again produce a higher level information. As long as
network bandwidth is not an issue, this is the most flexible solution, as all
layers of information are available for the other components.

Output abstraction The abstraction of output goes beyond visual device
abstraction, but should also be extended to internal output of the function-
alities. In the ATELIER project this was quite simple as most of the outputs
where connected to the hypermedia database.

Output abstraction has a lot of different meanings. Like display abstrac-
tion - providing images and videos for a variety of display technologies rang-
ing from small displays in cell phones, handheld computers, desktop screens,
head mounted displays, up to full scale projections or even tiled displays.
But also cross modal displaying is a form of output abstraction, what if only
an audio channel is available? For HTML pages special descriptions can be
provided to automatically convert the visual representation of a page into
spoken text. Visualising sound and performing other cross modal conversion
is often used by artist as a source of inspiration.

Output abstraction is a way of representing content, independent of the
use context and the available output devices. For example if a presentation
is prepared and the presentation room is not available for all presenters to
prepare their presentation in the room itself. So some sort of abstraction is
needed.

This abstraction of output has been fully described in the APRIL Frame-
work (3.10, p. 43) of STUDIERSTUBE, and is used to be able to reuse a
presentation in various environments, even a pure text-based representation
could be realised.

4-2 Distributed Input 58

In the ATELIER project a different concept of output abstraction was
realised. As ATELIER is merely a collection of components the input and
output of these components were implemented in a general way to allow easy
coupling of the components to create component assemblies.

For example if a user selected a specific image this information could be
received by a lot of different "output" devices. Some of these devices would
really display the image on screen or on paper (print the image), others
would use the image as input to for example search for similar images in the
database (see Combining the Search Methods 6.4.4, p. 114).

4.2 Distributed Input
As already envisioned in the article by Weiser [150] more than one computer
system is used to control the environment. Therefore the input and output
can be distributed - meaning being processed at different machines.

The implementations of STUDIERSTUBE and OpenTracker are typical
representations of a server client concept. OpenTracker is the input server
component of the system while STUDIERSTUBE with distribution is the out-
put component of the system. When creating a distributed STUDIERSTUBE
application a "master" (server) is defined, which updates the clients. The
clients can update their scenegraph and perform calculations, but are prac-
tically just used to render the scene graph that is kept up to date by the
master.

The input component (OpenTracker) sends the input data to all clients,
which can locally update the part of scene graph that is depending on the
input devices. This is only true for the rendered parts of the application,
important states of the application are distributed from the master to the
clients. A good example is the slider widget: The clients are allowed to render
the slider widgets based on the interaction of the user's pen with the slider
itself, but once the slider drag operation is completed (the button is released)
the master sends the final value of the slider to all clients so that glides in
the tracking updates are synchronised again. This ensures that no conflicts
arise, as the master will always send the final results of an interaction to all
clients.

In the ATELIER framework the shared space concept was realised. As
each of the components has the same importance in the system it is impos-
sible to specify what is a server component and a client component in this
system. This makes the communication between the components easy. The
kernel component can be seen as a sort of server, but actually it is just a
mean to establish a communication between components. The kernel is just

4-3 Distributed Output 59

performing routing and filtering of data that is exchanged between different
components.

4.3 Distributed Output
Distribution of output can be a very challenging task, where the technical
issues are relative simple. The main issue that has to be tackled are design
issues. Where does the output happen, how is it presented to the user, how
does the user know where the output has gone? This question is related to
the alignment that is described in section 2.4.5, p. 21.

Due to the multimodal capabilities of modern computers other output
possibilities aroused. Graphic display (mono or stereo), sound and vibration
are now quite common. In most of the systems that are centred around one
user sitting in front of the computer screen, distributed output is not really
a big issue. But in environments where multiple displays are used by one or
more users distributed output has to be designed.

A number of projects concentrate on peripheral displays that take ad-
vantage of people's ability to utilize peripheral information with little effort
[20, 60].

Moreover, constraining the interaction to the desktop is a poor
match for common human behaviours such as using large amounts
of physical space to simultaneously organize, monitor, and man-
age multiple activities [93] . . .

There have also been attempts to leveraging our 3D abilities
within a standard display by replacing the 2D desktop with a
3D world containing 2D documents (e.g., [19]) (from [80]).

Especial the Rooms [50] and Flatland [92] try to make use of peripheral
displays in office settings, which support the ability of people to perform
multiple simultaneous activities [88].

In early network printing systems the print task could be re-routed to
another printer, when the main printer queue was full. This situation led to
the amusing and annoying office game of finding the printout. This issue was
of course soon solved by presenting the user a feedback that stated at which
printer the pages can be retrieved [99].

In many situations the decision of where to present the output can be
solved based on the actions performed by the users of the system. For exam-
ple if a user actives a widget on a single computer display with the mouse,
the obvious place to present the outcome of this action is the same display (or

4-4 Distribution in the Systems 60

the sound system of the machine the user is working on). When using more
than one display - as it is quite common for graphic designer - , changing
the adjoined display is also suitable, because it can be expected that the user
watches both screens, probably expecting a change on the other display.

In [9] Beaudouin-Lafon proposes that the Degree of indirection measures
how direct an interaction is. Definitely activating something on one screen
and displaying the results on a different screen incorporates a spatial offset.

In a distributed environment this spatial offset will always occur. Ac-
tually the direct manipulation paradigm described by Shneiderman [127] is
only satisfied by augmented reality applications with direct manipulation and
augmentation of the results.

In some situations the expectation of the user can not be determined,
especial if a certain command is used for the first time by that user. To
take the above example of the designer working with two screens for the first
time, it may not be clear that activating an element on one screen can change
the feedback on the other screen. The design of distributed output has to
be carefully though over and tested with different users to ensure that it is
understandable.

4.4 Distribution in the Systems
The both systems discussed in this thesis STUDIERSTUBE and ATELIER have
different strategies in distributing interaction, processing and content. First
other systems with distribution will be presented, then we will go into detail
of the two systems and the applications.

4.4.1 Systems with Distribution

In AR systems distribution is quite common. Due to the amount of cal-
culation and therefore computing power a distributed system is needed. In
ubiquitous systems distribution is more a feature than a need, in general
CORBA, JINI or JavaWebStart technologies are used to implement the dis-
tribution. Research about distribution in a ubiquitous environment is mostly
published under the term "intelligent environment" [48, 49]. A extensive sur-
vey of systems providing distribution is presented by Endres et.al. in [31],
where most of the smart spaces or instrumented rooms systems are described
as being in concept phase or just starting. Also the vast field of frameworks
for distributed mobile systems is described in the work of Endrës et.al.. In
total 29 frameworks are described in this publication (which will be published
in 2005).

4-4 Distribution in the Systems 61

A number of projects provide distribution for AR systems, some of them
will now shortly be described.

The DWARF project [8] aims for a design concept that differs greatly
from traditional AR software designs (like e.g. STUDIERSTUBE). The basic
units of the DWARF framework are distributed services. A service is a
piece of software running on a stationary or mobile computer that provides
a certain piece of functionality such as optical tracking. Services can be
connected to use the functionality of other services establishing a data flow
network to achieve a more complex function.

The Coterie system [79] supports scene graph based graphics program-
ming and abstractions for tracking devices. Support for distribution was
implemented, but required some implementation effort, nevertheless scene
graphs could be easily shared. Avango is a framework for developing virtual
and augmented reality application that also supports transparent distribu-
tion [139, 140]. Distributed applications can be developed that implicitly
share data between different instances. The Tinmith system is a full fea-
tured software architecture for mobile augmented reality applications [109].
Originating from an older architecture that was built from a network of com-
municating agent processes [107, 110], it is now supporting hierarchical scene
graph based modelling and generic data flows between objects [108]. It also
features a persistent storage to the file system.

To model what a service can offer to other services and what it needs from
other services, DWARF uses the concept of needs and abilities. A match of
one service's need to another service's ability leads to a connection between
the services; this is set up by the distributed service managers [81].

4.4.2 Distribution in Atelier
9

The design of DWARF is quite similar to the ATELIER framework as all
components of ATELIER have to register the messages that they provide
or handle. With this meta information the kernel is able to apply filters
to the messages that are routed through the kernel. An additional feature
was introduced that allows to send a message to a specific component. Each
component has a unique name, that identifies the component. When sending
a message the receiver of the message can be specified. This ensures that
the message will only be received by the component and also limits the
network traffic. Messages without a specified receiver will be sent to all
components that are interested (as mentioned they have to register those
messages). To provide a flexible way of filtering those messages 2 mechanisms
where implemented:

4-4 Distribution in the Systems 62

1. Hierarchical structure of the message category. The message category
can be specified by the sender of a message. A preliminary structure
has been defined by the ATELIER group to ensure that the structure of
the category hierarchy is meaningful.

2. Hierarchical structure of the message type. The message type is also
defined in a hierarchical structure. This specifier can again be used to
transport any additional information for the receivers.

Because there are actually two independent information for each message
the processing of the messages is very flexible.

Registration name="Configurator" type="component">
<metainfo name="provides" type="registration" >

<provides name="category" value="Root/event" />
<provides name="type" value="configuration/text"

</metainfo>
<metainfo name="handles" type="registration" >

<handles name="category" value="Root/event" />
<handles name="type" value="input" />

</metainfo>
</registration>

Figure 4.2: A configuration structure from the ATELIER Project.

If a component registers to handle all "Root/event" messages practical
all interaction related messages, which are send to all components, will be
received by this component. The HMDBLookup Component (see 3.3.4) on
the other hand is only interested in "input" type messages. Therefore the
"output" message events will not be send to the HMDBLookup Component.

The actual presentation devices we have used in the ATELIER project
were already described in the section Presentation devices in ATELIER (3.3.2,
p. 27).

4.4.3 Distribution in Studierstube
In STUDIERSTUBE Open Inventor scene graphs are used to store and share
information between the clients in the system. The abstract definition of
a "node" that contains fields with values and other nodes is the way in-
formation is structured. This way of specifying an "information database"
originates in the idea of scenes that store graphical information to generate
a rendered image. Using this specification any information - also application
states - can be represented.

4-5 Distributed Processing 63

The communication in STUDIERSTUBE follows some simple principles: if
a field or node is changed, this change is distributed to all other scene-graphs
where this information is represented [52, 124, 51].

In the ATELIER framework there is a global message "Element X (of the
HMDB) has been updated", which can be used by any component to act
accordingly. This has the advantage that the state change is also stored in
the HMDB and is persistent even if some components are not active at the
time of the change.

4.5 Distributed Processing
We will now go into detail of some of the applications that have been de-
veloped, describing how the distribution of data and processing was imple-
mented. Two extremes will be discussed

• The Sensitive Sample project, where the low-level of data exchange
between micro-controllers and Desktop PC will be presented. Further-
more we will describe how the sensor data is processed by the ATE-
LIER components.

• The Invisible Person project, where a high-level approach of distribu-
tion of data and responsibilities will be described.

4.5.1 Sensitive Sample
After specifying the requirements for the Sensitive Sample (3.5, p. 34) and
with a relatively small budget a micro-controller solution was chosen. The
Atmel [3] micro-controllers were used. The printed circuit board is designed
so that it includes only the necessary electronics needed for the controller to
function. There are connectors to all I/O ports of the micro-controller and a
reset button. All additional sensors or signal LED's are realised on separate
modules and can be connected to the main board.

The micro-controller can be easily programmed, and can communicate
with a PC via the serial port. After successfully finishing the first board,
various sensors were added. Tilt switches and touch sensors were the mostly
often used kinds of sensors. Tilt switches are a very simple piece of hardware
that connects two wires depending on the inclination of the switch. This
sensors can be used to estimate, which side of the object is facing up, or to
detect shaking of the object. Touch sensors provided by Quantum Research
[138] have also been investigated and deployed in the samples. These sensors
have to be mounted beneath an insulator and can sense if the object is being

4-5 Distributed Processing 64

touched at a certain place. They can be built in various sizes, cover various
areas of an object, and are not visible from the outside, which makes them
popular among the students, because the look of their model is not changed.
Incorporating such sensors in the architecture model, and triggering various
multimedia files during a presentation, just by touching the model, was a
great fun for students and teachers.

Figure 3.11 (p. 35) shows a model and touch sensors mounted underneath
the model. Once the main board and the sensors are installed the communi-
cation between the sample and the PC has to be solved. A wireless commu-
nication was required, and support for more than one sensor simultaneously.
A communication protocol on a time sharing principle was developed. There
is a special module attached to a PC, which is called server. Each sensitive
sample has an unique ID, and acts as a client in the system. All clients and
the server are equipped with radio transceivers. This is a device, which can
transmit and receives radio signals, though there is a small time delay when
switching from receiving to transmitting. Figure 4.3 shows the main board
with the transceiver connected. The following protocol was defined:

Figure 4.3: The main board with micro-controller and transceiver board connected.

• the server is in transmit mode and all clients are in receive mode

• the server sends the message "send status"

• the server switches to receive mode for a certain time

• the clients analyze the message, prepare the status, and then send an answer
with a time-offset depending on their ID, and switch back to receive mode

• the server collects all the stati and then sends them to the PC

• the server switches to transmit mode

4-5 Distributed Processing 65

This list is performed 20 times a second, this allows us to support up to
10 clients simultaneously. The advantage of such protocol is that only one
frequency can be used, and since every client has its own time slot depending
on the ID, a collision can never occur. The server also knows which clients
are active, and if some message did not reach the server, they will be sent
again in the next cycle.

MaterialKammer For the MaterialKammer setup a distributed processing
of the sensor data was developed. When users are interacting with the Sen-
sitive Sample, the signals are sent to the main computer. Actions are being
interpreted there, and high-level messages such as: "shaking wood hard", or
"knocking on glass" are being sent to a multimedia content selector. The
multimedia content selector selects a media (in broader sense, where light
and wind are media as well) depending on randomness level (surprise factor)
and the users current and previous actions.

4.5.2 Distribution of Data in the Invisible Person
The AR Puppet framework (see 3.11, p. 46) features the distribution of re-
sponsibilities, as each layer has its own responsibilities and just relies on the
layer directly beneath it. In the Invisible Person the different modules are
not designed as a hierarchy, but as a network of inter-operable modules, that
more or less depend on each other. Still each module has a exactly defined
scope of responsibilities.

Based on the quality of the vision system (5.4.3, p. 96), which means
better information about the people on stage a new interaction pattern was
implemented. The system is divided into four modules. The vision-module
analyzes two live camera video streams and generates information blocks,
which are used by the AI to make decisions about new interactions. The AI-
module decides what animations the virtual character should display. The
game-module holds all information and algorithms about the games, de-
taching the game-knowledge from the emotional and interaction algorithms
of the AI. The render-module displays the animations and the additional
graphics needed for the games, additionally the rendering of the occlusion
is performed by this module. These modules communicate over a 100 MBit
network connection. The TCP/IP protocol was chosen to establish reliable
communication. Different internal protocols were designed to allow compact
and lean information-flow.

The vision-module delivers information about the user's position and cur-
rent posture to the AI and the game module. The render-module is supplied
with occlusion-masks and depth information. The Al-module sends control

4-5 Distributed Processing 66

information to the game-module and advises the render- module to display
the appropriate animations and emotion-textures. Together with the virtual
character from the render-module the AI forms a symbiosis of body and mind:
"The Invisible Person". The game-module provides information about the
game status for the AI. The graphic elements of the games are controlled by
communicating with the render-module. As the games and their specific rules
must be separated from the implementation of an artificial intelligence, the
game algorithms were implemented in a separate module. To keep communi-
cation straight and simple, a generic representation for the game information
was developed. The render-module sends position and posture of the virtual
character to both the AI- module and the game-module. The game-module
and the Al-module need this information to merge the user input - from the
vision-module - and the character input - from the render-module - to get an
overall view of the interaction. We will now describe the distributed process-
ing approach and then in the section The human body as an interface 5.4.3,
p. 94 discuss in more detail the different modules.

Game-module Because the game-module was realised as an independent
module, careful consideration of the interfaces was required. The inputs for
the game-module are position and posture data of the users from the vision
system, the position and action of the virtual character from the render-
module and control messages from the AI. As the information had to be
distributed via a network protocol, the interfaces had to be general and
compact. The AI has control over the game-module via the control- interface.
This interface allows the AI to start and stop a game. Additionally, several
parameters of the game can be set, such as the difficulty level and which
player has the first move. The outputs from the game-modules are game-
status information including overall game score, a game history and end
causes. This information is processed by the AI to update the emotional
model. Possible moves for both the users and the IP are distributed by
specifying regions (2D boxes) and a rating for these regions. A timeout was
added to enable time-critical games (such as volleyball). If a player has to
wait, no moves are available. As both user and IP moves can be set at the
same time, real-time games that allow both parties to play can be realised.
Avoid regions for the IP are supplied to give the AI a hint about the game-
board, and when to avoid it. This is necessary to let the user have a look at
the game-board and choose his game-pad without being disturbed by the IP.
The game module does not interfere with the AI system itself, that is, the
game-module does not make any decisions. It simply supplies the AI with
information so that the AI can decide what to do. For the render-module

4-6 Distributed Context 67

a different interface was needed to ensure the correct visualization of the
game-pads and other graphical gimmicks.

Adding Games. We wanted the different modules to be independent, to
be able to add more games later, without needing to change the AI sys-
tem, so the interface between AI, game-module and render-module had to
be general and versatile. Although the AI decides when and what type of
game to start, selection between the different games available is done by the
game-module. Thus more games can be added without changing the AI sys-
tem. Our abstract interface allows the creation of very different games. As
the information contains only regions, ratings and timeouts, games without
game-pads are also possible. As a matter of fact photo-shooting - the IP can
make pictures of the users, if it likes - was also implemented as game (see
figure 4.4).

Figure 4.4: Photo-game of the Invisible Person application.

The rating information for the user region is supplied to the IP to enable
it to give a feedback while it waits for the user to move. Depending on its
internal state it can encourage the users with appropriate gestures to make
good or bad moves.

4.6 Distributed Context
If the processing of data is distributed, so can the "state" of the environment
be distributed. Especial if a number of components are used simultaneously,
the current context of the system can be distributed among a number of com-
ponents. How we handled this situation in the ATELIER project is discussed

4-6 Distributed Context 68

now. In STUDIERSTUBE due to the master-client concept, all information will
be present at the master and therefore not distributed. Although a different
approach can be realised in STUDIERSTUBE until now such a application with
a context being distributed among the clients was not implemented.

4.6.1 Saving and loading in distributed systems
Saving the work that has been achieved using an application is something
natural for single computer applications. It is merely a matter of saving the
current state of the work, to be able to continue at a later time.

ATELIER. In distributed systems like ATELIER this very important feature
can get quite complex. A lot of different network components have to store
their current state at a specific point in time. To load this state all these com-
ponents must access their individual savings and restore their state. Some
components are actually state-less, which means that they do not preserve
a state or are just responsive elements in the assembly. Those components
do not have to store their information, but sometimes it is important that
they were active in the setting, so that information should be saved. Some
"Meta-Component" has to take care about the information that a specific
component is actually part of the setting. The ideal case is that the whole
distributed state, all the running services and even the physical state of the
environment is stored and recreated.

In the ATELIER project a "Store State" and "Restore State" method was
implemented in each component, which carried a state. By triggering a save
action and supplying a physical handle, the state of all components can be
saved by the students (see Discussion - DisplayManager 6.7.1, p. 122). It
is also possible to just store the state of selected components, saving just
parts of the setup. This is actually just a short cut, it speeds up the process
of saving and restoring, as not all components have to store and restore
their state. Using this feature different states could be mixed in an easy
way, as only the respective part of the environment that was stored earlier
will change when restoring that setup later. A better method would be to
selectively restore states leaving the rest of the environment unchanged (see
Improving the Save command 6.7.2, p. 124).

Capturing the physical state. For the physical parts of an environment
the current state can only be captured, if actuators are installed that move
the physical objects in the environment. Either the users are not allowed to
move the objects directly, or the moveable objects are somehow registered. If

4-7 Global Repository 69

the objects are tracked (their position and orientation is known), they then
must be able to move to the position in space, where they have been, when
the state was saved.

In the ATELIER project this was impossible. For example the projectors
were moved all the time. To recreate a specific physical setup, the users
had to re-adjust the physical props in the environment. This was especially
complicated for the positions of the projectors that were used in conjunction
with the Texture Painter. In one session different groups of students actually
used different physical setups to augment their artefacts.

Recreating these setups "on the fly" during their presentation actually
did not work out perfect. But because of the "sketchy" character and inspi-
rational focus of their presentation there was no need for prefect setups and
therefore it did not pose a problem.

For physical interaction tools this is a specific problem that will be dis-
cussed in section Tangible Interaction (5.2, p. 84).

In STUDIERSTUBE the physical objects are tracked, which means that
their position is always taken into account and does not carry a "state".
That way their position is not important to recreate a setting that has been
saved.

The tracked physical devices in STUDIERSTUBE are props (like Pip and
Pen) or displays like HMD's, and the tiled display (StubeRena project).
These props have to be calibrated before they can be used. To ease this pro-
cess a number of algorithms have been implemented to calculate the needed
data. This calibration information is then stored in files that are used by
the applications. The process is rather static and is only partly related to
the problem of capturing or recreating the physical state of an environment
[38, 39, 121].

4.7 Managing resources in a distributed
system

In a distributed system there is always the issue of handling the different
resources. In STUDIERSTUBE resources like geometry or images are usually
distributed from the master to the clients by sending them over the network.
Another approach is to mirror all needed resources by soft- or hardware
solutions and keep them synchronised [17]. A different approach was imple-
mented in the ATELIER project. A global repository was installed, which
stored and provided all resources for the applications. Each resource in the
HMDB has a unique id with which it can be retrieved.

4.7 Global Repository 70

4.7.1 HyperMedia DataBase (HMDB)
Besides the possibility to store digital content in the HMDB, there is also the
possibility of creating hierarchies and add meta-information to each element
in the database. The meta-information is stored as a list of key and value
strings that can be used in different ways. Methods for searching the database
for specific elements (using the meta-information) and retrieving whole parts
of the hierarchy were implemented.

Two generic interfaces have been developed to edit and manage the con-
tent of the database. The Path Creator (part of the E-Diary setup) and a
HTML-Access, which enabled the users to retrieve information and modify
the database from any computer equipped with an internet browser.

The Path Creator was written in JAVA presenting the whole structure
of the database to the user. Generic edit methods for adding and removing
elements in the database are available, as well as a method for editing the
meta-information for each element.

Its original purpose was to add information that had been recorded with
the E-Diary. The information of the E-Dairy had to be completed with
user information and additional maps, to be able to correctly present the
information to the users.

The HTML access was implemented as a set of Java-Servlets that create
the HTML documents, which represent the interface to the HMDB. The
main advantage of the HTML access is that it is independent from the JAVA
runtime environment (and some libraries like the Java Media Framework
JMF). The only software needed to use the HTML access is a web browser
and the right URL (unique resource location). The HTML access also allows
the users to print out the physical handles (see Physical Handles to digital
media 3.3.3, p. 30).

4.7.2 Messages versus HMDB

Because all components can store and retrieve information from this shared
storage component, it can also be used to establish a communication between
the components. This allows the component to process information that is
persistent (and not a message), which can be retrieved by the same or a
different component.

An example is the storage of keywords used by the ontology (3.7, p. 39)
in the HMDB. The keywords are used and manipulated by the ontology
component, while they are at the same time used by the display component
to provide the users with feedback of what has been changed and which
keywords a media is currently attached to.

4-8 Distributed User Identification 71

When a student activates a "toggle keyword" barcode, the HMDBLookup
component processes this barcode, and sends a message to a component
that updates the keyword information in the HMDB. This activates another
message that specifies that an entry in the database has been changed, which
results in updating the ontology database and the display, that is currently
showing the image.

The cause for us to choose this method is that even if the ontology service
is not running, the change of the keywords will be stored in the HMDB.
The ontology database can be resynchronised with the HMDB at any time,
ensuring that changes in the keywords will also be reflected in the ontology
database.

4.8 Distributed User Identification
Identifying a user in a normal desktop setup is easy: there is just one user.
In a network system this is solved by the login mechanism, that ensures
that only allowed users can perform actions. In a high security environment
just entering a password is sometimes not enough, the users have to perform
various steps to identify themselves. The ATM machines for example only
allow access to the account, if the user has a valid card and knows the code
that belongs to that card. Other login mechanisms include face, voice or
even fingerprint recognition.

Once the user is identified in the system a number of tasks can be fulfilled:

• Restrict access. The rights to open, read, add, delete or change content
is based on the user identification. This ensures that users can only per-
form actions that they are allowed to do, or destroy (unintentionally)
the work of another user.

• Add ownership to content. Whenever content (files) are added or
changed, the user information can be stored, at the same time the
access rights can be set for that content.

• Record user actions. Every action a user performs can be stored to-
gether with the information, which user performed that action (see
Undo - Qualities 6.3, p. 110).

• Personalised Settings. After the user has logged into the system the
personal settings can be loaded (and stored) so that the user has the
possibility to configure the system in a persistent way.

4-8 Distributed User Identification 72

• Receive messages. Messages (from the system or other users) can be
addressed directly to a specific user. Email's are a common way of
informing users of something. But there are also some more direct
messaging systems like the "MSN Instant Messager", "Yahoo Messen-
ger", and "Jabber" just to name of few.

In ATELIER we did not implement user identification. We started to
explore the issue of content ownership by including a meta-information "au-
thor" for content in the HMDB. We also thought of user management in-
cluding login and registering users, but due to the openness of the system
and the aim for a quick and easy access to the system the user management
idea was dropped again. Tangible interfaces commonly share this problem of
not being able to determine the user of the interface, because it can be used
by any person, who has physical access to the device.

Some systems evaluate especially this issue, by e.g. the use of RFID tags.
A system was tested on a conference, that identified the current speaker or
people gathering in a meeting place. The users had to be registered in the
system before or during the conference (using a web interface). They were
provided with a special conference label that also incorporated a RFID tag.
Special places (like the place for the speaker) and some meeting places were
equipped with wide field RFID readers to identify the person (or group of
persons) that is present in a specific space. The users were detected at these
places through their tags and additional information was displayed related
to these users [28].

Another approach is the use of the "Bat" system that was explored in
the AT&T laboratories [23]. This system is a wide field tracking system that
is able to track objects (using the bat's) in a whole building. The personal
bats, the researches took with them, allowed the system (and the users of
the system) to locate each individual in the building. This functionality was
e.g. used to route calls to a phone in the same room where the user was last
located [94].

Using a system, where the users can be identified without performing an
action, raises e.g. the issue of privacy.

A user of a tangible interface could also identified using this technology.
This must also include groups of people, for example when a group of users
searches for images using the Tangible Image Query. Another issue is the
precision of the used technology. If two different interaction devices are near
to each other, the user of a device can probably not identified correctly.

In STUDIERSTUBE the users also do not have to login, but the user of a
distributed application can be distinguished, due to the setup they are using.
It is therefore possible for the users to use different colours and also different

4-9 Configurability 73

views on the 3D scene. The users can not be identified to be a specific person,
but as being a different user in the distributed collaborative setup.

4.8.1 Distributed Undo

In a distributed, multi user environment different kinds of undo commands
can be implemented:

• global undo: the last command issued by any of the users is undone.

• local or selective undo: the last command issued by the user that trig-
gers the undo function is undone.

For the second scheme to work, the user commands must always be
assignable to a specific user, and the actions of the users must be indepen-
dent. This is necessary to satisfy the issue addressed in the work of Prakash
[111] who says "In any undo scheme, it is important that undo behaves ac-
cording to users expectations.". In a collaborative working environment the
users should be able to build upon the work that other users have created,
which generally means that something like a selective undo is not desirable
(also see [69]).

Furthermore the "undo command" can only influence states of the system
(and not "real" objects). This argument is discussed in detail in Undo -
Qualities (6.3, p. 110).

4.9 Configurability
Based on the experience with the two systems we found that configurability
is an important quality of a system.

Configurable means that the users have control - and have to control -
how the system interprets the interaction they are performing. To enable
the users a quick start with the system a basic configuration is necessary,
but the users should always be able to change this predefined configuration
to their needs and abilities. Configurability also has something to do with
personalised systems. Every human has different needs and abilities, the
computer system should be flexible enough to be adapted to this needs and
abilities.

Systems can be configurable in many ways, configured by the developers,
by users, on-the-fly or before start-up.

Human to human communication shows that after two persons have cre-
ated a basis for their communication, the language gets compressed meaning

4-9 Configurability 74

that less redundant information needs to be communicated to achieve an un-
derstanding. This process can also be seen in human computer interaction, a
good example is the checkbox in dialogs "Do not show this message again".
With this option users can tell the system that they are aware of a particular
situation and that they will take care about it, without being remembered
by the system.

This is in fact a configuration of the feedback "density". Still in most
applications a mechanism is missing that allows the users to (easily) turn
this feedback back on again. For example if a program has not been used
for a long time, the user may have forgotten about this particular situation.
It can happen that she does not understand why something is not working.
Asking the "WHY question" could be helpful. It would also be easy to
implement this functionality by just turning the feedback on for this event.

Another approach that we will implement in ConstructSD&xe the "dis-
abled" tooltips, explaining "why" a certain command is not available and
what has to be done to be able to issue this command (see Displaying the
state 5.6.1, p. 101).

Configuring the Space. The meaning of distributed computer systems in
this thesis is that more than one computer and device is used simultaneously.
But distributed has also the meaning of spatial distributed, that the space is
divided into different workplaces. This is an issue we learned from the work
with the architecture students. They take the available space and transform
it to their current work practice. A space can be used to discuss, work on a
project, or present a concept. These different work-practices can not strictly
be separated, and the borders of these different stages in a project are blurred.
Therefore the space has to be adapted dynamically to the current needs of
the users [13].

This is probably the biggest difference between the ATELIER and STUDIER-
STUBE applications. The ATELIER interfaces support this dynamic change in
the environment, while most STUDIERSTUBE applications are depending on
the technology available in a space, where it is hard to bring all the different
devices (tracking technologies, HMD, large projection screen, . . .) into one
space.

The available space at the different project sites plays an important role.
While in ATELIER we had luck to be able to deploy all the technology in
one large room at the Academy of Fine Arts in Vienna, the STUDIER-
STUBE project is developed at the Institute for Software Technology and
Interactive Systems, where the rooms are smaller and the available space is
limited. Also the mobile AR system developed [65, 116, 122] needs a special

4-9 Configurability 75

environment where fiducial markers are exactly positioned.

Configuring a system. In the ACCORD [120, 1] project the research was
focused on the home environment. Bringing technology piecewise to the
environment and supplying the users with means to connect different devices
by abstracting these configurations as jigsaw pieces. Several interfaces were
presented, some of them are tangible (paper jigsaw pieces), some of them
are displayed on embedded devices, others are screen based (either HTML
or special GUI applications).

The focus of the ACCORD project was to explore ways to allow home
users to perform certain configuration tasks. Multimodality is not described
in detail, although it is available for the users. The problem of contra dictio-
nary settings are also not discussed (see 6.2).

Tailoring a system. In [130] Stiemerling stated following questions

• How can the designer capture diversified and future requirements and
how can he distil the necessary range of flexibility from these require-
ments?

• How can this range of flexibility be implemented technically, leading to
the question of software architecture?

• How can the technical flexibility offered by the architecture be made
accessible for end users through the user interface?

Tailorability is a key issue in modern software [86, 83]. Tailoring enables
the users of a system to adapt functions or behaviours of an application to
their specific needs. Writing a special application for each user is impossible,
so the applications must be adaptable. To tailor a system still needs work
and time for the users they try to minimize the overall work, so they only use
the tailoring if they think it will pay off for them [130]. Several incidences are
reported where user stated that although they knew they could use tailoring
(and how), they did not take the time, because it is not efficient to tailor a
function that is only used once and a while.

Tailoring is connected to the actual work that has to be done, but is not
really part of it, e.g. if someone wants to write a document, specifying the
layout and style of the document will not replace the work on the document
itself. However professions like designers actually work on these aspects and
not on the document, for them the mentioned "tailoring" is the actual work.

The difference between configuring and tailoring is that the later is chang-
ing a behaviour of an application to better fit the users work practice, while

4-9 Configurability 76

the first actually is part of the work. Still both are a kind of meta interac-
tion with the system. In the work described by Rodden et.al [1, 120] this
is actually the motive for a system, while in ATELIER for example it is just
a way of working with the system. When supplying tailoring functionality
one has to keep in mind that this should actually allow each user of the sys-
tem to save and restore the tailored settings. This implies also some sort of
user management, where the system keeps track of different users and their
specific tailored settings (see User Management 4.8, p. 71).

4.9.1 Studierstube
On-the-fly configuration is not so common in the STUDIERSTUBE appli-
cations. The configurable aspects of the STUDIERSTUBE framework are
grounded in the abstraction and flexible configuration of the input devices
(through the use of OpenTracker) and the scripting interface of Open In-
ventor. This interface allows to configure and change applications without
recompiling the source code. Up to now the configuration of OpenTracker can
only be changed before the start of an application, but a new design, that is
currently worked upon, will soon allow to perform on-the-fly changes in the
OpenTracker framework.

APRIL The (see APRIL framework 3.10, p. 43) allows to define presenta-
tions without actually knowing the hardware setup. The description for the
configuration of the hardware is then merged with this abstract description
to create a hardware specific application.

Configuring the different hardware solutions used is the responsibility of
the Component Implementer that will have to take care of different imple-
mentations (based on the environment) of the same interaction possibilities.

The story document acts as a specification for content creation
(using the raw material) and component authoring. Components
can be re-used from a set of default components or earlier pre-
sentations, and for sophisticated interactive presentations new,
customized components will be developed.

Integrating the components, interaction tools and content items is
the goal of the final phase, story integration. The result is a com-
plete presentation specified in the APRIL language. Independent
from the story authoring, for each hardware setup there is a con-
figuration file, describing the arrangement of displays, interaction
hardware, speakers, and other aspects of the available hardware.

4-9 Configurability 77

During story development and testing, it is not necessary to run
the presentation on the actual hardware setup; the same presen-
tation can be run in an "emulation mode" on the developers PC.
Media content, components and hardware description files are
re-usable parts of an APRIL presentation, and are only loosely
coupled by the story to contribute to a specific presentation. The
same media, components or hardware can be used to tell other
stories about the same or completely different subjects.

With this language several requirements are fulfilled:

• Support at least a reasonable subset of input and output
hardware and their manifold combination possibilities.

• Support the portability of presentations by separating the
presentation's content from the system and hardware spe-
cific definitions. Also support desktop based developer se-
tups for creating and debugging presentations.

• Support standards for geometry and media data, and sup-
port upcoming industry standards for animation of 3-dimen-
sional content.

• Support the re-use of content by providing a modular struc-
ture of presentations. Allow the creation of content archives
and the sharing of content between multiple users and se-
tups.

• Provide a well-defined set of interaction techniques and sup-
port various input devices to implement them.

• Provide authors with tools to structure their presentations
in a non-linear way for the user to explore them interac-
tively, {from [76]).

4.9.2 Atelier
Configurability is one the goals of the ATELIER project. Therefore a number
of examples of configurability can be found in the ATELIER environment.
We experimented with flexible projection planes, that can be configured to
achieve different effects - from an open space to an enclosed room. This flex-
ibility poses some problems, that were not addressed in the ATELIER project.

These "problems" are mainly connected to the re-creation of a setup, once
the configuration of the room has changed. But as the students preferred
flexibility over precision, "recreating" a setup was also seen as "creative"
act, where new effects can be achieved (see figure 4.5).

4.9 Configurability 78

Figure 4.5: Recreating a physical setup during a presentation.

Configuring the environment As part of the students work is actual
physical, they explored ways to configure the working space in the Academy
of Fine Arts. For a presentation they created various projection planes (see
figure 4.6), which ultimately lead to the development of the three display
walls and the grid described earlier.

Figure 4.6: Différent projection planes in space.

Another way of configuring the physical world was demonstrated by the
students, who made use of the "physical representation" of the physical han-
dles (6.7.3, p. 125), see figure 4.7. They cut the barcode pages into parts,
rearranging them by gluing them on their own posters or their models, plac-

4.9 Configurability 79

ing the physical handles in the physical world. One student created his own
presentation list - just like a slideshow - by placing the barcodes neatly in a
column, while others distributed the handles in the space an activated them
while walking around.

Jr""-*~i

Figure 4.7: Different configurations of barcodes.

Configurator Apart from physically configure the environment, we exper-
imented with different components that provide means for the students to
configure the ATELIER computer environment. One way of doing that is
for the students to use the three display walls. They "configured" them by
placing images or video's on those walls. As the context, in which a model is
presented, plays an important role in "seeing it different", this was one way
of experimenting with the models (see figure 4.8).

Figure 4.8: Configuring the context of a model.

4.9 Configurability 80

These configurations were saved and recalled during a presentation, also
the students took pictures of their models (including the configured environ-
ment) and used these pictures during their presentations to present special
aspects of their concepts (see figure 4.9).

Figure 4.9: A student captures a special viewpoint for the presentation.

Predefined configurations of the inner layout of the three display walls
could be activated by the students, to adapt the layout to their current
work.

Configuring the Feedback. The feedback is also configurable. Changing
the display, on which the feedback will be presented allowed the students
to reroute the feedback to a display that is near to their current working
place. To really make use of the multimodal output possibilities it should be
possible to reroute the feedback also to a sound device, that would output
the feedback in an audible way.

We did not investigate the cross-modal conversion using text-to-speech
in ATELIER, but with the ConstructSD improvements (5.6, p. 100), we will
investigate this possibility in the near future.

Chapter 5

Multimodal and Interactive
Aspects

Multimodal in this thesis means that different input and output channels
are used to interact with a computer system. Human computer interaction
(HCI) is no longer limited to typing or moving a pointing device like mice or
tracked artefacts. Speech, gestures and the human body itself can be used
to establish a communication between the users and the computer system.

By implementing sensors on and in objects those object become an inter-
face. The computer system on the other hand can respond to the interaction
in many ways: sounds, text-to-speech, images and videos (on many different
displays), haptic feedback - like vibration or wind - even smell [154] or taste
[61] are possible reactions of a computer system. Multimodal interaction is
not only focusing on multimodal input but also on multimodal output. This
chapter also includes interaction, which can only happened when stimulating
the senses of users (using a multimodal output).

In 1993 an experiment was conducted by Van Gogh TV [146] at a tele-
vision program in Europe in the scope of the Prix Ars Electronica. Multiple
users could get in contact via a television show and interact with each other.
It was a live show where the television screen was used as a shared resource for
the users participating and also for the audience that watched and observed
the users actions.

Additionally users could log in to a text chat system. The sentences they
typed were displayed in a separate area of the screen. In the middle of the
screen some applications could be operated, by using the dial buttons as an
input device. The applications were quite simple like a drawing application.
Up to three users were able to move a cursor with the dial buttons (2,4,6,8)
with the other buttons the colour or the brush type could be changed. Espe-
cially interesting were several of the cross modal communications for example

81

5.1 Graphical User Interfaces 82

when users of the text chat area were asking about the audio participants
location or interests. Phone call users gave hints for the users testing the
applications, like which button they should press to get a different colour
and so on.

With the beginning of multimodal internet these methods became avail-
able for internet communities. The "Yahoo Messenger" [153] allows a group
of people to write text, use an audio channel and a live video feed to interact
and communicate with each other (a number of other multimodal commu-
nication platforms have been developed also). These functionalities are now
combined under the buzzword "teleconferencing". Other projects focus on
the tele-presence of remote users within a setting.

5.1 Graphical User Interfaces - GUI's
In STUDIERSTUBE the Pip and Pen interface allows to make use of the known
widget based interface. For most people (who are not computer novices) the
widgets on the Pip are instantly understood. The users can interact with
them in a known way, but with the advantage that the Pip can be moved
freely in space, therefore they can show and hide the interface just by placing
the Pip within the viewing frustrum, or when using a HMD based setup by
just looking at the Pip.

Also when using handhelds for mobile and personal services a GUI will
be presented to the users. The PUC framework makes use of this known
interface to allow access to various functions of appliances [91]. The most
important feature of the PUC framework is that ,based on an abstract de-
scription, a GUI is created. For various devices a client was already imple-
mented: handheld's, smart phones, desktop PC, which can be utilized for
interaction with the appliances.

In STUDIERSTUBE we integrated the PUC framework, which now allows
to create STUDIERSTUBE applications that can be controlled using a hand-
held. Barakonyi used this feature in STUDIERSTUBE to control the look of
the agents, and also explained how this interface is embedded into his AR
Puppet framework [6] (see figure 5.1).

The automatic GUI generation algorithm was implemented and can now
be used to

1. create similar looking interfaces for STUDIERSTUBE and handhelds

2. rapidly prototype applications, because the interface is automatically
created

5.1 Graphical User Interfaces 83

Figure 5.1: Animated character bound to a tangible optical marker and controlled
by a PUC generated interface on a PocketPC (monitor + PDA Screenshots), (used
with permission.)

This approach was chosen for the Construct3D redesign (5.6, p. 100),
described in later in this chapter.

HTML as a User Interface In the ATELIER project we implemented a
HTML access to the HMDB. In general a HTML interface has many ad-
vantages, it can be accessed from any device with a web browser, while at
the same time providing a (for most users) known interface. We have used
HTML for realizing several functionalities. First the students could upload
new content to the HMDB (see Upload Applet 3.3.3, p. 29), make use of the
ontology and the image query search (using the mouse interface described
in Image Query Mouse Interface (5.2.1, p. 86) to find content. By using a
printer they could create physical handles (5.3, p. 89) to the material they
found or just have uploaded (see figure 5.2).

a. b.

— -

— •-

: mm
Figure 5.2: a. HTML interface to change an element,
b.,c. different views on upload group

We integrated a editing page, where the students were able to add infor-
mation to the data created, like adding new keywords, or specifying place and
author of the content. The way the content was displayed can be changed by
the students, to e.g. fit more (but smaller) content on one page, or to change
the format to fit a landscape page.

5.2 Tangible Interaction 84

5.2 Tangible Interaction
Our experience shows that non-expert users, who are sometimes afraid of
technology, find tangible interfaces less complicated and more user friendly.
Descriptions of experiments with the students conducted during the ATE-
LIER project are described in [56].

5.2.1 Tangible Image Query
The Tangible Image Query is an example of tangible interaction in the ATE-
LIER project. We will describe now the special adaptations that we had to
implement to change the interface from the conventional GUI sketching tool
to the tangible interface (see Tangible Image Query 3.6, p. 37).

Although the underlying system is arbitrary, and the method can be
combined with any query by example method, we needed one method for
our implementation. The system is based on the visual image query by
Matkovic et al. [85].

Just like most of the image query methods, the method uses descriptors
calculated for each image, these descriptors are created in the database during
a pre-processing phase. When the user performs a query, a descriptor is
created for the query image and compared to the stored descriptors. Various
query systems differ in the way how descriptors (sometimes called signatures)
are created. The Visual Image Query (the system he have used) calculates
descriptors using 1000 quasi-randomly distributed rectangles of various sizes
in the image. The rectangles partly overlap. The sizes of the rectangle
are chosen according to the contrast sensitivity function of the human eye.
Figure 5.3 illustrates the distribution at the first 100, 250, 500, and 1000
rectangles. For each rectangle the average colour is computed, and all 1000
Luv colour triples are stored in the signature. The signature contains only
colour information for each rectangle, and the system can not distinguish if,
e.g., an orange spot in the middle is a flower or a fish. The only information
known is that there is an orange spot in the middle. The exact shape of the
spot is also not known. It is sampled using the rectangles, and can never
be precisely reconstructed. The comparison of two descriptors is done in
the Luv colour space, i.e. for all 1000 triples the luv-difference is computed
and a weighted sum, according to the contrast sensitivity function, of these
differences is taken as distance function of the two images.

This method was selected since it is particularly convenient for the com-
parison of user sketches. The sketch is not precise, and actually, only the
colour layout matters. However, in order to make it suitable for the new
interface, and in order to compare it with conventional input, the original

5.2 Tangible Interaction 85

'••yld-'-r:
• o *

• ° ' • a \ • • .

• * • . ' o *

Figure 5.3: Top: Rectangle distribution for the first 100, 250, 500 and 1000 rectan-
gles in the algorithm we have used.
Bottom: The user draws three separate areas, and only the corresponding rectan-
gles are used for this query.

algorithm had to be changed slightly.

Changes to the original algorithm In the original algorithm the descrip-
tor consists of 1000 Luv triples. Comparing two descriptors means computing
the Luv difference for 1000 triples. In order to speed up the process, the algo-
rithm slightly was modified slightly. 1000 rectangles are placed in the image,
and the average colour of each rectangle is computed. This average colour
is then mapped to a colour set consisting of 64 colours. The descriptor con-
sists of 1000 indexes (in the 64 colour set) instead of 1000 Luv triples. The
difference between two descriptors can be computed faster using a matrix of
predefined differences between all 64 available colours.

In the original algorithm either the whole image or one selected area was
compared. This approach had to be changed to allow multiple areas. Only
the parts of the image, where the user sketched something, will be used in
the comparison. In this way the user does not need to provide a background
colour, but only the significant places she remembers. Furthermore, the
query starts automatically when the user does not change the sketch for a
second, and the results are displayed immediately. Figure 5.3 illustrates an
example of a simple sketch and the subset of rectangles used in this case. Of
course, support for the new interface had to be added as well.

5.2 Tangible Interaction 86

Image Query Mouse Interface Tests with the original system using con-
ventional mouse input, showed that there are two groups of users. The first
group of users, forming a majority, are the users who claim that they cannot
draw (or paint, or sketch). It was not easy to encourage them to try the
system. They were just saying "I can not draw". Although we explained
that they do not need to draw an exact reproduction, but just a red spot
here, and a blue spot there . . . just a colour layout sketch, it was still not
easy to get sketches from them.

The second group of users were users who can draw. The problem with
them was that they were not satisfied with the sketch, they wanted to have
it "perfect".

Some systems are offering tools for drawing circles, rectangles, and other
primitives. If such a system is used for colour layout search results are even
more disappointing. Imagine a user drawing a yellow circle, and the system
responding with flower images, or even yellow triangles. Of course, the system
was not recognizing the shape, but only the colour. The use of 3D primitives
is misleading for the users in most cases.

It was clear that conventional sketching is a good solution only for a very
limited number of users. Another kind of interface is needed, an interface
that is very suitable for sketching, but which is not suitable for drawing. In
this way, users who cannot draw will not be disappointed with their drawing
results. It is impossible to draw with that interface anyhow, and for the same
reason the users who can draw will not try to draw perfectly.

New Sketching interface The whole setup consists of a table with a semi-
transparent white glass plate. There is a set of colour cubes, and the users can
arrange them on the table in order to make a sketch. A simple web camera is
mounted under the plate, which is used to retrieve the colour layout sketch.
This sketch image is then used as a query image. Figure 5.4 shows a part of
the setup with the table used for sketching. It was common practice during
our experiments that users "draw" together. They stood around the table,
and instead of the others instructing one user what to do (which was common
with the mouse), the group could work together. The collaboration is another
important quality of the cubes interface. Furthermore, not only the cubes
can be used to sketch. As soon as a bowl of fruits was placed next to the
table, some users used oranges and apples as sketch tools.

Vision based colour sketch The Crayon project [32] provides a good
overview of the current state of vision based interaction. In the project the
researchers use a camera for hand tracking and explored the field of colour

5.2 Tangible Interaction 87

Figure 5.4: Students experimenting with the new interface.

calibration and machine learning. Our approach is related to their work in
the respect that we also extract colour information from a live video stream.

Various problems that are related to colour vision had to be faced. First
tests showed that for certain colours (especially cyan and grey) that were de-
sirable, no stable calibration was possible. This is because web cams provide
compressed video information and use optical sensors that are optimized to
capture images of faces. The main usage of this kind of camera are video
meetings, so the red part of the visual spectrum is covered quite well, but
blue and contrast are not of high concern.

Hardware setup To reduce the problems that come with computer vi-
sion, like changing ambient light and dynamic in-camera adaptation, a setup
where these external interferences are reduced was created. The camera
was mounted underneath a semi transparent surface, on which the coloured
cubes were placed. Also a light source was installed underneath this surface
to ensure proper lighting conditions. The setup was surrounded by a non
transparent casing leaving only the surface visible to the users and exposed
to the ambient light in the room. It was possible to achieve good results with
a static calibration of the colour detector with this setup. The output of the
query was then displayed in the ATELIER space on the display wall.

The need for such a special hardware setup might be considered to be
a drawback of the system. Not everyone has the possibility to allow extra
space in the office for such an installation. In such a case a simplified system
consisting of a web cam pointing down on the desktop (the real desktop),

5.2 Tangible Interaction 88

and a set of colourful cubes, game stones, pieces of paper, or similar things
can be used to interact with the system. Furthermore, the use of flatbed
scanners for this purpose was briefly exploited with advantages like better
colour and contrast but also drawbacks like increased response times and
reduced interactivity.

The steps of the colour sketch retrieval Two approaches were imple-
mented to create our setups. In the first implementation the colour segmen-
tation was applied at the vision part of the system. First an image is grabbed
from the web cam, then a colour segmentation is performed and finally a
colour indexed image is sent to the image search engine. The colour seg-
mentation was implemented using the HSV (hue, saturation, value) colour
space. For each colour (white, yellow, orange, red, green, blue, magenta,
black) ranges for the HSV values are specified. Using a simple filter, regions
in the grabbed image that have colour values within these ranges are copied
to a colour index image. The colour index range was defined from 1 to 8.
Zero is being used to indicate that none of the colours was detected. This
indexed colour image is then sent over the network to the search algorithm.

In the second implementation a background subtraction approach was
used to filter out the parts of the video stream that have been changed or
added by the users. This approach sends a full colour image (with reduced
size) and an alpha channel (specifying the regions that are not background)
to the search engine.

Both image segmentation approaches have their advantages. The colour
segmentation provides better results in respect of removing the background
and not used areas. Because the background subtraction algorithm dynami-
cally updates the reference image it is more stable to ambient light changes.
Also the background subtraction allows the use of more than 8 colours, be-
cause the colours are not mapped to one of the indexed colours of the cubes.
At the same time the network traffic increases as more data has to be sent
to the search engine.

Independent from the segmentation method a "change" parameter is ex-
tracted from the live stream, measuring how much the image has changed
between two updates. A high value indicates that the users are currently
changing the sketch or just moving the hands within the observed area (for
example to point out certain regions and compare them with the results).
During this period of vivid interaction no update is sent to the search algo-
rithm, not even the colour segmentation or background subtraction is eval-
uated. Such intermediate results would confuse the users and also distract
their concentration from the task of creating or changing a sketch. When

5.3 Physical Handles to Digital Content 89

the "change" parameter drops below a certain value the image segmentation
is activated. If the difference between the resulting sketch and the previous
query to the search algorithm is above a certain value (indicating that the
vivid change in the video stream was not just moving the hand but also mov-
ing some objects), the new sketch is sent to the search algorithm. This makes
it possible to achieve fast update rates, as no unnecessary video frames and
queries are evaluated.

Selection of colours for the tangible interface After our first tests with
the colour segmentation we had to realise that not all desirable colours would
be sensable with the setup we have chosen [12]. In the previous implemen-
tation of the colour layout search, about 50 different colours were available
for the users. For the web cam and colour cubes based interface we had to
reduce the colours to the basic primary colour set.

White and black as representatives for the grey spectrum and red, green,
blue as the basic colours. As yellow, orange and magenta are also remembered
colours we provided them too. Cyan as a mixture of green and blue seemed
to us to be also a very important colour. But because of the colour dynamic
of web cams this particular colour is hard to be extracted from a web cam
image. In sake of stability of the colour detector we did not provide this
colour. Our user tests have shown that cyan was not requested by the users
when they had to sketch the images.

When using the background subtraction approach we noticed that with
a standard web cam it is not possible to capture the full colour spectrum,
which means that the cyan colour cubes were more often mapped to grey
than to the cyan colours. The results and tests we conducted with users are
described in Tangible Image Query (6.6, p. 119).

5.3 Physical Handles to Digital Content
The mediaBlocks project [144] presented the use of physical markers as han-
dles to digital media and a number of appliances was presented. The project
was influenced by the metaDESK/Tangible Geospace prototype [60,143] that
introduced the phicon concept. Tangible Geospace was developed in part to
explore physical instantiation of the GUI metaphor, that concentrated on
tangible control of a augmented space, making use of tangible interaction
to navigate trough information space was also described in the Navigational
Blocks paper [22]. Using physical objects that represent data queries, the
Navigational Blocks interface allows people to explore the relationship be-
tween topics in a database and create simple and complex queries - but no

5.3 Physical Handles to Digital Content 90

updates of the database.
The whiteboard-based mediaBlock functionality draws upon an earlier

whiteboard TUI called the transBOARD [60]. The trans-BOARD used paper
cards called hypercards as physical carriers for live and recorded whiteboard
sessions. The hypercard interaction was based upon barcode wanding. They
concentrated on managing the tangible interaction in creating and manipu-
lating the connection between physical handle and digital content.

The ubiquitous computing vision of Weiser [150] speaks to moving com-
putation and networking off the desktop and into many devices within the
physical environment. Dynamic association between digital properties and
physical handles through the tray device in described in [37]. The often cited
Bishops Marble Answering Machine [26] demonstrated the use of passive mar-
bles as "containers" for voice messages. Later work by Bishop prototyped
an early object-GUI gateway and demonstrated physical objects associated
with diverse digital content.

The LEGO structures described in Molenbachs Lego Wall prototype (dis-
cussed in [36]) are used to contain information about ocean-going ships.
These objects were combined with display and control objects that could
display shipping schedules and send this data to hardcopy printers, etc.

The AlgoBlock system uses the manipulation of physical blocks to create
computer programs [133].

5.3.1 Barcodes and RFID Tags
Barcodes have a quite a long tradition in the economy due to their qualities
in respect of cheap production and available devices. In supermarkets the
barcode of a product is a physical handle to the price, but also to manipulate
the warehouse database. Using barcodes to access digital content has recently
been described in [74, 75].

It the ATELIER project we included barcodes and RFID tags to represent
content of the HMBD. The barcodes have the obvious qualities of being cheap
(a normal printer is enough) and easy to be produced. The RFID tags on
the other hand are more suitable for an environment like a working place, as
they are robust against various liquids (e.g. coffee, energy drinks, etc.) and
dirt (like glue, left over material from creating models, etc.), see figure 5.5.
As described in Sensitive Sample (5.4.1, p. 92) the models itself can be used
to access multimedia content.

In STUDIERSTUBE the idea of physical handles is investigated, but be-
cause a global storage is missing, this feature is only usable in short presen-
tations and not a main research area. The fiducial markers of ARToolkit are

5.3 Physical Handles to Digital Content 91

Figure 5.5: RFID tags and barcodes in use.

mostly used to supply "location based" information rather than direct access
to digital content [65].

Often the applications in STUDIERSTUBE combine the interface with the
actual handle to the digital content like e.g. described in [5], where the
fiducial markers are used in a teleconferencing application, that allows the
users to position the data in the live-video stream. Additionally by choosing
between different markers they can decide what model to show.

5.3.2 Persistency as a Quality of Tangible Interfaces
An important quality of tangible interfaces is that they can be used in a per-
sistent way. A current discussion in the community is about: which qualities
a tangible interface must have to be a "real" tangible interface. In this thesis
we are not following the distinction between "graspable interface" (mean-
ing that the interface has a physical representation that can be manipulated)
and "tangible interfaces" satisfying all the qualities. The description of those
qualities is discussed in detail in the PhD thesis of Eva Hornecker [54].

Persistency means that the interfaces keep their states even if the com-
puter system is turned off. Furthermore the interfaces can also display their
state, therefore it is perceivable by the users without,the need for an aug-
mentation (this is only true for "real" tangible interfaces). Examples are:

• RFID tagged objects on a tag reader.

• The ControlCube (3.5, p. 36)

• The Tangible Image Query - as it can be used to perceive the current
sketch.

5.4 Gesture-based Interaction 92

This quality of tangible interfaces - to display the current state - and
therefore providing feedback for the users, makes this kind of interface so
useful.

5.4 Gesture-based Interaction
Using gestures to interact with a computer system is a ambitious task. Ges-
tures of humans depend (among other factors) on their personality, physical
abilities to perform certain gestures, and a lot on the culture they have. Of-
ten cited in the related work is the example of the culture where moving the
head up and down (nodding) means "no" and moving it side to side means
"yes". Still the research in this field is making progress, while keeping the
cultural differences in mind.

We will now describe the two applications where the interaction is based
on gestures:

• The Sensitive Sample and the MaterialKammer concept.

• The Invisible Person project where the human body is utilized as an
input device.

5.4.1 Sensitive Sample

The Sensitive Sample implies a violation of the affordances rule (2.4.3, p. 19)
as the object, which is enhanced, is not displaying the embedded function-
ality. This stresses the inspiring character of the application area, where
surprise is used as an element of a presentation. Another approach - follow-
ing the rule of affordances - was to use barcodes (see 5.3.1).

To enable the physical objects to detect various actions, tilt and touch
sensors are installed inside. Tilt switches are needed to detect user actions
like shaking hard, shaking gentle and turning upside down. Touch sensors are
used to recognize user actions like touching the object, stroking the object
(more sensors are used here and responses from them can be interpreted as
stroking in various directions and speeds) and knocking on the object. Figure
5.6 illustrates the actions that can be recognized by the Sensitive Sample.

The ControlCube was realised using the board with the micro-controller
described in Sensitive Sample (4.5.1, p. 63) and 3 tilt switches. The three
switches are connected orthogonally, and placed inside the cube so that axis
of the switches do not correspond to the cube axis. When a particular cube-
side is facing up, the three tilt switches will have a unique state. With this
simple setup it is possible to detect the side of the cube that is facing up,

5.4 Gesture-based Interaction 93

Figure 5.6: Some of the actions that can be sensed by the Sensitive Sample.

but also whether the cube is currently turned (the tilt switches will change
their state).

5.4.2 MaterialKammer concept
Based on the Sensitive Sample idea we developed a concept for supporting the
students in investigating different materials for their models and concepts (see
MaterialKammer distribution 4.5.1, p. 65). This concept is a result of our
field studies at the Academy of Fine Arts, that showed that students carefully
investigated materials, by touching them and get a feeling for the qualities
of the material.

Scenario of Use.

The ATELIER room is equipped with projectors, sound devices,
fans, lighting equipment, etc. The users enter the room and start
exploring the materials. Depending on the way how the users
interact with the samples, an atmosphere in the room is created.
If someone plays with the wooden samples, and does it in a quite
gentle and smooth way, an atmosphere of a wood in spring could
be created. Another user shaking the wood samples more erratic
can trigger a saw-mill like atmosphere. If the users play with
different kinds of samples, like wood, bricks, glass,.. .completely
different moods will be created.

In order to make the whole room inspirational, and not predictable, a lot
of parameters influence the choice of the presented materials. Videos, sounds,
still images, but also wind coming from the fans and controlled lighting are
used as output devices. Such a setup represents an unconventional way to
explore materials. The connection between materials, actions and presented
materials is not always clear to the users, the surprising element that emerges
plays an important role in the inspirational process (see figure 5.7).

Another use of the samples would be to use them for texture selection.
For example a wooden board can be used for wood texture selection. When a

5.4 Gesture-based Interaction

User's
Action

User's
Action

Figure 5.7: The concept of MaterialKammer interaction.

user takes the board a wooden texture is displayed. Now simple by touching
the board on the right or left side the textures can be browsed. When the
desired texture is found, the user knocks in the middle, and the texture is
being exported to another application. In a scenario like this a stone would
be used to select stone textures, a brick for brick textures, etc.

The multimodality of this concept is not only grounded in the gesture
based interaction, but also in the multiple ways the senses of the students
are stimulated - they can see, feel and smell the material they are interacting
with. As the real materials are used there is no need for generating these
impressions using a computer system, which would anyway be impossible
with the technology available.

5.4.3 The human body as an interface
Using the human body for interaction with a system has many advantages.
The interaction seems to be natural, because everyone is used to their own
body. There is no need for devices that can be broken, malfunctioning
or removed by someone. The users body is always available and can be
controlled by the users - it is probably one of the best interfaces for human-
computer interaction. The main drawback is that it is quite hard to detect
gestures and body poses in a normal environment. A lot of experience and
common culture is needed to understand the body language of other persons.
Many researchers try to analyse body language and the meaning that lies
within the movements of the human body. Stereo vision and visual clues to
determine the distance, interpretation of the body language, knowledge how
people react in special situations and so on are still beyond the capabilities
of computers and the designers of applications. Still research progress on

5.4 Gesture-based Interaction 95

all these problems is being achieved. Even if all those mentioned issues are
solved, there is no common culture between humans and computers that
could be a basis for a common body language. In the "Invisible Person"
project we tried to follow the principle of body language.

Adding some new forms of advanced interaction was our main goal. The
system in the TMW was realised to allow direct communication between
an artificial intelligent (AI) and humans without the need of custom input
devices. The enhancement of the interaction should use only the available
interface. As the original system proved to be a well-working environment
supplying human-computer interface [105], an enhancement of the system by
adding more advanced interaction was desired. We decided to use the well-
known interaction frame of game playing (see Interaction frames 2.4, p. 16),
so that the situation and the meaning of the users' actions are easily under-
standable. We defined that the minimum interaction tools, players must have
for our games, are "selection" and "mark". Thus all players must be able to
select a region on the playground. After that selection is done, a "marking"
action referred to by us as "click" must be possible. Both interaction tools
must be very reliable to encourage the users to play and not frustrate them
with a non-working interface. We introduced a new graphical element to the
system serving as an interface for the game-relevant communication between
the IP and the users.

Game-pads. Bowman and Hodges [15] proposed that the guidelines of
Norman [97] should be applied to interaction objects in virtual environments
(VE) (see Affordances, ... 2.4.3, p. 19). The game-pads we have used in
the installation satisfy all four criteria which are: affordances, feedback, con-
straints and good mappings. To satisfy the affordances criteria, the object
must be able to inform the user of the way it can be used. Usage of the
game-pads is demonstrated by the IP, when it makes the first move. The
IP uses the same posture that is registered by the system for a user "click".
Repeating the gesture, if the user is not marking a field within a certain time
and giving additional hints for usage. Feedback is realised by highlighting
the game-pads when a player moves over or stand on them (see figure 5.8).

They change both colour and shape as they are highlighted or marked,
displaying a clear difference in their state. Constraints refer to the limitations
on the use of the objects that help the user to use them in a proper way.
As the game-pads do not give any feedback to players who are not allowed
to make a selection, this supports the users in understanding that they have
to wait until the IP has made his mark. Good mapping requires that the
conceptual model, on which an object is based, is easily understood in the

5.4 Gesture-based Interaction 96

Figure 5.8: a. Game pads shoving default pad, selected pad, clicked pads; b. User
has selected a pad and just makes a click; c. IP makes a click; d. The user selects
next pad

specific usage model. The game-pads are based on an easily understandable
metaphor of some floor element that is sensitive to people standing on or
moving over it, as they exist e.g. in underground stations by the escalators.
For the enhanced system in the TMW we came up with two different types
of games. The first type deals with games like "TicTacToe" or "Senso"
that allow only one player to be active at a time. The second type is more
complex, by allowing all participating parties to select pads at the same time.
We found a generic representation of the information that is needed for the
AI to play with the users.

Vision The main task of the implemented vision system is to find the sil-
houettes of users seen from the front, to estimate the users' position and
posture on the stage. The silhouettes from the front camera are needed to
implement efficient occlusion in rendering. The position on the stage is used
to add depth information (needed for occlusion) to the occlusion masks and
to supply the AI with the users' position. This information is also used by
the AI to avoid collisions with the users. The posture recognition is necessary
for user interaction with the system. As stated above, selection and click are
necessary to implement user interaction within our games.

We implemented an interface where the user position will be used for

5.4 Gesture-based Interaction 97

selection, and a predefined posture that is used for the click. The posture
chosen is "two arms spread apart", since this posture showed to be the most
reliable one. The vision system runs on a dual Pentium PC running the
Linux operating system with two video grabber cards and two cameras. The
first camera is the same one used for the output video, and it is placed
in front of the stage, just above the display screen. The second camera is
positioned above the stage, pointing downwards, and this camera is used by
the vision system only. As stated above, the whole system is intended to run
in a publicly accessible museum hall, which has a frosted glass roof. Due
to the frosted glass roof the lighting conditions change practically all the
time. These changing lighting conditions, the demand to design a stable and
robust system for operation in a publicly accessible place and the demand to
design a real-time system were the three most challenging requests towards
the vision module.

Basic Vision. The basic vision is implemented using the OpenCV library
from Intel [101]. The basic task is to determine which pixels belong to the
foreground (user) and which to the background (stage). The basic princi-
ple used is background extraction, which is a common technique in people-
tracking systems. We updated the background image using a running average
of the input images. The current image is then compared to the estimated
background image. The pixels where the difference is greater than a certain
threshold are considered to belong to the foreground. The threshold is es-
timated per pixel using the standard deviation of its brightness distribution
over the last 200 frames. Once the pixels are classified, the background image
is updated using different update rates for background (faster update) and
foreground (slower update) pixels. The foreground updating is necessary due
to constantly changing lighting conditions. The foreground pixels contribute
to the background as well, in order to make the system more robust in case
of error. If a sudden change of lighting is interpreted as a foreground object
it will become part of the background, and will not remain foreground "for-
ever" . On the other hand, if a user stands still for a long period of time, he
or she will become part of the background, and once she moves there will
be two foreground objects. The basic vision described above is a standard
technique. We added some new features to the vision system in order to fulfil
our requirements.

Advanced Vision. Due to constant lighting changes and large range of
possible lighting levels, the camera iris system must adjust itself automati-
cally. If a sudden lighting change occurs, for example a cloud is passing by

5.4 Gesture-based Interaction 98

User Bounding Bon

Shadow estimated using
top camera information

FOTBQTOUnd

Figure 5.9: Vision module extracts the foreground pixels from the input image, and
estimates the shadow using the top camera information.

and covers the sun, the pixel intensity in the background pixels can change so
much that system assumes the whole background to be foreground. In order
to overcome this problem, a kind of software iris balance is implemented.
The light is measured on five spots, which are unlikely to be covered by the
users, and the current image is made darker or brighter depending on the
readings in these measuring areas.

The vision system runs parallel for each camera, using the algorithm de-
scribed above. When the mask images from the front camera and from the
top camera are extracted, both mask images are used to compute user masks
as seen from front camera and user positions on the stage. The original front
camera mask very often contains a shadow. The shadow can be cut out using
the information from the top camera. The user position is known, and the
floor level in the front mask can be computed using the user position infor-
mation. Figure 5.9 illustrates the result of estimating the background, the
foreground and shadow in the foreground image. Furthermore, the top cam-
era information is used to divide the front blob in cases where two users are
standing one beside the other from the front camera's point of view, but they
are actually standing apart (behind and beside each other). Once the mask
images are merged, a new final mask image is produced containing masks
with depth information. These masks are used for occlusion and posture
recognition.

Posture Recognition. Besides the depth information for the masks, a pos-
ture is assigned to each mask as well. There is a predefined set of postures
from which one (or "none" if the posture is not recognized) is chosen and
added to the mask. The bounding rectangle of the mask is divided into 25

5.5 Sound and Speech Interaction 99

sub-rectangles, and a fill ratio is computed for each sub- rectangle. The fill
ratio is the ratio of foreground pixels and total pixel count in a sub-rectangle.
These fill ratios are compared with the fill ratios of predefined posture masks,
and the posture with the smallest mean square error is considered to be the
right one. If the mean square error of the closest match exceeds the maximum
allowed threshold, the posture is considered to be unrecognized. The system
recognizes postures such as left arm stretched out, right arm stretched out,
both arms stretched out, left leg stretched out, etc.

5.5 Sound and Speech Interaction
Sound as an output facility is a quite complex media. When a sound is played
through loudspeakers, all people in the room are influenced by it. They do
not have to look a specific direction as the audio sense of humans works
ubiquitous, which can be useful or disturbing [97], p. 102-104.

The use of headsets allows to limit the influence of the sounds to just one
individual. For a presentation situation loudspeakers are a better choice.

In an application design it is important to keep in mind that sounds
can be more annoying than visual output, as the visual sense can be better
controlled by and individual - by looking in a different direction or closing
the eyes. Sound can only be blocked by moving the hands to the ears.

A interesting project that builds upon earlier work in the field of speech
and gesture-based systems is presented in [106]. They present a virtual envi-
ronment where users can use pointing gestures combined with speech input
to select and move virtual objects. Their work is based on Avango [139, 140]
and incorporates a language interpretation engine that is able to resolve am-
biguous references from both - gesture based and speech - interaction inputs.

In the two projects we also investigated the use of sound and speech to
interact with the system. In the STUDIERSTUBE project, due to the integra-
tion of Microsoft's Speech API (SAPI) [87], also speech output is available
for the software developers. In combination with the AR Puppet framework
even lip-synchronised computer generated facial agents are possible [7]. The
SAPI framework can also be used to perform a quite limited speech recog-
nition. Kaufmann tested the speech recognition (that was implemented in
the OpenTYacker framework) with the ConstructSD application. He men-
tions in his PhD thesis, that this interface is more suitable for a single user
environment as background noise, especial other users talking to each other,
disturbs the speech recognition. The quality of the microphone used and the
sound-card are also important parts of a speech recognition setup.

In ATELIER we shortly (actually just a few hours) investigated the use of

5.6 Construct3D improvements 100

speech recognition to access the HMDB. Although it seemed to work quite
well in the test setting, it would certainly fail in the normal work environ-
ment - where various groups of students discussed different issues in the
ATELIER room, while working on their projects.

Although we implemented also sound output components most architec-
ture students were so concentrated on their models and the visuals that they
did not explore the use of sound. This may also be grounded in the fact that
the second field trails (with the more elaborated prototypes) were conducted
with first year students, while our initial field trails were done in collaboration
with master students, who actually used sound scapes in their presentations.

5.6 Construct3D improvements
As stated in Construct3D (3.13, p. 50) the feedback and self-explanation of
the application is limited. To improve this issues for the next evaluation
we discussed how to proceed. Additional features requested by the teacher's
included more control and some privileged access to the system (more based
in the social setting than on practical needs for teaching).

Working on the system we decided to also include some changes to the
internal functionality and improve the structure to create a solid ground for
future enhancements. As described in [69], tests combining the application
with the scripting functionalities of APRIL were performed in the past. The
interface that is needed to be able to integrate ConstructSD with APRIL is
also needed for the PUC framework. The PUC framework - developed after
the last evaluation - provides a number of features that can be utilized.

Device independent modelling of the interface that allows also to in-
corporate dependencies between the states.

Automatic GUI generation that can be used in the AR environment as
well as on a PDA or a desktop PC.

Additional text for states that can also be rendered on the different de-
vices and can also be used for speech synthesis.

Scripting Interface that allows rapid prototyping (in conjunction with the
Automatic GUI generation), by adapting only a text-file without the
need for compiling the code.

5.6 ConstructSD improvements 101

5.6.1 Displaying the state

Many commands in ConstructSD depend on the internal state of the appli-
cation (like how many points are selected). The fist step is to visualise the
availability of commands. Until now the application will not display which
commands can be issued. A user can highlight (by moving the pen inside
button geometry) and activate (by pressing the button on the pen) any wid-
get on the pip. The application just does not react on the invalid commands
(a debug message on a screen - not visible for the students - noted that
the command is currently not available). Therefore it is not possible for the
students to perceive the state of the application (violation of the constraints
rule, see Constraints 2.4.3, p. 19).

Figure 5.10: Displaying the possible commands by disabling inactive commands

By disabling the unavailable commands (the disabled state is rendered
transparent - in analogy to the greyed widgets in common GUI's), the stu-
dents can now see, which commands are currently available (see figure 5.10).
The disabled widgets also do not react (with highlighting) on the pen, which
stresses the difference between enabled and disabled state.

5.6.2 Tooltips and Speech-output
By exploiting the functionalities of the PUC framework additional informa-
tion can be displayed. We implemented tooltips (well known from conven-
tional GUI's) to display additional information for the widgets. To go beyond
the well known tooltips, we also display different tooltip text depending on
the state of the widgets. With the help of these tooltips the students can
understand what they have to do, to make a specific command available.

The tooltips can be tailored by the students (and teachers) to increase
or reduce the time they have to highlight a widget before the tooltip will be
displayed (like in conventional desktop applications). Setting the timeout to a

5.6 ConstructSD improvements 102

low value will display the tooltip nearly immediately after entering the widget
with the pen, setting it to a high value will practically disable the tooltip (no
student holds the pen within one widget for more than 10 seconds.)

Figure 5.11 : Displaying different tooltip text, depending on the state of the widget.
Left: disabled tooltip text, Right: enabled tooltip text

The students are, beside the HMD, equipped with a headset that allows
them to communicate with remote students and hear pre-recorded instruc-
tions for an exercise. We will make use of the head sets to output a speech
synthesis of the tooltip text, because the tooltip text can be hard to read
wearing a HMD.

The speech output can also be tailored by the students to enable, after
some time working with the system, to turn the speech feedback off, which
can get annoying when using it for a longer period.

5.6.3 Speech input
The PUC framework can also be used to include speech recognition (based
on Microsofts Speech API (SAPI)) for the defined interface. We are yet not
sure, if the already stated problems ([69], p. 60) of background noise (especial
in a multi-user setup) and the detection rate of the speech recognition are
yet sufficient. As this field of research is hardly worked upon in the computer
interface community, we may see a workable solution in the next years. By
using the PUC framework to describe the possible commands the recognition
is reduced to just a number of recognizable words, which could eventually
work out.

Chapter 6

Results and Discussion

In this chapter we present the results that have been achieved so far using the
both systems. A discussion about the issues that we discovered during the
implementation and tests of the prototypes is also presented. The chapter
Important Functionalities of a system (7, p. 130) will address these issues by
explicitly formulating them as issues that should be tackled by the designers
of a framework.

First the general results and findings are presented, then the results of
some applications are discussed.

6.1 Qualities of Input Devices
Often user interfaces are discussed and evaluated on the basis of usability,
understandability, stableness, error prone But sometimes although all
these criteria are met, an interface can be wrong. Each interaction method
has different qualities, and to exploit these qualities is often overlooked. This
is especially true if a range of interfaces can be used to perform a certain task.
Sometimes a user interface, even when it is less suitable for a task, is never
the less more appreciated by the users, depending on their abilities to use a
device and personal settings and configuration [97].

A rather strange example is sending short text messages with the cell
phone. Although the cell phone is designed to be used for audio conversation,
some people prefer sending a text message (with a most inconvenient interface
for editing texts) than calling the other person.

In the ATELIER and STUDIERSTUBE project we often faced the oppor-
tunity to choose between different solutions. Based on the discussions with
both teams following qualities of input devices were collected.

103

6.1 Qualities of Input Devices 104

Stableness. Some of the tangible interfaces that are published are merely
in a beta state, meaning that they are not ready to be used in a normal
working scenario. Too much "manual" work is needed to get them running
or to keep them running. The actual amount of work that has to be invested
to develop an interface from a lab setting to really work in a real-life scenario
is sometimes underestimated.

Some properties can be summed up with the word "stableness" :

• Physical stableness - is the device constructed so that it does not break
under normal use scenarios, there are good test procedures available for
industrial device testing. The first Sensitive Sample were too fragile.
Also in STUDIERSTUBE for the development of the wireless pen we
needed some iterations to produce a pen that satisfied this criteria (see
figure 6.1).

• Data stableness - does the software driving the device produce stable
data? This can be a problem with vision based devices, where the data
extracted from the live-video stream can be unstable. Short breaks in
the data, indicating that the object can not be detected, have to be
taken into account. Sudden changes in the position or orientation data
also can be caused by unstable tracking.

• Environment stableness - is the device still functioning even if the envi-
ronment is changed? Examples are that devices are influenced by metal
(magnetic tracking), light (vision), or conflicts with other devices us-
ing the same radio frequency. The Texture Painter and Tangible Image
Query are good examples for devices were these issues are investigated.

• Error prone - if some device only works 80 percent of the time users try
to use it, it is probably the wrong choice. This issue was investigated
in the Sensitive Sample project, in detail in the development of the
NavigationBox.

Often the authors argue that there are still improvements to be done,
before that device can really be used, but before these improvement are not
realised, it is hard to tell whether it is possible at all to overcome those
problems.

Shared environmental requirements. Some devices require specific envi-
ronmental settings that sound plausible for a specific setup using this device.
But if more than one specific device should be used in a setting, allowing
the user to choose between different devices, the requirements can be contra-
dictionary.

6.1 Qualities of Input Devices 105

Figure 6.1: Physical evolution of the wireless pen, ending up with a pen that is
robust (professionally designed and manufactured).

The devices that we wanted to combine in the ATELIER project, this was
mainly the light situation in a setup where the Texture Painter (3.8, p. 40),
the Display Table Display Table (3.3.2, p. 28), and ARToolkit markers were
combined.

To achieve a good image quality of the table surface the incoming light
had to be minimal, for the web cam to register the ARToolkit Markers the
light had to be turned on. Finding a good compromise between those ex-
tremes needed some tweaking. In theory these issues can be easily solved
by for example using infrared markers and an infrared camera and there-
fore separate the requirements for the different devices in the light spectrum,
actually diminishing the problem of a shared global variable (incoming light).

Setup and calibration requirements. Some devices like e.g. The Tangi-
ble Image Query needs some preparation work, it does not work "out of the
box". This is probably true for all vision based devices that are not com-
mercial like [2] or especially created for changing lighting situations [113].
Also important is the time of the calibration - does the device have to be
calibrated every time the users want to use the device, or is the calibration
only needed when a setup is built up in a new place or environment. Also a
"user based" calibration is sometimes needed: e.g. for speech recognition, a
user in general has to finish a training of the speech recognition system that
can take up to 20 minutes [57].

Some devices do not need any calibration e.g. keyboards, mice or other
environment and user independent devices. Although the mouse can be tai-
lored to better fit the needs of the users (like switching the mouse buttons
for a left-handed user). So if a left-handed person comes to a different work-

6.1 Qualities of Input Devices 106

place, sometimes some setup must be performed, but this is related to the
preferences of the user and not to requirements of the device.

Tailoring possibilities. Changing the mouse button order (for left-handed
users) or even the direction of the mouse pointer relative to the movement of
the mouse can be an issue (some users prefer also an inverse vertical axis).
These are tailoring activities that help the users to use the device in a manner
that suites their needs and abilities best (see Tailoring 4.9, p. 75).

Time delay. Also an important quality of an input device is the time delay
introduced by the device itself - excluding the time to process the input and
display a result. For example the Tangible Image Query needs some time to
process the web cam images and also uses timeout methods to realise that an
input is stable. Also in the Invisible Person this time delay can be irritating
for the users, who normally do exactly the wrong thing namely changing
or retrying the input instead of waiting. With some devices - special those
based on timeouts - it will never be possible to reduce this time delay (see
Time delay in Invisible Person 6.5, p. 117).

Persistency. A very important quality of an interface device is the level of
persistency they provide. Most of the input devices actually do not provide
any persistency. This feature is then implemented in the software or the
application. By using save and load functions a kind of persistency is created
that allows the users to work incrementally. When working with "real life"
tools persistency is kept by the physical basis of the tools.

A "real life" example: On a desk a paper is not removed after the user of
this desk has left the room (or closes a window). This also is an advantage of
tangible user interfaces. As they have physical representations those physical
props provide - by the means of being physical - persistency (see Tangible
Interfaces 5.3.2, p. 91).

Most interfaces like for example a mouse or keyboard do not provide
persistency, instead they provide "at the moment" information.

Information provided. Sensitive Sample, the SoapBox or tracked objects
provide a stream of information about their current state: position, ori-
entation, temperature or light that is detected by a sensor. In STUDIER-
STUBE this stream of information is normally used to directly control the
state of virtual objects or virtual cameras. From these information stream
events can be extracted like "the object has been moved" or "the object has
been shaken".

6.1 Qualities of Input Devices 107

Some devices provide information like: "at the moment the 'h' button is
pressed" and some do not even provide this information, but just something
like " '1234' was read with the barcode reader". So the current state of the
device can not be detected, just that something happened a short time period
before.

Visibility. Some input technologies are more visible than others. While
barcodes, and fiducial markers (e.g. ARToolkit markers [66]) have to be
visible and clearly indicate that they can be used for interaction with the
system, RFID tags and Sensitive Sample can be hidden and do not - at least
at first sight - seem to be part of an interface. Although the affordances
rule (2.4.3, p. 19) states that an interface should clearly indicate how to use
an interface - which includes that it can be perceived as being an interface
- this information can be included in the shape of the object, or in the
environment itself. The MaterialKammer is a good example of a concept,
where users can expect that everything in the environment will be usable as
an interface.

Through the rapid development in the radio technology, tethered de-
vices are replaced with wireless ones (keyboards, mice, microphones, . . .).
Through applying the rules of Norman [97] these devices are still recognized
as input devices.

Theory and Praxis and about budgets. When choosing a suitable device
for a interaction design, it is also important what currently is possible and
doable.

Also budget arguments are taken into account, because budget and person
power are restricted. In reality not everything that is possible is realistic or
even realisable, under the restrictions of budget and available working power.
The discussion in research whether everything possible should be developed
or not (like e.g. the nuclear-bomb), is now switched to the discussion to "is
it worth the money that must be put into the development". Although this
seems to be a "business like" approach, research is facing a more and more
a business like situation in terms of resources available.

6.1.1 Matching qualities and requirements
As described by Ishii and Ullmer in [60] a set of interaction methods have
to be found for the emerging field of tangible interaction tools. A concept
similar to widgets in GUIs, have to be found for tangible interaction tools.

6.2 Dealing with conflicting inputs 108

In this thesis we propose to analyse the qualities described above to find a
proper matching between requirements and interaction tools.

For example: Persistency suits well with the selection widgets like list-
boxes or combo-boxes. The current selection is visible as well as the alterna-
tives that can be chosen from. While trigger devices like e.g. barcodes are
better suited for commands (that trigger some reaction).

In the ATELIER project the RFID tags and barcodes where used in both
interaction situations: choose from a number of items and issuing a com-
mand. Because we applied the affordances guidelines, the prototypes were
usable. Still it would be better to actually use the different input devices so
that their qualities support the interaction.

Conclusion. Each user interface has special qualities. In a good system
design this qualities should be used to support the interaction with the sys-
tem. Giving the users the choice to configure their setup still leaves them the
choice to use different input devices, but the predefined setup should actually
be grounded on the qualities of the input devices to already providing a good
start-point for the users.

6.2 Dealing with conflicting inputs
When dealing with simultaneously inputs, that can influence the same state,
situations can arise that can not be solved in a straight forward manner,
especial in interaction where a state is selected. An example of the ATE-
LIER project can be used to explain this with an example:

A user selects a special configuration of the displays by using the
ControlCube by turning the side of the cube up, that activates a
configuration. Then a different - or the same - user reads in a
barcode for changing to a different configuration.

In this situation a conflict arises, on the one hand a persistent interface is
used to select from a number of options, on the other hand a trigger interface
is used to issue a command that is in conflict with the persistent interface.

There are actually a number practical solutions to this specific problem:

1. Inform the user of the problem and request for additional information
how to proceed.

+) it is transparent for the user that there is a problem. The user
gains insights about the system and is able to identify the problem,

6.2 Dealing with conflicting inputs 109

probably avoiding it the next time. Giving the user the ability to
solve it in a way she feels it is understandable for her, storing this
information in the system as a personal setting (see Configurability 4.9,
p. 73). This procedure can enhance the interaction language, creating a
configurable interaction language, which means that the user configures
how to handle this conflict.

-) interaction is interrupted - the focus on the task is lost and the user
has to focus on solving a problem not related to the work that should
be accomplished.

2. If the configuration is selected with a persistent interface it overrides
all other input devices.

+) the interaction continues without a break

-) Reaction of the system on the action is not expected - Is the barcode
reader not working? Even if the system informs the user about the
problem, and what has happened - it is a source for misunderstanding
the interaction pattern.

3. The last command is taken, deactivating and ignoring the persistent
interface.

+) the interaction is continues without a break

-) the quality of the physical interface - it represents the state of the
system in the physical world - is lost. Even if the system informs the
user about the problem, and what has happened - it is a source for
creating inconsistent system states. The physical interface is no longer
representing the state of the system, taking away the one of the most
useful qualities of this input device. Also the virtual aspect of the
system is enhanced, as physical object have less influence.

4. Do not allow simultaneously input for selecting states.

+) no conflict arises

-) The question arises: How is a user able to specify which input should
be activated? To find an answer for this question, new "meta" tools
have to be introduced. These "meta" tools tend to make interaction
more complex then it needs to be. This meta interaction is not even a
tailoring activity as it just changes the "active" state of a device.

Probably the best solution could be to combine point 4 and 1. Giving
the users means of (simply) specifying that they want to use a specific device
and telling them, if two conflicting inputs happened, what went wrong and
how they are able to resolve the problem.

6.3 Undo - Qualities 110

Conclusion. The example makes clear that some input situations can arise
that create conflicts. Actually none of the provided solutions is really perfect.
Still providing the user with multiple means of interacting in specific situation
creates a system that will more likely be accepted by the users. The system
is flexible to be used in different working situations and also can be adapted
to different work practices.

6.3 Undo - Qualities
Nearly all "state of art" applications provide an undo function. This is one
of the requirements presented by Sheiderman (see Eight Golden Rules of
Interface Design 2.4.4, p. 19).

There is no undo in real life.

This statement reminds us, that in real life we do not have the possibility
to undo something, this also true for tangible and physical interaction. There
is no way for the system to "undo" an action on a tangible user interface.
Tough the action that was invoked based on this action can be undone (except
for some special commands like "exit application"), the change to the physical
object can not made undone - at least by the system. For some interactions
like navigating to the next picture in a series a "back" command can be
issued by the user - this is actually not undoing the command (next), that
was triggered before. Changing a state e.g. by turning the ControlCube, can
not be undone by the system, but the user must turn the cube back to the
side that was facing up before. The system could help the user to recreate
the state that was active before, by providing some information of how to
accomplish the inverse command e.g. Please turn the cube so that the
'browse' side is facing up.

The Tangible Image Query has no undo function, and even worse it is
practical impossible to redo a colour sketch. Once the sketch is changed -
the coloured objects are moved - there is no way of reproducing the pre-
vious colour sketch exactly. Most interfaces that share this problem try to
minimize the indeterministic part, that originates from the interface. By us-
ing thresholds and discrete transformations, which filter out small changes,
providing a interface that can be controlled by the user.

But this indeterministic feature is also sometimes used to increase the
inspiring character of an interface. From the view of a developer this quality
is causing a lot of problems: when an error occurs, it is impossible to recreate
the situation to track the problem down.

For the Tangible Image Query we found a practical solution:

6.4 Input and Output Abstraction 111

• the results of the query can be stored in the database, eventually print-
ing a thumbnail page, to retrieve the results or browse them in more
detail

• the users can turn the Tangible Image Query on and off. If turned off,
no new sketches are detected - for example originating in a change in
the lighting situation, or by a different user changing the sketch - the
current results are not changed.

However this locking is not displayed in any matter. This means that we
violated the rule that a feedback should be given (violation of alignment see
2.4.5, p. 21), which states that the user should be able to perceive the system
state - namely that the Tangible Image Query interface is turned off and
changing the sketch will not create new results. A possible solution would be
to turn off the background light of the Tangible Image Query, which would
be a perceivable and understandable signal that the device is off.

Conclusion. We did not manage to implement the undo functionality in
the ATELIER project, and in STUDIERSTUBE this feature is only supported
in the ConstructSD application. An alternative to an undo-function would
be the "save early, save often" approach. This approach will be discussed in
the section Improving the Save Command (6.7.2, p. 124).

6.4 Input and Output Abstraction
In both projects input and output abstraction were implemented. Special
issue we discovered during the development of these abstractions are now
summarised.

6.4.1 Input Abstraction

In the AR Puppet framework (3.11, p. 46) a abstraction layering was im-
plemented, but is limited to the actions of the agents that are managed by
the framework. The APRIL Framework (3.10, p. 43) has - in the story
editing language - fully realised this concept. But the binding between the
"meaning" and the physical interaction of the user has to be realised by
a Component Implemented depending on the presentation environment se-
lected. The PUC framework (3.12, p. 47) provides an abstract description of
interaction possibilities. The clients then use this information to create an
interface, that can be used by the users. Additional information about the

6.4 Input and Output Abstraction 112

dependencies and possible commands combined with explanations can also
be provided.

The Sensitive Sample from the ATELIER project are objects that are
equipped with sensors to detect interaction with the objects. Examples for
actions that can be detected are touching, shaking or turning (see Sensitive
Sample 5.4.1, p. 92).

The tilt sensor can only specify whether they are on or off (1 bit). By
combining more than one sensor an estimate of the rotation of the object,
meaning which side of the object is on top can be calculated. This realises
the second abstraction layer, the system can provide messages like obj ect X,
side 2 i s facing up. This state could also be register with other kinds of
sensors or tracking of the object. When adding time information and context
sensitive processing of the data events like the object X has been turned
from side 2 to side 3 can be produced. Also the event of shaking can be
detected - for example when the sensors produce a lot of changes in a small
time period. Now information like Object X has been shaken is available
for processing. This high level information is no longer coupled with the
technology behind the interaction.

Still the third layer of abstraction is needed to make the system really
flexible. What does it "mean" when the user is shaking the Object X in this
particular interaction context? An example could be that the user wants to
select a random image from the database or to get more detail about the
contents of the object (to "shake information out" of the object). The most
useful information about the interaction is actually what the user wants and
not what is being donel

In the ATELIER project parts of this abstraction were realised. For ex-
ample to select a specific image from the database many different ways are
possible. By reading in the barcode associated with the image, by placing
a tagged object (picture cards) on a tag reader, by activating a result of an
image search. The message that was produced by the system was always
image X selected. The source of this selection is not important, but that
this particular image was actually selected by the user.

Conclusion. Messages like select random image or display information
about wood is what the input system should be producing. The intention of
the user can also be created by using a GUI by selecting from a list-box or
pressing a pushbutton, or by placing a specific tag on a tag reader.

Still the intention of the user is the same, just the way she communicates
this intention is different. A system design should therefore incorporate the
proposed input abstraction layers, for this is a foundation for a multimodal

6.4 Input and Output Abstraction 113

and configurable system.

6.4.2 Output Abstraction

The APRIL Framework (3.10, p. 43) allows to specify, independent of the set-
ting and the interaction devices, outputs and behaviours, without explicitly
having to know the target presentation platform. The executable presen-
tation is then created by specifying the available inputs, outputs and the
general setting of the presentation and the actual presentation. By combin-
ing this information, a presentation specific for the available tools is created
just before the presentation is started [76].

The output abstraction in the ATELIER framework was also implemented
in the inter-component communication.

6.4.3 Connection between Selection and Output compo-
nents

In the ATELIER environment we created a very flexible way of working with
images. Different methods for accessing and selecting images from the HMDB
were implemented. Once the user has found the image she wants to work
with, several output components could be made use of to output the im-
age. The most interesting feature is that the different search methods could
also be used as output devices, meaning that based on the image that was
send to these "output" devices, new results would be displayed, creating a
useful and inspiring method of browsing through the HMDB. This browsing
is an alternative to the hierarchical or sequential browsing, which was also
implemented.

Output Components We developed a series of output components that
can be used by the users to display (or output) images that are in the HMDB.
We provided several display screens to project on, a three screen wall, where
the display planes could be adjusted to form a closed space or a flat wide
screen and anything between those extremes. Additionally there is a table
on which the designer can place their artefacts, on which an image can be
projected from underneath, changing the visual appearance of the table.
The Texture Painter was used to create compositions of several images and
textures to augment artefacts. Actually two Texture Painters were used by
the students to project on the vertical and horizontal faces of their artefacts.
When an image is sent to one of the Texture Painters the currently active
texture is replaced with the new image. Therefore the part of the artefact,

6.4 Input and Output Abstraction 114

that was painted with this texture, changes its look, creating a new vision of
the artefact. A printer can also be used to print out an image - including a
barcode to get a physical handle to the picture.

Tangible Image Query, Ontology Search and Thumbnail pages We
implemented different methods to access images from the HMDB. These
methods can be used in conjunction and are connectable. The starting point
for most of the users was the thumbnail pages. These pages where printed
after new pictures had been added to the database. So for each "upload"
session the users would get pages with thumbnails of each picture they added,
underneath each a barcode was printed (see Barcodes and RFID Tags 5.3.1,
p. 90).

These pages are the physical handles to the digital material. The barcodes
are then be used to send the images to any output component, for example to
display the image on one of the screens or to the Texture Painter (described
in Display Manager 6.7.1, p. 122).

The Tangible Image Query can be used to find and browse through images
in the database based on their colour layout. By creating a colour layout with
coloured object the users could create a query to the image search engine.
The results of this query were displayed on the display wall. The same
procedure can be used in conjunction with the ontology search. By reading
in an ontology query barcode, the users can browse through all images in the
database that are annotated with that specific barcode.

Barcodes to browse through the results (showing the next or previous
9 images) were provided. For this the source of the images is no longer
relevant. By selecting a output - using barcodes - and then selecting one of
the result images - again with a barcode - this selected image would be send
to the output device. Using those two different approaches - colour sketch
and keywords - it is easy for the users to find visual material to work with.

6.4.4 Combining the Search Methods

The most interesting with the system is actually to combine these two ap-
proaches. An image found with the image query can be sent to the ontology
search, resulting in images that have the same keywords, but also to send-
ing images that were found through the ontology search to the image query,
which will display image that have a similar colour distribution. With this
method the users are able to get a different understanding for the visual ma-
terial - starting with images of fruits ending up with a picture of a sailing
boat. This encouraged the students to think different and find new meanings
for their artefacts, and new visions of what their project is actually about.

6.4 Input and Output Abstraction 115

Nevertheless these methods can be used for the standard usage of search
methods to actually find something one is looking for. By sending the results
to the printer physical handles for the images are produced.

Multiple Ways of manipulating keywords in Atelier In the setup we
created there are multiple ways of annotating images with keywords. During
the upload procedure keywords can be assigned to the list of pictures or to
individual pictures. Both the Path Creator and the Upload applet can be
used to add images to the HMDB. While the Path Creator allows the user to
specify any meta-information, with the Upload Applet only keywords may
be added. If keywords where added that are currently not in the ontology a
new ontology barcode set must be printed.

Once the images are in the database they can be accessed using any
method described above. When using the HTML interface, the users are
able to change any keywords. Even adding new keywords is possible with
the HTML interface (see HTML as a User Interface 5.1, p. 83). This in-
terface is especial useful if the ATELIER room was used by another person,
so that the annotation of the images was possible without even being in the
ATELIER environment.

Once an image is displayed on one of the screens, keywords from the on-
tology can be added or removed by reading in the ontology barcodes. We also
experimented with speech recognition, but due to the rather poor recognition
rate of the system we used, this feature was removed again. Nevertheless it
is worth mentioning, that this interface was actually available, as it increases
the interaction possibilities and demonstrates the multimodal interaction in
the ATELIER project.

The use of the ontology barcodes was also a good solution as most of the
interaction with the display wall was based on barcodes. A feedback of the
current action is displayed beneath the image that shows the current set of
keywords that are specified for that particular picture. As this feedback line
is hidden after a period (approximately 3 seconds) reading in a new keyword
will show the user that something has changed - making clear, what the result
of her action has been.

Conclusions. The output abstraction on a inter-component level proved
to be a flexible concept. New "output" components were added easily, ex-
panding the possibilities to make use of content stored in the HMDB. In the
ATELIER project we only investigated the use of images, but this approach
can be expanded to other output médias (algorithms to search for "similar"
sounds were developed already). By using the different attributes - content

6.4 Input and Output Abstraction 116

as a color layout, and the keywords attached to that content - as a query
to a search engine can be extended to other attributes (like author, project
connected too, . . .), to allow the users to investigate all aspects of a specific
content.

To be able to implement such an approach a uniform representation for
the content is needed, which can be achieved by using a global repository 7.3,
p. 132.

6.4.5 Applications versus Assemblies
The terms application and assemblies are used to specify different approaches
in providing a collection of functionalities that the users can make use of to
work with the system. With application special purpose setups are meant
that allow the users to work on specific tasks. Assemblies on the other
hand are generic tools that allow users to perform generic tasks. These two
concepts are interwoven, meaning that the implementers of a application use
functionalities to create applications for a special purpose. A collection of
functionalities is often referred to as "framework" or "software library".

Component Assemblies In the ATELIER project applications are called
Component Assemblies already stressing that they are a mere combination of
components, which represent a functionality. By coupling the functionality
and presenting the user a predefined configuration of functionalities a sort of
"application" is provided.

When allowing the users to dynamically create connections between dif-
ferent functionalities a new system for new tasks can be created by the users.
There are many examples for dynamic configurable systems, most of them
provide GUI's for the users to create the configurations (see figure 6.2).

»|n|.| »M *l ol tl :,\

Figure 6.2: A Screenshot of the DX-GraphEdit tool (included In Microsoft's DirectX-
SDK), that allows user to perform configurations with a GUI.

6.5 Discussion - Invisible Person 117

Conclusions. Developing a system that can be configured by the users
(without the need of special trained personnel) to created their own workflow,
needs abstract and flexible interfaces and a well designed system. The goal
of this thesis is to enhance this idea and make it a general concept when a
distributed multimodal system is created.

6.5 Discussion - Invisible Person
Game-board and Game-pads. The Game-pads were designed to have
enough information to function independently of the rest of the system. No
supervision is necessary, the game pads will highlight or even change their
state if any player interacts with them. The game-board has knowledge about
the connection between the pads and it also distributes information from the
game to the pads (active player, initialize). Most of the game-boards realised
used the Game-pads.

Performance We have implemented a real-time system, to enable real time
interaction, a system had to be developed that recognizes user actions and
replies to these actions in a short period of time. As most of the described
user actions can only be detected at the end of the interaction (like "double
click" can only be detected at the end of the second click) some delay in the
response is system immanent. The vision-module updates the information
about the people on the stage with a mean rate of 10 information blocks per
second. The render-module is able to produce about 15-18 fps (depending on
the complexity of the occlusion masks). As soon as a person (including the
IP) moves over a game-pad it changes its colour and shape (which means,
depending on the frame rate of the render-module and the detection rate
of the vision-module, about 0,1 seconds). The reaction to a click action is
determined by the detection of the user action (normally about 0,6 seconds
after rising both arms while standing on a game-pad).

Conclusions. We have implemented and installed an advanced user inter-
face in an immersive virtual environment accessible for a large public. Some
extra work had to be done to develop the lab prototype to be functional
in a public environment. By utilizing well-known metaphors and analogies
the user interface was understood by almost all users. We have shown that
it is possible to implement an advanced interaction scheme in an immersive
virtual environment, which is well perceived by everyday users, satisfying all
four interface design requirements described by Bowman and Hodges [15] and

6.6 Discussion - Tangible Image Query 118

realizing a stable and reliable setup to simulate a "mouse input" without re-
quiring the user to handle any input device. The idea of using this advanced
interface as an input for games originated from the environment in which
the system was installed. The "playful" interaction between technology and
humans is a widely used way to transport knowledge in a museum. For
modern museums the "interaction" between exhibited objects and visitors is
a way of getting people to be really involved with the themes. Especially
school classes populated the system with great excitement during their visit
to the museum. The public accepted the installation and tried to commu-
nicate with the IP with anticipation. Most of the users' cognitive power is
absorbed by the IP and its effort to communicate with the users. The actual
interface to the game is not the main intellectual task for the users. Most of
them try to understand what the IP has to tell them. By giving the users
an understandable metaphor of "someone" living in the mirror, they do not
concentrate on learning the usage of the interface. So the simplest learning
scheme "imitation" is performed by nearly all visitors. The hardest task for
the users is to recognize that they are playing a game. Once users made that
cognitive step, the interfaces were well understood. The most difficult part
was developing a vision system which would function in a non-controllable
light environment.

6.6 Discussion - Tangible Image Query
Comparing the Interfaces Comparing mouse and tangible interface of
the Tangible Image Query

As described in Properties of Instruments (2.4.2, p. 18) a user interface
can be evaluated applying the measures: degree of indirection, degree of in-
tegration, degree of compatibility. Although the original publication focuses
on widgets, it can also be adopted for tangible user interfaces.

Referring to the Tangible Image Query setup, the object that the interface
operates on can be interpreted in two ways. The users manipulate the colour
layout sketch, but they do that because they want to change the results of
the colour layout query. We will now compare the mouse interface with the
tangible interface by applying those measurements, to evaluate the benefits
and drawbacks.

The degree of indirection is a measure of the spatial and temporal offsets
generated by an interface. The spatial offset is the distance between the input
part of the interface and the object it operates on. The temporal offset is the
time difference between the physical action on the interface and the response
of the object. The temporal offset is quite the same for both interfaces, as the

6.6 Discussion - Tangible Image Query 119

sketching of the colour layout is performed in real time with both interfaces,
without any time delay. And after a specific time without manipulation both
interfaces send the created sketch to the search algorithm. The spatial offset
is slightly better with the mouse interface as the drawing area and the display
of the results are on the same screen and the tangible interface needs two
separate areas, one to sketch the colour layout and one to present the results.

The degree of compatibility measures the similarity between the physical
actions of the users on the interface and the response of the object. The
tangible user interface provides a higher degree of compatibility as the users
directly manipulate the colour layout sketch with the coloured cubes. The
interface is a very direct approach without abstract mapping between input
and effect on the query. With the mouse interface the users have to draw
by selecting a colour from the palette and then move the mouse to create a
coloured area in the sketching window.

The degree of integration measures the ratio between the degrees of free-
dom (DOF) provided by the logical part of the instrument and the DOF
captured by the input device. The degree of freedom can be evaluated in
two dimensions: the colour dimension and the layout (2D) dimension. The
mouse interface provides only a 2D interface. Therefore an indirect colour
selection method has to be incorporated. The tangible interface in our cur-
rent setup allows direct access to all three dimensions (colour and 2D), but as
one of our test users stated, the cubes can also be stacked to create a three
dimensional structure. So the tangible interface has four dimensions that
can be operated on. These do not match with the needed three dimensions,
but can be resolved if coloured objects are used that cannot be stacked, like
half-spheres instead of cubes.

Test with users We have tested the system with a large number of users.
The application was presented at various workshops, including a "Beginner's
day" at the university, a workshop that was part of the review of the ATE-
LIER project and also at the final workshop in conjunction with an open day
for the CHI2004. Some of the workshops were publicly accessible, therefore
different types of users tested the system, where the users were chosen to
represent different drawing and computer usage skills. The general feedback
from the testers was very positive. The tangible interface is very attractive
and easy to use.

In addition he have interviewed selected special users, that work with
pictures in their profession and some students with a technical background.
Some of them first used the tangible interface and then the mouse interface,
for the other group the ordering was reversed.

6.6 Discussion - Tangible Image Query 120

--IOIXI

p

mm
La

Sa

raton»

»ne
Mine

Y •

Figure 6.3: Sketch done by a painter looking for the portrait of the sitting person
(second image).

Most of the users tried to "draw" the picture with the mouse, and the
tangible interface helped them to understand that a sketch is better for the
search than a "redraw" of the image they searched for. The results that were
presented by the search algorithm often did not fit their expectations when
drawing with the mouse (and trying to draw structures). Some did not like
the shape of the cubes and suggested other shapes, while a number of users
reported that the coloured cubes reminded them of their childhood, which
they described as a more naive and playful time in their life.

It is interesting that the users sometimes could remember the shapes
but not the colour, but this can be a subjective characteristic, or it can be
correlated with some professions like architects, for example. Some users from
the technical background had deep concerns whether the colour-based query
for images makes sense at all, while most users with a creative background
found this approach interesting.

The general response was very good, and most of the users liked the
tangible interface better than conventional one. As we had some test users
with visual arts background, we noted that they were very pleased with the
surprising component of the tool. E.g., a user searched for a sun-set that
was instantly within the top 15, but mixed with images of red flowers and
a firework. These results were far from disappointing, and the flowers and
firework images fitted well in the users expectations.

6.7 Configuring 121

Many available examples prove that the colour layout search is an inter-
esting approach to realise an image query. Our work presents a new tangible
user interface that allows creating colour layout sketches in an easy and
straight forward manner. Rather than improving the query algorithm itself,
we tried to find a new interface, which suits the existing algorithms better.
The algorithm needs a certain level of abstraction, which is often hard to
achieve using a traditional mouse-interface. The new colour cube interface
makes it impossible to draw precisely, and therefore helps the users achieve
the needed level of abstraction.

Still many of the problems of the underlying methods persist. Tangible
user interfaces enrich the possibility of collaboration and multi user input,
with all the problems that come with it. For example there is no method
of helping the users with synchronization, as all users that use the interface,
actually shared this interface physically. They have to sort out conflicts
between them without (computational) help, for example: someone adding
his ideas to the sketch without asking.

The method of colour layout image retrieval also has its flaws. Most of
the users cannot clearly identify the distinction between shape and colour
layout. A good example is the search for a sunset. A red shape placed in
the middle of the image is a good approach, but images where the sun is not
close to the centre will not be found, even if it is a picture of a sunset, and
images of a red flower in the centre of the image will be found instead.

Conclusions. We observed that the use of a tangible user interface helps
the users to create colour layouts rather than shapes. More over the interface
can be used in a more vivid way. It allows direct access to the sketch rather
than the indirect method of using a mouse.

The colour cubes interface fits very well with the underlying visual image
query, and helps the users to cope with the limitations of the query algorithm.
In this way the usability of the whole system is significantly enhanced.

We had access to a repository with over 14.000 images, with which we
evaluated the scalability of the algorithm. There was no noticeable time
differences when searching a database with just 500 images compared to
the search in the full database. For the 14.000 images the database for the
signatures had a size of about 28 megabytes.

6.7 Configuring
The Configurator (3.3, p. 25) from the ATELIER project allows the students to
perform limited configuration actions, but demonstrated that this approach

6.7 Configuring 122

is appreciated by the users. A development in ATELIER did eventually go
beyond the simple configuring provided by the Configurator. This component
allowed the users to specify in detail, which inputs and outputs should be
connected. For the architecture students this application was to complicated,
this approach was more appreciated by the interaction design students in
Malmö.

6.7.1 Discussion - DisplayManager

The redesign of the DisplayManager described in 3.3.5, p. 32 includes some
issues we learned from the users and their feedback.

We will now shortly describe how the ATELIER system handles input. As
described in the section HMDBLookup (3.3.4, p. 32) this component intro-
duces an abstraction layer. There are three methods of accessing content
from the HMDB:

1. use a barcode from the thumbnail page,

2. use a tag associated with a specific content,

3. select a result from any search method (selecting the barcode of one of
the results).

By using any of these methods the HMDB-ID of that specific content will
be send to the DisplayManger.

One design issue of the DisplayManager is that it keeps a state of an
"active" component. For example if a student wants to display a content
on the left display, she has to active this display be reading the barcode
associated with that display, and then the barcode for the image or video. All
subsequent actions to access content in the HMDB will change the content
on this "active" display. Note that the TexturePainter, the Image Query
Search, and the Ontology Search are also possible "displays".

The weakness of this design is twofold:

1. there is no feedback (except for the fact that the content will be changed)
which component is "active".

2. we implemented also other commands that refer to this "active" dis-
play - namely the "save" command and also the "toggle keyword"
commands.

6.7 Configuring 123

The Save command. Our first approach when a user issued a "save" com-
mand was a three step procedure:

1. "Activate" the component that should be saved - including "all screens".

2. Read "save" barcode

3. Read an unused barcode - these barcodes were given to the students
on a separate sheet with their name on top (see figure 6.4).

lern
rum
IaM

Dhf*
€•«*•

O M 4 *

QMf:

a. *5

System Barcodes
Targttfor

Input

? PJII)
' iipiij

! lüi
r i ü
; .Hl

San
»«•*"«

Sm
T«nm

AI

CiMT
TnMn
PalMtr

S*vt

nm

ÜWII
HIHI

mm b.
Figure 6.4: a. DisplayManager command barcodes b. Andreas using his personal
barcodes

This procedure violated two rules for a good design. First the feedback
was missing, second the users had to keep in mind in which state the system
currently is (2 or 3). Our next step was to remove the second step by pro-
viding barcodes that would combine phase 1 and 2. So barcodes like "Save
Display Wall", "Save TexturePainter", and "Save All" were presented to the
students. We then implemented a feedback mechanism (default position was
the middle display of the wall) to ask the users for an unused barcode, which
will be associated with the current setting.

6.7.2 Improving the DisplayManager

As already stated a system designer should make use of the "qualities" of an
input device. The barcodes are an unsuitable interface for selecting, as in the
DisplayManager, the active display. A better choice would be to use RFID
tags, that could be left on the reader to give a visible feedback of the active
display. Objects representing the different output devices could be designed
so that a strong feedback is presented to the users. Another approach could
be to make use of the Sensitive Sample (e.g. the ControlCube) to select the
active display. This would also ensure that the currently active display could
be perceived by the users.

6.7 Configuring 124

Improving the Save command To get rid of the still two step "saving"
procedure, we envision a different approach that will be implemented in the
future. At the start of a working session the users will have to activate a
"start work for group XX" barcode that will be given to them as a sort of
"login" barcode.

If they then issue a "save" command the current state of all components
will be stored in the HMDB in a special list. At the end of a work-session -
or any time in between - the users could issue a "print saved configurations",
which will print out a list of physical handles. A visual representation for
each component will be created, supplying a barcode for the whole setting,
as well as for each part. This would enable the users to perform a "selective
load" as described in Saving and loading in distributed systems (4.6.1, p. 68).

If the users are able to create these "saving points" so that their current
state of work is stored in the system, they themselves would also define
"undo steps". Restoring them just by reading in the barcode underneath the
configuration.

This approach would also create a documentation of the work that had
been performed. Following this scheme, if every action is stored, the "undo"
command could be easily be implemented (see Undo - Qualities 6.3, p. 110).
This is actually the approach that was implemented in ConstructSD, where
a "save" command saves a list of issued commands.

Browsing the multipart elements
"Multipart elements" means a collection of any content that could be

images, videos, sounds or 3D content like different models. In ATELIER this
is any part of the hierarchy in the HMDB, that contains any number of
children. Also a result vector of the search methods described (Image Query
and Ontology) are multipart elements in the ATELIER environment.

Up to now the only browsing method was to select "next" and "pre-
vious" commands with barcodes. Additional navigation methods could be
implemented like "auto next" simulating a slideshow that displays the next
image after some time like "auto next 3 sec." and "auto next 5 sec.". Also
a "random next" could be implemented that selects randomly content from
the active collection. To select these different browsing methods the Control-
Cube using the Sensitive Sample would be a good choice, due to its qualities.
An alternative would be to use tagged objects that represent these different
methods.

Once a "stop" input is triggered by the user the automatic replacing of
the content should stop. The "previous" command should work as expected
displaying the last images. To continue the browsing, the "next" command

6.7 Configuring 125

could be used. Supplying barcodes or speech input for these commands is
the right choice, because their qualities fit the requirement of fast and not
persistent input.

6.7.3 Configuring physical handles
The students made use of the "physical representation" of the physical han-
dles in the ATELIER environment. They placed the physical handles in the
physical world by sticking them on their models or their posters. One stu-
dent created his own presentation list - just like a slideshow - by placing
the barcodes neatly in a column, while others distributed the handles in the
space an activated them while walking around (see figure 6.7).

This feature of physical handles to be configurable allowed the students
to support their personal working style.

Figure 6.5: Using barcodes to augment models.

Conclusions. Although physical handles to digital media have a number of
advantages: they can easily be configured, they can be used to add comments
by writing on them, There are also some drawbacks: when the physical
handles exceed a certain number, searching for a specific element can get
tedious, they also tend to get lost - especial in a work space like the Academy
of Fine Arts (see figure 6.6). With the methods described to search for
content and to produce new handles, these drawbacks are partly solved.
Additional information has to be provided like when the content was added to
the HMDB, to identify "outdated" handles and also the problem of versioning
of content has to be tackled. In the ATELIER project we always created new
barcodes for changed versions of content, so soon the students had a number
of sheets full with "old" and "new" handles and sometimes they used the
wrong handles.

Still our experiments showed that the reuse of content was especially
easy, one group of students did not bring any material, they just scanned the
physical handles from the previous groups and used suitable content for their

6.7 Configuring 126

Figure 6.6: Rearranging barcodes for a presentation and spreading out the mate-
rial.

presentation. This example proves that the physical handles allowed others
to easily re-use content.

6.7.4 Configuring the context

Using the physical handles and the Texture Painter the students were able
to quickly create new settings for their models, exploring different contexts
and scales of their models within the environment.

Figure 6.7: Using the barcodes during the presentation.

6.8 Distribution 121

Figure 6.8: Experimenting with scale.

Figure 6.9: Experimenting with different contexts.

6.8 Distribution
Our partner in Oulu, Finland created a common communication platform
(the ATELiER-kernel) over which most of the communication between the
components was realised. In theory all components should be able to inter-
act with each other, but in praxis this was not always true. Using XML
messages to exchange information between the components should ensure
that all components are able to "understand" each other.

XML is a very generic concept, which only specifies the way hierarchical
content has to be formatted, therefore XML does not specify how a specific
meaning should be encoded. This lead to a situation where the internal
language between the different implementation sites started to differ and
each group in the project created its own dialect of the "ATELIER language".

On occasional workshops and joined demo sites - Jamborees in Gothen-
burg, Ivrea and the workshop in Vienna - those differences could be resolved
to reach a common language again.

From this common language was a profit for all setups, as functionality
was accessible for each component independent of the group that had imple-
mented it. A good example is the tight integration of the ontology search into
the system. The ontology could be used by all of the already implemented
components, without having to change or adapt the output components.

6.9 Discussion - Sensitive Sample 128

In STUDIERSTUBE the PUC framework provides an easy to use way of
creating distributed interaction, providing similar looking GUI's on various
devices. The general approach of STUDIERSTUBE of using a distributed
scene-graph supports developers to create distributed applications. In the
ConstructSD setup several users can work cooperatively on a geometry task
making use of these distribution possibilities of STUDIERSTUBE.

Conclusions. The distribution implementation of the framework is an im-
portant basis to create distributed applications. The different approaches of
ATELIER and STUDIERSTUBE, both have their advantages and drawbacks,
heavily influencing the development of the applications. In a recent discus-
sion with G. Reitmayr, he stated that the design of the middle-layer of a
distribution framework is already have influenced by the goals of the overall
system.

6.9 Discussion - Sensitive Sample
The design of the samples is modular, so that practically any kind of sensor
can be attached to the main board. We have only experimented with two kind
of sensors: tilt sensors and touch sensors. Even with such a reduced set of
sensors, the ControlCube and the complex MaterialKammer application can
be implemented. The ControlCube has been extensively used by the students
to start various videos during the presentations, and MaterialKammer will
be realised in the near future. The first mock-ups that were tested by the
students, using a very simple media content selector and just one material
sample, proved that the fundamental concept is highly appreciated.

Now, after the technical issues are solved, the biggest challenge is to
understand the actions of the users. What does it mean when someone
strokes a sample, or when someone knocks on it. Many social and cultural
issues will certainly influence the meaning, and all of these should be taken
into account.

For the setup to provide the above described functionality, two parts are
crucial. First enough media must be collected and indexed to specify to which
material the media is connected to. For example a picture of a saw-mill is
connected to wood and steel. And second the multimedia content selector
must be implemented so that the resulting médias are connected to the users
actions in a meaningful way. The media displayed should not be totally
random (which is quite easy to implement), but be related to the actions of
the users. But on the other hand there should be a surprising element that

6.10 Conclusions 129

encourage the users inspiration and reflection on the media that is being
displayed.

Conclusions. By interacting with the real material, feeling, smelling and
seeing it, and getting additional inspiration from the médias presented by the
system, the students are encouraged to reflect about the meaning of a specific
material. This helps them to understand how the usage of this material
influences their project. The Sensitive Sample represent an alternative and
inexpensive way of creating real objects that can sense the environment.

6.10 Conclusions
Our experience in both projects prove that the concepts of distributed mul-
timodal interaction are useful. The users have more confidence in a system
they themselves can configure, where providing physical handles to digital
material eases the access to a system, our experiments showed that the in-
teraction with the ATELIER system was immediately understood even by
inexperienced computer users.

Some of the issues that we found useful are summarised in the next chap-
ter.

Chapter 7

Design Patterns for
a multimodal, configurable,
and distributed system

The software design for a system is crucial for thé success of the applications
based on the framework. Missing features can sometimes be easily integrated
and sometimes they pose invincible problems. A software design will never
be "perfect" as new issues will surely arise during the development of appli-
cations, that can not be foreseen by the designers of the basis framework.
Nevertheless some features can be easily designed, if the software-designers
are aware of them, and when they are available, they will be used by the
application developers. Features available in the basis framework are more
likely included in the applications than solutions that are migrated from
application to application.

New features will first be implemented in an application, and then, after
they have proved to be useful, be integrated into the framework. This way
of "moving" features from special applications to a general feature available
in the framework was observed by the author in a number of occasions.
Although this work practice obviously works in practice, it is suboptimal as
some "old" applications will not support the new but useful features.

To "get it right" the first time it is better to design a system that in-
corporates (nearly) all of the following patterns. The applications described
in this thesis will be referred to as examples of how these features may be
implemented. These issues are mainly needed at the API layer of a frame-
work. Easy access to API features will ensure that the application developers
include this features in their applications. For some of the following items
the API can be designed in a way that no additional implementation effort
is needed for the application developers - similar to the scripting feature of

130

7.1 Keep Functionality simple 131

Open Inventor (2.2.2, p. 13).
All frameworks should, of course, be

• well designed

• usable and extendable

• stable (execute without crashes), contain (almost) no software-bugs

• support debugging and logging

• well documented

• provide simple, and well documented example applications.

Some frameworks also need to be designed for performance, but improv-
ing performance should always be the last step in a development, as the
developers sometimes have to sacrifice some of the mentioned qualities to
achieve a higher performance.

7.1 Keep Functionality simple and modular
A complex system should be created through connecting and combining sim-
ple functionalities. The principle to break a problem down into small prob-
lems that can be solved and then combining this simple solutions to solve
the complex one is known as divide and conquer strategy. Many software
designers have used this pattern. It is especially important in a distributed
system as functionality should be accessible from everywhere in the system
and therefore it must have simple interfaces.

This pattern is often used in" application programming interfaces, while
accessing these different functionalities by the users of a framework is often
only possible by using specialised applications that expose those functionali-
ties. We propose that these functionalities should be available for the users,
in a way that they can connect them based on their current needs.

Although each component in the system is simple and has a simple in-
terface a complex system can be created. It is also easier for the users as
they are able to start working with the system with just a few functionalities
and by learning how to combine them, and integrating new components in
the setup they have already been using, their workflow will become more
complex in time. This allows the users a graceful evolution from a novice to
an expert.

7.2 Abstraction of Input and Output 132

Also the functionality of the system can be enriched without increasing
the complexity for the user interaction. If the same design principles are
applied to all the components the user is actually able to abstract from the
known interaction patterns and extrapolate the new interaction patterns.

7.2 Abstraction of Input and Output
Abstraction of input devices is now a standard approach in system designs.
Yet most of the systems only provide a single abstraction layer. As stated
in Input abstraction layers (6.4.1, p. I l l) the most important about a user
interacting with the system is the intention of the user. What should be done?
What does the user wish to communicate? So the top abstraction layer should
communicate the intention of the user and not the action performed.

In ATELIER we used predefined messages that would be used to distribute
this information. In the APRIL Framework (6.4.1, p. I l l) this information
is transported by defining events (that can be configured using the describe
method), the AR Puppet framework (6.4.1, p. I l l) - in the top layer of the
director - has a similar representation. The PUC framework has a implicit
representation of that information, by specifying the "name" of the state or
command - but a basis set must be defined and consistently used in a system
to really make use of that (like "save", "load", "exit", . . .).

7.2.1 Provide concurrent multimodal access
As discussed in Dealing with conflicting inputs (6.2, p. 108), if concurrent
input is available, a conflict can arise. Despite this issue we would suggest to
provide means for the users (and the application developers) to use different
input channels. This will ensure that a suitable input method is available
in nearly every working situation. Surely some interaction devices still need
development (like the interesting idea of speech recognition), but we believe
that there is no "perfect" input device that will replace all the others. It will
be rather a mix of interaction methods that will ensure a usable environment.

7.3 Global repository
In ATELIER all components profited from the availability of a global content
repository. The file-based exchange of content - as it is current practice in
most networks - is more a technical than a usable solution. PDM systems
(Product Data Management) try to provide an abstracted view on the con-
tent that is available. With the possibility to cross-link content and apply

7.3 Global repository 133

different search methods (see Combining the Search Methods 6.4.4, p. 114) to
access the content the re-use of digital material is ensured.

7.3.1 Physical Handles to digital media
People have their own way of organising important data ([82]), most users
(including the author) prefer - for some situations - physical representations
of the content. It can be stapled, sorted, laid out on the desk and stapled
again. On the other hand people got quite used to organise their telephone
numbers on their cell phones.

Providing a system wide way of creating and managing physical handles
to digital media, seems for us a valuable feature for a system. Examples are
the barcodes used in ATELIER (see Physical Handles 3.3.3, p. 30), and also
the ARTtoolkit markers that are being used in STUDIERSTUBE in various
applications to represent this feature.

Physical handles also provide being physically configurable, which is an
important feature for the users (see Configuring physical handles 6.7.3, p. 125).

7.3.2 Global save and restore
A framework should provide means for the applications to save and restore
their states in the global repository. By providing a system wide method
of saving and restoring, all the applications will include this feature and a
uniform interaction pattern can be realised to perform this action. This will
ensure that a "global" save command is available that will include all the
applications in a distributed system.

User based tailoring information can also be stored in the repository, to
activate them according to the current working scenario.

Selectively load An interesting issue raised during the development of
the "save" feature in the ATELIER project. What happens if a user wants to
restore only a part of a "global" save result? How to introduce what compo-
nents should load the state and which components should ignore the restore
command. A possible solution is to provide means to "lock" a component, so
that it keeps the current state, independent of the actions the user performs.
If such a feature is implemented. The important issue of providing feedback
of that "locked" state has to be realised.

Another approach is described in (see Improving the Save command 6.7.2,
p. 124).

7.4 Configuration possibilities 134

7.4 Configuration possibilities
To give the user the feeling of being in control (2.4.4, p. 19), the possibility to
configure a system is important. The students felt much more comfortable
with the ATELIER environment once they were able to configure it by them-
selves, without the need for a technician. A system should support dynamic
configuring, which is a complex task, that allows the users to change the sys-
tem at run-time. The development of the Microsoft Windows ®OS needed
nearly 7 years to provide this feature, before that the operating system had
to be restarted after various configuration changes.

The Configurator (3.3, p. 25) from the ATELIER project allows the stu-
dents to perform limited configurations. The concept of APRIL Frame-
work (3.10, p. 43) explicitly states that creating a configuration should be
placed in the hands of experts.

To find a balance between the complexity of the interface and the possible
configurations is obviously the hardest task.

7.5 Keep the Golden Rules in Mind
The rules presented in this thesis provide guidance, when discussing about
features and interaction patterns. Most experienced system designers have
a "feeling" for what is right. Using these rules they can argue why one
solution is "better" than another one, and they also help to support the
users, by pointing out why users have problems with an interface. The rules
provided a helpful starting point for the redesign of ConstructSD 5.6, p. 100.

7.6 Support Undo
Although already mentioned in the Golden Rules, supporting undo is such an
important feature that it is granted its own section. Norman describes in [97]
in over 30 pages the causes for humans to err. Although there "is no undo in
the real world", people have developed means to cope with their errors. A
system should always provide means to undo a command or provide a reverse
command (e.g. "next" - "previous").

Actually I think that, because of the "undo" possibilities, typewriters
were replaced by text processing systems. It is easy to undo a wrong typed
character so that even untrained typists can write large documents (like this
one).

While most proper designed interfaces incorporate this feature, still in-
terfaces (and applications) are designed without an undoing feature. Also

7.7 Provide Feedback 135

the possibility to interrupt an ongoing action of the system is a feature that
sometimes is missing.

Prom own experience in implementing applications, I know, that exactly
these important features are hard to implement. Therefore the framework
should take care about this issue, to ensure that all applications include the
undo feature. In a ubiquitous environment probably only a "global" undo
will be realisable as discussed in Distributed Undo (4.8.1, p. 73).

It will be worth the effort, as users only will explore all the features,
if they can be sure that they do not risk their achieved results being lost
through an unthought action.

7.7 Provide Feedback
Also mentioned in the Golden Rules, providing enough feedback for the
users is sometimes overlooked. Furthermore methods must be integrated
into the system that allow the application developers to easily provide feed-
back. Which modality is being used to provide the feedback and how the
users will be able to tailor the feedback should also be handled by the frame-
work. The Display Manager (3.3.5, p. 32) in the ATELIER project included
some basic feedback managing capabilities.

A good approach is the progress meter used in conventional desktop inter-
faces. This concept has to be developed further to allow displaying progress
in a ubiquitous environment.

7.8 User Identification
A lot of usable features are based on the user identification. Starting from
determining the level of complexity (based on the experience of a user) to
restricting or granting access to features. User identification in a ubiquitous
environment is a very complicated issue - until now the Bat System [23] is
one of the few projects, where this was the main goal.

Other issues are whether the users want to be identified. Data security
and privacy are some of the social issues that have to be thought about.
The tailoring of a system to different groups of users can also be preformed
by configuring the system and the store that configuration (re-activating it
using a tangible interface) in the global repository.

7.9 Record evaluation data 136

7.9 Record evaluation data
The framework should provide means to record the interaction performed by
the users. Which functions were used, how often did the users issue the undo
command (and which action was undone), how often did they access the help
system and for what features did they require help? A lot can be learned
and then improved on basis of this data. Sheiderman described in [127] that
these actions were recorded for a system his group had to evaluate, and what
they could learn from the data.

Although a logging service was sketched in the ATELIER project (that
would simply log all messages that were routed through the kernel) it was
never realised. In STUDIERSTUBE such is feature is missing completely, there-
fore some applications (like ConstructSD) implemented this logging in the
scope of their setup.

If this feature is grounded in the framework, which is the basis for the
applications, all the applications and their interfaces could be more easily be
evaluated.

7.10 Answering the "Why" Question
Distributed output can be very confusing for users. What happens where,
how are the results of their interaction with the system is displayed. Es-
pecially when a configuration (4.9, p. 73) of the system is active that was
not created by the users itself. The question "why did this happen" is often
asked.

Although a number of rules try to diminish this problem through proper
design, this situation may arise. Though the interaction design is (nearly)
flawless, sometimes the users just do not know what happened, sometimes
they even achieved something they did not try to achieve. Then a feedback
from the system "why" and "how" the last action changed the environment
can be very helpful.

So a computer system should be capable of answering this question. Ex-
ample: a users activates a barcode, reacting on this action the system displays
an image on one of the screens. If the user now asks the "why" question,
some explanation for what happened should be available for the user.

An Example:
The barcode selected corresponds to a media entry in
the database, the active screen is display (name) -
therefore this image is displayed on the screen

(name).

7.10 Answering the "Why" Question 131

Additional help should also be provided like:

If you want the image to be displayed on a different
screen, please select one from the list by activating
a barcode or by speaking 'active display' and the name
of the display. Available displays are 'projection,

screen, ...'.

Most help systems focus on helping the user to perform an action. This
normally includes "HowTo's" that explain how a specific task can be accom-
plished with the system. A more advanced help system will also be able to
answer questions after the users has performed an action, explaining what
happened and why.

This will lead to a deeper understanding of the system and enhance the
abilities of the user to use the system [126]. This form of communication
can also be found in human to human communication, when a person ask an
other why she responded like she did. This form of requested feedback can
be a helpful tool in the learning process of the users getting acquainted with
a system. It also stresses the communicative aspect of a system as it can be
asked for feedback at any time, by issuing a command that does not change
the state of the system, it will only change the user's understanding of the
system.

7.11 Conclusions 138

7.11 Conclusions
This thesis contributes to future developments of multimodal interaction for
configurable distributed systems. By reflecting on the examples and applica-
tions presented in this thesis some insights were gained.

For a person with a technical background as a system designer and ap-
plication developer the Rules of Interaction Design (2.4, p. 16) are most
valueable. Other issues that were raised during the work on the two systems,
led to the Design Patterns for a multimodal, configurable, and distributed
system presented in this chapter. Some of them may be included in the
ATELIER or STUDIERSTUBE frameworks in the near future.

The author hopes that he can contribute to that future developments
and realise some of the described features. These features are an important
basis to be able to create interesting and useful multimodal, configurable, and
distributed applications.

Bibliography

[1] K. P. Âkesson, A. Bullock, C. Greenhalgh, B. Koleva, and T. Rodden.
A toolkit for user re-configuration of ubiquitous domestic environments
(demo). In Companion to Proceedings of the 15th Annual ACM Sym-
posium on User Interface Software and Technology. ACM Press, 2004.

[2] A.R.T. - Advanced Realtime Tracking GmbH. Arttrack.
http://www.ar-tracking.de/, July 2004.

[3] Atmel Corporation ©2004. Atmel website, http://www.atmel.com/,
10th September 2004.

[4] Austrian Research Institute for Artificial Intelligence (ÖFAI).
http://www.ai.univie.ac.at/oefai/oefai.html, 2004.

[5] I. Barakonyi, T. Fahmy, and D. Schmalstieg. Remote collaboration
using augmented reality videoconferencing. In Proc. Graphics Interface
2004, pages 89-96, May 17-19 2004.

[6] I. Barakonyi, T. Psik, and D. Schmalstieg. Agents that talk and hit
back: Animated agents in augmented reality. In Proc. ISMAR 2004,
page to be published, Washington, USA, October 2004. IEEE.

[7] I. Barakonyi and D. Schmalstieg. Ar puppet: Animated agents in
augmented reality. In First Central European International Multimedia
and Virtual Reality Conference, pages 35-42, May 6-8 2004.

[8] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reichner,
S. Riss, C. Sandor, and M. Wagner. Design of a component-based
augmented reality framework. In Proc. ISAR 2001, pages 45-54, New
York, New York, USA, October 29-30 2001. IEEE and ACM.

[9] M. Beaudouin-Lafon. Instrumental interaction: An interaction model
for designing post-wimp user interfaces. In Proceedings of the ACM

139

Bibliography 140

CHI 2000 Conference on Human Factors in Computing Systems, pages
446-453. Association for Computer Machinery, 2000.

[10] V. Bellotti, M. Back, W. K. Edwards, R. E. Grinter, A. Henderson, and
C. Lopes. Making sense of sensing systems: Five questions for designers
and researchers. In Proceedings CHI 2002, CHI Letters, volume 1 of 1,
pages 415-422, Minneapolis, USA, 20-25 April 2002. ACM.

[11] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color- and texture-
based image segmentation using EM and its application to content-
based image retrieval. In Proceedings of the Sixth International Con-
ference on Computer Vision, 1998.

[12] S. Benford, H. Schnadelbach, B. Koleva, B. Gaver, A. Schmidt,
A. Boucher, A. Steed, R. Anastasi, C. Greenhalgh, T. Rodden, and
H. Gellersen. Sensible, sensable and desirable: a framework for design-
ing physical interfaces. Technical Report 03-003, Equator, 2003.

[13] T. Binder, G. D. Michelis, M. Gervautz, G. Iacucci, K. Matkovic,
T. Psik, and I. Wagner. Supporting configurability in a tangibly aug-
mented environment for design students. Special Issue on Tangible In-
terfaces in Perspective, Pers and Ubiq Comp, page forthcoming, 2004.

[14] N. Boujemaa, J. Fauqueur, M. Ferecatu, F. Fleuret, V. Gouet, B. L.
Saux, and H. Sahbi. Ikona for interactive specific and generic im-
age retrieval. In Proceedings of International workshop on Multime-
dia Content-Based Indexing and Retrieval (MMCBIR '2001), Rocquen-
court, France, 2001.

[15] D. A. Bowman and L. F. Hodges. User interface constraints for immer-
sive virtual environment applications. Technical Report 95-26, Graph-
ics, Visualization, and Usability Center, 1995.

[16] D. Brown and G. Wheatley. Relationship between spatial knowledge.
In C. Maher, G. Goldin, and R. Davis, editors, Proceedings of the 11th
Annual Meeting, North American Chapter of the International Group
for the Psychology of Mathematics Education, pages 143-148. Rutgers
University, Brunswick, NJ, 1989.

[17] C. Browne. Sql databases, http://cbbrowne.com/info/rdbmssql.html.

[18] K. Buckner and M. Diaz. Review Report No: 3, ATELIER-Project
IST-2001-33064 , 16th June 2004.

Bibliography 141

[19] M. Büscher, P. Mogensen, D. Shapiro, and I. Wagner. The Manufaktur:
Supporting work practice in (landscape) architecture. In Proceedings
of the The Sixth European Conference on Computer Supported Cooper-
ative Work (ECSCW 99), pages 21-40, Copenhagen, Denmark, 1999.

[20] W. Buxton. Integrating the periphery and context: A new model of
telematics. In In Proceedings of Graphics Interface '95, pages 239-245,
1995.

[21] S. Calegari and M. Loregian. Ontologies help finding inspiration: a
practical approach in multimedia information management. In Proc.
of PAKM2004, 2004, to appear.

[22] K. Camarata, E. Y.-L. Do, B. R. Johnson, and M. D. Gross. Nav-
igational blocks: navigating information space with tangible media.
In Proceedings of the 7th international conference on Intelligent user
interfaces, pages 31-38. ACM Press, 2002.

[23] A. L. Cambridge. The bat ultrasonic location system.
http://www.uk.research.att.com/bat/.

[24] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Ma-
lik. Blobworld: A system for region-based image indexing and re-
trieval. In Third International Conference on Visual Information Sys-
tems. Springer, 1999.

[25] Computer Grafik Insitut. The institute of computer graphics and algo-
rithms, computer graphics group, http://www.cg.tuwien.ac.at/home/,
July 2004.

[26] G. Crampton Smith. The Hand That Rocks the Cradle. I.D. magazine,
May/June 1995.

[27] T. Darrell, P. Maes, B. Blumberg, and A. Pentland. A novel environ-
ment for situated vision and behavior, 1994.

[28] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction Journal, 16(2-4):97-166,
2001.

[29] Dick Botting, California State University at San Bernardino.
http://www.csci.csusb.edu/dick/c-l—hstd/, 10th September 2004.

Bibliography 142

[30] V. electronics, http://www.vtt.fi/ele/indexe.htm, 2004.

[31] C. Endres, A. Butz, and A. MacWilliams. A survey of software infras-
tructures and frameworks for ubiquitous computing. Jan-Mar 2005.

[32] J. A. Fails and D. R. Olsen. A design tool for camera-based interaction.
In Proceedings of the ACM CHI 2003 Conference on Human Factors
in Computing Systems, pages 449-456. Association for Computer Ma-
chinery, 2003.

[33] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective querying by image
content. Journal of Intelligent Information Systems, 3(3/4):231-262,
1994.

[34] J. Fauqueur and N. Boujemaa. Logical query composition from local
visual feature thesaurus. In Proceedings of Third International Work-
shop on Content-Based Multimedia Indexing (CBMI'03), 2003.

[35] E. Fennema and J. Sherman. Sex-related differences in mathematics
achievement, spatial visualization, and affective factors. Americal Ed-
ucational Research Journal, (14):51-71, 1977.

[36] Fitzmaurice. Graspable User Interfaces. PhD thesis, University of
Toronto, 1996.

[37] G. W. Fitzmaurice, H. Ishii, and W. Buxton. Bricks: Laying the foun-
dations for graspable user interfaces. In CHI, pages 442-449, 1995.

[38] A. Fuhrmann, D. Schmalstieg, and W. Purgathofer. Fast calibration
for augmented reality. In Proceedings of ACM Virtual Reality Software
& Technology '99 (VRST'99), pages 166-167, December 20-22 1999.

[39] A. Fuhrmann, D. Schmalstieg, and W. Purgathofer. Practical cali-
bration procedures for augmented reality. In Proceedings of the 6th
EUROGRAPHICS Workshop on Virtual Environments (EG VE 2000),
pages 3-12, June 1-2 2000.

[40] B. R. Gaines. The technology of interaction: Dialogue programming
rules. International Journal of Man-Machine Studies, 14:133-150,
1981.

[41] E. Goffman. The Presentation of Self in Everyday Life. Anchor, Dou-
bleday, 1959.

Bibliography 143

[42] E. Goffman. Behavior in Public Places. Free Press, Macmillan, 1963.

[43] E. Goffman. Frame Analysis: An essay on the organization of experi-
ence. Northeastern University Press, 1974.

[44] E. Goffman. Forms of Talk. Oxford: Basil Blackwell, 1981.

[45] R. Guay and E. McDaniel. The relationship between mathematics
achievement and spatial abilities among elementary school children.
Journal for Research in Mathematics Education, (8):211-215, 1977.

[46] A. Gupta. The virage image search engine: an open framework for
image management. In Storage and Retrieval for Image and Video
Databases IV, SPIE proceedings series, volume 2670, pages 76-87,1996.

[47] Hansen. User engineering principles for interactive systems. In Pro-
ceedings Fall Joint Computer Conference, pages 523-532. AFIPS Press,
1971.

[48] T. Heider and T. Kirste. Supporting goal-based interaction with dy-
namic intelligent environments. In In Proceedings of the 15th Eureopean.
Conference on Artificial Intelligence, ECAI2002, pages 596-600. IOS
Press, July 2002.

[49] M. Hellenschmidt and T. Kirste. Sodapop: A software are infrastruc-
ture supporting self-organization in intelligent environments. In In
Proceedings of the 2nd IEEE International Conference on Industrial
Informatics, INDIN04, 2004.

[50] J. Henderson and S. Card. Rooms: The use of multiple virtual
workspaces to reduce space contention in window-based graphical user
interfaces. In ACM Transactions on Graphics,, volume 5, pages 211—
241, July 1986.

[51] G. Hesina. Distributed Collaborative Augmented Reality. PhD thesis,
Vienna University of Technology, May 2001.

[52] G. Hesina, D. Schmalstieg, and W. Purgathofer. Distributed open
inventor: A practical approach to distributed 3D graphics. In Proc.
ACM VRST'99, pages 74-81, London, UK, December 1999.

[53] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and
H.-W. Gellersen. Smart-Its Friends: A Technique for Users to Easily
Establish Connections between Smart Artefacts. In Proceedings of the

Bibliography 144

3rd international conference on Ubiquitous Computing, pages 116-122.
Springer-Verlag, 2001.

[54] E. Hornecker. Tangible User Interfaces als kooperationsuntersttzena.es
Medium. PhD thesis, published electronically at Elektronische Biblio-
thek, Staats und Universitätsbibliothek Bremen, July 2004.

[55] G. Iacucci, A. Juustila, K. Kuutti, P. Pehkonen, and A. Ylisaukko-oja.
Connecting remote visits and design environment: User needs and pro-
totypes for architecture design. In In the Proceeding of Mobile HCI03,
Fifth International Symposium on Human Computer Interaction with
Mobile Devices and Services, pages 45-60. Lecture Notes in Computer
Science, Springer Verlag, 8-11 September 2003.

[56] G. Iacucci and I. Wagner. Supporting collaboration ubiquitously: an
augmented lerning environment for architecture students. In Proceed-
ings of the Eight European Conference on Computer Supported Coop-
erative Work (ECSCW) 2003, pages 139-159, 2003.

[57] IBM. Viavoice®: You talk, it types®. http://www-
SOe.ibm.com/software/voice/viavoice/, July 2004.

[58] Imagination Computer Services GesmbH. The invisible person.
http://www.imagination.at/, July 2004.

[59] Image Retrieval Service (1RS) of the EVlib,
http://visinfo.zib.de/irs.

[60] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces be-
tween people, bits and atoms. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 234-241. ACM Press,
1997.

[61] H. Iwata, H. Yano, T. Uemura, and T. Moriya. Food simulator: A
haptic interface for biting. In Proceedings of the IEEE Virtual Reality
2004 (VR2004), pages 51-58, March 27-31, 2004.

[62] I. Jacob and J. Oliver. Evaluation of techniques for specifying 3d ro-
tations with a 2d input device. In Proceedings of HCI'95 Conference,
People and Computers X, pages 63-76, 1995.

[63] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution
image querying. In Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 277-286. ACM Press,
1995.

Bibliography 145

[64] P. Kabbash, W. Buxton, and A. Seilen. Two-handed input in a com-
pound task. In Proceedings of CHI 94 Conference on Human Factors
in Computing Systems, pages 417-423, 1994.

[65] M. Kaikusch, T. Lidy, M. Knapp, G. Reitmayr, H. Kaufmann, and
D. Schmalstieg. Structured visual markers for indoor pathfinding. In
Proceedings of the IEEE First International Workshop on ARToolKit,
2002.

[66] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana.
Virtual object manipulation on a table-top ar environment. In Pro-
ceedings of ISAR 2000, 2000.

[67] H. Kaufmann. Dynamische géométrie in virtual reality. Informa-
tionsblätter der Geometrie (IBDG), 21(l):33-37, 2002.

[68] H. Kaufmann. Collaborative augmented reality in education. Position
paper for keynote speech at Imagina 2003 conference TR-188-2-2003-
01, Technical University of Vienna, Feb. 3rd, 2003.

[69] H. Kaufmann. Geometry Education with Augmented Reality. PhD
thesis, Vienna University of Technology, 2004.

[70] H. Kaufmann and D. Schmalstieg. Mathematics and geometry educa-
tion with collaborative augmented reality. SIGGRAPH 2002 Educators
Program. In SIGGRAPH 2002 Conference Abstracts and Applications,
pages 37-41, 2002.

[71] H. Kaufmann, D. Schmalstieg, and M. Wagner. Construct3d: A virtual
reality application for mathematics and geometry education. Journal
of Education and Information Technologies, 5(4):263-276, 2000.

[72] H. Kaufmann, D. Schmalstieg, and M. Wagner. Construct3d: a virtual
reality application for mathematics and geometry education. Education
and Information Technologies, 5(4):263-276, 2000. TY - JOUR.

[73] P. M. Kelly and M. Cannon. Query by image example: The candid
approach, los alamos national laboratory white paper, 1995.

[74] T. Kindberg. Implementing physical hyperlinks using ubiquitous iden-
tifier resolution. In Proceedings of the eleventh international conference
on World Wide Web, pages 191 - 199. ACM Press, 2002.

Bibliography 146

[75] S. R. Klemmer, J. Graham, G. J. Wolff, and J. A. Landay. Books with
voices: paper transcripts as a physical interface to oral histories. In
Proceedings of the conference on Human factors in computing systems,
pages 89 - 96. ACM Press New" York, NY, USA, 2003.

[76] F. Ledermann. An authoring framework for augmented reality presen-
tations. Master's thesis, Viennas University of Technology, 2004.

[77] F. Ledermann and D. Schmalstieg. Presenting past and present of
an archaeological site in the virtual showcase. In Proc. of the 4th In-
ternational Symposium on Virtual Reality, Archeology, and Intelligent
Cultural Heritage (VAST 2003), pages 119-126, Brighton, UK, Nov.
2003.

[78] M. Loregian and M. Telaro. Dynamic ontologies and coop-
erative learning. In Supplements to Proceedings of COOP
2004, Hyères Les Palmiers, France, May 11-14, 2004.
(http:/'/klee. cootech. disco.unimib. it/Atelierfloregian-telaro.pdf), 2004.

[79] B. Maclntyre and S. Feiner. Language-level support for exploratory
programming of distributed virtual environments. In Proc ACM
UIST'96, pages 83-94, Seattle, WA, USA, Nov. 6-8 1996. ACM.

[80] B. Maclntyre, E. D. Mynatt, S. Voida, K. M. Hansen, J. Tullio, and
G. M. Corso. Support for multitasking and background awareness using
interactive peripheral displays. In Proceedings of UIST'01, pages 41-50,
2001.

[81] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Bruegge. Herding sheep: Live system development for distributed
augmented reality. In Proc. ISMAR 2003, pages 123-132, Tokyo,
Japan, October 7-10 2003. IEEE.

[82] T. W. Malone. How Do People Organize Their Desks? Implications
for the Design of Office Information Systems. ACM Transactions on
Office Information Systems, 1(1):99-112, Jan. 1983.

[83] T. W. Malone, C. Fry, and K. Y. Lai. Experiments with oval: A
radically tailorable tool for cooperative work. In CSCW 92. Sharing
Perspectives, Procceedings of the Conference on Computer-Supported
Cooperative Work, pages 289-297. ACM -Press, May 17-19 1992.

[84] V. Maquil. Automatic generation of
graphical user interfaces in studierstube.

Bibliography 147

https://www.ims.tuwien.ac.at/publication_detail.php?imsJd=140,
Juli 2004.

[85] K. Matkovic, L. Neumann, J. Siglaer, M. Kompast, and W. Purgath-
ofer. Visual image query. In Proceedings of the 2nd international sym-
posium on Smart graphics, pages 116-123. ACM Press, 2002.

[86] A. McLean, K. Carter, L. Lövstrand, and T. Moran. User-tailorable
systems: Pressing the issue with buttons. In Proceedings of the Confer-
ence on Computer Human Interaction (CHI 90), pages 175-182. ACM-
Press, New York, April 1-5 1990.

[87] Microsoft Corporation. Microsofts speech api (sapi).
http://www.microsoft.com/products/msagent/support/dev/speech.asp,
September 2004.

[88] Y. Miyata and D. A. Norman. Psychological issues in support of mul-
tiple activités. In User Centered Design, pages 265-284, Lawrence
Erlbaum, NJ, 1986.

[89] i.-T. U. P. D. Monitor. I-glasses PC HR. http://www.i-
glassesstore.com/iglasses-pc-hr.html, October 2004.

[90] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H. Howard, D. S.
Rosenthal, and D. F. Smith. Andrew: a distributed personal com-
puting environment. In Communications of the ACM archive, Volume
29, Issue 3 (March 1986), pages 184 - 201. The MIT Press scientific
computation series, 1986.

[91] B. A. Myers, J. Nichols, J. O. Wobbrock, K. Litwack, M. Higgins,
J. Hughes, T. K. Harris, R. Rosenfeld, and M. Pignol. Handheld devices
for control. In Human-Computer Interaction Consortium (HCIC2003),
Winter Park, CO, USA, Feb 5-9, 2003.

[92] E. Mynatt, T. Igarashi, W. Edwards, and A. LaMarca. Flatland: New
dimensions in office whiteboards. In In Proceedings of CHI'99, pages
346-353, 1999.

[93] E. D. Mynatt. Writing on the wall. In Proceedings of INTERACT'99,
pages 196-204, 1999.

[94] J. Newman, D. Ingram, and A. Hopper. Augmented reality in a wide
area sentient environment. In Proceedings of the IEEE and ACM In-
ternational Symposium on Augmented Reality (ISAR '01). IEEE Com-
puter Society, 2001.

Bibliography 148

[95] J. Nichols and B. A. Myers. Studying the use of handhelds to con-
trol smart appliances. In Proceedings of the 23rd International Con-
ference on Distributed Computing Systems Workshops (ICDCS 'OS),
pages 274-279, May 19-22 2003.

[96] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosen-
feld, and M. Pignol. Generating remote control interfaces for complex
appliances. In 15th annual ACM symposium on User interface software
and technology, pages 161-170. ACM Press, 2002.

[97] D. Norman. The Designs of Everyday Things. Basic Books, 1988.

[98] D. A. Norman. Affordances, conventions and design. Interactions,
6:38-42, May-June 1999.

[99] Novell. Netware6: Printing meets the internet.
http://www.novell.com/products/netware6/nw6_w_printing.html,
July 2004.

[100] OMG Object Management Group. Unified modeling language (uml).
http://www.uml.org/, 20th September 2004.

[101] Opencv-Intel Open Source Compter Vision Library,
http://www.intel.com/research/mrl/research/opencv/.

[102] Origin Instruments. DynaSight Sensor.
http://www.orin.com/3dtrack/dyst.htm, 2004.

[103] A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based
manipulation of image databases. In SPIE Storage and Retrieval for
Image and Video Databases II, number 2185, Feb. 1994, San Jose,
CA., 1994.

[104] D. Petkovic, W. Niblack, M. Flickner, D. Steele, D. Lee, J. Yin,
J. Hafner, F. Tung, H. Treat, R. Dow, M. Gee, M. Vo, P. Vo, B. Holt,
J. Hethorn, K. Weiss, P. Elliott, and C. Bird. Recent applications of
ibm's query by image content (qbic). In Proceedings of the 1996 ACM
symposium on Applied Computing, pages 2-6. ACM Press, 1996.

[105] P. Petta, A. Staller, R. Trappl, S. Mantler, Z. Szalavâri, T. Psik, and
M. Gervautz. Towards Engaging Fullbody Interaction. In Proceedings
of the 8th International Conference on Human-Computer Interaction
(HCI International '99), 1999.

Bibliography 149

[106] T. Pfeiffer and M. E. Latoschik. Resolving object references in multi-
modal dialogues for immersive virtual environments. In Proceedings of
the IEEE Virtual Reality 2004 (VR2004), pages 35-42, March 27-31,
2004.

[107] W. Piekarski, B. Günther, and B. H. Thomas. Integrating virtual and
augmented realities in an outdoor application. In Proc. IWAR '99, pages
45-54, San Francisco, CA, USA, October 21-22 1999. IEEE CS.

[108] W. Piekarski and B. H. Thomas. Tinmith-ev5 - an architecture for
supporting mobile augmented reality environments. In Proc. IS AR
2001, pages 177-178, New York, New York, USA, October 29-30 2001.
IEEE and ACM.

[109] W. Piekarski and B. H. Thomas. An object-oriented software architec-
ture for 3D mixed reality applications. In Proc. ISMAR 2003, pages
247-256, Tokyo, Japan, October 7-10 2003. IEEE.

[110] W. Piekarski, B. H. Thomas, D. Hepworth, B. Günther, and V. Dem-
czuk. An architecture for outdoor wearable computers to support aug-
mented reality and multimedia applications. In Proc. Third Interna-
tional Conference on Know ledge-Based Intelligent Information Engi-
neering Systems, Adelaide, Australia, August 1999. IEEE.

[Ill] A. Prakash and M. J. Knister. A framework for undoing actions in
collaborative systems. In ACM Transactions on Computer-Human In-
teraction (TOCHI), volume 1, pages 295-330, 1994.

[112] J. Priimper and M. Anft. Die evaluation von software auf grundlage des
entwurfs zur internationalen ergonomie-norm iso 9241 teil 10 als beitrag
zur partizipativen Systemgestaltung - ein fallbeispiel. In K. H. Rödiger,
editor, Software-Ergonomie '93: Von der Benutzungsober fläche zur Ar-
beitsgestaltung, pages 145-156. Teubner, Stuttgart, 1993.

[113] T. Psik, K. Matkovic;, R. Sainitzer, P. Petta, and Z. Szalavâri. The
Invisible Person: advanced interaction using an embedded interface.
In Proceedings of the workshop on Virtual environments 2003, pages
29-37. ACM Press, 2003.

[114] The State Hermitage Museum, St. Petersburg, Russia, QBIC Color
and Layout Search, http://www.hermitagemuseum.org/fcgi-bin/
db2www/qbicSearch.mac/qbic?selLang=English.

Bibliography 150

[115] G. Reitmayr. On Soßware Design for Augmented Reality. PhD thesis,
Vienna University of Technology, 2004.

[116] G. Reitmayr and D. Schmalstieg. Mobile collaborative augmented re-
ality. In Proc. IS AR 2001, pages 114-123, New York, New York, USA,
October 29-30 2001. IEEE.

[117] G. Reitmayr and D. Schmalstieg. OpenTracker - an open software
architecture for reconfigurable tracking based on XML. In Proc. IEEE
Virtual Reality 2001, pages 285-286, Yokohama, Japan, March 13-17
2001.

[118] G. Reitmayr and D. Schmalstieg. Collaborative augmented reality for
outdoor navigation and information browsing. Geowissenschqftliche
Mitteilungen (Proc. 2nd Symposium on Location Based Services and
TeleCartography), pages 53-62, 2003.

[119] M. Resnick, F. Martin, R. Berg, R. Borovoy, V. Colella, K. Kramer,
and B. Silverman. Digital manipulatives: New toys to think with. In
CHI, pages 281-287, 1998.

[120] T. Rodden, A. Crabtree, T. Hemmings, B. Koleva, J. Humble, K.-P.
Âkesson, and P. Hansson. Configuring the ubiquitous home. In Pro-
ceedings of the 6th International Conference on Designing Cooperative
Systems. IOS Press, 2004.

[121] D. Schmalstieg and G. Eibner. Hybrid user interfaces using seamless
tiled displays. In Proc. of 8th Immersive Projection Technology Work-
shop (IPT 2004), May 13-14 2004.

[122] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavari, L. M. Encarnao,
M. Gervautz, and W. Purgathofer. The Studierstube augmented reality
project. PRESENCE - Teleoperators and Virtual Environments, 11(1),
2002.

[123] D. Schmalstieg, A. Fuhrmann, Z. Szalavari, and M. Gervautz. Studier-
stube - an environment for collaboration in augmented reality. In Proc.
of Collaborative Virtual Environments Workshop '96, Nottingham, UK,
September 19-20 1996.

[124] D. Schmalstieg and G. Hesina. Distributed applications for collabora-
tive augmented reality. In Proc. IEEE VR 2002, pages 59-66, Orlando,
Florida, USA, March 24-28 2002. IEEE.

Bibliography 151

[125] D. Schmalstieg, G. Reitmayr, and G. Hesina. Distributed applications
for collaborative three-dimensional workspaces. Presence, 12(l):53-68,
February 2003.

[126] B. Sheiderman. Desiging the User Interface. Addison Wesley Longman,
3rd edition, 1998.

[127] B. Shneiderman. Direct manipulation: A step beyond programming
languages. IEEE Computer, 16:57-63, 1983.

[128] http://www.smartits.org/.

[129] U. Spierling, D. Grasbon, N. Braun, and I. Iurgel. Setting the scene:
playing digital director in interactive storytelling and creation. In Com-
puters & Graphics, number 1 in 26, pages 31-44, 2002.

[130] O. Stiemerling, H. Kahler, and V. Wulf. How to make software softer -
designing tailorable applications. In Proceedings of the DIS (Designing
Interactive Systems) '97, pages 365-376. ACM Press, 1997.

[131] P. Strauss and R. Carey. An object oriented 3D graphics toolkit. In
Proc, ACM SIGGRAPH'92. ACM, 1992.

[132] Sun Microsystems, Inc. . http://java.sun.com/, 10th September 2004.

[133] H. Suzuki and H. Kato. Algoblock: a tangible programming language,
a tool for collaborative learning. In Proceedings of 4th European Logo
Conference, pages 297-303, Aug. 1993.

[134] Systems in Motion. Coin 3d library, http://www.coin3d.org/, April
5th 2004.

[135] Z. Szalavari and M. Gervautz. The Personal Interaction Panel — A
two-handed interface for augmented reality. Computer Graphics Fo-
rum, 6(13):335-346, 1997.

[136] The ATELIER Consortium. The atelier website.
http://atelier.k3.mah.se/, 10th September 2004.

[137] The Disappearing Computer Initiative ©2002 -2003. The disappear-
ing computer initiative, http://www.disappearing-computer.net/, 10th
September 2004.

[138] The Quantum Research Group. Touch control and sensor ics.
http://www.qprox.com/.

Bibliography 152

[139] H. Tramberend. Avocado: A distributed virtual reality framework. In
Proc. IEEE VR 1999, pages 1 4 - 2 1 , Houston, Texas, USA, March 13
- 17 1999. IEEE.

[140] H. Tramberend. Avango: A distributed virtual reality framework. In
Proc. of Afrigraph'Ol, 2001.

[141] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion,
perception, behavior. Computer Graphics, 28(Annual Conference
Series) :43-50, 1994.

[142] E. Tuulari and A. Ylisaukko-oja. Soapbox: A platform for ubiqui-
tous computing research and applications. In Proceedings of Pervasive
Computing 2002, pages 125-138, 2002.

[143] B. Ullmer and H. Ishii. The metadesk: Models and prototypes for tan-
gible user interfaces. In ACM Symposium on User Interface Software
and Technology, pages 223-232, 1997.

[144] B. Ullmer, H. Ishii, and D. Glas. mediaBlocks: Physical containers,
transports, and controls for online media. Computer Graphics, 32(An-
nual Conference Series):379-386, 1998.

[145] A. Vailaya, Y. Zhong, and A. Jain. A hierarchical system for efficient
image retrieval,. In Procedeengs of International Conference on Pattern
Recognition (August 1996)., 1996.

[146] Van Gogh TV. Piazza virtuale. http://www.aec.at/de/archives/
prix_archive/prixJuryStatement.asp?iProjectID=2585, 1993.

[147] VTT Electronics. Kaitoväylä 1, P.O. Box 1100, 90571 Oulu, Finland,
2004.

[148] W3C World Wide Web Consortium (§). Extensible markup language
(xml). http://www.w3c.org/XML/, 20th September 2004.

[149] W3C World Wide Web Consortium (§). Hypertext markup language
(html). http://www.w3c.org/MarkUp/, 20th September 2004.

[150] M. Weiser. The computer for the 21st century. In Scientific American,
volume 265 of 3, pages 94-104, 1991.

[151] P. Wellner, W. Mackay, and R. Gold. Back to the real world. In
Communications of the ACM, Vol. 36, Number 7. ACM Press, 1993.

Bibliography 153

[152] J. Wernecke. The Inventor Toolmaker: Extending Open Inventor.
Addison-Wesley, 2nd edition, April 1994.

[153] Yahoo! Inc. Yahoo messenger, http://messenger.yahoo.com/, July
2004.

[154] Y. Yanagida, S. Kawato, H. Noma, A. Tomono, and N. Testunani.
Projection-based olfactory display with nose tracking. In Proceedings
of the IEEE Virtual Reality 2004 (VR2004), pages 43-49, March 27-31,
2004.

Curriculum Vitae
Thomas Psik

Piaristengasse 2-4
A-1080 Vienna
Austria
tpsikOpop.tuwien.ac.at

1972 Born on the 6th of September in Vienna, Austria

1978 - 1983 Primary School (Volksschule) at the Volksschule Zeltgasse,
Vienna, Austria

1983 - 1991 Secondary School at the Bundesgymnasium Albertgasse, Vi-
enna, Austria

June 1991 Graduation (Matura) from the Bundesrealgymnasium Al-
bertgasse

1991 - 1998 Studies in computer science at the Vienna University of
Technology

1. Dez. 1998 Graduation "Diplom-Ingenieur der Informatik" from the
Vienna University of Technology
Thesis "Nichtlineare Raumverkrümmung beim Raytracing"

1999 - 2002 Employee of Imagination Computer Services GmbH

2002 - 2004 Research Assistant in the scope of the EU-IST project
ATELIER at the "Institut für Gestaltungs- und Wirkungs-
forschung, Arbeitsbereich CSCW", Vienna University of
Technology (Univ. Prof. Wagner)

2003 - 2004 Research Assistant in the scope of the START project
at the "Institut für Software Technologie and Interaktive
Systeme", VR Group, Vienna University of Technology
(Ao.Prof. Schmalstieg)

October 2004 Dissertation "Designing multimodal interaction for
configurable distributed systems", advisor: Ina Wagner

154

