
DIPLOMARBEIT

Xerxes Error Behavior

ausgeführt unter Anleitung von

A.o. Univ-Prof. Dipl.-Ing.Dr.techn.Andreas Steininger

Institut für technische Informatik, VLSI-Design 182-2

und

Dipl.-Ing. Oliver Maischberger

Dependable Computer Systems, GmbH.

eingereicht an der Technischen Universität Wien,

Technisch-Naturwissenschaftliche Fakultät

durch

Bernhard Rieder

1200 Wien

Wien, im Mai 2003

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Xerxes Error Behavior

Zusammenfassung

In der heutigen Automobilindustrie findet zur Zeit ein Wechsel der Basistechnologie von
mechanischen oder pneumatischen Systemen zu elektronischen Kontroll- und Steuersyste-
men statt. Während bei nicht sicherheitskritischen Systemen dieser Wechsel schon sehr weit
fortgeschritten ist, zögern die meisten Hersteller noch beim Einsatz von elektronischen Sys-
temen für sicherheitskritische Anwendungen wie z.B. x-by-wire. Ein wichtiges Argument das
gegen den Einsatz dieser neuen Technologien spricht ist, daß sich für die meisten Systeme
aufgrund ihrer Komplexität wohl kein formaler Nachweis ihrer Sicherheit mehr erbringen läßt.
Hier sollen technischen Studien, Labortests und Prototypen diese Sicherheit gewährleisten.
Die Wichtigkeit solcher Untersuchungen zeigt sich jetzt beim CAN-Protokoll, das sich in der
Automobilindustrie bereits gut etabliert hat und bei dem erst kürzlich eine schwerwiegende
Designschwäche entdeckt wurde.

In dieser Arbeit wird das Fehlerverhalten der Xerxes Kodierung untersucht. Die Xerxes

Kodierung ist eine flankengesteuerte und gleichstromfreie Bitkodierung. Nach maximal 2,5
übertragenen Datenbits wird ein Pegelwechsel der Übertragungsleitung garantiert, womit sich
Xerxes-Kodierte Signale auch über ferromagnetische Übertrager hinweg ausbreiten können.

Der Grund dieser Untersuchung ist eine vor kurzem erschienene Publikation über die An-
fälligkeit für Fehlerfortpflanzung im CAN Protokoll welche dazu führt, daß zwei Übertra-
gungsfehler zu sechs oder mehr Bit-Fehlern in den empfangenen Daten führen, die mit dem
verwendeten CRC nicht mehr sicher erkannt werden können. Ziel dieser Arbeit ist es,
eine umfassende Untersuchung des Fehlerverhaltens der Xerxes Kodierung durchzuführen,
mögliche Probleme, die sich daraus ergeben, aufzuzeigen und Empfehlungen für die Proto-
kollentwicklung und für den Entwurf integrierter Schaltkreise zu geben.

Die Untersuchung ist in zwei Teile gegliedert. Der erste Teil prüft das statische Verhalten
der Xerxes-Kodierung, d.h. die Kodierung wird vollständig auf Fehlerfortpflanzung getestet
wobei der Einfluss von dynamischen Effekten wie sie bei der Signalabtastung auftreten nicht
untersucht wird. Der zweite Teil dieser Arbeit untersucht die dynamischen Effekte der Signal-
abtastung mit Hauptaugenmerk auf asymmetrische Verzögerungen in den Sende-Empfangs-
einheiten.

Xerxes Error Behavior

Abstract

In today’s automotive industry a fundamental paradigm shift from pure mechanical or hy-
draulic systems towards electronic control and steering systems is taking place. While elec-
tronic communication buses are already widely used for non-safety critical subsystems most
manufacturers hesitate to introduce electronic communication systems for safety critical sys-
tems such as x-by-wire. The most important reason against the use of these new technologies
is that most of the current systems are far too complex to prove their safety analytically.
Thus studies, laboratory tests and prototypes are required by the automotive industry to
ensure the required safety standards. The importance of these studies gets obvious in the
CAN protocol now, a protocol, well established and widely used in the automotive industry.
But only recently a grave Design flaw has been discovered.

This thesis examines the error behaviour of the Xerxes coding scheme. The Xerxes coding
scheme is an edge triggered and DC free bit coding scheme. The use of the Xerxes bit coding
scheme grants the maximum time between two edges to be less than 2.5 bit cell durations,
allowing the use of ferromagnetic isolating transformers.

The main reason for this study was a recent publication about multi bit error vulnerabilities
in the bit stuffing encoding used in the CAN protocol, where two transmission errors can
lead to six or more bit errors which cannot be securely detected by the used CRC. The aim
of this study is to investigate in detail the error behaviour of the Xerxes encoding scheme,
identify possible problems and give recommendations for protocol- and chip-design.

The examination of the Xerxes encoding scheme is divided in two parts. The first part
examines the static behaviour of the Xerxes coding scheme. This is done by checking the
coding completely for error propagation without any dynamic influences like the effects of bit
sampling. The second part covers the dynamic effects of bit sampling with the main focus
set on asymmetric delays such as caused by most transceivers.

To my parents and all my friends

and to all my past, my present and my future rats.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 The Need for Safety . 1
1.2 Overview . 2

2 Background 3
2.1 Xerxes Coding Scheme . 3

2.1.1 Definitions . 3
2.1.2 Decomposition of Binary Data . 3
2.1.3 Encoding of Sequences . 3
2.1.4 Look Ahead . 3
2.1.5 Error Conditions . 4
2.1.6 Xerxes Basic Decoding Rules . 4
2.1.7 Xerxes Encoding Example . 4
2.1.8 Encoding State Machine . 4
2.1.9 Decoding State Machine . 5

2.2 Related Work . 5
2.2.1 Multi-Bit Error Vulnerabilities in the CAN Protocol [Tran 99] 5
2.2.2 A Preliminary Analysis of the FlexRay Protocol [FRpre 01] 6

3 Simulation Approach 7
3.1 Simulation Tool . 7

3.1.1 Data Structures . 7
3.1.2 De- and Encoders . 8
3.1.3 Filters . 8

3.2 Usage of the Simulator . 8
3.3 Implementation Details . 11

3.3.1 Data Structures . 11
3.3.1.1 The BinStream Class . 11
3.3.1.2 The Codestream Class . 12
3.3.1.3 Storing Edge Data using a vector<double> 13

3.3.2 De- and Encoders . 14
3.3.2.1 The XerxesEncoder Class . 14
3.3.2.2 The XerxesDecoder Class . 17
3.3.2.3 The TimeEncoder Class . 17
3.3.2.4 The TimeDecoder Class . 17

3.3.3 The Filter Framework . 19
3.3.4 The assembled Program . 20

3.3.4.1 The main Function . 20
3.3.4.2 The coverage Function . 23
3.3.4.3 The ber frame Function . 24

I

3.3.4.4 The crc frame Function . 25
3.3.4.5 The time frame Function . 25

3.4 Evaluation of the Simulation Results . 25

4 Code Coverage 29
4.1 Fault Model . 29

4.1.1 The Half Bit Fault Model . 30
4.1.2 The Full Bit Fault Model . 31

4.2 Simulation Runs . 31
4.3 Simulation Results . 32

4.3.1 The Half Bit Fault Model . 32
4.3.2 The Full Bit Fault Model . 33
4.3.3 Remarks . 33

4.3.3.1 Fault Model . 33
4.3.3.2 Frame Error Comparison . 33

4.4 Evaluation . 35

5 Resynchronisation 38
5.1 Basics . 38
5.2 Case Study of Synchronisation Loss . 39
5.3 Simulation Details . 41
5.4 Fault Model . 42
5.5 Simulation Parameters . 42

5.5.1 Receiver Types . 42
5.5.2 Injected Faults . 43

5.5.2.1 Overall Error Behaviour . 43
5.5.2.2 Asymmetric Delays . 44

5.6 Simulation Runs . 45
5.7 Fault Simulations I . 45

5.7.1 Clock Drift (Time Scale) . 45
5.7.2 Jitter . 46
5.7.3 Asymmetric Delays . 47
5.7.4 Multiple Delayed/Early Edges (Offset) 47
5.7.5 Signal forced to High/Low . 48
5.7.6 Two subsequent delayed Edges . 48

5.8 Fault Simulations II . 50
5.8.1 Single asymmetric delayed Edge . 50
5.8.2 Asymmetric delayed Frame . 50

5.9 Evaluation . 57

6 Conclusion 59

A Abbreviations 61

B Simulation Results for Chapter 4 62

C Simulation Results for Chapter 5 63

D Code Examples 71
D.1 Implementation of the XerxesDecoder Class 71
D.2 Implementation of the Sampling Logic . 73
D.3 Implementation of the Filters . 75
D.4 Implementation of the time frame Function 80

II

List of Figures

2.1 Xerxes Coding Sequence Example . 4
2.2 Xerxes Encoding State Machine . 5
2.3 Xerxes Decoding State Machine . 5
2.4 Bit Stuffing without Transmission Errors . 6
2.5 Bit Stuffing with two Transmission Errors . 6

4.1 Fault Injection Example . 30
4.2 Half Bit Fault Model . 30
4.3 Full Bit Fault Model . 31
4.4 Code Coverage Mode . 31
4.5 Example of different Paths through the Decoder State Machine 32
4.6 Failure Rates with given hber in the Half Bit Fault Model 34
4.7 Failure Rates with given ber in the Full Bit Fault Model 35
4.8 Error Detection Abilities of the Xerxes Decoder 37

5.1 Sampling Diagram . 39
5.2 Resynchronisation Failure through injected Pulse 39
5.3 Resynchronisation Failure due to two delayed Edges 40
5.4 Synchronisation loss due to asymmetric Delay 40
5.5 Synchronisation lost on second Edge . 40
5.6 Timed Simulation Mode . 41
5.7 Receiver Parameters . 41
5.8 Different bit Samplers used in Simulations . 44
5.9 The Reverence Diagram . 45
5.10 No Clock Drift between Sender and Receiver 46
5.11 Receiver Clock faster than Sender Clock . 46
5.12 Receiver Clock slower than Sender Clock . 46
5.13 Frames with a 0.01 BCD Jitter . 47
5.14 Frames with a 0.05 BCD Jitter . 47
5.15 Sample logic behaviour with offset=0 . 47
5.16 Sample logic behaviour with offset=0.5 . 48
5.17 No Disturbance on transmitted Signal . 49
5.18 transmitted Signal forced to high for 0.8 BCD 49
5.19 No delayed Edges . 49
5.20 Two subsequent Edges delayed . 49
5.21 Asymmetric delayed Edge, Sampling Logic d01 50
5.22 Asymmetric delayed Edge, Sampling Logic d02 51
5.23 Asymmetric delayed Edge, Sampling Logic d03 51
5.24 Asymmetric delayed Edge, Sampling Logic d04 51
5.25 Asymmetric delayed Edge, Sampling Logic d05 51
5.26 Asymmetric delayed Edge, Sampling Logic d06 52
5.27 Asymmetric delayed Edge, Sampling Logic d07 52

III

5.28 Asymmetric delayed Edge, Sampling Logic d08 52
5.29 Asymmetric delayed Edge, Sampling Logic d09 52
5.30 Asymmetric delayed Edge, Sampling Logic s01 53
5.31 Asymmetric delayed Edge, Sampling Logic s02 53
5.32 Probabilities for >5 Errors caused by a single asymmetric delayed Edge . . . 53
5.33 Asymmetric delayed Frame, Sampling Logic d01 54
5.34 Asymmetric delayed Frame, Sampling Logic d02 54
5.35 Asymmetric delayed Frame, Sampling Logic d03 54
5.36 Asymmetric delayed Frame, Sampling Logic d04 55
5.37 Asymmetric delayed Frame, Sampling Logic d05 55
5.38 Asymmetric delayed Frame, Sampling Logic d06 55
5.39 Asymmetric delayed Frame, Sampling Logic d07 55
5.40 Asymmetric delayed Frame, Sampling Logic d08 56
5.41 Asymmetric delayed Frame, Sampling Logic d09 56
5.42 Asymmetric delayed Frame, Sampling Logic s01 56
5.43 Asymmetric delayed Frame, Sampling Logic s02 56
5.44 Probabilities for >5 Errors with an asymmetric delayed Frame 57

IV

List of Tables

3.1 Bit Positions in the Index and Values of the m transitions array 15
3.2 Attribute definitions for the SQL Tables . 26

4.1 Comparing Transmission Faults and erroneous Data Bits from Figure 4.5 . . 33
4.2 Half Bit Errors recognised in the Xerxes Decoder using an End Of Frame

Sequence . 36

5.1 Different Oversampling Intervals . 38
5.2 Different bit Samplers used in Simulations . 43

A.1 Abbreviations . 61

B.1 Simulation Results for Chapter 4.3.3.2 . 62

C.1 Simulation Results for Chapter 5.7.1 . 64
C.2 Simulation Results for Chapter 5.7.2 . 65
C.3 Simulation Results for Chapter 5.7.4 . 66
C.4 Simulation Results for Chapter 5.7.5 . 67
C.5 Simulation Results for Chapter 5.7.6 . 68
C.6 Simulation Results for Chapter 5.8.1 . 69
C.7 Simulation Results for Chapter 5.8.2 . 70

V

Listings

3.1 Simulator Command Line Interface . 8
3.2 Filter Selection (Fault Injection) . 9
3.3 Sampling Parameters Selection . 10
3.4 Simulation Example . 11
3.5 BinStream class . 12
3.6 CodeStream class . 13
3.7 Encoder and Decoder classes . 14
3.8 TimeEncoder and TimeDecoder classes . 15
3.9 Xerxes Encoder class . 15
3.10 encode member function of the TimeEncoder class 17
3.11 Definition of the TimeDecoder Default class 17
3.12 Sampler logic in Pseudo Code . 18
3.13 The FilterFactory::append method . 19
3.14 The FilterFactory::filter method . 20
3.15 The main function . 20
3.16 The coverage function . 23
3.17 The ber frame2 function . 24
3.18 Error Injection in the crc frame function . 25
3.19 SQL Table Definition for Resynchronisation Simulations I 26
3.20 SQL Table Definition for Resynchronisation Simulations II 26
3.21 four example Log Entries for Part II of the Resync. Simulation 27
3.22 SQLQuery for Resynchronisation Simulations I 27
3.23 Example Query Results for Simulations I . 28
3.24 SQL Query for Resynchronisation Simulations II 28
4.1 Coverage Test Results for Full Bit Fault Model 33
D.1 Implementation of the XerxesDecoder . 71
D.2 Implementation of the Sampling Logic . 73
D.3 Header File for the Filter implementation . 75
D.4 Source File for the Filter implementation . 76
D.5 Implementation of the time frame function 80

VI

Chapter 1

Introduction

1.1 Motivation

In the automotive industry there is an increasing demand for “x-by-wire” systems. “By-wire”
is a term that describes the replacement of mechanical or hydraulic connections between
individual subsystems by electronic connections (wires). The “x” denotes the possible fields
of applications that shall be implemented, like steer-by-wire or break-by-wire. This makes it
also possible or easier to introduce driver-independent assistance systems to increase the road
safety. The assistant systems currently in use like Anti Lock Breaking Systems (ABS), Anti

Slip Regulations (ASR) or Electronic Stability Program (ESP) cause a high technical effort,
which can be significantly reduced by x-by-wire systems.

Before mechanical or hydraulic functions can be replaced by electronic communication it
has to be ensured that this will not introduce a new safety risk but in contrary result in an
additional gain of safety and comfort. Therefore a high degree of reliability and deterministic
behaviour is required for this electronic signalling. Last but not least this connections are
supposed to transfer a maximum number of signals to reduce the necessary cabling.

With conventional bus systems the necessary safety and performance requirements cannot
fully be met at the same time. The upcoming Local Interconnect Network (LIN) protocol is
too slow, non deterministic and to unreliable. The Controller Area Network (CAN) protocol
is able to meet the necessary speed requirements but the bus access is event triggered and
therefore CAN is not deterministic. With increasing network traffic, the maximum delay time
until which messages are sent cannot be predicted. Such a non deterministic behaviour is not
acceptable for safety critical applications like break-by-wire or steer-by-wire. As consequence
time triggered transmission protocols and applications become necessary.

1.1.1 The Need for Safety

Some of the major players in the automotive and supplier industry have joined forces in
developing the FlexRay� protocol which is supposed to meet the high requirements of drive-

by-wire systems.
All stages of the protocol development have so far been accompanied by Field Pro-

grammable Gate Array (FPGA) devices to test the behaviour of the transmission protocol
in real time and on real hardware (although many functions have been tested in software
simulations before). At the time of this writing, a major car manufacturer is starting to
build a prototype car based on the FlexRay� bus architecture. All these actions are taken to
create a protocol that is safe by design. An other idea behind this approach is openness. Once
the protocol is finished any manufacturer can join the FlexRay� consortium, obtain the spe-

1

cifications and develop FlexRay� applications royalty free. This will guarantee appropriate
prices and independence from a single supplier.

In drive-by-wire systems, even a short disruption of service can become the cause of an
accident. Assuming the same failure rate as in the aerospace industry, which is 0.1 fit1,
about four accidents would be caused alone in the USA [FRpre 01] within one year. This is
acceptable considering the fact that x-by-wire systems contribute to the overall safety on the
road.

Unfortunately, traditional fault tolerant system design experience is not directly appli-
cable to mass consumer products. A failure that occurs with a probability of 1 fit would
occur every 73 years in the American aerospace fleet; the same failure rate will result in a
failure every 4.5 days in the automotive fleet [Koopman 98]. Thus, small, acceptable fault
tolerances in traditional fault tolerance applications may not be small enough to ensure safety
in consumer applications.

1.2 Overview

The analysis is split into two parts. The first part examines the stability of the Xerxes
encoding scheme without the influence of bit sampling to find out, if n bit errors can produce
n + m errors in the decoded bit stream. The second part examines the influence of bit
sampling on the error behaviour by applying various kinds of errors on the transmitted signal
and feeding the generated signal into different sampling logics.

The study is structured as follows: The second chapter gives an introduction to the Xerxes
encoding scheme and a short overview of two other related publications. The third chapter
describes the internal architecture and usage of the simulator used in the presented study.
The fourth chapter describes the simulations run for code coverage and the two possible fault
models. Even if error propagation can occur with one failure model but not with the other
both fault models give similar results when faults are not injected systematically but with
a specified error rate. The fifth chapter describes the simulation runs for resynchronisation.
Various faults are injected in the time domain before the signal is sampled. The impact of
the individual faults on different sampling methods is evaluated. The last chapter provides
a short conclusion and gives suggestions for further research.

1one fit equals one failure per trillion operating hours or a failure rate of 10−9h−1

2

Chapter 2

Background

2.1 Xerxes Coding Scheme

The Xerxes coding scheme is defined in US Patent 4,234,897 [Miller 80] with the main goal to
provide a DC free data transmission and is based on MFM (Modified Frequency Modulation).
For a more detailed description of the Xerxes encoding scheme see also Wolfgang Forster´s
diploma thesis [Forster 01].

2.1.1 Definitions

Xerxes is an edge triggered encoding scheme. Edges may occur on two distinct points:� the begin and end of each bit cell, which is referred to as clock point� the middle of each bit cell, which is referred to as data point

2.1.2 Decomposition of Binary Data

The Xerxes coding scheme decomposes the bit stream into four distinct sub sequences:

A any number of 1s without 0s (1. . . 1)
B any even number of 1s with a leading and a closing 0 (011. . . 110)
C any odd number of 1s with a leading and a closing 0 (011. . . 10)
D a pair of 0s (00)

2.1.3 Encoding of Sequences

The sub sequences of type A to D are encoded according to the following rules:

A transitions at the data point of each bit cell (like MFM)
B transitions at the clock point of the begin of each pair of 1s and the end of the last pair

of 1s
C transitions at the clock point of the begin of each pair of 1s and the data point of the

last (odd) 1
D transitions at the clock point at the end of each bit cell

2.1.4 Look Ahead

For correct encoding and decoding an incoming ahead of 1 bit is required, as the encoding
and decoding state machines show. From figure 2.1 one can see that the next bit or edge has
influence on the en/decoding of the current bit.

3

2.1.5 Error Conditions

The Xerxes encoding scheme defines the following assertions on Xerxes-encoded signals:� the minimum delay between two subsequent edges lasts at least one full BCD� the maximum delay between two subsequent edges is shorter than or equal to 2.5 BCD
units� the Running Digital Sum RDS1 of the signal is always less or equal than 1.5

For signals not compliant with these assertions a code violation must be recognised by the
Xeres Decoder. The third assertion may not be very important when decoding the signal but
it is important when designing isolating transformers for galvanic isolation.

2.1.6 Xerxes Basic Decoding Rules

There are three basic rules when decoding Xerxes encoded signals:� bit cells containing transitions at the data point are decoded to “1”� bit cells with no transition between them are decoded to “11”� all other bit cells are decoded to “0”

While these restrictions allow correct decoding of a Xerxes stream they do not imply that
the received signal is correct. With these basic rules a signal without any transition would
be decoded as a series of “11”s (second rule) even if this is a code violation according to
chapter 2.1.5.

2.1.7 Xerxes Encoding Example

Figure 2.1 shows a sequence of bits encoded using NRZ and Xerxes. The sub-sequences as
described in chapter 2.1.2 are shown below the Xerxes encoded signal.

Xerxes

Binary

NRZ

0 1 0 1 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1

C A D C B A C Seqence

Figure 2.1: Xerxes Coding Sequence Example

2.1.8 Encoding State Machine

The encoding state machine shown in figure 2.2 is based on Wolfgang Forster’s diploma the-
sis [Forster 01]. The designation of state transitions is changed from the original to notations
like “1,0/D”. This signifies that the transition is taken, if the current bit is “1” and the next
bit is “0” and a edge at the data point is generated. Two or more values on one side of the
colon represent more possibilities and a dash represents all possible values. An edge can have
more than one designations meaning that the corresponding transition is taken, when either
one of the conditions is fulfilled.

Please note that in this state machine the states for generating the Frame Completion
Bit (FCB) and Code Violation Avoidance Bit (CVAB) [FR PS 01] are missing. The reason
is that the generated sequence depends on the state of the transmission line, which would be
difficult to track using the state machine as it would double the necessary states. There the
frame completion sequence is created in an own state machine.

1the RDS can be calculated as
∫

udt with 1 BCD = 1 and u =

{

1 for “1”
−1 for “0”

4

Figure 2.2: Xerxes Encoding State Machine

2.1.9 Decoding State Machine

For the notation of the transitions the same notation as in chapter 2.1.8 is used. The difference
is that the machine reads “C”, “D” or “N” Symbols and writes bits. “C”, “D”, and “N” are
notations for edge at clock point, edge at data point and no edge. The state machine can
be generated by reverse traversal of the encoding state machine. To distinguish between “B”
and “C” sequences an additional state “W” has to be introduced.

Figure 2.3: Xerxes Decoding State Machine

2.2 Related Work

There are two papers closely related to this study. In the following an overview of the related
chapters is given.

2.2.1 Multi-Bit Error Vulnerabilities in the CAN Protocol [Tran 99]

In [Tran 99] the CAN protocol is examined and shown that the effective hamming distance
of CAN drops to two by using a weakness, that is specific to the bit stuffing encoding.

The bit stuffing algorithm used in the CAN protocol works as follows: If five subsequent
bits of the same level are transmitted, then one complementary bit is inserted into the data
stream. The receiver detects five bits of the same level, checks the next bit if it has a
complementary level and removes it afterwards. Figure 2.4 shows the stuffing- and destuffing
process.

With bit stuffing used for transmission, all single bit errors can be detected either by
the CRC or by the message length. Problems arise, when two transmission errors occur like
shown in figure 2.5.

5

st
u

ff
in

g
d

es
tu

ff
in

g

0 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 10

0 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.4: Bit Stuffing without Transmission Errors

d
es

tu
ff

in
g

tr
an

sm
is

si
o

n
st

u
ff

in
g

0 1 0 1 1 1 1 0 0 0 0 1 0 01 1 1 1 1 1 1 0 1 100

error
transmission

error
transmission

0 1 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

0 1 0 1 1 1 1 1 0 0 0 0 0 0 01 1 1 1 1 1 1 0 1 10

0 1 0 1 0 1 0 1 01 1 0 1 1 0 0 1 0 1 1 1 1 1 10 1

Figure 2.5: Bit Stuffing with two Transmission Errors

In figure 2.5 two bit errors occur during transmission. The first bit breaks a sequence of
five equal bits, preventing the stuffing bit from being removed and delaying each following bit
by one bit cell. The second error generates a sequence of five equal bits, causing the next bit
falsely to be recognised as stuffing bit. The removal of this bit brings all following bits back
to their original position keeping the correct frame length. All bits between both failures
may be modified and since this may be more than five the errors cannot be recognised by the
CRC. The effective Hamming distance dropped to two.

2.2.2 A Preliminary Analysis of the FlexRay Protocol [FRpre 01]

In [FRpre 01] design issues of current implementations of real time systems are compared to
the FlexRay� protocol. This paper does not give an in-depth analysis of Xerxes encoding
because it examines all components of the real time system.

The survey of the signalling, as required by [Freq 02], leads to two conclusions that are
directly related to this study:� an end delimiter could significantly improve the error detection rates� Miller-style encoding schemes like Xerxes are more vulnerable to small noise pulses

because one distorted semi-bit results in an inverted decoded bit

Furthermore, the authors of this paper question the need for an additional DC free signalling
scheme for the FlexRay� protocol.

6

Chapter 3

Simulation Approach

3.1 Simulation Tool

The simulator used for this study is written in C++ and runs under Linux. It conforms to
ISO C++ and should also compile and run on other platforms. C++ was preferred to VHDL
because it is easier to implement, runs faster and gives more freedom on modifying signals
and filter parameters. As a result of basic optimisation for speed the simulator can simulate
more than 1.000.000 frames of 64 bits in one minute on an AthlonXP 1900, a value that is
hard to reach with a VHDL simulation.

The simulator can perform timed and non timed simulations. Non-timed simulations are
used to check, if n transmission errors may produce n+m bit errors without the influence of bit
sampling. Errors are modelled by changing the occurrence of edges within discrete values,
moving from one sampling point to another. The lowest protocol level in code coverage
simulations is the logical line interface. Timed simulations are used to examine the impact of
different transmission errors on the physical line on various bit sampling methods an the bit
errors in the resulting decoded bit stream. Errors are modelled by changing the occurrence
of edges with analogue values before bit sampling. The lowest protocol level considered by
timed simulations is the physical line.

The simulator consists of three basic building blocks: data structures, en-/decoders and
filters. Data structures store different kind of information (timed signal, sampled signal,
binary data) and are connected by en-/decoders, that convert between two different data
representations, or filters, modifying the stored data within on representation form.

3.1.1 Data Structures

The data structures used by the simulator are defiend as following:

1 binary data (class BinStream) consists of a sequence of bits plus the symbol X for
“don’t care”. No timing information is stored in this class.

2 code data (class CodeStream) represents edges within a bit cell and consists of the
Symbols C (clock point), D (data point), N (none), B (both, clock and data), I (inactive,
recessive state) and E (error). There is also no timing information needed, since one
bit cell contains exactly one of these symbols.

3 edge data (vector<double>) represents edges in the transmitted signal. Each value
in the vector represents the time an edge occurs in Bit Cell Duration (BCD) units.

7

3.1.2 De- and Encoders

The conversion between these codes is done by de- and encoders that are implemented as
classes and derived from an abstract super class. The used de- and encoders (XerxesDecoder
and XerxesEncoder) are created at program start and stored as global variable pointers. This
makes the simulator usable for other encoding schemes by simply creating new de/encoder
classes and assigning them to the global de/encoder in the main function. The existing
decoder and encoder implementations are:

1 Encoder (XerxesEncoder): BinStream → CodeStream
2 Decoder (XerxesDecoder): CodeStream → BinStream
3 TimeEncoder: CodeStream → vector<double>
4 TimeDecoder: vector<double>→ CodeStream

3.1.3 Filters

The Filter classes provide mechanisms for manipulating the time when edges occur or for
filtering out edges. All filters are sub-classed of the abstract class Filter that provides a
common interface for filtering, supplying help information and making the filter available to
the user. Complex chains of Filters can be specified on the command line interface. Available
Filters are: Shift, Scale, Jitter, Asym, High and Low. For detailed explanation of the filters
please refer to chapter 5.4. Most of the filters can be applied to a given range of edges or in a
specified time interval. The range may be given in BCD units (absolute from 0 or from frame
start) or relative, by the edge number. A modifier like “start=@2:stop=@2” can be used to
modify only the second edge in a frame.

3.2 Usage of the Simulator

The simulator is command line driven. Coverage simulations produce only one line output
and can be evaluated manually. Timed simulations are started from a shell script and logged
to a text file. After the completion of the simulations the log file is parsed by a Perl script
and the results are stored in a SQL database (PostgreSQL). The powerful SQL language allows
a fast evaluation of the results. An alternative storage method would be an Excel file. The
disadvantages of an Excel file are the stability (Excel seems to behave unpredictable for
tables with 267.300 rows), the usability (only very basic commands) and the performance.
Rational databases like PostgreSQL are optimised to give the user a very powerful set of
commands. These commands are passed through a query optimiser and fed to the database
engine resulting in high performance while in Excel, using auto filters, no optimisation is
done. A description of the used database including table definitions and query examples can
be found in the chapter 3.4.

The command line interface of the simulator is designed to support all features and settings
of the simulators. There are no parts of the code that have to be enabled or disabled during
compilation except for debug messages, therefore it can easily be used on small CD bootable
Linux distributions without a C++ compiler when compiled statically. All output is written
to stdout and can easily piped into other commands. This is necessary when the simulator
is run over secure shell on different (faster!) machines. Listing 3.1 shows the commands and
options available on the command line.

1 > ./Xerxes --help

2

3 Xerxes C++ Simulation

4 *********************

8

5

6 usage: Xerxes OPTIONS

7 test selection :

8 -c, --coverage Xerxes symbols coverage

9 -f, --frame test with CRC checking over random frames

10 -t, --timed timed simulation (without crc)

11 -b, --ber_frame simulate bit error rate

12 --test -encoder [01][01]... test encoder binary -> code

13 --test -decoder [NCD]... test decoder code -> binary

14 --test -timeenc [NCD]... test time encoder code -> double array

15 --test -timedec v1,v2,v3 ,.. test time decoder double array -> code

16 --test -filter v1,v2,v3 ,.. test filter chain on v1 ,v2 ,...

17 --help this help message

18 --helpfilter help: filters (fault injection)

19 --helptd help: bit sampling parameters

20

21 test parameter modification (applies to):

22 -s, --seed N (all) random generator seed (0)

23 --half (c,b) half bit fault model

24 --full (c,b) full bit fault model

25 --start encoderstate (ch) start symbol for xerxes encoder

26 -e, --errors N (f) N errors in each frame , -1=>1..8 (-1)

27 -p, --framecount N (f,t) run N tests per frame (10.000)

28 -n, --count N (f,t) run N frames in following test (10.000)

29 -l, --framelen N (f,t) length of frames (32)

30 -a, --add -filter Filter (t) add filter to chain (--helpfilter)

31 -d, --del -filter (t) delete filter chain

32 -r, --timedec tdstring (t) set receiver values (--helptd)

33 --ber N (b) use given ber (def 1e-3)

34

35 option availability :

36 (c) option available only in coverage simulation

37 (ch) option available only in coverage simulation with half bit fault model

38 (b) option available only in bit error rate simulation

39 (f) option available only in time simulation without CRC

40 (t) option available only in timed simulation

Listing 3.1: Simulator Command Line Interface

Filters are specified through the -a option (see listing 3.1). The filters are applied in the
same order than they are specified on the command line. The simulator provides detailed
help about the possible filter methods by using the --helpfilter command line option as
shown in listing 3.2.

1 > ./Xerxes --helpfilter

2

3 FILTER HELP

4 ***********

5 available filters:

6 offset=displacement [:start={@+*} time][:stop ={@+*} time]

7 add a time displacement (delay) to every event

8 the delay may be negative and is given in BCD units

9 scale=scale[: start={@+*}time][: stop ={@+*} time]

10 scale the time axis around the edge given in start

11 this filter can be used to simulate oscillator drifts

12 jitter=jitterwidth [:start={@+*} time][:stop ={@+*} time]

13 add a random offset to each edge (normal distribution

14 jitterwidth =3*sigma , values from -jw to +jw)

15 asym [:r=risetime][:f=falltime]

16 add an asymetric delay to each edge

17 first edge is falling , times in BCD units

9

18 high :{+*}time#duration

19 pull signal to high add time for duration [in BCD]

20 example: high :+20#0.4 will pull the signal to high

21 for 0.4 BCD at edge 20 BCD after frame start

22 low :{+*}time#duration

23 pull signal to low add time for duration [in BCD]

24 example: low :+20#0.4 will pull the signal to low

25 for 0.4 BCD at edge 20 BCD after frame start

26

27 arguments :

28 <arg > mandatory arguments

29 [arg] optional arguments

30 ab multiple possibilities

31 @n nht edge starting from 1, (** default all = @0,@0)

32 *5.5 absolute time in BCD units (frame starts at 5.0)

33 +8.9 relative time in BCD units (from frame start)

34 #0.5 relative time from first selected edge

35 : argument seperator , may be omitted at the end

36 examples for filter expressions :

37 scale=1.0001 creates a slow clock drift (oscillator drift)

38 offset =0.5: start=@2 delays each but the first edge by 0.5 BCD

Listing 3.2: Filter Selection (Fault Injection)

Sampling parameters are set similar to the filter parameters, before the -t option. A
summary of the options can be seen in listing 3.3.

1 > ./Xerxes --helptd

2

3 RECEIVER HELP

4 **************

5 receiver options:

6 rcv_win =0.5 receive window in BCD (rcv_win2 for window half)

7 sync_win =0.5 scncronisation window in BCD (sync_win2 for window

8 half)

9 >0 centered around 0, <0 -syncwin ...0

10 offset=0 error in first synchronisation

11 gran =0.125 granularity (1/ oversampling rate)

12 asym =0 use asymmetric sampling method

13 r reset to defaults

Listing 3.3: Sampling Parameters Selection

The example in Listing 3.4 shows a typical simulation run. The -r option sets the receiver
to a receive interval of 0.5 BCD and a synchronisation interval of 0.5 BCD, preventing dynamic
synchronisation. The edges in the 23rd Bit Cell are delayed by 0.1 BCD (10ns) and a worst
case clock drift of 6000 ppm, set by the scale filter, is assumed. The next options add a jitter
of 0.1 ns to each edge and simulate a transceiver with asymmetric delay. The frame length
is set to 256 and the simulation is run for 1000 different frames with 1000 repeats for each
frame. This is not necessary but recommended since the jitter filter may have an impact on
the results.
Listing 3.4 shows the result of a simulation run with 1.000.000 simulated frames. The receiver
was badly chosen so no errors could be detected by the sampling logic (receiver). Since the
injected fault was rather grave, 999.851 errors were detected by the Xerxes decoder (Xerxes).
No frames with less than six errors occurred (CRC) and 149 frames with six or more errors
(>=6) were received. In this example no valid frame could be received. This can be explained
with the receiver that lacks resynchronisation while forcing a clock drift of 6000 ppm.

10

1 > ./Xerxes -r rcv_win =0.5: sync_win =0.5 -a

2 offset =0.1: start=+23:stop =+24 -a scale =1.006 \

3 -a jitter =0.001 -a asym:f=0.2 -l 256 -p 1000 -n 1000 -t

4 len Frames Receiver Xerxes CRC >=6 errors

5 256 1000000 0 999851 0 149

6 >

Listing 3.4: Simulation Example

3.3 Implementation Details

The following chapters contain a detailed description of the implementation of the simulator.
The basics should be understandable without detailed knowledge of C++. For problems with
the code snippets Bjarne Stroustrup’s C++ Language reference [C++Ref] is recommended.
Good knowledge of the STL is not required but advantageous since the code uses standard
C++ components from the STL wherever it is possible and advantageous. So the complete
simulator could be implemented in under 3.000 lines of code1 and can be compiled in only
25 seconds.

3.3.1 Data Structures

The data structures used for the implementation are similar to data structures of the Standard

Template Library (STL). A small performance gain is achieved by providing an non-STL
implementation, since the STL provides dynamic array resizing which is not used but requires
some additional checking at the cost of performance.

3.3.1.1 The BinStream Class

As already mentioned above, the class BinStream is used for the internal representation of
sequences of bits. The class definition can be found in listing ??. The BinStream is not only
used for the representation of data bits. As the constructor BinStream(const CodeStream&

cs) shows it can also be used to represent half bits. This feature is used for the coverage
simulation presented in chapter 4.2. Each bit is represented by a byte with the values “0”
for logic 0, “1” for logic 1 or “2” for logic x. This needs more storage than a bit field but
it improves access speed since no shift and mask operations have to be performed to gain
access to a single bit. A BinStream object can also be created from a string containing any
number of “0”s, “1”s or “x”s. The conversion from each character contained in the string
to bytes and vice versa is done by the utility functions to char and from char. Another
way to create a BinStream instance is by specifying a long variable that holds the bits to be
placed in the BinStream and the size, the new bit stream should have. The maximum size of
BinStreams that can be created this way is architecture dependent and limited by the bit size
of long values. Since only twelve bits are needed and virtually all architectures provide long
values with more than 16 bits this restriction is not expected to cause any errors. Finally
random BinStreams can be created using the static member function random which allows
the specification of the start sequence and the desired length of the BinStream. Additional
methods exist to get the current size of the BinStream, to append data and to clear the
BinStream.

In addition this class provides also the possibility to calculate a CRC from the stored
data. The CRC can either be returned from the CRC member function or appended to the
BinStream. It is also possible to check a given CRC against the BinStream.

1this counter includes all lines, also the empty ones and unfrequent comment lines

11

1 typedef unsigned char byte;

2 typedef unsigned short CRC;

3

4 class BinStream

5 {

6 protected :

7 const static int BinStreamSize = 300;

8 public:

9 inline BinStream ();

10 inline BinStream (const char* _src);

11 inline BinStream (const CodeStream & _cs);

12 BinStream (const BinStream & _bs);

13 BinStream (unsigned long _bits , int _size);

14 static BinStream & random(const char* _start , int _size);

15

16 static const byte B0 = 0;

17 static const byte B1 = 1;

18 static const byte BX = 2;

19 static char to_char (const byte _b);

20 static byte from_char (const char _c);

21

22 inline void clear();

23 inline int size () const;

24 void append(const char* _src);

25 void append(const byte _bit);

26 void append(const byte* _src , int _length);

27 void remove(int _length);

28

29 inline BinStream & operator = (const char* _src);

30 inline BinStream & operator = (const BinStream & _bs);

31 operator std:: string() const;

32 const byte operator [] (int _addr) const;

33

34 CRC crc(int _skip_start =0, int _skip_end =0) const;

35 void append_crc (int _skip_start =0, int _skip_end =0);

36 bool check_crc (int _skip_start =0, int _skip_end =0) const;

37 protected :

38 void assign(const BinStream & _bs);

39 byte m_data[BinStreamSize];

40 int m_size;

41 // CRC

42 static const CRC CRC_Poly = 0xc599;

43 static const int CRC_Width = 16;

44 };

Listing 3.5: BinStream class

3.3.1.2 The Codestream Class

The CodeStream class is similar to the BinStream class. It holds the representation of
already sampled edges, which may occur in the clock point (C), in the data point (D), in
both sampling points (B) or not at all (N). Additionally a symbol for inactive, recessive state
(I) and an error symbol (E) exists. The individual symbols are encoded numerically using
the member functions from char and to char and stored in a byte. As in the BinStream

the internal storage is implemented as a simple array of bytes. Besides the usual member
functions to get the size, clear the entire BinStream and append data the member functions
begin and end are implemented. The begin and end member functions return, depending
on the calling semantics, an iterator or const iterator, a concept widely used in the

12

STL. Iterators are the connection between data structures and algorithms. When a class
implements the necessary iterator functions all the available algorithms implemented in the
STL can be used.

1 typedef unsigned char byte;

2

3 class CodeStream

4 {

5 protected :

6 const static int CodeStreamSize = 300;

7 public:

8 typedef byte* iterator_type ;

9 typedef const byte* const_iterator_type ;

10

11 static const byte I = 0;

12 static const byte N = 1;

13 static const byte C = 2;

14 static const byte D = 3;

15 static const byte B = 4;

16 static const byte E = 5;

17

18 inline CodeStream ();

19 inline CodeStream (const CodeStream & _cs)

20 CodeStream (const BinStream & _bs);

21

22 static char to_char (const byte _b);

23 static byte from_char (const char _c);

24

25 inline void clear();

26 inline int size () const;

27 inline void append(const char* _src);

28 inline void append_data (const byte _src);

29

30 inline CodeStream & operator = (const char* _src);

31 inline CodeStream & operator = (const CodeStream & _cs);

32 operator std::string() const;

33

34 inline const char getc(const int _addr) const;

35 inline const byte getb(const int _addr) const;

36 inline void setc(int _addr , const char _val);

37 inline void setb(int _addr , const byte _val);

38

39 inline iterator_type begin();

40 inline const_iterator_type begin() const;

41 inline iterator_type end ();

42 inline const_iterator_type end() const;

43 protected :

44 byte m_data[CodeStreamSize +1];

45 byte m_dummy;

46 int m_size;

47 };

Listing 3.6: CodeStream class

3.3.1.3 Storing Edge Data using a vector<double>

Edge data is stored in a simple STL vector<double>. A vector is the STL implementation of a
dynamic resizeable array with random access on the individual elements. Another possibility
to store edge data would be a list. The advantage of a list over a vector is the ability to insert

13

(new edges) or delete (lost edges) elements anywhere at virtually no cost. When inserting
or deleting elements of vectors, all elements behind the newly inserted or deleted one have
to be moved (copied) which has significant impact on the performance. The disadvantage
of the list is that the additional pointers necessary for list management require additional
space and a non-linear processing of all list elements is slower than with a vector. Random
access is also not possible within a list. Searches are slower because no binary search can be
performed. The overall performance of a list and of a vector should be about the same in
this application.

3.3.2 De- and Encoders

Some of the de/encoders that are only used to change between the different data represen-
tations2 are very simple and are implemented as constructors of the individual data classes
while others are more difficult and represent complex processes like bit sampling or applying
a complicated encoding scheme to a series of bits or symbols. These de/encoders are imple-
mented in classes. This approach gives the advantage of a clear interface design. Additional
coding schemes or sampling logics can be implemented by sub-classing. Function pointers
are a different approach used by standard C. Function pointers have the drawback that no
state information can be stored. This would require static variables in the individual func-
tions which could not be shared between different functions. This problem is solved by an
additional argument in the function call: a pointer to a memory location where the necessary
information can be stored. In fact the C++ compiler does exactly the same with the class
information transparently to the user with no performance loss3.

1 class Encoder {

2 public:

3 virtual void encode(const BinStream & BS, CodeStream & CS) = 0;

4 };

5

6 class Decoder {

7 public:

8 virtual void decode(const CodeStream & CS, BinStream & BS) = 0;

9 static const char* errstring (int _reason);

10

11 static const int CodeError = 1;

12 static const int SamplerError = 2;

13 };

Listing 3.7: Encoder and Decoder classes

Listing 3.7 and listing 3.8 are showing the interface of the decoder and encoder classes,
which is, like already mentioned, very simple and clean. For special purposes this interface
can be extended by adding member functions to the specific sub-classes, which has be done
by the implementation of the XerxesEncoder and XerxesDecoder.

3.3.2.1 The XerxesEncoder Class

A sub-class of the Decoder is the XerxesDecoder as shown in listing 3.9. For the coverage
test made in chapter 4 the additional command setState is necessary. The byte constants

2i.e. the conversion from CodeStream to BinStream when the BinStream is used as representation of the
logic level in half bit cells (chapter 4.2)

3when using virtual functions there is a little performance loss since the address of the function has to
be fetched from the class information table. This effort is implementation dependent but in most cases it is
comparable to the effort of fetching a function address from a function pointer.

14

1 class TimeEncoder {

2 public:

3 void encode(const CodeStream & _CS , std::vector <double >& _timevec);

4 };

5

6 class TimeDecoder {

7 public:

8 virtual void decode (const std::vector <double >& _timevec ,

9 CodeStream & _CS) = 0;

10 virtual void set_values (const std:: string& _arguments) = 0;

11 };

Listing 3.8: TimeEncoder and TimeDecoder classes

defining the states are public, so symbolic names can be used to set the states from outside
the class. The encoding is table based. When creating a Decoder object the init function is
called and populates the m transitions array. The init function uses the addTransition

method to add new transitions to the m transitions array. The array index is eight bits
wide and coded like shown in table 3.1 where the encoding of the array values can be found
too. The encoding process is simple: the current state, the current bit and the next bit are
used to calculate an array index. On the indexed position a value consisting of the next
state and the generated code can be found. Another solution would be hard-coding the state
machine using “case” and “if” statements. But the hard-coded solution has two drawbacks:
first this solution is hard to maintain, changes are not easy to be made without possible side
effects and the second but even more important drawback, is calculation speed. A series of
“if” or “case” statements is slower than a look up table. In addition, the current solution
generates code which is easy to read since it is a direct representation of the encoder state
machine (as is seen in line 61 and below).

7 6 5 4 3 2 1 0
current bit next bit current State

7 6 5 4 3 2 1 0
generated code symbol next State

Table 3.1: Bit Positions in the Index and Values of the m transitions array

1 class Xerxes_Encoder : public Encoder {

2 public:

3 Xerxes_Encoder (bool _frame_end = false);

4 static void init ();

5 void encode(const BinStream & BS, CodeStream & CS);

6 void setState (const byte _newstate);

7 byte getState () const;

8 static const byte xSta = 1;

9 static const byte xA = 2;

10 static const byte xX = 3;

11 static const byte xD = 4;

12 static const byte xC = 5;

13 static const byte xY = 6;

14 static const byte xZ = 7;

15 static const byte xB = 8;

16 static const byte xFCS = 9;

17 static const byte xF_C = 10;

18 static const byte xF_N = 11;

19 static const byte xSto = 12;

15

20 protected :

21 static void addTransition (const byte _c_state , const byte _n_state ,

22 const char* _c_bit , const char* _n_bit ,

23 const byte _symbol);

24 inline byte do_transition (byte& _State , byte _curr , byte _next);

25 static byte m_transitions [256];

26 bool m_frame_end ;

27 int m_line;

28 byte m_start_state ;

29 };

30

31 void Xerxes_Encoder :: addTransition (const byte _c_state , const byte _n_state ,

32 const char* _c_bit , const char* _n_bit ,

33 const byte _symbol)

34 {

35 while(* _c_bit != 0) {

36 byte c = BinStream :: from_char (* _c_bit ++);

37 const char* next = _n_bit;

38 while(* next != 0) {

39 byte n = BinStream :: from_char (* next ++);

40 m_transitions [(_c_state & 0x0f) | ((n & 3)<<4) | ((c & 3)<<6)] =

41 (_n_state & 0x0f) | ((CodeStream :: from_char (_symbol) & 7) << 4);

42 }

43 }

44 }

45

46 inline byte Xerxes_Encoder :: do_transition (byte& _St , byte _curr , byte _next)

47 {

48 byte rv = m_transitions [(_St&0x0f) | ((_next&3)<<4) | ((_curr&3)<<6)];

49 if(rv==0) throw int(1);

50 _St = rv & 0x0f;

51 byte code = (rv >> 4) & 7;

52 if(code == CodeStream ::C || code == CodeStream ::D) m_line = 1-m_line;

53 return code;

54 }

55

56 void Xerxes_Encoder ::init ()

57 {

58 m_start_state = xSta;

59

60 for(int i=0; i<=255; m_transitions [i++]=0);

61 addTransition (xSta , xSta , "X", "X", ’I’);

62 addTransition (xSta , xA, "X", "1", ’I’);

63 addTransition (xSta , xD, "X", "0", ’I’);

64

65 addTransition (xA , xA, "1", "01X", ’D’);

66 addTransition (xA , xX, "0", "01X", ’N’);

67 addTransition (xA , xF_C , "X", "X", ’N’);

68

69 addTransition (xD , xX, "0", "01X", ’C’);

70 addTransition (xD , xA, "1", "01X", ’D’);

71 addTransition (xD , xF_C , "X", "X", ’C’);

72

73 // ... the rest of the init method is not shown in the listing

74 }

Listing 3.9: Xerxes Encoder class

16

3.3.2.2 The XerxesDecoder Class

The XerxesDecoder is very similar to the XerxesEncoder in its implementation. Further
differences can be seen in listing D.1. The only difference are the arguments of the member
functions and the coding of the array index and value.

3.3.2.3 The TimeEncoder Class

An interesting example is the implementation of the TimeEncoder::encode function shown
in listing 3.10. This example shows how comfortable the programming is in C++, especially
following a clean class design. The usage of the begin and end iterator functions is also
pointed out in this example. The clock value represents the simulation time and is preset to
5 BCD, where the transmissions are supposed to start. We need not take care of “B” signals
since they can only occur due to errors4.

1 void TimeEncoder ::encode(const CodeStream & _CS , std::vector <double >& _timevec)

2 {

3 double t_clock = 5.0; // start at 5 BCD

4 for(int CodeStream :: iterator_type i=_CS.begin(); i!=_CS.end(); ++i) {

5 if (_CS.getb(i) == CodeStream ::C) {

6 _timevec .push_back (t_clock);

7 } else if (_CS.getb(i) == CodeStream ::D) {

8 _timevec .push_back (t_clock + 0.5);

9 }

10 t_clock += 1.0;

11 }

12 }

Listing 3.10: encode member function of the TimeEncoder class

3.3.2.4 The TimeDecoder Class

The more sophisticated class TimeDecoder implements the simulation of the receiver logic. It
was possible to structure the class TimeDecoder Default flexible enough so that all receiver
implementations examined in this work could be simulated. The TimeDecoder Default is the
only sub-class of the TimeDecoder that was used, although the simulator framework would
allow the use of multiple TimeDecoder sub-classes.

1 class TimeDecoder_Default : public TimeDecoder {

2 // static decoder with adjustable receive Window

3 // synchronisation : first edge => D (center+offset)

4 //

5 //

6 // |<windowwidth >|<g>|<windowwidth >|<g>|< windowwidth >|

7 // | | | | | |

8 // | |<rswin >| | | |<rswin >| | | |<rswin >| |

9 // ----------|-----------------|-----------------|--------

10 // C D C

11 // | |

12 // |<-------------- BCD -------------->|

13 //

14 public:

15 TimeDecoder_Default (const std:: string& _arguments ="");

16 void set_values (const std::string& _arguments);

17 void decode(const std::vector <double >& _timevec , CodeStream & _CS);

4under the assumption, the XerxesEncoder works correctly and does not produce errors

17

18 private:

19 static const char* m_defaults ;

20 double m_rcv_win_half ;

21 double m_sync_win_half ;

22 double m_offs;

23 double m_granularity ;

24 int m_asym;

25 };

Listing 3.11: Definition of the TimeDecoder Default class

As it can be seen in the comments, the first edge occurs always in the data point. This
can be assumed since in the timed simulation always complete frames are sent, starting with
the Frame Start Sequence (FSS) which consists of a series of “1” bits. Using the Xerxes
encoding state machine from figure 2.2 it can be seen that “1”s after the idle state always
are encoded with an edge in the data point. The receiver parameters are set either in the
constructor or with the set values member function using a string. The string is formatted
as a series of name[=value] pairs separated by colons. This has the same format as on the
command line and in fact it is a copy of the string specified using the -r argument on the
command line. The string is parsed using an utility function that creates a mapping from
key strings to values strings5. The values are returned by the operator [] using a syntax like
“my_double = strtod(config["rcv_win"].c_str(),NULL);”. Listing 3.12 shows the implementation
of the sampling logic in pseudo code, which is shorter and hopefully better understandable
than the C++ code that can be found in the appendix D.2. A description of the intervals used
for sampling is given in figure 5.1.

1 SET codestream = "" # clear the return value

2 SET transmission_line = 1 # the bus is logic 1 when idle

3 SET internal_clock = time_of_first_edge -0.5-offset +0.5* sampling_interval

4 WHILE there are edges remaining BEGIN

5 FOR sampling_point IN "clock", "data" DO

6 SET VARIABLE_NAMED (sampling_point) = 1 # set clock/data to 0

7 IF next_edge within internal_clock +/- 0.25 THEN

8 SET this_edge = get_next_edge ()

9 IF last_edge was in the last sampling interval THEN

10 THROW ERROR "two edges within " + sampling_point + " point"

11 END IF

12 IF this_edge NOT within internal_clock +/- receive_interval THEN

13 THROW ERROR "outside receive interval "

14 END IF

15 SET diff = this_edge -internal_time +sync_window_offset

16 IF diff NOT within +/- sync_interval THEN

17 SET correction_term = floor(diff /sampling_interval)* sampling_interval

18 SET internal_time = internal_time + correction_term

19 END IF

20 IF correction of asynchronous delays enabled THEN

21 IF line ==1 THEN

22 SET internal_clock = internal_clock - async_delay_correction_factor

23 ELSE

24 SET internal_clock = internal_clock + async_delay_correction_factor

25 END IF

26 END IF

27 SET line = 1 - line # toggle the line with each edge

28 END IF

29 SET internal_time = internal_time +0.5 # advance to next sampl. point

30 SET VARIABLE_NAMED (sampling_point) = 1 # set either clock or data to 1

31 END FOR

5the mapping is implemented using the STL container map<string, string>

18

32 IF clock <>0 and data <>0 THEN THROW ERROR

33 ELSIF clock <>0 THEN SET codestream = codestream + "C"

34 ELSIF clock <>0 THEN SET codestream = codestream + "D"

35 ELSE SET codestream = codestream + "N"

36 END IF

37 END WHILE

Listing 3.12: Sampler logic in Pseudo Code

3.3.3 The Filter Framework

Most of the implementation effort has been put into the filter framework. The filter frame-
work consists of two classes, the Filter class with its sub-classes and the FilterFactory

class. All filters provide an info() member function which returns a FilterInfo struct,
containing the filter name, the help text, the default values and a function pointer. The
function referenced by this pointer creates the specified filter and returns a pointer to a
Filter object. In the constructor of the FilterFactory class all filters are registered and
their FilterInfo structure is stored in an STL vector. To do the initialisation the info()

method has to be declared static. When a filter operation is called from the main function
this is done, using the FilterFactory class, which provides, besides the constructor, four
public functions to influence the filter network. When using the --helpfilter command
the method Filter::help() is executed. This function iterates over a vector containing the
FilterInfo of all filters that are registered and print the help message of each filter plus an
short help about options common to all filters. To append new filters at the end of the filter
chain - which is the same as injecting faults - the -a option is used. The argument used with
this option is directly passed to the FilterFactory::append method which is displayed in
listing 3.13.

1 void FilterFactory ::append(const std:: string& _filter_desc)

2 {

3 std::vector <std::string > temp;

4 stringtok (temp , _filter_desc , ":=", "", 2);

5 if(temp.size ()>=1)

6 for(std::vector <FilterInfo >:: const_iterator i=m_finfo.begin();

7 i!=m_finfo.end(); ++i)

8 if(i->m_name == temp [0])

9 m_filters .push_back (i->m_create (_filter_desc));

10 }

Listing 3.13: The FilterFactory::append method

The append method takes the argument and extracts the first token that is separated by
a column. At next, it iterates over all FilterInfo structures stored in the vector m finfo

and compares the filter name to the first token of the argument. If a match is found, a
new Filter is created using the m create function which is provided by the FilterInfo

structure. The new Filter is appended to the m filters vector, which hold all pointers
to the created filters. This approach allows to generate chains consisting of any number
of serialised Filters. The -d command, which clears the entire filter chain is easy imple-
mented. A call to FilterFactory::clear iterates over all pointers stored in m filters

and calls the delete function to destroy the Filter instances before m filters.clear()

is called to empty the vector storing the pointers to the Filters. Listing 3.14 shows the
FilterFactory::filter method that is used to apply all filters of a chain to a series of
edges stored in a vector<double>. The variable timevec holds the timing information as
described in chapter 3.3.1.3 and will be modified by each Filter. The full listing of the Filter
framework can be found in the appendix D.3.

19

1 void FilterFactory ::filter(std::vector <double >& _timevec)

2 {

3 for(std::vector <Filter*>:: iterator i=m_filters .begin ();

4 i!= m_filters .end(); ++i)

5 (*i)->filter(_timevec);

6 }

Listing 3.14: The FilterFactory::filter method

3.3.4 The assembled Program

This chapter describes the code that combines the previous described classes and how they
interact.

3.3.4.1 The main Function

The challenge in C++ class design is the creation of classes in a way which allows connecting
them with a minimum amount of “glue” between them. This is done with the main function
and a few utility functions. The main function uses the GNU getopt library described in the
representative manual page and is rather small. Listing 3.15 shows the main function.

1 int main (int argc , char* argv [])

2 {

3 g_encoder = new Xerxes_Encoder ;

4 g_decoder = new Xerxes_Decoder ;

5 g_time_enc = new TimeEncoder ;

6 g_time_dec = new TimeDecoder_Default ;

7

8 int errors=-1, count=10000, framecount =10000,

9 framelen =32, use_crc =0, modify=modify_half ;

10 double ber = 0.001;

11 CodeStream CS;

12 BinStream BS;

13 std:: string s, t, start_state ("A");

14

15 while (1) {

16 int c;

17 int option_index = 0;

18 option long_options [] = {

19 {"help", 0, 0, ’h’ },

20 {"coverage ", 0, 0, ’c’ },

21 {"frame", 0, 0, ’f’ },

22 {"ber_frame ", 0, 0, ’b’ },

23 {"errors", 1, 0, ’e’ },

24 {"framecount ", 1, 0, ’p’ },

25 {"count", 1, 0, ’n’ },

26 {"seed", 1, 0, ’s’ },

27 {"framelen ", 1, 0, ’l’ },

28 {"timed", 0, 0, ’t’ },

29 {"start", 1, 0, 0 },

30 {"half", 0, 0, 0 },

31 {"full", 0, 0, 0 },

32 {"ber", 1, 0, 0 },

33 {"helpfilter ", 0, 0, 0 },

34 {"add -filter", 1, 0, ’a’ },

35 {"del -filter", 0, 0, ’d’ },

36 {"timedec", 1, 0, ’r’ },

37 {"test -encoder", 1, 0, 0 },

20

38 {"test -decoder", 1, 0, 0 },

39 {"test -timeenc", 1, 0, 0 },

40 {"test -timedec", 1, 0, 0 },

41 {"test -filter", 1, 0, 0 },

42 {"helptd", 0, 0, 0 },

43 {0, 0, 0, 0}

44 };

45

46 c = getopt_long (argc , argv , "hcfe:p:n:s:l:ta:dr:b",

47 long_options , &option_index);

48 if (c == -1) break;

49

50 switch (c) {

51 case 0:

52 if (long_options [option_index]. name == "half")

53 modify = modify_half ;

54 else if (long_options [option_index].name == "full")

55 modify = modify_full ;

56 else if (long_options [option_index].name == "ber")

57 ber = strtod(optarg , NULL);

58 else if (long_options [option_index].name == "start")

59 start_state = optarg;

60 else if (long_options [option_index].name == "helpfilter ") {

61 std::cout << Filters.help ();

62 exit (0);

63 } else if (long_options [option_index].name == "helptd") {

64 std::cout << td_help;

65 exit (0);

66 } else if (long_options [option_index].name == "test -encoder") {

67 BS.clear();

68 BS.append(optarg);

69 CS.clear();

70 g_encoder ->encode(BS, CS);

71 s=BS;

72 t=CS;

73 std::cout << "BS: " << s << std::endl

74 << "CS: " << t << std::endl << std::endl;

75 } else if (long_options [option_index].name == "test -decoder") {

76 CS.clear();

77 CS.append(optarg);

78 BS.clear();

79 try { g_decoder ->decode(CS, BS); }

80 catch (int& e) { std::cout << "ERROR:" << std::endl; }

81 s=BS;

82 t=CS;

83 std::cout << "CS: " << t << std::endl

84 << "BS: " << s << std::endl << std::endl;

85 } else if (long_options [option_index].name == "test -timeenc") {

86 std::vector <double > dv;

87 CS.clear();

88 CS.append(optarg);

89 g_time_enc ->encode(CS, dv);

90 t=CS;

91 std::cout << "CS: " << t << std::endl

92 << "tvect: " << dv << std::endl << std::endl;

93 } else if (long_options [option_index].name == "test -timedec") {

94 std::vector <double > dv;

95 read_double_vec (dv , optarg);

96 CS.clear();

97 try { g_time_dec ->decode(dv, CS); }

98 catch (int& e) { std::cout << "ERROR:" << std::endl; }

99 t=CS;

21

100 std::cout << "tvect: " << dv << std::endl

101 << "CS: " << t << std::endl << std::endl;

102 } else if (long_options [option_index].name == "test -filter") {

103 std::vector <double > dv_in , dv_out;

104 read_double_vec (dv_in , optarg);

105 dv_out = dv_in;

106 Filters.filter(dv_out);

107 std::cout << "in: " << dv_in << std:: endl

108 << "out: " << dv_out << std:: endl << std::endl;

109 } else assert (0);

110 break;

111 case ’h’:

112 usage_exit ();

113 case ’e’:

114 errors = atoi(optarg);

115 break;

116 case ’l’:

117 framelen = 8 * (atoi(optarg)/8);

118 break;

119 case ’p’:

120 framecount = atoi(optarg);

121 break;

122 case ’n’:

123 count = atoi(optarg);

124 break;

125 case ’s’:

126 srandom(atoi(optarg));

127 break;

128 case ’d’:

129 Filters.clear();

130 break;

131 case ’a’:

132 Filters.append(optarg);

133 break;

134 case ’r’:

135 g_time_dec ->set_values (optarg);

136 break;

137 case ’b’:

138 ber_frame (framelen , count , framecount , ber);

139 break;

140 case ’c’:

141 coverage (start_state , modify);

142 break;

143 case ’f’:

144 crc_frame (framelen , count , framecount , errors);

145 break;

146 case ’t’:

147 time_frame (framelen , count , framecount);

148 break;

149 default:

150 usage_exit (-1);

151 }

152 }

153 return 0;

154 }

Listing 3.15: The main function

All operations are performed by the main function. Exceptions are the utility functions
ber frame, coverage, crc frame and time frame and which are described later. Especially
the --test-x functions could be implemented in a very compact way. Implementing sup-

22

porting functions like “ostream& operator << (ostream& _out, <class T>)” for the BinStream,
CodeStream, and vector<double> classes helps to keep the code short and clean.

3.3.4.2 The coverage Function

This chapter describes how the coverage function works. At the beginning the vectors code
and transmission are filled with all possible twelve bit combinations (chapter 4.2 explains
what “possible” combinations are and why they are twelve bits long) respective their Xerxes
encoded counterpart, with the encoders internal state set to start state at the begin of
encoding. Bit patterns that can not be encoded from the start state can be skipped. In
the following loop all bit patterns and the transmitted signals are compared according to
the selected fault model. If the number of different data bits is greater than the number of
different half or full bits in the transmitted signal an error message is printed. A case where
n transmission errors can cause n + m errors in the received data has been found.

1 void coverage(std::string start_state , int modify)

2 {

3 byte _start_state = string2state (start_state);

4 if(_start_state >127) return;

5 std::vector <BinStream > code , transmission ;

6

7 for(unsigned long str=0; str <4096; str++) {

8 boolean skip = false;

9 g_encoder ->init ();

10 g_encoder ->set_state (_start_state);

11 BinStream BS(str , 12);

12 CodeStream CS;

13 try { g_encoder ->encode(BS ,CS); }

14 catch (int& e) { skip=true; }

15 if (! skip) {

16 code.push_back (BS);

17 BinStream BS_trans(CS);

18 BS_trans .append("00");

19 transmission .push_back (BS_trans);

20 }

21 }

22

23 for(int i=0; i<code.size ()-2; i++) {

24 for(int j=i+1; j<code.size ()-1; j++) {

25 int transmission_errors = 0;

26 int data_errors = 0;

27 for(int k=0,l=0; k<code.size (); k++,l+=2) {

28 if(code[i][k] != code[j][k])

29 data_errors ++;

30 if(modify== modify_full) {

31 if(transmission [i][l] != transmission [j][l] ||

32 transmission [i][l+1] != transmission [j][l+1])

33 transmission_errors ++;

34 } else {

35 if(transmission [i][l] != transmission [j][l])

36 transmission_errors ++;

37 if(transmission [i][l+1] != transmission [j][l+1])

38 transmission_errors ++;

39 }

40 if(data_errors >transmission_errors &&

41 transmission [i][l] == transmission [j][l] &&

42 transmission [i][l+1] == transmission [j][l+1]) {

43 CodeStream CS1(transmission [i]);

44 CodeStream CS2(transmission [j]);

23

45 std::cout << "ERROR: " << transmission_errors

46 << " < " << data_errors << std::endl

47 << "b1:" << code[i] << " => "

48 << "c1:" << CS1 << std::endl

49 << "b2:" << code[j] << " => "

50 << "c2:" << CS2 << std::endl;

51 return;

52 }

53 }

54 }

55 }

56 }

Listing 3.16: The coverage function

3.3.4.3 The ber frame Function

The ber frame function is used to simulate frames with a given bit error rate. The half / full
bit error rate corresponds to the probability that a single half / full bit is flipped. This
simulation is used in chapter 4.3.3.2. The results of this simulation are very interesting and
lead to a connection between the two fault models introduced in chapter 4. The listing
below shows the ber frame2 function that is repetitive called by the ber frame function
until the necessary number of frames have been simulated. The function is called with a
BinStream representing the data bits. The data bits are encoded using the g encoder,
which is a Xerxes encoder by default. The resulting CodeStream is converted to a half bit
representation and stored in the variable BS halfbit string copy. In each pass of the loop,
repeated until framecount frames have been simulated, a copy of the half bit representation
of the transmitted data is made. In this copy each full bit or half bit is toggled accordingly
to the error model and the given bit error rate. The result is converted back to a CodeStream

and fed into a Xerxes decoder. If the decoder detects the error it is counted using the xer det

variable, else the number of erroneous bits are counted and the according counter value is
increased.

1 unsigned long ber_frame2 (BinStream & _frame , const int _framecount ,

2 double _ber , unsigned long& _xer_det ,

3 unsigned long& _crc_det , unsigned long& _not_det ,

4 unsigned long errors [17])

5 {

6 BinStream & BS_corr = _frame;

7 CodeStream CS_corr;

8 BinStream BS_err;

9

10 long randval = static_cast <long >(static_cast <double >(RAND_MAX -1) * _ber);

11

12 BS_corr.append_crc (8);

13 g_encoder ->encode(BS_corr , CS_corr);

14 BinStream BS_halfbit_string_copy(CS_corr);

15

16 for(int i=0; i<_framecount ; ++i) {

17 BinStream BS_halfbit_string (BS_halfbit_string_copy);

18 if(modify == modify_full) // full bit fault model

19 for(int j=0; j<BS_halfbit_string .size ()/2-1; ++j)

20 if(random() < randval)

21 toggle_fullbit (BS_halfbit_string , j);

22 else // half bit fault model

23 for(int j=0; j<BS_halfbit_string .size ()-1; ++j)

24 if(random() < randval)

24

25 toggle_halfbit (BS_halfbit_string , j);

26 CodeStream CS_err(BS_halfbit_string);

27 BS_err.clear();

28 bool caught = false;

29 try {

30 g_decoder ->decode(CS_err ,BS_err);

31 } catch (int& e) {

32 // error detected by Xerxes decoder

33 caught = true;

34 ++ _xer_det ;

35 }

36 if(! caught) {

37 int diff = diffrence (BS_corr , BS_err);

38 if(diff > 15) diff =16;

39 errors[diff]++;

40 if(diff > 6) {

41 if(!BS_err.check_crc (8)) ++ _crc_det ;

42 else ++ _not_det;

43 } else if (diff > 0) _crc_det ++;

44 }

45 }

46 return _framecount ;

47 }

Listing 3.17: The ber frame2 function

3.3.4.4 The crc frame Function

Since the crc frame function is nearly a verbatim copy of the ber frame function it is not
shown here. The only difference is the injection of faults shown in listing 3.18. While the
ber frame function uses a given half or full bit error rate the crc frame function is used
to inject a specified number of faults. Table 4.2 and figure 4.8 have been calculated using
this function. The functions toggle full bit and toggle half bit are defined outside the
crc frame function.

1 for(int i=0; i<num_errors ; i++) {

2 if(modify == modify_full) {

3 int pos = random() % BS_halfbit_string .size ();

4 toggle_full_bit (BS_halfbit_string , pos >>1);

5 } else {

6 int pos = random() % BS_halfbit_string .size ();

7 toggle_half_bit (BS_halfbit_string , pos);

8 }

9 }

Listing 3.18: Error Injection in the crc frame function

3.3.4.5 The time frame Function

Since the time frame function is very similar to the previously presented functions it is only
shown in the appendix D.4.

3.4 Evaluation of the Simulation Results

As it has been mentioned before, the simulation results are stored and evaluated using a SQL

database. This chapter contains a detailed description how the values from the simulation
are stored and how they can be evaluated using SQL queries.

25

The tables used to store the necessary information are shown in listing 3.19 and list-
ing 3.20. The individual attributes are defined as in table 3.2. Since most attributes are
common to both tables, the description for both tables has been merged into a single table.
A detailed description of the used SQL commands can be found in the PostgreSQL User’s
Guide [PSQL].

Attribute Description

len frame length (16, 64 or 128 bit)
receiver receiver type (s01, s02, d01 . . . d09)
rcvoffs offset of the first edge within the receivers current bit cell, i.e. -0.1 causes

the first edge is receuved 0.1 BCD before the first data point
scale clock drift (1.0 = no clock drift)
jitter jitter setting

t asym asynchronous frame (value for falling edge)
e asym asynchronous edge (only a single edge is asynchronous)
offs val offset of part of frames (see chapter 5.5.2.1)

high signal is forced to high for 0.8 BCD

low signal is forced to low for 0.8 BCD

delay the 16th and 17th edge are delayed (chapter 5.5.2.1)
num frames number of frames simulated with this settings

num dec number of errors detected in the sampling logic
num xrx number of errors detected in the xerxes decoder
num crc number of errors securely detectable by crc
num gr6 number of frames with more than 6 errors
num corr number of correct received frames

b0n number of frames with n bit errors

Table 3.2: Attribute definitions for the SQL Tables

1 CREATE TABLE res (

2 len int , receiver char (3),

3 rcvoffs float8 , scale float8 ,

4 jitter float8 , t_asym float8 ,

5 offs_val float8 , high boolean ,

6 low boolean , delay boolean ,

7 num_frames bigint , num_dec bigint ,

8 num_xrx bigint , num_crc bigint ,

9 num_gr6 bigint , num_corr bigint)

Listing 3.19: SQL Table Definition for Resynchronisation Simulations I

The log files generated during the simulation (see listing 3.21) are evaluated by a Perl
script that populates the database with the values achieved from the simulation. This is done
via the DBI interface which is described in the DBI manual Page [DBI]. All files that shall be
filled into one table have to be imported at once, since the table is dropped and new created
each time to ensure that the table is empty and no old values are polluting the results. The
log files have a total size of 90 MB for the first part of the simulations and 60 MB for the
second part and the parsing takes several minutes.

The queries needed to evaluate the simulation runs are shown in listing 3.22 and list-
ing 3.24. The evaluation of the simulations of the first part using listing 3.22 lasts about one
minute, evaluations of the second part need about eight seconds. Using the select clause

26

1 CREATE TABLE res_asym (

2 len int , receiver char (3),

3 rcvoffs float8 , scale float8 ,

4 jitter float8 , t_asym float8 ,

5 e_asym float8 , num_frames bigint ,

6 num_dec bigint , num_xrx bigint ,

7 num_crc bigint , num_gr6 bigint ,

8 num_corr bigint , b00 bigint ,

9 b01 bigint , b02 bigint ,

10 b03 bigint , b04 bigint ,

11 b05 bigint)

Listing 3.20: SQL Table Definition for Resynchronisation Simulations II

1 -r rcv_win =0.5: sync_win =0.5: offset =0.0 -a scale=0.98 -a jitter =0.01 -a asym:¬
r=0:f=0 -a offset =0.0 --framelen 64 -t

2 len Frames Receiver Xerxes CRC >6 errors

3 64 100000 0 99677 0 323

4 -r rcv_win =0.25: sync_win =0.5:offset =0.0 -a scale=0.98 -a jitter =0.01 -a asym¬
:r=0:f=0 -a offset =0.0 --framelen 64 -t

5 len Frames Receiver Xerxes CRC >6 errors

6 64 100000 100000 0 0 0

7 -r rcv_win =0.5: sync_win =0.25: gran =0.25: offset =0.0 -a scale=0.98 -a jitter¬
=0.01 -a asym:r=0:f=0 -a offset =0.0 --fram

8 len Frames Receiver Xerxes CRC >6 errors

9 64 100000 0 0 0 0

10 -r rcv_win =0.375: sync_win =0.125: gran =0.125: offset =0.0 -a scale=0.98 -a ¬
jitter =0.01 -a asym:r=0:f=0 -a offset =0.0 --

11 len Frames Receiver Xerxes CRC >6 errors

12 64 100000 0 0 0 0

Listing 3.21: four example Log Entries for Part II of the Resync. Simulation

1 select

2 receiver as "receiver ",

3 sum(num_frames)/sum(num_frames) as "Frames",

4 sum(num_corr)/sum(num_frames) as "corr",

5 sum(num_dec)/sum(num_frames) as "sampler",

6 sum(num_xrx)/sum(num_frames) as "decoder",

7 sum(num_crc)/sum(num_frames) as "CRC",

8 sum(num_gr6)/sum(num_frames) as ">6 err.",

9 sum(num_frames) as "#abs"

10 from res

11 where offs_val = 0

12 and t_asym <= 0.1

13 and scale = 1

14 and high = false

15 and delay = false

16 group by receiver;

Listing 3.22: SQLQuery for Resynchronisation Simulations I

the attributes, functions or aggregate functions6 are selected. The first item that is to be
displayed using the query from listing 3.23 is the receiver type and the sum of the individual

6SQL aggregate functions are functions like Sum, Average, Count, . . . etc. which can be used to calculate
totals on sets of rows

27

frames divided by the sum of all simulated frames (giving the percentage). The last item
is the total number of simulated frames for each row. The from clause specifies that the
values shall be taken from the res table. The where clause specifies the conditions that have
to be met by the selected columns: the offset of the first received edge must be zero, the
asymmetric delay has to be less or equal than 0.1, the quartz drift is zero (scale=1) the signal
is not forced and there are no delayed edges. The group by clause takes care that not all
matching rows are displayed, which would be thousands of lines, but only a single instance
for each kind of sampling logic (receiver) which combines all other values by means of the
aggregate functions. The second Query found in listing 3.24 works similar.

Listing 3.23 shows the results of the first query. A real benefit when using SQL is the
ability to specify an arbitrary precision. For this application it was not necessary but if
simulations are performed with a more moderate fault model the values will be smaller and
could be dropped when doing floating point arithmetics.

1 receiver | Frames | corr | sampler | decoder | CRC | >6 err. | #abs

2 ----------+--------------+--------------+--------------+--------------+--------------+--------------+-----------

3 d01 | 1.0000000000 | 0.0244435844 | 0.1116044198 | 0.8534674774 | 0.0066440041 | 0.0038405144 | 243000000

4 d02 | 1.0000000000 | 0.0415189218 | 0.1060493169 | 0.8367012840 | 0.0070425473 | 0.0086879300 | 243000000

5 d03 | 1.0000000000 | 0.0389081029 | 0.1506637325 | 0.7942535597 | 0.0100161358 | 0.0061584691 | 243000000

6 d04 | 1.0000000000 | 0.0175096584 | 0.8274118107 | 0.1503758560 | 0.0018186667 | 0.0028840082 | 243000000

7 d05 | 1.0000000000 | 0.0365073210 | 0.1229381111 | 0.8223769630 | 0.0086237037 | 0.0095539012 | 243000000

8 d06 | 1.0000000000 | 0.0080581975 | 0.9323226996 | 0.0579250123 | 0.0006561811 | 0.0010379095 | 243000000

9 d07 | 1.0000000000 | 0.0380099877 | 0.1460183704 | 0.7981225514 | 0.0087349136 | 0.0091141770 | 243000000

10 d08 | 1.0000000000 | 0.0596225432 | 0.0814803868 | 0.8360584074 | 0.0101110247 | 0.0127276379 | 243000000

11 d09 | 1.0000000000 | 0.0256648230 | 0.7736938354 | 0.1937827654 | 0.0025299424 | 0.0043286337 | 243000000

12 s01 | 1.0000000000 | 0.0234158601 | 0.1743761893 | 0.7919622099 | 0.0054637860 | 0.0047819547 | 243000000

13 s02 | 1.0000000000 | 0.0040222757 | 0.9670932140 | 0.0279620905 | 0.0003680905 | 0.0005543292 | 243000000

14 (11 rows)

Listing 3.23: Example Query Results for Simulations I

1 select

2 receiver as "receiver",

3 t_asym as "asym",

4 round(sum(num_corr)/sum(num_frames),10) as "correct",

5 round(sum(num_dec)/sum(num_frames),10) as "sampler",

6 round(sum(num_xrx)/sum(num_frames),10) as "xerxes",

7 round(sum(b01)/sum(num_frames),10) as "b01",

8 round(sum(b02)/sum(num_frames),10) as "b02",

9 round(sum(b03)/sum(num_frames),10) as "b03",

10 round(sum(b04)/sum(num_frames),10) as "b04",

11 round(sum(b05)/sum(num_frames),10) as "b05",

12 round(sum(num_gr6)/sum(num_frames),10) as ">6 err.",

13 sum(num_frames) as "#abs"

14 from res_asym

15 where e_asym = 0

16 group by receiver , t_asym

17 order by receiver , t_asym;

Listing 3.24: SQL Query for Resynchronisation Simulations II

28

Chapter 4

Code Coverage

This chapter describes the influence of errors on Xerxes-encoded transmissions without the
influence of sampling. The analysis was performed using two different fault models with the
previously described simulator. The results are presented in chapter 4.3.1 and chapter 4.3.2.

Error propagation is the effect that n transmission errors can cause n + m errors in
the received bit stream. Bit stuffing and other encoding schemes are vulnerable to error
propagation. This is a serious problem when using CRC checksums: Using an 16 bit CRC
we have a Hamming distance of 6 which is equal to n + m. If m > 0 then n will drop. The
Number of errors that can be securely detected is equal to max(n) for which in all cases
n + m(n) < 6. For CAN this can be determined by:

n = 1 → mmax = 0 → n + m < 6
n = 2 → mmax = framelength − 12 → n + m 6< 6

This shows that the maximum number of securely recognisable transmission errors in
CAN equals one.

The examination provides a 100% coverage of all possible combinations of transmitted
code and all permutations of up to six errors. The results reveal whether error propagation
can happen in two different fault models. The simulator builds a sequence of codes from
given code streams and simulates 1 to 6 failures on each possible permutation of positions.
The resulting code stream is decoded and compared to the original input stream. Frames
with more bit errors than injected transmission errors are reported.

There are two possible solutions to find out if a special code propagates transmission
errors: Find a transmission error that is propagated or, prove that there is no error that
will be propagated. This can be done either by logic deduction or if that is not possible
by a simulation that tests out a 100% coverage of the code. For the half bit fault model
(chapter 4.1.1) a combination of logic deduction and simulation is used. For the full bit fault
model (chapter 4.1.2), propagated errors can easily be found. Note that the full bit fault
model was included only for completeness and might not fit well for edge triggered protocols.

4.1 Fault Model

Two different fault models are used to perform this simulation: The half bit fault model,
which is similar to the fault model used in [Tran 99], and the full bit fault model, which
is more suited to edge triggered protocols like Xerxes. Because of the physical layer, which
determines the selection of the fault model, is still undefined, simulations with both fault
models are performed.

The fault model is very simple and consists only of a flipped half bit or a flipped bit.
From an edge triggered point of view, this half bit or full bit flipping causes three possible
modifications on the received code:

29

� edges that are moved to the prior/next possible sampling point (clock point � data
point or data point � clock point)� new (pairs) of edges (which requires at least two half bit faults to produce a valid signal
as defined in chapter 2.1.5 for the half bit fault model)� lost edges (this requires even three half bit errors)

To inject faults, an arbitrary position of the bit stream is chosen and the corresponding
bit (half bit fault model) or two bits (full bit fault model) are flipped. Since edges can appear
in the middle of bit cells, each bit cell has to be represented by two bits in the bit stream
and therefore a half bit error affects a single bit position while a full bit error changes two
adjacent bit positions.

C

B

A

0

1 1 1 010 10 0 0 0

0 0 1 1 0

10

1 1 1

a1 a3 a2 a4 a6 a7a5a0

b0 b1 b2 b3 b4 b6 b7b5

c0 c1 c2 c4 c5 c6 c7c3

0 0 0

111 1

1 2 3 4 5 6 7 8 9 11 10

0 0 00

Figure 4.1: Fault Injection Example

Figure 4.1 gives an example of all possible ways of error injection. The first signal (A) is
the original signal. Signals B and C are the original signal with injected half bit respectively
full bit errors. Looking at signal B the second and third bit cell show two lost edges (a1
and a2) and the movement of a edge (a2�b1) to the prior sampling point (both must occur
together to produce a valid signal). Next comes the introduction of a new pair of edges (b5,
b6) and the required movement of a7 to the next sampling point (a7�b7). The third Signal
(C) shows the loss of two edges (a2 and a3) and the movement of the following edge to
the prior sampling point (a4�c2). The next injected faults moves a6 to the prior sampling
point (a6�c4) and introduce two new edges (c5 and c6). The flipped half or full bits are
emphasised.

4.1.1 The Half Bit Fault Model

The half bit fault model is the preferred model for this simulation. The smallest logical unit
that can be distinguished by the decoder is a half bit, and therefore this unit should be used.
When creating new pairs of edges by flipping a half bit they are located within one bit cell,
causing a decoding error. To inject two valid edges, at least three failures are necessary as
shown in figure 4.2. From the original signal (A), insert two edges (B), move one of them to
the right (C) and move the following edge to the right (D) to avoid Xerxes code violations.

D

C

B

A

1 1 10 00

1 1 10 00

1 1 1 1 10 00

1 1 1 1 1 10 00

000

0 0

Err

Err

Figure 4.2: Half Bit Fault Model

30

4.1.2 The Full Bit Fault Model

This fault model , which was only introduced for easier comparisons to fault models used in
level triggered protocols and in [Tran 99], is only included for completeness since it is not
well suited for edge triggered protocols. From the original signal (A) only one error injection
is necessary to move to the second signal (B), but two edges have been changed to avoid a
code violation: The edge at the end of the fourth bit cell has disappeared and a new edge
appeared at the beginning of the fourth bit cell. It could also be said that the edge shifted
two positions to the left.

C

B

A

1 1 10 0

1 1 10 0

1 1 1 1 1 10 01

0 0

Err Err Err0

0 0

Figure 4.3: Full Bit Fault Model

As figure 4.3 shows, it is easy to find a way to change two bit cells of the received signal
and get four bit errors in the decoded stream. It is not needed to run simulations for this
fault model but it can be done to verify the simulator to find other combinations of possible
bit errors.

4.2 Simulation Runs

The simulation was run with both fault models. Figure 4.4 shows the block diagram of the
simulator. A bit pattern generator generates sequences to fully cover all possible paths of the
Xerxes decoder.

Figure 4.4: Code Coverage Mode

The goal of this simulation is to find sequences with up to six injected faults that lead to
error propagation. First of all it has to be figured out how long sequences with six interde-
pendent faults can be. This can easily be derived from the basic decoding rule introduced
in chapter 2.1.6. The longest sequence defined in the basic rules is a sequence consisting
of two bit cells with no edge between them (second rule). Therefore we can assume that
a correctly received sequence of at least two bit cells will always be correctly decoded and
that the largest possible distance between two interdependent faults may be only one bit cell.

31

Under this assumption the maximum code length to hold six interdependent faults is twelve.
The Xerxes decoder state machine must, by definition, at least satisfy the requirements of
the basic decoding rules, and therefore we can apply these findings from the basic decoding
rules on the decoder state machine.

All possible transitions of the Xerxes decoder state machine are shown in figure 2.3. If
an error is injected, the decoder state machine must still be traversed using valid transitions.
A series of injected errors transforms a valid signal into another valid signal. There must be
two valid paths through the Xerxes decoder state machine: the first path is the path that
would normally be taken when no faults are injected while the second path, derived from the
first one by toggling an arbitrary number of (half-) bits, must also be valid. The injected
errors can be seen as a invertible function that maps two valid paths to each other. This is
illustrated in figure 4.5. By toggling the first half bit of the fourth bit cell the path through
the Xerxes decoder changes from “XYZYZBX” to “XYZWCXD”. To find out if error propagation
can occur, all branches have to be examined, whether the number of errors in the decoded
stream is greater than the number of injected faults.

C X DW

B

A

1 1 1 1 00

X Y

1 1 1 1 1 00

X Y Z Y Z XB

Z

0

Figure 4.5: Example of different Paths through the Decoder State Machine

The procedure that achieves this is simple. First of all each possible sequences consisting
of twelve bits (this makes a number of 212 = 4096) has to be found. This has to be done for
each of the decoders seven states. The result are 4096 sets of twelve data bits and 24 bits
representing the signal level of each half bit transmitted over the network for each of these
seven states. Now the individual transmitted data can be compared to each other. Comparing
each set to all others needs n(n + 1)/2 operations, these are 8.390.656 comparisons for each
state and 58.734.592 for all seven states. The comparison is performed by counting the half-
bits (or full-bits) by which two transmissions differ and comparing the result to the number
of differences in the transmitted data. If the number of toggled half- or full-bits is less than
the number of different data bits, a case where n transmission errors causes n + 1 errors in
the transmitted stream has been found. In some cases it can happen, that the following bit
cell influences the current bit cell (chapter 2.1.4). In such cases the number of injected faults
may not be greater than the number of defective bits at the first correctly transmitted bit
cell. The procedure for the example in figure 4.5 is shown in table 4.1. The rows “difference
trans.” and “difference data” show the running sum of differences of the signal and the
resulting data.

4.3 Simulation Results

Simulations were performed for both fault models to find out whether the Xerxes encoding
scheme is vulnerable to error propagation.

4.3.1 The Half Bit Fault Model

After a few hours the simulator finishes. No error propagation could be detected for up to
six injected half bit failures.

32

BCD 1 2 3 4 5 6 7

half bits A 11 00 00 11 11 00 11
half bits B 11 00 00 01 11 00 11
difference trans. 0 0 0 1 1 1 1

data bits A 1 1 1 1 1 0 0
data bits B 1 1 1 1 0 0 0
difference data 0 0 0 0 1 1 1

d trans < d data f f f f f f f

Table 4.1: Comparing Transmission Faults and erroneous Data Bits from Figure 4.5

4.3.2 The Full Bit Fault Model

Two injected full bit errors may cause up to four decoded bits to flip. The simulation stops
after a short run of about one minute with the error message shown in listing 4.1. Listing 4.1
shows an example of a possible two bit failure that results in a four bit fault in the decoded
stream. The transmitted bit cells have been encoded with the symbols N, C and D representing
no edge, an edge at the clock point and an edge at the data point.

1 ERROR: 2<3

2 b1 :111110101000 => c1:DDDDDNDNDNCC

3 b2 :111110100110 => c2:DDDDDNDNCCNC

Listing 4.1: Coverage Test Results for Full Bit Fault Model

The differences of this behaviour in contrast to the CAN multi bit error vulnerability
is that this fault does not produce decoding errors of arbitrary length. The transmitted
signal must be flipped in two adjacent bit cells while the number of bit cells between the two
erroneous bit cells in the CAN protocol is only limited by the frame length. This condition
could easily be caused by a nearby wire with a short current pulse of 200ns going through it
and inducing a positive voltage for 100 ns and a negative voltage for another 100ns. A timed
simulation has also been made with similar assumptions in chapter 5.7.5.

4.3.3 Remarks

This chapter contains some observations that were made during the simulations plus one
additional simulation that was used to compare the results of both fault models.

4.3.3.1 Fault Model

While the different fault models lead to different results in chapter 4.3.1 and chapter 4.3.1,
the next section will show a way to compare both fault models. The comparison of both fault
models leads to the conclusion that both fault models result in the same error rates for the
assumption that the probability for half bit errors is twice as high as the probability for full
bit errors.

4.3.3.2 Frame Error Comparison

The previous chapters examined if error propagation can occur for equal or less than six
injected errors. The following chapter will additionally include cases where more than six
faults are injected in the examination. The difference in the fault injection is, that faults are
not injected by a deterministic method but rather by a given probability. The simulation

33

runs may give different results, depending on the used random seeds. Using different random
seeds results differing by less than ±10%1 could be seen. All results used in this chapter have
been done with a random seed of zero.

An other difference between this approach and the exhaustive procedure is that the ex-
haustive method uses only valid codes and compares them in the data and signal domain, so
it cannot be measured how many errors would be detected by the decoder. The stochastic
procedure uses also non-valid signals, therefore the error detection abilities of the Xerxes
decoder can be examined only with this method.

It can be shown that the half bit fault model and the full bit fault model give similar
simulation results when the errors are generated by stochastic methods: For the simulations
run in this chapter a specified half bit error rate (hber) or bit error rate (ber) is assumed.
This is the probability of one half bit respective one bit to flip. Simulations with bit error
rates ranging from 10−8 to 5 ∗ 10−1 were performed. Each simulation was run for 107 frames
with a length of 128 bits.

The result of the half bit error simulation is shown in figure 4.6. The “decoder” entry
denotes errors detected in the Xerxes decoder. “<6 errors” shows errors affecting less than
six bits and “>=6 errors” designates frames with six or more errors. Since all simulations
were run with 107 frames the according grid line marks the total number of frames.

Figure 4.6: Failure Rates with given hber in the Half Bit Fault Model

The result for the same simulations using bit errors instead of half bit errors are shown in
figure 4.7. Comparing figure 4.6 and figure 4.7 (the exact values can be found in appendix B)
it can seen that up to a ber of 2 ∗ 10−2 the error rates for full bit errors are about half the
size as the error rates for half bit errors. This is caused by the fact that there are only 128
bit positions but 256 half bit positions in which errors can occur. Whether error propagation
occurs or not, the results of these simulations is the same for both fault models: The errors
found in the decoder rise linear with increasing error probabilities until each frame is fully

1usually the differences were below ±4% but with a random seed of 8 and a half bit error rate of 4.5 ∗ 10−2

ten frames with less than six errors were observed instead of nine

34

corrupted at a hber of 2∗10−2 or a ber of 5∗10−2. Errors of up to five bits rise linear until a
hber of 5 ∗ 10−3 or a ber of 10−2 before dropping to zero within the duplication of the error
rate. Errors resulting in six or more defective bits start at a hber or ber of 5 ∗ 10−3, reaching
the maximum at a hber/ber of about 3 ∗ 10−2 with a probability of 1.4 ∗ 10−6 for half bit
errors and 3.5 ∗ 10−6 for full bit errors.

Figure 4.7: Failure Rates with given ber in the Full Bit Fault Model

4.4 Evaluation

Results show that the vulnerability to error propagation of the Xerxes encoding scheme highly
depends on the fault model. In the half bit fault model, no error propagation occurs, whereas
in the full bit fault model error propagation can occur.

When running simulations with stochastic error generation and a hber that is about twice
the ber both fault models give the same results. The maximum probability of undetected
errors is 3.5 ∗ 10−6 for the full bit fault model and 1.4 ∗ 10−6 for the half bit fault model at
error rates of about 2 ∗ 10−2. These values have to be multiplied by a factor of 3 ∗ 10−5, the
residual value of the CRC, to get the overall probability for undetected errors. The resulting
error probabilities are 1.05 ∗ 10−10 for the full bit fault model and 4.2 ∗ 10−11 for the half bit
fault model.

As by now only the Xerxes encoding has been considered. The FlexRay� frame format
brings a strong weakening to the Xerxes encoding. The FlexRay� frame format defines an
additional optional bit at the frame end called the Code Violation Avoidance Bit (CVAB). This
is necessary because the look ahead is only one bit but the symbols “B”, “C” and “D” (see
chapter 2.1.2) require an ending zero, else the Xerxes code would be violated. The CVAB itself
does not weaken the Xerxes encoding but after the CVAB an optional edge may be created
to bring the transmission line to the recessive state. The problem with this optional edge
is that there is no way for the decoder to detect if this edge is part of the encoded data or

35

Bit Errors Frames Xerxes CRC

1 20.253.148 20.253.148 0
2 9.645.517 9.410.219 235.298
3 5.064.531 5.064.531 0
4 2.510.543 2.495.112 15.431
5 1.265.722 1.265.722 0
6 629.969 628.534 1.435
7 315.613 315.613 0
8 314.957 314.602 355

Sum 40.000.000 39.747.481 252.519

Table 4.2: Half Bit Errors recognised in the Xerxes Decoder using an End Of Frame Sequence

not. In case of an synchronisation error (like shown in chapter 5) this optional edge could be
considered as part of the frame.

The optional edge directly affects one of the strengths of the Xerxes encoding scheme that
ensures the detection of an odd number of half bit errors. This can be explained by the way
the Xerxes encoding works: The symbols “B”, “C” and “D” (as defined in chapter 2.1.2)
always have a opening and a closing zero bit. By injecting a single half bit error a ”1” would
be transformed to a ”0” and vice versa. The Xerxes code would be violated at the end of
the frame causing a code violation. The optional transition at the frame end introduced by
the CVAB can be “borrowed” and used as closing zero bit and the error becomes undetectable
by the Xerxes decoder. Table 4.2 shows where bit errors are detected when fixed frame
end sequences without optional transitions are used. “Frames” give the number of simulated
frames, “Xerxes” stands for defective frames are recognised by the Xerxes decoder and “CRC”
denotes that errors that pass the Xerxes decoder and must be detected using the CRC
checksum (with will of course only work with a probability of about 1.3 ∗ 10−5).

An additional simulation run has been performed to examine the impact of the optional
edge after the CVAB. Figure 4.8 shows the number of 128 bit sized frames with n errors that
passed the Xerxes decoder undetected. 10.000.000 frames were simulated for each n from 1
to 8. While only pairs of errors pass the Xerxes decoder with an appropriate end of frame
sequence like table 4.2 shows, frames with odd numbers of errors may also pass the CVAB-
crippled Xerxes decoder with only a slightly reduces probability by “borrowing” the optional
edge after the CVAB. This applies also to full bit errors. The probability for 6 half / full bit
errors to pass the decoder undetected is equal to 1, 79 ∗ 10−5 / 1, 06 ∗ 10−5. When using a
end of frame sequence an other CRC specialised on odd numbers of errors could be used,
increasing the overall error detection rate.

36

Figure 4.8: Error Detection Abilities of the Xerxes Decoder

37

Chapter 5

Resynchronisation

While chapter 4 covers only errors that map to half or single bit errors after sampling, this
chapter examines the impact of transmission errors, properties of the physical layer (such
as asymmetrical delays for falling and rising edges) and the chosen sampling method on the
transmitted data stream.

The first part of this chapter describes how resynchronisation works and gives an expla-
nation how the figures in this chapter can be read. The next part gives two basic examples,
how the synchronisation can be lost. The third part describes some internals of the simulator.
The fourth part describes the fault model used for this simulation. The fifth part introduces
the different resynchronisation methods and simulation parameters. The next sub-chapter
shows the results of the simulation runs for the different sampling methods. The last part
compares the different resynchronisation methods and gives a short conclusion.

5.1 Basics

One bit cell is divided into tree different kinds of intervals as shown in table 5.1. Edges that are
located in the sync interval are recognised as valid and will not cause any resynchronisation.
Edges in the receive interval are recognised as valid but will cause resynchronisation and
edges in the error interval will be recognised as erroneous.

Figure 5.1 is a legend for the figures used below in this chapter. In the following drawings
the time axis and the signal level axis will be skipped since they do not improve readability.
The diagrams show different states of the sampling logic. The line of different shaded rectan-
gles shows how edges are interpreted by the sampler and will be referred to as synchronisation
grid from now on. When resynchronisations happen the synchronisation grid will be moved
to the left or to the right in multiples of the granularity parameter given to the simulator. In
most cases the granularity equals the oversampling rate, since this is the smallest unit that
can be distinguished by the receiver. The synchronisation interval, the receive interval and
the error interval are multiples of the granularity.

For each resynchronisation that happens, a new resynchronisation grid is drawn to visu-
alize the behaviour of the sampler during resynchronisation.

Interval Edge valid Resynchronisation

sync interval Yes No
receive interval Yes Yes
error interval No n.a.

Table 5.1: Different Oversampling Intervals

38

1 BCD (100 ns)

receiver timing grid before

clock point data point received input signal

receiver timing grid after
resynchronisation

resynchronisation oversampling period

1 BCDTime axis

In
p

u
t

si
g

n
al

 le
ve

l

Low

High

bit cell marginreceive interval error intervalsync interval

Figure 5.1: Sampling Diagram

5.2 Case Study of Synchronisation Loss

From chapter 4 we know that Xerxes is stable in respect to single synchronisation errors (one
edge is moved for ½ BCD). Delaying the whole signal for ½ BCD or moving the synchronisation
grid for the same amount will cause errors that can affect more than five bits and cannot be
securely detected. This chapter contains a short overview to show, how synchronisation can
be lost due to false resynchronisation.

This can easily be done without any simulations. The resynchronisation algorithm for
this example uses a receive interval of ½ BCD and a sync interval of ¼ BCD with a granularity
of 0.125 (= 8 times oversampling).

Figure 5.2 shows a false resynchronisation due to an injected pulse. The original signal
(black line and dotted line) contains edges at the clock point, a bit cell with no edge and
an edge at the data point. This is the ending of a sequence of type C (odd number of ”1”s
enclosed in a pair of ”0”s). The grey line shows an injected pulse. At point 1 the received edge
of the pulse is out of sync interval and resynchronisation has to be done. The synchronisation
grid is shifted to the left for one oversampling unit. The falling edge of the injected pulse
is also not in the receive interval and the synchronisation grid is shifted to the left again.
Then the next edge of the original signal is received, perfectly in time. Unfortunately the
synchronisation grid has been moved to fit the erroneous pulse and again, resynchronisation
is done. The synchronisation grid has been moved for 3

8
BCD to the left. Clock and data point

have been exchanged.

A

B

C

D

1

2

3

1 BCD (100 ns)

Figure 5.2: Resynchronisation Failure through injected Pulse

Figure 5.2 shows how resynchronisation failures can happen with two delayed edges. The
second edge is delayed for 12.5 ns and causes resynchronisation at point 1. The third edge
is delayed for approximately 25 ns and causes resynchronisation to happen again. With the
fourth edge, that comes in time, the third resynchronisation happens and the synchronisation
grid has been displaced by ½ BCD.

For other types of sampling logic, the failures that lead to false resynchronisation are
basically the same. However, both error types could be prevented by allowing only a specified

39

A

1 BCD (100 ns)

B

C

D

1

2

3

Figure 5.3: Resynchronisation Failure due to two delayed Edges

number of resynchronisations to take place during a single frame. Using static synchronisation
is not possible: The last bit in a frame with 256 bits length could be displaced by 256 ∗ 2 ∗

3000 ∗ 10−6 or 1.53 BCD units1. The maximum error of the last edge that could be tolerated
is 0.25 BCD (depending on the used sampling parameters).

1 BCD (100 ns)

B

A 1

2

Figure 5.4: Synchronisation loss due to asymmetric Delay

Figure 5.4 shows an asymmetric signal. All falling edges are delayed for 0.1 BCD. The edge
has, however, moved out of the sync-interval in point 1. The sampling grid was moved for
one oversampling unit to bring the edge back to the synchronisation window. The duration
of one oversampling unit is, assuming eight times oversampling, 12.5 ns. The time offset
caused by the asymmetric transceiver delay is 10ns. If the rising edge comes early for more
than 2.5ns the synchronisation can be lost. This is a case where the jitter described in the
next chapter has influence on the simulation results.

1 BCD (100 ns)

A 1 2

Figure 5.5: Synchronisation lost on second Edge

Figure 5.5 shows an error that can occur on the first two edges of the signal. Edge 1 is
the first edge in the signal that has an asymmetric delay of 0.1 BCD (10ns). The first edge
is received 10ns before the clock point. Both time offsets cause edge 2 to be received 20 ns
before the next clock point. If there is some other distortion that causes an additional delay
of edge 1 or makes edge 2 come early then edge 2 could move to the previous data point. The
sum of both distortions has to be more than 5ns. This can also be caused through jitter.

1this is a requirement set by the FlexRay� protocol working group: the quartz of the FlexRay� controller
may be off by 1.500 ppm in normal operation, leading to a worst case quartz drift of 3.000 ppm for two
controllers

40

5.3 Simulation Details

Chapter 5.2 showed that the synchronisation can be lost by error. Neither the sampling logic,
nor the Xerxes decoder nor the CRC can reliably detect this. This matter of fact does not
have to be proven by simulation, rather the main focus of the following simulations is to find
out how good different sampling logics work with Xerxes encoding.

This examination is done by simulating a huge number of frames under different condi-
tions. When performing timed simulations, no CRC is used, increasing performance. CRC
checks are also not very meaningful since the residual error value of the CRC is known. A
better solution is to categorise frames with up to five bit errors in the decoded streams and
frames with six or more bit errors as two classes of erroneous frames. The first class is always
detected by the CRC the second is only detected with the remaining error probability of the
used CRC.

Figure 5.6: Timed Simulation Mode

Figure 5.6 shows the block diagram of the simulator when running in timed mode. Filters
and sampling parameters can be specified according to chapter 3.2.

sync

receive

1 BCD (100 ns)

Figure 5.7: Receiver Parameters

Figure 5.7 shows the receiver parameters that can be specified on the command line.
The receive interval is always located symmetrically around the sampling point. The syn-
chronisation interval may also be located symmetrically around the sampling point (positive
value) or left of the sampling point (negative value). This may be necessary for eight times
oversampling with no error interval, when the synchronisation cannot be in the centre of
the receive interval. The granularity parameter specifies the step size for resynchronisation.
When performing resynchronisations the synchronisation grid can only be offset by multiples

41

of this value. The parameters for the receiver shown in Figure 5.7 are snyc interval 0.125,
receive interval 0.375 and granularity 0.125.

5.4 Fault Model

The fault model introduced in this chapter does not only include faults but also some features
like asymmetrical delay or clock drift between two oscillators. The faults that can be injected
with the simulator are:

Shift: add or subtract a custom time displacement to one or more edges. It is unlikely that
whole parts of frames are delayed/early since this kind of failure can hardly be explained
with the transmission media. It is however possible, that individual edges or small
groups of subsequent edges are shifted and the synchronisation is lost. This filter can
be used to examine this behaviour.

Scale: Scale: This filter simulates a slow clock drift between two controllers. While this is not
an error condition it has also impact on the bit sampling and has to be included in the
simulations.

Jitter: In applications under harsh environmental conditions such as in bonnets there is a lot
of noise and signals may be delayed or be too early by minimal amounts of time. This
filter can be used to make the simulation more realistic, since it adds randomly small
time offsets to each edge. These offsets are normal distributed and the maximum time
offset may be given. It is advised to use this filter in every simulation.

Asym: Asymmetric delays between falling and rising edges are a transceiver property and not
a fault but have heavy impact on bit sampling. A simulation that does not consider
asymmetric delays would not be realistic.

High: Pull the transmission line up to high for a given amount of time.
Low: Pull the transmission line down to low for a given amount of time.

Other faults may be generated by combinations of these failures. Periodic failures gener-
ated by a 1MHz signals simply consist of failures at BCD 0,10,.,130,140 and can be modelled
by applying a series of filters in sequence. Asymmetric delays of single edges can be modelled
using the Shift filter and selecting specified edges. Odd edges are always falling, even edges
rising.

5.5 Simulation Parameters

This chapter describes the used receiver types and the injected faults. All simulations were run
with frame lengths of 16, 64 and 128 bits. Each combination of errors from a special chosen
set of errors was simulated with each receiver type, even in cases where it was expected that
all errors would be caught by the receiver logic. This was done to have the same simulations
for each receiver allowing easier comparison and to verify if the assumptions made about the
receiver logic were correct.

5.5.1 Receiver Types

This chapter provides a brief description about the sampling methods used for the simulations.
Table 5.2 contains a list of the different sampling logics used for the simulations, figure 5.8
shows a graphical representation of table 5.2. The sampling logics S1 and S2 have the
sync interval set to 0.5 and no resynchronisation will happen (static synchronisation). In
S2 the receive interval is only 0.25 BCD units wide. Edges received not within this interval

42

receiver sync receive granularity oversam- asym-
interval interval (=1/overs) pling rate metric

S1 0.500 0.500 0.125 8 No
S2 0.500 0.250 0.125 8 No
D1 0.250 0.500 0.250 4 No
D2 0.250 0.500 0.125 8 No
D3 −0.125 0.500 0.125 8 No
D4 0.125 0.375 0.125 8 No
D5 0.100 0.500 0.100 10 No
D6 0.100 0.300 0.100 10 No
D7 0.300 0.500 0.100 10 No
D8 0.250 0.500 0.125 8 Yes
D9 0.125 0.375 0.125 8 Yes

Table 5.2: Different bit Samplers used in Simulations

will cause errors detected by the receiver. D1 uses four times oversampling to examine the
impact of low oversampling rates. The difference between D1 and D2 is the granularity
value. The synchronisation grid in D1 can only be shifted by multiples of 0.25 BCD. When
using D2 it can be shifted by multiples of 0.125 BCD. D2 and D8 use an oversampling factor
of eight and a sync interval of 0.25. The difference between D2 and D8 is that D8 has
compensation for asynchronous transceivers. After each falling edge the synchronisation grid
is shifted to the left for a specified number of granularity units and after each rising edge
the synchronisation grid is shifted back to the right. The advantage of this resynchronisation
method is that the received edges are always in the same oversampling interval. Normally
with eight times oversampling and an asynchronous delay of more than 12.5 ns the edges
are always received in different oversampling intervals. By compensating these asynchronous
delays resynchronisation takes place only when it is really necessary (i.e. clock drift). D3 has
a smaller synchronisation window than D2. D4 and D9 use eight times oversampling with an
error interval. The assumption for D4 is that it will fail for asynchronous delays more than
12.5 ns (one oversampling interval). D5, D6 and D7 use ten times oversampling to examine
if higher oversampling rates bring any advantages.

All simulations were run with an offset of 0.0 and ±0.1 (±0.09) BCD units on the first
edge. The smaller values were used for receivers with 10 times oversampling. This value
can be given with the receiver parameters and shall simulate the fact that the edge will lie
somewhere within the oversampling interval and not exactly on a sampling point.

5.5.2 Injected Faults

The simulation is split into two parts. The first part examines the overall error behaviour of
the different sampling methods by applying a combination of different faults on the physical
layer. The second part applies also a combination of different faults but the focus is set on
asymmetric transceiver delay.

5.5.2.1 Overall Error Behaviour

The faults injected in the first part of the simulation are composed by each possible combi-
nation of the following faults (or features of the physical layer):� clock drifts: ±10.000 ppm, ±1.000 ppm, 0 ppm� jitters: 0.01, 0.05 BCD

43

1 BCD (100 ns)

D1

S1

S2

D2 D8

D3

D6

D7

D4 D9

D5

Figure 5.8: Different bit Samplers used in Simulations� asymmetric delays: 0, 0.05, 0.1, 0.2 and 0.3 BCD� offsets of parts of frames: 0, 0.3, 0.5, 1.0 and 1.5 BCD offset starting at BCD 12� high: signal forced to high for a duration of 0.8 BCD at BCD 18� high/low: signal forced to high for 0.8 BCD at BCD 18.2 and to low for 0.8 BCD at BCD 19� delayed edges: delay for 0.12 BCD at 16th and for 0.24 BCD at 17th edge.

All simulations were run with frame lengths of 64, 128 and 256 bits and 10.000 frames.
In total 267.300 simulation runs were performed with 2.673.000.000 simulated frames.

Combinations of the underlined values are used in every simulation and can be interpreted
as “background noise”. All of this faults should be tolerated during normal operation. In
some special cases (i.e. scale=1.00) some of this faults are obviously not present.

5.5.2.2 Asymmetric Delays

The fault injected in the second part consisted of all combinations of the following faults:� clock drifts: ±10.000 ppm, 0 ppm� jitter: 0.05� asymmetric delays of single edges: 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 BCD� asymmetric delays of full frames: 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 BCD

The simulations run for the second part were performed with frame lengths of 64, 128
and 256 bits and 500.000 frames per simulation. A total of 3.266 simulations runs with
1.633.000.000 simulated frames were performed.

44

5.6 Simulation Runs

The two following chapters contain the results of the performed simulation runs. In the next
chapter the errors are classified into sampling errors, decoder errors, errors with up to five
faulty bits and errors with six or more erroneous bits. In the following chapter the same error
classification is used as in the chapter before, in addition the number of errors for up to six
bit errors are counted.

5.7 Fault Simulations I

This sub-chapter covers the first part of the simulations described above. Combinations of
the faults introduced in chapter 5.5.2 were used in each simulation, the other faults were only
simulated when examining a specific fault type. Some combination of faults that are tolerated
when appearing solitary can also cause errors. This situation is described in chapter 5.2,
figure 5.4 and figure 5.5. In real applications the requirements for the physical layer must be
set strictly enough to prohibit these error cases.

reference

0,00

0,20

0,40

0,60

0,80

1,00

d01 d02 d03 d04 d05 d06 d07 d08 d09 s01 s02

sampling logic

fr
am

es
 [2

.7
00

.0
00

]

correct

sampler

decoder

CRC

>5 errors

Figure 5.9: The Reverence Diagram

Figure 5.9 shows the reference simulation results. These results are derived from simu-
lations of all possible permutations of the faults emphasised in chapter 5.5.2.1. The y-axis
shows the normalised number of frames. The total number of frames can be found on the
labelling of the y- axis. The x-axis shows the different sampling logic types. Each sampling
logic contains five categories: correct frames (“correct”), frames with errors detected in the
sampling logic (“sampler”), frames with errors detected in the Xerxes decoder (“decoder”),
frames with errors detected by the CRC value (“CRC”) and frames with more than five errors
(“>5 errors”). These values are complementary can be added up to 1, which represents the
total number of frames. Since small values cannot be shown in the diagrams, all values used
for the diagrams of this chapter can be found in appendix C.

5.7.1 Clock Drift (Time Scale)

Figure 5.10 to figure 5.12 show the impact of clock drifts on the transmitted frames. This
simulation is also called scale because small clock drifts can be modelled by scaling the time
axis of the transmitted data. A scale of 1.01 can be used to model a clock drift of 1% with
the receiver running faster than in the transmitter.

Figure 5.10 shows a simulation run with no clock drift. In figure 5.11 the receiver runs
10.000 ppm faster than the transmitter and in figure 5.12 the receiver is 10.000 ppm slower
than the transmitter. Note that figure 5.10 differs from the simulation reference because the
scale is set to 1.000 so the impact of the clock drifts of ±1.000 ppm are not included.

It is obvious that figure 5.11 and figure 5.12 differ in some points: d01 can handle only
senders with slower or equal clocks. This is due to the fact that the sync interval is aligned

45

Figure 5.10: No Clock Drift between Sender and Receiver

Figure 5.11: Receiver Clock faster than Sender Clock

Figure 5.12: Receiver Clock slower than Sender Clock

with the bit cell border and edges that are out of this interval on the left side will cause
the sampling logic to fail. s01 and s02 perform, as expected, very weak in these simulations.
Since s01 has no error window, slow clock drifts cannot be detected by the sampling logic
and can cause frames with more than five bit errors as figure 5.11 and figure 5.12 show. It
can also be seen that the results with scale 0.99 are mostly better than the results with scale
1.01. It is also interesting that D3 performs better in this simulation than D2. Exact values
from the simulation runs can be found in appendix C.

5.7.2 Jitter

Simulations have shown that all sampling logics are relatively insensitive to this fault type.
While the jitter of 0.01 BCD was only introduced to add numerical noise to the simulation
timing, the jitter of 0.05 BCD was expected to change simulation results significantly. In some
cases, like in the example shown in chapter 5.2, the jitter may change the results for several
frames but in general the impact on the simulation results is small. Receiver logics with an

46

oversampling rate of 10 or an error window (d05-d07) are more sensible to jitter sizes of 0.05
BCD.

Figure 5.13: Frames with a 0.01 BCD Jitter

Figure 5.14: Frames with a 0.05 BCD Jitter

5.7.3 Asymmetric Delays

In this part of the simulation runs the asymmetric delay was only introduced to examine how
other fault types behave in combination with asymmetric delays. Since asymmetric delays
have a heavy impact on the simulation results they are examined more detailed in chapter 5.8.

5.7.4 Multiple Delayed/Early Edges (Offset)

Figure 5.15 and figure 5.16 show the results for two different groups of simulation runs.
For figure 5.15 the simulation was run without delay (offset) of groups of edges so figure 5.15
shows the simulation result under normal conditions as defined in chapter 5.5.2.1. Figure 5.16
shows the simulation result when a delay of 0.5 BCD on the 12th and each subsequent edge is
applied. All other simulation parameters are the same in both groups.

Figure 5.15: Sample logic behaviour with offset=0

47

Figure 5.16: Sample logic behaviour with offset=0.5

Figure 5.16 shows that the number of correctly transmitted frames drops to zero in this
case. In this special case, when the offset is a multiple of 0.5, the sampling logic cannot
detect the error. From figure 5.16 we see that most of the errors are detected in the Xerxes
decoder. A small part of the errors (about 3%) remain undetected. In other cases, when the
offset value is not a multiple of 0.5 the sampling logic would also detect some errors. Delays
larger than 1.5 BCD will always be detected by the Xerxes decoder. When all edges come too
early by an uniform amount of time, the simulations give similar values.

This simulation was performed even if sudden offsets of large parts of the frame are very
unlikely to happen. This type of fault can not be caused by the transmission line but it could
be caused by an insulate contact of the oscillator, either on the sending or on the receiving
controller. This fault is very hard to detect.

5.7.5 Signal forced to High/Low

This simulation injects a pulse that could flip two subsequent bits, which will produce a
distortion similar to the fault that caused error propagation in chapter 4.3.2. The first
simulation forces a high pulse on the physical line, the second simulation forces a high pulse
followed by a low pulse. Since both results are very similar only the result the first simulation
is shown here.

As expected, based on the findings of chapter 4.3.2, errors with more than five distorted
bits can occur. Figure 5.17 shows the detected errors under the conditions defined in chap-
ter 5.5.2.1. Figure 5.18 shows the detected errors after forcing the signal to high for 0.8 BCD

in the 15th bit cell. While most of the other sampling logics let the erroneous sampled stream
pass to the decoder d04, d06, d09 and s02 are able to detect the error, at the cost of more
dropped frames under normal conditions. The rate of correctly received frames would drop
further when the error injection would ensure that the signal is really modified instead of just
forcing it to high, in fact this seems to be the explanation that the number of correct frames
is rather high. In real environments the superposition of glitches is generated randomly too,
so this solution seems acceptable.

5.7.6 Two subsequent delayed Edges

Two delayed edges can also lead to synchronisation loss, at least with eight times oversam-
pling. This simulation checks the sensitivity of various sampling logics in respect to two
delayed edges. The delay of the edges is 0.12 BCD and 0.24 BCD. This should cause the
synchronisation logic to fail in most cases.

Comparing the reference histogram figure 5.19 to the simulation with two delayed edges
in figure 5.20 it can be seen that the sampling logic does not detect this failure and there is

48

Figure 5.17: No Disturbance on transmitted Signal

Figure 5.18: transmitted Signal forced to high for 0.8 BCD

a high number of errors that are detected in the decoder. The number of CRC errors and
undetectable errors is also very high. Detailed numbers can be found in appendix C.

Figure 5.19: No delayed Edges

Figure 5.20: Two subsequent Edges delayed

49

5.8 Fault Simulations II

The simulation that were performed for chapter 5.7 have soon shown that Xerxes is very
sensitive to asymmetric delays, in fact, asymmetric delays of edges or full frames are the
main reason for erroneous resynchronisation. Therefore the impact of asymmetric delays will
be examined in this chapter very detailed.

5.8.1 Single asymmetric delayed Edge

Asymmetric delays of single edges may, according to the half bit fault model from chap-
ter 4.1.1, cause only one erroneous bit. This assumption is only right in a non-timed simula-
tion. In timed simulations and under the consideration of sampling one asymmetric delayed
edge could cause false resynchronisation, affecting the whole frame.

Figure 5.21 to figure 5.31 show the results of the simulation runs for the different sampling
logics. The y-axis shows the number of frames, normalised to the absolute number of frames
simulated. The x-axis shows where the error is detected. “co” designates the correct frames,
“sa” the errors detected in the sampling logic, “xe” denotes errors detected in the decoder
and “1” to “>=6” show the number of bit errors in the decoded message. The results for one
particular delay are complementary and can be added up to 1. The detailed results can be
found in appendix C since very small values are not shown on the histograms.

The number of correct frames using d01 and d02 drops to 50% at an asymmetry of
0.2, d03, d05 and d07 achieve higher frame rates and d04 and d06 provide lower correct
frames. Receiver logic d08 accomplishes generally less correct frames but does not suffer
from asymmetric delayed edges. The number of frames with six or more errors is also very
high with sampling logic d08. d09 recognises only erroneous frames in this simulation.

It can also be seen from the simulation results, that error intervals can improve the
recognition of erroneous frames significantly. Many errors can be detected in the sampling
logic with the receivers d04, d06 and d09.

Figure 5.21: Asymmetric delayed Edge, Sampling Logic d01

Figure 5.32 shows the probabilities for more than six undetected defective bits caused by a
single asymmetric edge. The x-axis shows the different sampling logics, the y-axis designates
the probabilities with the residual error probabilities of the CRC (3 ∗ 10−5) already included
and the series shown in the legend show the asymmetric delay.

5.8.2 Asymmetric delayed Frame

Asymmetric delayed frames can occur more likely than single asymmetric delayed edges. This
is not only a fault but also a feature of some transceivers.

50

Figure 5.22: Asymmetric delayed Edge, Sampling Logic d02

Figure 5.23: Asymmetric delayed Edge, Sampling Logic d03

Figure 5.24: Asymmetric delayed Edge, Sampling Logic d04

Figure 5.25: Asymmetric delayed Edge, Sampling Logic d05

51

Figure 5.26: Asymmetric delayed Edge, Sampling Logic d06

Figure 5.27: Asymmetric delayed Edge, Sampling Logic d07

Figure 5.28: Asymmetric delayed Edge, Sampling Logic d08

Figure 5.29: Asymmetric delayed Edge, Sampling Logic d09

52

Figure 5.30: Asymmetric delayed Edge, Sampling Logic s01

Figure 5.31: Asymmetric delayed Edge, Sampling Logic s02

Figure 5.32: Probabilities for >5 Errors caused by a single asymmetric delayed Edge

53

Figure 5.33 to figure 5.43 show the results of simulation runs for delays from 0.0 to 0.5
BCD. It is obvious that the number of correct frames drops much faster with rising asymmetry
than for single asymmetric edges, beginning with asymmetries of 0.1 BCD. The exceptions
from this observation are the sampling logics d08 and d09, which were specially designed to
achieve good results with asymmetric delays. Like in chapter 5.8.1 it can be seen that error
intervals will improve the error detection.

Figure 5.33: Asymmetric delayed Frame, Sampling Logic d01

Figure 5.34: Asymmetric delayed Frame, Sampling Logic d02

Figure 5.35: Asymmetric delayed Frame, Sampling Logic d03

Figure 5.44 shows the probabilities for more than six undetected defective bits caused by
an asymmetric delay of the full frame. The axis labelling is the same as in figure 5.32 (prob-
abilities include CRC residual error probabilities). The series show the different asymmetric
delays on the falling edge of the full frame. Small values in this diagram are not a guarantee
for a good receiver logic: The number of unrecognised faults with sampling logic d06 is zero
but the number of correct decoded frames is also very small (see figure 5.38).

54

Figure 5.36: Asymmetric delayed Frame, Sampling Logic d04

Figure 5.37: Asymmetric delayed Frame, Sampling Logic d05

Figure 5.38: Asymmetric delayed Frame, Sampling Logic d06

Figure 5.39: Asymmetric delayed Frame, Sampling Logic d07

55

Figure 5.40: Asymmetric delayed Frame, Sampling Logic d08

Figure 5.41: Asymmetric delayed Frame, Sampling Logic d09

Figure 5.42: Asymmetric delayed Frame, Sampling Logic s01

Figure 5.43: Asymmetric delayed Frame, Sampling Logic s02

56

Figure 5.44: Probabilities for >5 Errors with an asymmetric delayed Frame

5.9 Evaluation

The theoretical considerations from chapter 5.2 and simulation results from the previous
chapter show that the synchronisation can be lost due to injected faults on the physical line.
This is a major problem since this fault can only be detected with the residual value of the
CRC.

Synchronisation can be lost due to all of the faults specified in the fault model, depending
on the receiver. A detailed description of each receiver type is given below.

S01: Since this sampling logic is static it suffers from long frame lengths with contempora-
neous clock drifts. With a receive interval of 0.5 BCD the edges can move to a different
sampling point slowly when the clock drifts are to high. This error cannot be detected
with the CRC.

S02: Is more sensitive to clock drifts than s01 (since the receive window is only half the size)
but does not produce as many undetectable errors.

D01: Was introduced to see if a sampling logic with an oversampling rate of four behaves
with Xerxes encoding. D01 can only compensate clock drifts when the clock of the
sender is slower or equal. Since there is one preferred direction for resynchronisation
this sampling logic is worse than S01 and S02.

D02: This receiver lacks an error interval and therefore defective frames can only be recog-
nised in the Xerxes decoder or by the CRC. As a result there can occur a large number
of errors affecting more than five bits.

D03: This sampling logic is the same as d02 but with a sync interval that is only half the size
of the sync interval of d02. This sampling logic gives better results than d02 for frames
with asymmetric delay but inferior results with single asymmetric delayed edges. D03
gives more correct frames than d02 and less errors with five or more defective bits.

D04: This sampling logic is similar to d03 with an error interval and the sync interval sym-
metrically aligned around the sample points. Compared to d03 d04 recognises more
frames as erroneous but decodes less frames with bit errors.

D05: This sampling logic uses ten times oversampling. There seems to be no gain from the
higher oversampling rate compared to eight times oversampling. The receiver behaves
similar to sampling logic d02.

D06: This sampling logic uses ten times oversampling with an error interval of 0.2 BCD. The
performance of this sampling logic is very poor for all simulations.

D07: Ten times oversampling with a sync. Interval of 0.3 BCD and no error interval. The
behaviour is similar to d02 with slightly less erroneous frames.

57

D08: d02 with built in asymmetry compensation. This is a good choice for known asymmetric
delays of whole frames but gives bad results without asymmetric frame delay. The
results are comparable to d02 with an asymmetric delay of 0 BCD even if an asymmetric
delay is present. If no asymmetric delay is present, this receiver logic is a bad choice.

D09: d04 with built in asymmetry compensation. For this receiver logic the same comments
apply as for d08.

The sampling logic has significant influence on the reliability of a network protocol. Some
issues have been shown by the simulations:

Reliability vs. Availability (error intervals): Reliable error detection results in
more erroneous frames. This can be seen by comparing d03 and d04. D03 decodes frames
correctly when d04 produces an error in the sampling logic while d04 recognises most of the
erroneous frames which produce more than five errors with sampling logic d03.

Oversampling rates: The simulations using d01 have shown that oversampling rates
of four are unusable for an edge triggered encoding scheme. With only four intervals resyn-
chronisation works only very poor (and only in one direction). The gain from oversampling
rates higher than eight is low, compared to the effort caused to implement those oversam-
pling rates in hardware. Ten times oversampling shows virtually no difference to eight times
oversampling.

Adjustable asymmetric delay: When working with transceivers that feature a given
constant asymmetric delay, a compensation for asymmetric delays gives a great gain in avail-
ability and measurable gain in reliability.

Limiting resynchronisations: an other idea, that could keep the number of erroneous
resynchronisations small is to limit the number of resynchronisations to a given number
(i.e. 2 resynchronisations for each 64 bits) or to introduce additional synchronisation bits
in the frame. This could reduce the number of erroneous resynchronisations but has not
been simulated. Additionally it would also be interesting if there is a correlation between the
number of resynchronisations and the number of errors.

Concluding remarks: Since the physical layer is not specified, a concrete fault model
cannot be given. Therefore, the injected faults were chosen to cover a wide range of possible
failure conditions. Furthermore, the number and occurrence of injected faults per frame were
significantly increased in order to minimise the simulation effort (higher occurrence of the fault
types under investigation). Therefore, the diagrams do not reflect the occurrence of the faults
during real operation, rather they show the distribution between tolerated (undetectable) and
detected faults. Detected faults are further classified by the unit detecting the fault (sampler,
decoder, CRC).

58

Chapter 6

Conclusion

Regarding the code stability, it has been shown in chapter 4 that the occurrence of error
propagation in the Xerxes encoding scheme highly depends on the fault models. The two
investigated fault models half-bit and full-bit led to two completely different results. With
the half bit fault model no error propagation occurs for up to six injected faults. With the
full bit fault model, error propagation is possible. Two injected faults may lead to four bit
errors in the decoded stream. Since the physical layer is not yet specified, both fault models
are valid. The residual error probability is, interestingly, equal for both fault models applying
stochastic injected faults as shown in a detailed comparison.

A further interesting result of the code stability investigation is that even numbers of
errors can always be detected by the Xerxes decoder. This feature cannot be used with the
current FlexRay� implementation since it requires a distinctive end delimiter. In addition, it
has been shown that error detection probability for such small noise pulses, i.e., up to eight
injected faults, is reasonably high. More than five semi or full bit errors were detected with
a probability of more than 0.99998 solely by the Xerxes decoder.

Regarding the resynchronisation, it has been shown that a single injected fault can cause
false resynchronisation and therefore six or more bit errors in the decoded stream. Asym-
metric delays of single edges or full frames caused the most undetectable transmission errors.
Furthermore, simulation runs have shown that asymmetric delays of up to ¼ BCD can be
compensated through the sampling logic but with increasing asymmetric delays the trans-
mitted frame gets very sensitive to small noise pulses. Simulations have also shown that
compensation of asymmetric delays within the sampler logic decreases the need for dynamic
resynchronisation and results in a significant increment of correctly received frames.

The results in this study are intended to help to choose a sampling logic and to define
requirements for the physical layer and the bit sampling logic. Currently there is no physical
layer defined, so the error probabilities presented in this study are error probabilities for a wide
range of injected faults but not expected error probabilities in real applications. Therefore
it would make sense to rerun the simulations performed in this study with a more detailed
fault model after a physical layer has been defined. With these simulations concrete error
probability values for real applications could be given.

59

Bibliography

[Tran 99] Eushiuan Tran, Dr. Philip Koopman, Carnegie Mellon University, “Multi-Bit Error
Vulnerabilities in the Controller Area Network Protocol”, 1999

[Koopman 98] Philip Koopman, Eushiuan Tran, Geoff Hendrey, “Toward Middleware Fault
Injection for Automotive Networks”, Fast Abstract, 28th International Symposium on
Fault-Tolerant Somputing Systems, Munich, Germany, 1998

[Forster 01] Wolfgang Forster, Diploma Thesis, Technikum Wien, “Xerxes-Kodierung”, 2001

[Miller 80] Jerry W. Miller, Melno Park, U.S. Pat. #4234897, — “DC free Encodings for
Data Transmission”, 1980

[FR PS 01] Mathias Rausch, Mark Jordan, “FlexRay - Deterministic Automotive Protocol
Specification v.0.434b”, 2001

[FRpre 01] Hubert Kirrmann, Ecole Polytechnique, Lausanne, CH, Philip Koopmann,
Carnegie Mellon, Pittsburgh, US, “A Preliminary Analysis of the FlexRay Protocol”,
2001

[Freq 02] Ralf Belschner, Josef Berwanger, Christian Ebner, Harald Eisele, Sven Fluhrer,
Thomas Forest, Thomas Führer, Florian Hartwich, Bernd Hedenetz, Robert Hugel,
Andreas Knapp, Josef Krammer, Arnold Millsap, Bernd Müller, Martin Peller, Anton
Schedl, BMW AG, DaimlerChrysler AG, Robert Bosch GmbH, General Motors/Opel,
“FlexRay Requirements Specification, Vers. 1.9.9a”, 2000-2002

[DBI] Tim Bunce, J. Douglas Dunlop, Jonathan Leffler et al., DBI manual page, “DBI -
Database independent interface for Perl”, 2002

[PSQL] The PostgreSQL Global development Group, “PostgreSQL 7.3.1 User’s Guide”,
www.postgresql.org, 2002

[C++Ref] Bjarne Stroustru, “The C++ Programming Language (Special Edition)”, Addison
Wesley. Reading Mass., ISBN 0-201-70073-5., 2000

60

Appendix A

Abbreviations

ASIC Application Specific Integrated Circuit, a custom IC design
BCD Bit Cell Duration, the duration needed to transmit a bit,

100 ns for 10MBit transer rate
ber bit error rate,

probability that a single full bit is flipped
CAN Controller Area Network,

a communication bus used in the automotive industry
CRC Cyclic Redundancy Check,

checksum generation algorithm for the verification of binary data
CVAB Code Violation Avoidance Bit,

a bit in the FlexRay� frame used to be able to generate Xerxes-
compliant frames

DBI Data Base Interface,
the Perl Data Base Interface

FCB Frame Completion Bit,
a bit in the FlexRay� frame used to be able to generate Xerxes-
compliant frames

FPGA Field Programmable Gate Array,
a programable logic device often used for prototyping

FSS Frame Start Sequence,
a part of the FlexRay� frame

GNU Gnu is Not Unix,
a free Software Project

hber half bit error rate,
probability that a single half bit is flipped

LIN Local Interconnect Network,
an new low-cost bus protocol targeted at the automotive market

MFM Modified Frequency Modulation,
a bit coding scheme

NRZ Non Return to Zero, a encoding scheme where bits are encoded by a
high or low level for a whole bit cell

NRZ8N1 spezial kind of NRZ encoding with a start bit before and a stop bit after
each group of eight transfered bits

RDS Running Digital Sum,
the integral of the signal value over time is a measurement for the DC
component of a signal

STL C++ standard library providing containers, algorithms and streams
VHDL Very High Speed Integrated Circuit Hardware Description Language

Table A.1: Abbreviations

61

Appendix B

Simulation Results for Chapter 4

Table B.1 shows the results for figure 4.6 figure 4.6 in chapter 4.3.3.2. It can be seen that
the error rates for the half bit fault model are similar to the error rates of the full bit fault
model with the double error rate. The errors detected in the decoder, frames with less than
six errors (detected by CRC) and possible undetectable errors (more than six errors) are
denoted by “decoder”, “<6err.” and “>=6err.”.

half bit full bit

error rate decoder < 6err. >= 6err. decoder < 6err. >= 6err.

1 ∗ 10−8 25 0 0 13 0 0
2 ∗ 10−8 58 0 0 29 0 0
5 ∗ 10−8 144 0 0 75 0 0

1 ∗ 10−7 288 0 0 151 0 0
2 ∗ 10−7 603 2 0 291 1 0
5 ∗ 10−7 1.508 3 0 755 2 0

1 ∗ 10−6 2.993 11 0 1.510 6 0
2 ∗ 10−6 6.100 25 0 3.100 17 0
5 ∗ 10−6 15.267 62 0 7.584 31 0

1 ∗ 10−5 30.483 116 0 15.253 51 0
2 ∗ 10−5 60.793 247 0 30.479 142 0
5 ∗ 10−5 151.709 644 0 76.250 309 0

1 ∗ 10−4 300.258 1.289 0 150.970 621 0
2 ∗ 10−4 591.927 2.573 0 300.641 1.189 0
5 ∗ 10−4 1.413.956 6.453 0 734.586 3.243 0

1 ∗ 10−3 2.626.587 12.369 0 1.415.369 6.089 0
2 ∗ 10−3 4.560.241 22.332 0 2.629.914 10.434 0
5 ∗ 10−3 7.810.757 34.440 1 5.338.444 24.514 1

1.0 ∗ 10−2 9.515.659 23.874 4 7.831.930 30.333 3
1.2 ∗ 10−2 9.734.687 17.924 4 8.406.079 29.610 12
1.5 ∗ 10−2 9.891.798 10.895 9 8.993.837 26.528 13

2.0 ∗ 10−2 9.975.443 4.080 12 9.535.009 19.906 18
2.5 ∗ 10−2 9.994.365 1.357 14 9.784.606 14.097 12
3.0 ∗ 10−2 9.998.704 425 11 9.900.639 9.137 28

3.5 ∗ 10−2 9.999.704 116 5 9.954.349 5.327 35
4.0 ∗ 10−2 9.999.935 31 2 9.978.840 3.315 21
4.5 ∗ 10−2 9.999.985 9 1 9.990.130 1.975 20

5.0 ∗ 10−2 9.999.995 0 1 9.995.601 1.009 12
0.1 ∗ 10−1 10.000.000 0 0 9.999.999 1 0
0.2 ∗ 10−1 10.000.000 0 0 10.000.000 0 0

Table B.1: Simulation Results for Chapter 4.3.3.2

62

Appendix C

Simulation Results for Chapter 5

Since the tables in chapter 5.6 do not show very small values well the numerical simulation
results can be found here for all simulations performed in chapter 5. In studies like this small
numbers are in fact very important. The diagrams were made in Excel but unfortunately
Excel provides no means to show if a column is really zero or if the value is so small that it
looks like zero when it is illustrated in the diagram.

All numbers are relative to the total number of simulated frames. Simulated frames
of different lengths have been accumulated in the evaluation. This does not make a big
difference: the results were very similar with different frame lengths. The only exception was
seen using big clock drifts with both static sampling logics s01 and s02 and the first dynamic
sampling logic d01. For this three cases the results are similar to the results for frame lengths
of 128 Bytes.

63

scale=1

receiver correct sampler decoder CRC >5 errors

d01 0.70200556 0.00000000 0.29657222 0.00077037 0.00065185
d02 0.99260185 0.00000000 0.00701296 0.00017222 0.00021296
d03 0.99996852 0.00000000 0.00003148 0.00000000 0.00000000
d04 0.92537222 0.07462407 0.00000370 0.00000000 0.00000000
d05 0.99443333 0.00000000 0.00519444 0.00017222 0.00020000
d06 0.45877407 0.54122593 0.00000000 0.00000000 0.00000000
d07 0.99990370 0.00000000 0.00009444 0.00000000 0.00000185
d08 0.96631296 0.00000000 0.03272593 0.00062593 0.00033519
d09 0.71814074 0.28176481 0.00008889 0.00000370 0.00000185
s01 0.86811852 0.00000000 0.13177593 0.00010556 0.00000000
s02 0.49774074 0.50225926 0.00000000 0.00000000 0.00000000

scale=1.01

receiver correct sampler decoder CRC >5 errors

d01 0.77515741 0.00000000 0.22468333 0.00007222 0.00008704
d02 0.98696481 0.00000000 0.01203519 0.00046667 0.00053333
d03 0.99991852 0.00000000 0.00007963 0.00000000 0.00000185
d04 0.86396852 0.13601111 0.00002037 0.00000000 0.00000000
d05 0.98395000 0.00000000 0.01500000 0.00051667 0.00053333
d06 0.39300741 0.60699259 0.00000000 0.00000000 0.00000000
d07 0.99961111 0.00000000 0.00037407 0.00000926 0.00000556
d08 0.91585000 0.00000000 0.08125370 0.00205000 0.00084630
d09 0.61092963 0.38904074 0.00002778 0.00000185 0.00000000
s01 0.21627222 0.00000000 0.76714259 0.01379815 0.00278704
s02 0.00017407 0.99982593 0.00000000 0.00000000 0.00000000

scale=0.99

receiver correct sampler decoder CRC >5 errors

d01 0.00902407 0.00000000 0.96473889 0.01634630 0.00989074
d02 0.98293704 0.00000000 0.01555556 0.00068704 0.00082037
d03 0.99973704 0.00000000 0.00025926 0.00000185 0.00000185
d04 0.88347222 0.11652593 0.00000185 0.00000000 0.00000000
d05 0.99864444 0.00000000 0.00125556 0.00003333 0.00006667
d06 0.42240741 0.57759259 0.00000000 0.00000000 0.00000000
d07 0.99931296 0.00000000 0.00063889 0.00001852 0.00002963
d08 0.90882778 0.00000000 0.08724630 0.00285185 0.00107407
d09 0.64374259 0.35625741 0.00000000 0.00000000 0.00000000
s01 0.06076852 0.00000000 0.92645000 0.00921852 0.00356296
s02 0.00000370 0.99999630 0.00000000 0.00000000 0.00000000

Table C.1: Simulation Results for Chapter 5.7.1

64

jitter=0.01

receiver correct sampler decoder CRC >5 errors

d01 0.56318000 0.00000000 0.42756444 0.00583407 0.00342148
d02 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
d03 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
d04 0.99624963 0.00375037 0.00000000 0.00000000 0.00000000
d05 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
d06 0.48723852 0.51276148 0.00000000 0.00000000 0.00000000
d07 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000
d08 0.97671037 0.00000000 0.02269259 0.00044963 0.00014741
d09 0.72330519 0.27669481 0.00000000 0.00000000 0.00000000
s01 0.55480444 0.00000000 0.43775852 0.00590963 0.00152741
s02 0.25064889 0.74935111 0.00000000 0.00000000 0.00000000

jitter=0.05

receiver correct sampler decoder CRC >5 errors

d01 0.50484815 0.00000000 0.48691037 0.00487259 0.00336889
d02 0.96395630 0.00000000 0.03350148 0.00111556 0.00142667
d03 0.99980889 0.00000000 0.00018741 0.00000148 0.00000222
d04 0.80762222 0.19236370 0.00001407 0.00000000 0.00000000
d05 0.98645333 0.00000000 0.01268444 0.00039556 0.00046667
d06 0.41108148 0.58891852 0.00000000 0.00000000 0.00000000
d07 0.99944741 0.00000000 0.00052593 0.00001111 0.00001556
d08 0.84237778 0.00000000 0.15266148 0.00357778 0.00138296
d09 0.61992593 0.38000667 0.00006370 0.00000296 0.00000074
s01 0.53292370 0.00000000 0.46223481 0.00380444 0.00103704
s02 0.20006741 0.79993259 0.00000000 0.00000000 0.00000000

Table C.2: Simulation Results for Chapter 5.7.2

65

offs=0

receiver correct sampler decoder CRC >5 errors

d01 0.53401407 0.00000000 0.45723741 0.00535333 0.00339519
d02 0.98197815 0.00000000 0.01675074 0.00055778 0.00071333
d03 0.99990444 0.00000000 0.00009370 0.00000074 0.00000111
d04 0.90193593 0.09805704 0.00000704 0.00000000 0.00000000
d05 0.99322667 0.00000000 0.00634222 0.00019778 0.00023333
d06 0.44916000 0.55084000 0.00000000 0.00000000 0.00000000
d07 0.99972370 0.00000000 0.00026296 0.00000556 0.00000778
d08 0.90954407 0.00000000 0.08767704 0.00201370 0.00076519
d09 0.67161556 0.32835074 0.00003185 0.00000148 0.00000037
s01 0.54386407 0.00000000 0.44999667 0.00485704 0.00128222
s02 0.22535815 0.77464185 0.00000000 0.00000000 0.00000000

offs=0.3

receiver correct sampler decoder CRC >5 errors

d01 0.42437037 0.00000000 0.55725296 0.01030185 0.00807481
d02 0.30593111 0.00000000 0.65080185 0.01636259 0.02690444
d03 0.62798296 0.00000000 0.34985815 0.00838148 0.01377741
d04 0.00201667 0.55683185 0.41428481 0.01043296 0.01643370
d05 0.19945889 0.00000000 0.75190778 0.01834333 0.03029000
d06 0.00000519 0.89132074 0.10217185 0.00256741 0.00393481
d07 0.32114444 0.00000000 0.63801222 0.01581889 0.02502444
d08 0.05205370 0.00000000 0.89389185 0.02108370 0.03297074
d09 0.00000815 0.43799259 0.52684407 0.01383481 0.02132037
s01 0.24603148 0.00000000 0.72910852 0.01127926 0.01358074
s02 0.00000185 0.99486037 0.00422111 0.00046852 0.00044815

offs=0.5

receiver correct sampler decoder CRC >5 errors

d01 0.00833444 0.00000000 0.94067926 0.02705481 0.02393148
d02 0.00000000 0.00000000 0.93775778 0.02353000 0.03871222
d03 0.00000259 0.00000000 0.93998704 0.02333630 0.03667407
d04 0.00000000 0.09805704 0.84448259 0.02238296 0.03507741
d05 0.00000000 0.00000000 0.93898556 0.02346222 0.03755222
d06 0.00000000 0.55084000 0.41943037 0.01162963 0.01810000
d07 0.00000185 0.00000000 0.93997444 0.02334148 0.03668222
d08 0.00000000 0.00000000 0.94182037 0.02268185 0.03549778
d09 0.00000000 0.32835074 0.62885889 0.01663926 0.02615111
s01 0.00035704 0.00000000 0.94724222 0.02122704 0.03117370
s02 0.00000000 0.77464185 0.20778407 0.00682444 0.01074963

Table C.3: Simulation Results for Chapter 5.7.4

66

no forced signal

receiver correct sampler decoder CRC >5 errors

d01 0.53401407 0.00000000 0.45723741 0.00535333 0.00339519
d02 0.98197815 0.00000000 0.01675074 0.00055778 0.00071333
d03 0.99990444 0.00000000 0.00009370 0.00000074 0.00000111
d04 0.90193593 0.09805704 0.00000704 0.00000000 0.00000000
d05 0.99322667 0.00000000 0.00634222 0.00019778 0.00023333
d06 0.44916000 0.55084000 0.00000000 0.00000000 0.00000000
d07 0.99972370 0.00000000 0.00026296 0.00000556 0.00000778
d08 0.90954407 0.00000000 0.08767704 0.00201370 0.00076519
d09 0.67161556 0.32835074 0.00003185 0.00000148 0.00000037
s01 0.54386407 0.00000000 0.44999667 0.00485704 0.00128222
s02 0.22535815 0.77464185 0.00000000 0.00000000 0.00000000

signal forced to high

receiver correct sampler decoder CRC >5 errors

d01 0.20086407 0.00366074 0.78535778 0.00861852 0.00149889
d02 0.37368926 0.08201185 0.53314222 0.00978185 0.00137481
d03 0.36768963 0.12623370 0.49694185 0.00894222 0.00019259
d04 0.32944259 0.42069481 0.24478630 0.00479222 0.00028407
d05 0.36457222 0.13087333 0.49370556 0.00956667 0.00128222
d06 0.16348370 0.76044815 0.07428963 0.00177852 0.00000000
d07 0.37333074 0.14402926 0.47377370 0.00842407 0.00044222
d08 0.39680407 0.00038333 0.58439889 0.01485481 0.00355889
d09 0.24651852 0.56424148 0.18201926 0.00601963 0.00120111
s01 0.23550037 0.08869926 0.66901556 0.00621889 0.00056593
s02 0.08119889 0.88124222 0.03655037 0.00100852 0.00000000

signal forced to high and low

receiver correct sampler decoder CRC >5 errors

d01 0.12276704 0.03887481 0.81479926 0.02193148 0.00162741
d02 0.22569148 0.12409963 0.59878148 0.04550333 0.00592407
d03 0.22997963 0.19456815 0.52681444 0.04734519 0.00129259
d04 0.20698519 0.57600370 0.19392815 0.02194444 0.00113852
d05 0.22837778 0.16843333 0.54170778 0.05399778 0.00748333
d06 0.10272667 0.82141481 0.06819926 0.00765852 0.00000074
d07 0.22994111 0.15767481 0.56242111 0.04618481 0.00377815
d08 0.20844185 0.20512741 0.53788185 0.04609111 0.00245778
d09 0.15385481 0.70389704 0.12839444 0.01380556 0.00004815
s01 0.12264667 0.17329296 0.67369926 0.03005259 0.00030852
s02 0.05144778 0.90908704 0.03443000 0.00503519 0.00000000

Table C.4: Simulation Results for Chapter 5.7.5

67

no delayed edge

receiver correct sampler decoder CRC >5 errors

d01 0.53401407 0.00000000 0.45723741 0.00535333 0.00339519
d02 0.98197815 0.00000000 0.01675074 0.00055778 0.00071333
d03 0.99990444 0.00000000 0.00009370 0.00000074 0.00000111
d04 0.90193593 0.09805704 0.00000704 0.00000000 0.00000000
d05 0.99322667 0.00000000 0.00634222 0.00019778 0.00023333
d06 0.44916000 0.55084000 0.00000000 0.00000000 0.00000000
d07 0.99972370 0.00000000 0.00026296 0.00000556 0.00000778
d08 0.90954407 0.00000000 0.08767704 0.00201370 0.00076519
d09 0.67161556 0.32835074 0.00003185 0.00000148 0.00000037
s01 0.54386407 0.00000000 0.44999667 0.00485704 0.00128222
s02 0.22535815 0.77464185 0.00000000 0.00000000 0.00000000

two delayed edges

receiver correct sampler decoder CRC >5 errors

d01 0.20071185 0.00000000 0.76938407 0.02500630 0.00489778
d02 0.55795148 0.00000000 0.42535481 0.01528444 0.00140926
d03 0.33453667 0.00000000 0.62066111 0.04077333 0.00402889
d04 0.06507148 0.93297481 0.00190741 0.00004407 0.00000222
d05 0.50760889 0.00000000 0.46699222 0.02281667 0.00258222
d06 0.00335407 0.99664296 0.00000296 0.00000000 0.00000000
d07 0.37761481 0.00000000 0.58452000 0.03425148 0.00361370
d08 0.82033111 0.00000000 0.16808852 0.01090556 0.00067481
d09 0.23903111 0.75876963 0.00166519 0.00053370 0.00000037
s01 0.33059704 0.00000000 0.65374148 0.01501148 0.00065000
s02 0.00093370 0.99906444 0.00000185 0.00000000 0.00000000

Table C.5: Simulation Results for Chapter 5.7.6

68

rcv. asym correct sampler xerxes b01 b02 b03 b04 b05 >5 err.

d01 0.0 0.5657556296 0.0000000000 0.4328385185 0.0000177037 0.0000358519 0.0000159259 0.0000328889 0.0000123704 0.0012569630

d01 0.1 0.5854918519 0.0000000000 0.4129432593 0.0000237778 0.0000485926 0.0000196296 0.0000395556 0.0000163704 0.0013736296

d01 0.2 0.2915338519 0.0000000000 0.7059662222 0.0000237778 0.0000485926 0.0000196296 0.0000396296 0.0000164444 0.0023085185

d01 0.3 0.0381331852 0.0000000000 0.9598811111 0.0000234074 0.0000475556 0.0000191111 0.0000392593 0.0000157778 0.0017984444

d01 0.4 0.0000014074 0.0000003704 0.9992794815 0.0000000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0007186667

d01 0.5 0.0000000000 0.0037644444 0.9960515556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0001840000

d02 0.0 0.9999999259 0.0000000000 0.0000000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d02 0.1 0.9912051852 0.0000000000 0.0087581481 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000366667

d02 0.2 0.6186078519 0.0000000000 0.3791695556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0022225926

d02 0.3 0.1857323704 0.0000000000 0.8119637778 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0023038519

d02 0.4 0.0006183704 0.0000000000 0.9993378519 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000437778

d02 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.0 0.9999999259 0.0000000000 0.0000000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.1 0.9999778519 0.0000000000 0.0000221481 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.2 0.7950254074 0.0000000000 0.2041604444 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0008141481

d03 0.3 0.0285743704 0.0000000000 0.9695548148 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0018708148

d03 0.4 0.0000000741 0.0000000000 0.9999811111 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000188148

d03 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.0 0.9859764444 0.0140235556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.1 0.8060780741 0.1939202222 0.0000017037 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.2 0.1348468148 0.7930080000 0.0717701481 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0003750370

d04 0.3 0.0000236296 0.8377596296 0.1614567407 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0007600000

d04 0.4 0.0000000000 0.1101625185 0.8898372593 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000002222

d04 0.5 0.0000000000 0.0139297778 0.9860702222 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.0 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.1 0.9987105185 0.0000000000 0.0012864444 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000030370

d05 0.2 0.6695268148 0.0000000000 0.3285134815 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0019597037

d05 0.3 0.0110698519 0.0000000000 0.9859226667 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0030074815

d05 0.4 0.0000000000 0.0000000000 0.9999831852 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000168148

d05 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.0 0.9180927407 0.0819072593 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.1 0.6307091111 0.3692908889 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.2 0.0109732593 0.9887642222 0.0002621481 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000003704

d06 0.3 0.0000000000 0.9977955556 0.0022000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000043704

d06 0.4 0.0000000000 0.3923794815 0.6076205185 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.5 0.0000000000 0.0819072593 0.9180927407 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d07 0.0 0.9999750370 0.0000000000 0.0000246667 0.0000000741 0.0000000000 0.0000001481 0.0000000000 0.0000000000 0.0000000741

d07 0.1 0.9866508148 0.0000000000 0.0132899259 0.0000000741 0.0000000000 0.0000001481 0.0000000000 0.0000000000 0.0000590370

d07 0.2 0.6442567407 0.0000000000 0.3536978519 0.0000000741 0.0000001481 0.0000000000 0.0000000000 0.0000000000 0.0020451852

d07 0.3 0.1516470370 0.0000000000 0.8469188148 0.0000000000 0.0000002222 0.0000000000 0.0000000000 0.0000000000 0.0014339259

d07 0.4 0.0000060000 0.0000000000 0.9999426667 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000513333

d07 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d08 0.0 0.4163277778 0.0000000000 0.5743936296 0.0011433333 0.0012481481 0.0008105185 0.0008100741 0.0003688148 0.0044924444

d08 0.1 0.3773711111 0.0000000000 0.6133740000 0.0009989630 0.0010664444 0.0007846667 0.0007738519 0.0004814815 0.0046159259

d08 0.2 0.3621645185 0.0000000000 0.6291436296 0.0009182222 0.0009696296 0.0007563704 0.0007460000 0.0004654815 0.0043162222

d08 0.3 0.2140072593 0.0000000000 0.7710371111 0.0005264444 0.0017419259 0.0004771852 0.0004591852 0.0003222222 0.0110535556

d08 0.4 0.0074543704 0.0000000000 0.9693048148 0.0000193333 0.0007278519 0.0000348148 0.0000345185 0.0000394815 0.0223304444

d08 0.5 0.0000000741 0.0000000000 0.9976432593 0.0000000741 0.0000002963 0.0000001481 0.0000005926 0.0000000000 0.0023555556

d09 0.0 0.0050550370 0.9948360741 0.0001029630 0.0000006667 0.0000006667 0.0000007407 0.0000003704 0.0000003704 0.0000025185

d09 0.1 0.0055533333 0.9943240000 0.0001171852 0.0000005926 0.0000006667 0.0000005185 0.0000003704 0.0000004444 0.0000024444

d09 0.2 0.0048730370 0.9950144444 0.0001074074 0.0000005926 0.0000005926 0.0000004444 0.0000003704 0.0000002963 0.0000024444

d09 0.3 0.0008140741 0.9990104444 0.0001722963 0.0000000741 0.0000000000 0.0000000741 0.0000000741 0.0000000000 0.0000029630

d09 0.4 0.0000000000 0.9994591852 0.0005360000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000048148

d09 0.5 0.0000000000 0.9947137778 0.0052861481 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000741

s01 0.0 0.3325543704 0.0000000741 0.6652133333 0.0000029630 0.0000014815 0.0000000000 0.0000000000 0.0000000000 0.0022277778

s01 0.1 0.3331698519 0.0000000000 0.6649376296 0.0000008889 0.0000002222 0.0000000000 0.0000000000 0.0000000000 0.0018914074

s01 0.2 0.3142731111 0.0000000000 0.6843014815 0.0000008889 0.0000002222 0.0000000000 0.0000000000 0.0000000000 0.0014242963

s01 0.3 0.1889844444 0.0000000000 0.8104874074 0.0000008889 0.0000002222 0.0000000000 0.0000000000 0.0000000000 0.0005270370

s01 0.4 0.0600760000 0.0000002963 0.9395842222 0.0000008889 0.0000002222 0.0000000000 0.0000000000 0.0000000000 0.0003383704

s01 0.5 0.0000011111 0.0084580741 0.9913495556 0.0000000000 0.0000008889 0.0000000000 0.0000000000 0.0000000000 0.0001903704

s02 0.0 0.2071903704 0.7928096296 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.1 0.1477547407 0.8522452593 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.2 0.0227605185 0.9772394815 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.3 0.0000000000 0.9976562222 0.0023437778 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.4 0.0000000000 0.8843247407 0.1156752593 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.5 0.0000000000 0.7921990370 0.2078009630 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

T
ab

le
C

.6:
S
im

u
lation

R
esu

lts
for

C
h
ap

ter
5.8.1

69

rcv. asym correct sampler xerxes b01 b02 b03 b04 b05 >5 err.

d01 0.0 0.5657556296 0.0000000000 0.4328385185 0.0000177037 0.0000358519 0.0000159259 0.0000328889 0.0000123704 0.0012569630

d01 0.1 0.3314774815 0.0000000000 0.6678979259 0.0000414815 0.0000629630 0.0000240000 0.0000499259 0.0000191852 0.0003640741

d01 0.2 0.0285468148 0.0000000000 0.9711355556 0.0000227407 0.0000417778 0.0000151111 0.0000301481 0.0000103704 0.0001663704

d01 0.3 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d01 0.4 0.0000000000 0.0000017778 0.9999982222 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d01 0.5 0.0000000000 0.2678260000 0.7321740000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d02 0.0 0.9999999259 0.0000000000 0.0000000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d02 0.1 0.8634422222 0.0000000000 0.1326434815 0.0004211852 0.0004441481 0.0003242963 0.0003094815 0.0001607407 0.0021095556

d02 0.2 0.0031345185 0.0000000000 0.9965818519 0.0000312593 0.0000305185 0.0000226667 0.0000197037 0.0000142963 0.0001496296

d02 0.3 0.0000000000 0.0000001481 0.9999998519 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d02 0.4 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d02 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.0 0.9999999259 0.0000000000 0.0000000741 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.1 0.9981903704 0.0000000000 0.0017662963 0.0000027407 0.0000040741 0.0000040000 0.0000045926 0.0000027407 0.0000214074

d03 0.2 0.0007122963 0.0000001481 0.9991285926 0.0000143704 0.0000171111 0.0000108148 0.0000120000 0.0000067407 0.0000863704

d03 0.3 0.0000000000 0.0000001481 0.9999998519 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.4 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d03 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.0 0.9859764444 0.0140235556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.1 0.2094741481 0.7904685185 0.0000544444 0.0000003704 0.0000002222 0.0000001481 0.0000000741 0.0000000741 0.0000018519

d04 0.2 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.3 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.4 0.0000000000 0.8396128148 0.1603871852 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d04 0.5 0.0000000000 0.0140235556 0.9859764444 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.0 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.1 0.9101166667 0.0000000000 0.0876858519 0.0001795556 0.0001931111 0.0001767407 0.0001789630 0.0001189630 0.0012344444

d05 0.2 0.0003868148 0.0000000000 0.9995041481 0.0000120741 0.0000100000 0.0000071852 0.0000080000 0.0000050370 0.0000611111

d05 0.3 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.4 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d05 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.0 0.9180927407 0.0819072593 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.1 0.0017382963 0.9982617037 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.2 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.3 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.4 0.0000000000 0.9990724444 0.0009275556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d06 0.5 0.0000000000 0.0819072593 0.9180927407 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d07 0.0 0.9999750370 0.0000000000 0.0000246667 0.0000000741 0.0000000000 0.0000001481 0.0000000000 0.0000000000 0.0000000741

d07 0.1 0.8820974074 0.0000000000 0.1178336296 0.0000080741 0.0000075556 0.0000039259 0.0000043704 0.0000034815 0.0000385926

d07 0.2 0.0180031852 0.0000000000 0.9808568148 0.0001030370 0.0001184444 0.0000730370 0.0000765185 0.0000628889 0.0006382222

d07 0.3 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d07 0.4 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d07 0.5 0.0000000000 0.0000016923 0.9999983077 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d08 0.0 0.4163277778 0.0000000000 0.5743936296 0.0011433333 0.0012481481 0.0008105185 0.0008100741 0.0003688148 0.0044924444

d08 0.1 0.9999939259 0.0000000000 0.0000060000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000741 0.0000000000

d08 0.2 0.9885620741 0.0000000000 0.0111143704 0.0000329630 0.0000328889 0.0000242222 0.0000224444 0.0000147407 0.0001834074

d08 0.3 0.0496011852 0.0000000000 0.9492053333 0.0001125926 0.0001191111 0.0000924444 0.0000827407 0.0000614815 0.0006636296

d08 0.4 0.0000000000 0.0000000741 0.9999999259 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d08 0.5 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d09 0.0 0.0050550370 0.9948360741 0.0001029630 0.0000006667 0.0000006667 0.0000007407 0.0000003704 0.0000003704 0.0000025185

d09 0.1 0.9572285926 0.0427714074 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d09 0.2 0.7052231111 0.2947749630 0.0000019259 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d09 0.3 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d09 0.4 0.0000000000 0.9999945926 0.0000054074 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

d09 0.5 0.0000000000 0.9948360741 0.0051639259 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s01 0.0 0.3325543704 0.0000000741 0.6652133333 0.0000029630 0.0000014815 0.0000000000 0.0000000000 0.0000000000 0.0022277778

s01 0.1 0.2221680000 0.0000001481 0.7778254074 0.0000056296 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000008148

s01 0.2 0.1110568889 0.0000001481 0.8889373333 0.0000056296 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s01 0.3 0.0004082222 0.0000000741 0.9995877778 0.0000039259 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s01 0.4 0.0000000000 0.0000066667 0.9999933333 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s01 0.5 0.0000000000 0.2438390370 0.7561609630 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.0 0.2071903704 0.7928096296 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.1 0.1007003704 0.8992996296 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.2 0.0000004444 0.9999995556 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.3 0.0000000000 0.9999716296 0.0000283704 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.4 0.0000000000 0.8988037037 0.1011962963 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

s02 0.5 0.0000000000 0.7928096296 0.2071903704 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

T
ab

le
C

.7:
S
im

u
lation

R
esu

lts
for

C
h
ap

ter
5.8.2

70

Appendix D

Code Examples

This chapter contains code examples that were too big to be placed elsewhere in this paper.

D.1 Implementation of the XerxesDecoder Class

Listing D.1 shows the implementation of the Xerxes Decoder introduced in chapter 3.3.2.2.
In this listing the header file and the implementation have been combined.

1 class Decoder {

2 public:

3 virtual void decode(const CodeStream & CS, BinStream & BS) = 0;

4 static const char* errstring (int _reason);

5 static const int CodeError = 1;

6 static const int SamplerError = 2;

7 };

8

9 class Xerxes_Decoder : public Decoder {

10 public:

11 Xerxes_Decoder ();

12 void decode(const CodeStream & CS, BinStream & BS);

13 static void init ();

14 protected :

15 static void addTransition (const byte _c_state , const byte _n_state ,

16 const char* _c_sym , const char* _n_sym ,

17 const byte _bit);

18 inline byte do_transition (byte& _State , byte _curr , byte _next);

19 static const byte xSta = 1;

20 static const byte xA = 2;

21 static const byte xB = 3;

22 static const byte xC = 4;

23 static const byte xD = 5;

24 static const byte xW = 6;

25 static const byte xX = 7;

26 static const byte xY = 8;

27 static const byte xZ = 9;

28 static const byte xSto = 10;

29 static byte m_transitions [256];

30 };

31

32 byte Xerxes_Decoder :: m_transitions [256];

33

34 class _Decoder_init { // static initialisation object for XD

35 public:

36 _Decoder_init () { Xerxes_Decoder ::init (); }

37 } __Decoder_init ;

71

38

39 const char* Decoder :: errstring (int _reason)

40 {

41 switch (_reason) {

42 case CodeError : return "Xerxes Code Error";

43 case SamplerError : return "Xerxes Symbol Error (Sampler)";

44 default: return "Unknown Error";

45 }

46 }

47

48 void Xerxes_Decoder :: addTransition (const byte _c_state ,

49 const byte _n_state ,

50 const char* _c_sym ,

51 const char* _n_sym ,

52 const byte _bit)

53 {

54 while(* _c_sym != 0) {

55 byte c = CodeStream :: from_char (* _c_sym);

56 const char* next = _n_sym;

57 while(* next != 0) {

58 byte n = CodeStream :: from_char (*next);

59 m_transitions [(_c_state & 0x0f) | ((n & 3)<<4) | ((c & 3)<<6)] =

60 (_n_state & 0x0f) | ((_bit & 3) << 4);

61 next ++;

62 }

63 _c_sym++;

64 }

65 }

66

67 void Xerxes_Decoder ::init ()

68 {

69 for(int i=0; i<256; m_transitions [i++]=0);

70 addTransition (xSta , xSta , "I", "I", 2);

71 addTransition (xSta , xA, "I", "D", 2);

72 addTransition (xSta , xD, "I", "C", 2);

73 addTransition (xA , xA, "D", "DN", 1);

74 addTransition (xA , xX, "N", "CDN", 0);

75 addTransition (xD , xX, "C", "CDN", 0);

76 addTransition (xD , xA, "D", "DN", 1);

77 addTransition (xC , xA, "D", "DN", 1);

78 addTransition (xC , xX, "C", "CD", 0);

79 addTransition (xX , xD, "C", "CD", 0);

80 addTransition (xX , xW, "D", "NI", 1);

81 addTransition (xX , xY, "C", "N", 1);

82 addTransition (xW , xC, "N", "CD", 0);

83 addTransition (xY , xZ, "N", "CD", 1);

84 addTransition (xZ , xY, "C", "N", 1);

85 addTransition (xZ , xW, "D", "NI", 1);

86 addTransition (xZ , xB, "C", "CD", 0);

87 addTransition (xB , xA, "D", "DN", 1);

88 addTransition (xB , xX, "C", "CD", 0);

89 addTransition (xB , xSto , "C", "I", 0);

90 addTransition (xB , xSto , "I", "I", 2);

91 addTransition (xD , xSto , "C", "I", 0);

92 addTransition (xD , xSto , "I", "I", 2);

93 addTransition (xW , xSto , "NI", "I", 0);

94 addTransition (xX , xSto , "C", "I", 0);

95 addTransition (xX , xSto , "I", "I", 2);

96 addTransition (xZ , xSto , "C", "I", 0);

97 addTransition (xZ , xSto , "I", "I", 2);

98 addTransition (xSto , xSto , "I", "I", 0);

99 }

72

100

101 Xerxes_Decoder :: Xerxes_Decoder ()

102 {

103 }

104

105 inline byte Xerxes_Decoder :: do_transition (byte& _State , byte _curr , byte _next)

106 {

107 byte rv = m_transitions [(_State & 0x0f) | ((_next & 3)<<4) |

108 ((_curr & 3)<<6)];

109 if(rv==0) throw int(CodeError);

110 _State = rv & 0x0f;

111 byte code = (rv >> 4) & 7;

112 return code;

113 }

114

115 void Xerxes_Decoder ::decode(const CodeStream & CS, BinStream & BS)

116 {

117 static byte idle = CodeStream :: from_char (’I’);

118 byte State = xSta;

119 byte c = idle;

120 byte n = idle;

121 int soc_len = 0;

122 while(CS.getb(soc_len)== CodeStream ::D) soc_len ++;

123 if(CS.getb(soc_len ++)!= CodeStream ::N) throw int(CodeError);

124 if(CS.getb(soc_len ++)!= CodeStream ::D) throw int(CodeError);

125 if(CS.getb(soc_len ++)!= CodeStream ::N) throw int(CodeError);

126 for(int i=0; i<CS.size ()+3; i++) {

127 n = CS.getb(i);

128 if(n== CodeStream ::E) throw int(SamplerError);

129 // propagate error from Sampler

130 if(n== CodeStream ::B) throw int(CodeError);

131 byte bit = do_transition (State , c, n);

132 if(bit <2) BS.append(bit);

133 c = n;

134 }

135 BS.remove((BS.size () - soc_len) % 8);

136 }

Listing D.1: Implementation of the XerxesDecoder

D.2 Implementation of the Sampling Logic

Listing D.2 shows the sampling logic which is included in chapter 3.3.2.4 as pseudo code.

1 void TimeDecoder_Default :: decode(const std::vector <double >& _timevec ,

2 CodeStream & _CS)

3 {

4 std::vector <double >:: const_iterator i = _timevec .begin();

5 double swh = fabs(m_sync_win_half);

6 double swoffs = fabs ((fabs(m_sync_win_half)-m_sync_win_half))/2;

7 double t_clock = 0, diff;

8 double last;

9 int line =1;

10 int toggle;

11 _CS.clear();

12 t_clock = _timevec .front() - 0.5 - m_offs + m_granularity /2.0;

13 while(i!= _timevec .end()) {

14 bool clock = false;

15 bool data = false;

16 if(t_clock > *i+5) throw int(Decoder :: SamplerError);

73

17 toggle = 1;

18 while(i!=_timevec .end() && check_intervall (0.2500001, *i-t_clock)) {

19 toggle ^= 1;

20 if (toggle == 1) {

21 if(*i > last+m_granularity)

22 throw int(Decoder :: SamplerError);

23 } else

24 last = *i;

25 if(check_intervall (m_rcv_win_half , *i-t_clock)) clock = !clock;

26 else throw int(Decoder :: SamplerError);

27 diff = *i-t_clock+swoffs;

28 if(! check_intervall (swh , diff)) {

29 if(m_granularity >1e-8)

30 diff = floor(diff / m_granularity) * m_granularity ;

31 t_clock += diff;

32 }

33 if(m_asym !=0) {

34 double asym = static_cast <double >(m_asym);

35 if(line ==1) t_clock -= asym * m_granularity ;

36 else t_clock += asym * m_granularity ;

37 line ^= 1;

38 }

39 ++i;

40 }

41 t_clock += 0.5;

42 toggle = 1;

43 while(i!=_timevec .end() && check_intervall (0.2500001, *i-t_clock)) {

44 toggle ^= 1;

45 if (toggle == 1) {

46 if(*i > last+m_granularity)

47 throw int(Decoder :: SamplerError);

48 } else

49 last = *i;

50 if(check_intervall (m_rcv_win_half , *i-t_clock)) data = !data;

51 else throw int(Decoder :: SamplerError);

52 diff = *i-t_clock+swoffs;

53 if(! check_intervall (swh , diff)) {

54 if(m_granularity >1e-8)

55 diff = floor(diff / m_granularity) * m_granularity ;

56 t_clock += diff;

57 }

58 if(m_asym !=0) {

59 double asym = static_cast <double >(m_asym);

60 if(line ==1) t_clock -= asym * m_granularity ;

61 else t_clock += asym * m_granularity ;

62 line ^= 1;

63 }

64 ++i;

65 }

66 t_clock += 0.5;

67 if(clock && data) _CS.append_data (CodeStream ::B);

68 else if(clock) _CS.append_data (CodeStream ::C);

69 else if(data) _CS.append_data (CodeStream ::D);

70 else _CS.append_data (CodeStream ::N);

71 }

72 _CS.append_data (CodeStream ::I);

73 }

Listing D.2: Implementation of the Sampling Logic

74

D.3 Implementation of the Filters

The following listings show the implementation of the Filter framework. All Filter classes
but Filter Scale and Filter Scale have been removed from the listing to save space. The
Filter Framework is used for fault injection and allows an arbitrary number of filters to be
serialized in a filter chain.

1 class Filter {

2 public:

3 virtual ~Filter();

4 virtual void filter(std::vector <double >& _timevec) = 0;

5 protected :

6 class FilterRange {

7 public:

8 FilterRange ();

9 void set_range (const std::string& _start , const std::string& _stop);

10 void calc_range (std::vector <double >& _timevec);

11 std::vector <double >:: iterator begin();

12 std::vector <double >:: iterator end();

13 char m_start_type ;

14 union { double dval; unsigned int uval; } m_start_time ;

15 char m_stop_type ;

16 union { double dval; unsigned int uval; } m_stop_time ;

17 private:

18 std::vector <double >:: iterator m_begin;

19 std::vector <double >:: iterator m_end;

20 double m_begin_offset ;

21 double m_end_offset ;

22 };

23 };

24

25 class FilterFactory

26 {

27 public:

28 typedef Filter* createfunc (const std:: string& _args);

29 struct FilterInfo {

30 const char* m_name;

31 const char* m_helptext ;

32 const char* m_defaults ;

33 createfunc * m_create;

34 };

35 FilterFactory ();

36 void append(const std:: string& _filter_desc);

37 void clear();

38 void filter(std::vector <double >& _timevec);

39 std:: string help () const;

40 private:

41 std::vector <FilterInfo > m_finfo;

42 std::vector <Filter*> m_filters ;

43 };

44 extern FilterFactory Filters;

45

46 class Filter_Jitter : public Filter {

47 public:

48 static Filter* create(const std:: string& _arguments);

49 static const FilterFactory :: FilterInfo info ();

50 void filter(std::vector <double >& _timevec);

51 private:

52 Filter_Jitter ();

53 static const char* m_help;

54 static const char* m_defaults ;

75

55 double m_jitter;

56 FilterRange m_range;

57 };

58

59 class Filter_Scale : public Filter {

60 public:

61 static Filter* create(const std:: string& _arguments);

62 static const FilterFactory :: FilterInfo info ();

63 void filter(std::vector <double >& _timevec);

64 private:

65 Filter_Scale ();

66 static const char* m_help;

67 static const char* m_defaults ;

68 double m_scale;

69 FilterRange m_range;

70 };

71

72 inline std::vector <double >:: iterator Filter:: FilterRange ::begin()

73 {

74 return m_begin;

75 }

76

77 inline std::vector <double >:: iterator Filter:: FilterRange ::end()

78 {

79 return m_end;

80 }

Listing D.3: Header File for the Filter implementation

1 FilterFactory Filters;

2

3 const char* Filter_Scale :: m_help =

4 " scale=scale[:start={@|+|*}time][:stop ={@|+|*}time]\n"

5 " scale the time axis around the edge given in start\n"

6 " this filter can be used to simulate oscillator drifts\n";

7 const char* Filter_Scale :: m_defaults = "scale=1.0:start=@0:stop=@0";

8

9 const char* Filter_Jitter :: m_help =

10 " jitter=jitterwidth [: start={@|+|*}time][: stop ={@|+|*}time]\n"

11 " add a random offset to each edge (normal distribution \n"

12 " jitterwidth =3*sigma , values from -jw to +jw)\n";

13 const char* Filter_Jitter :: m_defaults = "jitter =0.25/3.0: start=@0:stop=@0";

14

15 // ///

16

17 FilterFactory :: FilterFactory ()

18 {

19 m_finfo.push_back (Filter_Shift ::info ());

20 m_finfo.push_back (Filter_Scale ::info ());

21 m_finfo.push_back (Filter_Jitter ::info ());

22 m_finfo.push_back (Filter_Asym ::info ());

23 m_finfo.push_back (Filter_High ::info ());

24 m_finfo.push_back (Filter_Low ::info ());

25 }

26

27 std::string FilterFactory ::help () const

28 {

29 std:: string help;

30 help = "\n";

31 help += "FILTER HELP\n";

32 help += "***********\ n";

76

33 help += "available filters :\n";

34 for(std::vector <FilterInfo >:: const_iterator i=m_finfo.begin();

35 i!= m_finfo.end(); ++i)

36 help += i->m_helptext ;

37 help += "\n";

38 help += "arguments :\n";

39 help += " <arg > mandatory arguments \n";

40 help += " [arg] optional arguments \n";

41 help += " a|b multiple possibilities \n";

42 help += " @n nht edge starting from 1, (default all = @0,@0)\n";

43 help += " *5.5 abs. time in BCD units (frame starts at 5.0)\n";

44 help += " +8.9 rel. time in BCD units (from frame start)\n";

45 help += " #0.5 rel. time from first selected edge\n";

46 help += " : argument seperator , may be omitted at the end\n";

47 help += "examples for filter expressions :\n";

48 help += " scale =1.0001 creates a slow clock drift "

49 "(oscillator drift)\n";

50 help += " offset =0.5: start=@2 delays each but the first "

51 "edge by 0.5 BCD\n";

52 return help;

53 }

54

55 void FilterFactory ::append(const std:: string& _filter_desc)

56 {

57 std::vector <std::string > temp;

58 stringtok (temp , _filter_desc , ":=", "", 2);

59 if(temp.size ()>=1)

60 for(std::vector <FilterInfo >:: const_iterator i=m_finfo.begin();

61 i!=m_finfo.end(); ++i)

62 if(i->m_name == temp [0])

63 m_filters .push_back (i->m_create (_filter_desc));

64 }

65

66 void FilterFactory ::clear()

67 {

68 while(m_filters .size ()!=0) {

69 delete m_filters .back ();

70 m_filters .pop_back ();

71 }

72 }

73

74 void FilterFactory ::filter(std::vector <double >& _timevec)

75 {

76 for(std::vector <Filter*>:: iterator i=m_filters .begin ();

77 i!= m_filters .end(); ++i)

78 (*i)->filter(_timevec);

79 }

80

81 // ///

82

83 Filter:: FilterRange :: FilterRange ()

84 {

85 }

86

87 void Filter:: FilterRange :: set_range (const std::string& _start ,

88 const std::string& _stop)

89 {

90 m_start_type = _start [0];

91 if(m_start_type ==’@’) {

92 m_start_time .uval = atol(_start.c_str()+1);

93 if(m_start_time .uval !=0) m_start_time .uval --;

94 } else if (m_start_type ==’*’) {

77

95 m_start_time .dval = strtod(_start.c_str()+1, NULL);

96 } else if (m_start_type ==’+’) {

97 m_start_time .dval = strtod(_start.c_str()+1, NULL);

98 } else throw int (0);

99 m_stop_type = _stop[0];

100 if(m_stop_type ==’@’) {

101 m_stop_time .uval = atol(_stop.c_str()+1);

102 } else if (m_stop_type ==’*’) {

103 m_stop_time .dval = strtod(_stop.c_str()+1, NULL);

104 } else if (m_stop_type ==’+’) {

105 m_stop_time .dval = strtod(_stop.c_str()+1, NULL);

106 } else if (m_stop_type ==’#’) {

107 m_stop_time .dval = strtod(_stop.c_str()+1, NULL);

108 } else throw int (0);

109 }

110

111 void Filter:: FilterRange :: calc_range (std::vector <double >& _timevec)

112 {

113 double temp;

114 if(m_start_type ==’@’) {

115 if(m_start_time .uval <_timevec .size ())

116 m_begin = _timevec.begin() + m_start_time .uval;

117 else

118 m_begin = _timevec.end ();

119 } else {

120 if (m_start_type ==’*’) {

121 temp = m_start_time .dval - 1e-8;

122 } else {

123 temp = m_start_time .dval + _timevec [0] - 0.5 - 1e-8;

124 }

125 for(m_begin = _timevec.begin();

126 m_begin != _timevec.end() && *m_begin <temp; ++m_begin);

127 }

128 if(m_stop_type ==’@’) {

129 if(m_stop_time .uval ==0 || m_stop_time .uval >= _timevec .size ())

130 m_end = _timevec.end();

131 else

132 m_end = _timevec.begin() + m_stop_time .uval;

133 } else {

134 if (m_start_type ==’*’) {

135 temp = m_stop_time .dval + 1e-8;

136 } else if (m_start_type ==’+’) {

137 temp = m_stop_time .dval + _timevec [0] - 0.5 + 1e-8;

138 } else if (m_start_type ==’#’) {

139 if(m_begin != _timevec .end())

140 temp = m_stop_time .dval + *m_begin + 1e-8;

141 else

142 temp =-1;

143 }

144 for(m_end=m_begin; m_end!= _timevec.end() && *m_end <temp; ++ m_end);

145 }

146 if(m_begin >= m_end) {

147 m_begin=_timevec .end();

148 m_end=_timevec .end();

149 }

150 }

151

152 Filter ::~ Filter()

153 {

154 }

155

156 // ///

78

157

158 Filter_Scale :: Filter_Scale ()

159 {

160 }

161

162 Filter* Filter_Scale :: create(const std:: string& _arguments)

163 {

164 Filter_Scale * FS = new Filter_Scale ;

165 std::map <std::string ,std::string > config;

166 ParseCfg (config , m_defaults);

167 ParseCfg (config , _arguments);

168 #ifdef DEBUG

169 std::cerr << "Filter_Scale ::create(" << _arguments << ")" << std:: endl ;

170 for(map <std::string ,std::string >:: iterator ci=config.begin();

171 ci!= config.end(); ++ci)

172 std::cerr << ci->first << "=>" << ci->second << std::endl;

173 #endif

174 FS ->m_scale = strtod(config["scale"]. c_str(), NULL);

175 FS ->m_range.set_range (config["start"], config["stop"]);

176 return FS;

177 }

178

179 const FilterFactory :: FilterInfo Filter_Scale ::info ()

180 {

181 FilterFactory :: FilterInfo fs;

182 fs.m_name = "scale";

183 fs.m_helptext = m_help;

184 fs.m_defaults = m_defaults ;

185 fs.m_create = &create;

186 return fs;

187 }

188

189 void Filter_Scale ::filter(std::vector <double >& _timevec)

190 {

191 m_range.calc_range (_timevec);

192 double center = *m_range.begin();

193 for(std::vector <double >:: iterator i=m_range.begin(); i!=m_range.end();

194 ++i)

195 *i = (*i-center) * m_scale + center;

196 }

197

198 // ///

199

200 Filter_Jitter :: Filter_Jitter ()

201 {

202 }

203

204 Filter* Filter_Jitter :: create(const std:: string& _arguments)

205 {

206 Filter_Jitter * FS = new Filter_Jitter ;

207 std::map <std::string ,std::string > config;

208 ParseCfg (config , m_defaults);

209 ParseCfg (config , _arguments);

210 #ifdef DEBUG

211 std::cerr << "Filter_Jitter ::create(" << _arguments << ")" << std::endl;

212 for(map <std::string ,std::string >:: iterator ci=config.begin();

213 ci!= config.end(); ++ci)

214 std::cerr << ci->first << "=>" << ci->second << std::endl;

215 #endif

216 FS ->m_jitter = strtod(config["jitter"]. c_str(), NULL) / 3.0;

217 FS ->m_range.set_range (config["start"], config["stop"]);

218 return FS;

79

219 }

220

221 const FilterFactory :: FilterInfo Filter_Jitter ::info ()

222 {

223 FilterFactory :: FilterInfo fs;

224 fs.m_name = "jitter";

225 fs.m_helptext = m_help;

226 fs.m_defaults = m_defaults ;

227 fs.m_create = &create;

228 return fs;

229 }

230

231 void Filter_Jitter ::filter(std::vector <double >& _timevec)

232 {

233 m_range.calc_range (_timevec);

234 for(std::vector <double >:: iterator i=m_range.begin();

235 i!= m_range.end(); ++i)

236 *i = *i + gaussian_distribution (m_jitter);

237 }

Listing D.4: Source File for the Filter implementation

D.4 Implementation of the time frame Function

Listing D.5 shows the implementation of the time frame2 function. This is function is called
from the time frame function to simulate framecount frames until the desired number of
frames has been simulated.

1 unsigned long time_frame2 (BinStream & _frame , const int _framecount ,

2 unsigned long& _rcv_det , unsigned long& _xer_det ,

3 unsigned long& _crc_det , unsigned long& _not_det ,

4 unsigned long errors [17])

5 {

6 BinStream & BS_corr = _frame;

7 CodeStream CS_corr;

8 CodeStream CS_err;

9 BinStream BS_err;

10

11 // BS_corr.append_crc (8);

12 g_encoder ->encode(BS_corr , CS_corr);

13

14 std::vector <double > tv_corr;

15 g_time_enc ->encode(CS_corr , tv_corr);

16

17 for(int i=0; i<_framecount ; ++i) {

18

19 std::vector <double > tv_err(tv_corr);

20 bool caught = false;

21 Filters.filter(tv_err);

22 CS_err.clear();

23 BS_err.clear();

24 try {

25 g_time_dec ->decode(tv_err ,CS_err);

26 g_decoder ->decode(CS_err ,BS_err);

27 } catch (int& e) {

28 if(e==Decoder :: CodeError)

29 ++ _xer_det;

30 else

31 ++ _rcv_det;

80

32 caught = true;

33 }

34 if(! caught) {

35 int diff = diffrence (BS_corr , BS_err);

36 if(diff >15) diff =16;

37 errors[diff]++;

38 if(diff >6) {

39 _not_det ++;

40 } else if (diff !=0) _crc_det ++;

41 }

42 }

43 return _framecount ;

44 }

Listing D.5: Implementation of the time frame function

81

