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Abstract

Recently, MIMO (multiple-input multiple-output) systems draw great attention because

they offer high spectral efficiency and high reliability, concurrently. For exploiting those

gains, channel coefficients need to be known, thus channel training is a crucial part for

the performance of MIMO systems.

In the first chapter, this work offers a short summary on system models for MIMO

systems. The second chapter summarizes conditions on optimal training symbol design

[1] and placement [2] for spatially white channels, and it shows the connection between

channel capacity and training.

The third chapter considers channel estimation for correlated channels. Channel corre-

lations can be exploited in order to increase channel estimation, and thus to improve

channel capacity. Conventional correlation estimators, which are used throughout the

literature, are biased (e.g. [3]). Therefore, novel unbiased corrected correlation estima-

tors are introduced. Simulations and performance discussion is provided.

Finally, the corrected correlation estimators are reformulated into iterative structures,

and complexity orders are investigated.



Kurzfassung

MIMO Systeme (Mehrfachantennensysteme) erlangten in letzter Zeit besondere Auf-

merksamkeit, da sie gleichzeitig eine hohe spektrale Effizienz und Zuverlässigkeit ver-

sprechen. Um diese Eigenschaften ausnützen zu können, müssen die Kanalkoeffizienten

bekannt sein, deshalb ist das Kanaltraining ein kritischer Punkt für die Leistung von

MIMO Systemen.

Im ersten Kapitel bietet diese Arbeit eine kurze Zusammenfassung über MIMO System-

modelle. Das zweite Kapitel ist eine Zusammenfassung über Bedingungen für optimales

Trainingssymboldesign [1] und deren Platzierung [2] für räumlich weiße Kanäle, und

zeigt den Zusammenhang zwischen Kanaltraining und Kanalkapazität.

Das dritte Kapitel betrachtet Kanalschätzung für korrelierte Kanäle. Korrelationen des

Kanals können ausgenützt werden, um die Kanalschätzung zu verbessern, und dadurch

die Kanalkapazität zu erhöhen. Herkömmliche Korrelationsschätzer, die in der Liter-

atur verwendet werden, sind nicht erwartungstreu (z.B. [3]). Deswegen werden neue,

erwartungstreue ”korrigierte Korrelationsschätzer” vorgestellt. Weitere Betrachtungen,

Simulationen und Diskussion des Verhaltens der Korrelationsschätzer werden angestellt.

Abschließend werden die korrigierten Korrelationsschätzer in iterative Strukturen über-

geführt und die Komplexitätsordnung untersucht.
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1 Introduction

Multiple-input multiple-output (MIMO) Systems have recently been of great interest.

The use of multiple antennas on both ends of a wireless link promises various gains.

• Multiplexing gain: A significant improvement of spectral efficiency is attained by

spatial multiplexing.

• Diversity gain: The use of multiple antennas generates a higher diversity, and thus

improves the link reliability significantly.

• Array gain: By coherent combining the coverage can be improved.

• Reduction of co-channel interference: By doing beamforming and placing zeros in

the antenna pattern the cellular capacity can be increased.

For example, in the ideal case it can be shown, that the ergodic capacity increase is

min(Nt, Nr) bits per second per hertz for every 3dB increase of Signal to Noise Ratio

(SNR) where Nt and Nr denote the number of transmit antennas and the number of

receive antennas, respectively [4]1.

The theory of all those improvements is based on channel knowledge on either the

transmitter or the receiver side or both. Thus, channel training and channel estimation

are an essential part of communication systems, and have to be done carefully.

1In the single antenna AWGN channel, 1 bit per second per hertz can be achieved with every 3dB

increase at high SNR.
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1 Introduction

Figure 1.1: Point-to-point MIMO Channel with Nt transmit antennas and Nr receive

antennas. H describes the scattering medium in between.

1.1 Notation

Matrices are represented in capital bold face letters (e.g. H), vectors in lowercase bold

face letters (e.g. s). Furthermore, (·)H , (·)T and (·)∗ denote hermitian transpose, trans-

pose and conjugate, respectively. Finally, E{·} denotes the expectation, tr(A) the trace

of matrix A, I denotes the identity matrix of appropriate size, aij denotes the (i, j)th

entry of matrix A, and ⊗ is reserved for the Kronecker product.

Furthermore, N(·) always denotes numbers of antennas and L(·) always denotes block-

lengths.

1.2 System Models

A point-to-point MIMO link consists of a multiple-antenna transmit array with Nt trans-

mit antennas and a multiple-antenna receive array with Nr receive antennas and a scat-

tering medium between them (see Figure 1.1).

By the scattering medium each signal from the transmit antenna array is scattered,

refracted, diffracted, etc., and generally impinges with different amplitudes and phases on

each antenna of the receiver array. Generally, the channel shows intersymbol interference

(ISI) and thus be frequency-selective. In this thesis, I will assume block-fading MIMO

8



1 Introduction

channels. This means that the channel stays constant for the duration of a transmit

block and then changes completely.

When describing this system, the equivalent discrete-time baseband representation is

used. The model has to be able to describe a MIMO channel with frequency selective

fading.

In the following, I will derive a MIMO system model out of some well known single input

single output (SISO) system models.

1.2.1 SISO flat-fading system model

A SISO flat-fading system with block transmission can be modeled as [5]

y = sh + n (1.1)

where s denotes the transmit symbol vector with size Ls × 1 representing the transmit

block, h represents the channel, and n is a zero mean white Gaussian noise vector whose

components have variance var{ni} = σ2
n, i = 1...Ls. This is the most basic model one

can find for a single antenna point to point link for an ISI-free channel.

1.2.2 MIMO flat-fading system model

A multiple-input multiple-output flat-fading system with block transmission can be mod-

eled as [1]

Y = SH + N, (1.2)

where S denotes the Ls × Nt transmit matrix, where all symbol blocks for an antenna

are stacked into a row of the matrix. So the column index of S represents the transmit

antenna and the row index represents the time index. H is the Nt ×Nr channel trans-

fer matrix and describes the scattering medium. Its elements hij represent the fading

coefficient from the ith transmit antenna to the jth receive antenna. Thus, Y is an

Ls × Nt receive symbol matrix, where the column index of this matrix corresponds to

9



1 Introduction

the receive antenna and the row index to the time index [2]. N is a complex Gaussian

noise matrix with independent identically distributed (iid) elements with zero mean and

component-wise variance σ2
n.

Often we use a normalized noise and channel, i.e. N is complex Gaussian with zero

mean and unit variance (σ2
n = 1) and also the transmit symbols have unit mean power

(E{s2
ij} = 1). With this assumption the system model can be written as

Y =

√
ρ

Nt

SH + N, (1.3)

where ρ denotes the average signal to noise ratio (SNR) for a single receive antenna [1].

1.2.3 SISO frequency-selective system model

For frequency selective fading the assumption is used, that the impulse response is finite,

and thus the input-output relation is given by the discrete-time convolution [5]

yn =

Lh−1∑
i=0

hisn−i,

which can be written in vector-matrix-notation as

y = Sh.

Here h = [h0 h1 · · · hLh−1]
T is a Lh × 1 vector containing the channel taps and S is

a Toeplitz matrix of size (Ls + Lh − 1)× Lh:

S =




s0 0 · · · 0

s1 s0
. . .

...
...

...
. . . 0

sLh−1 sLh−2 · · · s0

...
...

...

sLs−1 sLs−2 · · · sLs−Lh

0 sLs−1
...

...
. . . . . .

...

0 · · · 0 sLs−1




. (1.4)
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1 Introduction

Thus, the system model of a SISO frequency selective channel becomes

y = Sh + n, (1.5)

where y is the received symbol vector and n is again a zero mean white gaussian noise

vector with component-wise variance σ2
n. Now, this model is extended to the MIMO

case.

1.2.4 MIMO frequency-selective system model

For a MIMO system with frequency-selective fading the model from section 1.2.3 can be

extended in the following way.

Vector h from equation (1.5) is extended to a block matrix

H =
[
H0 H1 . . . HLh

]T

,

where Hi denotes the MIMO channel matrix as in the flat-fading model (1.2) for channel

tap i. The Toeplitz matrix S is extended to a block-Toeplitz matrix of size

(Ls + Lh − 1)× (LhNt) similar to (1.4) given by

S =




s0 0 · · · 0

s1 s0
. . .

...
...

...
. . . 0

sLh−1 sLh−2 · · · s0

...
...

...

sLs−1 sLs−2 · · · sLs−Lh

0 sLs−1
...

...
. . . . . .

...

0 · · · 0 sLs−1




. (1.6)

where the vector-elements

si =
[
si1 si2 · · · siNt

]

are holding to the transmit symbols corresponding to the transmit antennas.
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1 Introduction

With this notation the system model can again be written as

Y = SH + N

which has the same structure as equation (1.2) in section 1.2.2. Again, Y is a (Ls +

Lh − 1) × Nr receive symbol matrix and N models the system noise. Through this

symmetry of these system models, they can be treated widely equally (e.g. for channel

estimation). In fact, for the flat fading case, the channel block-matrix vector H collapses

to the single matrix H0 and the symbol Toeplitz matrix S collapses to the first column

(corresponding to only one channel tap). When there are other differences in treating

flat-fading and frequency-selective channels, I will comment on it separately.

To regain data S out of the receive signal Y the channel matrix H has to be estimated.

So channel modeling and channel estimation are crucial for the efficient design of wireless

systems.

12



2 Training by Pilot Symbols

Training symbols (also called ”pilot symbols” or ”pilots”) are symbols that are known

to the transmitter and to the receiver and thus are used for channel estimation.

This chapter is about training based schemes that use just the pilot symbols for channel

estimation [1, 6] in contrast to using both, data and training symbols for channel estima-

tion and subsequently for detection [7], or joint detection and decoding in the context

of turbo decoders. This chapter also neglects the usage of second order statistics to

improve channel estimation.

In the following chapters I will indicate training symbols with (·)τ and data symbols with

(·)d (e.g. Sτ will denote a transmit symbol matrix containing only training symbols).

These symbols are placed somewhere in the transmit block.

2.1 Definitions

2.1.1 Decomposition of Symbols

Assuming that the training symbols are spread out in the symbol block, one can decom-

pose the transmit symbol matrix into

S = Sd + Sτ , (2.1)

and the receive symbol matrix into

Y = Yd + Yτ , (2.2)

13



2 Training by Pilot Symbols

Yd
= +

0

0

= +
0

0

S

Sτ

Sd

Y

Yτ

Figure 2.1: Separating training and data symbols for channel estimation. Matrices may

overlap in frequency-selective fading environments

where Sd and Sτ are the parts of S containing all the data symbols or training symbols,

respectively, and the other elements are set to zero. Also, one can decompose the

receive matrix Y into a matrix Yd with contributions only based on the transmitted

data symbols and the matrix Yτ containing contributions only based on the transmitted

training symbols. This principle is shown in Figure 2.1

If a flat-fading scenario is assumed, the nonzero contributions from Sd and Sτ do not

interfere at the receiver whereas in the frequency-selective case, generally, there are

elements of Y that contain contributions from both, data and training symbols. The

receiver knows the training symbols as well as their positions in the transmission blocks

and thus can use this knowledge for channel estimation.

2.1.2 Channel Estimation

There are various ways to estimate the channel matrix H out of the pilot symbols. The

most commonly used methods are least-squares (LS) estimation and minimum mean

square error (MMSE) estimation. The equations read as

ĤLS = (SH
τ Sτ )

−1SH
τ Yτ , (2.3)

ĤMMSE = (SH
τ Sτ + σ2

nINt)
−1SH

τ Yτ , (2.4)

14



2 Training by Pilot Symbols

ĤLS/MMSEY
τChannel

H, N

S
τ

Channel
estimation
LS/MMSE

Figure 2.2: Block estimation of channel matrix H. The training cluster Sτ produces an

output Yτ . The channel estimator knows the training sequence, and thus

the output of the channel can be used for channel estimation.

where only training symbols are used for channel estimation. Also, for the MMSE

estimator, no further statistical knowledge of the channel is assumed to be known, so

a spatially white channel is considered. A block diagram of this structure is show in

Figure 2.2.

Thus, the channel can be decomposed into

H = Ĥ + H̃, (2.5)

where Ĥ denotes the channel estimate and H̃ denotes the channel estimation error.

To obtain a meaningful estimate of H, at least as many measurements as unknowns are

needed [1]. This implies that Nr · Lτ ≥ Nr · Nt · Lh or Lτ ≥ Nt · Lh, where Lτ is the

number of training symbols per antenna. There are two things to note:

• The quality of the resulting estimation is of great interest. It depends heavily on

the design, power allocation and placement of the training symbols.

• For frequency-selective fading equations (2.1) and (2.2) do not say anything about

how to get the contributions Yτ out of the received matrix Y.

These points will be a topic in the next sections.

2.2 Optimality criteria on training symbols

There are various ways for optimizing training with pilot symbols. All these methods

can be subsumed in three categories:

15



2 Training by Pilot Symbols

• Training symbol design

• Power allocation

• Placement

In the next subsections I will describe these results and find conditions where those

results hold true.

2.2.1 Optimum training symbol design

It can be shown that following criterion on the training symbols minimizes the variance

of the estimation error [1]. First I denote the matrix S̄τ as a matrix containing only

training symbols without leading or trailing zeros and without any zeros in between the

training symbols (so all all-zero columns or rows are cancelled). So the remaining matrix

holds only the training symbols over time and space, closely stacked.

Now it can be shown that following orthogonality condition

S̄H
τ S̄τ = const · ILτ (2.6)

minimizes the the variance of the estimation error, where const denotes an arbitrary,

real, nonzero factor. This means that the training signal must be a multiple of a matrix

with orthonormal columns, or simply spoken the training symbols have to be orthogonal

to each other in time and space. This result is also valid for frequency-selective channels.

It has to be emphasized that this result does not depend on the distribution of H [2].

It is not astonishing that this conclusion can be gained by means of different methods

of optimization; in [2] this result is achieved by minimizing the Cramer Rao Bound

(CRB)1. A similar conclusion is drawn in [9] in training for BLAST.

1The Cramer Rao bound is a lower bound on the variance of the estimation error any estimator can

achieve. An estimator is called optimal if its variance of estimation error achieves the CRB [2, 8].

16



2 Training by Pilot Symbols

2.2.2 Optimal Power allocation

This chapter closely refers to [1]. The following derivations are for the time being only

valid for block fading, flat fading channels. Block fading means, that the channel does

not change for the blocklength of the transmitted data. The normalized system model

from equation (1.3) was used for deriving the following results. At the end of this section

a result for optimum power allocation for frequency selective fading channels is provided

for the sake of completeness.

A basic energy relation is given by

ρL = ρdLd + ρτLτ , . (2.7)

where ρ was defined in (1.3), which denotes the average SNR of one symbol for one

single receive antenna (corresponding to the average symbol power). L denotes the total

transmit block length per transmit antenna, Ld and Lτ denote the number of data or

training symbols, respectively, and ρd and ρτ denote the mean SNR of one data or of

one training symbol, respectively.

Power allocation describes how much power is used for training or for data transmission

in relation to the average power. One can define a power allocation factor as

α =
ρdLd

ρL
, (2.8)

which describes the average power of the data symbols in relation to the average total

power. One can also read this formula as the relation between transmit energy used for

data transmission and total transmit energy.

Optimization of power allocation can now be done in two different ways:

• Change the training symbol power ρτ and keep the number of training symbols Lτ

constant.

• Change the number of training symbols Lτ and keep the power ρτ of those symbols

constant.

17



2 Training by Pilot Symbols

Now a measure for optimizing the power allocation has to be defined. In [1] this measure

is defined over the mutual information and is given by

Cτ = sup
pSd

(·), E{‖Sd‖2F }≤NtL

1

L
I(Yτ ,Sτ ,Yd; Sd). (2.9)

This measure defines a capacity Cτ (depending on the training symbols) for a block

transmission channel with block length L by finding the maximum of mutual informa-

tion I(Yτ ,Sτ ,Yd; Sd) over all transmit symbol distributions psd
(·) with a given power

constraint E{‖Sd‖2
F} ≤ NtL.

For further derivation following assumptions are used:

• The channel is estimated by MMSE estimation over the training contributions

only, so Ĥ = f(Sτ ,Yτ ) (see (2.4)).

• The pdf of the channel coefficients p(H) is (left and right) rotationally invariant2.

After some calculations one can find

Cτ ≥ E

{
L− Lτ

L
log det

(
INr +

ρeff

Nt

· H̄HH̄

)}
(2.10)

where

ρeff =
ρdσ

2
Ĥ

1 + ρdσ2
H̃

=
1 + ρd

1 + ρdσ2
H̃

− 1,

H̄ =
Ĥ

σĤ

, σ2
H̃

= E

{
1

NtNr

trH̃HH̃

}
.

Let us take a closer look at the parameters of the derived capacity. Its value is mainly

governed by two parameters, the first is the length of the training sequence Lτ , on

which it depends linearly, and the second an ”effective” SNR ρeff, on which it depends

logarithmically. Now this training based capacity shall be optimized with respect to

those two parameters.

For further derivations it is assumed that the channel matrix is spatially white, i.e. H has

iid complex circular Gaussian entries with zero mean and unit variance, so H ∼ CN (0, I).

2One has to note that this assumption is a very restrictive constraint on the pdfs considered!
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2 Training by Pilot Symbols

This is a very restrictive condition, because for radio channels this assumption is only

fulfilled in rich scattering environments. However, this assumption is valid in the context

of maximum entropy if no further knowledge of the channel is available [10]. With this

final assumption one can go for the optimization of (2.10).

The first optimization step is to use the optimal symbol design rule from section 2.2.1.

This condition minimizes the variance of the estimation error, and thus results in a

better effective SNR ρeff.

With this optimization the effective SNR can be rewritten to3

ρeff =
ρdρτLτ

Nt(1 + ρd) + ρτLτ

.

With this result ρeff is further optimized. This can be done over power allocation and

over the number of training symbols.

Power Allocation Optimizing over the power allocation yields the following result on

optimal power distribution with previously defined power allocation factor α (cf. (2.8)):

α =





γ −
√

γ(γ − 1), for Ld ≥ Nt,
1
2
, for Ld = Nt,

γ +
√

γ(γ − 1), for Ld ≤ Nt,

(2.11)

where

γ =
Nt + ρL

ρL(1− Nt

Ld
)
.

It shows that for a large number of data symbols (Ld > Nt) the data symbols should

be transmitted at a lower SNR than the training symbols, but the energy collected in

the training symbols is always less than the energy collected in the data symbols, which

sounds very reasonable, because one usually transmits more data symbols than training

symbols. Further discussion is provided in the next paragraph.

3Note that unit noise variance was assumed.
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2 Training by Pilot Symbols

Number of Training Symbols The last step is now to optimize over the number of

training symbols Lτ . We already found that there must be at least Nt training symbols

for proper channel estimation4 (see section 2.1.2).

Increasing the number of training symbols further leads to a linear decrease of our

previously defined capacity measure. So it follows that it is optimal to use as little

training symbols as possible. Losses in accuracy in estimating H due to little number

of training symbols can be compensated by increasing ρτ .

This leads to the result that the optimal training length is given by Lτ = Nt for all

ρ and L.

So, one can summarize the found conditions on power allocation as

ρd ≤ ρ ≤ ρτ (L ≥ 2Nt),

ρτ ≤ ρ ≤ ρd (L ≤ 2Nt),

ρd = ρ = ρτ (L = 2Nt),

(2.12)

valid for all SNR ρ with Lτ = Nt.

This means that for equal training and data length (which matches the number of

transmit antennas) the training and data powers shall also be equal. Usually one wants

to transmit more than just Nt data symbols per transmit antenna. Thus, for optimality

in this context, the training power shall be enhanced at the expense of the data power.

Figure 2.3 shows the power allocation factor alpha plotted for Nr = Nt = 4, an SNR of

10 dB and optimum training block length of Lτ = Nt = 4.

One can observe that the data symbols carry most of the power. This is although the

power of the data symbols is less than the power of the training symbols. But as there

are much more data symbols than training symbols, this result is achieved.

Of course it is intuitive that training symbols should carry less power than data symbols,

as one wants to use the channel for transmission.

4Assuming flat fading, so Lh = 1.
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Figure 2.3: The power allocation factor α as a function of the training block length Lτ

for Nr = Nt = Lτ = 4 at a mean SNR of ρ = 10 dB. For a large number

of data symbols, the whole power is concentrated in the data symbols, even

though the training symbols have more instantaneous power than the data

symbols (see equation 2.12).

Equal Data and Training Power In communication systems one often does not have

the luxury of varying the power during the training and data phases [1]. So we have to

assume that ρ = ρd = ρτ .

Choosing a larger value of Lτ improves the channel estimation, and hence the channel

capacity increases logarithmically (through ρeff). Using a too large value of Lτ results in

a linear decrease of capacity (by the factor L−Lτ

L
). So, there is a tradeoff between those

values.

One can find an optimum value of the capacity (2.10) by evaluating the lower bound

for the given parameters (either analytically or via Monte Carlo simulation) for various

values of Lτ .

21



2 Training by Pilot Symbols

Frequency Selective Fading Channel For completeness, I want to cite the results for

optimum power allocations for frequency selective MIMO channels (Lh > 1) from [6]

without going into detail.

Here it is assumed that only one training symbol per antenna is transmitted, and that

the transmitter is able to send training symbols with different powers than data symbols.

The optimum power allocation for iid. channel coefficients in the sense of optimizing

channel capacity is then given by

α =
β −

√
β(β − (1− λ))

1− λ

with

β = 1 + Nt(Lh + 1)/ρ, and λ = Nt(Lh + 1)/Ld.

The assumption of different powers for data and training symbols is usually not valid,

thus, this result is more of theoretical interest.

2.2.3 Simulations

Simulations were done for a MIMO channel with Nt = Nr = 4 antennas. Equation

(2.10) has been evaluated and plotted over the block length L for different SNR values

[1]. The orthogonality condition on training symbols from section 2.2.1 has been used,

and also the conditions on training symbol power are included in simulations.

Figure 2.4 shows the training based lower bound on capacity as a function of L with an

SNR of 10 dB (Figure 2.4a), and with an SNR of 6 dB (Figure 2.4b).

The red curves describe the capacity for the perfectly known channel, whereas the black

curves show the lower bound of the training based capacity, when one can exploit optimal

power allocation. Note that for this setting, the number of training symbols is fixed to

the number of transmit antennas, so Lτ = Nt.

One can see that the training based capacity is much lower than the optimum capacity

provided by the channel. For large block lengths L the difference is of about 1 bit/channel

use.
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Figure 2.4: Lower bound on training based capacity as a function of block length L

for Nt = Nr = 4 for optimal power allocation (black curves) and for equal

training symbol and data symbol power (blue curves): (a) for ρ = 10 dB

and (b) for ρ = 6 dB. The curves for equal training symbol and data symbol

power were plotted for optimized training length Lτ . The red curve gives

the upper bound of channel capacity when no training is needed. One can

observe the loss of capacity because of training. For increasing block-length

this loss decreases.
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Figure 2.5: Optimum number of training symbols Lτ as a function of the block length

L for Nr = Nt = 4 and two values of SNR: ρ = 6 dB and ρ = 10 dB. For

higher SNR a smaller number of training symbols is needed.

As optimal power allocation can usually not be performed, the blue curves show the

training based capacity for ρτ = ρd = ρ with the optimum number of training symbols

Lτ .

One can see that for different SNRs the principle behaviour stays the same, the curves

are only shifted to higher capacities.

The optimum number of training symbols has been evaluated by maximizing equation

(2.10) numerically for arbitrary Lτ . The result can be seen for different SNRs in Figure

2.5.

2.2.4 Optimal Placement

After deciding how much power and how many training symbols to use, one can con-

centrate on placing them in the data stream. This section closely refers to [2] and thus

the derivations are done for frequency selective block fading channels. The system model

used is discussed in section 1.2.4.
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Figure 2.6: Midamble and edge positions in symbol block

First, I will subsume the results for optimum placement when considering training with

all (data and training) symbols, derived in [2] shortly without going into details, because

the essence of the referred paper seems very intuitive. Then I will describe how to use

these results for performing channel training only with training symbols.

I will assume that the training symbols have at least as much total power as one data

symbol (Lτρτ ≥ ρd). The assumption on the total power is done, since training symbols

may be zero and thus have zero power, too. Finally, only the total training power is

of interest. Also, it is assumed that one has a sufficient number of training symbols

available (so, one can spend as many training symbols as needed).

First, ”midamble” and ”edge” positions are defined in our block with length L. Edge

positions are the first and the last Lh positions in the block, where Lh denotes the length

of the channel impulse response (see figure 2.6). Now one can show two things:

(i) Since we do not have previous knowledge of the symbols sent before our block

starts (s−1, s−2, ... are unknown), the first Lh − 1 symbols do not only depend

on the symbols sent in our block. Placing training symbols there would be very

unproductive, because of those unknown contributions. Thus, these positions shall

not be used for channel estimation. Note that this approach also considers inter-

block-interference (IBI), additionally to ISI.

(ii) Furthermore, placing training symbols in the last Lh − 1 positions would be inef-

fective, because the impulse response of these training symbols would not fit into

our receive block, and thus valuable channel information gets lost.

Therefore, it would be the best to set the edge positions of the block to zero so that they
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Figure 2.7: Training cluster placement on midamble-positions is shift-invariant

do not interfere with the rest of the block (i) and do not waste any power (ii). For this

scheme we have to spend exactly 2(Lh − 1) training symbols to set the edges to zero.

From those considerations follows that training symbols should be placed somewhere in

the midamble of the transmit block. It would be intuitive to group all pilot symbols

into one single orthogonal cluster, which is in fact the best one can do when using only

pilot symbols for channel estimation. The problem with this approach is that it is quite

difficult to design long orthogonal training symbol sequences for channel estimation out

of a given code alphabet [11].

One can do better when using all (data and training) symbols for channel estimation.

This can be done by feedback structures or other techniques, however, in [2] only the

optimal case of perfect usage of all symbols for channel estimation is considered. In the

referred paper it is shown that certain symbol placements minimize the CRB.

Furthermore, it is shown for the introduced assumptions above (sufficient training power,

sufficient number of training symbols) that any placement in midamble positions is shift-

invariant as long as the orthogonality condition is fulfilled, which means that one can

place the training symbols anywhere in the midamble (see figure 2.7). It has to be em-

phasized that this conclusion is only valid when using all symbols for channel estimation!

As it is quite difficult to generate long orthogonal sequences, one can achieve orthog-

onality of the training sequence by spreading many small orthogonal training clusters

throughout the transmit block. Orthogonal clusters are small clusters of training symbols

that do not overlap in space (antennas) and time. By doing this, those training clusters

are mutually orthogonal in the time domain. From these thoughts has emerged the idea

of quasi-periodic placement (QPP-α) schemes. The placement is done in following way:
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• Design orthogonal training clusters with length α

• Place them as periodically as possible throughout the midamble positions of the

transmit block

According to [2] it has been shown that the QPP schemes are optimal in the sense

of maximizing mutual information as well as in the sense of minimizing the average

MSE, when a decision feedback equalizer (DFE) is used. It turns out that, for QPP-1

schemes, the orthogonality condition on training symbols is the easiest to satisfy. When

the training blocks furthermore are now spaced at least with distance Lh−1, the QPP-1

scheme is optimal for channel estimation.

When using constant-modulus signals, all conclusions from above still hold true. Of

course, by giving away the usage of different powered symbols, the CRB for optimal

channel estimations increases.

Training by pilot symbols only. The referred paper [2] gives an intuitive framework

of how to place training symbols, but it neglects the case of using only training symbols

for channel estimation. Often it is not possible to use all symbols for channel estimation

(e.g. for complexity reasons), and thus also the case of training by pilot symbols only

has to be considered as an important case.

In contrast to the previous context, where data symbols were treated as known (e.g.

by some DFE structure), they now have to be considered as completely unknown. This

introduces following constraints:

• One needs at least training symbol blocks with length Lh per transmit antenna to

obtain a meaningful estimate of all channel coefficients.

• When spreading out training symbol clusters throughout the transmit block (as it

is done in the QPP-α schemes), then the CRB is invariant to training block shifts,

as long as the spacing between the blocks is at least Lh − 1.

• Splitting up training clusters and spreading them over the transmit block leads to

a higher estimation error than before. This is because each block must have at
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least length Lh that the channel impulse response is only dependent on training

symbols. Thus, by this ”guard-period”, there is always valuable training symbol

energy, because one cannot use the contributions from the interfering data symbols.

From this follows that the QPP-1 scheme (which was optimal for using all symbols

for channel estimation) is now the worst one can do! In fact, it is prohibited by the

statements above.

This leads to the result that one single (orthogonal) training symbol cluster is optimal,

and this cluster is still shift-invariant throughout midamble positions. This result is

again quite intuitive, for one is ”wasting” only once the guard period and can use all

other training symbols for channel estimation.

For frequency flat fading channels (i.e. Lh = 1) all previous precautions can be dropped.

As the response of the channel is immediate, no overlapping in time needs to be consid-

ered. Thus, training clusters can be chosen with arbitrary lengths and shift invariance

throughout the whole transmit block is valid. Note that in this case there are no edge or

midamble positions (as there is no interference between the transmitted symbols at the

receiver). In this optimum case one only needs to take care that the training symbols

are orthogonal to each other in the antenna domain.

2.2.5 Summary

For flat fading scenarios training symbol placement is not relevant to optimal channel

training. One can fully concentrate on training symbol design and power allocation.

When one freely can choose transmit powers, the optimum number of training symbols

is equal to the number of transmit antennas (Nt = Lτ ) and the optimum power allocation

is given by (2.11). It also shows that in the low SNR region the optimum power allocation

is given by α = 0.5, which is also a quite intuitive result.

Furthermore, the training based capacity depends on the number of training symbols

and on the effective SNR. In this chapter training by pilot symbols only was considered.

For a better channel estimation one can also take into account second order statistics

for channel estimation. This further improves the effective SNR. More details of this

approach are discussed in the next chapter.
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2 Training by Pilot Symbols

When dealing with frequency selective fading channels, one has to take care about train-

ing symbol placement, where edge positions shall be avoided. Depending on which sym-

bols are used for channel estimation (only training symbols in contrast to all symbols),

there has to be taken care of the optimum placement.

When doing training with all transmitted symbols, the placement of the training sym-

bols is completely shift-invariant within midamble positions with regard to the CRB

of channel estimation, the optimum symbol placement is the QPP-1 scheme described

above. Using only training symbols for channel estimation, this total shift-invariance

is no longer given and for power considerations it is the optimum to group all training

symbols in one single orthogonal cluster. The difficulty of creating a single training

symbol cluster is the design of long orthogonal sequences out of a given symbol alphabet

[11].

Using constant modulus signals, these results stay the same, although the error variances

of channel estimation rise due to lost optimality in training symbol design. Thus, power

allocation becomes tricky, as there is a trade-off between optimum symbol power and

number of training symbols.

All these results were shown for block-fading channels. Assuming that the channel does

not change at all over time, it is true that the training sequence can be placed at any

position. If this condition is weakened, so that the channel varies only very slowly over

time (this means that the channel varies only very little during one block length L), it

is again intuitive for a single-cluster scheme to place this cluster in the middle of the

symbol block. For multiple-cluster schemes it is intuitive to spread those clusters as far

as possible throughout the transmit block, both to get the best average over the channel

that is possible.
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3 Channel estimation using pilot

symbols and second-order statistics

In contrast to chapter 2, in which no special statistical knowledge about the was chan-

nel assumed, this chapter emphasizes on the use of second order statistics for channel

estimation.

First, I will derive the MMSE channel estimator using second order statistics. Since

the estimator in (2.4) is a matrix-estimator, which assumes a spatially white channel

statistically, it has to be adapted for deploying full second order statistics.

The quality of channel estimation using second order statistics strongly depends on the

quality of the statistical knowledge and on the channel itself. If the knowledge of the

second order statistics is poor, channel estimation may be worse compared to the use of

no statistical knowledge. Thus, I will introduce some methods for estimating the second

order statistics, as well as novel ”corrected estimators” for estimating the second order

statistics. Then, I will conclude this chapter with comparative simulations of the derived

results.

3.1 Channel estimation using second-order statistics

First we define the channel correlation matrix RH as

RH
4
= E

{
vec(H)vec(H)H

}
, (3.1)

where the vec(·) operator converts a matrix into a vector by stacking the columns. The

diagonal elements of RH represent the mean powers of the propagation paths and the
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vec(·)

Figure 3.1: The vec(·) operator stacks a matrix into a vector.

off-diagonal elements represent the correlations between all fading coefficients of the

channel matrix H. For a spatially white channel, we have RH = I. Note that RH is

hermitian by definition.

The use of the vec(·) operator is demonstrated in figure 3.1.

Then we introduce a block-index n and use the vec(·) operator on the MIMO system

model (1.2) to obtain a vector representation:

vec(Yτ [n]) = vec(Sτ [n]H[n] + N[n])

⇒ vec(Yτ [n]) = (I⊗ Sτ [n])vec(H[n]) + vec(N[n]),

which can be rewritten to

yτ [n] = Sτ [n]h[n] + n[n], (3.2)

where (·)[n] represents the variable for the nth received block. Thus, yτ [n] represents

the stacked receive training matrix of the nth transmitted block, Sτ [n] represents the

Kronecker-multiplied training symbol matrix, n[n] the stacked noise matrix, and h[n]

represents the stacked channel matrix. In further derivations I will omit the block index

for better readability, when not necessary. Note that (3.1) can now be rewritten to

RH = E{hhH}.
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3 Channel estimation using pilot symbols and second-order statistics

One can derive an MMSE vector-estimator on this system model for the channel h as

[8, 12]

ĥ = RHSH
τ

(
SτRHSH

τ + σ2
nI

)−1
yτ , (3.3)

which can also be written as

ĥ =
(
SH

τ Sτ + σ2
nR

−1
H

)−1
SH

τ yτ , (3.4)

where ĥ is the estimate of the stacked channel matrix using the statistical knowledge

RH. The equality of (3.3) and (3.4) can be shown by the matrix inversion lemma1. I

will also use the LS estimator for comparison to other estimators, as it does not use any

statistical knowledge of the channel. One can obtain the LS estimator by setting σ2
n = 0

in equation (3.3), which results in

ĥLS =
(
SH

τ Sτ

)−1
SH

τ yτ .

An operational block diagram of the vectorized system is given in figure 3.2. The

training symbols are sent over the channel and produce an output yτ . Those received

values are now used for correlation estimation and for channel estimation. Note that

these two parts are uncoupled in this scheme. Correlation estimation itself is usually done

by first estimating channel coefficients by some appropriate estimator (which is usually

not the same estimator as the channel estimator) and afterward build an estimate for

the channel correlation. This correlation estimate is fed to the channel estimator, which

finally produces the estimate of the channel coefficients with equation (3.3). This cycle

is done for every received symbol block.

For examination of the MMSE of channel estimation, the estimation error is defined by

[8]

h̃ = ĥ− h, (3.5)

and the covariance matrix of the channel estimation error is obtained as

cov
{
h̃
}

=
(
R−1

H + σ2
nS

H
τ Sτ

)−1
. (3.6)

The trace of the error covariance matrix tells about the minimum MSE achievable when

knowing the second order statistics RH of the channel perfectly. This trace can be

1Matrix inversion lemma:
(
A−1 + BCD

)−1 = A−AB(DAB + C−1)−1DA.
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Figure 3.2: Using 2nd order statistics for channel estimation. The training symbols are

sent over the channel and produce an output yτ . This channel output is used

for estimating 2nd order statistics by a correlation estimator. The correlation

estimate is improved with each received symbol block and then used by the

channel estimator. Using correlation knowledge of the channel significantly

improves channel estimation for correlated channels.

minimized by setting SH
τ Sτ = const · I (see chapter 2.2.1). For more correlated channels

(i.e. RH has only a little number of significant eigenvalues), the MSE decreases and

the estimation gets better. For rich scattering, the channel coefficients are uncorrelated

(spatially white), and the estimator in (3.3) is equivalent to the estimator given in (2.4).

3.1.1 Simulations

Simulations were done for a 4 × 4 MIMO system. Correlation matrices were either

generated synthetically or taken from a measurement campaign [13].

Channel realizations were generated by the formula

h = R
1/2
H g, (3.7)

where g is a complex Gaussian random variable with zero mean and unit variance, hence

g ∼ CN (0, I). With this setting, all channel realisations h have same statistics and are

distributed h ∼ CN (0,RH). This can be shown by calculating

E{hhH} = R
1/2
H E{ggH}︸ ︷︷ ︸

I

R
H/2
H = RH.
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Various propagation scenarios were assumed. Note that the propagation scenario com-

pletely determines the correlation matrix [14]! The joint angular power spectrum (APS),

which includes the directions of departure (DOD) and directions of arrival (DOA) of each

propagation scenario is shown in figure 3.5, which was obtained by a Bartlett Beamform-

ing algorithm [14]. Figure 3.5a shows the APS for the synthetic channel, which has only

one propagation path and can be seen as pin-hole channel. Figure 3.5b and c show the

APS for the measured channels used.

All correlation matrices were normalized, such that all channels have the same power by

setting tr{RH} = Nr. The training symbols where chosen such that SH
τ Sτ = I.

The MSE of channel estimation for different signal-to-noise ratios (SNR) was simulated,

which means that the MSE was plotted for different values of the SNR. The MSE is

defined as the mean square error of channel estimation, so

MSE
4
= E{‖h− ĥ‖2}.

The SNR is defined as the average signal to noise ration per receive antenna, so

SNR
4
=

PSτ tr(RH)/Nr

σ2
n

,

where PSτ denotes the mean power of one transmit symbol.

The channel was estimated in three ways:

• LS estimation,

• MMSE estimation with white prior,

• MMSE estimation with perfectly known 2nd order statistics.

Figure 3.3 shows results for a synthetic propagation scenario with only one propagation

path which carries the whole power (further information can be found in [14]). Note

that this corresponds to a pin-hole channel! The channel matrix has rank 1. So, all

channel coefficients are fully correlated.

For training this is the most ideal case, but note that this channel does not provide any

diversity! The curves show that using 2nd order statistics shows great advantages to the
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Figure 3.3: MSE versus SNR for channel estimation of a synthetic channel with only one

propagation path. One can see that using an MMSE estimator exploiting full

knowledge of channel correlation shows significant advantages compared to

other estimators for correlated channels. The APS of this synthetic channel

is provided in 3.5a.

other estimators. The optimum gain for a 4 × 4 MIMO system is around 10 dB. This

gain rises when using more antennas.

Figures 3.4a and b show channel estimatino behavior for different measured propagation

scenarios. Training is still much better, when one uses channel statistics, although there

is not such a big trade-off as in the fully correlated case.

For a completely uncorrelated channel (which would correspond to the case of a rich

scattering propagation scenario), the red curve for perfectly known second order statistics

would approach the black curve, which means that the channel is spatially white.

3.2 Estimating channel statistics

The following section is devoted to estimating the second order statistics of the channel.

Referring to Figure 3.2, this chapter describes the block ”correlation estimator”.
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Figure 3.4: MSE versus SNR for channel estimation of two measured channels with differ-

ent propagation scenarios. The channel in (a) shows more spatial correlation

than in (b). APS of the used channels are provided in figure 3.5.
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(a)

(b) (c)

Figure 3.5: APS of channels used for simulation: (a) shows a synthetic channel with only

one DOD-DOA path (it could be interpreted as perfect pin-hole channel,

hence, this channel is fully correlated). (b) and (c) show measured channels.

One can see that the channel in (b) shows more spatial correlation than the

channel in (c).
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Figure 3.6: Basic principle of correlation estimation. First a channel estimate is built

with some appropriate estimator. Those values are accumulated in an esti-

mation of the channel correlation. As it is described later, correcting this

estimate significantly improves correlation estimation.

Correlation estimation is done by first estimating channel coefficients by some appro-

priate estimator and then building a correlation estimate of those estimated channel

coefficients. The problem of estimating channel statistics evolves from the fact that

those statistics are calculated with estimates of the channel coefficients. It strongly de-

pends on the correlation estimator, if the calculated (estimated) statistics are biased, or

not. This principle is shown in figure 3.6

Considering an ergodic, wide sense stationary channel2, the second order statistics Rĥ of

the estimated channel coefficients can be estimated by averaging over time. This results

in following formula for estimating the statistics:

R̂ĥ =
1

M

M∑
i=1

ĥ[i]ĥH [i], (3.8)

R̂ĥ is the estimation of the correlation matrix of the estimated channel coefficients ĥ

that are estimated by some appropriate estimator and M is the number of transmit

blocks that are used for estimating the channel statistics by averaging. When M grows

large, this value converges to the correlation matrix of the estimated channel coefficients

(E{R̂ĥ} = Rĥ). So, for theoretical investigation I will concentrate on Rĥ and omit

the summation. In the following I will term such estimators that can be used to esti-

mate second order statistics as ”correlation estimators” (CE). Depending on the way

ĥ is computed, it will result in an ”LS correlation estimator” (LS CE) or an ”MMSE

correlation estimator” (MMSE CE).

2i.e. the second order statistics RH of the channel matrix do not change over time
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It is noteworthy that the correlation matrix of the estimated channel coefficients is in

general not equal to the true correlation matrix of the channel! So, in general,

Rĥ 6= RH. (3.9)

This can be shown in the following way:

E{ĥĥH} = E{(h + h̃)(h + h̃)H} = E{hhH}+ E{hh̃H}+ E{h̃hH}+ E{h̃h̃H} =

= RH + Rhh̃ + Rh̃h + Rh̃h̃

Only if the last three correlation terms compensate to zero, the estimation of the second

order statistics is unbiased. An estimator is unbiased, iff E{a− â} = 0 for some random

vector a and its estimate â. In the sense mentioned here, the condition on an unbiased

correlation estimates reads as E{hhH − ĥĥH} = 0.

Now the question arises which properties a correlation estimator should have. Simula-

tions will show that only unbiased estimators converge to the minimum MSE achievable

of channel estimation (see equation 3.6). Nevertheless, even biased estimators perform

better than using a white channel estimate from equation (2.4).

3.2.1 LS correlation estimator (LS CE)

Considering the system model from (3.2), we are using now an LS estimator for esti-

mating the channel coefficients:

ĥLS =
(
SH

τ Sτ

)−1
SH

τ yτ . (3.10)

Building the correlation matrix of these estimated channel coefficients gives us the cor-

relation estimate

RĥLS
= E

{
ĥLS ĥH

LS

}
. (3.11)
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The question arises, if this correlation estimate converges to the true value of RH for

M →∞. This can be calculated by inserting (3.10) and (3.2) into (3.11), which yields

E
{
ĥLS ĥH

LS

}
=

= E
{(

SH
τ Sτ

)−1
SH

τ yyHSτ

(
SH

τ Sτ

)−1
}

=

= (SH
τ Sτ )

−1SH
τ Sτ RH SH

τ Sτ (S
H
τ Sτ )

−1 + σ2
n(SH

τ Sτ )
−1SH

τ Sτ (S
H
τ Sτ )

−1 =

= RH + σ2
n(SH

τ Sτ )
−1.

(3.12)

Obviously, this correlation estimator is biased.

I want to emphasize that this estimator is computationally very efficient, as the training

matrix Sτ is known, and thus the pseudo-inverse (SH
τ Sτ )

−1SH
τ can be calculated once

beforehand and then used for estimation. When different training matrices are used, this

inverses can still be calculated beforehand, only with adaptive training schemes these

inversions have to be done in realtime.

Note that, if the training symbols are orthogonal (see Section 2.2.1), so SH
τ Sτ = I, the

LS estimator from (3.10) breaks down to a matched filter estimator. This means that

for preliminary estimating the channel coefficients only a matrix-vector multiplication

has to be performed!

More comments on estimation of Second Order Statistics using LS estimates

Throughout the literature (e.g. [3] and references therein), this correlation estimator

is used for estimating second order statistics, since the estimate ĥLS is unbiased, so

E
{
ĥLS

}
= h.

This does not mean that estimated second order statistics are also unbiased!

Simulations will show that the use of this correlation estimator will yield worse results

in the low-SNR regions compared to more sophisticated correlation estimators.

Further discussion and simulations about the performance of this correlation estimator

will be provided in Section 3.3.
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3.2.2 Corrected LS Correlation Estimator (C-LS CE)

The result from (3.12) showed, that when estimating the second order statistics of a

channel by using LS estimates of the channel coefficients, the correlation estimate does

not converge to the true value of RH, even for an infinite number of training blocks. On

the other hand, (3.12) shows only a constant systematic error which can be canceled,

if the noise variance σ2
n is known. Thus, I introduce a new ”corrected LS correlation

estimator” that is given by

R̂HLS
= R̂ĥLS

− σ2
n(SH

τ Sτ )
−1. (3.13)

This estimator is now unbiased and converges to the true value of RH. Still, this

estimator does not need any matrix inversions for estimation! The pseudo-inverse needed

for estimation of R̂ĥLS
can be calculated beforehand, because the training symbol matrix

Sτ is fixed and known. Note that also the noise power is known, since we use an MMSE

estimator as channel estimator.

Further discussion and simulations about the performance of this estimator will be pro-

vided in Section 3.3.

3.2.3 MMSE correlation estimator (MMSE CE) using white prior

One can also use MMSE estimates of the channel coefficients for estimating the second

order statistics of the channel.

So, estimating the channel coefficients by an MMSE estimator with white prior yields

ĥMMSE,I =
(
SH

τ Sτ + σ2
nI

)−1
SH

τ yτ . (3.14)

Again, considering the system model from (3.2), and defining the correlation estimate

as the correlation matrix of the estimated channel coefficients as

RĥMMSE,I
= E

{
ĥMMSE,I ĥH

MMSE,I

}
, (3.15)

one can go for investigation of the performance of this correlation estimator.
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Inserting (3.14) and (3.2) into (3.15) yields

RĥMMSE,I
= E

{
ĥMMSE,I ĥH

MMSE,I

}
=

= E
{(

SH
τ Sτ + σ2

nI
)−1

SH
τ yyHSτ

(
SH

τ Sτ + σ2
nI

)−1
}

=

= (SH
τ Sτ + σ2

nI)
−1SH

τ Sτ RH SH
τ Sτ (S

H
τ Sτ + σ2

nI)
−1+

+σ2
n(SH

τ Sτ + σ2
nI)

−1SH
τ Sτ (S

H
τ Sτ + σ2

nI)
−1.

(3.16)

Using the condition on optimal symbol design from Section 2.2.1, stating that SH
τ Sτ = I

and inserting this into (3.16), yields

RĥMMSE,I
=

1

(1 + σ2
n)2 RH +

σ2
n

(1 + σ2
n)2 I. (3.17)

One can see that, again, these correlation estimators in (3.16) and (3.17) do not converge

to the true value of RH.

It has to be emphasized that this estimator also needs no periodic matrix inversions in a

wide sense stationary environment. Only one matrix inversion is needed for calculating

the inverse term (SH
τ Sτ + σ2

nI)
−1.

Further discussion and simulations about the performance of this estimator is provided

in Section 3.3.

3.2.4 Corrected MMSE Correlation Estimator (C-MMSE CE) using

white prior

As in the LS case, the result from (3.16) shows that when estimating the second order

statistics of a channel by using only MMSE estimates, the estimator does not converge

to the true value of RH. On the other hand, (3.16) again shows only a systematic,

constant error, which can also be canceled. Thus, I introduce a new ”corrected MMSE

correlation estimator” that is given by

R̂HMMSE,I
= TIR̂ĥMMSE,I

TH
I − σ2

n(SH
τ Sτ )

−1 (3.18)
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with

TI = (SH
τ Sτ )

−1(SH
τ Sτ + σ2

nI). (3.19)

Note that the subscipt (·)I denotes that a white prior was used for estimation of the

channel coefficients. The inversion in matrix TI needs to be calculated only once in a

wide sense stationary environment, and thus no periodic matrix inversions are needed

for estimating the corrected channel statistics.

When the orthogonality condition on training symbol design is fulfilled, the derivation

of the estimator is straight-forward and can be derived directly out of (3.18) and (3.19),

which yields

R̂HMMSE,I
=

(
1 + σ2

n

)2 · R̂ĥMMSE,I
− σ2

nI. (3.20)

Another interesting fact is that the C-MMSE CE is completely identical to the

C-LS CE.

This can be shown by simply inserting (3.14) and (3.8) into (3.20), which yields

R̂HMMSE,I
= TIR̂ĥMMSE,I

TI
H − σ2

n(SH
τ Sτ )

−1

= 1
M

∑M
i=1 TIĥMMSE[i]ĥH

MMSE[i]TI
H − σ2

n(SH
τ Sτ )

−1

= 1
M

TI(S
H
τ Sτ + σ2

nI)
−1SH

τ

(∑M
i=1 y[i]yH [i]

)
Sτ (S

H
τ Sτ + σ2

nI)
−1TI

H − σ2
n(SH

τ Sτ )
−1

= 1
M

(SH
τ Sτ )

−1SH
τ

(∑M
i=1 y[i]yH [i]

)
Sτ (S

H
τ Sτ )

−1 − σ2
n(SH

τ Sτ )
−1

= 1
M

∑M
i=1 hLS[i]h

H
LS[i]− σ2

n(SH
τ Sτ )

−1.

The last line of this derivation is obviously equal to the C-LS CE.

Again, further discussion and simulations are provided in Section 3.3.

3.2.5 Recursive MMSE correlation estimator (RMMSE CE) using

previous correlation as prior

All previously introduced correlation estimators were estimating the channel statistics by

first estimating the channel coefficients themselves with an additional estimator. When

using the estimation results from the estimator in (3.3), which finally estimates the
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yτ [n]Channel

R̂H[n]

ĥ[n]

Estimator

h[n], n[n]

R̂H[n−1]

Correlation

Sτ [n]

Estimator
Channel
MMSE

Figure 3.7: Using already estimated channel coefficients for estimating second order

statistics. The estimated channel coefficients from the channel estimator

are fed back to the correlation estimator.

channel coefficients (with inserted previously estimated channel statistics), one could

use these estimates for again estimating the channel statistics, and thus iterating to

better results. A block diagram demonstrating the idea is shown in figure 3.7.

Therefore, from the viewpoint from the correlation estimator, the channel estimator can

be written as

ĥMMSE,R[n] =
(
SH

τ Sτ + σ2
nR̂

−1
HMMSE,R

[n−1]
)−1

SH
τ yτ [n], (3.21)

where RHMMSE,R
[n−1] is the correlation matrix estimated at iteration step (n−1).

Calculating the value to which this estimator converges reads as

RĥMMSE,R
[n] = E

{
ĥMMSE,R ĥH

MMSE,R

}
=

= E

{(
SH

τ Sτ + σ2
nR̂

−1
HMMSE,R

[n−1]
)−1

SH
τ yyHSτ

(
SH

τ Sτ + σ2
nR̂

−1
HMMSE,R

[n−1]
)−1

}
=

= (SH
τ Sτ + σ2

nR̂
−1
HMMSE,R

[n−1])−1SH
τ Sτ RH SH

τ Sτ (S
H
τ Sτ + σ2

nR̂
−1
HMMSE,R

[n−1])−1+

+ σ2
n(SH

τ Sτ + σ2
nR̂

−1
HMMSE,R

[n−1])−1SH
τ Sτ (S

H
τ Sτ + σ2

nR̂
−1
HMMSE,R

[n−1])−1.

(3.22)

Again, this estimator does not converge to the true value of RH.
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3.2.6 Corrected Recursive MMSE correlation estimator (C-RMMSE

CE) using previous correlation as prior

As discussed before, when using estimates of channel coefficients that were obtained by

an MMSE estimator that includes a correlation matrix, the estimate is biased.

As done in the white case, one can again correct the result from (3.22) to obtain an

unbiased estimator for the second order statistics. The result reads as

R̂HMMSE,R
[n] =

(
TR[n−1]R̂ĥMMSE,R

[n]TH
R[n−1] − σ2

n(SH
τ Sτ )

−1
)

(3.23)

with

TR[n−1] = (SH
τ Sτ )

−1(SH
τ Sτ + σ2

nR[n−1]−1). (3.24)

This time, for each iteration step a matrix inversion for a matrix with size (NtNr ×
NtNr) has to be done. This is computationally more complex compared to the previous

estimators, which needs no matrix inversions! Hence, it is more efficient to use an

additional estimator for estimating second order statistics that does not need to convert

huge matrices.

Again, performance discussion and simulations are provided in Section 3.3.

3.3 Performance of estimators for second order statistics

In this section I will compare the performance of previously introduced correlation esti-

mators. It will be shown that unbiased estimators will yield better results than biased

estimators. Another question is the convergence speed of the estimators.

3.3.1 Overall Performance

The simulation setup is the same as described in Section 3.1.1. The MMSE channel

estimator from equation (3.4) was used, correlation matrices were either taken from the
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Figure 3.8: MIMO channel estimation with MMSE channel estimator using different

correlation estimators on a synthetic channel (see APS in figure 3.5a) with

Nt = Nr = 4 and training length of 1024 receive blocks. The MSE versus

the SNR is shown. One can observe the performance of previously intro-

duced correlation estimators. Using correlation estimates shows significant

advantages in channel estimation. The LS CE and MMSE CE are biased

correlation estimators for but still perform better compared to using a white

prior. All corrected correlation estimators (C-LS CE, C-MMSE CE and C-

RMMSE CE) converge to the lower bound. The C-LS CE and the C-MMSE

CEare identical by definition. The C-RMMSE CE behaves equally well.

correlation estimators described above (LS CE, MMSE CE, C-LS CE, C-MMSE CE,

C-RMMSE CE), or chosen constant (white prior, RH perfectly known).

Correlation matrices were trained by the correlation estimators over a period of 64 ·NtNr

blocks, which makes a total number of 1024 blocks.

In the first simulation, the mean square error of the channel estimation with usage of dif-

ferent correlation estimators was plotted over the SNR. Figure 3.8 shows the results for

a synthetic channel with only one propagation path. This scenario corresponds to a to-

tally correlated channel and shows the principle behavior of the algorithms. Simulations

for measured channels are provided in Figures 3.9.
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One can see that using a white prior is worst for channel training, compared to using

correlation estimates.

Throughout many papers, the LS correlation estimator is used, which yields better

results compared to using no statistical information, but still the errors are quite large.

The MMSE CE behaves much better than the LS CE at low SNR regions, which is quite

intuitive, because the estimator accounts for the noise in the system.

For larger training intervals the corrected correlation estimators (C-LS CE, C-MMSE

CE and C-RMMSE CE) all approach the lower bound of the channel estimation error,

which is given by using the perfectly known (true) channel correlation matrix. The C-LS

CE and C-MMSE CE are identical by definition and behave equally, and the C-RMMSE

CE also behaves equally well.

At lower correlations (see Figure 3.9), using channel statistics for training is still much

better than the use of a white prior, but only at higher correlations the different correla-

tion estimators differ much in performance. Anyway, Figure 3.9 shows that the corrected

estimators still outperform the biased estimators.

3.3.2 Convergence Speed

Another interesting question is how fast the MSE converges to its final value. The

simulation setup is the same as in the section above.

Simulations were done for the MSE of the channel estimation at different training lengths

of the correlation matrices. The SNR was set to 0 dB, since here, one can observe the

learning effect best.

Correlation matrix training was done in two phases:

Conditioning phase. As the correlation matrices are estimated by averaging over

h[i]hH [i] those correlation matrices are singular when starting the algorithm, until a

sufficient number of training intervals have passed. When using badly conditioned cor-

relation matrices for estimating the channel coefficients, the estimation errors get worse.
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Figure 3.9: Same as Figure 3.8 for two measured channels. The channel in (a) shows

more spatial correlation than the one in (b). APS of these channels are

provided in Figures 3.5b and 3.5c
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Therefore, during the conditioning phase, an MMSE estimator with white prior was used

for estimating the first channel coefficients. In these simulations a conditioning phase

with a length of (4NrNt) = 64 training blocks was used.

Furthermore, the corrected MMSE estimator with previous correlation as prior (see

Section 3.2.5) needs the inverse of the correlation matrix. Building the inverse is not

possible, as long as the correlation matrix is singular. Also the iteration does not con-

verge, when the correlation estimate is rank deficient.

Simulations have shown that a training length of at least 4NrNt is required for the

iteration to work.

Training phase. During the training phase the correlation estimate is further improved,

but channel estimation is already done with the correlation estimates. In communication

systems, each training block improves the correlation estimate, so correlation estimation

is always done (this would correspond to a training phase with infinite length). For these

simulations, the training phase was set to 2000 blocks.

Figure 3.10(a) shows simulation results for a synthetic channel with only one propagation

path, figure 3.10(b) is the same for a measured channel (APS in Figure 3.5b) [13].

Obviously, the C-LS CE and the C-MMSE CE must behave exactly equal (see Section

3.2.4). Because of the equality of those two estimators, I will furthermore only refer to

the C-LS CE as it has less complexity than the C-MMSE CE. Further discussion about

complexity is provided in Section 3.4.

The C-RMMSE CE shows a different behavior. It necessarily needs the conditioning

phase, otherwise it does not converge. Also, it shows different behavior in convergence

time and speed. For the fully correlated channel at low SNR, the convergence time is

quite large. When the correlation decreases or the SNR rises, the C-RMMSE CE shows

its advantages by faster convergence to a smaller MSE compared to the C-LS CE, but

the difference is negligible.

All uncorrected correlation estimators quickly steady on an error level that is far above

the MMSE which is again given by using the perfectly known channel statistics.
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Figure 3.10: Learning curves for MIMO channel estimation at an SNR of 0 dB. The MSE

of channel estimation using different correlation estimators is plotted over

the number of training blocks, which were used to improve the correlation

estimate. The channel in (a) was a synthetic channel with only one prop-

agation path (for APS see Figure 3.5a), (b) shows training for a measured

channel (APS in Figure 3.5b). One can see that for lower correlation as in

(b) the recursive algorithm (C-RMMSE CE) converges faster, but not as

fast as the non-recursive methods (C-LS CE and C-MMSE CE).
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Figure 3.11: Same as Figure 3.10b but for an SNR of 10 dB. It can be observed that

in a higher SNR region the recursive algorithm (C-RMMSE CE) converges

faster than the non-recursive methods (C-LS CE and C-MMSE CE) and

converge to smaller errors faster. The gain of the recursive algorithm is

only about 0.1 dB, thus it is negligible.

3.3.3 Summary and Conclusions

The novel corrected correlation estimators show significant advantages to conventional

correlation estimators, as they are unbiased. Simulations have shown that when using

second order statistics for channel training, unbiased correlation estimators can achieve

the MMSE bound, which is given by equation (3.6). Channel estimation using biased

correlation estimators do not achieve this lower bound. However, channel estimation

using biased correlation estimates still improve the estimate in contrast to using a white

prior.

It has to be emphasized that the corrected estimators have the same complexity order as

the biased correlation estimators! This means that one can achieve much better results

at (practically) no additional costs as the corrections are only of linear order.
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ĥ[k]ĥH [k]

(k − 1)/k

+

h[k]

1

k

∑
k

i=1
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ĥ
[k]

Figure 3.12: Iterative correlation estimation by breaking up the sum (see (3.25)).

3.4 Iterative estimation

The estimation of second order statistics was introduced by averaging over contributions

to the correlation matrix (3.8). For a good estimate of the correlation matrix, many

channel realizations have to be trained. When considering (3.8), this would result in a

large number of outer vector multiplications and a long summation for building the mean.

Also, all channel estimates would have to be memorized at each iteration step. This is

not very economic, so an iterative way of correlation estimation would be preferable.

The sum from equation (3.8) can be reformulated into a recursive equation. A block

diagram demonstrating this idea is presented in figure 3.12.

R̂ĥ[k] = 1
k

∑k
i=1 ĥ[i]ĥH [i] =

= 1
k

(
(k − 1)Rĥ[k − 1] + ĥ[k]ĥH [k]

)
.

(3.25)

As it was stated above, the correlation of the estimated channel coefficients will not

approach the true correlation. Therefore, iteration formulas have to be found for the

corrected estimators.
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One has to take care that the channel estimation still needs a conditioning phase. Thus,

correlation estimates should only be used after a sufficient training phase.

3.4.1 Iterative Corrected LS Correlation Estimator

The iterative corrected LS correlation estimator can be found by inserting (3.25) into

(3.13). This yields

R̂HLS
[k] = R̂ĥLS

[k]− σ2
n(SH

τ Sτ )
−1

= 1
k

(
(k − 1)R̂ĥLS

[k − 1] + ĥLS[k]ĥH
LS[k]

)
− σ2

n(SH
τ Sτ )

−1

= 1
k

(
(k − 1)(R̂ĥLS

[k − 1]− σ2
n(SH

τ Sτ )
−1) + ĥLS[k]ĥH

LS[k]− σ2
n(SH

τ Sτ )
−1

)

= 1
k

(
(k − 1)R̂HLS

[k − 1] + ĥLS[k]ĥH
LS[k]− σ2

n(SH
τ Sτ )

−1
)

.

(3.26)

This is a simple update equation for the next estimate of the correlation estimator. For

the conventional LS correlation estimator only the last term (σ2
n(SH

τ Sτ )
−1) has to be

canceled.

Of course, this iterative estimator is completely equal to the estimator introduced in

equation (3.13).

So, one update has the complexity O(NrNt)
2 which results from the outer multiplication

of the two vectors and the multiplication with the factor (k − 1)/k. The extension

to the corrected LS only needs to consider the term σ2
n(SH

τ Sτ )
−1, this corresponds to

an additional number of (NrNt) subtractions (which has linear complexity and thus is

negligible).

3.4.2 Iterative Corrected MMSE Correlation Estimator with white

prior

As for the C-LS CE one can derive an update equation for the C-MMSE CE. The update

equation reads as

R̂HMMSE,I
[k] = 1

k

(
(k − 1)R̂HMMSE,I

[k − 1] +

+ TIĥMMSE,I[k]ĥH
MMSE,I[k]TH

I − σ2
n(SH

τ Sτ )
−1

) (3.27)
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with TI from equation (3.19).

This estimator has a higher complexity than the C-LS CE because of the multiplications

with the correction matrices TI. The complexity is of order O(NrNt)
3. However, if

one can use the condition for optimal symbol design (SH
τ Sτ = const · I), this matrix

multiplications with TI breaks down to a scalar multiplication, and the complexity is

again equal to the C-LS CE.

Note that the C-MMSE CE is exactly equal to the C-MMSE CE. In this sense it is

reasonable to use the C-LS CE instead.

3.4.3 Iterative Corrected Recursive MMSE Correlation Estimator

Also for the C-RMMSE CE an update equation can be derived. It reads as

R̂HMMSE,R
[k] = 1

k

(
(k − 1)R̂HMMSE,R

[k − 1] +

+ TR[k−1] ĥMMSE,R[k]ĥH
MMSE,R[k] TH

R[k−1] − σ2
n(SH

τ Sτ )
−1

) (3.28)

with TR[k−1] from equation (3.24).

This correlation estimator has a complexity of order O(NrNt)
3, because it needs a matrix

inversion for calculating TR[k−1]. So, the complexity order has increased compared to

the other correlation estimators! It shows only minor advantages to the previously intro-

duced correlation estimators as discussed in Section 3.3, and thus is not recommendable

for deploying in mobile communication devices.

3.4.4 Conclusions

This section has shown a way for iterative correlation estimation. The iterative C-LS

CE does not need any matrix inversions and has complexity order O(NrNt)
2. It also

shows a fast convergence to the true value of the channel correlation matrix RH.

The iterative C-MMSE CE and C-RMMSE CE have both complexity order O(NrNt)
3,

which evolves from matrix multiplications and in the second case from an additional
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matrix inversion. As discussed in Section 3.3.2, the C-MMSE CE is identical to the

C-LS CE and has thus to be disregarded. The C-RMMSE CE shows faster convergence

for less correlated channels and high SNR but is computationally inefficient compared

to the C-LS CE.

Thus, the iterative corrected LS correlation estimator turns out to be a good choice for

correlation estimation.
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Appendix A

List of Symbols

Symbol Description

Nr number of receive antennas

Nr number of transmit antennas

L length of transmit block

Ld number of data symbols (mostly equal to length of data block)

Lτ number of training symbols (mostly equal to length of training block)

Lh length of impulse response

I identity matrix of appropriate size

H channel matrix

S transmit matrix

Y receive matrix

N additive noise matrix

σ2
n noise power per receive antenna

Ĥ estimated channel matrix (obtained by matrix estimator)

H̃ estimation error of Ĥ

(·)τ denotes training symbols

(·)d denotes data symbols
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Appendix A List of Symbols

Symbol Description

ρ mean SNR

ρτ mean power of training symbols

ρd mean power of data symbols

α power allocation factor

Cτ training based capacity

ρeff effective SNR used in Cτ

h stacked channel vector

Sτ = (I⊗ Sτ ) training symbol matrix

yτ stacked receive vector of training symbols

n stacked noise vector

ĥ estimated stacked channel vector (obtained by vector estimator)

h̃ estimation error of ĥ

RH Correlation matrix of the true channel

R̂H estimated (unbiased) correlation matrix

Rĥ correlation matrix of estimated channel coefficients

R̂ĥ estimated correlation matrix of estimated channel coefficients

SNR Signal-to-noise ratio

MSE Mean square error

APS Angular Power Spectrum

DOA Direction of Arrival

DOD Direction of Departure

LS Least squares (estimation algorithm)

MMSE Minimum mean square error (estimation algorithm)

C-LS CE Corrected LS correlation estimator

C-MMSE CE Corrected MMSE correlation estimator

C-RMMSE CE Corrected recursive MMSE correlation estimator
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