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Zusammenfassung

In der Modellierung von Ausscheidungsprozessen von exogen verabreichten
Markern gibt es zwei grundsatzliche Fehlerquellen. Einerseits das sogenan-
nte Datenrauschen, das durch zufdllige und systemische Schwankungen um
den idealen Modellverlauf ensteht, und andererseits, die Inhomogenitét des
injizierten Markers. Durch all diese Unsicherheiten ist eine ausreichend lange
Protokolldauer von entscheidender Wichtigkeit, da ansonsten die Gefahr
einer Uberschétzung der Nierenfunktion besteht.

In den Nieren ensteht der Harn durch Filterung des Blutplasmas im Glomeru-
lum und durch Resorption und Sekretion von Stoffen im Verlauf des an-
schliessenden Tubulus. Die Bestimmung dieser Filtrationsleistung (GFR)
ist von grosser Bedeutung um den Nierengesundheitszustand beurteilen zu
kénnen, aber auch der renale Plasmafluss (RPF) spielt eine nicht unwesent-
liche Rolle in der klinischen Diagnostik.

Ein Zweikompartmentmodell, das sogenannte Grundmodell der Pharmako-
kinetik, kann problemlos zur Bestimmung der GFR. verwendet werden. Ist
man jedoch ebenfalls an dem RPF interessiert, so muss das Modell zu einer
nichtlinearen Version erweitert werden. Diese Nichtlinearitit ist notwendig,
da die tubuldre Sekretion aufgrund der nur begrenzten Transportfiahigkeit
der dafir benétigten Carrier einer Sdttigung unterliegt.

Fr die Bestimmung der GFR ist es jedoch essentiell die Werte der zugrunde
liegenden Parameter zu kennen. Um die Parameter dieser Modelle zu bes-
timmen muss man ein Abweichungsmass minimieren, das als die Summe
der Quadrate der Differenzen zwischen den gemessenen und errechneten
Daten beschrieben ist (Methode der kleinsten Fehlerquadrate). Da das Sys-
tem jedoch nichtlinear in den Parametern ist bedeutet das auch die Suche
nach einem Minimum einer nichtlinearen Funktion, dadurch muss die Iden-
tifikation numerisch erfolgen. Ein moglicher Algorithmus hierfiir ist der
Marquardt-Levenberg-Algorithmus, der eine Kombination aus der beliebten
Linearisationsmethode (Gauss - Newton) und der Methode des steilsten Ab-
stiegs darstellt. -

Nun machen es die eingangs erwidhnten Fehlerquellen jedoch notwendig,
iiber die Fehlerbreiten der gefundenen Parameter bescheid zu wissen. Diese
Fehlerabschdtzung wird mit der sogenannten Monte Carlo Methode durch-
gefiihrt. Dabei werden Kunstprotokolle erstellt indem man einem ”perfek-
ten” Systemoutput Zufallszahlen tiberlagert, die aus einer Normalverteilung
mit Mittelwert 0 gewonnen werden. Ungefdhr 100 solche Kunstprotokolle
sind ausreichend um die gewlinschten Parametervarianzen auszurechenen.
Diese wiederum sollten mit den Standardfehlern, die durch die sogenannte
Fischer-Informationsma-trix - Methode gewonnen werden, iibereinstimmen.



Abstract

In modelling elimination kinetics of exogenously applied markers there are
always two kinds of error sources: first, there is always noise in the experi-
mental data and second, the injected marker is not a homogenous substance
but consists of different masses. Those uncertainties make a sufficiently long
protocol length indispensable since a too short protocol length could result
in an overestimation of the clearance value.

In the kidneys, a fluid that resembles plasma is filtered through the glomeru-
lar capillaries into the renal tubules (glomerular filtration). The assessment
of this GFR as well as the assessment of the total renal plasma flow is of great
importance in clinical decision making in the follow-up of renal patients. For
the solution of this quantification problem computer-based modelling and
identification techniques can be applied to the investigation of the elimina-
tion kinetics from venous plasma after infusion of suitable markers (such as
inulin or sinistrin).

A two-compartment model, the so-called basic model of pharmacokinetics,
is suitable for the problem of determining the renal clearance. For the as-
sessment of the renal plasma flow this model has to be expanded into a
nonlinear version. The nonlinearity results form the superposition of excre-
tion processes obeying a saturation process (Michaelis-Menten law) in tubu-
lar secretion, the elimination process of the marker (e.g. p-amino-hippuric
acid) being simply proportional to its plasma level.

In order to be able to calculate this renal clearance, the according parameter
values need to be known. Parameter estimation involves searching the min-
imum of the objective function which is defined as the sum of the squares
of the differences between each experimental data and the model response
(method of least squares).

As the system is nonlinear in its parameters the problem becomes one of
locating the minimum of a non-linear function and identification has to be
done numerically. One of the most generally useful and widely applied tech-
niques for doing so is the Marquardt-Levenberg algorithm which combines
steepest descent and linearization methods.

Since there is the problem of different masses and as there is always noise
in the experimental data consisting of random and systematic fluctuations
around the ideal behaviour, it is essential to know how precise each of the
found parameter estimates is. The error estimation done with a Monte Carlo
method, is processed with statistics of a number of adapted artificial proto-
cols. About 100 created protocols are sufficient for estimating the parameter
variance. The standard deviations thus found are equivalent to the standard
errors derived by means of the so-called Fishers information matrix method.
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Chapter 1

Physiological Background

In the kidneys, a fluid that resembles plasma is filtered through the glomeru-
lar capillaries into the renal tubules (glomerular filtration). As this
glomerular filtrate passes down the tubules, its volume is reduced and its
composition altered by the processes of tubular reabsorption (removal
of water and solutes from the tubular fluid) and tubular secretion (se-
cretion of solutes into the tubular fluid) to form the urine that enters the
renal pelvis. Wastes are eliminated while water and important electrolytes
and metabolites are conserved. Furthermore, -the composition of the urine
can be varied, and many homeostatic regulatory mechanisms minimize or
prevent changes in the composition of the extracellularfluid by changing the
amount of water and various specific solutes in the urine.
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Excretion = Filtration — Reabsorption + Secretion

Figure 1.1: Formation of urine




From the renal pelvis, the urine passes to the bladder and is expelled to the
exterior by the process of urination.

1.1 Anatomy of the Kidney

Each individual renal tubule and its glomerulus is a unit (nephron) of
which there are about 1.3 million in each human kidney. Each nephron is
capable of forming urine by itself and therefore it is not necessary to discuss
the entire kidney but merely the function of a single nephron to explain the
function of the kidney. ’

Blood enters the glomerulus through the afferent arteriole and then leaves
through the efferent arteriole. The glomerulus is a network of up to 50
parallel branching and anastomosing capillaries covered by epithelial cells
and encased in Bowman’s capsule. Pressure of the blood in the glomerulus
causes fluid to filter into Bowman’s capsule, and from here the fluid flows
into the proximal tubule that lies in the cortex of the kidney along with
the glomerulus.
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Figure 1.2: The nephron




From the proximal tubule the fluid passes into the loop of Henle that dips
deeply into the kidney mass, some of the loops passing all the way to the
bottom of the renal medulla. Each loop is divided into the descending
limb and the ascending limb. The wall of the descending limb and the
lower end of the ascending limb is very thin and therefore is called the thin
segment of the loop of Henle. However, after the ascending limb of the loop
has returned part way back in the cortical direction, its wall once again be-
comes thick like that of the other portion of the tubular system; this portion
of the loop of Henle is called the thick segment of the ascending limb.
After passing through the loop of Henle, the fluid enters the distal tubule,
which, like the proximal tubule, lies in the renal cortex. Then, still in the
cortex, as many as eight of the distal tubules coalesce to form the cortical
collecting duct (also called collecting tubule), the end of which turns once
again away from the cortex and passes downward into the medulla, where
it becomes the medullary collecting duct but usually called simply the col-
lecting duct. Successive generations of collecting ducts coalesce to form
progressively larger collecting ducts that penetrate all the way through the
medulla, parallel to the loops of Henle. The largest collecting ducts empty
into the renal pelvis through the tips of the renal papillae; these are conical
projections of the medulla that protrude inte the renal calyces, which are
themselves recesses of these very large collecting ducts, each of which trans-
mits the urine from about 4 000 nephrons. [1, 41)

The basic function of the nephron is to clean the blood plasma of unwanted
substances as it passes through the kidney. The substances that must be
cleared include particularly the end products of metabolism, such as urea,
creatinine, uric acid, and urates. In addition, many other substances, such
as sodium ions, tend to accumulate in the body in excess quantities; it is
the function of the nephron also to clear the plasma of these excesses.

The principal mechanism by which the nephron clears the plasma of un-
wanted substances is as follows: It filters a large proportion of the plasma
in the flowing glomerular blood, usually about one fifth of it, through the
glomerular membrane into the tubular system of the nephron. Then, as this
filtered fluid flows through the tubules, the unwanted substances fail to be
reabsorbed while the wanted substances, especially almost all of the water
and many of the electrolytes, are reabsorbed back into the plasma of the
peritubular capillaries.

A second mechanism by which the nephron clears the plasma of other un-
wanted substances is by secretion. That is, substances are secreted from
the plasma directly through the epithelial cells lining the tubules into the
tubular fluid. Thus, the urine that is eventually formed is composed mainly
of filtered substances but also of a small amount of secreted substances.
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Renal handling of four hypothetical substances. The substance in Panel A is freely filtered but not reabsorbed.
The substance in Panel B is freely filtered, but part of the filtered load is reabsorbed back in the blood. The
substance in Panel C is freely filtered but is not excreted in the urine because all the filtered substance is
reabsorbed from the tubules into the blood. The substance in Panel D is freely filtered and is not reabsorbed
but is secreted from the peritubular capillary blood into the renal tubules.

Figure 1.3: Reabsorption and secretion

1.1.1 The Nephron

As mentioned before, the glomerulus, which is about 200um in diameter,
is formed by the invagination of a tuft of capillaries into the dilated blind
end of the nephron (Bowman’s capsule). The capillaries are supplied by
an afferent arteriole and drained by a slightly smaller efferent arteri-
ole. There are two cellular layers separating the blood from the glomerular
filtrate in Bowman’s capsule: the capillary endothelium and the specialized
epithelium that lies on top of the glomerular capillaries. These layers are
separated by a basal lamina. Stellate cells called mesangial cells are lo-
cated between the basal lamina and the endothelium. These mesangial cells
are contractile and play an important role in the regulation of glomerular
filtration!.

The tremendous permeability of the glomerular membrane is caused by its
special structure. The capillary endothelial cells lining the glomerulus are
perforated by literally thousands of small holes of about 50 — 100nm diam-
eter called fenestrae. Then, outside the endothelial cells, the basement
membrane does not contain visible gaps or pores but is composed mainly of
a meshwork of collagen and proteoglycan fibrillae that also have large spaces
through which fluid can filter. The final layer of the glomerular membrane,
the layer of epithelial cells, lines the outer surfaces of the glomerulus. How-
ever, these cells are not continuous but instead consist mainly of fingerlike

!see ” Autoregulation of the Kidney”
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projections, the podocytes, that cover the basal lamina. These "fingers”
form filtration slits that are approximately 25nm wide and each is closed
by a thin membrane.

Capiltary |

Bowman's space Afferent arteriole

Efferent arteriole
Bowman's capsule

— Slit pores

}Epitheﬁum

Basement
membrane

Endothelium

Fenestrations

Figure 1.4: Filtration in the glomerulus

Thus, the glomerular filtrate passes through three different layers before en-
tering Bowman'’s capsule, but each of these layers is several hundred times
as porous as the usual capillary membrane, which accounts for the tremen-
dous volume of glomerular filtrate that can be formed each minute.

Yet, despite its permeability, it has an extremely high degree of selectivity
for the sizes of molecules that it allows to pass. Functionally, the glomeru-
lar membrane permits the free passage of neutral substances up to 4nm
in diameter and almost totally excludes those with diameters greater than
8nm. However, the charges on molecules as well as their diameters affect

11




their passage into Bowman’s capsule. The reason for this is that the base-
ment membrane portions of the glomerular pores are lined with a complex
of proteoglycans that have very strong negative electrical charges. Plasma
proteins, for example, also have strong negative charges. Therefore, electro-
static repulsion of the molecules by the pore walls keeps virtually all protein
molecules larger than 69,000 molecular weight from passing through. [2, 41,
1]

1.0 5

== Polycationic dextran
« == Neutral dextran
== Polyanionic dextran

Relative filterability

18 22 26 30 34 38 42

Effective molecular radius (A)

Figure 1.5: Filtration depending on the particle size

1.2 Formation of Urine: Renal Blood Flow and
Glomerular Filtration

In a resting adult the rate of blood flow through both kidneys is about
1200m!/min. The portion of the total cardiac output that passes through
the kidneys is called the renal fraction. Since the normal cardiac output of
a 70kg man is about 5600ml/min, one can calculate easily that the normal
renal fraction is about 21 per cent, although their weight is only about 0.5%
of the total body weight. But the high blood flow is necassary for the high
blood pressure of 60mmH g that is the driving force that causes the plasma.
to filter through the membrane into Bowman’s capsule. [1, 41]

12



1.2.1 The Glomerular Filtration Rate

The quantity of glomerular filtrate formed each minute in all nephrons of
both kidneys is called the glomerular filtration rate or short GFR.
The GFR in an average-sized man is approximately 125ml/min, values in
women being 10 per cent lower than those in men. It should be noted that
125ml/min is 7.5L/h or 180L/d, whereas the normal urine volume is about
0.5 — 2.0L/d. Thus, 99 per cent or more of the filtrate is reabsorbed, with
the remaining small portion passing to the urine.

Measuring the GFR: The glomerular filtration rate can be measured in
intact animals and humans by measuring the excretion and plasma level of
a substance that is freely filtered through the glomeruli and neither secreted
nor reabsorbed by the tubules. If the substance is designated by the letter
X, the GFR is equal to the concentration of X in urine (Ux) times the urine
flow per unit of time (V) divided by the arterial plasma level of X (Px), or
Ux V/Px. This value is called the clearence of X (Cx). [41, 40]

In addition to the requirement that it be freely filtered and neither reab-
sorbed nor secreted in the tubules, a substance suitable for measuring the
GFR should not be subject to metabolismInulin, a polymer of fructose with
a molecular weight of 5200 that is found in dahlia tubers, meets these cri-
teria in humans and most animals and is extensively used to measure GFR.
Another such substance used is Sinistrin.

In practice, a loading dose of Inulin (or another marker) is administered
intravenously, followed by a sustaining infusion to keep the arterial plasma
level constant. After the inulin has equilibrated with the body fluids, an
accurately timed urine specimen is collected and a plasma sample obtained
halfway through the collection. Plasma and urinary concentrations are de-
termined and the clearance calculated (Inulinclearance = GFR).

The factors governing filtration across the glomerulus capillaries are the
same as those governing filtration across all other capillaries, ie, the size of
the capillary bed, the permeability of the capillaries, and the hydrostatic
and osmotic pressure gradients across the capillary wall. For each nephron:

GFR = K;|(Pc — Pg — (ng — 7B)]

The net filtration pressure represents the sum of the hydrostatic and colloid
osmotic forces that either favor or oppose filtration across the glomerular
capillaries (fig.1.6). These forces include (1) the hydrostatic pressure in-
side the glomerular capillaries (glomerular hydrostatic pressure, Pg), which
promotes filtration, (2) the hydrostatic pressure in Bowman’s capsule (Pg)
outside the capillaries which opposes filtration, (3) the colloid osmotic pres-
sure of the glomerular capillary plasma protein (wg), which also opposes
filtration and (4) the colloid osmotic pressure of the proteins in Bowman’s

13




capsule (mg), which promotes filtration. (Under normal conditions, the
concentration of protein in the glomerular filtrate is so low that the colloid
osmotic pressure of the Bowman’s capsule fluid is considered to be zero.) {2,

1)
Glomerular Glomerular
hydrastatic colloid osmotic
pressure  pressure

(60 mm Hg) (32 mm Hg)

¥

t

Bowman's
capsule,
pressure
{18 mm Hg)

Glomerular Bowman's  Glomerular
hydrostatic _ capsule _ oncotic

pressure pressure pressure
. (60mmHg) (18 mmHg) (32 mm Hg)

Net filtration pressure =
(10 mm Hg)

Figure 1.6: Pressures causing and opposing filtration

1.2.2 Control of the GFR and the Renal Blood Flow -
Autoregulation of the Kidney

The glomerular filtration rate normally remains nearly constant hour after
hour, usually varying very little either above or below the normal value of
about 125ml/min for the two kidneys. Even a change in arterial pressure
from as little as 75 mn HG to as high as 160 mn Hg hardly changes the GFR.
This effect is called autoregulation of glomerular filtration rate.2

To understand the importance of maintaining a constant glomerular filtra-
tion rate, let us consider what would happen if the glomerular filtration rate
should become, first, very slight or, second, very great.

At a very slight glomerular filtration rate, the tubular fluid would pass
through the tubules so slowly that essentially all of it would be reabsorbed.
Therefore, the kidney would fail to eliminate the necessary waste products.
At the other extreme, with a much too high GFR, the fluid would pass so
rapidly through-the tubules that they would be unable to reabsorb those

Zsee fig. 1.7
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- Figure 1.7: Autoregulation of the kidney

substances that need to be conserved in the body.

Thus, one can readily see that the glomerular filtrate must flow into the
tubular system at an appropriate rate to allow the unwanted substances to
pass on into the urine while reabsorbing the wanted substances. However, it
is often not appreciated how narrow the range of glomerular filtration rate
must be if optimal function of the tubular system is to occur. Analyses of
tubular function have shown that even a 5 per cent too great or too little
rate of glomerular filtration can have considerable effects in causing either
excess loss of solutes and water into the urine or, at the other extreme, too
little of the necessary excretion of waste products.

The precision with which the GFR must be autoregulated demands that
there is a highly efficient system for controlling this filtration rate. Each
nephron is provided with two special feedbackmechanisms that add together
to provide the degree of glomerular filtration autoregulation that is required.
These two mechanisms are an afferent arteriolar vasodilator feedback mech-
anism and an efferent arteriolar vasoconstrictor mechanism. The combi-
nation of these two is called tubuloglomerular feedback. The feedback
mechanism occurs at the juxtaglomerular apparatus that consists of the
macula densa and the juxtaglomerular cells:

15
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Figure 1.8: The tubulus returns to the glomerulum

As can be seen in Figure 1.8, the initial portion of the distal tubule (im-
mediately after the upper end of the thick segment of the ascending loop of
Henle) returns to the glomerulus, passing in the angle between the afferent
and efferent arterioles, actually abutting each of these two arterioles. Those
epithelial cells of the distal tubule that come in contact with the arterioles
are more dense than the other tubular cells and are collectively called the
macula densa.

Note also in Figure 1.9 that the smooth muscle cells of both the afferent and
efferent arterioles are swollen and contain dark granules where they come
in contact with the macula densa. These cells are called juxtaglomerular
cells, and the granules are composed mainly of inactive renin.

The anatomical structure of the juxtaglomerular apparatus strongly sug-
gests that the fluid in the distal tubule in some ways plays an important
role in helping to control nephron function by.providing feedback signals to
both the afferent and the efferent arterioles. [2, 41]

The Afferent Arteriolar Vasodilator Feedback Mechanism: A low
rate of glomerular filtration causes overreabsorption of sodium and chlo-
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Figure 1.9: The juxtaglomerular apparatus

ride ions in the ascending limb of the loop of Henle and therefore decreases
the ionic concentration at the macula densa. This decrease in ions initi-
ates a signal from the macla densa to dilate the afferent arteriole. This in
turn allows increased blood flow into the glomerulus, which increases the
glomerular pressure. The increased glomerular pressure as well as the in-
creased glomerular blood flow increases the glomerular filtration rate back
toward the required level.?

Thus, this is a typical negative feedback mechanism for controlling the
glomerular filtration rate at a steady rate. This mechanism also helps au-
toregulate the renal blood flow at the same time, as will be discussed sub-
sequently.

The Efferent Arteriolar Vasoconstrictor Feedback Mechanism: Too
few sodium and chloride ions at the macula densa are also believed to cause
the juxtaglomerular cells to release active renin, and this in turn causes

3see fig 1.10
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Figure 1.10: The effect of afferent resistance on the GFR

formation of angiotensin IT%. Angiotensin II mainly constricts the efferent
arteriole which is much more sensitive to it than is the afferent arteriole.
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Figure 1.11: The effect of efferent resistance on the GFR

So the efferent arteriolar vasoconstrictor mechanism works as the following:

1. A too low filtration rate causes excess reabsorption of sodium and

4see Hormones of the kidney for more information
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chloride ions in the ascending limb of the loop of Henle, therefore
reducing the ionic concentration at the macula densa.

2. The low concentration of ions then causes the juxtaglomerular cells to
release renin from their granules.

3. The renin causes formation of angiotensin II.

4. The angiotensin II constricts the efferent arterioles, which causes the
pressure in the glomerulus to rise.

5. The increased pressure then causes the glomerular filtration rate to
return back toward normal.

Thus, there is still another negative feedback mechanism that helps to main-
tain a very constant GFR. It does so by constricting the efferent arterioles
at the same time that the afferent vasodilator mechanism dilates the afferent
arterioles. When both of these mechanisms function together, the glomeru-
lar filtration rate increases only slightly even though the arterial pressure
changes between the limits of 75 and 160mmHg. (1]

Myogenic Autoregulation of Renal Blood Flow and GFR

A second mechanism that contributes to the maintainance of a relatively
constant renal blood flow and GFR is the ability of individual blood vessels
to resist stretching during increased arterial pressure, a phenomenon re-
ferred to as the myogenic mechanism. Studies of individual blood vessels
(especially small arterioles) throughout the body have shown that they re-
spond to increased wall tension or wall stretch by contraction of the vascular
smooth muscle. This contraction prevents overdistension of the vessel and
at the same time, by raising vascular resistance, helps to prevent excessive
increase in renal blood flow and GFR when arterial pressure increases.

1.3 Formation of Urine: Tubular Processing

As the glomerular filtrate enters the renal tubules, it flows sequentially
through the successive parts of the tubule - the proximal tubule, the loop
of Henle, the distal tubule, the collecting tubule and, finally, the collecting
duct - before it is excreted as urine. Along this course, some substances are
selectively reabsorbed from the tubules back into the blood, whereas others
are secreted from the blood into the tubular lumen.

Eventually, the urine that is formed and all the substances in the urine rep-

resent the sum of three basic renal processes - glomerular filtration, tubular
reabsorption, and tubular secretion - as follows:
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Figure 1.12: Tubular processing of the filtrate

Urinary excretion = Glomerular filtration - Tubular reabsorption

+ Tubular secretion

Unlike glomerular filtration, that is relatively nonselective, tubular reab-
sorption is highly selective. Some substances, such as glucose and amino
acids, are almost completely reabsorbed from the tubules, so that the uri-
nary excretion rate is essentially zero. Many of the ions in the plasma, such
as sodium, chloride and bicarbonate, are also highly reabsorbed, but their
rates of reabsorption and urinary excretion are variable, depending on the
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needs of the body. Certain wast products, such as urea and creatinine, con-
versely, are poorly reabsorbed from the tubules and excreted in relatively
large amounts.

Therefore, by controlling the rate at which they reabsorb different sub-
stances, the kidneys regulate the excretion of solutes independently of one
another, a capability that is essential for precise control of the composition
of body fluids.

1.3.1 Na'*-Reabsorption

The reabsorption of Na* and CI~ plays a major role in body electrolyte and
water metabolism. In addition, Nat-transport is coupled to the movement
of Ht, other electrolytes, glucose, amino acids, organic acids, phosphate,
and other substances across the tubule walls.

In the proximal tubules, the thick portion of the ascending limb of the
loop of Henle, the distal tubules and in the collecting ducts, Na® moves by
cotransport or exchange from the tubular lumen into the tubular epithlelial
cells down its concentration and electrical gradients and is actively pumped
from these cells into the interstitial space. Thus, Na™ is actively transported
out of all parts of the renal tubule except the thin portions of the loop of
Henle. [41, 40] :

Active transport can move a solute against an electrochemical gradient and
requires energy derived from metabolism.

On the basolateral sides of the tubular epithelial cell, the cell membrane
has an extensive sodium-potassium ATPase system that hydrolyzes ATP
and uses the released energy to transport sodium ions out of the cell into
the interstitium. This primary active transport is the driving force for the
secondary active transport of Nat and other ions, that is different in all
tubule parts.

In secondary active transport, two or more substances interact with a spe-
cific membrane protein (a carrier molecule) and are transported together
across the membrane. As one of the substances (for instance, sodium) dif-
fuses down its electrochemical gradient, the energy released is used to drive
another substance (for instance, glucose) against its electrochemical gradi-
ent. Thus, secondary active transport does not require energy directly from
ATP or from other high-energy phosphate sources. Rather, the direct source
of the energy is that liberated by the simultanous facilitated diffusion of an-
other transported substance down its own electrochemical gradient.

About 65% of the filtered electrolytes are reabsorbed in the proximal tubule.

However, the tubular membranes are highly permeable to water, so that
whenever solutes are reabsorbed, water also diffuses through the tubular
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membrane by osmosis. Therefore, the osmolarity of the fluid remains about
the same as the glomerular filtrate, 300mOsml/!.

Another 25% of the sodium is reabsorbed while passing through the loop of
Henle. Also, sodium is reabsorbed in the distal convoluted tubule and in the
collecting duct, the latter being the place where the final Na*-concentration
is determined.

Reabsorption in the Proximal Tubule

The high capacity of the proximal tubule for reabsorption results from its
special cellular characteristics: the proximal tubule epithelial cells are highly
metabolic and have large numbers of mitochondria to support potent active
transport processes.

The extensive membrane surface of the epithelial brush border is also loaded
with protein carrier molecules that transport a large fraction of the sodium
ions across the luminal membrane linked by way of the co-transport mecha-
nism with multiple organic nutrients such as amino acids and glucose. The
remainder of the sodium is transported from the tubular lumen into the cell
by counter-transport mechanisms, which reabsorb sodium while secreting
other substances into the tubular lumen, especially hydrogen ions. As will
be discussed later on, the secretion of hydrogen ions into the tubular lumen
is an important step in the removal of bicarbonate ions from the tubule (by
combining H* with the HCO3 to form H2COs, which then dissociates into
HQO and C 02).

Although, the sodium-potassium ATPase pump provides the major force for
reabsorption of sodium, chloride, and water throughout the proximal tubule,
there are some differences in the mechanisms by which sodium and chloride
are transported through the luminal side of the early and late portions of
the proximal tubular membrane.

In the first half of the proximal tubule, sodium is reabsorbed by co-transport
along with glucose, amino acids, and other solutes. But in the second half
of the proximal tubule, little glucose and amino acids remain to be reab-
sorbed. Instead, sodium is now reabsorbed mainly with chloride ions. The
second half of the proximal tubule has a relatively high concentration of chlo-
ride (around 140mFEgq/l) compared with the early proximal tubule (about
105mEq/!) because when sodium is reabsorbed, it preferentially carries with
it glucose, bicarbonate and organic ions in the early proximal tubule, leav-
ing behind a solution that has a higher concentration of chloride. In the
second half, the higher chloride concentration favors the diffusion of this ion
from the tubular lumen through the intercellular junctions into the renal
interstitial fluid.

The reabsorption of all these electrolytes causes the diffusion of water and
along with it the reabsorption of some other dissolved solutes (Solvent drag).

22




When sodium is reabsorbed through the tubular epithelial cell, negative ions
such as chlorid are transported along with Na* because of electrical poten-
tials. That is, transport of positively charged sodium ions out of the lumen
leaves the inside of the lumen negatively charged, compared to the intersti-
tial fluid. This causes chloride ions to diffuse passively through the para-
cellular pathway. Additional reabsorption of chloride ions occurs because
of a chloride concentration gradient that develops when water is reabsorbed
from the tubule by osmosis, thereby concentrating the chloride ions in the
tubular lumen. Thus, the active reabsorption of sodium is closely coupled
to the passive reabsorption of chloride by way of an electrical potential and
a chloride concentration gradient.

Na* reabsorption
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Figure 1.13: Na* reabsorption and its effects

The diffusion of Cl™ causes the cellmembrane to depolarise and a lumen-
positive transepithelial potential is developed that causes the paracellular
reabsorption of cations such as Na*, K*, Mg™ and Ca?". [40]

Reabsorption in the Loop of Henle

The loop of Henle consists of three functionally distinct segments: the thin
descending segment, the thin ascending segment and the thick ascending
segment. The thin descending and the thin ascending segments, as their
names imply, have thin epithelial membranes with no brush borders, few
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mitochondria and minimal levels of metabolic activity.

The descending part of the thin segment is highly permeable to water and
moderately permeable to most solutes, including sodium. The function
of this nephron segment is mainly to allow simple diffusion of substances
through its walls. About 20% of the filtered water is reabsorbed in the
loop of Henle, and almost all of this occurs in the thin descending limb be-
cause the ascending limb, including both the thin and the thick portions, is
virtually impermeable to water, a characteristic that is important for con-
centrating the urine.

The thick segment, which begins about halfway up the ascending limb, has
thick epithelial cells that have high metabolic activity and are capable of
active reabsorption of sodium, chloride and potassium. About 25% of the
filtered loads of sodium, chloride and potassium are reabsorbed in the loop
of Henle, mostly in the thick ascending part. Considerable amounts of other
ions, such as calcium, bicarbonate and magnesium are also reabsorbed in the
thick ascending limb. The thin segment of the ascending limb has a much
lower reabsorptive capacity than the thick segment, and the thin descending
limb does not reabsorb significant amounts of any of these solutes.

An important component of solute reabsorption in the thick ascending limb
is the sodium-potassium ATPase pump in the epithelial cell basolateral
membranes. As in the proximal tubule,the reabsorption of other solutes is
closely linked to the reabsorptive capability of the Na¥ K+ - ATPase, which
maintains a low intracellular sodium concentration. The low intracellular
sodium concentration in turn provides a favorable gradient for movement
of sodium from the tubular fluid into the cell. In the thick ascending loop,
movement of sodium across the luminal membrane is mediated primarily by
a Nat — KT —2Cl co-transporter. This co-transport protein carrier in the
luminal membrane uses the potential energy released by downhill diffusion
of sodium into the cell to drive the reabsorption of potassium into the cell
against a concentration gradient.

There is also significant paracellular reabsorption of cations, such as Mg™¥,
Ca**, Na* and K7 in the thick ascending limb owing to the slight posi-
tive charge of the tubular lumen relative to the interstitial fluid. Although .
the 1-sodium, 1-potassium, 2-chloride co-transporter moves equal amounts
of cations and anions into the cell, there is a slight backleak of potassium
ions into the lumen, creating a positive charge in the tubular lumen. This
positive charge forces cations such as Mg+* and Catt to diffuse from the
tubular lumen through the paracellular space and into the interstitial fluid.
The thick ascending limb also has a sodium-hydrogen counter-transport
mechanism in its luminal cell membrane that mediates sodium reabsorp-
tion and hydrogen secretion in this segment.

The thick segment of the ascending loop of Henle is virtually impermeable

5see: the countercurrentmechanism of the loop of Henle
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to water. Therefore, most of the water delivered to this segment remains
in the tubule, despite reabsorption of large amounts of solute. The tubular
fluid in the ascending limb becomes very dilute as it flows towards the dis-
tal tubule, a feature that is important in allowing the kidney to dilute or
concentrate the urine under different conditions. [2, 1, 40]

Reabsorption in the distal tubule

The thick segment of the ascending limb of the loop of Henle empties into
the distal tubule. The very first portion of the distal tubule forms part of
the juxtaglomerular complex that provides feedback control of the GFR and
blood flow in this same nephron. The next early part of the distal tubule is
highly convoluted and has many of the same reabsorptive characteristics of
the thick segment of the ascending limb of the loop of Henle. It is relatively
impermeable to water, and continued removal of the solute in excess of
solvent further dilutes the tubular fluid. About 5% of the filtered water is
removed in this segment.

Early distal tubule

Late distal tubule
and coflecting tubute

Figure 1.14: Different kind of cells in the distal tubulus

The second half of the distal tubule and the subsequent cortical collecting
tubule have similar functional characteristics. Anatomically, they are com-
posed of two distinct cell types, the principal cells and the intercalated cells.
The principal cells reabsorb sodium and water from the lumen and secrete
potassium ions into the lumen. The intercalated cells reabsorb potassium
ions and secrete hydrogen ions into the tubular lumen. [1]
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Reabsorption in the collecting duct

The collecting ducts have two portions: a cortical portion and a medullary
portion through which the filtrate flows from the cortex to the renal pelvis.
The changes in osmolarity and volume in the collecting ducts depend on the
amount of vasopressin (ADH) acting on the ducts. This antidiuretic hor-
mone increases the permeability of the collecting ducts to water by causing
the rapid intersection of aquaporin-2 water channels into the luminal mem-
brane of principal cells. In the presence of enough vasopressin to produce
maximal antidiuresis, water moves out of the hypotonic fluid entering the
cortical collecting duxts into the interstitium of the cortex, and the tubular
fluid becomes isotonic. In this fashion, as much as 10% of the filtered water
is removed. The isotonic fluid then enters the medullary collecting ducts.
An additional 4.7% or more of the filtrate is reabsorbed into the hypertonic
interstitium of the medulla, producing a concentrated urine. In humans, the
osmolarity of urine reaches 1400 mOsm/L, almost 5 times the osmolarity of
plasma, with a total of 99.7% of the filtered water being reabsorbed and only
0.3% appearing in the urine. In other species, the ability of concentrating
urine is even greater. Maximal urine osmolarity is about 2500 mOsm/L in
dogs, about 3200 mOsm/L in laboratory rats, and as high as 5000 mOsm/L
in certain desert rodents. [41]

When vasopressin is absent, the collecting duct epithelium is relatively
impermeable to water. The fluid therefore remains hypotonic, and large
amounts flow into the renal pelvis. In humans, the urine osmolality may
be as low as 30mosm/L. The impermeability of the distal portions of the
nephron is not absolute; along with the salt that is pumped out of the col-
lecting duct fluid, about 2% of the filtered water is reabsorbed in the absence
of ADH. However, as much as 13% of the filtered water may be excreted,
and urine flow may reach 15mL/min or more.

Nat leaves the lumen through sodium-channels that are activiated by Al-
dosterone and ADH. 7

Ssee fig.1.15 for more detail
"see Hormones of the kidney
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Figure 1.15: The effect of ADH on the reabsorption of water

Hormone Site of Action and Effects

Aldosterone Collecting tubule
1 NaCl, HoO reabsorption, T K+ secretion

Angiotensin || Proximal tubule, thick ascending loop of Henle, distal tubule
. 1 NaCl, H,O reabsorption, T HT secretion

Antidiuretic hormone Distal tubule, collecting tubule and duct
1 H5O reabsorption

Atrial natriuretic peptide ~ Distal tubule, collecting tubule and duct
1 NaCl reabsorption

Parathyroid hormone Proximal tubule, thick ascending loop of Henle, distal tubule
| POy~ reabsorption, T Ca™* reabsorption
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1.3.2 The Countercurrent Mechanism

The osmolarity of interstitial fluid in almost all parts of the body is about
300mQOsm/ L, which is similar to the plasma osmolarity. The osmolarity of
the interstitial fluid in the medulla of the kidney is much higher, increas-
ing progressively to about 1200 to 1400mOsml/L in the pelvic tip of the
medulla. This means that the renal medullary interstitium has accumulated
solute in great excess of water. Once the high solute concentration in the
medulla is achieved, it is maintained by a balanced inflow and outflow of
solutes and water in the medulla.

The major factors that contribute to the buildup of solute concentration
into the renal medulla are as follows:

1. Active transport of sodium ions and co-transport of potassium, chlo-
ride and other ions out of the thick ascending limb of the loop of Henle
into the medullary interstitium

2. Passive diffusion of large amounts of urea from the innermedullary
collecting ducts into the medullary interstitium

3. Diffusion of only small amounts of water from the medullary tubules
into the medullary interstitium, far less than the reabsorption of so-
lutes into the medullary interstitium

The process is best understood in terms of hypothetical steps leading to the
normal equilibrium condition, although of course the steps do not occur in
vivo, and equilibrium is maintained unless the osmotic gradient is washed
out.

Assume first a condition in which osmolarity is 300 mOsm/L through-
out the descending and ascending limb and the medullary interstitium (1)2.
Assume in addition that the pumps in the thick ascending limb can pump
100mOsm/kg of Na* and Cl~ from the tubular fluid to the interstitium,
increasing interstitial osmolarity to 400mQOsm/L (2). Water then moves out
of the thin descending limb, and its contents equilibrate with the intersti-
tium (3). However, fluid containing 300 mOsm/L is continuously entering
this limb from the proximal tubule (4), so the gradient against which the
Na* and Cl™ are pumped is reduced and more enters the interstitium.
Meanwhile, hypotonic fluid flows into the distal tubule, and isotonic and
subsequently hypertonic fluid flows into the ascending thick limb. The pro-
cess keeps repeating, and the final result is a gradient of osmolarity from
the top to the bottom of the loop (7).

In juxtaglomerular nephrons with longer loops and thin ascending limbs,
the osmotic gradient is spread over a greater distance and the osmolarity
at the tip of the loop is greater. This is because the thin ascending limb

8see pict. 1.16 .

28




Repeat Steps 46

Figure 1.16: The renal countercurrent mechanism

is relatively impermeable to water but permeable to Nat and Cl~. There-
fore, sodium and chloride move down their concentration gradients into the
interstitium, and there is additional passive countercurrent multiplication.
The greater the length of the loop of Henle, the greater the osmolarity that
can be reached at the tip of the pyramid.

The osmotic gradient in the medullary pyramids would not last long if the
sodium and urea in the interstitial spaces were removed by the circulation.
These solutes remain in the pyramids primarily because the vasa recta oper-
ate as countercurrent exchangers. The solutes diffuse out of the descending
vessels and into the fenestrated ascending vessels. Therefore, the solutes
tend to recirculate in the medulla and water tends to bypass it, so that
hypertonicity is maintained. The water removed from the collecting ducts
in the pyramids is also removed by the vasa recta and enters the general
circulation.

Countercurrent exchange is a passive process; it depends upon the movement
of water and could not maintain the osmotic gradient along the pyramids
if the process of countercurrent multiplication in the loops of Henle were to
cease. [41,2,1]
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1.3.3 The Role of Urea

Urea contributes to the establishment of the osmotic gradient in the medullary
pyramids and to the ability to form a concentrated urine in the collecting
ducts. Urea moves passively out of the proximal tubule, but except for the
inner portion of the collecting duct, the rest of the tubular epithelium is rel-
atively impermeable to this compound. Consequently, urea is increasingly
concentrated in the tubular fluid as water is removed in the loop and distal
tubule.

However, when the inner medullary portion of the collecting duct is reached,
urea moves into the interstitium of the pyramids, adding to the hyperos-
molarity. The movement of urea in this portion of the collecting duct is
facilitated by vasopressin. Conversely, when the tubular fluid reaching the
inner medullary collecting duct is dilute in the absence of vasopressin, urea
moves from the interstitium into the tubular lumen and the osmotic gra-
dient in the pyramides is reduced. The amount of urea in the medullary
interstitium and, consequently, in the urine varies with the dietary intake of
protein. Therefore, a high-protein diet increases the ability of the kidneys
to concentrate the urine. [1]

medulla

Inner
medulla

Figure 1.17: The urea cycle
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1.3.4 Reabsorption of other Solutes than Sodium
1.4 Extracellular Fluid Osmolarity

For the cells to function properly, they must be bathed in extracellular filuid
(ECF) with a relatively constant concentration of electrolytes and other
solutes. The total concentration of solutes in the extracellular fluid - and
therefore the osmolarity - is determined by the amount of solute divided by
the volume of the extracellular fluid. Thus, to a large extent, extracellular
fluid sodium concentration and osmolarity are regulated by the amount of
extracellular water.

The body water in turn is controlled by the water intake and water excretion.

Daily Intake of Water

Water is added to the body by two major sources: it is ingested in the
form of liquids or water in the food, which together normally add about
2100ml/day to the body fluids, and it is synthesized in the body as a result
of oxidation of carbohydrates, adding about 200 ml/day. Intake of water is
highly variable among different people and even within the same person on
different days, depending on climate, habits and level of physical activity.
But one can say that the daily water intake for a healthy adult should be
approximately 1L/30kg, and for babies it should be 1L/10 kg bodyweight.

Daily Loss of Body Water

Some of the water losses cannot be precisely regulated. For example, there
is a continuous loss of water by evaporation from the respiratory tract and
diffusion through the skin, which together account for about 700 ml/day of
water loss under normal conditions. This is termed insensible water loss be-
cause we are not consciously aware of it, even though it occurs continually
in all living humans.

The amount of water lost by sweating is highly variable, depending on phys-
ical activity and environmental temperature. The volume of sweat normally
is about 100ml/day, but in very hot weather or during heavy excercise,
water loss in sweat occasionally increases to 1 to 2 L/hour.

Only a small amount of water (100m!/day) normally is lost in the feces,
although this can increase to several liters a day in people with severe diar-
rhea. '

The remaining water loss from the body occurs in the urine excreted by the
kidneys.
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Daily Intake and Output of Water (in ml/day)
Prolonged
Normal Heavy Exercise
Intake

Fluids ingested - 2100 ?
From metabolism 200 200
Total intake 2300 ?

Output
Insensible - Skin 350 350
Insensible - Lungs 350 650
Sweat 100 5000
Feces 100 100
Urine 1400 500
Total output 2300 6600

Water makes about 46 % to 75 % of the bodyweight of an adult depending
on the age and sex of a person (women have a lower percentage due to their
higher bodyfat). [2, 40, 1]

About 3/5 of the bodywater is found in the intracellular space and 2/5 of it
forms the extracellular fluid, the extracellular fluid consisting of the inter-
stitium, plasmawater and transcellular fluids. With the main portion of the
body Na™ in the extracellular fluid and sodium being the most abundant
jon in that compartment, the regulation of the extracellular fluid osmolarity
is closely linked to the regulation of the sodium concentration.

A rise of the ECF osmolarity due to sodium intake or water loss causes wa-
ter to flow from the intracellular space into the extracellular fluid, because
osmotic equilibrium between the ECF and the ICF has to be maintained.
To save the cells such unwanted volume changes the osmolarity of the ex-
tracellular fluid has to be highly controlled. Osmoreceptors (mainly in the
hypothalamus), Adiuretin (ADH) as a hormone and the kidneys as its target
play a major role in this.

Water Deficit

If H2 O loss is not - or not sufficiently - substituted, the ECF gets hyperton.
Even a rise in osmolarity as low as 1% is enough to cause or increase the
excretion of ADH in the back of the hypophyse. ADH decreases the renal
water excretion, water is held back and therefore the body water concentra-
tion is increased.

Simularily, many of the factors that stimulate ADH secretion also increase
thirst, which is defined as the conscious desire for water.
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Control of thirst

Increase Thirst Decrease Thirst
T Osmolarity | Osmolarity
| Blood volume T Blood volume
1 Blood pressure 1 Blood pressure
T Angiotensin || | Angiotensin ||
Dryness of mouth Gastric distention

‘Water Overflow

The intake of hypotonic fluid decreases the extracellular space osmolarity.
This, on the other hand, decreases the excretion of ADH causing a water
diuresis, which brings the plasmaosmolarity back to normal.

The daily NaCl intake is about 8 to 15¢/d. The very same amount per
time should be excreted by the kidneys to make sure that the Nat in the
body and related to that, the extracellular fluid volume, is held constant.
Several mechanisms are involved in this:

e Atriopeptin (ANP): is excreted by the cells in the atrium when the
extracellular space volume is increased. ANP increases the renal Na®
excretion by rising the filtration fraction and decreasing the Na Cl
reabsorption in the collecting duct.

¢ The renin-angiotensin-system (resulting.in Na™ retention)

e ADH: secretion in the hypothalamus is stimulated by an increase in
osmolarity measured in the atrium through a decreased (more than
10%) ECF volume and by angiotensin II.

e Pressure diuresis: an overage amount of water and sodium is excreted.
It is caused by an increased blood pressure due to an increase in the
extracellular space volume. '

Lack of Sodium

A too low blood osmolarity decreases the secretion of ADH, therefore in-
creasing the Hp O secretion. This causes a reduction of the ECF volume
and along with that the plasma volume and the blood pressure are also de-
creased. This activates the renin-angiotensin-system.

Because of the sodium retention water is held back, simularily water is con-
sumed (angiotensin II causes thirst), so the volume of the extracellular space
is normalised again.
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Increased Salt Intake

With no significant change in the body water amount the plasma osmolarity
rises (causing thirst) and more ADH is excreted. Because of this, the ECF
volume increases and this brings the renin-angiotensin-system to slow down
or end. Also, ANP increases the Na Cl and Hs O excretion so that the ECF
volume is brought back to normal. {40]

1.5 The Kidney Hormones

1.5.1 Aldosterone

Aldosterone is the major mineralcorticoid secreted by the adrenals. As al-
ready mentioned before, aldosterone increases the absorption of sodium and
the secretion of potassium. Therefore, aldosterone causes sodium to be con-
served in the extracellular fluid while increasing potassium excretion in the
urine. .

The regulation of aldosterone secretion (by the zone glomerulosa cells) is
so deeply intertwined with the regulation of extracellular fluid electrolyte
concentrations, extracellular fluid volume, blood volume, arterial pressure,
and many special aspects of renal functions that it is difficult to discuss its
regulation independently of all these other factors.

The following factors are known to play essential roles in the regulation of
aldosterone. In the probable order of their importance, they are as follows:

1. Increased potassium ion concentration in the extracellular fluid greatly
increases aldosterone secretion.

2. Increased activity of the renin-angiotensin system also greatly increases
aldosterone secretion.

3. Increased sodium ion concentration in the extracellular fluid very slightly
decreases aldosterone secretion.

Aldosterone is an important regulator of sodium reabsorption and potassium
secretion by the renal tubules. The primary site of aldosterone action is on
the principal cells of the cortical collecting tubule. The mechanism by which
aldosterone increases sodium reabsorption while at the same time increasing
potassium secretion is by stimulating the sodium-potassium ATPase pump
on the basolateral side of the cortical collecting tubule membrane. Aldos-
terone also increases the sodium permeability of the luminal side of the
membrane.

In the absence of aldosterone, as occurs with adrenal destruction or mal-
function, there is marked loss of sodium from the body and accumulation
of potassium. Conversely, excess aldosterone secretion, as occurs in patients
with adrenal tumors is associated with sodium retention and potassium de-
pletion.
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1.5.2 The Renin-Angiotensin System

Renin itself is not a hormone but a small protein enzyme released by the
kidneys when the arterial pressure falls too low. In turn, it raises the arterial
pressure in several ways, thus helping to correct the initial fall in pressure.
Renin is synthesized and stored in an inactive form called prorenin in the
juxtaglomerular cells of the kidneys. When the arterial pressure falls, many
of the prorenin molecules in the juxtaglomerular cells are caused to split and
release renin.

Renin itself is an enzyme, not a vasoactive substance. Instead, it acts en-
zymatically on another plasma protein, a globulin called renin substrate
(or angiotensinogen), to release a 10-amino acid peptide, angiotensin I Ap-
giotensin I has mild vasoconstrictor properties, but not enough to cause
significant changes in circulatory function. The renin persists in the blood
for 30 to 60 minutes and therefore, continues to cause formation of still more
angiotensin I during this entire time.

Within a few seconds after formation of the angiotensin I, two additional
amino acids are split from the angiotensin I to form the 8-amino acid peptide
angiotensin II . This conversion occurs almost entirely in the lungs during
the few seconds while the blood flows through the small vessels of the lungs,
catalyzed by an enzyme called converting enzyme that is present in the en-
dothelium of the lung vessels.

Angiotensin IT is an extremely powerful vasoconstrictor, but it persists in
the blood only for 1 or 2 minutes because it is rapidely inactivated by en-
zymes called angiotensinase.

During its persistence in the blood, angiotensin IT has two principal effects
that can elevate arterial pressure:

e Vasoconstriction occurs rapidely, intensively in the arterioles and much
less so in the veins. Constriction of the arterioles increases the total
peripheral resistance, thereby raising the arterial pressure. Also, the
mild constriction of the veins promotes increased venous return of
blood to the heart, thereby helping the heart pump against the in-
creasing pressure. ’

e The second principal means by which angiotensin increases the arterial
pressure is to act directly on the kidneys themselves to decrease the
ezcretion of both, salt and water. This slowly increases the arterial
pressure over a period of hours and days. This long-term effect is even
more powerful than the acute vasoconstrictor mechansim in eventually
returning the arterial pressure all the way back to normal after a low
blood pressure event.

Angiotensin II causes the kidneys to retain salt and water in three
ways:
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1. Angiotensin II stimulates adlosterone secretion which in turn in-
creases sodium reabsorption

2. Angiotensin II constricts the efferent arterioles. This reduces per-
itubular capillary hydrostatic pressure, which increases net tubu-
lar reabsorption, especially from the proximal tubules. Also, by
reducing renal blood flow, efferent arteriolar constriction raises
the filtration fraction in the glomerulus and increases the concen-
tration of proteins and the colloid osmotic pressure in the per-
itubular capillaries; this increases the reabsorptive force at the
peritubular capillaries and raises tubular reabsorption of sodium
and water.

3. Angiotensin II directly stimulates sodium reabsorption in the
proximal tubules, the loops of Henle, and the distal tubules. One
of the direct effects of angiotensin II is to stimulate the sodium-
potassium ATPase pump on the tubular epithelial cell basolat-
eral membrane. A second effect is to stimulate sodium-hydrogen
exchange in the luminal membrane, especially in the proximal
tublule.

For all this reasons, angiotensin II is perhaps the body’s most powerful
sodium-retaining hormone.

1.5.3 Antidiuretic Hormone

Adiuretin or vasopressin or antidiuretic hormon or short ADH is a polypep-
tide, synthesized and released in the hypothalamus and the pituitary gland
from where it is transported to the hypophyse, where it is stored in the secre-
tory granules. Increased osmolarity, decreased arterial pressure, decreased
blood volume or other stimuli cause ADH to be released, which then enters
the systemic circulation.

Secretion of ADH in response to an osmotic stimulus is rapid, so that plasma
ADH levels can increase severalfold within minutes, thereby providing a
rapid means for altering renal excretion of water.

Extremely minute quantities of ADH can cause decreased excretion of water
by the kidneys (antidiuresis). Briefly, in the absence of ADH, the collecting
tubules and ducts become almost impermeable to water, which prevents sig-
nificant reabsorption of water and therefore allows extreme dilution of the
urine. Conversely, in the presence of ADH, the permeability of the collecting
ducts and tubules to water increases greatly and allows most of the water
to be reabsorbed as the tubular fluid passes through these ducts, thereby
conserving water in the body and producing very concentrated urine. [1, 41]
Aside from the effect of minute concentrations of ADH in causing increased
water conservation by the kidneys, higher concentrations of adiuretin have
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potent effect of constricting the arterioles throughout the body and there-
fore of increasing the arterial pressure. For this reason, ADH has another
name, vasopressin.
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Chapter 2

The LADMER - System

In the relationship between dose and effectiveness or dose response, not only
the amount of drug administered and the pharmacological effect of the drug
are of importance but many other factors are responsible for the entrance of
a drug into the body. These factors are based on the physical and chemical
properties of the drug substance and of the drug product. What happens
to the active ingredient in the body after administration of a drug product
in its various dosage forms? This entire cycle of processes is termed fate of
drugs. '

Whether a blood level curve will reach its peak rapidly or slowly depends on
the route of administration, the dosage form, the liberation rate of the drug
from the dosage form, diffusion, penetration and permeation of the drug, its
distribution within the body fluids and tissues, the type, amount and rate
of biotransformation, recycling processes and elimination. In addition to
these factors there are also others, depending on the individual disposition,
diseases, etc.

The fate of drugs is described by the so-called LADMER-system (often also
termed LADME-system) showing that liberation, absorption, distribution,
metabolism and elimination are involved to elicit the response. [4, 8]

2.1 Liberation

Liberation (drug release) is the first step which determines onset of action,
rate of absorption, availability, etc., which is true for all drug products by
all routes of admiinistration, except intravenous and the preoral use of true
solutions. .

After the drug has been administered it disintegrates into small particles
(Disintegration) and releases the active agent, which now dissolves in the
intestinal fluids (Dissolution). The dissolution of the drug is the necessary
condition for the consecutive reabsorption - for a drug can only be absorbed
if it is present in the form of solution. Speed and completeness of dissolution
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Figure 2.1: Liberation of drugs
and reabsorption together determine the drug’s bioavailability. [4, 26]

2.2 Absorption

After dissolution, the drug diffuses to the site of absorption. Only drugs
administered intravenously in solution enter the circulatory system imme-
diately. With all other routes of administration, the drugs must pass mem-
branes which act as lipid barriers. Different transport mechanisms are em-
ployed to penetrate into and to permeate through these membranes.

Most of the drugs are absorbed or transported by passive diffusion, which
depends on the pK, values of the drug, the pH of the solution and the lipid
solubility of the unionized form. Drugs passing through the lipid barrier
may directly enter the central compartment.

As the marker used for the determination of the clearence (Sinistrin) is
administered intravenously absorption as well as liberation is not of great
interest to us. [8, 35]

2.3 Distribution

After their reabsorption drugs are quickly distributed throughout the circu-
latory system. From the blood they pass over into adjacent tissues.
However, most drugs are at least partially bound to protein in the blood-
stream and it is only the free, unbound form of the drug that is available
for action. A protein-bound drug cannot migrate from blood into tissue
and can therefore not reach its destination, it remains ineffective. On the
other hand, plasma protein-bound drugs cannot be excreted by the kidneys
either as they can’t be filtered in the glomerulum. The protein-bound drug
therefore longer remains in the body.

But the plasma protein-bound fraction is not permanently trapped but is
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in equilibrium and will be released from the protein as the free drug is
eliminated from the plasma. The drug then may enter the peripheral com-
partment by again passing a lipid barrier until it finally reaches the biophase.
This is a cell, or even a cell component, where the final interaction between
drug and receptor takes place.

So, plasma proteins may exert a buffer and transport function in the distri-
bution process. As only the free, non-protein-bound fraction of a drug can
leave the circulatory system and diffuse into tissue, the equilibrium between
free and unbound drug acts as a buffer system, since a relatively constant
concentration of free drug can be maintained over a relatively long period
of time due to the dissociation of the drug-protein complex.

Drug binding to protein is usually rather nonspecific, i.e., many drugs bind
to the same binding sites (receptors) on the protein molecule. The drug
with the higher affinity will, therefore, displace a drug of lower affinity from
its binding site by competition. This can lead to some dangerous situa-
tions, since only the non-protein-bound fraction is free for pharmacological
action; intensity of pharmacological response, side effects, and toxicity in-
crease upon displacement from protein binding. This is of importance only
in drugs highly bound to protein. Imagine, for example, a drug already
bound to a large amount (= 99 %) being displaced by a drug administered
later than the first one. This second drug now supplants a small fraction,
say 3%, of the bound drug increasing the free and active part to 4%, 4
times the value it was before.! Such a raise could already result in severe
toxic symptoms.

The extent of protein binding is determined in vitro by dialysis, ultra-
centrifugation, ultrafiltration, molecular filtration, Sephadex-gel filtration,
electrophoresis or by agar plate test.

The extent of protein binding is usually given in percentage. However, one
must be aware that percent bound is a function of the capacity of the protein
and the concentration of the drug bound in the environment. [4, 8, 27]

2.4 Metabolism

After releasing the drug from its receptor binding, the drug again passes
through a lipid barrier and reenters the central compartment, from which
the drug, by again passing a lipid barrier, is metabolized in the liver, kidney
or in the tissue of the plasma.

Metabolism generally serves three principal purposes: (1) to supply energy
for body functions and maintenance, (2) to break down ingested compounds,
i.e., catabolism, to simpler structures, and biosynthesis of more complex
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molecules, i.e., anabolism, usually requiring energy; and (3) for the conver-
sion or biotransformation of foreign compounds to more polar, water-soluble
and ionized structures which can be eliminated more easily.

Drug metabolism refers solely to the chemical biotransformation of a drug
by the biological environment. The principle site of drug metabolism is the
liver, less important are the kidneys, muscle tissues and gut wall.

Drug metabolism is very complex. Often, it is also termed detoxication
indicating that one of the main functions of metabolism is the formation
of more polar and water-soluble compounds resulting in reduction of their
pharmacological activity and more rapid excretion from the body.

Drug metabolism reactions are divided into Phase 1, or non-synthetic re-
actions, and Phase 2, or synthetic reactions. .From the point of view of
pharmacokinetics, the synthetic reactions of metabolism are more interest-
ing as they are responsible for the formation of the final metabolic product
of the drug to be excreted.

The most common drug metabolism reactions comprise oxidation, reduction,
hydrolysis, and conjugation. Also, a drug can be metabolized simultaneously
by competing reactions. The extent of formation of the different metabo-
lites thus depends on the relative rates of reaction. Additionally, many drugs
are subjected to different metabolic reactions sequentially, where oxidation,
reduction or hydrolysis reactions are followed by conjugation.

2.4.1 First Pass Effect:

After peroral and also after deep rectal administration, drugs may be me-
tabolized in the gastrointestinal epithelium during absorption, or by the
liver before they reach systemic circulation. This latter process is called
the first-pass-effect and reduces the systhemic availability of the drug. This
first-pass-effect is also one of the explanations for differences in the elimina-
tion half-life of some drugs when administered 1.V (intravenous) and P.O.
(peroral).

The importance of the first-pass-effect depends on the metabolic capacity
for the particular drug, the rate of metabolism and the rate of absorption.
If the given amount of drug is small. but capacity and rate of metabolism
are high, a large fraction of the drug may be metabolized, therefore reducing
the extent of bicavailability. With increasing dose sizes, on the other hand,
first-pass metabolism may become saturated, thus increasing the extent of
bioavailability. [8]

2.5 Excretion

Exrection of drugs is the final elimination (or loss of drug) from the body.
Excretion can happen by various pathways (urine, bile, intestines, salvia,
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alveolar air, sweat and milk), but the two most important ways of excretion
are via the kidney into the urine and via the liver into feces.

For the markers used in this paper, sinistrin and p-amino-hippuric acid, the
kidney remains the pathway of interest. So, let’s shortly recall the most
important facts about the renal clearance:

2.5.1 Renal .Clearance:

The renal clearance for a drug is that volume of blood that is cleared of the
drug during one minute via the kidneys. When a compound is filtered only
by the glomerulus and is not otherwise acted on by the kidney (like it is
the case for inulin, sinistrin and mostly for creatinine), its clearance equals
the glomerular filiration rate. Such substances are, therefore, used as test
substances for the determination of the glomerular filtration rate (GFR): [2,
4, 8]

Cy,*xV
C

Clren. = [l /min]

Clren. corrected renal clearance [ml/min]

Cy concentration of drug in urine [mg/ml]
14 volume of urine excreted [ml/min|
C concentration of drug in plasma (no protein binding present) [mg/m!]

In the case a drug is bound to protein the corrected renal clearance is cal-
culated in the following way:

Cy*xV

Clren.corr. = m [ml/min]

Clren.corr.  corrected renal clearance [ml/min]

fraction of drugs bound to protein [fraction of 1]
- concentration of drug in urine [mg/ml]

volume of urine excreted [ml/min]

concentration of drug in plasma [mg/ml|

Qa<Qm
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Chaptef 3
Compartmental Models

Basically, compartmental analysis is used to evaluate a system by measuring
the input and output of a tracer introduced into that system.

This method can be used to access systems assumed to consist of one to
several compartments and has a large number of applications not only in
medicine and biology, but also in pharmacy, social science, behaviourmetrics
and ecology.

Models are used to describe and interpret a set of data obtained by ex-
perimentation. A model in pharmacokinetics is a hypothetical structure
which can be used to characterize with reproducibility the behaviour and
the "fate” of a drug in biological systems when given by a certain route of
administration.

The system to be evaluated is divided into a number of compartments and
the transport of substances from one compartment to another is described
as a flux.

Such a compartment is an entity which can be described by a definite vol-
ume and a concentration (of drug contained in the volume). Meaning that
at a certain time, the concentration of the administered drug is the same
throughout that compartment. [16]

Multiplying that concentration with the volume yields the total amount of
drug in that compartment:

M =CxV

M amount of drug in the compartment [mcg]
C  concentration of the drug [meg/ml)
V  volume of the compartment [ml]

Speaking in a greatly simplified manner, a compartment can be seen as
a vessel (e.g. a bath tub) of unknown volume filled with water. Now, if you
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add a substance to that vessel, stir up real well so that this substance is
equally distributed throughout that vessel, and then take a probe, you can
easily calculate the volume of the tub:

V =

SIS

The same principle works for the human body: one injects some (known)
amount of a drug (dose D) into the left arm-vein, waits until the blood
has circulated once through the body (about 1 to 3 minutes), takes a blood
sample from the right arm-vein which gives the drug concentration (blood
level C). As in the beginning all of the drug is still in the circulatory system
{the vessel of unknown volume), this value equals the ”fictive initial concen-
tration” (Cp). Knowing the dose and this initial concentration the volume
of distribution can easily be calculated:

D
Vi = =—
d o
Va volume of distribution [ml]
D dose administered [mcg]
Cy fictive initial concentration [med/ml]

We now have assumed that the drug is evenly distributed in the body like
it was in the tub, but the human body is not a simple vessel and there is no
substance that is totally homogeneous in the entire organism. Actually, the
human body is a multi-million compartment model considering drug con-
centration in different organelles, cells or tissues.

Usually, the behaviour of a drug in a biological system can be described
by a one-compartment model or a two-compartment model. Sometimes it
is necessary to employ multicompartmental models. In order to keep the
model as simple.as possible one should begin by determining whether ex-
perimental data can be fitted to a one-compartment model. And only if no
fitting is obtained, one continues trying more sophisticated models.

However, in the human body we have access to only two types of body
fluid - blood (or plasma or serum) and urine. Compartment models in phar-
macokinetics are, therefore, used to fit experimental data from blood level
versus time curves or urinary cumulative excretion versus time curves to
models. A certain type of model is not necessarily specific for a particular
drug. Often a blood level versus time curve upon extravascular administra-
tion can be fitted to a simple one-compartment model, whereas the blood
level versus time curve upon intravascular administration is best fitted to a
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two-compartment model. [4]

Two or more compartments can be linked together because a drug may
move from one compartment into another and back. The movement occurs
at different rates (speeds) and is described by distribution rate constants.

3.1 Open One-Compartment Model

We are talking about an open one-compartment model if the drug entering
the body (input) distributes (equilibrates) instantly between the blood and
other body fluids or tissues. In an open one-compartment model the drug
is not necessarily (and indeed is rarely) confined to the circulatory system.
The drug may occupy the entire extracellular fluid, ”soft” tissue or the
entire body. However, distribution occurs instantly and is not ”pooled” in
a specific area. '

3.2 Open Two-Compartment Model

We are talking about an open two-compartment model if the drug enter-
ing the body (input) does not instantly distribute (equilibrate) between the
blood and those other body fluids or tissues which it eventually reaches.
The distribution of the drug in blood and other ”soft” tissues, on the one
hand, and into other ”"deep” tissues, on the other hand, occurs at different
rates (speeds). Eventually a steady state will be reached which terminates
the "distribution” phase.

The body fluids or tissues which are in equilibrium with the circulatory sys-
tem comprise the central compartment which is accessible through blood
sampling. Those body fluids or tissues into which the drug distributes slowly
comprise the peripheral compartment which is not accessible by blood
sampling.

The term "open” in conjunction with a compartment model refers to the
fact that we do not have a closed system, but have a unidirectional input
and output into and out of the system. [8]

3.3 Mathematical Representation

The development of the mathematical realization of strictly compartmental
models involves, essentially, two stages. The first consists of writing mass
balance equations for each compartment in terms of material flowing into
that compartment and the flux of material from that compartment to other
sites. This flux of material from one compartment to another can be assumed
to depend, linearly or nonlinearly, on the mass or concentration of material
in the source compartment only. [7, 42]
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The general form of equation defining the dynamics of the i-th compartment
in such a model is

Qit) = Ro+ .Y, Rii(@)— D Rua(Q)-Ru(Q), i=12,...,n

J=1,j#i Jj=1,3#i
where

Q; quantity of material in compartment %

R;; flux of material into compartment ¢ from compartment j,
depending on (); only

Rj; flux of material from compartment i to compartment j,
depending on @Q; only

R0 flux of material into compartment i from external environment

Ry; flux of material from compartment ¢ into external environment

It should be noted that all fluxes and masses cannot be negative.

If the compartment is accessible to measurement, a desired output is rep-
resented as a dashed line with a bullet. Measurements are typically made
in units of concentration, ¢;(t). The concentration is the mass within the
volume of the compartment, v;(t), where

The second stage requires specifying the functional dependences of each
flux. The nature of these dependences, which may be linear or nonlinear,
and their values are obtained either from a priori knowledge or from param-
eter estimation. Two commonly occurring types of functional dependencies
are the linear dependence and the threshold/ saturation dependence, which
includes the Michaelis-Menten form.

The linear and Michaelis-Menten dependences can be described mathemat-
ically in the form

Linear Dependence

Rij(Q5) = kij Q5
For a linear time-invariant system, each flux is described as the product of a

constant, k;;, and the mass of the source compartment, resulting only from
diffusion. So this linear compartment model can be described as

N N
Qilt) = Rip + D ky Q1) + D —kiQi(t) — koi* Qi
Jj=Lj#i j=1,5%#4
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where kj; is a constant defining the fractional rate of transfer of material
into compartment i from compartment j. Each of this rate constants has
the unit of inverse time.

~— SLOPE = k..
1]

- Q.

3

Figure 3.1: Graphical representation of linear dependence of material flux
R;; on the quantity of material Q; in the source compartment j

Michaelis-Menten Dynamics

Ry(@;) = 5o

where «;; is the saturation value of flux R;; and B;; is the value of Q;
at which R;; is equal to half its maximal value.

3.4 Example

The following example shows the distribution of a test substance (sinistrin)
in a two-compartment model. After administration of the drug in the central
compartment, it rapidly distributes in this compartment while distribution
of the drug in other tissues (peripheral compartment) occurs at a measurable
speed.

As can be seen in the graphic, the whole process can be divided into two

phases: in phase 1, distribution between the compartments takes place,
while phase 2 consists of the elimination from the central volume.
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Figure 3.2: Graphical representation of a Michaelis-Menten dependence of
material flux R;; on the quantity of material (J; in the source compartment
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Figure 3.3: Marker concentration in the central and peripheral compartment
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Chapter 4

The Markers

4.1 Inulin

Inulin, (CeH100s)4, is an indigestible polysaccharide occurring in the rhi-
zome of certain plants (Compositae). It is a polymer of fructofuranose and
yields fructose on hydrolysis.

A long time Inulin was used as the standard substance used in the test for
determining the renal clearance. But it has the big disadvantage of not be-
ing water soluble at room temperature what makes infusion rather difficult.
That’s why today, other substances (as Sinistrin) are also used as markers
for the determination of the renal clearance. -

4.2 Sinistrin

Sinistrin is a mucilaginous carbohydrate, resembling achrodextrin, extracted
from squill as a colorless amorphous substance; - so called because it is
levorotatory. '

Sinistrin unlike Inulin is water soluble at room temperature what makes it
ideal for intravenous applications in renal diagnostics.

4.3 Para-Amino Hippuric Acid

PAH (Para-Amino Hippuric Acid) was isolated from horse urine (hippos:
horse, uron: urine) by Liebig in 1829.

The N-acetic acid, CgH19N20s3, of para-aminobenzoic acid, is a white crys-
talline powder which is used as a pharmaceutic aid. As PAH - unlike Inulin
and Sinistrin - is secreted in the renal tubules resulting in an excretion that
can be up to 5 times higher than the filtered amount, its sodium salt is used
for the measurement of the effective renal plasma flow and for determining
the functional capacity of the tubular excretory mechanism.
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PAH is metabolized in the liver in different extents varying on the patient,
its metabolite being excreted by the kidneys as well. That of course makes
it necessary not only to measure the amount of p-amino hippuric acid, but
also the concentration of its metabolites.

Otherwise, this would lead to a false identification of the model parameters
(because of wrong underlying measurements) resulting in a too low plasma-
concentration calculation. [3]
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Chapter 5

The Basic Model of
Pharmacokinetics

The so-called basic model of pharmacokinetics is an open two-compartment
model, which means that the extracellular space is considered to be com-
posed of two functionally separated spaces: one, that is perfused rapidly
(comprising the blood, the brain, the liver, the kidneys etc.), and the other
one which is perfused slowly (like the muscles at rest, the adipose tissue,
etc.).

The marker is infused into the vein, it is distributed in the extracellular
body water, and finally it is eliminated by the kidneys via the process of
urination.

Dose application
Distribution
k21
Central Peripheral
compartment compartment
Vi < Vo
k12 ‘
ko1
Elimination

Figure 5.1: Schematic Diagram of the Basic Model of Pharmacokinetics
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The marker kinetics, represented by the temporal courses of the marker
amounts in the compartments, therefore, is the result of the chosen infusion
strategy, the exchange transport between the two compartments, and finally
the renal elimination process.

This system can be described by a set of two simultaneous differential equa-
tions describing the rate of change of the marker amounts in the respective
compartments:

dx
-d—tl— = f(t) — (ko1 + k21)x1 + ki2z2 (5.1)
dx
—Et—z- kop 1 + ko2 (5.2)

Equations (2.1) and (2.2) can be stated verbally in the following way:
Firstly, the rate of change of the marker amount in the central compartment,
dzy/dt, is defined by the input strategy chosen, the loss of marker from the
central to the peripheral compartment on the one hand, and its gain by the
central from the peripheral volume on the other hand, and its elimination
via the renal excretion process. Secondly, the rate of change of the marker
amount in the péripheral compartment, dzs/dt, is due to gain from and loss
to the central volume.

The input function f(t) is described by the following equation:

fi&) = D/r, if 0<t<T (5.3)
The initial marker amounts are given by:

z1(0) = a(@W = z10 (5.4)
z2(0) 2(0) Vo = c2(0) Vi (kn1/k12) = z20 (5.5)

with ¢ (t) = z1(t)/Vi and o) = za(t)/Va.

The symbols in the expressions have the following meaning:
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f(t) the input strategy as a function of time ¢

) the amount of the marker in the central compartment

To  the amount of the marker in the peripheral compartment
ko,  the relative rate of transport from compartment 1 to 2

k1o  the relative transport rate from compartment 2 to 1

ko1  the relative rate of elimination

D the priming dose

T the infection duration

V1 the volume of the central compartment

Vo the volume of the peripheral compartment

<1 the concentration of the marker in the central compartment
C2 the concentration of the marker in the peripheral compartment

This linear two-compartment model is suitable for the problem of deter-
mining the renal clearance.

For the assessment of the renal plasma flow this model has to be expanded
into a nonlinear version !. The nonlinearity results from the superposition of
excretion processes obeying the so-called Michaelis-Menten law as in tubu-
lar secretion, the elimination process of the marker (e.g. p-amino-hippuric
acid) being simply proportional to its plasma level.

5.1 Solving the System

Equations (5.1) and (5.2) can also be written in the following form:

~(ko1 + k21) k2 z f(t)
x = +
k21 —k12 z9 0
which is of the form
x = Ax+ b

If we want to solve that system we must first find a solution of the cor-
responding homogenous system:

x = Ax, x(0) =0

As the solution of a linear homogenous system of differential equations is a
superposition of exponential functions, one gets a solution of the following

see chapter 9
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form:

At Aot

1 (t)
To (t)

vi1 € + vize

At Aot

Vg1 € + vz e

Ai being the eigenvalues and vi; the corresponding eigenvectors.
For eigenvalues 1t counts that:

det(A— ME) = 0
So, in our case that’s

—(ko1 + ko1 + A) k12 _
ka1 —(k12 + A)

korkio + Akoi + kizkor + Akop + Mkio + A2 — kioky =
22 4+ Akor + k12 + ko1) + korkiz = 0

resulting in the following solution:

—(kor + k21 + k12) £ /(kor + k21 + ki12)2 — 4 ko1 k12
2

A =

The eigenvectors can now be determined from the following equations sys-
tem:

— (ko1 + k21 + As) k12 Vi(1) 0

ka —(k12 + Xi) v1(2) 0

which leads to

So we arrive at the following solution for the homogenous system:

1 1
x(t) = ¢ eMt 4+ d et
koi+k21+A) ko)
k12 ki2—X2
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with ¢ and d arbitrary.

Next, we need to determine a particulary solution: Ax, + & = X,.

If x, = const, then - clearly - X, = 0 which results in Ax, + b = 0

with
b= (fét)) -

One arrives at the following system:
( ko1 + ka1 —ki2 ) ( Tp, (
— k21 ko Zp, 0
which is equal to solving:

( kop + ko1 — k12 ) ( T, )
kOl 0 Zpg

(=T lv]

) for0<t<r

o O

) fort <t < o

TN
Ao N D R~}
~——— ~—

from which follows that z, koy = D/r — zp, = D/(koi7), lead-
ing to
D D
(ko1 + k21) P k122p, = —
D  kuD D
T + Tk(n - k]_z T = _7T

resulting in

D kn _
Tkor ki2 k12

Tpy

So, the solution looks like this:
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1 1 D
x(t) = ¢ eMt + d et 4 ( ko,
koi+kz1+A1 K2y

k12 kiz—Az

c and d can be determined from the initial condition:

o= () =e(1)w (D) ()

with
g = Poatka+dh ok
k12 k12 — A2

So:
c+d+zp = 0 |*x(—a)

da + db + T, = 0

—ad + db — azp, + zp, = 0

It isn’t hard to see that

aQZp, — Zp,

db—a) = azp, — 25, — d = b —a

Having obtained the value for d one can easily calculate the one for c:

c + — +zp =0
e + aZp; — zmbtbamm a Tp, = 0
N —bzp, + Tp2  _ c

b—-a




which results in the following vector:
Zp, —bzp)

c b—a
d azp, — T
P P2

b—a

For 7 < t < oo the solution is the following: .

ey _ a1 AL(t—T) o f 1 Ao(t—7)
x(O)—z(T)—c<a)e + d p )€

whereas
(e)(&) = (265)

' bz (1) — z2(7)

_ c — b—a
- mgff!—azlgrl

b—a

So we finally arrive at the following complete solution:

For0 <t <7

bzi(1) — zoT 1 z2(7) — az1(r 1
() = 1(b) 2(7) ( T )e’\lt 4z )b 1(1) ( . )e)\gt
- a B —-a F12—X2

D D
+ Tko + TkOb
12 T ko1 12 7 ko1

Andfor 7 < t < oo:

3
3

ke
2
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bxy(r) — xz('r)'
b—-a

(

1

koi+ka1+2Ay
k12

|

M=) | z2(1) — azi(7)

b-a
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Chapter 6

Identification

The most immediate goal of scientific or industrial experimentation is to
find relationships among manipulated and observed variables, or to validate
such relationships coming from some underlying theory. A mathematical de-
scription almost invariably involves estimating the values of some unknown
parameters to best match the available body of experimental observations.

The simplest mathematical description or model of a system is the func-
tion

Yy = f (X, p) '
assumed to predict the dependent variable y in terms of the independent
variables x = (z1, Z2,... ,2,)T and unknown parameters p = (p1, pz,..-

T

< Pm) .
Assuming that the independent variables can be manipulated or observed
error-free, and only the dependent variable y is corrupted by measure-
ment errors, the outcome of the i-th experiment is given by the vector

(®i1, Tia, ..., Tin, i), where g; = f(x;, P) + &.

Our basic assumption is that the response function f(z,p) is a correct one
and the random quantity ¢; represents the measurement error. The question
of interest then is what the true value p of the parameters is, though by the
imprecise nature of measurements we can never hope to determine it with
absolute certainty.

However, having a set of observations and assuming some statistical prop-
erties of the errors, it is reasonable to seek parameter estimates that yield
not only a good fit to the data, but on the average come firmly close to the
true values, and do not vary excessively from one set of experiments to the
next. {9, 17]
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6.1 Linearity and Non-Linearity in Parameter Es-
timation

In parameter estimation we vary the parameter values, having already fixed
the independent .and dependent variables at values determined by the re-
sults of the experiment. Whether an equation is linear or non-linear in its
parameters can be decided by inspection. It is linear if the dependent vari-
able y is a linear function of the parameters, the value of z being regarded
as constant.

An alternative definition is that a function is linear in its parameters if none
of the sensitivity coefficients are functions of any parameter(s). The sen-
sitivity coefficients are the first derivatives of the model equation with
respect to each parameter and they can be very useful measures.

It is very much easier to estimate parameter values producing the best fit
of a model to data if the parameters are related linearly. If a non-linear
relationship exists between them, simple calculation is no longer possible.
Instead, it is necessary to search for the required values by trial and error
methods.

6.2 Defining the "Best” Fit of a Model to Data

The most obvious criterion of the goodness of fit of a model to data is that the
differences between them should be as small as possible. A simple and well-
established technique for ensuring this, and which is usually approptiate, is
the method of least squares. It is a special case of a more general approach
known as the method of maximum likelihood.

In the method of least squares, the objective function is defined as the sum
of the squares of the differences between each experimental determination
and the response of the model f(z) at the same value of z. That is

objective function = Zﬁl[yz - f(l'z y P1y P25 - ’pm)]2

where the nomenclature means that the contents of the square brackets
are to be squared and summed over all values of 4, from 1 to the num-
ber of data points N. The measured response of the system is y;, and
f(zi, p1,p2,... ,Pm) represents the value of the equation of the model at
point ;.

Parameter optimization is the adjustment of the parameter values un-
til the objective function is minimized. The remaining differences between
model and data are known as the residuals. [7, 9]
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the model equation with
optimized parometer values

X or independent varigble

Figure 6.1: Pictorial representation of residuals and error bars

Several important assumptions underly the method of least squares.
These are

1. the correct form of the model has been chosen

2. the data are typical

3. the values of y are uncorrelated in the statistical sense
4. there is no error in the values of z

The most difficult of this to satisfy is (1); (4) can be allowed for if grossly
untrue, and minor deviations from (2) and (3) are tolerable.

An example of a common occurence of correlation is when measurements
have been made over an extended period of time during which an uncon-
trolled, progressive change has taken place in the experimental conditions,
or the properties of the system. If these requirements are not met, the statis-
tical basis of the method is weakened and correct results will not be obtained.

Minimization of the objective function is done using the methods of the

differential calculus for determining minima, namely setting the differential
of the function with respect to each parameter to zero and solving for the
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parameters.

8Q(p) - af
—_ = 2 Yi — f Xi,p) -5 (X, p =0
opy = 2200 = S Pl (= (ko)
The solutions of these simultaneous equations are the required parameter
estimates.

When the equations are linear with respect to the parameters, the solution
is easy to obtain as an algebraic equation. This is the case, for example, in
the common least squares estimation of the slope and intercept (parameters)
of a straight line.

However, when the model equation is non-linear in its parameters, the
derivatives of the objective function are no longer linear and the problem
becomes one of locating the minimum of a non-linear function. Algorithms
for doing this have been known since the time of Newton, but it is only with
the development of computers that they have become practicable.

Value of objective
function

Figure 6.2: The parameter space
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6.3 Methods of Parameter Search in Non-Linear
Models

Finding the combination of parameter values that minimizes the objective
function of a model equation non-linear in its parameters, entails a sequential
search of all combinations of parameter values. These combinations define
parameter space which may be visualized as a kind of landscape of many
dimensions where the valleys represent minima in the objective function.

The search is conducted in a series of steps or iterations controlled by a
search algorithm. These algorithms may be classified according to whether
they are direct or gradient methods.

Direct methods are easier to implement computationally, but gradient
techniques find the minimum more quickly.

In contrast to the linear case there is the need to provide initial parameter es-
timates p® of the unknown parameter vector p to be estimated. The choice,
which has to rely on independent knowledge or preliminary processing of
the data, is of importance since, as there is the possibililty of the iterative
scheme converging to a local minimum, or even not converging at all, rather
than the desired global minimum. Local minima occur unpredictably in the
parameter space of non-linear models. It is essential that they be identified
and discarded in-favour of the lowest minimum. Unfortunately, it is impos-
sible to prove that any minimum found is not a local one.

One good practical test is to repeat the iterative scheme for a variety of
different initial estimates of the parameter vector. If the same minimum is
found, confidence increases progressively. [6, 9]

6.3.1 Direct. Search Methods

The simplest form of direct search is to divide the feasible range of parame-
ter space into a grid of values, and to evaluate the objective function at each
point. The combination of parameter values yielding the minimum sum of
differences is then selected.

The simplex approach, in which the objective function is evaluated at p+ 1
mutually equidistant points in the space of p parameters, is more efficient.
The principle of the method requires that in a model in which there are two
parameters the response of the equation is evaluated at three combinations
of parameter values at the vertices of an equilateral triangle, known as the
simplex. The vertex at which the objective function is maximum is noted,
and the simplex is reflected about the other two vertices to define a new
point, where a new evaluation is made. This process is repeated until a
minimum is located.

The simplex method replaces "trial and error” techniques and is greatly su-
perior to the common practice of varying one parameter at a time, especially
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when the parameters are not independent of one another but interact.

On the whole, direct search methods are less efficient than gradient ones,
However, the simplex is easy to understand, requires no elaborate calcu-
lations, is capable of following an optimum which moves with time and is
readily applied in the laboratory to stochastic or deterministic problems.

6.3.2 Gradient Search Methods

Gradient search methods select the search direction using information about
the response of the model equation to changes in its parameters. This in-
formation is contained in the values of the partial derivatives (sensitivity
coefficients) which show how fast the objective function is diminishing with
changes in each parameter, and also in the results of previous steps in the
search. The direction of parameter space providing the most rapid diminu-
tion in the value of the objective function is known as the direction of
steepest descent. One very important advantage of gradient search meth-
ods is that the derivatives can, at the minimum, be used to calculate the
allimportant precision of each parameter estimate *.

Methods which follow the path of steepest descent fail as the minimum
is approached, tending to "hunt” inefficiently. Techniques relying on lin-
earization of the fitting function (as the Gauss-Newton method) are more
effective in the vicinity of the minimum.

This Gauss-Newton method seeks the minimum in a single step by attempt-
ing to calculate its position analytically as if the objective function were
really linear, but fall short of this goal in proportion to the degree of non-
linearity. However, relatively close to the minimum even a non-linear equa-
tion becomes fairly linear, so the objective function can be recast without
serious distortion as a linear approximation by using a Taylor series expen-
sion and omitting all but the linear terms. An almost direct approach to
the minimum can then be calculated analytically, further iterations being
required only to adjust for error caused by the assumption of linearity.
Serious error may be introduced by the arbitrary linearization and conver-
gence to the minimum prevented, even after a number of iterations. Succes-
full use of the Gauss technique therefore requires guessed initial parameters
which are close to the optimum values.

One of the most generally useful and widely applied techniques combines
steepest descent and linearization methods, and is due to Levenberg (1944)
and Marquardt (1963).

In this Marquardt-Levenberg algorithm , the steepest descent approach
is automatically applied when it is most effective at points relatively far from

!see chapter blablabla: Fisher Information Matrix
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the minimum, while linearization of the fitting function is made dominant
as the minimum is approached.

6.4 The Marquardt-Levenberg Algorithm

As already heard before, our goal is to find parameter values such that they
minimize some error norm

QP = >[4 - fxi,p)Pwi

i=1

where the w’s are (a priori fixed) weighting coefficients measuring the im-
portance of particular observations in the sum. [6, 9, 22|

6.4.1 Weighting

The testing of a model is begun by collecting experimental measurements.
These measurements usually consist of pairs of values, one each for the inde-
pendent and dependent variables. The independent variable is often time,
and the dependent one the response of the experimental system at that time.
An additional extremly important piece of information is always potentially
available. This is the estimate of reliability or uncertainty in each measured
value of the dependent variable. The most useful estimate of uncertainty
is the standard deviation, or its square the variance, because this has a
precise statistical meaning.

Fortunately, it is usually possible to be much more certain of the value of
the independent , or x variable, which greatly simplifies the analysis.

There are different possibilities for the weighting matrix and the choice
which one to use is of significant importance. One possibility is to take
W =1 which means that there is no weighting at all.

Another option is to choose W = R~! whereas there are a number of dif-
ferent possibilities for R as well:

1. If the measurement errors are white (i.e. uncorrelated so that the
off-diagonal elements of R are zero) and stationary (so that all the
diagonal elements of R are equal), then R = ¢21 with o being the
measurement error variance.

2. If the measurement errors are white and nonstationary, then
0’2(t1) 0

0 o2tw)
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Standard deviations (and therefore variances) are easily calculated
from replicate measurements made under constant conditions. The
estimated errors are then entirely random. The uncertainty in the
mean of replicates is found by dividing the standard deviation by the
square root of the number of replications, and is known as the sample
mean standard deviation, or standard error of the mean.

The term sample is used because the replicates form a sample of the
entire population of replicates that might ever be observed.

The standard error of the mean, when squared, provides a good mea-
sure of the precision of the mean relative to other means and the weight
used is the reciprocal of the variance. In this way, the weight of a mean
grows as its variance decreases; the more precisely a value is known,
so is its weight increased.

3. Very often, measurement errors are known apart from a scale factor:

R=Wyo?.
where W' is a known weighting matrix and o? is unknown.

With the use of a weighting matrix, it is thus possible to associate a nu-
merical confidence with each mean value of the dependent variable and the
fitting procedure will effectively take more notice of variable values that have
a high confidence. |7, 6]

As we only have one measurement series per patient a weighting matrix
wouldn’t make much sense. So we go for the very first case and can take an
identity matrix instead.
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6.4.2 The Algorithm

For simplicity reasons I will use the following notations:

V1 f(x1,p) W,

i

Y=| . |,Fp = ) , W
¥n f(xn> p) Whn
thereby reducing the objective function to the form

Q) = (Y - FE)TW [Y - F(p)l.

As already heard before the Gauss-Newton method relies on local linear
approximation of the function F around the initial estimate p% of the pa-
rameters:

F(p) =F(p°) + J@)[p - pY

The Jacobimatrix J of F is defined by

[ 8f(z1,p) Af(z1,p) ]
6p11 . +l;
8f(z2.p) 3f§x2m}
72! ot Dm
Ip) = ‘ (6.1)
) 81 (wnsp
L~ om; o ml i

With this one gets the following quadratic approximation of Q(p):
Qp) =Y -F -J-p)"W[Y - F - J(p - p")

where the argument p® of F and J is dropped for notational simplicity.
The next estimate p! is then the minimum point of the quadratic function
Q(p), which can easily be found. If we regard Ap = p — p° as the
unknown parameter vector the problem is equivalent to solving a linear re-
gression problem with the vector of dependent variables Y — F and the
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matrix of independent variables J.

_9
9(p - p°)
HTWE -F-Ip-p") + (Y -F - Jp-p")T W(-J)

(Y~-F-Jp-p)TWX -F-Jp-p%) =

As aTeb = bTca, this equals:

(~TWE ~F - Ip-p%) + (—ITWF - F - I(p—pY)
= -2"W({Y -F-Jp-p’) =0

— JITW((Y -F) =ITWIp-p°

After differentiation of Q(p) with respect to the parameters and simple
transformation of the resulting equations one arrives at the following solu-
tion:
Ap = PTWIVITW(Y - F]

Repeated application of this idea would yield the Gauss-Newton iteration

pftl = p* + JTWI"LITW[Y - F), (6.2)
where J and F are computed at p*.
This Gauss-Newton algorithm offers quadratic convergence close to the mini-
mum, further apart, however, the step size is frequently inflated, particularly
when [JT W J] is nearly singular. Then p*+! might be a worse approxima-
tion of the minimum than pF itself.

Gradient Search Methods which follow the iteration

p*l = p* + [diag(IT WI)"1ITW[Y — F)

may become ineffective when they approach the minimum.

The Marquardt-Levenberg modification seeks to overcome this prob-
lem through the iteration

pFtl = pF + T WI 4+ MW ldiagdT W] 1ITW[Y - F)
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with I being the n x n unit matrix and \*+! being a nonnegative scalar, the
so-called Marquardt parameter.

With A sufficiently large, the additional term moderates the length of the
step and forces its direction toward the negative gradient of the objective
function. A variety of rules has been proposed for selecting this Marquardt
parameter in subsequent iterations, In a convergent iteration most of the the
methods decrease its value, so that near the minimum we practically return
to the Gauss-Newton method. {4, 5, 6)

One simple rule for selecting the Marquardt parameter would be the fol-
lowing: '

Initially ‘ A0 = 0.01, whereas in subsequent iterations
AEFD = 0. 10®) if Q(pttD)) < Q(p™®), and
A&+ = 10AE) otherwise

6.4.3 Solution of the Model Differential Equations

The solution of the model differential equations within the estimation algo-
rithm must be carried out by numerical integration. Algorithms for numer-
ical integration need to be both stable and efficient as numerical integration
is required within each iteration of the estimation process.

For the implementation of this algorithm I chose Matlab’s ODE solver45, a
Runge Kutta solver.

6.4.4 Computation of Derivatives and Sensitivity Equations

If a gradient type of estimation algorithm is adopted, there is obviously the
need to evaluate first derivatives and in some cases (not in ours) there might
as well be second derivatives of the model response with respect to the pa-
rameters. :

One good approach for this is the use of sensitivity equations. This al-
lows ’exact’ numerical computation of the derivatives even if it does involve
complex computation.

Let’s examine this sensitivity approach in more detail. Suppose we have
a model specified by: '
x(t,p) = A(p)x(t,p) + u(t) (6.3)
y(t, p) C(p)x(t,p) (6.4)

I

69




y(t, p) being the model response.

If we now build the partial derivatives:

BP) _ o) 2B . TR p 65)
BB _ A 2ER) . Buip )

At the first iteration, for the initial set of parameter estimates p9, (6.3)
and (6.6) can be solved in series (with p = p?®), thus giving y(t) and
[Oy(t,p)]/Op;- This then can be used to produce the new estimates p'
(by using [0y(t, p)]/Op; in the Jacobimatrix J ) 2 This sensitivity procedure
is repeated at each iteration step.

The sensitivity approach can also be applied to a model that is nonlinear in
the dynamics.

To further illustrate the sensitivity approach, let’s return to our model de-
scribed by

dx
j = f(t) — (kox + ka1)x1 + kiozo (6.7)
dz
_dt2 kor 21 + kiozo (68)

The model response is given by

Wy = 2 ©9)

In this case the sensitivity equations are given by:

% = —(ko1 + k21)g:0 -z + kug/:ii (6.10)
53%2 = —(ko1 +k21)§;—12 - x5 + kmgkif (6.11)
gk% = —(koy +k21)66k—1;11 -z + kmgki:— (6.12)
% - km-gk% - ku% (6.13)

*e a‘-‘—zi;" equaling [8y(t, p)]/0p: in (6.1)
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aitz 8x1 3.’1)2

ak_lz = kzl akl — kl?a_kl; — X2 (614)
Oo oz, 0za

et S N dnd E gLz ‘
Bhomr 2 k12 Bk + 13 (6.15)
6y _ 1 (9.’1?1

Okor Vi Oko (6.16)
oy 1 8z
Bk Vi Bk (6.17)
0y 1 0n
Okyy Vi Okgy (6.18)
Oy
= z (6.19)
(&) '

We first need to solve the equation set (6.7)-(6.9) and (6.10)-(6.15) since
the sensitivity system (6.10) - (6.19) requires the variables z1 and zs.

It should also be noted that most of the computer cost in estimating the
parameters is in the repeated numerical integration of these equations.

6.5 Examp_le

To derive appropriate measurements a marker (Sinistrin)} is injected, a short
amount of time (but not too long, otherwise elimination has already oc-
cured) is waited to give the marker the chance to equilibrate throughout the
bloodstream and then a number of measurements is made. At first mea-
surements are taken in short periods that become larger as time passes by.

Not only the amount of the injected marker D can differ but also the time
of the injection 7 can vary between seconds and hours.

The following test data resulted from an injection with overall dose size
D = 2500 and injection duration of 7 = 0.5 min, measurements were made
over a period of four hours.
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Time | Concentration
5 min. 276 mg/l
10 min. 227 mg/]
15 min. 203 mg/1
20 min. 190 mg/1
25 min. 184 mg/1
30 min. 174 mg/1
35 min. 176 mg/l
40 min 171 mg/1
45 min. 167 mg/1
50 min. 163 mg/1
55 min. 151 mg/1
60 min. 155 mg/1
75 min. 150 mg/!
90 min. 142 mg/1
105 min. 141 mg/]
120 min. 135 mg/1
150 min. 128 mg/1
180 min. 120 mg/1
240 min. 111 mg/]

Identification was done with the Marquardt-Levenberg algorithm described
before to find the parameter values that would minimize the difference be-
tween these measured values and the function values calculated at the same
time points (least squares).

Identification resulted in the following parameter estimates for the indepen-
dent parameters kpj, k12, ko1 and V; and the dependent parameter Va:

ko1 k12 ka1 Vi Vo
-0.0039 | 0.0616 | 0.0466 | 7.8836 | 5.9637

The curve fitted to the experimental data can be seen in fig.6.3

The squared and summed remaining differences between the measured and
the modeled data, termed residual sum of squares, is 261.0549 for our case.

But what about the renal clearance? The renal clearance can be calcu-
lated from the identified parameters by:

renal clearance = kg * V4 * 1000
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Figure 6.3: Plotting the fitted curve to the experimental data

which results in the following estimation for the kidneys filtration capacity:

renal clearance =~ 31.1109
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Chapter 7

Accuracy of Parameter
Estimates

It is not enough to only compute the estimates p of the parameters, we must
also investigate their reliability and precision.

A mathematical model is defined by a series of equations, input factors, pa-
rameters and variables aimed to characterize the process being investigated.
Input is subject to many sources of uncertainty including errors of measure-
ments, absence of information or natural intrinsic variability of the system,
such as the occurrence of stochastic events. All this imposes a limit on our
confidence in the response or output of the model.

In the following two approaches for estimating the effect of 'noisy’ data
on the parameters are introduced. The first one is the Fisher information
matrix approach which makes use of the fact that the diagonal elements of
the covariance matrix of the parameter estimates contain the variances of
the particular parameter estimates.

Determination of this covariance matrix in order to access the parameter
accuracy can be a difficult problem. A lower bound of this matrix can be
obtained by computing the inverse of the Fisher information matrix. For a
sufficiently large set of data, this lower bound is likely to yield a reasonable
estimate for the covariance matrix. In practice with only small data sets
the inverse of the Fisher information matrix can still be computed, but care
must be taken in its interpretation. Moreover, the covariance matrix is usu-
ally evaluated through linearization and thus further care must be taken in
its interpretation. [20, 14, 7]

Another possibility is the Monte Carlo approach that deals with the gener-
ation of artificial protocols by superposition of Gaussian random numbers.
For a given number of independent system parameters the random numbers
can be taken from a distribution with mean zero and a standard deviation
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(sd) given by

7.1 The Fisher Information Matrix

7.1.1 Maximum Likelihood Estimation

As shortly mentioned in the last chapter, the method of least squares is
a special case of ‘the maximum likelihood principle. Under the condition
of normally distributed errors, the maximum likelihood estimator coincides
with the least squares estimator.

As we already know, an estimator is a function' that relates measured data
to an estimate of an unknown quantity, which means that the estimator
can be regarded as a set of rules such that from the data a numerical value
(estimate) can be assigned to the unknown parameters. The estimate so
achieved is obviously dependent on the data.

Assuming that a true value pp of the parameter vector p exists then corre-
sponding to this true value, an exact description of the data can be achieved
from the probability density function fp,. Clearly, the value of pg is un-
known.

Expressing the problem in a more theoretical mathematical way, the mea-
sured date, z(t1),...,2(tn) can be viewed as a particular realization of the

random variables Z(t1),...,Z(tny) which are extracted from an unknown
probability density distribution belonging to

{fo.,peRF}

where R¥ is the Fuclidean space of dimension P, the dimension of the pa-
rameter vector p.

Let us define an estimator of p, any function @ (independent of the pa-
rameter)

®: RV - RF

The value taken by ® corresponding to the particular realizations z(t1), ..., z(tn)
of Z(t1),...,Z(tn) is called an estimate s of p based on the data:

s = @(Z(tl); .- az(tN))

75




To yield good estimates from the estimation process, an estimator should
possess a number of properties: unbiasedness, minimum variance, efficiency
and consistency.

Unbiasedness

An estimator is said to be unbiased if the sampling distribution is evenly
clustered about the true value. Mathematically this can be expressed as

Epo{®(Z(t1),.-., Z(tn))} = po

where Ep {.} is the expectation operator with respect to the true probabil-
ity density function fp, of the samples.
Since the true value of pg is unkown, it is required that

Ep{®(Z(t1),...,Z(ta))} = P Vp € RF

This is termed uniform unbiasedness.

Minimum Variance

A second desirable property of an estimator is that is should result in an
estimate, the variance of which is as small as possible. So, if I is the class
of unbiased estimators, ® is said to be a minimum variance estimator if

02 (po) <02 (pp), V¥ €T

where
o5 = E{(® — po)(® — po)T}

Again it is required that
o4(p) < o§(p), V¥ €T, VpeRF

Efficiency

An unbiased estimator is called efficient if its covariance is equal to the
Cramér-Rao lower bound, that is, the inverse of the Fisher information
matriz ! . This is the lowest value of covariance that is theoretically possible
to achieve.

*for more information on the Cramér-Rao lower bound see page ??
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Consistency

The final desirable property of an estimator is that it should be consistent.
That means that as the sample size (number of observations) increases, the
estimate tends to the true value. Expressing this concept mathematically
we have

im0 Q[Z(tl), L) Z(tN)] = Po

If the conditions of unbiasedness and efficiency are satisfied only for the case
of N, the number of samples tending to infinity, the properties are termed
asymptotic unbiasedness and asymptotic effiency.

Let’s return to our maximum likelihood estimator whose underlying princi-
ple is simple: select the parameters such that the occurence of the observed
values yi,...,Yn is the most likely among all the possible outcomes of the
experiment. While the least squares estimator-did require comparatively lit-
tle a priori knowledge, only information regarding the measurement errors,
the maximum likelihood approach is also in need of a probability density
function defining the generation of the experimental test data.

Let this a priori probability density function be defined as

f(Z(t1)7"'aZ(tN)ap) : (71)

As the measurements are made a posteriori we know the particular realiza-
tion of the stochastic variables

Z(t1) = z(t1),Z(t2) = 2(t2),..., Z(tn) = z(tn)

and these are the values from which we want to estimate the unknown pa-
rameter vector p.

So,z = [2(t1) z(t2) ... 2(tn)]7 is given by the probability density function
described by (7.1), but in order to emphasize the dependence of this density
function on the measured data, it can be rewritten as

L{z(t1),...,2(tn),p} = L{z,p} (7.2)

where L is called the likelihood function. As the sample values are known,
p is the only unknown argument of L.
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As mentioned before, the principle of the maximum likelihood method is
to choose as an estimate of p the value of the parameter vector that most
probably renders the observed values z(t1),. .., z(ty) what means that this
chosen estimate p maximizes L:

L{z(t1),...,2(t~), B} < L{z(t1),...,2(tn),P}, VP

For computational reasons it is more convenient to take the logarithmic form
of the likelihood function, In L, so the estimate p of p can be found solving

g’;an{z(tl),...,z(tN),p} =0

But it is not enough to only compute the estimates P of the parameters,
we should also investigate their reliability and precision. The accuracy of
the estimates is normally assessed through the use of the covariance ma-
trix of the parameter estimates C. This is a square matrix with dimension
equal to the number of parameters. Having evaluated the covariance ma-
trix corresponding to the parameter estimates obtained from a single set of
experimental data, the square root of each of the diagonal elements equals
the standard deviation of the corresponding parameter. Thus this matrix
provides information as to the reliability of the estimates that have been
achieved. [7]

The theoretical basis for evaluating the parameter accuracy relies on the
following theorem:

Cramér-Rao Theorem (for an unbiased estimator)

Clp) > F!

where F is the Fisher information matrix, which is given by
T
F - F din L din L
op op

Care must be taken in the interpretation of this measure of accuracy, how-
ever, since in practice the number of samples in the data set is restricted,
whereas the lower bound is only reached theoretically when there is an in-
finite number of samples and maximum likelihood estimation is being em-
ployed.

As I chose to use a least squares estimator it now needs to be shown that
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in our case these two are equivalent and that the Fisher information matrix
approach can therefore be used to evaluate the achievable parameter accu-
racy.

7.1.2 Equivalence of the Maximum Likelihood and Least Squares
Estimators

The only thing we need for these two estimators to coincide is the asumption
that with

z(t) = y(t) + e(t)

the e(t;) belong to a normal distribution of zero mean and are of variance
o2(t;). Moreover the measurement errors are white (i.e. uncorrelated).

Then z(t;) is normally distributed with mean given by y(¢;) and variance
given by a2(t)):

z ~ norm(y,R)

where

0‘2(t1) 0
0 . 0’2(tN)

So, for the case of normally distributed errors the probability density func-
tion (7.1) (or in likelihood function form (7.2)) is given by

. 1 Ll TR~ (z—
L = WﬁR—U'Ze 2 (z2=Y) (z-y)

with the following logarithmic form:
1
WL =c~ (2 - yWR(z - y) (7.3)

with ¢ being a constant.

As can readily be seen, maximizing the likelihood function is equivalent
to minimizing (z — y)T R (z — y):

maxIinL < min(z — y)T'R™! (z — y)
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Thus maximization of the logarithmic form of the likelihood function is
equivalent to least squares minimization and we are able to use the Fisher
information matrix approach for generating the desired covariance matrix.

As we recall the generic element of the Fisher information matrix F is given

by
0= 5{(50) (50} 2

but from (7.3) we get

oL 1
B T 1 7 oy )~ v
N

= Z 2(t)[ (tl) —y(t)

since z(t;) are the measurements and it therefore holds that 8z(¢;)/0p; = 0.

] ay(tl) (75)

Substituting (7.5) into (7.4) we arrive at the following

N
B { (Z oz [#(8) — ()] 8”“’))

N
x <Z =27 [#(8) = (@) 6”“’))}

N
2 G‘Qtl) ' agg(:) , 85’,(,';’) E{(z(tr) — y(t)]*} (7.6)

i

fij

And as E{eeT} = R, (7.6) is reduced to

Y1 ayt) ()
fij = ;0_2(“) o3 op, (7.7)

It should be noted that the derivatives of (7.7) can be calculated for both,
linear and nonlinear models.
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This last calculations lead to the following approximation for the desired
covariance matrix:

V(p) = @TRIIL

where the Jacobi matrix J is evaluated at p = p.

So, what does this mean for our model?

As we only have one measurement series per patient we don’t know the re-
quired error variances 2(¢;). But we can estimate the value of 2 through
the variance of the residuals

> _ Q)

n—m

s (7.8)

which is the residual sum of squares Q(p) divided by the degrees of freedom
(number of measurements minus the number of parameters).

We therefore arrive at the following approximation for the covariance matrix
of the parameter estimates:

n—m

Having estimated V(p) the diagonal elements v;;{5;) of V(P) provide the de-
sired variances of the parameter estimates, so that the accuracy with which
the parameter p; can be estimated may be expressed in terms of its standard
deviation by

Di £ Vvilds)

Parameter precision may also be expressed as the coeflicient of varia-
tion (CV), which is also known as the fractional standard deviation
(FSD):

CV(p:) = FSD(p;) = —V”(”) x 100

pi -
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When the CVs of estimated parameter values are unreasonably large (i.e.,
greater than 100 %) the model is typically considered invalid. Large CVs
may arise from limitations in the experimental data such as a small num-
ber of measurements or large measurement errors. Large CVs may also arise
from utilization of a model that is too complex for the available experimental
data. [42, 7]

7.2 The Monte Carlo Technique

Monte Carlo analysis is based on performing multiple evaluations with ran-
domly selected model input, and then using the results of these evaluations
to determine the parameter uncertainties.

So, with our measurements given one begins by identifying the underlying
model. Then, with the parameter estimates thus found a ’perfect’ output
of the system at exact the same time points at which the measurements
were taken is generated. This ’ideal’ output is, first, memorized and then
superposed by some random numbers that should represent the ’noise’ in
the experimental data.

This random numbers are taken from a Gaussian distribution with a mean
of zero and a standard deviation given by

Q

n-—m

sd =

with

@ residual sum of squares
n  number of measurements taken
m’ number of independent system parameters

About 100 artificial protocols are generated that way, taking the memorized
'perfect’ system output and disturbing it a hundred times with random num-
bers taken from the above distribution.

The identification procedure is performed for all the artificial protocols and
the resulting parameter constallations evaluated statistically for their means
and standard deviations. [14, 15, 43]

These standard deviations should be equivalent to the standard errors of
the parameters derived by means of the Fisher information matrix method
(see also next section). However, since this classical technique has as a nec-
essary condition a Gaussian distribution of the residuals superposed to the
solutions, the computer-oriented procedure is more universally applicable.
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7.2.1 Using the Monte Carlo Technique on our Example

After the identification procedure was performed in chapter 6.5 on the fol-
lowing data

Time | Concentration
5 min. 276 mg/1
10 min. 227 mg/]
15 min. 203 mg/1
20 min. 190 mg/1
25 min. 184 mg/1
30 min. 174 mg/}
35 min. 176 mg/1
40 min 171 mg/1
45 min. 167 mg/1
50 min. 163 mg/1
55 min. 151 mg/l
60 min. 155 mg/1
75 min. 150 mg/!1
90 min. 142 mg/1
105 min. 141 mg/l
120 min. 135 mg/1
150 min. 128 mg/1
180 min. 120 mg/1
240 min. 111 mg/1

yielding the following results

ko1 k12 k21 Vi Va
0.0039 | 0.0616 | 0.0466 | 7.8836 | 5.9637

for the parameter estimates, we now want to know more about the confi-
dence we can have on these values obtained.

This was done by means of the Monte Carlo technique: 100 artificial pro-
tocols were created, identified and the results thus obtained were evaluated
for their means and standard deviations.

All this resulted in the following standard errors:

ko1 k12 ko1 Vi Vo
0.0039 | 0.0616 | 0.0466 | 7.8836 | 5.9637
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7.3 Comparing the Fisher Information Matrix Ap-
proach to the Monte Carlo Techique

For simplicity reasons in evaluating the Fisher information matrix I chose
the following empirical approach for solving the system (5.1)-(5.5):

z = Ae ot + B e Pt

so that for the concentration ¢ which is /V it holds that

A B
c = _e—at+_

-8Bt _ A —at -~ Bt
v v € e + Be

So we have four independent system parameters to identify: A, B,« and 3.

After the identification procedure the parameter estimates

A a B B8
167.2249 | 0.1102 | 179.2932 | 0.0002

thus gained are used in two ways:

First, they are used for evaluating the Fisher information matrix by inserting
them in the Sensitivity Matrix J, and, second, they are used for generating
the 'perfect’ system output which is then disturbed a 100 times, the artifi-
cial protocols being used for identification. Finally the resulting parameter
quadruples are statistically evaluated for their means and standard devia-
tions.

The final results show a very good conformity in the found standard errors
indicating that in the case of our model both methods are equally practica-
ble (the same argument should also hold for the nonlinear model discussed
in chapter 9).

Monte Carlo | Covariance matrix
A 12.485 12.2214
.« 0.0110 0.0115
B 3.2349 3.0284
8 0.0002 0.0002

Table 7.1: Standard deviations of the parameters derived by means of two
different methods -
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Chapter 8

The Matlab Code

8.1 Matlab

The language chosen for the implementation of this problem is MATLAB.
MATLAB is a widely used software tool based on numerical vector and
matrix manipulation. It integrates computation, visualization, and pro-
gramming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation.

MATLAB is an interactive system whose basic data element is an array
that does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would have taken to write a program in a scalar
noninteractive language such as C or Java.

The name MATLAB stands for MATrix LABoratory. MATLAB was orig-
inally written to. provide easy access to matrix software developed by the
LINPACK and EISPACK projects, which together represent the state-of-
the-art in software for matrix computation. Over the years, MATLAB has
evolved,also thanks to the input of many users.

The MATLAB language:

This is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming
features. It allows both ”programming in the small” as well as ”program-
ming in the large” to create complete large and complex application pro-
grams. The language features are organized into six directories in the MAT-
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LAB Toolbox:

ops Operator and special characters
lang Programming language construct
strfun Character strings

tofun File input/output

timefun Time and dates

datatypes Data types and structures

8.1.1 Toolboxes

MATLAB is both, an environment and a programming language, and one
of its great strengths is the fact that the MATLAB language allows you
to build your own reusable tools. You can easily create your own special
functions and programs (known as M-files) in MATLAB code. As you write
more and more MATLAB functions to deal with certain problems, you might
be tempted to group related functions together into special directories for
convenience. This leads directly to the concept of a Toolboz: a specialized
collection of M-files for working on particular classes of problems.

The Optimization Toolbox

The Optimization Toolbox contains many commands for the optimization of
general linear and nonlinear functions. Optimization is a very broad topic;
its purpose is to find the best possible solution to a given problem (which
may also include a number of limiting constraints).

Graphically, an optimization problem can be visualized as trying to find
the lowest (or highest) point in a complex, highly contoured landscape. An
optimization algorithm can thus be likened to an explorer wandering through
valleys and across plains in search of the topological extremes. [18]

8.2 The code for the Linear Model

The following contains all the m-files used for
e generating the plot on page 48
e performing the identification procedure
and
e evaluating the accuracy of the found pardmeter values

by calling the m-files ”solveandplot”, ”identification” and ”montecarlo”, re-
spectively. All the other m-files are used automatically by the files just
mentioned.
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opti

% time points at which the measurements were made and the corresponding
% measurements

time =[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 75, 90, 105, 120, 150, 180,
240];

data =[276, 227, 203, 190, 184, 174, 176, 171, 167, 163, 151, 155, 150,...
142, 141, 135, 128, 120, 111]; % measurements taken at the timepoints
contained in ’time’

init

% Parametervalues used for creating the plot in chapter 3.4.
k01=0.0041;

k12=0.0585;

k21=0.0498;

V1=17.3; V2=6.18;

tau=0.5;

solveandplot

% solveandplot solves the differential equation system for given values (in
% init) of the parameters. After solving the systems ODEs it plots the
% concentration-curve in the central and peripheral compartment

tspan= {0:0.5:240];  %timespan over which will be integrated
x0= [0;0};

% initial values of the marker amount in the two compartments
init % calling init gives the parameter values

(¢, z] =ode23(@nierenfunktion, tspan, x0,[],k01, k12, k21);

% solving the system with a runge-kutta solver, MATLABs ODE solver
% 23, the ODEs can be found in the function m-file ’kidneyfunction’
hold on

% generating the plot

xlabel(’time t (min)’)

ylabel("Marker concentration {mg/ml|’)

title("Marker concentrations in the central and peripheral compartment’)
plot(t,x(:,1)/V1,t,x(:,2)/V2,~")
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kidneyfunction.

% the function m-file nierenfunktion simply gives the two differential
% equations. in the first ODE the function infusion is called. infusion
% returns the input of marker to the system depending on the time

function neu=kidneyfunction(t,x, k01,k12, k21)
neu= [infusion(t)+k12*x(2) - (k01+k21)*x(1);k21*x(1) - k12*x(2)];

infusion

% the function infusion returns the input of marker (due to injection) to
% the system depending on the time
function inf=infusion(t)
D=2500;
n=length(t);
init
for i=1m
ift < tau
inf(i)=D/tau;
else
inf(i)=0;
end
end

identification

% identification calculates the parameter values so that the resulting
% solution best fits the measured data and compairs them by plotting
% both, the optimized curve as well as the measurements

kopt0=[0.005 0.05 0.05 7.27];

% kopt0 contains the initial guesses of the parameter values
tspan=[0:1:240];

x0=[0;0];

x1=0;

x2=0;

opti; % opti contains the measured data

% Calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’,’iter’,'LevenbergMarquardt’,’on’,
"TolX’,0.0001,’ TolFun’,0.0001); '

[kopt, resnorm,residual] = Isqnonlin(@error, kopt0, ||, [},options,x1,x2,data,time);
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% the returned array ’kopt’ contains the optimized parameter values
k01=kopt(1)

k12=kopt(2)

k21=kopt(3)

V1=kopt(4)

V2=V1*k21/k12

resnorm

residual;

clearance=k01*V1*1000

% plotting of the optimized curve compaired to the measured data
[t x] =0ode23(@kidneyfunction, tspan, x0,[],k01,k12,k21);
plot(t,x(:,1)/V1,time,data,’o’)

title(’Data points and identified function’)

xlabel(’time t(min)’) ,
ylabel(’concentration in the central compartment’)

error

% calculation of the nonsquared difference between the measured data and
% the modeled solution at the very same time points

function f=error(kopt,x1,x2,data,time)

k0l1=kopt(1); % kopt gives the initial guesses of the parameter values
k12=kopt(2);

k21=kopt(3);

Vl1=kopt(4);

tspan= [0:1:240);

x0= [0;0];

tau=0.5;

[t,x] =oded5(@kidneyfunction, tspan, x0,[],k01, k12, k21);

% solving the system

for i=1:length(time)
wert(i)=x(time(i),1)/V1;
% the array wert contains the modeled values at the same time
% points the measurements were made
end
f=wert-data,
% the difference between the measured and the calculated data is
% returned
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montecarlo

% Montecarlo performs the monte carlo method on the found optimal
% solution to see how sensitive the system reacts to small changes in
% the parameter values. 100 artificial protocols are generated and the
% marquardtlevenberg-algorithm is called for each of them.
clear;
init;
opti;
dataneu=data;
awert=data;
% data are disturbed a 100 times
for k=1:100
marquardtlevenberg;
% for each of the 100 times, the optimized parameter values need
% to be remembered in order to calculate the mean values and the
% standart deviations
mck01(k)=k01;
mck12(k)=k12;
mck21(k)=k21;
mcV1(k)=V1;
mcV2(k)=V1*k21/k12;

resid=sum (error (kopt,x1,x2,data,time). *error(kopt,x1,x2,data,time));
% the sum of the squared differences that is needed
% for the generation of the artificial protocols

% solve the differential equation with the new set of parameters
tspan={0:1:240];

x0=[0; 0J;

t, z] =oded45(@kidneyfunction, tspan, x0,]], mck01(k), mck12(k), mck21(k));

for i=1:length(time)
xwert(i)=x(time(i),1)/V1;
% only the values at the time points where
% the measurements were taken are needed
end

if k==
% the ’original’ function value ("awert’) needs to be
% remembered for it is that value that is disturbed
awert=xwert;
r = normrnd(0,sqrt(resid/(length(data)-4)),[1,length(data)]);
% the error r that is given to the optimal function values is calculated
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end

dataneu = awert + r;
% the artificial data is generated by adding the calculated error
% to the ’original’ value

end

% calculation of the mean values and standard deviations for each
% parameter:
meank0l=mean(mck01)
meank12=mean(mck12)
meank2l=mean({mck21)
meanV1=mean(mcV1)
meanV2=mean(mcV2)
stdk01=std(mck01)
stdk12=std (mck12)
stdk21=std(mck21)
stdV1=std(mcV1)
stdV2=std(mcV2)

marquardlevenberg

kopt0={0.005 0.05 0.05 7.27]; % initial guesses of the parameter values k01,
% k12, k21 and V1

D=2500;

x1=0;

x2=0;

% calling the Marquardtlevenbergalgorithm
options=optimset('LargeScale’,’off’,’Display’, ’off’,'LevenbergMarquardt’,’on’,
"TolX’,0.0001, TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@error, kopt0,[], [},options,x1,x2,dataneu,time);
k01=kopt(1); % kopt contains the optimized parameter values

k12=kopt(2);

k21=kopt(3);

V1=kopt(4);
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8.3 Comparison: Fisher Information Matrix - Monte
Carlo

The following m-files have been used for calculating the values of the stan-
dard deviations of the various parameters found in the table on page 72by
means of two different methods: the Fisher information matrix approach
and the Monte Carlo technique. For simplicity reasons an empirical solu-
tion approach has been chosen, so that although named similar to the files
in the last section, most files are not the same.

Evaluation of the desired standard deviations is started by calling the m-file
» comparison”. ”comparison” calculates the covariance matrix as the inverse
of the Fisher information matrix, takes as the standard deviations the square
roots of the diagonal entries of this covariance matrix and writes them in
the array "parametervariances”. Then, ”comparison” calls the m-file ”mon-
tecarlo” for evaluation of the standard errors by the Monte Carlo approach
to be able to finally compare the results thus gained.

comparison

identification;

% Covariance matrix method: the columns of the matrix S contain
% the partial derivatives with respect to the parameters, evaluated
% at the same time points the measurements were taken

for u=1:length(time)
S(u,1)=exp(-alpha*time(u));
S(u,2)=(-time(u))*A*exp(-alpha*time(u));
S(u,3)=exp(-beta*time(u));
S(u,4)=-time(u)*B*exp(-beta*time(u));

end

V=inv(S.”*S)*resnorm/15;

for i=1:4
a(i)=sart(V(i,));

end

parametervariances=a

montecarlo

identification

% identification calculates the parameter values so that the resulting

% solution best fits the measured data and compairs them by plotting both,
% the optimized curve as well as the measurements

clear
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popt0= [3000.061000.01};

% popt0 contains the initial guesses of the parameter values

opti; % opti contains the measured data

% Calling the Marquardtlevenbergalgorithm:
options=optimset(’LargeScale’,’off’,’Display’,’iter’,’LevenbergMarquardt’,’on’,’
TolX’,0.001,"TolFun’,0.001);

[popt, resnorm,residual} = lsqnonlin(@error, popt0,]], [,options,data,time);
% the returned array popt contains the optimized parameter values
A=popt(1); '

alpha=popt(2); -

B=popt(3);

beta=popt(4);

par= [A, alpha, B, beta]

resnorm;

residual;

t=1:240;

c=A*exp(-alpha*t)-+B*exp(-beta*t);

plot(t,c,time,data,’o’)

error

% calculation of the nonsquared difference between the measured data and
% the modelled solution at the very same time points
function f=fehler(popt,data,time)
A=popt(1); % popt gives the initial guesses of the paramter values
alpha=popt(2);
B=popt(3);
beta=popt(4);
for i=1:length(time)
c(i)=A*exp(-alpha*time(i))+B*exp(-beta*time(i));
end ‘
f=c-data; % the difference between the measured and the calculated data
% is returned

montecarlo

% montecarlo performs the monte carlo method on the found optimal
% solution to see how sensitive the system reacts to small changes in
% the parametervalues. 100 artificial protocols are generated and the
% marquardtlevenberg-algorithm is called for each of them.

opti;

dataneu=data;
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awert=data;
% data are disturbed a 100 times
for k=1:100
marquardtlevenberg;
% for each of the 100 times, the optimized parametervalues
% need to be remembered in order to calculate the mean
% value and the standart deviation
mcA(k)=A;
mcalpha(k)=alpha,;
mcB(k)=B;
mcbeta(k)=beta;

if k==1
% the ’original’ function value needs to be remembered
% for it is that value that is disturbed
awert=A*exp(-alpha*time)+B*exp(-beta*time);
resid=sum(fehler(popt,data,time).*fehler(popt,data,time));
% the sum of the squared differences that is needed for the generation
% of the artificial protocols

end

% solve the system with the new set of parameters
r = normrnd(0,sqrt(resid/(length(data)-4)),[1,length(data)]);
% the error that is given to the optimal function values is calculated
dataneu = awert + r;
% the artificial data is generated by adding the calculated
% error to the ’original’ value
end

resid;
% calculation of the mean values and standard deviations for each parameter

meanA=mean(mcA);

meanalpha=mean(mcalpha);

meanB=mean(mcB);

meanbeta=mean(mcbeta);

mittelwerte= [meanA, meanalpha, meanB, meanbeta]
stdA=std(mcA);.

stdalpha=std(mcalpha);

stdB=std(mcB); '

stdbeta=std(mcbeta);

stdabweichungen= [stdA, stdalpha, stdB, stdbeta]
t=1:240;
c=meanA*exp(-meanalpha*t)+meanB*exp(-meanbeta*t);
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plot(t,c,time,data,’0’)

marquardtlevenberg

% marquardtlevenberg calculates the parameter values so that the resulting
% solution best fits the measured data and compairs them by plottmg both,
% the optimized curve as well as the measurements

popt0=(200 0.05 100 0.002];

% popt0 contains the initial guesses of the parametervalues

opti; % opti contains the measured data

% Calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,'Display’,’off’,'LevenbergMarquardt’,’on’,
"TolX’,0.001," TolFun’,0.001);

[popt, resnorm,residual] = lsqnonlin(@error, popt0, ], [|,options,dataneu,time);
% the returned array contains the optimized parameter values

A=popt(1);

alpha=popt(2);

B=popt(3);

beta=popt(4);

res=resnorm;
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Chapter 9

Non-linear Pharmacokinetics

9.1 Reaction Kinetics

In pharmacokinetics there are usually only three kinds of reactions: first or-
der reactions, zero order reactions and reactions obeying a Michaelis Menten
kinetics. '

9.1.1 First Order Reactions:

Most processes of reabsorption, distribution and elimination of drugs follow
a reaction of first order, a so-called linear kinetics, meaning that the speed
at which the change of drug-concentration occurs is only dependent on the
concentration itself: ' :

dc

— = —-K=xC

dt *
dC/dt change of concentration during time
K velocity constant of first order [h™!]
C concentration of the drug [meg/ml|

Plotting the concentration against time yields a concave curve, while plot-
ting the same relationship in a semilogarithmic way results in a descendent
straight.!

The velocity of the concentration-change per unit time equals the product
of velocity constant and concentration.

The pharmacokinetical processes of reabsorption, distribution and elimi-
nation of most useable drugs (over 90%) obey such a first order kinetics.

4

see fig. 9.1
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—= C[mcg/ml]
—logC

— t(h] — t[h]

Figure 9.1: Concentration modeled by a first order kinetics

9.1.2 Zero Order Reactions:

If the rate at which absorption or elimination occurs is not dependent on
the concentration, meaning that per unit time a constant amount of drug
is absorbed/eliminated (and not a constant proportion as in the first order
reaction), then we are talking about a zero order kinetics. In this case we
have the following relation:

— = -k

K° velocity constant of zero order [mcd/h]

The accordingly numerical and semilogarithmic plots of concentration against
time can be found in fig. 9.2. Examples for such a zero order kinetics are
the elimination of Ethanol or the rise of the blood level curve during an
intravascular drop infusion.

9.1.3 Michaelis Menten Kinetics:

Metabolic processes of biotransformation require specific enzyme systems,
which are of limited capacity. Also, transport enzymes used for active trans-
port of drugs (often against a concentration gradient) can only transport a
certain amount before saturation occurs. This can best be described by a
Michaelis-Menten-kinetics:

dC Vin * C

dt Km+C
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—=C[mcg/ml]
—log C

—thl — ——tInl
Figure 9.2: Concentration modeled by a zero order kinetics

Vi theoretical maximum rate of the process
K,, Michaelis-Menten-constant

Plotting concentration versus time results in a curve, that is mildly con-
cave in the upper part, but is strongly concave in the lower part (see fig.
9.3). In the semilogarithmic plot one observes convex behaviour at first but
then the curve merges into a straight line as time proceeds.

—= Cmcg/ml]

—= logC

Figure 9.3: Concentration modeled by a Michaelis-Menten kinetics
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The Michaelis-Menten constant equals that drug concentration at which the
rate of the process is half the theoretical maximum (V;,,/2). If the concen-
tration is much less than K, C can be neglected in the denominator. With
Vo and K, both being constants one can unite them to a new constant K,
resulting in a first order kinetics:

dc

— = —-K=xC
dt

Is, on the other hand, the concentration of a much higher value than the

Michaelis-Menten constant, then K, can be.neglected and one arrives at

the following approximation equation:

dC
@ -

which is like a zero order kinetics. {4, 8]

9.2 Saturation in Tubular Secretion

Glomerular filtration is an essential part in the formation of urine. How-
ever, the final composition of urine actually excreted depends largely on
the transport of solutes and water across the renal cells of the tubuli. This
transfer goes from the lumina of the tubuli to the efferent capillaries and
vice versa and may be by passive diffusion or by active transport.

Clearly and as already said a couple of times before, a sufficiently high
GFR is an essential condition for a normally operating kidney. This, on the
other hand, doesn’t mean that with a inconspicuous GFR there is nothing
to worry about. With its autoregulation ability each nephron is capable of
maintaining a relatively steady filtration rate rather independent from the
current blood pressure.?

In many cases it might be interesting to know how much the actual renal
plasma and blood flow really is. But how can this be measured?

For the determination of the glomerular filtration rate a marker substance
is administered that is freely filtered and neither reabsorbed or secreted nor
used for any metabolic processes. Such a substance has a fractional excre-
tion (Cx/GFR) of 1 as its clearance equals the GFR.

For substances which are net-reabsorbed in the tubules it holds that 5(’;%‘5 <
1 while substances which are net-secreted have'a fractional excretion (FE)
that is greater than 1. An FE > 1 is typical for substances that need to
be removed from the body quickly like toxins, waste products or extrinsic

2see chapter 1.2.2 for more information
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substances.

One such substance that is quickly removed from the organism is p-amino
hippuric acid (PAH). With an FE that can be as high as 5, removal so
rapidly takes place that hardly any PAH can be found in the renal vein.
About 90% of the arterial incoming p-amino hippuric acid is excreted, so
the renal plasma flow nearly equals the PAH-clearance:

Vu x Upan

ERPF =
Cpax

ERPF  effective renal plasma flow [ml/min)]

Upan PAH concentration in urine {mg/ml]
CpaH PAH concentration in plasma [mg/ml]

Va urine volume excreted [m!l/min]

If we now take into consideration that only 90% of the arterial incoming
PAH appears in the urin, we only need to divide the PAH-clearance by 0.9
to get an accurate estimate of the renal plasma flow:

ERPF

RPF = 0.9

[m!/min]

Once we know the renal plasma flow, renal blood flow can be calculated
using the so-called hematocrit (= 45 %) 3:

A necessary condition for the determination of the renal blood flow by means
of the PAH-clearance is that really 90% of the p-amino hippuric acid are ex-
creted by the kidneys. This, however, is only the case at relatively low
PAH-plasma concentrations (K & 10 umol/l), because at higher plasma
concentration saturation occurs. (2, 1]

This leaves us with two possibilities: either, the dose administered is small
enough that the PAH-plasma concentration doesn’t rise above the critical
value where saturation occurs, or, the model needs to be expanded into a
nonlinear version.

3see appendix: glossa.ry
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9.3 The Non-linear Two-Compartment Model

The differential equations are nearly the same as in the linear case except
that now the elimination rate kg1 depends upon the concentration ¢:

d
% = f(t) — (ko1 (c) + kn)z1 + kizzo (9.1)
d
% ka1 1 + kiaz2 (9.2)

with kg being:

ko if 0

= ¢ < Cgrit
k01 (C) - { k1 + (kg - kl) E&Cﬂ‘ if Ckrit

c < o0

Equations (4.1) and (4.2) describe the marker kinetics in the organism in
the following way:

Firstly, the rate of change of the marker amount in the central compartment
%1 is determined by the chosen input strategy f(¢), the loss of marker from
the well perfused central to the less perfused peripheral compartment by dif-
fusion, the gain of marker from the peripheral to the central compartment
by backdiffusion, and, finally, the elimination from the central compartment
through the renal excretion mechanism. The markers may differ in the na-
ture of their excretion mechanisms, but are chosen such that no extrarenal
elimination routes exist.

Secondly, the rate of change of the markers amount z3 is due to diffusive
gain from the central compartment and diffusive loss to the peripheral com-
partment. The diffusion processes are supposed to be proportional to the
amounts in the two volumes. [44]

The input function f(¢) is described by the following equation:
f&) = D/r, if 0<t<T (9.3)
The initial marker amounts are given by:

1(0) = a(0)Vi = =z (9.4)
z2(0) c2(0) Vo = ¢2(0) Vi (k21 /k12) = 20 (9.5)

with ¢1(t) = z1(t)/V1 and co(t) = za(t)/Va.

101




The symbols in the expressions have the following meaning:

f(t) the input strategy as a function of time ¢
I the amount of the marker in the central compartment
zo  the amount of the marker in the peripheral comparmtent
ko1 the relative rate of transport from compartment 1 to 2
ki2  the relative transport rate from compartment 2 to 1
and tubular secretion
D the priming dose
T the infection duration

ckrir  the critical concentration in the piecewise linearized Michaelis-Menten law

k1 the relative transport rate due to glomerular filtration

ko  the relative transport rate due to the sum of glomerular filtration
i the volume of the central compartment

V2 the volume of the peripheral compartment

c the concentration of the marker in the central compartment

c2 the concentration of the marker in the peripheral compartment

Normally, determining the parameter values of a nonlinear model is a rather
time consuming enterprise with a higher computational cost than identify-
ing the parameters of a linear model. One parameter more or less can make
a significant difference in the time needed to run the Marquardt-Levenberg
algorithm.

As for our nonlinear model it is possible to spare the identification of the
parameter k1 , so we only have five instead of six parameters to compute:
Since k; is the parameter associated with the relative transport rate due to
glomerular filtration solely, this parameter equals ko; which can be gained
by identification of the linear model.

Having two measurement series, one for sinistrin and one for PAH, one
uses the measurements made for sinistrin to calculate the renal clearance
thus also estimating the parameter kg; which then can be used for the non-
linear case. For the nonlinear model using the PAH measurements, k; is
set to the estimated value of kg; and the identification procedure, therefore,
only needs to be performed on the remaining 5 independent parameters
k12, ko1, ko, ckrit and V.

9.4 Examples

As heard before, if we want to fasten the identification procedure, we are
in need of measurements, not only of PAH, but of sinistrin as well. The
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following data was gained after a dose of 2500 mg Sinistrin and a mean in-
fusion time of 7.5 min and after administration of 2200 mg PAH given over
an infusion time of 7.5 min.:

MARKER: SINISTRIN [ MARKER: PAH
Time Concentration Time Concentration
5 min. 222 mg/1 5 min. 70 mg/1
10 min. 301 mg/1 10 min. 92 mg/1
15 min. 236 mg/! 15 min. 58 mg/1
20 min. 200 mg/1 20 min. 45 mg/!
25 min. |- 169 mg/] 25 min. 31 mg/l1

30 min. 150 mg/] 30 min. 23 mg/1
35 min. 140 mg/1 35 min. 21 mg/1
40 min 135 mg/1 40 min 19 mg/1
50 min. 110 mg/1 50 min. 16 mg/l
60 min. 92 mg/1 60 min. 15 mg/1
75 min. 80 mg/1 75 min. 8 mg/l1
90 min. 65 mg/1 90 min. 7 mg/1

105 min. 59 mg/1 105 min. 6 mg/1

120 min. 50 mg/1 120 min. 5 mg/l

140 min. 45 mg/1 140 min. 4 mg/]

160 min. 31 mg/l 160 min. 3 mg/1

180 min. 30 mg/1 180 min. 2 mg/1

200 min. 22 mg/1 200 min. 1 mg/1

220 min. 20 mg/1 220 min. 0.5 mg/1

Identification using the sinistrin-measurements yielded the following param-
eter estimates:

ko1 k12 ka1 Vi Vo
0.0212 | 0.0437 | 0.0324 | 6.1111 | 4.5365

The parameter estimate of kg; is taken and the parameter k1 (of the nonlin-
ear model) is set to that value. Then identification is performed using the
PAH-data resulting in:

k1o ko ko ckrit Vi Va
0.0432 | 0.0585 | 0.0564 | 74.9914 | 13.5327 | 18.3266

These parameter estimates lead to the consequent value for the GFR and
the renal plasma flow (RPF):
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GFR =~ 129.34

RPF = 763.375

The curves fitted to the experimental data can be seen in fig.9.4 and 9.5,

respectively.

Sinistrin concentration (n the central compartment

Figure 9.4: Plotting the fitted curve to the experimental data derived from

an injection of sinistrin

For the determination of the standard errors, Monte Carlo analysis was per-
formed resulting in the following errors:

k1o ko1 k2 ckrit W Vs RPF
Mean values: | 0.0490 | 0.0656 | 0.0577 | 76.4251 | 13.7628 | 18.4134 | 791.6219
St.deviations: | 0.0206 | 0.0266 | 0.0168 | 3.2623 | 1.7828 | 3.1327 | 83.7755

The same procedure is performed for another set of data derived from a
different patient than the data before but with the same dosage sizes and

injection times.
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PAH concentration in the centra! compartment

Figure 9.5: Plotting the fitted curve to the experimental data derived from
an injection of PAH

| MARKER: | SINISTRIN | | MARKER: PAH
Time | Concentration Time Concentration
5 min. 335 mg/1 5 min. 135 mg/1
10 min. 278 mg/1 10 min. 88 mg/!1
20 min. 258 mg/1 20 min. 80 mg/l
30 min. 255 mg/1 30 min. 85 mg/1
35 min. 249 mg/1 35 min. 59 mg/1
40 min. 230 mg/1 40 min. 49 mg/1
45 min. 225 mg/1 45 min. 52 mg/1
50 min 211 mg/1 50 min 42 mg/1
60 min. 190 mg/1 60 min. 29 mg/1
70 min. 178 mg/1 70 min. 33 mg/!
90 min. 215 mg/1 90 min. 25 mg/1
110 min. 152 mg/1 110 min. 19 mg/1
130 min. 142 mg/1 130 min. 17 mg/1
140 min. 132 mg/1 140 min. 16 mg/1
160 min. 120 mg/1 160 min. 12 mg/1
180 min. 110 mg/1 180 min. 8 mg/l
200 min. 103 mg/1 200 min. 7 mg/l
220 min. 95 mg/1 220 min. 6 mg/1
240 min. 90 mg/1 240 min. 5.5 mg/l
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Identified parameter values:

. . ko1 k12 k21 Vi Va
Linear model: 0.0064 | 0.1412 | 0.0359 | 6.8746 | 1.75
Non-linear model: k1o ka1 k2 ckrit Vi Vo

on-in : 0.0868 | 0.1475 | 0.0513 | 54.9962 | 7.2334 | 12.1554

Monte Carlo analysis yielded the subsequent standard errors for the par-
ticular parameters:
k12 ka1 k2 ckrit i Vo RPF
Mean values: | 0.0891 | 0.1518 | 0.0585 | 54.8903 | 7.2682 | 12.7791 | 424.7715
St.deviations: | 0.0902 | 0.0928 | 0.0178 | 2.3358 | 0.82901 | 4.3489 73.7437

With GFR = kg; » Vi * 1000 and RPF = k3 * V; * 1000 the following

values are obtained:

GFR =~

44.25

RPF =~ 370.877

As we can see from the results, this patient suffers from severe renal prob-
lems, his kidney not being able to function properly. The value calculated
for the gfr as well as the found rpf is clearly below average.

The curve fitted to the experimental data can be seen in fig.9.6.

9.5 The Code

identification

identilinear
k1=kO01;
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3

PAH concentration In the central compartment

Figure 9.6: Plotting the fitted curve to the experimental data derived from
an injection oPAH

% kopt0 contains the initial parameter values
koptO= [0.05 0.05 7.27 0.05 75];

tspan= [0:1:240];

x0=[0;0];

x1=0;

x2=0;

opti2; % opti2 contains the measured data

% calling the Marquardlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’,’iter’,’LevenbergMarquardt’,’on’,
"TolX’,0.0001,’ TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@error, kopt0,[], [J,options,x1,x2,data,time k1);
k12=kopt(1)

k21=kopt(2)

V1=kopt(3)

k2=kopt(4)

ckrit=kopt(5)

V2=V1*k21/k12

clearence=k2*V1*1000

resnorm

residual;

% plotting the 'optimized’ curve compared to the measured data.
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[t x] =ode23(@kidneyfunction, tspan, x0,(],k12,k21,V1k1,k2 ckrit);
plot(t,x(:,1)/V1,time,data,’o’)

identilinear

% identilinear calculates the parameter values of the corresponding linear
% model so that the resulting solution best fits the measured data and

% compairs them by plotting both, the optimized curve as well as the

% measurements

% kopt0 contains the initial guesses of the parameter values

kopt0= {0.005 0.05 0.05 7.27];

tspan= [0:1:240];

x0= [0;0];

x1=0;

x2=0;

opti; % opti contains the measured data of the marker sinistrin

% Calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,'Display’,’iter’,’LevenbergMarquardt’,’on’,
"TolX’,0.0001,’TolFun’,0.0001);

[kopt, resnorm,residual} = Isqnonlin(@errorr2, kopt0,[], [|,options,x1,x2,data,time);
% the returned array kopt contains the optimized parameter values

kO1=kopt(1)

k12=kopt(2)

k21=kopt(3)

Vi1=kopt(4)

error2

% calculation of the nonsquared difference between the measured data and
% the modelled solution at the very same time points

function f=error2(kopt,x1,x2,data,time)

k01=kopt(1); % kopt gives the initial guesses of the paramter values
k12=kopt(2);

k21=kopt(3);

Vi1=kopt(4);

tspan= [0:1:240];

x0= [0;0];

tau=0.5;

(t,x] =oded5(@kidneyfunction2, tspan, x0,[],k01, k12, k21);

% solving the system

for i=1:length(time)
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wert(i)=x(time(i),1)/V1;
% the array wert contains the modelled values at the same
% time points the measurements were made
end
f=wert-data; % the difference between the measured and the
% calculated data is returned

kidneyfunction2

% the function m-file kidneyfunction2 simply gives the two differential
% equations. in the first ODE the function infusion is called. infusion
% returns the input of marker to the system depending on the time
function neu=kidneyfunction2(t,x, k01,k12, k21)

neu= [infusion2(t)+k12*x(2) - (k01+k21)*x(1);k21*x(1} - k12*x(2)];

opti

% timepoints at which the measurements were made and the corresponding
% measurements

time =[5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 75, 90, 105, 120, 150, 180,
240]; ,

data =[276, 227, 203, 190, 184, 174, 176, 171, 167, 163, 151, 155, 150,...
142, 141, 135, 128, 120, 111];

% measurements taken at the time points contained in time

init
% init contains the administration information

tau="7.5;
D=2200:

kidneyfunction

% the function m-file nierenfunktion simply gives the two differential

% equations. in the first ODE the function infusion is called. infusion

% returns the input of marker to the system depending on the time
function neu=nierenfunktion(t,x,k12, k21,V1, k1, k2, ckrit)
neu=|infusion(t)+k12*x(2) - (k01(x(1)/V1,k1,k2,ckrit)+k21)*x(1);k21*x(1)
- k12*x(2)];
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infusion

% the function infusion returns the input of marker (due to injection) to
% the system depending on the time
function inf=infision2(t)
D=2200;
n=length(t);
init
for i=1:n
if t<tau
inf(i)=D/tau,;
else
inf(i)=0;
end
end

ko1

function out=k01(c,k1,k2,ckrit)
if ¢ < ckrit

out=k2;
else

out=k1+(k2-k1)*ckrit/c;
end

error

% calculation of the error between model and measurements
function f=fehler(kopt,x1,x2,data,time k1)
k12=kopt(1);
k21=kopt(2);
V1=kopt(3);
k2=kopt(4);
ckrit=kopt(5)
; tspan= [0:1:240};
x0= [0;0];
tau=0.5;
[t,x] =ode45(@nierenfunktion, tspan, x0,[], k12, k21,V1, k1, k2, ckrit);
for i=1:length(time)
wert(i)=x(time(i),1)/V1;
end
f=wert-data,
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montecarlo

% Montecarlo performs the monte carlo method on the found optimal
% solution to see how sensitive the system reacts to small changes in
% the parameter values. 100 artificial protocols are generated and the
% marquardtlevenberg-algorithm is called for each of them.
clear xwert;
init;
opti;
identilinear
k1=k01:
dataneu=data;
awert=data;
% data are disturbed a 1000 times
for k=1:10 marquardtlevenberg;
mck12(k)=k12;
mck21(k)=k21;
mcV1(k)=V1,
meV2(k)=V1*k21/k12;
mck2(k)=k2;
mcckrit(k)=ckrit;

resid=sum(fehler(kopt,x1,x2,data,time,k1).*fehler(kopt,x1,x2,data,time k1));
% solve the differential equation with the new set of parameters

tspan= [0:1:240];

x0= [0;0];

{t,x] =ode45(@kidneyfunction, tspan, x0,[], mck12(k), mck21(k),

mcV1(k), k1, mck2(k), meckrit(k));

for i=1:length(time)
xwert{i)=x(time(i),1)/V1;
end .
error=xwert-dataneu;
r = normrnd(0,sqrt(resid/(length(data)-4)),[1,length(datal);

if k== % remembering the first function value
awert=xwert;
end _
dataneu = awert + r;
end
plot(t,x(:,1)/V1,time,dataneu,’o’ time,awert,’x’)
resid

% calculating the mean and standard deviations

111




meank12=mean(mck12)
meank21=mean(mck21)
meanV1=mean(mcV1)
meanV2=mean({mcV2)
meank2=mean(mck?2)
meanckrit=mean(mcckrit)
stdk12=std(mck12)
stdk21=std(mck21)
stdV1=std(mcV1)
stdV2=std(mcV2)
stdk2=std(mck?2)
stdckrit=std(mcckrit)

marquardtlevenberg

kopt0= [0.05 0.05 7.27 0.05 75];

D=2500;

x1=0;

x2=0;

% calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’’off’’LevenbergMarquardt’,’on’,
"TolX’,0.0001,"TolFun’,0.0001);

[kopt, resnorm,residual] = lsqnonlin(@error, kopt0,{], [,options,x1,x2,dataneu,time);
k12=kopt(1);

k21=kopt(2);

V1=kopt(3);

k2=kopt(4);

ckrit=kopt(5);
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Chapter 10

Protocol Discussion

As one can imagine taking measurement series isn’t very amusing, neither
for the patient nor for the doctor in charge. Measurements are taken over
several hours, each measurement involved with taking a blood sample that
should be collected at exact the required time points.

Nonetheless, it is essential that measurements are taken over a sufficiently
long period of time. If the procedure is broken off too early, this could result
in an overestimation of the clearance value that could lead to believe that
the renal filtration performance is much better than it really is.

In clinical practice guide lines for an optimal protocol have been created.
At first, the measurement density should be high while later on, the time
between the taken measurements may increase. So, blood samples should
be taken after 5,10, 15, 30, 60, 90, 120, 180 minutes after the injection of the
marker.

For all the examples shown earlier, sufficiently long protocols have been
chosen. In the following we will see what would have happened if the mea-
surements hadn’t lasted the required amount of time but had been broken
off after 60,75, ... minutes.

For this we take the measurements of our very first example gained from an

injection with overall dose size D = 2500 and injection duration of 7 = 0.5
min:
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Time | Concentration
5 min. 276 mg/]
10 min. 227 mg/]
15 min. 203 mg/!
20 min. 190 mg/1
25 min. 184 mg/]
30 min. 174 mg/1
35 min. 176 mg/l
40 min 171 mg/1
45 min. 167 mg/1
50 min. 163 mg/1
55 min. 151 mg/1
60 min. 155 mg/1
75 min. 150 mg/1
90 min. 142 mg/1
105 min. 141 mg/1
120 min. 135 mg/1
150 min. 128 mg/l
180 min. 120 mg/1
240 min. 111 mg/!

We now start with only taking into account the measurements made in the
first hour, but then we subsequently use more and more of the experimental
data until at the last identification run the whole measurement series is used.

The different clearance values due to the different protocol lengths and the
according errors can be seen in fig.10.1 and 10.2, respectively.

As the results show, the shorter the protocols lasted the higher the estimated
clearance value was. This can also be seen in the plots where much higher
end-concentrations in the central compartment were achieved when the pro-
tocols have been broken off early. For these plots see fig.10.3 to fig.10.10.
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Figure 10.1: The different clearance values due to different protocol lengths
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Figure 10.2: The according standard deviations to the clearance values of
fig. 10.1
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Figure 10.3: Plot of the fitted curve of a shortened protocol of 1 hour
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Figure 10.4: Plot of the fitted curve of a shortened protocol of 75 minutes
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Figure 10.5: Plot of the fitted curve of a shortened protocol of 90 minutes
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Figure 10.6: Plot of the fitted curve of a shortened protocol of 105minutes
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Figure 10.7: Plot of the fitted curve of a shortened protocol of 120 minutes
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Figure 10.8: Plot of the fitted curve of a shortened protocol of 150 minutes
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Figure 10.9: Plot of the fitted curve of a shortened protocol of 180 minutes
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Figure 10.10: Plot of the fitted curve of a shortened protocol of 240 minutes
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An even more drastic example is the following one:

Time | Concentration
5 min. 228 mg/1
10 min. 173 mg/1
15 min. 149 mg/l
20 min. 132 mg/1
25 min. 124 mg/1
30 min. 120 mg/1
35 min. 117 mg/1
40 min 112 mg/1
45 min. 110 mg/1
50 min. 106 mg/1
55 min. 104 mg/1
60 min. 102 mg/1
75 min. 99 mg/1
90 min. 92 mg/]
105 min. 94 mg/]
120 min. 99 mg/1
150 min. 100 mg/1
180 min. 98 mg/1
210 min 99 mg/1
240 min. 99 mg/1
290 min. 98 mg/1
350 min. 98 mg/1
410 min 96 mg/1
470 min.

The different clearance values due to the different protocol lengths and the
according errors can be seen in fig.10.11 and 10.12, respectively.

As can be seen the difference between a shortened and a sufficiently long

100 mg/1

protocol in this case is more than 1000 percent!

As the results show, the shorter the protocols lasted the higher the esti-
mated clearance value was. This can also be seen in the plots where much
higher end-concentrations in the central compartment were achieved when
the protocols have been broken off early. For these plots see fig.10.13 to

fig.10.20.
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Figure 10.12: The according standard deviatiéns to the clearance values of
fig. 10.11
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Figure 10.13: Plot of the fitted curve of a shortened protocol of 2 hours
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Figure 10.14: Plot of the fitted curve of a shortened protocol of 150 minutes

messsemats od fitad curve

Figure 10.15: Plot of the fitted curve of a shortened protocol of 180 minutes
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Figure 10.16: Plot of the fitted curve of a shortened protocol of 210 minutes
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Figure 10.18: Plot of the fitted curve of a shortened protocol of 290 minutes
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Figure 10.19: Plot of the fitted curve of a shortened protocol of 350 minutes
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Figure 10.20: Plot of the fitted curve of a shortened protocol of 410 minutes
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Figure 10.21: Plot of the fitted curve of a shortened protocol of 470 minutes
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But where does this obvious need for long protocols come from?

One reason is that the markers injected do not consist of homogenous sub-
stances, but are a mixture of different particles with different masses and,
therefore, different kinetics. Some particles take part in a more vivid ex-
change between blood and tissues and, therefore, reaching the state of equi-
librium between the compartments more quickly than others. If there was
only one substance injected, a shortened protocol would be sufficient as the
time course of a single substance is predictable. But dealing with a mixture
of different kinetics with one substance being eliminated much faster than
other ones, the elimination process needs to be observed more thoroughly,
which also includes a longer protocol.

But lets see for ourselves by means of the following example:

Using the measurements from our last example an identification procedure
was performed that yielded our paramenter estimates. These estimates in
turn were used to create artificial protocols in the following way:

Firstly, all parameters but kjp are left unchanged while the value of ko
is at first lowered and then increased by 0.017, therefore creating two sets
of parameters:

ko1 k12 ko1 Vi Va
2.98*10—4 0.0157 | 0.0534 | 9.5176 | 32.3720

and

ko1 k12 ka1 Vi Vo
2.98 %1074 [ 0.0497 | 0.0534 | 9.5176 | 10.2262

These two parameters sets are used to create two artificial measurement
series of which a third one can be derived by taking their arithmetic mean.
Fig 10.22 shows the three curves along with the according artificial mea-
surements, the red one being the mean of the two green ones.

The upper curve, hereby, represents a substance (part of the marker) which
is slowly distributed while the lower curve stands for a rather rapid distri-
bution. The middle curve then represents a mixture of different kinetics.
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Figure 10.22: The artificially created data sets and the curves they lie on

Secondly, identification was performed twice on all three sets of data, first
for a shortened protocol of 12 measurements (1 hour) and then for the full
measurement, series. As the results show, a significant dependence between
the short time and full time protocol is achieved in case of the ”mixed curve”
while hardly any difference exists dealing with the other two.

clearance for shortened protocol

clearance for full protocol

upper curve 1.7362 2.5745
lower curve 2.2614 2.8028
mixed curve 16.8199 3.4943

This experiment was repeated for a shortened protocol of 16 measurements
(240 minutes) the results of which - although not as clear and drastic as for
12 measurements - show a similar outcome:

clearance for shortened protocol

clearance for full protocol

upper curve 2.5833 2.5745
lower curve 2.1850 2.8038
mixed curve 6.4799 3.4943
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As before, the results of the two generated curves lie within the same range,
while the results of the mixed curve show a greater difference between the
values of the shortened and the full protocol, the value of the short protocol
being nearly as high as double the value of the long one.

The very same procedure was repeated for the parameter kp; with very
similar results: :
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Figure 10.23: The artificially created data sets and the curves they lie on

clearance for shortened protocol | clearance for full protocol
upper curve | - 2.4277 2.7419
lower curve 4.1432 2.7927
mixed curve 14.5190 3.1965

and the following values for the 2 hour to full length protocol compari-

son:
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clearance for shortened protocol | clearance for full protocol
upper curve 1.6056 2.7419
lower curve 2.4285 2.7927
mixed curve 5.4284 3.1965

This underlines the need for sufficiently long protocols as a marker mostly
doesn’t exist of a homogenous substance but of different ones with different
behavior. '

But its not only the different transfer rates of certain marker substances
that make a relatively long duration of protocol necessary.

Also, many drugs are administered perorally rather than injected into a
vein. While with an injection the drug directly enters the blood stream, this
isn’t the case dealing with peroral administration. The drug moves from
the mouth trough the esophagus into the gastrointestinal tract from where
it enters the blood stream moving to the liver (First Pass Effect !). In the
liver the compounds of the drug may be altered by metabolism creating
substances with different kinetics than the ”original” drug.

What makes it even more difficult is that we cannot exactly say how and in
how many metabolites a drug may be altered. Also, all metabolites behave
differently not only than the ”"mother-substance” but also than all the other
metabolites which makes predictions about the fate of the pharmacon very
difficult.

The next huge problem is that metabolism not only is nearly unpredictable
but also differs from person to person. While a substance in one person may
not be altered that much and only a few metabolites are created, the very
same drug can be handled very differently in a person with a higher rate of
metabolism. '

It’s also in these cases that much better and accurate results should be
achieved by choosing sufficiently long protocols.

Of course, this should be subject of further investigation and - hopefully -
more research is done on this topic in the future.

10.1 The Implementation

10.1.1 Different protocol lenghts

This sections contains the code that was used to calculate the various clear-
ance values and their according standard deviations due to different protocol

lengths.

!See chapter 2.4.1
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clearance

clear

opti;

%opti contains the measurements and the time points at which

% these measurements were taken

anzahl=8;  %number of the last measurements that are to be ignored

% At the beginning only a few measurements are used for calculating

% the optimized parameter values. Each time another measurement point
% is added, so that finally all of the measured data is used for evaluating
% the parameters.

close all % closes all windows that are open at this time

tspan= [0 240];

x0= [0;0];

for i=anzahl:-1:0
datashort=data(1:length(data)-i);
timeshort=time(1:length(time)-i);
identification
figure
[t x] =o0de23(@kidneyfunction, tspan, x0,{],k01(anzahl+1-i),
k12(anzahl+1-1),k21(anzahl+1-1));
plot(t,x(:,1)/V1(anzahl+1-i),timeshort,datashort,’0’)
title(’'measurements and generated curve’)
xlabel(’Zeit’)
ylabel(’Sinistrinconcentration in the central compartment’)
montecarlo
end
figure
u=(length(data)-anzahl:1:length(data));
bar(u,clearance,’r’)
title(’Clearenceberechnungen mit unterschiedlich vielen Messdaten’)
xlabel(’Anzahl der verwendeten Messdaten’)
ylabel(’Berechnete Clearancewerte’)
clearance

opti

% timepoints at which the measurements were made and the corresponding
% measurements

time = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 75, 90, 105, 120, 150,
180, 240};
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data = [276, 227, 203, 190, 184, 174, 176, 171, 167, 163, 151, 155, 150,..
142, 141, 135, 128, 120, 111},
% data contains the measurements taken at the time points contained in time

identification

% kopt0 contains the initial parameter guesses

kopt0= [0.01 0.05 0.05 7.27);

x1=0;

x2=0;

% calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’,’iter’,'LevenbergMarquardt’,’on’,
"TolX?,0.0001,"TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@error, kopt0,[], [J,options,x1,x2,datashort,timeshort);
kO1(anzahl+1-i)=kopt(1);

k12(anzahl+1-i)=kopt(2);

k21(anzahl+1-i)=kopt(3);

V1(anzahl+1-i)=kopt(4);

V2(anzahl+1-i)=V1(anzahl+1-i}*k21(anzahl+1-i) /k12(anzahl+1-i);
residuennorm (anzahl+1-i)=resnorm;
residuen(anzahl+1-i,1:length(residual))=residual;
[t,x]=0de45(@kidneyfunction, tspan, x0,[],k01(anzahl+1-i), k12(anzahl+1-
i}, k21(anzahl+1-i));

n=length(x(:,1));

u=x(:,1);

clearence(anzahl+1 i)=k01(anzahl+1-1)*V1(anzahl+1-i}*1000;

error

% Calculation of the error between the measured and calculated data
function f=error(kopt,x1,x2,data,time)
k01=kopt(1);
k12=kopt(2);
k21=kopt(3);
V1=kopt(4);
tspan= [0:1:240];
x0=[0;0];
[t,x] =ode45(@kidneyfunction, tspan, x0,[],k01, k12, k21);
for i=1:length(time)
wert(i)=x(time(i),1)/V1;
end
f=wert-data;
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kidneyfunction

% kidneyfunction contains the models differential equations
function neu=kidneyfunction(t,x, k01, k12, k21)
neu=|infusion(t)+k12*x(2) - (k014+k21)*x(1);k21*x(1) - k12*x(2)];

infusion

function inf=infusion(t)
D=2500;
% overall dose administered n=length(t);
tau=0.5;
% duration of the injection for i=1:n
if tjtau
inf(i)=D/tau;
else
inf(i)=0;
end
end

init

% parameter values
k01=0.0041;
K12=0.0585;
k21=0.0498;
V1=7.3; V2=6.18;
tau=0.5;

montecarlo

clear xwert;

dataneu=datashort;

% not all of the measured data is used for determining the models
% parameter values, the shorter data-array is called datashort, while
% dataneu will be the disturbed data-array, but is the same in the
% beginning

awert=datashort;

% data are disturbed a 100 times

for k=1:10
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marquardtlevenberg;
mck01(k)=k01;

mck12(k)=k12;

mck21(k)=k21;

mcV1(k)=V1;
mcV2(k)=V1*k21/k12;
mcClearance(k)=k01*V1*1000;

resid=sum(fehler(kopt,x1,x2,datashort,timeshort).*fehler(kopt,x1,x2,datashort,timeshort));
% solve the differential equation with the new set of parameters

tspan= {0:1:240];

x0= [0;0];

[t,x] =ode45(@kidneyfunction, tspan, x0,[],mck01(k), mck12(k), mck21(k));

for j=1:length(timeshort)
xwert(j)=x(timeshort(j},1)/V1;
end
error=xwert-dataneu;
r = normrnd(0,sqrt(resid/(length(data)-4)),[1,length(datashort)});

if k==1 % the inital function values need to be remembered
for it is always the array awert that is disturbed a 100 times
awert=xwert;
end

dataneu = awert + r;
end
% calculation of the mean values and standard deviations of the various
% parameters:
meank01(anzahl+1-i)=mean(mck01);
meank12(anzahl+1-1)=mean(mck12);
meank?21(anzahl+1-i)=mean(mck21);
meanV1(anzahl+1-i)=mean(mcV1);
meanV2(anzahl+1-i)=mean(mcV2);
meanClearance(anzahl+1-i)=mean(mcClearance);
stdk01(anzahl+1-i)=std(mck01); '
stdk12({anzahl+1-1)=std(mck12);
stdk21({anzahl+1-i)=std(mck21);
stdV1(anzahl+1-i)=std(mcV1);
stdV2(anzahl+1-1)=std(mcV2);
stdClearance(anzahl+1-i)=std(mcClearance)
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marquardtlevenberg

% kop0 contains all the initial guesses for the parameter values

kopt0= [0.005 0.05 0.05 7.27]; '

D=2500;  %overall dose administered by injection

x1=0;

x2=0;

% calling the Marquardtlevenbergalgorithm
options=optimset('LargeScale’,’off’,'Display’,’off’,’LevenbergMarquardt’,’on’,
"TolX’,0.0001,”TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@error, kopt0,[], [|,options,x1,x2,dataneu,timeshort);
k01=kopt(1);

k12=kopt(2);

k21=kopt(3);

V1=kopt{4);

10.1.2 Protocol Problem

The following code was used for our last expefiments dealing with different
marker kinetics, proving the need for long(er) protocols in order to arrive at
reliable results.

protocol

clear

opti2

x0= [0;0];

taskb

remember=k21;

hold on;

tspan= [0:1:470];

timeneu=time(1:12);

k21=remember+0.017;

[t x]=0de23(@nierenfunktion, tspan, x0,[},k01,k12,k21);
dataneu=(x(time,1)/V1).

k21=remember-0.017;

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);
datanew=(x(time,1)/V1).
datamix=(dataneu-+datanew)/2 %generating the mean of the two curves

dataneushort=dataneu(1:12); %shortened 'measurement’ string
figure

hold on

identi

132




parcomp(1,:)=[k01, k12, k21, V1]; %identification using all them measure-
ments .

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12 k21);

plot(t,x(:,1)/V1,’g’ time,dataneu,’o’)

title("Data points and function’)

xlabel(*time t(min)")

ylabel(’concentration in the central compartment’)
clearance(1,1)=k01*V1*1000; '

identi2 .

parcomp(2,:)=[k01, k12, k21, V1}; %identification using only the first 10
values

clearance(1,2)=k01*V1*1000;

[t x}=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);

plot(t,x(:,1)/V1,’g’ time,dataneu,’o’)

tspan= [0:1:470];

dataneu=datanew;

dataneushort=datanew(1:12);

identi

parcomp(3,:)=[k01, k12, k21, V1|; %identification of the 2nd curve
clearance(1,3)=k01*V1*1000;

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);
plot(t,x(:,1)/V1,’g’ time,dataneu,’o’)

identi2

parcomp(4,:)=[k01, k12, k21, V1]J;
clearance(1,4)=k01*V1*1000;

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);
plot(t,x(:,1)/V1,g’ time,dataneu,’o’)

dataneu=datamix;

dataneushort=dataneu(1:12);

identi

parcomp(5,:)=[k01, k12, k21, V1}; %identification of the mixed data
clearance(1,5)=k01*V1*1000;

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);
plot(t,x(:,1)/V1,’r’ time,dataneu,’o’)

identi2

parcomp(6,:)=[k01, k12, k21, V1};
clearance(1,6)=k01*V1*1000;

[t x]=0de23(@nierenfunktion, tspan, x0,[],k01,k12,k21);
plot(t,x(:,1)/V1,’r’ ,time,dataneu,’o’)

parcomp

clearance
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identi

%identi calculates the parameter values so that the resulting solution best
%fits the measured data and compairs them by plotting both, the optimized
%curve as well as the measurements :
kopt0= {0.005 0.05 0.05 7.27};

%kopt0 contains the initial guesses of the parametervalues

tspan= {0:1:470};

x0= [0;0];

x1=0;

x2=0;

%Calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’,’iter’,’LevenbergMarquardt’,’on’,
*TolX’,0.0001, TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@fehler, kopt0,[], [|,options,x1,x2,dataneu,time);
%the returned array contains the optimized parameter values

k01=kopt(1)

k12=kopt(2)

k21=kopt(3)

V1=kopt(4)

V2=V1*k21/k12

resnorm

residual;

clearence=k01*V1*1000

identi2

%identi2 calculates the parameter values so that the resulting solution best
%fits the measured data and compairs them by plotting both, the optimized
%curve as well as the measurements

kopt0= [0.005 0.05 0.05 7.27};

%kopt0 contains the initial guesses of the parametervalues

tspan= [0:1:timeneu(12)];

x0= [0,0];

x1=0;

x2=0;

%Calling the Marquardtlevenbergalgorithm
options=optimset(’LargeScale’,’off’,’Display’ ’iter’,’LevenbergMarquardt’,’on’,
"TolX’,0.0001, TolFun’,0.0001);

[kopt, resnorm,residual] = Isqnonlin(@fehler, kopt0,], [],options,x1,x2,dataneushort,timeneu);
%the returned array contains the optimized parameter values

k01=kopt(1)

k12=kopt(2)
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k21=kopt(3)

Vi=kopt(4)
V2=V1*k21/k12 resnorm
residual;
clearence=k01*V1*1000
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Appendix A

Definitions and Glossary

Absorption of drugs is the process of uptake of the compound from the
site of administration into the systemic circulation. A prerequisite for ab-
sorption is that the drug be in aqueous solution. The only relatively rare
exception is absorption by pinocytosis. '

Accumulation is the increase of drug concentration in blood and tissue
upon multiple dosing until steady state is reached.

Afferent means conveying toward a center.

ATPase adenosinetriphosphatase; an enzyme that catalyzes the splitting
of adenosine triphosphate, with liberation of inorganic phosphate.

Basal means pertaining to or situated near a base.

Blood-, Plasma-, or Serum-Levels demonstrate the concentration in
blood, plasma or serum upon administration of a dosage form by various
routes of administration. Blood-, plasma- or serum-level curves are plots of
drug concentration versus time on numeric or semi-log graph paper.

Central Compartment is the sum of all body regions (organs and tis-
sues) in which the drug concentration is in instantaneous equilibrium with
that in blood or plasma. The blood or plasma is always part of the central
compartment.

Chloride is a salt of hydrochloric acid; any binary compound of chlorine in
which the latter is the negative element.

Chlorine a yellowish green, gaseous element of suffocating odor; symbol
Cl; atomic weight 35.453. L: chlorum. It is disinfectant, dexolorant, and an
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irritant poison. It is used for disinfecting, fumigating and bleaching.

Clearence is the hypothetical volume of distribution in ml of the unme-
tabolized drug which is cleared per unit of time (ml/min or ml/h) by any
pathway of drug removal (renal, hepatic and other pathways of elimination).

A Compartment in pharmacokinetics is an entity which can be described
by a definite volume and a concentration of drug contained in that volume.
In pharmacokinetics, experimental data are explained by fitting them to
compartment models.

Concentration Gradient is the difference in the concentration in two
phases usually separated by a membrane.

Contractile means having the power or tendency to contract in response
to a suitable stimulus.

Cortex is the outer layer of an organ or another body structure, as dis-
tinguished from the internal substance, or an external layer as the bark of
a tree or the rind of a fruit.

Cortical means pertaining to or of the nature of a cortex or bark.

Disposition is the loss of drug from the central compartment due to transfer
(distribution) inte other compartments and/or elimination and metabolism.

Distal: farther from any point of reference; opposed to proximal.
Diuresis is the increased secretion of urine.

Dose size is the amount of drug in meg (ug), mg, units or other dimensions
to be administered.

A Drug is a chemical compound of synthetic, semisynthetic, natural or
biological origin which interacts with human or animal cells. The interac-
tions may be quantified, whereby these resulting actions are intended to
prevent, to cure or to reduce ill effects in the human or animal body, or to
detect disease-causing manifestations.

Drug Release or Liberation is the delivery of the active ingredient from
a dosage form into solution. The dissolution medium is either a biological
fluid or an artificial test fluid (in vitro). Drug release is characterized by
the speed (liberation rate constant) and the amount of drug appearing in
solution.
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Drug-Receptor Interaction is the combining of a drug molecule with
the receptor for which it has affinity, and the initiation of a pharacologic
response by its intrinsic activity.

Efferent means conveying away from a center, centrifugal.

Elimination Half-Life of a drug is the time in hours necessary to re-
duce the drug concentration in the blood, plasma or serum to one-half after
equilibrium is reached. The elimination half-life may be influenced by: dose
size, variation in urinary excretion (pH), intersubject variation, age, protein
binding, other drugs and diseases (especially renal and liver diseases).
Loss of drug from the body, as described by the elimination half-life, means
the elimination of the administered parent drug molecule (not its metabo-
lites) by urinary excretion, metabolism or other pathways of elimination
(lung, skin, etc.)

Endothelium is the layer of epithelial cells that lines the cavities of the
heart and of the blood and lymph vessels, and the serous cavities of the
body, originating from the mesoderm. Epithelium is the covering of in-
ternal and external surfaces of the body, including the lining of vessels and
other small cavities. It consists of cells joined by small amounts of cementing
substances. Epithelium is classified into types on the basis of the number of
layers deep and the shape of the superficial cells.

Excretion of drugs is the final elimination from the bodys systemic cir-
culation via the kidney into urine, via bile and saliva into intestines and
into feces, via sweat, via skin and via milk.

Extravascular Administration refers to all routes of administration ex-
cept those where the drug is directly introduced into the blood stream. An
example for an extravascular route would be oral or rectal administration.

Hematocrit is the volume percentage of erythrocytes in the whole blood.
The name hematocrit was originally applied to the apparatus or procedure
used in its determination, but today it is also (or primarily) used to desig-
nate the result of the determination. Abbreviation: htc.

Hepatic Clearence is the hypothetical volume of distribution in ml of
the unmetabolized drug which is cleared in one minute via the liver.

Homeostasis is the maintenance of a steady state which characterizes the

internal environment of the healthy organism. An important function of
homeostasis is the regulation of the fluid medium and volume of the cell.
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Hypertonic is a biological term denoting a solution which when bathing
body cells causes a net flow of water across the semipermeable cell mem-
brane out of the cell.

Hypothalamus

Hypophyse

Hypotonic is a biological term denoting a solution which when bathing
body cells, causes a net flow of water across the semipermeable cell mem-

brane into the cell.

Intravascular Administration refers to all routes of administration where
the drug is directly introduced into the blood stream.

Intrinsic Clearence is the theoretical unrestricted maximum clearence of
unbound drug by an elimination organ. )

Isotonic is a biological term denoting a solution in which body cells can be
bathed without a net flow of water across the semipermeable cell membrane.

The LADMER-System deals with the complex dynamic processes of lib-
eration of an active ingredient from the dosage form, its absorption into
systemic circulation, its distribution and metabolism in the body, the excre-
tion of the drug from the body and the achievement of response.

Lag Time is the period of time which elapses between the time of admin-
istration and the time a measurable drug concentration is found in blood.

Lamina is a thin flat plate or layer; a general term for such a structure
or a layer of a composite structure.

Lumen is the cavity or channel within a tube or tubular organ.

Medulla is the inmost part; a general term for the inmost portion of an
organ or structure.

Metabolism is the sum of all the physical and chemical processes by which
living substance is produced and maintained (anabolism), and also the trans-
formation by which energy is made available for the uses of the organism

(catabolism).

Metabolite is any substance produced by metabolism or by a metabolic
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process.

Michaelis Menten Kinetics uses equations to characterize certain phe-
nomena such as protein binding, adsorption, and nonlinear or saturation
processes often observed with increasing dose sizes.

Mitochondria are small spherical to rod-shaped components found in the
cytoplasm of cells, enclosed in a double membrane. They are the principle
sites of the generation of energy (in the form of ion gradients and adeno-
sine triphosphate [ATP] synthesis) resulting from the oxidation of foodstuffs.
Mitochondria are organelles with genetic continuity and contain an extra-
cellular source of DNA.

Nonlinear Kinetics or Saturation Kinetics refers to a change of one
or more of the pharmacokinetic parameters during absorption, distribution,
metabolism and excretion by saturation or overloading of processes due to
increased dose sizes.

Osmolality and Osmolarity The osmolal concentration of solution is called
osmolality when the concentration is expressed as osmoles per kilogram of
water; it is called osmolarity when it is expressed as osmoles per liter of
solution. In dilute solutions such as the body fluids, these two terms can be
used almost synonymously because the differences are tiny.

Osmoles The total number of particles in a solution is measured in terms
of osmoles. One osmole (osm) is equal to 1 mole (mol) (6.02 * 1023) of solute
particles. Therefore, a solution containing 1 mole of glucose in each liter has
a concentration of 1 osm/L.

Osmosis is the passage of pure solvent from a solution of lesser to one
of greater solute concentration when the two solutions are separated by a
membrane which selectively prevents the passage of solute molecules, but is
permeable to the solvent.

Peripheral Compartment is the sum of all body regions (i.e., organs,
tissues or part of it) to which a drug eventually distributes, but is not in in-
stantaneous equilibrium. The peripheral compartment is sometimes further
subdivided into a shallow and a deep compartment.

Pharmacokinetics deals with the changes of drug concentration in the
drug product and changes of concentration of a drug and/or its metabolite(s)
in the human or animal body following administration, i.e., the changes
of drug concentration in the different body fluids and tissues in the dy-
namic system of liberation, absorption, distribution, body storage, binding,
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metabolism and excretion.

Potassium is a metallic element of the alkali group, many of whose salts are
used in medicine. It is a soft, silver-white metal, melting at 58°F'; anatomic
number: 19, anatomic weigth: 39.102. L: kalium

Protein Binding is the phenomenon which occurs when a drug combines
with plasma protein (particularly albumin) or tissue protein to form a re-
versible complex. Protein binding is usually nonspecific and depends on the
drug’s affinity to the protein molecule, the number of protein binding sites.
protein and drug concentration. Drugs can be displaced from protein bind-
ing by other compounds having higher affinity for the binding sites.

Proximal: nearest; closer to any point of reference; opposed to distal.

A Receptor is a site in the biophase to which drug molecules can be bound.
A receptor ( = substrate) is usually a protein or proteinaceous material.

Renal Clearence is the hypothetical plasma volume in ml (volume of dis-
tribution) which is cleared of the unmetabolized drug in one minute via the
kidney. )

Sodium is a soft, silver white, alkaline metallic element; symbol: Na; atomic
number: 11; atomic weight: 22.990. With a valence of 1, it has a strong
affinity for oxygen and other nonmetallic elements. Sodium provides the
chief cation of the extracellular body fluids. It is the most widely used salt
in medicines. L: natrium.

Steady State is a level of drug accumulation in blood and tissue upon
multiple dosing when input and output are at equilibrium. The steady state
drug concentrations fluctuate (oscillate) between a maximum and a mini-
mum steady state concentration within each dosing intervall.

Stellate: shaped like a star.

Total Clearence describes the clearence of the hypothetical plasma volume
in ml (volume of distribution) of a drug per unit time due to excretion via
kidney, liver, lung, skin, etc. and metabolism.

Urea is the diamide of carbonic acid, NHs — CO — NH,, a white, crys-
tallizable substance found in the urine, blood, and lymph. It is the chief
nitrogenous constituent of the urine, and the chief nitrogenous end-product
of the metabolism of proteins. It is formed in the liver from amino acids,CO
and from compounds of ammonia. '
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Urinary Recycling is the phenomenon that occurs when drugs filtered
through the glomeruli are reabsorbed from the tubuli into systemic circula-
tion. :

Vasoconstriction is the diminuition of the caliber of vessels, especially
constriction of arterioles leading to decreased blood flow to a part.

Vasodilation means dilation of a vessel, especially dilation of arterioles
leading to in creased blood flow to a part.

Volume of Distribution is not a ”real” volume but an artifact - a hy-
pothetical volume of body fluid that would be required to dissolve the total
amount of drug at the same concentration as that found in blood. It is
a proportionality constant relating the amount of drug in the body to the
measured concentration in biological fluid (blood, plasma or serum).
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