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Chapter 1

Introduction

In 1934 Gentzen published his work “Untersuchungen über das logische
Schließen”[7] where he introduced two calculi that became very important
for proof theory: the sequent calculus and the calculus of natural deduc-

tion. The main part of this work consists of the proof of the “Hauptsatz”
(or cut-elimination theorem) which states that for every valid formula there
exists a proof without “detours”. Without detours in this context means
that the proof consists only of subformulas of the original formula. This has
interesting mathematical consequences, e.g. that the concepts present in a
proposition are sufficient to prove the proposition, or more technically, that
every proof depending on arbitrary lemmas can be transformed into a proof
that does not use lemmas at all.

Gentzen’s proof of the cut-elimination theorem proceeds by shifting a cut
upwards in the proof until this is no longer possible. Then the cut is broken
up into one or more cuts with cut formulas that all have a lower logical com-
plexity than the original cut formula. While this is a nice inductive proof
it is - if regarded as an algorithm - rather inefficient. With the availability
of computers the development of cut elimination algorithms became an in-
teresting issue with the aim of not only being able to eliminate all cuts but
also in doing so efficiently both in theory and practice. From this line of
research pursued by Alexander Leitsch and Matthias Baaz two algorithms
evolved: cut elimination and redundancy elimination by resolution [3] and
the cut-projection method [1, 2].

This diploma thesis deals with the cut-projection method which differs sub-
stantially from Gentzen’s method. Instead of shifting the cuts upwards they
are left in place but the logical complexity is reduced nonetheless. This is
achieved by replacing a subformula F of the cut formula by a subformula
of F in the cut and in the proof above it. This transformation decreases
the logical complexity of the cut formula without increasing the size of the
proof. The price to pay for such a transformation is reduced generality. We
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CHAPTER 1. INTRODUCTION 3

can not expect to reduce every cut without increasing the proof size because
this would lead to a linear cut-elimination procedure, while, in general, the
problem of cut-elimination is of far higher complexity.

The aim of this thesis is first to present the cut-projection method in the
sequent calculus (where it was originally developed) but also to show how
it can also be applied to proofs in natural deduction. Both of these for-
malisms will be investigated for intuitionistic logic only. In Chapter 2 the
basic notations and definitions are introduced. We start with first-order
logic (terms, formulas, . . . ) and proceed with Gentzen’s calculi: the sequent
calculus LJ and natural deduction NJ. We also introduce the lambda cal-
culus in its type-free and typed variants. Chapter 3 is a discussion of the
relations between the defined formalism. We will give translations of proofs
from the sequent calculus to natural deduction and vice versa and present
the Curry-Howard isomorphism, a very close correspondence between nat-
ural deduction and the typed lambda calculus. Chapter 4 discusses the
reductions in these formalisms: cut-elimination for the sequent calculus and
normalization in natural deduction (and the typed lambda calculus). The
cut-elimination theorem as well as the important properties of confluence
and termination of normalization will be proved. Finally, in Chapter 5 the
method of cut projection is introduced for the sequent calculus and it is
shown that cuts in a certain syntactic subclass can be eliminated with only
exponential expense by using cut projection. The novelty in this thesis
consists of an extension of the cut projection method to cover also natural
deduction (and the typed lambda calculus) discussed in the second part of
Chapter 5.



Chapter 2

Notations and Definitions

2.1 First-Order Logic

Definition 2.1 (Language). The language of first-order logic consists of
the following elements:

• A set of variables V = {x, y, z, x1, x2, . . .}

• A set of constant symbols CS = {a, b, c, a1, a2, . . .}

• For every n ≥ 1 a set of function symbols FSn with arity n. FS =
⋃

n≥1 FSn is the set of all function symbols.

• For every n ≥ 1 a set of predicate symbols PSn with arity n. PS =
⋃

n≥1 PSn is the set of all predicate symbols.

• Propositional connectives ∨,∧,→ and ¬

• Quantifiers ∀,∃

• > (verum) and ⊥ (falsum)

Definition 2.2 (Terms). The set of terms T is defined inductively:

1. V ⊆ T

2. CS ⊆ T

3. For all n ≥ 1: If t1, . . . , tn ∈ T and f ∈ FSn then f (t1, . . . , tn) ∈ T

Definition 2.3 (Formulas). The set of first-order formulas PL is defined
inductively:

1. For all n ≥ 1: If P ∈ PSn and t1, . . . , tn ∈ T then P (t1, . . . , tn) ∈ PL

4
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2. > ∈ PL, ⊥ ∈ PL

3. If A ∈ PL then ¬A ∈ PL

4. If A,B ∈ PL then A ∧B ∈ PL

5. If A,B ∈ PL then A ∨B ∈ PL

6. If A,B ∈ PL then A→ B ∈ PL

7. If A ∈ PL and x ∈ V then (∀x)A ∈ PL

8. If A ∈ PL and x ∈ V then (∃x)A ∈ PL

The logical complexity of a PL-formula A is the number of logical symbols
occurring in A. A formula that has been composed by 1. or 2. only is
called atom formula. In 7. and 8. the formula A, all of it’s subformulas
and all terms it contains are said to be in the scope of the newly introduced
quantifier (∀x) or (∃x) respectively. A variable x is called bound if it is in
the scope of a quantifier of the form (Qx) for Q ∈ {∀,∃}. A variable is called
free if it is not bound.

An occurrence λ of a subformula A of a formula F is a string ∈ {1, 2}∗

denoting the path to the occurrence of A in (the syntax tree of) F . If λ is
an occurrence of A in F we denote this with F [A]λ. We say that λ is empty

iff λ denotes the occurrence of a formula F in itself (λ is the empty path).
We will use the notation |λ| to denote the (sub-)formula corresponding to
the subformula occurrence λ, so for F [A]λ we have |λ| = A.

Example 2.1. F = (∀x)(((∃y)P (x, y) ∧ Q(x)) → Q(x)) is a PL-formula
with a logical complexity of 4. Q(x) occurs twice in F , namely at λ1 = 112
and at λ2 = 12 (|λ1| = |λ2| = Q(x)).

The notation A[t] is used for a formula A that contains the term t. A
substitution is a pair consisting of a variable and a term and is written as
{v ← t} for a variable v and a term t. By A{v ← t} we mean the formula
A where all occurrences of the variable v are replaced by the term t.

2.2 Sequent Calculus

The sequent calculus has been introduced by Gentzen in [7]. The basic
structure it operates on is that of a sequent. A sequent essentially consists
of two sets of formulas and denotes the claim that the formulas from one set
prove one of the formulas from the other set, formally:

Definition 2.4 (Sequent). A sequent is a structure of the form Γ ` ∆
where Γ and ∆ are multisets of PL-formulas. The symbol ` serves as a
separator.
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The interpretation of a sequent A1, . . . , An ` B1, . . . , Bm is the formula

(A1 ∧ . . . ∧An)→ (B1 ∨ . . . ∨Bm)

A sequent S is derivable iff the formula corresponding to S is valid. For a
sequent Γ ` ∆ we will refer to Γ as the antecedens (or left side) and to ∆ as
the consequent (or right side). If the antecedens is empty it is > (having the
truth value t), if the consequent is empty it is ⊥ (having the truth value f).
In particular, the derivability of the sequent ` A is equivalent to the validity
of the formula A and the derivability of the sequent Γ ` is equivalent to
the inconsistency of the (multi-)set of formulas Γ (assuming a sound and
complete calculus).

The sequent calculus has two variants: LK for classical logic and LJ for
intuitionistic logic. While definition 2.4 in its general form describes sequents
for LK, this definition has to be restricted for the calculus LJ as follows:

Definition 2.5 (LJ-sequent). An LJ-sequent is a sequent of the form
Γ ` ∆ where Γ and ∆ are multisets of PL-formulas and |∆| ≤ 1, i.e. ∆
either contains one formula or is empty.

The rules for LJ differ from the rules of LK only in so far that they reflect
this restriction on the form of LJ-sequents to contain at most one formula
in the consequent.

Definition 2.6 (Rule). A rule is an expression of the form

S1

S or
S1 S2

S

where S, S1, S2 are sequents. S is called the conclusion of the rule, S1 and
S2 are called premises.

The intuitive meaning of a rule is that S can be derived if S1 (and S2) is (are)
given. The first type of rule is called unary, the second is called binary. In
the sequent calculus a sequent is proven by decomposing its formulas from
outside in by repeated applications of different rules. We limit ourselves
to LJ here because we only deal with intuitionistic logic. For a detailed
discussion of LK see, e.g. [14] or [8].

Definition 2.7 (LJ). LJ consists of the following axioms and rules (A and
B are formulas, Γ, Π and ∆ are multisets of formulas and |∆| ≤ 1):

1. Axioms
A ` A for a formula A
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2. Logical Rules

(a) Disjunction

A,Γ ` ∆ B,Π ` ∆

A ∨B,Γ,Π ` ∆
∨ : l

Γ ` A
Γ ` A ∨B

∨ : r1
Γ ` B

Γ ` A ∨B
∨ : r2

A ∨ B is called main formula, A and B are called auxiliary for-

mulas of the rule ∨ : l. These definitions are analogous for ∨ : r1,
∨ : r2 and the other rules. For an application of the rule ∨ : r1,
the formula B is called disappearing disjunct (of the main for-
mula A∨B), for an application of ∨ : r2, A is called disappearing
disjunct.

(b) Conjunction

Γ ` A Π ` B
Γ,Π ` A ∧B

∧ : r
A,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l1

B,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l2

For an application of the rule ∧ : l1, the formula B is called disap-

pearing conjunct (of the main formula A∧B), for an application
of ∧ : l2, A is called disappearing conjunct.

(c) Implication

Γ ` A B,Π ` ∆

A→ B,Γ,Π ` ∆
→: l

A,Γ ` B

Γ ` A→ B
→: r

(d) Negation
Γ ` A
¬A,Γ `

¬ : l
A,Γ `

Γ ` ¬A
¬ : r

(e) Universal Quantification

A{x← t},Γ ` ∆

(∀x)A,Γ ` ∆
∀ : l

Γ ` A{x← α}

Γ ` (∀x)A
∀ : r

For the variable α and the term t the following must hold:

i. t must not contain a variable that occurs bound in A

ii. α is called eigenvariable and must not occur in Γ∪{A} (eigen-

variable condition).

The term t (α) is said to be introduced by the rule ∀ : l (∀ : r).

(f) Existential Quantification

Γ ` A{x← t}

Γ ` (∃x)A
∃ : r

A{x← α},Γ ` ∆

(∃x)A,Γ ` ∆
∃ : l
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For the variable α and the term t the following must hold:

i. t must not contain a variable that occurs bound in A

ii. α is called eigenvariable and must not occur in Γ ∪∆ ∪ {A}
(eigenvariable condition).

The term t (α) is said to be introduced by the rule ∀ : l (∀ : r).

3. Structural Rules

(a) Weakening
Γ `

Γ ` A
w : r Γ ` ∆

A,Γ ` ∆
w : l

(b) Contraction
A,A,Γ ` ∆

A,Γ ` ∆
c : l

There is no contraction rule for the right side, because LJ-sequents
are restricted to having at most one formula on the right side, a
c : r rule thus could never be applied.

(c) Cut
Γ ` A A,Π ` ∆

Γ,Π ` ∆
cut

Note that the cut-rule is the only rule whose premises contain a formula
that does not occur in the conclusion. Gentzen has shown in his famous
Hauptsatz [7] that the cut-rule is redundant, i.e. for every proof using the
cut-rule there is a proof that does not use the cut-rule.

Definition 2.8 (LJ-Proof). An LJ-proof χ of a sequent S is a tree where
the nodes are LJ-sequents and the edges are LJ-rules connecting their se-
quents. The root of χ is S and the leaves are axioms.

The length of an LJ-proof χ (in symbols l(χ)) is defined as the number
of edges (rule applications) in χ. The size of an LJ-proof χ (in symbols
size(χ)) is defined as the largest logical complexity of a formula in χ. A
formula occurrence in a proof χ is a string uniquely denoting the position
of a formula in χ. A subformula occurrence in a proof is a pair of a formula
occurrence (in a proof) and a subformula occurrence (in a formula). For a
formula or subformula occurrence θ we write |θ| to denote the (sub-)formula
corresponding to θ.
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Example 2.2. An LJ-proof:

P (a) ` P (a)

P (f (a)) ` P (f (a))

P (f (a)) ` (∃y)P (f (y))
∃ : r

P (a), P (a)→ P (f (a)) ` (∃y)P (f (y))
→: l

P (a), (∀x)(P (x)→ P (f (x))) ` (∃y)P (f (y))
∀ : l

P (a), P (a) ∧ (∀x)(P (x)→ P (f (x))) ` (∃y)P (f (y))
∧ : l2

P (a) ∧ (∀x)(P (x)→ P (f (x))), P (a) ∧ (∀x)(P (x)→ P (f (x))) ` (∃y)P (f (y))
∧ : l1

(P (a) ∧ (∀x)(P (x)→ P (f (x)))) ` (∃y)P (f (y))
c : l

` (P (a) ∧ (∀x)(P (x)→ P (f (x))))→ (∃y)P (f (y))
→: r

Example 2.3. The formula A∨¬A which is valid in classical logic but not
in intuitionistic logic is not derivable in LJ. Proving A ∨ ¬A in LJ would
mean proving the sequent S : `A ∨ ¬A. The only logical rules that can be
applied to S obviously are ∨ : r1 and ∨ : r2 resulting in the sequents S1 : `A
and S2 : `¬A respectively. But in general neither S1 nor S2 can be proved.
The only structural rule that can be applied is weakening which does not
lead to a provable sequent either. Indeed contraction on the right side is
necessary to prove A ∨ ¬A as shown in the following LK-proof:

A ` A
` A,¬A

¬ : r

` A,A ∨ ¬A
∨ : r2

` A ∨ ¬A,A ∨ ¬A
∨ : r1

` A ∨ ¬A
c : r

2.3 Natural Deduction

Natural deduction is a formalism that operates on proofs constructing com-
plicated proofs from simpler ones by repeated applications of different rules.
Assumptions play a central role in natural deduction. By introducing an
assumption, the proof becomes dependent on it and by discharging the as-
sumption the proof looses this dependency again. For example, if we can
prove B by assuming A (i.e. introducing the assumption A), then we can
prove A → B (by discharging A). To indicate the correspondence between
a discharged assumption and the rule that discharges it, we assign a la-
bel to every rule that can discharge assumptions and to all assumptions it
discharges.

For every subproof χ of a NJ-proof ω every assumption γ is in one of two
states: It is either active or discharged. The assumption γ is discharged in
χ if it is labeled with some label l and there exists a rule in χ that is also
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labeled with l. Otherwise it is active. With the notation

A.... ω
B

we mean a proof ω of B that uses one or more occurrences of A as active as-
sumptions. This proof ω also has a multiset Γ of (other) active assumptions
and a multiset Γ′ of discharged assumptions. If we write JAK instead of A in
the proof above we mean that one or more occurrences of A are discharged
assumptions in ω.

A natural deduction-rule constructs a proof from one or two simpler proofs.
It can therefore be regarded as a proof constructor. From this point of view
a proof is actually a proof term (this will be detailed in section 3.3).

The fundamental symmetry of natural deduction is that of introduction- and
elimination-rules. The first type of rules introduces a new logical symbol
while the second type of rule eliminates a logical symbol.

Definition 2.9 (NJ). NJ consists of the following rules (A, B and C are
formulas):

1. Conjunction

....
A

....
B

A ∧B
∧I

....
A ∧B
A

∧E1

....
A ∧B
B

∧E2

By using ∧I we construct a proof of A ∧ B from a proof of A and a
proof of B, by using ∧E1 we construct a proof of A from a proof of
A ∧B, etc.

2. Disjunction

....
A

A ∨B
∨I1

....
B

A ∨B
∨I2

....
A ∨B

JAKl

....
C

JBKl

....
C

C ∨El

3. Implication
JAKl

....
B

A→ B → I l

....
A

....
A→ B
B

→ E

4. Falsum ....
⊥
A
⊥E
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5. Negation
JAKl

....
⊥
¬A ¬I

l

....
A

....
¬A
⊥

¬E

The ¬I-rule corresponds to the equivalence of ¬A and A→ ⊥ and is
- bearing that relationship in mind - a special case of the → I-rule.

6. Universal Quantification

....
A{x← α}

(∀x)A
∀I

....
(∀x)A

A{x← t}
∀E

For the variable α and the term t the following must hold:

(a) t must not contain a variable that occurs bound in A

(b) α must not occur in A nor in any active assumption (eigenvariable
condition)

7. Existential Quantification

....
A{x← t}

(∃x)A
∃I

....
(∃x)A

JA{x← α}Kl

....
B

B ∃El

For the variable α and the term t the following must hold:

(a) t must not contain a variable that occurs bound in A

(b) α must not occur in A, nor in B nor in any active assumption of
the proof of B except those discharged by this ∃E-rule.

Example 2.4. An NJ-proof:

J(∃x)(∀y)P (x, y)K1

J(∀y)P (α, y)K2

P (α, β)
∀E

(∃x)P (x, β)
∃I

(∀y)(∃x)P (x, y)
∀I

(∀y)(∃x)P (x, y)
∃E2

(∃x)(∀y)P (x, y)→ (∀y)(∃x)P (x, y)
→ I1
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2.4 The Lambda Calculus

The Lambda Calculus is a theory that describes functions as rules (i.e. the
intensional aspect of functions). It was originally developed with the aim
of providing a general theory of functions and a foundation of mathematics
but as it turned out the second goal could not be reached. The main idea
of the lambda calculus is to use an abstraction operator to create a function
from a term.

Example 2.5. Consider the arithmetical expression (x+ 3)2. This expres-
sion is just a term but it can also be regarded as a function of x that - given
a certain x - calculates the value (x + 3)2. In the lambda calculus this is
denoted as λx.(x+ 3)2.

2.4.1 Type-Free Lambda Calculus

The type-free lambda calculus is an equality theory over lambda terms. We
will only explain the notation briefly, for a detailed treatment of the type-free
lambda calculus the interested reader is referred to [5].

Definition 2.10 (Language). The language of the type-free lambda cal-
culus consists of the following elements:

1. A set of variables: V = {v,w, x, y, z, v0, v1, . . .}.

2. The abstractor: λ

3. Parentheses: ( and )

Note the difference in notation between the variables of the lambda calculus
x, y, z, . . . and the variable of first-order logic x, y, z, . . ..

Definition 2.11 (Terms). The set of lambda terms Λ is defined induc-
tively:

1. x ∈ V⇒ x ∈ Λ

2. x ∈ V,M ∈ Λ⇒ (λxM) ∈ Λ

3. M,N ∈ Λ⇒ (MN) ∈ Λ

We will use the symbol ≡ to denote syntactic equality (as opposed to
= denoting equality in the theory λ to be defined below). For a vec-
tor of variables x̃ ≡ x1, . . . , xn we use the notation λx1 · · · xn.M or λx̃.M for
the lambda term λx1(λx2(· · · (λxnM) . . .)). For a vector of lambda terms
Ñ ≡ N1, . . . ,Nn we use the notation MN1 . . .Nn or MÑ for the lambda term
(· · · ((MN1)N2) · · ·Nn).
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Definition 2.12 (Equality Theory). The equality theory λ is axiomatized
by the following axiom and rule schemata. Let M,N, L ∈ Λ, x ∈ V:

1. Reflexivity: M = M

2. Symmetry: M = N⇒ N = M

3. Transitivity: M = N,N = L⇒ M = L

4. β-Conversion: (λx.M)N = M{x← N}
M{x← N} denotes the substitution of N for all occurrences of x in M

5. Substitutivity 1: M = N⇒ ML = NL

6. Substitutivity 2: M = N⇒ LM = LN

7. (rule ξ): M = N⇒ λx.M = λx.N

2.4.2 Typed Lambda Calculus

In introducing typed lambda calculus we will essentially follow the approach
in [6] (with a slightly different notation) and extend it by the inclusion of
first-order conjunction (∧) and universal quantification (∀) like it can be
found in [9] and [12].

Definition 2.13 (PL−). The set PL− ⊂ PL is the set of all PL-formulas
containing ∧,→,∀ and ⊥ as only logical symbols.

Definition 2.14 (Types). The set of types T:

1. i ∈ T

2. A ∈ PL− ⇒ A ∈ T

The type i is intended to denote the type of individuals, i.e. the set of terms
of first-order logic.

Definition 2.15 (Language). The language of the typed lambda calculus
consists of the following elements:

1. For each type T ∈ T a set of variables VT = {xT , yT , zT . . .}

2. The abstractor: λ

3. Pair brackets: 〈 and 〉

4. Projections: π1 and π2

5. Parentheses: (, )
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The set of all variables is V =
⋃

T∈T
VT . We will use the notation M : A for a

lambda term M and a type A to indicate that M has the type A. To simplify
the notation we will sometimes omit the type superscript for variables, so
for example xA : A may be written as x : A. When writing down large terms
we will specify the types of the variables separated from the term to increase
readability.

Definition 2.16 (ΛT). The set of typed lambda terms ΛT is defined induc-
tively by the following axioms and rules (let x ∈ V , t ∈ T , F ∈ PL−, x ∈ V,
A,B ∈ T, M,N ∈ ΛT):

1. Axiom
xA : A

2. Formula-Abstraction (→-Introduction)

x : F M : A
λx.M : F → A

3. Formula-Application (→-Elimination)

N : F M : F → A
MN : A

4. i-Abstraction (∀-Introduction)

x : i M{x← α} : A{x← α}

λx.M : (∀x)A

if α does not occur in A nor in the type of a free variable of M.

5. i-Application (∀-Elimination)

t : i M : (∀x)A

Mt : A{x← t}

if t does not contain a variable that is bound in A

6. Pair Construction (∧-Introduction)

M : A N : B
〈M,N〉 : A ∧B

7. Projection (∧-Elimination)

M : A ∧B
π1M : A

M : A ∧B
π2M : B
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The names of these rules already suggest the relation between NJ and λT

that will be detailed in section 3.3.

For notational convenience we will sometimes use the shortcut ΛA = {M ∈
ΛT | M : A}. Also note that there are two different notations for the same
i-variable: x (as part of a PL-formula) and xi (as part of a λT-term). We
will identify x and xi to facilitate the mapping between the i-variable in the
type and the i-variable in the lambda term of the form λx.M : (∀x)A.

Example 2.6. This example illustrates the construction of a typed lambda
term

f (a) : i

x : i

y : i

M : P (α, β) N : Q(α)

〈M,N〉 : P (α, β) ∧Q(α)

λy.〈M,N〉 : (∀y)(P (α, y) ∧Q(α))

λxy.〈M,N〉 : (∀x)(∀y)(P (x, y) ∧Q(x))

(λxy.〈M,N〉)f (a) : (∀y)(P (f (a), y) ∧Q(f (a)))



Chapter 3

Translations

Both, LJ and NJ describe intuitionistic logic, so the question wether and -
if yes - how these formalisms can be translated into each other is natural to
ask. In this chapter we will answer this question positively in both directions
and specify the corresponding translations. In section 3.3 we will introduce
the Curry-Howard Isomorphism which describes a close correspondence be-
tween the typed lambda calculus and natural deduction and provides an
operational interpretation of (a subset of) intuitionistic logic.

In the following we will use the notion of calculus simulation: A calculus A

simulates a calculus B if there exists a computable transformation T from
derivations in B to derivations in A such that: If π is a proof of a formula
F in B then T (π) is a proof of F in A. For a class of functions K we say
that a calculus A K-simulates a calculus B if A simulates B and the proof
transformation T is computable in time t for a t ∈ K. An important class
of functions in this context is the class of all polynomials P, so P-simulation
means simulation in polynomial time.

In this chapter we will show that LJ and NJ P-simulate each other by
defining appropriate proof transformations. These proof transformations
have another property that is not directly related to complexity: They are
“quasi homomorphic” in the sense that a rule in one calculus is directly
translated into a sequence of rules in the other calculus without modifying
the translations of the proof(s) above it.

3.1 Simulating LJ in NJ

In this section we will prove that NJ simulates LJ by defining a translation
of LJ-proofs to NJ-proofs. This translation can also be found in [15].

Theorem 3.1 (NJ simulates LJ). For every LJ-proof χ of a sequent
Γ ` ∆ there exists an NJ-proof ϕ of F with ∆ = {F} or (if ∆ = ∅) F = ⊥

16
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and Γ being exactly the active assumptions of ϕ.

Proof. We define a mapping Ψ translating an LJ-proof χ into an NJ-proof
Ψ(χ). The following table defines Ψ by induction on the structure of χ. An
entry of the form χ =⇒ ϕ should be read as: Ψ(χ) := ϕ.

A ` A =⇒ A

.... χ1

Γ ` A

.... χ2

Π ` B
Γ,Π ` A ∧B

∧ : r
=⇒

Γ.... Ψ(χ1)
A

Π.... Ψ(χ2)
B

A ∧B
∧I

.... χ1

A,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l1

=⇒

A ∧B
A

∧E1
Γ.... Ψ(χ1)

F
for ∆ = {F} or (if ∆ = ∅) F = ⊥

.... χ1

B,Γ ` ∆

A ∧B,Γ ` ∆
∧ : l2

=⇒

A ∧B
B

∧E2
Γ.... Ψ(χ1)

F
for ∆ = {F} or (if ∆ = ∅) F = ⊥

.... χ1

A,Γ ` C

.... χ2

B,Π ` C

A ∨B,Γ,Π ` C
∨ : l

=⇒
A ∨B

JAKl Γ
.... Ψ(χ1)
C

JBKl Π
.... Ψ(χ2)
C

C ∨El

where l is a label not occurring in Ψ(χ1) nor in Ψ(χ2)

.... χ1

Γ ` A
Γ ` A ∨B

∨ : r1
=⇒

Γ.... Ψ(χ1)
A

A ∨B
∨I1

.... χ1

Γ ` B
Γ ` A ∨B

∨ : r2
=⇒

Γ.... Ψ(χ1)
B

A ∨B
∨I2

.... χ1

A,Γ ` B

Γ ` A→ B
→: r

=⇒

JAKl Γ
.... Ψ(χ1)
B

A→ B → I l

where l is a label not occurring in Ψ(χ1)
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.... χ1

Γ ` A

.... χ2

B,Π ` Λ

A→ B,Γ,Π ` Λ
→: l

=⇒

Γ.... Ψ(χ1)
A A→ B

B
→ E

Π.... Ψ(χ2)
Λ

.... χ1

A,Γ `

Γ ` ¬A
¬ : r

=⇒

JAKl Γ
.... Ψ(χ1)
⊥
¬A ¬I

l

where l is a label not occurring in Ψ(χ1).

.... χ1

Γ ` A
Γ,¬A `

¬ : l
=⇒

Γ.... Ψ(χ1)
A ¬A

⊥
¬E

.... χ1

Γ ` A{x← α}

Γ ` (∀x)A
∀ : r

=⇒

Γ.... Ψ(χ1)

A{x← α}

(∀x)A
∀I

This translation preserves the eigenvariable condition.

.... χ1

A{x← t},Γ ` ∆

(∀x)A,Γ ` ∆
∀ : l

=⇒

(∀x)A

A{x← t}
∀E

Γ
.... Ψ(χ1)
F

for ∆ = {F} or (if ∆ = ∅) F = ⊥

.... χ1

Γ ` A{x← t}

Γ ` (∃x)A
∃ : r

=⇒

Γ.... Ψ(χ1)

A{x← t}

(∃x)A
∃I

.... χ1

A{x← α},Γ ` ∆

(∃x)A,Γ ` ∆
∃ : l

=⇒

(∃x)A

JA{x← α]}Kl Γ
.... Ψ(χ1)
F

F ∃El

for ∆ = {F} or (if ∆ = ∅) F = ⊥ and where l is a label not occurring in Ψ(χ1)
This translation preserves the eigenvariable condition.
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.... χ1

Γ `
Γ ` A

w : r
=⇒

Γ.... Ψ(χ1)
⊥
A
⊥

.... χ1

Γ ` ∆
A,Γ ` ∆

w : l
=⇒

A Γ.... Ψ(χ1)
F

for ∆ = {F} or (if ∆ = ∅) F = ⊥ and where l is a label not occurring in Ψ(χ1)

.... χ1

A,A,Γ ` ∆

A,Γ ` ∆
c : l

=⇒

A Γ.... Ψ(χ1)
F

.... χ1

Γ ` A

.... χ2

A,Π ` ∆

Γ,Π ` ∆
cut

=⇒

Γ.... Ψ(χ1)
A Π.... Ψ(χ2)

F
for ∆ = {F} or (if ∆ = ∅) F = ⊥

It can be shown by induction that Ψ satisfies the following property: If χ
is an LJ-proof of Γ ` F then Ψ(χ) is an NJ-proof of F from the active
assumptions Γ.

Example 3.1. Consider the following LJ-proof

χ =

P (a) ` P (a)

P (f (a)) ` P (f (a)) P (f (f (a))) ` P (f (f (a)))

P (f (a)), P (f (a))→ P (f (f (a))) ` P (f (f (a)))
→: l

P (a), P (a)→ P (f (a)), P (f (a))→ P (f (f (a))) ` (P (f (f (a)))
→: l

P (a), P (a)→ P (f (a)), (∀x)(P (x)→ P (f (x)) ` P (f (f (a)))
∀ : l

P (a), (∀x)(P (x) → P (f (x)), (∀x)(P (x) → P (f (x)) ` P (f (f (a)))
∀ : l

P (a), (∀x)(P (x)→ P (f (x)) ` P (f (f (a)))
c : l

P (a) ` (∀x)(P (x)→ P (f (x))→ P (f (f (a)))
→: r

` P (a)→ ((∀x)(P (x)→ P (f (x)))→ P (f (f (a))))
→: r
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The translation Ψ(χ) =

JP (a)K2

J(∀x)(P (x)→ P (f (x))K1

P (a)→ P (f (a))
∀E

P (f (a))
→ E

J(∀x)(P (x)→ P (f (x))K1

P (f (a))→ P (f (f (a)))
∀E

P (f (f (a)))
→ E

(∀x)(P (x)→ P (f (x))→ P (f (f (a)))
→ I1

P (a)→ ((∀x)(P (x)→ P (f (x)))→ P (f (f (a))))
→ I2

3.2 Simulating NJ in LJ

We will now prove that LJ simulates NJ by describing an appropriate trans-
lation which is essentially the one given by Gentzen in [7].

Theorem 3.2 (LJ simulates NJ). For every NJ-proof ϕ of a formula
F from the active assumptions Γ there exists an LJ-proof of the sequent
Γ ` F .

Proof. Let ϕ be an NJ-proof of a formula F from the (multiset of) active
assumptions Γ. We obtain the derivation ϕ′ from ϕ by replacing every
formula A in ϕ by the sequent Γ ` A where Γ is the multiset of active
assumptions in the proof of A. After that, replace all sequents of the from
Γ ` ⊥ by Γ `. The derivation ϕ′ is now a tree of sequences where the leafs
are LJ-axioms and the root is Γ ` F .1

We obtain ϕ′′ by carrying out the following rule renamings: ∨I ↪→ ∨ : r,∧I ↪→
∧ : r,∃I ↪→ ∃ : r,∀I ↪→ ∀ : r,⊥ ↪→ w : r.

The following table defines the transformation of the derivation ϕ′′ into an
LJ-proof:

.... χ
Γ, A, . . . , A ` B

Γ ` A→ B → I l
=⇒

.... χ
Γ, A, . . . , A ` B

Γ, A ` B
c : l∗

Γ ` A→ B
→: r

.... χ
Γ, A, . . . , A `

Γ ` ¬A ¬I l
=⇒

.... χ
Γ, A, . . . , A `

Γ, A `
c : l∗

Γ ` ¬A
¬ : r

1Note that ϕ′ is neither an NJ-proof nor an LJ-proof but something “in-between”.
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.... χ
Γ ` A ∧B

Γ ` A
∧E1

=⇒

.... χ
Γ ` A ∧B

A ` A
A ∧B ` A

∧ : l1

Γ ` A
cut

.... χ
Γ ` A ∧B

Γ ` B
∧E2

=⇒

.... χ
Γ ` A ∧B

B ` B
A ∧B ` B

∧ : l2

Γ ` B
cut

.... χ1

Γ ` A

.... χ2

∆ ` A→ B
Γ,∆ ` B

→ E
=⇒

.... χ2

∆ ` A→ B

.... χ1

Γ ` A B ` B
Γ, A→ B ` B

→ l

Γ,∆ ` B
cut

.... χ1

Γ ` A

.... χ2

∆ ` ¬A
Γ,∆ `

¬E
=⇒

.... χ2

∆ ` ¬A

.... χ1

Γ ` A
¬A,Γ `

¬ : l

Γ,∆ `
cut

.... χ

Γ ` (∀x)A

Γ ` A{x← t}
∀E

=⇒

.... χ

Γ ` (∀x)A

A{x← t} ` A{x← t}

(∀x)A ` A{x← t}
∀ : l

Γ ` A{x← t}
cut

.... ψ
Γ ` A ∨B

.... χ1

∆1, A, . . . , A ` C

.... χ2

∆2, B, . . . , B ` C

Γ,∆1,∆2 ` C
∨E

=⇒

.... ψ
Γ ` A ∨B

.... χ1

∆1, A, . . . , A ` C

∆1, A ` C
c : l∗

.... χ2

∆2, B, . . . , B ` C

∆2, B ` C
c : l∗

∆1,∆2, A ∨B ` C
∨ : l

Γ,∆1,∆2 ` C
cut

.... χ1

Γ ` (∃x)A

.... χ2

∆, A{x← α}, . . . , A{x← α} ` C

C ∃El

=⇒

.... χ1

Γ ` (∃x)A

.... χ2

∆, A{x← α}, . . . , A{x← α} ` C

∆, A{x← α} ` C
c : l∗

∆, (∃x)A ` C
∃ : l

Γ,∆ ` C
cut

This translation preserves the eigenvariable condition.

By applying these transformations we obtain an LJ-proof of the sequent
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Γ ` F where F is the formula proven by the original NJ-proof ϕ and Γ are
the active assumptions of ϕ.

3.3 The Curry-Howard Isomorphism

The Curry-Howard Isomorphism is a bijection between NJ-proofs (of PL−-
formulas) and typed lambda terms (as defined in Section 2.4.2). We speak
about an isomorphism and not about a bijection because the notions of
normalization2 on both sides correspond perfectly. We use the notation
ϕ ' M for an NJ-proof ϕ and a typed lambda term M to indicate that ϕ
corresponds to M via the Curry-Howard isomorphism. The isomorphism is
described in the following table:

A ' xA

JAKl ' xA
l

.... ϕ1

A

.... ϕ2

B
A ∧B

∧I
' 〈M1,M2〉 if ϕ1 ' M1 and ϕ2 ' M2

.... ϕ
A ∧B
A

∧E1
' π1(M) if ϕ ' M

.... ϕ
A ∧B
B

∧E2
' π2(M) if ϕ ' M

JAKl

.... ϕ
B

A→ B → I l
' λxA

l .M if ϕ ' M

.... ϕ1

A

.... ϕ2

A→ B
B

→ E
' M2M1 if ϕ1 ' M1 and ϕ2 ' M2

.... ϕ

A{x← α}

(∀x)A
∀I

' λxi.M if ϕ ' M

2Normalization will be defined in Section 4.2.
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.... ϕ

(∀x)A

A{x← t}
∀E

' Mt if ϕ ' M

3.4 Discussion

The translations presented above shed some light on the relation and the
differences between LJ and NJ. The most important difference is probably
the nature of a rule in these two systems. In LJ a rule is something like a
“meta-implication”: The rule

Γ ` ∆
Γ′ ` ∆′

tells us that if we are given the sequent Γ ` ∆ we can derive Γ′ ` ∆′. This
holds always, regardless of the size or form of the proof of Γ ` ∆. The
rules in natural deduction have a much more constructive meaning. In fact,
one cannot regard these rules as connecting two (or three, for the binary
case) formulas, rather it is necessary to regard a rule as “proof constructor”
and so proofs are actually proof terms. This proofs-as-terms view becomes
even more evident due to the Curry-Howard Isomorphism. Maybe typed
lambda terms are an even more appropriate description of the underlying
objects than NJ-proofs because the NJ-rules create a false sense of a flat
tree structure (like LJ) where actually there is a term structure. The dif-
ference between a flat tree structure and a term structure is wether some
(interesting) meaning can be assigned to a single node. In the flat tree struc-
ture of an LJ-proof we know that each node is a valid sequent. A node in an
NJ-proof is a formula which we know nothing about. In the term structure
of an NJ-proof only a subtree has an interesting meaning: It is a proof of
the formula at the root from all open assumptions. This flat tree vs. term
structure becomes even more evident if we consider the assumptions in NJ
and the rules which discharge assumptions (∨E,→ I,¬I,∃E). Such a rule
can not be described only locally, instead it is necessary to know the whole
proof above this rule (the subtree) in order to apply it.

Concerning the correspondence of the proofs it can be said that the active
assumptions in an NJ-proof correspond to the left side of a sequent and
the formula at the root of the NJ-proof corresponds to the right side of
the sequent. The fundamental symmetry in NJ is that of introduction
vs. elimination rules whereas the fundamental symmetry in LJ is that of
left-rules vs. right-rules. This can be seen for example in the translation
of NJ-proofs to LJ-proofs where the introduction rules (almost) directly
correspond to the right rules and the elimination rules correspond to the
left rules and a cut. Using cuts for the elimination rules in this translation
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is necessary because the elimination rules decrease the logical complexity
of formulas (when viewed upside-down in an NJ-proof-tree) and LJ has no
means to do this except with the cut rule. This property of the elimination
rules also has the consequence that there is no subformula property3 in NJ.
This makes NJ particularly unsuited for automated proof search.

Of course, most of what has been said here also applies to the classical
counterparts of these system: LK and NK.

3A proof system has the subformula property if every formula that occurs in a proof of
F is a subformula of F (modulo term instantiations).



Chapter 4

Cut-Elimination and

Normalization

In this chapter we will investigate reductions in the formal systems presented
above: Cut-Elimination in the sequent calculus and Normalization in natural
deduction and in the typed lambda calculus.

4.1 Cut-Elimination

The cut-rule is in some ways different than the other rules of the sequent
calculus LJ (see section 2.2). First it is the only rule in which new formulas
occur (when viewed from bottom-up) or when viewed top-down the only
rule in which not all formulas have successors. The second difference is
that the cut-rule is redundant, in the sense that for every proof we can
find another proof of the same end-sequent which does not use the cut-rule.
This second result is the cut-elimination theorem or “Hauptsatz” of Gentzen.
This theorem has important implications that we will discuss later.

If we know that the cut-rule is redundant, the question arises why we should
consider the cut-rule at all. What is the interest in a redundant rule ? The
interest in the cut-rule is mainly motivated by the fact that a cut is a natural
formalization of the use of lemmas in a proof. In a cut of the form

.... χ1

Γ ` A

.... χ2

A,Π ` ∆

Γ,Π ` ∆
cut

the formula A can be seen as a lemma, χ1 as its proof (from Γ) and the cut
rule as application of the lemma A to derive ∆ from Π and Γ. The cut-rule
is also very powerful from the point of view of proof complexity. Statman
[11] and Orevkov [10] independently have shown that cut-elimination is of

25
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non-elementary complexity, i.e. if the original proof (containing cuts) has a
length of n then the cut-free proof may grow up to a length of

2·
·
·
2

︸︷︷︸

n times

In this section we will sketch Gentzen’s proof of the “Hauptsatz”. It is
a constructive proof so an algorithm for cut-elimination can be extracted.
A more general form of this algorithm is to regard it as a deterministic
interpretation of a set of rules like it is done in [4]. Another deterministic
interpretation of this set of rules is the cut-elimination algorithm of Tait
[13]. The interest in (speeding up) cut-elimination algorithms is motivated
by the possibility of automated proof analysis and led to algorithms such
as Cut-Projection [1],[2] that is the topic of this thesis and CERES (cut
elimination and redundancy elimination by resolution, see [3]).

Definition 4.1 (Degree). The degree of a cut is the logical complexity of
the cut formula.

Definition 4.2 (Rank). Let χ be a proof segment of the form

.... χ1

Γ ` A

.... χ2

A,Π ` ∆

Γ,Π ` ∆
cut

The left-rank of this cut is the number of sequents in χ1 that contain A as
a predecessor of the occurrence of A in the end-sequent of χ1. The right-

rank is defined analogously. The rank of this cut is the sum of left-rank and
right-rank.

Definition 4.3 (Mix). A mix is the following LJ-rule:

Γ ` A Π ` ∆
Γ,Π∗ ` ∆

mix(A)

where A ∈ Π and Π∗ = Π \ {A}.

To simplify the proof Gentzen uses mix-rules instead of cut-rules. The dif-
ference between a cut and a mix is that in a mix all occurrences of A are
deleted from Π whereas in a cut only one occurrence is deleted. Obviously
every cut can be transformed into a mix with succeeding weakening rules
and vice versa: Every mix can be transformed into a cut with preceeding
contraction rules. The definitions of rank and degree can of course also be
used for mixes.

Theorem 4.1 (Hauptsatz). For every LJ-proof χ, it is possible to con-
struct an LJ-proof χ′ of the same end-sequent that does not contain mixes.
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Proof Sketch. Gentzen’s proof proceeds by considering an uppermost mix ξ
and eliminating it by creating a mix-free proof that has the same endsequent
as the conclusion sequent of ξ. A mix is eliminated by replacing it with one
or more mixes with lower rank. If the uppermost mix has (the smallest
possible) rank 2, the degree is reduced by one. This procedure is iterated
until the proof is free of mixes. It suffices to focus on the elimination of a
mix in a proof ψ of the form

.... ψ1

Γ ` A

.... ψ2

Π ` ∆
Γ,Π∗ ` ∆

mix(A)

where ψ1 and ψ2 do not contain mixes. In the following we sketch the cut-
elimination procedure for LJ by listing some of the rules from [4] (adapted
from the general LK-case to LJ) reducing the mix in ψ. Γ1,Γ2,Π,∆ are
multisets of formulas and |∆| ≤ 1.

3.11. rank = 2

3.111. ψ1 = A ` A:

A ` A

.... ψ2

Π ` ∆
A,Π∗ ` ∆

mix(A)

transforms to .... ψ2

Π ` ∆
A,Π∗ ` ∆

c : l∗

3.112. ψ2 = A ` A: analogous to 3.111

In 3.111 and 3.112 the mix is eliminated completely, i.e. without producing
new mixes with lower rank or degree.

3.113.31. The mix-formula is of the form A ∧B

.... χ1

Γ1 ` A

.... χ2

Γ2 ` B
Γ1,Γ2 ` A ∧B

∧ : r

.... χ3

A,Γ3 ` ∆

A ∧B,Γ3 ` ∆
∧ : l1

Γ1,Γ2,Γ3 ` ∆
mix(A ∧B)

transforms to .... χ1

Γ1 ` A

.... χ3

A,Γ3 ` ∆

Γ1,Γ
∗
3 ` ∆

mix(A)

Γ1,Γ2,Γ3 ` ∆
w : l∗

(symmetric for ∧ : l2)
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3.113.33. The mix-formula is of the form (∀x)B

.... χ1(α)

Γ1 ` B{x← α}

Γ1 ` (∀x)B
∀ : r

.... χ2

B{x← t},Γ2 ` ∆

(∀x)B,Γ2 ` ∆
∀ : l

Γ1,Γ2 ` ∆
mix((∀x)B)

transforms to

.... χ1(t)

Γ1 ` B{x← t}

.... χ2

B{x← t},Γ2 ` ∆

Γ1,Γ
∗
2 ` ∆

mix(B{x← t})

Γ1,Γ2 ` ∆
w : l∗

Mix-formulas of the forms (∃x)B,B ∨ C, . . . are treated in a similar way.

3.12. rank > 2

3.121. right-rank > 1

3.121.232 The last rule in ψ2 is ∨ : l. Then ψ is of the form

.... ψ1

Π ` A

.... χ1

B,Γ1 ` ∆

.... χ2

C,Γ2 ` ∆

B ∨C,Γ1,Γ2 ` ∆
∨ : l

Π, (B ∨ C)∗,Γ∗
1,Γ

∗
2 ` ∆

mix(A)

(B∨C)∗ is defined empty if A = B∨C and B∨C otherwise. We first define
the proof τ :

.... ψ1

Π ` A

.... χ1

B,Γ1 ` ∆

Π, B∗,Γ∗
1 ` ∆

mix(A)

Π, B,Γ∗
1 ` ∆

ξ

.... ψ1

Π ` A

.... χ2

C,Γ2 ` ∆

Π, C∗,Γ∗
2 ` ∆

mix(A)

Π, C,Γ∗
2 ` ∆

ξ

Π,Π, B ∨ C,Γ∗
1,Γ

∗
2 ` ∆

∨ : l

Note that, in case A = B or A = C, the inference ξ is w : l; otherwise ξ is
the identical transformation and can be dropped. If (B ∨C)∗ = B ∨C then
ψ transforms to

.... τ
Π,Π, B ∨ C,Γ∗

1,Γ
∗
2 ` ∆

Π, B ∨ C,Γ∗
1,Γ

∗
2 ` ∆

c : l∗

If, on the other hand, (B∨C)∗ is empty (i.e. B∨C = A) then we transform
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ψ to
.... ψ1

Π ` A

.... τ

Π,Π, A,Γ∗
1,Γ

∗
2 ` ∆

Π,Π∗,Π∗,Γ∗
1,Γ

∗
2 ` ∆

mix(A)

Π,Γ∗
1,Γ

∗
2 ` ∆

c : l∗

Corollary 4.1 (Subformula Property). LJ has the subformula prop-

erty: For every provable sequent S there exists a proof that contains only
subformulas (modulo terms) of formulas from S.

Proof. By induction on the structure of cut-free proofs (by Theorem 4.1 it
suffices to consider cut-free proofs only).

Corollary 4.2 (Consistency). LJ is consistent.

Proof. Assume LJ is not consistent, i.e. a sequent of the form ` A ∧ ¬A
has a proof, say χ. Then there would exist a proof of the empty sequent `
as follows:

.... χ
` A ∧ ¬A

A ` A
A,¬A `

¬ : l

A ∧ ¬A `
∧ : l1,∧ : l2, c : l

`
cut

Then, by Theorem 4.1 we could create a cut-free proof of ` that (due to the
subformula property) would contain only subformulas of the empty sequent
which is clearly impossible.

Corollary 4.3. LJ provides a decision procedure for propositional intu-
itionistic logic.

Proof Sketch. A reduced sequent is a sequent that contains each formula
in both the antecedens and in the consequent at most three times. As
Gentzen showed in [7] every proof of a reduced end-sequent can be modified
to contain reduced sequents only. If we want to decide the derivability of
a propositional sequent S we take its reduced equivalent S ′ and create all
sequents that contain only subformulas of S ′. These finitely many sequents
are the only sequents we can use to build a proof of S ′.

Note that the proof that ` A∨¬A is not derivable in LJ outlined in example
2.3 also depends on this theorem as it does not talk about the cut-rule.

Theorem 4.1 as well as the corollaries 4.1, 4.2 and 4.3 also hold for the more
general case of LK, the classical counterpart of LJ.
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4.2 Normalization

The counterpart of cut-elimination in the sequent calculus is normalization
in natural deduction (and in the typed lambda calculus). Although there
exists no explicit cut rule in NJ there are combinations of rules that corre-
spond to cuts: an introduction rule followed immediately by an elimination
rule on the same formula. Due to the Curry-Howard isomorphism we can
treat normalization in natural deduction and in the typed lambda calcu-
lus as the same relation. We will switch between these two formalisms as
appropriate.

Definition 4.4 (Notions of Reduction). A notion of reduction in the
typed lambda calculus is a binary relation R ⊆ ΛT × ΛT.

We will make use of the following notions of reduction:

1. βF = {((λxA.M)N,M{xA ← N}) | A ∈ PL−,M,N ∈ ΛT,N : A}

2. βi = {((λxi.M)t,M{xi ← t}) | M ∈ ΛT, t : i}

3. π = {(π1〈M,N〉,M) | M,N ∈ ΛT} ∪ {(π
2〈M,N〉,N) | M,N ∈ ΛT}

4. β = βF ∪ βi

In the above notions of reductions the first component of each element
is called redex and the second component is called contractum. In natu-
ral deduction, these notions of reduction correspond to the following proof
transformations (the left side being the redex and the right side being the
contractum):

βF :

.... ϕ1

A

JAKl

.... ϕ2

B
A→ B → I l

B
→ E

=⇒

.... ϕ1

A.... ϕ2

B
This means that ϕ1 is inserted for each assumption JAKl.

βi:
.... ϕ(α)

A{x← α}

(∀x)A
∀I

A{x← t}
∀E

=⇒

.... ϕ(t)

A{x← t}
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π:
.... ϕ1

A

.... ϕ2

B
A ∧B

∧I

A
∧E1

=⇒

.... ϕ1

A
symmetrical for ∧E2

The proof figures on the left are sometimes also called →-,∀-,∧-cuts in NJ
and the transformations are called →-,∀-,∧-contractions.

Definition 4.5 (Reduction Relations). For R ∈ {βF, βi, π, β} we define
the following reduction relations on ΛT:

1. The compatible closure →R

(a) (M,N) ∈ R⇒ M→R N

(b) M→R N⇒ ZM→R ZN

(c) M→R N⇒ MZ→R NZ

(d) M→R N⇒ λx.M→R λx.N

(e) M→R N⇒ 〈M,Z〉 →R 〈N,Z〉

(f) M→R N⇒ 〈Z,M〉 →R 〈Z,N〉

(g) M→R N⇒ π1M→R π1N

(h) M→R N⇒ π2M→R π2N

2. The reflexive and transitive closure �R of →R

(a) M→R N⇒ M �R N

(b) M �R M

(c) M �R N,N �R L⇒ M �R L

3. The equivalence relation =R generated by �R

(a) M �R N⇒ M =R N

(b) M =R N⇒ N =R M

(c) M =R N,N =R L⇒ M =R L

Note that for M : A and M →R N also N : A. The same holds also for
�R and =R. In NJ this means that the proven formula is not changed,
so →R and �R can be regarded as proof transformations and =R as proof
equivalence modulo normalization.

Definition 4.6 (Normal Form). Let M ∈ ΛT. For R ∈ {βF, βi, π, β}, M

is in R-normal form if there is no N ∈ ΛT such that M→R N.

A somewhat simpler (but equivalent) characterization of normal forms is to
check wether M ∈ ΛT has a subterm of the form of a redex of one of the
notions of reduction (see Definition 4.4). If not, then M is in the respective
normal form.
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4.2.1 Properties of Normalization

In this section, we will sketch the proofs of two important properties of
these reductions. The first being the so called Church-Rosser property that
guarantees the uniqueness of a normal form (if it exists) and the second
the strong normalization property that guarantees the existence of a normal
form for all terms. The Church-Rosser property does even hold for type-free
calculus, the strong normalization property does not.

Definition 4.7 (Diamond Property1). A reduction relation → satisfies
the diamond property if for all M,M1,M2 ∈ ΛT where M→ M1 and M→ M2

there exists an N ∈ ΛT such that M1 → N and M2 → N.

Definition 4.8 (Church-Rosser Property). A notion of reduction R
satisfies the Church-Rosser property (CR) if �R satisfies the diamond prop-
erty.

Lemma 4.1. Let→ be a binary relation and let→∗ be its transitive closure.
Then, if → satisfies the diamond property, also →∗ satisfies the diamond
property.

Proof Sketch. By induction on the number of →-reduction steps that one
→∗-reduction step contains.

Theorem 4.2. β is CR.

Proof Sketch. By defining a binary relation �1 that is CR and contains
the reflexive closure of →β. The reduction relation �1 is compatible but
not transitive, its transitive closure is �β. Applying Lemma 4.1 proves the
theorem (a detailed proof can be found in [5]).

Theorem 4.3. π is CR.

Proof Sketch. By induction on the term structure.

Definition 4.9. Let →1 and →2 be two binary relations on a set X. Then
→1 and→2 commute if for all x, x1, x2 ∈ X such that x→1 x1 and x→2 x2

there exists a y ∈ X such that x1 →2 y and x2 →1 y.

Lemma 4.2. �β commutes with �π

Proof Sketch. By induction on the number of reduction steps.

Lemma 4.3 (Hindley-Rosen). Let R1 andR2 be two notions of reduction.
If R1 and R2 are CR and �R1

commutes with �R2
then R1 ∪R2 is CR.

1In the literature this property is sometimes also called confluence.
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Proof Sketch. By induction on the number of reduction steps.

Theorem 4.4 (Church-Rosser Property). β ∪ π is CR.

Proof. By Theorems 4.2 and 4.3 and Lemmas 4.2 and 4.3.

We know now that the normal form of a term is unique if it exists. However,
it may still be possible that some terms do not have a normal form at all.
Indeed, this is the case in the type-free lambda calculus but it is not the
case in the typed lambda calculus. In the following we will sketch the proof
of the strong normalization theorem from [12].

Definition 4.10 (Strong Normalization). A term M ∈ ΛT is called
strongly normalizing (SN) iff there is no infinite sequence of terms M1,M2, . . .
with Mi → Mi+1.

Lemma 4.4. Let A be a PL−-formula. Let P : A be a term of the form

(i) P ≡ MN (ii) P ≡ (λx.M)N

(iii) P ≡ 〈M,N〉 (iv) P ≡ π1M (v) P ≡ π2M

Then P is SN if M and N are SN.

Proof Sketch. By induction on the structure of A.

Lemma 4.5. Let M be a term whose free variables are x1 : A1, . . . , xn : An.
If N1 : A1, . . . ,Nn : An are SN then also the term M{x1 ← N1} . . . {xn ← Nn}
is SN.

Proof Sketch. By induction on the structure of M using Lemma 4.4.

Theorem 4.5 (Strong Normalization). For each PL−-formula A every
term M ∈ ΛA is strongly normalizing.

Proof Sketch. By Lemma 4.5.

Putting the Church-Rosser and strong normalization properties together,
one obtains the nice property that each term has a unique normal form.

Corollary 4.4. The equivalence modulo normalization =β∪π of typed lambda
terms (respectively NJ-proofs) is decidable.

Proof. To decide wether M =β∪π N compute the β ∪π normal forms M′ and
N′ and check wether M′ ≡ N′. By Theorem 4.5 the terms M′ and N′ can be
computed and by Theorem 4.4 it holds that M′ ≡ N′ iff M =β∪π N.
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4.2.2 Normalization and the Curry-Howard Isomorphism

Due to the Curry-Howard isomorphism, normalization in the formalism of
natural deduction behaves the same way as in the typed lambda calculus.

Example 4.1. This example illustrates both the Curry-Howard isomor-
phism and the reductions in the typed lambda calculus (or NJ respectively).
Consider the following NJ-proof of P (f (a)) ∧ Q(f (a)) from (the active as-
sumptions) (∀x)P (x) and (∀y)Q(y) (printed in boldface). It contains an
→-cut (βF -redex).

(∀x)P(x) (∀y)Q(y)

(∀x)P (x) ∧ (∀y)Q(y)
∧I

J(∀x)P (x) ∧ (∀y)Q(y)K1

(∀x)P (x)
∧E1

P (α)
∀E

J(∀x)P (x) ∧ (∀y)Q(y)K1

(∀y)Q(y)
∧E2

Q(α)
∀E

P (α) ∧Q(α)
∧I

(∀z)(P (z) ∧Q(z))
∀I

((∀x)P (x) ∧ (∀y)Q(y))→ (∀z)(P (z) ∧Q(z))
→ I1

(∀z)(P (z) ∧Q(z))
→ E

P (f (a)) ∧Q(f (a))
∀E

The corresponding lambda term is

(λx1.λz.〈(π1x1)z, (π
2x1)z〉)〈u, v〉f (a) : (P (f (a)) ∧Q(f (a)))

with

u : (∀x)P (x), v : (∀y)Q(y), x1 : (∀x)P (x) ∧ (∀y)Q(y), α : i, z : i

Applying βF -reduction (corresponding to→-contraction of the proof) yields

→βF (λz.〈(π1〈u, v〉)z, (π2〈u, v〉)z〉)f (a) : P (f (a)) ∧Q(f (a))

which corresponds to the proof

(∀x)P(x) (∀y)Q(y)

(∀x)P (x) ∧ (∀y)Q(y)
∧I

(∀x)P (x)
∧E1

P (α)
∀E

(∀x)P(x) (∀y)Q(y)

(∀x)P (x) ∧ (∀y)Q(y)
∧I

(∀y)Q(y)
∧E2

Q(α)
∀E

P (α) ∧Q(α)
∧I

(∀z)(P (z) ∧Q(z))
∀I

P (f (a)) ∧Q(f (a))
∀E

While this lambda term is now in βF normal form, it is no longer in βi- nor
in π-normal form. A new ∀-cut and two new ∧-cuts have been introduced
by the above βF -reduction. By the Church-Rosser property of β ∪π it does
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not matter which reduction we choose next. By applying βi-reduction we
obtain:

〈(π1〈u, v〉)f (a), (π2〈u, v〉)f (a)〉 : P (f (a)) ∧Q(f (a))

which corresponds to the proof

(∀x)P(x) (∀y)Q(y)

(∀x)P (x) ∧ (∀y)Q(y)
∧I

(∀x)P (x)
∧E1

P (f (a))
∀E

(∀x)P(x) (∀y)Q(y)

(∀x)P (x) ∧ (∀y)Q(y)
∧I

(∀y)Q(y)
∧E2

Q(f (a))
∀E

P (f (a)) ∧Q(f (a))
∧I

Applying π-reduction twice yields

〈(π1〈u, v〉)f (a), (π2〈u, v〉)f (a)〉 →π 〈uf (a), (π2〈u, v〉)f (a)〉 →π 〈uf (a), vf (a)〉

which is in β ∪ π normal form and corresponds to the proof

(∀x)P(x)

P (f (a))
∀E

(∀y)Q(y)

Q(f (a))
∀E

P (f (a)) ∧Q(f (a))
∧I



Chapter 5

Cut-Projection

In this chapter we will describe the method of cut projection (presented in [1]
and [2]) which differs substantially from Gentzen’s method. The characteris-
tic feature of Gentzen’s cut elimination “algorithm” is the double induction
on rank and degree. The rank of a cut is reduced (by shifting it upwards) un-
til it reaches 2. Only after that the degree of the cut (the logical complexity
of the cut formula) is reduced. The method of Cut-Projection on the other
hand works by leaving the cuts in place but reducing the degree nonetheless.
This leads to a method which reduces the cuts without increasing the size of
the proof. It is clear that cut-projection can non eliminate all cuts because
if it could it would be a linear cut-elimination algorithm which is impossible
because the cut-elimination problem is of non-elementary complexity.

Example 5.1. Consider this LJ-proof:

Q(α) ` Q(α)

Q(α), P (α) ` Q(α)
w : l

Q(α) ` P (α)→ Q(α)
→: r

(∀y)Q(y) ` P (α)→ Q(α)
∀ : l

(∀y)Q(y) ` (∀x)(P (x) → Q(x))
∀ : r

(∀x)P (x) ∧ (∀y)Q(y) ` (∀x)(P (x) → Q(x))
∧ : l2

P (a) ` P (a) Q(a) ` Q(a)

P (a)→ Q(a), P (a) ` Q(a)
→: l

(∀x)(P (x) → Q(x)), P (a) ` Q(a)
∀ : l

(∀x)(P (x) → Q(x)) ` P (a)→ Q(a)
→: r

(∀x)P (x) ∧ (∀y)Q(y) ` P (a)→ Q(a)
cut

The universal quantifier in the cut formula is too general in the sense that
the only x it talks about (in this proof) is a. The cut formula thus can be
simplified by replacing x by a and omitting the quantifier. This also reduces

36
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the size of the proof. The result is:

Q(a) ` Q(a)

Q(a), P (a) ` Q(a)
w : l

Q(a) ` P (a)→ Q(a)
→: r

(∀y)Q(y) ` P (a)→ Q(a)
∀ : l

(∀x)P (x) ∧ (∀y)Q(y) ` P (a)→ Q(a))
∧ : l2

P (a) ` P (a) Q(a) ` Q(a)

P (a)→ Q(a), P (a) ` Q(a)
→: l

P (a)→ Q(a) ` P (a)→ Q(a)
→: r

(∀x)P (x) ∧ (∀y)Q(y) ` P (a)→ Q(a)
cut

Note that it is essential for this transformation that there is only one single

term that is substituted for x on the right side. If the right side would be a
proof that needs another instantiation of the cut formula with another term
b then it would not be clear if the new cut formula should be P (a)→ Q(a)
or P (b)→ Q(b).

The method of Cut-Projection is the above proof transformation generalized
to subformulas of the cut-formula having one of ∨,∧,∃,∀ as main logical
symbol: The essence of cut projection is to reduce the logical complexity of
a cut formula A by choosing a subformula B of A and a formula B∗ (that
is basically a subformula of B) and replacing B by B∗ in the proof above
A. In the example above we have A = (∀x)(P (x) → Q(x)), B = A and
B∗ = P (a)→ Q(a).

In Section 5.1 we will describe the method of Cut-Projection (presented in
[1]) for the sequent calculus, in section 5.2 we will show how it can be used
for cut elimination in a certain subclass of proofs (see [2]) and in section 5.3
we will also show how this method can be applied to proofs in natural
deduction.

5.1 Projection-Based Cut-Elimination

For defining cut projection an important notion is that of a predecessor in
an LJ-proof.

Definition 5.1 (Direct Predecessor). Let χ be an LJ-proof and θ be an
occurrence of a formula A in χ. An occurrence τ of a formula B is a direct

predecessor of θ (τ Cχ θ) if τ and θ are connected by a rule application ξ and

1. If |θ| is the main formula of ξ and |τ | is an auxiliary formula of ξ

2. If |θ| is not the main formula of ξ (then A = B) and τ is the formula
occurrence corresponding to θ.

Note that, if |θ| is the main formula of a weakening rule then there exists
no τ with τ C θ. The notion of the “corresponding formula” in the above
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definition has some ambiguity in a multiset sequent structure. Consider for
example the following rule application with two occurrences of the formula
A in each sequent1:

Γ, Aτ , Aγ ` B

Γ, Aθ, Aλ ` B ∨ C
∨ : r1

It is not clear how to answer the question which formula occurrence is the
predecessor of Aθ, it could be both Aτ and Aγ . A natural way to solve
such a situation is to let the i-th occurrence of A in the premise sequent
be the predecessor of the i-th occurrence of A in the conclusion sequent.
But in a multiset there is no ordering of the formulas, so the notion of i-
th occurrence (of a formula) is not definable. These difficulties could be
solved by adopting Gentzen’s original sequent structure as two sequences of
formulas or by indexing formulas. But to avoid a too complicated notation,
we will in the following assume a unique notion of “corresponding formula”
in this sense.

As formal foundation of cut projection the predecessor relation on formula
occurrences is not enough. We also want to be able to talk about predeces-
sors of subformula occurrences (in a proof).

Definition 5.2 (Subformula Predecessor). The direct subformula pre-
decessor relation <χ in an LJ-proof χ is defined as follows. Let λ be a
subformula occurrence in χ and let ξ be the rule application above λ.

1. λ is a subformula occurrence in the main formula of ξ

(a) If |λ| is the main formula of a logical rule or if λ occurs in the
main formula of a weakening rule or in the disappearing part
of the main formula of an ∧ : l- or ∨ : r-rule, then it has no
predecessor.

(b) If λ occurs in the main formula of a logical rule (but |λ| is not
equal to the main formula) then λ1 <χ λ (and λ2 <χ λ) where λ1

(and λ2) is (are) the corresponding subformula(s) in the auxiliary
formula(s).

2. λ is not a subformula occurrence in the main formula of ξ
Then λ is not modified by ξ and λ′ <χ λ for the corresponding (in the
above sense) subformula occurrence λ′ in the sequent above ξ.

The subformula predecessor relation �χ is the transitive closure of <χ.

We will treat subformula occurrences in a proof connected by the relations
<χ and�χ as objects, more precisely as predecessor trees. For a subformula
occurrence µ in an LJ-proof χ the predecessor tree Tµ is defined as follows:

1We use the notation Aθ to denote the formula occurrence θ of the formula A.



CHAPTER 5. CUT-PROJECTION 39

1. The root of Tµ is µ

2. λ′ is a child of λ in Tµ iff λ′ <χ λ.

We will sometimes also write T instead of Tµ if it is clear from the context
which subformula occurrence is the root of the predecessor tree. A leaf of
a predecessor tree is a node that has no children. A leaf λ of a predecessor
tree is called open if λ is an occurrence of a subformula in an axiom. A leaf
is closed iff it is not open. A predecessor tree is called closed iff all leaves
are closed.

Note that in an LJ-proof χ with only atomic axioms all leaves of all pre-
decessor trees of all non-atomic subformulas occurrences are closed. For a
leaf to be open there would have to exist a non-atomic subformula in an
atomic axiom sequent which clearly is impossible. To simplify notation we
will assume that we are only dealing with closed predecessor trees2.

There is an important distinction between two different kinds of leaves. In
Definition 5.2, Case 1a there are two different reasons why a subformula
occurrence λ has no predecessor (i.e. is a leaf): The first reason is that λ
is the main formula of a logical rule and thus is decomposed by this rule,
this will be called main-symbol closure. The second reason is that λ occurs
in the main formula of a weakening rule or in the disappearing part of an
∧ : l- or ∧ : r-rule, this will be called weakening-like closure.

Note that for two subformula occurrences µ and λ with λ�χ µ there exists a
substitution σ such that |µ|σ = |λ|. We will now describe these substitutions
in more detail.

Definition 5.3 (Associated Substitution). The substitution σλ associ-
ated with a node λ in a predecessor tree Tµ is defined as follows:

1. If λ = µ then σλ = id

2. If λ has a parent λ′ connected via a rule ξ (so λ is above ξ, λ′ is below
ξ): If ξ ∈ {∀ : l,∀ : r,∃ : l,∃ : r} and λ′ is in the scope of the quantifier
removed by ξ then σλ = {x ← t}σλ′ for the term t introduced by ξ
(Note that for ξ = ∀ : r and ξ = ∃ : l the term t is an eigenvariable).

In any other case σλ = σλ′ .

The associated substitutions fulfill the property mentioned above: For a
subformula occurrence µ and a subformula occurrence λ in Tµ: |µ|σλ = |λ|.

Definition 5.4 (Basic Projection Targets). Let B be a formula with
one of ∨,∧,∃,∀ as main logical symbol. The set of basic projection targets
BB is defined as follows:

2An open predecessor tree can easily be modified to be closed by proving all axioms of
the form F ` F (for an arbitrary formula F ) with atomic axioms.
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1. If B = C ∨D or B = C ∧D then BB = {C,D}

2. If B = (∃x)C or B = (∀x)C then BB = {C{x← t} | t ∈ T}.

These are the basic projection targets in the sense that each subformula
B of a cut formula A must be projected to some formula B∗ ∈ BB if it is
projected. However, projection is not always possible and, if it is, we can
not choose an arbitrary formula B∗ ∈ BB. We will now establish criteria
when projection is permitted and which projection targets are permitted.

Definition 5.5 (Critical Occurrences). Let χ be an LJ-proof, A be a
cut formula in χ, B be a subformula of A, µl the occurrence of B on the left
side (of the cut rule) and µr on the right side.

1. B is of the form B = C ∨ D or B = (∃x)C then µl (µr) is called a
critical occurrence if it is of positive (negative) polarity in A.

2. B is of the form B = C ∧ D or B = (∀x)C then µl (µr) is called a
critical occurrence if it is of negative (positive) polarity in A:

For projection of a subformula B of a cut formula to be permitted, the
following two conditions have to hold:

1. the uniqueness condition (UC):
The uniqueness condition is essential for cut projection: Let µ be
the critical occurrence of B, let ξ1, . . . , ξn be the rule applications
above the main-symbol closure leaves of Tµ and let λ1, . . . , λn be the
occurrences of the auxiliary formulas of ξ1, . . . , ξn (there is only one
auxiliary formula for each ξi because µ is critical). Then µ fulfills the
uniqueness condition (UC) if |λ1|σλ1

= |λ2|σλ2
= . . . = |λn|σλn

.

2. the eigenvariable condition:
For B = (∃x)C or B = (∀x)C the basic targets are of the form C{x←
t}. Only those targets are allowed where insertion of t does not violate
an eigenvariable condition of an ∃ : l- or ∀ : r-rule application.

Definition 5.6 (Projection Targets). Let χ be an LJ-proof, A be a cut-
formula in χ, µ be the critical occurrence of a subformula B in A. The set
of projection targets Pµ of the predecessor tree Tµ is defined inductively on
the structure of Tµ. Let λ be a node in Tµ and ξ be the rule above λ.

1. λ is a (closed) leaf

(a) main-symbol closure
ξ is a logical rule and |λ| is its main formula. Then (because µ
is critical) ξ ∈ {∨ : r1,∨ : r2,∧ : l1,∧ : l2,∃ : r,∀ : l}. Let C ′ be
the auxiliary formula of ξ:
Then Pλ = {C ∈ BB | Cσλ = C ′}. Note that |Pλ| = 1.
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(b) weakening-like closure
ξ is a weakening rule and λ occurs in its main formula or ξ ∈ {∨ :
r1,∨ : r2,∧ : l1,∧ : l2} and λ occurs in the disappearing part of
the main formula:
Then Pλ = BB

2. λ has a child λ′ connected by a rule ξ ∈ {∃ : l,∀ : r}
Let α be the eigenvariable in ξ. Then Pλ = {F ∈ Pλ′ | α /∈ FV(Fσλ)}

3. λ has children λ1 (and λ2) connected by a rule ξ /∈ {∃ : l,∀ : r}
Then Pλ = Pλ1

(∩Pλ2
)

Projection of a subformula B of a cut formula A is possible iff Pµ 6= ∅ for
the critical occurrence µ of B. Then projection of B to a B∗ ∈ Pµ is done
essentially by replacing all predecessors of B by B∗, formally:

Definition 5.7 (Cut-Projection). Let χ be a proof of the form

.... χ1

Γ ` A

.... χ2

A,Π ` ∆

Γ,Π ` ∆
cut

and B be a subformula of A, let µ be the critical and θ be the non-critical
occurrence of B in A and let Tµ and Tθ be the closed predecessor trees of µ
and θ.

1. Select a projection target B∗ ∈ Pµ

2. For all non-leaf nodes λ of Tµ and Tθ: Replace the formula at λ by
B∗σλ.

3. For all leaves λ of the critical predecessor tree Tµ let ψ be the (sub-)proof
above λ and ξ be the rule above λ.

(a) main-symbol closure

i. ξ = ∨ : r1 (or ξ = ∨ : r2)
Then ψ is of the form

.... ϕ

Γ ` C ′

Γ ` C ′ ∨D′ ∨ : r1

and B is of the form B = C∨D with C ′ = Cσλ andD′ = Dσλ

and B∗ = C (or B∗ = D). We replace ψ by ϕ.
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ii. ξ = ∃ : r
Then ψ is of the form

.... ϕ

Γ ` C ′{x← t′}

Γ ` (∃x)C ′ ∃ : r

B is of the form B = (∃x)C with C ′ = Cσλ and B∗ = C{x←
t} with t′ = tσλ. We replace ψ by ϕ.

iii. ξ = ∧ : l1 or ξ = ∧ : l2: symmetric to Case (i).

iv. ξ = ∀ : l: symmetric to Case (ii).

(b) weakening-like closure: Replace the formula at λ by B∗σλ.

4. For all leaves λ of the non-critical predecessor tree Tθ. Let ψ be the
(sub-)proof above λ and ξ be the rule above λ.

(a) main-symbol closure

i. ξ = ∨ : l
Then ψ is of the form

.... ϕ1

C ′,Γ ` ∆

.... ϕ2

D′,Π,` ∆

C ′ ∨D′,Γ,Π ` ∆
∨ : l

and B is of the form B = C∨D with C ′ = Cσλ andD′ = Dσλ

and B∗ = C (or B∗ = D). We replace ψ by

.... ϕ1

C ′,Γ ` ∆

C ′,Γ,Π ` ∆
w : l∗

(or symmetric for B∗ = D).

ii. ξ = ∃ : l
Then ψ is of the form

.... ϕ(α)

C ′{x← α},Γ ` ∆

(∃x)C ′,Γ ` ∆
∃ : l

B is of the form (∃x)C with C ′ = Cσλ and B∗ = C{x← t}
for some term t. Let t′ = tσλ, we replace ψ by

.... ψ(t′)

C ′{x← t′},Γ ` ∆
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iii. ξ = ∧ : r: symmetric to Case (i).

iv. ξ = ∀ : r: symmetric to Case (ii).

(b) weakening-like closure: Replace the formula at λ by B∗σλ.

Example 5.2. Reconsider the following proof from Example 5.1 (Page 36).

Q(α) ` Q(α)

Q(α), P (α) ` Q(α)
w : l

Q(α) ` P (α)→ Q(α)
→: r

(∀y)Q(y) ` P (α)→ Q(α)
∀ : l

(∀y)Q(y) ` (∀x)(P (x) → Q(x))
∀ : r

(∀x)P (x) ∧ (∀y)Q(y) ` (∀x)(P (x) → Q(x))
∧ : l2

P (a) ` P (a) Q(a) ` Q(a)

P (a)→ Q(a), P (a) ` Q(a)
→: l

(∀x)(P (x) → Q(x)), P (a) ` Q(a)
∀ : l

(∀x)(P (x) → Q(x)) ` P (a)→ Q(a)
→: r

(∀x)P (x) ∧ (∀y)Q(y) ` P (a)→ Q(a)
cut

The cut formula A is A = (∀x)(P (x) → Q(x)). The only subformula
of A that has one of {∧,∨,∀,∃} has its top-level symbol is A itself. The
critical occurrence of A is that on the right side of the cut, we call it µ.
The predecessor tree Tµ consists of the two nodes µ and λ where λ is the
occurrence of A directly above the →: r-rule. The node λ is a main-symbol
closure leaf because |λ| is the main formula of the logical rule ∀ : l. The
associated substitutions are σµ = σλ = id because there are no quantifier
rules on the path from µ to the leaf λ. The set of basic projection targets
is BA = {P (t) → Q(t) | t ∈ T}. The set of projection targets of the
predecessor tree Tµ is constructed as follows: Let C ′ = P (a) → Q(a) be
the auxiliary formula of the ∀ : l-rule, the set of projection targets of λ is
Pλ = {C ∈ BA | Cσλ = C ′} = {P (a) → Q(a)}. And because of →: r being
a unary rule Pµ = Pλ = {P (a)→ Q(a)} 6= ∅ so projection of A is possible.

5.2 The Elimination of Monotone Cuts

In this section we will show how the technique of Cut-Projection can be
used to eliminate cuts in a syntactic subclass (called QMON ) of LJ-proofs
with only exponential expense. This class includes all Horn theories and in
particular all equational theories. The original proof of this result [2] is for
LK, but QMON is a subclass of all LJ-proofs (which is in turn a subclass
of all LK-proofs) so this proof can be transfered with minor modifications
to LJ.

Definition 5.8 (Monotone Formulas). A formula A ∈ PL is called mono-

tone iff the only logical symbols occurring in A are ∧,∨,∀,∃

Definition 5.9 (Quasi-Monotone Formulas). The set of quasi-monotone

formulas is defined inductively:

1. Atomic formulas and ⊥ are quasi-monotone
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2. If A and B are quasi-monotone formulas then (∀x)A, (∃x)B and A∧B
are quasi-monotone.

3. If A is quasi-monotone and B is monotone then B → A is quasi-
monotone

A sequent Γ ` ∆ is called QM-sequent iff (all formulas in) Γ are quasi-
monotone and (all formulas in) ∆ are monotone. In QM-sequents there is
no negation and ∨ occurs only in positive sequent polarity.

Definition 5.10 (QMON ). QMON is the class of all LJ-proofs χ such
that

1. the end sequent of χ is a QM-sequent

2. all cut formulas are monotone

Definition 5.11 (QMON ∗). A proof χ in QMON is called right-normal

if it does not contain weakening to the right. The class of all right-normal
proofs will be denoted by QMON ∗.

Lemma 5.1 (QMON ∗). Let χ ∈ QMON be a proof of a sequent S such
that all sequents occurring in χ are QM-sequents. Then there exists a proof
χ′ ∈ QMON ∗ of S such that l(χ′) ≤ l(χ).

Proof Sketch. By induction on the structure of QMON -proofs.

Lemma 5.2 (Uniqueness Condition). Let χ be a proof of a sequent
S : Γ ` A such that χ ∈ QMON ∗ and let µ be a critical occurrence of a
subformula B of A in S. If B is of the form B = C ∨D or B = (∃x)C then
Pµ 6= ∅.

Proof. By the definition of QMON , the absence of the contraction rule
on the right and the observation that due to the absence of negation a
contraction on the left side can not simulate a contraction on the right side
it can be concluded that Pµ has only one branch. The lemma follows.

Lemma 5.3 (∨-Elimination). Let χ ∈ QMON be a proof of the sequent
S. Then there exists a proof χ′ of S such that χ′ ∈ QMON , all cut formulas
occurring in χ′ are ∨-free and l(χ′) ≤ l(χ).

Proof. Iterate the following procedure for the proof segment ψ ending with
the uppermost, leftmost cut containing ∨ in χ until there is no such cut
anymore: ψ is of the form:

.... ψ1

Γ ` A

.... ψ2

A,Π ` ∆

Γ,Π ` ∆
cut
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Then ψ1 does only contain QM-sequents (because it does not contain an
∨-cut) and by Lemma 5.1 we can replace it by a proof ψ ′

1 ∈ QMON
∗ of

Γ ` A. By Lemma 5.2 for every critical occurrence µ of an ∨-subformula in
A it holds that Pµ 6= ∅. After applying the cut projection method to each
such µ we obtain a new cut formula without ∨.

To eliminate all ∃-occurrences from the cut formulas we need to skolemize
the proof first. Skolemization is a proof transformation eliminating all strong
quantifiers.

Definition 5.12 (Strong and Weak Quantifiers). If (∀x) occurs posi-
tively (negatively) in a formula A then it is called a strong (weak) quantifier.
If (∃x) occurs negatively (positively) in a formula A it is called weak (strong)
quantifier.

Definition 5.13 (Skolemization). The function sk maps closed formulas
into closed formulas:

sk(F ) = F
if F does not contain strong
quantifiers

= sk(F(Qy){y ← f (x1, . . . , xn)})

if (Qy) is in the scope
of the weak quantifiers
(Q1x1), . . . , (Qnxn) (appear-
ing in this order)

where F(Qy) denotes F after omission of (Qy) and f is a new function symbol
(or constant symbol if n = 0).

Let S be the LJ-sequent A1, . . . , An ` B consisting of closed formulas only
and let (A′

1∧ . . .∧A
′
n)→ B′ = sk((A1∧ . . .∧An)→ B) then sk(S) is defined

as A′
1, . . . , A

′
n ` B

′.

Lemma 5.4 (Skolemization). Let χ be an LJ-proof of a sequent S. Then
there exists a proof χ′ of sk(S) such that l(χ′) ≤ l(χ).

Proof Sketch. By replacing variables bounded by strong quantifiers by their
corresponding skolem terms and skipping the corresponding quantifier in-
troduction rules.

Lemma 5.5 (∃-Elimination). Let χ ∈ QMON be a proof of a sequent S
where all cut formulas are of {∧,∀,∃}-type and S does not contain strong
quantifiers. Then there exists a proof χ′ ∈ QMON of S such that all cut
formulas are of {∧,∀}-type and l(χ′) ≤ l(χ).

Proof. By Lemma 5.1 we can replace χ by a proof χ1 ∈ QMON
∗ of S. We

iterate the following procedure for the uppermost, leftmost cut containing
∃ until there is no such cut anymore: By Lemma 5.2 for every critical
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occurrence µ of a subformula B of the form B = (∃x)C it holds that Pµ 6= ∅.
After applying the cut projection method for each such µ we obtain a new
cut formula without ∃.

Definition 5.14 (Contraction-Normalized). A proof is called contraction-

normalized if applications of the contraction rule only appear as last infer-
ences (i.e. immediately above the end-sequent).

Lemma 5.6 (∀,∧-Elimination). Let χ ∈ QMON be a proof of a sequent
S : Γ ` F such that Γ ` does not contain strong quantifiers and all cuts are
of {∀,∧}-type. Then there exists a proof χ′ ∈ QMON of S such that χ′ is
cut-free, contraction-normalized and l(χ′) ≤ 2l(χ).

Proof Sketch. By induction on the structure of χ. A cut with cut formula
A is eliminated by constructing proofs from the left side that each proves
an atom of A and inserting this proofs in the proof on the right side of the
cut.

Lemma 5.7 (Re-Skolemization). Let χ ∈ QMON be a contraction
normalized proof of a sequent S containing weak quantifiers only. Let S ′

be any sequent such that S = sk(S ′). Then there exists a cut-free proof χ′

of S′ with l(χ′) ≤ (quocc(S ′) + 1)l(χ) where quocc denoted the number of
quantifier-occurrences.

Proof Sketch. By replacing the Skolem terms in S from the outside in by
strongly quantified variables and adapting the proof above accordingly.

Theorem 5.1 (Cut-Elimination for QMON ). Let χ ∈ QMON be a
proof of a sequent S. Then there exists a cut-free proof χ′ of S such that
l(χ′) ≤ size(χ)l(χ)2l(χ).

Proof. By Lemma 5.3 we can eliminate ∨ from the cut formulas in χ ob-
taining a proof χ1 ∈ QMON with l(χ1) ≤ l(χ) where all cut formulas are
of {∃,∀,∧}-type. By Lemma 5.4 there exists a proof χ2 ∈ QMON of sk(S)
with l(χ2) ≤ l(χ3), then Lemma 5.5 yields a proof χ3 ∈ QMON of sk(S)
with l(χ3) ≤ l(χ2) where all cut formulas are of {∀,∧}-type. By Lemma 5.6
we obtain a cut-free proof χ4 ∈ QMON of sk(S) with l(χ4) ≤ 2l(χ3). Fi-
nally, by Lemma 5.7 we construct the proof χ′ of S with

l(χ′) ≤ l(χ4)(quocc(S) + 1)

But quocc(S) + 1 ≤ l(χ)size(χ) and so we have

l(χ′) ≤ size(χ)l(χ)2l(χ)
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An interesting mathematical consequence of this result is that in equational
theories lemmas that do not include negative information do not have a
large (i.e. non-elementary) influence on the length of proofs. This is due to
the fact that we can eliminate cuts consisting of monotone (non-negative)
cut formulas with only exponential expense. But if we admit negation only
directly in front of atom formulas (negation normal form (NNF)) then cut-
elimination is of non-elementary complexity because NNF is a normal form
of PL-formulas.

5.3 Projection-Based Normalization

The cut projection method can also be applied to proofs in natural deduction
although some modifications are necessary. A cut in natural deduction is a
sequence of an introduction-rule and a directly succeeding elimination-rule
on the same formula3. We will limit ourselves to →-cuts because the other
types of cuts have simple reductions (∀,∧) or can easily be reduced to→-cuts
(∃,∨):

.... ϕ(α)

A{x← α}

(∀x)A
∀I

A{x← t}
∀E

=⇒

.... ϕ(t)

A{x← t}

.... ϕ1

A

.... ϕ2

B
A ∧B

∧I

A
∧E

=⇒

.... ϕ1

A

.... ϕ1

A{x← t}

(∃x)A
∃I

JA{x← α}Kl

.... ϕ2(α)
B

B ∃El
=⇒

.... ϕ1

A{x← t}

JA{x← t}Kl

.... ϕ2(t)
B

A{x← t} → B → I l

B
→ E

.... ϕ1

A
A ∨B

∨I1

JAKl

.... ϕ2

C

JBKl

.... ϕ3

C
C ∨El

=⇒

.... ϕ1

A

JAKl

.... ϕ2

C
A→ C → I l

C
→ E

Obviously, these transformations do not increase the total length of the
proof.

3In the typed lambda calculus, this is a redex proof term (see Definition 4.4).
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Now we will define predecessor trees in NJ. The construction of the prede-
cessor tree for a subformula occurrence in an NJ-proof is more complicated
than in LJ because the predecessor relation is more complicated. Rules in
LJ have only local effects: from one (or two) premise sequent(s) we can
derive a conclusion sequent. In NJ on the other hand a rule has a global
meaning in the sense that it can have effects on formulas anywhere in the
proof above it (by discharging assumptions). Thus it is necessary to con-
sider a predecessor relation that respects these “jumps” into assumptions,
the usual tree predecessor relation (as in LJ) is not enough. It is also impor-
tant to note that the predecessor of a discharged assumption lies below it in
the proof tree. In fact, the predecessor relation in NJ consists of alternating
upward and downward (sub-)trees in the proof tree.

Definition 5.15 (Predecessor Tree). Let ϕ be an NJ-proof and µ be a
subformula occurrence in ϕ. We define the upwards predecessor tree T u

µ (µ)

and the downwards predecessor tree T d
µ (µ) inductively: Let A,B, F,G be

formulas with A[F ] and B[G] and λ, γ, τ, θ be subformula occurrences, ◦
means concatenation and 〈T1, . . . , Tn〉 means branching:

1. non-Leaves
We list the definitions for some rules as examples, for the other rules
T u

µ and T d
µ are defined analogously.

....
A[F ]λ

....
B[G]τ

A[F ]γ ∧B[G]θ
∧I

T d
µ (λ) = λ ◦ T d

µ (γ) T d
µ (τ) = τ ◦ T d

µ (θ)
T u

µ (γ) = γ ◦ T u
µ (λ) T u

µ (θ) = θ ◦ T u
µ (τ)

JA[F ]λ1
Kl . . . JA[F ]λn

Kl

....
B[G]τ

A[F ]γ → B[G]θ
→ I l

T d
µ (τ) = τ ◦ T d

µ (θ) T u
µ (θ) = θ ◦ T u

µ (τ)

T u
µ (γ) = γ ◦ 〈T d

µ (λ1), . . . , T
d

µ (λn)〉

....
A[F ]λ

....
A[F ]γ → B[G]τ

B[G]θ
→ E

T d
µ (λ) = λ ◦ T u

µ (γ) T d
µ (τ) = τ ◦ T d

µ (θ)

T d
µ (γ) = γ ◦ T u

µ (λ) T u
µ (θ) = θ ◦ T u

µ (τ)

etc.

2. Leaves

(a) main-symbol closure
Let µ be an occurrence of the subformula A. A node λ in a
predecessor tree T u

µ or T d
µ is a leaf if it is an occurrence of the

formula A in ϕ.
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(b) weakening-like closure
A node in an upwards predecessor tree is a leaf if it is an occur-
rence in the disappearing disjunct of an ∨I-rule or in the conclu-
sion formula of a ⊥E-rule. A node in a downwards predecessor
tree is a leaf if it is an occurrence in the disappearing conjunct of
an ∧E-rule. A node λ of an occurrence of the formula that can
be discharged at a rule ξ ∈ {∨E,∃E,→ I,¬I} is a leaf if ξ does
not discharge an assumption4.

In natural deduction there are the same two kinds of leaves as in the sequent
calculus. The above definition of the main-symbol closure leaves makes sense
because if a subformula A occurs as a formula it must be decomposed in the
next step5. A predecessor tree in NJ is called closed if every branch has a
leaf.

For a node λ in an (upwards or downwards) predecessor tree Tµ the asso-

ciated substitution is defined analogously to LJ: σµ = id and if λ is in a
upwards predecessor tree below a quantifier introduction rule or in a down-
wards predecessor tree above a quantifier elimination rule we add the corre-
sponding substitution if λ is in its scope. Also the notion of critical occur-
rence is analogous to that in LJ with the only difference being that the left
side of a sequent corresponds to the assumptions in NJ and that so there
can be more than one right-occurrence of a subformula (because the → I
rule of a cut can discharge more than one formula in the assumptions).

Definition 5.16 (Critical Occurrence). Let ϕ be an NJ-proof of the
form

.... ϕ1

A

JAKl

.... ϕ2

F
A→ F → I l

F
→ E

and B be a subformula of A, µl be the occurrence of B in A as conclusion
of ϕ1 and µr be an occurrence of B in A as discharged assumption in ϕ2.

1. B is of the form B = C ∨D or B = (∃x)C: Then µl (µr) is called a
critical occurrence if it is of positive (negative) polarity in A.

2. B is of the form B = C ∧D or B = (∀x)C: Then µl (µr) is called a
critical occurrence if it is of negative (positive) polarity in A.

Definition 5.17 (Projection Targets). The set of projection targets Pµ

of the predecessor tree Tµ of a critical subformula occurrence µ is defined as
in LJ.

4Note that these cases correspond to ∨ : r, w : r, ∧ : l and w : l in LJ.
5This is not the case in LJ where a formula can be carried over to another node of the

proof tree without change because it is in the context of the applied rule.
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Now we are ready to define cut projection for natural deduction. It works
pretty much the same as in the sequent calculus with one exception: When
projecting subformulas B of the form B = C∨D or B = (∃x)C then we need
to introduce an additional cut on the non-critical side. This is due to the fact
the the ∨E- and ∃E-rules can discharge an arbitrary number of assumptions
and deleting the logical symbol (and thus the rule that eliminates it) makes
it necessary to introduce another rule to discharge these assumptions.

Definition 5.18 (Cut-Projection). Let χ be an NJ-proof of the form

.... χ1

A

JAKl

.... χ2

F
A→ F → I l

F
→ E

and B be a subformula of A, let µ be the critical and θ be the non-critical
occurrence of B in A and let Tµ and Tθ be the closed predecessor trees of µ
and θ. The projected proof χ∗ is defined in the following way:

1. Select a projection target B∗ ∈ Pµ

2. For all non-leaf nodes λ of Tµ and Tθ: Replace the formula at λ by
B∗σλ.

3. For all leaves λ of the critical predecessor tree Tµ let ξ be the rule after
λ (in upwards or downwards direction, depending on the current tree
direction) and ψ be the proof ending with ξ.

(a) main-symbol closure
In Cases (i) and (ii) λ occurs in an upwards predecessor tree,
whereas in Cases (iii) and (iv) λ occurs in a downwards prede-
cessor tree.

i. ξ = ∨I1 (or ξ = ∨I2)
Then ψ is of the form

.... ϕ

C ′

C ′ ∨D′ ∨I1

and B is of the form B = C∨D with C ′ = Cσλ andD′ = Dσλ

and B∗ = C (or B∗ = D). We replace ψ by ϕ.

ii. ξ = ∃I
Then ψ is of the form

.... ϕ

C ′{x← t′}

(∃x)C ′ ∃I
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B is of the form B = (∃x)C with C ′ = Cσλ and B∗ = C{x←
t} with t′ = tσλ. We replace ψ by ϕ.

iii. ξ = ∧E1 (or ξ = ∧E2)
Then ψ is of the form

.... ϕ

C ′ ∧D′

C ′ ∧E1

where ϕ is already projected, B is of the form B = C ∧ D
with C ′ = Cσλ and D′ = Dσλ and B∗ = C (or B∗ = D).
We simply omit ξ to obtain a proof ϕ∗ of C ′ (or D′).

iv. ξ = ∀E
Then ψ is of the form

.... ϕ

(∀x)C ′

C ′{x← t′}
∀E

where ϕ is already projected, B is of the form B = (∀x)C
with C ′ = Cσλ and B∗ = C{x ← t} with t′ = tσλ. We
simply skip ξ to obtain a proof ϕ∗ of C ′{x← t′}.

(b) weakening-like closure: Replace the formula at λ by B∗σλ.

4. For all leaves λ of the non-critical predecessor tree Tθ. Let ξ be the
rule after λ (in upwards or downwards direction, depending on the
current ree direction) and ψ be the proof ending with ξ.

(a) main-symbol closure
In Cases (i) and (ii) λ occurs in a downwards predecessor tree,
whereas in Cases (iii) and (iv) λ occurs in an upwards predecessor
tree.

i. ξ = ∨E
Then ψ is of the form

.... ϕ1

C ′ ∨D′

JC ′Kl

.... ϕ2

F

JD′Kl

.... ϕ3

F
F ∨El

where ϕ1 is already projected, B is of the form B = C ∨D
with C ′ = Cσλ and D′ = Dσλ and B∗ = C (or B∗ = D).
We replace ψ by

.... ϕ
∗
1

C ′

JC ′Kl

.... ϕ2

F
C ′ → F

→ I l

F
→ E
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where ϕ∗
1 is obtained from ϕ1 by replacing the root C ′ ∨D′

by C ′ (symmetric for B∗ = D). Note that a new cut has to
be introduced here to discharge the assumption C ′ (or D′).

ii. ξ = ∃E
Then ψ is of the form

.... ϕ1

(∃x)C ′

JC ′{x← α}Kl

.... ϕ2(α)
F

F ∃El

where ϕ1 is already projected, B is of the form (∃x)C with
C ′ = Cσλ and B∗ = C{x← t} for some term t. Let t′ = tσλ,
we replace ψ by

.... ϕ
∗
1

C ′{x← t′}

JC ′{x← t′}Kl

.... ϕ2(t
′)

F
C ′{x← t′} → F

→ I l

F
→ E

where ϕ∗
1 is obtained from ϕ1 by replacing the root (∃x)C ′

by C ′{x ← t′}. Note that a new cut has to be introduced
here to discharge the assumption C ′{x← t′}.

iii. ξ = ∧I
Then ψ is of the form

.... ϕ1

C ′

.... ϕ2

D′

C ′ ∧D′ ∧I

and B is of the form B = C ∧D with C ′ = Cσλ, D′ = Dσλ

and B∗ = C (or B∗ = D). We replace ψ by

.... ϕ1

C ′

(symmetric for B∗ = D).

iv. ξ = ∀I
The ψ is of the form

.... ϕ(α)

C ′{x← α}

(∀x)C ′ ∀I
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and B is of the form B = (∀x)C with C ′ = Cσλ and B∗ =
C{x← t} for some term t. Let t′ = tσλ, we replace ψ by

.... ϕ(t′)

C ′{x← t′}

(b) weakening-like closure: Replace the formula at λ by B∗σλ.

We observe the effect that cut projection in natural deduction works well
only for ∧- and ∀-subformulas of cut formulas. When dealing with ∨- and
∃-subformulas it is necessary to introduce an additional cut on the uncritical
(right) side to maintain the proof. The reason for this problem is an im-
portant difference between sequent calculus and natural deduction: In NJ
there is no explicit contraction rule, because the contractions on the left side
from LJ correspond to the possibility of discharging more than one assump-
tions with one rule (and contractions on the right side are not allowed in LJ
anyway). In the rules ∨E and ∃E two things happen simultaneously which
are separated in the sequent calculus: 1) the deletion of a logical symbol
and 2) (possibly) a contraction on the left side (by discharging more than
one assumption). By transforming the proof in a way that deletes an ∨- or
∃-symbol one needs to delete the corresponding elimination rule which leads
to new active assumptions on the right side of this rule. To maintain the
connections between the left proof and the right proof above this rule one
needs to introduce an additional cut. The only alternative is to insert the
left side for every occurrence of the discharged assumption, but this is not a
real alternative because it is nothing else than a βF -reduction of the proof
with a new cut.

Example 5.3. This example is an illustration of the effects of cut projection
on lambda terms. Consider the following NJ-proof:

(∀y)P (y)

P (α)
∀E

(∀x)P (x)
∀I

J(∀x)P (x)Kl

P (a)
∀E

(∀x)P (x)→ P (a) → I l

P (a)
→ E

The corresponding lambda term is

M ≡ (λx1.x1a)(λx.yx)

with
x : i, x1 : (∀x)P (x), y : (∀y)P (y)

So we have M ≡ MrMl where Mr ≡ (λx1.x1a) and Ml ≡ (λx.yx). Note that
Ml : (∀x)P (x) and x1 : (∀x)P (x). This proof is projected to

(∀y)P (y)

P (a)
∀E

JP (a)Kl

P (a)→ P (a) → I l

P (a)
→ E
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which is
M ′ ≡ (λx1.x1)(ya)

with
x1 : P (a), y : (∀y)P (y)

Splitting M′ up in the same way as M leads to M′ ≡ M′
rM

′
l

where M′
r ≡

(λx1.x1) and M′
l
≡ (ya). The crucial point is that Ml : P (a) and that also

the type of x1 has been changed so that x1 : P (a).

So cut projection transforms lambda terms in a way that simplifies the
(type of the) interface between two terms. This is done by imaging M l being
inserted in Mr and finding the term (in our case a) that will be applied to
Ml in Mr. This application is extracted from Mr and incorporated into Ml.
It is also easy to understand the uniqueness condition in this context: If we
had Mr = λx1.〈x1a, x1b〉 it is clear that if we imagine Ml being inserted for
x1 there is no unique term that will be applied to Ml in Mr. On the other
hand, there would exists such a term if we had Mr = λx1.〈x1a, x1a〉.

Example 5.4. It is - in principle - also possible to use this idea of interface
simplification for “real”, i.e. industrial programming languages, like for
example C: Consider the following C-Code:

struct person {

char* name ;

char* address ;

} ;

void print_address (struct person p)

{

printf("address: %s\n", p.address) ;

}

void print_name (struct person p)

{

printf("name: %s\n", p.name) ;

}

void print_person (struct person p)

{

print_name(p) ;

print_address(p) ;

}

What can be observed here is that the procedures print name and print address

have too general interfaces because they take a person-structure but only
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need a string: the name or the address. A struct in C corresponds to a con-
junction (as means of constructing a tuple type). We can view print name

and print address as two right sides of two cuts located in the print person

procedure. The fact that we need only one of the name- and address-fields in
each procedure corresponds to the person-occurrences in these cuts fulfilling
the uniqueness condition, because when we are dealing with a conjunction
the critical side is the right side (i.e. the called procedure). By simplifying
these interface types in a way inspired by cut projection we would obtain:

struct person {

char* name ;

char* address ;

} ;

void print_address (char* p)

{

printf("address: %s\n", p) ;

}

void print_name (char* p)

{

printf("name: %s\n", p) ;

}

void print_person (struct person p)

{

print_name(p.name) ;

print_address(p.address) ;

}
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