

Dissertation

THE WAYFINDING METAPHOR—

COMPARING THE SEMANTICS OF WAYFINDING IN THE

PHYSICAL WORLD AND THE WWW

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften unter der Leitung von

O.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Frank

E127

Institut für Geoinformation und Landesvermessung

eingereicht an der Technischen Universität Wien

Fakultät für Technische Naturwissenschaften und Informatik

von

Dipl.-Ing. Mag. art. Hartwig Hochmair

Matrikelnummer 9272156

Margaretenstraße 52/12a

1040 Wien

Wien, Juni 2002

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Dissertation

THE WAYFINDING METAPHOR—

COMPARING THE SEMANTICS OF WAYFINDING IN THE

PHYSICAL WORLD AND THE WWW

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

submitted to the Vienna University of Technology

Faculty of Science and Informatics

by

Dipl.-Ing. Mag. art. Hartwig Hochmair

Margaretenstraße 52/12a

1040 Wien

Advisory Committee:

Univ.Prof. Dipl.-Ing. Dr.techn. Andrew U. Frank

Institute for Geoinformation

Vienna University of Technology

Univ.Prof. Dipl.-Ing. Dr.techn. Werner Kuhn

Institute for Geoinformatics

University of Münster, Germany

Vienna, June 2002

For my father

per aspera ad astra

 i

ABSTRACT

Wayfinding is a common human task. The terms ‘wayfinding’ and ‘navigation’ are

traditionally associated with an activity that takes place in the real world. The development of

new electronic media induces humans to navigate artificially created environments, e.g., the

World Wide Web (WWW), computer games, or virtual environments. Although real

environment and artificial environment show different features—e.g., in the definition of a

distance between places or in the organization of space—we claim that the concepts of

wayfinding in the real world can also be found in the WWW.

A goal of the thesis is to determine what the term wayfinding means, i.e., to describe the

semantics of wayfinding. Analyzing several wayfinding definitions in literature we found that

there is no unique meaning for the term wayfinding, although there seem to be some core

properties of the underlying process. Therefore we consider wayfinding to represent a radial

category. From the definitions analyzed we get the central meaning of wayfinding, and

describe it through a set of axioms. The axioms define constraints on agent and environment.

If the axioms are satisfied, the activity performed by the agent describes a wayfinding

process.

Another goal of the thesis is to show that within the wayfinding metaphor, the semantics

of wayfinding is similar for both the real world and the WWW. We hereby abstract the

conceptual wayfinding model through algebraic specifications and give two parallel

instantiations. We show that both instantiations satisfy the axioms, and thus the term

‘wayfinding’ can also be used for the Web space—expressing a similar semantics as in the

physical world.

The axioms are invariant under the applied strategy and the type of environment.

Therefore we can choose any wayfinding strategy that is capable of coping the wayfinding

tasks given in the two cases studies (where the environment is unknown to the agent). The

chosen wayfinding strategy relies on ‘information in the world’ and applies a semantic

decision criterion. A wayfinding simulation shows that the formal algebraic specifications of

the agent-based model are executable.

 ii

KURZFASSUNG

Wegesuche ist ein Teil des täglichen Lebens. Die Begriffe Wegesuche und Navigation werden

traditionsgemäß mit der realen Welt assoziiert. Durch die Anwendung von neuen

Technologien findet Wegesuche auch in künstlich geschaffenen Umgebungen statt (z.B. im

World Wide Web, in Computerspielen oder in der virtual reality). Obwohl sich reale Welt und

künstlich geschaffene Umgebung in bestimmten Punkten unterscheiden—wie etwa in der

Definition von Distanzen oder in der Strukturierung des Raumes—nehmen wir an, dass die

wesentlichen Konzepte, die den Wegesuche-Prozess in der realen Welt beschreiben, auch im

WWW angewendet werden können.

Ein Ziel der vorliegenden Arbeit ist es, die Bedeutung des Begriffs Wegesuche zu

klären. Durch die Analyse von verschiedenen Wegesuche-Definitionen haben wir festgestellt,

dass Wegesuche kein eindeutig beschreibbarer Prozess ist. Trotzdem scheint es einige

zentrale Eigenschaften eines Wegesuche-Prozesses zu geben. Daher sehen wir den Begriff

Wegesuche als Vertreter einer radialen Kategorie. Aus den verschiedenen Wegesuche-

Definitionen extrahieren wir die zentralen Eigenschaften von Wegesuche und beschreiben

diese mit Hilfe von Axiomen. Die Axiome stellen bestimmte Anforderungen an den Agenten

und seine Umgebung. Wenn diese erfüllt sind, kann man den beschriebenen Prozess als

Wegesuche bezeichnen.

Ein weiteres Ziel der Arbeit ist es, zu zeigen, dass durch die Wegesuche-Metapher die

Bedeutung des Begriffs Wegesuche sowohl in der realen Welt als auch im Web-Raum eine

ähnliche ist. Dazu formalisieren wir das konzeptuelle Wegesuche-Modell mittels

algebraischer Spezifikationen, welche für zwei Typen von Agent und Umgebung instanziiert

werden. Wir zeigen, dass beide Instanzen die Wegesuche-Axiome erfüllen und daher der

Begriff Wegesuche auch im Web-Raum sinnvoll angewendet werden kann—und zwar in einer

ähnlichen Bedeutung, wie er sie auch in der realen Welt hat.

Die Axiome sind unabhängig von verwendeter Wegesuche-Strategie und Art der

Umgebung. Deshalb können wir dem modellierten Agenten eine beliebige Strategie zur

Lösung des Wegesuche-Problems, das ihm in einer Simulation gestellt wird, geben. Dabei

bewegt sich der Agent in einer ihm unbekannten Umgebung. In seinem Entscheidungsprozess

verwendet der Agent Information aus der Umgebung und trifft die Entscheidungen

vorzugsweise aufgrund semantischer Kriterien. Die Simulation zeigt, dass die algebraischen

Spezifikationen ausführbar sind.

 iii

ACKNOWLEDGEMENTS

Writing a dissertation is a long journey. Finally reaching the destination would not have been

possible without the support of a number of people.

First of all I want to thank my advisor Andrew Frank for his encouraging discussions

throughout the last years. Some insight in his broad and interdisciplinary knowledge helped

me to find ways out of dead ends, and circumnavigate research cliffs and obstacles along the

way. The research directions and approaches he suggested were essential for writing this

work. I also want to thank my second advisor, Werner Kuhn, who provided me with

comments and suggestions for improvement.

I appreciated the discussions with my colleagues of the institute about my topic. Here, I

want to thank my former roommate Martin Raubal, who patiently listened to all my questions

and shared much of his experience with me. I think that we spent some good years together.

Further thanks go to Gerhard Navratil and Andreas Grünbacher for their formal help.

I also want to thank Albert McMahon who helped me to improve the grammar and style

on some sections of this treatise.

Last but not least I want to thank my parents for their encouraging words throughout all

the past years. They supported me in all my decisions, let me go my own way, and gave me

the feeling to do the right thing. I am sure that my father would have also been proud of me in

this moment.

 iv

TABLE OF CONTENTS

1. Introduction ___ 1
1.1 Motivation ___ 1
1.2 Hypothesis ___ 1
1.3 Approach __ 2
1.4 Contribution of the Thesis ___ 3
1.5 Audience __ 4
1.6 Organization of the Thesis___ 4

2. The Case Studies: Wayfinding in Airports and the WWW_________________________________ 7
2.1 Airport Environment ___ 8

2.1.1 Setting and Task __ 8
2.1.2 Ontology of the Airport Environment __ 9
2.1.3 Semantic and Metric Information in the Airport Environment ________________________ 10
2.1.4 The Abstract Simulated Test Area__ 12

2.2 The Case Study in the World Wide Web___ 13
2.2.1 What is the World Wide Web? __ 13
2.2.2 Searching Tactics in the WWW__ 14
2.2.3 Setting and Task ___ 16
2.2.4 Ontology of the WWW Environment ___ 17
2.2.5 Semantic and Metric Information in the WWW Environment ________________________ 18
2.2.6 The Abstract Simulated Test Area__ 18

2.3 Comparing the Abstract Environments __ 21
2.4 Summary ___ 22

3. Contributing Disciplines __ 23
3.1 Metaphors __ 23

3.1.1 What are Metaphors ? ___ 23
3.1.2 Classification of Metaphors___ 24
3.1.3 The Mapping of Semantics with Metaphors ______________________________________ 25
3.1.4 Formal Approaches of Expressing a Metaphor ____________________________________ 27

3.2 Wayfinding ___ 28
3.2.1 What is Wayfinding? __ 28
3.2.2 Cognitive Models of Space ___ 31
3.2.3 Epistemology—The Use of Affordances for Wayfinding in Airports and the WWW ______ 33
3.2.4 Spatial Decision Making and Wayfinding Strategies _______________________________ 36
3.2.5 Simulating Human Wayfinding__ 38

3.3 Agent Theory__ 39
3.3.1 The Term ‘agent’___ 39
3.3.2 Abstract Architectures of Agents___ 41
3.3.3 A Two-tiered Conceptual Model ___ 42
3.3.4 The Sense-Plan-Act Paradigm___ 43
3.3.5 Basic Operations of an Agent-System___ 43
3.3.6 Properties of an Environment ___ 45

3.4 Summary ___ 47
4. Formal Tools ___ 49

4.1 Algebraic Specifications ___ 49
4.1.1 Definition___ 49
4.1.2 Example__ 50

4.2 Morphisms__ 51
4.2.1 Signature-Morphism __ 52
4.2.2 Homomorphism__ 53
4.2.3 Isomorphism __ 55
4.2.4 Morphisms in Formalized Metaphors ___ 56

4.3 Morphisms in the Wayfinding Model ___ 59
4.4 Category Theory ___ 60

4.4.1 Definition___ 60
4.4.2 Functors __ 61

4.5 Type Systems and Polymorphism __ 63
4.5.1 Why Do We Need Type Systems? ___ 63

 v

4.5.2 Type Inference and Strong Typing ___ 63
4.5.3 Polymorphism ___ 64
4.5.4 Algebraic Data Types ___ 65
4.5.5 Data Types and Functors ___ 68

4.6 Functional Programming ___ 70
4.6.1 Each Expression Is a Function___ 70
4.6.2 No Side-Effects __ 71
4.6.3 Higher-order Functions __ 71
4.6.4 Why We Use a Functional Programming Language ________________________________ 72

4.7 Haskell___ 73
4.7.1 Classes ___ 73
4.7.2 Instances ___ 74
4.7.3 Classes with Multiple Parameters __ 75
4.7.4 Context __ 75
4.7.5 Pattern Matching ___ 76

4.8 Graph Theory__ 78
4.8.1 Definitions __ 78
4.8.2 Shortest-Path Algorithms___ 79

4.9 Summary ___ 80
5. The Wayfinding Axioms __ 81

5.1 Informal Description __ 81
5.1.1 First Axiom: Decision Points__ 81
5.1.2 Second Axiom: The Agent Has a Goal __ 82
5.1.3 Third Axiom: Moving Towards a Goal __ 82
5.1.4 Fourth Axiom: No Impact on Environment_______________________________________ 83
5.1.5 Fifth Axiom: Order of Actions __ 83

5.2 Formal Description ___ 85
5.3 Excluded Features __ 87
5.4 Summary ___ 88

6. Conceptual Features of The Wayfinding Agent ___ 89
6.1 The Structure of the Wayfinding Agent ___ 89
6.2 The Cognitive Map ___ 90

6.2.1 The Role of a Cognitive Map for Wayfinding_____________________________________ 90
6.2.2 The Cognitive Map of the Airport Navigating Agent _______________________________ 91
6.2.3 The Cognitive Map of the WWW Navigating Agent _______________________________ 92
6.2.4 Comparing the Cognitive Maps of Both Agents ___________________________________ 98

6.3 The Decision Making Process ___ 99
6.4 Summary __ 100

7. A Formal Model for Agent-Based Wayfinding in the Real World and the WWW ____________ 101
7.1 World___ 102

7.1.1 Structure of the World __ 102
7.1.2 Operations in the World___ 102

7.2 The Environment__ 103
7.2.1 Nodes___ 103
7.2.2 Edges ___ 104
7.2.3 Graphs __ 105

7.3 Agent Structure ___ 105
7.3.1 Fact and Beliefs ___ 105
7.3.2 Mental Position ___ 106
7.3.3 Cognitive Map __ 107
7.3.4 Perception ___ 107
7.3.5 Decision___ 107
7.3.6 Preferences __ 107
7.3.7 Incoming Direction __ 107

7.4 External Operations __ 108
7.4.1 Class Definition and Derived Functions __ 108
7.4.2 The Class Context ___ 108
7.4.3 The Semantics of the External Operations_______________________________________ 110

7.5 The Agent’s Decision Process: An Internal Operation _________________________________ 111
7.5.1 Sub-Processes of Semantic Decision Making ____________________________________ 112
7.5.2 Moving Towards the Goal ___ 112
7.5.3 The Semantic Distance to the Goal __ 114

 vi

7.5.4 Combining the Sub-steps__ 116
7.6 Summary __ 117

8. Discussing the Computational Model __ 118
8.1 Verification of the Wayfinding Axioms __ 118
8.2 Totality: Mappings and Functions ___ 119

8.2.1 Totality of Mapping__ 119
8.2.2 Totality of Functions ___ 120

8.3 Comparing Theory and Implementation __ 121
8.4 Summary __ 122

9. Simulation of the Wayfinding Process in an Airport Environment and the WWW ___________ 123
9.1 The Environments ___ 123

9.1.1 Area of the Simulated Airport Environment _____________________________________ 123
9.1.2 Area of the Simulated WWW Environment _____________________________________ 125

9.2 The Agents __ 126
9.2.1 Creating the Agent’s Cognitive Map___ 126
9.2.2 Creating the Agent___ 127

9.3 The World ___ 128
9.4 Running the Simulation___ 129

9.4.1 Wayfinding in the Airport ___ 129
9.4.2 Wayfinding in the WWW ___ 133

9.5 Summary __ 138
10. Conclusions and Future Work __ 139

10.1 Summary __ 139
10.2 Results and Major Findings__ 141

10.2.1 The Semantics of Wayfinding __ 142
10.2.2 Formalized Wayfinding Model ___ 142

10.3 Future Work and Open Questions ___ 143
References __ 146
Appendix ___ 152
Biography of the Author___ 169

 vii

Introduction 1

 INTRODUCTION
CHAPTER

1

1.1 Motivation

The internet-jargon uses many metaphors that stem from the domain of wayfinding in the

physical world. Examples are move to the previous web site, to be lost, visit a web page, find a

web page, or navigate the WWW. Wayfinding, like many other everyday metaphors, is almost

invisible as we understand it immediately. But what makes common metaphors so easy to be

used? We think that the secret can be found in a small number of axioms which define the

semantics of the source domain of a metaphor and which are also satisfied in the target

domain. We explore if such axioms exist for the process of wayfinding, and if this core of the

wayfinding metaphor can be represented formally. If this method was possible in general,

abstract domains (e.g., a user interface) may be checked for the correct use of a specific

metaphor. We will see that, on an abstract level, a metaphor can be described through a

functor, i.e., a homomorphism between two categories, and that the semantics of a source

domain can be defined by the behavior of its operations.

As the WWW has rapidly grown over the last decade, web navigation plays an

increasing role in humans’ everyday life. Based on their searching habits, “an alarming

number of web users are not particularly efficient at reaching their online destinations”

(Pastore 2001). This lack of efficiency is partly based on missing wayfinding concepts in the

WWW. We assume that consideration of user needs and implementing user concepts of

navigating the real world into the WWW may help to make the WWW easier to navigate. For

this reason, it is important to determine what wayfinding exactly is. Metaphors have become

an essential feature of human-computer interaction (Carroll and Rosson 1994) and represent a

necessary ingredient to almost any user interface.

1.2 Hypothesis

Many metaphors are used for activities that take place in the internet. Metaphors map

semantics from one domain to the other. An important part of this metaphor concept is

therefore the task, how the semantics of the source domain can be defined. We focus on the

wayfinding metaphor and explore the semantics of the term wayfinding.

Introduction 2

The hypothesis of this work is: The semantics of the term wayfinding can be defined

through a set of axioms. The axioms describe minimum requirements on a domain to support

a wayfinding process. This set of axioms needs to be satisfied in the source and the target

domain so that the term ‘wayfinding’ is correctly used as a metaphor.

The axioms will be shown to be invariant under the chosen wayfinding strategy and the

type of environment.

1.3 Approach

The approach we use to explain the wayfinding metaphor is twofold. First, we find a set of

axioms that define minimum requirements on property and behavior of a domain so that the

process it defines can be called wayfinding. The axioms hereby refer to wayfinding in the real,

physical world. For creating the axioms we use wayfinding definitions found in literature,

which do not provide one unique meaning of the term ‘wayfinding’, although central elements

can be found. Therefore the wayfinding process can be seen as a radial category. As there is

no unique opinion about what exactly wayfinding is, the presented axioms cannot describe the

correct constraints on a domain to describe a wayfinding process. The axioms rather cover a

common and convenient meaning of wayfinding.

Second, we want to show that the axioms are satisfied within the WWW domain, too.

For this part of the approach, we choose an algebraic wayfinding model that has two parallel

instantiations, one for an abstract real world (an airport domain) and one for an abstract Web

environment (a small part of the Yahoo search engine domain). We need to show that the

wayfinding axioms—that are based on human wayfinding in the real world—are satisfied for

both instances. We hereby try to express conceptual similarities between both instances with

polymorph data types and polymorph functions. Using such formal tools, on the one side,

demonstrates homomorph mappings between both domains, and on the other side, reduces the

effort for the proof that both instantiations satisfy the wayfinding axioms. We demonstrate the

conceptual similarity of wayfinding in the real world and the WWW on a formal level with

the help of algebraic concepts.

Previous work in human wayfinding, metaphor theory, cognition, psychology, and

philosophy, and existing cognitively-based computational models for wayfinding serve as a

foundation for the development of the agent-based wayfinding model. We use specific

concepts from the fields of artificial intelligence (i.e., agents, semantic networks), ecological

psychology (i.e., affordances), computer science (i.e., interface design, WWW), and cognitive

science (i.e., information processing) to design the process model. Formal tools, such as

Introduction 3

category theory, data type theory, and the theory of algebras, are the basis for the discussion

of metaphors on an abstract level.

The simulation is developed as an executable specification in Haskell (Thompson

1996), a functional programming language with a syntax close to ordinary algebra. The

prototype allows us to simulate the proposed wayfinding strategy of human wayfinding in an

airport-environment and the WWW.

1.4 Contribution of the Thesis

The major contribution of this thesis is the ability not only to explain how a given metaphor

works—which has in various approaches already been achieved (e.g., by Lakoff and Johnson

1980; Carroll, Mack et al. 1988; Fauconnier 1997; Maglio and Matlock 1998) and formalized

(e.g., by MacCormac 1985; Kuhn and Frank 1991; Goguen 1999)—but also why certain

metaphors do not exist. Let us assume some examples in the German language. The

translation into English is printed in brackets:

• “Er findet einen Weg, das Problem zu lösen“ (He finds a way to solve the problem)

• „Er sucht sich mühsam seinen Weg durchs Studium“ (He tries to make his way

through his studies)

• “Nach langer Krankheit fand die Sängerin zurück auf die Bühne” (After her illness

she found the way back to her daily working routine)

These metaphors are used correctly and understood by (most) German native speakers. The

next statements may sound somewhat strange:

• “Sie findet ihren Weg durchs Leben” (Life is searching for a way)

• “Ich finde meinen Weg durch das Turnier” (I’m trying to find my way through this

tournament)

What we figure out in this thesis is, why examples like the first two mentioned are good

representatives for metaphors, whereas the latter examples cause problems in their use: The

latter examples violate some of the wayfinding axioms. A major task of this thesis is to

provide:

• A set of axioms that define the meaning of wayfinding

• A formal representation of these axioms

• A demonstration of how abstract models can be checked for satisfying these axioms

Introduction 4

• A summary of formal concepts that play a role in the mapping of semantics between

two domains

• A computational wayfinding model that allows us to formally demonstrate the

metaphorical relation between two domains (i.e., the real world and a Web domain).

The formalized model hereby includes parts of Raubal’s work (Raubal 2001a)—a

model of agent based wayfinding in airport environments.

• The role of homomorphism for the metaphor concept can be demonstrated within the

formal model.

1.5 Audience

This exploration of ‘wayfinding’ involves several scientific fields. Due to the inclusion of a

‘physical world’ realm, a ‘WWW’ realm, and the metaphorical connection between these two

spaces, the work is interdisciplinary and targeted to researchers in the following areas:

• Software and web designers, especially those who are responsible for designing the

navigation interface: They can use the basic method proposed in the thesis (axioms,

formalization, proof) for checking any metaphor for its correct use in the user

interface.

• Linguists: We show how a metaphor can be formally defined. The method describes

the domains of a metaphor independent of a specific natural language and therefore

has a high grade of generality.

• Cognitive scientists and psychologists can apply the perceptual wayfinding model in

research on human wayfinding behavior in unfamiliar environments. The model can

function as a starting point for human subjects testing in this area.

• Researchers in artificial intelligence: They can use the formalized agent-based model

for an increasing domain of people’s everyday lives, namely navigation in the

WWW.

1.6 Organization of the Thesis

In the next chapter we present the two case studies employed in this thesis, i.e., wayfinding at

the Vienna International Airport and wayfinding in the directories of the Yahoo-domain. We

describe the particulars of wayfinding in an airport and the WWW and the ontology of both

domains. We give a description of the settings and an abstraction of the test area. Further, we

specify the wayfinding task for both types of agents.

Introduction 5

Chapter 3 reviews previous research in related disciplines. We look at the historical

understanding of the role of metaphor in human life, and discuss some models that describe

the mapping of semantics between domains with the help of metaphors, including formal

approaches. We review scientific fields concerning the modelling of wayfinding, covering

wayfinding definitions, cognitive models of space, decision making, epistemological

concerns, and existing computational models. Further we introduce agent theory including

abstract models of agents and their environments.

In chapter 4 we look at those formal tools that we need to build the computational

model of the wayfinding agent and that provide a basis for the description of the wayfinding

metaphor on an abstract level. We discuss the role of morphism, category theory, and

polymorphism in respect to metaphors, and introduce the functional programming language

Haskell.

In chapter 5 we define those axioms that express the minimum requirements on agent

and environment so that the described activity can be considered as wayfinding process. The

axioms are based on analyzed wayfinding definitions. The formalization of the axioms

provides a high grade of generality which in turn allows us to map the axioms from the

physical world to abstract domains.

In chapter 6 we discuss conceptual features of the wayfinding agent including the

agent’s structure, cognitive map, and decision strategy. We hereby point out commonalities

between the concepts used in the two instantiations of the agent. We look at the requirements

concerning content and design of the agent’s cognitive map with respect to a given

wayfinding task.

In chapter 7 we develop a formalized wayfinding model that is based on the conceptual

model for perceptual wayfinding. The features from the domains (i.e., airport and WWW) are

separated into two parallel instantiations. In the description of the formal model we focus on

those parts that are fundamental for the verification of the wayfinding axioms.

Chapter 8 discusses the formal model on several points. We summarize the verification

of the wayfinding axioms for both instantiations. We discuss the totality of operations and the

totality of morphisms between both instantiations in the formal model. Further, we look at

which of the theoretical aspects of formalizing a metaphor have been in fact realized in the

formal model and have been used to express the wayfinding metaphor.

In chapter 9 we simulate wayfinding at the Vienna International Airport and in the

Yahoo-domain. We hereby feed the formalized wayfinding models with two different data

sets. The simulation checks if the formal model is executable for both instantiations of agent

Introduction 6

and environment. We compare and analyze decisions made by both types of agent within the

simulation.

Chapter 10 presents the conclusions and directions for future work. The appendix shows

the complete Haskell code of the agent based wayfinding model.

The Case Studies: Wayfinding in Airports and the WWW 7

 THE CASE STUDIES: WAYFINDING
IN AIRPORTS AND THE WWW

CHAPTER

2

We use two case studies that clarify the concepts and mechanisms underlying a wayfinding

process. Wayfindingthe agents’ tasks in the two case studies mentioned hereis just an

example for one of many metaphors and therefore a contribution to the long quest for a

definition of what a metaphor is (Fauconnier and Turner 1998). The case study introduced in

this section demonstrates that the meaning of a term can be mapped from the real world to

another domain, keeping its conceptual features, and therefore expressing a metaphor.

The first case study describes a wayfinding task at the Vienna International Airport

(VIE). Raubal’s PhD-thesis (Raubal 2001a) focuses on a conceptual model of understanding

signage at airports, the informational needs of the navigator at decision points, and how the

perceived information can be used for wayfinding in an unknown airport environment. His

work further classifies potential errors of the signage in airports. In contrast to Raubal, this

thesis does not focus on details of signage and errors but intends to show that the basic

operations of the wayfinding process are also used in the WWW, i.e., that the wayfinding

metaphor maps this set of basic operations from the physical world to the WWW. The second

case study is situated in the portal of the Yahoo-directories in the WWW. It describes an

agent’s task to find a Web page of a specific content within the directory structure.

Both, wayfinding in an airport environment and searching the directories of a Web

portal are two specific modes of wayfinding. Within the two instantiations in the formalized

model, we show that particularities of the two domains and task specific instantiations (i.e.,

those features that are expressing additional functionality compared to the wayfinding

axioms) are not taken into consideration during the proof of satisfying the wayfinding axioms,

and therefore do not play a role in defining the wayfinding metaphor.

The ontology of the environment plays an important role for wayfinding, as the percepts

from the environment function as input for the decision making process. For each of the two

settings we will discuss the ontology and its abstractions for the wayfinding model.

For the conceptualization and simulation of the wayfinding process we presume the

following:

• The navigator has never visited the environment before.

The Case Studies: Wayfinding in Airports and the WWW 8

• The navigator does not have a map with information about the environment.

• Communication with other passengers is not included, i.e., the navigator cannot ask

another person the way to his goal.

2.1 Airport Environment

2.1.1 Setting and Task

The first case study is situated in the departure level of Terminal 1 in the Vienna International

Airport (VIE). Figure 1 shows the central part of the departure level indicating the major

possibilities for passengers’ movements.

Figure 1: Central part of the departure level at VIE (from Raubal 2001a)

When planning to flight departure from the airport, passengers first have to check in their

luggage at one of the check-in counters after which they receive a boarding pass, which tells

them their boarding gate and the latest time by which they must arrive at this gate. The gates

are labeled with the letters A, B, or C—denoting the three different gate areas at VIE—and a

number. The navigator’s task in our case study is to find the way from one of the check-in

counters to the gate ‘C 54’ which is located in the Schengen-terminal of the airport (upper-

right corner in Figure 1).

As the environment is unknown to the simulated passenger, he relies partly on his

general topological knowledge of airport environments (‘knowledge in the head’), and

navigational cues from the environment (‘knowledge in the world’) (Norman 1988). The

wayfinding strategy that the agent applies will be discussed in section 6.3.

The Case Studies: Wayfinding in Airports and the WWW 9

2.1.2 Ontology of the Airport Environment

Before we explain the ontology of airport environments it is necessary to clarify the term

ontology, as there exist several views about what ontology is. By defining the ontology of a

specific domain, one describes what is in this domain in a general way (Gruber 1993). From

an Artificial Intelligence (AI) approach, ontologies are content theories which identify

specific classes of objects and relations that exist in some domain (Chandrasekaran,

Josephson et al. 1999). In its most prevalent use in AI, an ontology refers to engineering

artifacts, constituted by a specific vocabulary used to describe a certain reality, plus a set of

explicit assumptions regarding the intended meaning of the vocabulary. In a more

philosophical sense, ontology represents a subfield of philosophy, which can be defined as the

science of what is: the science of various types and categories of objects and relations in all

realms of being (Smith 2001a). Ontology in simple terms, attempts to classify entities. It deals

with the question which basic kinds of things exist. The basic kinds of things are known as

categories. The system of types and categories does not depend on a particular language:

Aristotle’s ontology is always the same, independent of the language used to describe it.

Philosopher-ontologists are concerned with the things themselves (the objects, properties and

relations, the states, events and processes) within a given domain. Contrarily, ontological

engineers are concerned rather with languages, descriptions, or concepts, and with software

representations constructed to a given domain, or with representations in people’s heads

(Smith 2001b). To solve terminological impasse between these two meanings of ontology,

Guarino (1997) introduces the term conceptualization for the philosophical reading, using the

term ontology for the AI reading.

In his wayfinding model on airports, Raubal (2001a) uses the term ‘ontology’ in

Gruber’s sense, i.e., as a description of what is in a specific domain or microworld in a

general way. Following Gibson’s approach (Gibson 1979), Raubal subdivides the wayfinding

environment into medium, substances, and surfaces and constructs the ontology of

navigational elements from interviews in which people described their experiences during

wayfinding in airports (Raubal, Egenhofer et al. 1997). This method is based on ontology

from texts. A taxonomy of substances that is based on “IS-A” relations which allows making

transitive inferences is given in (Raubal 2001b). Among the non-cognizing objects of an

airport it distinguishes between bona-fide objects (architectural component, information

device, counter, gate) and fiat objects (area, navigational elements).

Aristotle characterizes everything that exists into certain categories: substance, quality,

quantity, relation, etc. Substance (a synonymous for ‘individuals’) is prior to the other

categories since substances exist as separate entities, while the other categories exist only as

The Case Studies: Wayfinding in Airports and the WWW 10

the qualities of substance. For each substance there is one or more qualities which are

inseparable from it. This would be its essence, its essential quality.

For the proposed simulated wayfinding strategy used in this thesis, gates, information

devices (signs), and navigational elements (decision points and paths), are the objects with

which the agent interacts during his wayfinding process. All other substances in the discussed

hierarchy, such as airport staff, terminal, or recreational areas, are excluded from the abstract

environment in the computational model.

We consider the semantic information represented on signs as a separate layer of

ontology (besides the substances), as this layer describes a logical structure of the airport

environment in a semantic way. The structure of this layer will be discussed in the next

section. Thus, we have following classification within the airport ontology:

• Layer of substances

• Layer of semantic structure (represented through information on airport signs)

2.1.3 Semantic and Metric Information in the Airport Environment

As well as semantic information, the metric of the environment plays a role in the simulated

decision making process. Signs are essential information devices, as they represent

‘knowledge in the world’ (Norman 1988) and allow the agent to make wayfinding decisions

that lead him closer to the goal. A sign is attached to a corridor which leads towards the

gate(s) displayed on the sign. The gate signs can be classified into three categories (Raubal

2001b):

• signs with a single content (e.g., ‘A’, ‘C54’)

• signs with a list of content (e.g., ‘C52, C53’, ‘A,C’)

• signs with a range (e.g., ‘C52-C54’, ‘A-C’)

Concerning the number of attached signs and the usability for the decision process we classify

corridors (we abstract them as edges between nodes in the computational model) into three

categories (Figure 2). An edge can have a sign on none of its nodes, on one of its nodes, or on

both nodes.

(a) No signpost is attached to either of the two nodes. The edge as topological

connection between two nodes exists, but there is no information available (at

either of the two nodes) that could be used as semantic input for the decision

making process. Thus the edge will not be passed in any direction by the agent.

We call this a non-labeled edge.

The Case Studies: Wayfinding in Airports and the WWW 11

(b) A signpost is attached to one of the two nodes: Based on the information on the

sign the agent may enter the edge from the node where the signpost is attached

(directed edge).

(c) A signpost is attached to both of the two nodes: The edge can be entered from

both sides (undirected edge).

Figure 2: Classification of edges after the number of attached signs

The ‘direction’ of edges in the computational model therefore is defined by the agent’s need

for information from signs, and not through topologic or physical constraints (this also holds

for the WWW case). Thus, the graph itself is undirected in the model.

Besides the topology of a decision point and the number of perceived signs, metric

attributes of outgoing edges (i.e., the configuration) plays a role in the decision process. To

model the influence of metric (i.e., directions) in the decision making process, it is sufficient

to schematize the directions of edges on decision points for the computational model

(Casakin, Barkowsky et al. 2000), e.g., into a schema of 45 degree-angles. Each node can be

given a local reference frame with eight directions (Raubal 2001a), where the direction of

each of the outgoing edges falls into one of the eight directions. Thus, a wayfinding agent is

offered semantic and metric input when reaching a decision point. In the example visualized

in Figure 3, three signs (‘A’, ‘A,C’, and ‘B,C’) can be perceived from the position (indicated

through the black circle), where the angles between the edges (i.e., the signs) are indicated

through curved arrows.

The Case Studies: Wayfinding in Airports and the WWW 12

Figure 3: Perceiving semantic and metric input at a decision point

2.1.4 The Abstract Simulated Test Area

In the selected area, signposts are attached either to one or to both sides of a corridor. Thus,

the simulated environment—which is abstracted as a graph (see section 4.8)—contains

directed and undirected edges (Figure 2). The visualization of the graph for Figure 4 omits

signposts but displays nodes with their IDs, the geometry of these decision points, the position

of the check-in counter (start point), and the agent’s goal ‘C 54’.

Check-in

8
7

6 5
4

9

1

3

2

C54 10

Figure 4: Environmental graph in the airport area

The test graph contains 11 nodes (including a fictive node 0 as reference for the agent’s

previous position at the start point) with connecting edges. Table 1 summarizes the mentioned

properties of all edges of the graph line by line. The value in the first column gives the node

ID, the second column gives the direction of the signpost in the local reference frame of the

first node (for a detailed description see Figure 46 in the simulation chapter), the third column

describes the semantic content of the sign. Columns 4-6 describe the same elements for the

The Case Studies: Wayfinding in Airports and the WWW 13

second node of the edge. Either a sign offers metric and semantic information, or it is not

attached (which is expressed through an empty value in the columns ‘Direction of sign’ and

‘Sign content’). Correspondingly, edges in the test environment are undirected or directed.

Position Direction
of Sign

Sign content Position Direction
of Sign

Sign
content

1 1 A – D 2 - -
2 0 A, B, C, D 3 - -

3 1 A 4 - -
 0 A, C 5 - -
 7 B, C 6 - -

4 6 C 5 2 A
5 6 B, C 6 2 A
6 6 B, C 7 - -

7 5 B 8 - -
 6 C 51 – C 62 9 - -

9 7 C 54 10 - -
Table 1: Directed and undirected edges in the airport graph

2.2 The Case Study in the World Wide Web

2.2.1 What is the World Wide Web?

The World Wide Web (WWW) does not have a physical location like physical environments,

e.g., airports, have. It is “the universe of network-accessible information, an embodiment of

human knowledge”, as the World-Wide-Web Consortium, an organization the Web inventor

Tim Berners-Lee helped found, defines the WWW. A more technical definition defines the

World Wide Web as “all the resources and users on the Internet that are using the Hypertext

Transfer Protocol (HTTP)” (whatis.com 2002).

The Word Wide Web is sometimes considered as identical to the internet. Others define

the WWW as part of the internet, as the internetbesides the WWWalso comprises

electronic mail (e-mail) or electronic telephony (chat). An outstanding feature of the WWW is

hypertext, a method of instant cross-referencing. Hypertext is the organization of information

units into connected associations that a user can choose to make. An instance of such an

association is called a link or hypertext link. Most Web browsers underline hypertext links

and represent them in a different color. Hypertext was the main concept that led to the

invention of the World Wide Web.

The Case Studies: Wayfinding in Airports and the WWW 14

The number of web users increases enormously. Industry analysts estimate the number

of World Wide Web users to have climbed to over 150 million in the year 2000 (Figure 5)

(greatlook.com 2002).

Figure 5: Worldwide users of the PCs, e-mail, WWW, and other online-services between 1995 and
2000 (from greatlook.com 2002)

A two-year study by Alexa Research (www.alexaresearch.com) has revealed thatbased on

their searching habitsa high number of web users is not efficient at reaching their online

destinations (Pastore 2001). Matthew Work, vice president of Alexa Research, says that the

study reveals that “for many web users there is a conceptual misunderstanding of how to

effectively navigate the Web”. Considering this remark from a web-designer’s view we can

conclude that essential features being necessary for applying common wayfinding strategies

in the real world are missing in numerous web interfaces. Otherwise, Web users would find

their target web page faster. Although this thesis does not discuss all elements involved in

wayfinding in the real world and the WWW, the contribution of this work is to determine

which basic concepts of wayfinding should also be represented in the Web interface.

2.2.2 Searching Tactics in the WWW

Although the term wayfinding for the physical world is discussed in section 3.2 we classify

searching tactics in the WWW, which is needed to specify the wayfinding task for this case

study. Jul and Furnas (1997) distinguish between two tactics for searching and browsing

activities in electronic spaces:

1. querying

2. navigation

Both of these tactics can be applied on various search engines, e.g., Yahoo, Google, or

Altavista (Figure 6). Whereas the first method describes looking for a web page through

entering one or several search terms in an edit field, the second method describes step-wise

‘clicking-through’ the pages on the Web domain until the desired Web page is found.

The Case Studies: Wayfinding in Airports and the WWW 15

Figure 6: Search engines (Altavista and Google) containing an edit-field for querying, and categories for
navigating

For the second method, the user is offered a number links that represent a categorization of

the content of a Web site. The categories are organized as taxonomies or partonomies. By

clicking on one of the links, the user is moved to a web page describing this category. Then, a

number of sub-categories is offered, and so on. Figure 7 shows how a mouse-click on the

category ‘Health’ on the Yahoo-portal opens a new Web page with sub categories of ‘Health’.

Figure 7: Clicking on a category to reach its sub categories

Finding information with the technique of querying only is often insufficient, as in only a few

searching situations will the result of the query correspond to exactly what the user is looking

for. Searching is additionally combined with the second method, i.e., navigation. As the

The Case Studies: Wayfinding in Airports and the WWW 16

navigation tactic comprises an imagined movement of the agent in addition to other features

of wayfinding in the real world, navigation seems closer to the wayfinding concept in the real

world than querying. Therefore we mean the navigation tactic as used in (Jul and Furnas

1997) when we talk about ‘wayfinding’ in the WWW.

Maglio and Matlock (1998) found that Web users think of the Web as a kind of physical

space in which they move, although the Web is not physical and Web users do not locomote.

This result can be concluded from an extensive use of spatial metaphors when people talk

about the WWW. Such metaphorical thought is motivated by the same basic image schemata

that people rely on to structure the physical world and the WWW. Image schemata (Lakoff

and Johnson 1980) are recurring mental patterns that help people to structure space and arise

from our embodied experience. Image schemata are claimed to shape both metaphorical and

non-metaphorical thought (Johnson 1987; Lakoff 1987). A phrase like “in Yahoo” expresses

the CONTAINER schema, just like the activity of moving up and down within a

hierarchically structured Web domain. In distinction, “at Alta Vista” suggests using the

PLATFORM schema. As well as active physical motion towards objects or destinations

(concrete or abstract), as abstract motion towards a goal (e.g., going to the ‘Yahoo’

homepage) involve the image schema TRAJECTORY, comprised of a starting point, an end

point, and a path between the two.

2.2.3 Setting and Task

The first case study describes wayfinding in the directories of the Yahoo!-domain

(http://www.yahoo.com/). As the first online navigational guide to the Web, Yahoo! is reaches

over 219 million unique users in 24 countries and 12 languages. As in the portal of many Web

searching engines, the structure of the directories is hand-built and continually improved. Due

to these modifications, differences between the simulated environment and the online

directory structure may appear. For an abstraction of the simulated environment see Figure 9.

Corresponding to the airport case study, the agent’s task is to find a goal through

stepwise decision making, i.e., using a navigation tactics (section 2.2.2). The simulated goal is

defined as a web page that should provide the web agent with the possibility of purchasing

‘Nike’ sneakers size 9 1/2. In the simulation the links are restricted to within the hierarchy of

the Yahoo-directories, excluding links leading out of the domain. The agent starts at the index

page of the domain, makes his decision and chooses a link that may lead him closer to the

desired page.

We see commonalities between the two wayfinding tasks: Both tasks contain a goal, the

abstract navigators interact with an environment, and they need to make decisions during the

The Case Studies: Wayfinding in Airports and the WWW 17

navigation process. Using these cases studies, we will show that both of the task related

processes can be classified as wayfinding, and that the abstract concepts of the physical world

can be mapped to the Web space.

2.2.4 Ontology of the WWW Environment

Corresponding to the airport domain, where the ontology has two layers (section 2.1.2), the

Web space has an ontology that consists of objects and information. The topologic layer of

ontology describes the arrangement of documents and hyperlinks in the Web space, metric

information excluded. Thus, for the representation of this layer, Web domains can be

abstracted as graphs, web pages as nodes, and hyperlinks as edges connecting two nodes.

The second layer represents a semantic network that describes the semantic content of a

Web site and is visualized through information on the links (corresponding to information on

the airport signs). A semantic network is based on the idea of associations, and semantically

close information is stored close together. With a semantic network one can express

relationships such as synonymous symbols, antonymous symbols, parent categories, child

categories, or visual similarity. This type of system is most useful for organizing groups of

related symbols. Semantic nets can be visualized as directed graphs, where the nodes

represent terms (concepts), and the edges represent relations between the terms. The most

important relation is the IS-A relation that sorts terms after their generality. The properties of

general terms are inherited to elements of a lower hierarchy.

In summary, we distinguish between two layers in the ontology of the Web space. In

our model, the second layer with its semantic information is used for decision making in the

proposed strategy of this thesis. The semantic layer—if describing a physical object— can

recall action affordances in the Web user’s imagination (and therefore partly corresponds to

the second layer of affordances used in the WWW navigation, see section 3.2.3.2).

• the topologic structure of documents that are physically available in the web: In this

layer, the WWW can be seen as collection of multimedia documents in the form of

HTML pages connected through hyperlinks (Li and Shim 1999).

• the semantic information that is represented through the information carried by the

links: The web represents an ontology of the world from the web designer’s point of

view.

Both of these layers are considered static for the duration of the agent’s navigation process,

i.e., no external impact changes the structure of the environment. Even if the environment

would change during the wayfinding process, the navigator would not notice, as he does not

The Case Studies: Wayfinding in Airports and the WWW 18

visit a node twice with the proposed wayfinding strategy. The web space is a graphical

representation of semantically and topologically related information; the physical components

are hardly recognized by the user (except the hardware as physical basis for the user-

interface).

2.2.5 Semantic and Metric Information in the WWW Environment

Besides semantic and topologic information, a metric property of the links is provided by the

Web interface, as each link is given a position in the coordinate system of the screen. In

Figure 8, five links are visualized in the user interface. Each of these links contains semantic

information expressed as keywords, the metric attribute is given as distance from the upper

border of the screen. In this visualization of a directory structure, the metric position of a link

does not tell the navigator anything about the content of the page to which it leads (only the

semantic content does). Therefore this metric attribute does not help the navigator to reach his

target.

Figure 8: Metric and semantic information of hyperlinks displayed in a user interface

2.2.6 The Abstract Simulated Test Area

As with most search-engine portals (Figure 6 and Figure 7 in section 2.2.2), the abstract

simulated test area consists of several categories which are hierarchically structured (Figure

9). The test data used for the simulation represent only a small fraction of the complete

domain. Terms of up-links are printed in italic font and gray color, those of down links or

crosslinks in regular font and black color. Crosslinks between different categories are

visualized as dashed arrows. Links which lead to a ‘dead end’ in reference to the predefined

goal and therefore would require backtracking, are visualized as thin arrows. The

corresponding web pages are labeled with an additional ‘X’ before the id. The characterizing

property of cross links is that from a Web page that has been reached through a cross link, one

The Case Studies: Wayfinding in Airports and the WWW 19

can only go back to the previous page through the ‘back’ button of the browser, but not

through a back-link (this does not exist in such case). Thus such an edge is directed. Edge 8-

12 in Figure 9 is an example of such a situation.

Figure 9: Simplified link structure of an existing web domain

In addition to the visualized links in Figure 9, each web page has links to each of its upper

category levels. For example, node 5 has up-links to node 3 and node 1. Figure 10 gives a

screen shot of the decision situation at node 5 in Figure 9, where the up-links (‘Home’ and

‘Recreate’) can be found below the screen title “Yahoo! Directory Sports”.

The Case Studies: Wayfinding in Airports and the WWW 20

Figure 10: Up- and down-links on a Web page

For reasons of readability, we skip all of these up-links in the model, except the one to the

category directly above. Due to the agent’s strategy of moving towards its goal with each step

(i.e., not to move up in a hierarchy backwards to the start node), such up-links would not be

chosen at a decision point, except if the agent was lost.

The test graph contains 25 nodes with connecting edges. Similarly to Table 1 (airport

environment), the edges of the WWW graph can be summarized in Table 2. It lists some of

the edges in the simulated WWW environment. The values in the ‘direction’ column denote

the position of the link from the upper border of the user interface. The direction is therefore

not oriented within a local reference frame.

The Case Studies: Wayfinding in Airports and the WWW 21

Position Direction
of Link

Link content Position Direction
of Link

Link content

1 2 “do business” 2 1 “Home”
 9 “recreate” 3 1 “Home”

2 2 “do shopping” 4 1 “do business”
3 19 “do sport” 5 1 “recreate”

4 3 6 1 “do shopping”
 61 “do sport” 7 1 “ do shopping “

…

7 1 “clothing” 10 - -
 59 “running” 12 1 “do sport”
 76 “do track and field” 13 1 “do sport”

8 12 “do shopping” 12 - -
… - -
20 1 “confirm” 24 - -
Table 2: Directed and undirected edges in the WWW graph

2.3 Comparing the Abstract Environments

The concepts of the environments used in the two case studies show a number of similarities:

• Both environments can be abstracted as graphs using the same classification of edges

(non-labeled, directed, undirected).

• Nodes represent decision points.

• The edges contain semantic information:

- An edge in the airport environment can have a sign attached which contains

numbers and letters representing gate names.

- A link in the WWW interface describes the page to which it leads with a

meaningful keyword.

• The edges contain a metric attribute:

- The outgoing edges from a node in the airport environment enclose a certain angle

and are oriented within a local reference frame.

- The Internet-links are visualized on a certain position of the screen which can be

described through coordinates.

The similarity of concepts allows a number of operations to be applied for both abstract

domains, for example:

• Find edges with a sign.

The Case Studies: Wayfinding in Airports and the WWW 22

• Get the semantic information that can be perceived from a node.

• Determine the degree of a node.

2.4 Summary

This section introduced the settings of the case studies used in this thesis, i.e., wayfinding at

the Vienna International Airport and in the Yahoo-domain. The task for both agents is to find

a specific place in the environment: The gate ‘C 54’ for the airport navigating agent, and a

WWW page where one can purchase sneakers with certain attributes for the WWW-

navigating agent. The conceptual and formal wayfinding model to be developed in this thesis

describes a cognitive agent which is able to cope with the given tasks in the case studies.

We described the ontology of airport environments and the Web space, and classified

the information provided by these environments into metric and semantic. Despite differences

in the physical constellation between both environments, conceptual commonalities of

operations performed in the environment can be found on a more abstract level.

Contributing Disciplines 23

 CONTRIBUTING DISCIPLINES
CHAPTER

3

Discussing the wayfinding metaphor obviously involves two scientific fields, namely

metaphor theory and wayfinding theory: First we explain what metaphors are and how they

can be classified, followed by a discussion of the wayfinding process in the physical world,

i.e., the source domain of wayfinding metaphor. Agent theory allows for elaboration of

wayfinding on a more abstract level. We hereby restrict our discussion of human wayfinding

to some characteristic features that will be modeled within an agent based model and that

formally show the mapping of semantics between the two domains.

3.1 Metaphors

3.1.1 What are Metaphors ?

Johnson (1987) characterizes a metaphor as “…a pervasive mode of understanding by which

we project patterns from one domain of experience in order to structure another domain of a

different kind.” Following Sweetser (1990, p.8), “metaphors allow people to understand one

thing in terms of another, without thinking that the two are objectively the same”. Research

on metaphors presents a number of obvious problems: how to determine its truth

valueliterally, metaphors are almost always falseand how to recognize an expression as a

metaphor (metaphors have no consistent syntactic form) (Scaruffi 2001).

Over the years the understanding of the role of metaphors in human life has changed.

Different theories use different approaches to describe the nature of metaphors. Most

traditional theories treat a metaphor chiefly as a theoretical or artistic figure of speech

whereas contemporary theories extend the scope of metaphor to include its role in scientific

reasoning.

The view of literal-core theories is that metaphors are cognitively reducible to literal

propositions. Treated as literal figures, metaphors were considered to be nothing more than a

rhetorically powerful mode of expression without its own cognitive content (Johnson 1987).

The literal-core theories hold the objectivistic view of metaphors, which says that the

objective world has its structure, and concepts and propositions, to be correct, must

correspond to that structure. It is only literal concepts and propositions that can do that.

Contributing Disciplines 24

In metaphorical proposition theories metaphoric imagination can create new unified

wholes within human experience rather than merely supplying novel perspectives on already

interpreted experiences. A broad analysis of metaphors was carried out during the 1970’s and

1980’s by Lakoff and Johnson (Lakoff and Johnson 1980; Johnson 1987; Lakoff 1987).

Contrary to the current opinion of this time that a metaphor is a linguistic expression favored

by poets, the authors found two fundamental conclusions in their analysis: (1) all language is

metaphorical and (2) all metaphors are ultimately based on our bodily experience. They claim

that metaphor is not in the words but in the ideas and that metaphor is used for reasoning.

Once metaphor is defined as the process of experiencing something in terms of something

else, metaphors turn to be pervasive, in action and thought. In their work, Lakoff and Johnson

show how metaphors reveal the limitations of objectivism, namely the assumption that the

world is made of distinct objects with inherent properties and fixed relations between them.

Although metaphors are literally false there is some sense in which they are not only not

false, but can provide very valuable insights (Grey 2000). Thus, metaphors must consist of a

deep as well as a surface level. When the literal meaning is deactivated because of the

falsehood of the sentence a mental switching happens that activates the secondary meanings.

Let us consider the metaphor “Time is money” as an example. As soon as we apprehend that

the description is literally false, the expression becomes semantically charged with secondary

meanings: Time in our culture is a valuable commodity, it is a limited resource that we use to

accomplish our goals. Work is usually associated with the time it takes, and it has become

customary to pay people by the amount of time for their work. Corresponding to the fact that

we act as if time is limited and a valuable resource such as money, the metaphor is true on the

deeper level of cultural experience.

3.1.2 Classification of Metaphors

Lakoff and Johnson (1980) define three types of metaphors:

• Structural metaphor where one concept is metaphorically structured in terms of

another, e.g., ‘The meaning is right there in the words.’

• Orientational metaphors which organize a whole system of concepts with respect to

another, transferring spatial orientation, such as up-down, in-out, front-back. These

metaphors use humans’ experience with spatial orientation, for example in the phrase

‘He fell asleep’.

• Ontological metaphors which are based on humans’ experience of physical objects

and substances. Once we identify our experience as entities or substances, we can

Contributing Disciplines 25

refer to them, categorize them, group them, quantify them, and reason about them.

Ontological metaphors are ways of viewing events, activities, and ideas as entities

and substances.

When using container metaphors, as members of ontological metaphors, we use for

example the human property to be like a container, with a bounding surface and an

in-out orientation. We project our own in-out orientation onto other physical objects

that are bounded by surfaces, as for example used in the following phrase ‘He’s out

of sight now’.

Grey (2000) classifies metaphors into dead, dormant, and live. A dead metaphor is an

ordinary part of our literal vocabulary and commonly not regarded as metaphor at all. The

author takes the verb ‘run’ as example. Running in its basic meaning is considered as a simple

activity which involves putting one leg in front of the other in a certain systematic and

rhythmic fashion. Through metaphorical extension the expression comes to be applied to

objects which lie outside its basic reference class, such as rivers. So it comes about that rivers

run, taps run, and fences runthe last example showing another feature of metaphors: By

abstracting certain elements of the activity we are able to produce a generalized meaning of

the basis sense word. For example, if we speak of fences ‘running’ around a boundary, there

is no suggestion of motion. Instead, the metaphor creates a static sense of running, in this

case, the sense of following a path.

A live metaphor is a metaphor which we are conscious of interpreting. As the

previously mentioned example (“Time is money”), such a metaphor cannot be taken at its

literal face value but has to be decoded. Dormant metaphors represent an intermediate

category. They consist of expressions we use without being conscious of their metaphorical

character, but if we attend to them they are recognized as metaphors. The border between

dormant and dead metaphors is fuzzy. Metaphors that suffer the abuse of overuse, e.g., ‘the

bottom line’, degenerate into cliché. Overuse is a process by which a living metaphor can

become dormant or dead.

3.1.3 The Mapping of Semantics with Metaphors

Metaphors map semantics from the source to the target domain. In a metaphorical sentence

the terms tenor and vehicle denote the two parts of a metaphor. The tenor is the literal subject

whereas the vehicle is the figurative connection, i.e., the thing that is compared to the subject

or the carrier. For example, in the metaphor “a Sahara of snow” in a poem by Robert Lowell,

the tenor is snow, while the vehicle is the Sahara desert.

Contributing Disciplines 26

The human interpretation of metaphors is discussed in several competing models

reported in the literature. In the similarity or comparison view (e.g., Ortony 1979), preexisting

similarities between the constituent terms of a metaphorical sentence are an important source

of information for generating figurative meaning. In order to generate an interpretation, a

metaphorical sentence first has to be translated into an explicit comparison statement. Then, a

feature-matching process is applied to the representations of the noun-concepts involved in

the metaphor. If we take the example “Life is a journey”, the features of the vehicle-concept

journey are compared to features of the tenor-concept life in order to identify common

features. In the given example, possible features for the interpretation may be ‘surprise’,

‘decision point’, ‘comrade’.

In contrast to the comparison view, the interaction approach (e.g., Black 1979) claims

that similarity is not antecedent but a product of comprehension. Metaphorical meanings are

constructed by means of emergent features that appear when the representations of tenor and

vehicle as well as their corresponding domains are brought into interaction. As example we

use ‘Hercules is a lion’. Here, a feature that is neither characteristic of the tenor nor of the

vehicle, but surfaces only in the interpretation, is mythical feature (Nückles and Janetzko

1997).

There is no clear evidence for which of the two theoretical approaches should be

accepted and which rejected. From empirical tests, Nückles and Janetzko (1997) make the

assumption that the two theories support a complementary cognitive process, and that

metaphor comprehension proceeds in two stages that the authors call analysis stage and

synthesis stage. First, an analysis of the lexical meanings of tenor and vehicle is attempted. In

case of enough similarities to produce a coherent interpretation, the comprehension process

will cease. In the other case, a synthesis of the two terms follows that requires the activation

of broader world knowledge about the domains involved.

An open question in metaphor theory is, why only parts of the semantics of the source

domain are mapped to the target. The metaphor ‘Theories are buildings’, e.g., maps

‘foundation’ and ‘support’ onto the target domain, whereas ‘doors’ and ‘windows’ are not

mapped. Recent approaches have attempted to solve this problem by introducing several types

of metaphors, including primitive and compound (Grady, Taub et al. 1996).

Kuipers (1982, p.3) defines operations as the relevant parts of a domain that need to be

mapped so that one can talk of a metaphor. He claims a metaphor to be correctly used if

corresponding operations in both domains, i.e., a graphical map and the map in the head,

exist: “The ‘Map in the Head’ metaphor states that the functional behavior is the same in the

two contexts”.

Contributing Disciplines 27

3.1.4 Formal Approaches of Expressing a Metaphor

Formal approaches to define the metaphor are rarely found in the literature. A fuzzy-logical

approach that uses a four-valued logic has been formalized by MacCormac (1985). Besides

truth and falsity, the values also embrace metaphor in two forms, diaphors (metaphors that

imply the possibility of something), and epiphors (metaphors that express the existence of

something). Employing a system of fuzzy semantic markers, MacCormac defines the fuzzy

membership of one category in another as a real number ranging from zero (absolute

falsehood) to one (undeniable truth). Within this range exist the delimiters a, b, c, such that 0

< a < b < c < 1, where the interval 0 to a represents falsehood, a to b represents diaphor, b to c

represents epiphor, and c to 1 represents literal truth. Metaphoric set membership is thus

indicated by a value in the range a to c. Novel metaphors begin life as diaphors, and migrate

along this fuzzy scale into epiphors as they lose their emotive tension through commonplace

use, to eventually find rest as dead metaphors in the literal truth interval (see the example of

the ‘bottom line’ in section 3.1.2).

Gentner’s structure mapping theory (Gentner 1983) describes analogies as mappings

between source and target domains, each represented by semantic networks. The mappings

themselves are not formalized but rest on a syntactical distinction of different kinds of

relations. The author presumes that knowledge is represented as propositional network of

nodes and predicates, where the nodes represent concepts treated as wholes, and the

predicates applied to the nodes express propositions about the concepts.

An analogy between the base domain A and the target domain T maps the object nodes

of A onto the object nodes of the target domain T. Further, predicates from A are carried

across a mapping function to T. Gentner distinguishes between four different kinds of domain

comparisons which are determined by the number of attributes (sorts) and relations

(functions) mapped between the two domains. The types of domain comparison are: literal

similarity, analogy, abstraction, and anomaly. Table 3 illustrates which features are mapped in

which type of structure mapping. The right column gives an example of domain comparison

for a solar system. Other formal approaches that use algebraic structures for metaphors are

discussed in section 4.2.4.

Contributing Disciplines 28

 Number of attributes
mapped to the target

Number of relations
mapped to the target

Example

Literal similarity Many Many The K5 solar system is like
our solar system

Analogy Few Many The atom is like our solar
system

Abstraction Few Many The atom is a central force
system

Anomaly Few Few Coffee is like the solar
system

Table 3: Number of attributes and relations mapped in different types of domain comparison (Gentner
1983)

Goguen (1999) proposed a mathematically precise theory of semiotics, called algebraic

semiotics, as a tool to study the ways in which information is mediated in computer systems.

A user interface can be considered as a representation of the underlying functionality to which

it provides access. Both the interface and the underlying functionality are considered as sign

systems. In this setting, representations appear as mappings (morphisms) between sign

systems, which should preserve as much structure as possible. A sign system can be

formalized as many sorted loose algebra plus some specific semiotic items. A Semiotic

morphism M: S1 →S2 provides a way to describe the mapping of signs in one system S1 to

signs in another system S2. A good semiotic morphism should preserve as much of the

structure in its sign system as possible, i.e., sorts and subsorts, operations, axioms, content,

levels of sorts, and priority ordering on constructors. Empirical work showed that it is more

important to preserve structure than content. Applications for algebraic semiotics include user

interface design, cognitive linguists, metaphor theory, and cognitive poetics.

3.2 Wayfinding

In this section we review various aspects involved in wayfinding, stressing those concepts that

are needed to construct the conceptual wayfinding model of the simulated agent. First we

discuss the rough boundaries of the term ‘wayfinding’, further we look at cognitive models of

space and the process of decision making during wayfinding. The final sub section is devoted

to existing computational wayfinding models.

3.2.1 What is Wayfinding?

Within the task of this thesis to describe the wayfinding metaphor we explore if essential

concepts of the term wayfinding, as it is used in the physical world, can also be found in the

WWW. Thus we first need to focus on what wayfinding in the physical world means.

The American architect Kevin Lynch (1960) was the first to use the term wayfinding

which replaced the term spatial orientation in the late 70s. Spatial orientation refers to a

Contributing Disciplines 29

person’s ability to determine his or her location in a setting, thus, describes the static

relationship of a person to his or her spatial setting. The term cannot encompass the dynamic

aspects of people’s movements. In the late 70s the concept wayfinding filled this missing part

of the spatial orientation concept. Wayfinding was used to account for people’s movement in

space and their sense of being orientated, it described the process of reaching a destination,

whether in a familiar or an unfamiliar environment. In the 80s, wayfinding was modeled as

spatial problem solving (e.g., Downs and Stea 1977; Gärling, Böök et al. 1984), which within

this framework comprises three specific but interrelated processes (Arthur and Passini 1992):

• Decision making and the development of a plan

• Decision execution, which transforms the plan into appropriate behavior

• Information processing, comprising environmental perception and cognition

The number of wayfinding-definitions that are found in the literature is extensive. Analyzing

some of the definitions, the recurrence for specific terms is higher than for other terms. Thus,

wayfinding is not uniquely defined and its boundaries seem to be unstable and rough. The

terms that are more often used in the definitions define a central case of wayfinding (a kind of

prototypical wayfinding), whereas more seldom mentioned features are extensions of the

central meaning. We therefore assume that the concept of wayfinding represents a radial

category (Rosch and Mervis 1975; Rosch 1978). It has gradations, and some wayfinding

definitions represent better (more central) and worse (more peripheral) examples of the

category. Members of the category do not possess inherent features as objects in traditional

taxonomies do.

Due to the high number of wayfinding definitions, we cannot describe what the correct

concepts are that define wayfinding in general. But as we need to express basic concepts of

wayfinding (through axioms) for formalizing the wayfinding metaphor, we try to find the

central features of wayfinding, and skip the more peripheral ones. The solar metaphor

(Sutcliffe 1998) visualizes the idea of a radial category and expresses the relations of concepts

that define wayfinding: The most central wayfinding features are visualized as sun, whereas

more peripheral concepts of wayfinding are visualized as planets.

Contributing Disciplines 30

goal
route decision

seek
learn

remember
recognize

origin

mental process

perceive
medium

peripheral
distance

item relationships

navigation
environment

Figure 11: Schematic visualization of the Radial Category Wayfinding using the Solar metaphor

Before we look at existing wayfinding definitions, we should clarify the (small) differences

between wayfinding and navigation. The difference seems to be based on properties of the

surrounding environment: Human movement in open spaces, e.g., flying an aircraft, involves

navigation Golledge (1999). It means to deliberately walk or make one’s way through some

space. Contrarily, wayfinding involves selecting paths from an existing network (Bovy and

Stern 1990, Golledge, Jacobson et al. 2000). Allen (personal communication) claims that the

terms wayfinding and navigation are similar in their meaning and that in most cases the two

terms are interchangeable. The more similar a wayfinding situation is to plotting and

executing a course, the better that analogy is.

To find the central concepts of wayfinding we look at following definitions (frequently

used terms are written in italic font).

- Allen (1999) describes wayfinding as purposeful movement to a specific

destination that is distal and, thus cannot be perceived directly by the traveler.

Successful wayfinding is reflected in the traveler’s ability to achieve a specific

destination […] despite the uncertainty that exists.

- Golledge (1999) defines wayfinding as a process of determining and following a

path or route between an origin and a destination.

- Wayfinding involves selecting path segments from an existing network and

linking them as one travels a specific path. The process of wayfinding requires

an ability to know origins and seek a destination […] (Golledge, Jacobson et

al. 2000).

- Two critical characteristics of human wayfinding are destination choice and path

selection (Golledge 1995).

- Bovy and Stern (1990) describe pathfinding and wayfinding as a process that

involves selecting paths from a network.

Contributing Disciplines 31

- Blades (1991) defines wayfinding as the ability to learn and remember a route

through the environment.

- Wayfinding is navigation that occurs both on and off known routes (Cornell and

Heth 2000).

- Wayfinding is defined through the mental processes involved in determining a

route between two points and then following that route (Mark, Freksa et al.

1999).

- Lynch (1960, p.3) defines wayfinding as based on “a consistent use and

organization of definite sensory cues from the external environment.”

Outstanding terms of the listed definitions are destination, path selection, determine, route,

seek, environment. These terms will be considered as part of the wayfinding axioms in chapter

5.

3.2.2 Cognitive Models of Space

Arthur and Passini (1992) claim that cognitive mapping, i.e., the mental structuring process

leading to the creation of a cognitive map, is part of environmental perception and cognition.

As perception and cognition are part of the wayfinding process, the use of a mental

representation of the environment seems obvious for wayfinding tasks. The relative

importance of a mental representation in the decision making process depends on the nature

of the setting and on the wayfinding task.

The complexity of the physical world is reflected through various models that describe

an environment or its mental representation. The models stress different features of the

environment (e.g., topologic or metric relations between places; images of places) depending

on the task of abstraction. For the construction of a precise map of an area, e.g., one needs

quantitative knowledge. This allows the map user to predict precisely at which location an

object will be encountered. Contrary, to describe a location to be identified in the real world, a

limited amount of qualitative knowledge may suffice (Freksa 1991).

Lynch (1960) interviewed residents of three cities and found out that people build their

mental model of a city based on five spatial elements:

(1) Landmarks, distinct points in a city that serve as reference to the user.

(2) Paths, channels of movement.

(3) Nodes, strategic spots in the city where the observer can enter.

(4) Edges are linear but do not facilitate movement. They form physical barriers.

Contributing Disciplines 32

(5) Districts are areas in a city that have some common characteristics such as a particular

architectural style.

Siegel and White (1975) describe the stages in an individual’s representation of spatial

knowledge which are likely to come with increasing age or experience.

(1) Landmark knowledge comprises distinct, typically familiar points in the environment.

(2) Route knowledge is characterized by the knowledge of paths between landmarks

(topological information).

(3) Survey knowledge allows people to locate landmarks and routes within a general frame

of reference (i.e., incorporating metric measurements).

This model has been criticized for its strict developmental sequence (Montello 1998). For

solving the problem of how an agent creates its spatial representation from its sensimotor

experiences, Kuipers, Froom et al. (1993) and Remolina, Fernandez et al. (1999) use the

computational theory Spatial Semantic Hierarchy (SSH). SSH is an ontological hierarchy of

representations for knowledge of large scale space and comprises four levels: control, causal,

topological, and metrical.

Some models of wayfinding reported in the literature stress the importance of topologic

knowledge for the wayfinding process. The TOUR-model (Kuipers 1978), e.g., is based on

the assumption that it is possible to store a topological relation between two places in the

absence of any metrical information. Knowledge about particular environments is hereby

classified into five categories (route, topological structure, relative position, dividing

boundaries, regions). Freksa (1991) claims that topologic knowledge is relevant for

wayfinding in the real world because movement in space is possible only between

neighboring locations. Evidence for cognitive hierarchical organization of space was deduced

in experiments from distance and direction judgments (Hirtle and Jonides 1985).

Several metaphors were introduced to express the characteristic of a mental

representation. The term cognitive map was first used by Tolman (1948) who claimed that rats

in a maze-learning task acquired knowledge of the spatial relation between start and goal.

Other metaphors suggested are cognitive collage, spatial mental model (Tversky 1993), or

cognitive atlas (Hirtle 1998).

Recent developments in cognitive science suggest that spatial relations do not exist in

the real world but that they rather exist in mind (Mark and Frank 1996). Due to physiological

similarities that exist among individual human beings, most people experience their

environment in similar ways. Human experience in interacting the world leads to the most

appropriate subdivision of continuous reality into objects (Frank 2001). Objects are typically

Contributing Disciplines 33

formed in such way that many of their properties remain invariant over time. Johnson (1987)

claims that experience from the environment and interaction with the environment uses

recursive, imaginative patterns, so called image schemata. Many of the image schemata are

inherently spatial or even graphical.

3.2.3 Epistemology—The Use of Affordances for Wayfinding in Airports and the
WWW

Epistemology is the part of philosophy concerned with knowledge and knowledge

representation. The task of epistemology is to derive observable consequences from theories.

A representation is epistemologically adequate for a person or machine if it can be used

practically to express the facts that one actually has about the aspects of the world (McCarthy

and Hayes 1969). The elements of the ontology proposed in the case studies (sections 2.1.2

and 2.2.4) are mapped to the epistemology of the wayfinding subject.

In this thesis we use affordances to model the navigator’s epistemology. We hereby add

elements of cognition, situational aspects, and social constraints to Gibson’s theory of

perception. In this section we describe which affordances play a role for wayfinding in an

airport environment and the WWW. The term affordance was created by Gibson (1977) when

investigating how people perceive their environment. According to Gibson the environment

consists of a medium, substances, and surfaces (see section 2.1.2). Gibson describes the

process of perception as the extraction of invariants from the stimulus flux. Surfaces absorb or

reflect light and Gibson’s radical hypothesis is that the composition and layout of surfaces

constitute what they afford. Affordances are therefore specific combinations of the properties

of substances and surfaces taken with reference to an observer. Thus, animal and environment

are modeled to be an inseparable pair. The theory of affordances is influenced by Koffka’s

work (Koffka 1935) on Gestalt psychology, where he states that each thing says what it is.

In his PhD work, Raubal (2001a) claims that both affordances and information are

essential for people finding their ways in an unfamiliar environment. Affordances hereby

provide possibilities for behavior and information helps people to choose between

alternatives.

3.2.3.1 Affordances in the Airport-Environment

Most of this section follows Raubal (2001a). When performing a wayfinding task in a spatial

environment people utilize a set of affordances. Some of the affordances are involved in the

control of locomotion such as moving along a corridor, others are required for information

acquisition such as reading and interpreting different signs, etc. Raubal distinguishes

Contributing Disciplines 34

affordances concerning the realm they belong to, such as social-institutional affordances,

action affordances, physical affordances, or mental affordances.

The most relevant physical affordance for a wayfinding simulation is the ‘go-to’

affordance of a path to move along it. Its utilization leads the agent from one node to another.

Another physical affordance implemented is a sign’s affordance to reflect light, a decision

point’s affordance to look around, or a doorway’s affordance to go through. Mental

affordances are represented through the agent’s decision process. Sign information affords to

be matched with the agent’s goal information, paths afford to be selected, and decision points

afford searching, orienting, and deciding how to proceed. Information (such as from signs or

from a map) is necessary for the agent to decide upon which affordances to utilize. Although a

sign affords looking at it, only additional semantic information, such as letters, numbers, or

symbols, allow the navigator to use the sign as navigation aid.

Social interaction is based on social-institutional affordances: Another traveler affords

talking to, or asking. Physical and social-institutional affordances are the sources of mental

affordances. In order to utilize a mental affordance, the agent needs to perform an internal

operation. For example, letters displayed on a screen afford the navigator to perform the

internal operation of matching the letters with his goal information.

What the navigator knows about the environment, partly depends on his physical and

mental abilities, his life experience, and his task. This is due to the fact that utilizing

affordances during the wayfinding process is user dependent. As an example, Raubal

mentions the scenario of the case study where a mother is going on a flight with her 3-year-

old son. Although mother and son perceive the same objects, objects afford to them different

activities. Based on the task and the mother’s properties (e.g., being an adult), the check-in-

counter, e.g., affords the mother to put her tickets on the counter so that the check-in agent

can give her boarding passes. This is not afforded to the child as his properties (e.g., being too

short) do not enable him to put something on the counter.

3.2.3.2 Affordances in the Web Navigation

Gibson’s theory states that affordances are based on the process of perception through the

extraction of invariants from the stimulus flux. Despite this connection to visual perception,

we propose that humans remember certain affordances of objects, i.e., humans assign

affordances to pictures, symbols, or descriptions of an object (Hochmair and Frank 2001). In

the case of web navigation, a link or icon displaying or describing an object, recalls a set of

affordances to the user. This assumption of mentally stored affordances is an important

Contributing Disciplines 35

concept to apply the proposed decision making model in the given task of the case study, as it

connects displayed objects to affordances of a physical object (i.e., sneakers).

In the domain of a physical computer environment, which functions as the hardware

platform for web navigation, Norman (1999) distinguishes between physical and perceived

affordances. The physical affordances are carried by computer hardware, such as keyboard,

computer screen, and mouse. These physical objects afford pressing a key, pointing, touching,

looking, and clicking. Contrary, perceived affordances are provided by displayed objects on

the user interface. Displayed objects advertise physical affordances. For example, the design

of a hyperlink on the screen does not afford clicking, but provides a target and helps the user

know where to click. Clicking on a perceived object on a screen with a pointing device is in

Norman’s view motivated by cultural conventions (shared by a cultural group), and not

through affordances of the designed object on the screen itself.

In summary, a hyperlink (realized as text string or symbol) visualized on the user

interface provides two layers of affordances (Figure 12), where the second layer will be

shown to play a role for decision making.

• 1st layer (perceived layer): advertises (perceived affordance) to click (convention)

on the hyperlink or icon

• 2nd layer (information layer): the information displayed as text or icon awakens the

user’s remembered action affordances of the object that is part of the web site

behind the link (only if an object is displayed as link)

In the abstract model of the Web environment, links are expressed as edges between two

nodes with semantic information attached. Due to the second layer of affordances provided by

a hyperlink, we model the mental representation of a link in the abstract agent as the

possibility to move to another web page of which the content is related to the information

displayed on the link. The information of the link is not restricted to affordances of objects.

Figure 12 demonstrates the distinction between the two layers provided by a hyperlink. The

first layer of the displayed hyperlink advertises to the web navigator to move the displayed

arrow over the hyperlink symbol which is carried out through moving the mouse

(convention). Clicking on the symbol to reach the next web page is also convention. The user

performs these activities as he expects that the web page behind the link is related to cycling

(second layer) due to perceiving the picture. For example, the linked web page may contain

the result of a cycling competition or be the Web page of a biking federation.

Contributing Disciplines 36

Figure 12: Perceived affordance, convention, and associations provided by a hyperlink

Table 4 relates objects in the abstract environments (of the physical world and the WWW) to

the agent’s epistemology. The table shows a potential approach of how objects may be

reflected in the agent’s behavior and beliefs.

Object in the abstract environment Agent’s epistemology

edge possibility to move to endnode

signpost (airport and WWW) read content, determine direction

letters and numbers (airport) or strings (WWW) match with concepts in cognitive map

target-node state that needs to be reached

intersection make decision

Table 4: Agent’s epistemology of objects in the simulated environment

3.2.4 Spatial Decision Making and Wayfinding Strategies

Decision theory covers a large range of models with different foci on describing how

decisions could or should be made and on specifying decisions that are made (Golledge and

Stimson 1997). We point out concepts of decision making that are general enough to hold for

the physical world and the WWW.

Literature offers numerous decision making models. A classification that distinguishes

between various types of outcomes of decisions—either optimal solutions or acceptable

solutions—is given by Gärling and Golledge (2000). The classification discusses three

approaches to the study of decision making:

• The normative approach, exemplified by economic choice theory, aims at defining

optimal decisions.

Contributing Disciplines 37

• The goal of prescriptive approaches is to advise human decision-makers about how

to make optimal decisions given that they possess a limited cognitive capacity to do

so.

• Descriptive theories focus on approximate (heuristic) decision strategies.

Arthur and Passini (1992) distinguish between two decision making models: In the optimizing

model, the person considers all options in the light of all subjectively relevant criteria and

chooses an optimal solution whereas in the satisficing model an acceptable solution is retained

without seeking the optimum (Downs and Stea 1973). The second model tends to be more

popular for complex decision making. Different approaches may be applied to accomplish an

acceptable solution:

• The rejection of all alternative options because of some unacceptable aspects.

• The choice of an option because some aspects are very desirable.

• A more nuanced comparison of aspects of options until one aspect clearly dominates

and leads to the choice (or the rejection) of an option.

Gärling, Böök et al. (1984) propose the process of spatial decision making to consist of

following stages:

• Retrieve information about the environment which is externally accessible or is

accessible in a cognitive map.

• Represent decision alternatives in memory.

• Evaluate the decision alternatives.

• Apply a decision strategy.

• Implement the decision.

Studies have shown that heuristics for choosing the correct way at an intersection are

influenced by configurational parameters of the spatial environment and by people’s

perspectives during navigation (Janzen, Herrmann et al. 2000). Golledge (1995) found that

decision criteria are influenced by changes in the structure of the environment. In his studies,

subjects had to decide between three given routes in several, slightly changed environments

on a map. He tested the subjects’ preferences for several criteria, such as fewest turns, longest

leg first, preference for curves, shortest route, and most scenic route. The result showed for

example that the preference to choose the shortest path criterion varied from 54% to 90%

between slightly changed environments.

Contributing Disciplines 38

People can apply such criteria only when they are either familiar with the environment

or have access to a map of the environment. For the wayfinding simulation in our case studies

we presume that the agent moves in an unknown environment and has no map. Thus, the

criteria applied in both environments are based on the agent’s simulated life experience and

utilization of affordances, and not on knowledge of the environment.

A place in the real world and in the WWW can be represented in several ways. Various

cognitive models of space (section 3.2.2) reveal that a place—at least in the real world—

includes metric, topologic, or semantic properties among others. Various properties of the

place can be used for its definition. Depending on the type of the goal definition, different

wayfinding strategies are applied (Hochmair and Raubal forthcoming). Besides the

representation of the goal, other circumstances of the wayfinding situation have an effect on

the decision criteria and wayfinding method applied, such as time restrictions (Stern and

Portugali 1999) or emotions (Trappl, Petta et al. forthcoming).

The decision making process is strongly based on the individual’s level of spatial

knowledge (Bovy and Stern 1990), i.e., the familiarity with a given environment. Thus, a

change in the relative use of knowledge components (i.e., the amount and type of information

retrieved from one’s associative memory) can be expected as a function of navigation

frequency (Stern and Portugali 1999).

3.2.5 Simulating Human Wayfinding

There exist two approaches to simulate the interaction of humans with their environment. The

first one is a behavior-based approach where autonomous robots perceive and act directly in

the real world (Brooks 1986; Brooks 1991). The goal of this approach is to generate agents

that behave intelligently, without any relation to human behavior. This approach is effective

to build robots. The other approach is a computational computer model that simulates a

human wayfinder as a cognizing agent in a simulated environment. The approach has the

advantage that it allows simulating wayfinding behavior in various (simulated) environments

and therefore is an effective tool to express the wayfinding metaphor on an abstract level. For

this reason, the simulated wayfinding model in this thesis follows this approach.

Cognitively based computational models generally simulate a wayfinder that can solve

route-planning tasks with the help of a cognitive-map-like representation. The focus of these

models is to find how spatial knowledge is stored and used, and what cognitive processes

operate upon it. The TOUR model (Kuipers 1978; Kuipers 1982) represents the first

computational theory of wayfinding. The model copes with incomplete spatial knowledge of

the environment and learning about the environment as more information is received. Several

Contributing Disciplines 39

other cognitively based computational models, such as TRAVELLER (Leiser and Zilbershatz

1989), NAVIGATOR (Gopal, Klatzky et al. 1989) or ELMER (McCalla, Reid et al. 1982),

simulate learning and problem solving in spatial networks. O’Neill (1991) designed a

biologically based model of spatial cognition and wayfinding. Using the metaphor of a

biological system, the model proposes a view of spatial cognition considering lower level,

physiological mechanisms. For a more detailed description of computational models see

(Gluck 1991).

3.3 Agent Theory

3.3.1 The Term ‘agent’

In the literature, the term agent is used as a technical concept, a metaphor, or a design model

(Nwana and Ndumu 1999). In this thesis we use the term as a conceptual paradigm to

represent the human navigator. This allows us to elaborate the wayfinding problem on a more

abstract and theoretical level, and to reduce the complexity of human navigation in the

computational model. We consider the agent-based model as conceptual framework for the

representation of the domain of interesti.e., the wayfinding process. It applies the agent

concept as a metaphor for the description of the active entities in some domain. The

conceptualization will be realized in a computational language that must be expressible and

understandable enough to allow the representation of the agent framework.

According several scientific research directions that are related to agent-theory, there

exist many definitions of an agent. Russell and Norvig (1995, p.31) define an agent as

“anything that can be viewed as perceiving its environment through sensors and acting upon

the environment through effectors”. Anything is related to the agent definition of Ferber

(1998), who proposes that physical and virtual entities can be considered as agents. Another

definition taken from Wooldridge and Jennings (1995, p.29), defines an agent as “…a

computer system that is situated in some environment, and that is capable of autonomous

action in this environment in order to meet its design objectives”. We create an agent as a

software robot that simulates people’s wayfinding behavior in the domain of the physical

world and the WWW.

An intelligent agent is capable of autonomous action in order to meet its design

objectives. Intelligent agents must operate robustly in rapidly changing, unpredictable

environments, where there is the possibility that actions can fail (Wooldridge 1999). The

intelligent agent reacts to changes in the environment, exhibits a goal-directed behavior, and

Contributing Disciplines 40

has some sort of social ability which means that it can communicate with other agents in a

multi-agent system (Weiss 1999).

There are two methods to describe the interaction between agent and environment. The

first approach models an agent as part of the environment. In such a model, any of the agent’s

actions changes the state of the environment. This includes, besides actions visible from an

external point of view, also actions in the agent’s mind, e.g., making a decision. In this case,

operations of the agent lead to changes in the environment which are represented by new

environmental states after every performed operation. Formal specifications using this

approach can be found in (Frank 1999; Bittner 2001).

The second approach separates the agent from the environment. This approach can be

applied as a simplification if none of the agent’s operations is assumed to change the state of

the environment—as it is in the case of wayfinding. Using this approach, the agent does not

act in the environment but interacts with the environment (Figure 13).

effectors

sensors

Agent

Environment
actions

perceptions

Figure 13: Agent interacts with environment through sensors and effectors

In this thesis, we use the second approach. No activities which would change the state of the

environment are performed by the agent. Examples for such excluded actions are moving an

object, blocking a road, or opening a door. The only activity that is ‘visible’ from an external

point of view during the wayfinding process is a change of the agent’s position after a step.

As the agent is not part of the environment, changes due to the agent’s wayfinding process are

reflected in the agent, and not in the environment. To avoid a confusion of terms used in the

computational model, we distinguish between environment and world. By environment we

mean the static surrounding of the agent with which the agent interacts and that can be

abstracted as a graph. The environmental surrounding and the agent together is called world.

Contributing Disciplines 41

3.3.2 Abstract Architectures of Agents

In (Wooldridge 1999) and (Russell and Norvig 1995) several abstract architectures of agents

can be found. Ordered after their complexity (starting with the simplest architecture), the

following architectures are discussed:

• Simple reflex agent

• Reflex agent with internal state

• Goal-based agent

• Utility-based agent

A simple reflex agent reacts based on condition-reaction rules. A condition rule can formally

be written as an if-then condition. In a reflex agent with internal state, the current percept is

combined with the old internal state to generate the updated internal state. A goal-based agent

has—in addition to knowledge of the current state of the environment—some sort of goal

information describing situations that are desirable. The architecture of the utility-based agent

comprises an agent’s goal and state. Whereas a goal-based agent only makes a rough

distinction between ‘happy’ and ‘unhappy’ for decision alternatives, the utility-based agent

uses a utility function that allows ordering decision alternatives for their utility. A utility

function maps a state onto a real number, which describes the associated degree of happiness.

In our simulation, the utility function does the following: If a decision node offers several

signs that lead to the goal, a utility function makes the agent order the alternatives according

to their utility and then choose the most preferable one.

A utility function allows coping with situations of conflicting goals where both goals

cannot be achieved to the same extent. Problems, in which outcomes are characterized by two

or more decision criteria that are evaluated at the same time, are solved by a multiattribute

utility function (Russell and Norvig 1995). For example, siting a new airport requires

consideration of the disruption caused by construction, the cost of land, the distance from

centers of population, the noise of flight operations and so on.

Decision criteria can be classified into goal-related decision criteria and agent’s

preferences. The first ones represent parameters in a utility function which are represented as

values depending on the decision situation. Preferences, on the other hand, are applied if no

unique decision can be made based on the goal related decision criteria. As preferences are

not related to the definition of the goal, they do not necessarily lead to a better decision.

Including preferences in the decision model has the advantage that the decision behavior—

compared to a random decision—can be predicted more precisely. As the simulated

environments of the case studies are discrete, preferences come to application in several

Contributing Disciplines 42

decision situations. An open question remains, namely, how often such an undecided situation

that requires preferences appears in the real, continuous world. Summarizing, we can classify

decision making into:

(1) multiattribute decision (Russell and Norvig 1995)

(2) Two-step decision with a sequential use of criteria

Case (1) describes a situation where one or more criteria are simultaneously applied to drive a

single decision that leads to a unique result (Figure 14a). The second case also uses goal-

independent preferences if step (1) does not lead to a unique result (Figure 14b).

j

action

topologic criterion
semantic criterion
metric criterion
…

result

(a)

 topologic criterion
semantic criterion
metric criterion
…

preferences action
result 1

result n

result

(b)

Figure 14: Principles of multiattribute decision (a) and 2-step decision (b) (Hochmair and Raubal
forthcoming)

3.3.3 A Two-tiered Conceptual Model

Centuries ago, Immanuel Kant (1781) discussed the principle of epistemological dualism.

Kant reasoned that we cannot actually experience the world itself as it is, but only get an

internal perceptual replica of the world. Therefore two worlds of reality exist: the nouminal

and the phenomenal world. The nouminal world is the objective external world, which is the

source of the light that stimulates the retina. The phenomenal world is the internal perceptual

world of conscious experience, which is a copy of the external world of objective reality

constructed in our brain on the basis of the image received from the retina. Therefore the

world we experience as external to our bodies is not actually the world itself, but only an

internal virtual reality replica of that world generated by perceptual processes within our head.

This distinction of objective world and internal perceptual world is used in the AI

tradition, where the term belief stresses the potential differences between reality and the

agent’s possibly erroneous beliefs about reality (Davis 1990). We use a two-tiered reality and

beliefs computational model (Frank 2000) for both types of agent. The simulation separates

the representations of the environment and the agent, and the agent’s knowledge about

himself and the environment. Each physical object in an environment can be described by

perceptible properties, such as size, weight or color. Agents are objects and therefore have

perceptible properties. In addition to non-living objects, an agent has beliefs about the world

and himself. For example, an agent may believe that he has a certain weight or color (of

which the values in the beliefs can be false).

Contributing Disciplines 43

To get a clear distinction between fact and beliefs in the agent’s structure, we switch to

an external perspective of the situation: We consider those parts of an agent as facts which are

accessible from an external perspective. Those parts which are not accessible and perceptible

from an external view, and therefore can be accessed by the agent only, are considered as

beliefs. If the agent perceives facts of an object, the percepts are mapped to beliefs, and due to

errors in cognition potentially distorted. Thus, fact and beliefs can be distinguished through

their mode of access.

3.3.4 The Sense-Plan-Act Paradigm

A dominant view in the AI community concerning reactive architectures in the 1980s was a

decomposition of an agent’s control system into three functional elements: a sensing system, a

planning system, and an execution system (Nilsson 1980). In the Sense-Plan-Act (SPA)

approach, the flow of information among the components is unidirectional and linear (Figure

15). Information flows from sensors to the computing unit which plans the actions of the

effectors.

Figure 15: Basic operations of an agent system, following the Sense-Plan-Act-approach

A major disadvantage of the classic Sense-Plan-Act architecture is the time-consuming

planningwhich is not relevant for the topics of this thesis. Within the planning, the world

may change in a way that invalidates the resulting plan. This disadvantage does not play a role

in artificial environments, as they are deterministic, discrete and static.

3.3.5 Basic Operations of an Agent-System

3.3.5.1 External and Internal Operations

In this thesis, we follow the Sense-Plan-Act paradigm, i.e., the activity process of an agent

can be divided into three components: perception, decision making, and action. All the

simulated operations of the agent fall into one of two categories—external and internal

operations (Table 5).

Contributing Disciplines 44

External Operations Simulation

Perceive add list of signposts into agent’s state

Act Change agent’s position to next node

Internal Operations

Decide filter percepts after semantic criteria and apply
metric criterion to get unique decision

Table 5: Basic external and internal activities as part of the Sense-Plan-Act approach in the agent
simulation

The performance of external operations directly involves the agent’s environment. We divide

them into perception operations and action operations. The agent performs perception

operations to receive input from the environment. In our simulation, this is done by means of

simulated visual perception. Perception must not be mixed with cognition although these two

processes are both components of information processing: Whereas perception is the process

of obtaining information from the environment through senses, cognition means

understanding of information. Thus, cognizing is part of the internal actions and connected to

the perception.

Action operations execute decisions, i.e., the decisions have to be transformed into

behavior (Arthur and Passini 1992). The important thing is that each decision must be

transformed into the right activity at the right place. An action is characterized by two parts:

• an activity (behavior), such as turning or moving

• an environmental entity

To perform an action, the agent matches a mental image of something in the environment

with what it perceives in the environment. If the corresponding part in the environment, e.g.

sign, intersection, or landmark, is found, the action can be performed. As each step in

wayfinding is connected to one single place in the environment, wayfinding actions are

unique and ordered (see section 5.1.5).

Internal operations are performed on the agent’s beliefs inside its mind and may in

addition require specific information gained through perception. They do not have an

immediate effect on the environment but change the state of the agent. Internal operations

lead to decisions and subsequent external operations. The most important internal action in

our conceptual model is the decision making process. Other internal actions include the

extraction of semantic information from percepts, matching information with the predefined

goal, updating the mental position after a step, or getting the mental goal from the cognitive

map. Although human processing of information from perception through an assembly of

neurons is a continued and parallel activity, we model discrete agent’s activities in our

Contributing Disciplines 45

simulation. We take this approach as the axioms are invariant under discrete or continuous

activities and thus discrete, sequential activities can be modeled in a discrete environment.

3.3.5.2 Abstraction of External and Internal Operations

The function perceive represents the perception process of the agent. It maps the environment

(E) to the percepts (P), which are part of the agent’s beliefs about the environment.

perceive : E -> P

The realization of the decision function that represents the decision making process of the

agent depends on the selected agent architecture. We distinguish between decision making of

purely reactive agents and agents with internal state. A purely reactive agent directly maps

input to output, i.e., percepts to actions (A). The decision function can be written as

decision : P -> A

Wooldridge (1999) gives a thermostat as an example for a purely reactive agent. If we assume

that the thermostat’s environment can be in one of two stateseither temperature OK, or

temperature too coldthe thermostat’s decision function has the following form (a state ‘too

hot’ is not modeled in the example):

decision T

 if T == OK = heater OFF

 if otherwise = heater ON

An agent with internal state (I) accesses his knowledge combined with his percepts to make a

decision:

decision : P x I -> A

As a substep, an additional function next is applied, which maps internal state and percept to a

new internal state.

next : I x P -> I

The action function requires two arguments for the input: the decision of the internal state,

and the environment with that the agent interacts. The function results in an action of the

agent. The environment is needed as part of the input, as a decision is related to a place.

action : I -> E -> A

3.3.6 Properties of an Environment

Russell and Norvig (1995) distinguish between artificial and real environments. Artificial

environments have different properties than real environments and require different kinds of

agents with different sensors and effectors. As real environments are too complex to be

Contributing Disciplines 46

exactly represented in a computational model, and as wayfinding environments in the real

world have a high degree of complexity (Raubal and Egenhofer 1998) one needs to apply

mechanisms of abstraction.

Agents have to be coupled with an environment with which they interact. Different

types of environments affect the design of agents. Normally, an agent has a repertoire of

actions available to it, which describes the agent’s ability to modify its environment

(effectoric capability). Actions have pre-conditions associated with them, which define the

possible situations and environments in which the actions can be applied. For example, the

action to ‘lift the table’ is only applicable in situations where the weight of the table is small

enough so that the table can be lifted by the agent.

The complexity of the decision making process can be affected by a number of different

environmental properties. Russell and Norvig (1995) distinguish environments after following

properties:

• Accessible vs. inaccessible

In an accessible environment, the agent can obtain complete, up-to-date information

about the environment’s state. An environment is effectively accessible if the sensors

detect all aspects that are relevant to the choice of action.

• Deterministic vs. non-deterministic

An environment is deterministic if the next state of the environment is completely

determined by the current state and the actions selected by the agents. The physical

world can for all intents and purposes be regarded as non-deterministic.

• Episodic vs. non-episodic

An environment is episodic if the result of an action depends only on the current

perception-action cycle of an agent, i.e., an agent’s action does not affect subsequent

perception-action cycles.

• Static vs. dynamic

If the environment can change while an agent is deliberating, the environment is

dynamic for that agent, otherwise it is static. If the environment does not change with

the passage of time but the agent’s performance score does, the environment is called

semidynamic.

• Discrete vs. continuous

An environment is discrete if there are a fixed, finite numbers of actions and percepts

in it. A chess game is an example of a discrete environment, whereas taxi driving is

an example of a continuous one.

Contributing Disciplines 47

In our computational model, the environment is inaccessible to the agent as the agent can only

obtain the information from the environment that it perceives at each decision point (and not

the complete state of the environment). The world (i.e., the system of agent, environment, and

time) is episodic, as an agent’s decision does not affect future steps. We make following

simplifications for the computational model:

• The environment (i.e., the world in our terminology) is deterministic: The next state

of the agent is completely determined by the current agent’s state. As learning is

excluded in the agent’s computational model, the simulated agent would redo the

same action in the same decision situation.

• The environment is static. First, actions of the agent are not reflected in a change of

the environmental state but in the agent’s state (section 3.3.1), and second, we

assume that no external impact changes the structure of the environment for the

duration of the wayfinding process.

• As the agent can visit a limited number of nodes and perceive a limited number of

objects, the abstract environment is discrete.

3.4 Summary

In this chapter we introduced various theories and methods that are helpful for understanding

the basic features of the wayfinding metaphor, and that are part of our modeling concept of

wayfinding. We discussed structures and classifications of metaphors found in the literature

and saw that the role of metaphors in human everyday-life has changed over the years, i.e.,

that metaphoric imagination can create new unified wholes within human experience. Further

we looked at formal models that describe the process of mapping semantics between two

domains within a metaphor.

In the next sub section various wayfinding definitions were presented to help establish a

possible central meaning for wayfinding. We looked at spatial mental models and saw a

variety of features of the real world they focus on. In the field of decision making theories we

showed some classifications of sub-processes of decision making and pointed out relevant

factors that play a role in the human decision behavior. Further we described which

affordances provided by the environment are integrated in the model of the wayfinding

process in airport environments and the WWW. We gave an overview of simplifications for

abstract environments.

We discussed features of agent theory that are required to develop the agent-based

wayfinding model. The formalized agent is utility-based, has a state, and is separated from the

Contributing Disciplines 48

environment. Facts and beliefs are separate in the agent’s structure. The agent’s operations

follow the Sense-Plan-Act paradigm and can be divided into internal and external operations.

Formal Tools 49

 FORMAL TOOLS
CHAPTER

4

Within the formalized wayfinding model developed in this thesis we describe the mapping of

semantics on an abstract level. Source and target domain hereby are formalized through

algebraic specifications. The mapping process between these domains involves formal tools

and theories (such as morphism, categories, polymorphism) to be discussed within this

chapter. We describe the essential features of functional programming languages and show

their advantages (for our task) compared to other programming languages. We further

introduce the class structure of the functional programming language Haskell. The class

structure describing mappings between domains. Graph theory is needed for the conversion of

real, continuous environments into discrete, abstract environments of the formalized

wayfinding model.

4.1 Algebraic Specifications

Our formal approach to describe the semantics of wayfinding in the real world and the WWW

is based on algebraic specifications. Algebraic specifications describe an abstract class of

objects and their behavior. Strictly speaking, algebraic specifications are language

independent, but they require a formal language which is capable of expressing algebraic style

specifications. The purpose of a formal specification is to formally describe the behavior of

objects. Algebraic specifications were introduced to describe data abstractions in software

design (Guttag, Horowitz et al. 1978). We use algebraic specifications to show that the

behavior of data types—denoting objects in the real and WWW environment—satisfy a

number of wayfinding axioms, so that this behavior can be called wayfinding in the

computational model.

4.1.1 Definition

An algebra is a description of a set of connected operations that are applied to a set of types.

This is the generalized definition of algebra, introduced as universal algebra (Birkhoff 1945).

An algebraic specification consists of three parts (Ehrich, Gogolla et al. 1989):

• a set S of sorts, naming the object classes

• a set O of operations with their argument and result sorts

Formal Tools 50

• a set E of axioms defining the behavior of these operations

An algebraic specification D is defined by the triple (S,O,E), which represents an algebraic

structure. The set of sorts of the participating data and the set of operations declared on the

sorts is called the signature of an algebraic specification, Σ = (S, O).

A sort is a collection of objects of a particular type. If the set S contains sorts of only

one type, we talk about single-sorted algebra, whereas a multi-sorted algebra includes sorts of

different types.

The set O contains operations that are applicable to the sorts of S. Operations can be

separated in constructors and observers (Liskov and Guttag 1986). Constructors are the

operations that are used to define all possible states of the sort of the algebra. Their result is an

object of the defined sort. Observers are operations to describe the functional behavior of the

sort. They take objects from the primary carrier and relate them to other carriers. Their result

is an object of another sort. A minimal set of operations that are sufficient to generate all

values of a sort is a set of basic constructors, a minimal set of operations to retrieve these

values as a set of basic observers.

Axioms can be thought of as a set of rules that describe the properties (behavior) of the

operations. Axioms restrict the behavior of operations that are given through a signature. An

axiom states that an operation can be reduced or rewritten as other operations while

preserving its meaning. If a formal language is used to describe the axioms, the existence of a

definition for operations and the consistent use of types can be checked.

Functional programming languages and algebraic specifications use a similar syntax

and have similar mathematical foundations.

4.1.2 Example

We specify a stack of natural numbers. The notation is copied from Ehrich, Gogolla et al.

(1989). After the keyword Algebra the name of the algebra is found. The keyword Sorts is

followed by types and type parameters. In the algebra, the operations and constants are listed

after the keyword Ops (operations). For an operation, the name of the operation, followed by

‘::’, and the list of argument types and the return type is given. Constants are expressed

through one type in the signature only. After the keyword Eqs (‘equations’) the axioms

describing the behavior of the operations are listed.

As an example, a stack is a storage device where items are stored by the operation push.

As the stack implements the ‘last in, first out’ principle, the operation top returns the topmost

element. Access to lower items is only possible by first removing one by one the items above

Formal Tools 51

the item to be accessed which is done by the operation pop. The operation empty creates an

empty stack (Figure 16).

Algebra Stack

Sorts Stack, Nat

Ops empty :: Stack -- constructor

 zero :: Nat -- constructor

 push :: Nat -> Stack -> Stack -- constructor

 pop :: Stack -> Stack -- observer

 top :: Stack -> Nat -- observer

Eqs top(push n s) = n -- a1

 pop(push n s) = s -- a2

 top(empty) = zero -- a3

 pop(empty) = empty -- a4

push

pop

top

stack of a

 empty

stack of a

Figure 16: Functions of a stack

According to the formal notion in section 4.1.1, the given example defines an algebraic

specification D = (S, O, E), where S = {Stack, Nat}, O = {empty, zero, push, pop, top}, and E

= {a1, a2, a3, a4}. The behavior of the included operations is fully explained by the axioms

a1, a2, a3, and a4.

4.2 Morphisms

Morphisms are structure preserving mappings of objects and operations from a source domain

to a target domain. They are considered as basic concepts for metaphors (Fauconnier and

Turner 1998; Goguen 1999). Metaphors are partial mappings between domains, where only a

set of relevant operations on objects is maintained, and other operations are ‘lost’ in the

mapping process or change their semantics. The mapped operations and functions that

preserve their meaning are homomorph to the corresponding functions in the source domain.

When abstracting the domain to an abstract level algebraically, morphisms describe the

mapping between two algebras. Formalizing a domain as an algebra of operations (category),

the forgetting of operations during the mapping process between categories is described by

the concept of a forgetful functor (see section 4.4.2). Modeling the wayfinding process within

a constructive programming language, we can show that the structure of the domains is

preserved (through polymorphic functions and data types).

Formal Tools 52

Morphisms can be graded after their strength, i.e., how similar the mapped objects and

operations are to their corresponding counterparts in the source domain:

• signature morphism

• homomorphism

• isomorphism

The weakest kind of similarity is a signature-morphism which is a correspondence between

the signatures defining two algebras (Ehrich, Gogolla et al. 1989). A stronger kind is the

homomorphism which is a family of mappings from the sets of domain A to those of domain

B preserving the semantics of operations. If the domains are categories, the homomorphism is

provided by functors (see section 4.4.2). The isomorphism is a bijective homomorphism that

allows a mapping in both directions without loss of information.

The concept of morphism is used to model blending of conceptual spaces (Fauconnier

and Turner 1998), and to define similarities between the world and the cognitive model of the

world within user interface theory and semiotic morphisms (Goguen 2001). Technical

developments within category theory (MacLane 1971) have spurred further and deeper uses

of morphisms within mathematics, and more recently in applied fields like computer science

(Goguen 1999).

4.2.1 Signature-Morphism

A signature morphism is a structure-preserving mapping from a signature to another. Be Σ1 =

{S1, O1} and Σ2 = {S2, O2} signatures. A signature morphism f: Σ1 -> Σ2 consists of two

mappings:

(1) a mapping of the sorts: g: S1 -> S2, where s2,1 = g(s1,1); s2,2 = g(s1,2),…

(2) a mapping of operations signatures: h: O1 -> O2, where o1: t1 x t2 … tn -> s is mapped

to a signature f(o1): f(t1) x f(t2) … f(tn) -> f(s).

As an example from Ehrich, Gogolla et al. (1989) we take the functions push (in the algebra

Natstack) and in (in the algebra Natqueue). The operations are not semantically related one to

each other except for the structure of the signatures.

Algebra Natstack

Sorts Nat, Stack

Ops push : Nat -> Stack -> Stack

Formal Tools 53

Algebra Natqueue

Sorts Nat, Queue

Ops in : Nat -> Queue -> Queue

The signature of the operation push can be mapped to the signature of the operations in via the

mappings

push -> in

Stack -> Queue

Signature morphisms can be applied to the signature of functions only. What they say about

the semantics of the compared functions is that they have an equally structured data input, not

more.

4.2.2 Homomorphism

A homomorphism h from an algebra A to an algebra B is a family of mappings {h1, h2, …hn}

from the set of objects SA in domain A onto the set of objects SB in domain B, where the

behavior of the operations is preserved. This can be written as

BAh →:

))(())((
−−

=− afhahf as
S

b

where))(),...(()(11 nsns
S

ahahah =
−

− , −
S = s1,…sn and

−

a = (a1,…an).

The concept of homomorphism can be visualized in a commutativity diagram (Figure 17).

Figure 17: Homomorphism diagram

Thus, when operations in one domain are performed and their results are mapped to another

domain, the results are the same as when the arguments are mapped first to the second domain

and then subjected to the corresponding operation in the second domain. The important point

here is that the semantics of the operations must be preserved within the mapping process. If

the morphism has an inverse, we talk about an isomorphism (section 4.2.3).

Formal Tools 54

Horebeek and Lewi (1989) give an example for a homomorphism between two

domains. The NAT domain consists of the set of natural numbers including zero {0, 1, 2,

3,…}, the zero function (creates a 0-value), and the successor function (increases the input by

1). The MOD2-algebra consists of the set of numbers modulo 2 {0,1}, the zero function, and

the addition-modulo-2 function, denoted by add2. Axioms about the behavior of the zero

function and the succ function are skipped here.

Algebra NaturalNumbers

Sorts Nat

Ops zero :: -> Nat

 succ :: Nat -> Nat

Algebra Modulo2

Sorts Nat

Ops zero :: -> Nat

 add2 :: Nat -> Nat

We look at the mapping of objects and operations between the two domains (see Figure 18):

• The mapping of natural numbers to numbers mod2 is the following: 0 and even

numbers are mapped to 0MOD2, and uneven numbers are mapped to 1MOD2.

• The zero function can be mapped: m(zeroNAT) = f(0) = 0MOD2 = zeroMOD2

• The successor function can be mapped: m((succ)(2n)) = (add2(m(2n)) and

m((succ)(2n+1)) = (add2(m (2n+1))

Figure 18: Homomorphism between natural numbers and numbers modulo 2 (after Horebeek and Lewi
1989)

Formal Tools 55

In this example, no homomorphism exists from MOD2 to NAT as the mapping from the

natural numbers to the numbers mod2 has no inverse: A unique mapping of objects from

0MOD2 and 1MOD2 to {0, 1, 2, 3, …} is not possible. Therefore, the homomorphism from NAT

to MOD2 is not an isomorphism, i.e., it is irreversible.

The concept of homomorphism is not restricted to mathematical domains and computer

science. There is a long tradition to compare two domains in respect to the semantics of the

included functions. As an example from the past consider Ludwig Wittgenstein’s picture

theory. When he talks of pictures, Wittgenstein seems to have in mind pictures of the kind we

would normally describe as ‘pictures’, but he seems to think that the basic logic of depiction

applies to a much wider class of things than we would ordinarily count as pictures (Cashell

1998). Wittgenstein claims that for a picture to represent something which is actually the case,

• the elements of the picture must be correlated with elements in the situation which

the picture represents, and

• they must be related to each other in the picture just as the elements of reality are

related to one another.

4.2.3 Isomorphism

An isomorphism is a morphism h : A->B, for which exists an inverse morphism g : B -> A, so

that gh = idA and hg = idB. The domains A and B are then called isomorphic.

A common example for an isomorphism is the logarithm function. Similar to the given

example with numbers modulo2 in section 4.2.2, it maps one domain of numbers and its

functions onto another: The first domain (A) contains positive real numbers with

multiplication and division to real numbers, the second domain (B) are real numbers with

addition and subtraction. The multiplication and division operators (left side in Figure 19) are

preserved as addition and subtraction (right side in Figure 19) through a mapping of

multiplication (division) to the addition (subtraction) of powers to their base. An inverse

mapping from the objects of B to A is possible using the inverse logarithm function.

Therefore, the logarithm function is an isomorphism.

vu
v
u

vuvu

aaa

aaa

loglog)(log

loglog)(log

−=

+=⋅

Figure 19: Logarithm: an isomorphic function

Formal Tools 56

4.2.4 Morphisms in Formalized Metaphors

Kuhn and Frank (1991) and Kuhn (1997) choose an algebraic approach for metaphorical

mapping. The domains of a metaphor are abstracted as algebras in which the axioms define

the behavior of objects and operations. The metaphorical mappings correspond to mappings

between algebras which preserve the structure and the semantics of operations, i.e.,

homomorphism and isomorphism. Discussing the DESKTOP metaphor—a metaphor that is

often used to organize graphical computer interfaces (e.g., Windows or Mac OS)—with the

help of algebraic mappings, the authors show that (abstract) operations from the physical

domain can be mapped to corresponding (abstract) operations in the electronic space.

Depending on the amount of semantics preserved during the mapping process, the metaphor

can be graded. As examples we give two formalized metaphors found in (Kuhn and Frank

1991) that represent a different grade of truth.

4.2.4.1 Metaphor with Algebraic Isomorphism

Metaphors can be graded, depending on their grade of truth (compare MacCormac 1985). The

first metaphor printed here, is true in the sense of semantics of operations, i.e., representing an

isomorphism. In its abstraction, a desktop-domain consists of the objects Desktop, Folder, and

Bool (Kuhn and Frank 1991). It contains operators to create a new desktop (new), put a folder

on a desktop (put), get a folder from a desktop (get), and check, whether a folder is on the

desktop (on). In the axioms, the variables (dt for desktops, f for folders) are used for the

corresponding sort.

Desktop

Sorts Desktop, Folder, Bool

Ops new: -> Desktop

 put: Desktop x Folder -> Desktop

 get: Desktop x Folder -> Desktop

 on: Desktop x Folder -> Bool

Eqs on(new,f) = false

 on(put(dt,f1),f2) = if f1 == f2 then true

 else on(dt,f2)

 get(put(dt,f1),f2) = if f1 == f2 then dt

 else put(get(dt,f2),f1)

Kuhn and Frank show that the desktop in the electronic space can be specified in an identical

way (except for different sort and variable names). This means, that electronic desktops

behave like real desktops with respect to the operations defined. In this example, four

Formal Tools 57

operations were considered to be salient and therefore included in the algebra. By including

additional operators, dissimilarities could be shown, such as the fact that things fall from

physical but not from electronic desktops. The designer has to decide which features of the

source domain are relevant and which are not. This process of filtering functions can be

described as a forgetful functor (see section 4.4.2). As the effects of the specified operators on

office desktops correspond to the effects of the analogous operators on electronic desktops,

and vice versa, the mapping between the two domains is an isomorphism.

4.2.4.2 Metaphor with Signature-morphism

In the following algebraic example, the signatures between the two algebras are the same, but

the effects of some operations are different. Thus, the morphism between the algebras is a

weaker one than in the previously given example. Kuhn and Frank (1991) compare the

operations of real and electronic clipboards.

At the physical desktop, clips can be added to (put) and removed from the top (get), and

it can be checked if a clip is on the board (on). The signature of operations is similar to the

specification of desktops in the previous example, whereas the semantics of the operations is

different.

Clipboard

Sorts Board, Clip, Bool

Ops new: -> Board

 put: Board x Clip -> Board

 get: Board -> Board

 on: Board x Clip -> Bool

Eqs on(new,c) = false

 on(put(b,c1),c2) = if c1 == c2 then true

 else on(b,c2)

 get(put(b,c)) = b

Next, the electronic variety of clipboards, as provided by the Macintosh, is specified:

ElClipboard

Sorts ElBoard, ElClip, Bool

Ops new: -> ElBoard

 put: ElBoard x ElClip -> ElBoard

 get: ElBoard -> ElBoard

 on: ElBoard x ElClip -> Bool

Eqs on(new,elc) = false

Formal Tools 58

 on(put(elb,elc1),elc2) = if elc1 == elc2 then true

 else false

 get(put(elb,elc)) = put(elb,elc)

The underlined code indicates the two differences between physical and electronic clipboards:

• On a real board, several clips can be put on. Contrary, a clip remains on the

electronic clipboard only until the next clip is put on (this has not been true since the

use of multi-clipboards in operating systems).

(a) (b)

Figure 20: Different semantics of putting a clip on a real (a) and an electronic (b) clipboard

• A clip can be taken from a physical clipboard only once. In distinction, getting back

a clip does not change the electronic clipboard, and the same clip can be retrieved

several times.

(a) (b)

Figure 21: Different semantics of getting a clip from a real (a) and an electronic (b) clipboard

As signatures of operations are equal in both algebras, but the axioms show differences, the

mapping from physical to electronic clipboards is a signature-morphism, and not a

homomorphism. This statement could be refined if using an object-oriented notation of the

algebra, i.e., using several classes. Then, one could distinguish between generic operations

(section 4.7.4) and operations that are different in their instantiation.

The presented examples are simple in the respect that the source domains, i.e. desktop

and clipboard in the real world, are compared with target domains of exactly the same

algebraic structure (target and source domain have the same number of data types, and

axioms). Thus, we can check the two algebras of the examples for isomorphism through line-

by-line comparison.

Comparing two domains for similarity gets more complex if two abstract domains

containing a different number of classes are involved. Demonstrating the similarity of source

and target domain is then not possible through line-by-line comparison. We show a possible

approach for this task when checking two domains for satisfying a set of wayfinding axioms.

Formal Tools 59

4.3 Morphisms in the Wayfinding Model

In the computational model, the agent constructs simulated beliefs through simulated percepts

of world states. The simulated beliefs may contain errors (similar to beliefs of a living human

that may contain errors). Accordingly, a human’s action in the environment is mapped to a

simulated action (act’) which is the execution of a simulated decision (decide’). The

environment is represented as a graph. The simulation contains objects and operations that are

mapped from the real world to abstract domains, which then are formally compared.

Table 6 lists some of the features and operations we consider to be relevant for a

simulated wayfinding process (i.e., which are mapped to the abstract domains). The sub

components of objects (e.g., the agent’s preferences) and sub-processes of operations (e.g.,

matching of perceived information with the goal definition) are not listed in the table.

Reality Simulation

Physical environment or WWW Graph

Person Agent

Belief Simulated belief (belief’)

Percept Simulated percept (perceive’)

Decide Simulated decision (decide’)

Action Simulation action (action’)

Table 6: Mapping features and operations from the physical world and the Web to the simulated model

We assume that the effects of human activities correspond to the effects of the simulated

activities in the abstract computer model. Taking this into account, the mapping from the real

world domain (including human behavior in the WWW space) to the abstract domains are

assumed to be homomorphic.

Figure 22 visualizes these mappings (labeled h and g) from the real world domain and

the WWW domain to their counterparts in the computational model. These homomorphisms

are independent of any wayfinding axioms. They informally expresses that objects and

activities can be mapped from the source domains (i.e., airport and WWW in our simulation)

to the abstract domains. Several properties of involved functions from the real world are

assumed to be maintained in the abstract models. They are expressed through axioms (section

5). Depending on the class levels observed, the morphisms m1 and m2 between the

instantiations are either inverse or not. The partiality and totality of morphisms and operations

in the formal model is discussed in section 8.2.

Formal Tools 60

Figure 22: Mapping of objects and operations from the real world and the WWW to the abstract
domains

4.4 Category Theory

In this section we introduce mathematical category theory (Eilenberg and Lane 1945) which

is the algebra of functions. It is not related to the category theory of cognitive science where

classes are formed by similar objects (e.g., Rosch and Mervis 1975; Rosch 1978).

Mathematical category theory deals with categories that consist of functions of some

domains. One of its goals is to reveal the universal properties of structures of a given kind via

their relationships with one another. Any immediate access to the internal structure of objects

is prevented, and all properties of the objects must be specified by properties of morphisms.

Instead of discussing the properties of individual objects, category theory focuses on the

properties of the operations. Thus, properties of operations are described without reference to

the objects the functions are applied to.

Category theory provides a uniform treatment of the notion of structure. This can be

seen by considering the variety of examples of categories. The classical example is Set with

sets as objects and functions as morphisms. Metric spaces form a category whose primitive

elements are points and whose primitive operation is distance. The algebra of rings represents

a category with rings as objects and ring homomorphisms as morphisms. Category theory is

popular among algebraic topologists as it helps to assign algebraic invariants to topological

structures. Thanks to its general nature, the language of category theory enables one to

‘transport’ problems from one area of mathematics, via suitable functors, to another area,

where the solution may be easier to find. Invariants are of interest when discussing metaphors,

as they are independent of any implementation and preserve functional axioms in different

domains.

4.4.1 Definition

The following definition is taken from Bird and de Moor (1997) and Baez (1999):

Formal Tools 61

A category C is an algebraic structure with a set of objects (A, B, C,…) and a set of

morphisms (f, g, h,…) together with three total operations and one partial operation.

The first two total operations are called source and target. Both assign an object to a

morphism. f: A →B indicates that the source of the morphism f is A and the target is B.

The third total operation takes an object A to a morphism id: A→A, called the identity

on A.

The partial operation is called composition. It combines two morphisms into another

one. The composition g.f (pronounce “g after f”) is defined if and only if f: A→B and g:

B →C for some objects A, B, C, in which case g.f: A →C. Composition needs

• to be associative, i.e., f.(g.h) = (f.g).h, and

• to have identity morphisms as units, i.e., idA.f = f = f.idB

A preordered set is an example of a category. Given two set elements p,q of the preordered

set, there is a morphism f: p →q iff p is less than or equal to q. Thus, a preordered set is a

category in which there is at most one morphism between any two objects.

Another example is the set of integer numbers with the operations inc (increases a

number) and dec (decreases a number). Function composition of inc and dec gives the null-

operations and therefore describes both morphisms as inverse to each other.

inc . dec = id

dec . inc = id

4.4.2 Functors

Abstractly defined, a functor is a homomorphism between categories. Given two categories C

and D, a functor F: C →D consists of two mappings:

• mapping of objects to objects

• mapping of morphisms to morphisms

The two component mappings of a functor F are required to satisfy the property

Ff: FC → FD whenever f: C →D

A functor is required to take identity morphisms to identities and composites to composites

(called functor laws):

F(idA)=idFA and F(g.f)=Fg.Ff

the latter condition holding whenever the composite morphism g.f is defined. For morphisms

f: C →D and g: D →E, these conditions may be visualized by commutative diagrams:

Formal Tools 62

Figure 23: Composition and identity preserved by functor

Bird and de Moor (1997) give some examples for functors: identity functor, constant functor,

squaring functor, product functor or the list functor.

A forgetful functor ‘forgets’ some or all of the underlying structure of an algebraic

object. For example, the functor U: Ring →Abelian assigns to each ring R (e.g., Z;+;.) the

additive Abelian group of R (i.e., Z;+) and to each morphism f:R →R´ of rings the same

function f, regarded just as a morphism of addition. The multiplicative structure of the rings is

‘forgotten’.

The idea of ‘forgetting’ operations between categories can be mapped to the concept of

metaphor: Using a metaphor, not all operations from the source domain will be represented in

the target domain. The forgetful functor keeps those invariant operations in the mapping

process that are considered as important features of the source. The rest may be forgotten by

the operator. We apply the concept of a forgetful functor when we define the wayfinding

axioms and deliberately consider few operations in the real world to be essential parts of

wayfinding (and worth being included in the computational model). Identity operation and

function composition are assumed to be preserved in the computational model for both

instances (Figure 24).

Figure 24: Forgetful functor: Abstracting wayfinding through a number of axioms

The ‘forgetfulness’ of the forgetful functors in the figure cannot be formalized in a

computational model, as the input of the original category, i.e., wayfinding in the real world,

is not completely accessible due to its complexity. What we do in the formal model, is to

Formal Tools 63

express a number of activities through parameterized operations that are instantiated with

certain data types. Functors play a role in the definition of data types through constructor

functions. This topic is discussed in section 4.5.5.

4.5 Type Systems and Polymorphism

4.5.1 Why Do We Need Type Systems?

Programming languages use data types to partition the untyped universe of values into

organized collections. The purpose of a type system is to prevent the occurrence of execution

errors during the running of a program (Cardelli 1997). In this thesis, we use type systems to

demonstrate the concepts of polymorphism and homomorphism within the class system of the

formalized wayfinding model.

We begin with the definition of an untyped universe. Untyped means that there is only

one type in the universe. For example, in a computer memory, a bit string of fixed size is

represented by the only type, called word. When looking at a piece of raw memory there is no

way of telling what is being represented. Another example is the λ-calculus, where everything

is a function. Yet there is only one type, i.e., the type of functions from values to values,

where values are themselves functions.

Types arise informally in any domain to categorize objects according to their usage and

behavior (Cardelli and Wegner 1985). In programming and mathematics, types impose

constraints which help to enforce correctness. A type protects its underlying untyped

representation from arbitrary and unintended use. Objects of a given type have a

representation that respects the expected properties of the data type. The representation is

chosen to make it easy to perform expected operations on data objects. Type systems cannot

prevent execution errors, such as divide by zero and dereferencing nil.

4.5.2 Type Inference and Strong Typing

In a programming language, types are associated with constants, operators, variables, and

function symbols. With the help of a type inference mechanism, types of expressions can be

inferred, when little or no type information is given explicitly (Cardelli and Wegner 1985).

That means that if some predefined types are given, the inference mechanism can logically

deduce types of expressions that include the predefined types. Thus, a programmer is not

forced to explicitly assign a type to each expression as it can be inferred. Type inference has a

long tradition in functional programming languages (e.g., Milner 1978).

Formal Tools 64

For explicitly typed languages, types are part of the syntax, where for implicitly typed

ones it is not. No mainstream language is purely implicitly typed, but languages such as ML

or Haskell support writing program parts where type information is omitted. The type

inference mechanism of those languages automatically assigns types to such program

fragments.

Languages in which all expressions are type-consistent are called strongly typed

languages. This is typical for most functional programming languages, such as Miranda, ML,

and Haskell. For strongly-typed languages, the compilers can guarantee that the programs it

accepts will execute without type errors. Run-time tags or type checking are not required,

since type checking occurs at compile-time (Goldberg 1991). All statically typed languages

(e.g., Pascal or C), i.e., languages in which the type of every expression can be determined by

static program analysis, are strongly typed, the converse is not necessarily true.

Weakly typed languages, e.g., BASIC, JavaScript, and Perl, enforce type rules with

well-defined exceptions or an explicit type-violation mechanism. They are much more

flexible about the data stored in the variables. Weak typing catches fewer errors at compile

time than strong typing does.

4.5.3 Polymorphism

In polymorphic languages, values and variables may have more than one type. A polymorphic

function is a function that can be applied to arguments of different types. Polymorphic types

are types whose operations are applicable to values of more than one type. In contrast to

polymorphic languages, monomorphic languages, such as Pascal, are based on the idea that

functions and procedures, and hence their operands, have a unique type. Every variable can be

interpreted to be of one and only one type.

Universal polymorphism can be classified into parametric polymorphism and inclusion

polymorphism. Universally polymorphic functions work on an infinite number of types (all

the types must have a given common structure). Parametric polymorphism is the purest form

of polymorphism as the same object or function can be used uniformly in different type

contexts without changes (Cardelli and Wegner 1985). An example of a function that exhibits

parametric polymorphism is the length function (length :: [a] -> Int). This function calculates

the length from a list of elements of arbitrary types ([a]), thus does its work independently of

the argument type. Inclusion polymorphism models subtypes and inheritance, which allows

the properties of one or more types to be reused in the definition of a new type. Subtypes and

inheritance, in turn, are basic features of object-oriented programming. In Haskell, inheritance

is modeled within the context of a class.

Formal Tools 65

Ad-hoc polymorphism is obtained when a function works on several types but gives its

operations a different meaning. In overloading—one of the two kinds of ad-hoc

polymorphism—the same variable name is used to denote different functions, and the context

is used to decide which function is denoted by a particular instance of the name. Hereby, the

compiler resolves ambiguity at compile time and eliminates overloading by giving different

names to the different functions; thus overloading is a purely syntactic way of using the same

name for different semantic objects, and therefore some kind of apparent polymorphism

(Cardelli and Wegner 1985). An example for overloading is given in section 4.7.2. A

coercion—the second kind of ad-hoc polymorphism—is instead a semantic operation which

is needed to convert an argument to the type expected by a function in a situation which

would otherwise result in a type error. For example, the literals 1, 2, etc. are often used to

represent both fixed and arbitrary precision integers; or numeric operators such as ‘+’ are

often defined to work on many different kinds of numbers.

4.5.4 Algebraic Data Types

Data type systems are widely used among functional programming languages. Data types can

be divided into

• base types, whose values are given as primitive, and

• composite (or derived) types, whose values are constructed from those of other types.

More complex types (so called user-defined data types) can be created with a type

constructor. We describe algebraic data types as used in the Haskell functional programming

language.

4.5.4.1 Base Types and Composite Types

Haskell contains following pre-defined, built-in base types in the standard prelude file: fixed

size integers (Int), arbitrary size integers (Integer), single precision floating point numbers

(Float), double precision floating point numbers (Double), Boolean values (Bool), characters

(Char). The symbol ‘::’ can be read as ‘is of type’. Integer and Double are not used in our

simulation.

1 :: Int

1.0 :: Float

True, False :: Bool

‘a’ :: Char

Formal Tools 66

Composite types are lists ([t1]) and tuples (t1,t2,…tn), which consist of several pre-defined

base types (see also section 4.5.4.3). Lists can be arbitrarily long, but all elements must be of

the same type. Strings are special kinds of lists, namely lists of characters. A finite list is

denoted using square brackets and commas. The empty list is written as [] and a singleton

list, containing just one element a is written [a].

List comprehension provides a way to write down a list in terms of the elements of

another list. The left side of the ‘|’ symbol denotes an arbitrary expression, where on the right

side there are one or several qualifiers. A qualifier is either a generator or a boolean-valued

expression. The symbol ‘<-’ in the generator denotes the mathematical symbol ‘∈‘ of being

an element of a set. As an example for list comprehension we take a list ls which is [2,4,7].

The list comprehension

[2*n | n <- ls, n < 5]

results in [4,8]. It takes the list of value 2*n, where n is drawn from the list ls (generator) and

n < 5 (boolean valued expression). If the boolean valued expression does not yield True, the

element (i.e., the value 7) is not included in the result.

A tuple consists of a predefined number of objects. The type (t1,t2) corresponds to the

cartesian product operation of set theory, where the notation ‘t1 × t2’ is more often seen. The

number of elements is 2 or higher. Tuples represent a product type (see next section) of its

base types.

(1, ‘a’) :: (Int, Char) -- pair

("Hugs", 1.5, 4) :: (String, Float, Int) -- triple

4.5.4.2 User-defined Data Types

User-defined data types are declared by the keyword data, followed by the name of the new

type, an equals sign, followed by one or more alternatives separated by ‘|’. The alternatives

each introduce a constructor function which takes 0 or more elements. Thus the general form

of the algebraic type definition is

data Typename = Con1 t11 …t1n | Con2 t21…t2n …| Con3 …

The simplest algebraic type definitions are an enumeration of the elements or values of that

new type. It is called enumerated type and represents the disjoint union of its elements. For

example, the data type

data Temperature = Cold | Hot

introduces the data type Temperature which has two members. Cold and Hot are the

constructors of the type Temperature which both have no arguments. The vertical bar (read

Formal Tools 67

“or”) is interpreted as the operation of disjoint union. Thus, distinct constructors are

associated with distinct values.

If the alternatives in a data type definition include other types, rather than being simple

constants, this gives a union type. This defines a data type in terms of other data types. For

example, the data type Either consists of 130 values: B True, B False, C ascii0, C ascii1,…C

ascii127:

data Either = B Bool | C Char

In this example, the names B and C denote constructors for building values of type Either.

Each constructor denotes a function of which the types are:

B :: Bool -> Either

C :: Char -> Either

A product type is a type that consists of at least two components which represent values from

the two constituent data types. The following example from the abstract wayfinding model in

this thesis introduces a new data type Agent. To construct an element of type Agent, one needs

to supply two values: One of type Fact, and another of type Beliefs. A user-defined data type

is called n-ary if it takes n numbers of arguments. In this example, the constructor function

takes two argument types and is therefore called binary.

data Agent = Agent Fact Beliefs

Another notation for the data type Agent is (Fact × Belief). This notation expresses that the set

of values for the product data type is the Cartesian product of values from the two constituent

types. The number of values of the data type Agent is given by the product of the number of

values in Fact and Beliefs.

4.5.4.3 Polymorphic and Recursive Data Types

It is also possible to define polymorphic algebraic types, where the constructor functions

become polymorphic. Hence, data types can be defined without explicitly stating the type of

its components. The type parameter must be instantiated with a type when the data is used,

such as EdgeEnv and EdgeMental in the following example.

data E n = E n SignPost n SignPost

data EM n = EM n n

type EdgeEnv = E Node

type EdgeMental = EM NodeM

The data type E n represents an edge in the environmental graph. It consists of a start- and

endnode (denoted by an n), and a sign (type SignPost) at the startnode and at the endnode.

Formal Tools 68

The data type EM n represents an edge in the agent’s cognitive map, and consists of a start

and endnode. In both data types, the parameter n represents an arbitrary node, and can

therefore be instantiated for example with the data types Node or NodeM.

Constructor functions can be used in recursive definitions, i.e., it is possible to use the

algebraic type being defined in a data definition within its own definition. Lists are a common

example of a recursive type. They are either empty or they consist of a head and a tail where

the tail is also a list (this is a recursive union type). A polymorphic list can be written as:

data List a = NilList | Cons a (List a)

where the Cons constructor is equally to the ‘:’ operator, which adds an element to the list:

(1:[2,3] = [1,2,3]). The data type definition shows that all elements of a given list must have

the same type. The same is true for the recursive data type Tree: A tree is either nil or given

by combining a value and two sub-trees. A polymorphic tree is defined as

data Tree a = Nil | Node a (Tree a) (Tree a)

4.5.5 Data Types and Functors

In the domain of constructor functions a functor can be seen as a combination of a type

constructor F of kind *->* and a mapping function that lifts a given function of type a->b (in

its simplest case) to a function of type f a -> f b. Thus, the mapping function is a higher order

function. In Haskell, the concept of a functor is captured by the Functor class definition:

class Functor f where

 fmap :: (a -> b) -> (f a -> f b)

Instances of this class are supposed to satisfy the two functor laws (see also section 4.4.2):

fmap id = id

fmap (φ . ψ) = fmap φ . fmap ψ

MacLane and Birkhoff (1967, p.131) describe a functor as: “Many constructions of a new

algebraic structure from a given one also construct suitable morphisms of the new algebraic

system from morphisms between the given ones. These constructors will be called functor

when they preserve identity morphism and composites morphism”.

Typical examples of functors are recursive types such as lists or trees. In these cases, the

mapping function applies to the first argument of the data type leaving its structure intact. For

example, the list functor takes a set a to the set [a], and a function fmap f that applies to each

element of a list (which describes the functionality of the map function).

Formal Tools 69

data List a = NilList | Cons a (List a)

instance Functor List where

 fmap f NilList = NilList

 fmap f (Cons t l) = Cons (f t) (fmap f l)

The first equation shows that the Null operation of the List function is preserved. To prove

that the second functor axiom is satisfied, one needs to replace f with a composed function

(g.h), and show that the equation

fmap (g.h) (Cons t l) == fmap g . fmap h (Cons t l)

yields true (which is not shown here). The Haskell prelude expresses the previously described

semantics of the map function as the instantiation of the class Functor with the list operator:

instance Functor [] where

 fmap = map

and therefore

map :: (a -> b) -> [a] -> [b]

As an example for the map function let us consider C to be a category with a set of objects of

the data type a (e.g., of type Int), and a morphism f between its objects (e.g., the ‘+’

operation). Mapping the set of objects from C to a list of objects [a] in a category D, and

lifting the morphism f to each element of the list using the fmap function, represents a functor.

The id-function (i.e., (+0)) and function composition are preserved. Figure 25 visualizes an

example with concrete integer values.

Figure 25: Mapping between two categories with a functor that is instantiated with the List-function

The fmap function can also be instantiated for non-recursive data types. This means that a

function a->b can be lifted to non-recursive data types. Let us assume the following

parameterized data type D and the instantiation of the class Functor with D:

Formal Tools 70

data D n = NilD | D n n Int

instance Functor D where

 fmap f NilD = NilD

 fmap f (D n1 n2 i) = D (f n1) (f n2) i

Mapping the length function, e.g., onto the components of the parameterized data type D

gives the following result:

> fmap length (D "Haskell" "code" 1)

D 7 4 1

> fmap length NilD

NilD

As the class Functor must be instantiated for data types of kind *->*, a type constructor with

one parameter, such as List or Tree (section 4.5.4.3), is a valid functor, whereas the

declaration

instance Functor List Int

would result in a kinding error (the data Type Tree Int is of kind *).

4.6 Functional Programming

Functional programming has some typical features that are not provided in procedural

languages. We show the advantages of these features of functional programming for the task

of this thesis. A comprehensive comparison of imperative and functional programming

languages can be found in the Turing Award lecture by John Backus (1978). Referential

transparency and strong typing, which are used in most functional languages, have been

discussed in section 4.5.2.

4.6.1 Each Expression Is a Function

Programming in a functional language consists of building definitions and using the computer

to evaluate expressions (Bird and Wadler 1988). In a functional programming language

everything is a function. As functions in mathematics, these expressions give the same result

for the same parameters. Programs are expressions which are evaluated and not a sequence of

statements that are executed. Functional programming is a style of programming that

emphasizes the evaluation of expressions, rather than execution of commands, and the

interpreter works by replacing equals with equals, until no further replacements are given.

Functional programming languages allow reasoning based on substitution, i.e., all values are

assigned once and cannot change their value during the execution.

Formal Tools 71

Contrary, structured programming languages, such as C, Pascal, or Modula, distinguish

between constants, variables, and functions. Constants are static, whereas variables are

dynamic. Functions are calls to pieces of code, diverting the flow of control from the calling

function to the referenced function. Structured programming languages are executed line by

line, with occasional jumps or functions calls. Constructs like begin/end, while/do,

repeat/until, or goto are examples for sequencing. In functional languages, where every

expression, even the main routine, is a function, there is no explicit flow of control. This is an

advantage compared to structured programming languages, as code with loops is a regular

source of programming errors.

4.6.2 No Side-Effects

Pure functional languages are free of side-effects, they compute only their result. A side effect

is a construct that modifies the state of the system. The most common side-effects are

assignment, input and output. Functions with side effects change a global state, which can

influence the result. A typical example used in procedural languages for implicit storing of a

state is the assignment to a counter (e.g., i:=i+1). Assignment is not possible in functional

programming: Substitution of i on the right side with ‘i+1’ gives a situation (‘i:=i+2’) that is

different from the original line. Instead of loop, functional programming uses recursion. If a

functional language is completely free of side effects, it is called a pure functional language,

if some side effects exist, the language is impure.

4.6.3 Higher-order Functions

A higher-order function takes a function as an argument and returns a function as the result. A

mathematical example is the derivation function, which takes a function as an argument and

yields its derivative (which is a function, too) as the result. Higher-order functions are used to

define axioms between functions in a category.

The most often cited example of higher-order functions in functional programming is

the functional composition, denoted by the dot (.) operator. The composition of two functions

f and g is the function h such that h x = f (g x):

(f . g) x = f (g x)

The signature of functional composition is given by:

(.) :: (b->c) -> (a->b) -> (a->c)

Function composition plays an important role for the definition of a category (section 4.4.1).

Further, functional composition expresses functions in a point-free style: A function can be

formulated without reference to specific data types but described exclusively in terms of

Formal Tools 72

functional composition and algorithmic strategies (Bird and de Moor 1997). A point-free style

of programming is free of the complications involved in manipulating formulae dealing with

bound variables introduced by explicit quantifications.

The function any is a higher-order function that composes the map (section 4.5.5) and

the or function. In a first step, any maps a boolean function to all objects of a list which

results in a list of Boolean values. In a second step (or), the resultant list is checked for any

value to be True. If this is the case, any results in True, otherwise the result is False.

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

For example, the execution of

any (>4) [1,3,5]

results in True. First, the function (>4) is mapped to all objects in the list which results in

[False, False, True], then function or checks the list for a True value, which results in True.

The fold function folds a function f into a list of objects [a]. The operation to be folded

must be a binary function over the type a. The function fold, which is known as foldr1 in

Haskell, gives an error when applied to an empty list argument (the ‘r’ in the definition is for

‘fold, bracketing to the right’). A modified definition (foldr) takes an extra argument that

defines the value on the empty list.

foldr1 :: (a -> a -> a) -> [a] -> a

foldr :: (a -> b -> b) -> b -> [a] -> b

This is used in defining some of the standard functions of Haskell, such as:

or :: [Bool] -> Bool

or = foldr (||) False

Here, the ‘||’ function on an empty list is defined as False. In the following example, folding

the ‘+’ function on an empty list yields 5.

> foldr (+) 5 []

5

> foldr (+) 5 [1,2,3]

11

4.6.4 Why We Use a Functional Programming Language

A major advantage of using a functional programming language compared to structural

programming languages is the possibility to express parameterized functions. Parameterized

functions are used as generic functions in the simulation, i.e., the semantics of these functions

Formal Tools 73

is equal for all applied data types. In functional programming languages, type inference is

supported for parametric data types also and not only for a number of predefined data types.

This is not true for traditional programming languages, such as Pascal where functions are

defined for a specific data type. We use parameterized functions to show that certain

operations involved in wayfinding are equal for both instantiations of the simulated

wayfinding model, e.g., the perceive function. Parametric functions provide a means to

discuss the wayfinding problem on a more abstract level, free of problems that might arise

from a specific representation.

Higher-order functions—which are hardly provided by procedural programming

languages—give the possibility to express functions in a point-free notation. Especially

function composition, which is a basic operation of functional programming, makes it

possible to view the wayfinding process as a category. Thus, the behavior of functions can be

discussed, free of the implementation of specific data types.

4.7 Haskell

The lazy functional programming language Haskell is named after the logician Haskell Curry

(1900-1982). His main work was in mathematical logic with particular interest in the theory

of formal systems and processes. He formulated a logical calculus using inferential rules. The

standardization of Haskell is supported by the scientific community (Peterson, Hammond et

al. 1997). Haskell allows checking the syntax, type consistency and axioms of specifications

already in an early phase of software development. It is a compiler that enables immediate

execution of specifications. The static type system ensures that Haskell programs are type safe

(Hudak 1989). Haskell’s type system guarantees that all type errors are detected during the

compilation process.

In this section we describe those features of Haskell which are important for this thesis.

These are

• polymorphic functions and type inheritance (modeled through classes and instances)

• pattern matching

4.7.1 Classes

A class is used to model the behavior of a data type or a parameterized family of data types

(Jones, Jones et al. 1997). The collection of types over which a function is defined is called

type class or simply class (Thompson 1996). Classes allow us to express polymorphic

functions (which are equally defined for all data types), and to overload functions (which use

different definitions at different types).

Formal Tools 74

A class consists of a set of operations expressed by functions applied to one or several

data types. The class declaration (called the header) introduces the name of the class, lists the

parameters, and may list conditions for the parameters (called context). In the lines after the

class header, the signatures of operations are given, describing name, arguments and result of

each operation.

The type class Eq as defined in Haskell’s standard prelude is a simple and useful

example. It takes one parameter a in its operations. The declaration of the class is given as

follows:

class Eq a where

 (==),(/=) :: a -> a -> Bool

 x/=y = not (x==y)

The third line of the class declaration provides a default definition of the ‘/=‘ operator in

terms of the ‘==‘ operator. If a method for a particular operation is omitted in an instance

declaration, then the default one defined in the class declaration, if it exists, is used instead.

Thus, in this example it is only necessary to give a definition for the ‘==‘ operator to define

all of the member functions for the class Eq.

4.7.2 Instances

Haskell separates the abstract definition of an algebra on a parameterized type, from the

instance which represents the implementation of an abstract data type. Thus, an instance

describes how to apply operations of a class to a particular data type. Operations in an

instance are given in form of executable equations.

In Haskell, the built-in instances of Eq include the base types Int, Float, Bool, Char, i.e.,

the function ‘==‘ is applicable for each of these types. It is possible to override the default

member definitions by giving an alternative definition as appropriate for specific instances of

the class. As an example from the simulated wayfinding model we take a data type Edge as

instantiation for the parameterized data type E n (see section 4.5.4.3) with the data type Node

and define the ‘==‘ function on it. Corresponding to the data type E, the data type synonym

Edge consists of four components.

type Edge = E Node -- Node SignPost Node SignPost

We can freely choose the way in which edges are compared for equality, for example just by

testing for equality of the signposts of the start node:

instance Eq Edge where

 (==) (Edge sn1 ssp1 en1 esp1) (Edge sn2 ssp2 en2 esp2) = (==) ssp1 ssp2

Formal Tools 75

4.7.3 Classes with Multiple Parameters

Classes can also be defined for multiple parameters, which allows the modeling of multi-

sorted algebras. This feature hides implementation issues from the specification of functions.

We can for example define an operation on edges (compare to section 4.5.4.3) without

specifying how nodes and signposts are expressed:

class Edges e n s where

 startnode :: e n s -> n

 endnode :: e n s -> n

A representation (data type E) is also parameterized in a similar way (where the number of

parameters is different to the definition given in section 4.5.4.3):

data E n s = E n s n s

An instantiation of the class Edges on the data type E is defined as follows:

instance Edges E n s where

 startnode (E n1 sp1 n2 sp2) = n1

 endnode (E n1 sp1 n2 sp2) = n2

The type of the result is not fixed and depends on the type of argument, i.e., of which data

type the first parameter of E is.

4.7.4 Context

The concept of inheritance is modeled within the context of a class. This allows programming

in an object-oriented style. The context of a class lists conditions for its parameters, and

inherited behavior can be specified for each parameter.

Let us consider the function getSignPostForNode from the wayfinding simulation. This

function takes a node and an edge of the environment as input and checks which node of the

edge matches the input node. For the node of the edge where the boolean value is true, the

function returns the attached signpost (Figure 26).

Figure 26: The function getSignPostForNode

Formal Tools 76

The function returns all signposts that are perceivable from a node. It requires comparing

nodes for equality using the ‘==‘ function. We must make a restriction on the arbitrary nodes

for the class Edges which says that the equality over n is defined. Thus we must add a context

to the class declaration, ensuring that for each implementation of the class Edges an

implementation of the class Eq exists. The symbol for context is an arrow (‘=>‘). This symbol

should not be read as implication; reverse implication would be a more accurate reading, the

intention being that every instance of Edges is also an instance of Eq. Thus Eq plays the role

of a superclass of Edges.

class (Eq n) => Edges e n s where

getSignPostForNode :: n -> e n s -> s

The implementation is defined as follows:

instance Edges E Node s where

getSignPostForNode n (E n1 sp1 n2 sp2)

 | (n == n1) = sp1

 | (n == n2) = sp2

 | otherwise = NoSign

In Haskell, polymorph operations are realized through parameterized operations in a class

definition. The type system checks the instantiations of a parameterized function for the

correctness of used data types. The definition of a function is not permitted to force any of its

arguments to be polymorphic as a variable cannot have two types in a function. Parametric

polymorphism as expressed in the class system does not guarantee that axioms of a function

are identical and express the same semantics (this in general not possible for constructive

programming languages), except if defined as a generic function within the class declaration.

The functions that exhibit parametric polymorphism are also called generic or derived

functions. A generic function is a function that is defined by induction on the structure of

user-defined data types. Such a function can be applied over all data types, i.e., it is a

polymorph operation. A generic function expresses the same semantics for all parameterized

data types of a class.

In creating the formal wayfinding model we tend to use several generic functions. This

allows discussion of the semantics independent of any instantiation, i.e., both for the real

world and the WWW.

4.7.5 Pattern Matching

A successful match in pattern matching binds the formal parameters in the pattern. In Haskell,

there is a fixed set of different kinds of patterns, where matching among others is permitted

Formal Tools 77

using the constructors of any type, user-defined or not. Pattern matching provides a tool to

define case expressions, which can be used if a function definition contains a number of

equations, i.e., different semantics for different patterns. Each of these equations has a left-

hand side in which the function is applied to a number of patterns. Haskell applies sequential

pattern matching, i.e., it uses the first equation which applies. Failure of a pattern anywhere in

one equation results in failure of the whole equation, and the next equation is tried. With

pattern matching it is possible to define functions of which the result depends on the

constructors of a data type, and each disjoint alternative of a union data type—which leads to

a case statement in the processing—can give a different implementation. This plays a role

when discussing the semantics of functions over disjoint parts of several instantiations.

Let us take the data type Agent that describes a product data type. The function getFact

matches against the data type Agent and accesses the Fact component of a data type Agent:

getFact :: Agent -> Fact

getFact (Agent f b) = f

As an example where pattern matching is applied over different alternatives of a data type we

take another function from the simulated wayfinding model. The function dirNext computes

the agent’s incoming direction in the agent’s reference frame when the agent reaches a new

node, and is part of the metric decision making process. The data type IncomingDir in the

input represents the incoming direction in the local reference frame of a node and enumerates

two alternatives. Only the first alternative (constructor IDir) contains information (for the

airport navigating agent). On the contrary, a WWW navigating agent lacks an incoming

direction (NoIncDir) as it does not locomote but moves virtually.

data IncomingDir = IDir Direction | NoIncDir

The function dirNext uses different equations for both types of agent: Matching the dirNext

function with the constructor NoIncDir yields the 0-ary NoIncDir as result, whereas matching

the constructor function IDir yields the equation for the real world case, resulting in an integer

value that is used to describe the agent’s orientation in space. Here, pattern matching

expresses a different semantics for different types of agents.

class EnvAgentPos env where

 dirNext :: env -> Pos -> PrevPos -> IncomingDir -> IncomingDir

instance EnvAgentPos Environment where

dirNext env pos prev NoIncDir = NoIncDir -- WWW case

dirNext env pos prev (IDir i) -- airport case

 | prev == unit0 = (IDir i)

Formal Tools 78

 | otherwise = ...—- gives an integer value with the IDir constructor

4.8 Graph Theory

4.8.1 Definitions

In our formalized wayfinding models in the airport- and the WWW-domain, the environments

are abstracted as finite graphs. This section explains basic concepts of graph theory that are

relevant for the description for the computational model—including the agent’s interaction

with the abstract environment and the abstract environment itself. The section is based on

definitions found in (Piff 1991; Black and Tanenbaum 2001).

A graph is a set of items (nodes, points, or vertices) connected by edges. It can be

written as G=(V,E), where V expresses the set of nodes and E the set of edges. A graph is said

to be finite if both the number of nodes and the number of edges are finite. In a graph, each

edge is determined by the pair of vertices (called endnodes) that it links. If two nodes have a

common edge they are said to be adjacent. An edge is said to be incident with a node if that

node is one of its endnodes. A loop is an edge where the endnodes are identical.

The number of distinct edges incident with a node is called the degree of the node

(Figure 27). A vertex of degree 0 is called an isolated vertex, whereas a vertex of degree 1 is

called a pendant vertex.

0

1

3

2

2

Figure 27: Vertex degrees

An undirected graph (Figure 28a) is a graph whose edges are unordered pairs of vertices.

That is, each edge connects two vertices. In such a graph, the number of edges meeting at a

node is the degree of that node.

A directed graph (or digraph) has directions assigned to its edges (Figure 28b) and

edges are represented as arrows. In a directed graph, the outdegree of a node is the number of

edges leaving the node, the indegree of a node is the number of incoming edges to that node.

Formal Tools 79

5

e6

e7

3

e5

4

e2

e4

e3

1

2

e1

(a)

5

e6

e7

3

e5

4

e2

e4

e3

1

2

e1

(b)

Figure 28: Undirected and Directed Graph

A graph that contains no parallel edges or loops is called simple graph. The alternative, where

several edges can join the same two vertices, and a vertex can be joined to itself, is called a

multigraph or pseudograph. A graph in which every vertex is adjacent to all others is called a

complete graph. A graph is said to be planar if it can be drawn in a two-dimensional plane so

that no two edges cross or intersect each other, i.e., edges can meet only at nodes.

A walk through a graph is a sequence of nodes <V1, V2, …Vn> for which any two

adjacent nodes Vi and Vi+1 are the endpoints of some edge (Sowa 1999). If the edges in a walk

are all distinct it is called a trail. If the nodes in a walk are all distinct, apart from identity of

the start and the end node, it is called a path. A walk, trail or path is called closed if vn=v1,

otherwise it is open. These terms provide a hierarchy of concepts, depending on whether or

whether not edges or vertices are repeated. Finally, a walk, trail or path is called trivial if it

consists only of a single vertex, otherwise it is nontrivial. A nontrivial closed trail is called a

cycle, a nontrivial closed path is called a simple cycle.

4.8.2 Shortest-Path Algorithms

There exist a number of algorithms to solve a variety of optimization problems in graphs. In

our formalized model, the semantic decision process of the simulated agent uses the criterion

of the shortest mental distance between concepts of the cognitive map. As the cognitive map

is represented as a list of graphs, the shortest mental distance is computed with a shortest path

algorithm. The abstracted cognitive map has no directed edges, thus it is sufficient to use the

implementation for an undirected graph.

We give a definition of a shortest path: If each edge in a connected graph G = (V,E) is

given a length function l, then the shortest path from u to v in G is a path P with edge set E’,

so that l(E’) is as small as possible. For our formalized model we use Dijkstra’s shortest path

algorithm. The specification of Dijkstra’s algorithm follows the interpretation and formal

algorithm of Kirschenhofer (1995). For a detailed description of the substeps and visualized

examples see (Kirschenhofer 1995; Car 1996). Other implementations that optimize

performance for planar graphs are given by Frederickson (1987), and for sparse networks by

Formal Tools 80

Johnson (1977). More details on different implementations can be found in (Ahuja, Magnanti

et al. 1993).

4.9 Summary

In this chapter we presented the formalization method used in this thesis, i.e., algebraic

specifications written in the functional programming language Haskell. In functional

programming languages, every expression is treated as a function, there is no explicit flow of

control, and there are no side-effects. We explained important features of functional

programming concerning our task, including higher-order functions, type inference and

polymorphism. We saw the structure of the class system in Haskell that enables programming

in an object oriented style and instantiating operations for different data types. The class

context hereby expresses inheritance between parameterized data types.

We discussed the role of morphism, category, and functor for the concept of metaphor,

and gave a formal counterpart of these concepts within the explanation of type systems. We

discussed how disjoint alternatives of a data type are differently treated with pattern matching,

which is an important method used to compare the behavior of both instantiations of agents.

We gave algebraic examples of metaphors and morphisms from the literature and discussed

their strength of preserving semantics and structure during the mapping process.

The simulated wayfinding environment and the agent’s cognitive map are abstracted as

undirected graphs. Shortest path algorithms are used to compute mental distances between

concepts in the abstract agent’s cognitive map.

The Wayfinding Axioms 81

 THE WAYFINDING AXIOMS
CHAPTER

5

In chapter 3.2 we gave a number wayfinding definitions reported in the literature. We saw that

a unique, ‘correct’ definition of wayfinding does not exist but rather that wayfinding

represents a radial category with a graduation of terms. Analyzing several wayfinding

definitions we found some terms that seem to describe a kind of central meaning of

wayfinding. For defining the axioms, we focus on these central properties of wayfinding and

skip peculiarities of specific wayfinding strategies. We can say that the more general the term

wayfinding is viewed, the fewer axioms are needed for its definition.

The axioms function as minimum requirements for environment, agent and the agent’s

activities to call the activity ‘wayfinding’. The semantics expressed through the axioms needs

to be mapped to another domain to give a metaphor. Thus, if a phrase in a natural language

fails one of these axioms, the phrase (i.e., ‘wayfinding’) is not used in the correct sense. We

begin with an informal definition of the wayfinding axioms and then formalize the axioms

within an algebra.

5.1 Informal Description

5.1.1 First Axiom: Decision Points

The agent makes decisions during wayfinding. In a discrete environment—as it is the case in

our computational model (we abstract both environments as an undirected graph, see section

2.1.3)—this enforces discrete decision points in the environment. In a more continuous

environment (e.g., the desert or an ocean), decision making may occur permanently, without

explicitly denoting decision points as such. We would use the term navigating for

unstructured environments.

Decision points are those points where a navigator has the opportunity to select among

different paths. Raubal and Egenhofer (1998) distinguish between points where the navigator

has one obvious option to continue the wayfinding task (enforced decision points) and points

where subjects have more than one choice to continue the wayfinding task (decision points).

In an undirected graph, a decision point is a node that has a degree > 2: One edge is described

as the incoming edge, and at least two other edges give the options from which the agent can

choose. Thus, the axiom expresses the constraint on the abstract environment to include at

The Wayfinding Axioms 82

least one node of degree > 2. This criterion is independent of the availability of information at

a decision point. Thus a decision point is defined through its topology only. For a directed

graph, the criterion would be formulated as the requirement that the outdegree of at least one

node must be >1.

An environmental graph does not need to be checked for connectedness. Even, if the

start and the goal node are not connected, the navigator can do wayfinding. The fact that the

goal can potentially never be reached (e.g., through a damaged bridge along a street in a

valley), does not play a role for the process to be defined as wayfinding.

5.1.2 Second Axiom: The Agent Has a Goal

The axiom says that the agent must have a goal. Both the representation of goal and mental

position in the environment are reflected within the agent’s mind. The goal is a desired state

(i.e., a believed position) that the agent tries to reach. During the wayfinding process, goal and

mental position have a different value. The goal is reached if these two components become

equal.

5.1.3 Third Axiom: Moving Towards a Goal

The agent has a goal (as part of his beliefs) that he approaches with each step, i.e., the agent

intends to reduce the mental distance between goal and mental position. This constraint of

functional behavior defines the arbitrary component ‘goal’ in the conceptual model: If there is

no intended movement towards a certain agent’s state (the goal), an activity will not be called

wayfinding, but rather described by related terms such as ‘exploring’ or ‘sight-seeing’. In such

case, the component ‘goal’ within the agent’s beliefs loses its semantics.

There are many error sources in wayfinding, e.g., cognitive errors of perceived

directions or angles, errors in reading and understanding text on signs, an erroneous or

incomplete cognitive map, or unconventional rules of placing information signs in an

environment. If the agent plans to move towards the goal, such errors may cause an incorrect

decision behavior at decision points, i.e., lead to an action does not lead closer to the goal.

Despite such potential errors, the agent’s utility function (see section 3.3.2) stays unchanged,

i.e., the semantics (and not the resultant values) of a utility function is independent of data

used within a simulation. Thus, what counts for the axiom is the agent’s intention to move

towards the goal, and not, whether the agent in fact navigates towards the goal. Therefore the

axiom is invariant under errors.

The Wayfinding Axioms 83

5.1.4 Fourth Axiom: No Impact on Environment

We consider the state of the environment invariant under the agent’s wayfinding activities

(see 3.3.1). Potential impacts from outside the agent on the structure of the wayfinding

environment would not be recognized by the agent (as it does not visit a node twice and the

environment is unknown). For this reason, Allen’s claim (Allen 1999) that an element of

uncertainty (e.g., in a changing environment) is a factor in every wayfinding effort, is not

contradicted in this axiom. The axiom only states that the wayfinding activity does not intend

to change the environment.

5.1.5 Fifth Axiom: Order of Actions

Actions in wayfinding are ordered. When executed in a sequence, the steps give a certain path

of states. In wayfinding, making a step needs one specific state or pre-condition (i.e., a

specific position in the environment) in order to be performed (section 3.3.5.1). Thus, a

permutation of a sequence of actions does not give a path (the unique precondition for some

of the permutated actions is not given). As decisions are executed (i.e., they are transformed

into actions during the wayfinding process) this criterion can also be expressed in the

formulation of Arthur and Passini (1992, p.27) who claim that during wayfinding and in other

domains “Decisions are related one to each other; they are ordered”. The authors mention an

example of opening a can of mushrooms which needs some very specific decisions:

• Get the can and the can opener

• Apply the can opener

• Activate the cutting device

One does not only have to make these three decisions, one has to execute them in a certain

order. Chaining these actions gives a mental path that leads from the initial state (unopened

can) to the mental goal (opened can). What distinguishes wayfinding from opening a can is

that the latter changes the state of the environment (which contradicts axiom 4).

Some activities in everyday life are goal directed and have the same preconditions, i.e.,

each of these actions can be performed at the same initial state (they are unordered). Let us

imagine the following situation: A person’s task is to move two bags of potatoes from

building A into another building B. He or she can carry a bag one by one only. In Figure 29,

act1 denotes carrying the first bag to B, act2 denotes carrying the second bag to B.

The Wayfinding Axioms 84

Figure 29:Unordered actions: Moving objects from one building to another

The person can start with carrying any of the two bags, the sequence of actions is

interchangeable. The only precondition of act1 is that bag1 is in domain A, act2 has a

corresponding precondition with bag2. In the initial state both pre-conditions are fulfilled,

therefore one can begin with either of the two actions. The state diagram of the agent’s beliefs

shows that both, the sequence act1-act2 and the swapped sequence act2-act1 lead to the same

result (Figure 30).

act1 act2

act2 act1

belief at t=1:
A: bag2
B: bag1

belief at t=1:
A: bag1
B: bag2

belief at t=2:
B: bag1, bag2

belief at t=0:
A: bag1, bag2

Figure 30: Agent’s state diagram for unordered actions

Swapping operations is not possible for wayfinding, as is shown in the following simple

example: The moves A->B, B->C give a path A-B-C. The sequence cannot be swapped as the

sequence B->C, A->B cannot be executed (Figure 31). The operation A->B needs the

precondition of the agent to be on node A, which is not given in the swapped sequence. In

contrast to the previous example (Figure 30) where the precondition for two actions is given at

the beginning (both bags are in building A), for a wayfinding sequence A->B->C the

precondition is unique (to be at position A).

The Wayfinding Axioms 85

opAB opBC

A B C

-> opAC ->

1. 2.

opBC

B C

opAB ->

1. A B 2.

opAC ≠>

Figure 31: Wayfinding: an ordered activity

5.2 Formal Description

The first four axioms are formalized as algebraic specifications containing objects and

operations. The objects hereby have no semantics but are formal stand-ins, i.e., they are used

to describe the flow of information. The use of objects (i.e., data types) could be avoided if

using a point-free notation (section 4.6.3). The disadvantage hereby would be a syntax that is

more difficult to read. To convert point-wise axioms into pointless style would require

currying of functions (see appendix) into functions in a single argument and then use function

combinators. Methods to convert point-wise functions into a point-free style can be found in

(Bird and de Moor 1997) and (Medak 1999). The fifth axiom is formalized as an algebra of

operations (category) and describes the properties of its operations (morphisms). The strength

of formalized axioms is their generality as they can be implemented into any system of any

types of objects.

As we are interested in the behavior of objects in the wayfinding process, the internal

structure of the used data types is not explicitly given, i.e., the structure of objects is arbitrary.

Through the realization within the computational model, the arbitrary data types is given a

representation. For example, the data type Perceived in the formalized wayfinding model is

represented as a list of signs. In another model, the percepts may include further components,

such as landmarks.

Algebra Wayfinding

Sorts:

 World, Environment, Agent,

 MentalPos, MentalGoal, CognitiveMap, Distance, Degree

Operations:

 worldStep :: World -> World

 dist :: MentalPos -> MentalGoal -> CognitiveMap -> Distance

 allDegrees :: Environment -> [Degree]

The Wayfinding Axioms 86

 sensePlanAct :: Environment -> Agent -> Agent

 getGoal:: Agent -> MentalGoal

 getPosM :: Agent -> MentalPos

 getCM :: Agent -> CognitiveMap

 getEnv :: World -> Environment

Eqs:

 any (> 2) . allDegrees == True -- axiom 1

 goal /= pos where -- axiom 2

 goal = getGoal agent

 pos = getPosM agent

 dist pos2 goal cm < dist pos1 goal cm where -- axiom 3

 pos1 = getPosM agent

 pos2 = getPosM . sensePlanAct env $ agent

 goal = getGoal agent

 cm = getCM agent

 env1 == env2 where -- axiom 4

 env1 = getEnv world

 env2 = getEnv . worldStep $ world

category Wayfinding -- describes properties of operations

Sorts: World

Morphism: SensePlanAct

Axiom: -- axiom 5

SensePlanActAB . SensePlanActBC /= SensePlanActBC . SensePlanActAB

The first axiom checks if the degree of any node in the abstract environment > 2. The function

allDegrees computes the degree of each node in the abstract environment and results in a list

of integers (a degree is expressed as an integer value). This list together with the boolean

function ‘> 2’ is the input for the any function (see section 4.6.3). If none of the degrees is

higher than 2, the any function results in False, i.e., the axiom is not satisfied.

The second axiom checks if the agent’s goal and mental position have a different value.

As these two elements are not semantically defined through their name (the algebra does not

understand the meaning of goal and pos), the axiom only needs to check if the agent’s beliefs

has two components of same type and different value. In the representation of the axiom, the

The Wayfinding Axioms 87

components goal and pos are local function definitions which are introduced by the keyword

where. These local functions access the agent’s goal and mental position through applying the

observer functions getGoal and getPosM.

Mental position and goal are of the same data type. These components are modeled as

parts of the agent’s cognitive map. Therefore it is possible to compute a semantic distance

between goal and mental position in the abstract cognitive map. In the notation of the third

axiom, this is provided by the function dist. The agent’s cognitive map is accessed by the

observer function getCM. The local function pos1 represent the agent’s mental position

before, and pos2 after a Sense-Plan-Act cycle. If the result of dist is smaller after a Sense-

Plan-Act circle, i.e., for pos2, the agent has approached the goal, and the axiom is satisfied.

The fourth axiom compares the environment of the world states before and after a world

step. If the two environments are equal, i.e., they stay unchanged under the triggered

operations of the world step, the axiom is satisfied.

The formalization of the fifth axiom describes a property of the sensePlanAct function

within the wayfinding category: The order of applying sensePlanAct functions between two

nodes cannot be changed. As wayfinding is a category, the null-operation, i.e., an operation

that keeps the state of the system unchanged, needs to exist. The null-operation is provided

through a specific configuration of agent and environment, namely then, if the agent cannot

use perceived information for making a decision. Then, the agent’s state stays unchanged.

5.3 Excluded Features

In the axioms we included only a fraction of all the features of wayfinding found in the

wayfinding definitions (section 3.2.1). We skipped those properties and features that are

related to specific wayfinding strategies. Through this, the wayfinding axioms are kept

general and can be mapped to abstract domains. The skipped features either relate to the

behavior or the structure of the agent, or to particular properties of the environment. Examples

for features that are part of the radial category ‘wayfinding’ but that were decided to ignore in

the axioms are:

• An external map as navigation aid (Sheppard and Adams 1971)

• Path integration abilities (Loomis and Klatzky 1999)

• A marked trail in the environment (Allen 1999)

• Landmarks (Lynch 1960; Stern and Leiser 1987)

• The ability to determine turn angles and to maintain orientation (Golledge, Jacobson

et al. 2000)

The Wayfinding Axioms 88

• Route learning (Cornell and Heth 2000)

• Communication with other navigators (Dieberger 1998; Höök and al. 1998)

• Short-term variations (e.g., temporary road detours) and long-term changes (e.g.,

suburban development) in the environment on which the navigator has to react

(Allen 1999)

5.4 Summary

In this section we defined axioms that describe the semantics of the term wayfinding. The

wayfinding axioms are based on terms and phrases used in wayfinding definitions reported in

the literature. The axioms describe the behavior of objects and operations. They give

constraints on the topologic structure of the environment, the structure of the wayfinding

agent, and the operations applied in the wayfinding process. We excluded those features from

the wayfinding axioms which are related to specific wayfinding strategies. The axioms will be

demonstrated to be satisfied in both instantiations of the functional wayfinding model used in

this thesis.

Conceptual Features of The Wayfinding Agent 89

 6. CONCEPTUAL FEATURES OF THE
WAYFINDING AGENT

CHAPTER

6

When introducing the case studies (chapter 2) and discussing agent theory (chapter 3.3) we

already decided to adapt some of the explained concepts for the proposed wayfinding model

(applied for both instances of agent and environment). The features discussed so far, concern

• the separation of the agent from the environment (section 3.3.1)

• properties and simplifications of the abstract environment (section 3.3.6)

• the distinction between fact and beliefs within the agent’s structure (section 3.3.3)

• the use of the Sense-Plan-Act paradigm in the agent’s sequence of operations

(sections 3.3.4 and 3.3.5)

In this chapter we describe further features of the agent with a focus on details for both

instantiated agents. We look at the agent’s structure, including objects and the operations

between the agent’s components. As a part of the agent, we describe the agent’s cognitive

map concerning its structure and content. We will discuss how the content of a cognitive map

depends on the agent’s task. For the Web navigating agent we will demonstrate how to

implement parts of a pre-existing ontology (WordNet) into the abstract cognitive map. At the

end of this chapter we point out common features of the decision making strategy used for

both types of agents.

6.1 The Structure of the Wayfinding Agent

The concepts defining the structure of both instantiations of the wayfinding agent are similar.

Conceptual differences—either in parts of the structure or in the semantics of the operations—

can only be found at a lower level of the data type hierarchy. The structure of the agent

follows the architecture of a utility-based agent with state (section 3.3.2), its components fall

into Fact and Beliefs (section 3.3.3), the beliefs denoting the agent’s state. Figure 32 shows

the basic components of the conceptualized agent and the operations involved in the

wayfinding process. The basic operations of the Sense-Plan-Act approach are visualized in

italic font, objects in regular font. For the representation we give the agent an id (added to the

facts components). The facts of the agent are

Conceptual Features of The Wayfinding Agent 90

• position

• previous position.

The state of the simulated, utility-based agent (section 3.3.2) consists of following objects:

• mental position

• cognitive map from which the goal can be constructed

• percepts, containing semantic and metric information

• decision for the next action

• metric preferences for the decision process

• the incoming direction

Figure 32: Basic components of a navigating agent

6.2 The Cognitive Map

6.2.1 The Role of a Cognitive Map for Wayfinding

Review of literature (section 3.2.2) revealed the outstanding role of cognitive maps in the

wayfinding process. We assume that the type of how the goal is defined plays a role for the

structure of the cognitive map and the information accessed in the cognitive map (section

3.2.4). We model the agent’s goal to be part of the cognitive map, independent of the

wayfinding strategy and the environment with that the agent interacts.

Although the goal of a wayfinding person exists mentally as part of the agent’s

cognitive map, such a goal does not essentially exist in the real world. Thus, the goal of a

Conceptual Features of The Wayfinding Agent 91

wayfinding person is assumed to exist. Approaching such assumed goals may be successful to

a certain degree as the concepts around the assumed goal in the cognitive map may be

matched with information perceived from the environment. An example for a goal that is

assumed to exist (but does not exist) on the Vienna International Airport is gate ‘C399’.

Reading a gate sign ‘C’ may lead the wayfinding person closer to his assumed goal ‘C399’,

but the goal will never be reached. In the WWW, e.g., one may try to find a Web page where

one can chat with an alien. A Web page providing this, cannot be found (except if it is a fake

page). Although the second wayfinding axiom (section 5.1.2) forces the agent to have a

mental goal, it does not say anything about the existence of the goal in the environment. Thus,

even the process of trying to approach a non-existing goal can be considered as wayfinding (if

the remaining wayfinding axioms are satisfied).

In the presented case studies we have a semantically defined goal (we classify topologic

to be a kind of semantic here). For such a goal we model the cognitive map to consist of a

semantic network (see section 2.2.4) that describes hierarchical relations between concepts of

the domain—metric preference is hereby treated separately. Depending on the complexity of

the goal, the number of networks that represent an abstract cognitive map varies. Goals that

are defined through several features or attributes require a more complex structure in a

cognitive map to be represented than goals that are expressed through one feature only.

6.2.2 The Cognitive Map of the Airport Navigating Agent

As described in the introducing case study (section 2.1.1), the task of the airport navigating

agent is to find a gate labeled ‘C 54’ (which exists). The agent’s cognitive map represents a

semantic network, where the semantic distance between information of perceived signposts

and the mental goal is expressed through the number of edges in between (i.e., topologically).

Therefore the concepts (i.e., nodes) in the cognitive map must be of the same type as the

perceived information. In the airport environment, three types of gate signs can be found

(section 2.1.3).

The rules of placing signs in an airport follow a simple rule, namely to make the

navigator feel it is approaching a target gate when following a sequence of signs that match

the name of the target gate. Structure and content of the abstract cognitive map follow this

intuitive rule: The cognitive map reflects the distance between a position in the environment

and the agent’s goal through the number of mental, hierarchical levels between the two

corresponding concepts.

The gates are embedded within a hierarchical structure that can be described with the

CONTAINER image schema. The higher the hierarchical level of the concept in the cognitive

Conceptual Features of The Wayfinding Agent 92

map is, the more instances (‘containers’) are included in the concept. For example, the goal ‘C

54’ is assumed to be in the containers ‘C53-C54’ or ‘C54-C55’, which in turn are in a

container of all ‘C’-gates and so on (Figure 33a). Thus, if an agent perceived two signs at a

decision point, for example ‘A,C’ and ‘C’, he would choose the edge connected to the sign

‘C’, when applying the criterion of the smallest semantic distance.

Metaphorically expressed, the agent’s goal is to get into one of the inner-most

containers. The closer a sign at a decision point leads to the element ‘C54’ in the cognitive

map, the higher is the utility of the edge connected to the perceived sign. In the simulation,

the cognitive map can be simplified by dropping those hierarchical concepts that do not refer

to signs in the environment (Figure 33b). Only information of those signs that are potentially

perceived during the simulated wayfinding process is reflected in the cognitive map.

(a)

(b)

Figure 33: Hierarchical structure of airport signs (a) and simplified cognitive map for simulated agent (b)

6.2.3 The Cognitive Map of the WWW Navigating Agent

6.2.3.1 Structure of the Cognitive Map

As the task of the case study in the WWW is defined through several concepts, e.g., size and

brand of an object that affords running with (section 2.2.3), the cognitive map of the Web-

navigating agent is abstracted through several mental graphs. It is therefore more complex

than the cognitive map needed for the case study in the airport environment. Different from

the airport-navigating agent, concepts in the cognitive map of the WWW-navigating agent are

modeled as strings, not as signs .

Conceptual Features of The Wayfinding Agent 93

To find a suitable cognitive map for the given task in the WWW we go back to

Aristotle’s ontology that is based on substance and accident (section 2.1.2). Some objects

involve both substances and accidental parts, so that objects are partially bearers of accidents.

The theory of affordances (see section 3.2.3) connects objects with (potential) activities, too.

Combining Aristotle’s ontology with Gibson’s affordance theory, we propose the WWW-

agent’s cognitive map to consist of following graphs (italic font indicating Aristotle’s terms).

• action affordances (events)

• physical object hierarchy (substances)

• attributes (qualities)

Although listed in one single item, action affordances and events are not exactly the same:

Events are actual activities and action affordances are potential activities. A fourth graph,

named ‘user intended actions’, describes the activities a web user wants to perform on the

desired web page. Figure 34 visualizes the basic structure of the proposed cognitive map.

Figure 34: Structure of an agent’s semantic map

User intended actions in the web are not limited to seeking (Ellis 1989; Ellis and Haugan

1997; Wilson 1997) and browsing (Marchionini 1995) but include all potential activities in

the internet (e.g., purchasing, communicating, playing, advertising). All graphs except the

attributes are structured as partonomy or taxonomy. The structure of the cognitive map as

presented here, is sufficient for the WWW navigating agent to complete the task given in the

case study. For other tasks, the structure may have to be adapted and extended with additional

graphs. This is an epistemological detail which does not influence the wayfinding metaphor to

be used for the Web space.

The element in the highest hierarchical layer in each graph (most distant from the target

web page in Figure 34) expresses the most general term of a graph (except for the attribute-

graph where the order of concepts follows subjective rules). Elements of a lower layer are

either part of or kind of the term in an upper hierarchical level. The agent’s goal consists of all

Conceptual Features of The Wayfinding Agent 94

the elements in the lowest hierarchy of each graph. The mental distance to the target page

decreases with the similarity of the content of the actual web page and the defined mental

goal.

6.2.3.2 Using a Predefined Ontology

The content of cognitive maps varies between individuals as their life experience is different.

Therefore it is not possible to simulate the navigation behavior for each individual human. For

the simulation we need one prototype agent with a prototype cognitive map. As we have not

conducted experiments with human subjects, we have to rely on an existing ontology. We

choose the ontology of WordNet (Miller 1990; Miller 1995), a database for the English

language. One of the advantages of WordNet is its free availability in the internet. The online

application can be visited at http://www.cogsci.princeton.edu/cgi-bin/webwn.

WordNet combines features of both a traditional dictionary and a thesaurus. All query

results are given in form of synsets (Jones 1986), which describe sets of those words which

can replace a particular word in a sentence without changing the way the sentence can be

employed. The synsets are connected by a number of relations. Unlike in a thesaurus, the

relations between concepts and words in WordNet are made explicit and labeled; users select

the relation that guides them from one concept to the next and choose the direction of their

navigation in the conceptual space. WordNet allows semantic queries between nouns, verbs,

and adjectives.

For a query, the WordNet user enters a single term from which he wants to start the

query. WordNet returns a description of the term (or a list of descriptions for a polysemous

term). The user selects the intended meaning, and chooses the type of search (e.g.,

‘synonyms’). WordNet then returns the related terms or hierarchies. Due to the fact that most

terms are polysemous and the user must select the intended meaning of the term, the

simulated cognitive map cannot be created automatically but requires several manual steps.

We stepwise fill the prototype cognitive map of a WWW-navigating agent that has the

task defined in section 2.2.3. The structure of the cognitive map has been visualized in Figure

34. We use WordNet to fill the graphs ‘physical object hierarchy’, ‘user intended action’ and

‘action affordances’ in the semantic map. For attributes without IS-A or PART-OF relations,

one needs to individually decide which values should be included in the cognitive map. How

‘happy’ a user is with an attribute-value that does not exactly correspond to the demanded

value, cannot be generalized in an ontology. For example, consider a person that wants to buy

red roses. If the store is out of red roses, the person may also be satisfied with white ones but

not with yellow ones. This subjective gradation does not follow a general rule. Similarly, we

Conceptual Features of The Wayfinding Agent 95

use a subjective gradation for the values or the attributes brand and size in our simulated case

study. As subjective gradations are not part of the WordNet ontology, we fill these two graphs

according to subjective beliefs (see section 6.2.3.6).

6.2.3.3 Physical Object Hierarchy

A hierarchy of nouns is generated by hyponymy and hypernymy relations in WordNet.

Usually a noun has only one hypernym but many hyponyms (Miller 1998). Available

semantic queries for nouns among others are:

• coordinate terms (terms that have the same hypernym, ‘sisters’)

• hypernyms (generic term for a whole class)

• hyponyms (generic term used to designate a member of a class)

• synonyms

To fill the field ‘physical object hierarchy’ we request the hypernyms of ‘shoe’ as the physical

part of sneakers. Bold terms in the result will be included in the prototype cognitive map. The

polysemous term ‘shoe’ has four meanings in WordNet. Taking the first meaning (‘a covering

shaped to fit the foot’), we get following hypernyms:

shoe
=> footwear, footgear
 => covering
 => artifact, artefact
 => object, physical object
 => …

‘Footwear’ has two meanings in WordNet. Requesting the hypernyms for footwear in the

sense of clothing gives the following result:

footwear
=> clothing, clothes, apparel, vesture, wearing apparel, wear
 => covering
 => artifact, artefact
 => …

For the field physical object hierarchy, we unite the results of the two queries (see Figure 35):

shoe
=> footwear
 => clothing, clothes, apparel, vesture, wearing apparel, wear
 => covering
 => artifact, artefact
 => …

Conceptual Features of The Wayfinding Agent 96

6.2.3.4 User Intended Actions

Like nouns and adjectives in WordNet, verbs are grouped together as sets of synonyms

(synsets). English has far fewer verbs than nouns, and verbs are approximately twice as

polysemous as nouns (Fellbaum and Miller 1990). This has the consequence that the

automated generation of a graph that denotes a taxonomy or partonomy of actions is even

more complex than the generation of a noun graph.

The elements within the field ‘user intended actions’ are represented through verbs. The

verb ‘purchase’ has one meaning in WordNet. It is described as:

buy, purchase: “obtain by purchase; acquire by means of a financial transaction”

This shows that buy and purchase are considered as synonyms. The verb ‘shop’ has four

meanings in WordNet, one of them is defined as:

patronize, shop, shop at, buy at, frequent, sponsor: ”do one’s shopping at; do business

with; be a customer or client of”

This, in turn, considers ‘buy’, ‘shop’, and ‘do business’ as synonyms so that the terms ‘shop’,

‘buy’, ‘purchase’, and ‘do business’ can be considered as synonyms. We drop the terms

‘purchase’ and ‘buy’ from the graph as they do not appear in the Yahoo categories but use the

two others (‘do shopping’, ‘do business’) instead. They are represented at the same

hierarchical level of the graph.

We add an additional term to the graph which denotes the activity of pressing a

‘purchase’ button on the user interface to confirm the purchasing process. If this action is

offered to be performed, the Web page with the desired user intended action is reached. We

represent this activity as term ‘confirm’ in the graph. In sum, we get three terms for the graph

‘user intended actions’.

confirm
=> do shopping, do business

6.2.3.5 Action Affordances

The term ‘running’ is both explained as a verb (42 meanings) and a noun (5 meanings) in

WordNet. One of the explanations of the noun ‘running’ comes close to our intended meaning

of doing sport: We search for hypernyms of the word ‘running’ in the sense of participating in

an athletic competition involving running on a track. We get the following hypernyms that

will be included in the graph ‘action affordances’:

track, running
=> track and field
 => sport, athletics

Conceptual Features of The Wayfinding Agent 97

 => diversion, recreation
 => …

6.2.3.6 Attributes

A physical object has attributes, e.g., color or size. The attributes are expressed by nouns

whereas attribute values are expressed by adjectives or values. Nouns serve as arguments for

attributes as the value of an attribute changes, depending on the noun. What is realized in

WordNet so far, is the connection between attribute nouns and adjectives which express

values of that attribute. Examples are the noun size and the adjectives large and small or the

connection between the noun color and the adjectives red, yellow, green and so on. WordNet

has not implemented adjective-noun pairs so far, i.e., it is not possible to determine from

WordNet the important attributes of a noun.

We deliberately decide to include two attributes for sneakers (brand and size) in the

agent’s semantic map. Similar to the other graphs, the attribute-graph is hierarchically

structured, but not necessarily through is-a or part-of relations. Its structural concept rather

follows a subjective ordering. Besides the agent’s ‘ideal’ or ‘goal’ value for each attribute,

alternative values that the agent would accept, are included in the cognitive map. All other

attribute values are excluded from the graph.

Let us have a look at our simulated agent: The agent’s preferred value for the size of the

sneakers is 9 1/2. Shoes that are a half size bigger (size 10) are acceptable but provide a lower

happiness than 9 1/2; and sneakers of size 10 1/2 give the lowest happiness but still would be

accepted. All other sizes, if offered through semantic information on a link, are not part of the

mental map, and therefore no potential candidates for being selected at a decision point.

Similar considerations are made for the attribute ‘brand’.

Combining all the fields we get the cognitive map of the prototype agent (Figure 35). It

serves as basis for the decision process in our simulation.

Conceptual Features of The Wayfinding Agent 98

Figure 35: Cognitive map of the prototype agent, partly based on WordNet

When analyzing various web pages, we found that those elements of the mental goal that are

not provided by the content of the actual web page, can usually be found after clicking the

link that contains the concept of the lowest hierarchy in the graph ‘user intended actions’.

Thus we make a simplification of the criterion that determines if the goal has been reached or

not: The goal is modeled to be reached if the link labeled with the lowest element in the graph

‘user intended actions’ (i.e., the ‘confirm’ button in our example) can be perceived.

6.2.4 Comparing the Cognitive Maps of Both Agents

The cognitive maps of both types of agents show following commonalities:

• The cognitive map consists of hierarchically structured graphs.

• The semantic distance can be expressed through the number of mental edges between

two concepts.

• The number of graphs depends on the complexity of the goal.

• The cognitive map implicitly defines the goal.

In contrast to the airport navigating model, where the goal is identified through a unique gate

name, the goal of the WWW navigating agent is defined through a number of features of the

target page (but not through a unique id). Thus, in our case study two or more different web

pages of the environment may function as goal for the WWW navigating agent. It depends on

Conceptual Features of The Wayfinding Agent 99

the applied wayfinding strategy, which goal (if there exist more than one in the domain) will

be reached.

6.3 The Decision Making Process

The decision making process as one of the internal operations plays a major role in the

proposed wayfinding model. We presume that the environment is unknown to the agent.

Therefore, assessing the utility of several sequential actions is not possible, and the decision

behavior of the abstract agent is based on evaluating the next single action, which is called

single-shot decision (Russell and Norvig 1995). The goals in both instances of the agent are

defined semantically as part of the cognitive map (sections 6.2.2 and 6.2.3). Therefore, and

for the fact that both environments offer semantic information on signs and links (we

summarize signs and links as signpost), the decision making process stresses the use of

semantic decision criteria. As both environments have metric properties (see sections 2.1.3

and 2.2.5), metric preference is also considered as part of the decision making model. Thus

the model includes both, multiattribute decision making and a two-step decision sequence

(section 3.3.2) within the decision process.

(1) The agent filters those signposts from the percepts which minimize the semantic

distance to the mental goal (semantic, goal-related decision criterion).

(2) If step (1) does not result in a unique decision, he takes the edge with the most

preferred direction (metric preference as part of a two-step decision sequence).

In chapter 7.5 we will describe the sub steps of semantic and metric decision making when

introducing the formalized wayfinding model. We will show how the semantics of the

operations is defined and where similarities and dissimilarities can be found between the two

specified instances. A simple example for the principal method of semantic decision making

has been given in section 6.2.2 (for the airport environment). In the following lines we explain

how metric preference is realized in each of the two environments of the case study.

For the wayfinding agent in an airport environment, the metric bias is modeled as

preferred directions within the agent’s egocentric reference frame. This reference frame is

represented through eight directions, i.e., front, back, left, right, and four directions in-

between (Figure 36a), i.e., the directions are modeled in 45° steps within an egocentric

reference frame. Each of the eight directions is given a corresponding preference value (bold

numbers in the figure). The direction in front is assigned the highest preference.

For the WWW-navigating agent, preference for metric decision making is modeled

through the position of the link on the screen (Figure 36b), giving the top-most link the best

Conceptual Features of The Wayfinding Agent 100

value. Compared to the airport navigation, metric decisions hereby are not influenced by a

local reference frame.

AGENT

5

3

1

7

2

6
4

8

7 6

3 2

5 4

8

1

(a)

(b)

Figure 36: (a) preference values (bold numbers) for directions within the agent’s egocentric reference
frame (from Raubal 2001b); (b) preference values for links on a user interface

6.4 Summary

At the beginning of this chapter we explained the structure of the wayfinding agent where fact

and beliefs are separated. Further we showed which of the agent’s components are involved in

internal or external operations.

Both agents have a cognitive map that implicitly expresses the definition of the goal and

permits them to assess the mental distance between the actual position and the goal. The

cognitive map consists of a list of hierarchically structured graphs, and its complexity depends

on the definition of the goal. We showed how to make use of the WordNet-ontology for

developing the abstract cognitive map of the WWW-navigating agent.

We described the basic steps of the agent’s decision behavior. Both instantiations take

the semantic distance between mental position and mental goal as semantic decision criterion,

and—in case of an undecided result—use metric preferences in addition. We showed how

metric bias is defined for both instantiations of the agent.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 101

 A FORMAL MODEL FOR AGENT-BASED
WAYFINDING IN THE REAL WORLD AND THE
WWW

CHAPTER

7

This section formalizes the conceptual model of the wayfinding agent using the syntax of

Haskell (Thompson 1996). The result is an executable agent-based computational model. Our

intention is to show that both the behavior of the abstract real world agent and the WWW

agent can be described as wayfinding, i.e., that the wayfinding axioms are satisfied for both

instances.

Haskell uses classes to structure the operations into semantically connected units. The

semantics of operations in a class can either be expressed through derived functions (i.e.,

independent of instances), or through axioms within an instance. The first method uses

parameterized data types in polymorph functions which are derived from other functions. The

class context (see section 4.7.4) gives constraints for the parameterized data types. The second

method uses instances that describe how to apply operations of a class to a particular data

type. If such data type includes disjoint parts (formalized as union data type, see section

4.5.4.2), the instantiation of the operation may have to be overloaded for each of the disjoint

parts (using pattern matching, see section 4.7.5).

In our simulation we use both methods to define the semantics of an operation, i.e.,

derived functions and instances. Those functions that we need for proving that the wayfinding

axioms are satisfied for both instances, express the same semantics for both instances (i.e., no

pattern matching over constructor functions of union data types is required). We explain those

algebraic specifications and data type definitions that are needed for the verification of the

axioms. All other details are left out.

In the description of the object hierarchy we use a top-down approach, starting with the

highest level of objects and operations. Thus, we first explain data types and operations

concerning the world, followed by a formal description of the environment and the agent.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 102

7.1 World

7.1.1 Structure of the World

The world represents the highest level in the object hierarchy of the simulated system. It

consists of three components: a time counter, an agent, and the environment (Figure 37). We

separate the agent from the environment (see section 3.3.1) so that the state of the

environment is not changed through the agent’s operations. The world is defined through the

following product data type:

data World = World Time Agent Environment

World

Time Agent Environment

Figure 37: Structure of the data type World

7.1.2 Operations in the World

The operations of the world are defined within the class WorldClass. We discuss the two

functions worldStep and iterateWorldStep. The class context gives constraints for the

parameter world. It says that the class CreateWorld must be instantiated for the data types

Time Agent Environment world. The class CreateWorld contains the createWorld function

which constructs a world of the data type World from its components. This function is part of

the worldStep function.

class (CreateWorld Time Agent Environment world) => WorldClass world where

 worldStep :: world -> world -- one sensePlanAct cycle

 iterateWorldStep :: world -> [world] -- complete wayfinding process

-- derived functions

worldStep world = createWorld (tick . getTime $ world)

 (sensePlanAct (getEnv world) (getAgent world)) (getEnv world)

iterateWorldStep world

 | (checkDegree (getEnv world) == True)

 = take (getNumberOfEdges world) (iterate worldStep world)

 | otherwise = error ("No decision points in the environment")

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 103

All activities of components of the world are triggered by the function worldStep that takes

the world as input and gives a (changed) world as result. The function triggers two single

events in the world:

• The time in the world is updated through calling the tick function. The tick function

sets the time +1.

• The agent (accessed by the getAgent function) is triggered to perform a complete

Sense-Plan-Act cycle through calling the sensePlanAct function.

The function worldStep shows that the environment stays unchanged within this operation:

The environment is accessed through the getEnv function from the world, and then put back

into the updated world within the createWorld function, in fact without applying any function

on the environment. Thus, the fourth wayfinding axiom (‘no impact on environment’, see

chapter 5) is satisfied.

The function iterateWorldStep uses an if-clause which checks if the degree of at least

one node in the environment > 2, i.e., if there is a decision point in the environment. This

testing routine is provided by the boolean checkDegree function. If the result of the condition

is True, the worldStep function is iterated until the program is terminated within the Sense-

Plan-Act cycle (e.g. through the agent reaching the goal). If the condition gives False, the

program is terminated with an error message before triggering the Sense-Plan-Act cycles.

checkDegree :: g e n -> Bool

checkDegree = any (> 2) . allDegrees

Figure 38 shows the hierarchy of sub functions of iterateWorldStep that are relevant for

proving the wayfinding axioms.

checkDegree

iterateWorldStep

tick sensePlanAct

worldStep

Figure 38: Sub functions of the iterateWorldStep function

7.2 The Environment

7.2.1 Nodes

Nodes represent places and decision points in the abstract environment. They are identified

with an integer number:

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 104

data Node = Node NodeId

type NodeId = Int

7.2.2 Edges

An edge in the environment is constructed with the parameterized constructor function E (see

section 4.5.4.3). An edge consists of a startnode with signpost, and the endnode with signpost.

data E n = E n SignPost n SignPost

A signpost contains metric information (the direction of the signpost) and semantic

information (that is matched with concepts in the cognitive map). The direction of the

signpost is given as an integer value. To express the case where no signpost is attached to an

edge (see Figure 2, section 2.1.3), an alternative with the 0-ary constructor function NoSign is

added to the data type.

data SignPost = S Direction Info | NoSign

type Direction = Int

The semantic information of a signpost (Figure 39) consists either of a gatesign (in the airport

environment) or a text string (in the WWW). These two alternatives are denoted as the

constructors InfoR and InfoW in the union data type Info. The data type Info is also used

within further objects of agent and environment, thus, these objects have disjoint parts (one

for the real world and one for the WWW). This affects among others the agent’s cognitive

map, mental position, mental goal, or decision.

data Info = Ir InfoR | Iw InfoW | NoInfo

type InfoR = GateSign

type InfoW = Text

type Text = String

Figure 39: Semantic information of airport sign and hyperlink

The distinction of gatesigns into three types is specified through the data type GateSign.

Corresponding to section 6.2.2, the components of its alternatives are the data types

GateSignSingle, GateSignList, or GateSignRange (see also Raubal 2001b).

data GateSign = GateSign GateSignSingle | GateSign1 GateSignList | GateSign2

GateSignRange

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 105

7.2.3 Graphs

The environments are abstracted as graphs that consist of a list of edges (see sections 2.1.4

and 2.2.6). Using a polymorph constructor function G a graph is formalized as

data G e n = G [e n]

We use a data type synonym for the environment, instantiating the parameterized data type e

with the constructor function E, and instantiating the parameter n with the data type Node.

type Environment = G E Node

In the visualization of the data type hierarchy of the environment (Figure 40), components of

data types are visualized within dashed boxes, whereas 0-ary data type constructors are

printed as text only.

Environment

Node Node SignPost SignPost

Direction | Info NoSign

| Text GateSign | NoInfo

Edge

Figure 40: Structure of the data type Environment

7.3 Agent Structure

The structure of the formalized agent corresponds to the conceptual model discussed in

section 6.1.

7.3.1 Fact and Beliefs

The data type hierarchy reflects the two-tiered conceptual model which separates fact and

beliefs (Figure 41). The facts (Fact) consist of the agent’s id (AgentId), position (Pos), and

previous position (PrevPos). The beliefs (Beliefs) are mental position (MentalPos), cognitive

map (CognitiveMap), percepts (Perceived), decision (Decision), preferences (Preferences),

and incoming direction (IncomingDir).

data Agent = Agent Fact Beliefs

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 106

data Fact = Fact AgentId Pos PrevPos

data Beliefs = Beliefs MentalPos CognitiveMap Perceived Decision

 Preferences IncomingDir

The data type synonym AgentId is an integer number, the data type Pos contains the type

Node (section 7.2.1), and the data type PrevPos is a type synonym for Pos.

type AgentId = Int

data Pos = Pos Node

type PrevPos = Pos

Agent

Fact Beliefs

MentalPos Perceived CognitiveMap Decision Preferences IncomingDir

(NodeM, NodeM)

AgentId PrevPos Pos

SignPost

(Direction,Preference)

| Direction NoIncDir
NodeM MentalEdge

Figure 41: Structure of the data type Agent

7.3.2 Mental Position

The mental position (MentalPos) consists of none or exactly one concept for each of the

graphs in the cognitive map, thus is abstracted as a list of mental nodes ([NodeM]). Hence, in

a cognitive map that is abstracted as one graph, the mental position is defined through one

single mental node, whereas in more complex cognitive maps, a list of several nodes describe

the mental position. At the beginning of the wayfinding process the mental position is an

empty list. The data type NodeM is a type synonym with the data type Info (see section 7.2.2),

thus, contains disjoint alternatives.

type MentalPos = [NodeM]

type NodeM = Info

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 107

7.3.3 Cognitive Map

The data type structure for the agent (Figure 41) shows that mental position and cognitive

map (including the mental goal) are separated, which is a condition for the second wayfinding

axiom (‘the agent has a goal’). The cognitive map is abstracted as a list of graphs (section

6.2.1). Each of these graphs consists of a list of mental edges that are defined through the

polymorph constructor function EM. A mental edge connects two arbitrary mental nodes n. In

the type synonym CognitiveMap, the parameter n is instantiated with the type NodeM.

type CognitiveMap = [G EM NodeM]

data EM n = EM n n

7.3.4 Perception

The agent’s percepts are formalized through the data type Perceive. As the agent perceives

signposts at a decision situation, the percepts are abstracted as a list of signposts (section

7.2.2).

type Perceived = [SignPost]

7.3.5 Decision

The data type Decision is used for the result of the decision function. In our model, a decision

is defined by the semantic information of the signpost, which the agent chooses for the next

step at a decision point. After a wayfinding step, the decision is reset and represented as the 0-

ary constructor function (NoInfo). The data type Decision is a type synonym for the data type

Info.

type Decision = Info

7.3.6 Preferences

The preferences evaluate the metric direction of signposts (section 6.3). They are given as a

list of tuples, each consisting of direction and the corresponding preference value.

type Preferences = [(Direction,Preference)]

type Preference = Int

7.3.7 Incoming Direction

The incoming direction is represented through the data type IncomingDir (see section 4.7.5).

It contains disjoint alternatives for the airport navigation and the WWW navigation.

data IncomingDir = IDir Direction | NoIncDir

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 108

7.4 External Operations

7.4.1 Class Definition and Derived Functions

The operations within a Sense-Plan-Act framework (sections 3.3.4 and 3.3.5) can be divided

into external and internal operations. This distinction is reflected by the used class structure.

External operations are represented in the class ExternalOps. In its class header, the

class includes two parameters, representing environment and agent. The class contains the

functions perceive and act, which take the parameterized agent and environment as input and

result in an agent with changed fact and beliefs. The sensePlanAct operation applies function

composition to perceive, decide (an internal operation, see section 7.5), and act. The three

functions are polymorph, and the semantics hereby is derived from other functions. The class

context lists conditions for its parameters env and agent, thus the parameters inherit their

behavior from other classes.

class (AgentPut Perceived agent, AgentPut Pos agent, AgentPut Fact agent,

AgentPut Int agent, AgentPut IncomingDir agent, AgentPut MentalPos agent,

EnvAgent env, InternalOps agent)

=> ExternalOps env agent where

perceive :: env -> agent -> agent

act :: env -> agent -> agent

sensePlanAct :: env -> agent -> agent

 -- derived functions

perceive env agent = putToAgent (perceiveAtPos env (getPos agent)) agent

act env a = putToAgent (setToZero (getDec a)) a5 where

 a5 = putToAgent (setToZero (getPerc a)) a4

 a4 = putToAgent (dirNext env (getPos a3) (getPrev a3) (getIncDir a3)) a3

 a3 = putToAgent (updatePosition env (getDec a2) (getPos a2)) a2

 a2 = putToAgent (updatePrev (getFact a1)) a1

 a1 = putToAgent (updateMentalPos (getPosM a) (getDec a) (getCM a)) a

sensePlanAct env = (act env) . decide . (perceive env)

7.4.2 The Class Context

The class context lists several classes that contain operations needed to execute the perceive,

act, and sensePlanAct function.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 109

The class AgentPut contains a function putToAgent that replaces a component of the

agent, and therefore contains two parameters in its class header.

class AgentPut p agent where

 putToAgent :: p -> agent -> agent

The class AgentGet (which is found within the context of the class InternalOps, see section

7.5) contains get-functions that are used to navigate the agent’s hierarchical data type

structure. They allow us to access components of the agent. For example, getCM returns the

agent’s cognitive map:

class AgentGet agent where

 getCM :: agent -> CognitiveMap

The class EnvAgent contains operations that take the environment and some of the agent’s

components as input: The perceiveAtPos function results in all signposts that the agent can

see from his actual position. The dirNext function gives the agent’s incoming direction in the

local reference frame if the agent enters a node; and updatePosition converts the agent’s

decision result into a movement to the next node.

class EnvAgent env where

 perceiveAtPos :: env -> Pos -> Perceived

 dirNext :: env -> Pos -> PrevPos -> IncomingDir -> IncomingDir

 updatePosition :: env -> Decision -> Pos -> Pos

instance EnvAgent Environment where

updatePosition env dec pos = sndNode p2 (edgeWithSignAndNode dec p2 env)

 where edgeWithSignAndNode dec p2 env =

 head ([e | e <- containNode pos env, containInfo e pos dec])

...

Besides the signatures of these three functions, we give the (simplified) instance for the

updatePosition function. This instance is necessary for proving the fifth wayfinding axiom

(‘order of actions’). As proposed in section 5.1.5, the important part of a decision to be

transformed into behavior is the right place. Within the transformation process, the agent

matches a mental image of the environment (i.e., the semantic content of a signpost as result

of the decision process) with the environment itself. Thus the environment is part of the input

parameters (see also section 3.3.5.2). The function updatePosition executes the following

steps:

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 110

• from the edges that are incident with the agent’s position (function containNode)

take the edge that contains a signpost with the information of the decision process

(containInfo)

• get the other node (sndNode) of this edge for the new position

The instance shows that an action is uniquely defined through its preceding decision (i.e.,

through the semantic content of the chosen sign) and the agent’s position. As a combination

of node id and perceived information is unique in an environment, each movement is unique

in the wayfinding process and cannot be replaced by another (i.e., the actions are ordered).

Further sub functions in act are the setToZero function and the updatePrev function.

The first one resets the agent’s percepts and decision after a performed move, whereas the

second one replaces the previous position with the actual agent’s position in the agent’s facts.

7.4.3 The Semantics of the External Operations

The semantics of the external operations is expressed as derived functions within the class

definition. Thus, for the airport case and the WWW case, all functions need to be formulated

only once (and not instantiated separately).

The perceive function calls the perceiveAtPos function. This function gets those signs

that can be perceived from a node. The principle of the perceiveAtPos function is visualized

in Figure 42. Within the perceive function, the new percepts replace the existing percepts in

the agent’s beliefs after having reached a new node.

Figure 42: The function perceiveAtPos

The act function consists of six sub steps that change the agent’s facts and beliefs. Some of

the sub steps use environment and agent as argument (dirNext, updatePosition), the other sub

steps are internal (setToZero, updateMentalPos, updatePrev) but also part of the agent’s

move.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 111

(1) Within the updateMentalPos function, the agent’s mental position is updated

corresponding to the semantic information of the sign that is chosen for the next step.

(2) The updatePrev function sets the previous position in the agent’s facts to the actual

position.

(3) The updatePosition function changes the agent’s position upon the decision (see

section 7.4.2).

(4) The dirNext function computes the incoming direction of the agent in the local

reference frame. For the WWW-navigating agent this function has no effect (see

section 6.3).

(5) The percepts are reset using the setToZero function.

(6) The decision is reset using the setToZero function.

7.5 The Agent’s Decision Process: An Internal Operation

The objective of this section is to demonstrate that the computational model satisfies the

second axiom (‘the agent has a goal’) and the third axiom (‘moving towards a goal’). We

restrict the explanations to those sub steps needed to demonstrate this.

The decide function is defined within the class InternalOps. It is applied after the

perceive function. The signature takes one parameter (denoting the agent) as input and output.

The class context gives constraints for the parameterized data type agent.

(AgentGet agent, AgentPut Decision agent)

=> InternalOps agent where

class InternalOps agent where

 decide :: agent -> agent

 decide agent

 = if isAtGoal (getMM agent) (getPerc agent) then error ("GOAL REACHED!")

 else putToAgent (composedDecision (getMM agent) (getPerc agent)

 (getPos agent) (getPref agent) (getIncDir agent)) agent

The operation contains an if-clause which checks if the agent has reached his goal (isAtGoal

function). The goal is reached if mental position and goal correspond. In this case, the

simulation is terminated with a message. Otherwise the execution is continued and the

composedDecision function is called. This function is defined in the class ComposedDec and

triggers semantic (semanticDecision) and metric (metricDecision) decision making. The

instance of the class composedDec shows that it takes some components of the agent’s beliefs

as input, thus represents an internal operation.

instance ComposedDec CognitiveMap Perceived Pos MentalPos Preferences

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 112

 IncomingDir where

composedDecision cm perc pos mpos pref inc

 = metricDecision pref inc (semanticDecision cm pos mpos perc)

As the goal in our case study is semantically defined, the semantic decision making process is

the interesting part for the proof. Metric decision making describes the agent’s bias

independently of the goal, therefore we skip its formal discussion. Figure 43 visualizes the so

far mentioned sub functions of the decide function.

isAtGoal

decide

composedDecision

semanticDecision metricDecision

Figure 43: Hierarchy of the decide function

7.5.1 Sub-Processes of Semantic Decision Making

Semantic decision making consists of three steps. The term ‘filter’ in the explanation means

to keep corresponding elements. The three steps are:

(1) filter those percepts of which the semantic information can be matched with a

concept in the cognitive map

(2) exclude those percepts from the decision alternatives that would result in ‘shifting

up’ the mental position in a hierarchical graph of the cognitive map, i.e., moving

away from the goal

(3) filter those percepts that have a minimal semantic distance to the corresponding

mental goal

Step (2) is the core for the proof of the third axiom (‘moving towards a goal’). The

implementation of step (3) shows that the goal can be extracted from the cognitive map, and

therefore proves the second axiom (‘the agent has a goal’). In our discussion we begin with

step (2), continue with step (3), and finally show that all three steps together represent the

complete semantic decision making process in the formal model.

7.5.2 Moving Towards the Goal

Step (2) of the above given enumeration filters those perceived signposts at a decision point

that lead the agent mentally closer to his goal. Thus, taking the path connected to such

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 113

signpost, decreases the semantic distance between the agent’s mental goal and mental

position. Further we find situations in environments where recurring signs confirm the agent

to be on the correct path. The content of such recurring signs is not semantically closer to the

agent’s mental goal than the content of previously perceived signs. Rather the distance stays

unchanged. Such a sign of constant, unchanged mental distance will then be chosen if other

signs are not available. This is the functionality of step (2).

As the abstract cognitive map consists of a list of mental graphs, the mental position is

defined through several concepts in the cognitive map—one for each graph (see section

7.3.2). As the mental position is an empty list at the beginning of the wayfinding process, the

positions within the mental graphs are initially undefined. During the wayfinding process they

are steadily filled through percepts from semantic information of signposts. The sub function

percHasNoMPos checks if the perceived semantic information has already a position in the

corresponding mental graph. If not, choosing a sign with such information for the next step

means approaching the goal. The filtering of perceived signs that lead the agent closer to the

goal is provided by the function filterDowns. It either chooses a sign that reduces the semantic

distance in one of the mental graphs (through using the filterDown function), or it chooses a

sign where there is no mental position in the corresponding graph so far (provided by the

percHasNoMPos function).

The function filterEquals filters signs that express the same (and not only shorter)

semantic distance to the goal compared to the actual mental position. The filterDownBoth

function calls the filterEquals function if the filterDowns function gives an empty list (i.e., the

agent does not move closer to the target but keeps the semantic distance). We summarize

these three essential operations in Table 7:

operation semantics
filterDowns filter perceived signs that lead the agent closer to the goal

filterEquals filter perceived signs that maintain semantic distance to goal

filterDownBoth if non-empty result, call filterDowns, else filterEquals

Table 7: Functions providing that the agent approaches the goal

class SemanticDownFilter cm node sp where

 filterDown :: cm -> [node] -> sp -> Bool

 filterDowns :: cm -> [node] -> [sp] -> [sp]

 filterEqual :: cm -> [node] -> sp -> Bool

 filterEquals :: cm -> [node] -> [sp] -> [sp]

 filterDownBoth :: cm -> [node] -> [sp] -> [sp]

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 114

instance SemanticDownFilter CognitiveMap NodeM SignPost where

filterDown cm (n:ns) sp

 | (goalForNode infoSp cm == goalForNode n cm)

 = mentalDist cm sp < mentalDist cm n

 | otherwise = filterDown cm ns sp

 where infoSp = getInfoSignPost sp

filterDowns cm mpos sps = [s | s <- sps,

 filterDown cm mpos s == True || percHasNoMPos cm s mpos == True]

filterEqual cm (n:ns) sp

 | (goalForNode infoSp cm == goalForNode n cm)

 = mentalDist cm sp == mentalDist cm n

 | otherwise = filterDown cm ns sp

 where infoSp = getInfoSignPost sp

filterEquals cm mpos sps = [s | s <- sps, filterEqual cm mpos s == True]

filterDownBoth cm mpos perc

 | f == [] = filterEquals cm mpos perc

 | otherwise = f

 where f = filterDowns cm mpos perc

The filterDown and FilterEqual functions are recursively defined. The central parts of these

functions are the boolean operators ‘<‘ and ‘==‘ applied on the mental distance. The

filterDown function compares the mental distance (mentalDist) between a perceived sign (sp)

and the goal, with the mental distance between the corresponding concept (n) in the semantic

position and the goal. The result is True (i.e., the perceived signpost provides a smaller

semantic distance to the goal than the actual position) if the first of the two values is the

smaller one (expressed by the ‘<‘ operation). The filterEqual function is equally defined,

except for replacing the ‘<‘ function with an equal sign.

7.5.3 The Semantic Distance to the Goal

We now have a closer look at how the mental distance is defined and computed. We show

that the goal is gained from the cognitive map and therefore separated from the mental

position (as claimed in the second wayfinding axiom). Hereby we look at the class

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 115

MentalPath that contains two functions, each with two parameterized data types in its

signature.

The mental distance (function mentalDist) is defined as the length of the list of nodes

(length function) that results from calculating the mental shortest path (using the

mentalShortPath function) between the semantic content of a perceived signpost and the

corresponding goal within the cognitive map. The mentalShortPath function in its

instantiation takes the cognitive map and a perceived signpost as input. It calls the

getPathFromTo function which calculates the shortest path between two nodes of a graph.

The function getPathFromTo uses three arguments: The first argument for the function

is the information content i of the perceived signpost (which corresponds to a node the

cognitive map). The second argument is the goal of the graph that contains the concept i

(function getGoalFromGraph), and the third argument is the graph of the cognitive map

where the shortest path is to be found, i.e., the graph that contains the concept i (function

graphWithNode). The getPathFromTo function is realized through the shortest path algorithm

by Dijkstra (see section 4.8.2).

class MentalPath cm sp where

 mentalShortPath :: cm -> sp -> [NodeM]

 mentalDist :: cm -> sp -> Int

instance MentalPath CognitiveMap Info where

 mentalShortPath cm i = getPathFromTo i (getGoalFromGraph graph) graph

 where graph = graphWithNode i cm

 mentalDist cm i = length (mentalShortPath cm i)

Figure 44 shows in a simple example the interplay of the discussed functions for getting the

utility of a perceived sign. The percept is the semantic content ‘a3’ of a signpost; the agent’s

cognitive map is abstracted through two graphs A and B. Function graphWithNode matches

the perceived ‘a3’ with the cognitive map and returns that the concept ‘a3’ is member of the

graph A. The getGoalFromGraph function computes the goal of graph A (i.e., ‘a1’), the

getPathFromTo function determines the shortest path between the perceived ‘a3’ and the goal

‘a1’, and mentalDist counts the number of elements in the resultant list of nodes (which is the

value for the semantic distance). These functions together allow the agent to evaluate the

utility of each sign perceived at an intersection. The functions show that the goal is calculated

from the mental map (getGoalFromGraph), and that therefore—together with the agent’s

structure (section 6.1)—the second axiom is satisfied. How the goal is calculated from each

graph (i.e., the semantics of the getGoalFromGraph function) is not relevant for the axiom.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 116

a2

a1

a4 a3

‘a3’ b2

b1

b3

A B

getPathFromTo :: a3 a1 ‘A’ => [a3, a2, a1]

getGoalFromGraph ‘A’

graphWithNode a3 cogMap

cogMap

mentalDist [a3, a2, a1] = 3

Figure 44: Computing the shortest mental path in the cognitive map for a perceived sign

7.5.4 Combining the Sub-steps

The function semanticDecision in the class SemanticDec unites steps (1), (2), and (3) of

semantic decision making introduced in section 7.5.1. It takes the agent’s cognitive map,

mental position, and percepts as input and results in signposts (i.e., percepts) with a minimum

semantic distance from their goal. Hereby filterPercs represents step (1), filterDownBoth

represents step (2), and semanticDistFilter represents step (3).

class SemanticDec cm mpos perc where

 semanticDecision :: cm -> mpos -> perc -> perc

instance SemanticDec CognitiveMap MentalPos Perceived where

 semanticDecision cm mpos perc

 | f == [] = error ("NO SIGN INFORMATION FOUND")

 | otherwise = semanticDistFilter cm f

 where f = filterDownBoth cm mpos (filterPercs cm perc)

The semanticDecision function has following effects: If the list of signposts that satisfy

criteria (1) and (2) is empty (f == []…), the program is terminated with an error message. In

this case, none of the perceived signposts can be used for further decision making. If the list is

not empty, the function semanticDistFilter is applied on matched (1) and ‘down-filtered’ (2)

signposts. The semantics of the operations is equal for both instantiations of agent as no

pattern matching on the constructor functions of disjoint alternatives is made.

A Formal Model for Agent-Based Wayfinding in the Real World and the WWW 117

 semanticDecision

filterPercs filterDownBoth semanticDistFilter

Figure 45: Functions involved in semantic decision making

7.6 Summary

In this section we formalized the conceptual model of a wayfinding agent. This resulted in a

set of executable specifications, which will be used in section 9 to simulate the wayfinding

process at the Vienna International Airport and in the Yahoo-domain.

We started with the definition of the world with its operations that trigger the agent’s

wayfinding process and the ticking of the world-time. Then we described the hierarchical

structure of the environment that provides semantic and metric information for the agent.

Next we specified the data types for the cognizing agent according to the conceptual

model, which distinguishes between fact and beliefs. Based on the Sense-Plan-Act framework

and the agent’s wayfinding strategies we defined the formal operations of the agent. These

operations are applied on the data types introduced before. The agent’s operations are

hierarchically structured through the used class structure and the sequence of function calls.

Differences in agent structure (expressed through union data types) and operations (realized

through pattern matching on constructor functions) between both instantiations do not affect

the proof that both abstract domains satisfy the wayfinding axioms. The parts needed for the

formal proof are homomorph.

Discussing the Computational Model 118

 8. DISCUSSING THE COMPUTATIONAL MODEL
CHAPTER

8

In this chapter we summarize the proofs that were given throughout the explanation of the

formalized wayfinding model. Further, we review the mapping process between the domains

as well as the functions within each domain concerning partiality and totality. Recalling the

formalized wayfinding model we discuss which of the formal tools that may be used to

express a metaphorical mapping have been implemented.

8.1 Verification of the Wayfinding Axioms

As the semantics of operations given in the functional model is either expressed through

derived functions (i.e., independent of their instantiation), or defined for the airport-agent and

the WWW-agent (without pattern matching over the constructor functions), proving

instantiations to satisfy the axioms could be done in one step for both instantiations.

ad axiom 1 (‘Decision points’): This axiom expresses a condition for the environment

with which the agent interacts, namely that the environment must include a node of degree >

2. In section 7.1.2 we have shown that the function checkDegree within the iterateWorldStep

function checks the environment for this condition. If the condition is not satisfied the

application will be terminated.

ad axiom 2 (‘The agent has a goal’): The agent’s beliefs separate the components

‘cognitive map’ and ‘mental position’ (section 7.3.1). As the goal is included in the cognitive

map (section 7.5.3), the goal is separated from the mental position. Mental position and goal

have different values throughout the wayfinding process (as claimed in the axiom). If they

correspond, the wayfinding process is terminated (see the decide function).

ad axiom 3 (‘Moving Towards a Goal’): We showed that the filterDownBoth function

(as part of semantic decision making) is applied within each decision process (section 7.5).

This function guarantees that the agent chooses only among those perceived signs for the next

step that either leads to a reduction of the mental distance between mental position and goal,

or that—for the case of ‘confirming’ signs—results in an unchanged mental distance to the

goal (section 7.5.2).

ad axiom 4 (‘No Impact on Environment’): The only operations where the environment

is part of the result are the worldStep function and the iterateWorldStep function. The latter

iterates the worldStep function. The worldStep function triggers both the ticking of the

Discussing the Computational Model 119

system-time, and the Sense-Plan-Act cycle of the agent (section 7.1.2). Within this function,

the environment component is read out from the world (getEnv world) and recomposed

(createWorld) unchanged with the other (changed) components into a new world. As no

operation is performed on the environment component, the environment stays unchanged

throughout the whole wayfinding process.

ad axiom 5 (‘order of actions’): In section 7.4.2 we discussed the updatePosition

function (as part of the act function) which transforms an action decision into a step. We

showed that each of the agent’s movements from one node to the other is uniquely defined

through the agent’s position (i.e., node) and a sign (i.e., the agent’s decision). Thus, steps are

ordered in the simulated wayfinding model and cannot be swapped.

8.2 Totality: Mappings and Functions

8.2.1 Totality of Mapping

We find several mappings in our approach: The wayfinding metaphor maps the semantics of

wayfinding in the real world to other (e.g., artificial) domains. Mapping the radial category

wayfinding to a set of axioms and thereby ‘forgetting’ some features of wayfinding in the real

world represents the idea of a forgetful functor. The morphism in the functional model maps

objects and operations between the two instantiations (Figure 22). A function, is said to be

total if it is defined for all arguments of the appropriate type. The opposite is a partial

function. What we are interested in, is whether the morphism in the functional model is total,

i.e., if it maps all functions and operations from one domain to the other. Total functions are

easy to handle because they can be combined with other functions without difficulties,

whereas partial functions (or mappings) require a condition to check if there is a valid result

before the result is used in another function.

The mapping of objects and operations between the two discussed domains is closely

related one to each other: A mapped function can only be executed if the required objects are

mapped. We discussed the object hierarchy of the world (section 7.1.1), the environment

(7.2.3), and the agent (section 7.3). The data type hierarchy uses the same components in its

upper levels for both instances (expressed through a product data type). Examples are the data

types Agent, Beliefs, or World. All operations in classes that are instantiated with such data

types are expressed through one single equation for both types of instances. Thus, the

operations and objects of this hierarchical level are homomorph between the two domains,

and the mapping is total. The mapping between instances of parameterized data types (e.g.,

the data types E n or G e n, section 7.2) is also total.

Discussing the Computational Model 120

Union data types (section 4.5.2) were used to express disjoint unions between elements

of a low hierarchical level. Examples are the data types IncomingDir or Info. The mapping of

one alternative to the other is total on this level (with some potential loss of information,

section 4.2.2). For operations that are accessing complete alternatives of a union data type

(i.e., no single components of the alternatives), the instantiation of the operation is defined

through pattern matching on the constructor of each alternative. Thus, the equations are also

totally mapped between both instances. We must be aware of the fact that a total mapping

function does not tell us anything about the semantics of the mapped function itself (except

for using the same data type signature).

The mapping of functions that operate on components of disjoint alternatives is partial.

For example, the getGateLetter function, which accesses a letter from the semantic

information of an airport sign (the semantic information is represented by a union data type),

is not defined for the Web environment, as the data type Gate is not part of the semantic

information in WWW environment.

getGateLetter (Gate l n) = l

Table 8 summarizes the schema of partial and total mapping of data types and their

functions. The first row expresses the case where a data type is equally defined for both

instances of agent or environment (total mapping), the second row shows operations on a

union data type (total mapping), and the third row describes the partial mapping of

components of disjoint alternatives (and corresponding operations).

data type mapping function mapping
data A = A... id f a = ... id

data C = C1...| C2... C1...=> C2... f(C1...) =

f(C2...) =

f(C1...)=>f(C2...)

data T = A a1 a2 a3 | B b1 b2

for a1 = b1, a2 /= b2

a1 => b1

a2 => b2

a3: no mapping

f1 a1,f2 a2,
f3 a3,f4 b1,
f5 b2

f1 a1 => f4 b1

f2 a2, f3 a3: no
mapping

Table 8: Total and partial mapping of components and corresponding functions

8.2.2 Totality of Functions

The data type Maybe (defined within the Haskell prelude) is to provide a method of dealing

with illegal or optional values without terminating the program, as would happen if error

were used, i.e., Maybe allows to make a function total. A correct result is encapsulated by

wrapping it in Just; an incorrect result is returned as Nothing. This data type is used in the

computational model to read out the utility of a metric direction from the preference-direction

Discussing the Computational Model 121

pairs (section 7.3.6), i.e., for the case that a perceived direction of a sign is not included in the

list of direction-utility-pairs (which is not the case in the data sets of the simulation).

data Maybe a = Nothing | Just a

The totality of all functions in the computational model can be checked through hierarchical

deriving of the totality in bottom-up direction (we do not show this for our model here). One

needs to start with checking the totality of basic Haskell functions that are used in user

defined functions (e.g., length is total, whereas head is not). If the basic functions used within

user-defined functions are partial, the user defined functions must provide an if-clause for

input values that may cause an error within the basic function. This is possible through

pattern matching (section 4.7.5). This concept is to be continued until the top-most function is

checked to be total.

We use pattern matching, among other purposes, to define recursive functions with lists

as input. An extra equation hereby treats the case of an empty list as input which would lead

to a runtime error. Due to sequential pattern matching in Haskell, the equations for ‘special’

values must be placed before the general cases. An example for a recursive function that uses

pattern matching is the matchGoal function. It checks if the information (getInfoSignPost) in

any of the agent’s percepts (p:ps) is equal to the mental goal (g). Through the first line (and

under the assumption that the applied sub functions are total, too) the matchGoal function is

made total.

matchGoal g [] = False

matchGoal g (p:ps)

 | g == getInfoSignPost p = True

 | otherwise = matchGoal g ps

8.3 Comparing Theory and Implementation

Functors, i.e., the lifting of functions between categories, play a role in the theory of

metaphors (section 4.4.2). In section 4.5.5 we gave formal examples implemented in Haskell.

Analyzing the functional model we see that neither functors nor natural transformations play

an important role in the proof of both instantiations satisfying the wayfinding axioms, or in

the discussion of mapping of semantics between the two instantiations. Few functors can be

found in the computational model as the actual code is more concrete than necessary. This

means that more data types (theoretically) could have been defined through parameterized

constructor functions (and therefore represent functors). The two reasons why we did not do

so are: First, a fully parameterized code leads to a higher complexity of the representation of

structures and corresponding operations. Proving the wayfinding axioms for two separate

Discussing the Computational Model 122

instantiations—one of the main goals of the thesis—would be hidden by the syntax of the

generalization mechanisms. Second, the type inference system of the Haskell compiler has

some limits in coping with generality.

The formal model does not give a functor- and category-based description of

morphisms between two domains. Instead we made explicit use of polymorph functions in

class declarations (derived functions), and instantiated operations that use one equation for

both instances. We also used the class context to express type inheritance between

parameterized data types—a step towards a fully parameterized type system. For proving the

axioms, we made use of the formal homomorphism between the two domains so that proving

did not need to be achieved separately for both instances.

8.4 Summary

We recalled the proofs that the wayfinding axioms are satisfied for both instantiations of

agent and environment. Those operations and objects that are needed for the proofs are totally

mapped between the two abstract domains. The mapping of operations which is defined on

components of disjoint unions of an agent is only partial and does not contribute to the proofs

given.

We also discussed partiality and totality on the level of operations. Haskell provides

methods to make partial operations total, the most frequently used being pattern matching.

When recalling the implemented formal methods, we saw that polymorphism and the class

structure play a dominant role in the formal description of the metaphor, whereas the concept

of functor is not found and therefore does not contribute to the formal description of a

metaphor in our formal model. This task can be considered as part of the future work.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 123

 9. SIMULATION OF THE WAYFINDING PROCESS
IN AN AIRPORT ENVIRONMENT AND THE
WWW

CHAPTER

9

In this section we test the formalized wayfinding model for being executable. The framework

of the test situation is given through the cases studies introduced in section 2. We start with

the construction of the simulated environmentsparts of the Vienna International Airport and

the Yahoo-Portaland continue with the definition of the wayfinding agents. The abstract

environments lack completeness of the real settings. Despite this, the data sets are extensive

enough to demonstrate the agents’ wayfinding behavior. For a better understanding of the

wayfinding strategy we will analyze some decision situations in detail.

Due to the structural commonalities between objects of both instantiations, we use the

same set of operations for creating the abstract world, environment, and agent in each of the

instantiations. We use data sets that make the agent reach his goal (which is not crucial for the

definition of ‘wayfinding’).

9.1 The Environments

The airport environment as well as the WWW environment are abstracted as static graphs

with non-labeled, directed or undirected edges (section 2.3). The graphs are identical in their

structure except for different data types denoting the semantic information on signposts

(section 7.2.2).

9.1.1 Area of the Simulated Airport Environment

In section 2.2.6, we introduced the structure of the abstract airport environment and listed the

semantic and metric properties of the included edges (Table 1). For creating the abstract graph

in Haskell, the raw data of the table are represented as a list of 4-tuples (named realStrings),

where each 4-tuple denotes an edge of the environment. A 4-tuple describes the id of the start

node of the edge (data type Int), the signpost at this node (data type SignPost), the id of the

end node, and the signpost at the end node. Directed edges (in the sense of being potentially

entered from one side only) have a value ‘NoSign’ instead of one of their signposts.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 124

The makeE function takes a single 4-tuple of the realStrings list and converts it into an

edge; the insertG function inserts a list into a graph. The function realGraph represents the

complete graph:

realGraph = foldr insertG (G []) (map makeE realStrings)

realStrings =

[(0,NoSign,1,NoSign),

(1,S 1 (Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly
‘D’)))),2,NoSign),

(2,S 0 (Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly
‘B’),(LetterOnly ‘C’),(LetterOnly ‘D’)]))),3, NoSign),

(3,S 1 (Ir (GateSign (GateSignSingle (LetterOnly ‘A’)))),4,NoSign),

(3,S 0 (Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly
‘C’)]))),5,NoSign),

(3,S 7 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly
‘C’)]))),6,NoSign),

(4,S 6 (Ir (GateSign (GateSignSingle (LetterOnly ‘C’)))),5, S 2 (Ir (GateSign
(GateSignSingle (LetterOnly ‘A’))))),

(5,S 6 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),6,S
2 (Ir (GateSign (GateSignSingle (LetterOnly ‘A’))))),

(6,S 6 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),7,
NoSign),

(7,S 6 (Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’
62)))),9,NoSign),

(7,S 5 (Ir (GateSign (GateSignSingle (LetterOnly ‘B’)))),8,NoSign),

(9,S 7 (Ir (GateSign (GateSignSingle1 (Gate ‘C’ 54)))),10,NoSign)]

For a better understanding of how we use the local reference frame, we visualize the edge that

is part of the given data set and printed in bold letters (see Figure 46). The edge has two nodes

with the ids 4 and 5 (first and third component). The second component indicates a sign ‘C’ in

direction 6 of the local reference frame of node 4, and the fourth component denotes a sign

‘A’ in the direction 2 of the local reference frame of node 5. Thus, the semantic and metric

information of the edge is expressed within these four components.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 125

Figure 46: Information of an edge

9.1.2 Area of the Simulated WWW Environment

In section 2.2.6 we introduced the abstracted test area of the Yahoo domain which is

represented as a graph with nodes and edges. We create the WWW graph similarly to the

airport graph (section 9.1.1); the raw data (Table 2) are also given as 4-tuples (webStrings).

The metric information of a signpost denotes the distance of the link to the upper margin of

the user interface (section 2.2.5), i.e., the metric position of a link is absolutely defined and

independent of a local reference frame. The complete graph is computed in the function

wwwGraph.

wwwGraph = foldr insertG (G []) (map makeE webStrings)

webStrings =

[(1,S 2 (Iw "do business"),2,S 1 (Iw "Home")),

(1,S 9 (Iw "recreate"),3,S 1 (Iw "Home")),

(2,S 2 (Iw "do shopping"),4,S 1 (Iw "do business")),

(3,S 19 (Iw "do sport"),5,S 3 (Iw "recreate")),

...

(17,S 1 (Iw "confirm"),25, NoSign),

(18,S 1 (Iw "confirm"),22, NoSign),

(19,S 1 (Iw "confirm"),23, NoSign),

(20,S 1 (Iw "confirm"), 24, NoSign)]

Simulation of the Wayfinding Process in an Airport Environment and the WWW 126

9.2 The Agents

9.2.1 Creating the Agent’s Cognitive Map

An agent’s cognitive map contains a list of mental graphs. Each of these graphs consists of a

list of mental edges with two mental nodes (section 7.3.3). As the data type of a mental node

(NodeM) is a synonym for the data type Info (section 7.2.2), a mental node represents a

gatesign for the airport navigating agent (Figure 33, section 6.2.2), and a text string for the

WWW navigating agent (Figure 35, section 6.2.3.6). The raw data of a graph are given as

tuples, consisting of either gatesigns (airport case) or text strings (WWW case). The function

makeEM converts a tuple into a mental edge.

For the airport case, the complete graph is computed within the function graphSigns. As

the cognitive map consists of one graph only, the list representing the cognitive map (cmapR)

contains one element (i.e., graphSigns). The content of the cognitive map corresponds to

Figure 33b (section 6.2.2).

cmapR :: CognitiveMap

cmapR = [graphSigns]

graphSigns = foldr insertG (G []) (map makeEM graphSignsS)

graphSignsS =

[(Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)])),
Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘B’),(LetterOnly
‘C’),(LetterOnly ‘D’)]))),

(Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)])),
Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘B’),(LetterOnly
‘C’),(LetterOnly ‘D’)]))),

(Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)])),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))),

(Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)])),
Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))),

(Ir (GateSign (GateSignSingle (LetterOnly ‘C’))),
Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),

(Ir (GateSign (GateSignSingle (LetterOnly ‘C’))),
Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)]))),

(Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’ 62))),
Ir (GateSign (GateSignSingle (LetterOnly ‘C’)))),

(Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’ 62))),Ir (GateSign
(GateSignSingle1 (Gate ‘C’ 54))))]

Creating a mental graph of the WWW navigating agent is similar to the airport case. The

cognitive map consists of five graphs (Figure 34), denoting user intended actions (graphUia),

physical object hierarchy (graphPhys), action affordances (graphAa), brand (graphBrand),

Simulation of the Wayfinding Process in an Airport Environment and the WWW 127

and size (graphSize). The complete cognitive map (see Figure 35) is computed within the

cmapW function.

cmapW :: CognitiveMap

cmapW = [graphUia, graphPhys, graphAa, graphBrand, graphSize]

graphUia = foldr insertG (G []) (map makeEM graphUiaS)

graphPhys = foldr insertG (G []) (map makeEM graphPhysS)

graphAa = foldr insertG (G []) (map makeEM graphAaS)

graphBrand = foldr insertG (G []) (map makeEM graphBrandS)

graphSize = foldr insertG (G []) (map makeEM graphSizeS)

graphUiaS = [(Iw "do shopping",Iw "confirm"), (Iw "do business",Iw "confirm")]

graphAaS = [(Iw "recreate",Iw "do sport"), (Iw "do sport",Iw "do track and
field"), (Iw "do track and field",Iw "running")]

graphPhysS = [(Iw "physical object",Iw "artifact"), (Iw "artifact",Iw
"covering"), (Iw "covering",Iw "clothing"), (Iw "clothing",Iw "footwear"),
(Iw "footwear",Iw "shoe")]

graphBrandS = [(Iw "brand",Iw "Adidas"), (Iw "brand",Iw "Converse"), (Iw
"brand",Iw "Reebok"), (Iw "Adidas",Iw "Nike"), (Iw "Reebok",Iw "Nike"), (Iw
"Converse",Iw "Nike")]

graphSizeS = [(Iw "size",Iw "10 1/2"),(Iw "10 1/2",Iw "10"),(Iw "10",Iw "9
1/2")]

In both instances, the agent’s goal is not explicitly given but computed from the cognitive

map through the getGoalFromGraph function (section 7.5.3).

9.2.2 Creating the Agent

This section shows how several components are composed into a whole simulated agent. For

the agent’s definition we use the previously defined cognitive maps (section 9.2.1). Union

data types for some of the agent’s components indicate disjoint unions between the two

agents.

An agent is created through the user-defined data type Agent (section 7.3). The

components of the agent are filled with the data listed behind the where clause. They

represent the agent’s state at the beginning of the navigation process.

The airport-navigating agent (called fred) has an id 1, its position is at node 1, the

previous position is the fictive node 0, the mental position is empty, his cognitive map

(cmapR) has been defined in section 9.2.1, the percepts are empty, no decision is yet made

(NoInfo), preferences correspond to Figure 36a (section 6.3), and the incoming direction is set

to 0.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 128

fred = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs mpos cm
perc dec pref inc)

 where aid = 1

 pos = 1

 prev = 0

 mpos = []

 cm = cmapR

 perc = []

 dec = NoInfo

 pref = [(1,1),(2,2),(3,4),(4,6),(5,8),(6,7),(7,5),(8,3)]

 inc = IDir 0

The wayfinding agent in the WWW (called charly) has identical components to the airport-

navigating agent except for the cognitive map, preferences, and the incoming direction: The id

is set to 1, the position is node 1, the previous position is node 0, the mental position is empty,

the cognitive map (cmapW) has been defined in section 9.2.1, the percepts are empty, and no

decision is yet made (NoInfo). The preferences reflect that upper elements on the user

interface is given a higher utility (Figure 36b, section 6.3); the incoming direction is

undefined (section 4.7.5).

charly = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs mpos cm
perc dec pref inc)

 where aid = 1

 pos = 1

 prev = 0

 mpos = []

 cm = cmapW

 perc = []

 dec = NoInfo

 pref =[(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),...
 ...(73,73),(74,74),(75,75),(76,76),(77,77),(78,78),(79,79)]

 inc = NoIncDir

9.3 The World

In the previous sections we discussed the creation of agent and environment for the

simulation. Besides these two components, the system time is part of the world. The world is

created through the user-defined data type World (section 7.1.1).

Simulation of the Wayfinding Process in an Airport Environment and the WWW 129

The world designed for the airport simulation consists of the real world navigating agent

fred (section 9.2.2), the airport environment realGraph (section 9.1.1), and a timer which is

initialized to the value 1.

worldAirport = World time agent g

 where time = 1

 agent = fred

 g = realGraph

The world designed for the WWW simulation consists of the WWW navigating agent charly

(section 9.2.2), the WWW environment wwwGraph (section 9.1.2), and a timer which is

initialized to the value 1.

worldWWW = World time agent g

 where time = 1

 agent = charly

 g = wwwGraph

9.4 Running the Simulation

The simulation of the navigation process is started with the sim function. It takes a data type

World as input and results in the type IO() which stands for Input/Output.

sim :: World -> IO()

sim world = putStrLn (showTitle ++ concat (map text (iterateWorldStep world)))

The sim function allows us to modify the output with a formatting function (function text) in

order to make it more readable for the user. The core of the function is the call of

iterateWorldStep (section 7.1.2).

9.4.1 Wayfinding in the Airport

In the first simulation we follow the simulated agent’s path through the abstract airport

environment. We start the simulation with the function sim and give it the world worldAirport

(see section 9.3) as input.

> sim worldAirport

TIME: 1

POSITION: 1

PREVNODE: 0

MENTAL POSTION:

INCOMINGDIR: 0

Simulation of the Wayfinding Process in an Airport Environment and the WWW 130

TIME: 2

POSITION: 2

PREVNODE: 1

MENTAL POSTION: ‘A’ - ‘D’

INCOMINGDIR: 5

TIME: 3

POSITION: 3

PREVNODE: 2

MENTAL POSTION: ‘A’ ‘B’ ‘C’ ‘D’

INCOMINGDIR: 4

TIME: 4

POSITION: 5

PREVNODE: 3

MENTAL POSTION: ‘A’ ‘C’

INCOMINGDIR: 4

TIME: 5

POSITION: 6

PREVNODE: 5

MENTAL POSTION: ‘B’ ‘C’

INCOMINGDIR: 2

TIME: 6

POSITION: 7

PREVNODE: 6

MENTAL POSTION: ‘B’ ‘C’

INCOMINGDIR: 2

Simulation of the Wayfinding Process in an Airport Environment and the WWW 131

TIME: 7

POSITION: 9

PREVNODE: 7

MENTAL POSTION: ‘C’51 - ‘C’62

INCOMINGDIR: 2

TIME: 8

POSITION: 10

PREVNODE: 9

MENTAL POSTION: ‘C’54

INCOMINGDIR: 3

program error: AGENT HAS REACHED GOAL !

The output shows time, position, previous position, mental position, and the incoming

direction of the agent for each step that is made during the wayfinding process. The last line

says that the agent has successfully reached his goal, i.e., perceived the sign ‘C 54’ (section

2.1.1). The chosen path during the simulation is visualized in Figure 47 (bold line). The 2-step

decision making strategy using semantic decision criteria and metric preferences is

successfully applied for the given task.

Check-in

8
7

6 5
4

9

1

3

2

C54 10

Figure 47: Visited nodes in the airport environment during a complete navigation process

Analyzing the agent’s mental position after each step and comparing it with the agent’s

cognitive map (Figure 33b), we see that the mental position either changes towards the mental

Simulation of the Wayfinding Process in an Airport Environment and the WWW 132

goal ‘C 54’ within a step (steps 1-2, 3-5, 7-9, 9-10), or keeps the mental distance from the

goal (steps 2-3, 5-6, 6-7).

We give an example for both types of steps and start with the decision situation at node

3 in the airport graph (Figure 47). This situation requires the use of metric preferences in

addition to semantic decision criteria. The agent’s mental position is at ‘A, B, C, D’ (see the

simulation), visualized in Figure 48a in the cognitive map. In Figure 48b the agent’s position

in the environment is denoted by a grey circle. The agent’s local reference frame is visualized

as a star of arrows—direction 1 pointing to the agent’s front, direction 5 pointing to the

agent’s previous position (backwards). The agent perceives the signs ‘A’, ‘A,C’ and ‘B,C’,

each from a different direction.

mental position

(a)

percepts

(b)

Figure 48: Agent’s mental position (a) and percepts in the agent’s local reference at node 3

The first step of the decision process (semantic decision making) filters the signs which do

not lead the agent farer away from his goal (section 7.5.1). Analyzing the agent’s cognitive

map (Figure 48a) we see that the signs ‘A,C’ and ‘B,C’ fulfill this criterion—both concepts

are three edges distant from the mental goal—whereas the actual mental position is four steps

from the goal. The concept ‘A’ is not included in the mental map and therefore the mental

distance between ‘A’ and the goal is infinite. Due to the same utility of signs ‘A,C’ and ‘B,C’,

metric bias is required for the decision making process. As the front direction 1 (coinciding

with sign ‘A’C’) is given the highest preference value, the agent finally chooses the path

indicated by the sign ‘A,C’. The mental position changes according to the content of the

chosen sign (Figure 48a).

The next case describes the decision situation at node 6. When reaching this node, the

agent’s mental position is at ‘B,C’ (Figure 49a). The only sign that can be perceived is ‘B, C’

(Figure 49b). This sign confirms the agent to be on the correct path. Thus, the agent chooses

Simulation of the Wayfinding Process in an Airport Environment and the WWW 133

the path with this sign attached. The agent’s mental position stays unchanged after the next

step.

mental position

(a)

percepts

(b)

Figure 49: Mental position (a) confirmed through percepts (b) (photo: M. Raubal)

9.4.2 Wayfinding in the WWW

The next test case simulates wayfinding in the Yahoo-domain. The simulation is started with

the sim function which takes the world worldWWW (see section 9.3) as input.

> sim worldWWW

TIME: 1

POSITION: 1

PREVNODE: 0

MENTAL POSTION:

INCOMINGDIR: No IncDir

TIME: 2

POSITION: 2

PREVNODE: 1

MENTAL POSTION: do business;

INCOMINGDIR: No IncDir

Simulation of the Wayfinding Process in an Airport Environment and the WWW 134

TIME: 3

POSITION: 4

PREVNODE: 2

MENTAL POSTION: do shopping;

INCOMINGDIR: No IncDir

TIME: 4

POSITION: 6

PREVNODE: 4

MENTAL POSTION: clothing; do shopping;

INCOMINGDIR: No IncDir

TIME: 5

POSITION: 11

PREVNODE: 6

MENTAL POSTION: shoe; do shopping;

INCOMINGDIR: No IncDir

TIME: 6

POSITION: 15

PREVNODE: 11

MENTAL POSTION: do sport; shoe; do shopping;

INCOMINGDIR: No IncDir

TIME: 7

POSITION: 17

PREVNODE: 15

MENTAL POSTION: running; shoe; do shopping;

INCOMINGDIR: No IncDir

Simulation of the Wayfinding Process in an Airport Environment and the WWW 135

TIME: 8

POSITION: 25

PREVNODE: 17

MENTAL POSTION: running; shoe; confirm;

INCOMINGDIR: No IncDir

Program error: AGENT HAS REACHED GOAL !

As for the airport navigating agent, each step is described through time-slot, position,

previous node, mental position, and incoming direction where the incoming direction is

undefined at each position (see section 4.7.5). The last line of the result shows that the agent

has reached his goal. This means that the agent has perceived the ‘confirm’ link (section

6.2.3.5). The visited nodes during the wayfinding process are visualized in Figure 50.

Corresponding to the simulation of the airport navigating agent, the mental position is

empty at the beginning of the wayfinding process. Except for the step 2-4, the mental position

changes with each step towards the mental goal.

We have a closer look at a decision situation that applies a two-step decision sequence

(semantic and metric decision making), similarly to the discussed situation at node 3 in the

airport environment.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 136

Figure 50: Visited nodes during the wayfinding simulation in the WWW

Let the agent’s position be at the web page with the id 11 within the Web environment (Figure

50). The agent’s mental position, which consists of the concept ‘shoe’ for the graph of the

physical object hierarchy, and the concept ‘do shopping’ for the user intended actions is

visualized through circles in the cognitive map (Figure 52). Out of the many links offered at

node 11 (see the screen shot in Figure 51) we take three links that are related to the agent’s

goal (uplink ‘clothing’, and downlinks ‘do sport’ and ‘brand’). We consider ‘apparel’ and

‘clothing’ as synonyms, as well as ‘athletic shoes’ and ‘sport shoes’. Among the three links,

‘clothing’ is top most, and ‘brand’ is bottom-most on the user interface. The positions of the

corresponding concepts in the cognitive map (Figure 52) are visualized as dashed circles.

Simulation of the Wayfinding Process in an Airport Environment and the WWW 137

Figure 51: Decision alternatives at node 11

During semantic decision making, the percept of the uplink ‘clothing’ is skipped from further

considerations, as it would lead the agent away from the goal: The mental position ‘shoe’ in

the cognitive map is closer to the target than ‘clothing’. The mental position in the graphs of

the other two remaining concepts (‘do sport’ and ‘brand’) has not been defined so far. Thus,

these concepts would lead the agent closer to the goal, and are therefore valid candidates for

the further decision making process. The cognitive map shows that the semantic distance

between each of the two concepts and their corresponding goals (i.e., the concepts ‘running’

and ‘Nike’) amounts to 2 steps, thus metric preference is required. As the link ‘do sport’ is

more to the top than the link ‘brand’, the metric criterion gives a unique result, and the link

‘do sport’ is finally chosen for the next step.

Figure 52: Applying semantic and metric decision making in a two-step decision sequence

Simulation of the Wayfinding Process in an Airport Environment and the WWW 138

9.5 Summary

This section simulated wayfinding at the Vienna International Airport and in the Yahoo-

domain. The abstract agents completed the tasks given in the case studies (chapter 2). The

simulation is an execution of the formal model that is hereby extended with two different data

sets—one for each instantiation. The data sets describe the abstract settings (sections 2.1.4

and 2.2.6), the abstract cognitive maps (sections 6.2.2 and 6.2.3), and the agents’ preferences

(section 6.3).

After running the simulation, some decision points were analyzed in detail for a better

understanding of the applied wayfinding strategies. The results show that—with the chosen

data sets and strategy—the agent’s mental position during each step either stays in equal

distance from the mental goal or approaches the mental goal. We see that one single strategy

(a combination of semantic and metric decision making) can be applied for both agents in

different environments. The simulation demonstrates that the formal model presented in

section 7 is executable.

Conclusions and Future Work 139

 10. CONCLUSIONS AND FUTURE WORK
CHAPTER

10

At the beginning of this section we summarize the research done in this thesis. It describes all

the stages we went through for

• defining the semantics of wayfinding

• formalizing the wayfinding metaphor

• simulating wayfinding in the real world and the WWW

• proving that the semantics of wayfinding can be mapped to the Web space.

We then present the results and major findings of our work. Finally, we propose various

directions for future research.

10.1 Summary

The goal of the thesis was to find out whether the term ‘wayfinding’ can be used in the

WWW. We hereby described the semantics of the term ‘wayfinding’ in its original domain,

i.e., in the physical world, through a set of axioms. Within a formalized wayfinding model we

could show that both instances—abstract wayfinding in an airport environment and a Web

domain—satisfy these axioms. From this we conclude that the term wayfinding can be used

for the WWW, and moreover in any other domain that fulfills the wayfinding axioms.

The case studies in chapter 2 introduced two specific settings of those domains for

which the possibility of mapping the term wayfinding could be shown: As representative for

the physical world, we explained peculiarities of airport environments and introduced the

abstract structure of the Vienna International Airport. As representative of a test area in the

WWW-simulation we visualized a part of the abstract directory structure of the Yahoo!-

Search Engine-domain and gave a classification of searching methods in the WWW. We

defined the agent’s task, looked at the two-layered ontology of both environments, and

pointed out further conceptual similarities between the two testing areas. Although the

wayfinding metaphor is invariant under the type of wayfinding environment, the two case

studies are helpful for the explanation and illustration of the agent’s conceptual wayfinding

model.

Conclusions and Future Work 140

Describing the mapping of wayfinding semantics into abstract domains is an

interdisciplinary endeavor. As a starting point we looked at theories and concepts from

different scientific fields (chapter 3). We introduced metaphor theory where we focused

especially on how the semantics of a domain is defined and how the semantics is mapped

between domains in the various models. When discussing wayfinding theory we analyzed a

number of wayfinding definitions in the literature in order to get an idea of the central

meaning of the radial category wayfinding. For building the conceptual wayfinding model we

further looked at cognitive models of space, epistemological models found for wayfinding in

the real world and the Web space, and theories of spatial decision making. As we use an agent

based approach for the wayfinding simulation, we looked at abstract architectures of agents,

the Sense-Plan-Act paradigm, and properties of real and abstract environments.

In chapter 4 we introduced those tools and concepts that are needed to express the

semantics of wayfinding and its metaphorical use in a formal manner. Algebraic

specifications, type systems, and morphisms are the essential ingredients for a formal

description of the wayfinding metaphor. The implementation is made in Haskell, a functional

programming language. We used category theory and functors to describe the principle of

metaphors rather than as the basis for a formal description within the computational model.

Graph theory is needed for the abstraction of the settings chosen for the case studies, and for

the description of the agent’s wayfinding behavior on an abstract level.

In chapter 5 we gave informal and formal descriptions of the semantics of the term

wayfinding with the help of a set of axioms. We tried to focus on the central and common

meaning of the term—independent of decision strategies and particulars of the environment.

Chapter 6 discussed conceptual features of the wayfinding agent with a focus on the

agent’s structure and cognitive map, the connection between cognitive map and goal, and the

influence of the goal definition on the applied decision making strategy.

In chapter 7 we formalized the conceptual model of wayfinding in two parallel

instantiations—one for wayfinding in an airport environment, the other for wayfinding in a

Web domain. The formal model reflects the conceptual commonalities between wayfinding in

these two environments. The model gives a formal abstraction of a wayfinding agent that

follows the Sense-Plan-Act paradigm, uses a two-tiered conceptual fact and beliefs

computational model, interacts with the abstract environment, and applies semantic decision

criteria combined with metric preferences for wayfinding decisions. With the help of the

functional model we demonstrated the mapping of essential objects and operations between

the two instantiations to be homomorph.

Conclusions and Future Work 141

In chapter 8 we analyzed the formal model. We summarized the proofs that the

wayfinding axioms are satisfied for both domains. We showed which parts of a formal model

in Haskell are totally mapped between the two instantiations. These parts include functions

and operations that behave homomorph and are relevant for the prove of the wayfinding

axioms to be satisfied in both instances. We discussed which of the theories introduced in the

‘formal tools’-chapter have been used for proving the hypothesis, and which provided

theoretical background.

The simulations in chapter 9 demonstrate that the formalized code is executable for both

types of agents and environments. Some decision points were discussed in detail to make the

applied wayfinding strategies more intelligible to the reader.

10.2 Results and Major Findings

The major result of this thesis is providing a theory to explain why a term does or does not

express metaphorical use. The semantics of the term in the source domain hereby is defined

through the behavior of involved objects and operations. This behavior which represents

minimum requirements of the source domain need to be transferred to the target domain so

that the term can be used in a metaphorical sense. For the methodology of proving we

suggested a formal approach (Figure 53): The axioms that define the semantics of the term in

the source domain are formalized. Further the target-domain needs to be abstracted and

checked for satisfying the formalized axioms. If the axioms are satisfied, the term or phrase

can be used in the target domain.

Figure 53: Method of proofing the metaphorical use of a term or phrase

Another major result is the ‘product’ created in this theses, i.e., a computational wayfinding

model with two parallel instantiations. Using the model we could show that the proposed

methodology of defining and abstracting the semantics of a term, abstracting source and target

domain, and formally proving a set of axioms in both abstract domains, can be achieved. We

utilized formal tools such as algebraic specifications, polymorphism, an object oriented style

with the help of classes, and function composition as part of category theory.

Conclusions and Future Work 142

10.2.1 The Semantics of Wayfinding

We expressed central features of the term wayfinding within the following five axioms:

(1) The environment contains decision points.

(2) The wayfinding person has a goal.

(3) The wayfinding person intends to move towards the goal.

(4) Wayfinding has no impact on the state of the environment.

(5) Wayfinding comprises ordered activities.

The axioms reveal that the semantics of wayfinding is independent of following particularities

of the wayfinding process and the environment:

• wayfinding strategy

• representation of goal

• grade of familiarity with the environment

• ‘material’ of environment (e.g., physical, virtual, textual, semantic basis)

• reaching the goal

• existence of the goal

This generality of the wayfinding axioms allows mapping of these minimum requirements to

other abstract domains.

Using the semantics of the wayfinding axioms we can now explain why the improperly

used phrases in the introduction chapter (section 1.4) make problems in their metaphorical

use.

ad “Sie findet ihren Weg durchs Leben”: As the phrase does not express that life has a

goal (and this cannot be taken as a general assumption), the goal is missing here (fails axiom

2). Thus, the phrase can also not express the person’s intention to reach the (non-existent)

goal (fails axiom 3).

ad “Ich finde meinen Weg durch das Turnier”: Here, the environment does not provide

decision points (fails axiom 1), as the participant can (usually) not choose between his

opponents.

10.2.2 Formalized Wayfinding Model

The formalized agent based model consists of algebraic specifications that allow for

describing the structure of abstract data types and their operations. Thus, the algebraic

Conclusions and Future Work 143

specifications are particularly suited for the representation of change that is an essential part

of the conceptual model.

The agent’s operations are separated into external and internal operations which all

result in a change of the agent’s state. The model describes equal semantics for parts of both

instantiations as the operations are expressed through the same equation for both agent types.

These parts behave homomorph and are totally mapped. Disjoint unions between both

instantiations are represented as union data types. Functions applied on these parts are totally

mapped but may semantically be different one from each other. These differences were shown

not to influence the proof that both instantiations satisfy the wayfinding axioms. We think that

such an ‘incompleteness’ between both domains involved in a metaphor is typical: If source

and target domain were completely equal, no metaphorical mapping would be needed.

The formal wayfinding model showed that wayfinding in the real world and the WWW

have several common concepts. When abstracting both domains as formal models and

generalizing the wayfinding process independent of particularities of both domains,

conceptual similarities were found among others in the decision making process, the interplay

of perceived information and knowledge, the definition of the goal, and the sequence of

involved sub-processes. The result of the abstraction process allows one to determine those

invariants of wayfinding that are not restricted to the physical world but can also be used in

the Web space.

Within the formal model we showed how the agent’s epistemology and the ontology of

the environment interact, and discussed the role of affordances in both domains. We found out

that—due to differences in the physical basis of the two discussed domains—different

affordances are offered by the two different types of environments. In the abstract model,

these differences disappear (at least the hierarchical level of interest), and thus the

affordances, i.e., the representation of objects in the agent’s behavior, are formalized equally

as operations in both types of agent.

10.3 Future Work and Open Questions

We have restricted to one metaphor, i.e., the wayfinding metaphor. We proposed a method to

define the semantics of the source domain through a set of axioms, and to check if these

axioms are satisfied in the target domain. To evaluate the proposed method, future work

includes testing this method—i.e., finding a set of axioms—for other metaphors. Then the

proposed method may be improved, and potential methodological problems may be detected

and discussed. It is of further interest, to find out if all types of metaphors (see section 3.1.2)

can be formalized and characterized in the presented way.

Conclusions and Future Work 144

In this respect, numerous open questions remain: Can the formalization of concepts in

the source-domain be accomplished for both nouns and verbs in the source domain? Take for

example the metaphor ‘the family is a nest’. The interpretation of the vehicle-concept ‘nest’

may be difficult to formalize through axioms as it represents static properties rather than

operations (‘nest’ is no process but an object). The question that emerges here is if static

properties can be expressed as operations and formalized as axioms. Moreover, associations

with a vehicle concept may be of qualitative and emotional origin (such as ‘warmth’ or ‘well-

being’ for ‘nest’) which may require another approach for their formalization. This question

seems to be a relevant point for metaphor theory as physical and subjective experience with

the external world is considered an essential part of metaphorical thought (Lakoff and

Johnson 1980).

In metaphorical language, two concepts are combined so that they form a new concept.

For example, in the metaphor ‘marriage is a nightmare’, both marriage and nightmare acquire

a different meaning, where one reflects the nightmarish aspects of marriage and the other

reflects the marriage-like quality of a nightmare (meaning unpleasant things that happen to

you whether you want them or not). Can this melting process be described on an axiomatic

level, similar to rules for blending of conceptual spaces (Fauconnier and Turner 1996;

Fauconnier 1997)?

A further question is: Do axioms always have to be completely satisfied in the target

domain to give a correct metaphor? Are there exceptions in specific contexts where only a

part of the axioms is needed to make correct use of a term? Consider the examples ‘theories

are buildings’ (see section 3.1.3) or ‘man is a wolf’. For the latter example, the feature

‘predator’, has to be reinstantiated in the semantic domain of the tenor, i.e., not all parts of

being a predator can be mapped, depending on the context of the situation where the metaphor

is used. The question (as for most metaphors) is: Which axioms have to be fulfilled in the

context of the target domain?

Metaphor theory plays a role in user interface design and human computer interaction

(Carroll and Rosson 1994; Goguen 1999). This holds specifically for spatial metaphors (e.g.,

Dieberger 1994; Sorrows and Hirtle 1999; Fabrikant 2000). Our method shows a direction

that may help to clarify if concepts of the daily life are correctly mapped from the physical

world to the computer environment, i.e., if their use corresponds to the idea of user interface

metaphor. It is an open question and part of future work to determine to which extent the

presented approach is useful to support related fields, e.g., the theory of sign systems or

landmark theory.

Conclusions and Future Work 145

Another challenge for future work is a formal one. We claimed category theory and

functors to be useful tools to formulate the semantics of a domain and the mapping process of

semantics between two domains. Category theory has a high level of abstractness, and it

requires much experience to become familiar with its concepts so that one can use them

productively. In this thesis, we presented a categorical point of view several times, and used it

once within the axioms. We theoretically discussed potential advantages of categorical theory,

but hardly made any use of this theory for proving the hypothesis. A part of future work

therefore will be the attempt to utilize the concepts of category theory and functors within

various tasks to describe the similarity of domains. For metaphor theory such approach may

give more abstract and generalized results than those presented in this thesis.

In order to assess the results of the simulation applied to the case studies, one needs to

compare them to the results of human subjects testing in the real world and the WWW—at

least for the tasks given in the case studies. The formalized wayfinding model used in this

thesis underlies simplifications and specific assumptions. Several human factors that may

influence human decision behavior (e.g., emotions or stress) were left out, on the one side, as

these factors are extremely difficult to handle in a model, and on the other side, to focus on

the basic parts of a decision process. Despite this, human subjects testing may help to check

the proposed wayfinding strategy for its actual use in the real world and the WWW, and it

may be useful to find out if the utility function gives plausible results.

References 146

REFERENCES

Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications.
Englewood Cliffs, NJ, Prentice Hall.

Allen, G. L. (1999). Spatial Abilities, Cognitive Maps, and Wayfinding. Wayfinding Behavior: Cognitive
Mapping and Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins Press: 46-
80.

Arthur, P. and Passini, R. (1992). Wayfinding: People, Signs, and Architecture. Toronto, McGraw-Hill Ryerson.

Backus, J. (1978). Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its
Algebra of Programs. CACM 21: 613-641.

Baez, J. C. (1999). Higher-Dimensional Algebra and Planck-Scale Physics. Physics Meets Philosophy at the
Planck Scale. C. Callender and N. Huggett (eds.), Cambridge U. Press.

Bird, R. and de Moor, O. (1997). Algebra of Programming. London, Prentice Hall Europe.

Bird, R. and Wadler, P. (1988). Introduction to Functional Programming. Exeter, BPC Wheatons Ltd.

Birkhoff, G. (1945). Universal Algebra. First Canadian Math. Congress, Toronto University Press.

Bittner, S. (2001). An agent-based model of reality in a cadastre. Institute for Geoinformation Vienna, Austria,
Technical University Vienna. PhD Thesis.

Black, M. (1979). More about metaphor. Metaphor and Thought. A. Ortony (ed.). New York, Cambridge
University Press: 19-43.

Black, P. E. and Tanenbaum, P. J. (2001). Dictionary of Algorithms, Data Structures, and Problems.
http://www.nist.gov/dads/

Blades, M. (1991). Wayfinding Theory and Research: The Need for a New Approach. Cognitive and Linguistic
Aspects of Geographic Space. D. Mark and A. Frank (eds.). Dordrecht, The Netherlands, Kluwer
Academic Publishers. 63: 137-165.

Bovy, P. H. L. and Stern, E. (1990). Route choice: Wayfinding in transport networks. Dordrecht, Kluwer
Academic.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and
Automation 2: 14-23.

Brooks, R. A. (1991). Intelligence without reason. International Joint Conference on Artificial Intelligence.

Car, A. (1996). Hierarchical Wayfinding - A Model and its Formalization. ESF - GISDATA Summer Institute,
Berlin.

Cardelli, L. (1997). Type Systems. Handbook of Computer Science and Engineering. A. B. Tucker (ed.), CRC
Press: 2208-2236.

Cardelli, L. and Wegner, P. (1985). On Understanding Types, Data Abstraction, and Polymorphism. ACM
Computing Surveys 17(4): 471 - 522.

Carroll, J. M., Mack, R. L. and Kellogg, W. A. (1988). Interface Metaphors and User Interface Design.
Handbook of Human-Computer Interaction. M. Helander (ed.), Elsevier: 67-85.

Carroll, J. M. and Rosson, M. B. (1994). Putting Metaphors to Work. Graphics Interface ‘94, Banff, Alberta; 18-
20 May 1994, Canadian Human-Computer Communications Society.

Casakin, H., Barkowsky, T., Klippel, A. and Freksa, C. (2000). Schematic Maps as Wayfinding Aids. Spatial
Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.). Berlin, Springer: 54-71.

Cashell, K. (1998). Attempt to Understand Wittgenstein’s picture of Theory of the Proposition. Minerva - An
Internet Journal of Philosophy 2.

Chandrasekaran, B., Josephson, J. and Benjamins, R. (1999). What Are Ontologies, and Why Do We Need
Them? IEEE Intelligent Systems 1: 20-26.

Cornell, E. and Heth, C. (2000). Route learning and wayfinding. Cognitive Mapping - Past, present and future.
R. Kitchin and S. Freundschuh (eds.). London, Routledge: 66-83.

Davis, E. (1990). Representations of Commonsense Knowledge. San Mateo, California, Morgan Kaufmann
Publishers.

References 147

Dieberger, A. (1994). Navigation in Textual Virtual Environments using a City Metaphor. Department for
Design and Assessment of Technology Vienna, University of Technology. PhD-Thesis.

Dieberger, A. (1998). Social Connotations of Spatial Metaphors and Their Influence on (Direct) Social
Navigation. Workshop on Personalized and Social Navigation in Information Space. K. Hook, A.
Munro and D. Benyon (eds.). Kista, Sweden, Swedish Institute of Computer Science.

Downs, R. and Stea, D. (1977). Maps in Minds: Reflections on Cognitive Mapping. New York, Harper and Row.

Downs, R. M. and Stea, S. (1973). Cognitive maps and spatial behavior: process and product. Image and
Environment. R. M. Downs and S. Stea (eds.). Chicago, Aldine.

Ehrich, H.-D., Gogolla, M. and Lipeck, U. W. (1989). Algebraische Spezifikation abstrakter Datentypen.
Stuttgart, B.G. Teubner.

Eilenberg, S. and Lane, S. M. (1945). General theory of natural equivalences. Transactions of the A.M.S. 58:
231-294.

Ellis, D. (1989). A Behavioral Model for Information Retrieval System Design. Journal of Information Science
15(4/5): 237-247.

Ellis, D. and Haugan, M. (1997). Modelling the Information Seeking Patterns of Engineers and Research
Scientists in an Industrial Environment. Journal of Documentation 53(4): 384-403.

Fabrikant, S. (2000). Spatial Metaphors for Browsing Large Data Archieves. Department of Geography,
University of Colorado. PhD-Thesis.

Fauconnier, G. (1997). Mappings in Thought and Language. Cambridge, Cambridge University Press.
Fauconnier, G. and Turner, M. (1996). Blending as a central processof grammar. Conceptual Structure,

Discourse and Language. A. E. Goldberg (ed.), CSLI.

Fauconnier, G. and Turner, M. (1998). Conceptual integration networks. Cognitive Science 22(2): 133-187.

Fellbaum, C. and Miller, G. A. (1990). Folk psychology or semantic entailment? A reply to Rips and Conrad.
The Psychological Review 97: 565-570.

Ferber, J. (ed.) (1998). Multi-Agent Systems - An Introduction to Distributed Artificial Intelligence. J. New York,
Addison-Wesley.

Frank, A. U. (1999). Communication with Maps: A Formalized Model for Communication with Maps Using a
Multi-Agent Formalism. International Workshop on Maps and Diagrammatical Representations of the
Environment, Hamburg, Germany.

Frank, A. U. (2000). Spatial Communication with Maps: Defining the Correctness of Maps Using Multi-Agent
Simulation. Spatial Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.). Berlin, Springer. 1849:
80-99.

Frank, A. U. (2001). Tiers of ontology and consistency constraints in geographic information systems. IJGIS
15(7): 667-678.

Frederickson, G. N. (1987). Fast Algorithms for Shortest Paths in Planar Graphs, With Applications in SIAM.
Journal of Computing 16(6): 1004-1022.

Freksa, C. (1991). Qualitative Spatial Reasoning. Cognitive and Linguistic Aspects of Geographic Space. D. M.
Mark and A. U. Frank (eds.). Dordrecht, The Netherlands, Kluwer Academic Press: 361-372.

Gärling, T., Böök, A. and Lindberg, E. (1984). Cognitive mapping of a large-scale environment: The
interrelationships of action plans, aquisition, and orientation. Environment and Behavior 16: 3-34.

Gentner, D. (1983). Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science 7: 155-170.

Gibson, J. (1979). The Ecological Approach to Visual Perception. Boston, Houghton Mifflin Company.

Gibson, J. J. (1977). The Theory of Affordances. J. Bransford. R. E. Shaw (ed.). Hillsdale, NJ, Lawrence
Erlbaum Associates.

Gluck, M. (1991). Making Sense of Human Wayfinding: Review of Cognitive and Linguistic Knowledge for
Personal Navigation with a New Research Direction. Cognitive and Linguistic Aspects of Geographic
Space. D. Mark and A. U. Frank (eds.). Dordecht/Boston/London, Kluwer Academic Publishers: 117-
135.

Goguen, J. (1999). An Introduction to Algebraic Semiotics, with Application to User Interface Design.
Computation for Metaphor, Analogy and Agents - Lecture Notes in Artificial Intelligence. C. Nehaniv
(ed.), Springer. 1562: 242-291.

References 148

Goguen, J. (2001). Towards a Design Theory for Virtual Worlds: Scientific Visualization and Algebraic
Semiotics as a Case Study. Virtual Worlds and Simulation Conference, Phoenix AZ.

Goldberg, B. (1991). Tag-Free Garbage Collection for Strongly Typed Programming Languages. ACM
SIGPLAN ‘91 Conference on Programming Language Design and Implementation., Toronto, Canada.

Golledge, R. G. (1995). Path Selection and Route Preference in Human Navigation: A Progress Report. Spatial
Information Theory (COSIT’95). A. U. Frank and W. Kuhn (eds.). Berlin, Springer. 988: 207-222.

Golledge, R. G. (1999). Human wayfinding and cognitive maps. Wayfinding Behavior: Cognitive Mapping and
Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins Press: 5-45.

Golledge, R. G., Jacobson, R. D., Kitchin, R. and Blades, M. (2000). Cognitive Maps, Spatial Abilities, and
Human Wayfinding. Geographical Review of Japan 73 (Ser. B)(2): 93-104.

Golledge, R. G. and Stimson, R. (1997). Spatial Behavior: A Geographic Perspective. New York, Guilford
Press.

Gopal, S., Klatzky, R. L. and Smith, T. R. (1989). Navigator: A Psychologically Based Model of Environmental
Learning Through Navigation. Journal of Environmental Psychology 9: 309-331.

Grady, J., Taub, S. and Morgan, P. (1996). Primitive and compund metaphors. Conceptual structure, discourse,
and language. A. Goldberg (ed.). Cambridge, England, Cambridge University Press.

greatlook.com (2002). http://www.greatlook.com/why.html

Grey, W. (2000). Metaphor and Meaning. Minerva - An Internet Journal of Philosophy 4.

Gruber, T. R. (1993). Toward Principles for the Design of Ontologies Used for Knowledge Sharing, Knowledge
Systems Laboratory, Stanford University

Guarino, N. (1997). Semantic Matching: Formal Ontological Distintions for Information Organization,
Extraction, and Integration. International Summer School, SCIE-97. M. T. Pazienza (ed.), Springer.
1299: 139-170.

Guttag, J. V., Horowitz, E. and Musser, D. R. (1978). Abstract Data Types and Software Validation. Comm.
ACM 21(12): 1048-1064.

Hirtle, S. (1998). The Cognitive Atlas: Using GIS as a Metaphor for Memory. Spatial and Temporal Reasoning
in Geographic Information Systems. M. Egenhofer and R. Golledge (eds.), Oxford University Press:
267-276.

Hirtle, S. C. and Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory and Cognition 13: 208-
217.

Hochmair, H. and Frank, A. U. (2001). A Semantic Map as Basis for the Decision Process in the www
Navigation. Conference on Spatial Information Theory (COSIT’01). D. R. Montello (ed.). Berlin,
Springer: 173-188.

Hochmair, H. and Raubal, M. (forthcoming). Topologic and Metric Decision Criteria for Wayfinding in the Real
World and the WWW. SDH.

Höök, K., Benyon, D., Dahlbäck, N., McCall, R., Macaulay, C., Munro, A., Persson, P., Sjölinder, M. and
Svensson, M. (1998). Introduction: A Framework for Information Space, Personal and Social
Navigation. Exploring Navigation; Towards a Framework for Design and Evaluation of Navigation in
Electronic Spaces. N. Dahlbäck (ed.). Kista, Sweden, Swedish Institute of Computer Science.

Horebeek, I. V. and Lewi, J. (1989). Algebraic Specifications in Software Engineering - an introduction. Berlin,
Springer.

Hudak, P. (1989). Conception, Evolution, and Application of Functional Programming Languages. ACM
Computing Surveys 21(3): 359-411.

Janzen, G., Herrmann, T., Katz, S. and Schweizer, K. (2000). Oblique Angles Intersections and Barriers:
Navigating through a Virtual Maze. Spatial Cognition 2. C. Freksa, W. Brauer and K. F. Wender (eds.).
Berlin, Springer. 1849: 277-294.

Johnson, D. B. (1977). Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the Association
for Computing Machinery 24(1): 1-13.

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. Chicago,
University of Chicago Press.

Jones, K. S. (1986). Synonymy and semantic classification. Edinburgh, Edinburgh University Press.

References 149

Jones, S. L. P., Jones, M. P. and Meijer, E. (1997). Type classes: exploring the design space. Glasgow,
Department of Computing Science, University of Glasgow

Jul, S. and Furnas, G. (1997). Navigation in Electronic Worlds. SIGCHI 29(4).

Kirschenhofer, P. (1995). The Mathematical Foundation of Graphs and Topology for GIS. Geographic
Information Systems - Materials for a Post Graduate Course. A. U. Frank (ed.). Vienna, Department of
Geoinformation, TU Vienna. 1: 155-176.

Koffka, K. (1935). Principles of Gestalt Psychology. New York, Harcourt Brace.

Kuhn, W. (1997). Approaching the Issue of Information Loss in Geographic Data Transfers. Geographical
Systems 4(3): 261-276.

Kuhn, W. and Frank, A. U. (1991). A Formalization of Metaphors and Image-Schemas in User Interfaces.
Cognitive and Linguistic Aspects of Geographic Space. D. M. Mark and A. U. Frank (eds.), Kluwer
Academic Press: 419-434.

Kuipers, B. (1978). Modeling Spatial Knowledge. Cognitive Science 2.

Kuipers, B. (1982). The ‘Map in the Head’ Metaphor. Environment and Behavior 14: 202-220.

Kuipers, B., Froom, R., Lee, W. and Pierce, D. (1993). The Semantic Hierarchy in Robot Learning. Robot
Learning. J. Connell and S. Mahadevan (eds.). Boston, Kluwer Academic Publishers: 141-170.

Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago and London, The University of Chicago Press.

Lakoff, G. and Johnson, M. (1980). Metaphors we live by, University of Chicago Press.

Leiser, D. and Zilbershatz, A. (1989). The Traveller—A Computational Model of Spatial Network Learning.
Environment and Behavior 21(4): 435-463.

Liskov, B. and Guttag, J. (1986). Abstraction and Specification in Program Development. Cambridge, Mass.,
The MIT Press.

Loomis, J. M. and Klatzky, R. L. (1999). Human Navigation by Path Integration. Wayfinding Behavior:
Cognitive Mapping and Other Spatial Processes. R. G. Golledge (ed.). Baltimore, MD, John Hopkins
Press: 125-151.

Lynch, K. (1960). The image of the city. Cambridge, Mass., MIT Press.

MacCormac, E. R. (1985). Metaphor as a knowledge process. A Cognitive Theory of Metaphor. E. R.
MacCormac (ed.). Cambridge, MA/London, MIT Press.

MacLane, S. (1971). Categories for the Working Mathematician, Springer.

MacLane, S. and Birkhoff, G. (1967). Algebra. New York, Macmillan.

Maglio, P. and Matlock, T. (1998). Construcing Social Spaces in Virtual Environments: Mataphors We Surf the
Web By. Workshop on Personalized and Social Navigation in Information Space. K. Hook, A. Munro
and D. Benyon (eds.). Kista, Sweden, Swedish Institute of Computer Science: 138-147.

Marchionini, G. M. (1995). Information Seeking in Electronic Environments. Cambridge, England, Cambridge
University Press.

Mark, D., Freksa, C., Hirtle, S., Lloyd, R. and Tversky, B. (1999). Cognitive models of geographical space.
IJGIS 13(8): 747-774.

Mark, D. M. and Frank, A. U. (1996). Experiental and Formal Models of Geographic Space. Environment &
Planning B 23: 3-24.

McCalla, G., Reid, L. and Schneider, P. (1982). Plan Creation, Plan Execution, and Knowledge Acquisition in a
Dynamic Microworld. International Journal of Man-Machine Studies 16: 89-112.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of Artificial
Intelligence. Machine Intelligence 4. B. Meltzer and D. Michie (eds.). Edinburgh, Edinburgh University
Press: 463-502.

Medak, D. (1999). Lifestyles - A Paradigm for the Description of Spatiotemporal Databases. Department of
Geoinformation Vienna, Technical University Vienna. PhD Thesis.

Miller, G. (1990). Nouns in WordNet: A lexical Inheritance System. International Journal of Lexicography 3(4):
245-264.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the ACM 38(11): 39-41.

References 150

Milner, R. (1978). A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences
17: 348-375.

Montello, D. (1998). A New Framework for Understanding the Acquisition of Spatial Knowledge in Large-Scale
Environments. Spatial and Temporal Reasoning in Geographic Information Systems. M. Egenhofer and
R. Golledge (eds.). New York, Oxford University Press: 143-154.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto.
Norman, D. (1988). The Design of Everyday Things. New York, First Doubleday.

Norman, D. (1999). Affordances, Conventions, and Design. interactions 6(3).

Nückles, M. and Janetzko, D. (1997). The role of semantic similarity in the comprehension of metaphor.
Nineteenth Annual Conference of the Cognitive Science Society, Stanford, CA, Erlbaum.

Nwana, H. S. and Ndumu, D. T. (1999). A perspective on software agents research. The Knowledge Engineering
Review 14(2): 1-18.

O’Neill, M. (1991). A Biologically Based Model of Spatial Cognition and Wayfinding. Journal of
Environmental Psychology(11): 299-320.

Ortony, A. (1979). Beyond Literal Similarity. Psychological Review 86: 161-180.

Pastore, M. (2001). Search Engines, Browsers Still Confusing Many Web Users.
http://cyberatlas.internet.com/big_picture/traffic_patterns/article/0,,5931_588851,00.html

Peterson, J., Hammond, K., Augustsson, L., Boutel, B., Burton, W., Fasel, J., Gordon, A. D., Hughes, J., Hudak,
P., Johnsson, T., Jones, M., Meijer, E., Jones, S. P., Reid, A. and Wadler, P. (1997). The Haskell 1.4
Report. http://www.haskell.org/report/index.html.

Piff, M. (1991). Discrete Mathematics. Cambridge, Camridge University Press.

Raubal, M. (2001a). Agent-based simulation of human wayfinding in unfamiliar buildings. Institute for
Geoinformation Vienna, Technical University. PhD Thesis.

Raubal, M. (2001b). Ontology and Epistemology for Agent-based Wayfinding Simulation. IJGIS 15(7): 653-
665.

Raubal, M. and Egenhofer, M. (1998). Comparing the complexity of wayfinding tasks in built environments.
Environment & Planning B 25(6): 895-913.

Raubal, M., Egenhofer, M., Pfoser, D. and Tryfona, N. (1997). Structuring Space with Image Schemata:
Wayfinding in Airports as a Case Study. Spatial Information Theory-A Theoretical Basis for GIS
(COSIT’97). S. Hirtle and A. Frank (eds.). Berlin, Springer. 1329: 85-102.

Remolina, E., Fernandez, J., Kuipers, B. and Gonzalez, J. (1999). Formalizing Regions in the Spatial Semantic
Hierarchy: A AH-graphs Implementation Approach. Spatial Information Theory (COSIT’99). C. Freksa
and D. Mark (eds.), Springer. 1661: 37-50.

Rosch, E. (1978). Principles of categorization. Cognition and categorization. E. Rosch and B. B. Lloyd (eds.).
Hillsdale, NJ, Erlbaum.

Rosch, E. and Mervis, C. B. (1975). Family resemblance: Studies in the internal structure of categories.
Cognitive Psychology(7): 573-605.

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence - A Modern Approach. London, Prentice-Hall
International, Inc.

Scaruffi, P. (2001). Thinking About Thought. http://www.thymos.com/tat/metaphor.html

Sheppard, D. and Adams, J. M. (1971). A survey of drivers’ opinions on maps for route finding. The
Cartographic Journal 8: 105-114.

Siegel, A. W. and White, S. H. (1975). The development of spatial representations of large-scale environments.
Advances in child development and behaviour. H. W. Reese (ed.). 10: 9-55.

Smith, B. (2001a). Objects and Their Environments: From Aristotle to Ecological Ontology. The Life and
Motion of Socioeconomic Units. A. U. Frank, J. Raper and J.-P. Cheylan (eds.). London, Taylor and
Francis.

Smith, B. (2001b). Ontology: Philosophical and Computational. The Blackwell Guide to the Philosophy of
Computing and Information. L. Floridi (ed.). Oxford, Blackwell.

Sorrows, M. E. and Hirtle, S. C. (1999). The Nature of Landmarks for Real and Electronic Spaces. Spatial
Information Theory (COSIT’99). C. Freksa and D. Mark (eds.). Berlin, Springer. 1661: 37-50.

References 151

Sowa, J. (1999). Mathematical Background. http://www.bestweb.net/~sowa/misc/mathw.htm

Stern, E. and Leiser, D. (1987). Levels of Spatial Knowledge and Urban Travel Modeling. Geographical
Analysis 20(2).

Stern, E. and Portugali, J. (1999). Environmental Cognition and Decision Making in Urban Navigation.
Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes. R. G. Golledge (ed.).
Baltimore, MD, John Hopkins Press: 99-118.

Sutcliffe, A. (1998). Task-Related Navigation in Information Spaces. Workshop on Personalized and Social
Navigation in Information Space. K. Hook, A. Munro and D. Benyon (eds.). Kista, Sweden, Swedish
Institute of Computer Science: 58-65.

Sweetser, E. E. (1990). From etymology to pragmatics - Metaphorical and cultural aspects of semantic
structure. Cambridge, UK, Cambridge University Press.

Thompson, S. (1996). Haskell - The Craft of Functional Programming. Harlow, England, Addison-Wesley.

Tolman, E. V. (1948). Cognitive maps in rats and men. Psychological Review 55: 189-208.

Trappl, R., Petta, P. and Payr, S. (eds.) (forthcoming). Emotions in Humans and Artifacts. Cambridge, MA,
USA, MIT Press.

Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental model. Spatial Information Theory:
Theoretical Basis for GIS (COSIT’93). A. U. Frank and I. Campari (eds.). Berlin, Springer. 716: 14-24.

Weiss, G. (ed.) (1999). Multiagent Systems - A Modern Approach to Distributed Artificial Intelligence.
Cambridge, MA, MIT Press.

whatis.com (2002). http://searchwebmanagement.techtarget.com/sDefinition/0,,sid27_gci212301,00.html

Wilson, T. D. (1997). Information Behavior: An Interdisciplinary Perspective. Information Processing &
Management 33(4): 551-572.

Wooldridge, M. (1999). Intelligent Agents. Multiagent Systems - A modern Approach to Distributed Artificial
Intelligence. G. Weiss (ed.). Cambridge, Massachusetts, The MIT Press.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge Engineering
Review 10(2): 115-152.

Appendix: Haskell Code 152

APPENDIX

Haskell Syntax

An identifier in Haskell begins with a letter of the alphabet optionally followed by a sequence

of characters, each of which is either a letter, a digit, an apostrophe (‘) or an underbar (‘_’).

Identifiers representing functions or variables begin with a lower case letter, whereas

identifiers beginning with an upper case letter describe a data type or a constructor function.

Readability of Haskell code is improved by the layout-rule—the level of indentation

indicates the structure of a program. Non-intended lines represent top levels of a Haskell

program. Every indentation shows that the intended line actually continues a previous, less

indented line. Equally indented lines share the same level in the structure.

Functions of more than one argument can be defined in two basic styles. Usually such

functions are represented in the curried form, where they take their arguments one at a time.

A function to multiply two integers, e.g., in the curried form is written as:

multiply :: Int -> Int -> Int

multiply x y = x*y

The other form, called uncurried, is defined by pairing the arguments:

multiplyUC :: (Int, Int) -> Int

multiplyUC (x,y) = x*y

The function curry (named after Haskell B. Curry) converts an uncurried function into a

carried one:

curry :: ((a,b) -> c) -> (a -> b -> c)

curry :: f a b = f (a,b)

or written in the traditional syntax:

))(())((:: CBABCAcurry ×←←←←

The Set of Specifications for the Wayfinding Model:

World
module WorldClass where

import ZeroOne
import Graphs
import AgentClass
import Strings

------------------ Data types --------------------

data World = World Time Agent Environment deriving Show

Appendix: Haskell Code 153

type Time = Int

------------------ Create a World -----------

class CreateWorld t a e w where
 createWorld :: t -> a -> e -> w

instance CreateWorld Time Agent Environment World where
 createWorld t a e = World t a e

------------------ Operations in the world ---------------

class (CreateWorld Time Agent Environment world) => WorldClass world where
 getTime :: world -> Time
 getAgent :: world -> Agent
 getEnv :: world -> Environment
 getNumberOfEdges :: world -> Int

 worldStep :: world -> world -- one sensePlanAct circle for agent in the world
 iterateWorldStep :: world -> [world] -- complete world steps

 -- derived functions

 getNumberOfEdges = numberOfEdges.getEnv
 worldStep world = createWorld (tick . getTime $ world)
 (sensePlanAct (getEnv world) (getAgent world)) (getEnv world)
 iterateWorldStep world
 | (checkDegree (getEnv world) == True) =
 take (getNumberOfEdges world) (iterate worldStep world)
 | otherwise = error ("No decision point in the environment")

instance WorldClass World where --(ExternalOps (G E Node) Environment) =>
 getAgent (World t a g) = a
 getTime (World t as g) = t
 getEnv (World t as g) = g

class (WorldClass world) => Analyze world where
 visitedNodes :: world -> [Pos]
 findCycle :: world -> [Pos] -- find loop for one single agent

 -- axioms
 visitedNodes world = map (getPos . getAgent) (iterateWorldStep world)
 -- lists all positions of a navigating agent throughout the whole process

 findCycle world = findCycle1 (findRepeatingCycle positions) where
 positions = visitedNodes world -- finds loop during navigation

------------------ Timer -------------

class Timer time where
 tick :: time -> time

instance Timer Time where
 tick t = t + 1

---------------------------- Text formatting and output functions ---------------

instance Strings World where
 text (World time agent world) = "\nTIME: " ++ text time ++ text agent ++ "\n"
 xtext (World time agent world) = putStrLn ("\nTIME: " ++ text time ++ text agent)

showTitle :: String
showTitle = "\n*********************************" ++
 "\nAGENT-BASED WAYFINDING SIMULATION" ++
 "\n*********************************\n"

showCycle :: [Pos] -> String
showCycle ps = "\n*********************************" ++
 "\nAgent has been caught in a loop." ++
 "\n*********************************" ++
 "\nNodes: " ++ text ps ++ "\n"

sim :: World -> IO()
sim world = putStrLn (showTitle ++ concat (map text (iterateWorldStep world))
 ++ showCycle (findCycle world))

Appendix: Haskell Code 154

simFile :: World -> String
simFile world = output where
 output = showTitle ++ concat (map text (iterateWorldStep world))
 ++ showCycle (findCycle world)

----------------------- Subfunctions for the findCycle function -------------------

matches :: Pos -> [Pos] -> [Pos]
matches pos listOfElts = filter (pos==) listOfElts
--this function picks out all occurences of an integer in a list;

findRepeatingCycle :: [Pos] -> [Pos]
findRepeatingCycle (a : as)
 = if (length (matches a as) > 1) then (a : as)
 else findRepeatingCycle as
 --gives a list with the repeating cycle (e.g., [1,2,3,1,2,3,1,2,3]);

findCycle1 :: [Pos] -> [Pos]
findCycle1 [] = []
findCycle1 (a : xa) = (a : takeWhile (a /=) (xa)) ++ (a : [])
 --gives a list with one occurence of the cycle;

Agent
module AgentClass where

import ShortestPath
import Graphs
import Strings
import ZeroOne

------------------ Data types ----------------------

data Agent= Agent Fact Beliefs deriving Show
data Fact = Fact AgentId Pos PrevPos deriving Show
type AgentId = Int
data Pos = Pos Node deriving (Show,Eq)
type PrevPos = Pos

data Beliefs = Beliefs MentalPos CognitiveMap Perceived Decision Preferences IncomingDir
deriving Show
type MentalPos = [NodeM]
type Perceived = [SignPost]
type Decision = Info
data IncomingDir = IDir Direction | NoIncDir deriving Show
type GoalCriterion = Info

------------------ Sense-Plan-Act operations ------------------

class (AgentPut Perceived agent, AgentPut Pos agent, AgentPut Fact agent, AgentPut Int agent,
 AgentPut IncomingDir agent, AgentPut MentalPos agent,
 EnvAgent env, InternalOps agent)
 => ExternalOps env agent where

 perceive :: env -> agent -> agent
 act :: env -> agent -> agent
 sensePlanAct :: env -> agent -> agent

 -- derived functions
 perceive env agent = putToAgent (perceiveAtPos env (getPos agent)) agent
 act env a = putToAgent (setToZero (getDec a)) a5 where
 a5 = putToAgent (setToZero (getPerc a4)) a4
 a4 = putToAgent (dirNext env (getPos a3) (getPrev a3) (getIncDir a3)) a3
 a3 = putToAgent (updatePosition env (getDec a2) (getPos a2)) a2
 a2 = putToAgent (updatePrev (getFact a1)) a1
 a1 = putToAgent (updateMentalPos (getPosM a) (getDec a) (getCM a)) a
 sensePlanAct env = (act env) . decide . (perceive env)

class (AgentGet agent, AgentPut Decision agent) => InternalOps agent where
 decide :: agent -> agent
 decide agent
 = if isAtGoal (getCM agent) (getPerc agent) then error ("AGENT HAS REACHED GOAL ! ")
 else putToAgent (composedDecision (getCM agent) (getPerc agent) (getPos agent)

(getPosM agent) (getPref agent) (getIncDir agent)) agent

------------------ Decision process --------------------

Appendix: Haskell Code 155

class ComposedDec cm perc pos mpos pref inc where
 composedDecision :: cm -> perc -> pos -> mpos -> pref -> inc -> Decision

instance ComposedDec CognitiveMap Perceived Pos MentalPos Preferences IncomingDir where
 composedDecision cm perc pos mpos pref inc

= metricDecision pref inc (semanticDecision cm pos mpos perc)

class SemanticDec cm pos mpos perc where
 semanticDecision :: cm -> pos -> mpos -> perc -> perc

instance SemanticDec CognitiveMap Pos MentalPos Perceived where -- 1st dec step
 semanticDecision cm pos mpos perc
 | f == [] = error ("NO SIGN INFORMATION FOUND at Node " ++ show (text pos))
 | otherwise = semanticDistFilter cm f
 where f = filterDownBoth cm mpos (filterPercs cm perc)

class MetricDec pref inc perc dec where
 metricDecision :: pref -> inc -> perc -> dec

instance MetricDec Preferences IncomingDir Perceived Decision where
 metricDecision pref (IDir i) perc

= getInfoSignPost (head (sortLs (rotateAndUtil pref i perc))) -- real world
 metricDecision pref NoIncDir perc =

= getInfoSignPost (head (sortLs (dirToUtility pref perc))) -- www

 {- contains only step 2 (utility-function) for WWW-agent,
 and step 1 + 2 for real world agent (transformation of sign dirs and utility function-}

class SemanticFilter cm sp where
 filterPerc :: cm -> sp -> Bool -- check if signpost is part of cogmap
 filterPercs :: cm -> [sp] -> [sp] -- filters percs that are part of cog map
 semanticDistFilter :: cm -> [sp] -> [sp] -- find shortest paths with minimum distance

instance SemanticFilter CognitiveMap SignPost where
 filterPerc cm sp = isEltCM (getInfoSignPost sp) cm --check membership of signpost in cogmap
 filterPercs cm sps = [sp | sp <- sps, filterPerc cm sp == True]
 semanticDistFilter cm sps = [sp | sp <- sps, mentalDist cm sp == minLength cm sps]

class SemanticDownFilter cm node sp where
 filterDown :: cm -> [node] -> sp -> Bool
 filterDowns :: cm -> [node] -> [sp] -> [sp]
 filterEqual :: cm -> [node] -> sp -> Bool
 filterEquals :: cm -> [node] -> [sp] -> [sp]
 filterDownBoth :: cm -> [node] -> [sp] -> [sp]
 percHasNoMPosSingle :: cm -> sp -> node -> Bool
 percHasNoMPos :: cm -> sp -> [node] -> Bool

instance SemanticDownFilter CognitiveMap NodeM SignPost where
 percHasNoMPosSingle cm signpost nodem = goalForNode infoSp cm /= goalForNode nodem cm
 where infoSp = getInfoSignPost signpost

 percHasNoMPos cm sp [] = True
 percHasNoMPos cm sp mpos = and . map (percHasNoMPosSingle cm sp) $ mpos

 filterDown cm [] sp = False
 filterDown cm (n:ns) sp
 | (goalForNode infoSp cm == goalForNode n cm) = mentalDist cm sp < mentalDist cm n
 | otherwise = filterDown cm ns sp
 where infoSp = getInfoSignPost sp
 filterDowns cm mpos sps =

[s | s <- sps, filterDown cm mpos s == True || percHasNoMPos cm s mpos == True]

 filterEqual cm [] sp = False
 filterEqual cm (n:ns) sp
 | (goalForNode infoSp cm == goalForNode n cm) = mentalDist cm sp == mentalDist cm n
 | otherwise = filterDown cm ns sp
 where infoSp = getInfoSignPost sp
 filterEquals cm mpos sps = [s | s <- sps, filterEqual cm mpos s == True]

 filterDownBoth cm mpos perc
 | f == [] = filterEquals cm mpos perc
 | otherwise = f
 where f = filterDowns cm mpos perc

------------------ Operations taking environment and components of agent ------

Appendix: Haskell Code 156

class EnvAgent env where
 perceiveAtPos :: env -> Pos -> Perceived
 dirNext :: env -> Pos -> PrevPos -> IncomingDir -> IncomingDir
 updatePosition :: env -> Decision -> Pos -> Pos

instance EnvAgent Environment where
 perceiveAtPos env pos = percInfoAtNode (unPos pos) env

 dirNext env pos prev NoIncDir = NoIncDir -- WWW case, agent has no incoming dir
 dirNext env pos prev inc@(IDir i) -- airport case
 | prev == unit0 = inc
 | otherwise

= IDir (reverseDir (getDirSignPost (getSignPostForNode (unPos prev) incomingEdge)))
 where incomingEdge = head (filter (isAB (unPos pos) (unPos prev)) (getEdges env))
 --gives the direction where the agent comes from in the local reference frame

 updatePosition env dec pos = Pos (sndNode p2 (edgeWithSignAndNode dec p2 env))
 where edgeWithSignAndNode dec p2 env

= head ([e | e <- containNode p2 env, containInfo e p2 dec])
 p2 = unPos pos

------------------ Operations referred to goal --------------

class GoalReached a perc where
 isAtGoal :: a -> perc -> Bool
 matchGoal :: a -> perc -> Bool

instance GoalReached GoalCriterion Perceived where
 matchGoal g [] = False
 matchGoal g (p:ps)
 | g == getInfoSignPost p = True
 | otherwise = matchGoal g ps

class GoalCrit cm where
 getGoalCrit :: cm -> GoalCriterion

instance GoalCrit CognitiveMap where
 getGoalCrit cmap@((G ((EM (Ir i1) (Ir i2)): es)):gs)

= goalForNode (Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))) cmap
 getGoalCrit cmap@((G ((EM (Iw i1) (Iw i2)): es)):gs) = goalForNode (Iw "do business") cmap

instance GoalReached CognitiveMap Perceived where
 isAtGoal cm perc = matchGoal (getGoalCrit cm) perc

------------------ Update agent’s components ---------

class Update1 a where
 setToZero :: a -> a -- reset percept/decision
 updatePrev :: a -> a -- update previous node

instance Update1 Perceived where
 setToZero p = []

instance Update1 Decision where
 setToZero d = NoInfo

instance Update1 Fact where
 updatePrev (Fact a pos prev) = Fact a pos pos

------------------ Get-functions for agent ---------------

class AgentGet agent where
 getFact :: agent -> Fact
 getBel :: agent -> Beliefs
 getAId :: agent -> AgentId
 getPos :: agent -> Pos
 getPrev :: agent -> Pos
 getPosM :: agent -> MentalPos
 getCM :: agent -> CognitiveMap
 getPerc :: agent -> Perceived
 getDec :: agent -> Decision
 getPref :: agent -> Preferences
 getIncDir :: agent -> IncomingDir

Appendix: Haskell Code 157

instance AgentGet Agent where
 getFact (Agent f b) = f
 getBel (Agent f b) = b
 getAId = getIdFromFacts . getFact
 getPos = getPosFromFacts . getFact
 getPrev = getPrevFromFacts . getFact

 getPosM = getPosMFromBel . getBel
 getCM = getCMFromBel . getBel
 getPerc = getPercFromBel . getBel
 getDec = getDecFromBel . getBel
 getPref = getPrefFromBel . getBel
 getIncDir = getIncFromBel . getBel

------------------ Put-functions for agent --------------

class AgentPut p agent where
 putToAgent :: p -> agent -> agent

instance AgentPut Fact Agent where -- put fact into agent
 putToAgent f2 (Agent f b) = Agent f2 b

instance AgentPut Beliefs Agent where -- put belief into agent
 putToAgent b2 (Agent f b) = Agent f b2

instance AgentPut Pos Agent where -- put pos into agent
 putToAgent p a = putToAgent (putToFacts p (getFact a)) a

instance AgentPut MentalPos Agent where -- put pos into agent
 putToAgent p a = putToAgent (putToBel p (getBel a)) a

instance AgentPut Perceived Agent where -- put perceived to agent
 putToAgent p a = putToAgent (putToBel p (getBel a)) a

instance AgentPut Decision Agent where -- put decision to agent
 putToAgent p a = putToAgent (putToBel p (getBel a)) a

instance AgentPut IncomingDir Agent where -- put incDir to agent
 putToAgent p a = putToAgent (putToBel p (getBel a)) a

------------------ Put and get in agent structure ---------

class GetFromFacts f where
 getIdFromFacts :: f -> AgentId
 getPosFromFacts :: f -> Pos
 getPrevFromFacts :: f -> Pos

class PutToFacts p f where
 putToFacts :: p -> f -> f

class PutToFacts2 p f where
 putToFacts2 :: p -> f -> f

instance GetFromFacts Fact where
 getIdFromFacts (Fact aid pos prev) = aid
 getPosFromFacts (Fact aid pos prev) = pos
 getPrevFromFacts (Fact aid pos prev) = prev

instance PutToFacts Pos Fact where
 putToFacts pos2 (Fact a p pr) = Fact a pos2 pr

instance PutToFacts2 PrevPos Fact where
 putToFacts2 pr2 (Fact a p pr) = Fact a p pr2

class GetFromBeliefs b where
 getPosMFromBel :: b -> MentalPos
 getCMFromBel :: b -> CognitiveMap
 getPercFromBel :: b -> Perceived
 getDecFromBel :: b -> Decision
 getPrefFromBel :: b -> Preferences
 getIncFromBel :: b -> IncomingDir

class PutToBeliefs b p where
 putToBel :: p -> b -> b

instance GetFromBeliefs Beliefs where

Appendix: Haskell Code 158

 getPosMFromBel (Beliefs mp cm perc dec pref inc) = mp
 getCMFromBel (Beliefs mp cm perc dec pref inc) = cm
 getPercFromBel (Beliefs mp cm perc dec pref inc) = perc
 getDecFromBel (Beliefs mp cm perc dec pref inc) = dec
 getPrefFromBel (Beliefs mp cm perc dec pref inc) = pref
 getIncFromBel (Beliefs mp cm perc dec pref inc) = inc

instance PutToBeliefs Beliefs MentalPos where
 putToBel mp2 (Beliefs mp cm perc dec pref inc) = Beliefs mp2 cm perc dec pref inc

instance PutToBeliefs Beliefs Perceived where
 putToBel perc2 (Beliefs mp cm perc dec pref inc) = Beliefs mp cm perc2 dec pref inc

instance PutToBeliefs Beliefs Decision where
 putToBel dec2 (Beliefs mp cm perc dec pref inc) = Beliefs mp cm perc dec2 pref inc

instance PutToBeliefs Beliefs IncomingDir where
 putToBel inc2 (Beliefs mp cm perc dec pref inc) = Beliefs mp cm perc dec pref inc2

class UnputPos p where
 unPos :: p -> Node

instance UnputPos Pos where
 unPos (Pos p) = p

class IncDirC i where
 unPutI :: i -> Direction

instance IncDirC IncomingDir where
 unPutI (IDir d) = d

--------------------- Instances for text output -------------

instance Strings Agent where
 text (Agent (Fact aid (Pos pos) (Pos prev)) (Beliefs mpos cmap per dec pref i))
 = " \nPOSITION: " ++ text pos
 ++ " \nPREVNODE: " ++ text prev ++ "\nMENTAL POSTION: "

 ++ text mpos ++ " \nINCOMINGDIR: " ++ text i

 xtext (Agent (Fact aid (Pos pos) (Pos prev)) (Beliefs mpos cmap per dec pref i))
 = putStrLn ("\nID:" ++ text aid ++ " \nPOSITION: " ++ text pos
 ++ " \nPREVPOS: " ++ text prev
 ++ " \nGOAL: " ++ text (getGoalFromCogMap cmap) ++" \nPERCEPTION: " ++ text per
 ++ " \nDECISION: " ++ text dec ++ " \nINCOMINGDIR: " ++ text i)

instance Strings [Agent] where
 text (a:alist) = text a ++ "\n\n" ++ text alist
 text [] = []

instance Strings IncomingDir where
 text (IDir i) = " " ++ text i
 text NoIncDir = " No IncDir "

instance Strings Pos where
 text (Pos w) = " " ++ text w

--------------------- Instances for ZeroOne class -------------

instance ZeroOne Pos where
 unit0 = Pos unit0

Operations on Graphs and Elements of Graphs
module Graphs where

import Strings
import List
import ZeroOne

------------------ DATA TYPES -------------

type NodeId = Int
type Text = String

data Node = Node NodeId deriving (Eq, Ord, Show)
data E n = E n SignPost n SignPost deriving (Eq,Show)

Appendix: Haskell Code 159

data G e n = G [e n] deriving (Eq,Show)
type Environment = G E Node

data SignPost = S Direction Info | NoSign deriving (Eq,Show)

type Direction = Int
data Info = Ir InfoR | Iw InfoW | NoInfo deriving (Show,Eq)
type InfoW = Text
type InfoR = GateSign

------------------ DATA TYPES for components of agent’s beliefs -----

type NodeM = Info
type Goal = [NodeM]

data EM n = EM n n deriving (Eq,Show)
type CognitiveMap = [G EM NodeM]

type Preferences = [(Direction,Preference)]
type Preference = Int

data Cost = Cost Int deriving (Eq, Ord, Show)

------------------ DATA TYPES for signs and gates in airport environment -----

--specification of "gate-sign": 3 possibilities ->
--single: e.g., "A", "C51"
--list: e.g., "C52,C53", "A,B,D"
--range: e.g., "C54-C61", "A-D"

data GateSign = GateSign GateSignSingle | GateSign1 GateSignList | GateSign2 GateSignRange |

NoGateSign deriving (Show, Eq)

data LetterOnly = LetterOnly Char deriving (Show,Eq)

data GateSignSingle = GateSignSingle LetterOnly | GateSignSingle1 Gate deriving (Show,Eq)
data GateSignList = GateSignList [LetterOnly] | GateSignList1 [Gate] deriving (Show,Eq)
data GateSignRange = GateSignRange LetterOnly LetterOnly | GateSignRange1 Gate Gate

deriving (Show,Eq)

data Gate = Gate Char Int deriving (Show,Eq)

------------------ Access elements of airport environment ----------

class LetterOnlys letterOnly where
 getLetterOnlyLetter :: letterOnly -> Char

instance LetterOnlys LetterOnly where
 getLetterOnlyLetter (LetterOnly l) = l

class Gates gate where
 getGateLetter :: gate -> Char
 getGateNumber :: gate -> Int
 getGate :: gate -> (Char,Int)

instance Gates Gate where
 getGateLetter (Gate l n) = l
 getGateNumber (Gate l n) = n
 getGate (Gate l n) = (l,n)

------------------- Access Information of signsposts -------

class SignPostC s where
 getInfoSignPost :: s -> Info
 getDirSignPost :: s -> Direction

instance SignPostC SignPost where
 getDirSignPost (S d i) = d
 getInfoSignPost (S d i) = i
 getInfoSignPost NoSign = NoInfo

class InfoC a where
 getInfoW :: a -> Text
 getInfoR :: a -> GateSign

instance InfoC Info where
 getInfoW (Iw i) = i
 getInfoR (Ir i) = i

Appendix: Haskell Code 160

------------------- Operations on nodes ----------

class Nodes n where
 replace :: Int -> Info -> [n] -> [n] -- replaces n-th elt in [n] with info
 zeroNode :: n

------------------- Operations on edges ---------

class (Eq n) => Edges e n where
 endnode :: e n -> n
 startnode :: e n -> n
 getSignPostStart :: e n -> SignPost
 getSignPostEnd :: e n -> SignPost
 getSignPostForNode :: n -> e n -> SignPost -- signpost for edge at n
 getSignPostForNodeMap :: n -> [e n] -> [SignPost]
 getFstInfo :: e n -> Info
 getSndInfo :: e n -> Info
 isAB :: n -> n -> e n -> Bool
 sndNode :: n -> e n -> n -- gets other node of an edge
 containInfo :: e n -> n -> Info -> Bool -- check if edge has certain info at given node
 nodesE :: e n -> [n]
 costE :: n -> n -> e n -> Cost
 equalEdge :: e n -> e n -> Bool
 isEltE :: n -> e n -> Bool
 hasNeighbour :: n -> e n -> Int
 makeE :: (Int, SignPost, Int, SignPost) -> e n

 makeEM :: (Info, Info) -> e n -- functions to produce cmap

 -- derived function
 costE n m e = if isAB n m e then unit1 else unit100

---------------- Operations on graph --------------------

class (Edges e n) => Graphs g e n where
 insertG :: e n -> g e n -> g e n
 deleteG :: e n -> g e n -> g e n
 getEdges :: g e n -> [e n]
 isEltOfG :: n -> g e n -> Bool
 numberOfEdges :: g e n -> Int
 edgesOutWithSign :: n -> g e n -> [e n]
 edgesOutSignStart :: n -> g e n -> [e n]
 edgesOutSignEnd :: n -> g e n -> [e n]
 percInfoAtNode :: n -> g e n -> [SignPost]
 containNode :: n -> g e n -> [e n]
 nodes :: g e n -> [n]
 degree :: g e n -> n -> Int
 cost :: n -> n -> g e n -> Cost
 checkDegree :: g e n -> Bool
 allDegrees :: g e n -> [Int]
 getGoalFromGraph :: g e n -> n
 fieldPositionList :: [n] -> g e n -> [Bool]
 fieldPosition :: [n] -> g e n -> Int

 -- derived functions
 containNode n g = [e | e <- (getEdges g), (startnode e == n) || (endnode e == n)]
 numberOfEdges = length . getEdges
 nodes g = nub (concat [nodesE e | e <- (getEdges g)]) --for shortest path

------------------ Operations on cognitive map ---------

class (Graphs g e n) => CognitiveMapC g e n where
 goalForNode :: n -> [g e n] -> n
 getGoalFromCogMap :: [g e n] -> [n]
 graphWithNode :: n -> [g e n] -> g e n
 nodeInCognitiveMap :: n -> [g e n] -> Bool
 updateMentalPos :: [n] -> n -> [g e n] -> [n]

 -- derived functions
 nodeInCognitiveMap n fs = or (map (isEltOfG n) fs) -- checks if mental map contains node n

------------------ Metric decision making ----------------

class DirectionC d where

Appendix: Haskell Code 161

 nodeToAgentDir :: d -> d -> d
 reverseDir :: d -> d

instance DirectionC Direction where
 nodeToAgentDir dir incDir = mod (dir -1 + mod (13 - incDir) 8) 8 + 1
 -- rotates sign directions at node to directions in agent’s egocentric ref frame
 reverseDir out = 1 + mod (out + 3) 8 -- makes outgoing direction to incoming direction

class Transformations signpost where
 rotateDirs :: Direction -> [signpost] -> [signpost]
 dirToUtility :: Preferences -> [signpost] -> [signpost]
 rotateAndUtil :: Preferences -> Direction -> [signpost] -> [signpost]
 orderSignPosts :: signpost -> signpost -> Bool
 sortLs :: [signpost] -> [signpost]

instance Transformations SignPost where -- metric decision making (2nd step)
 {-1. function that translates info directions in local ref. frame of the node to
 directions in the agent’s ref. frame; only required for real world case -}

 rotateDirs incDir signposts
 = map nodeToAgentDir’ signposts
 where nodeToAgentDir’ (S dir info) = S (nodeToAgentDir dir incDir) info

 {-2. function that converts directions in agent’s ref. frame to agent’s preferences;
 transforms a list of Infos to another list of Infos where the directions are changed to
 the agent’s preferences; lookup :: Eq a => a -> [(a,b)] -> Maybe b-}

 dirToUtility prefs signposts -- utility function
 = map lookup1 signposts
 where lookup1 (S dir info) = S (unMaybe (lookup dir prefs)) info

 --function composition 1. & 2.
 rotateAndUtil prefs incDir = dirToUtility prefs . rotateDirs incDir

 {-function that sorts a list of Infos according to order of preference-}
 orderSignPosts i1 i2 = (getDirSignPost i1) <= (getDirSignPost i2)

 sortLs [] = []
 sortLs (p:ps)
 = sortLs smaller ++ [p] ++ sortLs larger
 where
 smaller = [q | q<-ps , orderSignPosts q p]
 larger = [q | q<-ps , orderSignPosts p q]
 --based on sortLs (Thompson, p189); sorts a list of percepts according to preference;

------------------ Instances for cognitive map --------------

instance Nodes NodeM where
 replace posIndex info mpos = genericTake (posIndex-1) mpos ++ [info]

++ (genericDrop posIndex mpos)

instance Edges EM NodeM where
 startnode (EM sn en) = sn
 endnode (EM sn en) = en
 isAB n1 n2 e

= ((n1==startnode e) && (n2==endnode e)) || ((n2==startnode e) && (n1==endnode e))
 nodesE (EM a b) = [a,b]
 equalEdge e1 e2 = (startnode e1 == startnode e2) && (endnode e1 == endnode e2)
 isEltE n e = startnode e == n || endnode e == n
 makeEM (a,b) = EM a b

instance Graphs G EM NodeM where
 insertG e (G es) = G (e:es)
 getEdges (G es) = es
 getGoalFromGraph = endnode . last . getEdges -- goal for given field
 fieldPositionList [] f = [False]
 fieldPositionList (p:ps) f = isEltOfG p f : fieldPositionList ps f
 fieldPosition ps f = 1 + head (elemIndices True (fieldPositionList ps f))
 cost n m (G es) = cost’ n m es
 where cost’ n m (e:es) = if isAB n m e then costE n m e
 else cost’ n m es
 cost’ n m [] = unit100
 isEltOfG n g = any (==n) (nodes g)

instance CognitiveMapC G EM NodeM where
 goalForNode n (g : gs)
 | isEltOfG n g == True = getGoalFromGraph g

Appendix: Haskell Code 162

 | otherwise = goalForNode n gs
 graphWithNode n [] = unit0
 graphWithNode n (field : fields)
 | isEltOfG n field == True = field
 | otherwise = graphWithNode n fields
 getGoalFromCogMap = map getGoalFromGraph
 updateMentalPos [] dec f = dec : []
 updateMentalPos mps dec (f:fs)
 | (isEltOfG dec f == True) && (or (fieldPositionList mps f) == True)

= replace (fieldPosition mps f) dec mps
 | (isEltOfG dec f == True) && (or (fieldPositionList mps f) == False) = [dec] ++ mps
 | otherwise = updateMentalPos mps dec fs

------------------ Instances for environment --------------

instance Edges E Node where
 startnode (E n1 sp1 n2 sp2) = n1
 endnode (E n1 sp1 n2 sp2) = n2
 sndNode n (E sn sp1 en sp2) = if n==sn then en else sn
 containInfo (E sn sp1 en sp2) n i
 | sp1 == NoSign && sp2 == NoSign
 | sp1 /= NoSign && sp2 == NoSign = (getInfoSignPost sp1 == i) && (n == sn)
 | sp1 == NoSign && sp2 /= NoSign = (getInfoSignPost sp2 == i) && (n == en)
 | otherwise = (getInfoSignPost sp1==i && (n==sn)|| (getInfoSignPost sp2==i) && (n==en))

 getSignPostStart (E n1 sp1 n2 sp2) = sp1
 getSignPostEnd (E n1 sp1 n2 sp2) = sp2
 getSignPostForNode n (E n1 sp1 n2 sp2)
 | (n == n1) = sp1
 | (n == n2) = sp2
 | otherwise = NoSign
 getSignPostForNodeMap n = map (getSignPostForNode n)
 getFstInfo (E n1 sp1 n2 sp2) = getInfoSignPost sp1
 getSndInfo (E n1 sp1 n2 sp2) = getInfoSignPost sp2
 isAB n1 n2 e = ((n1==startnode e) && (n2==endnode e))

|| ((n2==startnode e) && (n1==endnode e))
 hasNeighbour n e@(E n1 sp1 n2 sp2)
 | (sndNode n e /= unit0) = 1
 | otherwise = 0
 makeE (n1, sp1, n2, sp2) = E (Node n1) sp1 (Node n2) sp2
 isEltE n e = (n==startnode e) || (n==endnode e)
 nodesE (E n1 sp1 n2 sp2) = [n1,n2]

instance Graphs G E Node where
 getEdges (G es) = es
 insertG e (G es) = G (e:es)
 degree g@(G (e:es)) n = sum (map (hasNeighbour n) (containNode n g))
 allDegrees g = map (degree g) (nodes g)
 checkDegree = any (> 2) . allDegrees
 edgesOutSignStart sn g

= [e | e <- (getEdges g), startnode e == sn, getSignPostStart e /= NoSign]
 -- edges that have startnode sn and have sign at this node
 edgesOutSignEnd sn g = [e | e <- (getEdges g), endnode e == sn, getSignPostEnd e /= NoSign]
 -- edges that have endnode sn and have sign at this node
 edgesOutWithSign sn g = concat [edgesOutSignStart sn g, edgesOutSignEnd sn g]
 -- edges that contain n and have sign at n
 percInfoAtNode sn g = map (getSignPostForNode sn) (edgesOutWithSign sn g)
 -- list of perceived SignPosts at a node

------------------ Help function for Decision process ----------

unMaybe :: Maybe a -> a
unMaybe (Just a) = a
unMaybe Nothing = error ("unMaybe of Nothing")

------------------ Instances for ZerOne class --------------------

instance ZeroOne Node where
 unit100 = Node 100
 unit0 = Node unit0

instance ZeroOne NodeM where
 unit0 = NoInfo

instance ZeroOne (G EM NodeM) where
 unit0 = G []

Appendix: Haskell Code 163

instance ZeroOne CognitiveMap where
 unit0 = []

instance ZeroOne Cost where
 unit0 = Cost unit0
 unit1 = Cost 1
 unit100 = Cost 999999

------------------ Connectedness of nodes on edge ---------------

instance Num Cost where
 (Cost f) + (Cost p) = Cost (p+f)

------------------ Instances for Strings class -------------------

instance Strings (EM NodeM) where
 text (EM n m) = " " ++ text n ++ " - " ++ text m

instance Strings (G EM NodeM) where
 text (G es) = " " ++ textRep es

instance Strings Node where
 text (Node n) = text n

instance Strings Info where
 text (Iw i) = " " ++ text i
 text (Ir i) = " " ++ text i
 text NoInfo = " No info"

instance Strings SignPost where
 text (S dir info) = " SIGN " ++ text dir ++ text info
 text NoSign = " No sign "

instance Strings LetterOnly where
 text (LetterOnly l) = " " ++ text l

instance Strings GateSignSingle where
 text (GateSignSingle g) = text g
 text (GateSignSingle1 g) = text g

instance Strings GateSignList where
 text (GateSignList ls) = text ls
 text (GateSignList1 gs) = text gs

instance Strings GateSignRange where
 text (GateSignRange l1 l2) = text l1 ++ " - " ++ text l2
 text (GateSignRange1 g1 g2) = text g1 ++ " - " ++ text g2

instance Strings GateSign where
 text (GateSign g) = " " ++ text g
 text (GateSign1 g) = " " ++ text g
 text (GateSign2 g) = " " ++ text g
 text NoGateSign = " No gatesign "

instance Strings Gate where
 text (Gate c i) = text c ++ text i

Shortest Path
{- shortest path
 based on dijkstra as given by kirschenhofer
 implemented by andrew frank
 -}

module ShortestPath where

import Graphs
import Strings
import List
import ZeroOne

------------------ Data types for the Dijkstra code ------------

data C n = C n Cost n -- the node to which, cost, previous node on the shortest path
data SP n = SP [n] [n] [C n] [C n] -- W, U, the active list,
 -- the list of expanded (to keep, dijkstra does an update)

Appendix: Haskell Code 164

------------------ Operations in Dijkstra code ------------

class NodesS n where
 getPathFromTo :: n -> n -> G EM n -> [n]

class SPs sp n where
 makesp :: n -> G EM n -> sp n
 step2 :: G EM n -> sp n -> sp n -- expand one node
 endSteps, testConnected :: sp n -> Bool
 targetReached :: n -> sp n -> Bool
 getPathTo :: n -> G EM n -> sp n -> [n]
 -- the list of nodes to visit for shortest path to destination n

class CostTo c n where
 insertCL :: c n -> [c n] -> [c n]
 lu :: n -> [c n] -> Cost
 prevShortest :: n -> [c n] -> n
 dropMax :: [c n] -> [c n]
 getPath :: n -> [c n] -> [n]
 -- find the sequence of nodes from start to destination

instance NodesS NodeM where -- find shortest path between 2 nodes
 getPathFromTo start dest ges = getPathTo dest ges sp
 where sp::SP NodeM
 sp = (makesp start ges)

instance SPs SP NodeM where
 makesp x g@(G es) = SP [] (nodes g) [C x unit0 zeroNode] [] -- initialize
 endSteps (SP ws us _ _) = null us
 testConnected (SP ws us ls _) = not.null $ ls
 targetReached n (SP ws _ _ _) = elem n ws
 step2 ges (SP ws us ls p) = SP ws’ us’ (sort(dropMax(map f us’))) p’
 where l = if null ls then error "SPs - not connected"
 else head ls
 (C z luz _) = l -- the minimum is at the head
 ws’ = z:ws
 us’ = filter (z/=) us
 luy y = lu y (ls++p) -- the previous cost to this node
 luy’ y = (lu z (ls++p)) + (cost z y ges)
 f y = if (luy y) > (luy’ y)
 then C y (luy’ y) z
 else C y (luy y) (prevShortest y ls)
 p’ = l:p
 getPathTo dest ges sp = getPath dest costs
 where costs :: [C NodeM]
 costs = getLS lastSP
 getLS (SP ws us ls p) = p
 lastSP = head . dropWhile ((not.targetReached dest)
 &&& testConnected) . iterate (step2 ges) $ sp
 (&&&) cond1 cond2 a = (cond1 a) && (cond2 a)

instance CostTo C NodeM where
 insertCL cnc cl = insert cnc cl -- this is the sorted insert
 lu m ((C n c _):cs) = if m==n then c else lu m cs
 lu m [] = unit100 -- should not occur
 prevShortest m ((C n c ss):cs) = if m==n then ss else prevShortest m cs
 prevShortest m [] = zeroNode -- should not occur

 dropMax cs = filter notMax cs
 where notMax (C n c _) = c/= unit100
 getPath dest cs = reverse (getPath’ dest cs)
 where getPath’ dest [] = []
 getPath’ dest ((C n _ m):cs) = if dest==n then dest:getPath’ m cs
 else getPath’ dest cs

----------------- Functions based on the Dijkstra Algorithm ---------------------

class MentalPath cm sp where
 mentalShortPath :: cm -> sp -> [NodeM]
 mentalShortPaths :: cm -> [sp] -> [[NodeM]]
 minLength :: cm -> [sp] -> Int
 mentalDist :: cm -> sp -> Int

instance MentalPath CognitiveMap SignPost where
 mentalShortPath cm (S d i) = getPathFromTo i (getGoalFromGraph field) field
 where field = graphWithNode i cm

Appendix: Haskell Code 165

 mentalShortPaths mm [] = []
 mentalShortPaths mm (sp:sps) = mentalShortPath mm sp : mentalShortPaths mm sps
 minLength mm sps = minimum (map length (mentalShortPaths mm sps))
 mentalDist cm sp = length (mentalShortPath cm sp)

instance MentalPath CognitiveMap Info where
 mentalShortPath cm i = getPathFromTo i (getGoalFromGraph graph) graph
 where graph = graphWithNode i cm
 mentalDist cm i = length (mentalShortPath cm i)

instance Eq (C n) => Ord (C n) where
 (<=) (C n c _) (C n2 c2 _) = c <= c2
instance Eq n => Eq (C n) where
 (==) (C n c _) (C n2 c2 _) = n==n2 && c==c2

Zero-One Elements
module ZeroOne where

class ZeroOne z where
 unit0, unit1, unit100 :: z

instance ZeroOne Int where
 unit0 = 0
 unit1 = 1
 unit100 = 100

instance (ZeroOne a) => ZeroOne [(a,a)] where
 unit0 = [(unit0, unit0)]

Output of Data types
{-
af july99
-}

module Strings where

infixr 5 ++., ++^, ++/, ++-

class Strings a where
 xtext :: a -> IO ()
 xtext = putStr . text

 text :: a -> String
--
 textRep :: a -> String -- to show internal rep
 textRep = text
 text = textRep
 (++.), (++^), (++/), (++-) :: a -> a -> a -- String -> String -> String

------------------ Instances ----------------------

--* added for convenient textual representation in Hugs
x :: Strings a => a -> IO ()
x = putStr . text
--*

instance Strings Int where
 text = show --* was show’
instance Strings Float where
 text = show
instance Strings Bool where
 text = show
instance Strings Char where
 text = show

instance Strings String where
 text = id
 a ++. b = a ++ ", " ++ b
 a ++^ b = a ++ " " ++ b
 a ++/ b = a ++ "\n" ++ b
 a ++- b = a ++ "\t" ++ b

instance Strings t => Strings [t] where

Appendix: Haskell Code 166

 text = foldr ((++).(++ ";").text) ""
 textRep = foldr ((++).(++ ";").textRep) ""
 -- this adds a , after each element

Test data – Vienna International Airport
module VieData1 where

import WorldClass
import ZeroOne
import Graphs
import AgentClass
import Strings

------------------ Data for agent’s cognitive map -----------

cmapR :: CognitiveMap
cmapR = [graphSigns]

graphSigns :: G EM NodeM
graphSigns = foldr insertG (G []) (map makeEM graphSignsS)

graphSignsS =
 [(Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)])),

Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘B’),(LetterOnly
‘C’),(LetterOnly ‘D’)]))),

 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)])),
Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘B’),(LetterOnly

‘C’),(LetterOnly ‘D’)]))),
 (Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)])),

Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))),
 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)])),

Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))),
 (Ir (GateSign (GateSignSingle (LetterOnly ‘C’))),

Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),
 (Ir (GateSign (GateSignSingle (LetterOnly ‘C’))),

Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)]))),
 (Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’ 62))),

Ir (GateSign (GateSignSingle (LetterOnly ‘C’)))),
 (Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’ 62))),

Ir (GateSign (GateSignSingle1 (Gate ‘C’ 54))))]

------------------ Data for airport graph -----------

realGraph :: Environment
realGraph = foldr insertG (G []) (map makeE realStrings)
realStrings :: [(NodeId, SignPost, NodeId, SignPost)]

realStrings =
 [(0,NoSign,1,NoSign), -- fictive edge for orientation at node 1
 (1,S 1 (Ir (GateSign2 (GateSignRange (LetterOnly ‘A’) (LetterOnly ‘D’)))),2,NoSign),
 (2,S 0 (Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘B’),

(LetterOnly ‘C’),(LetterOnly ‘D’)]))),3, NoSign),
 (3,S 1 (Ir (GateSign (GateSignSingle (LetterOnly ‘A’)))),4,NoSign),
 (3,S 0 (Ir (GateSign1 (GateSignList [(LetterOnly ‘A’),(LetterOnly ‘C’)]))),5,NoSign),
 (3,S 7 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),6,NoSign),
 (4,S 6 (Ir (GateSign (GateSignSingle (LetterOnly ‘C’)))),

5, S 2(Ir (GateSign (GateSignSingle (LetterOnly ‘A’))))),
 (5,S 6 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),

6,S 2 (Ir (GateSign (GateSignSingle (LetterOnly ‘A’))))),
 (6,S 6 (Ir (GateSign1 (GateSignList [(LetterOnly ‘B’),(LetterOnly ‘C’)]))),7, NoSign),
 (7,S 6 (Ir (GateSign2 (GateSignRange1 (Gate ‘C’ 51) (Gate ‘C’ 62)))),9,NoSign),
 (7,S 5 (Ir (GateSign (GateSignSingle (LetterOnly ‘B’)))),8,NoSign),
 (9,S 7 (Ir (GateSign (GateSignSingle1 (Gate ‘C’ 54)))),10,NoSign)]

------------------ Creating the world -----------

worldAirport = World time agent g where
 time = 1
 agent = fred
 g = realGraph

------------------ Creating the agent ----------

fred = Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs mpos cm perc dec pref inc)
where
 aid = 1

Appendix: Haskell Code 167

 pos = 1
 prev = 0
 mpos = []
 cm = cmapR
 perc = []
 dec = NoInfo
 pref = [(1,1),(2,2),(3,4),(4,6),(5,8),(6,7),(7,5),(8,3)]
 inc = IDir 0

Test data – Yahoo-directories
module WebData1 where

import WorldClass
import ZeroOne
import Graphs
import AgentClass
import Strings

------------------ Data for agent’s cognitive map -----------

cmapW :: CognitiveMap
cmapW = [graphUia,graphPhys, graphAa, graphBrand, graphSize]

graphUia, graphPhys, graphAa, graphBrand, graphSize :: G EM NodeM
graphUia = foldr insertG (G []) (map makeEM graphUiaS)
graphPhys = foldr insertG (G []) (map makeEM graphPhysS)
graphAa = foldr insertG (G []) (map makeEM graphAaS)
graphBrand = foldr insertG (G []) (map makeEM graphBrandS)
graphSize = foldr insertG (G []) (map makeEM graphSizeS)

graphUiaS =

[(Iw "do shopping",Iw "confirm"),
 Iw "do business",Iw "confirm")]

graphAaS =
[(Iw "recreate",Iw "do sport"),
 (Iw "do sport",Iw "do track and field"),
 (Iw "do track and field",Iw "running")]

graphPhysS =
[(Iw "physical object",Iw "artifact"),
 (Iw "artifact",Iw "covering"),
 (Iw "covering",Iw "clothing"),
 (Iw "clothing",Iw "footwear"),
 (Iw "footwear",Iw "shoe")]

graphBrandS =
[(Iw "brand",Iw "Adidas"),
 (Iw "brand",Iw "Converse"),
 (Iw "brand",Iw "Reebok"),
 (Iw "Adidas",Iw "Nike"),
 (Iw "Reebok",Iw "Nike"),
 (Iw "Converse",Iw "Nike")]

graphSizeS =
[(Iw "size",Iw "10 1/2"),
 (Iw "10 1/2",Iw "10"),
 (Iw "10",Iw "9 1/2")]

------------------ Data for web graph -----------

wwwGraph :: Environment
wwwGraph = foldr insertG (G []) (map makeE webStrings)
webStrings :: [(NodeId, SignPost, NodeId, SignPost)]

webStrings =
 [(1,S 2 (Iw "do business"),2,S 1 (Iw "Home")),
 (1,S 9 (Iw "recreate"),3,S 1 (Iw "Home")),
 (2,S 2 (Iw "do shopping"),4,S 1 (Iw "do business")),
 (3,S 19 (Iw "do sport"),5,S 3 (Iw "recreate")),
 (4,S 3 (Iw "clothing"),6,S 1 (Iw "do shopping")),
 (4,S 61 (Iw "do sport"),7,S 1 (Iw "do shopping")),
 (5,S 107 (Iw "running"),8,S 1 (Iw "do sport")),
 (5,S 90 (Iw "do track and field"), 9,S 1 (Iw "do sport")),
 (6,S 2 (Iw "do sport"), 10,S 1 (Iw "clothing")),
 (6,S 7 (Iw "shoe"),11,S 1 (Iw "clothing")),
 (7,S 1 (Iw "clothing"), 10, NoSign),
 (7,S 59 (Iw "running"), 12,S 1 (Iw "do sport")),
 (7,S 76 (Iw "do track and field"), 13,S 1 (Iw "do sport")),
 (8,S 12 (Iw "do shopping"), 12, NoSign),

Appendix: Haskell Code 168

 (9,S 12 (Iw "do shopping"), 13, NoSign),
 (10,S 7 (Iw "shoe"), 15, NoSign),
 (10,S 21 (Iw "running"), 21, NoSign),
 (11,S 3 (Iw "brand"), 14,S 1 (Iw "shoe")),
 (11,S 2 (Iw "do sport"), 15,S 1 (Iw "shoe")),
 (12,S 5 (Iw "shoe"), 17,S 1 (Iw "running")),
 (12,S 1 (Iw "clothing"), 21,S 1 (Iw "running")),
 (14,S 1 (Iw "do sport"), 16, NoSign),
 (15,S 3 (Iw "brand"), 16,S 1 (Iw "do sport")),
 (15,S 9 (Iw "running"), 17, NoSign),
 (16,S 1 (Iw "Nike"), 18, NoSign),
 (16,S 2 (Iw "Adidas"), 19, NoSign),
 (16,S 6 (Iw "Reebok"), 20, NoSign),
 (17,S 1 (Iw "confirm"),25, NoSign),
 (18,S 1 (Iw "confirm"),22, NoSign),
 (19,S 1 (Iw "confirm"),23, NoSign),
 (20,S 1 (Iw "confirm"), 24, NoSign)]

------------------ Creating the world -----------

worldWWW = World time agent g where
 time = 1
 agent = charly
 g = wwwGraph

------------------ Creating the agent ----------

charly=Agent (Fact aid (Pos (Node pos)) (Pos (Node prev))) (Beliefs mpos cm perc dec pref inc)
where
 aid = 1
 pos = 1
 prev = 0
 mpos = []
 cm = cmapW
 perc = []
 dec = NoInfo
 pref = [(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(10,10),(11,11),(12,12),
 (13,13),(14,14),(15,15),(16,16),(17,17),(18,18),(19,19),(20,20),
 (21,21),(22,22),(23,23),(24,24),(25,25),(26,26),(27,27),(28,28),(29,29),(30,30),
 (31,31),(32,32),(33,33),(34,34),(35,35),(36,36),(37,37),(38,38),(39,39),(40,40),
 (41,41),(42,42),(43,43),(44,44),(45,45),(46,46),(47,47),(48,48),(49,49),(50,50),
 (51,51),(52,52),(53,53),(54,54),(55,55),(56,56),(57,57),(58,58),(59,59),(60,60),
 (61,61),(62,62),(63,63),(64,64),(65,65),(66,66),(67,67),(68,68),(69,69),(70,70),
 (71,71),(72,72),(73,73),(74,74),(75,75),(76,76),(77,77),(78,78),(79,79)]
 inc = NoIncDir

 169

BIOGRAPHY OF THE AUTHOR

14th August 1973 Born in Salzburg, Austria
1992 Graduated from high-school (Bundesrealgymnasium Zell am See)
1992-1993 Military service
Oct 1998 Master’s degree in geodesy, Department of Applied and Engineering

Geodesy, Technical University Vienna
Oct 1998 – Feb 1999 Worked as surveyor with Vermessungsbüro Hochmair, Zell am See
Mar 1999 - Research and teaching assistant at the Institute for Geoinformation,

Technical University Vienna
June 2000 Master’s degree in electroacoustic composition, University of Music

and Performing Arts Vienna

Grants:
Sep 1997 Invitation for the summer course „2. Komponistenforum Mittersill“

(scholarship by the Salzburger Landesregierung)
Sep 1998 Invitation for participation at the „6th international academy for

composition and audio-art“ in Schwaz/Tirol (scholarship by the
Stadtwerke Schwaz)

April 2000 Young researcher prize (GISRUK conference, York, UK)
Sep 2001 ESRI Student Award (COSIT 2001, Morro Bay, Ca, USA)

