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Mobilitätsbasierte verteilte Berechnung
in gemeinsamen Datenräumen

Kurzfassung

Mobile Computing kann als eine natürliche Weiterentwicklung verteilten Rech-
nens gesehen werden, die durch drahtlose Netzwerke, portable Geräte und Un-
terstützung von Personenmobilität, wie zum Beispiel Tracking Technologien, er-
möglicht wird. Die Integration mobiler Komponenten in stationäre Systeme stellt
jedoch aufgrund begrenzter Leistungsfähigkeit mobiler Geräte, sowie der sich
häufig ändernden drahtlosen Netzwerkqualität, eine Herausforderung dar.

Software Adaptierbarkeit für mobile Rechnerarchitekturen, schnelles Auffin-
den verfügbarer Dienste, so wie die Unterstützung für asynchrone Kommuni-
kationsprotokolle, wie sie von Data Space basierten Technologien angeboten wer-
den, sind wesentliche Anforderungen. Oft werden mobile Geräte mittels Proxy
Technologie oder leichtgewichtiger Protokolle integriert, wobei die wachsende
Leistungsfähigkeit mobiler Geräte zunehmend die Integration als vollwertige Teil-
nehmer ermöglicht.

Der Beitrag dieser Dissertation zur Forschung im Bereich Mobile Comput-
ing liegt in der Einführung einer mobilitätsbasierten, fehlertoleranten Software
Schicht aufbauend auf Data Space Technologie. Die Kenntnis über das Mo-
bilitätsverhalten gründet sich auf Beobachtungen der Zustände und der Zustands-
wechsel im drahtlosen Netzwerk, sowie auf Vorhersage des nächsten Zustandes
mittels Mobilitätsmodellen. Reaktive-, wie auch proaktive Fehlertoleranzmecha-
nismen verwenden Kopien von gemeinsamen Daten.

Die Anwendbarkeit des Konzepts wird mittels einer Referenzimplementierung
aufbauend auf der Middleware CORSO demonstriert. Die Vorhersage basiert auf
zwei Modellen, einem Markov Modell zweiter Ordnung und einem personenbe-
zogenen terminplan-basierten Modell, das zum Beispiel aus Kalendereinträgen
extrahiert werden kann.

Experimente in einem WLAN Hotspot Bereich zeigen die Auswirkungen be-
wegungsbasierter Koordinierungsfehler und evaluieren die Fehlertoleranzmech-
anismen. Die Vielfalt an möglichen Koordinationsszenarien wird mittels vier
bezüglich zeitlicher und referentieller Kopplung der beteiligten Prozesse unter-
schiedlich zu klassifizierenden Koordinationsmuster reduziert. Die Resultate zei-
gen die von synchroner Kommunikation bedingten Grenzen und den Nutzen des
Ansatzes.



Mobility-Aware Distributed Computing
in Shared Data Spaces

Abstract

Mobile computing is a natural further development of distributed computing en-
abled by wireless networking technologies, portable devices, and means for sup-
porting personal mobility based on, for example, tracking technologies. However,
the integration of mobile technologies into stationary distributed systems causes
several challenges due to mobile device limitations and changing wireless network
connectivity.

Many research efforts focus on software adaptations for mobile computer ar-
chitectures, on fast service discovery, and on lightweight and asynchronous coor-
dination protocols as provided by data space-based technologies. Mobile devices
are commonly integrated by means of proxy technologies and lightweight proto-
cols. As mobile computing devices become more and more powerful, integrating
these devices as equivalent participants within distributed architectures becomes
feasible.

This thesis contributes to the research field of mobile computing by proposing
a mobility-aware fault-tolerant coordination layer on top of data space-based
middleware. Mobility-awareness addresses observation of current wireless link
states and prediction of future wireless link states and retention periods based on
mobility models. Hence, both reactive and proactive mechanisms are proposed to
tolerate weak network conditions and disconnections by means of local replication
of the shared data space.

An extensible reference implementation based on the shared object space mid-
dleware CORSO demonstrates the feasibility of the approach. For prediction pur-
pose, a second order Markov model for modeling continuous movement in terms
of direction and a schedule-centered model based on, for example, a person's
calendar entries, are used as reference mobility models.

Experiments are carried out to investigate coordination failures caused by
moving in a wireless LAN hotspot area and to analyze fault tolerance mechanisms.
Four well known coordination patterns are used as representatives for a manifold
of coordination scenarios classified according to the coupling characteristics of
processes in terms of time and reference. The results of the experiments are used
to investigate possible achievements and inevitable limits of the mobility-aware
approach for each coordination pattern.
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Chapter 1

Introduction

Distributed systems become more and more enriched by mobile computers and
mobile appliances. Those devices allow to connect to Web-services, ad-hoc col-
laborative applications, and legacy systems. Although a manifold of mobile com-
puters exist, the common ground of mobile computing lies in the dynamics due
to movement. This thesis studies the effects of mobility applied to one of the
major characteristics of distributed computing, that is, coordination.

1.1 Mobile and Wireless Computing Fields

Mobile computing can be seen as a natural extension of distributed computing
simply because the participating distributed computers are portable and, thus,
exhibit the potential to be moved. Due to the need of user mobility, devices
used differ in weight, size, and technical footprints. For example, while smart
phones are on the lower end of the scale, Personal Digital Assistants (PDAs)
exhibit more processing power, more main memory available, and larger display
sizes. Notebooks are high-end mobile devices often capable of replacing desktop
computers.

Trends in mobile computing are most interesting in market research concern-
ing both preferred wireless network technologies and mobile devices. Due to an
economy research by TNS Infratest on behalf of the German government [GraO4],
mobile communication and mobile computing are expected to grow significantly.
In April 2003, worldwide 40 percent of mobile phones in operation have already
been Internet enabled. WLAN is currently the technology that is more fre-
quently used than UMTS. Different indicators make the prognosis reasonable,
that WLAN will stay important during the next years. For examples, public
WLAN hotspot installations will grow as depicted by Figure 1.1 (a), while the
number of mobile devices sold which support WLAN access will significantly in-
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crease (Figure l.l(b)). WLAN enabled smart phones are expected to be a major
technology for the next years, since they are able to combine the functionality of
PDAs and mobile phones.
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Figure 1.1: (a) Number of public WLAN hot spots worldwide and (b) growth
rate of WLAN enabled mobile device markets worldwide - year
2003 and further are prognosis values (studies have been first
published in summer 2003) [GraO4]

As a consequence of the widespread availability of networked mobile devices
and wireless networks, during the last decade, mobile computing has already been
widely introduced in the following fields:

M-Work. Since field technicians, medical personnel in hospitals, and managers
on business trips are mobile, here mobile devices and wireless networks
provide access to computation support, enterprise specific applications, and
Internet services.

M-Commerce. Wireless networks and protocols like WAP/WML1 together
with mobile devices enable users to connect to Web-shops, newspapers,
and Web-based booking services. In the field of mobile telecommunica-
tions, SMS services can be used to buy products, like soft drinks or railway
tickets, while being on the move.

M-Learning. Education is a major sector where notebooks are widely used.
In particular, university campuses are more and more enriched by WLAN
access points [ShoOl]. Going one step further, context-aware learning ap-
plications can be used to enable collaborative learning or learning activity
selection and adaptation based on the current situation. Various applied
research has been carried out at the Institute of Computer Science and

1http://www.w3c.org/
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Business Informatics at the University of Vienna in the field of m-learning.
For example, a learning unit recommendation prototype has been proposed
which is based on augmenting learning units by XML meta-data. This
meta-data allows to describe, for example, context requirements of a learn-
ing unit [HumO3].

Tracking students interactions with both digital and physical learning re-
sources has been proposed in [HumO4b]. Here, location and proximity
awareness tracking is based on Radio Frequency Identification (RFID) tech-
nology. Figure 1.2 (a) shows the learner user interface of the first prototype
and Figure 1.2(b) shows the concept of the tracking prototype.

M-Entertainment. Mobile location based games running on smart phones or
PDAs, mobile e-city guides, e-museum guides, as well as movies streamed
to or running on mobile devices are examples of mobile entertainment. An
examples of such a gaming prototype situated in Venice is presented by
Bellotti et al. [BelO3b].

-<?•

Physical world
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: Access to digital -

' I resource information

Access to digital
• person information

: Structural information
about the learning task ;

'• Rating of [^
\ learning success i_I

(a) (b)

Figure 1.2: (a) M-learning recommendation prototype and (b) prototype for
tracking RFID-tagged persons and resources in order to generate
physical learning traces

In addition to everyday life applications, progress in mobile computing and
in mobility modeling is needed in the following current research fields:

Ubiquitous Computing. In ubiquitous computing environments, persons are
envisioned as being surrounded by an ambient computational environment.
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Personal mobility and, if applicable, terminal mobility require support for
changing contexts due to movement. For example, digital mobile services
might follow a person's physical movement (code on demand or mobile
agents [ZacO2b] and adapt to the current context).

Distributed Computing. Traditional distributed computing services are pro-
vided by general purpose middleware systems. In addition to stationary
computers, these systems consist more and more of mobile devices, like
PDAs and notebooks or even smaller appliances. Compared to stationary
computers, mobile devices show different behavior mainly in terms of avail-
ability and processing and memory power. Without a model for movement
and a concept for maintaining connections to moving devices and to devices
with small technical footprints, only a few application areas might be cov-
ered. CORSO mobile, for example, enables the connection of small mobile
devices via Java&Co, that is, an API which enables processes to connect
to a remote shared data space [KühOl]. Recently, also mobile and wireless
computational grid systems are proposed [KurO4, McK04]. Here, the man-
agement of mobile nodes used as, for example, computing resources, and
their dynamics in terms of availability are of major interest.

Wireless Networking and Routing. When movement has to be considered,
wireless networks have to face some challenges in terms of channel alloca-
tion, handover, and borderline problems between neighboring cells. Here,
models of movement are used for future movement prediction purposes in
order to avoid network management overload. Furthermore, when evaluat-
ing new routing or management algorithms, mobility models are used for
simulation purposes [dW03, CayO2].

1.2 Problem Definition and Contribution of this
Thesis

Among the mobility related research topics identified for distributed comput-
ing, coordination of processes executing on mobile devices is a major challenge.
Traditionally, coordination between distributed processes is analyzed, modeled,
and implemented assuming stationary network components. In case of mobile
distributed systems, adaptations are required which allow to handle components
that become unavailable frequently or exhibit significant wireless link quahty
changes over time. From a coordination scenario's perspective, these characteris-
tics can be regarded as faults. Consequently, fault tolerance mechanisms can be
used to assure ongoing or degraded operation. Such assurance is very important,
for example, in case Service Level Agreements (SLA) have to be met by a service
provider.
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Early related works, like the resource-centric work proposed by Schill et
al. [Sch95], have already identified major means for mobility support, that are,
emulation of resources, caching, and use of (other) local resources based on the
Distributed Computing Environment (DCE). By using middleware approaches
which provide stateful communication and coordination resources, like proposed
by CORSO [KühOl], participants may reconnect and retrieve information stored
while they have been disconnected. However, times of disconnections are com-
monly not supported. More recent works address this issue by working on copies,
which are, (i) creation of the copy and (ii) synchronization when reconnecting.
For example, Mascolo et al. [MasO2b] propose versioning as a means for synchro-
nization.

These reactive mechanisms are not sufficient for activities which have to be
finished before the network condition worsens or the connection breaks. Hence,
very recently, proactive mechanisms are proposed which use uncertainty modeling
and reasoning about mobile behavior, like the work of Burcea et al. [BurO4] for
pre-fetching of events. However, there is a lack of a common understanding of
the major characteristics of mobility modeling, mobility caused failures, and their
consequences.

The work presented in this thesis aims at providing such characteristics for
mobile behavior, modeling mobility caused failures, investigating their conse-
quences, and deriving applicable reactive and proactive fault tolerance mecha-
nisms. Hereby, this thesis focuses on wireless networks characterized by changing
link qualities and on high-end mobile devices, like notebooks and tablet PCs,
which already allow mobile components to be full participants in a distributed
system. Due to the superior support provided by shared data space approaches,
which originate from the Linda tuple space model [Gel85, Gel92], the approach
proposed is based on this paradigm. The consequences of movement for dis-
tributed coordination is studied related to the following critical issues:

Availability. Since ubiquitous and seamless network support cannot be assumed
for mobile devices, disconnections are planned failures. Concepts of mainly
asynchronous communication and persistent message storage offer superior
support for these failures. When comparing the two different paradigms
used for distributed computing, that are message passing and virtual shared
memory, approaches implementing the virtual shared memory paradigm are
more promising. These distributed systems use the abstraction of a shared
data space, where messages are stored at and retrieved from at arbitrary
times instead of transferring messages between processes [Kiih98b, Gel85].
However, in case the virtually shared space is distributed between mobile
computers, parts of the shared space may become unavailable in case one
mobile component disconnects. A definition of the resulting failures, their
consequences, and feasible fault tolerance mechanisms are required.
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Service Provisioning over Degraded Link Quality. Roaming within a
wireless network may lead to link degradation due to noise disturbances,
shielding, and reduction of signal strength. In order to hide link degra-
dation from the user perception, compensation actions are required. For
example, network traffic or synchronization operation may be postponed
until network quality gets better. Here, similar to disconnection faults, a
mapping between link quality and resulting adaptations of the distributed
system or the application is required.

Working on Copies. In order to support operations on shared data while being
disconnected, processes on mobile devices will often operate on copies and
cached data. Accuracy while creating the copy, efficient synchronization,
and data lock management have been identified as key challenges [Imi94]
and are still addressed by recent middleware approaches (see, for exam-
ple [CapO3]). Consistency assurance itself has to be addressed as well as
the question how and when to initiate corresponding operations. The latter
is one of the most challenging issues addressed by this thesis.

Consequences of Movement on Coordination Tasks. Since distributed
coordination tasks exhibit different degrees of communication load and
style, mobility related failures are expected to differ depending on the
type of coordination operations carried out. In order to discuss these
mobility related consequences systematically, coordination tasks have to
be classified and studied accordingly, which is an open issue up to now.

Figure 1.3 depicts the approach proposed for evaluating the consequences of
mobility on distributed coordination and for compensation of failures caused by
mobility. First, in order to study the effects of mobility on distributed coor-
dination, the manifold of possible scenarios is reduced by means of coordination
patterns. Second, the core of the supporting fault tolerance mechanisms proposed
is designed as a modular mobility-aware coordination layer used to advance the
concept of the shared data space. Finally, experimental evaluation is used to
show the improvements achieved by the mobility-aware concept and the limits of
the approach for different coordination patterns. These experiments are based
on both physical measures and simulation results. The major contributions and
methods applied are detailed as follows:

Coordination Patterns. Coordination patterns are software design patterns
which provide a useful abstraction from specific distributed computing
problems. The modeling approach introduced extends the descriptive tem-
plate commonly used for design patterns [Gam95], pp. 6-8. UML activity
diagrams are applied to visualize coordination patterns and to derive se-
quences of data space primitives describing the coordination behavior of the
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Selection of coordination scenarios under investigation

Coordination pattern approach
— Temporal coupling

'— Referential coupling

Mobility-aware coordination layer approach

Link quality measures Prediction
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r— Link quality

'— Retention period

Experimental evaluation
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— Effectiveness

— Efficiency

— Failure rate
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[— Physical measures
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Figure 1.3: Overview of the approach proposed

process types. Additionally, measures are defined which allow to quantify
coordination patterns in terms of temporal and referential coupling. These
two dimensions of coupling axe based on a commonly used taxonomy for
distributed processing [TanO2, CabOOb], which defines four classes. Cou-
pling of processes is a major limiting factor for the benefits achievable by
the mobility-aware coordination layer.2 The modeling approach is applied
to eight significant coordination pattern examples, which are classified ac-
cordingly. Among these patterns, four class representatives are selected,
which are implemented for comparison reason.

Mobility-Aware Coordination. Based on a fault-hypothesis, the mobility-
aware coordination layer introduces and implements the concept of sep-
arating a local copy from the global space in order to provide fault toler-
ance. Copy, release, and synchronize operations are used to assure consis-
tency between the spaces. Since these operations require invocation in ad-
vance, proactive mechanisms axe proposed. Proactive behavior is achieved
by means of mobility models which axe used to predict future link states

2For example, two temporally coupled processes rely on synchronous communication and
cannot benefit from working on copies in times of disconnections.



1 Introduction 1.2 Problem Deßnition and Contribution

and retention periods by comparing user history traces against mobility
patterns. This concept is applied to two different mobility models. First,
a second-order Markov model is assumed for wireless link state prediction
and a first-order Markov model is used for predicting the next retention
period. Additionally, a mobility model is defined which makes use of per-
son centric information, like, for example, a personal time schedule, in
order to predict the next link state. The prototypical implementation of
the mobility-aware coordination layer is based on evaluating the Signal to
Noise Ratio (SNR) based on WLAN 802.11b, the space based middleware
CORSO [KühOl, TEC04] (and the Java&Co API), and the Java program-
ming language.3

Experimental Results. Experiments based on physical roaming and simula-
tion are carried out in order to evaluate the mobility caused effects in
terms of effectiveness, efficiency, and failure rate. The experiments are ap-
plied to all coordination pattern examples which allows to compare the
results in terms of temporal coupling and referential coupling. Addition-
ally, the experiments are used in order to show the benefits and limits of
the mobility-aware coordination layer and, in addition, of replication of
processes.

Structure of this Thesis

The remainder of this thesis is structured as follows:

Related Work. Section 3 surveys middleware approaches, mobile agent sys-
tems, distributed data management approaches, and selected context-aware
application approaches. The focus of the comparison and the discussion is
set on mobility support and proactive fault tolerance mechanisms.

Coordination Patterns. In Section 4, a modeling approach based on the
shared data space approach, a classification scheme in terms of temporal
and referential coupling, and a detailed description of coordination patterns
is presented. The specification of eight coordination patterns intends to be
a reference work for the interested reader.

Mobility-Aware Space Based Computing. Section 5 introduces the con-
cept of mobility-awareness to data space based computing. Here, the fault-
hypothesis and the mobility models used for prediction purpose are de-
scribed. The state machine and the core algorithms proposed are presented
in detail.

3 CORSO originates from the research carried out under the guidance of Prof. Eva Kühn at
the Vienna University of Technology.

8
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Application. The mobility-aware concept is applied to the space based mid-
dleware CORSO in Section 6. Implementation specific decisions, CORSO
features, the modular concept of the mobility-aware coordination layer, as
well as data structures and operations used are discussed.

Evaluation. Section 7 describes the experimental setup and presents the results
achieved by studying representative coordination scenarios while roaming.
The experiments are carried out either by physical roaming or, more exten-
sively, based on a distributed simulator which generates mobility traces.

The conclusions derived in Section 8 complete this thesis.



Chapter 2

Concepts, Terms, and Definitions

This chapter presents several terms and definitions related to the fields of mobile
computing, fault-tolerant computing, and coordination in distributed systems.
Furthermore, basic concepts and technologies are summarized in order to provide
a brief introduction to the main mobile distributed computing issues.

2.1 Mobile Computing

Coulouris et al. [CouOl], p. 6, define mobile computing as the performance of
computing tasks while the users are on the move, or visiting places other than
their usual environment. Campadello et al. [Cam99] extend this definition by dif-
ferentiating between roaming devices, users, and software. Respectively, mobility
is classified into personal mobility, terminal mobility, and code mobility.

Mobile code is software that can be sent from one computer to another
and can be executed on the destination computer, like, for example, Java
applets. In case mobile code migrates autonomously, it is termed mobile
agent [Whi97, Pic98, CouOl]. In case mobile agents save their current execution
state before migrating in order to continue execution at this saved program state,
they are said to perform strong migration. Otherwise they are said to perform
weak migration. Recently, mobile code and mobile agents have been accepted
widely as a new coordination paradigm. They are advantageous, whenever it
requires less network load to transfer the code to the data than to communicate
between remote processes.

Following these definitions, here, mobile computing is defined as the execution
of computing tasks while a person, a device, or code is on the move or visiting
places other than the usual environment.

10



2 Concepts, Terms, and Definitions 2.1 Mobile Computing

2.1.1 Wireless and Mobile Network Protocols

Mobile computing targets all issues concerning mobile devices and their network
connections to other devices and computers. Thus, mobile computing relies on
a supporting network infrastructure. Although related, mobile computing is not
equivalent to wireless computing, that is, network computing over a wireless
network [TanO3], p. 10. However, since wireless networks provide easy access and
an extended freedom of movement, they are commonly preferred in the field of
mobile computing.

Wireless computer networks either define at least the physical layer and the
data link layer, or use a wireless infrastructure for data communication services.
For example, General Packet Radio Service (GPRS) utilizes the Global System
for Mobile Communication (GSM), and 3G (or UMTS) unite data and telecom-
munication networking. In wireless Local Area Networks (LANs), mobile devices
may connect via radio technologies, like Wireless LAN (WLAN, Wi-Fi), which
has been standardized by the working group 11 of the IEEE 802 standardization
community [IEE99], or Bluetooth. The physical layer and the data link layer of
Bluetooth are standardized in IEEE 802.15 [IEE02, TanO3]. Bluetooth is most
frequently used in Wireless Personal Area Networks (WPANs) to connect differ-
ent devices with one another in a point-to-point manner. Additionally, wireless
data transmission in the infrared frequency band is here used, which requires a
line-of-sight during operation, like IrDA.1

Using WLAN, computers may either operate in ad-hoc mode or infrastruc-
ture mode. While in ad-hoc mode a set of equivalent stations connect sponta-
neously to each other, in infrastructure mode an access point is used to bridge
between the wireless LAN and the wired LAN. The access to the wireless medium
is either managed by the Carrier Sensing Multiple Access/Collision Avoidance
(CSMA/CA) strategy when operating in decentralized Distributed Coordination
Function (DCF) mode, or by the centralized Point Coordination Function (PCF)
mode. Using CSMA/CA, the station which wants to send first senses the channel
whether it is idle. In case it is not, it waits for the duration of back-off interval
prior to starting to sense again. Channel sensing may be either based on phys-
ical signal sensing or virtual sensing, where specific messages are used to detect
whether a channel is idle. Using PCF, the access point polls each stations and
grants sending permission in order to prohibit collisions. A brief introduction to
WLAN can be found in Tanenbaum [TanO3], pp. 292-302.

At first WLAN operated with maximal data transfer rates (DTR) of 1 or 2
Mbit/s. Newer versions provide higher maximum DTR as shown in Table 2.1,
but are still working far below the average speed of todays wired LANs (100
Mbit/s). The standards IEEE 802.11a/b/g2 all focus on encoding and use two

1http://www.irda.org/
2For an overview, see, for example, http://en.wikipedia.org/wiki/802.ll/.
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Standard
802.11a
802.11b
802.11g

max. DTR
up to 54 Mbps
up to 11 Mbps
up to 54 Mbps

Frequency Band
5-GHz ISM band

2.4-GHz
2.4-GHz

Modulation Method
OFDM

DSSS, HR-DSSS
DSSS, HR-DSSS, OFDM

Table 2.1: IEEE 802.11x main standards

different modulation methods, that is, Orthogonal Frequency Division Multi-
plexing (OFDM), and High Rate Direct Sequence Spread Spectrum (HR-DSSS).
In OFDM, frequency hopping is used for modulation, which makes this scheme
robust with respect to radio interference. HR-DSSS uses either code shift modu-
lation or Walsh/Hadamard codes on the whole spectrum. The third modulation
method in WLAN works with diffused transmissions in the infrared spectrum,
but since it offers only low bandwidth, this solution has not been focused on
recently. The other standards (802.11c-f,h-j,n) focus on service enhancements,
extensions and corrections [TanO3].

When supporting mobile devices (here, also termed mobile hosts) on the net-
work layer, network address management is a major issue. In the Internet, net-
work layer mobility mainly suffers from the IPv4 addressing and routing strat-
egy. When addressing hosts, or, more general, network interfaces, the topological
structure of the network is explicitly used. An IP address is built up by a prefix
referring to the network of the host, followed by a host's address. Based on a
dynamically changing and best-effort strategy, IP datagrams are routed to the
network stated by the receiver host's IP address. As a consequence, in case a
mobile device moves from one network to another, the network prefix of its IP
address has to be changed. In case the host is not expected to be available using
its old IP address, a new address may be assigned manually or automatically
using, for example, the Dynamic Host Configuration Protocol (DHCP) [Dro97].
Mobile IP has been designed in order to transparently relay IP data transfer to
the mobile host's new IP address. The protocol is based on the utilization of a
home agent, which acts as a proxy for the moving host in the home network by
tunneling IP packets to the visited network (foreign network). For further reading
see Perkins [Per96, Per98], or an introductory by Hummel et al. [Hum04c].

2.1.2 Network Quality of Service in Wireless Networks

In a distributed system, the performance of the communication channels is im-
portant for the overall performance of the system. Coulouris et al. [CouOl], p.
51, describe the main performance characteristics in terms of latency, jitter, and
bandwidth. Latency, is defined as the delay between the sending of a message
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initiated by an application process and the receipt of this message by the re-
ceiver process. Jitter is the variation in delay for delivering a series of messages.
Bandwidth is used synonymously to Data Transfer Rate (DTR) by Coulouris et
al. [CouOl], pp. 49-50. It is defined as the maximum amount of data which can
be transmitted in a given time interval.

In wireless and wired networks, the signal strength determines the maximum
DTR. Additionally, for example, thermal noise further reduces the available max-
imum DTR. Tanenbaum et al. [TanO3], p. 89, describe the relation of maximum
DTR briefly, which originates from the works of Nyquist and Shannon. Equa-
tion 2.1 shows Shannon's result for a noisy channel, where H denotes the band-
width (in Hz) and S/N the ratio of signal strength to noise strength (Signal-to-
Noise Ratio (SNR)). The maximum DTR calculated can be seen as an upper
bound for the actually observed DTR on communication channels:

maximum DTR = #log2(l + —) [bit/s] (2.1)

Since the SNR can be sensed without any further probing of the communication
channel, it is reasonable to use it as an indicator for link quality and thus for
determining the degradation level of possible DTR.

In addition to the DTR, packet losses and delays are further channel char-
acteristics that influence the end-to-end QoS. Network protocol adaptations are
often required for wireless networks, like proposed by various TCP adaptations
for the transport layer ([TanO3], pp. 553-556). In heterogeneous networks which
may consist of different wireless and wired networks, end-to-end QoS provision-
ing architectures have to address different network protocol QoS mechanisms.
For example, Integrated Services (IntServ) and Differentiated Services (DiffServ)
allow to reserve resources for different traffic flows and users (see, for example,
Tanenbaum et al. [TanO3], pp. 409-415), while Multiprotocol Label Switching
(MPLS) [RosOl] provides selection of routes (i.e. switching functions) by means
of header labels independent from data link and network layer. Recent work by
Gao et al. [Gao04] propose a novel QoS provisioning architecture which allows
hyper handover. Here, multiple network protocol layer services are integrated
during changes in terms of access technology, terminals used, application charac-
teristics, and administration domains.

2.1.3 Mobility Models

A mobility model defines a notation and a description of location sequences de-
scribing the motion of an entity in space and time. Usually, additional parame-
ters of interest, like direction, velocity, acceleration, retention period, and a time
stamp are included. From such a model, it is possible to extract these sequences
{mobility patterns) and to compare them to mobility traces, that are, concrete
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movement observations from roaming entities. The more mobility models provide
accurate, scalable, adaptive, and inexpensive algorithms for comparing mobility
patterns against traces, the more they are applicable to different scenarios. For
example, the extraction of every day motion patterns requires other temporal
and spatial granularities, than the extraction of motion patterns at a conference
venue.

According to the notion introduced by Cheng et al. [CheO3c], let A be a set of
possible locations (for simplicity without any additional parameters). A location
sequence is also termed movement history Hn, where

Hn = (X1=a1,...Xn = an), (2.2)

where Xi denotes a random variable and each <2j 6 A. P(Xi = Oj) denotes the
probability that the random variable takes value ai and P(Xi = aî) denotes an
estimation of this probability. The events are commonly assumed to occur at
equally spaced time intervals.

2.2 Fault Tolerance and Availability

More than in stationary distributed systems, in mobile computing systems, com-
munication breaks and decreased DTR are not an exception, but the usual case.
Thus, the distributed mobile system has to stay operational in the presence of
such faults.

2.2.1 Fault-Error-Failure Definitions

According to Laprie et al. [Lap92], a fault is an adjudged or hypothesized cause of
an error. An error, that is, the manifestation of a fault, often leads to a failure of
the system. A failure is defined as a system state, in which the delivered service
no longer complies with its specification. In distributed systems, the failure of one
sub-system may lead to a fault in another system recursively. A fault-hypothesis
describes the possible faults, errors, and failures in a system. Based on the
fault-hypothesis, system degradation states may be derived and fault tolerance
mechanism may be specified.

Figure 2.1 shows a classification of failures widely used in embedded dis-
tributed systems, like described by Kopetz, [Kop97], pp. 120-123. The nature
of failures distinguishes between the time and the value domain. For example,
messages arriving too late are timing failures, while messages containing wrong
data are value failures. The perception of a failure may be assumed to be con-
sistent for all partners, like used in atomic group multicast protocols, or to be
inconsistent. In terms of effect, failures can be malign and benign. Since mobile

14



2 Concepts, Terms, and Definitions 2.2 Fault Tolerance and Availability

Failure

Perception

Consistent

Inconsistent

Effect

Benign

Malign

Oftenness

Permanent

Transient

Figure 2.1: Failure classification

computing does not target hard real-time systems, this property is not addressed
in the presented work. Finally, in terms of occurrence, failures can persist perma-
nently or be observed transiently. After a permanent failure, which is a special
case of a single failure, the system ceases to provide a service until it is repaired.
Otherwise, in case a failure occurs and vanishes again while the system remains
operating the failure is termed transient failure. In case a transient failure occurs
frequently, it is termed intermittent failure.

Kopetz furthermore distinguishes between two cases classified as consistent
failures, namely fail-silent, where a component does not deliver any output in
case of an error, and fail-consistent, where a component delivers the same (wrong)
value to other components. Inconsistent failures are often termed Byzantine
failures (or malicious failures).

A fault-tolerant subsystem (or unit) consisting of redundant components has
to reach agreement in spite of k faulty components. Caused by the semantics of
the components' failure modes, such a unit has to consist of a minimum number
of components, that is:

• k+1 in case of fail-silent components,

• 2k+l in case of fail-consistent components,

• 3k+l in case of Byzantine components.

In case of k fail-silent components, only one correct component that delivers a
correct message is necessary. If k components fail consistently, k+1 components
that send correct values are necessary to select the correct value by means of ma-
jority voting. In case of Byzantine components, k+1 components are not enough
to tolerate k inconsistent failures because they are not perceived similarly. It has
been shown, that this problem is solvable for a minimum of 3k+l components
which perform several communication rounds [Pea80].
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In terms of dependence, failures may either be independent or related. In the
related case, failures may either be coincident failures (that is, they occur be-
cause of the same input, but are not related), simultaneous failures, or sequential
failures.

2.2.2 Failures in Distributed Systems

In distributed systems, failures of computing entities are perceived as communi-
cation failures. Messages may be lost, delayed, contain wrong data values (for
example, may be corrupted due to bit-flips), received multiple times, or received
in wrong order. As a consequence, the fault hypothesis may be reduced and sim-
plified to those perceived communication failures and the testing of fault tolerance
mechanisms can be based on a reduced test set.

In mobile distributed systems, communication failures are mainly caused by
network problems, which occur depending on the mobility behavior and network
coverage. Thus, the fault-hypothesis here may be used to define degradation
states caused by roaming in areas where bad network connection is available.
Table 2.2 presents communication failures based on the terminology presented
by Tanenbaum et al. [TanO2], pp. 364-365, in terms of failure perception and
error (or failure cause).

Perception
Timing
Multiplication
Value
Ordering

Error
Message Loss or Delay, Sender's or Receiver's Omission, or Crash
Network Communication Protocol: Resend, Buffer Error
Bit-Flips during Transmission, Sender's Response
Network Communication Protocol Deficiency or Error

Table 2.2: Communication failures

Usually, reliable network protocols, like the Transmission Control Protocol
(TCP, initially defined in RFC 793 [Pos81]), provide means in order to avoid
and tolerate some of these faults, for example, ordering or message loss. In case
of using an unreliable transport protocol, like User Datagram Protocol (UDP,
defined by RFC 768 [Pos80]), the middleware or application process is responsible
to add fault tolerance mechanisms.

2.2.3 Reliability and Availability

The reliability R(t) of a system is defined as the ability to perform its function
(according to the specification) for a specified time, when required. It is mea-
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sured as a probability that changes over time (for a detailed introduction see, for
example, Leitch [Lei95]). If f(u) is assumed for the distribution of failure times,
it can be used to calculate the reliability by the following formula:

R(t) = f
Jt

f(u)du (2.3)

Whenever a constant failure rate can be assumed (that is, f(u) = A), R(t) can
be calculated as follows:

R(t) = e~xt. (2.4)

In mobile distributed systems, failures due to connection loss or decreased
DTR, are intermittent failures. A simple model considering both failures and
re-establishment of the system's services can be seen as a birth-and-death process
(see Allen [A1190], pp. 121-129). Figure 2.2 shows a simple Markov model of
a system with two states, an operational state (0), and an error state (1). A
denotes the constant failure rate and fj, denotes the constant repair rate.

Figure 2.2: Markov model of a repairable system

Let Po(t) denote the probability that the system is in state 0 at time t and
P\{t) denote the probability that the system is in state 1 at time t. Under the
assumption that the system is operational in the initial state, in this system, the
following conditions are given:

Po(O) = 1, Pi(0) = 0, and (2.5)

Vt : P0(t) + P^t) = 1. (2.6)

The dynamics of the system can be described as differential equations (see, for
example, the description in Allen [A1190]):

dt dt
= XP0(t) - (2.7)
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and by substitution, the equation becomes

dP0(t) = _
dt

(2.8)

By transformation and elementary differential equation theory (for details see,
for example [Heu89, Heu88]), it can be derived that

+ ™°) T^)e- ( A +^. (2.9)°^ TZ
A T" fJ,

For t —• oo, it yields:

lim Po(t) = lim - £ - + (Po(0) - - A _ ) c - ^ ) * = - ^ - . (2.10)
t->oo t-»oo A + ß X + ß A + ̂ i

By symmetry, it can be applied accordingly tha t

lim Pj(t) = lim - A - + (Pi(0) - —*_) e - (*+") t = _ * _ . (2.11)

The availability of a system is defined as the probability A(t) a system operates
according to its requirements at time t. Thus, A(t) = Pç>(t). A quality measure
of a system's overall availability Tav(T) (that is, the time, the system remains in
operational state during a finite time interval T) can be calculated by integrating
P0(t) (Equation 2.9):

{T)= [
Jo A +

(2.12)

j is often termed Mean Time To Failure (MTTF) and - is often termed Mean
Time To Repair (MTTR). The availability of a system at time t may thus be
derived by transforming equation (Equation 2.10):

MTTF
<2 1 3>« " MTTF + MTTR-

2.3 Coordination

In distributed systems, processes, threads, and agents coordinate their ac-
tions with one another. In terms of a programming language, coordination is
an essential issue, which can be separated from the other computational is-
sues [Gel92, BusOl], like shown in Figure 2.3. The two most commonly used
coordination paradigms are message passing and shared data based coordination
(or virtual shared memory). Both paradigms offer means for synchronous and
asynchronous communication. However, using shared data based coordination,
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Program

1
Computation Coordination

Figure 2.3: Concept of concurrent programming

communication is hidden by the shared data abstraction and the processes are,
in principle, uncoupled. Sending and receiving of messages is transformed into
reading and writing to shared data.

Busi et al. [BusOl] state the following main issues when designing a coordina-
tion language:

• definition of coordinables, that is, the active components which are coordi-
nated, like agents or processes;

• selection of coordination media, like channels, ports, or shared memory
areas;

• design of coordination rules, that is, coordination protocols which are rep-
resented by sequences of primitives with clear semantics.

2.3.1 The Data Space Model

Based on the Linda Tuple Space introduced by Gelernter et al. [Gel85, Gel92]
and techniques from process calculi for concurrency, Busi et al. [BusOl] introduce
the following notation for agents operating in a shared Data Space (DS), but it
can be used for arbitrary processes as well:

P ::= 0\ß.P (2.14)
i=\

and
ß ::= out(a) \ in(a) \ rd(a) \ eval(P). (2-15)

/i denotes an instance of a possible coordination primitive (out(a), in(a), rd(a), or
eval(P), which will be explained later) and P denotes a process in the distributed
system. P can either be an empty process, a process that can execute operation

n
ß and the remaining code P, ^ Pi denotes an alternative composition, where the
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process may behave like any of the Pi, and K denotes a generic element. This
generic element allows to model recursions with this simple notation.

A system configuration consists of two multisets, a multiset of processes
M(Process) and a multiset of data M(Data). Formally, it can be stated that

(PR,DS) e M (Process) x M (Data). (2.16)

The coordination rules are shown in Table 2.3 (for alternative composition and
generic elements, see [BusOl]). The output operation out(a) causes an inclusion
of item a to the data space, in(a) performs a consuming read and rd(a) performs
a non-consuming read. The semantics of eval(A) is the creation of a process
(sometimes also termed spawning). Both in() and out() are blocking functions.
© denotes a multiset union.

Operation
(out(a).P
(in(a).P§
(rd(a).P S
(eval(P').,

SPR,DS)
) PR, DS © a)
3 PR, DS © a)
P © PR, DS)

DS

— • (P
— • (P

—y (P
—» (P'

State
3 PR,
S PR,
9 PR,
© P ©

DS)
DSQ
PR,

5 a)

5 a)
DS)

Table 2.3: Basic DS coordination model

In the Linda programming language, the non-blocking input operations are
termed inp() and rdp(). In order to be able to specify these operations, the calcu-
lus selected needs the specification of a test-for-absence operation tfa(a) [BusOl].
It returns false if the item a is not in the data space, otherwise it blocks:

and

tfa(a),

(tfa(a).P © PR, DS) —> (P © PR, DS).

(2.17)

(2.18)

Thus, rdp() and inp() behave either like their blocking counterparts in() or rd()
respectively, or return false in case DS does not contain item a. The equations
(2.19, 2.20) describe the syntax used. With the rdp() and inp() operations, the
calculus becomes Turing-complete:

rdp(a)Wi, P2 = rd(a).Pl + tfa(a).P2,

inp(a)?Pu Pi = m(a).Pi + tfa(a).P2.

(2.19)

(2.20)
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2.3.2 Distributed Transactions

The operations introduced act autonomously on one data item and thus, con-
currency conflicts are implicitly solved. When applying the operations to a set
of data items, transactions are a means to ensure consistent data access. Ad-
ditionally, atomic operations for data-multisets may be used, like the multiwrite
primitive introduced by T-Spaces [Wyc98, Leh99]. Mechanisms assuring mutual
exclusive access to resources similar to Dijkstra's semaphores exhibit the disad-
vantage of locking a set of distributed processes sharing resources in case a process
becomes not available before releasing the lock.

Traditional transactions are based on the ACID properties: atomicity, con-
sistency, isolation, durability. While the atomicity property guarantees the exe-
cution of all grouped operations or no operation at all, the consistency property
guarantees the transfer from one consistent system state into the next. The isola-
tion property states that no transaction should be effected by another transaction
and the durability property states that the results of the transaction should be
persistent.

This concept may be relaxed, like it is done in CORSO [KiihOl, KiihO2] by
relaxation of the isolation property based on the Flex Transaction model [Buk93].
Here, compensation actions are used to assure consistency in the system in case
a sub-transaction fails. Undoing the effects of transactions semantically may be
a challenging task in a distributed system in terms of complexity introduced and
additional execution time needed.
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Chapter 3

Literature Survey

Mobile computing exhibits challenges different from traditional distributed com-
puting which are related to mobile data management, seamless mobile computing,
and adaptations due to limited mobile device capabilities.

Imielinski et al. [Imi94] describe the major challenges of mobile computing
from a data management perspective. These challenges include (i) management
of location dependent data, (ii) disconnections, (iii) adaptations of distributed
algorithms for mobile hosts, (iv) broadcasting over a wireless network, and (v)
energy efficient data access. Compared to continuous operation of stationary
computers, mobile computing causes more bursts of activities.

Roman et al. [RomOOa] exploit the problem area from a mobile computing
perspective. Logical mobility, that is mobility of code in the digital space, and
physical mobility are distinguished. In contrast to investigating logical over phys-
ical mobility [ZacO2b], the notion of unit of mobility allows to refer to both classes
which simplifies modeling. It is further argued, that algorithms, middleware sys-
tems, and applications undergo adaptations caused by mobility. System adap-
tations envisioned are driven by the need for adding location awareness, for less
power consumption, and for using more loosely coupled connectivity patterns.

From a fault tolerance perspective, means for preventing failures of the mobile
system are addressed which should allow seamless operation to a high degree.
Mascolo et al. [MasO2a, CapO2, MasO4] give a detailed survey on mobility support
exhibited by different categories of middleware platforms.

For adapting existing distributed systems to new lightweight mobile devices
and for the design of new lightweight distributed computing solutions, communi-
cation protocols and APIs have to be re-designed. For example, the Java 2 Micro
Edition (J2ME1), provides less archives and smaller classes than the standard
edition.

1http://java.sun.com/j2me/
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The term mobility awareness refers to the importance of modeling the changes
caused by movement in terms of space and time. Although some distributed
systems approaches exist which focus on related issues like location or context
awareness, only a few approaches use the notion of mobility or a mobility model
explicitly for service provisioning. The survey presented in this chapter focuses
particularly on how mobility is modeled and on how mobile computing is sup-
ported.

In this thesis, mobility modeling, prediction, and proactive behavior are ad-
dressed. Thus, Section 3.1 gives an overview of how related methods are used
by mobile and ubiquitous computing approaches. Section 3.2 details the mobil-
ity support provided by different types of middleware approaches including grid
computing systems and soflware agent systems. Section 3.3 summarizes the in-
sights of the survey and compares the different approaches in terms of mobility
support.

3.1 Mobility Awareness, Prediction, and Proac-
tivity

Recently, mobile and ubiquitous computing related research approaches have been
proposed which provide means related to this thesis' contribution. These ap-
proaches do not explicitly focus on bridging the gap between mobility awareness
and seamless distributed computing. However, the methods proposed and the
results achieved are important in terms of:

• mobility modeling,

• extraction of movement or context properties including prediction, and

• proactive mechanisms.

3.1.1 Mobility Modeling

Mobility modeling is important for simulation of person or vehicle movement, for
advanced user behavior modeling, and for prediction purposes, like, for exam-
ple, predictor based cellular mobility management optimization [CayO2, dW03].
User movements are modeled either by stochastic processes, like proposed by the
Random Walk or Random Waypoint mobility models, by applying topographical
information, or by more realistic heuristic models. Stepanov et al. [SteO3] propose
a meta-model based framework for mobility modeling used for simulation.

For extraction of user movement patterns from real-world traces, (embedded)
Markov models or models originating from text compression (LeZi-Update model)
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are commonly used [CamO2]. Ashbrook et al. [AshO3] describe a study on GPS
based location trace extraction and user mobility modeling based on second order
Markov models for locations. A first order Markov model is used by Song et
al. [Son03] and compared to random mobility models in this work. Koukoutsidis
et al. [Kou04] propose location prediction for arbitrary time intervals t in case
the starting position (t = 0) is known by means of embedded Markov models.
Here, prediction is used to optimize paging in mobile cellular networks. A model-
independent information theory based approach using the Lezi-Update model for
mobility and resource management in cellular networks is presented by Roy et
al. [Roy04]. By interpreting the user's movements as a sequence of symbols (or a
string), movement chunks are gradually built without prior knowledge.

Moon at al. [Moo03] describe a history based mobility predictor based on a
particular algorithm developed to adapt QoS provisioning. Here, history trace
tuples are matched against tuples in the database. The next mobility features
assigned to the matching tuple are used for prediction purpose. Abdelsalam et
al. [Abd04] focus on minimizing uncertainties of location tracking applications by
relating context properties. Bayes networks are used to describe these causality
relationships among a set of context values observed, like time, location, or ad-
ditional environmental properties. Markoulidakis et al. [Mar97] distinguish three
basic types of mobility models which describe user movement in an area, a street,
and a street unit. The model consists of reasonable parameters which allow to
describe user movement in a third-generation mobile telecommunications sys-
tem based on transportation theory. Trips consisting of endpoints, purpose and
routes, area zones characterized, for example, by population density and natural
limits, and movement attraction points are some of the modeled characteristics.

3.1.2 Feature Extraction and Context Prediction

A variety of location estimation techniques may be used for generating physical
traces by observation. For example, outdoor positioning can be based on the
Global Positioning System (GPS) or GSM based methods which consider the
Time of Arrival of signals or the Angle of Arrival. For indoor positioning systems,
Radio Frequency Identification (RFID) or WLAN positioning, like the Ekahau2

positioning engine, are reliable technologies.

Headon [HeaO3] considers movement awareness based on sensing the ground
reaction force in order to analyze and categorize user movements. Statistical
pattern recognition is used for distinguishing between seven classes of movement,
like crunching, jumping, sitting, or rising to stand. Applied to ubiquitous gaming,
an active floor originating from Olivetti and Oracle Research [Add97] can be
used as a natural interface for controlling movement of, for example, virtual

2http://www.ekahau.com/
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avatars [HeaO2]. Figure 3.1 (a) depicts such a floor (titles are about 500x500mm).
The load cells sense the vertical ground force of neighboring titles.

Context
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(a)

Sensor n

(b)

Figure 3.1: (a) Active Floor [HeaO2] and (b) the multi-sensor extraction ar-
chitecture overview [GelO2]

Embedded systems, like context-aware systems, usually rely on multi-sensor
data. Layered architectures are used in order to sense, pre-process and aggregate,
and analyze data as depicted by Figure 3.1(b). Gellersen et al. [GelO2] describe
such a framework based on experiences from a variety of projects focusing on
context-awareness. In a post-processing manner, clustering is applied to sensor
data which has been recorded in different environmental situations.

Mayerhofer et al. [MayO3] discuss several clustering algorithms suitable to
group multi-sensor data (see also the discussion in [vLOl]). This work further
presents promising results for features extracted from sensor data. For prediction
purpose, a LeZi based algorithm has been implemented and Markov models are
considered as well. Focusing on the coordination of a manifold of appliances
generating events in a context-aware system, sensor data time series analysis is
another method proposed for prediction of future context properties [FerO3].

PILGRIM is a location broker and mobility-aware recommendation sys-
tem [BruO3a]. In contrast to the approaches discussed above, here, a persons'
digital usage patterns are linked to locations and analyzed accordingly. Thus,
spatial usage history patterns are extracted by observing locations visited and
links used. Another advanced user centric work proposes next location predic-
tion based on a reasoning engine. In this approach, the user's interest in places
nearby, the user's schedule constraints, and the user's goals and tasks are consid-
ered [SamO3].
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3.1.3 Proactive Mechanisms Addressed

Proactive context transfer based on Signal to Noise Ratio (SNR) differences be-
tween two WLAN access points is proposed by Duong et al. [Duo04]. Here,
context transfer mechanisms are invoked whenever the difference in SNR values
between two access points reaches a particular threshold. This mechanism allows
to complete context transfer accurately before the handover takes place.

Salovaara et al. [SalO4] describe six modes of proactive resource management.
Resources eventually needed in the near future have to be (i) prepared for usage,
(ii) optimized in case of collaborative access, (iii) recommended to the user, (iv)
manipulated in order to complete a proactive action like payment, (v) inhibited in
case of risks, and (vi) finalized, that is, released, in case of near task completion.

3.2 Mobile Computing Middleware

Middleware is commonly defined as a software layer capable of masking hetero-
geneity of networks and operating systems. Additionally, this layer provides pro-
gramming abstractions for distributed applications (see, for example, Coulouris
et al. [CouOl], p. 32, or Tanenbaum et al. [TanO2], p. 37). Figure 3.2 depicts the
general architecture.

Hostl Host 2 Host 3

Distributed application

Middleware

Kernel &
network
services

Kernel &
network
services

Kernel &
network
services

Figure 3.2: Distributed system architecture including a middleware
layer [TanO2]

Although different types of middleware systems can be distinguished, no com-
monly accepted classification scheme exists. The structure of this survey is based
on the detailed survey carried out by Mascolo et al. [MasO2a, CapO2, MasO4]
and on major characteristics which are beneficial for mobile computing. The
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assignment of characteristics and middleware types is given by Table 3.1.2

Characteristics
Reusability and reconfigurability
Asynchronous communication

Awareness
(context, QoS, application)
Service discovery

Reactivity

Middleware Types
Object based, component based
Space based, data sharing oriented,
asynchronous message passing based,
(mobile) agent based
Context-aware, QoS-aware,
application aware
Service discovery based,
grid computing based
Reactive, event based

Table 3.1: Assignment of middleware types to mobility related characteristics

Reusability and Reconfigurability. Software reuse and reconfiguration is
commonly addressed by object-oriented systems and languages. Similarly,
object based or component based middleware approaches provide object cen-
tered communication support. These approaches naturally support mobile
computing applications with means for reuse of objects and for object con-
figurability.

Asynchronous Communication Support. Decoupling of dependent dis-
tributed processes can be achieved by means of asynchronous communi-
cation. In case of disconnections, asynchronous communication can still
be provided. Space based approaches which originate from the Linda tuple
space approach [Gel85, Gel92] implement asynchronous communication in a
natural way. Additionally, data sharing middleware, asynchronous message
passing middleware, and mobile agent based middleware provide means for
asynchronous communication.

Awareness. Mobility caused changes are a major issue in mobile computing
scenarios. Here, both changes in QoS parameters and application specific
parameters are of specific interest. Accordingly, context-aware or location-
aware, application-aware, and QoS-aware middleware approaches can be
distinguished. While context-aware middleware systems4 address adapta-
tion based on sensing and interpreting the physical world, application-aware
middleware propose middleware adaptations driven by application require-
ments. QoS-aware middleware systems focus on middleware adaptations
due to changes of QoS parameters.

3Middleware approaches are assigned to types and characteristics in consideration of the
authors' focus and self-classification.

4Here, location is seen as a part of the physical context.
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Ease of Service Discovery. Since mobile hosts are expected to roam between
different computing infrastructures, service registration and service discov-
ery have to be provided. Middleware focusing on these issues is termed
service discovery based middleware in this work. Since grid middleware
focuses on resource sharing and management, they are referred to as ap-
proaches mainly addressing resource discovery and service discovery.

Reactivity. In addition to being aware of changes, middleware sometimes pro-
vides additional means to react to changes. Such approaches are termed
event based middleware or, when focusing on means for reaction, reflec-
tive [RomOl, CapO3] or reactive middleware [Cab98, CabOOa].

Additionally, security is a very important issue for mobile computing ap-
proaches. Since this thesis does not address security issues, this aspect is omitted.

3.2.1 Object Based and Component Middleware

Remote Method Invocation (RMI)

Originating from Remote Procedure Calling (RPC) [Bir84], Remote Method Invo-
cation (RMI) has been derived based on the object-oriented computer language
paradigm. Instead of sending messages to and receiving messages from processes,
the abstraction of method invocation allows to handle remote objects similarly to
local objects. Furthermore, techniques like object serialization provide parameter
marshaling functionality, that is, a translation of parameters into a machine-
independent format. Hence, parameter exchange is supported between processes
running on computer architectures using different character coding or number
representations.

Java RMI5 is a prominent example for RMI based on the Java programming
language. Thus, Java RMI can be seen as lightweight middleware based on the
definition used in this work. However, Java RMI does not provide any advanced
middleware functions, like replication strategies, persistent data management or
recovery policies.

Based on RPC, support for mobile clients is proposed by adding dynamic
binding, disconnected operation and call retries in [Bak95, Bak96]. Modular mo-
bility support routers act as proxies for clients connected over a wireless network.
For Java RMI, Campadello et al. [CamOO] propose performance enhancing proxies
in order to compensate the high protocol overhead of Java RMI. Here, mediators
are used on the server node which implement some of the most costly operations.

5http://java.sun.com/products/jdk/rmi/
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Figure 3.3: Communication overhead reduction (a) by Java RMI proxy
extensions [CamOO] and (b) by bridges based on lightweight
HOP [OMG04b]

Enterprise Java Beans

Based on the Java programming language, Enterprise Java Beans can be used to
develop Internet applications based on components (beans) [SunO3]. Containers
provide middleware functionality, like persistence of data, transactions, and se-
curity. By means of, for example, Java Server Pages (JSP), dynamic Web pages
can be integrated into such a middleware.6

Object Request Brokers (ORBs)

The most prominent example of an object request broker is the Common Ob-
ject Request Broker Architecture (CORBA) defined by the Object Management
Group (OMG).7 CORBA provides interoperability, in particular between differ-
ent programming languages. The core module of this middleware is the Object
Request Broker, which enables communication between distributed processes by
providing links to required objects. Methods can be invoked and the callback
mechanism can be used for result retrieval by clients which have requested re-
mote services. The Internet Inter-ORB Protocol (HOP) which implements the
framework General Inter-ORB Protocol (GIOP), provides interoperability be-
tween different ORBs [OMG04a].

Based on the results achieved by the DOLMEN project [Lil97], the OMG
enhanced CORBA for wireless networks by means of two bridges, which establish

6http://java.sun.com/j2ee/
7http://www.omg.org/
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a lightweight HOP communication tunnel between a mobile terminal and a visited
domain. Figure 3.3(b) depicts this mechanism. The access bridge furthermore
acts as a proxy. Thus, the total message flow can be reduced.

Distributed Object Based Approaches

For developing wide-area distributed applications, Globe has been pro-
posed [BakOO, vS99]. Globe's object model is based on (physical) replication
of objects as depicted by Figure 3.4(a). Each object encapsulates state and de-
composition information. The object can be decomposed into several sub-objects,
like a communication sub-object, a replication sub-object, or a control sub-object.
The replication mechanism can be exploited by mobile terminals which require
access to such a distributed object. Terminals may choose the host of a DSO
based on best network conditions. Additionally, Globe is able to integrate Web-
documents as semantic sub-objects.8 AspectlX is a CORBA compliant middle-
ware which adopts the Globe fragmented object model. Here, replication is used
for step-wise migration of objects [Gei98, HauOl].

Emulated
resource

Stateful static
resource

Stateful dynamic

resource

i Stateless resource

A

Mobile node

Resource
emulation

\ Full caching

=̂  Remote access

Use of local
network resource
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Figure 3.4: (a) Globe Distributed Shared Objects (DSOs) [TanO2] and (b)
resource based operation selection [Sch95]

Distributed Computing Environment (DCE)

DCE is still an important industry standard which offers remote "procedure call-
ing, directory services for naming, security services for access and authentication

8A detailed description of Globe is given by Tanenbaum et al. [TanO2], pp. 545-565.
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purposes.9 Schill et al. [Sch95] describe a DCE architecture for mobile resource
management based on caching and message queuing. Similar to the approach pre-
sented by this thesis, connection states are modeled and resource access behavior
is changed according to these states. Therefore, a detailed resource classification
is introduced. Resources may either be stateful or stateless. In the latter case,
any other type of resource in the local environment may be used instead. State-
ful resources are further distinguished into shared (dynamic) resources, resources
accessed only by one single process (static), and resources which can be emulated
(emulated). Figure 3.4(b) depicts the operations possible during degraded link
quality and disconnection times (gray boxes) depending on the type of resource.
Microsoft's Distributed Component Object Model (DCOM)10 uses DCE RPC.

3.2.2 Space Based Middleware

Space based middleware provides a communication infrastructure by means of a
globally available persistent virtual shared memory. Based on the Linda program-
ming primitives [Gel85, Gel92], remote processes interact via writing to the space
and reading from the space in either a consuming or a non-consuming manner.
Code migration is enabled by spawning processes at remote sites. Addition-
ally, recent space based middleware approaches support the notification of space
changes by means of events. Angerer surveys different space based middleware
systems in [AngO2].

Most of space based middleware approaches are based on the Linda Tuple
Space (TS) model [Gel85, Gel92]. Here, data tuples, that are, sets of ordered
typed fields which might be specified or unspecified, are used to write data to
the space and template tuples are used to retrieve appropriate tuples by simple
matching algorithms. Shared data (or shared objects) can be accessed directly by
means of Object IDentifiers (OIDs). In contrast to tuples, OIDs support creating
linked data structures. Such approaches are termed Shared Object Space (SOB)
approaches [KiihO2]. Figure 3.5(b) depicts the differences between TS and SOB
approaches.

Tuple Spaces (TS)

TS based middleware approaches are widely seen as promising approaches for
ubiquitous and mobile environments. For example, the Stanford Interactive Room
(iRoom) [Bor02] uses an extended tuple space model for collaboration support in
a ubiquitous computing workspace by means of an event heap for event process-
ing [Joh03].

9http://www.opengroup.org/dce/
10http://www.microsoft.com/com/
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Figure 3.5: The (a) shared DS paradigm and (b) two different sub-categories:
TS and SOB

Focusing on the support of mobile components, Linda in a Mobile En-
vironment (LIME) introduces the notion of an Interface Tuple Space (ITS).
The ITS defines a mobile agent's (MA's) local TS (or agent context) which is
mapped to a hierarchically structured TS, whenever the MA enters a logical
area [MurOl, PicOO]. The in() and out() operations from the basic Linda model
are altered by adding a location address variable for the tuple's destination, which
allows the tuple to migrate to a host as soon as the destination is available. Fur-
thermore, a notion for reaction is used to change the TS. The semantics of these
reactions are based on Mobile UNITY [Rom02]. Figure 3.6(a) depicts the ap-
proach. Here, MA 3 roams to a new logical area which causes the corresponding
ITS to migrate as well. Thus, the topology of this distributed shared TS is
changing dynamically caused by agent and device migration.

Tuples On The Air (TOTA) proposes a TS based context-aware middleware,
which allows to specify the management of tuples on application level [MamO3].
Here, tuples are spatially distributed on mobile devices and propagated across
the network based on application-specific rules. Mobile computing is supported
by means of replicated tuples in L2imbo [Dav98]. Consistency between the dis-
tributed TS sites is provided by daemon processes. Hence, in case a host discon-
nects, any replica can be used instead.

JavaSpaces, which is included in the Jini framework [BisO3, Edw99], and T-
Spaces [Leh99] are further widely referred TS approaches based on associative
search for data tuples. However, these approaches do not explicitly provide spe-
cific support for mobile devices.
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Figure 3.6: (a) Linda in a Mobile Environment (LIME) [PicOO] and (b)
CORSO [KühOl, KühO2]

Shared Object Based Spaces

In contrast to associative search in a tuple space, the distributed CORSO im-
plementation provides object ID based access to data items and advanced means
for reliable replication, caching, garbage collection, and transactional process-
ing [Küh98b, Küh98a, KühOl, KühO2]. Furthermore, Application Programming
Interfaces (APIs) are provided for a variety of programming languages, like
Java&Co and C++&Co. In case a mobile device, like a PDA or a smartphone,
is not able to run a full CORSO site locally, this device may use the Java&Co
API library to connect to a remote site and thus access the shared object space
as depicted by Figure 3.6(b). A detailed introduction to CORSO is given in
Section 6.1.

3.2.3 Data Sharing Oriented Middleware

XMIDDLE is a data-centric middleware which enables sharing of XML doc-
uments among mobile hosts [MasO2b, ZacO2a]. By using XML as document
exchange format, heterogeneous hosts and applications can be integrated. In
order to provide access in disconnection states, XMIDDLE proposes the use of
replicated documents. Hence, XMIDDLE addresses copy, synchronization, data
locking, and release of data locks in a mobile environment. Versioning is used in
order to solve inconsistencies while synchronizing. Similar to the approach pre-
sented in this thesis, XMIDDLE can only facilitate working on copies, in case the
disconnection procedure has been finished successfully. However, in contrast to
the approach proposed in this thesis, no means for accurate or proactive detection
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of possible disconnections are provided.

In the Bayou replicated storage system for mobile environments, consistency
is achieved by client side per-write conflict resolution. On the server side, rollback
and similar write operation serialization assures eventual consistency [Ter95].

3.2.4 Context-Aware Middleware

In ubiquitous computing environments, context-awareness is one of the main fo-
cus research areas. In the CoolTown project, users are envisioned as nomads, as
described by Kindberg et al. [KinOl]. Interactions are assumed to be spontaneous
and context-dependent. From a collaborative computing perspective, a Pervasive
Information Community Organization (PICO) supports mission oriented commu-
nities by using two abstract basic building blocks: (i) delegents, which represent,
for example, users or applications, and (ii) camileuns, which represent devices.
Methods for acquiring and disseminating information include context-aware ser-
vices and caching, prefetching, and push-caching policies [KumO3].

The Mobile Collaboration Architecture (MoCA) is another middleware focus-
ing on context-aware collaboration for mobile users [SacO4]. In addition to mod-
ular context sensing services, MoCa uses proxy technology in order to reduce
network load and load balancing. Takasugi et al. [TakO3] propose seamless ser-
vice migration following the user's movement by means of seamless proxies which
manage a particular area.

In contrast to many other approaches which add context-aware services to
existing middleware approaches, the Nexus middleware architecture has been
designed for context-awareness. A three tier architecture is proposed, consist-
ing of (i) a service tier, where context-servers are situated, (ii) a federation
tier which consists of components responsible for service discovery, and (iii) a
application tier where applications reside (see Figure 3.7(a)). The federation
tier's components communicate with the other layers by means of event no-
tifications and request/answer communication style. Distributed Nexus nodes
communicate by means of the Simple Object Access Protocol (SOAP).11 Nexus
provides a hierarchical context world model based on the concept of inheritance.
Thus, services particularly fitting ubiquitous computing scenarios can easily be
introduced, like a geocast service used for multicasting in a specific geographical
area [DiirO4, FriO2, NicO4].

Context is modeled and introduced to existing coordination concepts in var-
ious ways. Hawick et al. [HawO3] extend the concept of user preferences with
spatial or temporal information and introduce the new term active preferences.
In some approaches, context is modeled in terms of objects, like location aware

nhttp://www.w3.org/TR/soap/
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remote objects [JärO4] and sentient objects [Sor04]. In the latter case, pub-
lish/subscribe communication is used for context change notification.
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Figure 3.7: Concept of (a) the context aware middleware Nexus [DiirO4] and
(b) application-aware computing proposed by Odyssey [Nob97]

The Rover toolkit supports both mobile-transparent and mobile-aware com-
puting [Jos95] including mechanisms, like priority based scheduling of messages,
computation relocation, that is, migration of code, notification of changes in the
environment, and object replication including consistency management. Similar
to CORSO, Rover uses primary-copy based concurrent access. Another appealing
context-aware approach is presented by Conan et al. [Con04]. Here, a connectiv-
ity manager monitors the availability of network resources by means of detectors
which are assigned to each resource. These detectors use hysteresis mechanisms
in order to smooth variations and to detect the connectivity mode in a stable
manner. Depending on the connectivity mode, the sending of requests is altered.

From a computer language perspective, Popovici et al. [Pop03] use define
proactive activities for embedded applications by language primitives. Based on
Aspect Oriented Programming [Kin97], proactive operations are introduced by
the language primitive before. Context UNITY [JulO4] is another language based
approach for context modeling based on Mobile UNITY [Rom02]. In addition to
defining places for code execution explicitly, other context characteristics can be
defined in the application.

Context-awareness is further addressed by reflective and by event based mid-
dleware approaches.
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3.2.5 Application-A ware Middleware

Application-awareness addresses the interaction between application, middle-
ware, and (network) operating system. Consequently, the middleware layer does
not hide all network properties. Peddemors et al. [PedO4] propose an approach
which provides information about lower network and mobility management proto-
cols to mobile host applications. For example, the release of a modem connection
may be forced by the application in case good WLAN connection is detected.

Application-awareness is also implemented by Odyssey on top of the NetBSD
Kernel [Nob97]. Applications can operate on the middleware's objects and ex-
press resource requirements, as well as receive events in case the resource re-
quirements are no longer met. Operations on Odyssey objects are redirected by
means of an Interceptor. Figure 3.7(b) depicts a simplified version of the Odyssey
architecture.

The Kernel-Middleware eXchange (KMX) is a cross layer approach which
allows not only horizontal cooperation among hosts, but also vertical cooperation
between the layers of nodes [SamO4].

The Gaia Meta-Operating System and application framework enables to
support active spaces, that are, digitally augmented physical spaces [RomOOb,
Rom02, Rom03]. Thus, the framework consists of several components supporting
the integration of a variety of devices and services. From a middleware perspec-
tive, Gaia is classified as a component based middleware platform. The Gaia
kernel consists of a component management core and a set of additional services,
like a context service, a presence service, and an event manager service.

3.2.6 QoS-Aware Middleware

QoS-aware middleware approaches for mobile computing provide means for adap-
tations based on QoS changes. Device characteristics observed are battery life
time or automatic invocation of the sleeping mode during idle times. Wireless
network characteristics monitored are based on common network performance
measures, including throughput, latency, and signal strength. Here, the effects
of movement can be observed [Cha99].

Modular architectures, like proposed by Menasce [MenO4], encapsulate QoS
in QoS-aware components responsible for QoS monitoring. These QoS-aware
components can be integrated in applications and, thus, make applications QoS-
aware.

Nahrstedt et al. [NahOl] propose an architecture for ubiquitous computing
environments based on QoS proxies residing on mobile clients and on application
servers, which allow to adapt to QoS changes, to freeze the current resource
allocation and QoS configuration state by means of snapshots, and to (re) allocate
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resources at new destinations. Both user mobility and terminal mobility are
supported by this approach.

For mobile multimedia communication, Mobiware implements mature strate-
gies for wireless ATM networks based on CORBA technology [Cam97]. This
QoS-aware middleware aims at hiding handoff periods and periods of persistent
QoS fluctuation from the application. Active Transport Objects (ATO) imple-
ment the major strategies, that are: (i) mobile filters, which allow to drop or
compress specific data streams, for example, video connections can be dropped
before dropping audio channels, (ii) mobile error control modules, which may add
additional reliability to protocols in times of high network error frequency, and
(iii) mobile snooping modules, which implement snooping of end-to-end protocols.

3.2.7 Middleware Focusing on Service Discovery

In mobile environments, (i) service discovery, (ii) service registration and adver-
tisement, and (iii) feature or driver downloads are major issues. Hence, a group
of frameworks for ubiquitous and mobile environments focus particularly on these
challenges.

The goal of Sun's Jini12 is to federate users and resources needed. The key
concept in the Jini architecture is a service [Sun99, Edw99]. Services can be
registered, joined, and discovered. Communication between services is achieved
by means of Java/RMI. In Jini, service access is based on leases, which define the
time periods granted for service access. An appropriate lease period has to be
chosen in order to make trade-offs between resource utilization, responsiveness,
and system size. Bowers et al. [Bow03] propose self-adaptive algorithms for better
lease variation. From a coordination perspective, Jini integrates the tuple space
implementation JavaSpaces [SunOO, BisO3], which supports four operations: (i)
write, (ii) read, (iii) take, which is a consuming read, and (iv) notify, which can
be used for object notification.

Universal Plug and Play (UPnP)13 provides a framework for services and
devices. By means of standard protocols, like SOAP or HTTP, distributed com-
ponents interact. Service discovery is realized by means of the Simple Service
Discovery Protocol (SSDP) which allows services to gracefully leave the net-
work [MicOO]. In contrast to Jini, which is related to Java, or UPnP which
is related to Microsoft systems, Salutation14 aims at providing a platform inde-
pendent solution [Pas99].

Lindemann et al. [LinO3] exploit epidemic data dissemination in order to sup-
port lookup while devices are weakly connected or disconnected from an infras-

12http://java.sun.com/products/jini/
13http://www.upnp.org/
14http://www.salutation.org/

37



3 Literature Survey 3.2 Mobile Computing Middleware

tructure network. Passive Distributed Indexing (PDI), that is, caching of registry
information by mobile devices, is used in such situations.

3.2.8 Event Based Middleware

In publish/subscribe or event based middleware approaches, processes communi-
cate via generating and consuming events. In contrast to the synchronous Pub-
lish/Subscribe coordination pattern described in Section 4.3, here asynchronous
event notification is assumed.

Figure 3.8(a) depicts the logical architecture of JEDI which is a typical pub-
lish/subscribe middleware [CugOl]. Events are generated by active objects (also
termed event sources) distributed by event dispatchers (also termed event bro-
kers) and received by active objects (also termed event destinations). Event
distribution can either be local, topologically or hierarchical structured, or per-
formed in an unstructured manner. The event dispatchers can be organized in a
centralized manner, distributed, or replicated as detailed by Huang et al. [HuaO4].
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Figure 3.8: Concept of (a) the JEDI [CugOl] publish/subscribe logical archi-
tecture and (b) replaying of notifications for a roaming client as
supported by Rebeca [MiihO4]

Mobile location-aware clients produce significant network load by sending
location updates periodically to brokers. This network load can be reduced sig-
nificantly by solving spatial matching directly at the mobile device [CheO3a]. In
case mobile clients disconnect, buffering is commonly used to store the events in-
termediately at broker components [TarO3]. By means of migrating modulators,
mobile clients are able to subscribe efficiently to new brokers as proposed by
Chen et al. [CheO3b]. However, Farooq et al. [FarO4] state that handoff protocols
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between two brokers are not efficient from a performance perspective in case of
highly dynamic mobile clients.

Rebeca is a publish/subscribe middleware which provides advanced means for
mobility support [FieO3, MiihO4]. Buffering of notifications in combination with
replaying these buffered notifications by a new supporting broker enables seamless
event forwarding for roaming clients as depicted by Figure 3.8(b). Additionally,
past notifications can be accessed by means of histories, notification delivery rates
can be adjusted to the capabilities of the mobile device, and events can be filtered.

In addition to buffering (or logging), Burcea et al. [BurO4] introduce prefetch-
ing of notifications based on mobility patterns similar to the approach presented
in this thesis. However, mobility patterns are in this approach random patterns
based on randomly chosen directions. Similarly, Cilia et al. [CilO3] propose pre-
subscription based on prediction of places that might be entered in the near future
that is given by a movement graph. Replaying notifications allows mobile clients
to re-synchronize with the current system state by looking into the past.

3.2.9 Reflective Middleware

Reflection, that is, the ability of a system to reason about and alter its own
behavior, is a powerful means to enable middleware inspection and run-time
reconfigurability depending on changes in terms of context, network resources,
and computing power. Meta-space models are used in order to alter middleware
behavior. Middleware providing reflection is sometimes termed next generation
middleware because adaptability and flexibility required in ubiquitous and mobile
computing environments is addressed right from the beginning [Eli99, RomOl,
CapO2]. From a language perspective, Busi et al. [BusO2] define new primitives
for the Linda tuple space calculus, that are, a monitor primitive, which spawns
a listener process basically waiting for state changes and a process that notifies
about state changes.

Object Request Brokers (ORBs) enhanced by reflection use meta level com-
ponents in order to trigger the adaptation of base level middleware support.
OpenORB proposes a meta-space model which distinguishes between the inter-
nal architecture view and the interface view [BlaOl]. Dynamic TAO is a CORBA
compliant dynamically configurable middleware [KonOO] which achieves reflection
by exporting an interface for (i) transferring components, (ii) loading modules
into the ORB during runtime, and (iii) modifying the ORB's configuration state.
OpenCorba is another reflective CORBA implementation which adapts the be-
havior of the broker at run-time by means of explicit meta-classes [Led99].

CARISMA is a context-aware reflective middleware which aims at supporting
mobile applications. In contrast to traditional distributed object and space based
approaches, CARISMA opens the middleware to be programmable by applica-
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tions using reflection [CapO2, CapO3]. The drawbacks of this approach are the loss
of transparency and the occurrence of conflicts whenever applications require dif-
ferent middleware behavior at the same time. However, applications benefit from
adapting middleware behavior based on application specific information, for ex-
ample in terms of performance or reliability. Figure 3.9(a) depicts the approach.
Aspects of middleware internals are made explicit using meta-information, while
applications can alter middleware internals using a meta-interface. Similarly,
mChaRM uses reification of communication channels [CazO2]. Communication
channels are modeled as objects and thus, reflection about communication chan-
nels is based on meta-objects.
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Figure 3.9: Concept of reflection proposed (a) by CARISMA [CapO3] and (b)
by MARS [Cab98, CabOOa]

MARS [Cab98, CabOOa] is a reactive tuple space (TS) implementation, which
allows to invoke actions upon events as depicted by Figure 3.9(b). Actions are
used to change the tuple spaces' content and provide logical and space context in-
formation to mobile agents (MAs). Cabri et al. [CabO3] demonstrate, how MARS
can be used to deploy location-dependent services for mobile users. In order to
support mobile agents on mobile devices with physical context information, the
TOTA middleware has been proposed [MamO3].

3.2.10 Message-Oriented Middleware

Although synchronous message passing is counterproductive in mobile distributed
computing systems, asynchronous message passing can be of interest for mobile
computing. For example, the Java Message Service (JMS) provides peer-to-peer
messaging by means of queues which decouple processes to a certain degree and
publish/subscribe communication style [SunO2]. JMS can be integrated with Java
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Enterprise Beans. Musolesi et al. [MusO4a, MusO4b] describe adaptation of JMS
for mobile ad-hoc environments. This approach is based on an Epidemic Messag-
ing Middleware for Ad hoc networks (EMMA), that is, messages are replicated
on all connected hosts following the metaphor of an epidemic. Thus, in case a
mobile host moves, this host can both force the infection, that is, the dissemi-
nation of events, and retrieve a message which has already arrived at the new
network destination.

WebSphere MQ (Message Queue) (formerly, MQ Series) is another middle-
ware based on the concept of distributed queues [IBM03]. Queue managers are re-
sponsible for receiving messages on behalf of processes. Channels may be opened
between remote queue managers and multi-hopping is supported in case to re-
mote queuer managers are not directly connected. Vivek et al. [VivO3] describe
how to use these message queues for adding a messaging backbone to WWW
distributed link services.

3.2.11 Grid Middleware

Grid technologies originate from the idea to provide computational power sim-
ilarly to power grids. Instead of investing into more and more powerful su-
percomputers, the grid paradigm envisions the usage of the existing variety of
heterogeneous computing resources. From the user's perspective, terminals of
any type should be turned into supercomputers by connecting to the computa-
tional grid. In 2001, the European DataGrid project15 led by CERN (European
organization for nuclear research) started and is currently a well-known operat-
ing grid for analysis of huge amounts of scientific data. Additionally, Angerer
et al. [Ang04] argue that grid computing is going mainstream by including more
application areas than scientific computing and by fostering the convergence of
Web-services and Grid computing. One of the most prominent approaches is the
Globus meta-computing infrastructure toolkit.16 Globus aims at providing an
abstraction from the distributed nature of the computing components by defin-
ing services for resource and data management, for communication support, and
for authentication purposes [Fos97]. The structure of Globus is based on a set
of toolkit modules, like the Nexus communication module [Fos96] which pro-
vides abstractions from messaging like remote service requests, the Metacomput-
ing Directory Service (MDS) [Las97], and a grid manager which is responsible
for job assignment. Relying on the Globus toolkit, the NorduGrid middleware
has been developed for high energy physicists.17 High-level services have been
re-written or created and a specific information schema has been introduced to
the MDS [SmiO3].

15http://eu-datagrid.web.cern.ch/eu-datagrid/
16http://www.globus.org/
17http://www.nordugrid.org/
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Unicore is another meta-computing architecture which aims at providing a
uniform interface for job preparation and a management of resources covered by
the system. Abstract task objects containing information about resources needed
are translated into batch jobs on the host selected [Rom99]. Recently, Unicore
has been adapted an can be used on top of Globus.

Legion18 is a grid middleware approach based on object orientation. The
successor of Legion is the commercial system Avaki19 focusing now on data grids.
Objects are used to manage resource access by exporting a set of mandatory
member functions, like state saving, requesting objects, and restoring of states.
A grid portal enables access via commonly used Web technology [Lew96, NatO2].

Grid middleware approaches generally provide means to include heterogeneous
computers into a computational and data grid. However, mobile devices are not
specifically addressed by the approaches mentioned above. Here, the limiting
capabilities of mobile devices prohibit the use of common APIs and network
connection changes cause additional management overhead for both mobile grid
clients and mobile grid resources. Recently, some grid approaches have been
proposed addressing mobile computing termed mobile grids or wireless grids.
Hwang et al. [HwaO4] propose a layer, which integrates mobile devices to existing
grid platforms by means of proxy processes. Thus, mobile devices which are not
capable of implementing the grid API can both register their services and request
grid based computation by means of message passing with a proxy.

Gonzales-Castano et al. [GC02] propose a hierarchical design methodology
for grid access from lightweight mobile devices and show the feasibility of this
approach by means of prototypical implementations based on the Condor20 grid
middleware. Mobile clients access the grid middleware via Web technologies, like
HTTP and WAP.

Bruneo et al. [BruO3b] investigate three communication paradigms for mobile
(data) grid users, that are, mobile agents, remote evaluation, and client server
by means of experimental and analytical simulation with varying available band-
width. The results indicate that different paradigms should be used depending on
the available bandwidth. For example, in case of low bandwidth, mobile agents
achieved the best results. Future work of the authors addresses the implementa-
tion of an extension to Globus for mobile users based a mobile agent platform.

Kurkovsky et al. [Kur03, Kur04] propose a centralized problem solving en-
vironment for mobile devices based on a computational grid. Brokering and an
advanced heartbeat algorithm (termed keep-alive protocol) is used to manage
mobile computing nodes based on multi-agents.

18http://legion.viginia.edu/
19http://www.avaki.com/
20http://www.cs. wisc.edu/condor/

42



3 Literature Survey 3.3 Discussion of Middleware Approaches

Agent Based Middleware

In contrast to physical mobility, logical mobility addresses migration in the digital
space. Mobile code which decides autonomously upon migration is termed mobile
agent [Whi97, Lan98, Pic97]. Mobile agents have gained popularity in the recent
decade and are described as an alternative communication style compared to
client/server communication or peer-to-peer computing [CouOl], p. 38. Benefits
of mobile agents are (i) encapsulation, (ii) reduced bandwidth consumption, and
(iii) support for disconnected operations [MurOl].

The Secure and Open Mobile Agent (SOMA framework for distributed pro-
gramming is a Java based platform for mobile agents [BelOO, BelOl]. Mobile
agents support disconnected resources by caching messages and by delivering
messages upon reconnection. SOMA is a modular framework which supports
naming by means of globally unique identifiers, user mobility by establishing a
virtual environment for the user, independent of his or her location or the device
used, and mobile virtual terminals which support terminal mobility. Additionally,
virtual resource management on the server side allows to establish connections
between resources and mobile clients dynamically.

In more recent work, Bellavista et al. [BelO3a] describe how mobile terminals
can be supported by proxy mobile agents. The context-aware and, in particu-
lar, location-aware middleware SCaLaDE (Services with Context awareness and
Location awareness for Data Environments) implements mobile agents which fol-
low mobile terminals on the move. Additionally, in [BelO4] the authors describe
how such a mobile agent migration can be optimized by means of user mobil-
ity prediction based on Grey discrete models which allow to describe uncertain
memberships [FanO4].

The Java Agent DEvelopment (JADE) [Bel99] framework is an agent based
software platform compliant to FIPA specifications.21 Messaging between agents
is based on Java RMI. For mobile devices, the Lightweigth AgEnt Platform
(LEAP) based on JADE is proposed by Bergenti et al. [BerOl]. By propos-
ing another lightweight FIPA compliant agent platform, Hattori et al. [HatO3]
achieve major advances by reducing the program size at the mobile device.

3.3 Discussion of Middleware Approaches

In order to compare the middleware approaches discussed in Section 3.2, the
most promising representatives of each category are summarized by Table 3.2.
Particularly, the selection considers approaches exhibiting methods similar to the
contribution of this thesis (highlighted by an asterisk (*) in the table). The

21http://www.fipa.org/
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following mobility related characteristics are compared:

Type. The middleware type corresponds to the classification used in the previ-
ous section. Middleware types are distinguished as follows: (i) OB (Object
Based), (ii) CB (Component Based), (iii) TSB (Tuple Space Based), (iv)
SOB (Shared Object Based), (v) DSOO (Distributed Shared Object Ori-
ented), (vi) CA (Context-Aware), (vii) AA (Application-Aware), (viii) QA
(QoS-Aware), (ix) SDB (Service Discovery Based), (x) EB (Event Based),
(xi) R (Reactive), (xii) AMB (Asynchronous Messaging Based), (xiii) GB
(Grid Based), and (xiv) AB (Agent Based).

Paradigm. Here, the communication paradigm is addressed. The following
types are used: (i) (MP) Message Passing, (ii) VSM (Virtual Shared Mem-
ory) based, (iii) RMI (Remote Method Invocation)22, (iv) ROA (Remote
Object Access), like provided by SOAP, and (v) MA (Mobile Agent). Fur-
thermore, it is explicitly stated by a (+) in case exchanged data is stored
persistently by the middleware.

m-Notion. In case the approaches present a notion for user, terminal, or logical
mobility, this notion is presented in a descriptive manner.

Awareness. This characteristic is used to compare the physical context proper-
ties addressed by the middleware approach in a descriptive manner.

m-Devices. Since mobile devices exhibit limited footprints, adaptations dedi-
cated to lightweight implementations are investigated and described.

m-FT. Mobility caused failures require additional fault tolerance mechanisms.
Accordingly, these middleware mechanisms are listed.

SD (Service Discovery). If applicable, service registration, lookup, and ad-
vertisement mechanisms are described here.

m-SW. Middleware approaches are investigated due to support for code mobil-
ity. The following types are distinguished: (i) MA (Mobile Agent), (ii) MC
(Mobile Code), and (iii) PS (Process Spawning).

Among the middleware approaches presented, a few address mobile coordina-
tion challenges similar to the contribution of this thesis. The work on DCE based
resource sharing [Sch95] addresses caching, local usage of resource, and emula-
tion of resources. Similarly, XMIDDLE [MasO2b] proposes the use of replicated
data in case of disconnections. Both approaches offer reactive mechanisms which
provide no explicit means for accurate completion of copying operations.

22For simplicity reasons, Remote Procedure Calling (RPC) is assigned to this category.
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Proactive behavior based on movement prediction is addressed by the recent
works of Burcea et al. [BurO4], Cilia et al. [CilO3], and ScAlADe [BelO4]. The
first two works use heuristic mobility predictors for event dissemination, while
ScAlADe uses grey theory based mechanisms to model the uncertainties of pre-
diction for proactive mobile agent migration.

To summarize and to conclude, it has been argued that mobility caused dis-
connection times or times of weak wireless link connectivity can be compensated
by working on copies and replication. However, since in particular the process of
creating copies needs to be invoked before the network conditions are too bad, re-
active behavior is not suitable to overcome this problem. The approach proposed
by this thesis aims at proactive and accurate invocation of compensation activi-
ties by means of predictors based on mobility models. First promising results of
this approach have been discussed for the producer/consumer coordination pat-
tern in [HumO4a]. This thesis enhances these results by applying the approach to
more reference coordination patterns which allows to investigate the potentials
and limits of this approach.
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Approach
RMI-proxies [CamOO]
wireless CORBA [OMG04b]

DCE m-resource [Sch95]*

LIME [MurOl]

L^imbo [Dav98]
CORSO [KiihOl, TEC04]

XMIDDLE [MasO2b]*

Nexus
[DiirO4]
Rover [Jos95]

Odyssey [Nob97]
Mobiware [Cam97]

Jini [Edw99]

JEDI [CugOl]
Burcea et al. [BurO4]*
Cilia et al. [CilO3]*

CARISMA [CapO3]
MARS [CabOOa]
JMS [SunO2]
EMMA [MusO4b]

Kurkovsky et al. [KurO4]
SOMA/ScAlADe [BelO4j*

JADE/LEAP [BerOl]

Type
OB
OB

CB

TSB

TSB
SOB

DSOO

CA

CA

AA
QA, OB

SDB

EB
EB
EB

R, AA
R, TSB
AMB
AMB

GB
AB

AB

Paradigm
RMI
RMI

RMI+

VSM+

VSM+
VSM+

MP+

ROA

MP

MP
RMI

VSM+

EP
EP
EP

ROA
VSM+
MP+
MP+

MP
MP, MA

RMI

m-Notion
-
-

-

-
-

-

mobility
awareness
-

-
m-pattern
movement
graph
-
-
-

-
grey based

-

Awareness
-
-

connection
states
location
variable
-

connection
state
context
world model
notification

notification
network QoS

-
notification
notification

application
meta TS
-

network QoS
location

-

m-Devices
proxy
lightweight
HOP

-
m-CORSO

-

-
•

-
-
-

-
-
-
•

PDA int.

LEAP

m-FT
proxy
proxy

caching, local
emulation
MA,
reaction
replication
replication
recovery
replication
versioning

replication, MC,
scheduling
-
filters, snoop,
error control
lease

distributed EP
pre-fetching
pre-
subscription
application
meta TS
-
epidemic
replication
keep-alive
proactive
MA proxy
-

S D
registry
registry

registry

-
-

~

federation
tier
-

-
-

register, join,
discover
notification
notification
notification

-
-
-
-

broker
-

-

m-SW
-
-

-

MA

MA
PS

-

MC

-
-

PS

-
-
-

-
MA

-
-

-
MA

MA

Table 3.2: Comparison of middleware approaches
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Chapter 4

Coordination Patterns

Traditionally, object oriented languages, use software design patterns (see the
introduction by Gamma et al. [Gam95]) which provide a reasonable abstraction
from the specific problem and allow to model, classify, and compare main char-
acteristics of software structures. In distributed systems, coordination patterns,
that are, software design patterns for coordination purposes, are used.

In distributed mobile computing scenarios, processes executed on mobile de-
vices are unreliable coordination participants due to, for example, connection
losses. In such flexible scenarios, loosely coupled processes are more feasible be-
cause they exhibit more potential to continue processing while the coordination
partner of interest is not available. Going one step further, in order to study the
effect of mobility on distributed computing, coordination scenarios exhibiting
different coupling characteristics should be studied. Here, coordination patterns
provide a sufficient means to model such distributed scenarios.

Usually, coordination patterns are modeled by applying a template introduced
by Gamma et al. [Gam95], pp. 6-8. This template consists of fourteen recom-
mended properties which allow to discuss design patterns in a descriptive manner.
Even though this template is very useful and includes a description of patterns by
means of source code, neither a precise description on design level, nor a definition
of applicable measures is included. This chapter presents a novel extension to
the commonly used descriptive modeling framework. Based on the shared Data
Space (DS) paradigm, each pattern description is extended by a graphical activ-
ity model {Unified Modeling Language (UML) activity diagram) for concurrent
execution, by a sequence of DS primitives, and by measures. These measures
allow to describe the coupling between coordinating processes quantitatively and
facilitate to classify patterns. The feasibility of the modeling approach is demon-
strated by applying the model to eight different coordination patterns which
intend to provide a work of reference for the interested reader.

Section 4.1 presents the coordination pattern taxonomy used as well as the
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coordination pattern selection criteria. In Section 4.2, the modeling approach is
described including the introduction of the measures. Each coordination pattern
selected is described in detail in Section 4.3. A comparison of the coordination
patterns and a discussion of the modeling approach for mobile distributed systems
is presented in Section 4.4.

4.1 Classification and Selection Criteria

Common taxonomies for concurrent processes which interact with one another
refer to the aspect of referential coupling (or spatial coupling) and temporal cou-
pling. This taxonomy is used for general distributed systems, like presented by
Tanenbaum et al. [TanO2], p. 700, or for mobile agents' coordination, like pre-
sented by Cabri et al. [CabOOb]. While referential coupling refers to the degree
the coordination participants are bound by addresses, temporal coupling refers
to the degree of synchronization exhibited by the coordinating processes. Fig-
ure 4.1 shows four classes derived from this two-dimensional classification scheme.
Furthermore, class abbreviations are depicted which are used in the following sec-
tions (for example, a coordination pattern referentially coupled but temporally
uncoupled is denoted by (r+/t-)).

Temporal

Uncoupled Coupled

-o
"a.

3 I <r-"">

OH J j
"E.
o
U

Figure 4.1: Classification of distributed interactions

In shared DS approaches, referential coupling is softened by means of the
space abstraction. Messages are not sent to a specific process (identified by an
IP-address and a port number), but a logical name is used instead. Furthermore,
the shared DS can be used as a persistent storage of messages which exists inde-
pendently of the coordinating processes. As a consequence, distributed processes
may be exchanged easily while the interface to other remote processes does not
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change. However, in case one name identifies one particular process this situation
is similar to addressing the process according to the message passing paradigm.
In this work, the following definition is used for referential coupling:

A coordination pattern is said to be referentially coupled if one
or more participating processes perform at least one coordination op-
eration which addresses another particular process explicitly (r+).
Otherwise it is said to be referentially uncoupled (r-).

Similarly, in this work, the definition for temporal coupling is stated. Since co-
ordination patterns focus on the coordination activities, here, blocking implicitly
means that a participant waits for a message from another participant:

A coordination pattern is said to be temporally coupled if one or
more participating processes perform at least one blocking coordina-
tion operation (t+). Otherwise it is said to be temporally uncoupled
(t-).

By using coordination patterns, the variety of different coordination activities
is reduced to a set of most important scenarios. First, it is necessary to select
patterns that are commonly used, well known, and simple enough to be used as
basic building blocks for mobile distributed computing scenarios. The following
selection criteria are used in order to assure the importance and usefulness of a
coordination pattern selection:1

• Are the patterns representative (that is, are they most commonly used in
literature)?

• Can the patterns be modeled in a unique and precise way?

• Is it possible to classify them according to the taxonomy presented?

Based on these criteria, eight coordination patterns have been selected (Sec-
tion 4.3 describes the patterns in detail):

Producer/Consumer. The Producer/Consumer pattern describes two process
types. One process type creates data items and adds them to the shared
DS, the other process type consumes data items from the shared DS.

1 Alternatively, a systematic approach is also possible based on characteristics, like the di-
rection of communication (unidirectional versus bidirectional) or the type and number of coor-
dination primitives used. Because such an approach does not guarantee the importance of the
cases under investigation, it has not been used in this work.
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Publisher/Subscriber. In the Publisher/Subscriber pattern, a subscriber se-
lects events of interest and waits until it is notified about the occurrence
of such an event. The publisher process type is responsible for producing
events and for generating notifications.

Mailbox. In the Mailbox pattern, each process is said to be a peer. Sending
a message to a peer means leaving a message to its mailbox. The peer
addressed fetches the message in an asynchronous manner.

Master/Worker. In the Master/Worker pattern, a master process distributes
workload based on a divide-and-conquer strategy, while workers process the
tasks and return the results of their work.

Request/Answer. The Request/Answer pattern refers to a typical client/server
situation, where the client initiates the communication by sending a service
request. The client usually blocks until server's answer is received.

Proxy. Using the Proxy coordination pattern, two processes coordinate their ac-
tivities by means of a surrogate process which acts on behalf of one process.
The identity of the proxy is known to each process, while the identity of
the guarded process is only known to this proxy.

Consensus. The Consensus pattern is a rather complex pattern. It describes
a scenario where a number of processes have to agree upon a specific sub-
ject by proposing values. A distributed consensus algorithms assures the
agreement by describing the rounds and types of messages which have to
be exchanged reliably.

Broker. The Broker pattern describes a client/server system extended by a spe-
cific process capable of matching service requests and available servers.

On Coordination Pattern Representativeness

The coordination patterns described are a superset of the coordination patterns
and architectures described in single scientific works in the field of distributed
computing. The importance of the patterns is either stated implicitly by the
selection of the patterns itself, or is stated explicitly. For example, Freisleben et
al. [Fre97] emphasize the importance of the Master/Worker pattern for parallel
computing. Table 4.1 shows and proves that the coordination patterns selected
are discussed in various publications on distributed coordination patterns.

However, the work cited includes a few more coordination patterns that have
not been selected because they combine several patterns or enhance the patterns
only slightly. Haydn et al. [Hay98] discuss additional three other coordination
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Pattern Name
Producer/Consumer

Publisher/Subscriber

Mailbox

Master/Worker

Request/Answer

Proxy
Consensus

Broker

Alternative Names and Citations
Producer/Consumer [Küh98b, Küh98a],
Generative Communication [TanO2, Gel85]
Publisher/Subscriber [DusO3],
Meeting Oriented [CabOOb, TanO2],
Monitor [Hay98]
Mailbox Coordination [TanO2],
Blackboard Based [CabOOb]
Master/Worker [Pre97],
Workflow Manager [Küh98b],
Leader Followers - partly [SchO4]
Request/Answer [Kiih98a],
Client/Server [CabOOb],
Client-Dispatcher-Server [DusO3]
Proxy [DusO3, Gam95]
Consensus [CouOl],
Agreement [Lam82]
Broker [Hay98, DusO3]

Table 4.1: Coordination patterns in related work

patterns for multi-agent systems named Embassy-, Mediator-, and Wrapper pat-
tern. Since the Embassy pattern and the Wrapper pattern are adapted and
extended Proxy patterns, they are not included into the selection. The Media-
tor pattern implements an exchange of conversation rules between two agents by
means of a mediator. Hence, this pattern is dedicated to agent specific interac-
tions and is not applicable to coordinating processes in general. Tanenbaum et
al. [TanO2], pp. 700-701, and Cabri et al. [CabOOb] use the term direct coordi-
nation for referentially and temporally coupled patterns. In the latter work, in
addition to client/server systems synchronous peer-to-peer systems are named as
examples for direct coupling when message passing is assumed. Both works use
the term Linda based systems when referring to most loosely coupled systems.
Since, Linda also supports blocking operations and it is possible to use one tem-
plate to address a specific process, in this work the term Linda based is not used
just for this class of pattern. Instead, the entire shared DS approach is Linda
based.

Dustar et al. [DusO3], pp. 91-105, extend the pattern selection presented
by the Model View Controller pattern which has not been included because it
focuses more on the separation of different views processes exhibit than on con-
current interactions. Some additional coordination pattern names are defined by
Schmidt et al. [SchO4], pp. 365-504: the Monitor Object, which is an extended
and more complex Proxy pattern, the Half-Sync/Half-Async pattern, and the
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Thread-Specific Storage. The Half-Sync/Half-Async pattern describes the com-
bination of synchronous and asynchronous processing parts which is implicitly
included in the selection. The Thread-Specific Storage concentrates on decou-
pling of processes by means of separated data spaces. Thus, it is more a means
to assure decoupling in various coordination patterns than a separate pattern.

Based on this survey, it is reasonable to state that the coordination patterns
selected are representative for concurrent processing and well-known patterns in
the field of modern, distributed programming.

On Precise Modeling of Coordination Patterns

The design pattern template introduced by Gamma et al. [Gam95], pp. 6-8,
allows to model coordination patterns in a descriptive manner. In addition,
UML activity diagrams and sequences of DS primitives are used to model the
interactions between the processes in more detail. Section 4.2 furthermore defines
new measures which allow to describe the number of DS interactions as well as
the coupling between the participants of coordination patterns. Section 4.3 shows
the feasibility of the enhanced pattern modeling approach by applying it to the
eight coordination patterns selected. On the other hand, Section 4.3 proves that
each coordination pattern selected can be described by the model sufficiently.

On Classifying Coordination Patterns

Section 4.3 describes the sequence of shared DS primitives executed by each
coordination pattern. Thus, it becomes evident whether the pattern is referen-
tially or temporally coupled by analyzing DS primitive sequences. Section 4.4
summarizes these results and argues the benefits added by the extended pattern
modeling approach in terms of classification.

4.2 Coordination Pattern Modeling

Following the software design pattern template which has been introduced by
Gamma et al. [Gam95], pp. 6-8, the attributes used to describe the coordination
patterns based on the shared DS paradigm are:

Name. This attribute states the name of the coordination pattern.

Classification. Each pattern is assigned to a class based on the taxonomy shown
in Figure 4.1.

Intent. The problem addressed by the pattern and the behavior of the pattern
is described briefly.
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Participants and Structure. The different process types as well as the struc-
tural relations between the different process types are described by these
attributes.

Motivation, Applicability, and Known Uses. These attributes argue the
application of a coordination pattern and describe known scenarios and
use cases.

Consequences. Here, pros and cons are discussed as well as trade-offs exhibited
by the pattern.

Collaborations. This attribute is used to describe the pattern's control flow
extended by a graphical model (UML activity diagram).

Other Names (also known as) and Related Patterns. These attributes
discuss other names for the same pattern, variants of the coordination
pattern, and relations to other patterns.

Implementation. This attribute is used to describe sequences of DS primitives
derived from the UML activity diagrams in detail.

Intentionally, this template differs slightly from the original pattern template.
It groups related attributes and leaves out the attribute sample code because
the description focuses on modeling and not on any specific programming lan-
guage. UML activity diagrams are chosen for the description of the dynamics
and concurrent interactions because they are well-known standardized models
widely used to describe co-operative operations of a system, like argued by Hitz
et al. [HitO2], pp. 160-161. Besides, they fit more to the shared DS approach
than UML interaction diagrams which imply message passing operations.

In addition to the attributes described, measures are applied to the model.
Traditionally, measures are used to analyze parallel source code before runtime
and parallel programs during runtime. These measures are, for example, the
total parallel execution time which considers workload, parallelism, and inter-
action overhead. Furthermore, the average granularity of programs is analyzed
in terms of smallest code segments that should be parallelized. These measures
are usually based on specific source code and thus programming languages and
runtime environments (for details on the performance of parallel programs see,
for example, Hwang et al. [Hwa99], pp. 126-152).

In contrast, here, measures are used to describe the coordination patterns
quantitatively based on a particular paradigm (shared DS) and are not based on
a single programming language. Consequently, the measures are applicable dur-
ing software design and, thus, allow the evaluation of the coupling of distributed
processes at an early software development phase. The necessity of modeling
performance characteristics at a software system design phase is further argued
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by the work of Smith et al. [SmiO2], pp. 3-25, which introduces the term Soft-
ware Performance Engineering. Here, useful UML extensions are introduced
to include performance properties and, for example, to model synchronous and
asynchronous message passing [SmiO2], pp. 62-67. However, this work does not
address shared data spaces.

Co-Primitive
Abstract DS Primitive

outQ
DS!

in{)
DS2

inp()
DS3

rd()
DS4

rdp()
DS5

evalQ
DS6

Table 4.2: Assignment of DS primitives

The measures are based on the DS model introduced in Section 2.3. Table 4.2
shows the assignments between the DS primitives and an abstract set of DS prim-
itive variables DSi. The following measures are used to describe a coordination
pattern:

Number of Concurrent Process Types. P is the set of different concurrent
processes Pi, where n is called dimension and denotes the set's cardinality
and thus the number of concurrent process types:

P = {Pl,-,Pn}. (4.1)

Number of Concurrent Processes. The number of concurrent processes is
determined by a vector CProc-Vec, where each element Q represents the
number of processes in the system for each process type Pf.

CProc-Vec =

\

\

(4.2)

CProc is the sum of all vector elements and defines the number of concur-
rent processes in the system:

CProc =^2 Ci (4.3)

Number of Replaceable Concurrent Processes. The term replaceable pro-
cess is used for processes which are not addressed explicitly. For example, in
a Request Answer scenario, a service request can be processed by multiple
(similar) processes while the service result is only dedicated to one client.
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Similarly to the number of concurrent processes, the number of replaceable
concurrent processes is determined by the vector CProc-Rep-Vec. Each
vector element di represents this number of replaceable processes in the
system for each process type P^.

CProcJtep-Vec =

\dn )

(4.4)

CProc-Rep is the sum of all vector elements and defines the number of re-
placeable concurrent processes in the coordination pattern. This number is
a measure for the degree of uncoupled processes participating. The number
can either be used in relation to Equation 4.3 or for comparison between
different patterns:

n
CProcJiep = J^di. (4.5)

Number of Names/Addresses. The more names (addresses, templates) a co-
ordination pattern uses, the more the participating processes share a priori
knowledge. Thus, the number of names used provides an additional mea-
sure for referential coupling. This number is denoted by s.

Number of Coordination Operations. The sum of all coordination opera-
tions described by a coordination pattern is used to describe the load of
interactivity.2 For each process type Pi the number of coordination opera-
tions per space based primitive DSj is defined by the corresponding element
dij of the matrix C Op-Mat. The dimensions of the matrix depend on the
used group of DS primitives. For example, using the primitives described
in Table 4.2, m = 6.

COpJAat = (dij), i = l(l)n, j = l(l)m. (4.6)

The number of coordination operations COp describes the frequency of
interactions of a pattern and is calculated as the sum of all matrix elements
weighted by the number of concurrent processes c* per process type:

n m

(4.7)

2 The sequence of coordination primitives is further translated into corresponding source
code.
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Number of Blocking Coordination Operations. A subset of the set of co-
ordination operations are the operations which block until the data item
of interest is present in the shared DS. This mechanism is used to imple-
ment synchronous operations between different processes in shared DS ap-
proaches. The number of blocking coordination operations is a measure for
the temporal coupling of a pattern which can be related to Equation 4.7 and
used for direct comparison with other patterns. In the matrix COp-Mat
(see 4.6), the columns aj2 and a^ describe the number of blocking input
operations and blocking read operations (m(), rd()). Thus, the number of
blocking coordination operations COpJBlock is calculated as follows:

n

COp-Block = ̂ 2 °i(a^ + <**)• (4-8)
i=X

4.3 Description of the Coordination Patterns

In this section, eight selected coordination patterns are described based on the
model introduced in Section 4.2. By definition, coordination patterns should be
configurable and extensible. Hence, the software patterns described by the UML
diagram and the DS primitive sequences are variants. The processes participat-
ing in a coordination patterns are termed process types and participants synony-
mously. The patterns are described as simple as possible. Thus, no process is
further sub-divided into threads. The name of each pattern and its classification
is stated in the sub-section's header as defined by Figure 4.1.

In order to keep the measures simple and comparable, some assumptions have
been made for all patterns. The variable numbers used to describe the number of
times a participant restarts are assumed to be mean values. Furthermore, for all
patterns it is assumed that each participant reads or writes only one item to the
shared DS per round (for example, a client writes only one request and waits for
exactly one answer). In contrast to transformational systems, the coordination
patterns described are reactive systems using loops to restart their coordination
activities again after one round.

4.3.1 Producer/Consumer (r-/t-)

Intent. This general purpose coordination pattern is used for distributed cre-
ation, exchange, and consumption of data items. Under the reasonable
assumption of a finite shared DS, the processes creating data items com-
pete with one another. The processes execute concurrently, asynchronously,
and without a reference identifying the remote processes. In a shared DS,
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data items produced and consumed are identified by means of templates or
names.

Participants and Structure. Two different process types collaborate, namely
the producer and the consumer. The number of producers is independent
from the number of consumers. The message - or data flow between the
participants is uni-directional.

Motivation, Applicability, and Known Uses. The Producer/Consumer
pattern can be used to implement ordered exchange of data and exclusive
data consumption and processing. Thus, it can be used for event logging,
recording of measurements, for example, in embedded systems, and
distributed software installation (see Kühn [Küh98a]).

Consequences. Since the participants do not know each other, they can be
exchanged easily. This property addresses maintainability, adaptability,
and scalability. Furthermore, the pattern is able to tolerate disconnections,
since the participants are not temporally coupled.

Collaborations. The producer connects to the shared DS, generates a data item
and adds this item to the DS. The consumer connects to the shared DS,
performs a consuming read of a data item identified by a specific name, and
processes this item. Figure 4.2 shows the distributed activities by means of
an UML activity diagram. All processes restart their activities a number
of times. When using decision nodes - which are visualized as diamonds -
only the positive branch is included in the diagram and the compensating
action is skipped.

Other Names and Related Patterns. This coordination pattern is also
known as generative communication [Gel85]. Variants of the pattern can
be derived by altering some pattern attributes. The semantics of the read
operation (consuming or non-consuming), the buffer space size (limited or
not limited), the relationship definition between the participants (1 : 1,
m : n, etc.), and the way the participants are coupled may be altered (see
also Kühn [Küh98a]). In case consumers do not delete the data items read,
these items have to be deleted by other means, like, for example, a garbage
collection algorithm. It is most unlikely that temporal coupling is assumed.
If the pattern exhibits explicit addressing of a consumer, this pattern be-
comes referentially coupled.

Implementation (Sequence of DS Primitives). For the two different pro-
cess types, two different sequences of DS primitives can be derived from
the UML activity diagram. Equation 4.9 shows the sequence ßpx for the
producer process type Pi which executes write operations (outQ). Equa-
tion 4.10 shows the sequence fj,p2 for the consumer process type P-i which
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Figure 4.2: Producer/Consumer

executes consuming read operations (inpQ). Here, k denotes the number
of times a producer restarts its task and m denotes the number of times
a consumer restarts its task. The processes write to and read from one
address (name). In both DS primitive sequences, all primitives are non-
blocking although successful reading is only possible if items have akeady
been produced:

k—times

out(a), where k > 0, and

m—times

= inp(a), where m > 0.

(4.9)

(4.10)

Measures. The dimension of the Producer/Consumer (PC) coordination pat-
tern is:

= 2. (4.11)

There is no relation between the number of producers and the number
of consumers. Additionally, all processes in the system are anonymous
and therefore, they are replaceable. The vectors describing the number
of processes and the number of replaceable processes per process type are
given as follows:

CProcJ/ecpc = CProc-VecJieppc = (4.12)
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The number of concurrent processes and the number of concurrent replace-
able process are calculated as follows:

CProcpc — CProcMeppc = C\ + C2, where ci, c-i > 0. (4.13)

All processes use only one name to produce and to consume items. Thus,
the number of names used evaluates to:

spc = 1. (4.14)

The matrix which determines the number of coordination operations of the
pattern is given as follows:

~~ , , . ( k 0 0 0 0 0 \ .....
COpMatpc = ( 0 0 m 0 0 0 ) . (4.15)

Due to Equation 4.12 and Equation 4.15, the number of coordination op-
erations and the number of blocking coordination operations are calculated
as follows:

COppc = cik + c2m, and COpJBlockPC = 0. (4.16)

4.3.2 Publisher/Subscriber (r-/t+)

Intent. A process uses this coordination pattern in order to inform other pro-
cesses about specific subjects or changes (in general, events). The receivers
need to be informed in (soft) real-time. Instead of requesting the status
from the remote process actively by means of polling, the remote process
notifies the interested group of processes. This pattern can be used to
synchronize states among distributed processes.

Participants and Structure. This coordination pattern consists of two pro-
cess types, one is responsible for publishing events (publisher) while the
other process is ready to receive events which it has previously subscribed
to (subscriber). The subscribers do not coordinate their actions. The num-
ber of subscribers and the number of publishers are independent of one
another. In a shared DS, the space is used by subscribers to place a sub-
scription and by publishers to generate notifications (that are, data items)
for each subscriber which has previously subscribed to this event. One pro-
cess can subscribe at multiple publishers and one process can act both as
a subscriber and as a publisher. However, the pattern variant described
here does not allow these two special cases. The data flow exhibited by this
pattern is bi-directional.
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Motivation, Applicability, and Known Uses. The Publisher/Subscriber
pattern provides an efficient technique to notify a group of processes that
may change over time. For example, notification of remote GUIs is one of
the application areas, in particular whenever multiple GUIs are involved
which are not known to the publisher a-priori. Additionally, notification
about sensors' state changes in distributed embedded systems can be
realized by means of this pattern.

Consequences. The subscriber processes have to wait for a notification of the
publishers, and thus, they can only provide a reliable service when the
notification succeeds. In case no acknowledgments are sent to assure that
each subscriber has received a notification, at most once semantics can be
achieved.

Collaborations. Figure 4.3 shows the distributed activities of the two process
types by means of an UML activity diagram. Here, one publisher is re-
sponsible for publishing events of one event type. The subscriber gener-
ates subscriptions and then waits for events to consume. After consuming
these events, the subscriber processes them and restarts by waiting for new
events. The publisher process generates an event, reads subscriptions in
a non-consuming way, and notifies subscribers by writing of events. Both
participants restart their activities a number of times. Note, that this pat-
tern does not contain any means for deleting a subscription from the list.

Other Names and Related Patterns. This coordination pattern is also
known as Observer and Dependents. Two variants can be derived by alter-
ing the information retrieval strategies: the push model or the pull model.
While in the first model, the publisher sends all relevant information within
one single message (data item or notification), the second model relaxes
this concept. Here, the publisher just notifies the subscribers that some
change has happened. The content of the status change can be requested
on demand. In the case presented, the publisher notifies the subscribers by
writing a single data item that notifies the subscribers to read this item.
Thus, from a modeling point of view, a push model is implemented because
the events' content included in the notification. The coordination pattern
can be further extended, for example, by a registration process for publish-
ers, by acknowledges sent from subscribers to publishers, and by garbage
collection mechanisms as proposed by [GroOO] for CORSO [KiihOl]. Other
variants are the Gatekeeper, a process that filters incoming events and pro-
duces outgoing events for a group of subscribed processes. The pattern
variant based on the DS paradigm is similar to a variant based on event
channels. Such channels allow to generate events and to receive events
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Figure 4.3: Publisher/Subscriber

anonymously. For a detailed discussion of related patterns, see Dustar et
al. [DusO3], pp. 103-105.

Implementation (Sequence of DS Primitives). Since this coordination
pattern consists of two different process types, two different sequences of
DS primitives are derived from the UML activity diagram. The publisher
performs a non-consuming read of subscriptions (rdpQ) and publishes its
events to shared DS using a specific name (out()). Equation 4.17 shows the
sequence fipx for the publisher process types Pi. The subscriber performs
a write operation (outQ) in order to place its subscription followed by
synchronous and consuming read operations for the events published
(m()). Equation 4.18 shows the sequence ßp2 for the subscriber process
type Pi. Here, m denotes the number of times the publisher restarts its
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task and k denotes the number of times the subscriber restarts its task:
m—times

p—times p—times

ßpx ::= rdp(d). out(b), where m,p>0, and (4.17)

k—times

fip2 ::= out(a). in(b) , where k > 0. (4-18)

Measures. The dimension of the Publisher/Subscriber (PS) pattern is:

nPS = 2. (4.19)

The number of subscribers is independent of the number of publishers. All
processes are replaceable. For the subscribers, this simply implies that they
fail silently and another subscriber may take over. The following vectors
describe the number of concurrent processes and the number of replaceable
concurrent processes per process type:

CProc.Vecps = CProc.VecMepps = ( °c) • (4-20)

The number of concurrent processes and the number of replaceable concur-
rent processes are calculated as follows:

CProcps = CProcJlepps = ci + c2, where c\, c2 > 0. (4-21)

The Publisher/Subscriber coordination pattern uses one known name for
exchanging subscriptions and one name for writing events to. Thus,

sPS = 2. (4.22)

The matrix which determines the number of coordination operations is
given as follows:

„^. „, , / mp 0 0 0 mp 0
C O p M a t p s = ( ;

Since a subscriber has to wait for the events of providers available, m and
k are dependent. Furthermore, p evaluates to the number of subscriptions
available, that is, number of subscribers:

k = C\m, and p = c^- (4.24)

Due to Equation 4.20, Equation 4.23, and Equation 4.24, the number of
coordination operations and the number of blocking coordination operations
are calculated as follows:

and COpSyncPS = c2k. (4.25)
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4.3.3 Mailbox (r+/t-)

Intent. This coordination pattern is used by processes in order to store and re-
trieve messages via the shared DS. Each process can be addressed explicitly
by a specific name or mailbox in the DS which stores the messages persis-
tently. It is not important to know, where the processes currently execute
or when they read the messages (asynchronous communication).

Participants and Structures. The Mailbox pattern consists of only one pro-
cess type, a peer. The number of peers is arbitrary and the data flow is
bi-directional.

Motivation, Applicability, and Known Uses. This coordination pattern is
applicable to all kind of direct but asynchronous communication between
processes where no central control is needed and no pre-defined role concept
is applicable. Asynchronous peer-to-peer applications as well as persistent
messaging systems are examples for this pattern. When the coordination
partners are not known to each other a priori, then advertisement and
lookup have to be implemented to enable coordination activities.

Consequences. A trade-off is identified between the benefits of anonymity in
terms of reconfigurability and the overload caused by lookup and registra-
tion algorithms.

Collaboration. Each peer connects to the DS, generates a new message and
writes it to the mailbox of a specific remote peer if necessary. Then, the
peer consumes and processes an item, that is, a received message, which
is retrieved from its own mailbox. Figure 4.4 shows the activity flow of a
peer which restarts its task a number of times. Here, although this is a
restriction of freedom, the peers are assumed to write a message and to try
to read a message during each round in order to model a highly interactive
pattern.

Other Names and Related Patterns. This pattern is also known as Black-
board Based Coordination in the agent research community, as described by
Cabri et al [CabOOb]. Here, messages are written to a blackboard (that is, a
shared DS) independent of the current place or state of the receiver agent.
Tanenbaum et al. [TanO2], pp. 700-701, refer to this pattern as Mailbox
Coordination which is closely related to persistent message-oriented com-
munication.

Implementation (Sequence of DS Primitives). This coordination pattern
consists of one process type which performs out() operations in order to
store a message for a remote peer addressed persistently via the shared

63



4 Coordination Patterns 4.3 Description of the Coordination Patterns

c

Peer

1
Connect to DS

( Generate message J

( Write message to peer J

[ Successful
writing]

f Consume message J

[ Successful
consumption ]

f Process message )

Figure 4.4: Mailbox

DS. Then, the peer consumes one message from its own mailbox in a non-
blocking manner (inpQ). Equation 4.26 shows the sequence fip1 for a peer
Pi. Here, k denotes the number of times a peer restarts its task (note, that
the name the process type writes to apx has to be a valid mailbox):

k—times

fj,pl : : = ) , where k > 0. (4.26)

Measures. The dimension of the Mailbox (Mb) coordination pattern is given as
follows:

nMb = I- (4.27)

Since the pattern exhibits only one dimension, the vector describing the
number of concurrent processes consists of only a single entry. No peer is
replaceable in this pattern:

CProcVecMb = ( Ci ) , and CProc.VecJlepMb = ( 0 ) . (4.28)
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Thus, the number of concurrent processes and the number of replaceable
concurrent processes are calculated as follows:

= Ci, and CProcJtepMb = 0. (4.29)

The pattern uses one known name per peer for storing messages. Thus,

s Mb = ci. (4.30)

The matrix which determines the number of coordination operations re-
duces to the following vector:

COp-MatMb = ( k 0 k 0 0 0 ) . (4.31)

Hence, the number of coordination operations and the number of blocking
coordination operations are calculated as follows (based on Equation 4.28
and Equation 4.31):

COpMb = 2cifc, and COp-BlockMb = 0. (4.32)

4.3.4 Master/Worker (r+/t+)

Intent. The intent of this coordination pattern is to divide a task into sub-
tasks and force other processes to execute these sub-tasks concurrently. A
centralized coordination task is responsible for collecting the results of the
sub-tasks, which usually means a last computational step in order to achieve
the final result.

Participants and Structure. Two types of different processes are described
by the pattern. The master process is a component which distributes sub-
tasks, collects single results, and merges these results. Hence, the master
can also be seen as a workload generator. Multiple masters here are used
to model the situation of multiple workload sources. The other process
type is termed worker. This process executes a sub-task and produces a
result. The workers usually work on independent tasks, that is, on tasks
that need no further coordination effort. One name is used by the master
for writing orders to the DS and another name per master is used by the
worker process type to write the results to. The data flow is bi-directional.

Motivation, Applicability, and Known Uses. This coordination pattern is
most useful in situations where it is possible to distribute workload. In the
field of parallel computing, the pattern is used in order to increase per-
formance of computationally extensive tasks. In fault-tolerant computing
scenarios, this pattern can be used to replicate computation.
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Consequences. On one hand, the coordination pattern exhibits the possibility
to assure fault tolerance based on redundant computation and speedup
of high-performance computing task. However, the decomposition of the
task may lead to significant coordination overhead, which may decrease the
possible speed up.

Collaborations. Figure 4.5 shows the distributed activities by means of an UML
activity diagram. Both process types loop a number of times. After writing
a new order to the space, the master tries to collect a new result currently
available in the shared DS in a non-blocking manner. This sequence has
been chosen to simplify possible rounds where a process generates only a
new order or attempts only to collect a result. Every worker starts with
retrieving a new order from the shared DS, processes the order, and submits
the result.

Master -t Worker

±
Connect to DS

±
Connect to DS

cGenerate new order

Ç Write order J

[ Successful
writing]

Consume result

[ Successful
consumption ]

MVaiWait to consume orderD
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Process order

Write result J
[ Successful

writing]

f Process result

Figure 4.5: Master/Worker

Other Names and Related Patterns. This well-known coordination pattern
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is also known as Master/Slave, Manager/Worker, or Workflow Manager. A
variant can be derived when assuming synchronous operation, that is, the
master waits for the results of the workers. Other variants depend on the
task the master has to execute (see Dustar et al. [DusO3], pp. 97-100). For
example, in case of using this pattern to replicate a single computation for
fault tolerance purposes, the result of one worker may be sufficient for the
success of the task (or, in general, k out of n results). In contrast, assuming
a typical divide-and-conquer scenario where the original task is divided into
sub-tasks processed by workers, every sub-task has to finish correctly.

Implementation (Sequence of DS Primitives). The master Pi performs a
write operation (outQ) followed by a consuming non-blocking read oper-
ation (inpQ). The worker P2 performs a blocking consuming read opera-
tion (inQ) followed by a write operation(ou£()). Equation 4.33 and Equa-
tion 4.34 show the primitives sequences for the master (/ipj and the worker
(//p2) respectively. Here, k denotes the number of times a master restarts
its task and m denotes the number of times a worker restarts its task:

k—times

fj,p1 ::= out(a).inpÇbpi), where A; > 0, and (4.33)

m—times

fj,p2 ::= in(a).outfip^, where m > 0. (4-34)

Measures. The dimension of the Master/Worker (MW) pattern is:

nMw = 2. (4.35)

The number of master processes and the number of worker processes are
independent of one another and all worker processes are replaceable. Thus,
the vectors describing the number of concurrent processes in the system per
process type are given as follows:

CProcJ/ecMw — ( * 1 > and CProcJ/ecRepMW = ( I • (4.36)V c2 J \ c2 )

The number of concurrent processes and the number of replaceable concur-
rent processes are calculated as follows:

CProcMw = Ci + C2, and CProcJiepMW = 02- (4-37)

For the bi-directional data flow, one name is used to write orders to the DS
and one name per master process is used for the results. Thus,

= l + ci. (4.38)
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The matrix which determines the number of coordination primitives is given
as follows:

COpMMW = ( m m 0 O O O j . (4.39)

Since the workers perform blocking consuming read operations, the number
of loops carried out depends on the number of times the master processes
restart. Accordingly, it follows:

C\k — C2m. (4.40)

Due to Equations 4.36, 4.39, and 4.40), the number of coordination opera-
tions and the number of blocking coordination operations are calculated as
follows:

4ci&, and COpSlockMw = c\k. (4-41)

4.3.5 Request/Answer (r+/t+)

Intent. This coordination pattern occurs in distributed systems whenever a pro-
cess requires a service provided by another remote process. The process
generates a service request and waits for the answer.

Participants and Structure. The Request/Answer pattern consists of two dif-
ferent process types, a client (or requester) and a server. The number of
the servers available and clients participating is not known by the processes.
The coordination pattern implements a bi-directional data flow.

Motivation, Application and Known Uses. This well-known coordination
pattern is used whenever services are needed by a group of processes which
may change dynamically. It is implemented in traditional client/server sys-
tems. If the name of the server is not known to the clients, dispatchers or
name services may manage access to the server although its identity is hid-
den. In shared DS, the space itself implements the function of such a name
server. Typical examples are flight reservation and hotel booking scenarios
(see the examples presented by Kühn [Küh98a]).

Consequences. Because clients wait for results, they are vulnerable to faults
caused by the remote service providers. In case of faults, they cannot
proceed with their tasks.

Collaborations. Figure 4.6 shows the distributed activities graphically by
means of an UML activity diagram. The client initiates the coordination
activities by writing a request to the shared DS identified by a name. The
server task waits to consume a request and processes the service requested.
The server's result is written to the DS using a name assigned to the client.
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Both processes loop a number of times. Note, that the request is usually
processed by a new thread of the server.
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Figure 4.6: Request/Answer

Other Names and Related Patterns. Client/Server pattern is another
name of this coordination pattern. Dustar et al. [DusO3] propose a variant
termed Client-Dispatcher-Server, where a dispatcher is used as a name ser-
vice. Other variants can be derived in terms of number of servers and the
way they distribute workload. Another variant uses the spawning primitive
of the DS in order to launch a remote server as described by Kühn [Küh98a].
This variant implements the Remote Procedure Call (RPC) for shared DS.

Implementation (Sequence of DS Primitives). From the UML activity di-
agram, the sequences of DS coordination primitives are derived. The client
sends ever new requests and waits for the answers. Hence, the client first
performs a write operations (out()) followed by a blocking consuming read
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operation (m()). Equation 4.42 shows the sequence ßp1 for the client pro-
cess type Pi. The server performs a blocking consuming read of a new
request (inQ) and writes the answer to a name in the shared DS assigned
to the client (outQ). Equation 4.43 describes the sequence ßp2 for the server
process type P^. Here, k denotes the number of times a client restarts its
task and m denotes the number of times a server restarts its task:

k—times

fj,pl ::= ou^aj.inlbp^, where k > 0, and (4.42)

m—times

fi,p2 ::= in^.outfipj, where m > 0. (4-43)

Measures . The dimension of the Request/Answer (RA) pattern is:

nRA = 2. (4.44)

The number of clients is independent of the number of servers. Because
each client waits for an answer written to a name identifying the client,
clients are not replaceable. The following vectors describe the number of
concurrent clients and concurrent servers and their replaceable counterpart:

CProcVecRA = (^ V and CProc.VecJlepRA = f M . (4.45)

Thus, the number of concurrent processes and the number of replaceable
concurrent processes are calculated as follows:

CPTOCRA = C\ + C2, and CProc-RepuA = c^- (4.46)

The pattern uses one known name for requests and one name for each client.
Thus,

SÄA = 1 + CI. (4.47)

The matrix which determines the number of coordination operations is
given as follows:

A; k 0 0 0 0 \ ,. ._.

m m O O O O j . (4.48)
Since a client has to wait for an answer from the servers available, m and
k are dependent:

C\k = c<ïm. (4.49)

Hence, the number of coordination operations and the number of blocking
coordination operations are calculated as follows (based on Equations 4.45,
4.48, and 4.49):

= 4A;ci, and COp-BlocknA = 2fcci. (4.50)
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4.3.6 Proxy (r+/t+)

Intent. The Proxy pattern intends to provide a representative or surrogate for
a process. Other remote processes may communicate with the proxy in-
stead of the guarded process without changing their interfaces, that is, the
communication and coordination protocol. The proxy process may offer
additional application specific services, like, for example, access control.
Since the Proxy pattern does not define the purpose and sequence of col-
laboration between the participants, here, the simple Mailbox coordination
pattern is chosen.

Participants and Structure. The Proxy pattern consists of three process
types: a proxy process, a peer guarded by the proxy {proxy-peer) and an-
other peer which is not guarded by a proxy {peer). The usual case of a
one-to-one relationship (1 :1 ) between a proxy-peer and its proxy is as-
sumed. The number of peer processes is independent of the number of
proxy/proxy-peer pairs. The data flow between the process types is bi-
directional - although not necessarily between the same processes.

Motivation, Applicability, and Known Uses. One main reason for using a
proxy process lies in separating the interface to a peer process from the
core functions of the process. Additionally, proxies may add functions like
access control, synchronization mechanisms, and the concealment of the
remoteness of a process. For example, the pattern is applicable in case a
local representative for a remote object is required {remote proxy, described
by Gamma et al. [Gam95], pp. 91-105). A protection proxy can be used
to control access to the original process (or object) by adding additional
filtering functions. In firewall approaches, proxies are used to hide the
existence of a firewall from the distributed system.

Consequences. This coordination pattern exhibits benefits in terms of security
and decoupling of processes. Drawbacks of this pattern are the overhead
added. In particular in shared DS, some functions, like access control, may
be implemented by the DS instead.

Collaborations. A peer may address a proxy-peer not directly. Instead, the
proxy is addressed which waits for consuming a new message. The proxy
processes the message and writes it to the mailbox of the proxy-peer ad-
dressed. The proxy-peer acts like any other peer. It consumes the message
from its mailbox and writes a new messages to an arbitrary other peer.
Figure 4.7 shows the distributed activities by means of an UML activity
diagram.

Other Names and Related Patterns. This coordination pattern is also
known as Surrogate (see Gamma et al. [Gam95], pp. 207-217). A vari-
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Figure 4.7: Proxy

ant of the Proxy pattern can be derived when one proxy serves more than
one proxy-peer. Furthermore, the intent of the proxy pattern may vary
based on the application. Gamma et al. describe two additional variants:
the Adapter pattern and the Decorator pattern. In contrast to the proxy,
an adapter alters the interface of the proxy process (or object). In addition
to providing access to the (hidden) peer, a decorator adds responsibilities
to the original process (or object). From a computer language perspective,
the decorator provides similar mechanisms than inheritance. Here, if not
prohibited by protection flags, a sub class includes all functions of the super
class and may consist of additional functions.

Implementation (Sequence of DS Primitives). Three different partici-
pants are described by the pattern (although the proxy-peer and the peer
execute the same operations). The peer and the proxy-peer perform out()
operations in order to write messages for another peer persistently to the
shared DS. Then, the peer and the proxy-peer consume the messages in
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their own mailbox using a non-blocking consuming read operation (inpQ).
The proxy process reads a message in a blocking and consuming manner
(m()) and forwards it to the guarded proxy-peer (outQ). Equation 4.51
shows the sequence /ipi for the peer Pi, Equation 4.53 shows the sequences
for the proxy-peer P3 and Equation 4.52 shows the sequence fxp2 for the
proxy P2. The number of times the peer and the proxy-peer restart their
tasks is denoted by fc.3 For the proxy, m denotes the number of times this
process type restart its task:

k—times

ßPt ::= out^ap^.inp^p^), where k > 0, (4-51)

m—times

\ip2 ::= in(ap2).out(cp3), where m > 0, and (4.52)
fc—times

ßP3 ::= owt(6p1)inp(cp3). (4.53)

Measures. The dimension of the Proxy (Pr) pattern is:

nPr = 3. (4.54)

While the number of peers is independent of the number of other process
types, the number of proxy-peers is the same as the number of proxies
(c2 = C3). Since no processes are replaceable, the vectors describing the
numbers of concurrent processes per process type are given as follows:

CProc-Vecpr = c2 , and CProc-Vec-RepPr = 0 . (4.55)

V
Thus, the number of concurrent processes and the number of replaceable
concurrent processes is calculated as follows:

CProcpr = C\ + 2c2, and CProcJieppr = 0. (4.56)

The coordination pattern uses one name per peer (including the proxy-peer)
and one name per proxy. Thus,

sPr = Ci + 2c2. (4.57)

The matrix which determines the number of coordination operations is
given as follows:

k 0 A: 0 0 0
COp-Matpr = I m m 0 0 0 0 ) . (4.58)

k 0 fc 0 0 0
3The proxy-peer process type performs the same actions than the peer process type. Hence,

the number of loops is the same.
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Since the proxy performs a consuming read and thus, it waits for data items
from a peer, m and k are dependent:

C\k = ciVfi. (4.59)

Due to Equations 4.55, 4.58, and 4.59, the number of coordination opera-
tions and the number of blocking coordination operations are calculated as
follows:

COppr = 2k{2ci + c2), and COpJBlockPr = kcv (4.60)

4.3.7 Consensus (r+/t+)

Intent. The Consensus pattern describes a situation in which all participants
have to agree on a certain subject by proposing values and by executing
a specific agreement protocol. In asynchronous systems without further
assumptions, it is not possible to implement distributed consensus because
processes may take arbitrary time intervals to answer (for a detailed discus-
sion, see Fischer et al. [Fis85]). The requirements of a consensus algorithm
are stated by Coulouris et al. [CouOl], p. 452, as: (i) termination, (ii) agree-
ment, and (iii) integrity. Here, termination means, that each participating
process makes its decision eventually. The agreement property states, that
the decision of all correct processes should be the same. Finally, integrity
means, that in case all processes propose the same value, then all processes
should agree on that value.

Participants and Structure. This pattern consists of one process type de-
noted as participant. In this work, a decentralized agreement algorithm is
proposed which is based on a priori knowledge about the consensus group
members. Termination can be assured by means of timers and error states
in case not all expected values are received in time. Agreement and integrity
are achieved because of the algorithm proposed: Either all processes cal-
culate the consensus value similarly (that is, based on the same algorithm)
or none of them. Other failure compensation or voting strategies are not
supported by this consensus variant. The data flow is bi-directional for this
pattern.

Motivation, Applicability, and Known Uses. This coordination pattern is
used whenever a group of processes have to agree on a shared value. For
example, this pattern is applicable in election algorithms (see Coulouris
et al. [CouOl], pp. 431-436), for voting between replicated components in
order to locate malfunctioning components, and, in embedded systems,
for decision support on different sensor measure values. For example,
Kopetz [Kop97], pp. 111-117, discusses replica determinism.
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Consequences. In scenarios with faulty components additional protocol over-
head is necessary to reach an agreement which slows down the algorithm.
Additionally, in the worst case, an agreement may not be achievable. Lam-
port et al. [Lam82] discuss these problems in their work on the Byzantine
Generals Problem.

Collaborations. The algorithm used assures the agreement after one round in
a fault-free scenario. For simplicity reason, the number of participants
and the names of the communication variables have to be known a priori.
Therefore, the algorithm uses two different flags and the voting value to
assure that all participants have passed a critical section (phase):

Ready Flag. The ready flag is written by each process in case this process
is ready to start a new consensus round.

Value. The value represents the vote of the process which is compared
to the other votes by a single algorithm executed by each process.
Writing the value signals that the process is ready to read the votes
of all other processes.

Finished Flag. The finished flag is used to signal that all votes have been
read and, thus, each process is ready to calculate the decision value
(that is, the consensus has been reached).

Figure 4.8 shows the UML activity diagram of the coordination pattern.
Each participant notifies the other processes that it is ready to start ( Write
own ready flag) and waits for the same information retrieved from the other
processes ( Wait to read all ready flags). Then the participant consumes a
former generated flag which is used for signaling the end of a consensus
round (Consume own finished flag), if such a flag exists. It generates a new
value and writes this value to a specific address of the shared DS ( Write
own value). During the next step, the participant waits for the values of the
other participants (Wait to read all values). At this step, the process has
to consume its ready flag in order to prevent the restart of the agreement
before the process is ready again ( Consume own ready flag) caused by the
old ready flag. It signals the other processes that it has passed reading
( Write own finished flag) and waits for all others to finish ( Wait to read
all finished flags). During the last steps, the process consumes its own
value (Consume own value) and calculates the decision value. Here, each
participant restarts its task a number of times.

Other Names and Related Patterns. This pattern is also termed consensus
problem or problem of agreement by Coulouris et al. [CouOl], p. 451-453.
Variants of the pattern can be derived by applying it to different consen-
sus problems. For example, the agreement on a vector consisting of one
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result per participant is termed interactive consistency. Furthermore, dif-
ferent variants can be derived by using a centralized version, by adding
fault tolerance (that is, tolerating a number of participants to fail), and by
relaxation of referential coupling.

Implementation (Sequence of DS Primitives). This decentralized coordi-
nation pattern consists of only one process type. However, a coordination
sequence makes only sense in case there are at least 2 (similar) processes
participating. The UML activity diagram of Figure 4.8 is transformed into
a sequence of DS primitives by using an out() operation for each writing,
the inp() operation for a consuming non-blocking read, and the rd() op-
eration for a blocking non-consuming read of items. Equation 4.61 shows
the sequences /xpx for each participant P\. Here, k denotes the number of
times the participant restarts its task and p denotes the number of values
to expect:4

k—times

:= preparation.voting.completion, where k > 0, (4-61)

p—times

preparation ::= out^.rdfrpj .inp(fp1),

p—times

voting ::= owt(üp1).rd(up1) .mp(rpx), and

p—times

completion ::= out(fp1).rd(fp1) .inplvp^, where p > 0.

Measures. The dimension of the Consensus (Cs) pattern is given as follows:

nCs = 1- (4.62)

The vector describing the number of concurrent processes per process type
exhibits only one dimension and no process type is replaceable. Thus,

CProc.Veccs = ( cx ) , and CProc.VecJiepcs = ( 0 ) . (4.63)

The number of concurrent processes and the number of replaceable concur-
rent processes are calculated as follows:

CProccs = ci, and CProcJiepcs = 0. (4.64)
4Without loss of generality, it is assumed that at least one other process is participating.
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The coordination pattern uses three different names per participant. Thus,

ses = 3ci. (4.65)

The matrix which determines the number of coordination operations is
given as follows:

COp-Matcs = ( 3fc 0 3k 3kp 0 0 ) . (4.66)

Since the number of values generated during one round is equal to the
number of other participants, the following equation is derived:

p = C\ — 1, where C\ > 1. (4-67)

Hence, the number of coordination operations and the number of blocking
coordination operations are calculated as follows (based on Equations 4.63,
4.66, and 4.67):

COpcs = 3cifc(l + ci), and COpSyncCs = 3cifc(ci - 1). (4.68)

4.3.8 Broker (r+/t+)

Intent. The Broker pattern provides the decoupling of client processes and
servers (service providers). The broker process receives requests and tries
to match these requests with known and available servers. Usually, servers
register with the broker process before they are ready for service requests.

Participants and Structure This coordination pattern consists of three pro-
cess types: a client, a server, and a broker. The client and the server
behave like described by the Request/Answer pattern, except that a broker
is needed to inform the client about the reference it should use for requests.
The data flow is bi-directional for all processes.

Motivation, Application, and Known Uses. The pattern is most useful in
scenarios where clients do not exactly know the address of a server avail-
able, because, for example, addresses change frequently. Here, the central
role of the broker helps to find the right server efficiently. In particular,
systems with a multitude of servers and clients benefit from this pattern
because it allows to reduce message overload caused by decentralized ser-
vice discovery mechanisms. A well known example of a broker is the Object
Request Broker (ORB) included in the Common Object Request Broker Ar-
chitecture (CORBA) of the Object Management Group (OMG) [OMG04a].
In multi-agent systems, a broker may hold a complex capability model for
each service provider and apply extensive search algorithms (see the de-
scription in Hay den et al. [Hay98]).
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Consequences. The main advantages of this pattern are call transparency and,
thus, reusability, and the avoidance of message flooding for lookup purposes.
Possible disadvantages are, performance decrease because of the indirection
caused by the broker process types and a single point of failure in the simple
centralized case.

Collaborations. The Broker pattern is similar to the Request/Answer pattern.
First, a client process asks for the server's address and then starts with the
Request/Answer pattern. The server has to register first with the broker
before it becomes accessible. The broker process itself waits for a client
request and compares the request with the list of servers registered. It
returns the match to the client. All messages are transfered by means of
the shared DS. The pattern variant chosen uses direct communication (see
Dustar et al. [DusO3], p. 95), that is, the broker just matches client and
server but the processes may coordinate directly without involvement of
the broker process. Figure 4.9 shows the distributed activities by means of
an UML activity diagram.

Other Names and Related Patterns. Advanced variants of this coordina-
tion pattern are also known as Matchmaker pattern and Facilitator pattern,
like described by Hay den et al. [Hay98]. Further variants can be derived by
adding new functions to the core purpose of the broker based on the applica-
tion. For example, in trading systems, the broker adds bidding functions.
When no direct coordination is permitted, a broker forwards the client's
request to the service provider (similar to the Proxy pattern). Dustar et
al. [DusO3] propose a relaxation of the roles. Here, the processes do not fol-
low the Request/Answer pattern. Instead the broker uses callback functions
for registered objects in case an event of interest occurs.

Implementation (Sequence of DS Primitives). Since this coordination
pattern consists of three process types, three different sequences of DS
primitives are derived from the UML activity diagram. The client uses a
write operation (outQ) and a consuming blocking read operation (in())
to retrieve the server name from the broker. Then, it uses the same
sequence of operations to coordinate with the server. Equation 4.69 shows
the sequence ßpx for the client P\. The broker process reads the client's
request for a service in a consuming and blocking manner (in()), reads
the list of registered servers (rdp()), and writes the reference of the server
(that is, its name) to the client (outQ). Equation 4.70 describes the
sequence fj,p2 for the broker P%. For the server, the first space primitive in
the sequence is used to register with the broker (outQ). Then the server
performs the sequence already described by the Request/Answer pattern.
Equation 4.71 describes the space primitive sequence //p3 for the server P3.
Here, k denotes the number of times the client restarts its task, m denotes
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the number of times a broker restarts its task, p denotes the number of
registered servers, and I denotes the number of times a server restarts its
task:

fe—times

ßpl ::= oiti(a).m(6p1).owt(c).m(öp1), where k > 0,

m—times

p—times

::= in(a).rdp(d) . ) , where ra,p>0, and

(4.69)

(4.70)

80



4 Coordination Patterns 4.3 Description of the Coordination Patterns

I—times

/ip3 ::= 0it£(d). wi^.ott^èpj), where I > 0. (4-71)

Measures. The dimension of the Broker (Br) pattern is:

nBr = 3. (4.72)

Out of the three different process types, the broker process type and the
server process type are replaceable. Thus, the vectors describing the num-
ber of concurrent processes - and the number of replaceable concurrent
processes - in the system are given as follows (where c\, c2, c3 > 0):

/ c, \ / 0 \
CProc.VecBr = c2 , and CProc.VecJiepBr = I c2 . (4.73)

V c3 / V C3 /
The number of concurrent processes and the number of replaceable concur-
rent processes are calculated as follows:

CProcßr = ci + c2 + c3, and CProcJiepBr = c2 + c3. (4.74)

The pattern uses three commonly known names and 1 name for each client
process. Thus,

= 3 + ci. (4.75)

The matrix determining the number of coordination operations is given as
follows:

f 2k 2k 0 0 0 0 \
COp-MatBr = I m m 0 0 mp 0 . (4.76)

\ 1 + / 1 0 0 0 0 /

Since the processes perform blocking operations, the number of times the
processes loop depend upon each other. Furthermore, the number of servers
registered in the server register is equal to the number of server processes
in the system. Hence,

C\k = c2ra = C3I, and p = C3. (4.77)

The number of coordination operations and the number of blocking co-
ordination operations are calculated as follows (based on Equation 4.73,
Equation 4.76, and Equation 4.77):

= c3 + fcci(8 + c3), and COp-BlockBr = Akc\. (4.78)
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4.4 Discussion of Coordination Patterns

Based on the measures introduced in Section 4.2, eight coordination patterns
have been described in detail in Section 4.3. These measures allow to compare
the patterns in terms of referential and temporal coupling.

Table 4.3 gives an overview of the measures for each coordination pattern.
Each process type is assigned to an index i {Pi). The dimension n describes the
number of different process types and s denotes the number of DS names that
have to be known by the participants. COp denotes the number of coordination
operations, while the number of blocking coordination operations is denoted as
COp-Block. Furthermore the number of concurrent processes in the system is
denoted as CProc and the number of replaceable concurrent processes is denoted
as C-Proc-Rep.

According to the definitions of temporally uncoupled and referentially uncou-
pled, the eight patterns may now be classified. Thus, first the following degrees
are defined respectively:

DrempUncoupied = 1 ÇQ , and (4.79)

CProc-Rep
D RefUncoupled = ^Tp • (4.80)

A coordination pattern is temporally uncoupled, if D Temp Uncoupled = 1- Otherwise
it is temporally coupled. On the other hand, a coordination pattern is referentially
uncoupled, if D] Ref uncoupled — 1- Otherwise it is referentially coupled. Table 4.4
summarizes the coupling degree exhibited by each coordination pattern.

Now, the eight coordination patterns can be classified according to the tax-
onomy presented earlier. Figure 4.10 visualizes the assignment of coordination
patterns to the four classes introduced by the taxonomy in Section 4.1. Further-
more, these measures allow to distinguish the degree of coupling more precisely.

Figure 4.11 shows the extended precision achieved by the measures. For
each pattern, the value ranges of DTemP Uncoupled and DRefuncoupled as given by
Table 4.4 are depicted. Table 4.5 summarizes the ranges in terms of minimum
and maximum. (For a detailed deduction, see Section A in the appendix.)

To summarize, it has been shown that it is possible to classify coordination
patterns according to a commonly used taxonomy which allows to assign a pat-
tern to one of four classes in terms of referential and temporal coupling. This
classification scheme has been applied to eight coordination patterns selected,
which allows to chose one representative pattern per class. The influence of mo-
bility for each class can now be studied by investigating the influence of mobility
for each representative (see Chapter 7).
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Chapter 5

Mobility-Aware Space Based
Computing

In mobile computing scenarios, tasks are executed on mobile, sometimes also
moving devices and communicate in general via wireless networks. Adding mo-
bility awareness, that is, sensing and reasoning about the roaming behavior of a
user or a device, enables tasks to react and to adapt their algorithms. In case pre-
diction is feasible, proactive adaptation of coordination tasks may help to avoid
fatal problems caused by wireless network failures.

The approach presented uses mobility models in order to facilitate mobility-
aware space based computing. The first section discusses the fault-hypothesis
in mobile wireless systems and describes the compensating actions that can be
applied in order to achieve fault tolerance. In the second section, the mobil-
ity models used for prediction are discussed. The third section introduces the
Mobility-Aware Coordination Layer (MobACL) as part of a modular framework
which combines wireless link sensing and prediction in order to alter the behavior
of the shared Data Space (DS) coordination primitives.

5.1 Fault-Hypothesis in Mobile Wireless Com-
puting

Mobile computing considers roaming behavior on different network protocol lay-
ers, like Mobile IP on network layer [Per96, Per98], or the WLAN 802.llx stan-
dards for physical and data link layer. Mobility-awareness is useful to any protocol
supporting the roaming behavior of entities (for example, see the work on loca-
tion augmented Mobile IP handoff from Wijngaert et al. [dW03]). In this thesis,
the focus is set on indoor roaming scenarios within the same WLAN network.
The fault-hypothesis is based on this focus.
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5.1.1 WLAN Network Link States

Wireless links, that are, connections to a WLAN access point may be sensed in
terms of the Signal to Noise Ratio (SNR) which is a means for characterizing
wireless link quality (see Section 2.1). Due to experimental measures using the
ORINOCO WLAN client manager (see [AgeO2]) and the classification proposed
by the ORINOCO WLAN client manager, the WLAN 802.11b SNR value range
is split into four categories as shown in Table 5.1.

EXCELLENT MEDIUM BAD DISCONNECTED
SNR > 25dB lbdB < SNR < 25dB \ bdB < SNR < ibdB SNR < bdB

Table 5.1: WLAN link classes

In EXCELLENT and MEDIUM state the data rates remain at llMbit/s,
thus, it is not necessary to change the application's or middleware's behavior
when changing from one of these states to the other. However, in case of observ-
ing direction of the movement it is reasonable to take a proactive action when
changing from EXCELLENT to MEDIUM and thus, vice versa. When entering
link state BAD, the data rates automatically fall back to 5.5 Mbit/s, 2.0 Mbit/s,
or 1.0 Mbit/s. When no connection can be provided, the link state is set to
DISCONNECTED.

Assuming a specific topology, locations can be mapped to the four WLAN
link quality classes (also termed link quality states), like shown in Figure 5.1. As
a consequence, movement from one location to another can be interpreted as a
movement from one WLAN link quality state to another.

5.1.2 Definition of the Fault-Hypothesis

The approach presented assumes that wireless link degradation related to move-
ment - which is an environmental phenomenon - leads to failures of distributed
applications. Based on WLAN wireless link sensing, the changes in SNR val-
ues can be perceived and detected. Table 5.2 shows the fault hypothesis, the
mapping between a possible cause of the fault {mobility behavior), the percep-
tion of WLAN link states (link state), the failures caused on application layer
related to distributed computing (coordination failure perception), and possible
compensation actions (compensation).

The failures considered are timing failures, which are said to be permanent
(and thus, single failures only) unless the mobile entity roams in again. This
behavior is similar to a repairing action commonly modeled in reliable systems.
Value failures are not considered because they are hidden by underlying network
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WLAN access
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Figure 5.1: Mapping of rooms to link quality states
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Lock timeout,
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Work on copy,
work with
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wait

Table 5.2: Mobility related fault-hypothesis

protocols and the middleware layer. Furthermore, the failures are said to be
consistent, that is, coordinating processes perceive the connectivity states of the
others consistently. This behavior is achieved by using WLAN infrastructure
mode to connect a mobile entity with others by means of only one access point.

The mobility behavior is characterized by two kinds of phenomena related to
the speed of movement: roaming in and passing through. In case of a reasonable
short retention period, passing through is assumed, otherwise roaming in. The
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failure perception in the states BAD and DISCONNECTED on application layer
is quite similar and based on the expiration of coordination related timers which
may result in permanent coordination failures. The coordination related problems
occur, when locks on data items are not released in time (lock timeout, lock error)
or the access to the shared data space is not possible in time1 (access timeout,
access error).

In case of passing through the states DISCONNECTED or BAD - in the
latter case, in addition it is assumed that the successor link state is MEDIUM or
EXCELLENT - compensation actions are too expensive in terms of network and
computing load. Thus, the compensation actions should be postponed (wait).
Otherwise, in case these low quality link states are entered, only proactive ac-
tions may help to compensate connectivity related problems. In terms of the
shared DS paradigm, these actions are the release of items locked during atomic
operations and copy actions in order to support ongoing services which may op-
erate on copies during periods of disconnections. When entering link state BAD,
all data items locked should have been released in a proactive manner to avoid
deadlock situations. Copy actions should be initiated which allow to prepare for
connection losses that might occur. In link state DISCONNECTED, all shared
DS coordination operations need to be finished before this state is entered. Oth-
erwise, the operations simply cause errors.

5.1.3 Modeling Availability for Wireless Links

A mobile station roaming in a wireless network can be modeled as a Markov model
of a repairable system consisting of one error-less state and one error state. This
model is used to describe the overall availability of the system (see Section 2.2).
Hence, the wireless link states EXCELLENT, MEDIUM, and BAD are here de-
scribed by one state (Connected). A mobile device being DISCONNECTED is
not available at the moment (Disconnected). Monitoring of the system starts
with the first connected state, thus, also the start conditions of a repairable sys-
tem are given (that is, Pc<mnected(ty = 1 and PDisamnectedfi) = 0). Figure 5.2
shows the application of the model for a wireless link.

For an unlimited observation period, Equation 2.13 is used to calculate the
availability of the system in terms of Mean Time To Loss (MTTL) and Mean
Time To Connect (MTTC), where:2

Connection Loss Rate = , and (5.1)

Connection Establishment Rate = . (5.2)

implicit or explicit locks are needed in order to assure consistent concurrent operations.
2The sum of these two mean values is termed Mean Time Between Losses (MTBL).
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Thus,
MTTL

Um Pconnecteäit) = MTTL+MTTC- (5-3)

Connection Loss Rate

Conection Establishment Rate

Figure 5.2: Markov model for two connectivity states

5.2 Mobility Models

Mobility models (see Section 2.1) are used to describe the roaming behavior of
individuals or groups which may be used for capacity planning, proactive resource
allocation, mobility aware applications like proactive parking place reservations,
or proactive fault-tolerant mechanisms for middleware systems. In the context of
such applications, mobility models have to provide mobility patterns at runtime.
As a consequence, mobility models are most useful if they are:

• accurate in terms of agreement between mobility patterns and mobility
traces,

• scalable when adding new locations and new mobile entities (either indi-
viduals or resources),

• adaptive by nature, that is, they learn from observing roaming traces, and

• inexpensive in terms of computing power and execution time needed.

Since adaptivity means spending additional computing power, mobility models
are often simplified by assuming topographical models or heuristics which are used
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to calculate reasonable mobility patterns before runtime. Commonly, mobility
models are stored using tables which allow to compare traces against patterns
easily and accurately.

A movement vector is described by its direction and speed. Thus, models
describing only location sequences allow to describe direction, but not speed. The
approach proposed addresses speed by modeling the retention period in states
which is useful when initiating compensation actions due to wireless link state
changes. Based on the notion introduced in Section 2.1, the movement history
Hn is modeled according to a sequence of vectors (vt) describing the wireless link
state (sit which can be: EXCELLENT, MEDIUM, BAD, or DISCONNECTED)
and the retention period (r^ > 0):

Hn = (vlt..., v^ ..,, vn), where (5.4)

»<=(;;

The mobility models used to describe the roaming behavior are both table-
driven approaches which do not exhibit means for adaptations during runtime.3

Thus, the models are superior to adaptive models in terms of computation cost
during runtime. In comparison to random models, like the Random Walk Mobility
Model and the Random Waypoint Model (see, for example, a description in Camp
et al. [CamO2]), the patterns described are more applicable to the office scenario,
because

• humans move based on purpose and not randomly, and, furthermore,

• the office topography usually restricts random movements.

More complex mobility models describe additional movement characteristics.
Kobayashi et al. [KobOO] introduce an Abstract Mobility State Space, where a
state of a mobile user is defined as a finite vector describing arbitrary charac-
teristics and the interpretation of traces is based on a Markov model (Hidden
Semi-Markov Model). The work applies this general approach to three dimen-
sions, that are, location (finite set of locations), direction (north,south,east, west),
and velocity (stationary,walking,city,...). In the work of Zaidi et al. [ZaiO4], such a
vector describes position, velocity, and acceleration in a two-dimensional grid. By
applying an autoregressive model, the next state-vector is estimated. However,
the user's retention period is not modeled explicitly and can only be calculated
in case the user is temporarily stationary (that is, velocity and acceleration are
zero). Since the approach presented in this work aims at proactive invocation,
the retention period has to be modeled.

3However, means for adaptations can be easily added.

91



5 Mobility-Aware Space Based Computing 5.2 Mobility Models

Based on these aspects, two different models are developed for link state
prediction as well as for retention period prediction: the Continued Move Mobility
Model (Continued Move) and the Smart Office Mobility Model (Smart Office).
While the first pattern is based on general assumptions on human movement
and continuous wireless link degradation, the Smart Office Mobility Model allows
to model human movement up to a fine-grained level. It is open to additional
information and scales well, because updates in granularity do not influence table
entries already existing.

5.2.1 Continued Move Mobility Model

The Continued Move model is a second order Markov predictor assuming that
the next state depends only on the last two history states [CheO3c]. Since only
four link states are distinguished, the Markov model is sufficiently simple for our
purpose. Both the probabilities for link state transitions and retention periods
can be approximated by the frequency of occurrence of state changes based on
observations. For simplicity reasons, here, both variables are assumed to be
independent.

The link state probability transitions described in Table 5.3 are based on
reasonable assumptions, when no observed roaming frequencies are available.
They describe a specific mobility pattern by taking topographical information and
signal dispersion into account. Furthermore, it is assumed that a person walking
with a mobile device will more likely change to neighbor locations - and thus
adjacent network states (that is, states with a current SNR value corresponding
to the next higher or lower interval) - than roaming like jumping randomly in a
discontinuous manner. Furthermore, a moving person is expected to continue in
her direction.

Giving an example in the setting depicted by Figure 5.1, in case the last
two history states are EXCELLENT-MEDIUM, the person seems to roam away
from the access point and the prediction for the next network state will most
probably be BAD (1/2). In case no continuous roaming has been observed, one
of the adjacent locations (link states) is assumed. For example, in case the last
two history states are DISCONNECTED-EXCELLENT it is reasonable to derive
the next link state based on the last history state only (here, EXCELLENT). The
locations nearby the location with excellent wireless connectivity are assumed to
be either EXCELLENT or MEDIUM with an equal probability of 1/2. (In case
no deterministic decision is possible, a random decision is proposed).

Inspired by the scenario of roaming in an office, four different classes of reten-
tion periods are proposed. These retention periods define the duration a person
stays in one link state. In detail, the classes describe the behavior of a walking
person (Ri, for example, up to 30 seconds needed for roaming to the next link
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Si - Si+i

EXCELLENT - EXCELLENT
EXCELLENT - MEDIUM
EXCELLENT - BAD
EXCELLENT - DISCONNECTED
MEDIUM - EXCELLENT
MEDIUM - MEDIUM
MEDIUM - BAD
MEDIUM - DISCONNECTED
BAD - EXCELLENT
BAD - MEDIUM
BAD - BAD
BAD - DISCONNECTED
DISCONNECTED - EXCELLENT
DISCONNECTED - MEDIUM
DISCONNECTED - BAD
DISCONNECTED - DISCONNECTED

EXC.
2/3
1/4
0
0

2/3
1/4
0
0

1/2
1/2
0
0

1/2
1/3
0
0

MEDIUM
1/3
1/4
1/3
0

1/3
1/2
1/4
0

1/2
1/4
1/4
0

1/2
1/3
1/2
0

BAD
0

1/2
1/3
1/2

0
1/4
1/4
1/2

0
1/4
1/2
1/3

0
1/3
1/4
1/3

DISC.
0
0

1/3
1/2

0
0

1/2
1/2

0
0

1/4
2/3

0
0

1/4
2/3

Table 5.3: Continued move link state transition probability matrix

state), short movement breaks (R2, for example, up to 5 minutes), average work-
ing session (i?3, for example, up to 2 hours) and a stationary behavior lasting
longer than 2 hours (R4). In a first approach of this mobility pattern (see the
first introduction of the Mob ACL in [HumO4a]), a transition probability matrix
similar to the transition probabilities for link states has been proposed. However,
it is not reasonable to assume acceleration when using just these four retention
periods, thus, the model is degraded to a first order Markov model, where re-
tention period prediction is based on the last retention period observed. A new
period is only estimated when a link state change has been observed.

Table 5.4 shows the assumed transition probabilities in detail. For example,
a person that stayed no longer than 30 seconds in the last observed link (that is,
location) with a retention history R\ is most probably walking and will contain
walking (according to the Continued Move model). Thus, the retention period
for the next link state is assumed to be R\.

When long-term observations are available, the values given for this pattern in
the matrices may easily be exchanged by the relative frequencies observed which
will more precisely characterize the pathways in a specific office.
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n
AI
Ä2
A3
A4

Rx
2/3
1/4
0
0

Ri

1/3
1/2
1/4
0

A3
0
1/4
1/2
1/3

R4
0
0
1/4
2/3

Table 5.4: Continued move retention period transition probability matrix

5.2.2 Smart Office Mobility Model

The second model chosen is a Smart Office model, which utilizes personal in-
formation, like a person's calendar entries for more accurate retention period
and location estimation. The model is based on a timeline metaphor describing
locations (or link states, like in the presented approach) which are entered at
a particular point in time. The actual retention periods are calculated as the
interval from one location change to the next.

Figure 5.3 shows a timeline augmented with link state information. A link
state Si is entered at a point in time ti and left at ti+i. Thus, the retention period is
calculated as r* = ti+i — ti for ŝ . The vectors of the movement history are derived
easily. By applying values for a specific person and situation the mobility patterns
emerge based on this model. To summarize, basic characteristics of this model
are its scalability and openness. On the other hand, it needs precise knowledge
about a person's roaming behavior in order to allow high quality prediction.

Figure 5.3: Smart office mobility model
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5.3 Mobility-Aware Coordination Layer

In order to introduce mobility-awareness to mobile distributed computing on
application layer, a modular software layer is proposed. This layer is termed
Mobility-Aware Coordination Layer (MobACL) because it is meant to change the
behavior of coordination primitives of an application according to the current
wireless link state and the prediction of the next link state. For example, in
case of being disconnected the coordination primitives will work on copies of the
shared DS instead of working with the original data items. The layer should be
added to a middleware based on the shared DS paradigm and is meant to execute
on a mobile device capable of running both an instance of the middleware and
the mobility-aware layer.

Coordination patterns

Logging module Mobility patterns

Coordination
state machine

• A
Mobility layer

primitives module
Network interface

monitoring

MobACL

DS middleware

Figure 5.4: MobACL software architecture

Figure 5.4 shows the modular software architecture of the Mobility-Aware
Coordination Layer (MobACL). While the coordination patterns determine the
sequence of coordination primitives used in the application - which have to be
supported by the DS middleware - the layer alters their behavior depending on
the wireless link state and prediction. The layer is made up of a network interface
monitoring module accessing the network logs and calculating the current link
state based on the modeled SNR mapping. The mobility patterns are used to
derive a prediction for the next link state based on the history of visited link
states. Additionally, they are used to derive the retention period for remaining
in a link state based on the history of observed retention periods. The co-state
machine implements the algorithm to chose the current coordination state, that
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is, the state controlling the actions of the MobACL, and to execute the state
transition actions. The semantics of the coordination primitives are adapted in
the mobility layer primitives module. A logging module allows to log all MobACL
activities of interest, like, for example, each access to the DS.

5.3.1 Co-State Machine

Primitives will be interpreted according to the coordination state of the appli-
cation process. Four states are proposed to solve the characteristics of mobile
entities and are changed on reasoning about the current link state and a predic-
tion for the next link state and retention period periodically. Figure 5.5 shows
the coordination states used and the state transitions of the MobACL. The tran-
sitions are mainly time driven but include also the event driven change in case of
error. At the beginning of a transition, a decision is taken which state to enter
next. Then, the methods initializing the state have to be executed. The opera-
tion synchronize leads to the execution of the postponed actions and is executed
whenever a state transition causes a change from accessing the local space to
accessing the global DS, the operation copy creates a copy of the needed objects
in the global space, and the release operation releases all locks held.

Figure 5.5: MobACL state transitions

The PARTICIPATING state is entered whenever the link conditions - and
the prediction about the next link state - allow full participation in the global
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DS. Here, the coordination primitives are applied to the global space similar to a
stationary DS participant. This state is left upon link changes or because an error
occurred. The latter results in changing to the OFFLINE state. In OFFLINE
state, if a local copy is available, space manipulations are executed locally. In
BY-PROXY state, the local DS is not used. Instead of using the local partition
of the DS, the process on the mobile device connects to a remote DS entity and
accesses the global DS via this remote site. In this state, the local site of the
DS may not cause lock problems. Working ON-COPY allows to create a copy of
the used global DS before going offline and allows to access space objects locally
in order to prevent ongoing network traffic over a limited bandwidth. However,
in this state triggered by a refreshing timeout, synchronization and copy of the
local space are carried out in order to support working with the most recent
global DS view possible. Finally, WAITING is used to prevent time consuming
transition actions in case of frequent changes between states of different link
quality like very short disconnection times. In contrast, waiting is proposed.
Thus, for example, trashing is avoided in case the user resides in a location right
at the border between BAD and DISCONNECTED link state. First experimental
results have shown, that the WAITING state is only beneficial in case a short
retention in the DISCONNECTED link state is predicted. Thus, the algorithm
proposed in Hummel [HumO4a] has been adapted. After a waiting period, the
previous coordination state is entered and the next transition takes place from the
previous coordination state to the next coordination state. In order to prevent
long process stalls the WAITING state has to be left after a defined timeout.

5.3.2 Calculating the Current Coordination State

The decisions in the state transition diagram (Figure 5.5) depend on the location
of the entity (here, mapped to link states) and the remaining retention in the
current location. Figure 5.6 shows the algorithm used to decide whether the
current link state or the estimation of the next link state is the crucial factor
for determining the current coordination state. In case the current retention
period is still greater than a given threshold (D-RELAX), the currentJinkstate
is the deciding factor (controllingJinkstate). Otherwise, the nextJinkstate is
the determining factor.

However, in case the user is expected to stay only a short period of time in the
current link state DISCONNECTED, the waiting-flag is set. Since the WAITING
state is a special case that can only be entered for a limited period of time, it is
further checked whether the variable waiting-time-expired is yet false. The second
special case occurs in current link state BAD, whenever the next link state is
supposed to be better in terms of link quality (that is, not DISCONNECTED).
In these cases, it is not recommended to execute synchronization operations while
still being weakly connected, that is, operating with reduced DTR.
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if current-duration > D.RELAX then
controllingJink-state = current _link_state

else
controllingJinkjstate = next Jinkjstate
if current Jink_state = DISCONNECTED then

if next Jinkjstate ^ DISCONNECTED then
if not waiting_time_expired then

waiting_flag = true
else

controllingJinkjstate = current Jink_state
end if

end if
end if
if current Jinkjstate = BAD then

if next Jink_state ^ DISCONNECTED then
controllingJink_state = current Jinkjstate

end if
end if

end if

Figure 5.6: Determining the controlling link state and the waiting condition

Based on the controllingJinkstate, now the coordination state can be de-
rived. In case the waiting-flag is set, the algorithm decides to change the cur-
rent.costate to WAITING state. Otherwise, the current-Co state is changed
determined by the controllingJinkstate. Figure 5.7 shows how the coordination
state current-costate is derived.
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if waiting-flag then
current_co_state=WAITING

else
if controlling_link_state = EXCELLENT then

current-constate = PARTICIPATING
end if
if controllingJink_state = MEDIUM then

current_co_state = BY.PROXY
end if
if controlling_link_state = BAD then

current_co-state = ON.COPY
end if
if controllingJink_state = DISCONNECTED then

current_coj5tate = OFFLINE
end if

end if

Figure 5.7: Determining the current coordination state
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Chapter 6

Application

The concept of the Mobility-Aware Coordination Layer (MobACL) is imple-
mented mainly by means of the shared object based middleware CORSO [KühOl,
TEC04]1 and the Java&Co Application Programming Interface (API). The soft-
ware is purely written in the Java2 programming language and uses a WLAN
802.11b client manager from Orinoco3 for WLAN sensing and logging.

Section 6.1 describes the main characteristics of the technologies used. De-
sign decisions and the software overview are discussed in Section 6.2. Section 6.3
describes the interfaces between the MobACL and coordination pattern imple-
mentations. It discusses the mapping between the sequences of abstract shared
Data Space (DS) primitives from Section 2.3 and Java&Co API operations. Fur-
thermore, this chapter applies the implementation approach to four example ref-
erence coordination patterns introduced in Chapter 4.3. Finally, implementation
alternatives and the configuration of the MobACL are discussed.

6.1 Systems, Tools, and Programming Lan-
guages Used

MobACL is based on three software systems and tools as shown in Figure 6.1.
The prototype layer is purely written in the Java programming language (Java
2 Standard Edition (J2SE)) and thus, accesses CORSO via the Java&Co API.
This API is a Java library providing access to the CORSO for Java applications.
Finally, MobACL makes use of the Orinoco WLAN client manager [LucO2], which
provides WLAN link quality measures. Since MobACL addresses mobile devices

1 CORSO originates from research carried out under the guidance of Prof. Eva Kühn at the
Vienna University of Technology.

2http://java.sun.com/
3http://www.agere.com/

100



6 Application 6.1 Systems, Tools, and Programming Languages

capable of running the CORSO middleware, notebooks are the target platforms
considered.

MobACL

Access point
Windows/UNIX OS TCP/IP protocol stack - - - > v

WLAN IEEE 802. l ib
(UMbit/s)

Figure 6.1: MobACL software architecture overview

6.1.1 Shared Object Space CORSO

The implementation of the proposed approach uses the space based middleware
CORSO version 3.3 [TEC04], which provides advanced means for fault-tolerant
space based coordination in a distributed system [KiihOl, KiihO2]. CORSO im-
plements a virtual shared memory as shown in Figure 6.2. CORSO runs a Coor-
dination Kernel (CoKe) on each site participating (in Figure 6.2, CORSO-sitel
and CORSO-site 2). Hence, each CORSO site implements a part of the dis-
tributed shared space. The CoKes coordinate concurrent data access, consistent
data replication, and persistent data storage. Processes (in Figure 6.2, PI-PÔ)

use CORSO APIs in order to communicate with remote processes and to start
processes on remote sites by means of CORSO.

Mobile devices can make use of CORSO in two different ways. In case they
are able to execute a CORSO runtime environment, that is, a CoKe executing on
a CORSO site, they may participate in the shared CORSO space like stationary
computers. On the other hand, if mobile devices do not run a local CORSO
site - because, for example, they do not exhibit enough memory, processing
power, or software support - they may connect to a remote site via UDP and
sockets. Figure 6.2 depicts a process PQ which is, for example, executing on
a PDA with Java support. MobACL supports only the first type of scenarios
because it addresses full participation of mobile nodes for space based distributed
computing.

Main services provided by CORSO are advanced means for reading, deleting,
and writing of arbitrary data structures by means of communication objects. In
particular, MobACL uses the following means provided by CORSO and supported
by the Java&Co API:
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TCP/IP

P6

Java&
Co

/ Site 3

Figure 6.2: CORSO architecture

Communication Objects. Communication objects are used in order to com-
municate between concurrent processes and to synchronize between such
processes. Each communication object is uniquely identified via an object
identifier (OID). There are two kinds of communication objects: variable
and constant communication objects. A variable communication object can
be updated arbitrary times while a constant communication object can be
written to only once. Logical timestamps count the number of times a
value has been written to a variable communication object. The following
operations are defined for communication objects:

• a/synchronous read,

• write,

• test (which is a cheaper operation than an asynchronous read),

• notification (which can be used to wait until a new value is written to
one communication object out of a group of communication objects of
interest).

The OID of a communication object has to be known in order to access this
object. OIDs can be passed by means of process arguments, for example, an
argument passed to a new thread of a process. Furthermore, OIDs can be
contained in another communication object shared by the process or they
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can be retrieved via a name, in case the communication object is a named
object.

Named Objects. If a name is assigned to a communication object, the OID
can be retrieved by querying CORSO. Since a global naming strategy is
not intended by CORSO, names are locally managed at CORSO sites. As
a consequence, both the site and the name have to be known in order to
retrieve the OID of a named object.

Shareable Data Structures. CORSO allows to use basic data types, like In-
teger (32-bit integer value), Single Precision Floating Point (32-bit floating
point value), and String (0 terminated character sequence). Furthermore,
it is possible to define more complex data structures for shared data ex-
change. Each shared data structure is automatically converted into an
Interface Definition Language (IDL), termed Native IDL. Thus, CORSO
supports heterogeneity in terms of programming languages, operating sys-
tems, and hardware architectures.

Transactions. Transaction support is an advanced mechanism provided by
CORSO to assure consistency of multiple operations. CORSO transactions
are based on the Flex Transaction Model, which relaxes the isolation prop-
erty of a transaction (see Bukhres et al. [Buk93]). Thus, CORSO avoids
locking of communication objects which is beneficial in distributed systems.
All other ACID properties, that are, atomicity, consistency, isolation, and
durability, are guaranteed by the model. Furthermore, CORSO transac-
tions provide backtracking and compensation activities [KühOl, TEC04].

CORSO supports fault tolerance and fast access to communication objects
by means of replication techniques (part of the distribution strategies [TEC04]).
Currently, CORSO only supports the passive redundancy with a deep object tree
(PR-deep) strategy. This strategy is a reliable strategy based on the concept
of one primary copy of a communication object and multiple secondary copies,
which are updated according to the CORSO strategy selected. Eager propagation
assures that an updated value is propagated instantaneously to all sites holding
a copy. Using lazy propagation, a copy is updated in case a process accesses this
copy.

The replicas build a tree structure. Whenever a process requires write access
(or read of a communication object in a transactional manner), the primary copy
migrates to the CORSO site requesting it and the object tree changes, if possible.
Thus, the protocol assures mutually exclusive access to replicated communication
objects. In case a process does not alter a communication object, a secondary
copy is accessed. Figure 6.3 shows an example object tree under change. First,
the primary copy migrates from CORSO site 1 to CORSO site 2. Second, the
primary copy migrates from CORSO site 2 to CORSO site 3. The CORSO site
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holding the primary copy is the root of the object tree. After a migration only
the root of the object tree is changed, that is, the relation between the previous
root and the new root, while the other relationships of the tree's nodes (that are,
parents and children) are not changed.

Migration of the primary /I. A Migration of the primary
copy from site 1 to site 2 \ C J copy from site 2 to site 3

Figure 6.3: Example CORSO communication object tree

For mobile devices which may frequently disconnect, it is highly recommended
to refrain from holding any primary copy. If the holder of a primary copy dis-
connects, other processes requesting access to the primary copy are blocked.
However, in case mobile devices are full participants in the CORSO space, this
problem may occur. One possible solution is implemented by MobACL via the
releaseQ operation introduced in Section 5.3.1.

6.1.2 The Java Programming Language

Since the first launch of the Java Development Kit (JDK) in 1995, the Java
programming language has been successfully used in various application areas.
The Java language supports advanced means for distributed computing, like, Java
Remote Method Invocation (RMI), applets, and component based Web-services
by means of Java beans. Thus, it is most frequently used for network computing
applications. Java exhibits the following main advantages:

Platform Independence. Since Java programs are translated into a machine
independent byte code, it is possible to execute them on arbitrary platforms
without re-compilation (write once, run everywhere). This argument is still
valid, although it has been weakened mainly by the introduction of the
Java 2 Micro Edition (J2ME) which supports not all packages supported
by the standard edition (J2SE). Furthermore, the Java Native Interface
(JNI) threatens platform independence because it allows to include code
written in other languages which are usually compiler based.
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Object Orientation (OO). Java implements a strong object oriented concept.
Every new class defined is derived from one main superclass termed object.
This concept is only weakened by the language mechanisms introduced by
interfaces, which allow to build a secondary line of inheritance and by built-
in integral types, like int or boolean.

Concept of Multi-threading. Java allows to handle threads by means of core
language primitives. It is possible to define, start, and synchronize threads
without additional libraries or packages.

Security. Since Java has been proposed as a network language, remote access
has been thought of from the very beginning. It is possible to control access
of remote programs via policy definitions. Policies are used in order to grant
and prohibit access to resources.

In addition to the use of core language functions, some advanced Java features
are used by MobACL. Since they are important for the modular concept of the
layer, they should be described briefly:

Interfaces. In the inheritance hierarchy it might be necessary to declare a su-
perclass without any data members, but only operations. In that case,
Java interfaces can be used. Similar to classes, interfaces can be used to
build inheritance hierarchies (note, that multiple-inheritance is permitted
for interfaces, but not for classes). Classes may implement interfaces, which
means that they have to implement all operations specified by the inter-
face. This language mechanism allows to use operations of a class which is
not known before runtime. During runtime, a class implementing such an
interface can be bound to its interface definition [late binding).

Packages. Multiple related compilation units (that are, units consisting of one
main class and, eventually, several embedded classes), may be composed
by means of packages. Thus, packages can be used to modularize software
systems. Furthermore, packages define a common scope for the data types
declared within the package. Each compilation unit is assigned to exactly
one package (which has to be specified in the source code).

Introspection. Classes inherit some advanced language functions from the root
of the Java object hierarchy, which provide information about the class
itself. This mechanism is termed introspection. For example, a reference
to the class itself can be requested by executing getClassQ. Furthermore,
the name of a class, its declared operations, fields, and constructors might
be requested. Since Java supports the instantiation of an object by know-
ing the name in String format, this mechanism can be used to implement
advanced polymorphic source code.
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6.1.3 ORINOCO WLAN Client Manager

For WLAN connectivity, ORINOCO classic gold PC cards are used. These cards
are compliant to the IEEE 802.11b standard and enable network connections up
to 11 Mbit/s while operating in the 2.4 GHz unlicensed frequency band. The
card supports dynamic rate shifiing in case the link quality decreases. In this
case, the maximum data rate is decreased to 5.5 Mbit/s, 2 Mbit/s, or IMbit/s
automatically.

The tool used for WLAN sensing is the ORINOCO 802.11b WLAN Client
Manager described in the user manual by Lucent technologies [LucO2]. This
software provides both means for visualizing the WLAN link state and a logging
function. Figure 6.4 shows the screen shots of link states differentiated by the
client manager. In case the client manager is not indicating excellent or good
connection, the user guide recommends to roam closer to the Access Point (AP).
However, it is not documented how the link states are calculated. Thus, the link
states introduced in Section 5.1 are related to the link states of the WLAN client
manager, but do not exactly correspond to these states. In our terms, as a rule
of thumb, EXCELLENT is used for Excellent, MEDIUM is used for Good, BAD
combines Marginal and Poor, and DISCONNECTED is used for No connection.
(Peer2Peer connections are not used by Mob ACL.)

! "—.̂

Excellent Good Marginal Poor No Peer2Peer

Figure 6.4: ORINOCO WLAN client manager link states

The logging function of the ORINOCO client manager allows to trace impor-
tant properties of the current link quality periodically and store it into a log file.
However, the periods configurable via the client manager may not fall below one
second. Minimum, maximum, and average values are stated for the following
properties:

• local/remote signal to noise ratio,

• local/remote signal level,

• local/remote noise level, and

• lost/received test messages.
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The log file is read periodically by MobACL in order to calculate the link quality.
Here, the average local signal to noise ratio (SNR) is evaluated.

6.2 Software Architecture of the MobACL

MobACL provides a pattern independent software layer which is open to new
mobility patterns. The design of the layer and the software structure developed
assure convenient usability of the layer.

6.2.1 Software Design Decisions

The design of MobACL aims at providing an easy to use software framework
for WLAN network sensing, for prediction based on mobility patterns (mobility-
awareness), and for the alteration of coordination behavior. In addition to design
issues like ease of maintenance, correctness, and understandability, the design
addresses the following main challenges in particular:

• openness,

• ease of extensibility, and

• traceability.

In order to apply MobACL to different distributed applications, openness to
various coordination scenarios is a main issue. Thus, MobACL defines a set
of core operations which can be used by distributed applications instead of the
corresponding original CORSO Java&Co operations. Based on the current coor-
dination state, CORSO operations are executed either on the global space or on
local copies.

Two mobility patterns derived from the mobility models introduced in Sec-
tion 5.2 are included in the MobACL. Since these patterns are only a subset
of possible mobility patterns, it is important to be open for additional mobil-
ity patterns. MobACL assures extensibility by means of an interface definition
for mobility patterns. For example, each mobility pattern has to implement an
operation returning a prediction of the next link state for MobACL.

Finally, in order to evaluate the effect of mobility and thus, varying WLAN
link quality states, it should be possible to store traces of the experiment persis-
tently. MobACL addresses this issue by adding a logging module which produces
log files consisting of timestamped traces describing state changes, coordination
operations, and the success of such operations.
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MobACL does not aim at implementing all possible CORSO Java&Co API
operations, but only the operations needed for performing the basic shared DS
coordination operations. However, the modular structure of the layer allows to
add new API function easily. This characteristic is also beneficial when the layer
has to be adapted to new CORSO releases.

6.2.2 OO Software Structure

The software structure of the MobACL includes packages and classes used for
modularization purpose. Furthermore, interfaces are used to assure openness. By
adding reflection, these interfaces are also used to enable late binding of objects.
Figure 6.5 shows the UML component diagram of MobACL consisting of three
packages: Coordination, Core, and Mobility. Furthermore, this figure depicts how
these packages are decomposed into main classes and lists the most important
operations. Classes and interfaces depending on CORSO are gray colored, the
other classes are independent of the underlying middleware.4

The Coordination package includes only the interface definition for coordina-
tion patterns. Any coordination pattern which uses MobACL has to implement
the operations defined in the CoPattern interface. While the operations read(),
writeQ, and delete() are used to access single communication objects, the oper-
ations synchronizeQ, releaseQ, and copyQ are used to implement the transitions
between coordination state changes (see Section 5.3) which consist of multiple
accesses to communication objects. The operation initQ is used to initialize the
CORSO data structures. All these operations are executed on coordination pat-
tern specific data structures. Thus, they can only be implemented by a specific
coordination pattern class.

The Core package of MobACL consists of a class responsible for deriving the
current link state (LinkState). In detail, the SNR is calculated by evaluating the
last ten values of the average local SNR generated by the WLAN client manager.
After assigning the corresponding logical link state, the majority of these ten
logical link states is assigned to the current link state. The class StateMachine
is responsible for calculating the coordination state based on the current link
state and the prediction of the next link state proposed by the mobility pattern
selected. Furthermore, this package consists of a class implementing different
coordination operations depending on the coordination state {CoOperation). De-
pending on the coordination state, this class differentiates between working on
the global space or a local copy and, thus, hides the coordination state from co-
ordination patterns. Two operations are depicted in addition to the operations
defined by the CoPattern interface. The operation getNamedObjectf) retrieves a

4For simplicity reasons, negligible class relationships and negligible class members axe left
out. Operations listed in an interface are not listed again in the class implementing the interface.
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«implementation class» /\_
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«implementation class»
NetworkBased

Figure 6.5: MobACL 0 0 software structure

VAR or CONST OID from CORSO identified by a name and a CORSO site (that
is, IP address). The operation addNotificationQ allows to set up a notification
on a specific CORSO communication object. Furthermore, the class CoOper-
ation implements operations to establish connections and to close connections
to CORSO sites. Furthermore, transactions are supported by the CoOperation
class. Finally, the package consists of a class responsible for generating traces by
means of log files (Log).

The Mobility package consists of an interface definition for mobility patterns
(MobPattern), two implementations of selected mobility patterns (Continued-
Move and SmartOffice) and one implementation of a pattern that is not able to
predict the next link state for comparison purpose. This pattern depends on the
current link state only (NetworkBased). In case a new mobility pattern should be
applied to MobACL, a new implementation class of the MobilityPattern interface
has to be created.
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6.3 Coordination Pattern Implementation

Since CORSO is based on the shared DS paradigm, data structures are the cen-
tral element for distributed communication. In addition to basic CORSO data
structures like strings or integer values, applications often need to define more
complex data structures. While access to the shared space is possible and effi-
cient, pattern participants access the shared space (here, termed global space).
On the other hand, MobACL may decide to work on copies instead (here, termed
local site). When working with the local site, activities performed have to be
tracked and postponed.

All patterns use a set of activity flags for each communication object to keep
track of postponed operation. The common semantics of the flags used for the
four patterns are defined as follows:

NOTHING. This flag denotes that no activity has to be performed on the
communication object.

DELETE. This flag indicates that a communication object has to be deleted
from the global space, in case the item still exists. Otherwise, it is ignored.

CREATE. This flag denotes a creation request of a new communication object.

WRITE. This flag denotes a write attempt to an existing communication object.
In case the object does not exist any more, the semantics of this case has
to be defined by each coordination pattern.

6.3.1 Mapping DS Operation to Java&Co API Opera-
tions

CORSO is not fully compliant with the original DS approach, but extends this
approach and alters some characteristics. The differences are mainly caused by
different identification approaches. In contrast to the basic shared DS model
which uses templates to identify data tuples, CORSO uses communication ob-
ject identifiers (OIDs). However, it is possible to use named CORSO objects.
Consequently, if only one name for DS primitives should be used, a structure for
addressing multiple CORSO OIDs via this name is required.

The implementation of the coordination patterns uses a single link list struc-
ture for this purpose as shown in Figure 6.6 for one data item. The first com-
munication object in the list is accessible by its name. Communication objects
may be added to the list and consumed or read from the list. In order to access
communication objects in the list, they have to be searched first. This may cause
several read operations until the corresponding list element is found. In cases
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Name

II OK»

I
Iteml

OID Item2

Figure 6.6: CORSO list data structure

where a linear search is not acceptable (O(n)), alternative data structures should
be used, like for example hash tables (O(log n), 0(1)).

With the simple list structure, the semantics implemented by the basic DS
primitives are mapped as follows:

Write Operation (outQ). In contrast to the original DS approach, producing
new items in CORSO requires a creation of a CORSO communication object
followed by a write operation. Because of this semantical alteration of the
basic write operation, CORSO allows to update existing data items (in
CORSO terms, VAR communication objects) using one operation only.

Consume Operations (in(), inpQ). The consumption of a data item (m())
can be implemented by applying a Java&Co sequence of a read and a delete
operation. Timeout values can be used to implement either blocking or non-
blocking semantics to the read operation. Since the MobACL has to reflect
on the wireless link state periodically, only virtual blocking is applied, that
is, the operation is invoked until it succeeds.

Read Operations (rd(), rdpQ). The semantics of reading of communication
objects is similar to the semantics of the DS primitives. Here again, virtual
blocking is used to implement blocking operations.

Process Creation Operation (evalQ) . The Java&Co process classes provide
advanced means to create and start processes. However, these operations
are not used in the coordination pattern implementations.

Additionally, CORSO supports notifications in case communication objects are
altered. Since this mechanism simplifies event processing, it is used in addition
to the basic shared DS based operations described above.

In case the atomicity of multiple concurrent operations have to be assured,
such operations are guarded by CORSO transactions. A transaction commits
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successfully in case all operations can be performed without interference of an-
other concurrent process. In CORSO terms, a transaction commits only in case
the process can get access to the primary copy of all concerned communica-
tion objects. In case an error occurs, transactions are aborted. Finally, when
using timeout values greater than zero and different from waiting infinitely (IN-
FINITE-TIMEOUT), a transaction may also be aborted in case the timeout
expires.

6.3.2 Coordination Pattern Software Structure

Figure 6.7 depicts the UML component diagram of a coordination pattern. Each
coordination pattern consists of a description of the data structures used (class
DataStructure). In addition, for working on copies, the class CopyDataStructure
is used which extends the original data structure by the former discussed activ-
ity flags. Since the operations performed on the data structures are dependent
on the data structures and on the organization of the data items, these opera-
tions have to be implemented by each coordination pattern (implementation class
CoPattemlmpl).

accesses
i -51

Coordination Pattern

«interface»
CoPattern

+read()
+writeQ
+delete()
+synchronize()
+release()
+copyO
HnitO

Package level

«implementation class»
CoPattemlmpl

«interface»
CorsoShareable

+read()
+writeQ

Class level

~ DataStructure — J !

-jCopyDataStructureKr J

Figure 6.7: 0 0 software structure of coordination patterns
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The copyQ operation replicates the content of every communication object of
interest. During the release() operation, the process tries to release all primary
copies currently held. Finally, during the synchronizationQ operation, the ac-
tivity flags of all communication objects on the local site are processed and the
corresponding postponed activity is executed. Consequently, after a successful
completion of this phase, all communication objects processed are synchronized.

6.3.3 Data Structures

The remaining parts of this section introduce the data structures used for four
coordination pattern representatives. The selection is based on the classification
introduced in Chapter 4.

Producer/Consumer

Figure 6.8 shows how CORSO communication objects are managed as a single
linked list both in the global space and the local space (for a detailed discussion
see [TEC04]). In the global space, producers create new CORSO communication
objects identified by OIDs, link these new communication objects with the pre-
vious ones at the end of the list (End of stream) and write the data to the new
communication object (for example, Item 1). The start of the list is accessible via
a name (in CORSO terms, named variable communication object). Consumers
read communication objects and delete them, starting at the beginning of the
list (Start of stream). Since concurrence conflicts have to be avoided, CORSO
transactions are used to assure consistency. When copying data items from the
global space to the local site, data items are copied only for the consumer process
type because only this process type can use produced items.

The local copy data structures consists of additional Activity flags indicating
the action to perform on the original communication object in the global space.
The producer uses the flags CREATE and WRITE in order to postpone the pro-
duction of items. The consumer uses the flag DELETE in order to postpone the
deletion of communication items read. Since in this simple variant it cannot be
assured that a data item is processed by one process only, at least once semantics
is exhibited by this pattern.

Publisher/Subscriber

The implementation of the Publisher/Subscriber pattern makes use of CORSO
notifications. A group of subscribers are notified whenever a publisher updates a
communication object. Then, these subscribers read the communication object.
In contrast to the push mode variant described in Section 4.3, the implementation
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Figure 6.8: Producer/Consumer data structures

is based on a pull mode, that is, subscribers have to retrieve the data performing
an additional step after the notification has been received. Since no acknowledg-
ment mechanism assures that all subscribers have read the update before a new
value is published, this pattern exhibits at most once semantics.

Figure 6.9 shows the data structures used. Publishers write to one single
named communication object (Item). Each subscriber adds a notification re-
quest bound to this communication object. In case a state change causes a copy
operation of the global space to the local site, only the Item is copied. Notifica-
tions are not copied because no other process may cause the firing of a notification
bound on a communication object of the local site. For the Item, the WRITE
activity flag is used to track updates on the copy.

Global space | Local site

Global name Local name

I I 1 ' I
^ Item k—-, I l >

Notification j

i Notification

Copy of
item

Activity
flags

Figure 6.9: Publisher/Subscriber data structures
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Mailbox

The data structures used by the Mailbox coordination pattern are similar to
the Producer/Consumer data structures. Here, a global and a local mailbox
is maintained for every known peer. Each peer accesses its own mailbox as a
consumer and the foreign mailboxes as a producer. Thus, the activity flags used
are again DELETE for postponing a consumption and, for producing a new item,
CREATE and WRITE.

Global space

Global mailbox name peer 1

u OID

I
Start of
stream

OID Iteml

OID
End of
stream

Global mailbox name peer 2

U

Local site

Local mailbox name peer 1

ll OID
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stream

Activity
flags

Ü OID
Copy of

iteml
Activity

flags

OID
End of
stream

Activity
flags

Local mailbox name peer 2

I *

Figure 6.10: Mailbox data structures

During the copy operation, only the messages (communication objects) stored
in the peer's own mailbox are copied. Local copies of the mailboxes of the other
processes are only used to store new messages which are synchronized during a
coordination state change. Thus, the pattern's copy algorithm is optimized.

Request /Answer

The data structures used by the Request/Answer coordination pattern consists of
linked communication objects. Each communication object consists of a reference
to the next request, a request value and a reference to the communication object
the answer should be written to (C-OID). Server processes consume a request and
write the answer to the communication object identified by a C-OID. A Client
process produces a request which includes the creation of the communication
object used for the answer. Then, this process adds the request at the end
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of the service list and waits until an answer has been written to the answer
communication object (C.OID). Figure 6.11 shows the data structures used.

When operating on copies, clients may produce a new request (indicated by
the flags CREATE, WRITE) but waiting for the answer has to be postponed
until the request has been synchronized with the global space. Additionally, it
makes no sense to copy answer communication objects. Instead, the server alters
the copy request entry by substituting the request value with the answer value.
The activity flag evaluates to DELETE. During the synchronization phase, the
request is deleted after the answer has been written to the answer communication
object.
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Figure 6.11: Request/Answer data structures

6.3.4 Configuration

The framework presented can be configured via two packages in order to provide
different timing and workload behavior. First, in the Core package of Mob ACL,
the timing behavior of CORSO operations and the state machine may be changed
by altering the following parameters (all are defined in units of seconds) :

OP .TIMEOUT. All Java&Co operations defined in the Core package of
MobACL use this unique timeout value. In case an operation cannot com-
plete within OP-TIMEOUT seconds, a timer expires and interrupts the op-
eration. This mechanism prevents MobACL from blocking infinitely. This
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timing constraint effects the outcome of an operation significantly. For ex-
ample, in case the timeout value is too small, no operation may be able to
succeed.

RELAXATION-THRESHOLD. This value is used to define the minimum
estimated retention period necessary for a new link state. MobACL uses
this threshold in order to prevent state change overload in case a state is
left again soon. Following the algorithm presented in Section 5.3, in such
cases MobACL might change into a WAITING state.

WAITING-TIME. This value defines the period MobACL may stay in the
WAITING state.

LINK_POLLING_TIMEOUT. This value determines how often MobACL re-
calculates the current coordination state by means of WLAN logs and mo-
bility pattern based prediction.

Second, the coordination patterns may be parameterized. In case coordination
patterns are compared with one another, it is recommended to choose similar
values:

PROCESSING-TIME. This number is a means for defining the time a par-
ticipant spends for processing during one round.

ITEMS-PERJtOUND. This number denotes the number of communication
objects that should be accessed during one execution round.

MAX JTEMS. Each process is allowed to produce new communication objects
up to this threshold. Once this threshold is reached, the processes refrain
from producing any more items.

6.4 Discussion

MobACL consists of a modular structure where the most classes are independent
of the underlying space based middleware CORSO. Mainly the coordination pat-
terns and their supporting core operations depend on CORSO and the Java&Co
API. MobACL is extensible in terms of coordination patterns and mobility pat-
terns. In detail, new coordination patterns may be introduced by implementing
the coordination pattern interface. Similarly, new mobility patterns just have to
implement the mobility pattern interface.

The example representative coordination patterns are implemented based on
a few design decisions about data structuring. A single linked list is proposed
as the basic structure for communication objects that are addressable via one
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name only. However, the list data structure exhibits some major drawbacks in
terms of scalability. In case many participants try to get exclusive write access
concurrently, this structure will slow down throughput. Similarly, it can be ar-
gued that for a huge number of linked items, linear search is a bad decision.
Thus, the structure is well suited for the purpose of this work, but will need some
adaptations if used for a huge number of participants.

Alternatively, in order to reduce the number of concurrent accesses to the
same data items, these items can be virtually distributed by a hash table, for
example, consisting of multiple different item lists. Another alternative can be
derived by using a tree-structure. Furthermore, the number of transactional read
operations can be reduced, for example by allowing to access also the tail of the
list directly.
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Chapter 7

Evaluation

As has been stated previously, that the Mobility-Aware Coordination Layer
(MobACL) provides means for proactive coordination support using movement
prediction. Additionally, this chapter proves and discusses the benefits and lim-
its of MobACL quantitatively. Experimental evaluation is carried out using four
distributed coordination patterns and two different mobility patterns.

The mobility patterns selected exhibit different potentials for next link state
prediction and for next retention period prediction (see Section 5.2). Hence, dif-
ferences between those predictors can be observed. The Continued Move Mobility
Pattern is derived by applying a Markov model to the indoor wireless network
scenario, while the Smart Office Mobility Pattern has been selected as an optimal
mobility predictor based on accurate user schedule information.

On the other hand, depending on the coordination pattern selected, mobility
causes different effects and MobACL achieves different results. Each coordination
pattern selected exhibits different coupling characteristics in terms of time and
reference and, thus, represents one class according to the taxonomy for distributed
computing presented in Chapter 4. The comparison of the results derived enable
a discussion about the potential for mobility-awareness. In addition to MobACL
based achievements, replication of processes is investigated as a second approach.

The experiments are carried out in two different ways. First, experiments are
conducted by physical roaming applied to a reference coordination pattern. Sec-
ond, experimental evaluation is carried out for all coordination patterns by means
of simulation. This approach allows to compare the results of the simulation with
the original system for a reference pattern and, thus, proves that the simulation
is based on a reasonable model and, further, allows proper parametrization of the
simulation. Additionally, the original failure rate of space operations is observed
and logged while roaming physically.

Section 7.1 introduces the measures used for evaluation, while Section 7.2
describes and argues the concept and setup of the experiment. Section 7.3 in-
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eludes a description of the MobACL configuration and the simulation environ-
ment used. Section 7.4 and Section 7.5 describe the experimental results derived.
In Section 7.5, first temporal coupling is addressed by investigating the refer-
ence coordination patterns while moving. Additionally, referential coupling is
addressed by investigating the potential for redundant process execution for each
coordination pattern. Finally, Section 7.6 summarizes the results and discusses
the achievements and limits of the MobACL and process replication.

7.1 Evaluation Measures

In order to study the influence of mobility and of mobility-awareness, measures
are necessary which allow to compare the observed effects. The measures are
defined based on the following questions:

• How many distributed activities have been finished successfully?

• How many overhead operations have been necessary to achieve proactive
behavior based on mobility-awareness?

• How many erroneous operations have been carried out?

The first question addresses the distributed computing quality achievable in
terms of coordination pattern throughput. Going one step further, the second
question addresses the overhead caused and the third question addresses oper-
ation failures. The following measures are defined for the corresponding three
categories:

Effectiveness. In order to evaluate effectiveness or coordination pattern
throughput, the Number of Items processed by a coordination scenario is
measured over time.

Efficiency. Two measures are used to describe the operations caused by
MobACL. First the number of global space operations (Number of Op-
erations) describes the general global space access behavior. Second, the
Overhead Rate is studied. This measure is based on the Number of Op-
erations and the Number of Overhead Operations, that is, the number of
operations caused by synchronize, release, and copy activities. The Over-
head Rate is denoted as follows:

_ , _, Number of Overhead Operations .„ ,.
Overhead Rate = - — —• - . (7.1)

Number of Operations

Failure Rate. This measure is used to compare erroneous global operations
caused by degraded wireless link quality. The Failure Rate is measured
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as the relation of the number of erroneous global space operations (Number
of Erroneous Operations) and the Number of Operations as follows:

_ , „ Number of Erroneous Operations , _ . .
Failure Rate = ——, — - . (7.2)

Number of Operations

The measures are applied to the experiments as follows:

Experiments Based on Physical Roaming. These experiments are used to
evaluate the MobACL under operation in a WLAN hotspot area. All four
measures defined are applied to these cases.

Simulation Based Experiments Addressing Temporal Coupling. For
the experiments based on simulation, only three measures are applicable,
that are, the Number of Items, the Number of Operations, and the
Overhead Rate. The failure rate is only discussed for the physical roaming
experiment because the failure types observed are similar for all patterns
and no new insights can be derived by repetition.

Simulation Based Experiments Addressing Referential Coupling. In
addition to the experiments conducted for evaluating temporal coupling,
these experiments should provide additional insights by including partici-
pant replication. The experiments are compared with one another in terms
of the Number of Items.

7.2 Experimental Setup

The experimental evaluation approach is based on investigating a coordination
scenario under different mobility cases as depicted by Figure 7.1. A scenario con-
sists of a specific coordination pattern and a specification of pattern participants
which includes the number of participants and the place of execution, that is,
the host executing the process. Each scenario is applied to two different cases,
first, to a stationary case in which coordination activities are observed without
roaming. The second case considered assumes mobile behavior which is based on
a unique timing and movement schedule. The MobACL cases differentiated allow
to observe the effects of mobility when different mobility-awareness configuration
cases are applied.

7.2.1 Mobility-Awareness Configuration Cases

For the experiments, the MobACL is observed using four different mobility-
awareness configuration cases. These cases are compared to the stationary behav-
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Figure 7.1: Evaluation approach

ior of the coordination pattern under study and with each other (see Figure 7.1).
The mobility-awareness configuration cases are differentiated as follows:

Without MobACL. This case allows to study the behavior of a coordination
pattern without using the mobility-awareness layer. Thus, mobility caused
effects can be observed best when studying this case. Neither state changes,
nor network sensing are considered. For simulation, this case is slightly
adapted. Here, the simulated link state changes are used to invoke virtual
connection losses and decreased coordination pattern throughput.

No Prediction. In this case, the MobACL is used without prediction. The
current link state is analyzed and used for determining the coordination
state.1 As a consequence, on this level of mobility-awareness, only reactive
behavior can be expected.

Continued Move. In contrast to the cases already mentioned, the Continued
Move Mobility Pattern implements prediction-based state changes which
allow to invoke proactive fault tolerance mechanisms. The predictors used
for next link and next retention period calculation are Markov models as
described in Section 5.2.1.

Smart Office. The second prediction-based mobility case is termed Smart Of-
fice Mobility Pattern. This mobility pattern is supposed to show the best
prediction results because it allows to describe the assumed timing and

1This behavior is achieved by using the standard MobACL state machine and by setting the
link state to the current link state.
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movement schedule as precisely as possible. A timeline similar to the move-
ment chosen for the experiment has been selected for this pattern in order
to demonstrate the behavior of the state prediction algorithm in case of a
perfectly matching mobility predictor. This pattern is described in detail
in Section 5.2.2.

7.2.2 Timing and Movement Schedule

Since effects caused by motion should be investigated, a particular movement
schedule has been chosen in order to cover all retention periods modeled by
MobACL and to describe movement toward the WLAN access point and head-
ing away from the access point. Additionally, both continuous movements and
discontinuous movements are included. The link states and the retention period
intervals assumed are based on the definitions introduced in Section 5.1 and cor-
respond to the configuration of the MobACL. The retention periods have been
down-sampled in order to make physical experiments possible as follows:

Very Fast Movement: retention < 30 seconds (Di),

Fast Movement: 30 seconds < retention < 60 seconds (D2),

Moderate Movement: 60 seconds < retention < 180 seconds (D3), and

Slow Movement: retention > 180 seconds (D4).
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Figure 7.2: Time schedule of the experiment (format mm:ss (in seconds))

For the sake of completeness, D\ denotes intervals which may lead to link state
change misses caused by the MobACL link polling period granulaxity (30 seconds
in the current configuration). Thus, for the experiments only the intervals D2, D3
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and D4 are considered. Figure 7.2 shows the relative timeline and wireless link
state changes scheduled, starting with a sequence of periods which lie in interval
£>2, followed by periods which lie in D3, and finally, D4. The last two link state
changes are discontinuous changes, while the others follow the continuous model
of roaming to neighboring places which correspond to neighboring link states.2

In terms of availability, the schedule tests the MobACL under different avail-
ability assumptions (see Section 5.1). The whole experiment may also be de-
scribed in terms of Mean Time To Loss (MTTL) and Mean Time To Connect
(MTTC). Table 7.1 shows the used retention values based on the retention inter-
vals and the corresponding values for the MTTL and MTTC.3

Time Schedule
0 - 239 seconds

240 - 659 seconds
660 - 1100 seconds

Retention (Interval)
40 seconds (D2)
70 seconds (D3)
190 seconds (D4)

MTTL
200 sec.
350 sec.
190 sec.

MTTC
40 sec.
70 sec.
190 sec.

Table 7.1: Retention periods covered by the experiment time schedule

In total numbers, the movement schedule proposed consist of a period of 590
seconds dwelling under good network conditions (EXCELLENT, MEDIUM), 210
seconds dwelling under BAD link quality, and 300 seconds staying in DISCON-
NECTED state.

7.3 System Setup

This section describes the hardware and software setup used for experimental
evaluation. The configuration of the MobACL is described in detail as well as
the simulation model.

7.3.1 Hardware and Software Setup

All experiments are carried out by using the same two notebooks, WLAN 802.11b
(11 Mbit/s) connections, and fast Ethernet connections (100 Mbit/s). One note-
book is used as the mobile host with lower capabilities (processor speed: 560
MHz, 180 MB RAM) while the other is a used as a stationary host (processor

2Note, that prediction based on continuous movement considerations will not be able to
support discontinuous link state changes.

3Note, that the schedule does not contain of complete cycles of intervals corresponding to
MTTL and MTTC.
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speed: 1.7 GHz, 1 GB RAM). All processes use the Java virtual machine.4 and
CORSO v3.3 and the Java&Co API [TEC04] Figure 7.3 depicts the hardware
setup and the process types executed during the experiment. Mob ACL is run-
ning on both hosts. The coordination scenarios based on MobACL can be started
either directly which is used for physical roaming experiments or by a simulator
process.

Notebook (100 Mbit/s)
WLAN IEEE 802.11b

(11 Mbit/s)

Figure 7.3: Hardware and software setup used for experimental evaluation

In case of physical roaming, the mobile node observes WLAN link state
changes as provided by the Orinoco WLAN client manager. In contrast, vir-
tual link state changes are used when working with the distributed simulator
which controls the experiment sequences on both hosts.

7.3.2 Simulation

Each physical roaming experiment exhibits the potential for imprecise measures
which are difficult to reproduce and to compare. Additionally, simulation enables
the evaluation of a great many of different cases. Hence, a simple, but distributed
simulator has been developed for synchronized execution of experiments.

The simulation model proposed allows to model the disconnection state (DIS-
CONNECTED) by omitting any access to the global space. Furthermore, de-
creased processing for low quality link state BAD is simulated by a virtually
decreased access success rate, that is, 25 percent of all data space accesses may

4http://java.sun.com/
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complete successfully. In order to detect virtual link quality changes accurately,
the MobACL is configured to evaluate the current link quality once per sec-
ond. This configuration is based on a comparison of simulation and physical
roaming experiments using a reference coordination scenario, that is, the Pro-
ducer/Consumer coordination pattern applied to the without MobACL mobility
case. Figure B.I in the appendix shows the close approximation achieved by
simulation through proper parameterization.

Since simulation results should be close to results observed by physical roam-
ing, simulation is distributed among the same hosts used for physical roaming.
Consequently, the simulator itself is distributed. Before starting an experiment,
the remote simulator instances synchronize with each other by means of CORSO.
Each experiment is controlled by simulating the unique movement pattern based
on a source log file generated during physical roaming in the WLAN hotspot area.
Figure 7.4 shows the SNR values of this source log file as they are perceived by
the MobACL network module over time.

200 400 600 800
Time (in seconds)

1000 1200

Figure 7.4: SNR measures used for all simulation-based experiments

7.3.3 MobACL Configuration

In order to achieve comparable results, the MobACL is configured similarly for
each experiment.5 Table 7.2 summarizes the configuration.

5For a detailed definition of the configuration parameters, refer to Section 6.3.

126
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MobACL Core Class

CoPattern Class

Configuration Parameter
OP.TIMEOUT
RELAXATION_THRESHOLD
WAITING-TIME
LINK-POLLING-TIMEOUT
PROCESSING-TIME
ITEMS-PER-ROUND
MAXJTEMS

Value
30 seconds
30 seconds
10 seconds
30 seconds
1 second

1
100

Table 7.2: Configuration used for the experiments

The timeout for CORSO operations is set to 30 seconds, as well as the re-
laxation threshold which determines the minimum retention period required for
state change invocation. In case state changes are too costly, MobACL waits
for 10 seconds and retries to calculated the coordination state again after that
interval. Additionally, every 30 seconds, the MobACL calculates the new coor-
dination state based on the current link state and a prediction based next link
state, if applicable.

Each coordination pattern participant needs 1 second for processing per round
and is assumed to process only 1 item per round. For each coordination pattern,
the permitted limit for producing items is set to 100.

7.4 Experiments Based on Physical Roaming

The physical roaming experiment has been carried out for one coordination sce-
nario, that is, a mobile consumer process and a stationary producer process co-
ordinating in a Producer/Consumer manner. These experiments investigate the
MobACL behavior under operation in a WLAN hotspot area and allow to discuss
the failure rate caused by mobility. A systematic evaluation for each coordination
class is left to the simulation approach (Section 7.5).

Effectiveness. Figure 7.5(a) depicts the cumulated items consumed during the
physical roaming experiment. The effects of mobility can be observed when
following the without MobACL curve. During disconnected times, the cu-
mulated number of items remains constant while during times of bad link
quality the increase is slowed.

The stationary case shows the best results achievable, that is, nearly one
item per second has been consumed. For the mobile cases, the smart office
mobility pattern shows the best results, followed by the reactive no predic-
tion pattern which benefits from continuous link changes since MobACL
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Figure 7.5: Physical roaming (Producer/Consumer): (a) cumulated number
of consumed items and (b) cumulated failure rate

Items consumed
Failure rate

Stationary

1011
2.83zlO-4

Without
MobACL

554

2.82x10-*

No
Mobility

588

1.07zl0-a

Continued
Move

573

6.96zlO-4

Smart
Office

692
0

Table 7.3: Physical roaming: consumed items and failure rate (Pro-
ducer/Consumer)

proposes working on copies when bad link conditions are observed. Thus,
although the disconnected state is observed late, working on copies is possi-
ble. The continued move mobihty pattern performed worse although it uses
prediction. Due to the changing roaming velocity, this pattern is not able
to adapt next retention period prediction accurately. Table 7.3 summarizes
the total number of consumed items.

During the phase of fast movements (0 < t < 240), proactive working on
copies is counterproductive. The bad effects observed are due to the few
items which can be copied at that early point in time. Furthermore, when
the connection is lost only for a short time, state changes are too costly.
During the phase of moderate movement (240 < t < 660), the smart office
pattern is able to support item consuming significantly better. The dis-
continuous change to DISCONNECTED state at t = 850 is only predicted
by the smart office pattern. Here, the benefits of proactive behavior can
be observed. The benefits achieved by working on copies during disconnec-
tion times can be increased when more data items are in the shared data
space. Curve increases observed are also caused by transaction failures due
to concurrency conflicts with the producer. In such cases, no item may be
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7 Evaluation 7.5 Experiments Based on Simulation

consumed during one or several seconds.

Failure Rate. Figure 7.5(b) shows the cumulated failure rate of global space
operations which is very low. For the smart office case, all global space
operations have been completed successfully which is mainly caused by the
accurate and proactive nature of this pattern. For the stationary case, one
access error due to the concurrent creation of communication objects at the
beginning of the experiment has been observed. For all other mobility cases,
the curves increase corresponding to global space operations which have
been carried out during disconnected periods. In contrast to the mobility
cases using the MobACL which show only a few errors at the beginning
of the disconnected period, the mobility case without MobACL generates
errors lasting for the whole disconnected period since it cannot make use of
a local copy. Table 7.3 summarizes the total failure rates of the experiments.

The global space operations and the overhead caused by MobACL is described
in the appendix, Section C.I.

7.5 Experiments Based on Simulation

Two different types of experiments are carried out in order to study the effects of
mobility and mobility-awareness in different coordination scenarios. First, the fo-
cus is set on temporal coupling exhibited by coordination patterns, second, refer-
ential coupling phenomena are discussed by replicating processes. The separation
of these two cases avoids concurrency caused effects for temporal coupling based
evaluation. For example, in the Producer/Consumer case, replicated consumers
might be able to consume even more when other consumers are disconnected.

Similar to the physical roaming experiments, different mobility cases are com-
pared with each other. Based on the classification presented in Chapter 4, the
reference coordination patterns under investigation are as follows:

• Producer/Consumer,

• Publisher/Subscriber,

• Mailbox, and

• Request/ Answer.

The qualitative analysis provided is based on 70 experiments which allow to com-
pare the different coordination patterns. Since all experiments have been carried
under the same system conditions, the results are expected to be representative.
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Additionally, a few repeated executions carried out promise that the results do
not disperse significantly.6

7.5.1 Addressing Temporal Coupling

For each coordination pattern, two distributed processes are involved in the ex-
periment. In case the pattern consists of different process types, two scenarios
are needed to investigate both process types on the move. Since the Mailbox
coordination pattern exhibits only one process type, only one scenario is needed.
For each pattern, the number of global operations can be found in Section C.2.

Producer/Consumer

In order to investigate the influence of mobility to this temporally and refer-
entially uncoupled coordination pattern, two scenarios are defined. Scenario 1
consists of a mobile consumer process and a stationary producer process, while
scenario 2 consists of a mobile producer process and a stationary consumer pro-
cess.

Effectiveness. For scenario 1, similar to the results observed while roaming
physically, the smart office mobility pattern shows the best results when
moving. While during fast movement (0 < t < 450) the overhead caused by
the state changes is not beneficial (using MobACL yields in slightly better
results than using without MobACL mobility configuration), all MobACL
mobility cases enable the consumption of items during the second period
of disconnection. Additionally, the smart office mobility predictor is able
to predict the discontinuous link state change at t = 850 accurately (see
Figure 7.6(a)). In contrast to scenario 1, scenario 2 assumes a mobile pro-
ducer. Since a producer does not need to copy existing items from the global
space to the local site, proactive behavior is not required. Here, all three
MobACL cases show quite similar results, while the reactive case (case no
prediction) generates best results as shown in Figure 7.6(b) since this case
invokes working on copies later than the other MobACL cases. Table 7.4
summarizes the total number of consumed items during the experiment for
scenario 1 and 2. It is shown how mobility related link degradation de-
creases overall item throughput (case without MobACL) and how the use
of MobACL compensates this effect partially.

Efficiency. The load necessary for achieving fault tolerance is summarized by
Table 7.5 in terms of the overhead rate for MobACL. Due to the highly

6 A quantitative analysis can be used to provide statistical information about the results in
terms of, for example, mean values and confidence intervals. However, such analysis is beyond
the scope of this thesis.
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Figure 7.6: Temporal coupling (Producer/Consumer): cumulated number of
consumed items for (a) scenario 1 and (b) scenario 2

Scenario 1
Scenario 2

Stationary

1018
1018

Without
MobACL

597
597

No
Prediction

716
693

Continued
Move

700
659

Smart
Office

760
669

Table 7.4: Temporal coupling:
ducer/Consumer)

number of consumed items (Pro-

mobile nature of the experiments and the asynchronous operations which
allow working on copies, these rates are expectedly high. Since the smart
office mobility predictor allows the patterns to work more often on copies
than the other mobility cases, it causes the highest overhead rate. The
overhead operations are observed as discontinuities which appear at most
state changes. In contrast to scenario 1, scenario 2 exhibits the highest
increases when re-establishing operation on the global space. This effect
is due to synchronization of items generated by the mobile producer. For
the cases which do not make use of MobACL, no overhead operations are
needed.

Scenario 1
Scenario 2

Stationary

0
0

Without
MobACL

0
0

No
Prediction

0.49
0.64

Continued
Move

0.59
0.57

Smart
Office
0.64
0.7

Table 7.5: Temporal coupling: overhead rates (Producer/Consumer)
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Figure 7.7: Temporal coupling (Producer/Consumer): cumulated state
change overhead rates for (a) scenario 1 and (b) scenario 2

Publisher/Subscriber

Two scenarios are used for studying the temporally coupled and referentially un-
coupled Publisher/Subscriber pattern. Scenario 1 consists of a mobile publisher
and a stationary subscriber, while in scenario 2 the roles are changed to a mobile
subscriber and a stationary publisher.

Effectiveness. Since the Publisher/Subscriber pattern implements synchronous
communication, the processes cannot benefit from of working on copies.
Proactive working on copies degrades the number of notifications even more
for both scenarios as depicted in Figure 7.8(a) and Figure 7.8(b). In case of
a mobile subscriber in scenario 2, the overall throughput of notifications is
less than in scenario 1, which implements a mobile publisher. For scenario 2,
different throughput is observed because the subscriber which executes more
costly operations is executed on the low power mobile host. Table 7.6
summarizes the number of consumed updates due to notifications during
the experiment.

Scenario 1
Scenario 2

Stationary

974
539

Without
MobACL

603
345

No
Prediction

535
270

Continued
Move

402
215

Smart
Office

453
247

Table 7.6: Temporal coupling:
lisher/Subscriber)

number of received updates (Pub-
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Figure 7.8: Temporal coupling (Publisher/Subscriber): cumulated number
of received updates for (a) scenario 1 and (b) scenario 2

Efficiency. Only the data item, which is periodically updated by the publisher, is
copied, released, and synchronized with the global space. Compared to the
overhead rates calculated for the Producer/Consumer pattern, the overhead
rates here are low as listed by Table 7.7. Figure 7.9(a) and Figure 7.9(b)
show similar curves for all MobACL supported cases which is due to the
same data item that is synchronized and copied for both participants.
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Figure 7.9: Temporal coupling (Publisher/Subscriber): cumulated state
change overhead rates for (a) scenario 1 and (b) scenario 2

Mailbox

Since the Mailbox pattern consists of only one process type termed peer, only one
scenario is investigated. One peer is executed on the mobile host while the other
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Scenario 1
Scenario 2

Stationary

0
0

Without
MobACL

0
0

No
Prediction

0.07
0.08

Continued
Move
0.14
0.13

Smart
Office
0.11
0.1

Table 7.7: Temporal coupling:
lisher/Subscriber)

state change overhead rates (Pub-

one is executed on the stationary host. This coordination pattern is temporally
uncoupled, but referentially coupled.

Effectiveness. Here, the messages retrieved by both peers are considered for the
Number of Items. Among the mobile cases, the no prediction case slightly
overtakes the smart office mobility pattern. Since each peer acts both as a
producer and a consumer, the behavior of both process types is combined
and proactive copying is not observed as beneficial as for the mobile con-
sumer case. However, the mobile peer is able to process items stored in
its mailbox while being disconnected. The without MobACL case shows
that bad link quality causes a significant decrease of message throughput.
Table 7.8 summarizes the total number of messages received by both peers
during the experiment. Figure 7.10(a) shows the cumulated received mes-
sages over time. The curves show that during disconnection times, the
distance between the MobACL-based curves and the without MobACL case
is increased and after reconnecting, the without MobACL case changes back
to high-efficient operation earlier than the other patterns which have to syn-
chronize first. However, the second period of disconnections (450 < t < 520)
shows that a significant distance remains if the disconnection interval is suf-
ficiently large.

Number of messages
Overhead rate

Stationary

1892
0

Without
MobACL

1125
0

No
Prediction

1205
0.66

Continued
Move
1176
0.63

Smart
Office
1197
0.72

Table 7.8: Temporal coupling: number of received messages and state change
overhead rates (Mailbox)

Efficiency. Since a peer working on copies both consumes and produces mes-
sages, the overhead is high when assuming highly mobile behavior. Ta-
ble 7.8 shows the overhead rates calculated during the experiment. For the
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Figure 7.10: Temporal coupling (Mailbox): cumulated (a) number of re-
ceived messages and (b) state change overhead rates

smart office pattern, the highest rates are calculated due to the amount of
messages which have been generated and consumed during disconnection
times. Figure 7.10(b) shows that at the end of a bad link quality interval
the number of overhead operations executed raises significantly faster than
before this link state is entered.

Request/Answer

Two scenarios are used for studying the temporally and timely coupled Re-
quest/Answer pattern. Scenario 1 consists of a mobile client and a stationary
server, while scenario 2 consists of a mobile server and a stationary client.
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Figure 7.11: Temporal coupling (Request/Answer) : cumulated number of re-
ceived answers for (a) scenario 1 and (b) scenario 2
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Effectiveness. As expected for this timely coupled coordination pattern, work-
ing on copies is counterproductive. Thus, the negative effects caused by mo-
bility cannot be compensated. The more a mobility pattern suggests work-
ing on copies, the worse this pattern performs as shown by Table 7.9. Both
scenarios result in similar curves over time as depicted by Figure 7.11 (a)
and Figure 7.11(b). The higher number of consumed answers in scenario 2
is due to different capabilities of the host computers. When the client ex-
ecutes on a more powerful host (stationary host), this process is able to
produce more requests and, thus, receives more answers from the remote
server.

Scenario 1
Scenario 2

Stationary

540
964

Without
MobACL

343
593

No
Prediction

290
494

Continued
Move

229
416

Smart
Office

221
443

Table 7.9: Temporal coupling:
quest/Answer)

number of received answers (Re-

Efficiency. State change overhead caused by the MobACL is very low because
only one client request may be copied, eventually. Thus, copy, synchronize,
and release operations do not cause significant overload as shown by Fig-
ure 7.12(a) for scenario 1 and Figure 7.12(b) for scenario2 and detailed by
Table 7.10.
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Figure 7.12: Temporal coupling (Request/Answer): cumulated state change
overhead rates for (a) scenario 1 (a) and scenario 2 (b)
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Scenario 1
Scenario 2

Stationary

0
0

Without
MobACL

0
0

No
Prediction

0.023
0.048

Continued
Move
0.031
0.077

Smart
Office
0.041
0.064

Table 7.10: Temporal coupling: overhead rates (Request/Answer)

7.5.2 Addressing Referential Coupling

In order to evaluate referential coupling, the process type executing on the mobile
host is replicated on the stationary host for each scenario described earlier. For
the Mailbox coordination pattern only one process type exists (peer). Thus, two
peer processes are executed on the stationary host. This setting allows to observe
whether and how effective a similar process can take over in case the mobile
process becomes not available. Due to the replication, concurrency caused delays
will be observed at the same time. Since the experiments conducted should give
new insights, only effectiveness is investigated.

Producer/Consumer

The scenarios for the Producer/Consumer pattern are altered by adding another
consumer for scenario 1 and by adding an additional producer for scenario 2.
Both replicated processes execute on the stationary host.

Effectiveness. All mobility cases show better results than the stationary case
in scenario 1, since all processes compete for access to one single list, which
is even worse, when two producers are involved as shown in scenario 2 (Ta-
ble 7.11). However, these side-effects caused by concurrency and the data
structure used show that disconnection times might be beneficial since it
reduces concurrent access attempts. The negative effects caused by mobil-
ity can be compensated by replication in the Producer/ Consumer pattern
as shown by Figure 7.13(a). There is no significant difference between the
mobility cases and the stationary case. Figure 7.13(b) shows the negative
effects of concurrency in detail. Better results can be achieved when using
a different data structure instead of one single list, or by simply reducing
the list size. Figure C.6 in the appendix depicts the advanced results when
reducing the list size from 100 to 10 items.
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Figure 7.13: Referential coupling (Producer/Consumer): cumulated number
of consumed items for (a) scenario 1 and (b) scenario 2

Scenario 1
Scenario 2

Stationary

1041
137

Without
MobACL

1063
334

No
Prediction

1077
774

Continued
Move
1083
725

Smart
Office
1075
856

Table 7.11: Referential coupling:
ducer / Consumer)

number of consumed items (Pro-

Publisher/Subscriber

Two scenarios are used for the Publisher/Subscriber pattern in order to inves-
tigate the effects of mobility when a replicated process is added. Scenario 1 is
expanded by an additional publisher, while scenario 2 is expanded by an addi-
tional subscriber.

Effectiveness. Scenario 1 shows that a mobile publisher can be compensated by
replication effectively (Figure 7.14(a)). The subscriber receives notifications
from the stationary publisher when the mobile publisher disconnects. In
case both publishers update the value of interest, the subscriber does not
receive significantly more notifications due to the limited read frequency of
the subscriber (approximately 1 item per second). Since scenario 2 describes
the situation of a mobile subscriber, here, in case of disconnections, the
number of received updates per second decreases which is depicted as a
slower increase of the cumulated function as depicted in Figure 7.14(b).
The total number of updates received is summarized by Table 7.12.
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Figure 7.14: Referential coupling (Publisher/Subscriber): cumulated num-
ber of received updates for (a) scenario 1 and (b) scenario 2
(b)

Scenario 1
Scenario 2

Stationary

777

1211

Without
MobACL

664
990

No
Prediction

708
926

Continued
Move

680
882

Smart
Office

626
882

Table 7.12: Referential coupling:
lisher/Subscriber)

number of received updates (Pub-

Mailbox

For the referentially coupled but temporally uncoupled Mailbox pattern, three
peers are used for evaluation. Two peers are executed on the stationary host
and one peer is executed on the mobile host. Since the peers implement similar
process types, only one scenario has to be investigated.

Effectiveness. Each of the three peer processes sends messages to one of the
other remote peers and receive messages from the third peer. Here, con-
currency phenomena have been observed when peers cannot get exclusive
read access to their mailbox. These phenomena are shown in Figure 7.15 by
slow increases of the cumulated number of received messages. Although the
number of received messages is higher compared to the experiments carried
out with only two peers, no peer is replaceable. This is due to the unique
assignment between a mailbox and a particular peer (referentially coupled
process). Table 7.13 summarizes the results.
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Figure 7.15: Referential coupling (Mailbox): cumulated number of received
messages

Scenario 1

Stationary

2663

Without
MobACL

2082

No
Prediction

1520

Continued
Move
1660

Smart
Office
2223

Table 7.13: Referential coupling: number of received messages (Mailbox)

Request /Answer

The Request/Answer pattern is both temporally and referentially coupled. Two
scenarios are applied in order to study the effect of participant replication. Sce-
nario 1 consists of a mobile client which is replicated on the stationary host and
a stationary server, while scenario 2 consists of a mobile server which is repli-
cated on the stationary host and ad stationary client. In this pattern, clients are
addressed directly and cannot be replaced. In contrast, servers can be replaced.

Effectiveness. Scenario 1 shows that an added client benefits slightly if the mo-
bile client disconnects {no prediction, smart office). Since a client may only
generate up to one request per second and a server answers up to one request
per second, the curves do not rise faster in case both clients are connected
as shown by Figure 7.16(a). Furthermore, since answers are dedicated to
specific clients, the mobile client cannot receive answers during disconnec-
tion times or when working on copies. For scenario 2, Figure 7.16(b) depicts
that a replicated server can compensate the mobile server effectively. Ta-
ble 7.14 summarizes the total number of received answers for each case.
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Figure 7.16: Referential coupling (Request/Answer) : cumulated number of
received answers for (a) scenario 1 and (b) scenario 2

Scenario 1
Scenario 2

Stationary

720
911

Without
MobACL

714
804

No
Prediction

750
750

Continued
Move

717
803

Smart
Office

722
804

Table 7.14: Referential coupling:
quest/Answer)

number of received answers (Re-

7.6 Discussion of the Experiments

In total, 70 simulation experiments have been carried out which have shown that
the reference coordination patterns exhibit different potentials for making use of
working on copies and replication of participants. These limiting factors are due
to referential and temporal coupling characteristics of processes. By comparing
the different mobility caused effects observed, beneficial approaches and limits
can be argued.

Effect of Mobility

Figure 7.17(a) depicts the effects of mobility for each scenario discussed in the
previous sections by visualizing the relative number of processed items during the
experiment (w/o MobACL), that is, the number of items processed while roaming
related to the number of items processed in stationary mode.

The Request/Answer pattern based scenarios (scenario 1: RA-1, and sce-
nario 2: RA-2) and the Publisher /Subscriber based scenarios (scenario 1: PS-1,
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and scenario 2: PS-2) show slightly better results, in particular when the server
or the publisher process is stationary. The Producer/Consumer pattern based
scenarios (scenario 1: PC-1, and scenario 2: PC-2) and the Mailbox pattern
based scenario (Mb) are affected similarly.

The differences between the scenarios based on the same coordination pattern
are caused by different operation costs exhibited by the pattern participants. Due
to the less powerful mobile host, effects are enforced for the participant executing
more costly operations on the mobile host. Table 7.15 summarizes the results in
row w/o Mob ACL.
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Figure 7.17: (a) Mobility caused effects and achievements, which are detailed
by (b) comparing different MobACL cases

w/o MobACL
MobACL (best)
Replication-s
Replication-p
Continued move
Smart office
No prediction

PC-1
0.59
0.75
1.04
0.38
0.69
0.75
0.7

PC-2
0.59
0.68
0.33
0.33
0.65
0.66
0.68

PS-1
0.61
0.55
0.68
0.68
0.41
0.47
0.55

PS-2
0.64
0.5
1.83
0.63
0.4
0.46
0.5

MB
0.59
0.64
0.57
0.57
0.62
0.63
0.64

RA-1
0.64
0.54
0.44
0.44
0.42
0.41
0.54

RA-2
0.62
0.51
0.83
0.83
0.43
0.46
0.51

Table 7.15: Comparison of mobility caused effects and achievements (relative
number of processed items)
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Compensation of Mobility Caused Failures

Compensation approaches of mobility caused failures have been carried out by
using the MobACL approach and, additionally, by studying the potentials of
replication. In the latter case, two different views are applicable. First, for
anonymous coordination which applies for the Producer/Consumer and the Pub-
lisher/Subscriber case, a system view (Replications) considers the items pro-
cessed by all consumers or, respectively, subscribers in the system.7 Second,
replication is viewed from the mobile process' perspective (Replication-p). Here,
only the items successfully processed by the original process(es) are considered.

Table 7.15 lists the number of items processed while roaming in relation to
the number of items consumed in the stationary mode for all scenarios described
in the previous sections. For comparison reasons, a case without using MobACL
(w/o MobACL), the best results achieved by MobACL - MobACL (best) - and
both replication views are investigated. Except for the two replication views
studied, all other cases do not use replicated processes.

Compared to the case without using MobACL, MobACL is able to improve
throughput for the Producer/Consumer and the Mailbox pattern. In terms of im-
provement, PC-1 shows the best results achievable by MobACL (Figure 7.17(a)).
This result is due to proactive copying which allows the consumer to process items
while a consumer working without MobACL cannot.

From a system point of view, replication of processes on the move can signif-
icantly improve throughput for the Producer/Consumer (PC-1) and the Pub-
lisher/Subscriber pattern (PS-1, PS-2), while it cannot compensate mobility
related failures for referentially coupled processes, like the participants of the
Mailbox pattern(Mb). In particular, a replicated consumer and a replicated sub-
scriber can improve overall system throughput. The case of a replicated producer
shows an anomaly due to concurrency conflicts which are mainly caused by the
shared data structure selected (PC-2).

In case only items processed by the mobile process are considered (Replication-
p), replication is significantly beneficial in the cases of a replicated publisher (PS-
1) and a replicated server (RA-2). Although the Request/Answer coordination
pattern is referentially coupled, the replication of the server process can partly
compensate negative mobility caused effects.

Comparison of MobACL Cases

MobACL implements different approaches for state selection. One approach is
based on a reactive model (no prediction), while the other two approaches use
predictors in order to assure proactive state changes (Continued move, Smart

7The decision about the usefulness of the system view depends on the application semantics.
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office). Figure 7.17(b) depicts the results achieved by the different cases for each
scenario as detailed in the subsection addressing temporal coupling. Here again,
the number of items processed is related to the number of items processed for the
stationary case for each scenario.

In case of a mobile consumer and a stationary producer, the Smart office
mobility pattern yields the best results (PC-l). For scenario 2 (PC-2), proactive
copying is not needed because a producer does not need to copy existing items.
Hence, the reactive approach performs best. The Mailbox pattern implements
a combination of a producer and a consumer process type. Here, the benefits
achieved by predictive mobility patterns for the consuming part are negated by
the producing part.

The Continued move mobility pattern is not able to show better results than
the reactive MobACL case due to the MobACL state machine. A safe algorithm
is used which decides to work on copies whenever the wireless link state quality
is below an SNR threshold value (link state BAD). Consequently, when continu-
ously roaming from bad link quality to areas without any link connectivity, the
process on the move is already working on copies and, thus, the reactive case does
not come off badly. Table 7.15 summarizes the results achieved for each scenario.

Consequences of the Results Derived

The experiments have shown that mobility related wireless link quality degra-
dation has significant effects on coordination patterns. Compared to the effects
achieved in a fault-free setting (stationary case), all coordination patterns could
only reach 59 - 64 percent of processed items. The difference between the coor-
dination patterns is not significant.

The proposed mobility-aware layer (MobACL) is useful for temporally un-
coupled patterns, where the effectiveness has been increased in the range of 5 -
16 percent. Best results have been achieved for the Producer/Consumer coordi-
nation pattern where the consumer process is roaming. For temporally coupled
coordination patterns, MobACL deteriorates the effectiveness because of addi-
tional overhead added in the range of 6 - 14 percent. Consequently, MobACL
has to be adapted in order to avoid unnecessary overhead for synchronous oper-
ations.

Referentially uncoupled patterns can be further supported by replicating pro-
cesses. Since the coordination pattern participants compete and cooperate, repli-
cation is not always reasonable. In the cases where replication is semantically
useful, cooperation can be supported and better results are achieved (except
the anomaly for the Producer/Consumer where the roaming producer is repli-
cated, caused by data structure related concurrency conflicts as described in Sec-
tion 7.5.2). The achievements yield from 7 (Publish/Subscriber with replicated
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publisher) to 21 percent (Request/Answer with a replicated server). In cases
where replication is not reasonable but the pattern is temporally uncoupled, the
use of MobACL is particularly suitable.

Finally, the evaluation of the mobility models used have shown, how a reliable
predictor using a mobility pattern which describes the movement in an optimal
way outperforms a weaker predictor. The results have further shown, that the
MobACL, which is already very sensitive to bad network conditions, cannot ben-
efit from a weak predictor (Continued Move). Cautious mechanisms, like working
already on copies in case of bad link quality which can be exploited when the
connection breaks, are sufficient in such cases.
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Chapter 8

Conclusion

This thesis presented three contributions to the field of mobile computing based
on the shared data space paradigm. First, in order to evaluate the effects of
movement caused failures in significant coordination scenarios, the manifold of
different interaction types has been reduced by means of coordination patterns.

Second, based on a fault-hypothesis, mechanism have been proposed to toler-
ate two major drawbacks of mobile computing, that are, (i) weak wireless network
conditions and (ii) disconnection periods. Since these mechanisms have to be in-
voked before bad network conditions are observed, proactive operations based on
prediction of future wireless link conditions have been introduced. A prototypical
implementation demonstrated the feasibility of the approach.

Third, the effects of mobility and the benefits and limits of the mobility-aware
approach have been evaluated experimentally. The majority of the experiments
has been carried out by means of distributed simulation of a specific movement
pattern.

Modeling of Coordination Patterns

Coordination patterns, that are, software design patterns for coordination pur-
poses, provide a useful abstraction from specific coordination scenarios. The
classification scheme based on coupling of coordinating processes in terms of
time and reference is commonly used for inter-process communication.

The descriptive template proposed by Gamma et al. [Gam95] for modeling
software design patterns has been enhanced in order to visualize, to describe, and
to compare coordination patterns in terms of temporal and referential coupling
more precisely.

Visualization has been proposed by means of UML activity diagrams. From
these diagrams, sequences of data space-based primitives have been derived to
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describe the interactions between coordination pattern participants. In order to
compare the patterns in terms of referential and temporal coupling, measures have
been defined which include the number of blocking and non-blocking operations
and the number of processes which cooperate anonymously.

The coordination modeling approach has been applied to eight major coordi-
nation patterns identified during a thorough literature survey. It has been demon-
strated, how data space-based interactions can be modeled explicitly. Based on
the measures introduced, the eight reference patterns have been compared quanti-
tatively and assigned to one class (out of four classes according to the taxonomy
used). In particular complex coordination patterns are categorized as referen-
tially and temporally coupled patterns. Here, the measures introduced allow to
distinguish further between these coupled processes.

Mobility-Aware Coordination

The approach of mobility-aware coordination is based on the assignment of loca-
tions to wireless link conditions. Movement in a particular area can be perceived
as roaming between different wireless link states. By analyzing the Signal to
Noise Ration (SNR) of the wireless link, logical link states have been extracted.
Based on the fault-hypothesis, the failure occurrence and compensation actions
are detailed for each logical link state. Weak wireless link conditions and discon-
nection times have been identified as failure causes of interest.

In order to achieve accurate fault tolerance, the Mobility-Aware Coordination
Layer (MobACL) has been introduced. This layer extracts the current logical
link state and predicts future link state conditions as well as future retention pe-
riods which makes the approach mobility-aware. A prediction module has been
introduced which allows to integrate different mobility predictors. For reference
purpose, Markov models and a mobility model based on smart personalization,
like a person's calendar entries (Smart Office Mobility Pattern), have been pro-
posed. The Markov based predictor assumes that the moving person's velocity
remains rather constant and that a person continues to walk in a given direction
(Continued Move Mobility Pattern).

The MobACL has been designed to hide network conditions from the ap-
plication by means of working on copies in case of weak wireless link quality.
Mechanisms assuring accurate and proactive copying and release of data locks,
and consistent synchronization upon reconnection have been proposed.

The modular and extensible reference implementation of the mobility-aware
approach uses the shared object based middleware CORSO, wireless link obser-
vation by means of the ORINOCO WLAN client, and the Java programming
language. Due to the taxonomy derived for coordination patterns, four represen-
tative coordination patterns, that are Producer/Consumer, Publisher/Subscriber,
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Mailbox, and Request/Answer, have been implemented using the MobACL.

Evaluation Results

Experimental evaluation has been carried out in order to discuss mobility related
coordination failures, the mobility-aware compensation operations proposed by
different MobACL cases which are in particular suitable for temporally uncoupled
processes, and compensation by means of process replication for referentially
uncoupled processes. All experiments have been carried out under the same
timing and movement schedule by means of a distributed simulator.

Evaluating Temporal Coupling

The first set of experiments has been carried out in order to observe the failures
caused by mobility and to evaluate the benefits achievable by MobACL and the
layer's limits. Compared to the stationary case, significant decrease of processed
items has been observed during periods of weak link quality or disconnection.
For all four coordination patterns, the effectiveness decreased to approximately
60 percent (compared to the effects achieved in stationary mode).

MobACL proved to compensate these negative effects partially for the tempo-
rally uncoupled coordination patterns. For example, in the Producer/Consumer
case observing a mobile consumer and a stationary producer, 75 percent have
been achieved, and for the Mailbox pattern, the rate could also be increased
to 64 percent. For temporally coupled coordination patterns, that are, Pub-
lisher/Subscriber and Request/Answer, MobACL could not increase throughput.
Unnecessary state changes caused impairments of throughput. Depending on the
quality of the mobility predictor, the results achieved by proactive fault toler-
ance vary for temporally uncoupled processes. In case copying of data items is
not important, reactive MobACL behavior has appeared to be sufficient.

Evaluating Referential Coupling

Referential coupling of processes has been addressed by a second set of exper-
iments. Here, the process executing on the mobile device has been replicated
on the stationary site. For the referentially coupled reference patterns, that are,
Mailbox and Request/Answer), no achievements have been observed. However,
by replicating the server of the referentially coupled Request Answer pattern,
throughput of client requests have increased to 83 percent. Beside cooperative
redundant processing, these experiments exhibit increased concurrency conflicts
while interacting. For example, in the Producer/Consumer case with a replicated
producer, the throughput achieved is worse than in the case without replication.
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For the Publish/Subscribe pattern, the total number of processed items increased.

Future Work

In order to use and advance the results achieved, primarily two directions are
most appealing and promising. First, the study and modeling of coordination
patterns can be advanced in terms of variations and coordination failures. Second,
ongoing optimization of the predictors by means of mobility modeling, tracing of
movement, and extraction of mobility patterns can further improve the usefulness
of the approach and the approach's applicability to application specific services.

In addition to the results achieved for investigating coordination scenarios
by means of reference coordination patterns, it is reasonable to exploit these
patterns in more detail. In order to improve a coordination pattern's usability,
configuration facilities and fail-over concepts have to be included into the models.
Hence, multiple variants of the patterns can be derived easily. Additionally,
fault tolerance mechanisms reflecting the semantics of the pattern's coordination
mechanisms can be specified, like synchronization actions in case of reconnections.

Mobility models have been used in this work as predictors for future link
conditions and retention periods. Generating movement traces in real world sce-
narios in terms of place, retention, velocity, direction, and acceleration has been
beyond the scope of this thesis. However, interpreting such traces by new mobil-
ity models which are capable of describing and learning about user movements
in a scalable and fast way, is another important issue for future work.
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Appendix A

Analytical Discussion of
Coupling Degrees

In Section 4.4, eight coordination patterns are discussed and compared by
discrete functions describing temporal (DxempUncoupled) a nd referential coupling
(DKefuncoupled) as given by Table 4.4. In order to derive extreme values and thus,
the range of these functions, they are transformed into continuous functions which
are differentiable on the definition set. The functions are defined as follows:

f(x) : D-* [0,1], where DC Rn, n > 1. (A.I)

The minimum and maximum values are calculated for each pattern. In the
non-trivial cases, it is first shown that no local extreme value exists by analyzing
the first-order partial derivative, which exists for every function. It is shown
that these derivatives are always non-zero within the definition set, which is a
necessary condition for extreme values [Heu89]. Second, the limits of the functions
are calculated for the boundary points, curves, or planes.

Since the functions for the Producer/Consumer and the Mailbox pattern are
constant functions, no additional discussion is needed.

Publisher/Subscriber

According to Table 4.4, the degree of temporal coupling is given as follows on
[I,oo)->[0,1]:

1 + 2k
DTempUncoupled-Ps{k) = -. • or. • (A-2)

Since this function decreases monotonically, by applying the rule of de

173



A Analytical Discussion of Coupling Degrees

l'Hospital [Heu89], p. 287, the minimum is calculated by

1 + 2k
Minimum DTempUnœuPiedJ3s = lim . = 2/3. (A.3)

fc-*oo 1 + ÖK

The maximum evaluates as follows (k = 1):

Maximum DTempunœupiedJ>s — 3/4. (A.4)

DRefUncoupied-Ps() is a constant function. The minimum and maximum values
evaluate to 1 (see Table 4.4).

Master/Worker

DTempUncoupied-Mw() is a constant function. The maximum and minimum values
evaluate to 3/4 (see Table 4.4).

According to Table 4.4, the function describing referential coupling is defined
on [1, oo) x [1, oo) —• [0,1] as follows:

D Ref Unc (CC)
C\ + C2

The first-order partial derivatives are denoted as:

DRefUncov.pled-MWjci{ci,C2) = —. — r^, and (A.6)

DRefUncoupled-MWjz2{Ci,C2) = ; 7 ; rx = 7 ; rr . (A.7)
C1+C2 (Ci + C2)

2 (Ci+C2)
2

Both derivatives never equate to zero on the definition set. Hence, no lo-
cal extreme value exists. In order to derive border curve extreme values, the
function has to be studied on the border of the definition area. In case of
DRef Uncoupled JAW Ç), the minimum and maximum extreme value equal the mini-
mum 0 and the maximum 1 of the value set, respectively. The minimum evaluates
as follows (c2 = 1):

Minimum D" Ref uncoupled JAW = lim ——- = 0. (A.8)
ci—oo Ci + 1

By applying the rule of de l'Hospital, the maximum evaluates as follows (ci = 1):

Maximum D'Ref Uncoupled JAW = hm 2 = 1. (A.9)
C2-»oo 1 + C2
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A Analytical Discussion of Coupling Degrees

Request/Answer

ls a constant function.- The minimum and maximum values
evaluate to 1/2 (see Table 4.4).

According to Table 4.4, the function describing referential coupling is defined
on [1, oo) x [1, oo) —>• [0,1] as follows:

DRefUncoupledJtA(ci,C2) = ; . (A. 10)
C\ + C2

The function and definition set is the same as for the Master/Worker coor-
dination pattern. Hence, the minimum and maximum values are given as:

Minimum D^unco^i^jy,, = 0, and (A.ll)

Maximum DReSVnamvXedJiA = 1. (A. 12)

Proxy

According to Table 4.4, the function describing temporal coupling is defined on
[1, oo) x [1, oo) —> [0,1] as follows:

, . 4ci + 2c2 / A 1 o\
JJTempUncoupledJ>r\C\,C2) = 7. —~—• (A.idJ

OC\ + ZC2

The first-order partial derivatives are calculated as follows:

3(4cx + 2c2) _

2c2

2Cl

2c2)2 '

which never equate to zero on the definition set. Hence, no local extreme value
exists. In order to derive border curve extreme values, the function has to be
studied on the border of the definition area.

Since the function is monotonie in both dimensions, only the border points
of the area have to be investigated. These points are (1,1), ( l ,c2 —* oo), (ci —•
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oo, 1), and {c\ —> oo, ci —>• oo). The results of this investigation are used to derive
the minimum as follows ((ci —• oo, 1)):

Minimum DTemPUncov.pied-Pr = lim \ = 3/4. (A. 16)
C1-+00 4ci + 2

The maximum evaluates as follows ((1, c^ —> oo)):

Maximum DTemvUncouvled_pr = lim 2 = 1. (A.17)
y y c2—•oo 4 + 2C2

The other two points are no candidates for neither the maximum nor the mini-
mum. In case of border point (1,1), the function evaluates to 5/6, which can be
neither the minimum, nor the maximum. The double limit of the function does
not exist, otherwise the iterated limits would be the same despite of their order
(see [Heu89], p. 568):

Um p±p = 3/4 ? hm lim
c2-»oo C1-+00 4Ci + 2C2 ci-*oo C2—OO

Since the double limit does not exist, it cannot be an extreme value.

DRejuncoupied-PrÇ) is a constant function. The minimum and maximum values
evaluate to 0 (according to Table 4.4).

Consensus

According to Table 4.4, the function describing temporal coupling is defined on
[2, oo) -> [0,1] as follows:

2
DrempUncoupled-CsiCl) — y— • (A.19)

1 + C\

This function is monotonically decreasing. Hence, by analyzing the border
points of the definition set, the minimum value is calculated as follows (ci —• oo):

2
Minimum DTempUncoupied.Cs = lim = 0, and (A.20)

ci—»oo i -\- Ci

the maximum is calculated accordingly (c\ = 2):

Maximum DTempUnampled_Cs = 2 / 3 . (A.21)

DRefUncoupied-CsQ is a constant function. The minimum and maximum values
evaluate to 0 (according to Table 4.4).
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Broker

According to Table 4.4, the function describing temporal coupling is defined on
[1, oo) x [1, oo) x [1, oo) —> [0,1] as follows:1

, . 4ciA; + qc3k + c3
^TempUnœupled-Br{Ci,C3, K) = — — . {A.ZZ)

8C\k + C\C3k + C3

The first-order partial derivatives on the definition area are denoted as:

( M - 4fc + °zk

Temp Uncoupled-Br .ci [Cl, C3, K) — - : ; ; ; h

8Ck + CC3k + C3(4Clk + Clc3k + cz)(-l)(8k + c3k)
(8Clk + clC3k + c3y

 [ 6)

4c3k
;, andc3)2

8c\k + c\c3k + c3

(4cik + c\c3k + c3)(-l)(cik

c3)2"
Similarly to Equation A.23, it follows:

DTempUncovpled-BrAci, C3> k) = - ^ + ^ + ^ . (A.25)

Since all derivatives never equate to zero on the definition set, no local extreme
value exists. In order to derive global extreme values, the function has to be
studied on the border of the definition area. Since the function is monotonie in
all dimensions, only the border points of the definition set have to be investigated
as expressed by the following case distinction:

DTempUncoupledJ>r\fil,C3,k) =

'ci,c3,k=l: 3/5

cXj c3 = 1, k -+ 00 : lim^oo §£±± = 5/9

ci, k = 1, c3 -> 00 : l im^oo | ± | | = 1

= 5/9 (A.26)

ci, A; =-> 00, c3 = 1 : lim^^ocfc-»») scîiScîfcîî = 5 / 9 ' if e x i s t s

a g , (n.e.)
, C3, ft — > OO . ^ * )

lrThe variable names are chosen consistently to Table 4.4.

177



A Analytical Discussion of Coupling Degrees

As argued for the Proxy coordination pattern, the multiple limit (or, in our
case, the triple limit) cannot exist, if the iterated limits are not equal (n.e.). In
case the iterated limits are equal, the multiple limit equals this value, if it exists.2

Consequently, the minimum and maximum values are given as follows:

Minimum DTempUncoupied.Br = 5/9, and (A.27)

Maximum DTemvuncouv{ed^r = 1. (A.28)

The degree of referential coupling is given according to Table 4.4. The function
is defined on [1, oo) x [1, oo) x [1, oo) —> [0,1] as follows:

DRejUncoupled -Br (Cl ,C2,C3) = — — . ( A.29)

The first-order partial derivatives on the definition area are denoted as:

DRefUncoupled-BrjCi (Cl, C2, C3) = - -; • ; rx, a n d (A.30)
\C\ •+• C2 "I" Cz)

1 C2 + C3

~ cx + c2 + c3 (ci + c2 + c3)2 ~

= Cl

(cx + c2 + c3)2 •
Since all derivatives never equate to zero on the definition set, no local extreme

value exists. In order to derive global extreme values, the function has to be
studied on the border of the definition set. In case of -Dfle/f/ncoup/ed_ßr(), the
minimum and maximum values equal the maximum 1 and the minimum 0 of the
value set, respectively. The minimum value evaluates as follows (c2 = 1, c3 = 1):

2
Minimum D]Refunœupied-Br = lim — — = 0. (A.32)

1 V Cl-K» C\ + 2

The maximum evaluates as follows (ci = 1, c2 = 1):

1 + c3
Maximum DRe/uncoupied-Br = lim = 1. (A.33)

C3-»0O 2 + C3

2Note, that the existence and equality of the iterated limit does not imply the existence of
a multiple limit.
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Appendix B

Validating the Simulation

In order to model the wireless LAN link states for simulation purpose, three
modes are identified. First, for excellent network conditions, the simulator does
not alter the maximum data transfer rate achievable (that is, 11 Mbit/s). Second,
for disconnected states, no operations can complete successfully. Finally, in order
to simulate weak link quality, an appropriate operation success rate has to be
used.

In order to derive this rate for weak link simulation, a reference coordination
pattern is selected, that is, the Producer/Consumer pattern. The pattern's effec-
tiveness while roaming physically is compared to the simulated case iteratively
until the simulation shows satisfying results.

w/o MobACL physical roaming
w/o MobACL simulation

200 400 600 800
Time (in seconds)

1000 1200

Figure B.I: Approximation of the physical roaming results by simulation us-
ing an operation success rate of 0.25 (Producer/Consumer)

Figure B.I depicts the approximation of the physical roaming results by the
simulation using an operation success rate of 0.25. This value has been chosen for
all experiments. Although the physical roaming case differs from the simulation
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slightly because of earlier connection loss at t = 850 seconds caused by imprecise
movement, the curves show the same tendencies. Consequently, this specific
configuration of the simulation is chosen as a reasonable approximation of the
physical roaming behavior.
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Appendix C

Additional Results for
Experimental Evaluation

In addition to the results presented in Chapter 7, here additional evaluations are
described briefly. For a definition of the measures and scenarios used, refer to
Chapter 7.

C.I Physical Roaming

Figure C.l(a) depicts the cumulated number of global space operations executed
during the physical roaming experiments using the Producer/Consumer coordi-
nation pattern. Table C.I details the total numbers of global space operations.
Additionally, Figure C.l(b) depicts the cumulated number of overhead rates and
Table C.I details the overhead operations.

Global op.
Overhead rate

Stationary

4044
0

Without
MobACL

2216
0

No
Prediction

3198
0.40

Continued
Move
2983
0.41

Smart
Office
3767
0.46

Table C.I: Physical roaming: number of global operations and state change
overhead rates (Producer/Consumer)
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Figure C.I: Physical roaming (Producer/Consumer): (a) cumulated number
of global operations and (b) cumulated state change overhead
rates with one mobile consumer and one stationary producer

C.2 Simulation — Temporal Coupling

In this section, the global operations executed during the experiments used to
evaluate temporal coupling are depicted.

Producer/ Consumer

Figure C.2(a) and Figure C.2(b) depict the cumulated numbers of global space
operations executed. Table C.2 details the total numbers of global space opera-
tions.

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
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Without MobACL

No prediction
Continued move

Smart office

200 400 600 800
Time (in seconds)

1000 1200

Stationary
Without MobACL

No prediction
Continued move

Smart office

200 400 600 800
Time (in seconds)

1000 1200

(a) (b)

Figure C.2: Temporal coupling (Producer/Consumer): cumulated number of
global operations for (a) scenario 1 and (b) scenario 2
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Scenario 1
Scenario 2

Stationary

4074
4074

Without
MobACL

2952
2952

No
Prediction

4037
22171

Continued
Move
4121
30015

Smart
Office
4731
22198

Table C.2: Temporal coupling:
ducer/Consumer)

number of global operations (Pro-

Publisher/Subscriber

Figure C.3(a) and Figure C.3(b) depict the cumulated numbers of global space
operations executed which are detailed by Table C.3.
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Figure C.3: Temporal coupling (Publisher/Subscriber): cumulated number
of global operations for (a) scenario 1 and (b) scenario 2

Scenario 1
Scenario 2

Stationary

3004
1618

Without
MobACL

2293
1309

No
Prediction

1792
911

Continued
Move
1408
741

Smart
Office
1528
1618

Table C.3: Temporal coupling:
lisher/Subscriber)

number of global operations (Pub-
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Mailbox

Figure C.4 depicts the cumulated numbers of global space operations executed.
Table C.4 details the total numbers of global space operations.

« 35000

I 30000
&

'S

t

I

Stationary
Without MobACL

No prediction
Continued move

Smart office

200 400 600 800 1000 1200

Time (in seconds)

Figure C.4: Temporal coupling (Mailbox): cumulated number of global op-
erations

Scenario 1

Stationary

8657

Without
MobACL

5857

No
Prediction

26013

Continued
Move
34397

Smart
Office
25676

Table C.4: Temporal coupling: number of global operations (Mailbox)

Request/Answer

Figure C.5(a) and Figure C.5(b) depict the cumulated numbers of global space
operations executed which is detailed in Table C.5.

Scenario

Scenario 1
Scenario 2

Stationary

2704
4805

Without
MobACL

2259
3577

No
Prediction

1582
2688

Continued
Move
1194
2218

Smart
Office
1139
2342

Table C.5: Temporal coupling:
quest/Answer)

number of global operations (Re-
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Figure C.5: Temporal coupling (Request/Answer): cumulated number of
global operations for (a) scenario 1 and (b) scenario 2

C.3 Simulation — Referential Coupling

Producer/Consumer — Alteration of the Data Structure
Used

The experiments carried out for a replicated producer have shown that the list
data structure deteriorates the results achievable by applying replication due to
increased concurrency conflicts. In order to demonstrate a possible reduction of
conflicts by reducing the list size,1 the list size is decreased to 10 for scenario 2.
Figure C.6 depicts the effects and Table C.6 details the results.

Scenario 2

Stationary

942

Without
MobACL

818

No
Prediction

1057

Continued
Move

946

Smart
Office
1049

Table C.6: Producer/Consumer with reduced list size (10): number of items
consumed

xThe original upper bound of the list size is 100.
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Figure C.6: Referential coupling (Producer/Consumer): cumulated number
of items consumed using a list size of 10 - scenario 2
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