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Chapter 1

Introduction

Partial Least Squares (PLS) Regression belongs to the family of Nonlinear Iterative Least
Squares (NILES) procedures which were developed by H. Wold and other researchers at
the University Institute of Statistics, Uppsala, Sweden. The iterative estimation methods
presented in Wold (1966) cover the estimation of nonlinear models such as Principal Com-
ponents Analysis, Canonical Correlation Analysis, Multiple Regression and Factor Analysis.
In this work we will focus on the regression model, estimated with partial least squares
regression, and—for explanatory reasons—the model for principal component analysis. The
iterative estimation method for principal component analysis is called NIPALS (Nonlinear
estimation by Iterative Partial Least Squares). As we will see later PLS (in this work we
always mean PLS regression) can be interpreted as a double application of NIPALS.

PLS has been used in social sciences for quite a long time and later found its way to analytical
chemistry and the field of mass spectrometry. The main reason for the application of PLS in
mass spectrometry is its ability to handle data sets with more variables than observations.

Electron beam
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Figure 1.1: Mass spectrometer

The analysation of mass spectra (a sketch of a mass spectrometer is displayed in Figure 1.1)
is a very complicated field of chemistry and requires much knowledge about the elements or
compounds of elements and their respective spectra. Just to give an idea of the complexity
of the subject, an element can occur in nature with different masses, e.g., oxygene of mass
16 or 17. According to the mass the so-called peak in the spectrum changes. Simply spoken



the mass spectrometer creates positive ions from the vapourized substance and records their
arrival after passing a magnet. But when generating the positive ions the substance may
also be split into parts which are recorded, too. Additionally elements occuring in the
atmosphere will also be found in the recorded data. As an example the mass spectrum of
ethanol is displayed in Figure 1.2.
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Figure 1.2: Mass spectrum of ethanol

The peak of the ethanol ion ([CH3;CH,OH| ") is at m/z 46, the largest peak at m/z 31 results
from the ion [CH,OH]*. The peak at m/z 28 stands for Ny, the one at m/z for O,. There
are other peaks, too, created by different ionized parts of ethanol. A good introduction to
mass spectrometry can be found in Duckett and Gilbert (2000).

This short and simplified description of mass spectrometry should give an idea of the amount
of data created by analysation of various substances. PLS now comes into play when mass
spectra of (known) substances are collected and another (unknown) substance has to be
deduced (predicted) from this data base.

This work will now focus on the NIPALS algorithm for principal component analysis, then go
on to the PLS algorithm itself, its mathematical properties and background. Examples, both
for NIPALS and PLS, will be presented and discussed. Furthermore newer developments
for PLS, based on the theory of Robust Statistics, are collected. The different ideas for
robustifying the PLS algorithm are introduced and discussed. These ideas also lead to a
short outlook what may be improved for getting good and applicable robust PLS algorithms.



Chapter 2

NIPALS—Nonlinear Estimation by
Iterative Partial Least Squares

The NIPALS algorithm was developed by H. Wold in 1966 (see Wold, 1966) together with
other methods that are related to what is called “alternating” regression. (It also received
the nickname “criss-cross” regression.) These methods descend from the idea that by trans-
position of a regression equation the data matrix and the matrix of the regression coefficients
change places and can therefore be reinterpreted.

NIPALS is the alternating regression alternative to classical principal component analysis
(PCA) algorithms which rely on singular value decomposition. For further information on
the classical methods confer Jackson (1991) or Mardia et al. (1979). The PLS (Partial Least
Squares) method, which is the method of interest in this work, can be interpreted as a
development on the basis of the NIPALS idea. As we will see in Chapter 3 it is—simply
spoken—a double application of NIPALS. Therefore, as far as we are concerned, the study of
the NIPALS algorithm is of extreme importance for the understanding of PLS.

In the book of Tenenhaus (1998a) PLS and related methods, including NIPALS, are pre-
sented. Tenenhaus (1998a) also introduces a version of NIPALS which is suitable for data
matrices with missing values. Section 2.1.1 will go into the details of the changes which are
to be performed onto the classical NIPALS procedure.

2.1 The NIPALS Algorithm

As NIPALS was developed as a substitute for principal component analysis we will first
shortly present the main idea of this essential statistical method.

The aim of principal component analysis is that starting with a centered data matrix X,
n X p, one wants to deduce k (preferably k& < p) components t,, h = 1,..., k which explain as
much of the variation of X as possible with minimal loss of information. In the extreme case
of k = p we would have no loss of information at all but we also would have no reduction
of components explaining X as we would exactly deduce as much components as given



variables. Corresponding to these scores loadings p,,h =1, ..., k are deduced which explain
the relation between the original variables and the newly gained components.

The model for PCA is

X =TP' +¢
where the matrix T = [ty,..., t;] of principal components has dimension n x k and P =
[P1,- .., Dk has size p x k, where k denotes the number of components. € is the matrix of

errors which are made by extracting less components than the original number of variables
(in other words: the error made by reduction of dimensionality). In the extreme case of
k = p components this error term would be equal 0. The components (or scores) ti, ...t
and the loadings pi, ..., px are calculated by means of spectral decomposition or singular
value decomposition. Cf. Jackson (1991) or Mardia et al. (1979) for further information on
principal component analysis.

An important question is how many principal components should be selected in order to get
a good representation of the original data matrix X. In the classical algorithm for principal
component analysis this number is not chosen in advance. On the contrary, first as many
components as there are variables are calculated and then the importance of each one is
determined. This is usually done by statistical tests, rules of thumb or graphically with the
help of the so-called screeplot. The underlying calculations for all these methods depend on
the variance of the principal components or their proportion on total variation, respectively.

NIPALS takes a different way to calculate principal components. Instead of using singular
value decomposition as it is done in classical principal component analysis, NIPALS only
uses simple linear regressions.

But still there are great differences to the principle of regression analysis: Usually we have
a model of the form
Y=XK'"+¢

where both X and Y are given and the regression coefficients K are fitted to these values.
The main goal of this linear regression analysis is to find a linear relation between these two
data matrices, often in order to predict unknown Y—values from known X—values.

In the case of principal component analysis only X is known (which would take the Y-part
in the above regression model). So the idea of NIPALS is to take a starting value for T
and fit P to X and this starting value. This means that P plays the role of our regression
coefficients K. In the next step T and P change places (by transposition of the equation),
so T will stand for the regression coefficients K and is fitted to X and P. These two steps
form the kernel of the NIPALS algorithm and are performed until “convergence” in the sense
that a certain accuracy of T is met. Additionally between the two steps the newly gained
values for P are normalized as it is a common demand in principal component analysis to
have normalized loadings vectors pi,...,pr. The construction of NIPALS as given below
also guarantees the orthogonality of the components as is the case in classical principal
component analysis. This follows from the calculation of the residuals and the properties of
the least squares (LS) estimator. One of the problems in the context of robustification is



that this orthogonality of the residuals is lost by the usage of robust methods substituting
LS.

Because of these alternating definitions of which part of the equation stands for the regres-
sion coefficients, Wold (1966) called this principle “alternating” or “criss-cross” regression.
According to Tenenhaus (1998a) the word “partial” comes from the fact that for the cal-
culation of a new component in the regression only a part of the parameters (namely, the
already deduced ones) is used.

The word “convergence” is slightly misleading in this context but it is the standard word
used in literature on NIPALS or PLS. Under “convergence” we understand the following
definition: After each iteration we calculate the difference between the former and the newly
calculated component. If the norm of this difference is smaller than a given tolerance value
we speak of convergence of the component.

The detailed algorithm can now be described as follows:

Let Xy = X. For every component t,,h =1, ..., k compute the following steps, where Steps
1 to 4 are the steps to be iterated:

Step 0: Choose a column of X;_;, e.g. the first, as a starting value for tj.
Step 1: Perform the following regression:

X 1 = typ, + &1

yielding the least squares solution

pT _ tZXh—l
h tity,
Step 2: Normalize p; :
T._ P,
i

Step 3: Perform the regression:
Xp-1 = twp, + €3

which is after transposition

X;fl = Pht; + G;F

giving the least squares solution
pTxT_
¢T — hT h—1
P Ph

Step 4: Check convergence of tj,:
With every iteration the accuracy of t; is improved (or stays at least equal) so that a possible
convergence check is to look wether the norm of the difference between t;, of the current and
t;, of the previous iteration is smaller than a given value or not. If the current t; is better than
the previous t; in the above sense then go to Step 1. Otherwise the component t; with the



current value is already best and we keep t;, as the final value (or the best approximation).
In this case we compute the next component t,.; starting with Step 0 after calculating the
residuals X, = X, | — t,p} -

This algorithm now gives as a result the scores t;, with the loadings p,, h =1, ..., k, which
are at least approximately equal to the scores and loadings obtained by PCA.

A little study of the quality of the NIPALS components on the basis of some practical
examples is done in Section 2.2.

If we take another look at the steps of the NIPALS algorithm we will see that the least
squares solution in Step 3
T _ p;XI—l
t) = —Aohol
Py, Pn
can be simplified by
t; = P; XLl

as the denominator is equal 1 by the normalization of p, performed in Step 2. We kept the
above notation for better understanding as it is clearer that we really apply the least squares
method. By performing a robustification of the algorithm, e.g., a replacement of the least
squares solution by a robust regression solution, the obtained solution would naturally be
different.

A graphical representation of the operation of the NIPALS algorithm, which in this context
is quite clear but gains importance in the next chapter about PLS, could look like that:

1

ty

2.1.1 NIPALS for Missing Values

Tenenhaus (1998a) presents a modification of the NIPALS algorithm in order to be able to
handle with missing values. As this problem occurs very often in practice the importance of
such methods is out of discussion.

The underlying idea in Tenenhaus (1998a) is quite simple: Only the existing values are taken
into account.

Compared to the above defintion of the NIPALS algorithm the following changes have to be
made:

For reasons of simplicity let X,_; be denoted by X.
Replace Step 1 with the following



Step 1*: For j =1,2,...,p calculate:

o 1=1, where Z;; and t;;, exist <“%J ih
pjh - n . t2
1=1, where &;; and t;, exist “ih

Consequently replace Step 3 with
Step 3*: Foriv=1,2,...,n calculate:

tin =

P T..m -
Zj:l, where Z;; exists LijPjh

ZP 2
j=1, where Z;; exists pjh

By performing this modified algorithm the scores and loadings which correspond to the
remainder of the data set are returned.

2.2 Examples

As NIPALS is an alternative algorithm for principal component analysis (PCA) we will
compare its results to those of other conventional algorithms for PCA. In Appendix A a
detailed description of the data sets used is given. All data sets can be obtained from the
author.

Throughout this work the statistical software R was used. Besides being freeware it is fairly
easy to extend with self-written functions or programs. Extensions for this software are
produced and made available from scientists all over the world. R can be downloaded from
the webpage hittp://cran.r-project.org.

2.2.1 The districts Data Set

The data set concerning the Austrian political districts and their economic behaviour is
very suitable for principal component analysis. Trends like the rural exodus or educational
differences as well as the proportion of young and old are important catchwords which may
be found via principal components.

First we will calculate the principal components with the NIPALS algorithm introduced
in Section 2.1 and then we will compare its results to those performed by the function
princomp of R. This function is an implementation of the classical principal component
analysis. Contrary to the functionality of NIPALS the number of components to be extracted
by princomp can not be chosen in advance. The maximal number of components, namely
as many as variables, are calculated. The number of components to be used for explaining
the data set is decided afterwards by graphical representation of their importance. This
importance is decreasing with increasing index. A possibility for graphical representation
of the importance of the components is the screeplot. For reasons of comparability of this

importance also as many components as are returned by princomp have to be calculated
with NTPALS.



The districts data matrix consists of 17 variables and 99 observations but still we want to
deduce fewer factors describing the data set. Note that if we calculated a certain number of
components with NIPALS and then performed NIPALS with a higher number of components
the first components would stay the same by construction of the NIPALS algorithm. As the
components are becoming less important with increasing index a higher number of extracted
components is not necessarily better.

The implemented version of the NIPALS algorithm is printed in Appendix B.

As input we used the mean-centered and scaled data matrix of the districts, the maximal
number of iterations to be performed was set to 10 and for the tolerance level of the precision
of the components 10~* was selected. Practice has shown that in general 10 iterations are
sufficient to get quite a good result. Still, with a higher number of iterations and a lower
tolerance level more exact components would be gained but the difference will normally only
show up in the last decimals which has no impact on practical surveys.

To present the results gained with either of the algorithms we chose the well-known biplot (cf.
Gower and Hand, 1996). In this graphic the first component is printed against the second
component both with respect to their loadings. The position of each variable is drawn by a
vector (corresponding to the loadings).

The biplot of the districts data set calculated by NIPALS is displayed in Figure 2.1. The
first and second component returned by NIPALS explain 32% of the total variation of this
data set.

The first component makes a clear distiniction concerning education. In the negative part
the major cities (E, W, G, I, S, K, L, P) and their surroundings (MD, WN, KS) are grouped
with a high proportion of persons having secondary school and university education. These
areas show high immigration and most of the employees can be found in services and trade.
The positive part of the first component describes regions with a high percentage of mountain
farms, education up to the level of primary school and a high percentage of commuters to
other districts and of not-daily commuting people. These regions (e.g. HB, WZ, TA, RO,
FR) depend mostly on agriculture and industry where agriculture is poorly developed.

The second component takes the age of the population into account, combined with working
places in tourism and agriculture. Naturally the number of tourist stays is combined with the
proportion of employees in tourism and the districts at this side of the component are well-
known touristic regions such as BZ, IL, KB, SL, KU and RE. The positve part of the second
component consists of a higher percentage of adults, youth and children and of tourism and
touristic stays. Opposed to them are a higher number of old people and agriculture. This
can be explained with the rural exodus. These regions are HL, HO, OP, WT, WY, MI, MZ.

Compared to these results the function princomp yields principal components that are only
slightly different (cf. Figure 2.2). The interpretation therefore remains the same. The first
and second component calculated with NIPALS explain—similarly to those of princomp-32%
of the total variation.

Still the number of important components is an interesting question. Generally in classical
principal component analysis as many components as variables are computed. The screeplot
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showing the proportion of each of them on the total variation is a good tool for the decision
on the number of components to be taken for possible further investigations. The screeplot
for the results of the function princomp as displayed in Figure 2.3 shows a high importance
of component 1 followed with successively decreasing components 2 to 7. Figure 2.4 shows
the corresponding screeplot of the NIPALS algorithm. The increasing value for component
5 is an artefact of the algorithm. A good number of components could be 5 (59%) or 9
(81%). If we applied the rule of thumb that the number of components explaining at least
90% has to be taken into account, we would have to select the first 12 components. When
examining big data sets the number of components to be chosen for further investigations is
also a question of computation time.

Comp. 1 Comp. 2

Figure 2.5: Differences of princomp and NIPALS in the first and second component for
districts

The differences between the first and the second principal component computed by NIPALS
and princomp are shown graphically in Figure 2.5. In the first plot the values of the first
component from the two algorithms are plotted against each other, the same is done in the
second plot for the second component. The first components show little difference whereas
the second already have some. This is due to the small differences in the first which become
bigger with every succeeding calculation of a component by construction of the NIPALS

11



algorithm as each higher component is calculated on the residuals of X and the lower com-
ponents. In classical principal component analysis on the other hand the components are
calculated with one singular value decomposition of X or by spectral decomposition of the
empirical covariance matrix of X.

2.2.2 The euro86 Data Set

Dependencies among the different variables are an important aspect of principal component
analysis of the euro86 data set. As described in Appendix A life expectation, population
growth and infant mortality (among others) in the European countries in 1986 are under
survey.

As before we first calculated principal components with the NIPALS algorithm. The biplot
of the first and second component is shown in Figure 2.6. They explain 46% of the total
variation of the euro86 data set.
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Figure 2.6: Biplot of NIPALS for euro86

A first glance at the biplot shows an outlier: Albania (al). This suspect is proved by further
investigation. Its impact on the size and direction becomes clear when we look at the biplot

12



of the euro86 data set reduced by the observation Albania (see Figure 2.7). In this case the
first and second component explain 40% of the total variation of the remaining data set.
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Figure 2.7: Biplot of NIPALS for euro86 without Albania (al)

The same behaviour can be found when applying princomp to the euro86 data set with
(Figure 2.8, 46% of total variation) and without Albania (Figure 2.9, 40%).

The change in the importance of the components calculated with either of the algorithms is
striking (Figures 2.10 and 2.11 for princomp and Figures 2.12 and 2.13 for NIPALS).

Note that in the case of the robustified data set NIPALS really gives decreasing importances.
This demand is missed slightly in the case of the whole data set. While the first result
with Albania shows great importance in the first and second component but only minor
importance in component 3 to 5 (the rest is too small), there is a shift of importance mainly
from the second towards components 3 to 6. So, in the case of further investigations on
this data set, if we decided to use five components (81%) by working with the contaminated
data set we would now, after removal of Albania, revise our decision and also take the sixth
component into account (87%, only 78% for components 1 to 5).

As princomp and NIPALS again give similar results the interpretations of the first and second
principal component are valid for both.
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Figure 2.8: Biplot of princomp for euro86
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Figure 2.9: Biplot of princomp for euro86 without Albania (al)
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Figure 2.10: Screeplot of princomp for euro86
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Figure 2.13: Screeplot of NIPALS for euro86 without Albania (al)
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Figure 2.12: Screeplot of NIPALS for euro86
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The first principal component (of euro86 without Albania) has in its negative part female
and male life expectation as the only influence. In this region we find the rich countries:
The northern European countries (nl, n, s, sf, f, dk, b) but also Switzerland (ch), Spain (s),
Greece (gr), Germany (d), Great Britain (gb) and Italy (i). Austria (a) shows no high life
expectation. Opposed to it, in the positive part, the infant mortality has strong influence
along with baby underweight. This makes sense as better life circumstances reduce the cases
of infant mortality.

The second principal component is expressed by high values of calories per day, baby under-
weight and a higher percentage of women in the negative axis and high population growth
combined with women in the right age for giving birth and many inhabitants per doctor in
the positive part. Again many inhabitants per doctor reduce the life quality whereas higher
portions of calories are a sign of wealth. The higher percentage of women may result from
a better medical infrastructure.

The differences between the components for euro86 without Albania calculated with prin-
comp and NIPALS are shown in Figure 2.14. In these plots another feature can be seen:
Sometimes the components differ by the multiplicative factor -1. But the corresponding
loadings are also adapted. This phenomenon can also be observed when computing princi-
pal components with different statistical software packages. This results from the fact that
different criteria are applied for the choice of the sign of the loadings vectors.

Comp. 1 Comp. 2

Figure 2.14: Differences of princomp and NIPALS in the first and second component for
euro86 without Albania (al)
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Chapter 3

PLS—Partial Least Squares Regression

Partial Least Squares Regression is built on the ideas of the NIPALS algorithm. Generally
a regression between one or more y-variables and a data matrix X is performed. These
variables can be correlated to each other and—as a very important part in applications—there
can also be more variables than observations. The idea of performing iterations for searching
the most important “component” and their refinement by a convergence criterion is adapted
from the NIPALS algorithm.

We distinguish between two different PLS regressions, namely the PLS1 and the PLS2 re-
gression. PLS1 decribes the case when there is only one y-variable and PLS2 stands for PLS
with more than one y-variable.

First we will present the PLS2 algorithm which is naturally more general, and then stress
the changes which lead from PLS2 to PLS1. Usually, when PLS is mentioned, the PLS2
algorithm is considered as for its generality.

The description below follows the one of Geladi and Kowalski (1986) but can also be found
in Wakeling and Macfie (1992). In general, there are many different descriptions of the PLS
algorithm in the literature (especially in the algorithmic details of the various steps), all of
which give the main ideas of PLS but naturally differ in the mathematical properties of the
estimators. The definition of the PLS algorithm preferred in this work leads to some useful
properties which will be discussed later.

3.1 The PLS2 Algorithm

The relation to be analysed with PLS2 is an ordinary linear regression equation
Y =XK' +¢,

where X and Y are data matrices of dimensions n X p and n X ¢, respectively. K represents
the matrix of the regression coefficients with dimension ¢ X p and € is the matrix of regression
residuals of dimension n x gq.
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Although the regression model is aimed at finding a functional relation between X and Y,
the idea behind PLS is somewhat different. Here one tries to get the most important common
part out of both data matrices which therefore represents a kind of connection between them.
In other words, two principal component analyses, one for X and one for Y, are carried out
using the NIPALS algorithm. But within each iteration the result from X is passed over
to the calculation for Y and vice versa. As PLS shows the same characteristics as NIPALS
(only twice!) also for PLS the nickname of “criss-cross” regression is used in literature.
This complicated description gets more understandable when one looks at the algorithmic
formulation given below.

According to the idea of performing a PCA for X and one for Y, the model for the so-called
outer relations is

X TP' +E (3.1)
Y = UQ'"+F* (3.2)

with T and U of dimension n x k, P of dimension p x k£ and Q of dimension ¢ x k. E and
F* are the corresponding residual matrices of dimensions n X p and n X ¢, respectively.

The connection between X and Y is realized via the inner relation

U=TB+H (3.3)
where B is a diagonal matrix of dimension k£ x k and the residual matrix H has dimension
n x k.

With this inner relation the final model of the mized relation is
Y=TBQ' +F (3.4)

where F denotes the residual matrix of the mixed relation whereas F* and E stand for the
residuals of the outer relations (E and F will be used within the iterations of the algorithm).

The algorithm now seeks to obtain estimates for T, P, U, Q and B and can be outlined
as follows. Let Ey and Fy denote the mean-centered and scaled data matrices X and Y,
respectively. For every component t,,h =1,..., k, compute the following steps where Steps
1 to 7 are iterated:

Step 0: Choose the first column of the matrix F;, | as a starting value for u,.
Step 1: Perform the following regression

T
Ehfl = uwy + &

giving the least squares solution
-
T w By,
Wh = T -

Step 2: Normalize w; obtaining the new value:

Wl W
Wl
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Step 3: Perform the regression
Eh_1 = thW; + &2

which is after transposition

T T T
Eh—l = Whth + 62

having the least squares solution
TERT
T_ W, E,
th =T -

Step 4: Perform the regression
Froi =tua, +e3
with the least squares solution
T 13IFh—1
q, = T

Step 5: Normalize q] obtaining the new value

T._ q;
" laal|

Step 6: Perform the following regression to calculate a new value for uy
Fp 1 =uq, + &4

which is after transposition
Fy_, = auuy +¢€;

giving the least squares solution
TFT
T_ 9 fh
u, = —=—
q; dn
Step 7: Check the convergence of t;, with the help of a convergence criterion which will be
described later on. If the newly calculated t, is better than the old one according to this
criterion then another iteration starting at Step 1 with the new value of t, will be performed.
If not go to Step 8.
Step 8: Perform the regression
Ey_1 = typ;, + €5

giving the least squares solution

pT _ 13IEh—1
Pt
Step 9: Fit t;, to the newly gained py:
t, = tullpall-

Step 10: Normalize p; obtaining the new value

T._ pg
" lpal
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Step 11: Calculate by, which is the hth diagonal element of B, through the regression
u, = thbh + €5

with the least squares solution
bh _ t;uh
t) th

Step 12: Update the data matrices

E, = E, ,—tip,
F, = Fu_1 —tpbra,.

Now we give a short discussion of the algorithm:

Steps 1 to 3 represent the NIPALS algorithm applied to the X-data matrix, whereas in Steps
4 to 6 NIPALS is applied to the Y-data. Normally, as a criterion for convergence in Step 7,
the norm of the difference between the newly calculated t; and the one from the previous
iteration has to be smaller than a given constant. After this convergence check the p, are
fitted to the solution t; in Step 8.

Asin Step 10 the p;, are normalized to length 1 in order to make them comparable to principal
components, the t, have to be fitted to the new p;, in Step 9. Sometimes the demand of

loadings P which have unit length as in principal component analysis is neglected so that
the calculations in Steps 9 and 10 are not necessary anymore.

In Step 11 by is computed, which is not only important for updating the data matrix Y in
Step 12 but also later for prediction.

Within Step 12 the updates of the matrices X and Y are calculated.

The graphical representation of the PLS2 algorithm underlines the idea of performing a
NIPLAS algorithm twice with an additional cross-over:

X wy, an Y
N S
l {
A N
th uy,

3.1.1 Mathematical Properties of PLS
Properties of the Deduced Matrices

The main properties of interest are orthogonality and unit length of the columns of the
matrices. The t; building the matrix T are orthogonal, but don’t have unit length. Addi-
tionally they are centered around 0, i.e., their arithmetic mean is equal 0. This makes them
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uncorrelated, too. The matrix W is orthogonal but its columns are neither centered aroung
0 nor have unit length. The columns u; of the matrix U are neither orthogonal nor have
unit length, but they are as the t; centered around 0. The elements of the matrices P and Q
have unit length as is the classical demand for the loadings in principal component analysis.

A discussion of the properties of the matrices can also be found in Jackson (1991) or Geladi
and Kowalski (1986).

Simplification of Least Squares Solutions

When we take a closer look at the “inner” steps of the algorithm we find that the least
squares solutions for t; and u;, can be simplified. In Step 2 we perform a normalization of
wj, and then in Step 3 we calculate the least squares solution for t:

TRT
w,E,

T

t, = :

This solution can be simplified as the denominator is equal to 1 because of the normalization
of wy, in Step 2:

t, =wyE, .
The same is valid for Steps 5 and 6. Because of the normalization of q;, the least squares
solution

T QIF;—l
u, = —=——
q; dn

can be replaced by

w, =q, Fy_;.

In the presentation of the PLS2 algorithm we kept the unsimplified version as we think the
idea of the algorithm is easier to understand with the full least squares solution. Addition-
ally when it comes to robustification of PLS with other methods than least squares this
simplification may not be applicable anymore so that it could lead to some confusions.

Updating the Data Matrices

The reason of the usage of F instead of F* is the goal of PLS to predict values. This is
guaranteed by the usage of the mixed relation (Equation (3.4)) instead of the outer relation
for the Y-matrix (Equation (3.2)). Besides the rank of Y is not decreased by 1 for each
component, so it is really possible to deduce the maximal number of components, namely as
many as the rank of X.

3.1.2 Number of Components

The decision on the number of components extracted from the X—data is a very important
question in PLS. In the extreme case as many components as the rank of X can be deduced.
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But this does normally not make sense. On one hand PLS is often applied when one wants
to explain a data set consisting of many variables with a few components describing the
main characteristics of this data set and on the other hand the last components, which are
smaller in importance, often only describe “noise” in the data set and are affected with the
problem of collinearity.

There are several possibilites to decide on the number of PLS components, often referred to
as stopping rules.

Calculation of the Residual of the Mixed Relation

After the determination of a new component ||F|| is calculated. Similar to a screeplot a
plot of ||F|| versus the number of components can be created. By choice of a threshold for
||IF|| a possible stopping rule is defined.

Also based on the residual of the mixed relation is the following stopping rule: Calculate
the difference between ||F|| and ||F),_1|| and stop when this difference becomes smaller than
some predefined error.

Geladi and Kowalski (1986) suggest a combination of the threshold and difference method.

Analysis of Variance

For the inner relation (Equation (3.3)) an analysis of variance (with F-test) can be per-
formed. The significance of various numbers of components to a chosen level of significance
is determined. For a short discussion of this stopping rule see Jackson (1991).

Cross-Validation

If prediction by usage of the PLS components is wanted the usual choice for the decision on
the number of components is cross-validation, a resampling method. Resampling methods
also include the jackknife and the bootstrap. For detailed information on these methods (see,
e.g., Basilevsky, 1994).

In the case of PLS cross-validation is used, see e.g., Rao and Toutenberg (1995) or Jackson
(1991). The main idea is to divide the data set into groups. Afterwards the goodness of fit
is verified by estimating the model in one group and applying it to the rest of the groups.
Then the sum of squares of the difference between the true (observed) and the predicted
values is calculated. This computation is done for every group such that every data point is
left out exactly once. The resulting total sum of squares of predictions minus observations,
called PRESS (Prediction Residual Sum of Squares) is a measure of the predictive power
of the h components calculated in this phase of the model building process. The following
relation then serves as a stopping rule for the number of components:

PRESS,.; — PRESS,, < const,

where const is a certain chosen constant and PRESS;, denotes the PRESS-statistic calculated
after the hth component was determined.
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3.1.3 Prediction with PLS

Prediction is in practice the most important feature of PLS. Unlike other regression models
it is necessary to perform some calculations before prediciton of the unknown Y—part from
the X—part is possible.

Suppose the two data matrices X and Y be given and the PLS2 algorithm already applied as
above such that the matrices T, P, U, Q, W and B are specified. Now let an additional X'—
block of size r x p be given. From this independent part we wish to predict the dependent one
Y'. For this prediction we use the model parameters calculated before but we have to adjust
the matrix T to the new X'. Note that it is necessary to apply the same mean-centering
and scaling to X’ as to X as otherwise the model parameters would not fit anymore!

Let E{ denote the mean-centered and scaled data matrix X', where from each column of
X" we substract the corresponding mean of the columns of X and divide by the standard
deviation of the corresponding X-—columns. For h = 1,..., k perform the following Steps a
and b to get fitted values for t:

Step a: Estimate t; with the help of wy as in the regression equation from Step 3 of the
PLS2 algorithm:
-
IT _ pIEZq
" P;Ph
Step b: Update the data matrix for the calculation of the next component

o T AT
n=E,_1 —thby,

With the help of these values t, we get the prediction for the Y -matrix:

k
Y =F,=) btuaq,
h=1

3.1.4 PLS2 for Missing Values

The idea for PLS2 for missing values is the same as for NIPALS for missing values and can
again be found in the book of Tenenhaus (1998a). As PLS2 can be interpreted as double
application of NIPALS accordingly we have to replace 4 steps relying only on the given
values.

For simplicity of notation, Ej,_; will be denoted by E = [€ijlnxp and Fy_; by F = [f'ij]nxq.
To make PLS2 applicable for data matrices with missing values replace Step 1 by

Step 1*: For j =1,2,...,p calculate:

n
1=1, where €;; and u;, exist
n
1=1, where €;; and u;} exist

€ijUin

Wip =
j 2
Uip

and Step 3 by
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Step 3*: Foriv=1,2,...,n calculate:

p YT
. Zj:l, where €;; exists €ijWjh

tin =

p 2
Ej:l, where ¢&;; exists wjh

Consequently replace Step 4 by
Step 4*: For j =1,2,...,q calculate:
?:1, where fij and t;p exist fijtih

qjn = n N tz
1=1, where f;; and t;;, exist ih

and Step 6 by
Step 6*: Forv=1,2,...,n calculate:

q
. j=1, where f;; exists
Usp = q
j=1, where f;; exists

fiijh

-
djn

Application of this modified algorithm returns the PLS components and scores related to
the data set with the missing values.

3.2 The PLS1 Algorithm

The only difference between the model for PLS1 and PLS2 is the dimension of the y—part.
While in PLS2 Y has dimension n X ¢, we have a one-dimensional vector y in PLS1. The
differences in the PLS1 and PLS2 algorithm now only result from this dimensional change.
So first we want to give a version of the PLS1 algorithm as a simple translation of the PLS2
algorithm to the reduced dimensionality. Then we want to present the simplifications which
become possible. Finally we give the short version of the PLS1 algorithm where all these
simplifications are already considered.

The PLS1 algorithm as a dimensional reduction of the PLS2 algorithm looks as follows:

Let Ej and fy denote the mean-centered and scaled data matrix X and vector y, respectively.
For every component t,,h =1,...,k, compute the following steps:

Step 0: Choose f,_; as a starting value for uy.
Step 1: Perform the following regression

T
Eh_1 = upwy, + €1

giving the least squares solution
-
T w By,
Wh — Ti.
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Step 2: Normalize w; obtaining the new value:

wl o= b
[[wall

Step 3: Perform the regression
Ehfl = thW; + &9

which is after transposition

T T T

having the least squares solution
w, By

-

t, = :

Step 4: Perform the regression
fh—1 = thgn + €3

with the least squares solution
t) 1
t)t,

Step 5: Normalize g, obtaining the new value

qn =

qn

n = 7 -
gl

Step 6: Perform the following regression to calculate a new value for uy

f1 =ungn + €4

which is after transposition
fu_1 = anuy +eg
giving the least squares solution
ol = thf—br—l
anqn
Step 7: Check the convergence of t; with the help of a convergence as described in Section
3.1. If the newly calculated t; is better than the old one according to this criterion then
another iteration starting at Step 1 with the new value of t; will be performed. If not go to
Step 8.
Step 8: Perform the regression
E,_1 = typ, + &5
giving the least squares solution
T _ t;LrEh—l
P, = t;brth

Step 9: Fit t;, to the newly gained py:
tn = thl|pal-
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Step 10: Normalize p; obtaining the new value

T._ pg
" Ipall

Step 11: Calculate by, which is the hth diagonal element of B, through the regression
u, = thbh + €
with the least squares solution

by — t;uh
Tt

Step 12: Update the data matrices

E, = E, |, —tip,
f, = £ —thbrgn.

Note that through the regression for q; as in PLS2 we receive a scalar ¢, and by normalizing
it in the next step we get the value 1. Therefore there is no change in u;, = f;,_; as would be
in PLS2 in Step 6. By performing the regression for b, and subtracting t,b,q; from f,, we get
a residual f, from which further PLS components can be calculated. Still the normalization
of ¢ is important for a good interpretation of the resulting PLS components.

For the same reason, namely ¢, being a scalar in PLS1 and its effects on uy, no iterations
or convergence checks as in PLS2 are meaningful, so Step 7 can be omitted.

As g, is always equal 1 and uy, stays equal to f;,_; these variables can be replaced by these
values in the whole algorithm and Steps 4 to 6 can be omitted, too.

As was discussed in Section 3.1.1 for the PLS2 algorithm some simplifications of the least
squares solutions also come to pass in PLS1. In Step 2 of PLS1 we perform a normalization

of wj, and then calculate t; in Step 3:
¢T — wiE,
S U

So Step 3 can be replaced by:
P

All these simplifications together give the following final version of the PLS1 algorithm
(under the condition of performing all regressions with least squares):

For every component t,,h =1,...,k, compute the following steps:

Step 1:

T

L Y
h — T :

LA T
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Step 2:

wl e W
W]
Step 3:
P
Step 4:
T _ 13IEh—1
Pn = t;th
Step 5:
tn, = thl|pall-
Step 6:
S
liAl
Step 7:
ty 1
b, = (Tt
h Yh
Step 8:

E, = E, | —tip,
f, = fH_1 —tpbs.

The demand of loadings P which have unit length is sometimes neglected by omitting Steps
5 and 6. This is often done in surveys on robust PLS procedures.

3.3 Examples

The following examples show on one hand that the PLS components really differ from prin-
cipal components and on the other hand they show the power of these PLS components
for the explanation of the combined data sets. The first example uses the PLS2 algorithm
whereas in the second the PLS1 algorithm is applied.

Following the ideas of the presentation of our results with the NIPALS algorithm we will
now present the results for PLS2 in an analogous form. We will show biplots of the “scores”
T and “loadings” P derived from the X-matrix and the “scores” U and “loadings” Q from
the Y—matrix. Additionally we will compare the PLS components from the X— and Y—part
as the connections between X and Y are of crucial interest. Therefore we will present a
graphical comparison of the first PLS components, i.e., the first component t; calculated
from X against the first component u; from Y, and also of the second PLS comonents t
and uy. As we will see later these graphical representations yield very interesting results.
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3.3.1 Example for PLS2: The oeamtc Data Set

The oeamtc (abbreviation of the Austrian automobile club) data set is probably the most
suitable example for usage with PLS2 as it examines the (21) characteristic features of 18
quite different cars.

The variables price, tax, liability and full comprehensive insurance taken as Y-data should
show dependencies on the rest of the variables (used as X-data). The most striking one is
the fact that the tax and liability insurance in Austria are calculated from the performance
of the car.

In Appendix A a detailed description of the data set is given. In Table A.6 the names of all
the cars and their corresponding numbers in the data set are given as it is necessary with
respect to readability to use those numbers in all plots.

PLS2 Applied on the oeamtc Data Set

The results of the application of PLS2 on the oeamtc data set are shown graphically. In
Figure 3.1 a biplot of the first and second component of the X-data is printed whereas
Figure 3.2 shows the corresponding biplot for the Y-data.

Figures 3.3 and 3.4 show the screeplots of the components of the X— and Y-data, respec-
tively. Again we find some artefacts of increasing values which are due to the algorithm.

So the first two components of the X-data, which are shown in the biplot (Figure 3.1)
explain 49% of the total variation. According to the screeplot a good number of components
could be 6 (79%) or-when applying the rule of thumb to take at least 90%-9 (91%). The
corresponding values for the importance of the Y—components are 32% (2 components), 59%
(6 components) and 76% (9 components).

Let us now discuss the components of the X—data. The first component shows “surrounding”
characteristics such as length, width, boot or consumption. It is interesting that also capacity
contributes to the first component. On the other hand the second component consists mainly
of the variables speed and performance and opposed to them (which also makes sense from
the technical point of view) are acceleration, elasticity and height.

The components of the Y—data are not so clearly distinguished. The first component is
more or less influenced by all four variables whereas the second mainly by tax and liability
insurance. The most interesting fact in this figure is maybe the confirmation of the tight
relation between tax and liability insurance and price and full comprehensive insurance,
respectively.

The plot of the first PLS components t; and u; against each other (Figure 3.5) gives quite
interesting relations among X and Y. In the first quadrant cars with high length, width,
boot, consumption together with high price, tax and insurances occur, e.g., Chrysler Voyager
(4), Mercedes C220 (2) or Hyundai Trajet (5). Also in this direction but not that strong
are the so-called compact vans Opel Zafira (17), Nissan Almera (18) or Fiat Multipla (14).
The second quadrant, standing for lower consumption and size combined with a higher price,
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Figure 3.1: Biplot of PLS2 for X-data of oeamtc
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Figure 3.2: Biplot of PLS2 for Y-data of oeamtc
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Figure 3.3: Screeplot of PLS2 components for X—data of oeamtc
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Figure 3.4: Screeplot of PLS2 components for Y-data of oeamtc
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Figure 3.5: First PLS2 components for oeamtc
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Figure 3.6: Second PLS2 components for oeamtc

houses the Fiat Stilo (1) and Alfa Romeo 147 (6). Most of the cars under survey can be found
in the third quadrant, lower consumption and size mixed with lower price. The extremest
ones are—as can be expected—the smallest cars, Renault Clio (3) and Seat Arosa (10). Still
in this part are the compact cars such as Skoda Fabia (13), Ford Focus (7), VW Golf (9).
On the boundary to bigger size, still with lower price, is only the Citroen Picasso (16).

Figure 3.6 shows the second PLS components t, against us. In the first quadrant, standing
for high speed and high taxes, the Mercedes C220 (2) is the clear favorite, followed with a
big gap by Alfa Romeo 147 (6), Ford Focus (7) and Fiat Stilo (1). Fortunately, the second
quadrant (high taxes and low speed) is completely empty which, however, reflects the policy
of insurance companies. The third quadrant stands for low speed and low tax. The minimum
is met by Renault Clio (3), Renault Scenic (15) and Hyundai Trajet (5). The majority of the
rest of the cars can also be found in this part. An interesting point is that the second small
car, the Seat Arosa (10), seems to have quite a good highest speed, unlike his companion
regarding size and price, the Renault Clio (3). Finally in the fourth quadrant, high speed
and low taxes, are two representatives, the VW Golf (9) and the Ford Mondeo (12).

PLS2 Applied on the oeamtc Data Set Without Mercedes C220 (2)

As the Mercedes C220 (2) appears to be an outlier according to plots just presented we did
another survey without it. The results can be found in Figures 3.7 to 3.12. The components
for the X—data show no great changes, but when we look at the Y—data we see that there is
a better distinction between the first and second component. This observation goes on in the
plots of the first and second components against each other. The plot of the first components
shows no great changes whereas in that of the second a clearer distinction regarding speed
and tax can be observed. Regarding the importance of the components we observe slightly
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increasing importance in the components of the X—data (2 components: 50%; 6: 80%; 9:
92%) whereas the importance of the components of the Y—-data decreases (2 components:

29%; 6: 54%; 9: 70%).
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Figure 3.7: Biplot of PLS2 for X-data of oeamtc without Mercedes C220 (2)

Prediction for the oeamtc Data Set Without Mercedes C220 (2)

We now want to present the results of prediction for PLS2 as described in Section 3.1.3 on
the oeamtc data set without Mercedes C220 (2).

In order to receive comparable results we took the first three cars from the oeamtc data set
without Mercedes C220 (Fiat Stilo (1), Renault Cio (3), Chrysler Voyager (4)) and compared
the predicted results to the ones introduced above. Figure 3.13 plots the true against the
predicted values of the scores T. According to these results the prediction is quite good.

In Figure 3.14 we see the plot of true against predicted Y—values. Also these predictions
represent the characteristics of the data set. The deviations which are visible result from
the fact that each of the three chosen cars has specific distinctions from the whole data set:
The Renault Clio (3) is one of the smallest cars, the Chrysler Voyager (4) is the biggest one
and the Fiat Stilo (1) shows some innovations regarding the “surrounding” characteristics.
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Figure 3.8: Biplot of PLS2 for Y-data of oeamtc without Mercedes C220 (2)
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Figure 3.13: Comparison of true and predicted scores T of Fiat Stilo (1) (upper left), Renault
Clio (3) (upper right) and Chrysler Voyager (4) (lower)
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Figure 3.14: Comparison of true and predicted Y-values of Fiat Stilo (1) (upper left),
Renault Clio (3) (upper right) and Chrysler Voyager (4) (lower)

3.3.2 Example for PLS1: The euro86 Data Set

We will now study the results for the euro86 data set when applying the PLS1 algorithm.
First we have to divide the data set into a X— and y—part. For the X—data matrix we chose
the following variables: number of women in the age to give birth, number of inhabitants per
doctor, baby underweigth, percentage of women, infant mortality, population growth and
calories supplied per day. As y-variable female life expectation was selected. Note that male
life expectation was not taken into account for reasons of redundancy as we have seen in
Section 2.2 that female and male life expectation are variables influencing the components in
nearly the same way. Additionally, as we could see that Albania is an outlier when studying
the results of NIPALS on the euro86 data set, we focused on the reduced data set.

Figure 3.15 shows the biplot of the first and second component of the X—data.

The first component is strongly (negative) influenced by infant mortality and baby under-
weight. But also the percentage of women, the population growth and supplied calories per
day are a main part of this component. The number of women in the age to give birth is
the main part of the second component. The number of inhabitants per doctor and calorie
supply also have great influence. Furthermore all of the other variables except the percentage
of women more or less determine the second component. In the part of the biplot describing
high infant mortality and population growth (i.e., the negative part of the first component)
we find most eastern countries (ro, h, su, ddr, bg, cs), combined with baby underweight we
also see yu, pl and p. The western countries all have low values for infant mortality, baby
underweight and percentage of women. They can be divided into countries with a higher
number of women in the age to give birth and inhabitants per doctor, mostly the northern
countries (nl, dk, n, sf, s, gb), Germany (d), Italy (i) and Austria (a), and those with lower
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Figure 3.15: Biplot of PLS1 for X—data of euro86 without Albania (al)
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numbers in these variables (b, ch, e, irl). France (f) seems to be neutral with regard to the
second component. The biplot for the y—data (Figure 3.16) naturally shows dependencies
of both the first and the second component on the variable female life expectation. The
relation between the variable and the component seems to be equally strong in both cases.
Countries with high female life expectation are i, gr, f, nl, ch, n and s whereas those with
low female life expectation are mainly the eastern countries such as ro, su, cs, bg, yu and h,
but also irl.
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Figure 3.16: Biplot of PLS1 for y-data of euro86 without Albania (al)

The screeplots for the X— and y—data (Figures 3.17 and 3.18) again show the proportion of
the total variation explained by the calculated components. In the case of the X—data the
first and second component explain 35% of the total variation. 3 components would already
explain 54% and if we took 6 components into account we would fulfill the rule of thumb and
get 90%. The corresponding percentage of explanation of the total variance of the y—part is
40% for 2, 52% for 3 and 88% for 6 components.

Figures 3.19 and 3.20 graphically represent the combination of X and y-data.

The plot for the first PLS components (Figure 3.19) makes a clear distinction between
countries with high infant mortality, baby underweight and population growth together
with low female life expectation and those clearly opposed. This is nearly a division into

40



Total Variation
0.15 0.20 0.25

portion on

0.10

0.05

0.00

1 2 3 4 5 6 7

Index of Component
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eastern (su, ro, yu, h, pl, ddr, cs and bg) and western countries (f, nl, ch, s, sf, e, gh, d, b,
dk, i and gr). Only the western countries Austria (a), Ireland (irl) and Portugal (p) show
tendencies to higher infant mortality, baby underweight, population growth and low female
life expectation.

In the first quadrant of the plot of the second components (Figure 3.20) we find countries
with a high percentage of women in the age to give birth and high female life expectation
such as i, nl, p, pl, gb, yu, n and d. The second quadrant shows those countries where a
low percentage of women in the age to give birth dominates (ch, gr, f and h). In the third
quadrant we find countries with higher infant mortality, population growth and portion of
calories per day together with a low female life expectation: cs, bg, ddr, ro, irl, e, su, b.
Finally in the fourth quadrant there are countries with slightly higher numbers of women
in the age to give birth and inhabitants per doctor behaving neutral regarding female life
expectation, namely, a, sf, s and dk.
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Chapter 4

Robust Partial Least Squares

Generally, the aim of robust statistics is to handle data as in the classical way but additionally
to identify and treat the appearance of outliers. Outliers can occur everywhere and at any
time by various reasons.

Thinking of chemometrics, simple examples of outliers would be measurement errors, pro-
duced by a room temperature too high for the instrument or different calibrations of the
recording instrument when analysing the same substances. Looking at the PLS literature
there are some attempts for robustification of the PLS method which will be described in
the sections below.

Still there are also critical voices from Martens and Naes (1989): They plead for not using
robust methods as they fear a loss of information from simple deletion of the outlying mea-
surements. They prefer any program to give a warning if an outlier occurs so that the user
is informed and may handle the data analysis differently, adjusted to the new situation.

At this point we should stress that good robust statistical methods do not delete or ignore
outliers, but treat them separately in the analysis. After the robust fit of the model outliers
can be detected by their large residuals.

The problem with robustifying PLS is how to keep the orthogonality of the scores T.
There are two main approaches to the robustification of PLS. The first idea is to use the
[teratively Reweighted Least Squares method (IRLS). In this method each data point is as-
signed with a certain weight (between 0 and 1), depending on its distance from the “middle”
of the data set relative to the spread of the data. Measurements which are far away from
the “middle” of the data set gain less weight than those in the “middle” of it. There are
different weight functions, based on the median and MAD (median of absolute deviations
from the median), for example. This IRLS principle can be applied to each regression of the
PLS algorithm in order to make every regression solution robust. Still it is an interesting
question if it is necessary to calculate each regression by means of IRLS or if it is sufficient
to apply IRLS to a chosen few. Wakeling and Macfie (1992) and Cummins and Andrews
(1995) introduce two similar methods of robustification of PLS with the help of IRLS. Griep
et al. (1995) compare the method presented in Wakeling and Macfie (1992) to two other
methods for robust PLS by robustification of single regressions within the PLS algorithm.
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The second approach can be found in Gil and Romera (1998). Instead of applying a ro-
bust regression method the regression coefficients are estimated with the help of a robust
covariance matrix.

In literature algorithms where only a part of the equations is robustified are called semi-
robust methods.

Now we will present these methods in detail.

4.1 Robustification by Iterative Reweighting

First we want to shortly introduce the reweighted least squares method (cf. Rousseeuw and
Leroy, 1987) and then—as an extension—the IRLS (Iteratively Reweighted Least Squares)
algorithm as lined out by Phillips and Eyring (1983).

Let us consider a simple linear regression equation without intercept of the form
y=x3+¢€
where both x and y are vectors and the scalar 3 is the regression coefficient which should

be estimated. The usual least squares solution for 5 would be

.
e —4

x'x

In reweighted least squares this solution is used to build a weight function which leads to a
robust regression solution.
Calculate the residual vector ~

r=y—xp.
With the help of

S = median(|r;|) ,i=1,...,n
we get the median standardized residuals
r

=g (4.1)

With these residuals from Equation (4.1) a weight matrix Q = diag(wy1, ..., wy,) is calcu-
lated. A weight function often used is the biweight function defined by

1— (7/c)?]® for |5y <e
= BT i) "

where ¢ is a sensitivity factor which is chosen according to each problem.

These weights are assigned to the data giving

Ql/2y
Q'/2x

M <
|
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where Q'/? stands for the elementwise square-roots of €. Hence we get a new model for the
weighted regression equation .
y=x0+¢
equal to .
Q'%y = (Q'*x)5+ &
with the resulting estimation of the regression coefficient

y x'Qy

x'x  x'Qx’

=0
Il

This reweighted least squares method is the basis for the iteratively reweighted least squares
(IRLS) method. In IRLS successive iterations are wrapped around this reweighted least

squares method. The newly gained B is used as B in the calculation of the residual vector
r to perform the next step. This procedure stops when § “converges”, i.e., the norm of the

difference between B and the newly calculated £ is smaller than a certain constant.

4.1.1 RPLS—Robust Partial Least Squares

The first to suggest a robust PLS procedure based on the IRLS approach were Wakeling
and Macfie (1992). In their paper they propose to use two weight matrices, one for the data
matrix X, the other for Y. Within the iteration there has to be a weight matrix for every
column of X, i.e., p matrices, and also for every column of Y, i.e., ¢ matrices. Additionally
these matrices have to be reweighted in each iteration.

Wakeling and Macfie (1992) called their method RPLS (Robust Partial Least Squares). We
will now present RPLS in detail.

For the robustification of the PLS2 algorithm two matrices M, ;1 = [my_1y, ..., Myp 1]
and Nj_; = [ny(_1),...,Dgp—1)] corresponding to the dimensions of E;_; and Fj,_; are
introduced. As starting values all elements are set to unity. These two matrices form weight
vectors for each variable.

RPLS now has the following iterative parts.

Form ®jy,_,, = diag(miih—1), M2i(h—1)s - - - » Mni(h—1)),% = 1,...,p, the diagonal matrix of
starting weights for the reweighted regression of e;4,_1y (which is the ith column of E;_;)
on uy. Apply the iteratively reweighted regression algorithm leading to the updated sample
weights ®;,_1). Now replace the solution of Step 1 in the classical PLS2 algorithm with the
following robust solution for wy, = (Wi, - .., Wpm)):

B eiT(h_l)‘I)z'(hq)uh
Wih) =

uI‘I)i(hfl)uh
and replace the matrix Mj_; by

My(p—1) = ‘I’;(/hzq)l
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where 1 is a vector of length n with all elements set to unity.
Normalize wy, as in Step 2 of the classical PLS2 algorithm.

In Step 3 substitute E;,_; with E;,_; @ Mj,_; where @ represents the elementwise multipli-
cation of two matrices of equal size and perform the regression giving the following least
squares solution:

th = (Eno1 QMy_1)wy,.

In analogy to Step 1 change Step 4 in the following way.

Form T, ;) = diag(nijh-1), N2j(h-1) - - s Mmjh-1)),J = 1,...,q, the diagonal matrix of
starting weights for the robust regression of f;;,_1) (which is the jth columnof Fj, 1) on ty.
Apply the iteratively reweighted regression algorithm leading to the updated sample weights
L'jn—1). Now replace the solution of Step 4 in the classical PLS2 algorithm with the following
robust solution for qx = (qi(n), - - -, Gen)):

G — £ Lit-vta
T Tyt

and replace the matrix N;,_; by
woy =T 1
Njh-1) = L jn-1)
where 1 is a vector of length n with all elements set to unity.
In Step 5 normalize q; as in the classical PLS2 algorithm.

In Step 6 substitute Fj, ; with F;, ;| @ N, _; and again perform the regression yielding the
least squares solution:

u, = (Frot @ Nisi)as.

The convergence check of Step 7 is performed in exactly the same way as in the classical
PLS2 algorithm. Wakeling and Macfie (1992) propose to calculate the final values for t;, and
u;, from the unweighted data by calculating

t, = Ep_iwy

u, = F_iqp.
They don’t make any comment about the calculation of p; in Step 8 and of b, in Step 11 so
we suppose they leave Steps 8 and 11 unchanged.

The data matrices are updated in the same way as in the classical PLS2 algorithm (Step
12).

A point of criticism, already stated by Wakeling and Macfie (1992) themselves, is the large
amount of computation time necessary to gain new weight matrices in every iteration.

Another crucial fact is that IRLS is no robust regression estimation as the weights, which
form the main part of IRLS, are deduced with the help of ordinary least squares so that they
may be influenced by outliers, especially by bad leverage points, i.e., outliers in x—direction.
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4.1.2 IRPLS

Cummins and Andrews (1995) present a slightly different version of a robust PLS procedure,
also based on the ideas of IRLS. This method has strong similarities to the RPLS method
proposed by Wakeling and Macfie (1992) which are definitely lined out in the paper of
Cummins and Andrews (1995).

The first difference to the method of Wakeling and Macfie (1992) is the usage of a slightly dif-
ferent weight function. Instead of calculating the median absolute deviation of the residuals
from 0, namely

S = median(|r;|) ,i=1,...,n,

they use the MAD (Median Absolute Deviation), i.e., the median absolute deviation of the
residuals from their median:

S =MAD(r;) ,i=1,...,n.

Additionally they suggest to adjust S by the multiplicative factor 1.4826 to make it consistent
for the standard deviation at the Gaussian model. They found convergence of the adjusted
MAD to the standard deviation in a performance study carried out on random normal
samples of size 50, 500 and 5000, whereas the unadjusted MAD converges very slowly.

They also suggest the usage of other weight functions than the biweight function but always
replace S by S. For all these weight functions they make proposals of default values for the
sensitivity factor ¢. For further information on the choice of the weight function and their
corresponding sensitivity factor confer Cummins and Andrews (1995).

For the algorithmic part Cummins and Andrews (1995) use the Tripos software product
SYBYL together with the macro package of the software, called SPL (SYBYL programming
language). In this software package a PLS algorithm is already implemented, which is also
able to perform weighted PLS, but we found no further information on the details of this
implemented algorithm.

Cummins and Andrews (1995) now suggest the following robustified version of the PLS2
algorithm, called IRPLS (Iteratively Reweighted Partial Least Squares), based on the im-
plementation of PLS in SYBYL:

Step 0: Choose a weight function.

Step 1: Perform an ordinary PLS regression analysis.

Step 2: Pass the regression residuals (Y-block errors) from Step 1 into the weight function.
Step 3: Perform a weighted PLS regression analysis using the weights just obtained.

Step 4: Pass the residuals from Step 3 into the weight function choosen.

Step 5: If a convergence criterion is met, stop; else go to Step 3.

Another change is done by Cummins and Andrews (1995): They pass the predicted residuals
instead of the ordinary ones into the weight funcion. They found their algorithm to give
better results by this change.
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Gil and Romera (1998), who present a summary of the existing robust PLS procedures aside
introducing a new one themselves, make a classification of the two methods presented yet
by the application of the weight function:

They call the RPLS method of Wakeling and Macfie (1992) a method of Internal Iterative
Reweighting, also called PLSIR by Gil and Romera (1998), for only applying the reweighted
regression model within each iteration.

The proposal of IRPLS by Cummins and Andrews (1995) is classified as External Iterative
Reweighted, called IRPLS by Gil and Romera (1998), because of the calculation of weights
after performing a PLS regression each time and their usage for the next PLS regression.

4.2 Robust Covariance Matrix Estimation

The idea of robust covariance estimation instead of using iteratively reweighted least squares
(IRLS) is introduced in Gil and Romera (1998).

They only present their method for the PLS1 algorithm where—as we have shown in Section
3.2-many simplifications come to pass. It would be interesting if and how an extension of
the robust covariance matrix to the PLS2 algorithm is possible.

They propose three variations of their main idea: PLSR, PLSR2 and PLSMR. They call
PLSR and PLSR2 partial robustification methods whereas PLSMR is a global robustification
approach.

Gil and Romera (1998) start with the assumption that the combined data [f, Eq] come from
a joint distibution with mean zero and a population covariance matrix

2 T
— Tt 6f0,E0
2[fo,Ed ( 5f0,E0 g, ) :

According to Helland (1990) the population loading vectors wy, are proportional to
6fo,E0 - EEOWh—l(W;erlEEoWh—l)_IWinlafo,Eo

with Wj,_; = [wy,..., wy_1] and a starting value of w; proportional to d¢, g,. With this
defintion every wy, only depends on the previous w1, ..., wy_1, dg g, and Xg,. They consider
these relations an alternative definition of the PLS1 algorithm.

PLSR

The basic idea in PLSR is that the data [fy, Eg] have a sample covariance matrix V of
dimension (p + 1) x (p+1):

o 52 8y
= E e fo f07EO
V [f0,Eo] ~ By .
6f0,E0 2Eo
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The idea is to calculate a robust version of the matrix V and then take the part correspond-
ing to the mixed covariances, after normalization, as w;. The values w; in the following
iterations are calculated analogous with replacement of E, and fy by E, | and f;, ;, respec-
tively.

This algorithm has the disadvantage that only w; is estimated robustly as the succeeding
values wy, h = 2, ..., k, are calculated from the residuals E, ; and f;, ; which are gained by
ordinary least squares regressions.

PLSR2

In contrast to PLSR Gil and Romera (1998) use a vector in PLSR2 built from robust esti-
mations V; of the covariance matrices of fy and each ey, i = 1,...,p, with Eq = [e()]:

~9 =
~ o 0. .
— _ fi fo,e 0):
V=360, = ( 5 0 ) ) )
fo.e0)yi  Ce(oyi

The vector wy then is equal to the normalization of the vector (gfo,e(o)i, e gfo’e(o)i). For the
following iterations wy, is obtained by replacing fy and Eq by f,_; and E;,_;, respectively.

In this method important characteristics such as affine equivariance for linear transformations
and efficiency, among others, are lost.

PLSMR

In this modfication (MR stands for matrix robust) Gil and Romera (1998) use the robust
estimate from the covariance matrix in PLSR (see Equation (4.2)). As in PLSR they choose
w; as the normalization of the vector S[fO’EO] but then they calculate the succeeding values
w, robustly, namely proportional to

S[fo,Eo] - 2Eovvhfl (WfoliEothl) 71W;713[f0,E0} :

In PLSMR every wy,h = 1,...,k, now really is a robust estimate but still this method is
only semi-robust as all other estimations are carried out with ordinary least squares.

As methods for the robustification of covariance matrices they propose the Stahel-Donoho
estimator (cf. Stahel, 1981; Donoho, 1982) and the minimum volume ellipsoid estimator
(MVE) of Rousseeuw (1985). Based on surveys of Maronna and Yohai (1995) they prefer
the Stahel-Donoho estimator.

According to simulation studies Gil and Romera (1998) think PLSMR to behave best com-
pared to classical PLS, PLSR, PLSR2, IRPLS and PLSIR.
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4.3 Other Proposals

Griep et al. (1995) introduce two other methods for the robustification of PLS. These methods
are only lined out for PLS1 and an enhancement to PLS2 seems to be difficult.

They start from the simplified version of PLS1 as introduced in Section 3.2, without looking
for orthogonal scores T. Their idea is to perform a robust regression in Step 1
T _ thflEh—l
Wy, =
NS /]

They suggest to apply the robust estimators LMS (cf. Rousseeuw, 1984) for an algorihtmic
implementation, and Siegel’s Repeated Median (Siegel, 1982).

Let us consider a linear regression equation of the form
y=XB+¢
where both X is a matrix of dimension n X p, y is a n-dimensional vector and the p-

dimensional vector B contains the regression coefficients which should be estimated.

The LMS (Least Median of Squares) estimator is similar to the classical LS (Least Sum of
Squares) estimator with the important feature that the sum is replaced by the median. The
residuals between true and estimated y—values are given by

r(B)=y-y=y-XB.

Then the LMS estimator is defined as

~

B = argminﬂmediaﬂi [r:(B)]?.

Unfortunately, the LMS estimator has disadvantages concerning asymptotic efficiency but
for a detailed study of the properties of the LMS estimator we refer to Rousseeuw and Leroy
(1987).

For Siegel’s Repeated Median we consider a subset of p observations
(Xi17 yil)a RN (Xip7 yip)-

First the parameter vector fitting these points exactly is computed. The jth coordinate
of this parameter vector is denoted by f3;(i1,...,4,). The coordinatewise definition of the
repeated median regression estimator now is

Bj = median;, (... (median; , 1)(median;, B; (i1, ..., iy))) .. .).

The disadvantage of this estimator is the large amount of computation time as all subsets
of p observations have to be computed.

Griep et al. (1995) compare these two methods to the IRLS method introduced by Wakeling
and Macfie (1992) and find IRLS still to perform best. This may result on one hand from
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the properties of the robust regression estimators used and on the other hand from the
application of these robust regression estimates to only the first regression equation in PLS1.
For further surveys we suggest to study the behaviour of other robust regression estimates
(cf., e.g., Rousseeuw and Leroy, 1987) and the differences occuring when applying robust
regression estimates to all regression equations. An example for another choice of a robust
regression estimator would be the LTS estimator (Rousseeuw, 1984) who has higher efficiency
and a fast algorithm (Rousseeuw and Van Driessen, 1998).
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Chapter 5

Outlook

In this work we presented the classical NIPALS and PLS algorithm and attempts for robus-
tification of PLS. Future work will focus on further development and analysis of robust PLS
algorithms.

As it seems to us there will be two main approaches (as could be seen in Chapter 4): Robus-
tification of the different steps of the PLS algorithm or robust estimation of the covariance
matrix describing the PLS model.

In this context a more detailed survey of the mathematical properties and their importance
for applications will be necessary as these properties will have to be maintained in robustified
versions of the algorithm. Also modified versions of the PLS algorithm may be interesting
in this context, e.g., the SIMPLS method proposed by De Jong (1993).

An interesting question concerning the robustification based on the different steps of the PLS
algorithm still is the performance of semi-robust methods compared to that of completely
robust methods, i.e., wether it makes sense to robustify each regression solution or the
robustification of some of them is sufficient as suggested by Wakeling and Macfie (1992).

It will also be important for practical applications to focus on the robustification of the PLS2
algorithm instead of PLSI.

Additionally to the introduction of NIPALS, PLS and the attempts of robustification pre-
sented in the chapters above we also made a short internet recherche concerning PLS. Apart
from links about literature we also found links to statistical software packages where PLS is
already implemented. A short summary of the most interesting links is given below.

http://disc-nt.cba.uh.edu/chin/PLSINTRO.HTM: Introduction to PLS by Wynne
W. Chin with many citations of PLS literature, contains link to homepage of Dr. Jack
McArdle.

http://kiptron.psyc.virginia.edu/disclaimer.html: Homepage of Dr. Jack McArdle,
possibility to download PLS-PC 1.8 for DOS developed by J.-B. Lohmoller.
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http://www.statsoftinc.com: Aside the base package of STATISTICA there is an add-
on called STATISTICA Advanced Linear/Non-Linear Models including a whole part
only on PLS.

http://www.statsoftinc.com/textbook/stpls.html: Description of NIPALS, SIMPLS
(cf. De Jong, 1993), PLS and cross-validation.

http://www.tripos.com/software/sybyl.html: Software SYBYL from TRIPOS as used
in Cummins and Andrews (1995).

http://www.gsm.uci.edu/ ~ joelwest /SEM /PLS.html: List of links with short descrip-
tions of books, articles, software and application.

http://www.sas.com: PLS procedure in SAS/STAT software, .pdf document with exam-
ples of PLS.

http://www.galactic.com/products/: Chemometrics software, especially spectroscopy,
GRAMS with add-on package PLSplus/I(Q), containing PLS1 and PLS2.

http://www.eigenvektor.com/PLS_Toolbox.html: Add-on package PLS_Toolbox 2.1
for MATLAB, also containing PCA, PCR (principal components regression), Ridge
Regression, Continuum Regression and nonlinear PLS Regression.

http://www.gsu.edu/ ~ mkteer/relmeth.html: Page for Structural Equation Modelling
(SEM), PLS is mentioned as related method to SEM.

http://cran.r-project.org: A PLS package for R is under development.

This short list-aside the many articles that can be found in the bibliography-shows how
much work has already been done in the field of PLS but also gives a slight impression of
what could still be done in future works.
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Appendix A

Data

A.1 The districts Data Set

The districts data set is taken from a survey carried out at the Institute of Statistics and
Probability Theory at the Vienna University of Technology in 1996 (cf. Rauth and Sedlacek,
1996). The aim of this project was to find the (economic) characteristics of the Austrian
regions, similar to those leading to grants from the European Union. By doing so a data set
emerged consisting of 17 variables and 99 observations.

The variables describe such characteristics as percentage of children, adults and seniors,
employees in industry, trade, tourism, service and agriculture, unemployed, level of educa-
tion (university, secondary school, primary school), (im-)migration, not daily commuters,
commuters to another district, mountain farmers and tourist stays. A value greater than
1 in variable (im-)migration marks a region with immigration whereas a value less than 1
shows migration. The variable names used as abbreviations in graphical representations are
summarized in Table A.1.

The observations are the corresponding numbers from the Austrian political districts. These
political districts include big cities (Vienna, Graz, Klagenfurt, Salzburg, Linz, Eisenstadt,
Innsbruck), regions of high industrial development (Gmunden, Hallein, Dornbirn, Bregenz,
...) as well as touristic regions (Rust, Kitzbiihel, Reutte, ...) and agricultural regions (Hol-
labrunn, Tulln, Zwettl, Hartberg, ...). A complete listing of all political districts of Austria
is given in Table A.2.

A.2 The euro86 Data Set

The euro86 data set was collected from statistical year books giving an overview of the
populational characteristics of the European countries around 1986.

For the 25 European countries (the observations) 9 variables were collected. In detail they are
the average growth of population from 1986 to 2000, the percentage of women in the age to

%)



give birth (1985), percentage of women per 100 men (1985), life expectation of women (1986),
life expectation of men (1986), infant mortality (1986), inhabitants per doctor (1981), daily
provided calories per person (1985) and percentage of infants born underweighted (1984).
The variable names used in the various plots are reprinted in Table A.3. A list of the
abbreviations of the European countries (observations) is given in Table A.4.

One of the European countries, namely Albania, can easily be detected as an outlier. Com-
pared with the median of the European values it has a 9 times higher population growth, 4
times the infant mortality, 4.5 times the number of inhabitants per doctor and 20 percent
less calories per person provided daily.

A.3 The oeamtc Data Set

The oeamtc data set was collected from the journal of the Austrian Automobile Association
(abbreviation: OEAMTC) describing 18 cars consuming diesel.

As a help for purchasing decisions 21 characteristics were provided: price (in Euro), tax
(which in Austria depends on the performance; in Euro), the costs of a standard liability
insurance (in Euro) and a full comprehensive insurance (in Euro), capacity (in ccm), perfor-
mance (in hp) and torque (in rpm) of the motor, length (in mm), width (in mm), height (in
mm), weight of the empty car (in kg), highest possible total weight (in kg), minimum size
of the boot (in 1), maximum size of the boot (in 1), highest speed (in km/h), acceleration
(in sec), elasticity (in sec), consumption cross-country (in 1), consumption in town (in 1),
consumption total (in 1) and test consumption (in 1). The abbreviations for the variable
names are given in Table A.5.

Different types of cars were under survey, namely from micro to maxi over compact, also
including limousines and vans. However, there are no SUVs (sports utility vehicle), sports
or cross-country cars. So a wide range of cars is examined, sometimes with only one respre-
sentative, instead of one special class of cars. The exact names of all cars can be found in
Table A.6.

Still some cars appear as outliers as their characteristics in at least one variable is very
different from the rest of the examined cars, e.g., the only van in this data set (Chrysler
Voyager) has a maximal boot volume of 47001 whereas the median is 1252.5]. Another
example would be the smallest car (Seat Arosa) with respect to the minimal boot volume
or the cross-country consumption.

This data set is useable for regression (and therefore for PLS) if we divide it into a Y-
data matrix consisting of the variables price, tax, liability insurance and full comprehensive
insurance and a X-data matrix consisting of the rest of the variables. The underlying
thought of this partition is that the features of the car sum up its price, whereas taxes and
the insurances rely on the performance and the price, also.
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Table A.1: Variables of districts Data Set

Symbol

Explanation

Children
Adult+Youth
Old

Industry

Trade
Tourism

Service

Agriculture
Unemployed
University
Sec.School
Prim.School

Im/migration

Comm.n.daily
Comm.distr.

Mountain-farm
Tourist-stays

percentage of children (beyond 15 years) in the resident
population

percentage of youth and adult people (15 to 60 years)
in the resident population

percentage of older and old people (over 60 years) in the
resident population

portion of employees in the manufacturing industry, in
the industry, and in the building trade, in percent of the
total employees

portion of employees in the trade in percent of the total
employees

portion of employees in the lodging and catering trade
in percent of the total employees

portion of employees in service in percent of the total
employees (this measurement includes credit and insur-
ancy trade, personal, social, and public service, traffic
and news service)

portion of employees in agriculture and forest in percent
of the total employees

portion of unemployed people in percent of the resident
population

portion of people with university education in percent
of the resident population

portion of people with secondary school in percent of
the resident population

portion of people with primary school, technical college,
or apprenticeship in percent of the resident population
number of total employees in workshop places divided
by the number of the total employees of the resident
population (This number should express the economic
situation of the district, and it shows if there is immi-
gration or migration.)

portion of commuters commuting not daily, in percent
of the total employees of the resident population
portion of commuters commuting to another district, in
percent of the total employees of the resident population
portion of mountain farms in percent of all farms
number of overnight stays per year in the tourism

57




Table A.2: Observations of districts Data Set

AM

BL
BM
BN
BR
BZ
DL
DO

EF
EU
FB
FE
FF
FK
FR

GD
GF
GM
GR
GS
GU
HA
HB
HE
HL
HO

IL

M
JE
JO
JU

KB
KI

KL
KN
KO
KR
KS

KU

LA
LB
LE
LF
LI

Amstetten

Bregenz

Bruck an der Leitha
Bruck an der Mur
Baden

Braunau am Inn
Bludenz
Deutschlandsberg
Dornbirn
Eisenstadt (Stadt)
Eferding
Eisenstadt-Umgebung
Feldbach
Feldkirchen
Fiirstenfeld
Feldkirch

Freistadt

Graz (Stadt)
Gmiind
Ganserndorf
Gmunden
Grieskirchen
Giissing
Graz-Umgebung
Hallein

Hartberg

Hermagor
Hollabrunn

Horn

Innsbruck (Stadt)
Innsbruck (Land)
Imst

Jennersdorf

Sankt Johann im Pongau
Judenburg
Klagenfurt (Stadt)
Kitzbiihel
Kirchdorf an der Krems
Klagenfurt (Land)
Knittelfeld
Korneuburg

Krems (Land)
Krems an der Donau (Stadt)
Kufstein

Linz (Stadt)
Landeck

Leibnitz

Leoben

Lilienfeld

Liezen

LL
LZ
MA
MD
ME
MI
MU
MZ
NK
NS
0)
ow
P
PE
PL
RA
RE
RI
RO
RT
S
SB
SD
SE
SL
Sp
SR
SV
SZ
TA
TU
Uuu
VB
VI
VK
VL
VO
w
WB
WE
WL
WN
WO
WT
WU
WY
W7Z
ZE
ZT

Linz (Land)

Lienz

Mattersburg
Modling

Melk

Mistelbach

Murau
Miirzzuschlag
Neunkirchen
Neusiedl am See
Oberpullendorf
Oberwart

Sankt Polten (Stadt)
Perg

Sankt Polten (Land)
Radkersburg

Reutte

Ried im Innkreis
Rohrbach

Rust (Stadt)
Salzburg (Stadt)
Scheibbs

Schirding

Steyr (Land)
Salzburg-Umgebung
Spittal an der Drau
Steyr (Stadt)

Sankt Veit an der Glan
Schwaz

Tamsweg

Tulln
Urfahr-Umgebung
Vocklabruck

Villach (Stadt)
Volkermarkt

Villach (Land)
Voitsberg

Wien

Wiener Neustadt (Land)
Wels (Stadt)

Wels (Land)

Wiener Neustadt (Stadt)
Wolfsberg
Waidhofen an der Thaya
Wien-Umgebung

Waidhofen an der Ybbs (Stadt)

Weiz
Zell am See
Zwettl
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Table A.3: Variables of euro86 Data Set

1 | pop_growth | 4
give_birth
3 | women% 6

[\]
ot

lifeexpf | 7
lifeexp_m | 8
inf_mort | 9

inhab/doc
calorie
baby_underw

Table A.4: Observations of euro86 Data Set

a | Austria h | Hungary

al | Albania i | Italy

b | Belgium irl | Ireland

bg | Bulgaria n | Norway

ch | Switzerland nl | The Netherlands

cs | Czechoslovakia p | Portugal

d | Western Germany | pl | Poland

ddr | Eastern Germany | ro | Romania

dk | Denmark s | Sweden

e | Spain sf | Finland

f | France su | Sovjet Union

gb | Great Britain yu | Yugoslavia

gr | Greece

Table A.5: Variables of oeamtc Data Set

1 | Price 8 | Length 15 | Speed
2 | Tax 9 | Width 16 | Acceleration
3 | Liab.Ins 10 | Height 17 | Elasticity
4 | F.C.Ins 11 | Weight.Empty | 18 | Cons.CC
5 | Capacity 12 | Weight.Total | 19 | Cons.Town
6 | Performance | 13 | Boot.Min 20 | Cons.Total
7 | Torque 14 | Boot.Max 21 | Cons.Test
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Table A.6: Observations of oeamtc Data Set

© 00~ O Tl = W N+

Fiat Stilo

Mercedes C220 CDI S.C.
Renault Clio 1.5 dCi
Chrysler Voyager CRD
Hyundai Trajet 2.0 CRDi
Alfa Romeo 147 JTD
Ford Focus 1.8 TDCI
Peugeot 307 XT

VW Golf Rabbit TDI

10
11
12
13
14
15
16
17
18

Seat Arosa

Renault Megane 1.9 dCi

Ford Mondeo Traveller 2.0 TDdi Ghia
Skoda Fabia 1.9 TDI Elegance

Fiat Multipla JTD ELX

Renault Scenic 1.9 DTI

Citroen Picasso 2.0 HDI

Opel Zafira 2.0 DTI 16V

Nissan Almera Tino Lux.
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Appendix B

Listing of the Algorithms

A complete listing of the algorithms (NIPALS, PLS2 and prediction for PLS2) as imple-
mented in R is displayed in this section. The versions of the algorithms are the ones pre-
ferred and used in this work. Other PLS or NIPALS algorithms differ slightly concerning
the normalization or calculation of residuals. From the aspect of programming techniques
there is no claim of optimality by the author. The programming language itself is R-specific.

B.1 The NIPALS Algorithm

Within the NIPALS algorithm only mean-centering of the data matrix is performed. Should
it be necessary to scale the data, this has to be done in advance.

function (X,k,it=10,tol=.0001)

# fct nipals calculates the principal components

#f of a given data matrix X according to

ff the NIPALS algorithm (Wold, 1966).

f X...data matrix, k...number of components,

f it...maximal number of iterations per component,

# tol...precision tolerance for calculation of components

{

X <- scale(X,center=TRUE,scale=FALSE) f mean-centering of data matrix X
nr <- 0

T <- NULL

P <- NULL

for (h in 1:k){

th <- X[,1] f# starting value for th is 1st column of X

ende <- FALSE

f 3 inner steps of NIPALS algorithm

while (!ende){

nr <- nr+l

ph <= t((t(th) %*%X) * as.vector(1/(t(th)%*%th))) # LS regression for ph
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ph <- ph * as.vector(1/sqrt(t(ph)%*%ph)) f normalization of ph
thnew <- t(t(ph)%*%t (X)) # LS regression for th

prec <- t(th-thnew)%*% (th-thnew) f calculate precision

th <- thnew ff refresh th in any case

# check convergence of th

if (prec <= tol) {

ende <- TRUE

}

else if (it <= nr) { f too many iterations

ende <- TRUE

cat(‘‘\ nWARNING! Iteration stop in h=’’,h,‘‘ without convergence!\ n\ n’’)

}

}

X <= X-(th%*%t (ph)) § calculate new X
T <- cbind(T,th) f§ build matrix T

P <- cbind(P,ph) ff build matrix P

nr <- 0

}

return(T,P)

}

B.2 PLS Algorithms

B.2.1 The PLS2 Algorithm

The PLS2 algorithm is the main algorithm in this work and was implemented in R as follows:

function (X,Y,k,it=10,tol=.0001)
fct pls2 calculates the partial least squares model for multidimensional Y
according to the PLS2 algorithm.
X...X-data matrix, Y...Y-data matrix, k...number of components,
it...maximal number of iterations per component,
at least 2 iterations have to be performed!
tol...precision tolerance for calculation of components

<- scale(X,center=TRUE,scale=TRUE) f mean-centering, scaling of data matrix X
scale(Y,center=TRUE,scale=TRUE) f mean-centering, scaling of data matrix Y
<- NULL
<- NULL
<- NULL
<- NULL
<- NULL
<- NULL

W =0 'Y - < >~ TFE TE TE TE T =%
N
1
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for (h in 1:k){

nr <- 0

uh <- Y[,1] f starting value for uh is 1st column of Y

ende <- FALSE

f inner steps of PLS2 algorithm

while (!ende){

nr <- nr+l

wh <= t((t(uh)%*%X) * as.vector(1/(t(uh)%*%uh))) f§ LS regression for wh
wh <- wh * as.vector(1/sqrt(t(wh)%*%wh)) ff normalization of wh

thnew <- t((t(wh)%*%t(X))) § LS regression for th

gh <= t((t(thnew)%*%Y) * as.vector(1/(t(thnew)%*%thnew))) f LS regression for gh
gh <- gh * as.vector(1/sqrt(t(qh)%*%qh)) # normalization of gh

uh <~ t((t(qh)%*%t(Y))) f LS regression for uh

if (nr>1) {
prec <- t(th-thnew)%*%(th-thnew) f calculate precision
¥

th <- thnew f{ refresh th in any case

# check convergence of th after 2nd iteration onwards

if (ar>1) {

if (prec <= tol) {

ende <- TRUE

}

else if (it <= nr) { { too many iterations

ende <- TRUE

cat(‘‘\ nWARNING! Iteration stop in h=’’,h, ‘¢ without convergence!\ n \ n’’)

}
}
}

ph <- t((t(th) %*%X) * as.vector(1/(t(th)%*%th))) # LS regression for ph
th <- th * as.vector(1/sqrt(t(ph)%*%ph)) # fitting of th

ph <- ph * as.vector(1/sqrt(t(ph)%*%ph)) # normalization of ph

bh <- (t(th)%*%uh) * 1/(t(th)%*%th) # LS regression for bh

X <- X - (th%*%t (ph)) # calculate new X

Y <- Y - (th%*%t(gh)) * as.vector(bh) # calculate new Y

T <- cbind(T,th) f§ build matrix T

W <- cbind(W,wh) ff build matrix W

Q <- cbind(Q,gh) § build matrix Q

U <- cbind(U,uh) # build matrix U

P <- cbind(P,ph) f#f build matrix P

B <- c(B,bh) f build vector of diagonal elements of matrix B
}

return(T,P,U,Q,W,B)

}
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B.2.2 Prediction with PLS2

Note that the X'—matrix for prediction has to be mean-centered and scaled in advance and
with the same values as the mean-centering and scaling was done for X for the calculation
of the PLL.S2 model parameters.

function(X’,W,P,Q,B,k)

f fct predpls2 calculates predicted T and predicted Y

f X> ... data matrix for prediction

f Y, W, P, Q, B ... parameters calculated by PLS2
f k ... number of components

{

T <- NULL

for (h in 1:k){

th <- (X’ %*% P[,h]) * as.vector(1/(t(P[,h]1)%*%P[,h1))
X’ <= X’ - (th %*% t(P[,h]))

if (h==1) Y <- as.vector(B[h]) * (th %*% t(Q[,h]))

else Y <- Y + as.vector(B[h]) * (th %*% t(Q[,h]))

T <- cbind(T,th)

}

return(T,Y)

}

B.2.3 The PLS1 Algorithm

The PLS1 algorithm,i.e., PLS2 for a one-dimensional y—part, was implemented in the fol-
lowing way.

function (X,y,k)
f fct plsl calculates the partial least squares model for onedimensional y
# according to the PLS1 algorithm (Wold, 1966) .
f X...X-data matrix, y...y-data vector, k...number of components,
no iteration, no convergence checks

<- scale(X,center=TRUE,scale=TRUE) f mean-centering and scaling of data matrix X
<- scale(y,center=TRUE,scale=TRUE) f mean-centering and scaling of data vector y
<- NULL

QO =g YA M
0

NULL
<- NULL
<- NULL
<- NULL
<- NULL

for (h in 1:k){

wh <- t((t(y)%*%X) * as.vector(1/(t(y)%*%y))) f LS regression for wh

wh <- wh * as.vector(1/sqrt(t(wh)%*%wh)) # normalization of wh

th <= t((t(wh) %*%t (X)) * as.vector(1/(t(wh)%*%wh))) # LS regression for th
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ph <= t((t(th) %*%X) * as.vector(1/(t(th)%*%th))) § LS regression for ph
th <- th * as.vector(1/sqrt(t(ph)%*%ph)) # fitting of th

ph <- ph * as.vector(1/sqrt(t(ph)%*%ph)) f normalization of ph
bh <- (t(th)%*%y) * 1/(t(th)%*%th) § LS regression for bh

X <= X - (th%*%t (ph)) § calculate new X

<- y - th * as.vector(bh) f calculate new y

<- cbind(T,th) { build matrix T

<- cbind(W,wh) { build matrix W

cbind(q,1) f build vector q

<- cbind(P,ph) § build matrix P

<- c(b,bh) f§ build vector b of diagonal elements of matrix B

~— o va = A<
A
I

return(T,P,U,W,q,b)

}
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