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Chapter 1

Introduction

The interaction of short and ultra-short laser pulses with clusters has be-
come a broad area of research over the past ten years. When it comes to
the emission of x-ray radiation from laser-induced plasmas, rare gas clus-
ters combine the advantages of solid and gaseous targets. Like solids, they
provide large x-ray yields, yet they are debris-free, just like gaseous targets.
Characteristic x-ray radiation produced by K, L and M shell vacancies has
been observed for argon and krypton clusters[1, 2]. L and M shell emission
could be obtained with xenon clusters. The clusters are irradiated by laser
pulses with pulse lengths ranging from several femtoseconds to a few picosec-
onds and intensities from ∼ 1015Wcm−2 up to ∼ 1018Wcm−2. The strong
laser field ionizes the atoms in the cluster and the quasi-free electrons in the
cluster are accelerated. If the electrons are heated up sufficiently, inner shell
vacancies in the cluster atoms can be created be electron impact ionization.
These vacancies are the origin of the measured characteristic x-ray radiation.
As the electrons in the clusters are heated up, some of them will eventually
leave the cluster, thus causing the build-up of an overall charge of the cluster.
This eventually leads to the Coulomb explosion of the cluster. As the cluster
expands rapidly, the probability for electron impact ionization of the cluster
atoms drops dramatically, and the emission of x-rays ceases. This specific
feature of cluster targets could possibly be used for the production of ultra-
short x-ray sources. The analysis of the x-ray emission also gives valuable
information about the evolution of the plasma inside the cluster, as the pro-
duction of inner shell vacancies is directly linked to the electron dynamics.
Although there are many theoretical studies of the plasma dynamics in clus-
ters [3, 4, 5, 6, 7, 8, 9, 10], there is to date a lack of quantitative predictions
for x-ray yields.

Recent experiments [2, 11, 12, 13] show an unexpectedly low laser in-
tensity threshold for the production of x-ray radiation. The mean energy a
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: Evolution of the x-ray yield with the laser intensity for an argon
cluster [12]. The intensity threshold for the x-ray production lies at Ith ≈ 2.0·
1015Wcm−2. The dashed line indicates the threshold that would correspond
to the intensity where the ponderomotive energy is higher than the K-shell
binding energy.

free electron acquires in an oscillating laser field of amplitude F is called the
ponderomotive energy and is given (in atomic units) by:

UP =
F 2

4ω2
. (1.1)

At first glance, the electrons in the cluster appear to be mainly accelerated
by the laser field. One would therefore expect a threshold for the production
of inner shell vacancies by electron impact ionization, that would correspond
to the laser intensity, where the ponderomotive energy of the electrons in
the field is equal to the ionization energy of the bound inner shell electrons.
For argon K-shell electrons, the binding energy is ∼ 3keV, thus suggesting
an intensity threshold at Ith ≈ 3.5 · 1016Wcm−2. Surprisingly, first experi-
ments found a threshold intensity as low as Ith ≈ 2.0 · 1015Wcm−2 (fig. 1.1)
for clusters with N ≈ 2.8 · 105 argon atoms and for pulses with a wave-
length λ = 800nm and a length of τ = 60fs (at full width half maximum,
FWHM). For this laser intensity the ponderomotive energy is of the order of
UP ≃ 75eV, more than one order of magnitude below the energy threshold
for K-shell electron-impact ionization of argon. The threshold can be even
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lower for longer pulses durations. The value of the threshold depends on the
characteristics of the laser (wavelength and pulse length) as well as of the
clusters (cluster size and atomic species). These experiments show clearly
that additional heating mechanisms are at play inside the cluster.

The underlying physics of the efficient electron heating to energies well
above UP within only ∼ 20 optical cycles has not yet been convincingly
explained by any theory. There are different theoretical approaches to the
study of electron acceleration mechanisms in clusters. In the nanoplasma
model a quasi-resonant absorption was proposed [3] that assumed a matching
of the laser frequency and the plasma frequency of the electron plasma. The
quantitative conclusions drawn from this model are not in agreement with
the experimental results and the model can not explain the low intensity
threshold for x-ray production [12]. As we will discuss in chapter 7, because
of the short duration of the laser pulse (FWHM τ ≃ 60fs or ∼ 24 optical
cycles) and the high density of the plasma, the resonance condition is only
fulfilled in certain parameter ranges. Alternatively, for small clusters (up
to ∼ 1000 atoms) a quasi-resonant periodic reflection of electrons at the
cluster boundaries was suggested[4, 5]. Such a mechanism seems unrealistic
for large cluster sizes and low laser intensities as the time to travel across
the cluster becomes much larger than the laser period. Molecular dynamic
simulations [6, 7, 8] are limited to about 1000 atoms and results obtained for
small clusters are difficult to scale to larger sizes. The focus of many of these
simulations was primarily on the charge state and the expansion[6, 8]. The
recently proposed microscopic particle in cell method [9] reaches clusters of
25000 atoms and proposes a dephasing between the dipole moment of the
cluster and the laser field as heating mechanism. However as the simulation
runs are very long (several weeks for one configuration), no detailed study of
the parameters has yet been done.

In this work we examine a new pathway to efficient heating so far not
considered or, by the way of unrealistic choices for core potentials [5, 8, 7],
underestimated in previous simulations: an electron can gain kinetic energy
in the laser field well beyond the ponderomotive energy within a few optical
cycles if its velocity vector is always aligned with the field vector (see fig-
ure 1.2). Flipping the electron velocity vector as the electric field changes
direction every half-cycle can occur by backscattering at ionic cores in the
cluster. This process can be viewed as a close relative to the Fermi shuttle
acceleration [14, 15] where the ionic core plays the role of the stationary wall
while the laser field plays the part of the moving wall. Elastic electron ion
scattering was neglected in some of the previous models [4, 10] based on the
argument that the mean-free path for elastic scattering, λe = (nσe)

−1 (σe:
elastic electron-ion scattering cross-section), exceeds, for small clusters, the
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cluster diameter D. However for large clusters λe . D. Other simulations
employing unrealistic core potentials such as softened Coulomb potentials
fail to capture the influence of the relatively large probability for large-angle
scattering dσe

dθ
(θ > 90◦) essential for efficiently flipping the direction of the

velocity vector. The importance of the choice of the ionic scattering potential
has also been discussed in Ref. [16] for the case of vacuum ultraviolet (VUV)
laser pulses.

laser 
field

electron 
velocity

Figure 1.2: Evolution of the velocity of an electron in a laser field. A free elec-
tron has no effective velocity gain beyond the quiver velocity. However, if the
velocity of the electron is flipped periodically, the electron can monotonically
increase its kinetic energy in the laser field.

To test the efficiency of this heating mechanism and make quantitative
estimates for the x-ray yields, we have developed a Monte Carlo simulation,
which allows us to analyse the importance of different mechanisms for the
heating of the cluster electrons. In the next chapter we will give an overview
of the simulation method and some fundamental physical mechanisms like
over-barrier ionization and x-ray production will be introduced. In the third
chapter we will study the efficiency of elastic electron-ion scattering as a
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heating mechanism for electrons in a laser field. For this we will switch off
any competing heating mechanism. In the following chapters we will add
physical features to the simulation of the cluster, making it more and more
realistic. Each of the mechanisms introduced will be studied with respect to
its influence on the electron heating. This procedure allows to distinguish
the influence of the different mechanisms at play in the electron dynamics.
Chapter four will introduce the charging and expansion of the cluster, as well
as the subsequent monopole field acting inside and outside the cluster. The
influence of the collective electron motion in the laser field which gives rise
to a dipole field will be studied in chapter five. Chapter six will deal with
the importance of electron-impact ionization of the cluster ions. Each of the
models studied in this work will include some of these mechanisms. Table
1.1 gives an overview of the ingredients for each model. Finally, in chapter
seven the parameter dependencies of the x-ray yield will be tested and the
results compared to the experimental findings.

model laser elastic electron- cluster charging dipole electron-impact
field ion scattering and expansion field ionization

1 + − − − −
2 + + − − −
3 + − + − −
4 + + + − −
5 + − + + −
6 + + + + −
7 + − + + +
8 + + + + +

Table 1.1: Overview of the processes included (+) and neglected (−) in each
model.



Chapter 2

The simulation: overview of the
method and first ingredients

In the experiments [1, 2, 13] argon clusters with up to a mean number
N = 2.8 · 105 of atoms were produced. Charge states Arq+ up to q = 16
were detected. This implies that up to Ne = N × q electrons and N ions
have to be included in the simulation. As a molecular dynamics simulation
with as many particles exceeds by far computer resources available today,
we have opted for a Classical Trajectory Monte Carlo (CTMC) simulation
with a mean field approach. Our Monte Carlo ensemble consists of NMTC

electrons that are scaled to the actual number of electrons Ne in the cluster
by a scaling factor. The different physical mechanisms at play in the cluster
will be introduced one by one in the next chapters. In the final version of
the simulation, later referred to as model 8, the following elements will be
included: After ionization from an atom or an ion at a time t0, each elec-
tron is propagated classically. The equation of motion for the electron is
solved using the velocity Verlet algorithm (see appendix B). The electron
will experience not only the laser field, but also the mean field arising from
the displacement of the electron distribution relative to the ionic background
charge. Furthermore the electron can undergo elastic scattering at ionic cores
and produce new electrons by electron impact ionization, which is also the
mechanism which produces the inner-shell vacancies necessary for the emis-
sion of x-ray photons. Because of their large inertia, the motion of the cluster
atoms (or ions) caused by the Coulomb explosion of the cluster happens on
a much larger time scale than the movement of the electrons. We can there-
fore treat the cluster ions as a uniform spherical background charge, with
a time dependent radius R(t). Electron-ion scattering and electron impact
ionization have then to be handled by a stochastic approach. To take into
account interactions that depend on the total electron density distribution

8
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ρe(~r, t) a mean field is evaluated after each time step. These mechanisms
will be explained in detail in the next chapters. However some fundamental
ingredients of the simulation will already be introduced in this chapter: field
ionization, which is the simplest mechanism to create the quasi-free electrons
in the cluster, the equation of motion of the quasi-free electrons and the cre-
ation of x-ray photons, which allow to compare the model in its different
stages to the experimental findings. Atomic units (see appendix A) are used
throughout this work unless otherwise stated.

2.1 Field ionization

We refer to the ionization of the atoms (or ions) in the cluster as inner
ionization, as opposed to outer ionization referring to charging of the cluster
as quasi-free electrons leave the cluster. The inner ionization creates quasi-
free electrons inside the cluster. We do not simulate the atomic structure
of the cluster atoms and ions, therefore the simulation for a given electron
begins with its ionization out of the atom or ion at the time t0. Each time
an inner ionization event occurs, the number of simulated electrons NMTC

increases by one. NMTC is directly proportional to the number of quasi-
free electrons in the cluster Ne. The average charge state q of the ions
inside the cluster is determined by q = Ne

N
. The two ionization mechanisms

at play in the cluster are field ionization and electron impact ionization.
Field ionization is responsible for the creation of the first quasi-free electrons.
These electrons can then be accelerated and ionize more electrons by electron
impact ionization. This mechanism will be treated in chapter 6. We focus in
the following on field ionization.

The field inside the cluster tilts the atomic potential of the atoms, thus
allowing electrons to escape from the atom (see fig. 2.1). Depending on the
binding energy of the electron and the field strength, the electron can either
tunnel through the potential barrier, or, if the field is strong enough, the elec-
tron can escape the atom by over-barrier ionization. The contribution from
tunneling [17] can be neglected, as the time scale of a laser femtosecond pulse
is too short to obtain a sufficient probability for tunneling: the field strength
exceeds rapidly the threshold for over-barrier ionization. The threshold field
strength Fth necessary for over-barrier ionization to take place, for an ion
with charge state q and an ionization potential Wq, is given by the Bethe
rule [18]:

Fth =
W 2

q

4(q + 1)
. (2.1)

For the first ionization (q = 0) of the atoms, the threshold field strength Fth
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1

2

Figure 2.1: Atomic potential (dotted curve) and atomic potential in constant
electric field (solid line). The two ionization mechanisms that occur when
the laser field acts on the atomic potential are schematically represented: 1:
over-barrier ionization, 2: tunnel ionization

must be reached by the laser field FL(t0) = Fth. At the time t0 all the cluster
atoms will be singly ionized and N quasi-free electrons will be created. The
initial positions of the electrons are homogeneously distributed in the cluster
and they are created with zero velocity. For further field ionization of the
atoms, one has to take into account not only the laser field, but also the
additional fields resulting from the charging of the cluster and the collective
electron motion discussed in chapter 4 and 5. If one considers only the laser
field and neglects additional fields, N quasi-free electrons will appear in the
cluster each time the laser field is strong enough to ionize the cluster atoms
(see fig.(2.2)). Table 2.1 lists the ionization potentials of different charge
states of argon, together with the threshold fields for ionization and the laser
intensities corresponding to these fields.

2.2 Evolution of electrons in the field

Once a quasi-free electron is created by inner ionization, it is propagated
classically according to its equation of motion:

ẍ = −F L(t) − Emean(x, t) + F stoc(x, ẋ, t). (2.2)



CHAPTER 2. OVERVIEW OF THE SIMULATION 11

Figure 2.2: First half of a laser pulse with I = 1.25 · 1015Wcm−2 and
τ = 60fs(FWHM). The dashed lines represent the threshold field strengths
necessary for the ionization of Ar, Ar+ and Ar2+ (see table 2.1). The three
points indicate the times when the laser field reaches these field strengths and
Ar+, Ar2+ and Ar3+ ions are created by over-barrier ionization.

F L(t) is the laser field. The laser pulse is of the length (FWHM) τ and is
assumed to have the following shape:

F L(t) = F 0sin
2(

πt

2τ
). (2.3)

For a linear polarization of the laser along the z-axis we have:

F 0 = FL
0 ẑsin(ωt) (2.4)

and for a circular polarization in the x-y plane we get:

F 0 = FC
0 x̂sin(ωt) + FC

0 ŷcos(ωt). (2.5)

For the energy of the circular and the polarized laser pulses to be equal, the
following relation between the field strength for circular and linear polariza-
tion should hold:

FC
0 =

FL
0√
2
. (2.6)

The mean field Emean(x, t) depends on the relative position of the electrons to
the ionic background charge. In the following it will be evaluated in different
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q Wq[a.u.] Fth [a.u.] I [1015Wcm−2]
0 0.58 0.08 0.25
1 1.01 0.13 0.58
2 1.50 0.19 1.22
3 2.20 0.30 3.20
4 2.76 0.38 5.10
5 3.35 0.47 7.65
6 4.57 0.75 19.5
7 5.28 0.87 26.6

Table 2.1: Ionization potential Wq for Arq+, minimum field strength Fth for
over-barrier ionization and corresponding laser intensity I.

methods, the main idea being to split it in a monopole contribution treated
in chapter 4 and a dipole contribution studied in chapter 5. F stoc(x, ẋ, t)
stands for the stochastic forces resulting from the elastic scattering at the
ionic cores (see section 3.1) and from the electron impact ionization. As
these forces depend also on the velocity of the particle, they may contribute
to an effective damping force. As the electrons are treated as free particles
evolving in a mean field and scattering stochastically, local fields, arising
from the atomic structure of the cluster, are neglected. The influence of
these local fields has still to be estimated. The equation of motion (2.2) is
solved by the velocity Verlet algorithm which is described in more detail in
appendix B. The step-size is chosen to be ∆t = 0.005fs = 0.02a.u. which has
been checked to be sufficient to assure convergence.

2.3 X-ray production

Even though electron impact ionization will only be introduced in chapter
6, the production of K-shell vacancies, which are at the origin of the x-
ray emission will already be included now. The production of inner-shell
vacancies can be treated separately as the electrons in the inner shells make
a negligible contribution to the electron impact ionization cross section due
to their high binding energies. Indeed, the binding energy of the K-shell
electrons of argon atoms is EK = 117a.u. while the electrons in the LI-shell
are bound with only EL ≃ 12a.u.. The probability that an electron with
kinetic energy Ee produces a K-shell vacancy during the time interval ∆t is
determined by the total cross-section for this process σK(Ee), the ionic target
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density ρ and the distance ∆x traveled by the electron during the time ∆t:

PK = ρσK(Ee)∆x. (2.7)

For each time step and each simulated electron this probability is determined.
A random number xrnd between 0 and 1 is generated and compared to PK . If
xrnd > PK nothing happens. If xrnd < PK , a K-shell vacancy is produced, i.e.
a new electron (NMTC → NMTC +1) is created at the position of the impact,
and the kinetic energy of the impacting electron is reduced by EK . The new
electron is assumed to have zero velocity, as we are considering ionization
processes near the threshold. The number NK of these events is counted.
We assume that the atom is instantaneously relaxed, and the inner vacancies
are filled by electrons from the outer shells. The energy dependence of cross
section for K-shell ionization σK(Ee) is taken from experimental data [19].
Only the high energy tail of the electron energy distribution with Ee larger
than the threshold for K-shell ionization can contribute. The number of K-
shell vacancies NK produced is directly related to the number NX of x-ray
photons produced by the fluorescence yield ωf which depends on the charge
state of the ions:

NX = ωfNK . (2.8)



Chapter 3

Elastic electron-ion scattering

In this chapter we describe the implementation of elastic electron ion scat-
tering in our simulation and show first encouraging results, which indicate
that in a cluster-like environment elastic scattering at ionic cores can indeed
enhance the heating of the electrons as described in the introduction.

3.1 Implementation in the simulation

Key ingredient of our simulation are the realistic differential cross sections for
elastic scattering at singly, as well as multiply charged rare gas atoms. The
cross sections are calculated by partial wave analysis [20] using parameterized
Hartree-Fock potentials [21] for different ionic charge states. Figure (3.1)
shows the differential elastic scattering cross section of Ar2+. It indicates a
significant probability for back scattering, for electron energies below 100a.u.
(∼ 2.7keV), which corresponds to several times the ponderomotive energy for
laser intensities below I = 1016Wcm−2. The minima for intermediate angles
are referred to as Ramsauer-Townsend minima and are due to interference
effects [22].

Argon clusters of sufficient size (N ≥ 1000) have a face centered cubic
(fcc) crystalline structure [23]. The nearest neighbour distance in the cluster
is known to be 3.76Å and the atomic density in the cluster is ρ = 2.66 ·
1022cm−3 = 3.94 · 10−3a.u.. This solid state environment is included in the
calculation of the scattering cross section by introducing a muffin-tin radius
corresponding to half the initial mean inter-atomic distance in the cluster
Rmt = 3.5a.u., however this correction has no significant influence on the
large-angle scattering.

Similarly to the production of K-shell vacancies (see eq.(2.7)), the prob-

14
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Figure 3.1: Differential elastic scattering cross section (in a.u.) for Ar2+.
Note that the electrons energies as well as the cross sections are displayed on
a logarithmic scale.

ability for elastic scattering during the time interval ∆t is given by:

Pscatt = ρσscatt∆x. (3.1)

The total elastic scattering cross section σscatt depends on the energy of the
scattered electron and on the charge state q of the ion, for which the mean
charge state of the ions in the cluster is taken. Again a random number is
drawn, and if xrnd < Pscatt, the electron is scattered. The scattering angle
θscatt is determined by another random number according to the differential
scattering cross section corresponding to the electron energy and the charge
state of the ion. The velocity vector of the electron is redirected according
to θscatt (see appendix C). Accordingly, the momentum just prior to the
ith collision p(t−i ) is mapped onto the momentum after the elastic collision
through

p(t+i ) = p(t−i ) + ∆p, (3.2)

where ∆p is the momentum transfer during core scattering. Backscattering
(θ ≃ 180◦) corresponds to ∆p = −2p(t−i ). This change of momentum can be
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seen as the stochastic force F stoc appearing in the equation of motion (2.2).
However, the electron energy in the absence of the laser is conserved by these
scattering events:

p(t+i )2

2
=

p(t−i )2

2
. (3.3)

3.2 Simulation results

v

FL

Time [arb. units]

E
n

e
rg

y
 [a
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. u

n
its

]

Figure 3.2: The velocity component in field direction (upper black curve) and
energy (line) of a single electron in a laser field are displayed. The jumps in
the velocity are due to scattering events. Back scattering allows the electron
to gain kinetic energy. The lower gray curve represents the laser field.

In order to determine if the elastic scattering of electrons at cluster ions
can indeed accelerate electrons in a laser field, we start by examining an
electron in an infinitely large cluster (we therefore have no effects coming
from the charging of the cluster) on which acts a (spatially uniform) laser
field. The motion of the electron is assumed to be only influenced by the
laser field and the elastic scattering at ions (model 2). The electrons thus
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Figure 3.3: Time evolution of the mean kinetic energy of electrons in an
infinite cluster. The laser parameters were I = 1.25·1015Wcm−2, λ = 800nm,
τ = 60fs = 2500a.u.. Elastic scattering at ions was switched off (model 1).

obey the following equation of motion:

ẍ = −F L + F scatt
stoc . (3.4)

The laser field F L(t) is assumed to have the simple form:

F L(t) = ẑF0 sin(ωt) sin2(
πt

2τ
). (3.5)

The stochastic force F scatt
stoc acts at discrete times and stands for the change of

direction of the electron momentum when elastic scattering occurs. Figure
3.2 follows the evolution of the velocity and energy of one electron during two
laser cycles closely mirroring the scenario depicted in figure 1.2. Whenever
the electron scatters at an ion, the velocity is redistributed among the three
velocity components. Thus the scattering events are marked by sudden jumps
in the velocity in field direction. Forward scattering will produce only slight
changes, while back scattering turns the velocity vector around. In this
particular time interval, three back scattering events occur that allow the
electron to gain additional energy. During the second laser cycle no back
scattering occurs, and the electron looses again part of its energy.

Figures 3.3 and 3.4 study the time evolution of the mean kinetic energy
< Ee > of the electrons with respect to elastic scattering of electrons at
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Figure 3.4: Same as fig. 3.3, except for elastic scattering of the electrons at
ions taken into account (model 2, eq.(3.4)). The two drops in the energy come
from over-barrier ionization of the ions by the laser field supplying additional
”cold” electrons.

ions. If scattering is not taken into account (model 1, fig. 3.3), the electrons
are only accelerated by the laser field. In this case the mean kinetic energy
oscillates with twice the laser frequency, going back down to zero each time,
as the electrons gain and lose their momentum during each half cycle of
the laser (see fig. 1.2). The maxima of the energy oscillations follow the
shape of the laser pulse. In a laser field F (t) = F0 sin(ωt), an electron

can reach the maximum energy of Emax =
F 2

0

2ω2 . For an intensity of I =
1.25 · 1015Wcm−2, Emax ≃ 5.5a.u.. This indeed corresponds to the maximum
energy reached by the electrons in the pulse. When taking into consideration
elastic scattering (model 2, fig. 3.4), the energy < Ee >significantly exceeds
the maximum energy the electrons would acquire by only oscillating in the
field. The small oscillations with twice the laser frequency on top of the curve
are due to the oscillatory motion in the field and are of the order of magnitude
of the ponderomotive energy. The two drops in the energy are caused by the
sequential over-barrier ionization of the ions. At these times the laser field
reaches the threshold field for the production of Ar2+ and Ar3+ respectively,
releasing N new electrons with zero kinetic energy in the cluster. In this
infinite cluster all other accelerating or decelerating effects were neglected.
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As a realistic cluster expands radially with time, one would expect that the
heating mechanism described here loses of its efficiency toward the end of the
pulse as the density of the ions, and thus the probability to scatter, decreases.
This effect will be studied in the next chapter.



Chapter 4

Charging of the cluster

During their evolution, some of the quasi-free electrons will eventually reach
the border of the cluster and leave the cluster. This is referred to as outer
ionization and leads to a charging of the cluster. At each time step of the sim-
ulation, the number of electrons outside the cluster radius R(t) is counted.
The corresponding positive charge Q(t) is the cluster charge. This charge
gives rise to a radial expansion of the cluster resulting in the Coulomb explo-
sion, as well as to an electric field inside and outside the cluster. This field
is assumed to be radially symmetric, and can thus be seen as the monopole
contribution to the mean field Emean(x, t) of equation (2.2).

4.1 Coulomb explosion of the cluster

We only consider a homogeneous radial expansion of the cluster. To obtain
the time-dependent cluster radius R(t), the equation of motion of an ion with
charge q at the cluster surface is solved for a given cluster charge evolution
Q(t):

M
d2R(t)

dt2
=

q(t)Q(t)

R2(t)
(4.1)

M denotes the mass of the ion. M = 7.3 · 104a.u.[25] for an argon ion. Due
to the large inertia of the ions, the expansion takes place on the time scale
of the laser pulse and not on the time scale of the electronic motion. For the
charge q of the ion, the mean charge state of the ions q = Ne

N
is taken. This

neglects the effect of the screening by the quasi-free electrons surrounding
the ions. This could lead to a slower expansion of the cluster.

20
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4.2 Monopole contribution to the mean field

To explore the radial charge distribution inside the cluster, we divide the
cluster in 10 concentric spherical shells with a radial distance ∆R(t) = R(t)

10
.

Further 10 shells divide the volume outside the cluster with R(t) < r < 2R(t)
to account for the screening of the cluster by the electrons that left the cluster.
It has been tested that the simulation results stayed the same when using
even more shells. At each time step the net charge Qi(t) of each shell is
evaluated by counting the number of electrons and ions inside the shell. The
total cluster charge Q(t) can be evaluated by:

Q(t) =
10

∑

i=1

Qi(t) (4.2)

The radial field corresponding to this charge distribution is given by:

E(0)
mean(r, t) =

ir−1
∑

i=1

Qi(t)

r2
+

Qir(t)(r
3 − ((ir − 1)∆R)3)

(ir∆R)3 − ((ir − 1)∆R)3

1

r2
(4.3)

Where ir =
⌈

r
∆R

⌉

is the index of the shell corresponding to the actual position

r (⌈x⌉ denotes the closest integer larger than x). For r > 2R(t), E
(0)
mean(r, t) =

∑20
i=1

Qi(t)
r2 .

4.3 Simulation results

In the experiments the clusters are generated by a pulsed adiabatic expansion
of a gaseous jet through a conical nozzle. The pressure before the nozzle is
called the backing pressure P0 and determines the mean number of atoms
per cluster N̄ . Their relation for argon clusters is given by the following
empirical expression [12]:

N̄ = 369.6 · (P0[bar])1.8 (4.4)

We simulate a cluster with N = 2.8 · 105 argon atoms, which corresponds
to the mean cluster size in an experiment with a backing pressure P =
40bar. With a density of ρ = 3.94 · 10−3a.u. this leads to an initial radius of
R(0) = 258a.u.. In addition to the laser field, the charging and expansion of
the cluster is taken into account, while elastic electron-ion scattering is first
neglected (model 3). The equation of motion of the electrons is now:

ẍ = −F L(t) − E(0)
mean(r, t). (4.5)
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Figure 4.1: Time evolution of the cluster charge per atom (left axis) and the
ratio of cluster radius to initial radius (right axis). The cluster is subjected
to the laser field, as well as charging and expansion (model 3, eq. (4.5)).
The laser parameters were I = 1.25 · 1015Wcm−2, λ = 800nm, τ = 60fs =
2500a.u..

The field E(0)
mean(r, t) is given by equation (4.3).

Figure 4.1 shows the time evolution of the cluster charge Q(t) per cluster
atom N , and of the ratio of radius R(t) and initial cluster radius R(0).
The cluster charge grows rapidly as soon as the first quasi-free electrons are
produced by field ionization. As the laser is linearly polarized along the z-
axis, the electrons in the vicinity of the cluster poles are driven periodically
by the laser across the cluster border at the top and the bottom of the
cluster, thus generating oscillations in the cluster charge with twice the laser
frequency. Toward the end of the pulse, the cluster charge stops growing
and even diminishes as the electrons have more difficulty overcoming the
attractive field of the highly charged cluster. The cluster expansion sets in
on a much slower time scale due to the large inertia of the cluster atoms. The
main growth of the cluster is confined to the last quarter of the pulse, where
it proceeds quickly, reaching twice the initial radius at the end of the pulse.
The density ρ of the cluster ions has then dropped by a factor 8, making all
stochastic processes like elastic electron-ion scattering or x-ray production
much less probable.

The time evolution of the corresponding electrons’ mean kinetic energy
< Ee > is displayed in figure 4.2. For the mean kinetic energy only the
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Figure 4.2: Time evolution of the mean kinetic energy of the electrons in the
cluster (solid line). The dashed line represents an estimation of the depth of
the potential well inside the cluster. The cluster and laser parameters are the
same as in figure 4.1. (model 3, eq. (4.5))

electrons inside the cluster are taken into account, as it is the energy of
these electrons that will influence the production of K-shell vacancies. When
comparing < Ee > to the the mean kinetic energy obtained for electrons
only subjected to the laser field (figure 3.3), one notes that the charging
contributes efficiently to the heating of the cluster electrons, resulting in a
maximum of the mean kinetic energy at 60a.u., ten times higher than the
maximum in figure 3.3. Even though the oscillations due to the periodic
field are still pronounced, < Ee > does not follow the shape of the laser
pulse. The kinetic energy of the electrons reflects the virial theorem for
the Coulomb potential inside the cluster. Its depth can be estimated by
−Q(t)/R(t), which is also displayed in figure 4.2 and corresponds very well
to the shape of < Ee >. Initially the attractive potential grows rapidly due to
the charging of the cluster. As the Coulomb explosion sets in and R(t) rapidly
increases, the internal potential stops growing and finally diminishes, just as
the kinetic energy of the electrons. The build-up of the internal field due to
the charging of the cluster is therefore an additional heating mechanism for
the electrons.

Figures 4.3 and 4.4 repeat this simulation, only that they now include
elastic electron-ion scattering (model 4). For this model, the equation of
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Figure 4.3: Same as fig.4.1, but with elastic electron-ion scattering (model 4,
eq. (4.6)).

motion of the electrons is:

ẍ = −F L(t) − E(0)
mean(r, t) + F scatt

stoc . (4.6)

It has been shown in the previous chapter that this mechanism is very efficient
for heating electrons, and indeed, the energies reached now are nearly four
times higher than the ones reached with cluster charging only. Moreover,
the energy is nearly twice as high as the energy reached by elastic scattering
alone, without taking into account outer ionization (model 2, figure 3.4).
Figure 4.3 shows that the cluster charging takes place faster than for model
3 (fig. 4.1) reaching a 1.5 times higher cluster charge and resulting in a final
radius that is equal to three times the initial one. As the mean kinetic energy
is only weakly influenced by the laser oscillations, the two drops due to the
two field ionization events become more pronounced. Again the evolution
of < Ee > is directly linked to the evolution of the potential well inside the
cluster. Due to the elastic electron-ion scattering the electrons get heated
up quickly after the first ionization burst, resulting in a faster growth of the
cluster charge as the hot electrons reach the cluster border faster and have
more energy to escape the attractive potential of the charged cluster. The
heating by the charging of the cluster is thus enhanced by elastic scattering.
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Figure 4.4: Same as fig.4.2, but with elastic electron-ion scattering (model 4,
eq. (4.6)).

4.3.1 Study of the radial charge distribution

Figure 4.5 shows the time evolution of the radial charge distribution cor-
responding to the simulation including charging of the cluster and elastic
electron-ion scattering. As previously explained, the simulation volume is
divided radially into 20 equidistant shells, the ten inner shells modelling the
cluster. The net charge Qi(t) of each of these shells is indicated correspond-
ing to the color code. The dashed black line marks the cluster border. As
the cluster expands with time, so does each of the shells. One observes that
the cluster charge is mainly concentrated on the cluster surface. This seems
reasonable as the fast electrons should screen the background charge in the
center of the cluster better than on the surface. This result is confirmed by
previous full simulations of the electron and ion dynamics [9]. One could
therefore use a simplified model for the radial distribution in which the clus-
ter charge Q(t) is located on a spherical shell on the surface of the cluster.

The charge distribution ρ
(0)
e (x, t) depends on the radius R of the cluster

and on the inner radius Ri of this shell (see fig.4.6).

ρ(0)
e (x, t) =

Q(t)
4π
3

(R(t)3 − Ri(t)3)
[Θ(r − Ri(t)) − Θ(r − R(t))]. (4.7)

The charge is produced by unshielded cluster ions. The total charge of the
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Figure 4.5: Time evolution of the charge of the different shells dividing ra-
dially the simulation volume. The upper green line marks the cluster radius.
As the cluster expands with time, so do the shells, always staying radially
equidistant. The lower green line is the inner border Ri of the single shell
containing the cluster charge when using the simplified model. The laser
parameters are the same as in figure 4.1.

ions in the shell must correspond to the total charge of the cluster:

4π

3
(R(t)3 − Ri(t)

3)ρion(t)q(t) = Q(t). (4.8)

The inner radius Ri(t) therefore depends on the cluster charge Q(t), the
cluster radius R(t)3 = N

4π/3ρion(t)
and the mean charge state q(t) of the ions:

Ri(t) = R(t) 3

√

1 − Q(t)

Nq(t)
. (4.9)

The estimation of the inner radius Ri(t) of the single shell is represented in
figure 4.5 by the solid line and fits the actual radial charge distribution rather
well. The radial electric field E

(0)
mean(r, t) can now easily be calculated:

E(0)
mean(r, t) =











0 r < Ri(t)
Q(t)

R(t)3−Ri(t)3
(r − Ri(t

3)
r2 ) Ri(t) < r < R(t)

Q(t)
r2 R(t) < r.

(4.10)
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R
Ri ∆R

Figure 4.6: The simplified surface-charge model for the radial charge distri-
bution: the solid line represents the cluster boundary. The cluster charge is
uniformly distributed between the inner dashed sphere and the cluster bound-
ary. The outer spheres are equidistant with a distance of ∆R between them.
They are used to determine the screening by the electrons outside of the clus-
ter.

To account for the screening of the cluster charge by the electrons that
surround the cluster, one can divide the shell R(t) < r < R(t) + R(0) into
six spherical shells and count at each time step the number of electrons in
each shell. The screening field is then evaluated just as in equation (4.3).

Figures 4.7 and 4.8 compare the results obtained with model 4 when us-
ing 20 shells and when using the surface-charge assumption. The results only
differ slightly in the second half of the laser pulse. These results show that
the assumption of the charge concentration on the cluster surface is justified
in good approximation. This fact will be used in further theoretical consider-
ations in the next chapter. However for simulations the more accurate model
with 20 shells will be used.
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Figure 4.7: Time evolution of the cluster charge per atom (left axis) calculated
with the simplified surface-charge model (1 shell) and with 20 shells. The
laser parameters are the same as in figure 4.1.

 0

 50

 100

 150

 200

 250

 2000  3000  4000  5000

m
e

a
n

 k
in

e
ti
c
 e

n
e

rg
y
 [

a
.u

.]

time [a.u.]

1 shell 20 shells
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20 shells. The laser parameters are the same as in figure 4.1.
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4.3.2 K-shell vacancies
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Figure 4.9: Number of produced K-shell vacancies for different laser peak
intensities. The results for the cases with (¥, model 4, eq. (4.6)) elastic
electron-ion scattering and without (•, model 3, eq. (4.5)) are compared (the
solid lines are shown to guide the eye). The vertical dashed line marks the
experimental intensity threshold for x-ray production. The size of the argon
cluster was N = 2.8 · 105. The laser duration was τ = 60fs, the wavelength
λ = 800nm.

As the experimental findings are based on the measurement of the x-
ray emission by the clusters, the simulation results for the produced K-shell
vacancies are displayed in figure 4.9. Each point corresponds to the number
of produced K-shell vacancies in a cluster with N = 2.8 · 105 argon atoms
irradiated by a laser pulse of length (FWHM) τ = 60fs and wavelength
λ = 800nm. Moreover the simulations have been conducted once with elastic
electron-ion scattering (model 4, eq. (4.6), upper curve) and once without
(model 3, eq. (4.5), lower curve). Once a certain laser peak intensity is
reached, the number of produced vacancies increases quickly. This indicates
the presence of an intensity threshold for the production of K-shell vacancies.
Indeed, the heating mechanisms inside the cluster have to be efficient enough
for the electrons to reach energies above the binding energy of the K-shell
electrons, which is as high as EK = 117a.u. for argon. The intensity threshold
lies at about Ith = 3 · 1014Wcm−2 for the case with electron-ion scattering.
For the case where scattering is neglected, the threshold is a factor 3 higher
at approximately Ith = 1 · 1015Wcm−2. Above the threshold the number
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of produced vacancies is rises quickly before reaching a saturation value in
the order of magnitude of 2000 vacancies per cluster at I = 1 · 1016Wcm−2.
At high intensities about 1.6 times more vacancies are produced when taking
into account elastic electron-ion scattering. The lower threshold as well as the
higher vacancy yield show that elastic electron-ion scattering is an efficient
heating mechanism in clusters. The experimentally measured threshold is
indicated by the vertical dashed line and lies at Ith = 2.2 ·1015Wcm−2, above
the simulation results.

4.3.3 X-ray yield
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Figure 4.10: Absolute x-ray yield for different laser peak intensities. The
results for the cases with (¥, model 4) elastic electron-ion scattering and
without (•, model 3) are compared to the experimental results (N). For each
set of data, the solid line shows the evolution of the effective focal volume.
For the case with scattering Ith = 3.9 · 1014Wcm−2, for the case without
Ith = 1.5 · 1015Wcm−2 and for the experimental data Ith = 2.1 · 1015Wcm−2.
The parameters are the same as in fig.4.9.

To allow a first quantitative comparison with the experimental data, one
has to convert the number of K-shell vacancies per cluster into the absolute
x-ray yield measured in the experiments.

The number of K-shell vacancies NK is related to the number of emitted
x-rays NX by the fluorescence yield ωf :

NX = ωfNK (4.11)
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For neutral argon the fluorescence yield is ωf ≃ 0.11, which is still valid in
good approximation when the charge state of the ions is around q = 4.

Furthermore the experiment can not be performed on a single cluster,
but many clusters are irradiated by the laser pulse within the measurement
volume. Moreover, the peak intensity of the laser pulse is not equal in the
whole volume, i.e. the clusters experience different laser intensities I0 de-
pending on their position. The spatial pulse intensity profile is gaussian to
a good degree of approximation:

I(r, t) = I0 exp

(

−2r2

w2
0

)

. (4.12)

That implies that to calculate the absolute x-ray yield for a given peak in-
tensity I0 (corresponding to one point in the fig. 1.1) one has to simulate
an ensemble of clusters at laser peak intensities reaching from the threshold
for K-shell vacancy production up to I0. The results of these simulations is
displayed in figure 4.9. The number of clusters experiencing a certain peak
intensity depends on the volume where the laser has this intensity. The vol-
ume V (I) which is the volume where the laser intensity lies between I and
I0 is given by [12]:

V (I) = πzRw2
0

{

2

9

(

I0

I
− 1

)3/2

+
4

3

(

I0

I
− 1

)1/2

− 4

3
arctan

[

(

I0

I
− 1

)1/2
]}

(4.13)
where zR is the Rayleigh length and is equal to zR = 0.95mm in the experi-
ment. The beam waist w0 is taken as the radius at 1/e2 and is approximately
w0 = 15.55µm [12]. By taking the difference of V (I1) and V (I2) one can
therefore calculate the volume where the laser peak intensity lies between I1

and I2. The density of clusters in the measurement volume depends on the
backing pressure P used in the experiment:

ρcl[cm
−3] = 4.172 · 1013 P0[bar]

N̄
(4.14)

Figure 4.10 shows the simulation results for the total x-ray yield and
compares it with the experimental data. The simulation data as well as the
experimental data follow the evolution of the effective focal volume which
is represented as a solid curve for each of the data sets. The effective focal
volume V (Ith) is the volume in which the laser peak intensity exceeds a
certain threshold Ith which is determined by fitting the data and which can
be seen as an estimate for the threshold for x-ray production. For large laser
intensities the effective focal volume follows a I3/2 law (see eq.(4.13) which
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can also be seen in the simulation and the experiments. However, the yields
obtained from the simulations are much higher than the experimental ones.
This indicates that the cluster charging and the elastic electron-ion scattering
are both very efficient heating mechanisms. To achieve a good quantitative
agreement with the experiments it is, however, necessary to include further
mechanisms in the simulation.



Chapter 5

Polarization of the cluster

As discussed in the previous chapter, when only considering the monopole
contribution of the mean field E(0)

mean(r, t) arising from the charging of the
cluster, most of the inside of the cluster (r . Ri(t)) is shielded and only
the laser field is present. However, one expects that the laser field causes a
polarization of the cluster, by forcing the electrons into an oscillatory motion
along the polarization axis of the laser, thus generating a dipole contribution
E(1)

mean(r, θ, t) to the mean field. This additional field inside the cluster will
not only have an influence on the dynamics of the quasi-free electrons, but
also on the over-barrier ionization, for which one now has to consider the
combined field of laser and polarization.

5.1 The r − θ grid

To study these effects, one needs to include not only the radial charge dis-
tribution, but also the distribution with respect to the angle θ enclosed with
the polarization direction of the laser (i.e. the z-axis for a linearly polar-
ized laser). To do this, one divides the cluster and its surroundings into a
r − θ grid. Each cell is a volume section of the cluster that is rotationally
symmetric around the z-axis. For reason of statistics we chose a grid where
the cells have all equal volume as shown in figure 5.1. After each time step
the net charge in each of these cells is evaluated by counting the number of
electrons and ions. For this discrete charge distribution one then has to solve
the discretized Poisson equation to get the potential which determines the
mean field Emean(r, θ, t). The mathematical details of the discretization are
given in appendix D. The boundary condition for large r is determined by
the requirement that far away from the cluster the potential is governed by

33
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Figure 5.1: r− θ discretization of the simulation volume. The red line marks
the cluster boundary. Each cell represents a volume obtained when rotating
the section about the z-axis. These cells are constructed to have equal volume.

the screened space charge Qfar and the dipole moment in z-direction pz:

φ(r, θ, t) =
Qfar(t)

r
+

pz cos(θ)

r2
for large r. (5.1)

Qfar and pz can both be calculated by integration the charge distribution
ρe(r, θ, t) over the whole simulation volume V :

Qfar =

∫

V

ρe(r, θ, t)d
3r (5.2)

pz =

∫

V

r cos(θ)ρe(r, θ, t)d
3r. (5.3)
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The cluster charge Q(t) can be calculated similarly

Q(t) = 2π

∫ R(t)

0

dr

∫ π

0

dθρe(r, θ, t). (5.4)

To avoid problems with the discretization around the cluster boundary, the
grid expands together with the cluster to ensure that the cluster boundary
always lies on a grid line.
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Figure 5.2: r − θ distribution of the charge density at the time t = 1905a.u..
The cluster border is easily identifiable as the border between the positive (yel-
low, red) and outer negative (purple) charge regions. The laser parameters
are I = 1.25 · 1015Wcm−2, λ = 800nm, τ = 60fs = 2500a.u..

We now simulate the same cluster as in the previous chapter, i.e. N =
2.8 · 105 argon atoms and a laser intensity of I = 1.25 · 1015Wcm−2 with a
duration of τ = 60fs ≃ 2500a.u., linearly polarized along the z axis. However
we now solve the Poisson equation on the r − θ grid at each time step. Fur-
thermore elastic electron-ion scattering is included. The simulation volume
is divided into a 30 × 15 r − θ grid, where the first 15 r steps divide the
cluster (see fig.5.1). Figure 5.2 shows the charge distribution at the time
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Figure 5.3: r−θ dependence of the potential. The potential has been calculated
from the charge distribution shown in fig. 5.2.

t = 1905a.u.. Again the cluster charge is concentrated at the cluster surface,
but a inhomogeneous distribution with respect to the θ angle can be ob-
served, more charge being concentrated at the upper pole of the cluster than
on the lower pole. This θ dependence of charge distribution arises from the
polarizing effect of the laser which shifts the whole electron cloud along its
polarization axis (the z axis). However it is still clearly visible that the inner
of the cluster is in mean well shielded by the quasi-free electrons. The poten-
tial calculated from this charge distribution by solving the Poisson equation
is depicted in figure 5.3. The potential has the morphology of a typical well
potential one would expect for a charged sphere with its charge concentrated
on the surface. However the bottom of the well is homogeneously tilted due
to the dipole moment.

This simulation was run with one simulated electron representing 9 equiv-
alent electrons (Ne/NMTC = 9). Nevertheless, figure 5.2 displays statistical
fluctuations of the charge density inside the cluster which give rise to fluctu-
ations in the potential that can cause instabilities in the equation of motion
of the electrons. This fluctuations are understandable as the inside of the
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cluster is divided into 225 cells, which amounts to a ratio of 138 electrons
per cell after the first ionization burst. This ratio gets worse as the electrons
begin to leave the cluster. Moreover the time evolution of the cluster charge
and the mean electron energy are not yet stable with respect to the number
of cells in the grid, indicating that more cells are necessary. Simulations have
shown that at least a 30 × 30 grid inside the cluster is needed. Of course
the problems of the cluster statistics then get even more severe. That is the
reason why we opted for a simplified model that takes into account dipole
and monopole contribution to the potential without calculating the exact
potential at each time step.

5.2 Simplified model for the dipole field

Figure 5.4: Electric field inside and outside of a polarized sphere.

The rather simple morphology of the potential calculated by solving the
Poisson equation (fig. 5.3) encourages the idea of building a simpler model
which treats the monopole and dipole contribution to the field separately.
The modeling of the charging of the cluster has already been discussed in
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the previous chapter and therefore we use for the monopole contribution to
the field simply the radial field E(0)

mean(r, t) defined in equation ((4.3)). To
include the polarization effects of the cluster, one can make use of the simple
model of the polarized sphere [26]. The dipole moment is assumed to be due
to the small displacement of a sphere of uniform negative charge against a
sphere of equal uniform positive charge. The electric field inside the sphere
is then uniform and oriented in the opposite direction of the dipole moment:

E(1)
mean(t) = − p(t)

R(t)3
for r < R(t) (5.5)

The external electric field is that of a central dipole p(t):

E(1)
mean(t) =

2p(t)cos(θ)

r3
êr +

p(t)sin(θ)

r3
êθ for r > R(t) (5.6)

As shown in figure 5.4, the dipole field E(1)
mean(t) is discontinuous at the cluster

surface, and even changes sign at the poles of the cluster.
The dipole moment p(t) depends on the positions xi of the electrons

and the positions x
(0)
i of the corresponding ions, i.e. the position where the

electrons were created:

p(t) =
Ne

NMTC

NMTC
∑

i=1

(−xi + x
(0)
i ) (5.7)

As the electrons that left the cluster, have a negligible influence on the dy-
namics inside the cluster, the sum in equation (5.7) is restricted to the elec-
trons that fulfill r < 1.3R(t).

The dipole moment of the cluster is dominated by the electron dynamics
inside the cluster as the positive ions are distributed homogeneously in the
spherical cluster. Therefore p(t) ≈ −∑Ne

i xi(t). In a laser field F L =
F 0 sin ωt, the time evolution of the dipole moment can therefore be studied
by examining the following differential equation:

p̈(t) +
Ne

R3
p(t) = NeF 0 sin(ωt) (5.8)

This is the equation for a driven harmonic oscillator with eigenfrequency
ω2

p = Ne

R3 . The amplitude of the oscillation is given by:

Ap =
NeF 0

ω2
p − ω2

(5.9)

With ω2 = 0.0572a.u. ≃ 0.003a.u. and ω2
p ∼ 2.8 · 105/2503a.u. ≃ 0.018a.u.

we have ω2
p > ω2. The oscillation of the dipole moment is therefore in phase
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with the laser field. This produces an electric field inside the cluster that is
oriented against the laser field, and therefore reduces the total electric field
inside the cluster. The effective field inside the cluster can be estimated as:

Eeff (t) = F L(t) + Ep(t) = F 0

(

1 −
ω2

p

ω2
p − ω2

)

sin(ωt) (5.10)

The larger ωp becomes, i.e. the more electrons the cluster contains, the
smaller will be the effective field inside the cluster. This simple estimation
of the dipole moment does neither take into the additional internal fields
arising at the border of the cluster due to the charging of the cluster, nor
the effect of elastic electron-ion scattering. These effects can result in a
phase shift between the dipole moment and the laser, thus enhancing the
internal effective field. Furthermore dissipative effects like inelastic scattering
at electrons can damp the oscillation. This can also create a phase shift
between the dipole moment and the laser field. However in these cases the
additional acceleration due to the large effective field will be counteracted by
the loss of energy due to the damping.

5.3 Simulation results
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Figure 5.5: Time evolution of the cluster charge per atom. The model now
includes elastic scattering at ionic cores, as well as the monopole and the
dipole field (lower curve, model 6). The result is compared with the case of
the previous chapter where the dipole field is neglected (upper curve, model
4). The laser parameters are I = 1.25 ·1015Wcm−2, λ = 800nm, τ = 60fs =
2500a.u..



CHAPTER 5. POLARIZATION OF THE CLUSTER 40

 0

 50

 100

 150

 200

 250

 2000  3000  4000  5000

m
e

a
n

 k
in

e
ti
c
 e

n
e

rg
y
 [

a
.u

.]

time [a.u.]

model 4

model 6

Figure 5.6: Time evolution of the mean kinetic energy of the electrons in the
cluster. The model includes elastic scattering at ionic cores, as well as the
monopole and the dipole field (lower curve, model 6). The result is compared
with the case of the previous chapter where the dipole field is neglected (upper
curve, model 4). The drops in the mean energy are due to ionization events.
The laser parameters are the same as in fig. 5.5.

We now simulate the same cluster as in section 5.1 (N = 2.8 · 105 argon
atoms, I = 1.25 · 1015Wcm−2, τ = 60fs ≃ 2500a.u.). The monopole contribu-
tion to the field is evaluated as described in the previous chapter by dividing
the simulation volume in 20 radially equidistant shells, of which 10 lie inside
the cluster. Moreover the model of the polarized sphere presented in the
previous section is used to incorporate polarization effects in the simulation.
Elastic electron-ion scattering is also included (model 6). In this model the
electrons obey the following equation of motion:

ẍ = −F L(t) − E(0)
mean(r, t) − E(1)

mean(r, t) + F scatt
stoc . (5.11)

Figure 5.5 shows the time evolution of the cluster charge and compares
it to the case without the dipole contribution (model 4, eq. (4.6)). Due
to the polarization effects the charging of the cluster is much slower and
the maximum charge reached is less than half the one without dipole field.
The mean kinetic energy of the electrons (fig. 5.6) is reduced. This is not
surprising, as equation (5.8) implies that the field inside the cluster produced
by the dipole moment is directed against the laser field, thus slowing down
the motion of the electrons. This is demonstrated in figure 5.7 giving the
effective field acting inside the cluster, i.e. the sum of laser field and dipole
field. The monopole field can be neglected due to the shielding of the inside
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Figure 5.7: Time evolution of the electric field acting inside the cluster (solid
line). This field is the sum of the laser field and the dipole field. The laser
field is also shown (dashed line). The laser parameters are the same as in
figure 5.5.
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Figure 5.8: Time evolution of the dipole moment (solid line). To study the
phase shift the laser field is also shown (dashed line, right axis). The laser
parameters are the same as in figure 5.5.
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Figure 5.9: Number of produced K-shell vacancies for different laser peak
intensities. The results for the cases with elastic electron-ion scattering but
without dipole field (N, model 4), with elastic electron-ion scattering and with
dipole field (¥, model 6) and without electron-ion scattering but with dipole
field (•, model 5) are compared (the solid lines are shown to guide the eye).
The vertical dashed line marks the experimental intensity threshold for x-ray
production. The size of the argon cluster was N = 2.8 · 105. The laser
duration was τ = 60fs, the wavelength λ = 800nm.

of the cluster. Indeed the effective field is smaller than the laser field. This
also explains why the ions get only ionized twice and not three times as in
the case without dipole contribution. The ionization events can be deduced
from the drops in the mean energy. Already after the first laser cycle the
phase of the dipole moment (fig. 5.8) is slightly shifted with respect to the
laser field. This phase shift can be due to the charging of the cluster and
the subsequently arrising additional fields inside the cluster and due to the
elastic electron-ion scattering which scatters the electrons off the polarization
axis.

5.3.1 K-shell vacancies

As in section 4.3.2, the number of produced K-shell vacancies with different
models is examined in figure 5.9. For comparison the results of the previous
chapter with elastic electron-ion scattering but without polarization effects
(upper curve, model 4) is shown. The two lower curves give the results when
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the dipole field is considered in the model. The middle curve corresponds to
the case where elastic electron-ion scattering was included (model 6), for the
lowest curve it was neglected (model 5). When including polarization effects
the intensity threshold for the production of K-shell vacancies lies at about
Ith = 9 · 1014Wcm−2. When taking into consideration the elastic electron-ion
scattering, the number of produced vacancies is by a factor 5 lower than in the
case without the dipole field, but is more than a factor 2 higher than without
scattering. One also notes that contrary to the previous results, the number
of vacancies does not grow monotonically with the laser intensity any more.
This is due to the fact that, apart from the elastic scattering, no damping
mechanisms are present in the cluster. Therefore the transient states can be
rather long, leading to effective fields inside the cluster that depend strongly
on the ionization times and that are not necessarily smaller than the laser
field. As the elastic electron-ion scattering deflects the electrons from the
polarization axis it is a damping mechanism and therefore accelerates the
transition to a steady state as in figure 5.7 where the effective field is smaller
than the laser field and has the same frequency. This explains why the
irregularities in the dependence from the laser intensity are more pronounced
in the case without elastic electron-ion scattering.

5.3.2 X-ray yield

As discussed in section 4.3.3, the absolute x-ray yield can be calculated from
the number of K-shell vacancies per cluster. The results are displayed in
figure 5.10. The irregularities of the yield per cluster have been averaged out
by the intensity distribution in the simulation volume and the absolute yield
grows monotonically following the evolution of the effective focal volume. The
yields are closer to the experimental data than without dipole field but still
more than an order of magnitude larger. Moreover the intensity threshold is
still a factor 2 lower than the experimental one. Another problem with the
present model is that the charge states of the argon ions inside the cluster
at intensities near the threshold are not much higher than q = 4. However
in the experiments much higher charged ions were detected.
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Figure 5.10: Absolute x-ray yield for different laser peak intensities. The re-
sults for the cases with elastic electron-ion scattering and with dipole field (¥,
model 6) and without electron-ion scattering but with dipole field (•, model
5) are compared to the experimental results (N). For each set of data, the
solid line shows the evolution of the effective focal volume. For the case with
scattering Ith = 1.07·1015Wcm−2, for the case without Ith = 1.05·1015Wcm−2

and for the experimental data Ith = 2.1 ·1015Wcm−2. The parameters are the
same as in fig.5.9.



Chapter 6

Electron-impact ionization

In the previous chapters the quasi-free electrons were only produced by over-
barrier ionization, i.e. by field ionization of the cluster atoms (or ions).
However, as the quasi-free electrons get heated very efficiently in the cluster
after the first ionization burst, they soon have enough energy to ionize the
cluster ions by electron-impact ionization. With this mechanism charge states
q of the cluster ions can be reached that are not attainable by simple field
ionization.

6.1 Implementation of electron-impact ion-

ization

As our simulation treats the cluster ions as a homogeneous background
charge, we take a stochastic approach to electron-impact ionization of the
outer shells, just as we did for electron-ion scattering and production of K-
shell vacancies. The probability that a given electron with energy E ionizes
an ion during the time interval ∆t is determined by the total cross-section for
this process σei(q, E), the ionic target density ρ and the distance ∆x traveled
by the electron during the time ∆t:

Pei = ρσei(q, E)∆x (6.1)

This probability is calculated for each time step and each simulated electron.
A random number xrnd between 0 and 1 is drawn and compared to Pei. If
xrnd > Pei nothing happens. If xrnd < Pei, electron-impact ionization oc-
curs, i.e. an additional quasi-free electron (NMTC → NMTC + 1) is created
at the position of the impact. The kinetic energy of the impacting electron
is reduced by the binding energy of the outermost bound electron and is

45
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then divided equally between the impacting and the ionized electron. The
electrons are assumed to depart from each other enclosing an angle of 90◦.
This simple assumption for the energy transfer is made to reduce the influ-
ence of the transient states when elastic electron-ion scattering is neglected.
However, the results obtained when including elastic electron-ion scattering
are independent of the model chosen for the energy transfer. Furthermore
we assume that the atom is instantaneously relaxed and the inner vacancies
are filled by electrons from the outer shells. The cross section for electron-
impact ionization depends on the energy of the impacting energy and the
charge state of the target ion, for which the mean charge state q = Ne

N
is

taken. For the dependence on these parameters different analytical models
exist.

6.1.1 The Lotz formula

The semi-empirical Lotz formula [27] is widely used for estimations of the
total cross-section for electron-impact ionization:

σei =
N

∑

i=1

aiqi
ln(E/Wi)

EWi

{1 − biexp[−ci(E/Wi − 1)]} (6.2)

E is the kinetic energy of the impact electron, Wi is the binding energy of
the electrons in the i-th subshell, qi is the number of equivalent electrons
in the i − th subshell, ai,bi and ci are empirical constants, that depend on
the considered atom and its charge state. The sum extends over the N = 3
outermost populated subshells for argon. All electrons in the 2p or 3p shells
are considered equivalent. Table 6.1 gives the values of ai,bi and ci for Arq+

with q = 1, . . . , 4 [27]. For q > 4, one can assume ai = 2.17a.u. and bi = 0.
Table 6.2 lists the binding energies of the different subshells for argon [25].

q a1 a2 a3 b1 b2 b3 c1 c2 c3

1 1.9 1.9 1.4 0.62 0.4 0.9 0.40 0.6 0.2
2 2.0 2.1 1.8 0.3 0.2 0.8 0.6 0.6 0.4
3 2.2 2.2 2.0 0.2 0 0.6 0.6 - 0.5
4 2.2 2.2 2.2 0 0 0.3 - - 0.6

Table 6.1: Parameters for the Lotz formula for Arq+. ai is given in a.u.[27]

The results from the Lotz formula are compared to experimental data
for electron-impact ionization of argon in the upper graph of figure 6.1. The
calculated data are of the right order of magnitude for all charge states.
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Figure 6.1: Comparison of calculated (solid) electron-impact ionization cross
sections for different charge states of argon with experimental data (circles)
[12]. Upper graph: Lotz formula. Lower graph: equation (6.3).
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Label Subshell Binding Energy[a.u.]
K 1s 117.8
LI 2s 12.0
LII 2p1/2 9.2
LIII 2p3/2 9.1
MI 3s 1.1
MII 3p1/2 0.6
MIII 3p3/2 0.6

Table 6.2: Electron binding energies for neutral argon[25].

6.1.2 The Lotz formalism with fitted parameters

Even better agreement with the experimental data can be obtained by fitting
the empirical parameters of the following equation [28, 12]:

σei(E) = A
ln

(

E/W ∗

q

)

EW ∗

q

for E ≥ Wq (6.3)

q W ∗

q [a.u.] Wq [a.u.] A [a.u.]

1 0.92 1.02 6.76
2 1.32 1.49 6.76
3 1.98 2.20 6.76
4 2.76 2.76 5.55
5 2.94 3.34 5.79
8 15.51 15.53 18.35
10 18.38 19.84 11.11
11 24.62 22.72 13.04

Table 6.3: Values of the parameters for equation 6.3 that provide the best fit
to the experimental data [12].

Table 6.3 shows the parameters for different charge states of argon [12].
The calculated data fits the experimental results much better (fig. 6.1) than
the data obtained with unmodified Lotz formula. However the fit fails for
q = 6 and the parameters for q = 7, 9 are not provided in [12]. This is
due to resonant indirect processes, such as excitation autoionization, which
become important at these charge states [29]. While for all other charge
states formula (6.3) will be used in the simulation, for these charge states
the results from the Lotz formula (6.2) will be taken.
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6.2 Simulation results

 1

 2

 3

 4

 5

 6

 7

 8

 1000  2000  3000  4000  5000

m
e

a
n

 c
h

a
rg

e
 s

ta
te

 q

time [a.u.]

Figure 6.2: Mean charge state q = Ne/N of cluster ions. With electron-
impact ionization (solid line, model 8), with field ionization only (dashed
line, model 6). The cluster size is N = 2.8 · 105 argon atoms, the laser
intensity I = 3.5 · 1015Wcm−2, the pulse length τ = 60fs and the wavelength
λ = 800nm.

The efficiency of electron-impact ionization can be seen in figure 6.2. The
results were obtained by including electron-impact ionization in addition to
the dipole field, the charging of the cluster and elastic electron-ion scattering
(model 8). The electrons obeyed the equation of motion:

ẍ = −F L(t) − E(0)
mean(r, t) − E(1)

mean(r, t) + F scatt
stoc + F

eimp
stoc . (6.4)

The cluster size is again N = 2.8 ·105 argon atoms. The laser intensity is I =
3.5 · 1015Wcm−2, the pulse length τ = 60fs and the wavelength λ = 800nm.
After the first ionization burst which happens by over-barrier ionization of
the cluster atoms by the laser field, the electron-impact ionization sets in
quickly within the first laser cycle. While field ionization would only allow
to reach the charge state q = 2, electron-impact ionization leads to a mean
charge state of up to q = 7.5. Field ionization plays no role after the first
ionization burst as the ionization proceeds so quickly that the field ionization
by over-barrier ionization or tunneling is no longer competitive. The steeper
increase after q = 5.5 is an artefact of the electron impact cross section which
is calculated from the Lotz formula for the charge states q = 6 and q = 7.
Experimentally, high charge states (Ar12+ to Ar16+) have been observed [12].
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Figure 6.3: Effective field inside the cluster with electron-impact ionization
included (solid line, model 8) and with allowing only field ionization (dashed
line, model 6). The dotted line is the laser field. The parameters are the
same as in figure 6.2.

However there is a lack of quantitative results for the mean charge state near
the intensity threshold.

As the ionization proceeds, the number Ne of quasi-free electrons increases
rapidly. The large number of slow electrons in the cluster has an important
influence on the effective field inside the cluster (fig. 6.3). As Ne is larger,
the eigenfrequency of the system ω2

p = Ne/R
3 (see eq.(5.8)) increases and

the amplitude of the dipole field Ep in the cluster approaches the laser field
amplitude. The effective field inside the cluster is therefore even smaller than
when only considering the dipole field. The smaller field causes the electrons
to be heated less efficiently and the cluster charge therefore also increases
slower than without electron-impact ionization (see fig.6.4).

6.2.1 K-shell vacancies

Because of the high number of electrons in the cluster and the slower heating
due to the weak effective field, only a small fraction of the quasi-free electrons
reaches the threshold for the production of K-shell vacancies. One therefore
would have to perform the simulations with a very large number NMTC of
electrons. It is therefore more convenient to estimate the number NK of K-
shell vacancies produced by simply summing over the probabilities per time
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Figure 6.4: Evolution of the cluster charge including electron-impact ion-
ization (lower curve, model 8) and without (upper curve, model 6). The
parameters are the same as in figure 6.2.

step to produce a vacancy PK :

NK =
2τ

∑

ti=0

PK(ti) (6.5)

The error made by this method is not large as the number of electrons reach-
ing energies where this probability is non zero is small, and as it is unlikely
that an electron would produce a K-shell vacancy and then be heated back
up again sufficiently to produce another one. Indeed as can be seen in figure
6.5 no more than 12 vacancies are produced even for I = 1016Wcm−2. When
neglecting elastic electron-ion scattering (model 7), about 10 times less K-
shell vacancies are generated. In the case with field ionization only (model
6), about 100 vacancies per cluster were produced even for lower intensities.

6.2.2 X-ray yield

For neutral argon the fluorescence yield is ωf ≃ 0.11. For charged argon
the fluorescence yield increases. At a mean charge state of q = 14.5 it is
about ωf ≃ 0.35 [12]. As the mean charge state of the argon ions is now in
the range of q = 8, we assume a fluorescence yield of ωf ≃ 0.2. The yields
without elastic electron-ion scattering (model 7) are too small compared to
the experimental results (fig. 6.6). The yields obtained when taking the
unmodified Lotz formula for calculating the electron impact cross section
are even much lower due to an even faster ionization of the cluster ions.
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Figure 6.5: Number of produced K-shell vacancies for different laser peak
intensities. With elastic electron-ion scattering and with electron-impact
ionization (¥, model 8), with electron-impact ionization but without elas-
tic electron-ion scattering (•, model 7) and with electron-ion scattering but
with field ionization only (no electron-impact ionization) (N, model 6) are
compared (the solid lines are shown to guide the eye). The vertical dashed
line marks the experimental intensity threshold for x-ray production. The size
of the argon cluster was N = 2.8 · 105. The laser duration was τ = 60fs, the
wavelength λ = 800nm.

The simulation of the cluster is thus very sensitive to the implementation of
electron-impact ionization as it has such a large influence on the effective field.
However when using the modified parameters for calculating the electron-
impact ionization and including elastic electron-ion scattering (model 8),
the agreement between simulation and experiments is very good and the
simulation results lie well within the experimental error (fig. 6.7). This
again illustrates the importance of including elastic electron-ion scattering
as an efficient heating mechanism in the simulation.
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Figure 6.6: Absolute x-ray yield for different laser peak intensities. Without
elastic electron-ion scattering (¥, model 7) and experimental results (©).
The results when using the Lotz formula for the ionization cross section are
also shown (•, model 8 with Lotz formula). The parameters are the same as
in fig.6.5.
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Figure 6.7: Absolute x-ray yield for different laser peak intensities. The
results of the simulation with elastic electron-ion scattering (¥, model 8) are
compared to the experimental results (•). The parameters are the same as in
fig.6.5.



Chapter 7

Parameter dependence of the
x-ray yields

In this chapter we will test the dependence of the intensity threshold and
the x-ray yield on different parameters. We will vary the pulse duration, the
wavelength of the laser, the cluster size and the polarization of the laser. The
simulation explores the intensity region near the threshold for x-ray produc-
tion. However, many experimental studies with a fixed peak intensity, are
carried out at high intensities (I > 1016), like the evolution of the absolute
x-ray yield with the backing pressure or the pulse duration. These high in-
tensities would make the simulation computationally expensive as the higher
forces acting on the electrons call for a smaller time step ∆t. Moreover,
because of the intensity distribution in the focal volume, many runs at dif-
ferent intensities are needed for each set of parameters. The same problems
arise if in the experiment not the laser intensity but the laser energy is kept
constant. We therefore restrict the parameter studies to the intensity region
near the threshold.

7.1 Pulse length dependence

The study of the evolution of the x-ray yields with the pulse length can
become computationally expensive as the shortest pulse durations for which
there are experimental data are τ ≃ 60fs. For longer pulses, the simulations
are more demanding. Figure 7.1 shows the evolution of the x-ray yields for
three different laser pulse durations. The threshold for the x-ray production
is clearly shifted to lower intensities as the pulses become longer. This is in
agreement with the experimental observations. Simulation results show that
the rate of production of quasi-free electrons by electron impact ionization is
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Figure 7.1: Absolute x-ray yields for different laser peak intensities and dif-
ferent pulse durations: τ = 60fs (¥), τ = 90fs (N) and τ = 120fs (•). The
cluster size is N = 2.8 · 105 argon atoms. The wavelength of the laser is
λ = 800nm.

largely independent of the pulse duration. However if the pulse is longer the
ionized electrons have more time to get heated, explaining the higher x-ray
yields.

7.2 Wavelength dependence

The experiments have also been conducted for laser pulses with a wave length
of λ = 400nm. However the results for different wavelengths have to be
compared with care as the shorter wavelengths are obtained by doubling the
frequency of a pulse with 800nm with a crystal. As a consequence the pulse
duration is also increased: a pulse with τ = 50fs at 800 nm is transformed
into a pulse with τ = 130fs and 400 nm. Therefore, to be able to investigate
pulse durations shorter than τ = 130fs with 400nm, a numerical analysis of
the measurements is necessary. This analysis of the experimental data showed
that at same peak intensity and laser duration the probability for producing
K-shell vacancies should be independent of the wave length. Differences in
the measured yields arise only from a focal volume of the laser that is smaller
at 400 nm.

Figure 7.2 shows the simulation results for the number of produced K-
shell vacancies per cluster for 800 nm and 400 nm at the same pulse length
of τ = 60fs and cluster size N = 2.8 · 105. In the case of λ = 400nm more
vacancies are produced. This is due to the fact that because of the higher
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Figure 7.2: Number of produced K-shell vacancies per cluster for a laser pulse
with a wavelength of 800 nm (N) and 400 nm (¥) (the solid line is to guide
the eye). The cluster size is N = 2.8 ·105 argon atoms and the pulse duration
τ = 60fs.

laser frequency, the resonance condition ω2
p = Ne/R

3 = ω2 is now met during
the laser pulse. Figure 7.3 shows the evolution of the eigenfrequency ωp

during the laser pulse. In the second half of the pulse, as the cluster expands
rapidly, it becomes equal to the laser frequency ω. Near this resonance the
mean kinetic energy of the electrons increases rapidly by nearly a factor 6.
This additional heating due to the resonance explains the higher number of
produced K-shell vacancies. This is in disagreement with the experimental
results, which showed that the vacancy yield should be independent from
the laser wavelength. However in this simulation the cluster expansion is
overestimated, as the screening of the ion charge by the quasi-free electrons
surrounding it, is not considered. If the expansion of the cluster is slower,
the resonance could be avoided, resulting in less produced K-shell vacancies.

7.3 Cluster size dependence

Figure 7.4 shows the simulation results for several cluster sizes. The absolute
yields increase with larger cluster sizes which is in qualitative agreement
with the experimental results. No noticeable change in the position of the
threshold can be seen. Presently no experimental data are available for the
evolution of the intensity threshold with different backing pressures.
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Figure 7.3: Evolution of the eigenfrequency ωp (dashed line, left axis) during
the laser pulse. The laser frequency ω is indicated by the horizontal dotted
line. The mean kinetic energy of the electrons is also shown (solid line,
right axis). The cluster size is N = 2.8 · 105 argon atoms, the intensity
I = 4.4 · 1015Wcm2, the wavelength λ = 400nm and the pulse duration
τ = 60fs.

7.4 Laser polarization

To compare results for circular and linear polarizations of the laser, we in-
troduce a factor 1/

√
2 in the laser field amplitude of the circular light to

ensure that the energy of the laser field is equal for the two polarizations.
Experiments show that at equal laser energy the absolute x-ray yields are a
factor 0.81 smaller for circular polarization than for linear polarization. This
factor can be reproduced very well by the simulations as shown in figure 7.5.
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Figure 7.4: Absolute x-ray yields for different laser peak intensities and differ-
ent cluster sizes. from top to bottom: N = 2.8·105 (P = 40bar), N = 1.7·105

(P = 30bar), N = 8.1 · 104 (P = 20bar) and N = 5.4 · 104 (P = 16bar). The
wavelength of the laser is λ = 800nm and the pulse duration is τ = 60fs.
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Figure 7.5: Absolute x-ray yields for different laser peak intensities for a
linear (¥) and a circular (•) polarized laser. The results for the linear po-
larization are weighted with a factor 0.8 to show the correspondence with the
experimental results. The cluster size is N = 2.8 · 105 argon atoms. The
wavelength of the laser is λ = 800nm and the pulse duration is τ = 60fs.



Chapter 8

Summary

In this work we studied the production of hot electrons in rare gas clus-
ters irradiated by intense short laser pulses. This study was motivated by
experimental results [1, 2, 13], which showed an unexpectedly low laser in-
tensity threshold for the emission of x-rays by cluster atoms. This indicates
that efficient heating mechanisms are at play inside a cluster, which make
the quasi-free electrons reach energies sufficient for the production of K-shell
vacancies by electron-impact ionization. To test the influence of different
physical mechanisms on the heating of the electrons, we created a simple
Monte Carlo simulation of the cluster. The simulation results showed that:

• elastic electron-ion scattering is a very efficient heating mechanism for
the electrons, raising the number of produced K-shell vacancies by a
factor 2-3,

• the charging of the cluster contributes also to the heating of the elec-
trons as it diminishes the potential inside the cluster and thus increases
the kinetic energy,

• the polarization effects due to the laser create a uniform electric field
inside the cluster which acts against the laser field and thus decelerates
the electrons,

• electron-impact ionization of the cluster ions is highly effective and
explains the high charge states observed experimentally.

When considering all the effects mentioned above, the x-ray yields predicted
by the simulation lie within the error estimates of the experimental results.
We also probed the dependence of the x-ray yield on the pulse length, the
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wavelength, the cluster size and the laser polarization. A quantitative com-
parison with the experimental findings was often not possible, as the simu-
lation of the high laser intensities, with which many experiments were con-
ducted, become computationally expensive. The general trends could, how-
ever, be reproduced by the simulations, even though the simulations showed
resonance effects in certain parameter ranges which were not seen experi-
mentally.



Appendix A

Atomic units

A.1 Conversion to SI units [30]

1 a.u. of:
charge 1.60217653(14) · 10−19 C
mass 9.1093826(16) · 10−31 kg
action 1.05457168(18) · 10−34 Js
length 0.5291772108(18) · 10−10 m
energy 4.35974417(75) · 10−18 J
time 2.418884326505(16) · 10−17 s
force 8.2387225(14) · 10−8 N
velocity 2.1876912633(73) · 106 ms−1

momentum 1.99285166(34) · 10−24 kgms−1

electric field 5.14220642(44) · 1011 Vm−1

electric dipole moment 8.47835309(73) · 10−30 Cm

A.2 Useful relations

Energy conversion:
1a.u. = 27.2113961eV (A.1)

The rotational frequency ω in a.u. from the wavelength in nm:

ω[a.u.] =
45.563353

λ[nm]
(A.2)

Field amplitude A in a.u. from intensity I in Wcm−2:

A[a.u.] = 5.3380248 · 10−9
√

I[Wcm−2] (A.3)
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Appendix B

The velocity Verlet algorithm

The velocity Verlet algorithm is a method to propagate the equation of mo-
tion of a particle. The difference to the Verlet algorithm [31] is that the
velocity is also evaluated. Position, velocity and acceleration at time (t+∆t)
are obtained from the force F and from the same quantities at time t in the
following way:

x(t + ∆t) = x(t) + v(t)∆t + a(t)
∆t2

2
(B.1)

v(t +
∆t

2
) = v(t) + a(t)

∆t

2
(B.2)

a(t + ∆t) =
F (x(t + ∆t), t + ∆t)

m
(B.3)

v(t + ∆t) = v(t +
∆t

2
) + a(t + ∆t)

∆t

2
(B.4)

With this method, the error in the position of the particle is only of the order
of ∆t4.
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Appendix C

Scattering in cartesian
coordinates

When considering a scattering event, the scattering angles (θscatt, φscatt) are
given relative to the velocity v of the incident particle. To get the velocity v′

of the particle after the scattering event in the cartesian coordinate system
(x, y, z), it is convenient to consider the coordinate system (x′, y′, z′) where
the z′ direction is the direction of v. Let this direction be:

v =





r cos φ sin θ
r sin φ sin θ

r cos θ



 (C.1)

The directions of x′ and y′ have only to be orthogonal to z′. For con-
venience let us consider the system (x′, y′, z′) which is obtained from the
original system (x, y, z) by performing a rotation around the z axis with an
angle of −(π/2 − φ) followed by a rotation around the x′ axis with an angle
of −θ. In this new coordinate system the velocity of the scattered particle is
given by:

v′ =





r cos φscatt sin θscatt

r sin φscatt sin θscatt

r cos θscatt



 (C.2)

To transform this velocity back to the original system (x, y, z), one has to in-
vert the rotations described above. The transformation matrix that describes
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the transition from (x′, y′, z′) back to (x, y, z) is therefore:

M =





sin φ cos φ 0
− cos φ sin φ 0

0 0 1









1 0 0
0 cos θ sin θ
0 − sin θ cos θ





=





sin φ cos θ cos φ cos φ sin θ
− cos φ sin φ cos θ sin θ sin φ

0 − sin θ cos θ



 (C.3)

The evaluation of Mv′ gives the coordinates of v′ in the original basis
(x, y, z).



Appendix D

The Poisson equation on an
axisymmetrical grid with cells
of equal volume.

D.1 The r − θ grid

When confronted with a problem that is rotationally symmetric around an
axis (for example the z-axis), it is useful to work in axisymmetrical coordi-
nates (r, θ). The relationship to the cartesian coordinates is:

r =
√

x2 + y2 + z2 (D.1)

cos(θ) =
z

√

x2 + y2 + z2
(D.2)

One can then discretise a sphere with radius R and volume V with a r − θ
grid with Nr steps in r and Nθ steps in θ:

ri =
i

∑

k=1

∆rk (D.3)

θ1 =
1

2
∆θ1 (D.4)

θj =

j−1
∑

k=1

∆θk +
1

2
∆θj (D.5)

As can be seen in figure D.1, the discretization steps ∆rk and ∆θk are
not constant, but are chosen to assure that the cells all have equal volume
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∆θ2

θ1

r1

∆r3

Figure D.1: r − θ discretization of a sphere. Each cell should be seen as the
volume obtained when rotating the section around the z-axis. These cells all
have equal volume.

Vi,j = V
NrNθ

. ∆rk can be determined by recursion when one demands that

the spherical shell between rk and rk+1 has a volume of V
Nr

:

∆r1 = 3

√

1

Nr

R (D.6)

∆rk = 3

√

k

Nr

R −
k−1
∑

l=1

∆rl (D.7)
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The ∆θk are also given recursively:

∆θ1 = arccos(1 − 2

Nθ

) (D.8)

∆θk = arccos(1 − 2k

Nθ

) −
k−1
∑

l=1

∆θl (D.9)

The cell (i, j) corresponding to a given pair (r, θ) is determined by:

i =

⌈

Nr
r3

R3

⌉

(D.10)

j =

⌈

1 − cos θ

2
Nθ

⌉

(D.11)

with ⌈x⌉ denoting the smallest integer larger than x.

D.2 The discretized Poisson equation

The Poisson equation gives the relationship between the charge density ρ(r, θ)
and the electric potential u(r, θ). In axisymmetrical coordinates (r, θ) it has
the following form:

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

cos(θ)

r2 sin(θ)

∂u

∂θ
= −4πρ(r, θ) (D.12)

When discretising the space as described in the previous section, the
differential operators become finite difference operators:

∂u

∂r
(r, θ) =

ui+1,j − ui−1,j

∆ri+1 + ∆ri

(D.13)

∂u

∂θ
(r, θ) =

ui,j+1 − ui,j−1

∆θj+1

2
+ ∆θj +

∆θj−1

2

(D.14)

The discretized Poisson equation has the general form:

ai,jui+1,j + bi,jui−1,j + ci,jui,j+1 + di,jui,j−1 + ei,jui,j = fi,j (D.15)

The coefficients a, b, c, d, e and f are determined by the form of the finite
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difference operators:

ai,j =
2

∆ri+1 + ∆ri

(

1

ri

+
1

∆ri+1

)

(D.16)

bi,j =
2

∆ri+1 + ∆ri

(

− 1

ri

+
1

∆ri

)

(D.17)

ci,j =
1

r2
i

(

∆θj+1

2
+ ∆θj +

∆θj−1

2

)

(

cos θj

sin θj

+
4

∆θj+1 + ∆θj

)

(D.18)

di,j =
1

r2
i

(

∆θj+1

2
+ ∆θj +

∆θj−1

2

)

(

−cos θj

sin θj

+
4

∆θj + ∆θj−1

)

(D.19)

ei,j = − 2

∆ri+1 + ∆ri

(

1

∆ri+1

+
1

∆ri

)

− 4

r2
i

(

∆θj+1

2
+ ∆θj +

∆θj−1

2

) ·

(

1

∆θj+1 + ∆θj

+
1

∆θj + ∆θj−1

)

(D.20)

fi,j = −4πρi,j (D.21)

To assure the continuity at the symmetry axis, one has to request:

∂u(r, 0)

∂θ
=

∂u(r, π)

∂θ
= 0 (D.22)

This translates into:

ci,1 = =
4

r2
i

(

∆θ2

2
+ 3∆θ1

2

)

(

1

∆θ2 + ∆θ1

+
1

2∆θ1

)

(D.23)

ci,Nθ
= 0 (D.24)

di,1 = 0 (D.25)

di,Nθ
= ci,1 (D.26)

Thanks to the choice for the discretization of r, there is no need for a pole
condition at r = 0 as:

b1,j = 0 (D.27)

The boundary condition in r is simply given by fixing the potential at the
boundary:

uNr,j = u
(0)
Nr,j (D.28)

This boundary value problem can now be solved numerically, for example
by successive overrelaxation (SOR) [32].
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