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Abstract

Functional electrical Stimulation (FES) of denervated skeletal muscles found in re-
sent years an entry into rehabilitation of paraplegics. The aim of current research
is the optimization of Stimulation parameters as well as studying the ramifications
of stimulating the muscles in the thigh.

To simulate the distribution of the electric field a 3-dimensional model of the
thigh is created which is based on the theory of activation functions from Rattay
1990 and the muscle model from Reichel 1999. With this model it is possible
to simulate the electrical activity of muscle fibers. In the current implementa-
tion conductivity values based on grey values obtained from CT data are used
in the Poisson equation. Via discretization by the method of finite differences
and solution of the arising Systems this leads to the voltage respectively current
distribution. This thesis aims to implement and integrate an efficient solver for
the large linear Systems arising and shorten the time of the solution process.

After a thorough analysis of the numerical properties of these Systems, various
solution strategies have been investigated. Beginning with direct solvers which
take the Symmetrie and sparse nature into aecount, iterative solvers and finally
Krylov subspace methods have been implemented and tested. On the later we
focused on the preconditioned Conjugate Gradient method.

Because of the bad condition of the given Systems the solvers mentioned above
led to unsatisfactory results and Special preconditioning methods became manda-
tory. Again various methods have been implemented and tested until multigrid
methods finally led to outstanding results in terms of convergence speed. How-
ever, the quite high memory requirements could not be satisfied on the target
Computer änd triereföfe~tböls~för"reinö"t"e; Computing wefe~used~tö levefägeexter-
nal machines. Now these multigrid methods are performed remotely on high-end
Computers and the solution time from previously 9 hours shortens to about an
hour.

In the course of the evaluation of the methods described above it became necessary
to work with various model problems, and a new simple and especially small thigh
model was developed. Using this model existing results could be verified and new
insight was gained. In particular, this allows to evaluate new methods easier and
quicker than before.



Kurzfassung

Die Funktionelle Elektrostimulation (FES) von denervierter Skelettmusku-
latur fand in den letzten Jahrzehnten Eingang in die Rehabilitation Quer-
schnittgelähmter. Ziel der aktuellen Forschung ist es die Optimierung der Simu-
lationsparameter sowie die Auswirkungen auf die Muskulatur des Oberschenkels
zu studieren.

Zur Simulation der Potentialverteilung wird ein 3D-Modell des Oberschenkels er-
stellt, welches auf der Theorie der Aktivierungsfunktionen nach Rattay 1990 und
dem Muskelmodell nach Reichel 1999 basiert. Damit ist es möglich die elektrische
Aktivität von Muskelfasern zu simulieren. Im konkreten Fall werden dabei aus
den CT-Daten anhand der Graustufen die Leitfähigkeitswerte ermittelt und mit
Hilfe der Poisson Gleichung, derzeit diskretisiert mit der Methode der Finiten
Differenzen, ergibt sich daraus die Strom- bzw. Spannungsverteillung. Ziel der
vorliegenden Arbeit ist die effiziente Lösung der dabei auftretenden linearen Gle-
ichungssysteme und die Implementation und Integration eines Gleichungslösers.

Nach einer Analyse der numerischen Eigenschaften der auftretenden Systeme wur-
den verschiedene Lösungsmethoden getestet. Ausgehend von direkten Lösern, die
die Symmetrie und die schwache Besetztheit ausnutzen, wurden iterative Ver-
fahren und schließlich Krylov Subspace Verfahren, insbesondere das vorkondi-
tionierte Konjugierte Gradientenverfahren, implementiert und getestet.

Aufgrund der schlechten Koriditiöniefuhg der" Gleichungssysteme lieferten" die
erwähnten Lösungsmethoden nur unbefriedigende Ergebnisse und es erwies
sich eine Vorkonditionierung als unbedingt notwending. Auch hier wurden ver-
schiedene Methoden entwickelt und erprobt, bis schließlich Mehrgitterverfahren
hefvorrägende~Ergebnisse "bezüglich" der Laufzeitiieferten: Allerdings stellt dieses -
Verfahren hohe Anforderungen an die Systemressourcen des verwendeten Com-
puters. Daher erwies es sich als notwendig Software für verteiltes Rechnen zu
verwenden, um auf externe Hochleistungscomputer zuzugreifen, auf denen diese
Mehrgitterverfahren ausgeführt werden. Damit ist es nun möglich die bisherige
Lösungszeit von 9 Stunden für eine Simulation auf etwa eine Stunde zu verringern.

Im Zuge der Bewertung der oben beschriebenen Verfahren war es notwendig mit
verschiedenen Modellproblemen zu arbeiten. Insbesondere wurde ein einfaches
(und vorallem viel kleineres) Modellproblem für den Oberschenkel entwickelt.
Anhand dessen war es möglich, vorhandene Ergebnisse zu bestätigen und neue
Erkenntnisse zu gewinnen. Damit steht jetzt auch ein Werkzeug zur Verfügung,
anhand dessen neue Verfahren einfacher und schneller getestet werden können.
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Chapter 1

Introduction

Functional electrical Stimulation (FES) is the clinical application of a small elec-
tric current to the intact nerves or denervated skeletal muscles, in order to elicit
a muscle contraction. This contraction is then incorporated into a functional
activity, for example standing up or eventually walking. Therapeutic Stimulation
is aimed to improve quality of life for individuals with disabilities e. g., stroke
victims, multiple sclerosis sufferers, or patients with spinal cord injuries.

In the second half of the 20th Century substantial progress was made in this field
and a series of electrical stimulators were developed and found their application in
several clinical areas. Outstanding examples are the artificial cardiac pacemaker
in 1952 (Paul M. Zoll), phrenic pacemakers against respiratory insufnciency in
1966, auditory prothesis (cochlea-implant) for the deaf in 1970, motor nerve Stim-
ulation for the paralyzed—leg pacemaker in 1973 and hand pacemaker in 1988
(Rattay [42]). Clinical successes in Stimulation of denervated muscles are dated
only a few years back by Kern [31] in 1995. So the knowledge was mainly the
product of years of experimental use and was therefore mostly empirical and
subjective.

In"the late~1990's a researchgroupat the Vienna University Clinkr (University
of Vienna, Department of Biomedical Engineering and Physics at the Vienna
General Hospital) started to develop a 2-dimensional model of denervated skeletal
muscles (Reichel [44]) and simulated the effects of FES in the thigh. Based

-on-this--wor-k-a-3-dimensional-model-(-Breyer-[-l-l]-)-was-ereatedranisotropy-taken-
into account (Grotz [25]) and a tool for analyzing and visualizing the areas of
activation (Martinek [38]) was implemented. The dimculty in all the modeis and
tools was the solution of the large linear Systems arising from the discretization of
the problem on calculation of the voltage / current distribution within the thigh.
The efHcient solution-pf thföe_sy^t^msj_s__subj^ of this PhD thes_is_. _ _ _ _

Chapter 2 gives an introduction into the medical background and the underlying
physical model followed by an analysis of the mathematical properties of the
System (Chapter 3).

In the next two chapters (4 and 5) we test the given problem against various
solution strategies from direct solvers to Krylov subspace methods and focus on
preconditioning techniques. This leads us finally to multigrid methods which are
considered as being the fastest numerical methods for the solution of discretized
elliptic partial differential equations with which we deal here.
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Afterwards we turn to implementation issues of the solver in Chapter 6 and also
describe two töols for remote Computing to leverage external Computing resources.
This became necessary because memory requirements for the used solver could
not be satisfied at the 32bit Computer on which the FES-Tool is used.

Chapter 7 describes in detail the tests to evaluate the discussed algorithms and
their results. Based on this information our conclusion (Chapter 8) gives recom-
mendations how to optimally use the developed solvers. The thesis ends with an
outlook to further fields of investigation.



Chapter 2

Medical and Physical Basics

This chapter describes the medical background of the relevant physiological prin-
ciples at the stimulated regions. It continues with the nerve model of Rattay,
which explains the activation function and the Stimulation of denervated skele-
tal muscles. Afterwards the physical / mathematical model is outlined which is
used to calculate the electrostatic field in the thigh. The chapter concludes with
presenting the tools that are used to perform and analyze an FES Simulation at
the Department of Biomedical Engineering and Physics.

2.1 Medical Background

2.1.1 Human Thigh

The most relevant tissues in the human thigh with influence to FES are skeletal
muscles, connective tissue, tendons, fat, skin and bones. The muscle tissue is
especially interesting for the Stimulation. The passive electrical properties of the
muscle arg.together with the surrounding tissuejresponsible for how the electrical
field builds up. On the other hand is the muscle fiber an active electrical element,
which generate action potentials upon contraction. The other tissue influences
solely the electrical field.

-Skeletal muscle-(Fig.- 2.1)- consists-of thousands of_elongated,„cylindrical_cells._
(approximately 5 -200 //m in diameter and up to 30 cm in length), called muscle
fibers, arranged parallel to one another. Each muscle fiber is covered by a plasma
membrane called the sarcolemma. Its high resistance is responsible for the lower
conductivity orthogonal to direction of fibers. Conductivity within a fiber and
outside of the membrane is about decouple the conductivity orthogonal to the
direction of fiber. This property is called anisotropy and has to be considered in
the Simulation.

The fascia lata is a deep fascia that encircles the entire thigh. The thigh muscu-
lature is separated in three compartments by deep fascia. The anterior muscles
of the thigh, which form the anterior compartment, in particular the quadriceps
femoris, causes extension of the knee, which is essential for regaining the ability
to get up, stand and eventually walk in case of flaccid paraplegia. Thus the FES
is applied to the quadriceps, which itself consists of 4 parts and has therefore to
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muscle

sarcomere myöfi.bril

Figure 2.1: Organization of skeletal muscle from gross to molecular levels, after Junqueira
et al. [30]

be stimulated with Jarge. surface electrodes instead of a Single mono-polar point
electrode. Fig. 2.2 shows a 3-dimensional model of the muscles of the thigh.

In case of a lesion of the motoric efferent nerve the propagation of an action
Potential in the peripheral nervous system is interrupted and motoric units in

-the-muscles~cannot-be inner-vated in-a physiological-way.- The-next subsection-
explains the electrical and chemical processes in the muscles and nerves when a
contraction occurs and introduces the basis for FES.

2.1.2 Electrical Stimulation of Nerve and Muscle Fibers1

As a consequence of different ionic concentrations at the inside and the outside
of a nerve or muscle fiber, the interior of the cell is normally maintained at a
Potential of a about 50-70 mV negative to the exterior. When an action potential
is produced the voltage is changed to positive values before it falls back again
to the resting State (Fig. 2.3). Such an action potential propagates because it
disturbs the resting region ahead by itself and Channel activities are evoked there,
too. A similar effect can be reached artificially by making the inside potential

1 after Rattay [42]
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Figure 2.2: Muscles that move the femur (thigh bone), after Lippert [35]

more positive with the help of an inserted micro-electrode. However, placing an
electrode inside the cell is usually not practical for clinical applications; therefore,
nerve and muscle fibers are usually stimulated by changing the membrane voltage
via the extracellular potential.

In order "tö stiihulate nerverfibers "artificiälly an electric field must be createdr
For this purpose, neural protheses use either surface electrodes or implanted elec-
trodes2. Both types of electrodes have their applications.

Surface electrodes need no surgery, but the large distances to the stimulated areas
and the insulation of the skin and fat areas demand high Stimulation strengths
with low fiber selectivity. Implanted electrodes on the other hand demand high

2 An alternative technique is the non-invasive Stimulation with coils, see e. g., Carbunaru and
Durand [13]
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Figure 2.3: An action potential from asquid giant axon. The vertical scale indicates membrane
voltage in mV (Hodgkin and Huxley [29]).

quality materials because the surface should not be changed electrolytically. If
the electrodes are used for neuromuscular Stimulation they consist mostly of very
thin coiled stainless steel wires which move with the muscles and other tissues
without breakage due to mechanical stress.

For the force control of stimulated muscles the time behavior is of high interest,
because the firing patterns of the stimulating nerve or muscle can evoke either
smooth of fippled mötiönsr Fig. 2.4 shows the force response of a skeletal muscle,
as a function of Stimulus frequency. In the figure firing rates below 25-30 Hz
produce contractions which are not smooth enough for most practical purposes.
Smooth contractions at high force levels are obtained with higher Stimulation
frequencies, but if the motor nerve--is-firing-wit-h- more-than 50 -Hz-the-fatigue-
effect is very fast.

For reasons of safety, biphasic Stimulus signals are preferred for most applications
since charge accumulation can be avoided. High charge densities can be avoided
by using trains of biphasic impulses. The function of the primary pulse is to
produce an action potential and the second pulse is used to-reverse the electro-
chemical process. The second pulse also has a hyper-polarizing effect and reduces
the stimulating work of the first pulse especially when it is applied shortly after
the onset of the first pulse. A delay between these pulses is therefore used because
it will reduce this effect. Fig. 2.5 shows such a signal.
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Figure 2.4: Muscle force as a function of Stimulation freqüency (Solomonow [50]). The force
of a skeletal muscle depends on the pulses per second (pps).
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Figure 2.5: Trains of biphasic constant voltage (cv) Signals are used.

2.2 Physical Interpretation

When applying voltage or current sources to the human thigh the resulting elec-
trostatic field provides information about triggering an action potential in the
muscles. To calculate the electrostatic field the conductivity together withjthe
location of the current or voltage sources is needed.

Today Computer tomography is used3 to produce sliced images of the extremities.
Each tissue absorbs the X-rays in a characteristic manner (see Fig. 2.6) and pro-
vides the raw data for calculating the conductivity. Through segmentation color
values are associated with tissue types which have to be applied with a correction
scheme because of sometimes ambiguous color information in crossover sections
(Mandl [37]). Because of anisotropy (especially in muscles) the longitudinal and

3Another possibility would be to use impedance tomography (Li [34]).
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transversal conductivity is calculated (Grotz [25]) based on the location of muscle
fibers (Martinek [38]). With this data a 3-dimensional matrix can be built up as
base for calculating the electrostatic field.

Figure 2.6: Processed Computer tomography in the middle part of the left thigh. On the left
normal (healthy) and on the right side denervated musculature (from Kern [31]).

The Poisson Equation for electrostatic fields

-V (G(x)- Vu{x)) = 0-- £oT-x = {xlrx2,x3)-ma (2.1)

(an elliptic boundary value problem) describes the voltage or current distribution
u in a medium with variable conductivity G where Q is a bounded, open domain
inJR3_when_noJnner_sources^ are present. Equation (2.1) is to be_satisfiedjmly for_
points that are located at the interior of the domain Cl. The conditions on the
boundary F of Q are

• Dirichlet boundary conditions

for defining the voltage or current sources <p and

• Neumann boundary conditions

—u(x) = G(x)

(2.2)-

(2.3)

for describing the behavior of the field at the crossover from skin to air
(with n denoting the orthogonal vector to the boundary curve). At the hip
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and knee additionally a damping factor is introduced that simulates some
"fade of" of the electric potential contrary to the surrounding air which acts
as an insulator.

The conductance G between two voxel for a given direction is based on the specific
conductance 7 in each voxel that itself is obtained from the colour values of the
CT data. To calculate G we us the fact that the elctric resistance R between to
voxel is the sum. of the resistance in each voxel and that the conductance G is
the inverse of R. This leads us to the formula

rC = K i + K 2 — — + — = — => G = (-i.fi-

The conductance G in a specific voxel for a given direction is calculated as

with A the area between two voxel the current has to pass through, l the length
from center to the boundary of the voxel and S the factor of anisotropy in the
medium for a given direction. E. g., the conductivity Gz in longitudinal direction
and discretization with voxel size Ax, Ay, Az is

Gz =

At the discretization of the Poisson equation (see Chapter 3) the System of linear
equation has to be transformed in the following way depending on the type.

Voltage sources Rows at voltage sources are replaced with 0 except the main
diagonal element is set to -1 since at this point the voltage Vo is given.

-Current-sources-The row-/. column. with the.largest entryän-the right hand.side
vector b is removed, because otherwise it would lead to an over-determined
System of linear equations.

The right hand side vector b defining the Dirichlet boundary conditions is set to 0
and at the current / voltage sources with 1 respectively -1, which allows an easy
scaling of the solution vector to the actual values (üsually up to 250 Milliampere
respectively ±40 Volt are used).

2.3 Thigh Model

At the Department of Biomedical Engineering and Physics the FES-Tool
(Functional Electrical Stimulation - Tool) was developed which integrates the
above described procedures in an easy to use graphical user interface (Fig. 2.7).
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Figure 2.7: Main window of the FES-Tool with a cross-section and segmentation configuration
dialog.

In the first step DICÖM data as provided by Computer tomography is imported.
The goals of DICOM are to achieve compatibility and to improve work-flow ef-
ficiency between imaging Systems and other information Systems in health-care
environments. This should be established through Standards for communication

ital images and associated data.

Next the region and resolution of data to be analyzed is selected (usually the data
provided from Computer tomography includes both legs and separate calculation
for each has to be performed). Thereupon segmentation assigns a conductivity

"~vaTu.e~t"ö eäch imägeT pixerthroügh ässöciätiön "öf"tissüeTtcf cölör"valües. "After "t"hat"
the position of the electrodes is defined and as result cross sections or a 3D model
can be viewed - see Fig. 2.8.

After all data is available the solver is started and the results are displayed as
equipotential lines in the Computer tomography images (Fig. 2.9).

When the solution is available FES-Analyze (Martinek [38]) finally allows to
visualize the areas of activation by calculating the first and second derivative.
Fig. 2.10 shows a Screenshot of this tool.
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Figure 2.8: 2D and 3D view of the thigh within the FES-Tool.

Figure 2.9: The electrical potential in the form of contour plots in the thigh.
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Figure 2.10: FES-Analyze showing longitudinal cross-sections with the areas of activation in
magenta and cyan.



Chapter 3

Mathematical and Numerical
Investigation

This chapter introduces the mathematical properties of the Systems arising when
calculating the current or voltage distribution in the thigh. It describes different
ways how to transform the 3D conductance matrix into a System of linear equa-
tions, and how to solve such Systems. In particular, the Finite Element and the
Finite Difference Method are discussed.

Furthermore we give details about the characteristics of the current Systems avail-
able and relate them to a first discussion of available solution strategies for linear
equations.

3.1 Discretization of the Poisson Equation

The common way to solve Partial Differential Equations (PDEs) numerically is
to discretize them, i.e., to approximate them by equations that involve a finite
number of unknowns. T_he matrix problem that arise from these jiiscretization
is generally large and sparse. There are several different ways to discretize a
PDE. The simplest method uses Finite Difference approximations for the partial
differential Operators. The Finite Element Method replaces the original function
by a function which has some degree of smoothness over the global domain, but
which is piecewise polynomial on simple cells, such as small triangles or rectangles.
In between these two methods, there are a few conservative schemes called Finite
Volume Methods, which are designed to emulate continuous conservation laws of
physics. This section describes the use of the Finite Difference and the Finite
Element Method in context of the Poisson Equation from Chapter 2.

3.1.1 Finite Difference Method

The Finite Difference method is based on local approximations of the partial
derivatives in a Partial Differential Equation, which are derived by low order
Taylor series expansions. It is particularly appealing for simple regions, such as
rectangles, and when uniform meshes are used. The matrices that result from
these discretizations are often well structured, which means that they typically
consist of a few nonzero diagonals.

13
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To approximate the second derivative of a function u at the point x, the formula

d?u(x) u(x + h) — 2u(x) — u(x — h) h2 d4u(£)
dx2 = = h2 12 dx4 ( '

is used (for a function u that is C4 in the neighborhood of x, with h tends to
zero and £ is in the interval (x — h, x + h)). This is called the centered difference
approximation since the point x at which the derivative is approximated is the
center of the points used for the approximation. The dependence of this derivative
on the values of u at the points involved in the approximation is often represented
by a "stencil" or a "molecule," shown in Fig. 3.1.

d> © ©
Figure 3.1: The tree-point stencil for the centered difference approximation to the second
order derivative.

If the approximation (3.1) is used for three directions in 3D space, the following
second order accurate approximation results (in the simplest case, the ^ , J^r

and J-3- terms in the Laplace Operator use the same mesh size h for x\, x2 and

Au(x) « — [u(xi + h, x2, x3) + u(xi — h, x2, x3) + u(x\, x2 + h,

«(^17x2 — h, x3) + Jt,(xi, X2,xz+li)-\- ü(xi^x2, X3 — h)

-6u(xi,x2,x3)]. (3.2)

This is called the seven-point centered approximation to the Laplacean and the
stencil of"this"finite~difference~approximation"isillustrated~in~Figr3:2:

Consider the three dimensional equation

d2u d2u 82u\ t . n

+ + ) = f m t t (3-3)

u =-0 onF (3v4)-

where Q is a cuboid (0, h) x (0, l2) x (0,13) and F its boundary. This can be
discretized uniformly by n* + 2 points in each direction:

Xij=jxhi, j = 0, ...,n+l, i = {1,2,3}

where
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Figure 3.2: The seven-point stencil for the centered difFerence approximation to the 3D Laplace
Operator.

Since the values at the boundaries are usually known (Dirichlet boundary condi-
tions), only the interior points are numbered, i. e., the points ( a ^ , X2j, x3iTn) with
0 < f c < n 1 , 0 < / < n 2 and 0 < m < n^. These points are labeled slice-wise,
bottom up, orie horizontal line at a time. This labeling is called natural order-
ing (or lexicographical odering) and is displayed in Fig. 3.3 for the simple case
n\ = n2 = n3 = 4.

Figure 3.3: Natural ordering of the unknowns for a 4 x 4 x 4 three-dimensional grid. For
reasons of a clear illustration border elements (F) have been omitted.

If the centered difference approximation is used, then by (3.3) expressed at an
interior point Zjj,*, the unknowns u^j^i «i±ij±i,fc±i, satisfy the relation

-Ui-i,j,k ~ Uij-itk - w.j.fc-1 - Ui+i,j,k - "t,j+i,* - «i,j,fc+i + ÖMjj.fc = h2fijtk (3.5)

in which fitjtk = f(xi,j,k)- Notice that for i,j, k = 0 and i,j, k = n the equation
will involve known quantities. Thus, for n\ = 5, «2 = 3 and «3 = 4 the linear
System obtained is of the form

Ax = f
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where the pattern of the matrix A appears in Fig. 3.4.
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Figure 3.4: Pattern of matrix associated with a 5 x 3 x 4 finite difference mesh.

In "block notation" the matrix has the following block structure:

/ B -=/ \

with B=\ -I C -I

/ n -i \

3.1.2 Finite Element Method1

In the finite difference approximation of a differential equation, derivatives are re-
placed by difference quotients which involve the values of the solution at discrete
mesh points of the domain. The resulting discrete equations are solved, after im-
posing the boundary conditions, for the values of the solution at the mesh points.

1See Reddy [43] and Chandrupatla and Ashok [14] for an in-depth discussion of the finite
element method.
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Although the finite difference method is simple in concept, it suffers from several
disadvantages. The most notable are the inaccuracy of the derivatives of the
approximated solution, the difficulty in imposing the boundary conditions along
non-straight boundaries, the difficulty in accurately representing geometrically
complex domäins, and the inability to employ nonuniform and non-rectangular
meshes.

In the variational solution of differential equations, the differential equation is
cast into an equivalent variational form, and then the approximate solution is
assumed to be a linear combination (5Zcj^j) 0I" given basis functions <pj. The
Parameters Cj are determined from the variational form.

The finite element method provides a systematic procedure for the derivation of
the approximating functions. The method is endowed with two basic features
which account for its superiority over other competing methods. First, a geo-
metrically complex domain is represented as a collection of geometrically simple
subdomains, called finite elements. Second, over each finite element the approx-
imating functions are usually chosen polynomial. The approximating functions
are derived using concepts from interpolation theory, and are therefore called
interpolation functions.

Consider a region Q which is approximated by Qh with m four-node tetrahedral
elements (Fig. 3.5) Kit

The mesh size h is defined .by.... .

h = max diam(Kj)
i=l,...,m

..where diam(K), the diameter of a tetrahedral element K, is the length of its
longest side.

Then the finite dimensional space Vh is defined as the space of all functions which
are piecewise linear and continuous on the polygonal region Q,^, and which vanish
on the boundary T. More specifically,

Vh~= {4> \~4>\nh "continuous, (f)\rh = Q~4>\Ki linear Vj} .

Here, <f>\x represents the restriction of the function 4> to the subset X. If Xj,
j = 1, . . . , n are the nodes of the triangulation, then a function 4>j in Vh. c a n be
associated with each node Xj, such that the family of functions </>j's satisfies the
following conditions:
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Figure 3.5: Four-point tetrahedral element.

These conditions define fa, i = 1,. . . , n uniquely. In addition, the </>j's form a
basis of the space 14.

Each function of Vh can be expressed as

t = l

The finite element approximation consists of writing the Galerkin condition for
functions in 14:

Find u € Vh such that a(u, v) = (/, v), Vv G 14,

with the bilinear functional

/ Vu

(3.6)

a(u,v) = M
Jn

and (/, v) denoting the Z/2-inner product of u and v in fi,i. e.,

(f,v)= I fvdx.

Since u is in 14, there are n degrees of freedom. By the linearity of a with respect
to v, it is only necessary to impose the condition a(u, 0j) = (/, </>,) for i = 1 , . . . , n.
This results in n constraints.
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Writing the desired solution u in the basis {0j} as

and substituting into (3.6) gives the linear problem

3=1

where
aii = a{<j)i,4>j), ßi = (f,<f>i).

The above equations form a linear system of equations

Ax = b

in which the coefficients of A are the a^-'s and those of b are the ßi's. It can
be shown that for the problem considered A is again a sparse, Symmetrie and
positive definite matrix.

The are a few advantages of the finite element method for the application of func-
tional electrical Stimulation (FES) beside the ones mentioned in the beginning.

Coarseness Control The most important tissue type in FES are muscles and
depending on .the type^of functional activation often a^sp.ecific group of
muscles are of Special interest. The finite element method allows to define
a non uniform mesh-size and when using a nne grained mesh in the zones
of interest this will lead to more aecurate results.

"Smaller" Systems Wheri usiriga fine grained mesh ät specific areas it is also'
possible to use larger elements and therefore fewer data to represent tissue
like bone or fat or the areas near the knee and the hip. This would lead to
an overall smaller System and faster calculation time.

User Interface There exist numerous tools for modeling and simulating PDEs
which also often provide a graphical user interface for ease of use (e. g.,
FEMLAB [19]). These tools can be used to build up the mesh strueture
with a convenient user interface to speeify the zones of interest or other
areas with a more coarse grid. After solving the delineated problem these
programs also provide sophisticated tools to analyze the solution.
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3.2 Matrix Properties

Since the original data is available as uniform mesh and because of the simpler
implementation in the current implementation of the FES-Tool at the Department
of Biomedical Engineering and Physics the Finite Difference Method is used. A
complete physical derivation of the problem can be found at Breyer [11] or Grotz
[25]. After building up the system and removing rows / columns containing only
zeros (= the air in the cuboid) matrices have a sparsity structure as depicted in
Fig. 3.6 (nonzero entries are shown as dots). Since the small and large matrices
share common properties some examples in the following are only tested with the
small datasets when runtime exceeds limits for the bigger problems.

Data is available as CT images and only a fraction of the information is used to
build the conductance matrix because otherwise the matrices would be too big.
The scaling factor therefore determines the size of the System which is usuaily
given in the notation heightxwidthxdepth, i. e., the images in Fig. 3.6 represent a
resolution of 3 slides with 105x89 conductance values each respectively 51 slides
with a resolution of 314x266 voxel.

0
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12000

0 2000 4000 6000 6000 10000 12000
nz - 77944

6 6 10 12 14 16
nz-11664500

X10"

Figure 3.6: Sparsity structure of matrices with the size 105 x 89 x 3 (left) and 314 x 266 x 51
(right).

Some immediate properties of this matrices are:

Dimension The size of the investigated matrices is between 1.3 • 104 - 1.6 • 106.
An rough estimate of the size is about 40% of height x width x depth which
means that the rest is usuaily air.

Sparsity From the definition of the matrix it follows that there are at most
seven nonzero entries in each row, i.e., the number of nonzeros (nnz) is
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about 7xdim. In the examples above we have nnz=77944 respectively
nnz=ll 664 500 or a sparsity (-£2%) of 4.5 • 10~4 / 4.1 • 10"6.

Bandwidth An upper bound for the bandwidth defined as

max{|z — j \ | üij ^ 0} with A = {a^}

follows again from the matrix definition. The conductivity to the left and
right voxel is immediately next to the main diagonal. Values for the voxels
above and below are with columns afar from the main diagonal and voxels
in front and behind have a distance of height x width. The above border is
therefore 1+width+heightx width. Because of the removal of air 40% of this
value is an approximation of the real bandwidth: 6 056 respectively 58 217
for the Systems above.

Matrices of the type considered here are saved in a Special sparse format (usually
the Compressed Sparse Row (CSR) format). MATLAB for instance takes about
1MB for a small System and 146MB for a large System to save the System in
CSR format—for comparison, the small System in conventional storage (as dense
matrix) would need 1.4GB.

Another important characteristic is that bandwidth reduction algorithms can be
successfully applied. The reverse Cuthill McKee algorithm (Cuthill and McKee
[16]) for example reduces the bandwidth significantly which leads to numbers of
173 respectively 8027 for the above Systems which is especially important for
some solution strategies as will be shown in the next chapter.

Fürthef investigationTeveäls the föllowing numencäTpröpefties of the Systems.

Definiteness The matrices are Symmetrie and negative definite. By construc-
tion the sum of each row / column is 0 because the diagonal element is the
negative sum-of all-elements-in the row column. This follows from the first-
Kirchhoff's current law which states that the sum of all currents flowing
into a node is zero.

For the purpose of solving the Systems it is convenient to consider positive
definite Systems and therefore in the föllowing A: =—A is assumed. An nxn
Symmetrie matrix A-is-called positive definite if . _ . . . . . . . . . .

xTAx > 0

for all nonzero x E Mn. This is equivalent to the requirement that all
eigenvalues are positive, or to the requirement that determinants associated
with all upper-left sub-matrices are positive. Another sufficient requirement
is that the matrix A = (a^) is diagonal dominant

kj\ < \aa\,
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or irreducibly diagonaldominant, i.e., A is irreducible and

with at least one index i fulfilling the strict inequality. The proof for positive
definiteness of the matrices arising in the context of functional electrical
Stimulation can be found for instance in Auzinger [6].

Condition of the Problem The condition number of a matrix measures the
worst case of the sensitivity of the solution of a System of linear equations
to errors in the data. It also provides an indication of the accuracy of the
results from matrix inversion and the linear equation solution.

The condition number of a regulär quadratic matrix A with respect to a
norm p is defined as

KP{A) = U\\P\\A-%. (3.7)

Values of K(A) near 1 indicate a well conditioned matrix and poorly condi-
tioned matrices have large numbers of K(A).

But it is usually expensive to calculate the K and it takes several hours to
calculate the condition number even for a small system if the inverse is ex-
plicitly calculated. Therefore tools like MATLAB provide Special commands
for approximating the condition number (e. g., condest computes a lower
bound for the 1-norm condition number).

For a small System (105.x 89 x 3)..«_= 6.9 -_105 and with increasing sizejhe .
condition gets worse which indicates the need for good preconditioners as
will be seen in the next chapters.

Taking all this into account one finds _that today there exists a ynde variety
of solution methods for solving such Systems and solvers for linear Systems are
indeed one of the best studied fields in numerical linear algebra. But choosing a
solution method for a given problem does not depend only on the mathematical
properties of the problem. The field where the problem solving environment has
to be applied also has to be taken into account. For the FES-Tool this includes
currently the"foirowingrestrictiöns.

Implementation in MATLAB The FES-Tool is implemented in MATLAB

(Higham and Higham [28]) using the rieh functionality of funetions for
general problems. Therefore, also the solver has to be implemented in
MATLAB or be invoked from there and should return the result to MATLAB

for postprocessing of the result. Because of the size of the problems we
have to use a sparse storage format as stated above and using MATLAB

this naturally suggests the Compressed Sparse Row (CSR) format.
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Single processor machine running Windows Currently most of the re-
search in high Performance Computing is done in distributed Computing and
especially Grid Computing (Foster and Kesselman [21]) and much progress
has happened in the field of solving large System on distributed resources.
Nevertheless, the aim of solving is in this case on the use of just a sin-
gle machine running the Windows operating Systems with 3GB of main
memory.

Solving Ax = b In the FES-Tool solving the problem of calculating a current
distribution within the thigh is just one part of the much bigger project.
So, for easy interoperability between the various parts a simple interface
was designed which specifies that only the matrix A and the right-hand-
side vector b are provided and as result the solution vector x should be
returned.

Another restriction, although not explicitly specified above, is the use of available
and proven implementations of solvers. Since these sophisticated tools take years
to develop and tune and also require a great deal of expert knowledge and expe-
rience in this field, it is often better to use these tools instead of implementing
them from scratch.

From the mathematical point of view the following properties of the System have
to be taken into account.

• Large, sparse Systems recommend an iterative solution strategy and

• the matrices are Symmetrie and positive definite, thus some sort of conjugate
gradient method is the main choiee.

Given all these determining factors it turns out that the availability of free soft-
ware on the Windows platform is quite limited and development takes manly
place on Unix. Fortunately there is a tool available on Windows which allows the
compilation and execution of Software from UNIX (especially Linux) called Cyg-
win (Vinschen et al. [55]). Together with the MEX interface of Matlab (MATLAB:

Application Program Interface Guide [39]), which allows the execution of arbi-
träfy CTänd Fortfall Code, i t ls possible to' äccesüTthis" Software" from'Windows,""
too. If the restriction of running the solver on the machine at the Department
of Biomedical Engineering and Physics is additionally softened it will be possible
to use tools like NetSolve (Arnold et al. [3]) or HARNESS (Fagg et al. [18]) to
remotely execute Software on any machine connected to the Internet.

The following two chapters will now describe the mathematics of the solvers
used, i. e., the Krylov Subspace Methods in Chapter 4 and multigrid methods for
preconditioning in Chapter 5.



Chapter 4

Solution Methods

This chapter describes the methods for solving the Systems already mentioned in
Chapter 3. We will start with a short introduction to applicable direct solvers
and will turn afterwards to iterative methods following mainly the presentation
in Iterative Methods for Sparse Linear Systems by Saad [47]. Starting with basic
iterative methods like Jacobi and Gauss-Seidel we proceed into projection meth-
ods and finish. with Krylov subspace methods (for further details see especially
Iterative Krylov Methods for Large Linear Systems by van der Vorst [57]).

As example problem for this presentation, the classical model for a discrete elliptic
boundary value problem is used. The discrete Poisson equation with Dirichlet
boundary conditions

-Au(x) = f(x) for x = (x1,x2,x3),x € Q = (0, l)3 C M3 . .
u(x) = (p(x) on r = dQ,. '

For discretization of the differential equation a uniform mesh with mesh size
h — l/n is used. The mesh is the set of inner points

'"" Qh = {(x~i,X2,x3) = (ih,jh,kh) | 1 < i,j,k <n- 1}.

For an approximation of the differential equation the seven-point stencil (Figure
3.2) is used leading to a linear System Ax = b (cf. 3.5). When iteratively solving
this System the i-th component of the solution-vector-after /c-iterations is denoted
, (fc)
by x\ '.

For the sake of completeness the following section describes available direct solvers
for large, sparse, linear Systems. But as shown in the results this type of solver
can't compete against the much more efficient preconditioned conjugate gradient
methods for the given problem. - •-- — -

4.1 Sparse Direct Solvers

A direct method for solving a linear system is Gaussian elimination, i. e., factoring
a matrix into the product of a unit lower triangulär matrix and an upper trian-
gulär matrix. The problem for sparse Systems is that during elimination many
nonzero elements are generated. Sparse direct solvers therefore seek to apply a

24
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good reordering to avoid this fill-in—a method which can improve a direct solver
significantly, but does very little to the efficiency of most iterative algorithms.
Algorithm 1 gives a general picture how a sparse direct solver works.

Algorithm 1 A simple sparse Gaussian elhnination.

1. Compute a triangulär factorization PrAPc = LU, with Pr and Pc permutations
matrices, where Pr reorders the rows of A and post-multiplying by Pc reorders the
columns. Pr and Pc are chosen to retain sparsity (avoid fill-in) and numerical stability,
e. g., the multiple minimum degree ordering MMD (Liu [36]) or the column
approximate minimum degree ordering COLAMD (Davis et al. [17]) could be used.

2. Solve Ax = b by evaluating x = A~x b = (P^LUP-1)'1 b = Pc (U~l (L~l{Pr b))).
This is done efficiently by multiplying from right to left in the last expression, where
multiplying with P means a permutation and multiplying by an inverse means solving
the System.

The following two solvers have been chosen as examples since they are quite
prominent and established in the scientific Community.

SuperLU The SuperLU package is a collection of three related ANSI C sub-
routine libraries for solving sparse linear Systems of equations. It contains
a set of subroutines to solve sparse linear Systems AX = B. Here A is a
Square, nonsingular, n x n sparse matrix, and X and B are dense n x nrhs
matrices, where nrhs is the number of right-hand sides and solution vec-

- - _ tors. The matrix Aneed not-.to.be Symmetrie, or. defmite;. indeed, SuperLU
is particularly appropriate for matrices with very unsymmetric strueture.

All three libraries use variations of Gaussian elimination optimized to take
advantage both of sparsity and the Computer architecture, in particular
memory hierarchies (caches) and parallelism.- The-three libraries within-
SuperLU are Sequential SuperLU, Multithreaded SuperLU and Distributed
SuperLU. For the problems in the thesis only Sequential SuperLU was tested
for Performance against other algorithms—see Chapter 7 for results.

MA28 / MA48 The Harwell Sparse Matrix Library contains routines for han-
" dling sparse linear and hdnlinear problems selected ffom the Harwell Sul>

routine Library and is part of the Numerical Algorithms Group (NAG)
package. There is now a second release of the libraries available with sig-
nificant Upgrades and extensions. The MA48 library solves a sparse un-
symmetric System of linear equations using Gaussian elimination. There
are facilities for block triangularization, iterative refinement and error esti-
mation. For tests in this work only MA28 was available, but as numerical
experiments in the literature indicate, e. g., Barton et al. [8], the newer
MA48 is on average about 20 - 30% faster than MA28.
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4.2 Basic Iterative Methods

The first iterative methods used for solving large linear Systems were based on
relaxation of the coordinates. Beginning with a given approximate solution, these
methods modify the components of the approximation, one or a few at a time in
a certain order, until convergence is reached. Each of these modifications, called
relaxation steps, is aimed at annihilating one or a few components of the residual
vector. The methods covered in this section involve passing from one iterate
to the next by modifying a component in order to improve an iterate through
eliminating some component (s) of the residual vector b — Ax.

The Jacobi iteration determines the i-th component of the next approximation
so as to annihilate the i-th component of the residual vector—see Algorithm 2.

Algorithm 2 General Jacobi Iteration.

1. Until convergence do k = k + 1:

2.

Similarly, the Gauss-Seidel iteration corrects the z'-th component of the current
approximate solution, in the order i = l , . . . , n , again to annihilate the z-th
component of the residual^ However, this time the approximation is updated
immediately after the new component is determined. The newly computed com-
ponents x\ ' can be changed within a working vector which is redefined at each
relaxation step—see Algorithm 3.

Algorithm 3 General Gauss-Seidel Iteration.

1. Until convergence do k = k + 1:

2.

Successive Over Relaxation (SOR) finally adds a weight factor u to the expression
in parenthesis of the Gauss-Seidel iteration (Algorithm 4). A good choice for this
relaxation factor can speed up the convergence significantly—see Hackbusch [27]
for furhter details. In Table 4.1 results of the discussed algorithms are compared
in terms of convergence rate for the model problem.
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Algorithm 4 General SOR Iteration.

1. Until convergence do k = k + 1:

9 x(.i"+i) _ k L [h. _V"*a..

As example for comparing these basic iterative methods the problem

fijk = -6, (p(x) =x\+x\ + xl (4.2)

is used. For these data the solution is Uh{x) = x\ + x\ + x\. Table 4.1 shows for
h = 1/32 (~> dim A = 29 791) the value

Pm = «16,16,16 (4-3)

in the middle (16/i, 16/i, 16/i) = ( | , | , | ) which should converge to 0.75, and the

error
em = m a x f l u ^ - (i2 + f + k2)h2\ \ 1 < i,j,k< n - l } (4.4)

after m iterations.

Jacobi Gauss-Seidel SOR (w = 1.821)

"~Itf' Pm ~~~~em pm '"'"*£m" Pm £m

1 -0.001 2.637 • 10° -0.002 2.639 • 10° -0.016 3.622 • 10°
50 -0.048 1.428-10° -0.070 1.142-10° 0.744 2.296 • 10~2

100 -0.062 1.079 10° 0.083 7.231 • HT 1 0.749 4.691 • 10"6

_. 500 „0,586, 1.640.1-10"1, .„0.734 1.565 • 10"? Q,750_2,220 -J.QTl5

1000 0.735 1.471-10"2 0.750 1.254 • 10~4 0.750 2.220 • 10~15

2000 0.750 1.178-10"4 0.750 8.046 • 10~9 0.750 2.220 lO"15

Table 4 .1 : Results of the basic iterative methods for the model problem.

The convergence rate of Jacobi and Gauss-Seidel is very poor and only the SOR
method converges within the first hundred iterations to a reasonably small error.
The Jacobi iteration has some appeal on parallel Computers because the approxi-
mation is updated only in the outer do loop. However, these techniques are rarely
used separately for real-life problems but, combined with more efficient methods
described later, they can be quite useful.
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4.3 Projection Methods

Most existing practical iterative techniques for solving large linear Systems of
equations utilize a projection process in one way or another. A projection process
represents a canonical way for extracting an approximation to the solution of a
linear System from a subspace. If /C is this subspace of candidate approximants
and if m is its dimension, then, in general m constraints must be imposed to
be able to extract such an approximation. A typical way of describing these
constraints is to impose m (independent) orthogonality conditions. Specifically,
the residual vector b — Ax is often constrained to be orthogonal to m linearly
independent vectors. This defines another subspace £ of dimension m which is
called the subspace of constraints. This simple framework is common to many
different mathematical methods and is known as the Petrov-Galerkin conditions.
When C = K., the Petrov-Galerkin conditions are called the Galerkin conditions.

For example in the simplest case an elementary Gauss-Seidel step could be seen
as a projection step with £ = K, = spanjej}. Another example is the steepest
descent algorithm for Symmetrie positive definite Systems which is also an one-
dimensional projection process in each iteration step. One-dimensional projection
processes are defined when

IC = span{t>} and £ = spanju;},

where v and w are two vectors. In this case the new approximation takes the
form a;(fc+1) = x^ + av and the Petrov-Galerkin condition r — A(x — x^) _L w
yields .

(r, w)
a = (Av,w)

In the steepest descent algorithm we have v = r and w = r in each step. This

Algorithm 5 Steepest Descent Iteration.

1. Until convergence do k = k + 1:

2. r = b-Ax

3. a = (r, r)/(Ar,r)

4. x<>k+l) = z(fc) + ar

This algorithm can be enhanced to the non-symmetric case (minimal residual iter-
ation) and the general non-singular case (residual norm steepest descent). These
techniques are the basis for the Krylov subspace methods which are considered
currently to be among the most important iterative techniques and are described
in the next section.
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4.4 Krylov Subspace Methods

A Krylov subspace method is a projection method where the subspace K. is a
Krylov subspace

£m(A, r0) = span{r0, Ar0, A
2r0,..., A™'1^},

with TQ = b — AXQ. The different versions of Krylov subspace methods arise from
different choices of the subspace Cm and from the ways in which the System is
preconditioned—see Chapter 5.

The motivation for using an m-dimensional Krylov subspace can be derived from
the well-known Richardson iteration

xm = b+(I - A)xm_i = xm_i + rm_i.

By repeating this iteration it is observed that

xm = ro + r1+r2-\ h rm_i
m-l

j=o

€ span{r0) Ar0, A
2r0,..., Am~lr0)

= ICm(A,r0).

From the point of view of approximation theory the apprqximations obtained
from a Krylov subspace method are of the form

A'lb *ixm = xo + qm-i (A)r0,

-in-whichgm=i-is a certainpolynomiaLof degree -m--^-l.-In-the simplest case where
x0 = 0 we have A~lb ~ qm-i(A)b and in other words, A~^b is approximated
by qm-\{A)b. From now on it is always assumed that x0 = 0 to simplify future
formulas. This does not mean a loss of generality, because the Situation XQ ̂  0
can be transformed with a simple shift to the System

for which obviously yo = 0.

Apparently, the Richardson iteration, as it proceeds, delivers elements of Krylov
subspaces of increasing dimension and therefore the Krylov subspace has to be
explored. The projection methods discussed here focus on the case where Cm =

Two important algorithms based on the Krylov subspace methods, for identifying
suitable x € ICm(A, r0) are
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1. General Minimum Residual Method (GMRES)—with the minimum norm
residual approach: Identify the xm for which the Euclidean norm ||6—Acm||2
is minimal over )Cm(A,ro).

2. Conjugate Gradient Method (CG)—with the Ritz-Galerkin approach: Con-
struct the xm for which the residual is orthogonal to the current subspace:
b- Axm ±ICm(A,r0).

A suitable basis for the Krylov subspace is needed in order to identify the approx-
imations of the above approaches. The obvious basis ro, Ar0, A

2r0,..., Am~xro for
)Cm(A, r0), is not very attractive from a numerical point of view, since the vec-
tors A^r0 point more and more in the direction of the dominant eigenvector for
increasing j , and hence the basis vectors become dependent in finite precision
arithmetic.

Arnoldi [4] proposed to compute the orthogonal basis as follows. Start with
vi = ro/||ro||2- Then compute Avi, make it orthogonal to V\ and normalize the
result, which gives V2- The general procedure is as follows. Assuming an already
orthonormal basis V\,... ,Vj for JCm(A,ro), this basis is expanded by Computing
t = AVJ and by orthonormalizing this vector t with respect to vi,... ,Vj. In
principle the orthonormalization process can be carried out in different ways,
but the most commonly used approach is the modined Gram-Schmidt procedure
(Golub and Van Loan [24])—see Algorithm 6.

Algorithm 6 Arnoldi-Modified Gram-Schmidt.

1.

2.

4.

5.

6.

7.

8.

vi =ro/||ro||2

For j = l,2,...,m

For i = 1 , 2 , . . . ,

hij — v[t

t = t- hijVi

hj+1,3 = 11*112

vj+i = t/hj+i,j

- 1 do:

j do:

4.4.1 GMRES algorithm

The creation of an orthogonal basis for the Krylov subspace, with basis vectors
vi,...,vm+i, leads to

AVm =
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where V^ is the matrix with columns V\ to vm and the m + l b y m matrix Hm+itTn

is upper Hessenberg with its elements hij defined by the Arnoldi algorithm. An
Xm £ £m(A ̂ o) is now sought, that is xm = Vmy, for which \\b—Aa;m||2 is minimal.
This norm can be rewritten, with p = \\ro\\2, as

||ft - Axm\\2 = \\r0 - AVmy\\2 = \\pVm+1ei - Vm+iHm+ltTny\\2.

Exploiting the fact that Vm+i is an orthonormal transformation with respect to
the Krylov subspace JCm+i(A,r0) leads to

\\b - Axm\\2 = \\pei - Hm+hmy\\2,

and this final form can be minimized by solving the minimum norm least Square
problem for the m + 1 by m matrix Hm+itTn and right-hand side l|r-0 H2 ^i. The
least Squares problem is solved by constructing a QR factorization of i/m+i,m,
and because of the upper Hessenberg structure that can conveniently be handled
with Givens transformations (Golub and Van Loan [24]).

The Givens rotations annihilate the subdiagonal elements in the upper Hessenberg
matrix Hm+itm. The resulting upper triangulär matrix is denoted by

where Qm+i,m denotes the product of successive Givens eliminations of the ele-
ments hj+ij, for j = 1 , . . . , m. After the Givens transformations the least Squares
solution y minimizes

The resulting least Squares problem leads to the minimum norm solution

V = RmmQm+l,m\\rohei.

The required approximation Xi is now computed as Xi =

In order to avoid excessive storage requirements and computational costs for
the orthogonalization, GMRES is usually restarted after'n itefation steps. This
algorithm is referred to GMRES(n). The not restarted version is often called
'füll' GMRES. There is no simple rule to determine a suitable value for n and
the speed of convergence may vary drastically for nearby values of n. It may be
the case that GMRES(n + 1) is much more expensive than GMRES(n), even in
terms of number of iterations. Algorithm 7 shows the modified Gram-Schmidt
version of GMRES(n) for the solution of the linear System Ax = b.
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Algorithm 7 General Minimum Residual (GMRES) algorithm with restarting
after n steps.

1. r = b — Axo, for a given initial guess xo

2. x = x0

3. For .7 = 1,2,... do:

4- ß=\\r\\2,v1=r/ß,ß = ße1

5. For i = 1,2, . . . , n d o :

6. w = Avi

7. For k = 1,2, . . . , i do:

8. /ifcj = ti^iu, u> = w — hkiVk

9. hi+i,i = \\w\\2, vi+i = w/hi+iti, ru = hxi

10. For fc = 2 ,3 , . . . , ido :

11- 7 = Ck-irk-i,i + Sfc-i/ifct, rki = -s^-ir/t-i^ + Ck-ihki, rk-i,i = 7

12. S = y/r?{ + h?+1<i, ct = m/6, Si = hi+lii/ö, rü = aru + Sihi+i,i

13. bi+1 = -Sibi, bi = Cibi, p = \bi+i\

14. If p is small enough then goto SOL

15. yn = bn/rnn

16. SOL: For fc = i - 1, i - 2 , . . . , 1

18. x = a; + £}

19. If p small enough then quit

20. r = b-Ax

4.4.2 Conjugate Gradient algorithm

As noted above the Conjugate Gradient method uses the Ritz-Galerkin conditions
which imply that rm J_ JCm(A,ro), and this is equivalent to. -

V?(b - Axm) = 0.

Since b = r0 = ||ro||2t>i, it follows that V£b = ||ro||2ei, and with xm = Vmy it
leads to

This System can be interpreted as the System Ax = b projected onto the subspace
JCm(A,r0). Obviously the m x m matrix V£AVm has to be constructed, but this
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is readily available from the orthogonalization process (see Algorithm 6)

l = Hmm,

so that the xm for which rm _L ICm(A,ro) can be computed by first solving
Hmmy = Ikolhei, and then forming xm = Vmy. This algorithm is also known as
Füll Orthogonalization Method (FOM) or General Conjugate Gradient Method
(GENCG)—see Saad and Schultz [48].

When A is Symmetrie, then Hmm reduces to a tridiagonal matrix Tmm, and the
resulting method is known as the Lanczos method (Lanczos [33]). When A is
in addition positive dennite then formally the Conjugate Gradient method is
obtained. In commonly used implementations of this method, an LU factoriza-
tion for Tmm is implicitly formed without generating Tmm itself. (The positive
definiteness is necessary to guarantee the existence of the LU factorization.)

In the Galerkin approach, the new residual b—Axm+\ is orthogonal to the subspace
spanned by V\,... ,vm, so that rm + i is in the direction of um+i- Therefore, the
scaling factor hm+itTn can also be selected that vm+\ eoineides with rm + i . This
would be convenient, since the residual gives useful Information on the solution,
and there do not have to be work done with two sequences of auxiliary vectors.

If Ri denotes the matrix with columns r,- it leads to the relation

ARm = Rm+lTm+i,m, (4.5)

with T the tridiagonal matrix from above. Additionally, since the solution for xm

in K.m(A,ro) is sought, thät~vector can be written as a combination of the basis
vectors of the Krylov subspace, and hence

Furthermore, the Ritz-Galerkin condition says that the residual for xm is orthog-
onal with respect to ro , . . . , rm_i:

RT
m{Axm - b) = 0,

and hence
RT

mARmy - RT
mb = 0.

Using (4.5) leads to
RlRmTmy=\\r0\\le1,

where R^Rm is a diagonal matrix with diagonal elements 11v~0112 up to ||»™m 1 M 2 -
The desired solution can be found by solving y from

TmmV = ei => y => xm =
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So fax only the fact that A is Symmetrie was used and it was assumed that
the matrix Tm is not Singular. The Conjugate Gradient method is now a clever
variant on the above approach that saves storage and computational effort. In
the way described above all columns of Rm throughout the process would have to
be saved in order to recover the current iteration vectors. This can be done in a
more memory friendly way. If the matrix A is in addition assumed to be positive
definite and with the relation

Tm can be transformed by a rowscaling matrix RmRm into a positive definite
Symmetrie tridiagonal matrix. This implies that Tm can be LU decomposed
without any pivoting:

J-m ~ *->mVmi

with Lm lower bidiagonal, and Um upper diagonal with unit diagonal.

Defining Pm = RmU^l leads to the auxiliary vectors Pj which form an A-
conjugate set, i.e., (Api,pj) = 0, for i / j . This follows from the fact that

is a diagonal matrix:

~TVT AV

Observe that f/^TLm is lower triangulär and also Symmetrie since equal to the
Symmetrie matrix P^APm~it must be therefore a diagonal matrix.

The final algorithm can now be derived by imposing the orthogonality of the
residual vectors to each other and the conjugaey conditions of the p,'s. The
vector Xj+i can be expressed as

Therefore, the residual vectors must satisfy the recurrence

ri+i = ri ~ ajAPj- (4.6)

If the rj's are to be orthogonal, then it is necessary that (r,- — ctjApj, Vj) = 0 and
as a result

h?L (47)

Also it is known that the next search direction Pj+\ is a linear combination of
and pj, and after rescaling the p vectors appropriately, it follows that

Pj+i =rj+i + ßjPj. (4.8)
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Thus a first consequence of the above relation is that

{Apj,rj) = (Apj,pj - ßj-iPj-i) =

because Apj is orthogonal to Pj.\. Then, (4.7) becomes aj = (rj,rj)/(Apj,pj).
In addition writing that pj+\ as defined by (4.8) is orthogonal to Apj yields

Note that from (4.6)

APj =- — (

and therefore,
Q

3

Putting theses relations together leads to Algorithm 8.

Algorithm 8 Conjugate Gradient algorithm.

1. TQ = 6 — AXQ, po = ro

2. Until convergence do k = k + 1:

3. ak = (rk,rk)/(Apk,Pk)

4. x(k+V = xW + akpk

5. rk+i =rk- akApk

6. ßk = (rk+i,rk+i)/(rk,rk)

7- Pk+i = rk+i + ßkPk

4.4.3 Overview

The choice of a method for a given problem is a delicate problem. -If-the-matr-ix A
is Symmetrie positive definite, then the choice is usually easy: Conjugate Gradi-
ents. For other types of matrices the Situation is very diffuse. GMRES, proposed
1986 by Saad and Schultz [48], is the most robust method, but in terms of work
per iteration step it is also relatively expensive. Bi-CG, which was suggested by
Fletcher [20] in 1976, is a relatively inexpensive alternative, but it has problems
with respect to convergence: the so-called breakdown situations.

The development of hybrid methods started with CGS, published in 1989 by Son-
neveld [51], and was followed by BI-CGSTAB, by van der Vorst [56] in 1992. The
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hybrid variants of GMRES: Flexible GMRES and GMRESR, in which GMRES
is combined with some other iteration scheme, were proposed in the mid-1990s.

Table 4.2 shows the results of solving the model problem as described in Sec-
tion 4.2 for the presented projection methods. Steepest Descent performs as
expected in the ränge of the basic iterative Methods comparable to Jacobi. The
GMRES(IO) method seems to converge fastest but the iterations are shown for
the outer loop, i.e., for each outer iteration it performs 10 inner iteration steps
and is therefore slower than the Conjugate Gradient method. In the next chap-
ter preconditioning will be discussed and the speedup when solving instead of
Ax = b a nearby System Ax0 = b that can be more easily solved and take XQ as
an approximation for x.

Itr

1
10
50

100
500

1000

Steepest Descent

Pm

-0.002
-0.016
-0.055

0.056
0.593
0.736

2.639 • 10°
1.935 • 10°
1.365 10°
1.037-10°
1.579 • 10 - 1

1.410 10-2

GMRES(IO)

Pm

-0.035
0.721
0.750
-
-
-

1.741 •
2.949 •
1.071 •

-
-
-

10°
io-2

io-9

Pm

-0.003
-0.052

0.742
0.750
0.750
0.750

CG

2.639 • 10°
1.675 • 10°
1.839 -10-2

2.055 • IO-7

1.088 • IO-14

1.088 • 10~14

Table 4.2: Results of the projection methods for the model problem.



Chapter 5

Preconditioning

Although the methods seen in the previous chapter axe well founded theoretically,
they are likely to suffer from slow convergence for problems which arise from
typical applications. Preconditioning is a key ingredient for the success of Krylov
subspace methods in these applications. This chapter discusses preconditioning
techniques and Covers the methods successfully applied to the Conjugate Gradient
method.

Starting with an introduction to preconditioning afterwards an optimized
Cholesky factorization is presented to show a conventional but quite effective
approach. Secondly, multigrid as preconditioner is introduced which is generally
accepted as being the fastest numerical method for the solution of discretized
elliptic partial differential equations.

5.1 Preconditioned Iterations

Lack of robustness is a widely recognized weakness of iterative solvers, relative
to direct solvers: This drawback hampers the acceptance of iterative methods in
industrial applications despite their intrinsic appeal for very large linear Systems.
Both the efficiency and robustness of iterative techniques can be improved by us-
ing preconditioning. The term preconditioning is simply a means of transforming
the original-linear System intoone which has the same solution, but-which-is-likely-
to be easier to solve with an iterative solver. In general, the reliability of iterative
techniques, when dealing with various applications, depends much more on the
quality of the preconditioner than on the particular Krylov subspace accelerators
used.

Consider-a-matrix-Ä that~is Symmetrie and-positive-definite and assume that a
preconditioner M is available. The preconditioner M is a matrix which approx-
imates A in some yet-undefined sense. It is assumed that M is also Symmetrie
positive definite. From a practical point of view, the only requirement of M is
that it likely leads to an easier (computational more inexpensive) to solve linear
Systems Mx = b. This is because the preconditioned algorithms will require a
linear System solution with the matrix M at each step. Then, for example, the
following preconditioned System could be solved:

= M~lb

37
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or
AM~xu = b, x = M~lu.

Note that these two Systems axe no longer Symmetrie in general. To preserve
symmetry a simple way is to "splif'the preconditioner M = LLT performing a
Cholesky factorization, which leads to

L~lAL-Tu = L~\ x = L-Tu.

However, it is not necessary to split the preconditioner in this manner in order to
preserve symmetry. Observe that M~1A is self-adjoint for the M-inner produet,

(x, V)M = (Mx, y) = (x, My)

since

(M-lAx,y)M = (Ax,y) = (x,Ay) = (x,M(M-1A)y) = {x,M-lAy)M.

Therefore, an alternative is to replace the usual Euclidean inner produet in the
Conjugate Gradient Algorithm 8 by the M-inner produet.

If the CG algorithm is rewritten for this new inner produet, denoting by r^ = b —
Axk the original residual and by Zk — M~lTk the residual for the preconditioned
system, the following sequence of operations is obtained, ignoring the initial step:

1. ak = (z^z

2. xk+i = xk

3. rk+i =rk- akApk and zk+i = M~lrk+\

5. Pk+i = Zk+i + ßkP

Since {zk,zk)M = (rk,zk) and (M~Mpfc,pfc)M = (Apk,pk), the M-inner produets
do not have to be computed explicitly. With this observation the preconditioned
Conjugate Gradient Algorithm 9 is-obtained.- - -

Also note that in all the Krylov methods the individual elements of A do not have
to be known and also it is never necessary to modify parts of the given matrix.
It is always sufficient to have a rule (subroutine) that generates, for given input
vector y, the output vector z = Ay. This also holds for the preconditioner: it
does not have to be an explicitly given matrix. This property will be used later
when using the multigrid method for preconditioning.
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Algorithm 9 Preconditioned Conjugate Gradient algorithm.

1. r0 = b - AXQ, Z0 = M~Vo, po = 20

2. Until convergence do k = k + 1:

3. ak = {r

4 x(k+i) = x(k)

5. rk+i =rk-

6. 2fc+1 = M~lrk+i

7- ßk = (rk+i, zk+i)/(rk,

8- Pk+l = 2fc+l + ßkPk

5.2 Cholesky Factorization

For a given Symmetrie positive definite matrix A € Knxn there exists a unique
lower triangulär L G Rn x n with positive diagonal entries such that A = LLT.
This factorization is known as Cholesky factorization and L is known as Cholesky
triangle. If A is tridiagonal then L has just one subdiagonal and this property
can be used to construet to build a more efficient factorization: only An instead of
n3/3 operations. Extending this idea to a block tri-diagonal matrix with blocksize
s it leads to a cost of ^ns3 operations (Cao et al. [12]). Algorithm 10 shows a
.block_tri-diagona! Cholesky factorization with variables as described in Equation
5.1.

Algorithm 10 Block Tri-Diagonal Cholesky Factorization.

2. For i = 1,2,..., \m/s\ - 1 do:

3. Ei = D-TAiti+1

4. A+i = chol(i4i+iii+1 - Ef Ei)

n A12 \ / Di Ei
A = \ A l 2 A 2 2 ••• chol(A)= D2 E2 I (5.1)

The basic block tri-diagonäl Cholesky factorization can be further enhanced. Us-
ing the incomplete Cholesky factorization (Saad [47]) lowers the amount of fill in
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and experiments have shown that a threshold value of 10~3 leads to best results,
i.e., the preconditioning matrix contain only values larger than 10~3. Another
Performance gain can be achieved by using a bandwidth reduction algorithm prior
to the factorization as suggested in Chapter 3.2. Table 5.1 shows the different
results for not preconditioned Conjugate Gradient method, preconditioning with
the Standard variant as is Algorithm 5.1 and the optimized version with incom-
plete Cholesky factorization and the reverse Cuthill McKey bandwidth reduction
algorithm—pm is the value at the center of the model (4.3) and em the maximum
absolute error (4.4).

Itr

1
5

10
15
20
25

CG without precond.

Pm

-0.003
-0.015
-0.052
-0.096
-0.147
-0.115

£m

2.639 • 10°
2.079 • 10°
1.676 • 10°
1.346 • 10°
1.095 • 10°
8.655 • IQ"1

CG with

Pm

-0.040
0.758
0.750
0.750
0.750
0.750

std. btdchol

£ m

1.267 • 10°
1.118-lO"2

3.366 • 10-6

4.289 • 10-10

4.929 • 10-14

2.655 • 10~15

CG with

Pm

-0.042
0.754
0.750
0.750
0.750
0.750

opt. btdchol

&m

1.292 • 10°
5.924 • 10 - 3

4.905 • 10-7

4.360 10-11

5.107-KT15

2.665 • 10 - 1 5

Table 5.1: Conjugate Gradient method with different preconditioning strategies.

Results for the actual Systems with a bandwidth of about 8 000 after applying
a bandwidth reduction algorithm show that runtime Performance is still bad
because Cholesky factorization of eäch block involves ö(n3) flbps which slows
down the complete algorithm and nullifies the speed up of the preconditioned CG
method. A natural choice would be therefore to use in step 1 and 4 of the block tri-
diagonal Cholesky factorization this algorithm recursively. Although those blocks
are still sparse theydon't have a low bandwidth anymore and would require again
a bandwidth reduction, i. e., a row/column permutation that would also effect the
Ei blocks (see Equation 5.1). To overcome this problem techniques known from
parallel Cholesky factorizations could be used where the matrix is partitioned in
a way, that reordering one block does not effect another block—see Cao et al.
[12]. Butwith additional complexity the gain of applying a preconditioner gets
smaller and the most important conclusion that can be drawn from this section
is the importance and speed up of preconditioners for the CG method. The next
section will show another type of preconditioner which also can handle larger
sizes efficiently.
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5.3 Multigrid Methods

Multigrid methods were first described in the 1960s and their actual efficiency
was recognized by Brandt in the early 1970s. Since this time those methods
became more and more important and now are regarded to be among the fastest
methods for many problems like all kinds of partial differential equations, integral
equations etc. This section is based on Multigrid by Trottenberg et al. [53] and
mainly follows the structure of this book.

At first the multigrid idea is introduced heuristically for the model problem (4.1)
of Chapter 4. If the lexicographical Gauss-Seidel method (Algorithm 3) is applied
to Poisson's equation, the following phenomenon is observed. After a few iteration
steps, the error of the approximation becomes smooth. It doesn't necessarily
become small, but it does become smooth—see Fig. 5.1 for an illustration of this
effect.

Figure 5.1: Influence of lexicographic Gauss-Seidel iteration on the error for the model problem
after 1, 5 and 10 iteration steps (from left to right).

Obviously, the iteration formula can be interpreted as an error averaging process.
Error smoothing is one of the two basic principles of the multigrid approach.

The other basic principle is the following: a quantity that is smooth on a cer-
tain grid can, without any essential loss of information, also be approximated
on a coarser grid, i.e., a grid with double the mesh size. Qualitatively, this is
the coarse grid approximation principle and as this principle holds for error or
"correction"quantities, it is also called the coarse grid correction (CGC) principle.

The idea of multigrid can therefore be summarized into:

Smoothing principle Many classical iterative methods (Gauss-Seidel, etc.) if
appropriately applied to discrete elliptic problems have a strong smoothing
effect on the error of any approximation.

Coarse Grid principle A smooth error term is well approximated on a coarse
grid. A coarse grid procedure is substantially less expensive (substantially
fewer grid points) than a fine grid procedure.
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These considerations can be explained heuristically by looking at the Fonrier
expansion of the error and studying the high and low frequency components.
(The local Fourier analysis is the most powerful tool for the quantitative analysis
and the design of efficient multigrid methods for general problems—ee Brandt
[10]).

5.3.1 Two-grid cycle

We start by introducing the two-grid cycle, the natural basis for any multigrid
algorithm. For this purpose a discrete linear elliptic boundary value problem of
the form

Lhuh = fh (Qh) (5.2)

is used and we assume L^1 exists. As example for Performance evaluation we
again use the model problem (4.1) from Chapter 4.

For any approximation u™ of the solution Uh of (5.2), we denote the error by

and the defect (or residual) by

Trivially, the defect equation Lh,v™ = d™ is equivalent to the original equation
(5.2) since Uh = u™ + v™. If Lh in the defect equation is now approximated by
any " simpler" Operator Lh such that X^1 exists, the solution v™ of

gives a new approximation

The procedural formulation then looks like

One idea to approximately solve.-the defect-equation is to use -an -appropriate
approximation LH of L^ on a coarser grid Qfj, for instance the grid with mesh
size H = 2h. We assume two (linear) transfer Operators

h- » Q{ÜH), Ih
H

to be given. Iff is used to restrict d™ to QH and IH is used to interpolate (or
prolongate) the correction v]} to Clh-

Combining the above considerations of the two processes of smoothing and of
coarse grid correction leads to the two-grid method summarized in Algorithm 11.
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Algorithm 11 Two-grid cycle.

1. Presmoothing:
Compute ü™ by applying v\ (> 0) steps of a given smoothing procedure to u™

2. Coarse grid correction:

3.

Compute the defect

Restrict the defect

Solve on CIH

Interpolate the correction

Compute the the corrected approximation

Postsmoothing
Compute u™+1 by applying u2 (> 0) steps

m.after CGC
Uh

d% = fh-Lhü%
Am jH (im

if h n

LH v% = d]}

{j"1 = / ^ ü™
n n n

um,afterCGC=ö™+{)„

of the given smoothing procedure to

5.3.2 Components of Multigrid

Error smoothing
Classical iteration methods such as Gauss-Seidel-type and Jacobi-type iterations
are often called relaxation methods (also smoothing methods or smoothers) if they
are used for the purpose of error smoothing. In general, however, appropriate
Gauss-Seidel-type iterations turn out to be better smoothers than appropriate
Jäcöbi-type iterätidris so weT will föcus öh Gauss-Seidel "Hefe. "In Sectioh^3.171.
the lexicographic ordering of grid points (GS-LEX) was introduced. A different
ordering is the so-called red-black ordering (GS-RB)—see Fig. 5.2.

We also recall that for the model problem the convergence of Gauss-Seidel itera-
tion can be substantially improved by an overrelaxation parameter

U) =
1 + sin nh

This is the classical result on successive overrelaxation (SOR) and was described
in the multigrid context by ̂ favneh [60].

Gauss-Seidel-type methods represent a particularly important class of smoothers.
In the multigrid context the smoothing properties of Gauss-Seidel are much more
important than the convergence properties. In order to measure the smoothing
properties quantitatively a smoothing factor /j, is used and it represents the worst
factor by which high frequency error components are reduced per relaxation step.
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Figure 5.2: A three dimensional checkerboard and the corresponding sparsity pattern of the
associated matrix.

Trottenberg et al. [53] obtain for the 3D case

^(GS-LEX) = 0.445
//(GS-RB) = 0.567
/x(GS-RB) = 0.23

(for u> = 1)
(for u = 1)
(for u = 1.15).

Choices for the coarse grid
The simplest and most frequently used choice for the grid QH is Standard coars-
ening, doübling the mesrTsize h^in every direction. In d dimensiohs, tHe relation
between the number of grid points (neglecting boundary effects) is

We speak of semicoarsening if the mesh size h is doubled in less than d direc-
tions only, which is especially of interest for anisotropic Operators (Washio and
Oosterlee [58]). In the context of the AMG approach (see below), the coarse grid
QJI is not formed according to such a fixed simple strategy. Using the algebraic

-relations-in-the-eorresponding matrix,- Q#-is determined-by the AMG process
itself in the course of calculation.

However, for further investigations (except AMG) we assume that hk+\/hk = 1/2
(with the mesh size hi for the corresponding grid Gl) since this ratio of mesh size
is the most efficient (Brandt [10]).

Restriction and Prolongation Operator
The choice of restriction and interpolation Operators If? and /# , for the intergrid
transfer of grid functions, is closely related to the choice of the coarse grid. A
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restriction Operator I^h maps h-grid function to 2/i-grid functions. The simplest
example is the injection Operator, which identifies grid functions at coarse grid
points with the corresponding grid functions at fine grid points. Hackbusch [27]
although discourages the use of the injection Operator.

Another frequently used restriction Operator is the füll weighting (FW) Operator,
which in the 3D case and stencil notation reads

1
64

The Prolongation (interpolation) Operators map 2/i-grid functions into h-grid
functions. A frequently used interpolation method in 3D is trilinear interpolation
from G2h to Gh, which is given by

' l
2
1

2
4
2

r
2
i

2h

h

' 1
4
2

4
8
4

2"
4
2

h

1
2
1

2
4
2

1"
2
1

2h

h _

\[i)2h{x + h,y, z) + v2h(x - h,y, z)
V[v2h{x, y + h,z) + v2h(x, y-h,z)
I[v2h(x, y,z + h) + v2h(x, y,z-h)
\[v2h(x + h,y + h,z) + v2h(x + h,y-h,z)

+ v2h(x -h,y - h,z)
v2h(x -h,y,z-h)

+ v2h(x -h,y,z-h)
v2h(x, y-h,z-h)

+ v2h(x,y -h,z- h)

D

-h,y + h,z)
[vzh(x + h,y,z + h)
+v2h(x -h,y,z + h)

+ h,z + h)
;y +-h, z -h)

for
for
for
for

for

for

f o r <g>
h)l[v2h{x + h,y + h,

+v2h{x + h,y - h,z + h) + v2h(x + h,y — h,z — h)
+v2h(x -h,y + h,z + h) + v2h(x - h,y + h,z - h)
\-V2h(x-—h;-y-—h-, z+-h) +-v2h{x— hry—h, z - h) for—A

(5.3)
Fig. 5.3 presents (part of) a fine grid with the Symbols for the fine and coarse
grid points referred to by (5.3).

It can be shown that the interpolation Operator corresponds to the FW restriction
Operator in a natural way: these two Operators are transpose to each other-(see
Hackbusch [26])

5.3.3 Multigrid and Füll Multigrid Cycle

The previous section described the multigrid principle only in its two-grid version.
The multigrid idea Starts from the observation that in a well converged two-grid
method it is neither useful nor necessary to solve the coarse grid defect equation
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Figure 5.3: A fine grid with Symbols indicating the trilinear interpolation 5.3 used for the
transfer from the coarse gird (•).

exactly. Instead, without essential loss of convergence speed, one may replace v1^
by a suitable approximation. A natural way to obtain such an approximation is to
apply the two-grid idea again, now employing an even coarser grid than Cljj. This
is possible, as obviously the coarse grid equation is of the same form as the original
equation. If convergence of the two-grid method is fast enough, it is sufficient to
perform only a few two-grid iteration steps (see Fig. 5.4) to obtain a good enough
approximation to the solution. This idea can, in a straightforward manner, be
applied recursively, using coarser and coarser grids, down to some coarsest grid.
On this coarsest grid any solution method may be used (e. g., a direct method or
some relaxation-type method if it has sufficiently good convergence properties on
that coarsest grid )^ _.. _ • _ _

For obvious reasons, we refer to the case 7 = 1 as V-cycles and to 7 = 2 as
W-cycles. Usually, the cases 7 = 1 and 7 = 2 are particularly interesting, but
the cycle index 7 need not to be a fixed number. The so-called F-cycle which is
illustrated in Fig. 5.5 is an example for a variable cycle index.

Table 5.2 compares the results for different cycle indices. We test again with
the model problem (4.1) from Chapter 4 but with h = 1/34 (~f dim=35 937)
using 4 grids. This leads to dim=125 on the coarsest grid and is solved there
directly. As the results show it is not necessary for the model problem to use
the computational more expensive W- or F-cycle. Results for a more complex
problem are given in Chapter 7.

An initial approximation for iterative solvers, like multigrid, can be obtained by
nested iteration. The general idea of nested iteration is to provide an initial ap-
proximation on a grid Qi by the computation and interpolation of approximations
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Two-grid method: Three-grid methods:

V
1=2

Four-grid method:

1=2

Figure 5.4: Structure of one multigrid cycle for different number of grids and different values
of the cycle index 7 (• smoothing, o exact solution, \ fine-to-coarse, / coarse-to-fine transfer).

Figure 5.5: Structure of an F-cycle.

Itr

1
2
3
4 '
5

Pm

0.758
0.751
0.750
0.750
0.750

7 = 1

em

1.340 10-1

3.494 • 10-3

1.280 • 10-4

5.126 10-6

2.211-lO"7

Pm

0.755
0.750
0.750
0.750
0.750

7 = 2

£m

1.287- HT1

3.024 • 10-3

1.614-10-4

6.416 10-6

2.756- IQ"7

Pm

0.765
0.750
0.750
0.750
0.750

F-cylcle

em

1.285 • 10-1

3.023 • 10-3

1.617 10"4

6.424 - 10-6

2.760 • 10-7

Table 5.2: Results of the multigrid method with varying cycle index for the model problem.

on coarser girds. Within an arbitrary iterative process for the solution of a given
discrete problem, this principle simply means that a lower (coarser) discretization
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level is used in order to provide a good initial approximation for the iteration on
the next higher (finer) discretization level.

The efficiency of iterative multigrid can be improved if it is properly combined
with the nested iteration idea. This combination is called the füll multigrid
(FMG) technique (Brandt [10]). Typically, the FMG scheme is the most efficient
multigrid version and is illustrated in Fig. 5.6.

Figure 5.6: Structure of an FMG-cycle with the double line symbolizing the FMG interpola-
tion.

It is not sufficient to start the solution process on a very coarse grid, interpolate
the approximation of the coarse grid solution to the next finer grid, smooth the
visible error components and so on until the finest grid is reached. Actually, the
interpolation of the approximation leads to nonnegligible high and low frequency
error components on the fine grid that can efficiently be reduced only by subse-
quent smoothing of the error on all grid levels, i. e., by revisiting the coarse levels
in multigrid-cycles. -

Table 5.3 shows FMG with a different number of grid levels for the model problem.
As expected two levels of grids perform bad and the result for the 4-level grid is
somewhere between the first and second iteration of a Standard iterative multigrid

FMG

# grids pm em

2 1.506 2.379-10°
3_ 0.7.35_ 4,193- 1CT2.
4 0.747 4.401 • 10~2

Table 5.3: Results of FMG with a different number of grid levels.
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5.3.4 Algebraic Multigrid

A natural question arises: Can multigrid techniques be applied when there is no
grid? That is, when there is a relationship among the unknowns, but the physical
locations of the unknowns are themselves unknown or immaterial. These are
the problems that are addressed by a technique known as algebraic multigrid,
or AMG. For any multigrid algorithm, the same fundamental components are
required. There must be a sequence of grids, an intergrid transfer Operator, a
relaxation (smoothing) Operator, coarse-grid versions of the fine-grid Operator,
and a solver for the coarsest grid.

In particular, coarse-grid discretizations used in geometric multigrid to reduce
low-frequency error components now correspond to certain matrix equations of
reduced dimension. However, no multigrid hierarchy needs to be known a priori.
In fact, the construction of a (problem-dependent) hierarchy is part of the AMG
algorithm, based solely on algebraic information contained in the given System of
equations.

The geometric approach employs fixed grid hierarchies and, therefore, an effi-
cient interplay between smoothing and coarse-grid correction has to be ensured
by selecting appropriate smoothing processes. In contrast to this, AMG fixes the
smoother to some simple relaxation scheme such as piain Gauss-Seidel relaxation,
and enforces an efficient interplay with the coarse-grid correction by choosing the
coarser levels and interpolation appropriately. Geometrically speaking, AMG at-
tempts to coarsen only in directions in which relaxation really smoothes the error
for the problem at hand. However, since the relevant information is contained in
the matrix itself (in terms of size and signs of coefficients), this process can be
performed based only on matrix information, producing coarser levels which are
locally adapted to the smoothing properties of the given smoother.

_Thejcoarsening_p_roc_ess is_fully_automatic._This_ automation_is_the_major_re.ason_
for AMG's fiexibility in adapting itself to specific requirements of the problems
to be solved and is the main reason for its robustness in solving large classes
of problems despite using very simple pointwise smoothers. But the flexibility
of AMG and its simplicity of use, of course, have a price: A setup phase, in
which the given problem is analyzed, the coarse levels are constructed and all
Operators are assembled, has to be concluded before the actual solution phase
can start. This extra overhead is one reason why AMG is usually less efficient
than geometric multigrid approaches (if applied to problems for which geometric
multigrid can be applied efficiently).

It is not an easy task to implement all the components necessary for AMG from
scratch. Therefore, a tool developed at the Institute of Computational Mathe-
matics at the Johannes Kepler University of Linz in Austria, named PEBBLES (see
Section 6.1), was used. Table 5.4 shows the results of PEBBLES solving the model
problem (4.1) with different coarsening strategies (strong—Rüge and Stuben [46],



5. Preconditioning 50

agglomeration—Kickinger [32], vmb—Vanek et al. [54]). The configuration was
choosen to use again 4 levels of grid hierarchies (~* dim=384, dim=235, dim=549
for the respective coarsening strategies), a V-eyele and cholesky factorization as
coarse grid solver.

Itr

1
2
3
4
5

Pm

0.687
0.745
0.750
0.750
0.750

strong

£m

2.634 -lO"1

3.560 • 10~2

5.006 • 10-3

6.357 • 10-4

1.654 • 10~4

agglomeration

Pm

0.654
0.739
0.749
0.750
0.750

£m

3.474 -10- 1

7.818-10-2

1.922 • lO-2

4.936 • 10-3

1.285 • 10-3

Pm

0.726
0.751
0.750
0.750
0.750

vmb

2.555 n r 1

3.256 • 10-2

4.411 • 10-3

5.112 10-4

1.654 • IQ"4

Table 5.4: Results of algebraic multigrid with various coarsening strategies.

5.3.5 Multigrid as preconditioner

In order to increase the robustness of Standard multigrid approaches, it has be-
come very populär in recent years to use multigrid not as stand-alone solver but
rather to combine it with acceleration methods such as conjugate gradient, BI-
CGSTAB or GMRES. This development was driven by the observation that is
is often not only simpler but also more efficient to use accelerated multigrid ap-
proaches rather than to try to optimize the interplay betweenthe various multigrid
components in order to improve the convergence of stand-alone multigrid cycles.

In the simplest case, complete multigrid cycles are merely used as preconditioners
when solving step 6 in Algorithm 9 _ „ _ _ _ ^ _ _

zk = M Vfc.

In more sophisticated approaches, acceleration is even used on the individual
grids of the hierarchy. E. g., Bank and Douglas [7] treated the conjugate gradient
method as a relaxation method of the multigrid method.

For AMG which was originally designed to be used stand-alone it has turned out
that the Situation is quite similar to Standard multigrid. Practical experience has
clearly shown that AMG is also a very good preconditioner, much better than
Standard (one-level) ILU-type preconditioners, for example. Heuristically, the
major reason is due to the fact that AMG, in contrast to any one-level precondi-
tioner, operates efficiently an all error components. This has the implication that,
instead of using AMG stand-alone, it is generally more efficient to put less effort
into the (expensive) setup phase and use AMG as preconditioner, for example,
by using aggressive coarsening strategies.
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So the question whether multigrid should be used as solver or as a precondi-
tioner is in particular the question which approach should be used when. It is, of
course, not useful to accelerate a highly efficient multigrid algorithm by Krylov
subspace acceleration because the extra effort does not pay off. An argument
for combining multigrid with an acceleration technique is that problems become
more and more complex if we treat real-life applications. For such complicated
applications like FES, it is fax from trivial to choose optimal multigrid compo-
nents. Therefore, when certain error components may remain large since they
cannot be reduced by Standard smoothing procedures combined with Standard
coarse grid approximations, Krylov subspace methods may have the potential of
a substantial acceleration.

Table 5.5 shows the results for the model problem when multigrid or algebraic
multigrid is used as preconditioner. Since the Poisson Equation does not show any
anisotropies, discontinuities and the like the results are almost the same as with
pure multigrid. In Chapter 7 we will see a different Situation when applying the
above algorithms to a more complex model problem and a real-life application.

Itr

1
2
3
4
5

Pm

0.772
0.751
0.750
0.750
0.750

MG

9.033 • 10~2

2.695 • 10~3

6.322 • 10~5

5.462 • 10~6

2.065 • 10-7

Pm

0.737
0.752
0.750
0.750
0.750

AMG

1.370- 10-1

7.625 • 10~3

3.422 • 10~4

1.722 • 10-4

1.654 • 10-4

Table 5.5: Results of multigrid as preconditioner for the conjugate gradient algorithm.



Chapter 6

Implementation

This chapter addresses implementation issues of the algorithms described in the
previous chapters. The quality of the Computer implementation of sparse matrix
algorithms can have a profound impact on their Performance, and the difficulty
of implementation varies a great deal from one algorithm to another. Thus, while
"paper and pencil" analysis of sparse matrix algorithms are useful and important,
they are not enough (George and Liu [23]).

In particular this chapter describes the implementation of an AMG Software pack-
age and two Systems for remote and distributed Computing to overcome the lim-
itations of executing the solver on a local Windows machine. The program code
presented in this section is available on the included CD as well as online at the
following location:
h t tp : //f smat. a t /~c f abiane/docs/f es_solver. tgz

6.1 PEBBLES

PEBBLES is_the acronynx for_Parallel and Element Based grey^Box Linear Equa-
tion Solver. This sophisticated program package was developed at the Institute of
Computational Mathematics at the Johannes Kepler University of Linz, Austria
in the course of the research project SFB F013 'Numerical and Symbolic Scien-
tific Computing' funded JDy the^A.ustnai^^cience^ Foundation (FWF). ̂ J i r s t ^ve^
give a short introduction into the field of application as described in the Software
manual (Reitzinger [45]) followed by the description of how to port PEBBLES to
other architectures to meet the requirements for the FES-Tool at the Department
of Biomedical Engineering and Physics.

6.1.1 Field of Application

The intention of PEBBLES is to provide a fast and robust iterative solver for large,
sparse, (symmetric) positive definite (spd) matrices which arise typically in an
Finite Element discretization of second order elliptic problems. PEBBLES solves

Khuh = fh (6.1)

where Kh 6 RNi>*N» is a (s)pd stiffness matrix, fh e RNh is the right hand side
and Uh £ M.Nh is the solution vector. Moreover, Kh is assumed to arise from

52
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an FE-discretization of an elliptic partial differential equation of second order.
Nh. = 0{h~d) (where d = 2,3 is the spatial dimension) is related to the number
of unknowns and h the discretization parameter. PEBBLES bases essentially on
algebraic multigrid, so no hierarchical grid structure is required.

PEBBLES is intended to solve the following problems.

• Equations of the form (6.1), which have to be a discretization of an elliptic
partial differential equation of second order.

• Scalar problems as well as block structured problems if the System matrix
is spd, if the discretization was done by nodal FE-functions and if there
are no anisotropies in the problem or the discretization. The last point is
actually only necessary for block structured problems.

• Solve edge FE-discretizations.

• Make an element preconditioning if the problem arises from a selfadjoint,
scalar problem.

• Moderately non-symmetric problems can be handled through the BiCGStab
method.

To configure PEBBLES a so called navigator file (pebbles.inp) is used. There
it is possible to define which solution strategy, accuracy and other parameters
should be used.

6.1.2 Porting PEBBLES to Other Architectures

PEBBLES is natively available for the following operating Systems / architectures:
Linux, Solaris, and SGI Örigin. Since the FES^Tool" (MÄTLAB) and the whole~
working environment at the Department of Biomedical Engineering and Physics
is under Windows in a first step we built an interface to access PEBBLES from
within MATLAB and then port it to Windows using Cygwin [1].

MATLAB provides an Application Program Interface (API) to support external
interfaces to programs written in C or Fortran [40]. The API allows (amongst
other sophisticated features) calling C programs and importing / exporting data
to and from the MATLAB environment. MATLAB callable C and Fortran programs
are referred to as MEX-files, which are dynamically linked subroutines that the
MATLAB interpreter can automatically load and execute. This interface was
used as a wrapper around PEBBLES and since MATLAB and PEBBLES use the
same storage format for sparse matrices almost the same Performance as calling
PEBBLES natively was achieved. In order to use all the configuration options of
the navigator file (pebbles. inp) the code was slightly changed and these options
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can be passed as a semicolon separated string of options. A typicall call of
PEBBLES from within MATLAB now looks like:

» x=pebbles(A,b,x,'EPS_PCG=le-8;ELEMENT_PREC0ND=0J);

The source files for building the wrapper are in fes_solver.tgz, subdirectory
matlabJielper.

After building an interface to MATLAB the next step was to port PEBBLES to
the Windows operating system. As mentioned above Cygwin was used which is
a Linux-like environment for Windows consisting of a DLL (cygwinl .dl l) which
acts as a Linux emulation layer providing substantial Linux API functionality
and a collection of tools, which provide Linux look and feel. With the help of
Cygwin and a few changes it was possible to compile PEBBLES and build a DLL
which the MEX Compiler of MATLAB could use. Those changes and a step by
step instruction how this can be accomplished is again found in fes_solver.tgz
in the subdirectory winJielper.

As will be seen in Chapter 7 PEBBLES will crash if the problem size exceeds a
certain dimension because of memory limits. Therefore, we successfully compiled
PEBBLES on an HP Itanium 64bit System and were able to process even the
largest matrices. The necessary makefile for PEBBLES is in fes_solver.tgz,
subdirectory ia64.

6.2 NetSolve

NetSolve is a project whose goal is to provide easy, uniform, and efficient access
to a wide variety of numerical Software distributed over a network. NetSolve
also strives to overcome some of the problems inherent in using those Software
Iibraries7 One such "problem is thät in ofclef tcTuse some libraries," the user must
have a high level of programming proficiency. In addition, some libraries may not
be optimized for all platforms or may not be available at all on some Systems.

One way in which NetSolve attempts to overcome these obstacles is to provide
many interfaces, including C, Fortran and MATLAB, interfaces. Providing many
interfaces not öhly widens the ränge of Systems NetSolve is applicable~ to, but
it also widens the ränge of users who could utilize NetSolve. For example, a
scientist may have a machine capable of running the C interface to NetSolve,
but if he is not proficient with C programming, it is doubtful he would have
an interest in NetSolve. However, having access to simpler interfaces like the
MATLAB interface, which do not require the user to do any programming, may
interest such a user more than the programming-based interfaces.

This section presents an overview of the NetSolve system, including a description
of its available interfaces and its approach to load balancing and fault tolerance.
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6.2.1 The NetSolve System

NetSolve is a client-server application consisting of a possibly heterogeneous set
of machines connected over a network. Each machine is running at least one
NetSolve daemon, of which there are two kinds: the "computational Server" and
the "agent". The computational Server is the process that has access to the
mathematical libraries on that machine and solves problems on behalf of the
client. The agent is an entity that keeps track of the Status of all machines in
the NetSolve System and determines which computational Server would be best
suited to handle each request. Figure 6.1 shows a typical NetSolve System.

= NetSolve Agent = Local Area Connection

= Computational Server = Wide Area Connection

Figure 6.1: A Typical NetSolve System.

Each agent maintains its own information on the configuration of the NetSolve
System which may differ from the information on other agents, but once the
System becomes stable, all agents should converge to the same view of the System.
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NetSolve is designed so that these Servers may be added or removed any time
without adversely affecting the whole System. To aid in modifying the Net-
Solve System, NetSolve provides interactive management utility programs which
provide information and statistics about the current NetSolve System and allow
dynamic modification of the system.

6.2.2 Interfaces

As stated earlier, one of the goals of NetSolve is to provide many interfaces
through which users may access computational resources. Currently the available
interfaces may be categorized into programming interfaces and non-programming
(interactive) interfaces. The programming interfaces (C and Fortran) require the
user to write, compile, and execute code in order to solve a problem. The non-
programming interfaces (MATLAB, Mathematica and Octave) allow the user to
solve problems without writing any code at all.

Although some users may not wish to learn programming, there are many users
who are already familiär with programming and, in fact, have already written
programs that utilize mathematical libraries. The programming interfaces were
designed so that such programs could be modified to access these libraries through
NetSolve as easily as possible. For example, the original Fortran program may
contain a call to LAPACK's [2] dgesvO as follows:

ca l l DGESV(N.l.A,MAX,IPIV.B,MAX,INFO)

The equivalent call using NetSolve would be:

ca l l NETSL('DGESVO'.NSINFO,
N.l.A,MAX,IPIV.B.MAX,INFO)

As the preceding example shows, it takes very little programming effort to convert
a Standard library function call to a NetSolve function call. Even writing a new
program that uses NetSolve to access a given mathematical library is no harder
than writing a new program that uses that library directly. Also, there is a

ns via NetSolve. NetSolve may be called
asynchronously so that further computations can take place on the client machine
while the NetSolve computational Server is fulfilling the request. Sending the
requests asynchronously can even provide some parallelism provided there are
multiple machines with access to the library the user needs to call. The user
would just send multiple requests asynchronously and the NetSolve agent would
use its load balancing scheme to distribute the requests among the available
computational Servers such that the requests are fulfilled in the least amount of
time. See Arnold et al. [3] for a detailed description of the load balancing scheme
used by NetSolve and how it can provide parallelism.
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The programming interfaces were designed with ease of use in mind but some users
may still choose to avoid programming for many reasons, including the difficulty
of learning the language. However, even users with a thorough knowledge of
programming may prefer an interactive interface for some problems because the
time involved in writing a Computer program may be prohibitive, even for a simple
task. For instance, let us suppose a user needs to perform matrix computations.
The user may not think that it is worth spending the time to write a program to
calculate the result when there is an interactive interface that is ready to solve
the problem immediately. For situations like the one just described, NetSolve
offers three non-programming interfaces to choose from: MATLAB, Mathematica
and Octave.

6.2.3 Load Balancing

An important aspect of many distributed and parallel applications is balanc-
ing the workload among the available processors as equally as possible. Since
NetSolve is an application that splits multiple user requests among distributed
resources, it must also be concerned about load balancing. In this case, load bal-
ancing means choosing the "best" computational Server to carry out a particular
request. Each agent stores information about every computational Server in the
System and uses that information to decide which machine to send the request
to. There are many factors that infiuence the selection of the "best" Server. For
each user request, these factors are:

• Size in bytes of the user input data

• Size in bytes of the computed result

...... Size of the problem _. .._ . .

• Network latencies and bandwidths

• Algorithmic complexity

• Raw Performance of the computational Servers

• Workload of the computational Servers

Given all these parameters, the NetSolve agent ranks the available computational
Servers based ön their relative Performance and returns this ranked list to the
client.
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6.2.4 Fault Tolerance

Occasionally, a NetSolve server will unexpectedly become unavailable. The most
common causes for this unavailability include failure of the server hardware, prob-
lems with the network connection, and failure of the Software. The NetSolve
System should be able to identify and cope with any error that occurs without
excessive Performance degradation.

Failures in the NetSolve System are detected when a NetSolve process attempts
to make a TCP connection to a server or they may be detected while a problem
is being solved. The process then notifies the nearest agent, which takes the
error into accöunt. The failed server is marked as "bad," but it is only removed
totally from the System if it has not restarted alter a given amount of time has
elapsed (typically 24 hours). In order to ensure that Servers may be stopped and
restarted safely, error reports must contain information to determine whether the
server was restarted after the error. This information prevents a server from being
marked "bad" because of an old failure report that was delayed in the network.

Once some failure has been detected in the NetSolve System and the server has
been marked "bad", the agent ensures that no client will try to contact the failed
server in the future. This is accomplished by sending the client an ordered list
of Servers which can fulfill the request. The client starts at the beginning of
the list and tries Servers in order until the problem is accepted and solved by a
computational server or the list is exhausted and the problem still has not been
solved. In the latter case, the client requests another ordered list of Servers. This
_new_lis_t should .bedifferent from the preyious list since each time a server from the
first list failed, the client notified the agent of the failure and the agent marked
the corresponding server as "bad." Thus, once the agent knows that a server has
failed, it will exclude that server from future lists that it sends. This means that
a client does not have to spend time trying to contact a server that the agent
knows is not working or is unavailable.

6.2.5 Integration of PEBBLES into NetSolve Computational
Servers

NetSolve was designed so that the administrator of a NetSolve System could add
additional libraries to a server as easily as possible. This is accomplished by
first creating a formal description of each function in the library—the IDL file
(Interface Definition Language). The formal description contains the function
name, the number of inputs and Outputs and other properties of the library. The
formal description is then translated into C source code by a compiler-like Utility.
Finally, the resulting C code is incorporated into the computational server (see
Fig. 6.2).
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NetSolve Server
- Source Code

C Source
» , Code

Figure 6.2: Integration of Software into a NetSolve Server.

The IDL file (formal description) for PEBBLES is given below. The first line
contains the name of the library followed by the calling sequence. Each argument-
states if it is input or output, the type and name and for vectors / matrices the
dimension (sparse matrices also contain the data structures for the compressed
sparse row format in angular brackets). The calling sequence is followed by a

—description of the problem, the necessarylibrariesduringcompilation-of the server-
and other options depending on the problem.

PROBLEM pebbles
2 C ROUTINE pebbles(IN double A [n] [n]<nnz,index,pointer>,

IN double RHS[n],
._ . j. N 0UT~~döuBTe~X'[ n]~

IN string opt ,
6 IN int n,

IN int nnz ,
8 IN int index[nnz],

IN int pointer[n])
10

"iterative solver for A*x=b with A sparse and positive
12 definite (uses AMG as preconditioner)"

LIBS = "-L$(NSPEBBLES_LIB) -lpebbles -lstdc++"
w NONMOVEABLE
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So we need to provide a library l ibpebbles.a and also have to take Special care
that this library can be linked against NetSolve. This is because NetSolve is
written in C and PEBBLES in C++. Therefore, PEBBLES is compiled as usual
but we provide our own main file with an extern "C" directive (Stroustrup [52]).
Of course, we also have to provide libstdc++.a when linking a C++ library
against C. The keyword NONMOVEABLE states that the problem can not be
moved between Servers by NetSolve.

All necessary files to include PEBBLES into NetSolve and detailed instructions
are contained in the subdirectory netsolve_helper of fes_solver.tgz.

6.3 HARNESS

HARNESS (Heterogeneous Adaptable Reconfigureable Networked SystemS) is an
experimental metacomputing System (Beck et al. [9]) built around the Services of a
highly customizable and reconfigureable Distributed Virtual Machine (DVM).The
Virtual machine (VM) terminology, borrowed from PVM (Geist et al. [22]), refers
to the fact that the Computing resources on which a System runs can be viewed
as a single large distributed memory Computer.

6.3.1 Architecture

The Virtual machine is a Software abstraction of a distributed Computing platform
consisting of a set of cooperating daemon processes. In HARNESS applications
obtain VM Services by communicating with daemon processes through system-
specific mechanisms encapsulated by a portable API. A DVM is defined there as
a cooperating set of daemons that together supply the Services required to run

"user'prögräTlis äs ifthey~
daemons run on (often heterogeneous) distributed groups of Computers connected
by one or more networks.

Flexibility in service components comes from the fact that the HARNESS daemon
supplies DVM Services by allowing components which implement those Services

~to~be~created~än\i~inställedndyn^
imposes only a minimum invocation structure on the DVM.

The HARNESS distributed registry service is used to hold all DVM state. When
components are added to the DVM at invocation or runtime, this information is
added to the registry. Similarly, the components of two DVMs can be merged en
masse by merging their respective registries, and some set of components can be
split from a DVM by creating a new registry for them and deleting their entries
from the old one.
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Fig. 6.3 gives a glimpse on the architecture of HARNESS. The central entity is
the Virtual machine, which is built up by a number of different machines and
can be anything from a Supercomputer to a PDA. On these Computers runs the
core which registers itself to a coherent replicated name service. The core is a
daemon composed of a kernel and a set of required components (e.g., message
passing, starting processes and threads, ...) which responds to requests from a
local application or a remote daemon. The kernel together with a basic set of
Services constitutes a fully functional grid resource and is known as a HARNESS

core (HCORE). This core can also be enhanced by user features through dynam-
ically changeable components known as 'plug-ins'. These plug-ins can be either
available from the local disc or through a remote repository. Currently, there are
implementations for downloading components from a web repository and from
IBP (Plank et al. [41]) and eXNode (Atchley et al. [5]).

Figure 6.3: The HARNESS architecture: on the left the distributed nameservice which prevents
a Single point of failure and on the right the plug-in System.

When a dient accesses Harness it includes the föllowing steps: First it talks to the
name service to look up and join a distributed Virtual machine. Then it requests
a package on one or more hcores, which is either already available or will be
dynamically installed. If it has to be installed it is loaded from a repository and
the name service is informed by the hcore that this package is now also available.
The hcore then reports back to the dient that it is ready and the dient request
the hcore to process the problem.
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6.3.2 Including PEBBLES into HARNESS

To include PEBBLES into the_ FES-Tool using HARNESS consists of two steps.
First, we have to build again a wrapper for pebbles to create a static library
accessible from C. This library is used to build a plugin for HARNESS and is put
on a repository / webserver. The second step consists of writing a MEX-function
to access HARNESS from within MATLAB.

The whole procedure is more difficult than in NetSolve and also subject to change
since HARNESS is still not released and currently only availabe as development
version directly from Graham Fagg of the University of Tennessee in Knoxville.
The advantage of HARNESS is its higher flexibility and faster execution compared
to NetSolve and also for very big problems it shows more robustness - see Chapter
7 for more details.

The füll implementation with instructions how to set up a DVM and access it from
within MATLAB can be found in f es_solver .tgz, subdirectory harnessJielper.

6.4 Interface to the FES-Tool (solver.m)

The previous sections in this chapter describe tools how to solve or remotely
solve the System of linear equations arising in the FES-Tool. To tie together
all the algorithms and implementations mentioned so fax the MATLAB function
solver.m was developed to provide all these functionalities behind an easy and
flexible to use interface.

The FES-Tool provides the data for the System matrix A either in sparse matrix
format or through the following vectors:

• HD the main diagonal of A,

• ND1, ND2, ND3 the off-diagonals (above and below) of A, the length of the
respective vectors determines their location,

The disturbance vector b gives the position of the electrodes and additionally a
structure field f lag is provided with which the solver is configured—see Appendix

-A-for-details.-The-resultäs-returned-as-the-sparse-vector.x.JThe-Complete.calling.
sequence for the solver is therefore

x=solver(A, b, flag)
or

x=solver(HD, ND1, ND2, ND3, b, flag).

The function solver.m and other auxiliary routines are contained in the subdi-
rectory solver of fes_solver.tgz. In the next chapter all the implementations
described so far are evaluated and a recommendation for the use in the FES-Tool
is given.



Chapter 7

Numerical Experiments

This chapter describes in detail the data tests and results to evaluate the discussed
algorithms. Since there is a wide ränge of available algorithms and implementa-
tions and also various scenaiios which data to use for the experiments a bottom-up
approach is used. We start with a description of the available hardware and test
data. In the section Parameter Analysis we study the influence of the various
configuration options and afterwards all available solvers are compared by their
run-time behavior. The chapter is concluded by the evaluation of tools for remote
Computing to leverage external Computing resources.

7.1 Test Environment

At first the hardware used for testing the FES solver is described. The choice
which hardware to use for the various tests depends on the following criterias:

• 32 or 64bit architecture—important for large scale problems,

• Windows or Unix"operätirig System,] ~"

• availability of Software—especially MATLAB but also Services like HARNESS

(Section 6.3),

• network connection—in terms of bandwidth to the Department of Biomed-
ical Engineering and Physics and access of Special ports because of security
restrictions.

The central point, however, was the requirement to run the solver as part of the

Physics using MS Windows and the graphical user interface of MATLAB. The
configuration of the Workstation is given below.

Simulant2
AMD Athlon 2400+ 2GHz, 133Mhz Bus
3GB Ram, 128kB Ist level cache, 256kB 2nd level Cache
MS Windows 2000 Professional, MATLAB 6.5 R13
Cygwin 1.3.17, gcc 3.2

63
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Since Simulant2 is a 32bit System and tests have shown that large matrices can not
be solved due to memory restrictions, a 64bit machine at the Vienna University
of Technology was also used.

Apollo: apollo.anum.tuwien.ac.at
Compaq SC45 with 4 Alpha-EV68 processors with lGHz
16GB Ram, 8MB Cache/CPU
Compaq Tru64 UNIX V5.1A, MATLAB 6.5 R13, gcc 3.2

To actually use a 64bit Computer it was necessary to utilize it remotely via
NetSolve. Because of problems with installing NetSolve on Apollo, an HP Ita-
nium located at the Innovative Computing Laboratory (ICL) at the Computer
Science Department of the University of Tennessee in Knoxville was used.1

HP Itanium: hpO4.cs.utk.edu
Dual Itanium Processor with 800MHz
2GB Ram, 2048KB Cache
Red Hat Linux 7.3, Kernel 2.4.18, gcc 2.96

For the sake of completeness the information about the machines where HAR-
NESS was tested is listed here, too. Since HARNESS is still in its early stages of
development - although already fully functional - it is currently not available for
Windows. Hence, it was tested only on the following machines at ICL.

Microsoft Cluster: msc*.cs.utk.edu
Dual Pentium III with 933MHz
512MB Ram, 256kB Cache
Red Hat Linux 7.3, gcc 2.96

Cetus Cluster: cetus*.cs.utk.edu
Sun Spare Ultral with 502MHz
512MB Ram
Solaris 8, gcc 2.95.3

Beside of the hardware the test data used to evaluate the algorithms and imple-
mentations is described next. In the previous chapters the Poisson problem (4.2)
was considered. This is the simplest non-trivial partial differential equation in 3
dimensions and is from now on referred to as "Model I."

On the other hand, there are two data sets of Computer tomography (CT) images
(the left and right thigh of a paraplegic patient) that are currently only available
in the füll resolution of 314x266x350 and a scaled down set with a resolution
of 314x266x51. Because the füll data would lead to matrices that could not be
handled on todays Computers only the reduced data set is used and it is available
with different electrode configurations. The various electrode configurations of

1With the availability of the final version of NetSolve 2.0 the problems with Apollo have
been solved. But since it is necessary to register the IP addresses which are accessed from
Simulant2 at the Vienna General IT-dept. and the trouble-free usage of the machines at the
ICL the HP Itanium was chosen as 64bit Server.
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this model are given as number pairs specifying the position of the anode and
cathode at the füll resolution. E.g., 100/250 is the shortcut for: The middle of
the anode is at the 100th cross-section and the middle of the cathode at the 250th

cross-section.

Since Model I is quite different to the model based on the CT data we created
another model problem because the resulting Systems are also quite large and
currently only available in 4 different configurations. The requirements for this
model are that it should feature similar properties as the CT data (inhomogeneity,
anisotropy), be highly configurable (in terms of size, conductivity values and
tissue configuration) and easy to build up.

Therefore, we built a 3-dimensional conductivity matrix that mimics the tissue
structure of a thigh, i.e., it contains muscles, fat and a bone. Skin and blood
have been left out because the model problem is aimed for smaller problem sizes
and therefore at this discretization level it would not make sense to simulate
the behavior of skin or blood vessels. This matrix can be built up in arbitrary
sizes in any direction and Fig. 7.1 shows the metrics for a 16 x 16 x 16 model
problem—other sizes are calculated relative to the given numbers. Table 7.1 lists
the used conductivity values of this model which will be named "Model II." For
consistency reasons we refer to the set of CT data as "Model III."

2 ' 3

| Electrode material O Point electrode | | Air Fat i Muscle • Bone

Figure 7.1: Metrics of Model II: on the left a cross section and on the right a view from the
side. The given values are the scaling factors to a 16 x 16 x 16 model.

Based on the conductivity matrix that represents the specific conductivity in each
voxel the absolute conductivity is calculated as described in Chapter 2. When
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Conductivity Value

electrode material
muscle transversal

muscle longitudinal
fat

bone
air

10
0.1
0.7
0.03
0.016
0

Table 7.1: Conductivity values in S/m of the various materials and tissue types in Model II
(corresponds to the values of the real data).

using Model II the following limitations have to be kept in mind.

• The simplified geometry does not take into account the cylindric form of the
thigh and especially it is completely homogeneous in longitudinal direction.

• On generation of Model II the damping factor of the Neumann boundary
conditions at both ends is neglected. Therefore, the behavior at the first
and last cross-sections will be inaccurate.

For the following discussion of Model II we used the Standard configuration
(anisotropy in longitudinal direction, default conductivity values), a model size
of 32_x_32_x 32_andsolved_tii_e_System with the_MATLAB function pcg (tolerance
for the relative residual is 10~6).

We will present 2 dimensional contour plots of cross-sections. The colors of this
equipotential lines represent values from -1 (blue) to 1 (red) and lines are at
0. l^Vlsteps in -the-thigbuand- at -0.004JV1 steps in-the electrodes. —This allows^
the visualization of the point electrodes within the electrode material. The axis
description is "Pixel" in the respective directions but is omitted due to clearer
representation.

The other type of figures show line plots of a Virtual muscle über in longitudinal
-direction.and.the.electric.potential.distribution-within.this.single.fiber.-The.x-axis.
is the longitudinal direction given in pixels, while the y-axis the results in Volt
or respectively Volt/pixel (ls t derivative), Volt/pixel2 (2nd derivative) represents.

In the next two Figures 7.2 and 7.3 the voltage distribution in Model II is shown
using contour plots in MATLAB. While the first figure shows an evenly distributed
symmetrical electric field indicated by the potential lines, the second figure is
slightly asymmetric because of the bone which is not in the middle but shifted
to the upper left of the artificial thigh and additionally the point electrodes are
not exactly in the center of the model—Fig. 7.3 shows the 10th cross-section
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with the anode and and the 24th cross-section with the cathode. Because of
the homogeneity in longitudinal direction the left and right field distribution are
identical except for the sign of the voltage values which are represented through
the different colors.

Figure 7.2: Contour plots of the voltage distribution indicated by equipotential lines—spacing:
0.1 (thigh), 0.004 (electrode material)—of the middle (16th) longitudinal cross-section and of
the 3 r d layer of the model problem.

Figure 7.3: Contour plots of the voltage distribution in cross-sections below the anode (left)
and cathode (right) indicated by equipotential lines—spacing: 0.1 (thigh), 0.004 (electrode
material).

"~~Ä:n'other~important~propertyis the-voltage~distributionnn-longitudinar-direction-
(the main direction of the muscle fibers) and its derivatives. These character-
istics together with the current/voltage and frequency of the Stimulation give
Information about the activation of the muscle—see Reichel [44] for a detailed
description.

Fig. 7.4 gives an overview of the solution and its derivatives in different layers
below the point electrodes. Various informations can be obtained from this array
of contour plots. In each row the curves get smoother the deeper the layer. This
cleary demonstrates the difficulty to stimulate muscles with surface electrodes
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because the Stimulation has to overcome the barrier of fat. In each column we
see that a Single peak in one graphic is represented with two peaks in the graphic
below which again verifies the results.

24* Layei

4" Layer layer 24** Uyer

Solution

f* Derivative

^Derivative

Figure 7.4: Overview of the characteristics of the solution and its derivatives. At the top is
-a.longitudinal.crossrsection_oLModeLII_with_lines-at_4_different.layers._Below_line_plp.ts_pf_a_

"virtual" muscle fiber at this layers show the electric potential distribution and the l s t and 2nd

derivative.

Figures 7.5 and 7.6 show the voltage in longitudinal direction below the point
electrodes in different layers. While the different electric potentials in the first
figure are still clearly seen the top of the muscle (8th layer) already shows a much
smoother curve and espically note the smaller ränge in the y-axis.
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10 15 20 25 30 35
•0.8

Figure 7.5: Voltage in longitudinal direction in the 4 t h layer (fat).

10 15 20 25 30

Figure 7.6: Voltage in longitudinal direction in the 8 th layer (muscle).

Figures 7.7 and 7.8 show the characteristics of the first and second derivatives of
the voltage distribution in the longitudinal direction below the point electrodes.
These results are especially important since the extreme values of the first deriva-
tive are areas of activation at muscle tendon junctions (hemidesmosomes) and the
second derivatives describe activations over the entire length of muscle cells.
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v/px

10 15 20 25 30 35
-0.05

Figure 7.7: Characteristics of the first derivative of the voltage in longitudinal direction.

V/px2

i n - - 15_ 20 _ 2 5 - 30——35

Figure 7.8: Characteristics of the second derivative of the voltage in longitudinal direction.

In the following section the numerical properties of the available data sets are
compared. The aim is to show conformance and shortcomings of the Model I and
Model II compared to Model III and what conclusions could be drawn from the
numerical experiments.
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7.2 Data Set Analysis

As stated above an important measure for any given linear system is its condition
number (3.7) where large numbers indicate high sensitivity of the solution to
errors in the data. Table 7.2 shows the condition number for various sizes of
Model I, Model II and down scaled CT data2. While the results of Model II
are of the same order as Model III Model I already shows differences. These
differences are due to smooth coefficients of the Poisson model problem and the
inhomogeneity within the other data sets.

16
24
32

X

X

X

size

16
24
32

Model

x 16
x 24
x 32

I
K

1.717-
3.875 •
6.897 •

102

102

102

16
24
32
32

X

X

X

X

size

16
24
32
32

Model

X

X

X

X

16
24
16
32

II
K

3.959 •
1.155-
1.471 •
2.676 •

105

106

106

106

105
157
105

CT data
size

X

X

X

: 89 x 3 6.
133 x 3 2.
89 x 11 3.

K

927-
245-
980-

105

106

106

Table 7.2: Condition of the various data sets in different sizes.

In the previous chapters the various implementations were compared by their
conververgence speed, i.e., the number of iterations it takes until the relative
residual is below a given boundary. Here we will again use convergence speed
to compare the three modeis by using PCG in MATLAB without preconditioning.
Model I in Fig. 7.9 shows a steady drop of the relative residual and although no
preconditioner is used the solver converges within a reasonable number of itera-
tions. Model II (Fig. 7.10) gives good results for small sizes but larger matrices
start to need a long run-time until the relative residual Starts to drop slowly as
irTModel III (Fig. 7.11)7 Again MödeF II shows ~a sirnilaf behaviöräs" Mo'deTIH"
while Model I differs. Also note the very similar convergence behaviör of the
different electrode configurations in Model III. Therefore, in the following we will
always use the configuration 100/250 when comparing Model III with other model
Problems.

which all calculations are performed. Because all input data already include
some error it would not make sense to use valuable computational power to go
for unreasonable "high accurate" results. For the given problem the FES-Tool is
used to simulate the activation of muscles and, as noted above, the first and second
derivatives of the solution from the PDE are used for this purpose. Therefore,
we are only interested in the results at the areas of the muscle tissue and in the

2Since the complete Systems of the CT data (Model III) are way too large to compute the
condition number some scaled down CT data sets from previous experiments were used.
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rel residual Convergence, Model I (pcg, unpreconditioned)

1.0e-02

1.0e-04

1.0e-06

1.0e-08

1.0e-10

1.0e-12

1.0e-14

48x48x48 •
32x32x32
24x24x24
16x16x16

0 25 50 75 100 125 150 175 200 225
Iteration

Figure 7.9: Convergence behavior for Model I.

rel residual Convergence, Model II (pcg, unpreconditioned)

0 1000 2000 3000 4000 5000 6000 7000
Iteration .

Figure 7.10: Convergence behavior for Model II.

following all data is restricted to this area. This is done by applying a mask to
the results and eliminating all of the voxels but those of tissue type muscle. Since
Model I has shown that it does not match the properties of Model III so far it is
left out in further tests.

Table 7.3 shows the results of solving the problems at various accuracies and
calculating the second derivative in longitudinal direction. The error e of the
solution x is given respective to the peak-to-peak-value of the highly accurate
reference solution xref obtained with relative residual 10~12 in the region of in-
terest (muscle) and is calculated by

e =
max (xref — x)

max(a;re/) — min(xre/)'
(7.1)

As the results suggest a relative residual of 10 2 is too crude. Starting with an
accuracy of 10~4 we already get good results and from now on we will use 10~6

as tolerance for iterative solvers which assures a good quality of the solution.
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rel. residual Convergence, Model III (pcg, unpreconditioned)

1.0e-01

1.0e-02

1.0e-03

1.0e-04

1.0e-05

1.0e-06

100/250 •
75/250 •
50/300 •
100/200

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Iteration

Figure 7.11: Convergence behavior for Model III. All 4 System are based on the same thigh
with different electrode configurations as described before (the number pair indicates the posi-
tion of the anode/cathode.

size

16 x 16 x 16

32 x 32 x 32

Model II
rel. residual

io-2

lO-4

lO-6

IO-8

10-1°

io-2

lO-4

lO-6

lO-8

10-1°

e

3.887 IO-3

1.409 IO-5

1.455 10-6
9.925 • IO-9

4.111 10-11

2.089 • IO-2

2.016 - lO-4

2.857 10-6
2.476 • lO-8

8T325 TO-11"

configuration

100/250

50/300

Model III
rel. residual

io-2

10"4
10"6
lO-8

10-1°

io-2

lO"4

IO-6

10~8

""IO-10

1.749 10-1
6.476 • lO-4

8.957-10-6
2.887-10-8

2.525-10-1°

2.999 • 10-i
2.582 • lO-4

3.786 • lO-6

3.842 • 10"8

2.762-10-1°

Table 7.3: Error in the second derivative of the solution in the muscle when using different
tolerances.

7.3 Parameter Analysis

4n4his-seGtion-we-study-the-impaGt-of4he-var-ious-parameters-on-the-quality-of--the-
solution and the run-time Performance. The quality of the solution is measured
by the error respective to the peak-to-peak-value in the region of interest as
described in (7.1). This error is calculated for the solution (e0), the first (ei)
and the second derivative (£2). In addition to the maximum we also provide the
respective mean values in the tables in a second row (e. g., Table 7.4). All tests
were performed with the following base configuration if not otherwise specified:
type=0, modif i e r= l , tol=10-6 , solver=pcg, precond= am<?, service=local.

We start with the analysis of the resolution. Since the available set of data is too
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large (314 x 266 x 350) to be processed it is currently scaled down to a resolution
of 314 x 266 x 51. We are now interested in the sensitivity of the solution if
it is solved on a lower resolution and the result interpolated and compared to
the solution of the original size. These tests are performed only with Model
II because the FES-Tool currently does not support any other resolutions then
the one mentioned above. As reference solution we take a system of the size
32 x 32 x 32 and compare it to Systems scaled down equally in each spatial
dimension and scaling it down in only one dimension. The interpolation method
used in MATLAB is 'spline'. Table 7.4 shows the results of this test.

Size £o £i £2

16 x 16 x 16 1.036 • 10-1 3.628 • KT1 6.084 • 10"1

1.453 • 10~2 5.046 • 10~3 2.001 • 10~3

24 x 24 x 24 1.032 • 10"1 1.462 • 10"1 4.846 • 10"1

2.686 -KT2 1.644-10"3 8.191-lO"4

32 x 32 x 16 6.991 • 10~2 3.877 • 10"1 5.039 • 10"1

1.698 • 10-2 4.965 • 10~3 1.947 • 10~3

Table 7.4: Error of various resolutions if interpolated and compared to the model problem of
size 32 x 32 x 32.

The results in Table 7.4 are not satisfying and require a further investigation.
First we note that the maximum error is quite high, but the mean error is at a
much more moderafe level. The contour plots of the eletric potential is shown
in Fig. 7.12. Note the contour lines at the interpolated solution which are wider
apart at the end of the electrodes which is also the place where the largest er-
rors occur. Within a cross-section the largest error is at the crossover from fat
to müscle^^see" Figr 7.137 TinällyTTwe cönipare^the^cöncfete ^välues^oTthe "secönd
derivative in longitudinal direction where the largest errors occur with the ref-
erence solution. Fig. 7.14 shows the qualitatively similar characteristics of both
results but some discrepancy at various sampling points.

Another possible source of the error for the System with resolution of 24 x 24 x 24

matrix is not an exactly scaled version of the original because of roundoff errors
which leads to a slightly different system.

Regarding the resolution of 32 x 32 x 16 one should note—although four times
bigger than the smallest system—the results are not that much better. This
suggests that an evenly scaled down system would give better results (when taking
run-time Performance into account) than a minimization in only one direction.
Since the test is performed only on Model II it is recommendable to repeat it
with Model III and verify these results.
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Figure 7.12: Comparison of contour plots of the interpolated results (left) and the solution
with the füll data set (right).

40 Ö

Figure 7.13: Mesh-plot of cross-section with the largest error in the electric potential field.
The laxgest error is at the crossover from fat to muscle below the electrode (which is hidden
behind the peak).

When the FES-Tool was developed at the Department of Biomedical Engineering
and Physics an important aspect was that the anisotropy of the muscle should
be taken into account. Table 7.5 shows the results comparing data sets with
and without anisotropy with the reference solution taking the anisotropy into
account. Additionally, the run-time Performance was evaluated and for large
Systems a speed-up of more than 10 % was measured.

As the results show, is the effect of the anisotropy more clearly seen for Model
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v/px

Figure 7.14: Comparison of the second derivative of the electric potential along the muscle
fiber with the largest error. The interpolated solution is shown as solid red line against the
reference solution with a dashed blue line.

Model II -

Model III

32x32

- 100/

x32

200

9.841 •
4.194-

5.892 •

3.101 •

I

lO-3

lO-3

lO-2

IQ"2

e i

1.789-10-2
2.675-10-3

1.012-lO"1

5.180-lO-3

£2

1.808 •
1.127-

8.823 •
2.967-

lO-2

10~a

lO-2

IQ"3

speed

100%

88%

Table 7.5: Results of comparing data without anisotropy to the reference solution with
anisotropy.

JII.jrhis_could b_e, on the_one hand, other
hand because of the relative small size. Nevertheless, this experiment shows the
importance of the anisotropy and its influence on the quality of the solution in
Model III.

Model II and III use a pair of point electrodes and some artificial electrode ma-
terial on top of the thigh to simulate the use of surface electrodes. The electrode
material is defined as a tissue type with high conductivity but preliminary tests
have shown that the conductivity values used have a decisive impact on the run-
time behavior, i.e., the higher the conductivity value the longer the calculation.
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With Model II and size 32 x 32 x 32 Table 7.6 compares various conductivity
values g of the electrode material to the reference solution (g — 10 S/m).

9-

9 •

9 =

9 =

= 1 S/m

= 5 S/m

= 50 S/m

•• 100 S/m

eo

8.167-10-2
3.609 • 10-1

1.083 • lO-2

4.762 • lO-3

9.040 • lO-3

3.971 • lO-3

1.026 • lO-2

4.470 • IQ"3

e i

- 1.236 •

2.153-

1.639 •

2.843 •

1.369 •
2.365 •

1.537-
2.656 -

IO- 1

lO-2

lO-2

IO-3

lO-2

IO-3

IO-2

IO-3

£2

8.231 • IO-2

4.752 • lO-3

1.085-lO-2

6.267-IO-4

9.158- IO-3

5.239 - IO-4

1.097-10~2

5.885 • IO-4

speed

5 3 %

89%

133%

141 %

Table 7.6: Results of comparing data with various conductivity values for the electrode ma-
terial to the reference solution of g = 10 S/m.

The results coniirm prior tests of the run-time behavior and clear show that low
values of g would lead to notably large errors.

Finally, we tested the impact of different staxting values when performing iterative
solution methods. Since the FES-Tool is used to test different electrode positions
it would make sense to use results of one configuration as starting value for
another—slightly different—configuration. Unfortunately, it turned out that this
method does not result in any better run-time Performance. The tests were
performed with unpreconditioned PCG from MATLAB as well as PEBBLES but
neither the number of iterations nor the run-time decreased.

7.4 Numerical Performance

In this section we analyze the run-time behavior of the various solvers described
in the previous chapter. The tests are again performed with three data sets of

-ModeH-I:-3-2-x-32-x-32-(dim=32-768-)r48-x-48-x~48 (dim=l-10 -592-)-and-64-x-64-x-64-
(dim=262 144); as.well as Model III (dim=l 697265) with electrode configuration
100/250.

Four types of solvers are investigated:

• direct solvers and simple iterative solvers,

• iterative solvers provided by MATLAB,

• iterative solvers combined with preconditioners,
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• multigrid solvers.

78

To test direct solvers (SuperLU and MA28) we leverage the power of the Software
repository of NetSolve. To avoid tampering of the results through transmission
times these tests were performed locally in Knoxville at the ICL. Those solvers
deliver a bad Performance for medium sized Systems and completely fail due to
memory requirements for large Systems. Table 7.7 shows the available results
for direct solvers (systems larger than 32 x 32 x 32 could not be solved) and
the result of Gauss-Seidel. Since Gauss-Seidel takes about 5 minutes per Single
iteration and Table 4.1 already showed the convergence behavior (more than 1000
iterations to achieve a relative residual of 10~6) the exact value is not calculated.

SuperLU MA28 Gauss-Seidel

32 x 32 x 32 2 923 sec 7 792 sec 5 min/iter

Table 7.7: Runtime measurement of direct solvers and the Gauss-Seidel iterative solver for
Model II.

Next we compare the iterative solvers provided by MATLAB in Table 7.8. It is
clearly seen that the more robust solvers like bieg and bicgstab have noticeable
longer solution times than pcg. Not included in this list is gmres because the
Implementation in MATLAB seems to make huge memory requirements and was
only'able tö sölve systemsTup" to~ä size of"16 x 16 x 16 and fails with an OUT
OF MEMORY error for larger Systems. Especially interesting are the extremely
good results of minres which is always faster than pcg.

pCg —bieg bicgstab minres" ~

Model
Model
Model

1 1 -
I I -
I I -

Model III

32
48
64

X

X

X

32
48
64

-100/

X

X

X

32
48
64

250

105
690

2 272
53084

sec
sec
sec
sec

140
910

2996
74055

sec
sec
sec
sec

211
1446
4304

29 550

sec
sec
sec
sec

65
407

1419
32434

sec
sec
sec
sec

Table 7.8: Runtime measurement of iterative solvers from MATLAB without preconditioning.

Next we test these iterative methods with preconditioning as described in Section
5.2. Since it would be inefficient to use the incomplete Cholesky factorization for
large sparse banded matrices with which we deal here, we restricted the tests to
the block-tridiagonal Cholesky factorization. But already this optimized variant
failed for Systems larger than dim=32 768 (32 x 32 x 32) because of an OUT OF
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MEMORY error in MATLAB. This and the extreme long time for calculating the
preconditioning matrix render the use of this method as unsuitable. Test results
with Model II (32 x 32 x 32) leads to a solution time of 16 sec when using pcg
and 1 554 sec for calculating the preconditioning matrix.

Finally, we turn to multigrid methods. The results of the multigrid solvers in
Section 5.3 were quite promising but unfortunately it turns out that a straight
forward implementation of those basic principles cannot handle Model II and III.
A Standard Gauss-Seidel smoother with a simple coarse grid correction scheme
will fail for the discontinuities and anisotropies of those problems. Therefore, we
were only able to test with PEBBLES in the configuration of a preconditioned
conjugate gradient method using AMG as preconditioner.

Table 7.9 shows the results of these tests and the distinct phases of of the algo-
rithm. Because of memory requirements PEBBLES cannot solve larger Systems
and especially Model III. In the next section we will use tools for remote Com-
puting to access 64bit Computers with which it will be possible to overcome these
limitations—Table 7.10 gives the results of executing PEBBLES on such a 64bit
Computer (Apollo).

complete Setup solver iterations

Model II - 32 x 32 x 32 2.6 sec 1.0 sec 0.7 sec 8
Model II - 48 x 48 x 48 9.5 sec 4.0 sec 3.2 sec 11
Model II - 64 x 64 x 48 memory!
Model III - 100 / 250 memory!

Table 7.9: Results of using PEBBLES (pcg with AMG preconditioning) with various data sets
on Simulant2.

Table 7.10 also includes the results of applying AMG (PEBBLES) to a Standard
problem (Model I) which could be easily be handled by geometric multigrid. It
clearly shows that the additional cost in terms of the setup phase for the AMG
algorithm is quite high.

7.5 Remote Computing

In Sections 6.2 and 6.3 we have described tools for remote Computing, namely
NetSolve 2.0 and HARNESS (still in development). The main reason to use this
Software here is to access 64bit Computers which allow a larger address space and
are able to handle the large matrices arising in the FES-Tool. Table 7.11 shows
the run-time measurements of using a NetSolve 2.0 Client at the Department
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complete setup solver iterations

Model I
Model I
Model I

Model II
Model II
Model II

Model

- 3 2
- 4 8
- 6 4

- 3 2
- 4 8
- 6 4

III -

x 32 x 32
x 48 x 48
x 64 x 48

x 32 x 32
x 48 x 48
x 64 x 48

100/250

2.7
10.7
27.3

3.1
15.5
69.9

1069.2

sec
sec
sec

sec
sec
sec

sec

1.8
7.3

18.2

2.2
11.3
32.3

823.4

sec
sec
sec

sec
sec
sec

sec

0.5
2.6
7.4

0.6
3.7

14.8

223.2

sec
sec
sec

sec
sec
sec

sec

6
7
8

8
11
17

28

56
181
489
679

sec
sec
sec
sec

4
17
75

1218

sec
sec
sec
sec

52
164
414

2461

sec
sec
sec
sec

Table 7.10: Results of using PEBBLES (pcg with AMG preconditioning) with various data sets
on Apollo.

of Biomedical Engineering and Physics accessing the HP Itanium at the ICL in
Knoxville, Tennessee.

complete solver transfer-time

Model II - 32 x 32 x 32
Model II - 48 x 48 x 48
Model II - 64 x 64 x 48
Model III - 100 / 250

Table 7.11: Results of using PEBBLES (pcg with AMG preconditioning) on the HP Itanium
via NetSolve from the Vienna General.

..The big advantage of using.NetSolve compared to_Table 7.9 is that here all Systems
can be solved, but the cost of transfer is quite high. Since the transfer-time
depends highly on the available bandwidth to the U.S. these numbers are of
course subject to fluctuations. Nevertheless, the results are still available much
faster than using iterative solvers from MATLAB as the results in Table 7.8 show.

_Einally,_we_also.giYe_a_sp.eed_comparison_of_NstS^^
there is currently no Windows Client available for HARNESS we tested on May
2003 NetSolve and HARNESS on a heterogeneous Linux / Solaris cluster at the
ICL. Table 7.12 gives the mean values of data sets performed with both Systems
executing PEBBLES remotely. They show almost the same Performance.
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dim

28035
102 795
280350
417620
626430
918 764

NetSolve

2.48 sec
8.23 sec

34.00 sec
53.16 sec
96.72 sec

119.62 sec

HARNESS

2.27 sec
8.09 sec

34.04 sec
52.71 sec
96.52 sec

126.33 sec

Table 7.12: Comparison of using PEBBLES (pcg with AMG preconditioning) remotely with
NetSolve and Harness.



Chapter 8

Conclusions

In this chapter we summarize our results and give recommendations how to op-
timally use the presented modeis and algorithms. Basically, we can draw con-
clusions in two areas. First we have tested and implemented all major solution
strategies which are currently available for the problem arising in the FES-Tool
at the Department of Biomedical Engineering and Physics. On the other hand
we have developed a model that allows to study the behavior of the data based
on CT images on a smaller scale which led to some new insight into this class of
Problems.

The studied solution methods can be categorized in four groups: direct methods,
basic iterative methods, Krylov subspace methods and multigrid methods. As ex-
pected, direct methods and basic iterative methods are not suited to deal with the
given class of problems, although we used specialized direct solvers and a Gauss-
Seidel implementation that took advantage of the sparse Symmetrie strueture of
the matrices.

Valuable insight was gained when Krylov subspace methods were used. On the
one hand, with these algorithms we were able to solve even the largest Systems
on thelocal 32bit Computer and, on the other hand, they shöwed the impörtance
of good preconditioners for the poorly conditioned problem. It turned out to
be quite hard to build a good, non memory-intensive and especially fast precon-
ditioner that reduces the otherwise exorbitantly high iteration count. Without
preconditioning the MATLAB routine minres wasxlearly. the fastest solver within
this group.

The search for good preconditioners finally led us to multigrid methods which
are generally considered as being the fastest numerical methods for the solution
of discretized elliptic partial differential equations. The implementation of a

-geometric.multigrid-solver_for.the-given_problem-turned-out to_be_a_complex_and_
cumbersome task. Therefore, we used the algebraic multigrid package PEBBLES

from the Johannes Kepler University of Linz in Austria.

Algebraic multigrid is kind of a black box algorithm which is robust and han-
dles discontinuities and anisotropies of the given problem. Although the use of
algebraic multigrid saves us from implementing a smoother and a coarse grid cor-
rection scheine for geometric multigrid, it also requires us to aeeept the computa-
tional expensive setup phase which is about two-thirds of the algebraic multigrid
solution time. Nevertheless, with PEBBLES we are now able to solve the problems
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of the FES-Tool about 20 times faster than before.

Given the restrictions of the field of application (Windows 2000, 32bit Computer)
it was not pössible to apply this solver directly and NetSolve was used to leverage
external Computing power. Here again we have to accept a big trade-off in terms
of transfer-time to an external 64bit Computer but overall we achieved a speed
up from previously used built-in MATLAB solvers to the current implementation
from about 9 hours down to less than an hour.

With the current advancement in Computer technology 64bit Systems will become
available more and more and the best Performance would be achieved with a local
64bit Workstation. To utilize this Computer by the whole department it is again
recommendable to access the solver remotely via NetSolve from a client running
the FES-Tool. With a reasonable fast network connection the transfer time of
the data within the department can be neglected and the Server could be used
for other tasks as well.

Using this method we have studied the problem itself and a model in more detail.
Since the CT data is currently only available with a fixed dimension (314 x
266 x 51) it was useful to develop a smaller model problem that features similar
properties than the original data but was much faster to solve. Using this model
we discovered that scaling down within only one direction leads to just slightly
better results than scaling down in all directions. Therefore, it would be more
economical for the large data sets to not only scale down in z- but also in x- and
y-direction, which would lead to much smaller Systems.

Othex properties of the problem ]ike behavior ofjthe relative residual and influence
of anisotropy and condüctivity of the electrode materialwere verified for the CT
data and the new model problem.



Chapter 9

Outlook

With this work some achievements were obtained in the development of the FES-
Tool to completely simulate the Stimulation of denervated muscles in the thigh.
However, many tasks remain and new questions arose.

As indicated in Chapter 3 it could possibly lead to smaller Systems and higher
accuracy when using the Finite Element method instead of the Finite Difference
method. Through the modular structure of the FES-To.ol it should be possible
without to much changes to switch the mathematical model and keep the data
input module, the solver and the analyzing tool (FES-Analyze). A first step
in this direction could be to start with Model II of Chapter 7 and test it with
FEMLAB [19].

For the solver itself there are two directions one can go from here. We have shown
that multigrid methods are currently the fastest methods available and it would
certainly make sense to stay on this path.

On the one hand the geometric multigrid approach could be implemented which
would lead to the provably fastest solver possible for this System. Unfortunately,
t̂his._would be^quite a difficult_task_and_also ._woukLrule out the_general character
the solver currently has.

On the other hand the algebraic multigrid algorithm could be refined or another
package than PEBBLES could be used. Here, the Software tool HYPRE (Chow et al.
[15]) should be mentioned which is actively developed and promises to be one of
the most advanced packages available, although aimed at parallel Computers.
Since there is now a Linux cluster available at the Department of Biomedical
Engineering and Physics this would of course be one of the most fruitful paths
by using a work-load distribution over several CPUs.

Finally, there is also a completely different approach for the given problem. In-
stead of calculating the electrical field within the thigh and using the results
as basis where an activation will happen another way was proposed by Gene
H. Golub. With a non-linear approach it should be possible to specify the re-
gions where an activation should täke place and together with the conductivity
matrix this should lead to the optimal electrode configuration and Stimulation
Parameters—see Winslow [59] as starting point.
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Appendix A

Solver Configuration

This Appendix describes the use of the structure field f lag which is used to
configure the behavior of the solver. The available options are divided into 3
sections:

• solver: chooses the solver and its options,

• model: specines which model to use and its configurations,

• auxiliary: allows debugging and automatically generated statistics.

Settings for the respective options are shown in parenthesis:

Solver

solver The solver that actually should be used, available are: (gs), (pcg), (bieg),
(minres), (reoelm), (mg), (amg) and (superlu).

precond If the solver supports preconditioning you can choose here one of the
available preconditioners: (none), (cholinc), (btdchol) or (amg).

service Choose if the problem should be solved (local), or remotely through
(netsolve) or (harness).

t o i Tolerance of the relative residual for iterative solvers.

maxit Maximum number of iteration for iterative solvers.

type Distinguishes between voltage (0) and current (1) sources.

modif ier Transforms the equation system in various equivalent forms which is
necessary for some solvers. Using modif ier=2 will work for each solver.

optionstr Configuration options as comma separated string for PEBBLES.

startvalue If set to (1) the sparse vector x in x .mat is loaded and used as initial
solution for iterative solvers.
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Model

problem Chooses one of the 3 model problems Model I (p), Model II (m) or
Model III (c) (see Chapter 7).

size_x, size_y, size_z Size of the model; when using CT data (Model III) this
Information is obtained from conf iguration.mat.

complete_x, complete.y, complete_z Original size of the data set.

voxel_x, voxel_y, voxel_z Size of a voxel.

anisotropy_x, anisotropy_y, anisotropy_z Values of anisotropy in the mus-
cle.

g.skin, g_fat, g_muscle, g_blood, g_bone, g.electrode, g_air Conductivity
values of the various tissue types.

electrode_of f set Specifies the number of pixel the electrodes (point electrodes
and electrode material) are moved away from their original position along
the z-axis in longitudinal direction.

conduct_str A unique string characterizing the conductivity values (used as part
of the filenames of logf i l e and matrixf i le) .

-Auxiliar-y;--_---_----1---------- —

platform Specifies for the logfile where the test was performed: Apollo (a), HP
Itanium (h) or Simulant2 (s).

-logf i l e -Name of the Jogfilei

matrixf i l e Name of the file containing the model data.

expand If set to (1) the first and second derivative of the solution is calculated
using the size of complete_x, complete.y and complete_z.

dispstep Shows every nth rel. residual in a log file of an iterative solver.

debug Choose a debugging level from (0) to (2).

f astload If set to (1) the model problems I and II are only created the first time
and stored. On a second execution this model is loaded from the harddisk.
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Curriculum Vitae

PERSONAL DATA
Füll Name: DI Christoph Leopold Fabianek

born on July 21st, 1977 in Eggenburg; Single; Austrian

Contact: fabianek@cs.utk.edu, +43 / 699 / 124 60 527 (mobile)

Address: Mayerhofgasse 3 / 407 Roseidorf 61
A-1040 Vienna, Austria A-3714 Sitzendorf, Austria
Tel: +43 / 1 / 505 53 84 - 407 Tel./Fax: +43 / 29 59 / 23 22

EDUCATION
since 2001: Doctorate @ Vienna University of Technology

Collaboration with the Vienna General Hospital
Research at the University of Tennessee / USA (Jan - May 2003)

1997-2001: University @ Vienna University of Technology
Master of Science in Technical Mathematics
Master Thesis about stock management
Tütor at the Deptrfor Applied Math ̂  and NumericalÄnalysis

1996-1997: Military service @ Vienna
Heeres-Datenverarbeitungsamt
(Data processing bureau of the Austrian Army)

1992-1996: Vocational School @ Klosterneuburg
HBLA u. BA fr Wein- und Obstbau
focus on viticulture and orcharding
finished with excellence

PROFESSIONAL EXPERIENCE
since 1998: System Administration @ Vienna

Carbone Lorraine GesmbH (international Company)
Responsibilities: database maintenance & development, adoption to
the Euro and Y2K for the ERP Software

1994-2001: Software for viticulture @ Klosterneuburg
development of the first viticulture Software under Windows
collaboration with Erbslöh (German beverage-technology Company)
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1999: Security Management @ Vienna
Specification of @-sign at APSS
(national infrastructure for digital signatures)

1997: Financial Software @ Parndorf
Development and completion of accounting Software for a retail störe
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[1] C. Fabianek, W.N. Gansterer, C.W. Ueberhuber: A Multi-Elimination

Technique for Equilibrium Systems. Technical Report AURORA
TR2002-04, University of Vienna, 2002.

[2] C. Fabianek, W.N. Gansterer, C.W. Ueberhuber: Experiments with a
Multi-Elimination Technique for Equilibrium Systems. Technical Report
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Innovative Computing Laboratory, University of Tennessee, Knoxville,
2003.

LANGUAGES

German (mother tongue), English (fluent), Japanese & French (basic)'
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Windows 9x, Windows NT, Linux
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