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Kurzfassung

In der vorliegenden Dissertation werden die magnetische Momente und die magneto-

kristalline Anisotropie von magnetischen Nanostrukturen auf metallischen Filmen

diskutiert. Ich habe Adatome und kleine Nanostrukturen von Fe, Co und Ni auf einer

Ag(OOl) Oberfläche, von endlichen Co Ketten auf einer Pt(lll) Obefläche, und von

endlichen Fe Ketten auf Cu(OOl) und Cu(ll l) Oberflächen und in den entsprechen-

den Substraten in Betracht gezogen. Die verwendete theoretische Methode ist die

"Embedding" Technik innerhalb der voll-relativistischen Korringa-Kohn-Rostoker

Methode. Die magnetische Anisotropie, das Hauptziel in der vorliegenden Disserta-

tion, wird mit Hilfe des sogenannten "Force Theorems" berechnet.



Abstract

In the present work systematic studies of the magnetic moments and the magneto-

crystalline anisotropy of magnetic clusters on metallic surfaces are presented. In

particular, I investigated adatoms and small clusters of Fe. Co and Ni on Ag(OOl)

surface, finite Co chains on Pt(lll) surface and finite Fe chains at Cu(OOl) and

Cu(l l l ) surfaces as well as embedded into a perfect bulk host. The calculations are

performed fully relativistically using the embedding technique within the Korringa-

Kohn-Rostoker method. The magnetic anisotropy energies the main goal of the

present study are calculated by means of the magnetic force theorem.
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Chapter 1

Introduction

The fast development of manufacturing and observation techniques made available a

large number of different geometrical arrangements of magnetic impurities on metal-

lic surfaces like dots, wires, stripes or corrals. Due to their sensitivity on the local

environment, the magnetic properties of transition metal structures can be greatly

modulated, exploring a wide spectrum of magnetic phenomena, e.g., increased spin

and orbital magnetization, strong magnetic anisotropies, non-collinear magnetism,

as well as a temperature and time dependence of the magnetization. These low-

dimensional structures are intensively studied both experimentally [Beckmann and

Bergmann, 1996; Ohresser et al., 2001; Lau et al., 2002a,b; Eimers et al., 1994;

Crommie et al., 1995; Shen et al., 1997b; Hauschild et al., 1998; York and Leib-

sle, 2001; Gambardella et al., 2000a,b, 2002) and theoretically [Wildberger et al.,

1995; Stepanyuk et al., 1996b; Druzinic and Hübner, 1997; Dorantes-Dävila and

Pastor, 1998; Robles et al., 2000; Bellini et al., 2001; Spisäk and Hafner, 2002; Eisen-

bach et al., 2002; Komelj et al., 2002] mainly because of their possible application

as magnetic nano-devices and high-density magnetic recording media. Nowadays,

nanolithography based fabrication technologies [Chou et al., 1996| and the scanning

tunneling microscope [Crommie et al., 1995] give the opportunity for engineering

artifical nanostructures, e.g., high density arrays or quantum corrals.

Beckmann and Bergmann studied 3d impurities on a Au surface and found that

V, Cr, Mn, Fe, and Co adatoms posses a magnetic moment while Sc and Ni were

reported to be nonmagnetic [Beckmann and Bergmann, 1996|. Recently, by using

x-ray magnetic circular dichroism (XMCD) the magnetic properties of small Fe clus-

ters on a reconstructed Au(ll l) surface [Ohresser et al., 2001| and on a Ni|Cu(100)
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surface [Lau et al., 2002a,b| were investigated. In these experiments it was found

that the orbital moment changes dramatically with the size of the clusters while

the spin moment remains nearly constant. The attention to the unique features of

ID magnetic systems was drawn by experiments on self-organized Fe nanostripes

on a W(110) surface [Elmers et al., 1994; Hauschild et al., 1998]. For Fe stripes on

Cu(l l l ) Shen et al. [Shen et al., 1997b] observed an easy axis perpendicular to the

surface and found that the magnetization was temperature- and time-dependent.

For the same system Boeglin et al. [Boeglin et al., 2002] reported an in-plane

magneto-crystalline anisotropy energy favoring an orientation perpendicular to the

chain. Recently, York and Leibsle [York and Leibsle, 2001] demonstrated that at

definite growth conditions, Co can form self-organized arrays of nanowires on a

Cu(l lO) surface. Monoatomic rows of Ag, Cu and Co can be grown on a period-

ically stepped surface of Pt as step decoration [Gambardella et al., 2000a,b]. Co

wires on Pt exhibit exorbitant magnetic properties like unusually large orbital mo-

ments and strong magnetic anisotropies if compared to a monolayer or the bulk case

[Gambardella et al., 2002). In these experiments the estimated average length of

a continuous Co chain was 80 atoms; at a temperature of 45 K the ferromagnetic

order was, however, found to extend over about 15 Co atoms only.

Concomitantly with these experiments, quite some theoretical effort was devoted

to study magnetism in zero- and one-dimensional arrangements of atoms deposited

on surfaces. Effects of interatomic electronic interactions on the formation of mag-

netic moments were discussed in details for finite [Wildberger et al., 1995] and infi-

nite [Bellini et al., 2001] 4<i rows on vicinal Ag surfaces, leaving however, questions

about the oscillatory behavior of the moments open. The structure and magnetism

of monoatomic Fe wires grown on different stepped Cu(lln) (n = 3 — 11) surfaces

were investigated by Spisäk and Hafner [Spisak and Hafner, 2002]. Eisenbach et

al. [Eisenbach et al., 2002| demonstrated by using the real space Korringa-Kohn-

Rostoker (KKR) method that changing the crystallographic orientation of infinite

Fe wires embedded into Cu bulk results in a change of the easy axis. Because of trie

lack of translational symmetry tight-binding (TB) methods have been an efficient

tool to study larger clusters. A great advantage of these methods seems to be that

they can easily be combined with molecular dynamics calculations enabling thus

investigations of relaxation effects which proved to be important in determining the
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magnetic moments [Piveteau et al., 1996; Rodriguez-Löpez et al., 1999; Guirado-

Löpez et al., 2000] and the magnetic anisotropy energy [Guirado-Lopez, 2001] of

transition metal clusters. The inclusion of structural relaxations into the KKR

Green's function method is much more difficult, however, the so-called quasi-ab ini-

tio molecular-dynamics method can be a solution for this problem [Izquierdo et al.,

2001). By using a TB Hubbard Hamiltonian in the unrestricted Hartree-Fock ap-

proximation, Pastor and co-workers revealed the size and structural dependence of

magnetic properties of free Crn, Fen and Nin (n < 15) clusters [Pastor et al., 1989],

and also the exchange interaction and local environments effects in freestanding Fe

clusters [Dorantes-Dävila et al., 1992]. By including a spin-orbit coupling term into

the Hamiltonian, they also investigated various effects on the magnetic anisotropy

energy of small unsupported Fe clusters [Pastor et al., 1995], of selected Co clus-

ters on Pd(lll) [Felix-Medina et al., 2000] and, recently, finite-length Co wires on

Pd(llO) [Felix-Medina et al., 2002]. Finite temperature magnetism of small clus-

ters, remarkably different from that of the bulk systems, has also been studied in

terms of a similar approach by taking into account both electronic and structural

excitations [Lopez-Unas et al., 2000). Druzinic and Hübner calculated the magnetic

anisotropy energy for freestanding Fe wires and rings [Druzinic and Hübner, 1997].

Dorantes-Dävila and Pastor [Dorantes-Dävila and Pastor, 1998] revealed that oscil-

lations of the magnetic anisotropy energy corresponding to a preferred orientation

along short Fe and Co wires are stabilized over a length of about 20 atoms. They

found that when deposited on Pd(llO) the magnetization of the Co wires turned to

an out-of-plane direction. Very recently Komelj et. al. [Komelj et al., 2002] estab-

lished a clear trend for an enhancement of the spin- and orbital magnetism of Co as

bulk (3D), monolayer (2D) and wire (ID), respectively.

Starting from the mid-nineties our group carried out systematic investigations

of magnetic properties, in particular, of the magnetic anisotropy energy of transi-

tion metal multilayer systems by using the fully relativistic spin-polarized screened

Korringa-Kohn-Rostoker (SKKR) method [Szunyogh et al., 1994b; Zeller et al.,

1995]. The anomalous perpendicular magnetic anisotropy [Üjfalussy et al., 1996a,b|,

the magnetic properties of surface alloys [Szunyogh et al., 1997], the magnetic reori-

entation due to the lattice relaxations [Uiberacker et al., 1999], the Bloch walls in

ferromagnetic systems [Schwitalla et al., 2001] and the effects of the chemical order-
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ing on the magnetic anisotropy [Szunyogh et al., 2001] were systematically studied.

A summary of the calculations for perpendicular anisotropy in magnetic multilayers

can be found in Ref. [Weinberger and Szunyogh, 2000].

The purpose of the present work is to extend these studies in order to perform

realistic investigations for magnetic clusters on metallic surfaces by including self-

consistent effects (electronic relaxations) of the host atoms. For this very reason

I extended the SKKR program package making use of the real-space embedding

technique based on the KKR method in the local spin-density approximation and

also treated the Poisson equation with appropriate boundary conditions. It should

be noted that a similar embedding technique has been applied to transition metal

adatoms and small clusters embedded into a bulk host [Podloucky et al., 1980; Zeller

et al., 1980] or deposited on surfaces [Lang et al., 1994; Wildberger et al., 1995;

Stepanyuk et al., 1996a,b, 1997a,bj. By using the SKKR method describing the

semi-infinite host, the electronic structure of the surfaces supporting the magnetic

clusters can be taken into account in a much more accurate way than calculations

using slab or supercell geometry. The fully relativistic description of the scattering

mechanism I used enables one to calculate the magneto-crystalline anisotropy in a

non-perturbative way. The scaling technique of the spin-orbit coupling [Ebert et al.,

1996] can also be used serving as a qualitative explanation for the reorientation of

the easy magnetization axis in the framework of the perturbation theory. Focus-

ing on the dependence of the magnetic moments on the local environment one can

study the effects of the impurity-impurity and the impurity-host interactions. The

magnetic interactions between adatoms or small islands which is of particular im-

portance from a technological point of view can also be addressed. Calculating the

atom-like resolution of the spin- and orbital moments and of the magneto-crystalline

anisotropy helps to understand the evolution of the magnetic properties when the

clusters size is increased. Investigating the spatial distribution of the magnetic mo-

ments can serve as a reasonable explanation for the experimental results which in

several cases showed a non-monotonous magnetic behavior for clusters with increas-

ing size. Studying clusters of different size and shape the crossover between systems

with different dimensions (OD —> ID or OD —>• 2D) can be described.

The thesis which aims to give a comprehensive summary of the research I've done

during the past three years is organized as follows: in the first part the theoretical
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methods used in here, namely, the density functional theory (chapter 2), the Mul-

tiple Scattering Theory (chapter 3), the generalized KKR method (chapter 4), the

embedding technique of the KKR method (chapter 6), the solution of the Poisson

equation for surfaces and embedded clusters (chapter 7) and the determination of

the magnetic anisotropy energy (chapter 8) are described in detail. In the second

part the results of the dissertation are presented. In chapter 9 the magnetic prop-

erties of small Fe, Co and Ni adclusters on Ag(OOl) are discussed. It is concluded

there that according to the experiments [Ohresser et al., 2001; Lau et al., 2002b]

the orbital moments are more sensitive to the cluster size (the local environment)

than the spin moments. In chapter 10 I discuss the magnetic behavior of finite

Con (n = 1 — 10) chains deposited on Pt(lll) surface along the (110) direction.

For these wires the orbital moments and the magnetic anisotropy energies show a

distinctly different character as compared to the corresponding overlayer. For finite

Fen (n — 1 — 9) chains at fee Cu(OOl) and Cu(ll l) surfaces a strong dependence of

the magnetic properties of the Fe chains on the distance from the surface was also

observed as is presented in chapter 11. In chapter 12 I summarize the results and

outline some possible directions of research for the future. In the Appendix some

important theoretical details are described in a larger extent.



Part I

Theoretical method

12



Chapter 2

Density Functional Theory

Studying ground (and excited) state properties of a solid is a complex problem that

involves a system of interacting electrons. The exact treatment of an TV-electron

system to determine the corresponding wave-function \I> (ri, r 2 , . . . , r^r) is impossible

due to the high dimensionality of the problem. Instead of this, Hohenberg and Kohn

proposed a method [Hohenberg and Kohn, 1964] in which the one-electron density

plays a central role eliminating thus the degrees of freedom related to the large

number of electrons. As was shown by Kohn and Sham [Kohn and Sham, 1965]

using the fact that the energy is a unique functional of the ground-state charge-

density that a variational principle leads to an effective one-electron Schrödinger

equation. These self-consistent equations, the Kohn-Sham equations, are analogous

to the Hartree-Fock equations. Restricting the discussions to the most important

points, in the following sections a short description of both the non-relativistic and

the relativistic density functional theory will be given.

2.1 The Hohenberg-Kohn Theorems

Within the Born-Oppenheimer approximation, for a fixed number, N, of electrons,

the Hamiltonian can be written as the sum of the kinetic energy, T, the external

potential, K, which contains, e.g., the electrostatic interactions between the electrons

and the nuclei in a solid, as well as the Coulomb repulsion of the electrons, W,

N N N

^ ' ~ (2.1)
i=l i=l ifr

13
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where Rydberg units (fi = l ,me = 1/2, e2 = 1) are used. If, in coordinate re-

presentation, an antisymmetric A^-electron state is labeled by ^(r1,r2, . . . , i>), the

corresponding density is uniquely defined as

(2.2)

Fixing the form of the interaction operator, W, the Hamiltonian can be regarded

as a function of u, H = H [v]. In the density functional theory (DFT) one looks for

the ground-state properties of an interacting system. The lowest expectation value

of the Hamiltonian is defined by

EQ[v] = in^\H[v}\^} , (2.3)

where the |\I>) are W-electron states with finite kinetic energy. Two potentials, VI(T)

and i>2(r), are physically different if ui(r) — u2(r) ^ constant, since otherwise the

corresponding ground-states are the same. Let |\I/oM) denote the ground-state of a

Hamiltonian with v(r) then

H[v]\V0[v}) = E0[v]\VQ[v]) . (2.4)

The Hohenberg-Kohn Theorem [Hohenberg and Kohn, 1964| states that v(r) is a

unique function of the ground-state density no(r). In other words, for a given n(r)

there is only one v(r) for which n(r) is the ground-state density. This theorem is

valid only for so-called w-representable densities, which are ground-state densities of

systems with a real potential, u(r). Using this theorem, any dependence of ground-

state properties on the potential can be transformed into a functional dependence

of the ground-state density.

One can, therefore, define the Hohenberg-Kohn density functional, FHK\n\, as

the functional Legendre transformation of the ground-state energy in Eq. (2.3),

FHK\n\ = EQ[v[n\}- /"d3™[n(r)]n(r) , (2.5)
J

where n(r) is a u-representable density. Using the Hohenberg-Kohn functional, the

ground-state energy can be expressed as

E0[v] = min lFHK(n] + I d3rn(r)u(r)l (2.6)
n I J )
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which, together with the Hohenberg-Kohn theorem, implies that instead of the exter-

nal potential, the ground-state energy can be written as a functional of the ground-

state density. The problem with this functional is that neither the explicit form of

F///c[n] nor the class of u-representable densities are known.

2.2 The Kohn-Sham Equations

The basic idea of the Kohn-Sham (KS) formulation [Kohn and Sham, 1965] of den-

sity functional theory is that the ground-state density of an interacting system can

be identified as the ground-state density of a non-interacting system with an effec-

tive one-particle potential, Vs (r). If one can find this potential only a one- particle

problem has to be solved.

In the KS theory the ground-state of a fermion system is taken to be a Slater

determinant of the lowest A7' one-particle solutions, 0i(r), of the Schrödinger equation

with the total potential, u*(r),

r fc)} . (2.7), , . . . , v yv !

The corresponding density and the kinetic energy of this determinantal state can be

written as

N

n'(r) = £#(r)&(r) , (2.8)
1=1

and

N

, (2.9)
1=1

respectively.

The Hohenberg-Kohn functional of a non-interacting system (tu(rj-rj-) = 0,

V i , j ) is just the kinetic energy in the ground-state which is, consequently, a func-

tional of the ground-state density

Ts(n} = E^vs[n}}- f d*rvs[n(r)]n(r) . (2.10)
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Clearly, because of Eq. (2.8), the variation of any functional of n with respect to 0*

can be written according to

6 /• J3 ,<5n(r') S ± . . 6
— ^ ^ ' — f h - ( r \

~ ̂  J

Therefore, the variation of Eq. (2.9) with respect to e.g., $\ yields

*<'> •
From the variation of (2.6) in the non-interacting case, that is, F//# replaced by Ts,

with respect to </>* one then obtains

dr"n(r")v(r") - e> dv"n(r") -

V2 + u ( r ) - e I ) « / > i ( r ) = 0 (2.13)

where the Lagrange multiplier, e, has been introduced to account for a fixed number

of particles, N. Multiplying this equation by <p* from the left and integrating over

r, and, summing over the lowest N eigenvalues including degeneracies, one obtains

the ground-state energy of the non-interacting system,

N

- (2-14)

In the interacting case (w ^ 0) the Hohenberg-Kohn functional can be decom-

posed as

FHK(n] = T>] + EH[n] + Exc[n] , (2.15)

with the Hartree energy,

and the exchange- correlation energy, Exc, defined by

Exc[n} = FHK{n}-Ts(n}-EH[n] . (2.17)

Obviously, Exc[n] is a functional of n(r) since all the terms on the right hand side

of Eq. (2.17) are furictionals of the density, too.
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Inserting Eq. (2.15) into (2.6) and, similar to the non-interacting case, taking a

variation with respect to 0*, the Kohn-Sham equations take the form,

+vxc(r)}(/)i(r)=el(t>l(r) , (2.18)

where the Hartree potential is given by

6EH[n] , , n(r')
v" r = x t \ = dr ~\ - 71 ' 2-19

6n(r) J |r-r'|

and the exchange- correlation potential is defined as

• (2'20)

The exact form of Exc is unknown, therefore one has to use approximations. The

most common approximations are taken from the uniform electron gas problem. In

the so-called local density approximation (LDA), Exc[n] can be written as

Exc[n] « I drexc(n(r))n(r) , (2.21)

where £IC[n(r)] is the density of the exchange correlation energy at position r of a

uniform electron gas of density n(r). This approximation is exact only for uniform

densities but it works surprisingly well also for ground-state properties of molecules

and solids. Many properties of the exchange-correlation potential of the uniform

electron gas are known to high precision from different theoretical approaches as

well as computer simulations. One of the mostly used approximation is the fit

of Gunnarson and Lundqvist [Gunnarsson and Lundqvist, 1976). The exchange

correlation potential is given within the LDA by

r ) ]n(r) . (2.22)

With an assumption on the form of vxc[n] (or eic), the KS equation has to be

solved, then from the wave functions n(r), and subsequently, f /y ( r ) and vxc(r) can

be recalculated. Repeating these two steps successively, one obtains a self-consistent

solution of the ground-state of the system.
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2.3 The Kohn-Sham-Dirac Equation

In order to treat magnetic systems in a non-perturbative way, one needs a relativis-

tic generalization of the DFT, that takes into account spin-polarization, spin-orbit

coupling and other relativistic effects on the same footing. In the presence of a

magnetic field, the Dirac Hamiltonian reads

H = -zc^V + ßmc2 - ecß^A^ , (2.23)

where Aß (p, = 0, 1,2,3) is the vector potential, ~c^, ß, 7'' are the standard Dirac

matrices and c is the light velocity. It is important to mention that when establishing

a relativistic density functional theory in a variational manner as before, the possible

states of particles have to be confined to electron states only, i.e., to the positive

part of the spectrum of the Dirac Hamiltonian (2.23).

A relativistic current density-functional theory (CDFT), has been developed by

Vignale and Rasolt [Vignale and Rasolt, 1987, 1988). In order to calculate the

ground-state energy one can perform the functional Legendre transformation in quite

an analogous way as in the non-relativistic theory. Note, that in CDFT the new

variables are the four-current Jß = •0(r)7M/0(r) (•$ denotes ^ß) or the density and

the magnetization density (n(r),M(r)), the latter one is defined by

-eJ(r) = V x M(r) , (2.24)

where J(r) is the three-current density. In stationary states, J(r) can be written as

-eJ(r) = --^V x (L(r) + 2S(r)) , (2.25)
2m

where L(r) is the so-called angular momentum density, defining the orbital current

density as

, (2.26)
£ i f L

and S (r) is the spin density

with

* 0
) ~o>
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and "o* denoting the usual Pauli matrices. One can obtain the Kohn-Sham-Dirac

equation by varying the total energy functional with respect to •0. As mentioned in

the previous section, within the LDA, exc stems from the homogeneous electron gas

where the angular momentum density is zero. Therefore, LDA totally neglects the

inter-orbital current-current interactions. In this case, one gets a simple form of the

Kohn-Sham-Dirac equation,

ßmc2 + vext(r) + vxc(r) + Be//(r) ^(r) - ekij>k(r) , (2.29)

where the effective magnetic field Be//(r) is defined as

Be//(r) = BM(r) + Beit(r) , (2.30)

i.e., as a sum of the external magnetic field and the so-called exchange correlation

field as given by

. (2.31)

Using the so-called local spin (-polarized) density functional approximation (LSDA)

for collinear spin-structures with a spin-quantization axis pointing along the z-axis,

BIC can be expressed as

— Bxc(nt(r), n4(r)) = [vic,r(nt(r), n;(r)) - uzc>i(nr(r), n;(r))] z , (2.32)
/ 1 1/

where n-f and n^ are the spin-projected densities, n(r) = n^(r) + n±(r) and 5(r) =

n-f(r) — n;(r). In this approach, the independent variables of the theory are nt and

HI- One of the most frequently used local density functional is that of MacDonald

et al. [MacDonald et al., 1982|.



Chapter 3

The Multiple Scattering Theory

3.1 The Formal Scattering Theory

The time-independent Schrödinger equation for a generalized complex energy eigen-

value (z) reads as

(zl - H)\1>} = 0 . (3.1)

For later purposes the Hamiltonian, H is split into a reference (potential-free) part,

H0 and a perturbation (potential) operator, V,

H — Hn + V (^ 2)n — no -t- i . (<>••*)

The resolvent (Green) operator is defined by

C'it\ — I-, u\~^ (i i\(j\Z) = {Z — ri) , (,"•"/

and, similarly, for the reference system by

G0(z) = (z - H0)~
l • (3.4)

The general solution of Eq. (3.1) can be obtained as the sum of the general solution

of the homogeneous (z — H0)\(j)) = 0 and a particular solution of the inhomogeneous

differential equation (z — HO)]^) = V\ip)

|^)) = |(/>) + (z — HO)~IV\IJJ) = |0) + Go(z)V\tJj} , (3-5)

which is usually referred to as the Lippmarin-Schwinger equation [Lippmann and

Schwinger, 1950|.

20
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In the basis set of the eigenstates of H, {\n}}, H\n) = En\ri), the spectral

resolution of the resolvent G(z) can be written as

(36)
z

The coordinate representation of the resolvent operator is called the Green function,

> , (3.7)

where ^n(r) = (r|n).

One can define two different resolvents (side-limits) at real energies, E,

G±(E) = lim G(E ±ie} = T T T ^ i*S(E - En) \n)(n\ , (3.8)

where P is the principal value integral. G+ and G are called the retarded and the

advanced Green operators, respectively. With these operators the density of states

function (DOS) can be expressed as

n(E)=Tr\^8(E-En)\n)(n\\ = ^-lm\TrG±(E)\ , (3.9)
I n j 7T l J

where Tr denotes the trace of an operator. In coordinate representation, the trace

of an operator A is defined as

d3r.4(r,r) . (3.10)

The Dyson equation for G(z) can be obtained from Eqs. (3.2)-(3.4),

G(z) = (Gol(z)-vyl =G0(z)+G0(z)VG(z) . (3.11)

As a generalization of Eq. (3.2), the Hamiltonian can be separated in different ways,

H= tf0 + Vr +V-Vr = Hr + (3.12)

where

Hr = H0 + Vr , (3.13)
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U = V-Vr , (3.14)

and the resolvent corresponding to HT can be written as

Gr(z) = (Z - Hr}-
1 • (3.15)

Eq. (3.12) provides thus a possibility to express the resolvent (3.3) in terms of Gr,

G(z)=Gr(z} + Gr(z)UG(z) , (3.16)

an equation frequently called the scaling transformation of the resolvent G (z). Solv-

ing Eqs. (3.5) and (3.11) by successive iterations one gets the Born series for the

solution of Eq. (3.1) with Eq. (3.4)

M = |0) + GO(Z)VI<£) + GQ(z)VG0(z)V\d>) + ... , (3.17)

and for the resolvent,

G(z] = G0(z) + G0(z)VG0(z) + G0(z)VG0(z)VG0(z) + ... . (3.18)

In terms of the so-called transition operator, T ( z ) , defined as

f ( z ) = V + VG0(z)V + VG0(z)VG0(z)V + ...

= V + VG(z)V = V + VG0(z)T(z) , (3.19)

Eq. (3.17) can be rewritten into the form,

\il>) = \<f>}+G0(z)f(z)\<l>) , (3.20)

and also Eq. (3.18) as

G(z)=G0(z) + G 0 ( z ) f ( z ) G 0 ( z ) . (3.21)

3.2 Calculation of Observables

The quantum-mechanical expectation value of a one-particle operator, A, restricted

to a given energy range (Ea, E^} can be expressed as

f dE^6(E - En)(n\A\n) . (3.22)
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By comparing Eq. (3.22) to the expression in Eq. (3.8), one immediately can see

that

Eb

Aab = ^- fdElm{TT(ÄG±(E))} . (3.23)
7T J

Ea

In here some important examples are given, such as the particle density and the

total charge contained within a finite volume, Q,

Eb

(3.24)

"O

q = ^- [d3r f dElmG±(r,r,E) , (3.25)
7T J J

n Ea

the spin magnetization density and the spin magnetic moment

Ea

E»
i r r

J J
H Ea

as well as the orbital moment

Eb

1 f i t -> +L = :p- / d3r / dEIm(/oT(7± r , r ,E) ) , (3.28
7T 7 J

n Ea

where the notation S and L stands for the irreducible vector operators of the spin

and orbital moments. The expectation value (3.23) can also be calculated in terms

of the following contour integral,

i, r . „ , ,*., „ ^ 3 2 9 ^

where r\ denotes the path of integration in the upper complex semi-plane with the

lower- and the upper limits at Ea and Eb, respectively. In practice, semi-circular

contours are mostlv used.
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3.3 The Dirac Hamiltonian

For a spherically symmetric potential, with no effective fields, the Kohn-Sham-Dirac

equation in Eq. (2.29) takes the form [Rose, 1961],

(V (r) + mc2)I2
H if) =

where or = r7? (f — r/|r|) and

0/(r)-mc2)I2

(3.30)

K = -& T

The total angular momentum can be written as

(3.31)

(3.32)

and H commutes with the operators J2, jz and K. An eigenstate of the three latter

operator can be characterized by the following eigenvalue equations,

(3.33)

(3.34)

/ if j = / - 1/2
-I-I if j = 1 + 1/2

(3.35)

where the Xnn(f} are the so-called spinor spherical harmonics. In the two dimen-

sional spinor-space for a fix j these are given by

2j-+2 '<,„-!'

2j+2

(3.36)

or, in brief,

(3.37)

5 = ±l /2



3. The Multiple Scattering Theory 25

where Yi<m(f} are the ordinary complex spherical harmonics, C(l, K, l/2\fj, - s, s) are

the Clebsh-Gordan coefficients and the spinor basis functions are defined as

l] * - [°1 n w\o j ' $^2 = [ij ' (3'38)

The solutions of the free Dirac equation, Eq. (3.30), for V(r) = 0 in angular mo-

mentum representation are given by [Rose, 1961),

FK (3.39)

with conjugated counterparts,

, (3.40)

where SK = g, FK/i = JK/X, NKß, and //^ with // = j / ,n / , and /?,f (= jt ± m/), the

spherical Bessel, Neumann, and Hankel functions, respectively, I = I — SK and p

can be obtained from the relativistic energy expression W = \/c2p2 + m2c4. In the

following for the sake of simplicity the shortcut HKli = H^ is used.

In the non-relativistic case, Go r(^,^, r') can be expressed in a plane-wave repre-

sentation as [Gonis, 1992]

, (3.41)

or, in angular momentum representation as

G^(z,r,r ') = -ip ji(pr<)V(pr>)^(^)n*(r') . (3-42)
L

where p2 — 2m z (Im (p) > 0), L = (l, m), r< = min(r, r'), r> = max(r, r').

The Green function, G^(W, r, r') corresponding to the free Dirac equation is

defined by

(WI4-H)Gr
0(W-r,r')=6(r-r')I4 , (3.43)

where H = ßmc2 + "c^"^. Eq. (3.43) can be formally transformed into

,T') = (W-H)-la(T-r')I* • (3.44)
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Multiplying Eq. (3.44) from the left with (W + H}(W + H)~l = 74 one obtains

H)-l5(r-r')I4 . (3.45)

Using the relativistic expression of the energy, W = \/c2p2 + m2c4, and also H2 =

+ mV

y2)"^ , (3.46)

where ~fi — | V is the non-relativistic momentum operator. Consequently,

1'(r-'')/< ' (3'47)

which in terms of the non-relativistic free Green function can be expressed as

Cro(W- r, r') = ^^(w + H)G^r(p2/2m- r, r') . (3.48)

Using the functions defined in Eqs. (3.39) and (3.40), GT
0 can then be written as

G^W, r, r') = -ip " > JKlt(W, v}Hl (W, r')o(r' - r)u 2mc2 ^-^ ß

(3.49)

Frequently, the approach (W + me2) /2mc2 — 1 is used.

3.4 The Single-Site Scattering

A solid can be described as an ensemble of individual scatterers characterized by

non-overlapping spatially bounded potentials, Vi, centered at lattice positions R^,

(3.50)

• (3.51)
0 elsewhere

In Eq. (3.51) the shape of the potentials are restricted to be spherical symmetric

and Si are the radii of the bounding spheres. If the spheres do not overlap, one
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speaks about the muffin-tin approach (MT) and Si is called the muffin-tin radius.

In the region between the spheres the potential is constant which is usually set to

zero. In the present calculations the so-called atomic sphere approximation (ASA)

is used in which the volume of the spheres equal the corresponding Wigner-Seitz

cells. Within the ASA, the overlap of the spheres is usually neglected, therefore,

the present formalism can be applied with a good accuracy. It should be noted that

the Multiple Scattering Theory (MST) is valid for arbitrary shapes of the (regular)

potentials [Zabloudil, 2000].

In order to solve the Dirac equation for a potential described in Eq. (3.50) within

the MST one first has to solve the single-site scattering problem corresponding to

the individual potential spheres. In a general case, one can look for a solution of

the Dirac equation using the ansatz

(3.52)
Q Q

where z denotes the complex extension of the energy e, defined now as z = W — me2,

Q = (K, /i) and Q = (—«, / / ) . Using the real-space representation of Eq. (3.20) with

the free solution of the Dirac equation, JQ(Z,T), and the form of the relativistic

Green function, Eq. (3.49), one finds that the solution outside the MT sphere is

given by

, (3.53)
Q'

where I>Q'Q(Z) stands for the matrix element of the T operator of the single-site

problem, called usually the single-site t-matrix,

t<yQ(z) = j d'V j d3r'J^(z,r')t(z-r',r)JQ(z,r) . (3.54)

r'<S r<S

One can define another scattering solution as

ZQ(z,r) = ^2RQ,(z,r)t^Q(z) , (3.55)
Q'

which is normalized outside the MT sphere as

, r ) , (3.56)
Q'
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where KQ>Q(Z) is the so-called reactance matrix given by

• (3-57)

In spherically symmetric cases, without magnetic field, KQQ>(Z) becomes diagonal

and independent from the quantum number /^,

K(z) , (3.58)

where SK(z) is the well-known phase-shift. In this case the single-site ^-matrix is also

diagonal

tQQ'(z) = tK(z)OQQi, tK(z) = -p~lsinoK(z)exp[i6K(z)] . (3.59)

The matching of the solution at the boundary yields the phase-shift,

f x l \ K > Ktan <>„;(*) = — - - — — - - - - - — - , 3.60
QK(z, r)7ii(pr) - pSKni(pr)

where

QK(ztr) = ̂ ^- . (3.61)
9 K ( z , r )

In a general case, the t-matrix can be obtained by matching the numerical solution

of the Dirac equation at the MT radius to (3.56). Note, that the scattering solution,

ZQ(Z,T) is regular at the origin, whereas the irregular scattering solution, IQ(Z,T),

has to satisfy the following boundary condition at the MT radius,

IQ(Z,T) =JQ(Z,T) . (3.62)
|r|=5 |r|=S

3.5 Transformation of the Single-site t-matrix

For an arbitrary rotation, R acting on the real-space vectors as r' = Rr a transformed

spinor spherical harmonics can be defined as

RXQ(f) = XQ(R-1f), A*J(r) = x$(R-lf) - (3-63)

which can be expressed by

Q'

DQQ,(RrXQ,(f) , (3.64)
Q'
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where D{R) = \ DQIQ(K) Ms a matrix containing blockwise irreducible spinor rep-

resentations [Altmann and Herzig, 1994] of R, D^(R). Since XK.U. and X-KH cor-

respond to the same quantum number j, their transformations are determined by

D(K}(R) = D(~K)(R) and, therefore, the bispinors (3.39, 3.40) are transformed by

the direct product matrices, D_(R) <8> /2 where /2 stands for the 2 x 2 unitary ma-

trix. For the sake of simplicity in the following the notation D_(R) is used also for

the bispinor representations. As what follows, the underlined quantities stand for

matrices in angular momentum indices,

A= {Am} in non-relativistic case , (3.65)

A= {AQQ'} in relativistic case . (3.66)

Denning the transformed i-operator, £'(z;r ' ,r) as

t'(z\ r', r) = Rt(z\ r', r) = t(z; R~lr', R~lr) , (3.67)

the corresponding matrix elements (3.54) can be obtained as

t'QIQ(z)= t d3r / dV4,(2,r')^;JR-1r',JR-1r)JQ(2,r) . (3.68)

r'<S r<S

Changing the variables r —>R~lr and r'— tR'^r' yields,

t'Q,Q(z)= I d3r />dV4,(^, JRr')^(^;r ' , r)JQ(^, JRr) , (3.69)
tj tJ

r'<S r<S

which can be expressed by using Eq. (3.64),

W*)= E DQ'Q"(R~1Y I <?r f d 3 r ' J i y , ( z , T f ) t ( z ] I > t r ) x
«"•<?'" r'<S r<5

JQ,„(z,r)DQ,„Q(R-1) , .(3.70)

or, compactly as,

t-(z) = D?(R-l)t(z)D(R-1) , (3.71)

where D_^(R) is the adjungate matrix of D_(R).
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A particular application of Eq. (3.71) can be found in presence of effective field,

Bejj such that it can point along an arbitrary direction. In this case, the i-matrix
depends on Be//,

The numerical solution of the Dirac equation and thus the determination of the

i-matrix is highly simplified when the effective field points along the z-axis (quanti-

zation axis) (see chapter A). One can specify a transformation which rotates Beff

to be parallel to the z-axis as,

R-lBeff = B e f f z , (3.73)

where z is the unitary vector pointing along the z-axis and Bef/ = |Be//|. Exploiting

the relation,

one can determine the i-matrix by using (3.71),

L ) . (3.75)

where tloc(z, Beffz) is the ^-matrix corresponding to the operator t(z\ r', r,Bef/z)

which can be calculated by solving the Dirac equation as described in appendix A.

3.6 Multiple Scattering Theory

In this section an expression of the Green function for an ensemble of scatterers

described by Eqs. (3.50) arid (3.51) will be given. Inserting Eq. (3.50) into Eq. (3.18)

one gets

G(z) = G0(z) + G0(z) V 0 ( z ) + G0(z)
i i j

(3.76)

where the indices ( i , j , . . . ) stand for the positions of the scatterers. Similarly to

Eq. (3.19) the transition operator can be obtained as

T(z) = Y.V* + Y. V&MVj + E VlG,(z}VjG,(z}Vk + ... . (3.77)
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Introducing Ql(z) operators as

j + ViG0(z) Y^ VjG0(z)Vk + ...
j,k

(z) , (3.78)

one can find for T(z) that

(*) . (3.79)

By making use of the ^-operator corresponding to an individual spatially bounded

scattering potential corresponding to cell i (3.19),

?(z) = Vi + ViGoWVi + ViGoWViGoWVi + ... , (3.80)

it can be shown that the Ql(z) can be expressed in terms of £(z)'s as

(z) , (3.81)

and, using successive approximation, one finds that

f ( z ) = 5^?(^) + ^P(z)G0(
i i+j

i l ( z ) G 0 ( z ) V ( z ) G 0 ( z ) i k ( z ) + ... . (3.82)

Introducing the scattering path operator (SPO) [Györffy and Stott, 1972] as

(k&j)

= il(z)6l3 + ?(z)G0(z)&(z)(l - 513] +

= il(z)62} + il(z)G0(z) Tk*(z) . (3.83)

the transition operator, T ( z ) can be expressed as

i](z] , (3.84)
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and the resolvent operator G(z) as

i:i(z)G0(z) . (3.85)

By employing the addition theorem of the Bessel functions ("Kasterin expansion")

[Farkas, 1964] in Eq. (3.42) one obtains

where

G&L'fP2) = -4^-''+1> £^a,,z-(X<'(p2,R, ' Ri) , (3-87)
L"

and

gL
UL>l = / dr!7(On'(r)lV(f) (3.88)

J

are Gaunt coefficients, j^P2,*} = j/(p^)^z,(^) and Jl(p2,r) = ji(pr)Y£(f) while

hL(p'2,r) is defined in a similar manner. Therefore, Go r(z, r, r') (3.42) can be ex-

panded in terms of Bessel functions centered around the zth and jth site (i ^ j) as

follows,

Gn
0

r(z, r, + Rz, r, + R,) = jL(p\ ri)G$iL„(J?)Jt,tf, r,) . (3.89)
L, L1

In here the G>o?L/J'(P2) are called the non-relativistic bare structure constants. As can

be seen in Eq. (3.87) G%LL, is determined exclusively by the geometrical structure of

the system and depends only on the difference Rj — R;. For the structure constant

one can use the notations such as

(3-90)

and as implied by Eq. (3.87),

- (3.91)
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Using the relationship between the relativistic and non-relativistic Green function in

Eq. (3.48), a corresponding expression for the relativistic Green function can easily

be found,

JK/^, r ^ ^ V ^ ) ^ ) , (3.92)
KfJ.,K'n'

with

(3.93)

Inserting Eq. (3.92) into Eq. (3.83) leads to [Gonis, 1992]

E E W^oWw^Q-w (3-94)
k f r QiQ2

where the matrix-elements of SPO has been introduced similar to Eq. (3.54). In a

suitable matrix formalism [Weinberger, 1990] it can be written as

where

t ( z ) = {t'Wv} t r(z) = {?(z)}, G0(z) = {gl(z)} . (3.96)

The frequently used KKR matrix can be introduced as

= r(z)-i • (3.97)

It should be noted that in Eq. (3.95) the geometrical information on the lattice

contained by G0 and the atomic (scattering) properties of the individual scatterers

described by the ^-matrix are conveniently separated. Starting from Eq. (3.85), after

quite lengthy but straightforward manipulations one can derive the Green function

[Faulkner and Stocks, 1980| as

Q,Q'

(3.98)
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where the regular and irregular scattering solutions, ZQ(Z, r;) and /Q^,r;) have

been introduced in the previous section, see Eqs. (3.55) and (3.62), respectively; the

indices i and j label cells from which r and r' are originating.

Recalling the form of the Green function in Eq. (3.98) it is obvious that when in-

serted into Eq. (3.29), the expectation value of a one-particle operator can naturally

be split into contributions with respect to cells indexed by i. Furthermore, since the

scattering solutions and the r-matrix can be transformed from the (AC, p,) basis to the

(/, m, s) basis via the Clebsh-Gordan coefficients, C (/, K, 1/2\ß - s, s), projections of

these expectation values associated with a given / and s quantum-number can also

be defined. However, it is important to underline that these projections merely serve

as interpretations of the results, since neither I nor s is a good quantum-number in

a relativistic description of the electronic structure of solids.



Chapter 4

Generalized KKR

The range of possible applications of the conventional KKR method using the free

space as the reference system is limited. In order to extend this range, multiple-

scattering theory can be generalized simply by changing the reference system. The

freedom of choice of an arbitrary reference potential provides a universal theoretical

framework [Braspenning and Lodder, 1994; Lodder and Braspenning, 1994; Lod-

der and Dekker, 1994] for applications such as the coherent potential approximation

(CPA) [Soven, 1967; Györffy, 1972] for describing metallic alloys, the screening trans-

formation of the structure constant (SKKR) [Szunyogh et al., 1994a,b| as well as the

embedding technique of the MST [Podloucky et al., 1980; Weinberger et al., 1988].

Using the potential construction introduced in Eq. (3.51), one can describe the

chosen reference system as

rii(ri) (ri = r - R O . (4.1)

The SPO matrix , rr (z), corresponding to Vr(r) reads as

rr(z)= [tr(z)-l-G0(z)]~l (4.2)

where tr (z) = {fr(z)5ij} is the site diagonal super-matrix containing £* (z), the

single-site scattering matrices corresponding to VTJ ( r*) . In order to relate the T-

matrix of the reference system to that of the system of interest, the KKR matrix

(3.97) can be manipulated as

M(z)=tr(z)-1 -&t(zrl -Go(z)

- [l - At (z)'1 (tr (z}'1 - Go (z))"1] (tr ( z ) ' 1 - Go (z)) (4.3)

35
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which gives,

r (z) = rr (z) [I - *t (z)~l Tr (z)]~l , (4.4)

where At (z}~1 is defined by

At(z)"1 E = t r ( * ) ~ l - t(2)"1 . (4.5)

For practical reasons it is useful to derive an equivalent formulation of the generalized

MST in which one can change GO (z) in Eq. (3.95). For this reason one can introduce

the structural Green function matrix as

= Go (z) + Go (z) T (z) Go , (4.6)

which in the angular momentum-representation can be written as

Qnm(z} = Qnm (1 _ <5mn) -f \ \ Qnj^kQkm ^ (k.l\

j(^n) k(^m)

By using Eq. (3.95) G(z) can be expressed as,

G(z) = Go(£ ) [ I - t ( z )G 0 ( 2 ) r l - (4.8)

and, similarly, for the reference system (Vr) as

G ( ^\ f~* (~\ TT 4. / ~\ f~* / - v \ 1 ~ l (A Ci\
r\Z) — ^-'O \Z) •*• — *^r \^) ^"O V /! ' \ *^/

Eqs. (4.8) and (4.9) can formally be rewritten as

G(2)- '= Go (z)-1-^) , (4.10)

T \ / U \ / ' \ / l V * /

from which one can find the relation

Introducing the notation t& (z) ,
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{tA (z)}tj = & (z) o» = (f (z) - t (z)} tfy , (4.14)

a compact form for the structural Green function matrix can be given,

G(z) = GT(z)[I-tA(z)Gr(z)}-1

= G r(z) + G r(2)tA (z) Gr(z) + G r(z)tA (2) G r(2)tA (z) G r(z) + ...

. (4.15)

It can be shown [Braspenning and Lodder, 1994] that the iA (z) is the single-site

scattering matrix corresponding to the potential (see also Eqs. (3.12)-(3.16))

Ui(r) = Vi(r) - Vr,i(r) . (4.16)

In order to find a relation between the r-matrix of the investigated system and the

structural Green function matrix one can use the definition at Eq. (4.6) as

t (2) + t (2) G (2) t (2) = T(Z) (4.17)

and similarly

tA (z) + tA (2) G (z) tA (z) = TA (z) (4.18)

where the TA(Z) matrix is defined analogously to Eq. (3.95) as

[ . (4.19)

Using the fact that G (z) is the same for both systems (4.17, 4.18) one finally obtains

T ( z ) = t(z)t*(zrlT*(z)tfi(zrlt(z)-t(z)t*(zrltr(z) . (4.20)

In this section two equivalent formalisms based on the freedom of choice of the

reference system were derived in order to extend the ordinary MST method. In

Eq. (4.4) one can use the SPO matrix of the reference system which is useful for the

embedding method (see chapter 6). In the other formalism which is represented by

Eqs. (4.11) and (4.19) by using a suitable reference system the structure constants

can be transformed to be short-ranged in real space, which is highly desirable for

surface and interface calculations due to the lack of translational symmetry along

the z-axis (see chapter 5).



Chapter 5

The Screened KKR Method for
Layered Systems

The idea of using a transformation to make the structure constants short-ranged was

first put forward by Anderson et al. [Andersen and Jepsen, 1984] by introducing

a suitable basis set within the LMTO method. A decade later the concept of the

screening of the structure constants was transfered to the KKR method by Szunyogh

et al. [Szunyogh et al., 1994a,b] and applied for layered systems. It was shown by

Zeller et al. [Zeller et al., 1995] that the transformation of the structure constants,

in order to make them short-ranged can be interpreted within the framework of the

generalized KKR method (see chapter 4) as introducing a reference system with

a uniform repulsive potential. Exploiting the rapid spatial decay of the screened

structure constants the computational time scales linearly with the linear size of the

investigated system, N in contrast to the non-screened /V3-scaling.

In the following a detailed description of the treatment of layered systems (sur-

faces, interfaces) and the application of the screening method will be given.

5.1 Layered Systems

The aim is to calculate physical properties of magnetic impurities embedded into

layered systems. Therefore, one first needs an accurate method to calculate the

electronic structure of the surrounding host. In the case of a surface or interface,

the 3d-translational symmetry is broken perpendicular to the layers (along the z

direction if the layers lie in the xy plane). Thus, one can employ only a two-

38
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dimensional lattice Fourier transformation. A layered system with a simple lattice

can be built from a 2D lattice, C\\ by augmenting the lattice vectors by cp = pc0

(p = — oo, oo) where CQ is the separation vector between two neighboring layers:

Rn = Cp + Ti , (5.1)

where T; 6 C\\ is an in-plane lattice vector. The set of the lattice vectors referring

to positions in layer p can be defined as

, (5.2)

and also a corresponding set of position indices can be introduced as

Lp = {j\ R j G £ p } . (5.3)

The real-space structure constants can be written in a layer indexed form for Rm =

Cp + T, and Hn — cq - Tj as

GZc<(Tl-T]) = G0(cp + Tl-cq-Tj)=G0(Hm-Rn) = GZn . (5.4)

Since G_QQ(Ti — Tj) depends only on the difference T; - Tj, the lattice Fourier

transformation- of the structure constants is defined as

S*(Ti)e*'|T' - (5.5)
Ti€Cn

Introducing the notation

m = Cp + Tz, Rn = CQ + Tj) , (5.6)

the real-space structure constant can be expressed as,

£?•«' = ^— l d\& (k,,) c-*»m-T>) t (5.7)
"5B2 J

SBZ

where QSBZ is now the volume of the two dimensional (surface) Brillouin-zone (SBZ)

and k|| lies in the first 2D Brillouin-zone. It should be noted that applying the

formalism in terms of ky means that the in-plane directions (x, y) are treated in

Fourier-space while with respect to the z-direction (perpendicular to the layers)
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a real-space approach is used. Similarly to (5.5) a new matrix notation can be

introduced for the ^-matrices, SPO and the structure constant in terms of layer

indices (p, q),

, (5.8)

where tp is the i-matrix corresponding the uniform potential in layer p

f (z) = f (2) , n e Lp . (5.9)

From Eq. (3.95) one can deduce

- (5.10)

Due to the asymptotic behavior of the Bessel functions, the free Green function

decays slowly in real-space at positive energies. The long-ranged GO (ky) can be

partitioned as,

/ GO,LL Go,/,/ G0liA \ left (L): -oo < p < 0
GO = GO./L GO,// GO./R interface (/): 1 < p < N , (5.11)

\ GO.RL GO.Ä/ G0,fiß / right (R): N + l < p < oo

where ./V is the number of the layers within the studied interface region and in (5.11)

the k|| argument is dropped. This partitioning reflects the treatment of layered sys-

tems within the SKKR method, where the left and the right region (L, R) represent

semi-infinite substrates (or the vacuum region) in which all layers are assumed to be

identical, thus one can use a unique i-matrix for the left-hand side, tL (z) and the

right-hand side. tR (z) bulk. In order to get a smooth crossover between the bulk

and the surface, one can ad some "bulk layers", called buffer layers, to the interface

region /. In Eq. (5.10) one has to invert a matrix with infinite dimension (in layer

indices) (see Eq. (5.8)) which can not be performed directly. Introducing, however,

a repulsive potential, Vr, which is usually 1 — 2 Ry above the valence band, as a

reference system, the reference Green function, Gr(z) becomes spatially localized

[Szunyogh et al., 1994b). If, in terms of the matrix-notation (5.8), tr (z) denotes the

single-site ^-matrices of the uniform repulsive potentials, K-, the so-called screened

counterpart of the ^-matrices can be defined as in Eq. (4.13). The structure con-

stants in the screened representation are defined as the structural Green function of
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the reference system,

Gr (z; k,,) - Go (2; k,,) [I - tr (z) Go (z; k,,)]

and the SPO in the screened representation can be given as

rA(z;k| ,) =

-i

-i

(5.12)

(5.13)

As what follows, the subscript A of the M and T matrices will be dropped and if

not stated otherwise, the forms correspond to the screened representation. Since

Gr (z;k||) stands, essentially, for a matrix representation of the resolvent of the

reference system, it is found to be decaying exponentially in real space [Szunyogh

et al., 1994b|. As the numerical tests in Ref. [Szunyogh et al., 1994b] proved that

G?T
q (z; k||) is now well localized, therefore, it can be truncated for \p — q\ > n, n « 3

in BCC and FCC systems. Thus Gr ( z , k||) and therefore M (z; ky) = (r (z; k||))

can be viewed to be block-tridiagonal

-i

M =

0

0

\

0 MP+I.P

0 0

\ 0 0

0
0

Mp+2jp+2

0

(5.14)

where the MP,Q blocks are labeled by the so-called principal layer index. It should

be noted that a principal layer contains n subsequent atomic layers,

p= ( P - l ) n + l , . . . ,Pn
q = (Q - l)n + 1,. . . ,Qn

(5.15)

Assuming that the separation between adjacent layers is identical in the whole sys-

tem one can write for the interface-interface region,

(2; = -Gr,io

= -Gr>0i (5.16)
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where

(5.17)

and p = 1, . . . , n and g = l, . . . , n. Using a similar partitioning as in Eq. (5.11),

M (z; k||) takes the form,

AL,L MM 0
M = ( MitL M,j MI,.

0 MR,/ Mfi,R

(5.18)

where the block-diagonal elements for an interface region consisting of NPL principal

layers can be written,

• - . • - . o \
' • • M_2,-2 M_2,-i 0

0 M_ l t _ 2 M-!,-! M_ l ) 0

V 0 MO,_I M0,o

(5.19)

MI,I M1)2 0
M2,i M2,2 M2)3

0

0 M

(5.20)

\ o

and the off-diagonal parts contain one non-vanishing block only,

(5.21)

(5.22)
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W • (5.23)

Using the relation,

M ( z ; k , | ) r ( z ; k | | ) = I , (5.24)

it can be shown that the interface-interface (/, /) part of r (z; ky) which is the object

of interest can be written as [Szunyogh et al., 1994b],

TU = [M/,/ - M/,i (Mi.i)"1 Mi,/ - M/.R (Mß,ß)~l MR,/] ~' . (5.25)

Inserting Eqs. (5.22) and (5.23) into (5.25) one can immediately gets

[M/,i (M^i)"1 Mi,/]P<? = Mi,oTLMo,i<5p,i£<?,i , (5.26)

[M/,ß (Mß^)"1 MR)/]
 PQ = Mo,iTAMi,06p,A/^o,yv (5.27)

where TL (z; ky) and TR (z; k||) , defined as

rL(z;k, | ) = [(Mi,i(z;k||))"1] rf l(z;k||) - [(MR,ß (z; k,,))'1]

T00

(5.28)

are usually referred to as the surface SPO serving as boundary conditions due to

the L and R bulk regions. The matrices TL (z; ky) and rß (z; ky) can be calculated

from the conditions,

k,,)"1 - Gr,00 (z; k,,) - Gr,10 (z; k,,) r0
L

0 (2; k„) Gr,0i (z; k,,)]

(5.29)

0
ß
0 (2; k,,) = [tR (z- k,,) -1 - Gr,00 (z; k,,) - Gr,0i (z; k„) r0

ß
0 (z; k,,) Gr,10 (z:, k,,)]

(5.30)

arising from the so-called removal invariance of a perfect semi-infinite surface. In

practice the so-called decimation technique is used to calculate the surface SPO and

a high convergence is achieved usually in a few tens of iterations [Sancho et al.,

1985). In order to exploit the block-tridiagonal form of M (z; ky) the O(N) method

suggested by Godfrin is used to invert M [Godfrin, 1991] (see in appendix B).

In a layered system one can calculate the 2D lattice Fourier transform of the

screened SPO as

r" (z; k,,) = { [(tA (z))-1 - Gr (z, k,,)] "' } . (5.31)
t J pq
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Performing the 2D BZ integral

LPi,u (2) = _L_ f tfkjM (2; k ) g-iW-T,) f (5

"SBZ J
SBZ

one obtains the real-space SPO in the screened representation. The principal layer

concept together with the surface Green function method also allow one to treat

the bulk and interface systems on an equal footing, namely, the 3D inverse Fourier

transformation can be replaced by a 2D integral over the SBZ and a real-space

treatment perpendicular to the surface. In brief: a bulk system can be seen as

an interface between two semi-infinite hosts with the condition that the physical

properties of the two hosts on both side and the interface have to be identical.

In order to obtain physical properties one needs to evaluate the Green function.

According to the 2D translational invariance, it is enough to focus for a single

cell in every layer and evaluate the site-diagonal SPO corresponding to this site.

Denoting the site-diagonal elements of the SPO matrix in layer p (see the definition

at Eq. (5.2)) as follows

LP (z) _ lPo,Po (z) ? (5 33)

and the screened i-matrices with respect to the uniform potential in layer p as

£ (z) = tn (z) -tr(z), ne Lp (5.34)

one can calculate the unscreened (physical) r-matrix as (see Eq. (4.20))

Lp (z) = f (z) & (z)'1 HPA (z) & (z)'1 f (z) ~ f (z) & (z)-1 tr (z) . (5.35)

The layer-resolved contributions to the one-electron observables (DOS, charge, mag-

netic moment, band-energy) can be then easily calculated from T_P (z) applying the

form of the Green function in Eq. (3.98).

In cluster calculations using the embedding technique (see Chapter 6) one needs

to know the real-space unscreened SPO for the unperturbed system. The non-site-

diagonal elements of SPO can be calculated from screened the ones according to

Eq. (4.20),

r*«' (z) = f (z) & (z}~1 ̂  (z) & (z)~l f (z)

-5pq5ljf(z}t^(zrltr(z] . (5.36)
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5.2 The Surface Brillouin Zone Integration

In this section it is shown how the SBZ integrations (5.32) can be reduced by making

use of the point group symmetry of the 2D lattice. This group denoted by Q is also

the symmetry group of the reciprocal lattice. The irreducible wedge of the SBZ

(IBZ) is the smallest subset of SBZ such that for every k(| e SBZ a kf| 6 IBZ and a

point-group operation K 6 Q can be found to satisfy -R'kj, = \a\\. In here calculations

for fcc(lOO) and fcc(lll) surfaces are performed for which the corresponding groups

are shown in Table 5.1. Using the definition of irreducible wedges of the Brillouin

zone, the integral in Eq. (5.32) can be rewritten as,

)d2k , (5.37)
\y\

IBZ

where \Q\ is the order of group Q. In order to make use of this form one needs to

explore the transformation properties of the SPO-matrix. For that purpose one has

to use the transformation of structure constants (see Appendix C)

; Äk„) = C-«Ac«.iikiiD(A)Gg'(z; \^D*(R) , (5.38)

where D_(R) are bispinor representations of transformations R in coordinate space.

and Acp9i|| is defined as

Acp(?j|| = R-l(cp-cq) - (cp-c,) , (5.39)

namely is an in-plane vector provided that in the case of fcc(OOl) and fcc(ll l) the

relation,

A~1(cp-c,) i = (cp-c,)x , (5.40)

is satisfied. Inserting Eq. (5.38) into Eq. (5.10) one obtains the transformation

properties of the SPO matrix,

|, z) = £>t(/Tl)4'(k||, z)D(A- VACpgk" , (5.41)

where the matrix r^(k||, z) is introduced as

)-1 , (5.42)
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Surface
fcc(lOO)
fcc(lll)

Lattice type
centered rectangular
hexagonal

Point group
C*4u

Csv

101
8
6

Table 5.1: Symmetry groups of fcc(lOO) and fcc(lll) surfaces.

z} (5.43)

where the transformation of the tp (z)~l matrices by J2(R~l) is necessary due to

independence of the ^-matrix from the rotation of the k|| vector. Inserting Eq. (5.41)

into (5.37) one obtains,

BZ

D(R-l)d2k . (5.44)

It should be noted that in actual calculations the integration over the /c-space is

replaced by a summation over special k|| points within the IBZ [Cunningham, 1974J.

It also has to be noted that Eq. (5.44) helps to save computational time only when

there are elements of Q for which

(5.45)

or equivalently

1'-1), Mp . (5.46)

If Eq. (5.45) is full-filled the time-consuming inversion in Eq. (5.42) has to be per-

formed only for one R. The condition at Eq. (5.45) or (5.46) applies for all R 6 Q

in the case of non-magnetic surfaces. For magnetic surfaces with a magnetization

pointing along the symmetry axis (z-direction) the computational effort can be re-

duced to calculate r^(k||, z) for two A's, namely, one for the proper and one for the

improper rotations.



Chapter 6

The Embedding Technique

After having introduced the generalized Multiple Scattering Theory, this approach

will be applied to the problem of primary interest, namely the electronic and mag-

netic structure of substitutional impurities and clusters. In general, the problem of

impurities on top of surfaces, in different distances near the surface as well in the

bulk will be addressed. Since the vacuum region is treated using empty spheres an

adatom placed on the top of the surface can be seen technically as a substitutional

impurity in the vacuum layer adjacent to the surface. Now the unperturbed host is

chosen to be the reference system and one can look for the physical properties of the

impurity atoms and the host atoms around them as compared to the unperturbed

host. The embedding technique requires that the host system and the perturbed one

have the same lattice geometry and, therefore, throughout here no lattice relaxation

effects have been considered.

6.1 The r-matrix of a Single Embedded Atom

For the sake of simplicity first the r-matrix for a single impurity at a position labeled

by i0 is derived. For the host system the potential can be written as

l) , (6.1)

while for a system with a single impurity as

) i f * ^ * o
, (6.2)

} ifi = i0

47
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or, in brief,

)duo , (6.3)

where it should be noted that V^031 could be different for different sites. In the

present calculations l/Aosf are different for different layers. The ^-matrices corre-

sponding to the perturbed system can be written as

*'(*) ^ < • (6-4)
if i = «o

Making use of the definition of At~! in (4.5) one can write,

0 i f i ^ z ' o
Af (z)'1 = < (6.5)

or, compactly,

)"1) *A • (6-6)

Writing Eq. (4.4) for the r-matrix describing the system with the impurity embedded

into the host yields

r(z) = rhost(z) [I - At^-V^)] " , (6.7)

which can be expanded as,

T(Z) = Thost(z)

. (6.8)

Inserting Eq. (6.5) into Eq. (6.8) it can clearly be seen that T_IO'I° can be written as

[L

(6.9)

or, in a more compact form as,

~l (6-10)
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which allows one to obtain the Green function referring to a single impurity using the

site diagonal matrix rz
h°0'*° which is of dimension 1 x 1 in spatial indices in contrary

to the whole real-space SPO matrix which obviously is of dimension oo x oo. This

feature is highly desirable for computational purposes. Applying the form in (6.10)

all the scattering events between the impurity and the host atoms are taken into

account, however, the changes in the host atoms around the impurity are excluded.

In order to overcome this problem one has to investigate a cluster of atoms which

can contain an arbitrary large number host atoms besides the impurities.

6.2 The r-matrix for TV Embedded Atoms

In the following a finite duster is defined as a geometrical arrangement of a set

of scatterers. As shown in Fig. (6.1) it is important to emphasize that a cluster

can contain, the investigated impurity atoms, some sites from the host material, for

which one can study the changes caused by the impurities (like induced magnetiza-

tion in a non-magnetic host), or even empty spheres which can contain also some

electron density. Let C denote the set of the position vectors pointing to sites in the

cluster,

C = {R*}, i = l,...,N , (6.11)

where N is the number of sites in the cluster and ji are the labels of these sites. It

is also meaningful to introduce a set which only contains the site-indices,

CN = {ji\ R*eC, i = l , . . . , N } . (6.12)

A cluster of N scatterers embedded into a layered system, can be decomposed

into "sub-dusters" (Cp] overlapping with different layers (£p),

Cp = Cp nC = {Ri|Ri e Cp and R; e C} , (6.13)

where Cp refers to the set of position vectors in a layer labeled by p and the corre-

sponding set of indices can be defined as

Cp = Lp n CN = {ji\Rj, 6 Cp and R,, e C} . (6.14)
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IP host

C j vacuum

SC cluster

impurities

Figure 6.1: Schematic view of an embedded cluster on a surface. The cluster, which
is in the present context a group of atomic sites, contains two impurities, several
atoms from the supporting host surface and several vacuum spheres.

If Np is the number of sites in Cp, obviously,

^p = N . (6.15) -

For a finite cluster, there is only a finite subset of Cp that Cp ^ 0, where 0 stands

for the empty set. Therefore, it makes sense to define the following layer indices,

Prmn(max) = min (max) {p \Cp ^ 0} . (6.16)

For latter purposes, the notation for the complementary set of C can be introduced

=\ U (6.17)

where S can be interpreted as the substrate which surrounds the cluster and is

assumed not to be affected by the embedded impurities.

The definition of At(z)"1 in Eq. (6.6) can be extended for N sites as

J 11 t <jt ^ JV l r* -t o \

it t~\-\ +i ^-i ;P .• ^ n (v-^)

or,

(At .. (6.19)
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which can be visualized as an oo x oo matrix with N non-zero diagonal blocks,

. . \

0
0

0

-host
*ii,-l

,-1 _ fijv,-l Q
•' -imp u

0 0

(6.20)

Inserting Eq. (6.19) into Eq. (6.8) one finds

E i
(6.21)

It is now useful to establish a notation for matrices restricted only to the cluster-sites,

such as for the difference of the inverse i-matrices,

/ A t C C r \ ~ l \ = It* (?\~l — /'M"1! A i i|^t (Z) fij— [lhost(Z) ±(Z) \°i] liJ

for the r-matrix of the host,

'N (6.22)

'/V

and of the perturbed system (cluster),

(6.23)

(6.24)

Eqs. (6.21), (6.22) (6.23) and (6.24) thus immediately imply,

(6.25)

or, compactly,

= rhost (z] [ I N X N - Atc ( z ) ~ l rc
host(z)} (6.26)
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which is a particular application of the expression Eq. (4.4). For the present pur-

pose, namely to study local physical properties of impurities embedded into a host

material, one only needs to calculate the diagonal blocks of the r° matrix in order

to evaluate the local Green function according to Eq. (3.98),

Q,Q'

(6.27)

where the scattering solutions correspond to the particular potentials of sites within

the cluster.

6.3 Self-consistent Calculation for a Cluster

Due to the non-linearity of the Kohn-Sham or the Kohn-Sham-Dirac equation one

should use an iterative method to find its solution. A self-consistent calculation

usually follows the scheme,

y(0) __+ r(0) _> y(l) _» T(D _ » . . . _ » V(n) _> T(n) _> y(n+l) _> _ (6_2g)

where r^ (V'w) is the SPO matrix (potential) after the ith iterative step. As it

was mentioned in chapter 2, in the LSDA approach the potential is determined

exclusively by the charge- and magnetization densities (see Eqs. (3.24) and (3.26)).

A self-consistent potential or charge density in a solid can be obtained as a fix-point

of the iterative method,

lim V(n) (r) = V (r) , (6.29)
n— >oo

lim p(n) (r) = p (r) , (6.30)
n— >oo

which also implies for the SPO,

lim r(n)(z) = T(Z) . (6.31)
n— >oo

However, the standard iteration process which is sketched at (6.28) can diverge due

to increasing charge oscillations in the forthcoming iterational steps [Dederichs and
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Zeller, 1983]. In order to avoid this, the output from some of the previous iterations

is "mixed" with that of the last one and used as an input for the next iteration,

m

V£+1) (r) = V™ (r) + £ ft (v£TJ) (r) - ̂  (r)) , (6.32)

where V^ is the input potential of the ith step, V^j is the corresponding output

potential, m is an arbitrarily chosen integer and ßm is a weighting (mixing) factor

for the previous output potentials. There are various potential mixing schemes the

complexities of which can be different due to the different choice of m and the

method of the optimizing ft (e.g. simple-mixing: m = I and ft arbitrary; Anderson

mixing [Dederichs and Zeller, 1983]: m = I and ft is determined by a least-square

deviation process). In the present calculations the so-called modified Broyden mixing

as proposed by Johnson [Johnson, 1988] is used. It should be noted that the mixing

procedure can be performed equivalently for the charge and spin densities.

6.4 Approximations of the Inversion of the r-matrix

With a little modification of Eq. (6.26) the SPO in the nth self-consistent step is

given by,

1 • (6-33)

Combining the above equation for the (n — l)th and nth steps, one can easily derive,

that

TC,(n) z = TC,(n-l) 2 _ tC,(n-l) -l _ <.<:,(„) z - l TC,(n-l)

which is of similar form as (6.26) and shows that the previous self-consistent step can

serve as a reference for the embedding process. Close to the self-consistent solution

the following criterion is fulfilled (dropping the C indices).

lim | |(t("-1)(2)- l-t ( n )(2)"1) |HO Mz , (6.35)
n— >oo "

or, alternatively,
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In this case one can expand Eq. (6.34),

T(n) (2) ^ r(n-l) (2) +

r(»-D (z) ( t(n-D (2)-l _ t(n) (^-lJ r(n-l) ̂  +

This implies that the matrix inversion (6.34) can be estimated up to an arbitrary

order. For example up to first order it can be written as

N

T*^™-1' (z) (f-^

or, using the super-matrix notation,

while the /cth order approach can be obtained from the algorithm,

T(n),k = T(n),fc-l + T(n),fe-l t(n-l) -1 _ t(n)

This formulation is especially useful to reduce the computational time in the case

when the calculation is started near a known self-consistent solution. An example for

this situation can be when the orientation of the magnetization is updated during

the iterations and subsequent orientations differ from each other by only a few

degree. This is the case in spin-dynamics calculations which enable one to study

non-collinear magnetic configurations in nanostructures.



Chapter 7

Electrostatic potential for an
embedded cluster

For a given potential, Vef/ (r) one can calculate the charge- and magnetization den-

sity of a solid which within the framework of LSDA (see Chapter 2) determines the

Vxc (r) and Bxc (r) parts of the potential. In order to update Veff (r) within a self-

consistent calculation one has to calculate also the electrostatic (Hartree) potential

of the system. The solution of the Poisson equation for an embedded cluster consists

basically of two steps, similar to the calculation of the Green function. First, one

has to solve the Poisson equation for the unperturbed host and then for the cluster

with the boundary conditions set by the host. In this section a detailed description

of treatment of the electrostatic potential for a finite embedded cluster will be given.

7.1 Basic Definitions

The electrostatic potential of a charge distribution p(r) confined to a finite domain

Q can be written as

Vj^j , (7.1)

a

where the boundary condition V(r) —> 0 in the limit of r —> oo has been chosen. A

well-known solution of the above equation relies on the multipole expansion [Landau

and Lifshitz, 1997) which is based on the expansion of , _ j ; r < | in the case of |r'| < |r|

55
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(outside Jl),

(=0 m=-i

where the Vjm(r) are complex spherical harmonics and r^ — r^ . Combining

Eq. (7.1) with Eq. (7.2) yields

(7.3)

a lm

Using the definition of the multipole moments of the charge-density in the finite

volume fi as

^|rfVp(r')(r')'lUf') (7.4)

and the multipole fields as

M/m(r) = 2N/47T 'iff , (7.5)

for r > Sn> SVj = max {r'|r' € fi} one can write the Coulomb potential in a compact

expression as

?""M'm(r) . (7.6)
lm

7.2 Electrostatic Potential of a Lattice

For ordered lattices a real-space vector can be decomposed as

r = Ri + rz , (7.7)

where R^ points to the center of the cell i and r; is inside the particular cell. The

electrostatic potential at cell i,

?l] ( r e a) , (7-8)

can be split up into intra-cell and inter-cell parts,

V5(r4) = vr1™^ + vrteT(n) , (7.9)
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arising from the charge density within and outside the particular cell, respectively.

Within the ASA the intra cell part is given by [MacLaren et al., 1989]

Vintra(r) = _ _ +

where Zi is the nuclear charge at site i and S^SA is the radius of ASA sphere

around Rj. Obviously the method of calculation of Vjmtra(rj) does not depend on

the geometrical arrangement of the lattice positions. Therefore, as what follows the

evaluation of Vr/n(er(rj) for layered systems and embedded clusters is described.

The inter-cell part of the electrostatic potential, which for matters of simplicity

will be denoted by K(FJ) , can be expressed as

_R , , (7.11)
; ^1

where the summation runs over all cells in the solid but the one labeled by i and

PJ(*'J) is the charge density in cell j. Applying for |r^| < |ri + Rj — Rj| the expansion

in Eq. (7.2) one obtains,

8?r

2/ + 1 Ir - + R • - R - l ' + 1
^^ i J- -1 1 i ^«-1 •tx-iJ ty

Similarly to Eq. (7.6) one can write,

^fr) = E E M/m(r» - R* - R>)^ 'j(#») /m

in terms of the definition of the charge density moments (7.4),

and the multipole field (7.5),

- R,-) = 2 x 4 > t _ l . (7.15)
Tj *T~ -t*'i ivy
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If the relation jr^ < |Rj - R,| is fulfilled one can apply again an expansion for

M'm(r; + Rj — RJ) separating the dependence on Rj - R, and r; as

l l m y i w ( r O , (7-16)
I'm1

where the real-space Madelung constants were introduced as

If I _L ——

i*ITH ,( /-(-/ ' )(m/ —TTI) ITJ T^ i /_ I_ / ' _L i ( i~f~i )(fi —TH,} \^*f% J ) V /

with <7^'//m» are the Gaunt coefficients (3.88). Care has to be taken, however, since

the conditions r^ < r^ + R^ - Rj| and |r;| < |Rj —Rj| are fulfilled for adjacent cells

only if non-overlapping spherical domains, i.e., muffin-tins are considered. As shown

in Ref. [Zabloudil, 2000] and references therein, for space-filling cells a particular

technique using an auxiliary displacement vector has to be used to calculate the inter-

cell potential between neighboring cells. As the electrostatic potential is taken to be

spherically symmetric within the ASA, only the Alrn'00 term has to be considered

Similar to Eq. (7.6) the intercell part of the electrostatic potential which is indepen-

dent from rj according to (7.18) can be written in the ASA as

For further purposes it is useful to introduce the quantities,

/ftm/^tm f1-? t*\c\\«a Qi , (7-20)
lm

which stand for the contribution of cells j to the electrostatic potential in cell i.

7.3 Electrostatic Potential in a Layered System

The 2D translation invariance of a layered system implies that multipole moments

are equivalent in all cells in a particular layer. Therefore, it is useful to introduce
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the notation Q1™ for the uniform multipole moments in layer q. Furthermore, intro-

ducing the notation

Mlm — Alm>UOtr _|-T- — r — T Mmpi,QJ — A i.t-pT-1-i cp Lj) i

the uniform Madelung potential at a site within layer p can be written as

q j£Lq Im

where the index q runs over all the layers and j labels sites in layer q. Note that for

q = p, the case j = 0 is excluded from the summation as it is indicated by £]'. Due

to the symmetry of simple surfaces the most important contributions to (7.21) arise

from the monopole and dipole moments, Q00 and Q™. Thus one has to evaluate the

corresponding two coefficients,

'A/A00 and A/A01 = Y^ 'A/A1 0 (7 99}mpO,ai anci mpa — / j mpO,Qj • (t.U)PQ
J£Lq j£Lq

Inspecting the explicit form of the spherical harmonics, from Eq. (7.5) it turns out

that
g

dr±

where the position vector r is split up as r = (r,|,7"j_). Due to the Rj — Rj|

factor in Mjj", the sums in Eq. (7.22) converge extremely slowly with increasing

distance. In order to avoid this problem an approximate solution of the 2D Ewald

problem is required [Szunyogh et al., 1994b]. For point-like charges arranged in a

two-dimensional lattice it can be shown that for p ^ q [Szunyogh et al., 1994b]

Moo _ ITT ̂  cos(G||rn)^|G| | | | (Cp_CQ)g-l^i i l l icp-c,) , , ! ^ ^7 24)

where Gy refers to the reciprocal lattice vectors of the 2D lattice and the cp =

(cp|hcpj_)- The contribution coming from sites in one and the same layer (p = q)

can be obtained as

erfc(|G|| a]

Q. Q •f- G

o /T '
V -±_prfr l ±1 l J- ^— (7.25)

T.-jtO
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where erfc is the error function,

X

erfc (z) = 1 - -4= / e't2dt , (7.26)
VTT J

o

and a is the Ewald-parameter. The Madelung constant for the dipoles can be

evaluated by combining Eqs. (7.23) and (7.24),

AfT

M;j = ̂  l + sign((cp-cg)x)

(7.27)

The G|| = 0 contribution can be obtained solving the one-dimensional Poisson equa-

tion,

•r~2~Ki_ ( r_i_) = —8?r/9x ( r_i_) > (7-28)ar±

where p±_ (rj_) is given by [Szunyogh et al., 1994b)

p

Eq. (7.28) can easily be solved to yield

y ) | r J . -c i ,1x|+>lr1-B , (7.30)

where the constants /I and B have to be used to satisfy different boundary condi-

tions. For the closest layer of the left-hand side medium to the interface (p = 0) (see

the definition at Eq. (5.11))

V±(c^} = VL , (7.31)

where VL is the Madelung potential of the left-hand side bulk (for simple lattices

\/'L = 0). For the right-hand side, two distinct boundary condition can be specified

one for the interface case and an other for the surface case. For an interface it is

given by

KL (c*+i,j.) = VR , (7.32)
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with VR being the Madelung potential on the right-hand side bulk, while for a

surface, one has to ensure that the potential is constant sufficiently deep in the

vacuum region

-Vl (C/v+i,x) = 0 , (7.33)

which, in fact, implies charge neutrality of a metal surface. Taking the boundary

conditions into account, for an interface containing N layers, Vj_,p can be written as

N
47T ^ "\ nn Iyint = _ V^ QOO _2

-LiP Q x j ^Q
9=1

N r

V~^ ,<^10 i , /i r \ • / \ o CP>-L I i
~Q- / ̂  Qq U + U - °p,q) S1Sn (CP - CQ) 1 - 2 +

q=l

\/L\

+ VL (7.34)
C/V+1,1

where the first term is the contribution of the monopole moment and the second is

that of the dipoles. For a surface this yields

«7=1

\/L , (7.35)
9=1

and the vacuum potential level can be calculated as

s N

i/vac _ i/sur/ / \ _ 07r V^ (n°0r _L D10>\ _i- T/L

^ - *'X (Cyy+i.j.) - — y j (Qg Cg;_L + Qa ) + V

9=1

7.4 Electrostatic Potential in a Cluster

Due to the additivity of the Poisson equation, the inter-cell potential in a given cell

can be decomposed into contributions of atoms inside and outside of the cluster, Vf

and Vf, respectively as

Vi - Vf + Vf , (7.36)
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with

V13 (7.37)

and

v? = £ ^ • (7-38)

In the following, the assumption is made that outside the embedded cluster the

system has the same physical properties as the perfect 2D translational invariant

host, i.e., the atoms in S are not disturbed by the cluster C. This implies that Vf

has to be independent of the type of the atoms inside the cluster, that is,

Vf = v! - V? , (7.39)

where V{ and Vf' correspond to a cluster of atoms other than the host atoms. In

particular, if atoms identical to those in the host are embedded, the 2D transla-

tionally invariant system is recovered. Using this property, one can calculate Vf

as

V? = VP-V? ( i £ C p ] , (7.40)

where Vp is the electrostatic potential of the cells in layer p in the unperturbed host

and Vf is the potential arising from host atoms placed at the cluster positions.

The above assumption also fixes the boundary condition of the Poisson equation,

since the electrostatic potential within the cluster has to join smoothly the electro-

static potential of the surrounding host. For a site at the border of the cluster this

immediately implies that

V? = V? • (7-41)

This property can be fulfilled only approximately by including a sufficiently large

number of the host atoms in the cluster.

In practice, Eq. (7.40) can be evaluated as follows

V'max / Pmaz

Im q=p,nin
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where the multipole expansion for the 2D translational invariant system has been

performed up to lmax and the Ql™ denote the moments of the charge densities of the

host layers.

One is only left with the task to calculate Vf in Eq. (7.36)

(''max) Pmax

E E 'M&itfr (* e c^ ' (7-43)
lm q=pmin j£Cq

where Ql™ refer now to the perturbed cells. Putting Eqs. (7.36), (7.42) and (7.43)

together one ends up with

( lmax) Pmax ( 'max) Pmax

vc yimaz _ y^ y^ Qim y^ >Mim + y^ y^ y^ >Mim Qim /7
* t l p L-J / ^ ^Q Z_^ UP^Q} ^ Z^ / ̂  Z_y PW^J ' \

im q—pmin j£Cq lm <l=Pmin

It should be noted, that the highest order of the Madelung expansion for the 2D

translational invariant system and for the cluster, lmax and l'max, respectively, not

necessarily have to be the same.

For an energy- resolved representation V(r) can be written as

V(r)= dEQlm(E}Mlm([} , (7.45)

EB
 lm

where

Qlm(E) = ^Ij'd
3r'p(E,r'ytYlm(r') , (7.46)

n

and p(E, r') is the energy resolved charge density. In terms of the Green function

(3.29) this corresponds to

Qlm(E] = ̂  (--} /dVlm{G+(£;,r',r ')}r"y (m(f') . (7.47)
Ll T i \ 71 J J

n

This expression can be re-written also as a complex contour-integration in the upper

semi-plane as follows

T f (
= ~ I d*

^ I

(7.48)
lm

where Qlm(z} is the complex extension of the definition in Eq. (7.47).



Chapter 8

The Magnetic Anisotropy Energy

In ferromagnetic solids there are preferred directions of the magnetization. This

property is known as magnetic anisotropy. In non-relativistic quantum mechan-

ics the energy of a system is independent of the direction of the magnetization.

Relativistic corrections, spin-orbit coupling and the magnetic dipole-dipole interac-

tion, to the Hamiltonian break the rotational invariance with respect to the spin

quantization axis. The ground state energy depends on the direction of the sponta-

neous magnetization relative to the crystalline axis, called the magneto-crystalline

anisotropy, and on the shape of the sample, referred to as the shape anisotropy. The

origin of the shape anisotropy is the magnetic dipole-dipole interaction, while the

magneto-crystalline anisotropy arises essentially from the spin-orbit interaction, but

also to lesser extent, from the magnetic dipole-dipole interaction [Bruno, 1993].

The magnetic anisotropy energy (MAE) is defined as the difference of the ground

state energy, Egs, between two different orientations of the spontaneous magnetiza-

tion, MO

MAE = Eg.(Ml) - E,,(M*) . (8.1)

The earliest attempts to understand the phenomenon of magnetic anisotropy in

iron, cobalt and nickel go back to Van Vleck [Vleck, 1937]. In his approach the

magnetic moments were considered to be localized on the atoms. Van Vleck found

that, although it is almost quenched, the orbital moment influences the MAE. Later

on, Brooks [Brooks, 1940] and Fletcher [Fletcher, 1954] used an itinerant electron

model to explain the MAE and the quenching of orbital moments in cubic crystals.

By using an electron gas model, Bloch et al. [Bloch and Gentile, 1931| came up with

64
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the same conclusion as Van Vleck.

Due to time reversal symmetry, the free energy has to remain unchanged if M0 is

replaced by —Mo. Expanding therefore the free energy in terms of direction-cosines

MO = (Q!I, «2, 0:3), only even powers of the corresponding components can occur

F(Mo) = ^o + baaiaj + bijuaiajOkai + ... , (8.2)

Furthermore, the crystalline symmetry imposes some restrictions, which reduce the

number of independent parameters. In a cubic system the usual expression for the

anisotropy energy can be written as

F(Mo) = KO + Ki(a\ctl + atal + «I0?) + K2a\a\a\ + ... , (8.3)

where K\ and K2 are the anisotropy constants for the fourth and sixth order term.

respectively. In most cases, the fourth order term dominates the MAE of cubic

crystals.

A surface has a lower point group symmetry than the bulk, therefore, as noticed

first by Neel [Neel, 1954], in the expansion of the MAE with respect to the direction

cosines, contributions of lower order appear. For uniaxial systems, such as thin films

with four-fold rotational symmetry axis (z) the corresponding expansion reads:

F(MQ)=KQ + Kl(al + o%) + K2(a
2
l + al)* + K'2a*a2 + ... , (8.4)

where now K\ is a second order, while K2 and K'2 are fourth-order parameters.

Expressing the direction-cosines by spherical coordinates (d,(p). on = sin$cos</?

and «2 = sin fl sin </?, one gets the following angle dependence for the energy

... . (8,5)

8.1 The Magnetic Force Theorem

The total energy per atom is of the order of a few 10 000 eV/atom. Therefore, an

accuracy of about 10~u - 10~8 is needed, if one wants to calculate the MAE from

total energy which is a very demanding task. By using the so-called magnetic Force

Theorem [Jansen, 1988), the anisotropy energy can be obtained as the difference

between the sum of the eigenvalues of the Dirac equation for different magnetic
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configurations, which is of the order of 10 eV. This treatment requires much less

computational efforts for a same numerical accuracy.

Assuming that the spin moment points along the direction M0 the total energy

functional can then be written as

E[n(r), m(r), M0] - Ts[n(r), m(r), M0] + VH[n(r)} +

£ IC[n(r),m(r)]+ f vext(r)n(r}d\ . (8.6)
»/

At the self-consistent solution for the charge- and magnetic density, nsc(r) and

msc(r), every term depending on MQ is included by the non-interacting kinetic en-

ergy, Ts given by

„„ v~~* / ,T - / N (nC „ o
= 2__, I " r?/)n(r) ( —«V + ßmc

«^y. J \

c/3rt/;n(r) (en — evs(r) - (j,BBxc(r)A40ßE) t/Jn(r) , (8.7)

where the ^„(r) are solutions of the Kohn-Sham-Dirac equation (2.29) corresponding

to energy eigenvalues £n and the sum runs over the occupied electron states. At self-

consistency the first variation of the total energy functional with the respect to the

density and the spin-density has to vanish by definition,

ÖE 6TS 6VH 6EXC
T~ = -7— + ~T~ + ~^~ + v^ = ° ' 8-8
on on on on

and

6E 6TS 6EX .
om om dm

The variation of the total energy functional can be written as follows

, ^
8.9)

A£ = — An + — Am + -AM0 - (8.10)
on dm dM0

Since at the self-consistent solution the first two terms vanish the orientation de-

pendence of the ground-state energy is given by

dU0 dU0 dM,
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As can be seen from Eq. (8.11) within the framework of LSDA in the vicinity of the

self-consistent solution, the ground state energy depends on MO, exclusively through

the non-interacting kinetic energy. Eq. (8.7) can be formally rewritten as

Ts = £ en - t d3n/(rKc(r) - 2/zB / d3rße"(r)M0m(r) , (8.12)
occ ^ ^

which gives in turn the form for the variation of the non-interacting kinetic energy,

ATS = A 53 en - d3?V(r) Ansc(r) - 2^B f d3rße//(r)M0Am(r) . (8.13)

It is useful to write also the general variation of AT with respect to MO

AT« STS 8TS

AT* = —An + — Am + — ^AM0 , (8.14)
on dm QMQ

where one has to include the changes in the charge and spin densities due to the

change of the direction of magnetization.

On the other hand, from Eq. (8.11), varying the total energy, the dependence of

T$ on M0 can be expressed as

/

f 8TS

dW(r)Ansc(r) - 2^B l d3rße//(r)M0Am(r) + ^^AM0 . (8.15)
J dM0

Comparing the two expressions for ATs[nsc,msc, MQ] in Eqs. (8.13) and (8.15) one

can find

- (8.16)
dMQ

Combining Eqs. (8.11) and (8.16) one obtains that the dependence of ground-state

energy on the direction of magnetization can be associated with the explicit depen-

dence of the single-particle energies,

dM0

Although the Force Theorem is valid in the above differential form only for a self-

consistent solution and for a magnetization pointing along a (high-symmetry) crystal
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axis, it is often used it in its integral form to take the difference between the energies

with respect to two distinct directions of the magnetization,

The validity of this approach has been proven by the success of many previous calcu-

lations by Daalderop et al. [Daalderop et al., 1990] and Szunyogh et al. [Szunyogh

et al., 1995; Üjfalussy et al., 1996b|. By definition, only the explicit dependence

of the Hamiltonian on M0 has to be considered in Eq. (8.18). In other words, the

potentials and effective fields are assumed to be the same for the two orientations

(frozen-potential approximation). As the charges and spin-moments do not change

significantly with respect to M0, this seems to cause only small errors in V(r) and

Bxc(r). In contrary, the orbital moments, undergo a relatively big change with

respect to M0.

Actually the MAE is calculated in two steps. First, a self consistent calculation

for a given direction of the magnetization is performed. Then only one iteration to

calculate the single-particle energy using the potential is made, which is obtained

from the self-consistent calculation. Without self-consistency one can not recover a

given number of charges. Therefore, instead of the sum of the one-particle energies,

the grand canonical potential (in the present context usually called band energy)

has to be used, which can be written at T = OK as

, M0)de , (8.19)

where EB stands for the bottom of the valence band and nc(e, MO) denotes the DOS

of the cluster with orientation MO, which obviously can be decomposed into DOS's

corresponding to specific sites,

nc(e,M0) = niO-.Mo) - (8.20)
zec/v

Therefore the MAE of the cluster,

, (8.21)
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can also be split into atomlike contributions,

-M* = E A*V^ = £ ^(Mo1) - Eland(Mt) . (8.22)

This decomposition often helps to analyze the results obtained for a given system.

The preferred direction of the magnetization can be read off from the following

conditions

'-M2 < ° "̂  ^o is preferred, (8.23)

i_M2 > 0 -> MO is preferred. (8.24)

As for small system it is of less importance, in here the magnetic dipole-dipole energy

part to MAE is not calculated.



Chapter 9

Fe, Co and Ni adclusters on Ag(OOl)

9.1 Introduction

In the present chapter selected, planar Fe, Co and Ni adclusters deposited on a fee

Ag(OOl) surface are investigated as a first application of the newly developed com-

putational code for the KKR embedding technique described in chapter 6, taking

special attention to the convergence of the magnetic properties of impurities with re-

spect to the number of host atoms contained by the self-consistently treated cluster.

The magnetic adatoms occupy sites in the first vacuum layer referring to positions

of an ideal fee parent lattice with the experimental Ag lattice constant (4.12 A). In

each case three different orientations for the magnetization were considered: along

the z axis (normal to planes), as well as along the x and y axes (nearest neighbor di-

rections in an fcc(OOl) plane). The results are compared to corresponding overlayer

values and former cluster calculations.

The embedding technique based on the Korringa-Kohn-Rostoker Green's func-

tion method in the local spin-density approximation (LSDA) has been applied for

more than two decades to the magnetism of transition metal adatoms and clusters

embedded into bulk hosts [Podloucky et al., 1980; Zeller et al., 1980| or deposited

on surfaces [Lang et al., 1994; Wildberger et al., 1995|. The main feature of this

approach is that the interaction between adatoms and host surface atoms can be

analyzed within first principles electronic structure calculations [Stepanyuk et al.,

1996a,b|, in several cases exhibiting novel phenomena in nanomagnetism such as the

existence of meta-magnetic states [Stepanyuk et al., 1997a,b| or intermixing effects

between adatoms and the host surface [Stepanyuk et al.. 1999|. An accurate calcu-
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Figure 9.1: Sketch of the planar clusters considered. For an orientation of the
magnetization along the x or y axis, the equivalent atoms in a cluster are labeled
by the same number.

lation of the total energy in terms of full potential or full charge density schemes

made possible investigations of the energetics of adatoms [Nonas et al., 1998; Levanov

et al., 2000; Stepanyuk and Hergert, 2000J. As compared to TB methods an obvious

drawback of the embedded KKR technique is that with respect to computational

limitations the number of the atoms in the cluster is restricted to about less than

100. Furthermore, the inclusion of structural relaxations is exceedingly difficult. In

order to circumvent these problems, a quasi-ab initio molecular-dynamics method

can be employed by parameterizing interatomic potentials to the first principles

KKR Green's function electronic structures [Izquierdo et al., 2001]. On the level of

a fully relativistic spin-polarized electron theory, recently, strongly enhanced orbital

magnetism and MAE of adatoms and small clusters on Ag and Au(OOl) surfaces

have been reported [Nonas et al., 2001; Cabria et al., 2002].
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9.2 Results

9.2.1 Spin and Orbital Moments

As shown in Fig. 9.1, dimers and linear trimers oriented along the x axis were

considered, square-like tetramers, centered pentamers (as in Ref. [Cabria et al.,

2002]), as well as a cluster arranged on positions of a 3x3 square denoted in the

following simply as 3x3 cluster. In Fig. 9.1, for each particular cluster the equivalent

atoms with respect to an orientation of the magnetization along the x or y axis

are labeled by the same number. Note that for a magnetization aligned in the z

direction, the atoms labeled by 2 and 3 in the pentamer and the 3x3 cluster become

equivalent. Up to a total of 67 sites, the clusters consisted of adatoms, several

substrate Ag atoms and empty sites from neighboring shells. A stability test of

the local electronic and magnetic properties for a single Fe adatorn with respect

to the number of self-consistently treated neighboring shells is shown in Fig. 9.2.

Although the calculated orbital moment of the Fe adatom shows a somewhat slower

convergence than the valence charge and the spin moment, it is remarkable that

considering only a first shell of neighbors this already yields values which differ by

less than 1% from the fully converged ones.

Calculations for different orientations of the magnetization revealed that the spin

moments are fairly insensitive to the direction of the magnetization, while for the

orbital moments remarkably large anisotropy effects apply, a phenomenon that will

be discussed in the next section. For a magnetization along the z axis, the calculated

values of the spin and orbital moments for an adatom and selected clusters of Fe,

Co and Ni on Ag(OOl) are listed in Table 9.1. In there the position indices in a

particular cluster refer to the corresponding numbers in Fig. 9.1 and the number of

nearest neighbors of magnetic atoms (coordination number, nc) is also given. ,

As compared to the corresponding monolayer values (3.15 HB for Fe and 2.03 //ß

for Co), the spin moment of a single adatom of Fe (3.39 /IB) and Co (2.10 /.IB] is

slightly increased. In the case of Fe clusters, the spin moments decrease monotonously

with increasing nc. A slight deviation from that behavior can be seen for the 3x3

cluster, where the atoms with nc = 2 and 3 exhibit the same spin moment. As can

be seen in Figs. 9.3 and 9.4 for the central atom of the pentamer and, in particular,

of the 3x3 cluster, the value of the spin moment of the corresponding monolayer is
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Figure 9.2: Calculated number of valence electrons (Nvai), spin moment (Sz) and
orbital moment (Lz) of a single Fe adatom on a Ag(OOl) surface as a function of the
number of the self-consistently treated atomic shells around the Fe atom.

practically achieved for Fe and Co while for Ni one can find in Fig. 9.5 the values

are close for the monolayer ones already for the trimers, however, the tendency with

increasing number of impurities is less clear. The above results for Fe compare fairly

well to those of Cabria et al. [Cabria et al., 2002] and reflect a very short ranged

magnetic correlation between the Fe atoms.

The general tendency of decreasing spin moments with increasing nc is obvious

also for the Co clusters up to the pentamer case. For the 3x3 cluster, however,

just the opposite trend applies. Establishing a correlation between Sz and nc for Co

seems to be more ambiguous than for Fe, because the changes of the spin moment are

much smaller in this case. Nevertheless, it is tempting to say that in the formation
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Figure 9.3: Calculated spin (Sz) and orbital moments (Lz) of the most symmetric
Fe atom in Fen (n = 1, 2, 3,4,5,9) clusters on Ag(OOl) surface with a magnetization
pointing normal to the surface. For comparison, the spin and orbital moments of
the corresponding monolayer (Fe|Ag(001)) is marked by dashes.

of the magnetic moment of Co, further off neighbors play a more significant role

than in the case of Fe.

In the case of an adatom and dimer of Ni no stable magnetic state was found.

Quite contradictory, Cabria et ai [Cabria et al., 2002] reported a spin moment of

about 0.5 HB for a Ni adatom on Ag(OOl). As the computational method of these

authors is very similar to the present one, it is at present not quite clear what causes

this discrepancy between the two calculations. One possible reason for differences

between the two calculations can be that Cabria et al. [Cabria et al., 2002] used an

angular momentum cut-off of lrnax = 3, whereas in here lmax = 2 is used. Within

the ASA, however, a monotonous convergence with respect to lmax is not obvious at
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Figure 9.4: Calculated spin (Sz) and orbital moments (Lz) of the most symmetric
Co atom in Con (n = 1, 2,3,4, 5, 9) clusters on Ag(OOl) surface with a magnetization
pointing normal to the surface. For comparison, the spin and orbital moments of
the corresponding monolayer (Co Ag(OOl)) is marked by dashes.

all. Furthermore, it should be noted that, the present result clearly is in line with

the experiments of Beckmann and Bergmann who found no magnetic moment for

Ni adatoms on a Au surface [Beckmann and Bergmann, 1996], which as a substrate

is rather similar to Ag. It should be noted, however, that in Ref. [Beckmann and

Bergmann, 1996] the actual surface orientation is not specified.

For clusters of Ni one can observe an opposite tendency as for Fe and Co: the

spin moment enhances with increasing number of neighbors. This clearly can be

seen from Table 9.1. Having in mind the calculated monolayer value (0.71 f.LB),

small cluster calculations indicate a fairly slow evolution of the spin moment of

Ni with increasing cluster size, implying that the magnetism of Ni is subject to
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correlation effects on a much longer scale than in Fe or Co according to real-space

KKR calculations for bulk fee Ni [Beiden et al., 1998; Petit et al., 2000|.

Apparently, the orbital moments show a different, in fact, more complex behavior

as the spin moments. For single adatoms of Fe and Co orbital moments enhanced

by a factor of ~ 6 and ~ 4.5, respectively, as compared to the monolayer values

(0.14 HB for Fe and 0.27 //# for Co) were found. This is a direct consequence of

the reduced coordination number and crystal field splitting, being relatively large in

monolayers, and, in particular, in corresponding bulk systems [Bruno, 1993). In spite

of a qualitative agreement, the Lz values for the adatoms are considerably larger than

those calculated by Cabria et al. [Cabria et al., 2002| (0.55 ßß for Fe and 0.76 //-e
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for Co). It should be noted, however, that by including orbital polarization effects

(Hund's second rule) in terms of Brooks' parameterization [Brooks, 1985; Ebert and

Battocletti, 1996], Nonas et al. [Nonas et al., 2001] found orbital moments for Fe

and Co adatoms on Ag(OOl) close to the atomic limit (2.20 //ß for Fe and 2.57 IJ,B
for Co).

For dimers of Fe and Co, the value of Lz drops to about 40% in magnitude as

compared to a single adatom. The evolution of the orbital moment seems, however,

to decrease explicitly only for the central atom of larger clusters. It was shown by

Szunyogh et al. [Szunyogh et al., 1997] that the (local) symmetry can be correlated

with the magnetic anisotropy, i.e., with the quenching effect of the crystal field expe-

rienced by an atom. The central atom of the linear trimers, pentamers and the 3x3

clusters exhibit well-defined rotational symmetry, namely, Ci, C\ and 64, respec-

tively. The corresponding values of L2, namely, 0.25 /J-B, 0.15 /iß, and 0.12 fj,B for

Fe, and 0.49 HB, 0.25 HB and 0.23 HB for Co, nicely reflect the increasing rotational

symmetry and coordination numbers of the respective atoms. Although the outer

magnetic atoms exhibit systematically larger orbital moments than the central ones,

even a qualitative correlation with the local environment (nc) can hardly be stated.

The orbital moment for the trimer of Ni is already close to the monolayer value

(0.19 HB] but shows rather big fluctuations with respect to the size of the cluster

and also to the positions of the individual atoms.

9.2.2 Magnetic Anisotropy

By using the self-consistent potentials for a given orientation of the magnetization

(along z), magnetic anisotropy energies are calculated by means of the magnetic

force theorem (see section 8.1) as differences of band-energies.

The anisotropies of the orbital moments and the contributions of the individual

magnetic atoms to the MAE are displayed in Tables 9.2, 9.3 and 9.4 for Fe, Co and Ni

clusters, respectively. In addition, the total MAE per magnetic atoms of the clusters

including the neighborhood is also given. Although the dominating contributions

to the MAE arise from the magnetic species, the environment, in particular, the Ag

atoms and the empty sites within the first shell add a remarkable amount to the

MAE. However, due to the weak polarization of the Ag atoms, a fast convergence of

the total MAE with respect to the size of the cluster (environment) was obtained.
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As can be inferred from the corresponding positive values of the MAE in Ta-

bles 9.2 and 9.3, single adatoms of Fe and Co exhibit a magnetization oriented per-

pendicular to the surface. This again is in perfect agreement with the experiments

of Beckmann and Bergmann [Beckmann and Bergmann, 1996]. As compared with

the monolayer case (0.47 meV), the MAE of an Fe adatom (5.61 meV) is enhanced

by a factor of twelve. Contrary to the present results, Cabria et al. [Cabria et al.,

2002) predicted in-plane magnetism (&EX-Z — —0.98 meV) for an Fe adatom on

Ag(OOl), and perpendicular magnetism for Co, albeit with a much larger anisotropy

energy (> 7 meV) than the present one (4.36 meV). It should be noted that Cabria

et al. [Cabria et al., 2002] employed the so-called Lloyd's formula, for details, see

Ref. [Weinberger, 1990], for calculating the MAE, claiming that it is essential for

an accurate evaluation of the effects of perturbed host atoms. As was mentioned

above, for the present case of a Ag substrate the direct evaluation of the MAE (see

Eqs. (8.19) to (8.22)) provides well-converged results for the MAE. It should also

be stressed at this point, that the present calculations are consistent with a qualita-

tive rule, valid for transition metals with a more than half-filled d-band and based

on simple, perturbative phenomenological or tight-binding reasoning [Bruno, 1993]:

the direction, along which the orbital moment is the largest, is energetically favored.

As can be seen from Table 9.2, perpendicular magnetism is characteristic for all

Fe clusters considered. For the dimer and the trimer one observes a small in-plane

anisotropy with preference of the x axis, i.e., in the direction of the Fe-Fe bonds. In

agreement with the reduction of the orbital moment, as discussed in the previous

section, the contribution of the central atom to the MAE for the trimer, the pentamer

and the 3x3 cluster rapidly decreases, being even less than the monolayer value in

the case of the 3x3 cluster. The outer atoms in the pentamer and in the 3x3 cluster

can add considerably more to the MAE than the central atom. As a consequence,

the average MAE strongly fluctuates with increasing size of the magnetic cluster

and shows a very slow tendency to converge to the MAE of an Fe monolayer on

Ag(OOl). Such a complicated behavior of the MAE with respect to the cluster size

has also been found by Guirado-Löpez [Guirado-Lopez, 2001] for free-standing fee
transition metal clusters.

In comparison to an adatom, for a Co dimer /\EX_Z drops to a large negative

value (-3.49 meV/per Co), while &Ey-z remains slightly positive (0.76 meV/per
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Co), implying that a Co dimer favors the x (in-plane) direction of the magnetiza-

tion and also experiences a strong in-plane anisotropy. The strong tendency of Co

clusters to an in-plane magnetization pertains for larger clusters and is character-

istic also for a Co monolayer (AEX-Z = —1.31 meV). The atom-like resolution of

the MAE indicates, that this tendency is driven by nearest-neighbor Co-Co interac-

tions. An explanation of this effect in terms of perturbation theory and symmetry

resolved densities of states can be found in Refs. [Wang et al., 1994; Zhong et al..

1996; Üjfalussy et al., 1996a|. As an unexpected consequence, the contribution to

the MAE of the central atom in the cluster can be larger than that of some outer

atoms. Quite obviously, the MAE of the central atom of the trimer, the pentamer

and the 3x3 cluster, -9.06 meV, -2.46 meV, and -1.86 meV, respectively, fall

monotonously off to the monolayer value, whereas the average MAE possesses a

much more complicated evolution also in this case.

With exception of the tetramer, for which a MAE close to zero was found, all

Ni clusters prefer an in-plane magnetization. The in-plane anisotropy, seen from

Table 9.4 for the trimer, but also from the atom-like contributions for the larger

clusters, is, however, smaller than in the case of Co. Again the complicated nature

of the magnetism of Ni shows up, in particular, for the 3x3 cluster: while the

contribution of the central atom to the MAE almost vanishes, those of the outer

atoms oscillate in magnitude. Considering the MAE of a Ni monolayer on Ag(OOl)

(-2.23 meV), no straightforward connection with the magnetic anisotropy properties

of small clusters can be traced.

9.2.3 Magnetic Interaction between Adatoms

Interactions between magnetic nanoclusters are of great importance for technolog-

ical applications. Clearly enough the most important questions are (i) what is the

magnetic structure of the individual entities, (ii) of what nature (strength, range,

etc.) is the coupling between them, and (Hi) what influences the magnetic orienta-

tion of these entities relative to each other. In this section a preliminary study in

this field is presented by investigating the interaction of two Fe or Co adatoms on

Ag(OOl).

First self-consistent calculations for two adatoms by varying the distance d be-

tween them from a to 5a along the x direction were performed, where a is the 2D
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Figure 9.6: Calculated spin and orbital moments of two adatoms of Fe or Co on
Ag(OOl) as a function of their distance d measured in units of the 2D lattice constant
a.

lattice constant and keeping the orientation "of the magnetizations parallel to each

other (along the z axis). The calculated spin and orbital moments of the (coupled)

adatoms are shown in Fig. 9.6. Note that the distance a refers to the bondlength in

dimers. As can be seen from Fig. 9.6, both for Fe and Co the values of Sz and Lz

rapidly converge to the respective single adatom value.

Next the exchange-coupling energy, A£x> between the two adatoms was calcu-

lated by taking the energy difference between a parallel (tt) and an antiparallel (tl)

orientation of the two adatoms,

A- = Ec
band(n) - ELnd(U) , (9.1)

using, however, the self-consistent potentials for the parallel configuration.
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The calculated AEx is shown in Fig. 9.7 for Fe and Co as a function of the

distance d between the two adatoms. Apparently, for d = a in both cases a strong,

ferromagnetic nearest-neighbor exchange-coupling between these two atoms applies,

with an interaction energy somewhat larger for Fe than for Co. As the two adatoms

are adjacent in this case, this strong coupling can be attributed to a direct exchange

mechanism. Increasing the separation between the two adatoms, A£V rapidly de-

creases. For d = la it changes sign, i.e., the coupling becomes antiferromagnetic.

Since for an antiparallel alignment of the spin moments of the two adatoms, lying

close to each other, the electronic structure and the magnetic moments might be

expected to differ to some extent as compared to a parallel configuration, the cor-

responding values of Sz and Lz in Table 9.6 can be questioned. Therefore, for this
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particular case self-consistent calculations were performed also for the antiparallel

alignment. Assuringly, for both Fe and Co, the same value of Sz and Lz within 1%

relative accuracy were obtained as in the case of a parallel alignment. For larger dis-

tances ferromagnetic coupling can be observed, which virtually vanishes for d > 5a.

implying a very weak, short ranged exchange interaction between the adatoms of Fe

and Co induced by the Ag host.
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Table 9.1: Calculated spin moments (Sz) and orbital moments (Lz], in units of / /g ,
for small clusters of Fe, Co and Ni on Ag(OOl) with magnetization perpendicular to
the surface (z). For each position in a particular cluster (see Fig. 9.1), nc refers to
the number of the neighboring magnetic (Fe, Co, Ni) atoms.

Cluster

adatom

dimer

trimer

tetramer

pentamer

3x3 cluster

position

1

1

2

1

1

2

3

1

2

3

4

nc

0

1

2

1

2

4

1

1

4

3

3

2

Fe
Sz Lz

3.39 0.88

3.31 0.32

3.29 0.25

3.33 0.44

3.26 0.18

3.13 0.15

3.35 0.37

3.35 0.37

3.15 0.12

3.23 0.16

3.23 0.16

3.23 0.33

Co
Sz Lz

2.10 1.19

2.09 0.49

2.07 0.45

2.06 0.49

2.08 0.32

2.01 0.25

2.10 0.59

2.10 0.59

2.06 0.23

2.04 0.30

2.04 0.30

2.00 0.29

Ni
Sz Lz

-

-

0.77 0.21

0.70 0.23

0.76 0.28

0.76 0.12

0.71 0.33

0.71 0.33

0.79 0.24

0.71 0.20

0.71 0.20

0.63 0.19
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Table 9.2: Calculated orbital moment anisotropies (AL), in units of HB, and contri-
butions of the Fe atoms to the MAE, AE1, in units of meV, for small clusters of Fe
on Ag(OOl). For each cluster, the total MAE per Fe atom of the cluster including
the neighborhood is also given in parentheses.

Cluster

adatom

dimer

trimer

tetramer

pentamer

3x3 cluster

position

1

1

2

1

1

2

3

1

2

3

4

nc

0

1

2

1

2

4

1

1

4

3

3

2

ALX_2 &EX.Z

-0.37 5.07

(5.61)

-0.12 2.14

(2.30)

-0.12 1.93

-0.16 2.83

(2.72)

-0.02 0.50

(0.54)

-0.03 0.49

-0.03 0.92

-0.08 0.85

(0.90)

0.00 0.23

-0.02 0.43

-0.01 0.84

-0.13 1.86

(1.20)

&Ly-z A£y_z

-0.37 5.07

(5.61)

-0.11 1.66

(1.83)

-0.08 0.93

-0.15 2.39

(2.13)

-0.02 0.50

(0.54)

-0.03 0.49

-0.08 0.85

-0.03 0.92

(0.90)

0.00 0.23

-0.01 0.84

-0.02 0.43

-0.13 1.86

(1.20)
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Table 9.3: Calculated orbital moment anisotropies (AL), in units of //#, and contri-
butions of the Co atoms to the MAE, AE1, in units of meV, for small clusters of Co
on Ag(OOl). For each cluster, the total MAE per Co atom of the cluster including
the neighborhood is also given in parentheses.

Cluster

adatom

dimer

trimer

tetramer

entamer

3x3 cluster

position

1

1

2

1

1

2

3

1

2

3

4

nc

0

1

2

1

2

4

1

1

4

3

3

2

ALx_z AEX_,

-0.26 4.20

(4.36)

0.15 -3.50

(-3.49)

0.40 -9.06

0.34 -6.29

(-7.44)

0.15 -2.29

(-2.37)

0.12 -2.46

0.21 -4.16

-0.01 -0.03

(-2.22)

0.13 -1.86

0.10 -1.56

0.18 -2.96

0.16 -2.60

(-2.45)

ALy_, AEV_Z

-0.26 4.20

(4.36)

-0.01 0.67

(0.76)

-0.02 -0.11

0.05 -0.04

(-0.01)

0.15 -2.29

(-2.37)

0.12 -2.46

-0.01 -0.03

0.21 -4.16

(-2.22)

0.13 -1.86

0.18 -2.96

0.10 -1.56

0.16 -2.60

(-2.45)
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Table 9.4: Calculated orbital moment anisotropies (AL), in units of HB, and contri-
butions of the Ni atoms to the MAE, AE1, in units of meV, for small clusters of Ni
on Ag(OOl). For each cluster, the total MAE per Ni atom of the cluster including
the neighborhood is also given in parentheses.

Cluster

trimer

tetramer

pentamer

3x3 cluster

position

1

2

1

1

2

3

1

2

3

4

nc

2

1

2

4

1

1

4

3

3

2

ALX_2 A£x_2

0.19 -6.12

0.11 -3.72

(-4.63)

-0.05 0.07

(0.10)

0.15 -2.26

0.01 -1.64

0.05 -0.69

(-1.41)

-0.06 -0.02

0.02 -0.75

0.06 -2.00

0.05 -1.21

(-1.17)

ALy_2 A£y_z

0.18 -1.38

0.08 -1.00

(-1.13)

-0.05 0.07

(0.10)

0.15 -2.26

0.05 -0.69

0.01 -1.64

(-1.41)

-0.06 -0.02

0.06 -2.00

0.02 -0.75

0.05 -1.21

(-1.17)



Chapter 10

Finite Co chains on Pt(lll)

10.1 Introduction

In this study the magnetic properties of Con chains of different length (1 < n < 10)

deposited along the (110) direction on a fee Pt(lll) surface are investigated. The

Co adatoms occupy sites in the first vacuum layer referring to positions of an ideal

fee parent lattice with the experimental Pt lattice constant (3.92 A). For each case

three different orientations for the magnetization were considered: along the z axis

(perpendicular to the surface) as well as along the x and y axes referring to in-

plane directions parallel and perpendicular to the chains, respectively. Focusing on

the spin- and orbital moments as well as on the MAE in particular the cross-over

between a point-like impurity (OD) and a linear chain (ID) is traced. The results

are also compared to the values measured for monoatomic Co chains grown at the

step-edges of Pt(997) [Gambardella et al., 2002].

The 3d(Fe, Co, Ni)|Pt(Pd) systems as possible candidates for the high-density

magneto-optical recording media attracted extended interests both experimentally

and theoretically in the last decade. These systems posses strong perpendicular

anisotropy, enhanced Kerr effect at small optical wavelengths and adjustable Curie

temperature which are highly desirable properties from an application point of view.

The appearance of the atomic-scale manipulation and the self-assembly techniques

gave the opportunity to apply a new class of materials with these peculiar physical

properties amplified by the changes due to the reduced coordination number of the

magnetic atoms. The step decoration effect enables the production of high-density,

uniform monoatomic wires on stepped surfaces. However, the self-organization tech-

88
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niques have the drawback of limited choice of the producible patterns in contrast to

other writing techniques (e-beam, scanning probe writing, etc.) [Gambardella et al.,

2000bj.

10.1.1 Growth of Atomic-Scale Structures on Pt

Grütter et al. [Grutter and Diirig, 1994] demonstrated that the Co atoms nucleate

spatially uniformly in a quasi-layer-by-layer mode on a flat Pt(l l l) surface below

300 K upto the thickness of three atomic layer and after the third layer grow in

three-dimensional hep islands. The interaction between the Pt(ll l) surface and the

adsorbed Co adatom induces the formation of the so-called double-line reconstruction

of the Pt surface. The surface reconstruction arises together with the formation of

dendrites on the surface. It was shown by Lundgren et al. [Lundgren et al., 1999)

that these dendrites mainly consist of Pt atoms with Co and Pt atoms underneath.

They suggested that the development of the dendrites are caused by the higher

mobility of atoms at the end of the double-line reconstruction rows due to the

increased lattice spacing.

The growing process is completely different on a vicinal Pt(997) surface (cut 6.5°

off normal with respect to the (111) plane) with monoatomic steps along the (110)

direction. The terraces between the steps are in average 20.1 A wide (~ 8 atomic

rows). As was shown [Nötzel et al., 1992; Marsico et al., 1997) the step decoration

phenomena on high-index surfaces can be exploited to grow in arranged ID arrays

during an early stage of the epitaxial growth. Marsico et al. [Marsico et al.. 1997|

found a highly periodic structure by adsorbing Xe (at 40 K) and Ag (at 350 K)

atoms onto a Pt(997) surface at one (~ 0.13 ML) and two eights (~ 0.26 ML) of the

coverage with respect to the first complete mono-layer [Marsico et al., 1997]. This

phenomenon indicates that the adsorbed atoms grow on the terraces in a row-by-

row mode. It was also shown that while the Xe atoms prefer the upper edges of the

steps, the Ag atoms attach exclusively to the bottom edges similarly to most metal

adsorbates [Gambardella et al., 2000a,b]: the step-edges acts as nucleation sites due

to the increased coordination number and the higher adsorption energy. After the

second row the row-by-row growth cannot be observed which can be caused by the

increased adsorbate-adsorbate interaction instead of the step-adsorbate one.

Investigating Co|Pt systems, Gambardella et al. [Gambardella et al., 2000a,b]
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observed step decoration effect between 150 and 500 K. At lower temperature they

found that the kinetic energy of the Co atoms are not enough to migrate to the Pt

steps and therefore they stick to the already adsorbed Co atoms resulting into a

rough growth. Between 250 K and 300 K the Co atoms form monoatomic chains on

the lower step edges when their density is 0.13 ML, similarly to the Ag case [Marsico

et al., 1997]. If 300 K < T < 500 K the formation of double layers sets in and at

higher temperature ( 500 K < T) alloying of Co and Pt starts which reverts the

formation of the monoatomic wires at the step edges.

10.1.2 Aspects of Magnetism

It was shown in a recent paper by Singh [Singh, 2003] comparing scalar-relativistic

and non-relativistic results for Ni-Pd and Ni-Pt alloys that the different trends of

changes in the magnetic moment of the Ni atoms due the increased Pt and Pd

concentration which was experimentally observed arise mainly due to relativistic

effects.

Pt and Pd which are non-magnetic as pure metal can be magnetically polarized

by an interaction with ferromagnetic 3d elements (Fe, Co, Ni) as was shown by using

element-sensitive XMCD measurement [Wienke et al., 1991). In Ni|Pt multilayers

the Pt layer at the interface posses relatively large magnetic moment (~0.3 /-IB)

which decreases rapidly with increasing distance from the interface [Wilhelm et al.,

2000]. This indicates that hybridization effects are spatially localized mainly to the

3d\Pt interface region. Similarly, for layered CoPta systems Grange et al. [Grange

et al., 1998] found a relatively large magnetization in the Pt layers (SPi ~ 0.2 /.*#,

LPi ~ 0.04 - 0.06 (.IB) and a considerably large orbital moment anisotropy (ALPt ~

0.01 //ß). For the Co layers a large spin and orbital moment was found (SCo ~

1.6 jUß, Lc° ~ 0.3 PB] together with an orbital moment anisotropy ALCo ~ 0.13 HB-

The magnetic moment of the interface Pt layer increased for thicker Co films [Ferrer

et al., 1997].

As was recently reported by Gambardella et al. [Gambardella et al., 2002] the

magnetic moments of monoatomic Co wires are drastically increased as compared to

the corresponding monolayer case (Sfß ~ 2-08 Me, ^fo ~ 0-68 Me) - The orbital mo-

ment drops to Lfjrj ~ 0.37 HB in the double wire case. The orbital moment anisotropy

was found to be AL1D ~ 0.14 HB together with an enhanced magnetic anisotropy
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energy (AE1^ ~ 2.0 meV/atom) which is about 14 times larger than in the corre-

sponding ML case. The estimated average length of a continuous monoatomic Co

chain was 80 atoms; at a temperature of 45 K the ferromagnetic order was, however,

found to extend over about 15 Co atoms only.

10.2 Results

10.2.1 Spin and Orbital Moments

Because of the spatially extended 5d states of Pt, a relatively strong interaction be-

tween electronic states corresponding to the Co and the Pt atoms is to be expected.

For the case of a single Co adatom. therefore, the sensitivity of the local physical

properties of the Co adatom was carefully investigated with respect to the size of the

environment by incorporating self-consistently treated Pt substrate atoms. Calcula-

tions were performed up to the fourth neighboring shell of Pt atoms around the Co

adatom and found that in treating only the first shell of neighbors self-consistently

results in to a relative deviation of less than 1% of the local charge and the mag-

netic moments of Co as compared to the case when all the four neighboring shells

were treated self-consistently. Therefore, if not stated otherwise, in the following all

calculations refer to clusters containing only Pt atoms adjacent to the Co atoms.

Fig. 10.1 shows the spin- (Sz) and orbital (L2) moment of the central (most

symmetric) atom of the monoatomic Con wires (1 < n < 10). First of all it can be

noticed that the spin-moment of a single adatom (2.21 /J,B] is by about 10% larger

than in the corresponding monolayer case (2.00 p,ß}- This spin moment decreases

with an increasing number of atoms forming the chain: in the case of a dimer

Sz = 2.17 [IB while for the central atom of a trimer Sz = 2.12 [IB was found. The

reason for this trend can clearly be traced from Fig. 10.2, where the spin-projected

densities of states (DOS) [Szunyogh et al., 1994b; Staunton et al., 1988] of the

corresponding Co atoms are displayed: for a Co adatom, the Fermi level crosses the

very sharp peak of the minority spin d-band, which, as a consequence of the d-d

hybridization between the Co atoms, remarkably broadens in the dimer and trimer

case, thus, pushing more states below the Fermi level than above. For n > 3 the

spin-moment of the central atom seems to be stabilized at about 2.11 ^g, which

despite of the different geometry is in good comparison to the experimental value
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Figure 10.1: Calculated spin moments (52) and orbital moments (Lz) of the central
(most symmetric) atom in Co„ (n = 1 , . . . ,10) chains oriented along the (110)
direction on the top of Pt(lll) as a function of the chain length.

of about 2.12 ßB [Gambardella et al., 20021 and other LDA (FLAPW) calculations

(2.06 HB, [Komelj et al., 2002]) for monoatomic Co chains on Pt(997).

The spin-moments calculated for each of the Co atoms in the chains are shown

in Fig. 10.3. Apparently, for n = 3 , . . . , 10, the spin moments at the end of the

chains (~ 2.15 HB] are systematically higher than those in the middle of the chains

(~ 2.11 HB}- This observation can again be attributed to the narrower minority spin

(/-band of the outer atoms due to one missing neighboring Co atom as compared to

the inner atoms (see also Fig. 10.2). It should be noted, however, that the above

feature can not be stated as a general feature, since the relation of the spin-moments

of the outer and inner atoms in a linear chain can vary according to the varying

nature of the d-d hybridization between transition metal atoms [Wildberger et al.,

1995]. Contrary to the magnetic moments of compact 3d clusters which tend rapidly
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Figure 10.2: Spin-projected local densities of states (DOS) of Co as an adatom, a
dimer atom and the central atom of a trimer on top of a Pt(lll) surface.

to the monolayer value [Lazarovits et al., 2002] (see also chapter 9), independent

of their length the wires are characterized by larger magnetic moments than the

corresponding monolayer. This is one of the unique features of the nanowires which

distinguishes them from other types of nanoclusters.

Inspecting the orbital moments from the lower panel of Fig. 10.1, the case of a

single adatom distinctly differs from all other cases, since the huge orbital moment

of the Co adatom, 0.77 ^#, immediately decreases to 0.40 /.IB in the dimer and

remains in the range of 0.35 — 0.40 (.IB for the central atom of all longer chains.

This implies that the orbital moments of the Co atoms are more sensitive to the

chemical environment than the corresponding spin-moments. Since the value for a

Co monolayer on Pt(lll) amounts only to 0.15 /^g, from the above results a clear

trend of the Co orbital moment with respect to the dimensionality of the system

(OD, ID, 2D) can be read off.

Fig. 10.4 shows that the fluctuations of the orbital moments within the chains

are somewhat larger than for the spin-moments (compare to Fig. 10.3). As can be

seen, the orbital moments of the central and the outer atoms can even differ by

more than 10% and also the variations at inner sites are remarkable. Nonetheless,

similar to the spin-moments (see Fig. 10.3) for the inner atoms of the longer chains

a tendency of forming a uniform orbital magnetization can be observed. Based on
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Fig. 10.1, the Co orbital moment of the central atom was fitted numerically to the

case of an infinite chain. The thus obtained value of 0.36 ^B is smaller than the

experimental value, 0.68 ±0.05 HB [Gambardella et al., 2002). For the step-edge like

geometry used in Ref. [Komelj et al., 2002] an even smaller orbital moment (0.16 HB)

was obtained, while using an orbital polarization scheme [Brooks, 1985| resulted in a

value of 0.92 fj,B. While spin-polarized relativistic calculations usually underestimate

the orbital part of the magnetization, in systems with reduced dimension the orbital

polarization scheme seems to overestimate the orbital moments and, more peculiar,

the size of the MAE [Lazarovits, 2000; Nonas et al., 2001].

Due to the experimental findings for the magnetically polarized Pt atoms at

the 3d\Pi interfaces it is worthwhile to discuss the spin- and orbital polarization

of the Pt atoms close to Co sites. Depending on the position with respect to the

Co chain induced Pt spin-moments of 0.09 — 0.14 HB and orbital moments in the

range of 0.02 - 0.04 ^ß were found. These values are typically half as large as the

corresponding moments considering a Pt(lll) surface covered by a Co monolayer

(0.22 ßB and 0.05 ßß-, respectively). This decrease of the magnetic moments of Pt is

apparently caused by the reduced number of the neighboring magnetic (Co) atoms,

the actual source of the induced spin-polarization at the Pt sites. This observation

agrees well with other theoretical results for a Co chain placed on Pd [Robles et al.,

2000] and 3d impurities on Pd(OOl) and Pt(OOl) surfaces [Stepanyuk et al., 1996b|.

In Table 10.1 the induced spin- and orbital moments of Pt are shown treating four

shells of Pt atoms selfconsistently in the neighborhood of a Co impurity on top of

a Pt( l l l ) surface. Although the induced moments in the individual shells rapidly

decrease with increasing distance from the Co impurity, the increasing number of

Pt atoms gives rise to a slowly convergent total sum of moments. In particular,

due to the Pt atoms, for longer chains an enhancement of the orbital moment of

about 0.1 HB per Co atom can be estimated, which clearly improves the agreement

between the present calculations and experiment (see above).

10.2.2 Magnetic Anisotropy

The induced moments on the Pt sites also imply that a considerable contribution to

the MAE arises from the Pt atoms around the Co chains. Therefore, in the case of

a single Co adatom again the effect of the first four nearest neighboring Pt shells on
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Figure 10.3: Calculated spin moments (52) of the Co atoms in Co„ (n = l,..., 10)
chains on Pt(l l l) with a magnetization pointing perpendicular to the surface.
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Shell (i)

1

2

3

4

Ni

3

12

3

16

si
0.093

0.013

< 0.001

0.003

L\

0.024

0.002

-0.001

0.001

sz
0.279

0.439

0.441

0.493

Lz

0.071

0.093

0.089

0.107

Table 10.1: Calculated moments (in units of (IB] of Pt atoms in a cluster with one
Co impurity on top of a Pt(l l l ) surface. A^: number of sites in the z-th shell of
neighboring Pt atoms, S\ and L\: average spin- and orbital moments in shell no. i,
Sz and Lz: total sum of spin- and orbital moments of Pt atoms up to shell no. i.

the MAE was investigated. It was found that the contributions from the Pt atoms

decrease rapidly with increasing distance from the Co atom and that the difference

in the total MAE is less than 7% between the case when only the first shell and

when all four shells of Pt atoms are included into the calculations. In the case of

longer chains the Pt atoms in the first nearest shell contribute to the MAE in a

similar manner (0.2 — 0.4 meV/atom depending on the position) as in the case of

the adatom. Thus, also for the calculation of the MAE only the first Pt shell around

the Co atoms with an estimated relative error of less than 10% was considered which

seems to be a good compromise between the accuracy of the calculations and the

numerical efforts required.

In Fig. 10.5 the magnetic anisotropy energies, AEX_Z and A£l
J/_i, including only

contributions from the first shell of Pt sites (see above) and normalized to a single

Co atom are shown with respect to the length of the Co chains. As can be seen from

the positive sign of the MAE, in each case the easy axis points perpendicular to the

surface, whereby for n > 2 there also appears a strong in-plane anisotropy with a

preference of the x direction, i.e., parallel to the chains. It is interesting to mention

that as compared to a single adatom in the case of small (1 < n < 3) linear clusters

of Co on Ag(OOl) a reorientation of the easy axis from out-of plane to an in-line direc-

tion for the dimer and trimer [Lazarovits et al., 2002] (see also chapter 9) was found.

The huge MAE of a single Co adatom, &EX-Z = A£j,_2 = 5.9 meV, abruptly drops

for the dimer and rapidly converges to A£x_, ~ 1.5 meV and &.Ey-z ~ 3.3 rneV for

the longer wires. Evidently, the experimental easy axis of the Co/Pt(997) chains,
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Figure 10.5: Calculated magnetic anisotropy energies (MAE) for Con (n = 1, . . . , 10)
chains on Pt(l l l) including also contributions from nearest neighbor Pt sites and
normalized to one Co atom. Up- and down triangles refer to
respectively.

-Z and A£ l _J /_2 ,

perpendicular to the chains and 43° away from the normal of the (111) planes [Gam-

bardella et al., 2002], could not be confirmed by these calculations. Nevertheless,

the fact that the calculated easy axis points out-of-plane and is perpendicular to the

chains, and also that the size of the calculated MAE is very close to the measured

value of 2 ± 0.2 meV, can still be termed a nice agreement between experiment and

theory.

The contributions of the individual Co atoms, A-E1 '̂., and A££^ (i = 1, . . . , n),

to the MAE are displayed in Fig. 10.6. In case of (x — z ) , the largest contributions

clearly come from the outer Co atoms, while in the (y — z} case the contribution

of the inner atoms to the MAE is nearly as big as the contribution of outer atoms.

In both cases considered namely &EX-.Z and &Ey-z, only weak oscillations in the

MAE can be seen for the longer chains.

The anisotropies of the orbital moments are shown in Fig. 10.7. In the case

of a single adatom the anisotropy of the orbital moment ALI(2/)_2 = Lx(y) — Lz =

-0.27 fj,g obeys the qualitative rule that the orbital moment is largest along the easy

axis [Bruno, 1993). As can be seen from Fig. 10.7, this rule applies also to the chains

since along the y direction (hard axis) the orbital moments of all the Co atoms are by

about 0.15 HB less than along the z direction (easy axis) (ALy_2 = -0.15 HB)- Note
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that this value is close to that given experimentally, namely, 0.12 //# [Gambardella

et al., 2002]. The anisotropy of the orbital moments of the Co atoms with respect to

the x and z directions (AZ/X_Z) , however, is only a few of 0.01 HB, and in several cases

changes even sign from site to site. This situation is quite unusual since the tiny

orbital momentum anisotropies are to be compared with quite sizeable respective

magnetic anisotropy energies, (AE1^ ~ 0.5 — 1.5 meV). In terms of perturbation

theory this implies that for the (x — z) case, significant spin-flip coupling induced by

the spin-orbit interaction may contribute to the MAE which, in turn, obscures the

simple (inverse) proportionality between the MAE and the anisotropy of the orbital

moment [Stöhr, 1999].



10. Finite Co chains on Pt(ll l) 100

6

4

2

0

6

4

2

0

^ 6

l 4

i i i i i i i i i

—

-

-

1

n=2

v— v
A-A

1 l l l l l i l l

n=4

V-CT-ü-V

n=5

i i i i i i i i i

«=6

6

4

2

0

n=l
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Chapter 11

Finite Fe chains at fee Cu(OOl) and
Cu(lll) surfaces

11.1 Introduction

The objective of this chapter is to study the magnetic properties of Fen chains

deposited along the (110) direction on fee Cu(OOl) and Cu(lll) surfaces as well as

buried by the surface layers by performing calculations for different lengths of the

chain, 1 < n < 9, and by varying its distance from the surface. The Fe atoms

substitute sites in the first vacuum layer, in the uppermost three surface layers

as well as in the perfect 3D bulk host. The cluster sites refer to positions of an

ideal fee parent lattice with the experimental Cu lattice constant. For each case

three different orientations for the magnetization were considered: along the z axis

(perpendicular to the surface) as well as along the x and y axes referring to in-plane

directions parallel and perpendicular to the chains, respectively. The role of the

Fe-Fe and the Fe-host interactions on the spin- and orbital moments as well as on

the MAE will be discussed. The cross-over from a point-like impurity (OD) to a

linear chain (ID) in terms of the above quantities is also investigated.

11.1.1 Aspects of Growth

fee Fe posses a large variety of magnetic behavior such as paramagnetic, antifer-

romagnetic, low-moment ferromagnetic, or high-moment ferromagnetic states with

respect to the lattice constant, fee bulk Fe is only stabilized above 1200 K (above

the Curie temperature) therefore the magnetic behavior of this system is studied ex-

102
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perimentally by depositing Fe on fee substrates like fee Cu surfaces. At low nominal

coverage (< 4 — 5 ML) the Fe grows pseudomorphically on fee Cu and then changes

to a bcc structure. It was shown by Shen et al. [Shen et al., 1997a] that at an early

stage of growth ( < 1.4 ML) on a stepped Cu(lll) surface iron forms 1 — 2 ML high

quasi-lD stripes along the step edges due to the step-decoration effect. The rough

edges of these stripes are due to the tree equivalent (110) direction of growing.

The growth mode of Fe is sensitive to the method of growing. It was shown that

thermally deposited (TD) films form 3D islands. By using pulsed laser deposition

(PLD) technique the films grow in a layer-by-layer mode for both (001) [Shen et al..

1998a] and (111) [Ohresser et al., 1999] surfaces and are more stable with respect

to the fee —* bcc transition. By using the PLD technique no step-decoration effect

was observed on a stepped (111) surface. While Fe films grown by the TD method

have a tetragonally distorted fct structure on the (001) surface, films deposited by

using PLD technique are fee like at an early stage of growth.

11.1.2 Aspects of Magnetism

It was reported by Shen et al. [Shen et al., 1998a| that both TD and PLD thin

(< 3 ML) Fe films exhibit high-moment ferromagnetic behavior (S ~ 2.5 ßß) °n

a Cu(OOl) surface, however, TD films have an out-of-plane easy axis while PLD

ones have an in-plane one between thicknesses of 2 and 5 ML which shows the high

sensitivity of magnetic behavior of fee Fe films with respect to structural proper-

ties. On a Cu(lll) surface the TD films were reported to be in the low-moment

phase (S ~ 0.5 HB) [Shen et al., 1997a] and the PLD ones show high-moment fer-

romagnetism (S > 2 p,B) [Shen et al., 19985]. Both the TD and the PLD films are

characterized by a perpendicular easy axis on Cu(ll l) .

Quasi ID Fe structures on a Cu(lll) surface also have an easy axis along the sur-

face normal. The magnetization of these stripes is temperature and time dependent

[Shen et al., 1997b|. Very recently it was observed by Boeglin et al. [Boeglin et al.,

2002| that the orbital moment of ID Fe structures is strongly enhanced when the

size of the stripes is decreased. Strong in-plane and out-of-plane magneto-crystalline

anisotropy energy favors an orientation perpendicular to the chain as was also re-
ported.

The structure and magnetism of monoatomic Fe wires grown on different stepped
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Cu(lln) (n = 3-11) surfaces were investigated by Spisäk and Hafner [Spisäk

and Hafner, 2002], while Eisenbach et al. [Eisenbach et al., 2002] demonstrated

that changing the crystallographic orientation of infinite Fe wires embedded into

a Cu bulk can even result in a change of the easy axis. Recently, it was shown

by Stepanyuk et al. [Stepanyuk et al., 2001] that small magnetic clusters buried

by surface layers can be energetically more favorable than those deposited on the

surface.

11.2 Results

11.2.1 Spin and Orbital Moments

For the Cu atoms adjacent the Fe impurities a relatively weak magnetic polarization

was found even in the surface layer, where the magnetic polarizability of the host

atoms is expected to be the strongest. The calculated spin moments of these host

atoms (Sf") were about 0.02 HB and the corresponding orbital moments (L^u)

were less than 10"3 P-B- These values are much lower than found for substrate Pt

atoms in a similar geometrical arrangement with Co chains (Sff = 0.09 — 0.14 /j,g,

Lp
z
l = 0.02 - 0.04 HB) [Lazarovits et al., 2003] (see also chapter 10). For the Co-Pt

system tests showed that treating only one shell of host atoms around the impurities

self-consistently was sufficient to get reasonable results for the magnetic properties

of the impurities. The weaker polarization of the Cu atoms as compared to the Pt

atoms implies that this approach applies also for the Cu-Fe system.

In Fig. 11.1 the spin and orbital moment of a single Fe impurity is shown as

a function of the distance of the impurity from the surface. It is found that the

spin-only magnetic moment of a single Fe impurity deposited on a Cu(OOl) surface

(3.19 ßß) is by about 15% larger than in the corresponding monolayer case (2.78 /J,B)

[Üjfalussy et al., 1996b|. This result agrees well with the full-charge density calcu-

lations of Stepanyuk et al. [Stepanyuk et al., 1997c|.

A similar comparison between an Fe impurity embedded into the bulk host and

an Fe monolayer sandwiched by two semi-infinite Cu(OOl) substrates shows that the

difference between the corresponding spin moments of Fe (2.70 ßß) and (2.54 //ß),

respectively, is by about 6% smaller than at the surface. This obviously demon-

strates that the Fe-Cu interaction, subject to the actual position of the Fe impu-
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Figure 11.1: Calculated spin (52) and orbital moments (Lz) of a single Fe impurity
embedded at different distances from a Cu(OOl) and a Cu(lll) surface with a mag-
netization pointing along the surface normal (z). The position of the impurity is
labeled as follows: on top - first vacuum layer, S - surface layer, S-l - 1st subsurface
layer, S-2 - 2nd subsurface layer, in bulk - perfect bulk host.

rities, plays an important role in the formation of the magnetic properties of the

Fe nanostructures. Placing the Fe impurity at increasing distances from the sur-

face one can selectively trace the effect of hybridization between the impurity and

the host atoms. A clear-cut correlation between the coordination number, NCU, of

the impurity formed by the nearest neighbor Cu atoms and the actual value of the

spin-moment of the impurity was observed. Inspecting Fig. 11.1 one can see that

the spin moment of the Fe impurity on Cu(l l l ) (3.27 /J,B) is larger than that on

the Cu(OOl) surface (3.19 ^#), which can be attributed to the smaller number of

nearest neighbors Cu sites of the Fe impurity in case of a (111) surface (NCu = 3)
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than in case of a (001) surface (Ncu = 4). For an impurity embedded into the first

Cu surface layer, on the contrary, S^e is larger for the (001) surface (3.01 f.iB) for

which now NCU — 8 as compared to the (111) surface layer (2.91 //ß) with NCU = 9.

Clearly enough, for Fe impurities buried deeper in the host, Sfe differs only very

little for the two kinds of surfaces and also it converges rapidly to the Sz value of an

Fe impurity embedded into the bulk (2.70 /.iß) which is in good agreement with the

experimental value (Sz — 2.74 /J,B) reported by Steiner et al. [Steiner et al., 1974],

The sensitivity of Sfe on the choice of the surface and the distance of the impurity

from the surface can be traced from Fig. 11.2 in terms of spin-projected densities

of states (DOS) [Szunyogh et al., 1994a; Staunton et al., 1988] of the Fe impurity.

Note that the DOS was calculated at an energy mesh parallel to the real axis with

an imaginary part of 1 mRy. As can be seen the very sharp minority spin d-band of

the Fe adatoms on the surface is intersected by the Fermi level just a little beneath

the maximum of the peak. Therefore, the broadening of the minority spin band due

to the increasing hybridization with Cu pushes more states below the Fermi level

than above, resulting into a decrease of the spin-moment.

In Figs. 11.8 and 11.9 the calculated spin-moments are displayed for each Fe

atom in the chains near the Cu(OOl) and the Cu(lll) surface, respectively. As can

be seen, independent from the distance from the surface, for longer chains (n > 3)

S^e is systematically higher at the edges of the chains than in the middle. This

feature can (again) be attributed to the reduced coordination number, Npe, formed

by the adjacent Fe atoms (Npe = 2 and 1 for atoms inside the chain and at the

edge, respectively), since the strong Fe-Fe hybridization lowers the spin-moment of

the Fe atoms. Note that a similar trend for Co chains on Pt(ll l) [Lazarovits et al.,

2003] (see also chapter 10) was observed, while for Rh chains the opposite trend was

reported [Wildberger et al., 1995]. The extent of the difference between the spin-

moments of the inner and the outermost atoms is slightly affected by the distance

from the surface.

For Feg on top of Cu(ll l) the difference between Sfe of the inner atoms (3.07 HB]

and that of the outermost atoms (3.15 ßg] is about 2% while for a chain of the same

length embedded into the bulk this difference is only about 1%. In general, it can

be concluded that the spin-magnetism of the Fe impurities is affected by the Fe-Cu

interaction and modulated mainly by the distance of the magnetic nanostructure



11. Finite Fe chains at fee Cu(OOl) and Cu(l l l ) surfaces 107

O
Q

50

0

50

50

0

50

50

0

50

50

0

50

50

0

50

on top

S-2

in bulk

-0.4 -0.2 0 0.2
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from the surface and also by the Fe-Fe interaction.

In the lower panel of Fig. 11.1 one can see that the orbital moment of an Fe

impurity dramatically decreases from its value as an adatom when it is placed into

the surface and, by further moving it below the surface, it slowly tends to the

corresponding bulk value. In fact, the orbital moment of the Fe adatom is about 3.3

times larger on top of the (001) surface (0.47 HB] than in the surface layer (0.14 HB),

while for the (111) surface this ratio is as large as 5.5 (0.65 HB -* 0.12 /^ß). Note that

these changes are much larger than the corresponding changes in the spin-moments

(~ 6%, ~ 12%, for the (001) and (111) surfaces, respectively).

Similar to previous studies of atomic-scale magnetic structures [Lazarovits et al.,

2002, 2003] (see also chapters 9 and 10), this implies that the orbital moment is

much more sensitive to the local environment than the spin magnetization: due to

the localization of the d-like states (see also Fig. 11.2) Lfe is less quenched for the

adatom as compared to an impurity in or below the surface. For the same reason,

the adatom on a Cu(ll l) surface carries a considerably higher value of Lfe than

that deposited on a Cu(OOl) surface.

The calculated orbital-moments of the Fe atoms in the chains are shown in

Figs. 11.10 and 11.11. As in the case of a single impurity, the chains deposited on

the surface display a qualitatively different behavior as compared to those in or

below the surface: Lz is much larger and also it exhibits remarkable oscillations for

the chains on the surface.

Apparently these features are more pronounced for chains on a (111) surface

than the (001). In case of an Fe trimer on Cu(l l l ) , e.g., Lz of the outer atoms

(0.35 HB] is about 2.2 times larger than that of the central one (0.15 //#). For

longer chains (n > 7) the oscillations of Lz inside the chains are clearly damped.

From Figs. 11.10 and 11.11 a rapid convergence of the orbital moment to the value

of the chains embedded into the bulk host can be inferred.

A transition from a point-like (OD) to a quasi-one-dimensional (ID) system can

be traced in terms of the spin- and orbital moments of the central atoms of the

chains shown in Fig. 11.3 as a function of the length of the chains, n. As also can

be inferred from Figs. 11.1, 11.8, 11.9, 11.10 and 11.11, up to n = 3 the magnetic

moments decrease systematically and then seem to converge to a well-defined value.

The value of Sfe and Lfe extrapolated from the data in Fig. 11.3 numerically to
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Figure 11.3: Calculated spin (Sz) and orbital moments (Lz) of the central (most
symmetric) Fe atom in Fen (n — 2 , . . . , 9) chains along the (110) direction at the
Cu(OOl) and Cu(lll) surfaces with a magnetization pointing normal to the surface,
(y: on top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).

n = oo, listed in Tables 11.1 and 11.2, can be interpreted as an estimate for the

magnetic moments in the corresponding infinite chains.

These estimated values for 5fe compare well with the theoretical results for

infinite Fe wires at a Cu(117) surface, 2.86 fj,ß to 2.96 /J.B depending an the actual

position of the wire, [Spisäk and Hafner, 2002] and to that embedded into a copper

bulk host, 5fe = 2.50 fj,B, [Eisenbach et al., 2002]. Also listed in Table 11.1 are

the moments of the corresponding Fe impurities (i.e., for the OD case) and, in case

of a Cu(OOl) surface, those for the corresponding monolayers (2D) [Üjfalussy et al.,

1996b). Thus, a systematic trend of the reduction of both 5Z and Lz can be seen

when increasing the dimensionality of the magnetic nanostructure, OD —> ID —> 2D.

A similar trend has been explored experimentally [Poulopoulos and Baberschke,

1999] and theoretically [Komelj et al., 2002; Lazarovits et al., 2003] (see chapter 10)

for Co nanostructures. The estimated values of Lz for infinite monoatomic chains on

top (0.22 /.ig) and in the surface layer (0.10 //ß) of Cu(lll) fit well into the tendency

of the experimental values when reducing the thickness of the Fe film as reported in
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Refs. [Boeglin et al., 2002; Ohresser et al., 2000].

The experimental value approximated to the wire case (~ 0.13 /J,B) lies between

the two above calculated values of Lz, most possibly since the step-edge geometry

used in the experiments can be regarded as a crossover between wires on top of the

surface and those embedded into the surface layer.

11.2.2 Magnetic Anisotropy

In Fig. 11.4 the MAE, A£'x_z, of single Fe impurities in different positions with

respect to the Cu(OOl) and Cu(lll) surfaces and the corresponding orbital moment

anisotropies, A.LX-Z, are shown. Similar to previous observations [Lazarovits et al.,

2002, 2003] (see chapters 9 and 10) the spin moments of the magnetic impurities are

fairly insensitive to the orientation of the effective field. Comparing Figs. 11.1 and

11.4 one can find that the orbital moment and the anisotropy of orbital moment are

of the same order of magnitude indicating that the orbital moment is indeed very

sensitive to the magnetization direction coupled to the crystal due to the spin-orbit

interaction. For an adatom placed on top of both kinds of surfaces an easy magneti-

zation axis pointing perpendicular to the surface is favored, as can be inferred from

the positive sign of the MAE (2.86 meV on Cu(OOl) and 4.30 meV on Cu(l l l ) ) .

Remarkably, the MAE of the Fe adatom on Cu(OOl) is about 20 times larger as

compared to the corresponding Fe monolayer case [Üjfalussy et al., 1996b|. Com-

paring the upper and the lower panels of Fig. 11.4 a strong correlation between AL

and AjE1 can be explored: in accordance with the the qualitative rule obtained from

perturbation theory [Bruno, 1989; van der Laan, 1998] the easy axis corresponds to

a maximum of the orbital moment. Clearly, both AL and A£ of the Fe impurity

decrease dramatically in magnitude when placed into the surface layer or below; AE1

approaches rapidly to the practically vanishing MAE of the impurity embedded into

the bulk with perfect cubic symmetry. As can be seen from the oscillating sign of

the MAE the orientation of the easy magnetization axis depends on the distance

from the surface.

Previous theoretical studies by Szunyogh and Györffy [Szunyogh and Györffy,

1997] for Fe impurities buried by a Au surface also yielded an oscillatory behavior

of the easy axis with varying distance from the surface. As can be seen in Fig. 11.2

the DOS of the Fe impurity refers to the case of a completely filled majority d-band.
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Figure 11.4: Calculated orbital moment anisotropy (AL = Lx — L z ) and magnetic
anisotropy energy (AE = Ex — Ez] of a single Fe impurity embedded at different
distances from a Cu(OOl) and a Cu(lll) surface. For the notation of the position
of the impurity see Fig. 11.1.

Thus, the most important condition of using perturbation theory in simple terms,

namely, omitting spin-flip processes can be assumed [Bruno, 1989; van der Laan,

1998; Stöhr, 1999]. In order to illustrate the change of the reorientation of the easy

axis in terms of the electronic structure, in Fig. 11.5 the minority spin DOS of an Fe

adatom on Cu(OOl) is plotted as well as that in the surface layer as projected onto

"canonical" da Orbitals (a = xy, xz, yz, z2 and x2 - y2). Note that only in this case

the spin-orbit coupling (SOC) is "switched off" using the scaling scheme proposed

by Ebert et al. [Ebert et al., 1996| (see appendix A).

As can be inferred from Fig. 11.5, for an Fe adatom, the large dxy and dx-2_y-2-

like DOS at the Fermi level indicate a strong perpendicular anisotropy clue to the
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Figure 11.5: Calculated d-like minority DOS as projected onto dxz, dyz, dxy, dzi and
dx2_y2 orbitals of a single Fe impurity deposited on (upper panel) and embedded
into the surface layer (lower panel) of a Cu(OOl) surface.

interaction induced by the SOG (Lz-coupling) [Stöhr and König, 1995]. When placed

into the surface layer, the in-plane states, namely, the dxy- and dx2_y2-\ike states of

the impurity, get hybridized with mostly sp-like states of the adjacent Cu atoms,

resulting into a broadening, and consequently into a corresponding lowering of these

components of the DOS at the Fermi level.

The contributions of the individual Fe atoms within the chains (n > 2) to MAE,

Af£!i and Af£fi (i = 1, . . . , n) are displayed in Figs. 11.12 and 11.13 for a Cu(OOl)

and in Figs. 11.14 and 11.15 for a Cu(ll l) surface. The first thing to note is that,

although considerably decreased in magnitude as compared to the chains on top of

the surfaces, all the contributions of &.EX1'Z remain positive for all the embedded
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chains, thus the orientation normal to the planes is always preferred with respect the

one along the chains. As this observation does not apply for the case of a single Fe

impurity (see Fig. 11.4), one can conclude that the origin of an easy axis normal to

the chains can be attributed to the Fe-Fe bonds along the chains [Eisenbach et al.,

2002; Wang et al., 1993].

For chains deposited onto the surface the direction normal to planes remains

the easy axis as can be inferred from the corresponding positive values of AE1^ in

Figs. 11.13 and 11.15. However, for the embedded chains the energetical difference

between the two orientations normal to the chains, namely, z and y, gets very small

and converges to a value below 0.1 meV/Fe atom for the chains embedded into a

perfect bulk.

On top of the surfaces, for shorter chains (n < 5) typical rapid variations of

AE^6' along the chains apply. For longer chains (n > 6) one can find that the

largest contributions to AEy_2 come from the outermost atoms, while to AEX_2

the inner and the outermost sites add nearly the same contribution. Interestingly,

this relationship is reversed for chains immersed in or below the surface: AE,f_!2 is

systematically smaller at the edges of the chains than in the interior region, while

AE£!2 seems to be quite homogeneous along the chains.

Except chains on top of the surfaces, the total MAE of the chains (including

the contributions also from the first shell of Cu sites and as normalized to one Fe

atom) is shown in Fig. 11.6. One can immediately recognize the different behavior

of AEz-z and &.Ey^z with respect to the distance from the surface: the sign of

AEX_2 does not change for any embedding depth, while /\Ey_z is negative for wires

embedded into the first layer of a Cu(OOl) surface or into the first and third layers

of a Cu(lll) surface. Consequently, AEy_2 < 0 refers to cases for which the easy

axis is normal to both the surface and chain.

For chains embedded into the bulk, an easy axis perpendicular to both the (111)

and the (110) directions is obtained, i.e., it can be identified by the (112) direction.

Clearly, the convergence of the total MAE with respect to the length of chains is

slower than that of the spin- and orbital moments of the central atoms (see Fig. 11.3),

an approximate value for infinite wires can be estimated from the data contained

by Fig. 11.6. Similar to the orbital moment, the estimated values of AEz_2 for

the infinite wires on top and embedded into the surface layer of a Cu(lll) surface,
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Figure 11.6: Calculated magnetic anisotropy energies, &EX_Z and A£^_2, for Fen

(n = 2 , . . . , 9) chains immersed at different distances from a Cu(lll) and a Cu(OOl)
surface including also contributions from the nearest neighbor Cu sites and nor-
malized to one Fe atom. (A: layer S; 0: layer S-l; D: layer S-2; O; in bulk, see
Fig. 11.1).

~ 1.5 meV and ~ 0.65 meV, respectively, is again in a good agreement with that

deduced from the experiments, ~ 1.6 meV [Boeglin et al., 2002). The perpendicular

MAE numerically estimated from the results for an infinite Fe wire along the (110)

direction in an fee Cu bulk host is about 0.4 — 0.5 meV which is approximately 3 — 4

times larger as that obtained by Eisenbach et al. [Eisenbach et al., 2002].

This difference between the two theoretical results can be attributed to the differ-

ent directions of the induced moments at the Cu sites adjacent the Fe atoms which

was fixed to be parallel to the Fe moments in the present calculations but was freely

fluctuating in Ref. [Eisenbach et al., 2002]. It should be noted, however, that the

calculations of Ref. [Eisenbach et al., 2002] have been performed by using periodic

boundary conditions in the plane normal to the wire, therefore, the corresponding

results (in particular, the MAE) can also be influenced by "interchain" interactions.

In Fig. 11.7 the in-plane magnetic anisotropy energies, &Ey-x, of chains on top and

embedded into the surface layer of Cu(OOl) and Cu(l l l ) surfaces are displayed with
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Figure 11.7: Calculated in-plane magnetic anisotropy energy, &Ex_y, for Fen (n =
1 , . . . , 9 ) chains on a Cu(OOl) and a Cu(lll) surface including also contributions
from nearest neighbor Cu sites and normalized to one Fe atom. ( y: Cu(OOl) on
top ; A: Cu(OOl) layer S; D: Cu(-lll) on top; O: Cu(lll) layer S, see Fig. 11.1).

respect to the length of Fe chains. In particular, for chains on top of the Cu(lll)

surface, &.Ey-x shows rapid oscillations (with a period of 2 atoms) indicating that

the in-plane MAE is influenced by confinement effects caused most possibly by sur-

face states. The extrapolated value of the in-plane MAE for an infinite chain on a

Cu(lll) surface, ~ 0.6 meV, is close to the experimental value of about 0.4 meV

reported by Boeglin et. al. [Boeglin et al., 2002).

In order to complete the comparison between the present calculations and experi-

ment the anisotropy of the orbital moment for an infinite Fe wire from the calculated

values for the sites at the center of longer chains (n > 7) is also estimated, yielding

a value of &Ly-x ~ 0.025 HB on top of a Cu(l l l ) surface and £±Ly-x ~ 0.035 /J-B

in the corresponding surface layer, again in good agreement with the experimental

data ALy_x ~ 0.032 HB [Boeglin et al., 2002).
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position

on top

S
S-1
S-2
in bulk

C?OD
°<:

3.19

3.01

2.72

2.72

2.70

olD
°z

3.02

2.92

2.66

2.65

2.62

Sf

2.78

-

2.61

2.58

2.54

LOD

0.47

0.14

0.10

0.09

0.09

L1
Z

D

0.16

0.11

0.09

0.08

0.08

Lf

0.08

-

0.07

0.06

0.07

Table 11.1: Calculated spin-moment (Sz) and orbital moment ( L z ) , in units of/.iß,
of an Fe atom as a single impurity (OD) and in an infinite wire (ID) as estimated
from the calculations for finite chains embedded along the (110) direction at different
distances from a Cu(OOl) surface (on top - first vacuum layer, S - surface layer, S-1
- 1st subsurface layer, S-2 - 2nd subsurface layer, in bulk - perfect bulk host). For
a comparison the moments of Fe in a CumFeiCu(001) overlayer system [Üjfalussy
et al., 1996b], denoted by subscript 2D, are also presented by using the mapping,
m = 0: on top; m = 1: layer S-1; m = 2: layer S-2; m = oo: in bulk.

position

on top

S

S-1

S-2

in bulk

COD clD
°z °z

3.27 3.07

2.91 2.82

2.74 2.67

2.67 2.62

2.69 2.62

L°D L'D

0.65 0.22

0.12 0.10

0.12 0.09

0.10 0.09

0.09 0.08

Table 11.2: Calculated spin-moment (Sz) and orbital moment ( L z ] , in units of ^B-,
of an Fe atom as a single impurity (OD) and in an infinite wire (ID) as estimated
from the calculations for finite chains embedded along the (110) direction at different
distances from a Cu(l l l ) surface (on top - first vacuum layer, S - surface layer, S-1
- 1st subsurface layer, S-2 - 2nd subsurface layer, in bulk - perfect bulk host) .
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Figure 11.8: Calculated spin-moments ( S z ) of the Fe atoms in Fen (n = 2 , . . . ,9)
chains at the Cu(OOl) surface with a magnetization pointing normal to the surface,
(y: on top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).
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Figure 11.9: Calculated spin-moments (52) of the Fe atoms in Fen (n = 2 , . . . , 9)
chains at the Cu(lll) surface with a magnetization pointing normal to the surface,
(y: on top ; A: layer S; 0: layer S-l; D: layer S-2; O; in bulk, see Fig. 11.1).



11. Finite Fe chains at fee Cu(OOl) and Cu(ll l) surfaces 119

0.40

0.30

0.20

0.10

0 00

0.40

0.30

0.20

0.10

0 00

0.40

0.30

0.20

0.10

0 00

0.40

0.30

0.20

0.10

000

L n=2

-

v— 7
6=6

_ i i i i i i i i

L /i=4

-

v^_>?

6=6=6=6
- i i i i i i i i

L /i=6

-

V . ^ ^ y 7

6=£S=6=&=6
_ i i i i i i i i i

1 7J=8

-

- ^ „ . ^ „ . ^ ?

A-^X~A~^A A^ A~""2--At&Q— ö~-ö— O— D~-Q^3

- i i i i i i i i

n=3

n=5

n=l

I l

Atomic position

Figure 11.10: Calculated orbital moments (Lz] of the Fe atoms in Fen (n = 2 , . . . ,9)
chains at the Cu(OOl) surface with a magnetization pointing normal to the surface.
(\j: on top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).
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Figure 11.11: Calculated orbital moments ( L z ) of the Fe atoms in Fen (n — 2 , . . . , 9)
chains at the Cu(l l l ) surface with a magnetization pointing normal to the surface,
(y: on top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).
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Figure 11.12: Calculated contributions of Fe atoms in chains immersed at different
distances from a Cu(OOl) surface to the magnetic anisotropy energy, &EX-Z. (v: °n

top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).
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Figure 11.13: Calculated contributions of Fe atoms in chains immersed at different
distances from a Cu(OOl) surface to the magnetic anisotropy energy, &Ey-z. (v: on
top ; A: layer S; 0: layer S-l; D: layer S-2;O: in bulk, see Fig. 11.1).
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Figure 11.14: Calculated contributions of Fe atoms in chains immersed at different
distances from a Cu(l l l ) surface to the magnetic anisotropy energy,
top ; A: layer S; 0: layer S-l; D: layer S-2; O: in bulk, see Fig. 11.1).
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Figure 11.15: Calculated contributions of Fe atoms within the chains immersed at
different distances from a Cu(ll l) surface to the magnetic anisotropy energy, A£^_2.
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Chapter 12

Conclusions

By using a real-space embedding technique based on the Korringa-Kohn-Rostoker

Green's function method, fully relativistic, self-consistent calculations for adatoms

and small clusters of Fe, Co and Ni on Ag(OOl), finite Co chains on Pt(lll) surface

and finite Fe chains at Cu(OOl) and Cu(lll) surfaces were performed. Effects of

the reduced coordination number as well as the influence of the impurity-impurity

and the impurity-host interactions on the spin and orbital moments and the mag-

netocrystalline anisotropy energy were studied. For the chains also the variation of

the magnetic properties with respect to the chain length was investigated. The gen-

eral conclusion is that the orbital moment of the atomic scale structures are highly

increased due to the decreased coordination of the magnetic atoms as compared to

the layered or bulk systems while the changes of the spin moment are less dramatic.

In the most cases the value of the MAE is also enhanced and the easy-magnetization

direction depends on the geometry of the clusters as well as the distance from the

surface.

For adatoms and small clusters of Fe and Co on Ag(OOl) slightly enhanced spin

moments approaching the monolayer values already for a cluster of 9 atoms was

obtained. In agreement with experiments [Beckmann and Bergmann, 1996] the

adatoms and dimers of Ni turned out to be nonmagnetic, while the spin moments

in larger Ni clusters indicated a complex (itinerant) formation of magnetism. In

connection with strongly enhanced orbital moments, for Fe and Co adatoms an

unusually strong perpendicular magnetism was revealed . The perpendicular mag-

netism persisted also for Fe clusters of increasing size, whereby the atom-like contri-

butions showed an oscillating behavior depending on the coordination number and
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the local rotational symmetry. The preferred orientation for clusters of Co and Ni

obtained was in-plane. In case of the Co clusters, from the in-plane asymmetry of

the anisotropy energy it was concluded that the preferred magnetic orientation is

along the Co-Co bonds. In addition, the magnetic coupling between two adatoms

of Fe or Co was investigated. In terms of calculated exchange-coupling energies, the

dimers show a strong ferromagnetic coupling, which immediately drops two orders

of magnitude with increasing distance between the two adatoms, indicating a weak,

indirect coupling between them.

For finite Co chains oriented along the (110) direction on top of a Pt(lll) sur-

face largely enhanced spin- and orbital moments as well as magnetic anisotropy

energies as compared to the overlayer (2D) case, Co|Pt(lll) were obtained, which

are systematically smaller than those obtained for a single adatom (OD). For all

the quantities under consideration fast convergence was found when increasing the

length of the chains. Thus, from the values of the central atom the corresponding

quantities for the infinite chain (ID) could easily be estimated. These extrapolated

results were then successfully compared to the corresponding experimental values

for long Co chains on Pt(997) [Gambardella et al., 2002].

For finite Fe chains oriented along the (110) direction near the Cu(OOl) and

Cu(lll) surfaces it was shown that the magnetic properties of the Fe chains strongly

depend on the distance from the surface, i.e., on the local environment. As com-

pared to the monolayer case, enhanced spin- and orbital moments as well as magnetic

anisotropy energies for the chains mainly controlled by the coordination of the mag-

netic atoms were found. In the special case of a single Fe impurity, the changes of

the spin-moment and the MAE with respect to the position of the impurity in terms

of the corresponding changes in the electronic structure were illustrated. Similar for

the Co chains on Pt(ll l) , it was shown that from calculations for rather short lin-

ear chains the magnetic properties for long (ideally infinite) chains can be deduced.

Although a different geometry was used in the present calculations for Co chains

on Pt(lll) and Fe chains on Cu(OOl) and Cu(ll l) , the spin-moment of the chain

atoms, the easy axis of the system, the size of the MAE and also the anisotropy of

the orbital moment have been found in good agreement with experiment.

The main outcome of the present work is that by performing first principles cal-

culations, not only the qualitative trends of small cluster magnetism of transition
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metals, but even quantitative results can be obtained which in turn can be compared

with experiments. Clearly, including structural relaxations, see also Ref. [Izquierdo

et al., 2001|, e.g., by using the so-called Kambe structure constants, see Refs. [Wein-

berger, 1990; Kambe, 1967a,b, 1968; Uiberacker et al., 1999], would increase the

ab-initio character of such calculations.

It was shown that as far as local quantities are concerned from calculations for

rather short linear chains properties characteristic for long (ideally infinite) chains

can be deduced without loosing the possibility to study local fluctuations (finite size

effects) within the chains. Obviously, when investigating, e.g., (magneto) transport

properties of such nanostructures, due to the nonlocality of the transport phenom-

ena, a less evident trend with respect to the size of the nanoclusters has to be

expected. It should be noted that by using a parallelized version of the present

computer code the number of atoms treated in the cluster can be easily increased

to a few hundred. This, however, is necessary to extend the present calculations

to larger nanostructures (realistic wires, magnetic islands, corrals) currently being

the very focus of technological applications. Recently, efforts were made to combine

the present theoretical method with ab-initio spin-dynamics which enables one to

go a step further in the understanding of the non-collinear magnetic behavior in

nanostructures.



Appendix A

The Single-site Scattering with Spin
Polarization

The solutions of the Dirac-equation corresponding to spherical symmetric potential

and effective field pointing along the z direction has first been discussed by Feder et

al. [Feder et al., 1983] and Strange et al. [Strange et al., 1984]. By using the ansatz,

Eq. (3.52), the Dirac equation Eq. (2.29) can be written as

W-7nc2-U+(r) -ihc{±
W + me2 - U-(r) = 0 (A.I)

where

0
0 V(r) T Bxc(r] \ (A'2)

Introducing the notations Q) = x^f) and |0) = X-Kn(r) and using the orthonor-

mality of the spinor spherical harmonics one obtains

W — me2 — V(r) —ihc[4- + - — -]
-z/lc[^r + I + ^} W + me2 - V(r)

Y>[ (Q\B(r)\Q')gK,ß(r) }

^ [ - z ( Q \ B ( r ) \ Q ' ) f K , ß ( r ) (A'6)

K

with the matrix-elements:

- s), s)2sBxc(r)

(A.4)
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(Q\Bxc(r}\Q'} = 6Lpößft.BK,K,tll(r) =

%<W ]£ C(l K, l/2|(/i - s ) , s)C(l, «', l/2|Gu - s), s)2sBxc(r)

(A.5)

From Eq. (A.I) the following coupled radial differential equations can be obtained

[W - me2 - V(r)} gKß(r) + he- [-£- - -1 (r/^(r)) - £ ß„x»^'» (A.6)
r |_ar f j K,

and

-he- [-£- - -| (r<?K,(r)) + (W + me2 - V(r}} fKll(r] = - ̂  BK^(r)fK,lt(r).
I I C*>/ / I .

L J K.'

(A.7)

Instead of gKß(r) and fKß(r) it is practical to introduce the following functions

PKß(r) = rpKM(r), QK(l(r) = hcrgKß(r). (A.8)

Using the notation E = W — me2 and the atomic units (h — l, m — \,c ~ 274)

Eqs. (A.6) and (A.7) reduce to

QwW = -rQ^(r] -(E- V(r}} PK,(r) + B^P^r) , (A.9)
K'

and

^

Because of the <^ t /< in Eqs. (A. 4) and (A.5) the sum over K' contains only the values

K and —K — 1. By using the Foldy-Wouthuysen transformation it can be shown

[Feder et al., 1983] that the coupling between the channels / and / ± 2 are of minor

importance, therefore, it can be safely neglected. Finally one gets the following set

of coupled radial equation

~Q^(r} -(E- V(r)} PKIL(r)

(A.ll)
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d „ , , K „ , . lE-V(r)

-[E- V(r)} P.K.l

C/

which can be solved numerically by a predictor-corrector method.

A.I Scaling of the Spin-orbit Coupling

The relativistic treatment has the drawback that the relationship between the phys-

ical quantities and the spin-orbit coupling (SOC) cannot be studied in a direct way.

In order to circumvent this problem, an approximate scheme developed by Ebert

[Ebert et al., 1996] can be used. The SOC can be related to the operator (h = 1)

K = ~^ L +1 (see Eqs. (3.30) — (3.35)). A new operator Kx can be defined as

Kx = (x-o>~£ + 1) = x(l + o^ if) + (l-x)=xK + l-x (A.15)

where x is a scaling factor. The spinor spherical harmonics are eigenfunctions of Kx

with eigenvalues — KX

KxXKß(f) = - K x X w ( f ) , where KX =x(l + K)-l (A.16)

Inserting (A.12) into (A. 11) and using the identity K? + K = (I + 1)1, one obtains a

second-order differential equation

- V ( r ) ) P K , ( r ) + SKß(r)B„PK,(r) +

where

SKß(r) =
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In Eq. (A.17) the last term on the right hand side is the only one that explicitly

depends on the SOC. Therefore, replacing K with KX one can scale the SOC. If x = 0

the SOC is switched off, if x = 1 the SOC is taken into account completely. In order

to solve this second order differential equation for PKß(r,E), an auxiliary function

Q*<ß(r, E) can be defined as

Note that Q^fl(r, E) is not a small component in the bispinor formalism. After some

transformations one again obtains a set of coupled differential equations

^Q'wW = ̂ QUr"> ~(E- V(r))P**(r)

?SO p / N , BSO p
•>K,K,fJ.1 KH\I ) ^ DK,-K.-\.^L1 -K-

( l + l ) ~ K,jKr + l ) 1

(A.20)

d_

~cfrJ

( K 1}xQX-K^ß(r) -(E-

1(1

ß-«-1,-fc-L,/tQVi,/t(0 , (A.23)

where (-K - l)x = a:(l - K - 1) - 1 = -KX - 1 = -XK - 1.



Appendix B

The Godfrin method

Following the method proposed by Godfrin (Godfrin, 1991] one can calculate the

inverse, r, of a block tridiagonal matrix, M, by an O(N) procedure,

Mr = I . (B.I)

Defining the auxiliary matrices Xj, Yj, C, and D^ (i = 1 , . . . , N ) with the same

dimension as a block in M as

Y , = 0

- Y M i + L i , (B.2)

the blocks of T can be obtained as follows,

Tij = DiTi+ltj i<j,2<i<N , (B.3)

such that only O(N) operations are needed instead of O(N3) operations necessary

to invert a general dense matrix.
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Rotational Properties of the
Structure Constants

Using the definition of the Fourier transform of the structure constant in Eq. (5.5)

one can write,

(C-l)

where p, q are layer indices, R is element of the point-group of the 2D lattice, ky is

in the surface Brillouin zone (SBZ) and {Tj E £y} are in-plane lattice vectors. The

matrix <2oM°(2) depends on the difference of the corresponding lattice vectors.

G%'q0(z)=G0(z-cp + Tl-cq) , (C.2)

where cp and c9 are the generating vectors of the pth and the gth layers, respectively.

Inserting Eq. (C.2) into Eq. (C.I) one gets

2;c„ + Ti-c,) . (C.3)

which, by using the notation R~iTi = T't can be written as

-c,) . (C.4)
Tie/:,.
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The transformation of the real-space structure constants can be derived as follows,

using Eq. (3.92) one can write,

G0(z- R(n + Hi), R(TJ + Rj)) = JQ(Rri)G0,QQI(z- R(Rj - R^J^Rr,) (C.5)
QQ'

which by exploiting (3.64) can be written as,

}GQ,QQI (z- R (R} - R,)) /^„(/T1) JQ»'^) ,
QQ' Q"Q'"

(C.6)

where D_(R~^} is the block-wise bispinor representation of A"1. Due to the invariance

of the free Green function it turns out that

GO (z- (R, - R;)) = D(R-l)Go (z; R (R, - R,)) D?(R-1) . (C.7)

Therefore,

G0(z- cp + RT'Z - c,) = D(R)G0(z; R-l(cp - c,) + T'JD^R) , (C.8)

and the lattice Fourier transformation (C.4) can be rewritten as,

D(R)GQ(z- R-l(cp - c,) + T'JD^R) . (C.9)

Splitting up the vector fi-1(cp — cg) into components perpendicular and parallel to

the layers,

R-l(cp - c,) = A-^CP - c,)i + A-^c, - c,)n (C.10)

one finds that

Ä- I(C„-C,) J . = (CP-C,)J. , (C.ll)

because A is a symmetry operation operation of the 2D lattice. Defining

,n = fi-l(cp-c,)||-(cp-c,)|, =A-1(cp-c,)-(Cp-c,) , (C.12)



C. Rotational Properties of the Structure Constants 135

one obtains,

G0(z- R-l(cp - c,) + T|) = G0(^; (cp - c,)± + /Tl(cp - c,)N + TJ)

If Acp9i|| is also an in-plane lattice vector, which is the case for fcc(lOO) and fcc(lll)

surfaces, one can use the identification

T; + Acp(?>|| -> T, , (C.14)

which allows us to write

G$>(z- fik||) =

or

which is the desired symmetry transformation of the structure constant in 2D k-

space.



Appendix D

Computational details

The self-consistent calculations of the surfaces were performed in terms of the fully

relativistic Screened Korringa-Kohn-Rostoker method (see chapter 5) with a repul-

sive potential Vr = 2 Ry. 3 — 4 layers of empty sites were used in each calculation

to represent the vacuum region. For the calculation of the t-matrices a cut-off of

Pmax — 2 was used. The local spin-density approximation was applied as parame-

terized by Vosko et ai. [S. H. Vosko et al., 1980).

D.I Contour integration

In order to perform the energy integrations (3.29), 16 points on a semicircular con-

tour in the complex energy plane were sampled according to an asymmetric Gaussian

quadrature.

D.2 BZ integration

For the self-consistent calculations of the surfaces as well as for the evaluation of

the real-space SPO (5.44) 45 — 70 &||-points in the irreducible wedge of the SBZ

(depending on the surface) were used in order to perform self-consistent calculations

for the impurities. For some restricted cases the convergence of the results was

checked by increasing the number of fc||-points up to 210. For the MAE up to

1200 /en-points in IBZ were taken into account ensuring a reliable numerical accuracy.
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D.3 Multipole expansion

For the calculation of the multipole expansion of the charge densities (7.14), neces-

sary to evaluate the Madelung potentials, a cut-off of l'max = 1 for the unperturbed

host and lmax — 2 for the cluster calculations was used (7.44). The Ewald parameter

a (see Eq. (7.25)) was chosen to be 2.0.
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