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Introduction

The past decades have revealed several reasons for studying non-commutative
field theories. Einstein’s theory of general relativity together with quantum
field theory, for instance, suggest the following problem [9, 10, 11]: According
to Heisenberg’s uncertainty relation, measuring the position of a point parti-
cle with high accuracy a will cause an uncertainty in momentum of the order
1
a

(in natural units ~ = c = G = 1). Therefore an energy of the order 1
a

will be
concentrated in the localized region, and the associated energy-momentum
tensor Tµν will generate a gravitational field which will be determined by
solving Einstein’s equations for the metric gµν ,

Rµν −
1

2
Rgµν = 8πTµν , (i)

where Rµν and R denote the Ricci tensor and the Ricci scalar, respectively. If
the uncertainties ∆xµ in the measurement of coordinates become sufficiently
small, which is the case near the Planck length

∆xµ ≃ λp =

√
Gh

c3
≃ 10−33cm, (ii)

the gravitational field generated by the measurement will become so strong
as to prevent light or other signals from leaving the region in question. To
avoid black holes from being produced in the course of measurement one is
tempted to introduce quantum, or non-commutative, space-time.

Apart from this motivation, there is also the fact that ultraviolet divergent
terms appear in quantum field theories due to point particles interacting
locally. This also suggests that at very small distances physical laws must be
modified in such a way that interactions become non-local1.

A possible way of achieving such behaviour is to replace space-time co-
ordinates with operators x̂µ acting on a Hilbert space [13, 14, 15]. Classical
fields can then be described by an isomorphism in which the operators x̂µ are

1An historical overview of the idea of non-commutative space-time can be found in [8].

3



replaced by classical coordinates xµ on a θ-deformed space-time leading to
the so-called star product or Weyl-Moyal product (see Chapter 1 for details).
In the Feynman rules this deformation leads to modified vertices picking up
phases, whereas propagators remain unchanged. These phase factors act as
UV-regulators depending on external momenta pµ. As these momenta tend
to zero, the regularization scheme unfortunately breaks down and some UV-
divergences are replaced by infrared divergences [22]. Furthermore, Feynman
diagrams can be split up into parts with phases called non-planar graphs and
parts independent of phases referred to as planar graphs2. Planar graphs
must therefore be ultraviolet divergent, like their commutative counterparts.
This behaviour leads to the so-called UV/IR-mixing problem.

Even though the singularities arising in quantum field theories cannot
be eliminated through non-commutativity, there is still one further moti-
vation to consider such models: It has recently been discovered that non-
commutativity between coordinates appears in open string theories with a
B-field background as well as in toroidal compactification of Matrix The-
ory [23, 24, 25, 26].

Here, our aim is to study non-commutative 2+1 dimensional quantum
electrodynamics (QED) including fermions and see whether such a model
remains finite, like its commutative counterpart [1]. This is mainly done
(in Feynman gauge) in Chapter 2, after reviewing some basic properties of
non-commutative space-time3 in the first chapter. We then extend the model
by adding a Chern-Simons term, which has the effect of making the gauge
bosons Aµ massive, and discuss more general (Lorentz) gauges.

Finally, in Chapter 4 we add a further term to the action, namely the
Slavnov term. This extension is motivated by the fact that infrared diver-
gences in a non-commutative model can only be cancelled by introducing
non-local counter terms in the renormalization scheme. This fact suggests
that the model is incomplete. The Slavnov term was first introduced in [27]
and mainly consists of a further Lagrange multiplier field λ multiplied with
the field tensor contracted with θµν , the matrix describing non-commutativity
between (space) coordinates. It has the effect of constraining the so con-
tracted field tensor to zero. Furthermore, it modifies the gauge boson prop-
agator (in our case the photon propagator) in such a way that it becomes
transversal with respect to momenta p̃µ ≡ θµνpν . Then, if all infrared singu-

2Actually, in some cases even planar graphs may have phase factors but these must

only depend on external momenta [19].
3In fact non-commutativity will be restricted to space coordinates in order to preserve

causality and unitarity [21, 23].
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lar terms in the vacuum polarization are proportional to p̃µp̃ν they will make
no contribution to the correction of the photon propagator, as contraction
with (transversal) internal bare propagators will amount to zero. Therefore,
these singularities will no longer present a problem. Eventual ultraviolet
singularities can (hopefully) be eliminated through standard renormalization
as known from commutative models. In order to keep the main part of this
study compact and to avoid getting lost in technical details, most calculations
have been put into the appendices.
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Chapter 1

The Star Product

In the Hilbert space of non-commutative flat Minkowski space M
n
NC the co-

ordinates xµ are replaced by selfadjoint operators x̂µ with µ = 0, 1, ..., (n−1).
Following the work of Filk [13] by considering a canonical structure, these
operators respect the commutation relations

[x̂µ, x̂ν ] = iθµν ,

[θµν , x̂ρ] = 0, (1.1)

where the matrix θµν is real, constant and antisymmetric1. In the special
case of 2 + 1 dimensions this matrix is given by2

θµν = θ




0 0 0
0 0 1
0 −1 0


 , (1.2)

where θ is a real constant. In natural units where ~ = c = 1 it has
mass dimension [θ] = −2. Note that this matrix means space-space non-
commutativity, only. The reason for this choice is that space-time non-
commutativity would lead to an acausal theory with non-unitary scattering
matrices [21].
The product of functions on M

n
NC can then be viewed as a ‘deformed‘ product

called the ‘star product‘ of ordinary functions on regular Minkowski space
M

n [19]. First, one needs to define the operator

T̂ (k) = eikµx̂µ

, (1.3)

1Obviously, this construction leads to a violation of Lorentz symmetry. Discussions on

this matter can be found in [16, 17, 18] and references therein.
2Any antisymmetric 3 × 3 matrix can be transformed into (1.2).
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which has the properties

T̂ †(k) = T̂ (−k), (1.4)

T̂ (k)T̂ (k′) = T̂ (k + k′)e−
i
2
k×k′ , (1.5)

tr T̂ (k) = (2π)n δn(kµ), (1.6)

where the abbreviation k×k′ ≡ kµθ
µνk′ν has been used. From these relations

one can furthermore derive

tr
(
T̂ (k1)T̂ (k2) · · · T̂ (km)T̂ †(k)

)
= (2π)n e

− i
2

mP
i<j

ki×kj

δn

(
m∑

i=1

kiµ − kµ

)
.

(1.7)

Next, one associates an operator Φ̂(x̂) to the classical function Φ(x) in the
following way3:

Φ̂(x̂) =

∫
dnx

∫
dnk

(2π)n
T̂ (k)e−ikµxµ

Φ(x)

=

∫
dnk

(2π)n
T̂ (k)Φ̃(k), (1.8)

where Φ̃(k) denotes the Fourier transform of Φ(x). The classical function
Φ(x) can then be recovered from Φ̂(x̂) by using the trace:

Φ(x) =

∫
dnk

(2π)n
eikµxµ

tr
(
Φ̂(x̂)T̂ †(k)

)
. (1.9)

This relation suggests the following definition of the star product (also known
as the Weyl-Moyal product):

Φ1(x) ⋆ Φ2(x) ⋆ · · · ⋆ Φm(x) ≡
∫

dnk

(2π)n
eikµxµ

tr
(
Φ̂1(x̂)Φ̂2(x̂) · · · Φ̂m(x̂)T̂ †(k)

)
.

(1.10)

Inserting (1.8) and (1.7) into (1.10) leads to

Φ1(x) ⋆ Φ2(x) ⋆ · · · ⋆ Φm(x) =

∫
dnk1

(2π)n

∫
dnk2

(2π)n
· · ·
∫

dnkm
(2π)n

e
i

mP
i=1

kµ
i xµ

× Φ̃1(k1)Φ̃2(k2) · · · Φ̃m(km)e
− i

2

mP
i<j

ki×kj

,
(1.11)

3Note that functions of operators must be understood as Taylor expansions in their

arguments. The operator T̂ (k) in (1.3) therefore actually reads T̂ (k) = 1 + ikµx̂µ + . . .
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where the Φ̃i again denote the Fourier transformed functions4. Using this
formula one can easily verify the following properties of the star product:

∫
dnx (Φ1 ⋆ Φ2) (x) =

∫
dnxΦ1(x)Φ2(x), (1.12a)

∫
dnx (Φ1 ⋆ Φ2 ⋆ · · · ⋆ Φm) (x) =

∫
dnx (Φ2 ⋆ · · · ⋆ Φm ⋆ Φ1) (x),

(1.12b)

δ

δΦ1(y)

∫
dnx (Φ1 ⋆ Φ2 ⋆ · · · ⋆ Φm) (x) = (Φ2 ⋆ · · · ⋆ Φm) (y). (1.12c)

Furthermore, the star product is associative.

4Clearly, considering formula (1.11) the commutation relation [xµ, xν ]⋆ = iθµν is ful-

filled as well.
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Chapter 2

Non-Commutative, Massless

QED3

Quantum Electrodynamics was first formulated in about 1950 and has been
very successful in the past decades (i.e. it predicted the anomalous magnetic
moment of the electron correctly to six decimal places) [32]. Ultraviolet di-
vergences appearing in the model can be dealt with through renormalization,
but the fact that they appear at all suggests that interactions should actu-
ally be non-local. Unfortunately, non-commutative QED in 3+1 dimensions
does not cure these divergences. Instead it leads to UV/IR-mixing, which
is worse since the appearing infrared divergences would require non-local
counter terms [2, 22]. On the other hand, if one reduces dimensions to 2+1,
QED becomes finite [1]. Therefore our aim in this chapter is to find out
whether this is also true for non-commutative 2 + 1 dimensional QED. We
start with massless fermions and gauge bosons:

2.1 The model

The action of this model is given by

S = Sinv + Sgf , (2.1)

with the gauge invariant part

Sinv =

∫
d3x

{
−1

4
F µν ⋆ Fµν + iψ̄ ⋆ /D ⋆ ψ

}
, (2.2)
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and the gauge fixing part1

Sgf =

∫
d3x

{
B∂µAµ +

α

2
B2 − c̄ ⋆ ∂µ (∂µc− ie[Aµ, c]⋆)

}
, (2.3)

where B is the Lagrange multiplier field, c is the ghost and c̄ is the antighost
field. The electromagnetic field tensor is given by

Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ]⋆, (2.4)

and the covariant derivative is defined as

/D = γµDµ , Dµ = ∂µ − ieAµ. (2.5)

Note that even in the Abelian theory the commutators [Aµ, Aν ]⋆ and [c, Aµ]⋆
do not vanish due to the star product. The set of γ matrices has been chosen
as

γµ = (σ1, iσ2,−iσ3) , (2.6)

respecting the usual relations (clifford algebra)

{γµ, γν} = 2gµν , (2.7)

where gµν = diag (1,−1 − 1) is the 3-dimensional Minkowski metric. The σi
are the usual Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.8)

Furthermore, the action (2.1) is invariant under the BRS-transformations

sψ = iec ⋆ ψ,

sψ̄ = ieψ̄ ⋆ c,

sAµ = ∂µc− ie[Aµ, c]⋆,

sc = iec ⋆ c,

sc̄ = B,

sB = 0, (2.9)

as shown in Appendix A. Note, however, that in contrast to ordinary QED,
the field tensor Fµν is not gauge invariant due to the non-vanishing commu-
tator (see (2.4)). Instead it transforms (covariantly) as

sFµν = −ie[Fµν , c]⋆, (2.10)

1Because of relation (1.12a) the star product need not be written in the bilinear terms.
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a result known from non-Abelian gauge theories. But, of course, the gauge
field action

∫
d3xF µν ⋆Fµν is invariant due to the property (1.12b) of the star

product.
Finally, BRS-invariance of the action (2.1) restricts all coupling constants in
the model to be identical (see Appendix A for details).

2.2 Propagators

In the path-integral formalism one derives propagators2 from [32, 33]

△ab =
1

i2Z0

δ2Z

δjaδjb

∣∣∣
j=0
, (2.11)

with

Z = eiZ
c[ja] =

∫
DΦa exp

(
iS[Φa] + i

∫
d3xjaΦa

)
,

Zc[ja] = Γ[Φa
c [j

a]] +

∫
d3xjaΦa

c [j
a],

Z0 = Z
∣∣
j=0
, (2.12)

where Φa stands for any field of our model and ja for its source. Z is the
generating functional of the Green functions and Zc[ja] is the one of the
connected Green functions and can be written as the Legendre transform
of the so-called effective action3 Γ[Φa

c ]. The effective action depends on the
classical fields Φa

c which are functionals of the sources ja as defined by the
Legendre transformation. In order to derive the propagators one only needs
to consider the bilinear part of the action and in this lowest order one can
show that Γ0[Φ

a
c ] = S0[Φ

a
c ]. Therefore, in our model Zc

0 can be written as

Zc
0[j

a] = S0[Φ
a[ja]] +

∫
d3x

(
jψ̄ψ + jψψ̄ + jµAAµ + jc̄c+ jcc̄

)
, (2.13)

with

S0[Φ
a] =

∫
d3x
{
− 1

2
∂µAν (∂µAν − ∂νAµ) + iψ̄ /∂ψ

+B∂µAµ +
α

2
B2 − c̄�c

}
. (2.14)

2Due to relation (1.12a) the same procedure is applicable for non-commutative field

theories.
3Γ[Φa

c ] is in fact the generating functional of another two-point function, namely the

inverse of the propagator.

11



The source of the unphysical field B has been set to zero, which corresponds
to integrating out the B-field.
From equation (2.11) follows

△ab =
1

i2Z0

(
i
δ2Zc

δjaδjb
Z
∣∣∣
j=0

− δZc

δja
δZc

δjb
Z
∣∣∣
j=0

)
. (2.15)

The second term does not contribute due to momentum conservation and
therefore we get

△ab(x, y) =
1

i

δ2Zc

δjaδjb
= −iδΦ

b

δja
. (2.16)

From the inverse of the Legendre transformation (2.13) and the commutation
properties of the fields follows

δS0

δΦa
= −(−1)abja, (2.17)

with a, b equal to zero for bosons and equal to 1 for fermions.
Performing the left-hand side variation yields the equations of motion for the
free fields:

δS0

δB
= ∂µAµ + αB = 0, (2.18a)

δS0

δc̄
= −�c = jc, (2.18b)

δS0

δψ̄
= i/∂ψ = jψ, (2.18c)

δS0

δAµ
= �Aµ +

1 − α

α
∂µ∂ρAρ = −jµA, (2.18d)

where the first equation has been used to eliminate B in the last equation.
The fields can be expressed by formally inverting the differential operators
acting upon them and for the propagators in Feynman gauge (α = 1) follows

△c̄c(x, y) = −i δc(x)
δjc(y)

=
i

�x

δ3(x− y) = −△cc̄(x, y), (2.19a)

△ψ̄ψ(x, y) = −i δψ(x)

δjψ(y)
= − 1

/∂x
δ3(x− y) = −△ψψ̄(x, y), (2.19b)

△AA
µν (x, y) = −iδAµ(x)

δjνA(y)
= i

gµν
�x

δ3(x− y), (2.19c)
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from equation (2.16).
The ghost propagator can furthermore be written as

△c̄c(x, y) = − i

�x

∫
d3p

(2π)3
eip(x−y) =

∫
d3p

(2π)3

i

p2
eip(x−y), (2.20)

defining its Fourier transform

p
△̃cc̄(p) =

i

p2
. (2.21a)

The other propagators in momentum space can be calculated in a similar
way and are thus given by

p

pµ ν

△̃ψψ̄(p) = −i /
p

p2
, (2.21b)

△̃AA
µν (p) =

−igµν
p2

, (2.21c)

where the property /p2 = p2 has been used for the fermion propagator.

2.3 Vertices

The interaction part of the action, considering the antisymmetry of the elec-
tromagnetic field tensor, is given by

Sint =

∫
d3x
{
ie∂µAν ⋆ [Aµ, Aν ]⋆ +

e2

2
Aµ ⋆ Aν ⋆ [Aµ, Aν ]⋆

+eψ̄ ⋆ /A ⋆ ψ + iec̄ ⋆ ∂µ[Aµ, c]⋆

}
. (2.22)

Obviously, we are dealing with four different vertices: the 3-photon vertex,
the 4-photon vertex, the fermion-photon vertex and the ghost-photon vertex.

First, we calculate the fermion-photon vertex (Figure 2.1a) in momentum
space:

Ṽ ψ̄Aψ
µ (k1, k2, k3) = i(2π)9 δ

δψ̃(−k1)

δ

δÃµ(−k2)

δ

δ ˜̄ψ(−k3)
Sint. (2.23)
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k3

k1

k2,µ

a)

k3

k1

k2,µ

b)

k1,ρ

k3,τ

k2,σ

c)

k1,ρ

k4,ǫ

k2,σ

k3,τ

d)

Figure 2.1: Vertices

Momenta pointing inwards (see Figure 2.1) are to be taken positive. Con-
sidering the definition of the star product (1.11), the fermion part of Sint
becomes

Sψ̄Aψint = e

∫
d3x

∫
d3q1−3

(2π)9
e
i

3P
i=1

qµ
i xµ ˜̄ψ(q1)γ

µÃµ(q2)ψ̃(q3)e
− i

2

P
j<i

qj×qi

= e

∫
d3q1−3

(2π)6
δ3(q1 + q2 + q3)

˜̄ψ(q1)γ
µÃµ(q2)ψ̃(q3)e

− i
2

P
j<i

qj×qi
, (2.24)

and for the vertex follows

Ṽ ψ̄Aψ
µ (k1, k2, k3) = ie(2π)3δ3(k1 + k2 + k3)γµe

− i
2
(k1×k3), (2.25)

where k2 has been eliminated in the exponent using momentum conservation
expressed by the delta function and taking into account that ki× ki = 0 due
to the antisymmetry of θµν .

The ghost-photon vertex (Figure 2.1b) follows from

Ṽ c̄∂cA
µ (k1, k2, k3) = i(2π)9 δ

δc̃(−k1)

δ

δÃµ(−k2)

δ

δ˜̄c(−k3)
Sint, (2.26)
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with

S c̄∂cAint = −ie
∫
d3x

∫
d3q1−3

(2π)9
iqµ1 e

i
3P

i=1
qµ
i xµ˜̄c(q1)

(
Ãµ(q2)c̃(q3)

−c̃(q2)Ãµ(q3)
)
e−

i
2
(q1×q2+q2×q3+q1×q3)

= e

∫
d3q1−3

(2π)6
qµ1 δ

3(q1 + q2 + q3)
(
˜̄c(q1)Ãµ(q3)c̃(q2)e−

i
2
(q1×q3)

−˜̄c(q1)c̃(q2)Ãµ(q3)e
i
2
(q1×q3)

)
. (2.27)

The result is

Ṽ c̄∂cA
µ (k1, k2, k3) = 2e(2π)3δ3(k1 + k2 + k3)k3µ sin

(
k1 × k3

2

)
, (2.28)

where we used [34]
eix − e−ix

2i
= sin x.

Next, we calculate the 3-photon vertex (Figure 2.1c):

Ṽ ∂AAA
ρστ (k1, k2, k3) = i(2π)9 δ

δÃρ(−k1)

δ

δÃσ(−k2)

δ

δÃτ (−k3)
Sint. (2.29)

The relevant part of the action is given by

S∂AAAint = 2ie

∫
d3q1−3

(2π)6
δ3

(
3∑

i=1

qi

)
qµ1 Ã

ν(q1)Ãµ(q2)Ãν(q3) sin

(
q1 × q3

2

)
,

(2.30)

and after a short calculation given in Appendix B.1 one gets for the vertex

Ṽ ∂AAA
ρστ (k1, k2, k3) = −2e(2π)3δ3(k1 + k2 + k3) [(k3 − k2)ρgστ

+(k1 − k3)σgρτ + (k2 − k1)τgρσ] sin

(
k1 × k2

2

)
. (2.31)

Finally, the 4-photon vertex (Figure 2.1d) is calculated from

Ṽ AAAA
ρστǫ (k1−4) = i(2π)12 δ

δÃρ(−k1)

δ

δÃσ(−k2)

δ

δÃτ (−k3)

δ

δÃǫ(−k4)
Sint, (2.32)
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leading to

Ṽ AAAA
ρστǫ (k1, k2, k3, k4) = −4ie2(2π)3δ3(k1 + k2 + k3 + k4)

×
[
(gρτgσǫ − gρǫgστ ) sin

(
k1 × k2

2

)
sin

(
k3 × k4

2

)

+(gρσgτǫ − gρǫgστ ) sin

(
k1 × k3

2

)
sin

(
k2 × k4

2

)

+(gρσgτǫ − gρτgσǫ) sin

(
k2 × k3

2

)
sin

(
k1 × k4

2

)]
. (2.33)

The explicit calculation is given in Appendix B.2.
Notice that the fermion-photon vertex is the only one including a phase of the
form exp(iϕ), whereas all other vertices are proportional to sinϕ. This differ-
ence becomes clear when comparing the relevant terms in the action (2.22):
The term including fermion fields ψ is the only one without a commutator,
since our ψ-fields are in the fundamental representation.

2.4 Power counting

Before we start to calculate one-loop corrections to the propagators, it would
be useful to find the superficial degree of divergence of a particular graph.
Several factors need to be considered: Every integral over 3 dimensional
space-time gives a contribution of three powers of k in the numerator and
therefore raises the degree of divergence. Furthermore, the ghost-photon
vertex and the 3-photon vertex each raise the degree of divergence by one.
On the other hand, the degree of divergence is reduced by the propagators:
The fermion-propagator adds one power of k to the denominator and both
ghost and photon propagators each add two powers of k to the denominator.
Therefore, one can derive the following formula for the superficial degree of
divergence d(γ) for a certain Feynman graph

d(γ) = 3L− Iψ − 2IA − 2Ic + Vc + V3A, (2.34)

where Iψ,A,c are the numbers of internal fermion, photon and ghost lines,
respectively. Vc and V3A are the number of ghost and 3-photon vertices
and L denotes the number of loop integrations. Since there are I internal
momenta as well as momentum conservation at each vertex and finally also
overall momentum conservation, the number of independent momenta, which
is L, is given by the relation

L = Iψ + IA + Ic − (Vψ + Vc + V3A + V4A − 1) , (2.35)
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where Vψ and V4A denote the number of fermion and 4-photon vertices, re-
spectively. Elimination of L in (2.34) yields

d(γ) = 3 + 2Iψ + IA + Ic − 3Vψ − 2Vc − 2V3A − 3V4A. (2.36)

Finally, one needs relations between the number of vertices and the number of
legs. External legs denoted by Eψ,c,A count once, whereas internal legs Iψ,A,c
count twice as they are always connected to two vertices (or two legs at one
vertex). Furthermore, one can treat the coupling constant e as an external
field Ee because in 3-dimensional QED e has mass dimension [e] = 1/2
(compare the expression for the action (2.1) considering [∂µ] = [ψ] = [ψ̄] = 1,
[Aµ] = 1/2, [c] = 0 and [c̄] = 1).
Thus, one finds the following relations:

2Vψ = Eψ + 2Iψ,

2Vc = Ec + 2Ic,

Vψ + Vc + 3V3A + 4V4A = EA + 2IA,

Vψ + Vc + V3A + 2V4A = Ee. (2.37)

Elimination of the internal legs in equation (2.36) produces

d(γ) = 3 − Eψ − 1

2
EA − 1

2
Ec −

1

2
Vψ − 1

2
Vc −

1

2
V3A − V4A, (2.38)

and use of the last relation of (2.37) finally leads to

d(γ) = 3 − Eψ − 1

2
EA − 1

2
Ec −

1

2
Ee, (2.39)

depending on the number of external legs, only. (In other words, instead of
counting the different vertices as in (2.38) one merely counts the coupling
constants, which are therefore treated as external legs.)
Obviously, Ee gets larger with growing loop order (which is equivalent to
increasing number of vertices). Therefore, there is only a limited number of
superficially divergent graphs in this model: Since every Feynman graph has
Ee ≥ 2 (Ee = 2 to one-loop order), the fermion self-energy (Eψ = 2) appears
to be, at most, logarithmically divergent, whereas superficially, the photon
(EA = 2) and ghost (Ec = 2) self-energies appear to be linearly divergent.
Further superficially (logarithmically) divergent graphs are those including
three external photon lines (EA = 3, Ee = 3) and the (lowest order) correc-
tion to the ghost-photon vertex (Ec = 2, EA = 1, Ee = 3). In commutative
2 + 1 dimensional QED all vertex corrections converge (divergent contribu-
tions cancel each other) [32, 33]. Therefore it would also be interesting to
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find out whether this remains true in the non-commutative model4. We will,
however, concentrate on one-loop corrections to the propagators, since they
include the worst possible divergences, and additional calculations of vertex
corrections would exceed the scope of this study.

2.5 One-Loop calculations

Now that we have all the building blocks necessary for doing loop calculations,
we will first take a look at the fermion self-energy at one-loop level:

(k − p/2)

(k + p/2)
pp

Figure 2.2: fermion self-energy

Σ(p) = e2

∫
d3k

(2π)3
γµ

/k + /p/2

(k + p/2)2γ
µ 1

(k − p/2)2 . (2.40)

An explicit calculation of equation (2.40) is given in Appendix B.3. Obvi-
ously, this expression is completely independent of phases and there is no
modification due to non-commutativity [2].
Equation (2.40) seems to be logarithmically divergent, which also follows
from the previous chapter’s considerations summarized in power counting
formula (2.39), since Eψ = Ee = 2.
From relation (2.7) follows

γµγργ
µ = γρ(2 − γµγ

µ) = −γρ, (2.41)

where γµγµ = 3 in 3-dimensional space. The remaining integral is solved in
(D.15) in Appendix D.2 using dimensional regularization and the result is

Σ(p) = − e2

16

/p√
p2
, (2.42)

4In fact, it was shown in [30] that in the case of 3 + 1 dimensional QED (without

fermions) the ghost-photon vertex correction diverges only logarithmically (suggesting

convergence in 2 + 1 dimensions) and that the sum of corrections to the 3-photon vertex

includes a linear infrared divergence (suggesting a logarithmic infrared divergence in the

2 + 1 dimensional model).
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which is in fact finite [1].

The photon self-energy at one-loop level has four contributions due to the
star product: the fermion loop, the ghost loop and two different types of
photon loops as shown in Figure 2.3. Remember that in ordinary QED one
only has the fermion loop, the other contributions vanish.

pν

(k + p/2)

(k − p/2)

pµ

a)

(k − p/2)

(k + p/2)

pµ
pν

b)

pµ

(k − p/2)

pν

(k + p/2)

c)

pµ
pν

k

d)

Figure 2.3: vacuum polarization

According to the Feynman rules one gets for the fermion-loop graph in Fig-
ure 2.3a (see Appendix B.4)

Πµν
a (p) = −e2tr

∫
d3k

(2π)3
γµ
(
/k + /p/2

)

(k + p/2)2γ
ν

(
/k − /p/2

)

(k − p/2)2 , (2.43a)

and for the ghost-loop graph in Figure 2.3b (see Appendix B.5)

Πµν
b (p) = −4e2

∫
d3k

(2π)3

(k + p/2)µ

(k + p/2)2

(k − p/2)ν

(k − p/2)2 sin2

(
k × p

2

)
. (2.43b)

The photon loop including 3-photon vertices (Figure 2.3c) is given by

Πµν
c (p) = 4e2

∫
d3k

(2π)3

3kµkν + k2gµν + 9
4
(p2gµν − pµpν)

(k + p/2)2 (k − p/2)2 sin2

(
k × p

2

)

(2.43c)
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as calculated in Appendix B.6 and the photon-tadpole loop (Figure 2.3d)
becomes

Πµν
d (p) = −8e2

∫
d3k

(2π)3

gµν

k2
sin2

(
k × p

2

)
, (2.43d)

(see Appendix B.7). As expected from equation (2.39) all four graphs appear
to be linearly divergent, superficially (EA = Ee = 2).
Since [34]

sin2

(
k × p

2

)
=

1

2
(1 − cos (k × p)) , (2.44)

all of these graphs have a planar (phase independent) and a non-planar (phase
dependent) part (except for the fermion-loop graph which is completely pla-
nar). All planar contributions can be calculated with dimensional regular-
ization (see Appendices D.1 and D.2).
In order to calculate the fermion-loop graph one needs a relation for the trace
over four γ matrices. Such a relation can be found using equation (2.7):

trγµγργνγσ = 2 (gµρgνσ − gµνgρσ + gµσgνρ) . (2.45)

This relation together with the integral formula (D.18) yields

Πµν
a (p) = e22 (gµρgνσ − gµνgρσ + gµσgνρ)

pρpσ + p2gρσ

64
√
p2

, (2.46)

and finally

Πµν
a (p) =

e2

16

pµpν − p2gµν√
p2

, (2.47)

which is finite and transversal.

The planar part of the ghost-loop contribution can also be solved with for-
mula (D.18):

Πµν
b,pl(p) =

e2

32

pµpν + p2gµν√
p2

, (2.48)

and is finite as well but not transversal.
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For the calculation of the planar part of the photon-loop graph we need
equations5 (D.12) and (D.20) and arrive at

Πµν
c,pl(p) = e2

[
6
pµpν − p2gµν

64
√
p2

+ 2gµνgρσ
pρpσ − p2gρσ

64
√
p2

− 9
pµpν − p2gµν

16
√
p2

]

= −15e2

32

pµpν − p2gµν√
p2

− e2

16

p2gµν√
p2
. (2.49)

So we find that all planar contributions of this model are finite, since the
planar part of the photon-tadpole loop (2.43d) gives no contribution to the
self-energy in dimensional regularization as shown in Appendix D.2 (equation
(D.21) with n = 3). The planar part of the photon-loop graph (2.43c) is
not transversal but the sum of ghost-loop (2.43b) and photon-loop (2.43c)
contributions is.
The sum of all planar contributions to the vacuum polarization reads

Πµν
pl (p) = −3e2

8

pµpν − p2gµν√
p2

, (2.50)

therefore being finite and transversal (pµΠ
µν
pl = 0).

The non-planar contributions of the graphs in Figure 2.3 can be evaluated
using Schwinger parameterization as described in Appendix D.3. First, we
write the phase factors as

− 1

2
cos (k × p) = −1

4

∑

η=±1

eiηkep, (2.51)

where p̃µ stands for θµνpν . Employing formula (D.54) in Appendix D.3 we
now find the following result for the non-planar ghost-loop contribution (Fig-
ure 2.3b):

Πµν
b,np(p) =

−e2
4π

1∫

0

dξ
√
ξ(1 − ξ)

[
pµpν√
p2

− p2gµν√
p2

1

z
+
p̃µp̃ν

p̃2

p2

√
p2

(
1

z
+ 1

)]
e−z(ξ)

(2.52)

As defined in Appendix D.3, z(ξ) is proportional6 to
√
p̃2. Therefore, one

can expand e−z ≈ 1 − z +O (z2) for small θ and arrives at

Πµν
b,np(p) ≈ − e2

4π
√
p̃2

(
p̃µp̃ν

p̃2
− gµν

)
− e2

32

pµpν + p2gµν√
p2

+O(θ), (2.53)

5For the second term we have to write 2k2gµν = 2gµνgρσkρkσ

6z(ξ) ≡
√

ξ(1 − ξ)p2p̃2

21



where equation (D.78b) was used to solve the remaining integral. We find
that the second term exactly cancels the planar contribution of the ghost
loop while the first term is proportional to 1/

√
p̃2 and is therefore (linearly)

infrared-divergent (for p2 → 0) and also tends to infinity in the commutative
limit θ → 0.

The non-planar part of the photon-loop graph (Figure 2.3c) can be solved
using equations (D.46) and (D.55) in Appendix D.3:

Πµν
c,np(p) =

e2

4π

1∫

0

dξ
√
ξ(1 − ξ)e−z(ξ)

[
3pµpν√
p2

+
p2gµν√
p2

(
2 − 5

z

)

+
3p̃µp̃ν

p̃2

p2

√
p2

(
1

z
+ 1

)]
+
e2

8π

(3pµpν − 5p2gµν)√
p2

1∫

0

dξ
e−z(ξ)√
ξ(1 − ξ)

.

(2.54)

When expanding for small θ (considering equation (D.78a) and (D.78b)) this
expression becomes

Πµν
c,np(p) =

e2

4π
√
p̃2

(
3p̃µp̃ν

p̃2
− 5gµν

)
+
e2

32

15pµpν − 13p2gµν√
p2

+O(θ), (2.55)

where the second term cancels the planar contribution and the first term is
again infrared-divergent.

Finally, we get the expression for the (non-planar) photon-tadpole loop (Fig-
ure 2.3d) from equation (D.58) in Appendix D.3 with M = 0:

Πµν
d,np(p) =

e2gµν

π
√
p̃2

(2.56)

This graph is obviously also (linearly) infrared divergent.

If we sum up the IR divergent parts of the non-planar graphs we notice that
the terms proportional to the metric cancel each other and what remains is
the transversal expression

Πµν
IR−divergent(p) =

e2

2π
√
p̃2

p̃µp̃ν

p̃2
. (2.57)

So in contrast to the commutative model non-commutative 3-dimensional
QED is not finite but diverges for p→ 0 as well as in the limit θ → 0. From
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the superficial degree of divergence (2.39) we originally expected a linear ul-
traviolet divergence. The planar contributions, however, turned out to be
finite in dimensional regularization (due to gauge symmetry). Now the non-
planar contributions show an infrared divergence of exactly the same degree
as the originally expected ultraviolet one, namely linear. This UV/IR-mixing
is typical for non-commutative field theory since the (oscillating) phase fac-
tors (2.51) act as regulators depending on the external momenta p. However,
as these external momenta get smaller, the phases become ineffective and the
diagrams diverge at p → 0. The same happens in the limit θ → 0. Due to
this new divergence, taking the latter limit is non-trivial and does not recover
the commutative theory [22].

One graph still remains: the ghost self-energy

(k + p/2)
p

(k − p/2)

p

Figure 2.4: ghost self-energy

Ξ(p) = −4e2

∫
d3k

(2π)3

p (k + p/2)

(k + p/2)2 (k − p/2)2 sin2

(
k × p

2

)
. (2.58)

An explicit calculation of equation (2.58) is given in Appendix B.8. From our
power counting formula (2.39) we expect linear divergence (Ec = Ee = 2)
but in fact (2.58) seems to be only logarithmically divergent since one of the
momenta in the numerator (coming from one of the vertices) is an external
one.
Remembering relation (2.44) one sees that this graph also decomposes into a
planar and a non-planar part. The planar part can be solved with equation
(D.15) in Appendix D.2 and reads

Ξpl(p) = −e
2
√
p2

8
, (2.59)

whereas the non-planar part is calculated using equation (D.50) in Appendix
D.3:

Ξnp(p) =
e2
√
p2

4π

1∫

0

dξ

√
(1 − ξ)

ξ
e−z(ξ), (2.60)
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with z(ξ) =
√
ξ(1 − ξ)p2p̃2. Both contributions are finite. Furthermore, in

the limit θ → 0 one finds that planar and non-planar contributions cancel
each other.

We see now that, apart from the infrared divergence (2.57), all contributions
that do not appear in the commutative model are of the order O(θ) and we
have

Σ(p) = − e2

16

/p√
p2
,

Πµν(p) =
e2

2π
√
p̃2

p̃µp̃ν

p̃2
+
e2

16

pµpν − p2gµν√
p2

+O(θ),

Ξ(p) = O(θ), (2.61)

where the finite θ-independent term in the photon self-energy comes from
the fermion-loop graph (Figure 2.3a).
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Chapter 3

Non-Commutative QED3 with

Chern-Simons Mass Term

Now that we have seen that non-commutative massless quantum electrody-
namics is infrared divergent, we would like to find an extension which renders
the model finite. One could, for instance, try making the gauge bosons mas-
sive, since a photon propagator proportional to 1/ (p2 −M2) would no longer
be singular at p→ 0 and one could hope that the infrared singular term (2.57)
in the self-energy becomes proportional to 1/

√
p̃2 −M2.

However, if one considers where the infrared divergence came from in the first
place, one will realize that massive gauge bosons will probably not cure the
divergence problem: As mentioned below equation (2.57), phases including p̃
act as UV-regulators which become ineffective as p̃ tends to zero. Therefore
the infrared divergent term is actually related to an ultraviolet divergence
which presumably cannot be eliminated with a mass parameter. In spite of
this intuitive analysis it is still interesting to verify this claim through explicit
calculations.
Unfortunately, a mass term of the type MAµAµ in the lagrangian is not
gauge invariant, but it is possible to construct a term which is, namely the
Chern-Simons term. Calculation of the new photon propagator will make
clear why this term can be interpreted as a mass term even though it in-
cludes a derivative of the gauge field (see (3.1)). In order to be more general
we will also make our fermions massive.

25



3.1 Propagators

If we add the (gauge invariant) mass terms

Sm = −
∫
d3x

{µs
2
ǫµνρAµ∂νAρ +mf ψ̄ψ

}
(3.1)

to the action (2.1) we find the following equations of motion for the free
fermion- and photon fields:

δS0

δψ̄
=
(
i/∂ −mf

)
ψ = jψ, (3.2a)

δS0

δAµ
= �Aµ +

1 − α

α
∂µ∂ρAρ − µsǫ

µνρ∂νAρ = −jµA, (3.2b)

where mf and µs stand for the fermion mass and the Chern-Simons mass,
respectively. The fermion propagator is then given by

△ψψ̄(x, y) = i
δψ(x)

δjψ(y)
=

i

i/∂x −mf

δ3 (x− y) , (3.3)

or after Fourier transformation:

△̃ψψ̄(p) = −i /
p−mf

p2 −m2
f

. (3.4)

In order to calculate the photon propagator one has to find the inverse of the
operator (see (3.2b))

Dµρ = �gµρ +
1 − α

α
∂µ∂ρ − µsǫ

µνρ∂ν . (3.5)

One can make the ansatz

D−1
ρα = gραA+ ∂ρ∂αB + ǫρατ∂

τC, (3.6)

and calculate A, B and C from DµρD−1
ρα = δµα:

δµα = DµρD−1
ρα = �δµαA+

1 − α

α
∂µ∂αA− µsǫ

µν
α∂νA+ �∂µ∂αB

+
1 − α

α
∂µ�∂αB − µsǫ

µνρ∂ν∂ρ∂αB + �ǫµατ∂
τC

+
1 − α

α
ǫρατ∂

µ∂ρ∂τC − µsǫ
µνρǫρατ∂ν∂

τC. (3.7)
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The second term depending on C and the third term depending on B vanish
since ǫµνρ∂ν∂ρ = 0 and with ǫµνρǫρατ = δµαδ

ν
τ − δµτ δ

ν
α one finds the following

three relations when comparing coefficients:

δµα : �A− µs�C = 1, (3.8a)

∂µ∂α :
1 − α

α
A+

1

α
�B + µsC = 0, (3.8b)

ǫµατ∂
τ : µsA+ �C = 0. (3.8c)

Therefore one finds

A =
1

� + µ2
s

, (3.9a)

B =

(
(α− 1)

�
+ α

µ2
s

�2

)
1

� + µ2
s

, (3.9b)

C = −µs
�

1

� + µ2
s

, (3.9c)

and the photon propagator is given by1

△AA
µν (x, y) = −iδAµ(x)

δjνA(y)
= i

δ

δjνA(y)

(
D−1
µαj

α
A(x)

)

= i

(
gµν +

[
(α− 1) + α

µ2
s

�

]
∂µ∂ν
�

− µs
ǫµνρ∂

ρ

�

)
δ3 (x− y)

� + µ2
s

,

(3.10)

or after Fourier transformation

△̃AA
µν (p) =

−i
p2 − µ2

s

(
gµν +

[
(α− 1) − α

µ2
s

p2

]
pµpν
p2

+ iµs
ǫµνρp

ρ

p2

)
. (3.11)

In Feynman gauge (α = 1) this expression reduces to

△̃AA
µν (p) =

i

p2 − µ2
s

(
−gµν + µ2

s

pµpν
p4

− iµs
ǫµνρp

ρ

p2

)
. (3.12)

We now continue with one-loop calculations to find out how (or if) the in-
frared divergent term (2.57) depends on the masses.

1D−1

µα denotes the inverse of the operator Dµρ in (3.5). Furthermore, all derivatives are

to be taken with respect to the variable x and act on the delta function.
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3.2 One-Loop calculations

Following the same steps as in Appendix B.3 but with our modified propa-
gators (3.4) and (3.12) one finds for the fermion self-energy at one loop level

(k − p/2)

(k + p/2)
pp

Figure 3.1: fermion self-energy

Σ(p) = e2

∫
d3k

(2π)3γ
µ
/k + /p/2 −mf

(k + p/2)2 −m2
f

γν
1

(k − p/2)2 − µ2
s

×
[
gµν − µ2

s

(k − p/2)µ (k − p/2)ν

(k − p/2)4 + iµs
ǫµνσ (k − p/2)σ

(k − p/2)2

]
, (3.13)

which in the limit mf → 0 and µs → 0 reduces to (2.40). In the following, we
only consider possible divergences: According to power counting, the only
superficially divergent term in (3.13) is the one proportional to the metric
reading

Σ∞(p) = −e2

∫
d3k

(2π)3

/k + /p/2 + 3mf

(k + p/2)2 −m2
f

1

(k − p/2)2 − µ2
s

, (3.14)

where the properties γµγµ = 3 and (2.41) of the γ matrices have been used.
This integral can be solved with the integral formulas (D.24) and (D.27)
leading to

Σ∞(p) =
−e2

8π
√
p2

[

/p
√

2A(m̃f , µ̃s)
√

1 − z2

∣∣∣
a+

a−

+

(
/p

2
(1 + m̃2

f − µ̃2
s) + 3mf

)
arcsin z

∣∣∣
a+

a−

]
, (3.15)
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with

A(m̃f , µ̃s) =
1

8

[(
1 − m̃2

f + µ̃2
s

)2 − 4µ̃2
s

]
,

a± =
±1 + m̃2

f − µ̃2
s√(

1 − m̃2
f + µ̃2

s

)2 − 4µ̃2
s

and
m̃2
f = m2

f/p
2

µ̃2
s = µ2

s/p
2 (3.16)

This expression is in fact finite (in accordance to the massless model discussed
in the previous chapter). In the limit mf , µs → 0 (3.15) reduces to (2.42).

Next we will take a look at the four contributions to the photon self-energy:

pν

(k + p/2)

(k − p/2)

pµ

a)

(k − p/2)

(k + p/2)

pµ
pν

b)

pµ

(k − p/2)

pν

(k + p/2)

c)

pµ
pν

k

d)

Figure 3.2: vacuum polarization

Following the steps given in Appendix B.4 but with the massive fermion
propagator (3.4) the fermion-loop graph (Figure 3.2a) reads

Πµν
a (p) = −e2tr

∫
d3k

(2π)3γ
µ
/k + /p/2 −mf

(k + p/2)2 −m2
f

γν
/k − /p/2 −mf

(k − p/2)2 −m2
f

. (3.17)

Using the trace properties of the γ matrices

trγµγν = 2gµν ,

trγµγργν = 2iǫµρν ,

trγµγργνγσ = 2 (gµρgνσ − gµνgρσ + gµσgνρ) , (3.18)
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one finds

tr
[
γµ
(
/k + /p/2 −mf

)
γν
(
/k − /p/2 −mf

)]
= 2gµνm2

f − 2imfǫ
µρνpρ

+2 (gµρgνσ − gµνgρσ + gµσgνρ) (k + p/2)ρ (k − p/2)σ . (3.19)

Considering this relation one can now solve the integral (3.17) with formulas
(D.24) and (D.30) when setting m1 = m2 = mf :

Πµν
a (p) =

e2

4π
√
p2

{[
− imfǫ

µνρpρ + 2m̃2
f

(
pµpν − p2gµν

) ]
arcsin z

∣∣∣
a+

a−

+
(
pµpν − p2gµν

)(1

4
− m̃2

f

)[
z
√

1 − z2

∣∣∣
a+

a−
+ arcsin z

∣∣∣
a+

a−

]}
,

(3.20)

with

a± =
±1√

1 − 4m̃2
f

and m̃2
f = m2

f/p
2 . (3.21)

This expression is finite as well and in the limit mf → 0 (3.20) reduces to
(2.47).

Since the ghost propagator (2.21a) has not changed, the ghost-loop graph
(Figure 3.2b) remains the same as in (2.43b).
The expression for the photon-loop graph (Figure 3.2c) can be derived simi-
larly to Appendix B.6 when replacing the massless photon propagator (2.21c)
with the massive one in (3.12):

Πµν
c (p) =2e2

∫
d3k

(2π)3

sin2
(
k×p
2

)
[
(k + p/2)2 − µ2

s

] [
(k − p/2)2 − µ2

s

]

×
[
− (k − 3p/2)ρ gµτ + 2kµgρτ − (k + 3p/2)τ gρµ

]

×
[
− (k + 3p/2)σ gνǫ + 2kνgσǫ − (k − 3p/2)ǫ gσν

]

×
{
−gτσ + µ2

s

(k + p/2)τ (k + p/2)σ
(k + p/2)4 − iµs

ǫτση (k + p/2)η

(k + p/2)2

}

×
{
−gǫρ + µ2

s

(k − p/2)ǫ (k − p/2)ρ

(k − p/2)4 − iµs
ǫǫρη (k − p/2)η

(k − p/2)2

}
.

(3.22)
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The product of the two propagators in this expression leads to nine terms.
However, only three of them are superficially divergent: the term propor-
tional to gτσgǫρ appears to be linearly divergent and the other two being
proportional to

(
igτσµs

ǫǫρη (k − p/2)η

(k − p/2)2 + igǫρµs
ǫτση (k + p/2)η

(k + p/2)2

)

seem to be only logarithmically divergent.
The term proportional to gτσgǫρ looks almost like expression (2.43c) except
for the mass terms in the denominator and can therefore be evaluated using
formulas (D.24), (D.33), (D.59) and (D.63). The results are

Πµν,∞
c,pl (p) =

[
9e2

16π

p2gµν − pµpν√
p2

+
(1 − 4µ̃2

s) e
2

32π
√
p2

(
3pµpν − 5p2gµν

)
]

arcsin z
∣∣∣
a+

a−

− e2
√
−µ̃2

s

8π
√
p2

(
3pµpν + 7p2gµν

)
, (3.23)

with

a± =
±1√

1 − 4µ̃2
s

, µ̃2
s = µ2

s/p
2 (3.24)

and

Πµν,∞
c,np (p) =

e2

4π

1∫

0

dξ
√
ξ(1 − ξ) − µ̃2

se
−z(ξ)

[
3pµpν√
p2

+
p2gµν√
p2

(
2 − 5

z

)

+
3p̃µp̃ν

p̃2

p2

√
p2

(
1

z
+ 1

)]
+
e2

8π

(3pµpν − 5p2gµν)√
p2

1∫

0

dξ
e−z(ξ)√

ξ(1 − ξ) − µ̃2
s

+
µ̃2
se

2

4π
√
p2

1∫

0

dξ
3pµpν + p2gµν√
ξ(1 − ξ) − µ̃2

s

e−z(ξ), (3.25)

with

z(ξ) =
√

(ξ(1 − ξ) − µ̃2
s) p

2p̃2, (3.26)

for the planar and the non-planar parts, respectively. (3.23) is finite whereas
(3.25) shows a (linear) infrared divergence, as can be seen when expanding
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(3.25) for small p̃2:

Πµν,∞
c,np (p) =

e2

4π
√
p̃2

(
3p̃µp̃ν

p̃2
− 5gµν

)
+
e2
√
−µ̃2

s

8π

3pµpν + 7p2gµν√
p2

+

[
e2

32π

15pµpν − 13p2gµν√
p2

+
µ̃2
se

2

8π

3pµpν − 5p2gµν√
p2

]
arcsin z

∣∣∣
a+

a−
+O(θ).

(3.27)

As in the massless model the (lowest order) finite terms in this expression
cancel the corresponding planar contributions, leaving exactly the same in-
frared divergent term as before. In the limit µs → 0 (3.23) and (3.25) tend
to (2.49) and (2.54), respectively.

Due to symmetry properties

ǫρµν

(
k ± 3p

2

)µ (
k ± p

2

)ν
= ±ǫρµνpµkν ,

ǫρµν

(
k ∓ 3p

2

)µ (
k ± p

2

)ν
= ±2ǫρµνk

µpν , (3.28)

and the superficially logarithmically divergent part of (3.22) becomes

2iµse
2

∫
d3k

(2π)3

sin2
(
k×p
2

)
[
(k + p/2)2 − µ2

s

] [
(k − p/2)2 − µ2

s

]

×
[
−
(
k + 3p

2

)µ
ǫνρσkρpσ −

(
3k − 3p

2

)ν
ǫµρσkρpσ +

(
k − 3p

2

)2
ǫµνρ

(
k + p

2

)
ρ

(k + p/2)2

+

(
3k + 3p

2

)µ
ǫνρσkρpσ +

(
k − 3p

2

)ν
ǫµρσkρpσ −

(
k + 3p

2

)2
ǫµνρ

(
k − p

2

)
ρ

(k − p/2)2

]
.

(3.29)

In fact, we notice that with

(
k ± 3p

2

)2

=
(
k ∓ p

2

)2

+ 4
(
p2 ± kp

)
, (3.30)

the only two terms with three powers of k in the numerators cancel each
other and this contribution is finite after all.
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Finally, the photon tadpole-loop graph (Figure 3.2d) is given by (see Ap-
pendix B.7)

Πµν
d (p) = 2e2

∫
d3k

(2π)3

1

k2 − µ2
s

(
gστ − µ2

s

kσkτ
k4

+ iµs
ǫστρk

ρ

k2

)

× [gµτgνσ + gντgµσ − 2gµνgστ ] sin2

(
k × p

2

)
, (3.31)

leading to

Πµν
d (p) = −4e2

∫
d3k

(2π)3

sin2
(
k×p
2

)

k2 − µ2
s

(
2gµν + µ2

s

kµkν − k2gµν

k4

)
, (3.32)

because [gµτgνσ + gντgµσ − 2gµνgστ ] ǫστρ = 0. Only the term proportional to
gµν seems to be divergent, superficially, and can be evaluated with formulas
(D.10a) with n = 3, q = 0, L2 = µ2

s and α = 1, and (D.58) with M2 = µ2
s:

Πµν,∞
d (p) =

e2gµν

π


√−µ2

s +
exp

[
−i
√
µ2
sp̃

2
]

√
p̃2


 . (3.33)

In the limit µs → 0 this infrared divergent expression tends to (2.56). Fur-

thermore, expanding (3.33) for small p̃2 (with exp
[
−i
√
µ2
sp̃

2
]
≈ 1− i

√
µ2
sp̃

2)

leads to

Πµν,∞
d (p) =

e2gµν

π
√
p̃2

+O(θ). (3.34)

All in all, if one sums up all divergent terms of this model, one finds exactly
the same expression (2.57) as in the massless model: As expected, adding
masses mf and µs did not eliminate the (linear) infrared divergence.

Finally, replacing the massless photon propagator (2.21c) with (3.12) in Ap-
pendix B.8 leads to the expression for the ghost self-energy at one-loop level:

Ξ(p) = −4e2

∫
d3k

(2π)3

sin2
(
k×p
2

)

(k + p/2)2 [(k − p/2)2 − µ2
s

]
[
p (k + p/2) −

−µ2
s

[p (k − p/2)] [k2 − p2/4]

(k − p/2)4 + iµs
ǫµνρp

µ (k + p/2)ν (k − p/2)ρ

(k − p/2)2

]
, (3.35)
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(k + p/2)
p

(k − p/2)

p

Figure 3.3: ghost self-energy

where only the first term is superficially (logarithmically) divergent. The
planar part of this term can be evaluated with integral formula (D.27), iden-
tifying m1 = 0 and m2 = µs and leading to

Ξ∞
pl (p) = −e

2
√
p2

8π

[
2
√

−µ̃2
s +

(
1 − µ̃2

s

)
arcsin z

∣∣∣
a+

a−

]
, (3.36)

with

a± =
±1 − µ̃2

s√
(1 + µ̃2

s)
2 − 4µ̃2

s

. (3.37)

So, (3.36) is also finite and in the limit µs → 0 tends to (2.59).
The non-planar part of the superficially divergent term can be calculated
from equation (D.62) with m1 = 0, m2 = µs and reads

Ξ∞
np(p) =

√
p2e2

4π

1∫

0

dξ

√
(1 − ξ)

(ξ − µ̃2
s)
e−z(ξ), (3.38)

with

z(ξ) =
√

(ξ − µ2
s)(1 − ξ)p2p̃2. (3.39)

Here (3.38) is again finite and in the limit µs → 0 tends to (2.60). Further-
more, in the limit θ → 0 planar and non-planar contributions cancel each
other.

3.3 Gauge-dependence of the model

So far we have done one-loop calculations in Feynman gauge (α = 1). If one
considers an arbitrary gauge parameter α one gets additional terms which
might diverge.
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In the fermion self-energy one has to deal with only one additional (superfi-
cially logarithmically divergent) term of the type

Σα,∞(p) = −e2

∫
d3k

(2π)3

(1 − α)
(
/k − /p/2

) [
/k + /p/2 −mf

] (
/k − /p/2

)
[
(k + p/2)2 −m2

f

]
(k − p/2)2 [(k − p/2)2 − µ2

s

]

= −e2(1 − α)

∫
d3k

(2π)3

[ (
/k + /p/2

)
−mf − 2/p[

(k + p/2)2 −m2
f

] [
(k − p/2)2 − µ2

s

]

+

(
/k − /p/2

)
(2kp− p2)

[
(k + p/2)2 −m2

f

]
(k − p/2)2 [(k − p/2)2 − µ2

s

]
]
, (3.40)

where relation (2.7) was used for

(
/k − /p/2

)2
= (k − p/2)2 ,

(
/k − /p/2

) (
/k + /p/2

) (
/k − /p/2

)
= 2

(
/k − /p/2

)
[(k + p/2) (k − p/2)]

− (k − p/2)2 (/k + /p/2
)
. (3.41)

Furthermore, (k + p/2) (k − p/2) = (k − p/2)2 + kp− p2/2 was considered.
The first term in (3.40) can be integrated using formulas (D.24) and (D.27)
in Appendix D.2 and is therefore finite. The second term is finite as well,
since there are only two powers of k left in the numerator.

Fermion and ghost-loop contributions to the vacuum polarization are obvi-
ously gauge-independent. The photon-loop graph gets the additional super-
ficially divergent terms

Πµν,α,∞
c (p) =2e2

∫
d3k

(2π)3

(α− 1) sin2
(
k×p
2

)
[
(k + p/2)2 − µ2

s

] [
(k − p/2)2 − µ2

s

]

×
[
− (k − 3p/2)ρ gµτ + 2kµgρτ − (k + 3p/2)τ gρµ

]

×
[
− (k + 3p/2)σ gνǫ + 2kνgσǫ − (k − 3p/2)ǫ gσν

]

×
{
gτσ

(k − p/2)ǫ (k − p/2)ρ

(k − p/2)2 + gǫρ
(k + p/2)τ (k + p/2)σ

(k + p/2)2

+ (α− 1)
(k − p/2)ǫ (k − p/2)ρ (k + p/2)τ (k + p/2)σ

(k − p/2)2 (k + p/2)2

}
.

(3.42)

Multiplying the three brackets and keeping only the highest powers of k in
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the numerator leads to

4e2
∫

d3k

(2π)3

(α− 1) (k2gµν − kµkν)[
(k + p/2)2 − µ2

s

] [
(k − p/2)2 − µ2

s

] sin2

(
k × p

2

)
, (3.43)

when considering k2 = (k ± p/2)2 ∓ kp − p2/2. The planar part is finite, as
can be seen from formula (D.33) in the Appendix, whereas the non-planar
part, as calculated using formula (D.63), exhibits the infrared divergent term

Πµν,α,∞
c (p) = −e

2(α− 1)

4π
√
p̃2

(
p̃µp̃ν

p̃2
+ gµν

)
. (3.44)

The photon-tadpole graph receives the additional superficially linearly diver-
gent term

Πµν,α,∞
d (p) = 2e2(α− 1)

∫
d3k

(2π)3

kσkτ sin2
(
k×p
2

)

k2 (k2 − µ2
s)

(gµτgνσ + gντgµσ − 2gµνgστ )

= 4e2(α− 1)

∫
d3k

(2π)3

kµkν − k2gµν

k2 (k2 − µ2
s)

sin2

(
k × p

2

)
. (3.45)

Comparing the term proportional to the metric with the one in (3.32) it can
be seen that this contribution is the same as (3.33) multiplied with a factor
(α−1)/2. Finally, the first term can be evaluated using formulas (D.34) and
(D.64) in the Appendix. The result for (3.45) then reads

Πµν,α,∞
d (p) =

e2(α− 1)

2π

{
gµν


2

3

√
−µ2

s +
exp

[
−i
√
µ2
sp̃

2
]

√
p̃2




− 1

2

1∫

0

dξ

[
gµν√
p̃2

− p̃µp̃ν

(p̃2)3/2
(1 + z(ξ))

]
e−z(ξ)

}
, (3.46)

with z(ξ) =
√
−µ2

s(1 − ξ)p̃2. Expanding this expression for small p̃2 finally
yields

Πµν,α,∞
d (p) =

e2(α− 1)

4π
√
p̃2

(
p̃µp̃ν

p̃2
+ gµν

)
+O(θ), (3.47)

where to order O(0) planar and non-planar terms cancelled each other.
Obviously, the divergent terms (3.44) and (3.47) cancel each other and the
infrared divergence of this model really is independent of the gauge parameter
α. A similar result for 3 + 1 dimensional QED was found in [30].
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The ghost self-energy graph gets the additional superficially logarithmically
divergent contribution

Ξα,∞(p) =

∫
d3k

(2π)3

4e2(1 − α) [p (k − p/2)] [k2 − p2/4]

(k + p/2)2 (k − p/2)2 [(k − p/2)2 − µ2
s

] sin2

(
k × p

2

)

= 4e2(1 − α)

∫
d3k

(2π)3

{
p (k − p/2)

(k + p/2)2 [(k − p/2)2 − µ2
s

]

+
[p (k − p/2)]2

(k + p/2)2 (k − p/2)2 [(k − p/2)2 − µ2
s

]
}

sin2

(
k × p

2

)
,

(3.48)

where (k2 − p2/4) = (k − p/2)2 +kp−p2/2 was considered. The second term
is obviously finite since only two powers of k remain in the numerator. The
first term looks almost like the first one in (3.35) and therefore gives (α− 1)
times the contributions (3.36) and (3.38) which in fact are finite as well.

37



Chapter 4

Adding the Slavnov Term

4.1 Feynman rules

In the previous chapters it has been shown that non-commutative QED3 suf-
fers from UV/IR-mixing and is therefore linearly infrared divergent, where
the divergent term (2.57) of the one-loop vacuum polarization is indepen-
dent of the gauge parameter and also of the Chern-Simons mass term. A
possible way of eliminating the problems caused by the infrared divergence
by adding the following (gauge invariant) term in the action was suggested
by Slavnov [27]:

SSlavnov =

∫
d3xβλ(x)θµν ⋆ Fµν(x), (4.1)

where β is an arbitrary parameter, λ is a further Lagrange multiplier field and
the non-commutativity matrix θµν was defined in (1.2). We choose β = 1/2
to simplify the resulting Feynman rules. In the limit θ → 0 the Slavnov term
(4.1) vanishes, leading to ordinary commutative1 QED. Using the abbrevia-
tion

θµνFµν = 2θµν (∂µAν − ieAµ ⋆ Aν) ≡ F̃ , (4.2)

1Note that Slavnov [27] chooses β = 1/θ, making the Slavnov term independent of the

parameter θ. Therefore, in the limit θ → 0 such a model will not reduce to regular QED

but instead describes a scalar field.
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the complete action now reads

S =

∫
d3x

{
ψ̄ ⋆

(
i /D −mf

)
⋆ ψ − 1

4
F µν ⋆ Fµν − µsǫ

µνρAµ∂νAρ

+B∂µAµ +
α

2
B2 − c̄ ⋆ ∂µ (∂µc− ie[Aµ, c]⋆) +

1

2
λ ⋆ F̃

}
, (4.3)

and remains BRS invariant if λ transforms as

sλ = −ie[λ, c]⋆ , (4.4)

(see Appendix A).
Obviously, variation of the action with respect to λ yields

F̃ = tr








0 0 0
0 0 1
0 −1 0






0 −E1 −E2

E1 0 −B
E2 B 0






 = B = 0, (4.5)

and the magnetic field2 is therefore constrained to zero.

When adding a source term for the Lagrange multiplier λ

∫
d3xjλλ ,

in the generating functional (2.13) the equations of motion for the free λ and
photon fields are given by3

δS0

δλ
= −∂̃µAµ = −jλ, (4.6a)

δS0

δAµ
= �Aµ +

1 − α

α
∂µ∂ρAρ − µsǫ

µνρ∂νAρ + ∂̃µλ = −jµA, (4.6b)

where ∂̃µ denotes θµν∂ν and the Lagrange multiplier B has been eliminated
using its equation of motion (2.18a).

Applying ∂̃µ to (4.6b) and inserting (4.6a) one finds

λ =
1

�̃

(
−∂̃µjµA − �jλ + µsǫ

µνρ∂̃µ∂νAρ

)
, (4.7)

2In equation (4.5), B denotes the magnetic field and not the Lagrange multiplier in-

troduced earlier.
3S0 is now the bilinear part of (4.3).

39



where �̃ = ∂̃µ∂̃µ. Reinserting this equation into (4.6b) leads to

DµρAρ ≡
(

�gµρ +
1 − α

α
∂µ∂ρ − µsǫ

µνρ∂ν +
µs∂̃

µ

�̃
ǫτνρ∂̃τ∂ν

)
Aρ

= −jµA +
∂̃µ

�̃

(
∂̃ρj

ρ
A + �jλ

)
. (4.8)

In order to express Aρ in terms of the sources, we need to find the inverse
of the operator Dµρ. Taking into account the new tensor structure in (4.8)

including ∂̃µ (compare (3.6)), we make the ansatz

D−1
αµ = gαµA+ ∂α∂µB + ǫαµτ∂

τC + ∂̃α∂̃µD

+ ∂̃αǫτǫµ∂̃
τ∂ǫE + ∂̃µǫτǫα∂̃

τ∂ǫF + ǫαǫν ∂̃
ǫ∂νǫµστ ∂̃

σ∂τG, (4.9)

and D−1
αµDµρ = δρα yields

δρα = �δραA+
1 − α

α
∂ρ∂αA− µsǫ

νρ
α ∂νA+

µs

�̃
∂̃αǫ

τνρ∂̃τ∂νA+
1

α
�∂ρ∂αB

+ �ǫ ρα τ∂
τC − µsǫ

µνρǫαµτ∂ν∂
τC +

µs

�̃
ǫτνρ∂̃τ∂νǫαµσ∂̃

µ∂σC + �∂̃α∂̃
ρD

+ �∂̃αǫ
ρ

τǫ ∂̃
τ∂ǫE − µs∂̃αǫ

µνρǫτǫµ∂ν ∂̃
τ∂ǫE + �∂̃ρǫτǫα∂̃

τ∂ǫF

+ �ǫαǫν ∂̃
ǫ∂νǫρστ ∂̃

σ∂τG− µsǫ
µνρǫµστ∂ν ∂̃

σ∂τǫαǫν ∂̃
ǫ∂νG. (4.10)

Remembering ǫρµνǫρστ = δµσδ
ν
τ − δνσδ

µ
τ and comparing coefficients we find the

following relations:

δµα : �A− µs�C = 1, (4.11a)

∂ρ∂α :
1 − α

α
A+

1

α
�B + µsC = 0, (4.11b)

ǫρατ∂
τ : µsA+ �C = 0, (4.11c)

∂̃ρ∂̃α : �D + µs�E = 0, (4.11d)

∂̃αǫ
τνρ∂̃τ∂ν :

µs

�̃
A+ �E = 0, (4.11e)

∂̃ρǫτνα∂̃τ∂ν : �F + µs�G = 0, (4.11f)

ǫαǫν ∂̃
ǫ∂νǫρστ ∂̃

σ∂τ :
µs

�̃
C + �G = 0, (4.11g)

leading to

A =
1

� + µ2
s

, (4.12a)

40



B =

(
(α− 1)

�
+ α

µ2
s

�2

)
1

� + µ2
s

, (4.12b)

C = −µs
�

1

� + µ2
s

, (4.12c)

D =
µ2
s

��̃

1

� + µ2
s

, (4.12d)

E = − µs

��̃

1

� + µ2
s

, (4.12e)

F = − µ3
s

�2�̃

1

� + µ2
s

, (4.12f)

G =
µ2
s

�2�̃

1

� + µ2
s

, (4.12g)

and the operator we were after reads

D−1
αµ =

1

� + µ2
s

(
gαµ +

[
(α− 1) + α

µ2
s

�

]
∂α∂µ
�

− µs
ǫαµρ∂

ρ

�
+

µ2
s

��̃
∂̃α∂̃µ

− µs

��̃
∂̃αǫτǫµ∂̃

τ∂ǫ − µ3
s

�2�̃
∂̃µǫτǫα∂̃

τ∂ǫ +
µ2
s

�2�̃
ǫαǫν ∂̃

ǫ∂νǫµστ ∂̃
σ∂τ

)
.

(4.13)

We therefore have

Aα = −
(
D−1
αµ − ∂̃α∂̃µ

��̃
+

µs

�2�̃
∂̃µǫαστ ∂̃

σ∂τ

)
jµA

+
1

�̃

(
∂̃α −

µs
�
ǫαστ ∂̃

σ∂τ
)
jλ, (4.14)

and

λ = −� + µ2
s

�̃
jλ −

1

�̃

(
∂̃µ +

µs
�
ǫµστ ∂̃

σ∂τ
)
jµA. (4.15)
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The propagators are then given by4

△AA
µν (x, y) = −iδAµ(x)

δjνA(y)
= i

(
D−1
µν − ∂̃µ∂̃ν

��̃
+

µs

�2�̃
∂̃νǫµστ ∂̃

σ∂τ

)
δ3(x− y),

(4.16a)

△λA
µ (x, y) = −iδAµ(x)

δjλ(y)
=

i

�̃

(
−∂̃µ +

µs
�
ǫµστ ∂̃

σ∂τ
)
δ3(x− y), (4.16b)

△Aλ
µ (x, y) = −i δλ(x)

δjµA(y)
=

i

�̃

(
∂̃µ +

µs
�
ǫµστ ∂̃

σ∂τ
)
δ3(x− y), (4.16c)

△λλ(x, y) = −i δλ(x)

δjλ(y)
= i

� + µ2
s

�̃
δ3(x− y). (4.16d)

Since these propagators will lead to rather lengthy expressions in the cor-
responding one-loop graphs we will now set µs = 0 for simplicity’s sake.
(Otherwise the photon propagator consists of nine terms!) Furthermore, we
do not expect the Chern-Simons mass to have any effect on divergent terms
as this was not the case in the previous model.
Fourier transformation then leads to

pµ ν

pµ

p µ

p

△̃AA
µν (p) =

−i
p2

(
gµν + (α− 1)

pµpν
p2

− p̃µp̃ν
p̃2

)
,

(4.17a)

△̃λA
µ (p) = − p̃µ

p̃2
, (4.17b)

△̃Aλ
µ (p) =

p̃µ
p̃2
, (4.17c)

△̃λλ(p) =
ip2

p̃2
. (4.17d)

Ghost and fermion propagators remain the same as in (2.21a) and (2.21b),
respectively. The additional term in our new photon propagator (4.17a) leads
to the nice property

p̃µ△AA
µν (p) = 0. (4.18)

In fact, the photon propagator is transversal with respect to p̃µ even when
keeping µs 6= 0. This property can render infrared singularities of the type

4Once more, all derivatives act on the delta functions and are to be taken with respect

to the variable x.
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(2.57) harmless, since when they are contracted with internal photon propa-
gators in higher loop insertions one gets expressions including pµp̃

µ = 0 [27].

Now that we know the propagators, we still need the new additional lambda-
photon vertex (Figure 4.1):

k2,ν

k1,µ

k3

Figure 4.1: Lambda-photon vertex

Ṽ λAA
µν = i(2π)9 δ

δÃµ(−k1)

δ

δÃν(−k2)

δ

δλ(−k3)
Sint, (4.19)

with

SλAAint = −ieθρτ
∫
d3x

∫
d3q1−3

(2π)9
e
i

3P
i=1

qµ
i xµ

λ̃(q1)Ãρ(q2)Ãτ (q3)e
− i

2

P
j<i

qj×qi

= −ieθρτ
∫
d3q1−3

(2π)6
δ3(q1 + q2 + q3)λ̃(q1)Ãρ(q2)Ãτ (q3)e

− i
2
(q2×q3), (4.20)

from the action (4.3). The result is therefore

Ṽ λAA
µν = −2ie(2π)3δ3(k1 + k2 + k3)θ

µν sin

(
k1 × k2

2

)
. (4.21)

4.2 Power counting

Since we are now dealing with additional propagators and vertices we have
to modify our power counting formula (2.39). The Aλ propagator as well as
the λA propagator each reduce the degree of divergence by one, whereas the
λλ propagator adds an equal number of powers of k to both numerator and
denominator. Therefore equation (2.34) becomes

d(γ) = 3L− Iψ − 2IA − 2Ic − IλA + Vc + V3A, (4.22)
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where IλA denotes the number of both internal λA and Aλ lines. The number
of loop integrations L is then

L = Iψ + IA + Ic + Iλλ + IλA − (Vψ + Vc + V3A + V4A + Vλ − 1) , (4.23)

which differs from (2.35) by the additional internal λλ-lines Iλλ, the internal
λA-lines IλA and the lambda-photon vertex Vλ.
Elimination of L in (4.22) yields

d(γ) = 3+2Iψ+IA+Ic+3Iλλ+2IλA−3Vψ−2Vc−2V3A−3V4A−3Vλ. (4.24)

Similar considerations as in Section 2.4 lead to the relations

2Vψ = Eψ + 2Iψ,

2Vc = Ec + 2Ic,

Vψ + Vc + 3V3A + 4V4A + 2Vλ = EA + 2IA + IλA,

Vλ = Eλλ + 2Iλλ + IλA,

Vψ + Vc + V3A + 2V4A + Vλ = Ee. (4.25)

Now what about external λA and Aλ legs? The degree of divergence of a
certain Feynman graph depends on which end of these legs couple to the
vertices: If the lambda part couples to a vertex, such a leg will have the
same effect as Eλλ, whereas if the photon part is coupled to a vertex it will
have the same effect as EA. Therefore we can either count them as Eλλ or
as EA. In any case, it is not clear how such legs should be amputated.
Elimination of the internal legs in equation (4.24) produces

d(γ) = 3−Eψ−
1

2
EA−

1

2
Ec−

3

2
Eλλ−

1

2
Vψ−

1

2
Vc−

1

2
V3A−V4A−

1

2
Vλ, (4.26)

and use of the last relation of (4.25) finally leads to

d(γ) = 3 − Eψ − 1

2
EA − 1

2
Ec −

3

2
Eλλ −

1

2
Ee, (4.27)

depending only on the number of external legs once more. In addition to
the ones we had before, one further superficially divergent Feynman graph is
the one-loop correction to the λA (or Aλ) propagator, which appears to be
logarithmically divergent (EA = Eλ = 1, Ee = 2).
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4.3 One-loop calculations

Due to the Slavnov term in the action (4.3) one gets six additional one-loop
graphs: the lambda self-energy (Figure 4.2a), three further corrections to
the vacuum polarization (Figures 4.2b-d) and two corrections to the lambda-
photon propagator (Figures 4.2e,f).

pµ

(k − p/2)

pν

(k + p/2)

a)

pµ
pν

(k − p/2)

(k + p/2)

b)

pµ

(k − p/2)

pν

(k + p/2)

c)

pµ

(k − p/2)

pν

(k + p/2)

d)

pµ

(k − p/2)

pν

(k + p/2)

e)

pµ

(k − p/2)

pν

(k + p/2)

f)

Figure 4.2: Additional graphs including the new lambda and lambda-photon

propagators and the lambda-photon vertex

The lambda self-energy is obviously finite as follows from our power counting
formula (4.27) (Eλλ = Ee = 2 → d(γ) = −1) and therefore need not be
discussed here further.
The expression for the graph in Figure 4.2b as calculated in Appendix C.1
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is given by5

Πµν
e (p) = 4e2

∫
d3k

(2π)3
sin2

(
k × p

2

)
(k − p/2)2

(k + p/2)2
(
k̃ − p̃/2

)2

{
− θ21̄µν

− (α− 1)

(
k̃ + p̃/2

)µ (
k̃ + p̃/2

)ν

(k + p/2)2 +

(
k̄ + p̄/2

)µ (
k̄ + p̄/2

)ν
(
k̃ + p̃/2

)2

}
,

(4.28)

with the abbreviations (see (1.2))

θ21̄µν ≡ −θµρθρν = θ2




0 0 0
0 −1 0
0 0 −1


 , (4.29a)

k̄µ ≡ θµν k̃ν = −θ2




0
k1

k2


 . (4.29b)

Notice that 1̄ij = gij where i, j = 1, 2. Therefore the matrix 1̄µν can be used
to pull up indices of all vectors with zero component of zero (e.g. k̃µ, k̄µ).

pµ

(k − p/2)

pν

(k + p/2)

Figure 4.3: The graph including a photon-lambda propagator

In addition to the graph in Figure 4.2c there is actually also the possibility of
replacing the lambda-photon propagator with a photon-lambda propagator

5Remember Πµν
a−d are the graphs represented in Figure 3.2.
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as illustrated in Figure 4.3. The sum of both contributions is then given by

Πµν
f (p) = −4e2

∫
d3k

(2π)3

sin2
(
k×p
2

)
(
k + p/2

)2 (
k̃ − p̃/2

)2

×
{

2kp̃θµν + 2
(
k̄ − p̄/2

)µ
kν −

(
k̃ − 3p̃/2

)µ (
k̃ − p̃/2

)ν

+ (α− 1)

(
k̃ + p̃/2

)µ

(k + p/2)2

(
kp̃pν − (k + p/2) (k − 3p/2)

(
k̃ − p̃/2

)ν)

−
(
k̄ + p̄/2

)µ
(
k̃ + p̃/2

)2

(
2kp̃p̃ν + 2

(
k̃2 − p̃2/4

)
kν
)}

+ µ↔ ν , (4.30)

(see Appendix C.2).
Furthermore, the contribution including two lambda-photon propagators (see
Figure 4.2d) as calculated in Appendix C.3 is given by

Πµν
g (p) = 4e2

∫
d3k

(2π)3

(
k̄ − p̄/2

)µ (
k̄ + p̄/2

)ν
(
k̃ + p̃/2

)2 (
k̃ − p̃/2

)2 sin2

(
k × p

2

)
. (4.31)

Finally, both photon-loop and photon-tadpole graphs (see Figures 3.2c and
3.2d in the previous chapter) receive additional terms due to our modified
photon propagator (4.17a).
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The photon-loop graph gets the additional terms6

Πµν
c,sl(p) = −2e2

∫
d3k

(2π)3

sin2
(
k×p
2

)

(k + p/2)2 (k − p/2)2

{
8kµkν

+

∑
+/−

(
k̃ ± p̃/2

)2

[
4(kp̃)2gµν +

(
k +

3p

2

)2(
k̃ ± p̃

2

)µ(
k̃ ± p̃

2

)ν

+ 3kp̃

{(
k̃ ± p̃

2

)µ
pν + µ↔ ν

}]

+
∑

+/−

(α− 1)
[(
k2 ± kp− 3p2

2

)(
k̃ ± ep

2

)µ
∓ kp̃pµ

]
[µ→ ν]

(
k ∓ p/2

)2 (
k̃ ± p̃/2

)2

− 4

[(
k̃2 − p̃2/4

)
kµ + kp̃p̃µ

]
[µ→ ν]

(
k̃ + p̃/2

)2 (
k̃ − p̃/2

)2 , (4.32)

and the tadpole graph gets additionally

Πµν
d,sl(p) = −4e2

∫
d3k

(2π)3

(
k̃µk̃ν

k2k̃2
− gµν

k2

)
sin2

(
k × p

2

)
. (4.33)

We are now interested in possible infrared divergences coming from the non-
planar sector. The relevant terms can be extracted by setting the external
momentum p = 0 but keeping p̃ 6= 0:

Πµν,∞
e,np (p) = −e2

∑

η=±1

∫
d3k

(2π)3

eiηkep

k̃2

(
−θ21̄µν − (α− 1)

k̃µk̃ν

k2
+
k̄µk̄ν

k̃2

)
,

Πµν,∞
f,np (p) = −2αe2

∑

η=±1

∫
d3k

(2π)3
eiηkep k̃

µk̃ν

k2k̃2
,

Πµν,∞
g,np (p) = −e2

∑

η=±1

∫
d3k

(2π)3
eiηkep k̄

µk̄ν

k̃4
,

Πµν,∞
c,sl,np(p) = e2

∑

η=±1

∫
d3k

(2π)3

eiηkep

k2

(
2
kµkν

k2
+ α

k̃µk̃ν

k̃2

)
,

6[. . .][µ → ν] means multiplication with the same term in brackets but with the index

µ replaced by ν. Expression (4.32) is the result of algebraic manipulations of originally 36

terms.
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Πµν,∞
d,sl,np(p) = e2

∑

η=±1

∫
d3k

(2π)3
eiηkep

(
k̃µk̃ν

k2k̃2
− gµν

k2

)
. (4.34)

The sum of these terms is then

Πµν,∞
sl,np (p) = −e2

∑

η=±1

∫
d3k

(2π)3
eiηkep

(
−θ

21̄µν

k̃2
+ 2

k̄µk̄ν

k̃4
+
gµν

k2
− 2

kµkν

k4

)
,

(4.35)

which can be evaluated using formulas (D.55), (D.58), (D.65), (D.71) and

considering k̃2 = −θ2~k2. The divergent parameter integrals coming from the
first two terms in (4.35) cancel each other and introducing the momentum

cutoff
+∞∫
−∞

dk0 →
+Λ∫
−Λ

dk0 we arrive at

Πµν,∞
sl,np (p) =

e2

π

(
Λ

π
− 1

2
√
p̃2

)
p̃µp̃ν

p̃2
. (4.36)

Comparing this result with (2.57) we see that the infrared divergent (second)
term of (4.36) cancels exactly the one we had in our previous model: There
is no more infrared divergence left in the vacuum polarization of the photon.
Instead we find the transversal linear ultraviolet divergence

Πµν
np,divergent(p) = lim

Λ→∞
Λ
e2

π2

p̃µp̃ν

p̃2
. (4.37)

Note, however, that the cancellation of the infrared divergence only happens
in 3 dimensions: The integrands producing these terms are kµkν/k4 which
appear only in the ghost-loop and the photon-loop graphs. As was shown in
Appendix B.6 their fore factor depends on the trace of the metric, hence on
the dimension in which the model is formulated, and happens to be zero in
our case.

Next, let us take a look at the planar sector: Examining the integrands
one notices several k0-independent terms7. Therefore one expects further
ultraviolet divergent terms coming from the planar part of the model. The

7The reason for the appearance of such integrals lies in the structure of the Slavnov

term in the action (4.1).
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most divergent terms8 are:

Πµν,∞
e,pl (p) = 2e2

∫
d3k

(2π)3

{
−θ21̄µν

(
k̃ − p̃/2

)2 − (α− 1)

(
k̃ + p̃/2

)µ (
k̃ + p̃/2

)ν

(k + p/2)2
(
k̃ − p̃/2

)2

+

(
k̄ + p̄/2

)µ (
k̄ + p̄/2

)ν
(
k̃ + p̃/2

)2 (
k̃ − p̃/2

)2

}
,

Πµν,∞
f,pl (p) = 4e2

∫
d3k

(2π)3

{(
k̃ − 3p̃/2

)µ (
k̃ − p̃/2

)ν

(k + p/2)2
(
k̃ − p̃/2

)2

+ (α− 1)

(
k̃ + p̃/2

)µ (
k̃ − p̃/2

)ν

(k + p/2)2
(
k̃ − p̃/2

)2

}
,

Πµν,∞
g,pl (p) = 2e2

∫
d3k

(2π)3

(
k̄ − p̄/2

)µ (
k̄ + p̄/2

)ν
(
k̃ + p̃/2

)2 (
k̃ − p̃/2

)2 ,

Πµν,∞
c,sl,pl(p) = −e2

∫
d3k

(2π)3

{
4kµkν

(k + p/2)2 (k − p/2)2

+ α
∑

+/−

(
k̃ ± p̃/2

)µ (
k̃ ± p̃/2

)ν

(k ± p/2)2
(
k̃ ± p̃/2

)2

}
,

Πµν,∞
d,sl,pl(p) = −2e2

∫
d3k

(2π)3

(
k̃µk̃ν

k2k̃2
− gµν

k2

)
. (4.38)

Summing up these terms, keeping only the superficially linearly divergent
ones (logarithmic divergences will not be discussed in this chapter) and where
convenient shifting k → k ± p/2 we arrive at

Πµν,∞
sl,pl (p) = 2e2

∫
d3k

(2π)3

{
− θ21̄µν

k̃2
+

2k̄µ
(
k̄ + p̄/2

)ν
(
k̃ + p̃/2

)2 (
k̃ − p̃/2

)2

+
gµν

k2
− 2kµkν

(k + p/2)2 (k − p/2)2

}
. (4.39)

8Remember (k ± p/2)
2

= (k ∓ p/2)
2 ± 2kp.
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The third and fourth terms are finite, as can be seen from formulas (D.20)
and (D.21), whereas the first two terms are independent of k0 and therefore
one would näıvely expect them to diverge. But in fact the term proportional
to 1̄µν is zero in dimensional regularization:

−
∫

d3k

(2π)3

θ21̄µν

k̃2
=

∫
dk0

2π

∫
d2k

(2π)2

1̄µν

~k2
. (4.40)

The integration over the space coordinates can be performed similarly to
(D.21) in Appendix D.2 using dimensional regularization9 and therefore this
integral is zero.
Only the second term in (4.39) remains divergent and can be calculated using
formula (D.77) in the Appendix with n → 3 and taking into consideration

that k̃2 = −θ2~k2. Introducing the momentum cutoff Λ as before, we get10

Πµν,∞
sl,pl (p) = lim

Λ→∞
Λ lim
ǫ→0

Γ (ǫ)
e2ǫ
2π2

(
p̄µp̄ν

p̄2
− 1̄µν

)
, (4.41)

which is transversal since pµp̄
µ = −p̄2/θ2 and pµ1̄

µν = −p̄ν/θ2 (see defi-
nitions (4.29a) and (4.29b)). The coupling constant in this expression has
mass dimension (1+ǫ)/2 due to dimensional regularization and has therefore
been denoted eǫ, which in the limit ǫ → 0 reduces to e. Introducing a new
parameter µ with mass dimension 1 we can write e2

ǫ ≡ e2µǫ.

Together with (4.37) the (ultraviolet) divergent terms of this model now read

Πµν
divergent(p) = lim

Λ→∞
Λ
e2

π2

[
p̃µp̃ν

p̃2
+ lim

ǫ→0
Γ (ǫ)

µǫ

2

(
p̄µp̄ν

p̄2
− 1̄µν

)]
. (4.42)

(We have already seen that infrared divergent terms cancel each other.) Fur-
thermore, one notices that the first term in (4.42) is transversal with respect
to the photon propagator (4.17a). If the same is true for the second term,
these divergences will not contribute to the one-loop correction of the photon
propagator given by

∆̃
′AA
µν = ∆̃AA

µν + Πµρ∆̃
ρσ,AAΠσν ,

and therefore the Slavnov trick [27] should work in this model even though
new ultraviolet divergent terms appear, provided that

(
gµν −

p̃µp̃ν
p̃2

)(
p̄ν p̄ρ

p̄2
− 1̄νρ

)
=? 0. (4.43)

9Here we are dealing with a Euclidian integral, whereas the Appendix deals with

Minkowski-type integrals. The difference in the results lies in some constant fore factor

which in this case is, of course, irrelevant since this specific integral is zero anyway.
10ǫ ≡ 3 − n and therefore the limit ǫ → 0 corresponds to n → 3.
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Since p̄µ is proportional to pµ with zero component p0 = 0 (see equation
(4.29b)), p̃ν p̄

ν = 0 and one has
(
gµν −

p̃µp̃ν
p̃2

)(
p̄ν p̄ρ

p̄2
− 1̄νρ

)
=
p̄µp̄

ρ

p̄2
− 1̄ ρ

µ +
p̃µp̃

ρ

p̃2

=
1

~p2






0 0 0
0 (p1)2 p1p2

0 p2p1 (p2)2


− ~p2




0 0 0
0 1 0
0 0 1


+




0 0 0
0 (p2)2 −p1p2

0 −p2p1 (p1)2




 ,

where the last line follows from p̄µ = −p̄µ, p̃µ = −p̃µ = −θµνpν , 1̄ ν
µ = −1̄µν

(numerically) and from inserting the equations (4.29a) and (4.29b). Since
(p1)2 + (p2)2 = ~p2 all remaining terms cancel each other and (4.43) is really
fulfilled.

Note, however, that there might still be logarithmic (UV-) divergences left
in the model coming from three and more parameter integrals. These and
also all finite terms must have the following structure to be transversal:

Πµν(p) = e2
√
p2

[(
pµpν

p2
− gµν

)
A
(
p2, p̃2

)
+

(
p̄µp̄ν

p̄2
− 1̄µν

)
B
(
p2, p̃2

)

+
p̃µp̃ν

p̃2
C
(
p2, p̃2

)
]
. (4.44)

Because of (4.43), divergences in B (p2, p̃2) and C (p2, p̃2) will not contribute
to the one-loop correction of the vacuum polarization, and those in A (p2, p̃2)
can be dealt with through standard renormalization procedures.

Finally, corrections to the lambda-photon propagator appear to be only log-
arithmically divergent, as follows from our power counting formula (4.27).
Fermion and ghost self-energy (Figures 3.1 and 3.3) also both get additional
terms because of the modified photon propagator (4.17a), but one can easily
show that both contributions are finite:

Σsl(p) = −e2

∫
d3k

(2π)3

(
/̃k − /̃p/2

) (
/k + /p/2

) (
/̃k − /̃p/2

)

(k + p/2)2 (k − p/2)2
(
k̃ − p̃/2

)2

=

∫
d3k

(2π)3

e2

(k + p/2)2 (k − p/2)2




2kp̃
(
/̃k − /̃p/2

)

(
k̃ − p̃/2

)2 +
(
/k + /p/2

)

 ,

(4.45)
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Ξsl(p) = 4e2

∫
d3k

(2π)3

(k + p/2)µ
(
k̃ − p̃/2

)
µ
pν
(
k̃ − p̃/2

)
ν

(k + p/2)2 (k − p/2)2
(
k̃ − p̃/2

)2 sin2

(
k × p

2

)

= 4e2

∫
d3k

(2π)3

(kp̃)2

(k + p/2)2 (k − p/2)2
(
k̃ − p̃/2

)2 sin2

(
k × p

2

)
.

(4.46)

The only superficially divergent term is the second one in (4.45), which can
be calculated with formula (D.15) in Appendix D.2 and is therefore finite as
well.

It remains to be checked in future studies whether logarithmic divergences
in the vacuum polarization (and in the corrections to the lambda-photon
propagator) cancel each other and if the model really is renormalizable in
case they do not.
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Conclusion

By extending massless 2+1 dimensional QED to non-commutative Minkowski
space M

3
NC we have shown that the resulting model is no longer finite but

exhibits a linear infrared singularity

Πµν
IR−divergent(p) =

e2

2π
√
p̃2

p̃µp̃ν

p̃2
, (iii)

in the vacuum polarization (whereas fermion and ghost self-energy do remain
finite). Making fermions and photons massive (for photons this is achieved
in a gauge invariant way via a Chern-Simons mass term) does not change
this situation: The divergent term (iii) remains independent of all mass pa-
rameters. (A similar result is quoted in [22] for Φ4-theory.) In Chapter 3.3
we then verified gauge independence of (iii).

As stated in the Introduction, it should be possible to render the infrared
singular term harmless by extending the action by the so-called Slavnov
term [27]. Such a model was discussed concerning divergences in Chapter 4.
For simplicity’s sake and since the Chern-Simons mass did not have any
effect on the divergence in the previous model, the mass parameter µs was
set to zero. As expected, the new photon propagator became transversal
with respect to p̃µ (see Introduction and reference [27]). In addition, the
infrared divergent term (iii) now was even cancelled out, a result unique in
3 dimensions (see Chapter 4.3). On the other hand, new UV-divergences
appeared in the model:

Πµν
UV−divergent(p) = lim

Λ→∞
Λ
e2

π2

[
p̃µp̃ν

p̃2
+ lim

ǫ→0
Γ (ǫ)

µǫ

2

(
p̄µp̄ν

p̄2
− 1̄µν

)]
, (iv)

but these are again transversal (like the initial infrared divergence) with re-
spect to the photon propagator and therefore do not seem to present a prob-
lem. The ultraviolet divergent terms (iv) appear due to some k0-independent
integrands which are the result of θµν not having full rank. (θµν was defined
in Chapter 1 in equation (1.2).) Also note that the divergent terms (iii) and

54



(iv) are completely independent of the fermionic sector, since the Lagrange
multiplier field λ introduced in the Slavnov term couples to the gauge bosons,
only.

A matrix θµν with full rank would replace (some) ultraviolet divergent
terms with infrared divergent ones (due to the famous UV/IR-mixing). This
is, however, only possible in even dimensions and one would have to sacrifice
causality [21] (which would not matter in a Euclidian model, for instance).
Calculations [6, 7] have shown that in the case of four dimensional (Euclidian)
QED coupled to scalar fields (including full-rank θµν) the Slavnov term does
not eliminate (or even change) the (quadratic) infrared divergent term

Πµν
IR−divergent(p) ∝

p̃µp̃ν

p̃4
. (v)

Due to the fourth dimension, logarithmic ultraviolet divergences still appear
in the model, however. But these can (hopefully) be dealt with through
standard renormalization procedures.

Whether logarithmic divergences remain in 2+1 dimensional QED includ-
ing the Slavnov term remains to be checked. However, divergences propor-
tional to √

p2

(
pµpν

p2
− gµν

)
,

can (hopefully) be dealt with through standard renormalization procedures
since similar corrections appear in commutative 3+1 dimensional QED. All
other divergences (in the vacuum polarization) must have the same structure
as the linear ones due to transversality. What still remains to discuss is
whether the Slavnov trick also works for higher-loop corrections and whether
the theory really is renormalizable.
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Appendix A

Showing BRS-Invariance

The complete action used throughout this study reads

S =

∫
d3x

{
ψ̄ ⋆

(
i /D −mf

)
⋆ ψ − 1

4
F µν ⋆ Fµν − µsǫ

µνρAµ∂νAρ

+B∂µAµ +
α

2
B2 − c̄ ⋆ ∂µ (∂µc− ig[Aµ, c]⋆) +

1

2
λ ⋆ F̃

}
, (A.1)

with

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]⋆,

F̃ = θµνFµν ,

/D = γµ (∂µ − ieAµ) . (A.2)

We will now prove its invariance under the BRS transformations

sψ = iec ⋆ ψ , sψ̄ = ieψ̄ ⋆ c,

sAµ = ∂µc− ig[Aµ, c]⋆,

sc = igc ⋆ c,

sc̄ = B , sB = 0,

sλ = −ig[λ, c]⋆. (A.3)

Furthermore we will find the restriction e = g for the coupling constants.
Letting the BRS-operator s act on the fermionic part of the action one gets

s
(
ψ̄ ⋆

(
i /D −mf

)
⋆ ψ
)

= ieψ̄ ⋆ c ⋆ i /D ⋆ ψ − ψ̄ ⋆ s
(
i /D ⋆ ψ

)

− ieψ̄ ⋆ cmf ⋆ ψ + ieψ̄ ⋆ mfc ⋆ ψ ≡ 0. (A.4)
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This equation is obviously fulfilled if Dµ ⋆ ψ transforms the same way as ψ:

s (Dµ ⋆ ψ) = −ie (sAµ) ⋆ ψ + ie (∂µ − ieAµ) ⋆ c ⋆ ψ

= −ie (∂µc− igAµ ⋆ c+ igc ⋆ Aµ) ⋆ ψ + ie (∂µ − ieAµ) ⋆ c ⋆ ψ

≡ iec ⋆ (∂µ − ieAµ) ⋆ ψ. (A.5)

This condition leads to the important constraint g = e for the two coupling
constants.
Next we calculate the transformation of the electromagnetic field tensor. As
already mentioned, Fµν , having non-Abelian structure due to non-commutati-
vity, will no longer be gauge invariant. It will instead transform the same
way as λ (which is actually the reason why the BRS transformation sλ was
guessed in the first place).

sFµν = ∂µ∂νc− ig∂µ[Aµ, c]⋆ − ig[∂µc, Aν ]⋆ + (ig)2[[Aµ, c]⋆, Aν ]⋆ − µ↔ ν

= −ig ([∂µAν − ∂νAµ, c]⋆ − ig[[Aµ, c]⋆, Aν ]⋆ + ig[[Aν , c]⋆, Aµ]⋆) (A.6)

Using the Jacobi identity

[[Aµ, c]⋆, Aν ]⋆ + [[c, Aν ]⋆, Aµ]⋆ = −[[Aν , Aµ]⋆, c]⋆, (A.7)

one finds

sFµν = −ig[Fµν , c]⋆, (A.8)

and therefore∫
d3xs (F µν ⋆ Fµν) = −ig

∫
d3x ([F µν , c]⋆ ⋆ Fµν + Fµν ⋆ [F µν , c]⋆)

= −ig
∫
d3x (F µν ⋆ Fµν ⋆ c− c ⋆ F µν ⋆ Fµν) = 0. (A.9)

In the last step, property (1.12b) of the star product was used.
BRS transformation of the Chern-Simons term yields
∫
d3xs (ǫµνρAµ∂νAρ) =

∫
d3x (ǫµνρ(sAµ)∂νAρ + ǫµνρAµ∂ν(sAρ))

= 2

∫
d3xǫµνρ(∂µc− igAµ ⋆ c+ igc ⋆ Aµ)∂νAρ = 0.

(A.10)

which follows from partial integration, renaming of indices and equation
(1.12b).
Next we prove BRS-invariance of the Slavnov term:

∫
d3xs (λ ⋆ Fµν) = −ig[λ, c]⋆ ⋆ Fµν − igλ ⋆ [Fµν , c]⋆ = 0, (A.11)
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which can be seen recalling (1.12b).
Transformation of the gauge fixing and ghost part of the action is given by

∫
d3x

{
B∂µsAµ − (sc̄) ⋆ ∂µsAµ − c̄ ⋆ ∂µs2Aµ

}
= 0, (A.12)

since the first and second term cancel each other, and the third term is zero
because the BRS-operator s is nilpotent as we will now show:

s2c = ig(sc) ⋆ c− igc ⋆ sc = −g2c ⋆ c ⋆ c+ g2c ⋆ c ⋆ c = 0,

s2ψ = ie(sc) ⋆ ψ − iec ⋆ sψ = −egc ⋆ c ⋆ ψ + e2c ⋆ c ⋆ ψ = 0,

s2ψ̄ = ie(sψ̄) ⋆ c− ieψ̄ ⋆ sc = −e2ψ̄ ⋆ c ⋆ c+ egψ̄ ⋆ c ⋆ c = 0,

s2Aµ = s (∂µc− ig[Aµ, c]⋆)

= ig∂µ(c ⋆ c) + g2[Aµ, c ⋆ c]⋆ − ig {∂µc− ig[Aµ, c]⋆, c}⋆ = 0,

s2λ = −igs[λ, c]⋆ = −g2 {[λ, c]⋆, c}⋆ + g2[λ, c ⋆ c]⋆ = 0, (A.13)

and we see once more that e = g is necessary.
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Appendix B

Calculations for Chapter 2

B.1 The 3-photon vertex

k1,ρ

k3,τ

k2,σ

Figure B.1: 3-photon vertex

From equations (2.29) and (2.30) respecting the product rule for variations
follows

Ṽ ∂AAA
ρστ (k1, k2, k3) = −2e(2π)3δ3(k1 + k2 + k3)

[
kµ1 δ

ν
ρgσµgτν sin

(
k1 × k2

2

)

+kµ1 δ
ν
ρgσνgτµ sin

(
k1 × k3

2

)
+ kµ2 δ

ν
σgρµgτν sin

(
k2 × k1

2

)

+kµ2 δ
ν
σgτµgρν sin

(
k2 × k3

2

)
+ kµ3 δ

ν
τ gρµgσν sin

(
k3 × k1

2

)

+kµ3 δ
ν
τ gσµgρν sin

(
k3 × k2

2

)]

= −2e(2π)3δ3(k1 + k2 + k3) [k1σgρτ − k1τgρσ − k2ρgτσ

+k2τgρσ + k3ρgτσ − k3σgτρ] sin

(
k1 × k2

2

)
. (B.1)
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B.2 The 4-photon vertex

k1,µ1

k4,µ4

k2,µ2

k3,µ3

Figure B.2: 4-photon vertex

The relevant part of the action is

SAAAAint =
e2

2

∫
d3q1−4

(2π)9
δ3

(
4∑

i=1

qi

)
Ãµ(q1)Ãν(q2)

[
Ãµ(q3)Ãν(q4)

−Ãµ(q4)Ãν(q3)
]
e−

i
2
(q1×q2+q1×q3+q1×q4+q2×q3+q2×q4+q3×q4)

=
e2

2

∫
d3q1−4

(2π)9
δ3

(
4∑

i=1

qi

)
Ãµ(q1)Ãν(q2)Ãµ(q3)Ãν(q4)e

− i
2
(q1×q2)

×
[
e−

i
2
((q1+q2)×q3) − e

i
2
((q1+q2)×q3)

]

= − ie2

∫
d3q1−4

(2π)9
δ3 (q1 + q2 + q3 + q4) Ã

µ(q1)Ãν(q2)Ãµ(q3)Ãν(q4)

× e−
i
2
(q1×q2) sin

(
q3 × q4

2

)
. (B.2)

Inserting this expression into equation (2.32) leads to

Ṽ AAAA
µ1µ2µ3µ4

(k1, k2, k3, k4) = e2(2π)3

[
gµ1µ3gµ2µ4e

− i
2
(k1×k2) sin

(
k3 × k4

2

)

+ 23 index-permutations
]
δ3

(
4∑

i=1

ki

)
. (B.3)

Since there are four photon-fields (Aµ(k1−4)) in (B.2) there are 4! possible
ways to do the variations according to (2.32). Because of the symmetry of
the Minkowski metric one finds the relations gµ1µ2 = gµ2µ1 and gµ1µ3gµ2µ4 =
gµ2µ4gµ1µ3 . Therefore there are always 8 permutations leading to the same
gµνgρσ-factor which one can group together. The following table shows the
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permutations for gµ1µ3gµ2µ4 as well as the resulting phase factors. Obviously,
the sum of two successive lines can be written as a product of sine functions.
In fact, all eight terms can be united into two such expressions.
gµ1µ3gµ2µ4 :

(1234) → e−
i
2
(k1×k2) sin

(
k3×k4

2

)

(2143) → −e+ i
2
(k1×k2) sin

(
k3×k4

2

)
}

+ −→ −2i sin
(
k1×k2

2

)
sin
(
k3×k4

2

)

(3412) → e−
i
2
(k3×k4) sin

(
k1×k2

2

)

(4321) → −e+ i
2
(k3×k4) sin

(
k1×k2

2

)
}

+ −→ −2i sin
(
k1×k2

2

)
sin
(
k3×k4

2

)

(3214) → e−
i
2
(k3×k2) sin

(
k1×k4

2

)

(2341) → −e+ i
2
(k3×k2) sin

(
k1×k4

2

)
}

+ −→ +2i sin
(
k2×k3

2

)
sin
(
k1×k4

2

)

(1432) → −e− i
2
(k1×k4) sin

(
k2×k3

2

)

(4123) → e+ i
2
(k1×k4) sin

(
k2×k3

2

)
}

+ −→ +2i sin
(
k2×k3

2

)
sin
(
k1×k4

2

)

The remaining two groups of eight terms each can be calculated the same
way and are given by
gµ1µ2gµ3µ4 :

(1324) + (2413)+
+(3142) + (4231)

}
−→ −4i sin

(
k1×k3

2

)
sin
(
k2×k4

2

)

(2314) + (1423)+
+(3241) + (4132)

}
−→ −4i sin

(
k2×k3

2

)
sin
(
k1×k4

2

)

and
gµ1µ4gµ2µ3 :

(1243) + (4312)+
+(2134) + (3421)

}
−→ +4i sin

(
k1×k2

2

)
sin
(
k3×k4

2

)

(4213) + (1342)+
+(2431) + (3124)

}
−→ +4i sin

(
k2×k4

2

)
sin
(
k1×k3

2

)

Gathering all 24 terms finally yields the result

Ṽ AAAA
µ1µ2µ3µ4

(k1, k2, k3, k4) = −4ie2(2π)3δ3(k1 + k2 + k3 + k4)

×
[
(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3) sin

(
k1 × k2

2

)
sin

(
k3 × k4

2

)

+(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3) sin

(
k1 × k3

2

)
sin

(
k2 × k4

2

)

+(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4) sin

(
k2 × k3

2

)
sin

(
k1 × k4

2

)]
. (B.4)
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B.3 The one-loop fermion self-energy

k′

k
pp′

Figure B.3: fermion self-energy

With equations (2.21b),(2.21c) and (2.25), according to the Feynman rules,
one arrives at

Σ(p) =

∫
d3kd3k′d3p′

(2π)9
ie(2π)3δ3 (−p′ − k′ + k) γµe

i
2
(k×p′)−i/k

k2

× ie(2π)3δ3 (−k + k′ + p) γνe
i
2
(p×k)−igµν

k′2

= e2
∫
d3kd3k′

(2π)3
γµe

i
2
(k×(−k′)) /k

k2
δ3 (−k + k′ + p) γµe

i
2
(p×k) 1

k′2

= e2
∫

d3k

(2π)3
γµe

i
2
(k×p) /k

k2
γµe

i
2
(p×k) 1

(k − p)2
. (B.5)

Obviously, the phase factors cancel out, leading to the commutative result
of regular 3-dimensional QED. Furthermore, one can shift k → k + p/2 to
make the integrand symmetric.

B.4 The photon line with fermion loop

pν

k

k′

p′µ

Figure B.4: fermion-loop graph
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According to the Feynman rules, equations (2.21b) and (2.25) lead to

Πµν
a (p) = − tr

∫
d3kd3k′d3p′

(2π)9
ie(2π)3δ3 (k − p′ − k′) γµe

i
2
(k′×k)−i/k

k2

× ie(2π)3δ3 (k′ + p− k) γνe
i
2
(k×k′)−i/k

′

k′2

= − tr

∫
d3kd3k′

(2π)3
e2γµ

/k

k2
δ3 (k′ + p− k) γν

/k
′

k′2

= − e2tr

∫
d3k

(2π)3
γµ

/k

k2
γν

(/k − /p)

(k − p)2
, (B.6)

where again the phases cancelled. Shifting variables k → k + p/2 finally
yields the symmetric expression in (2.43a).

B.5 The photon line with ghost loop

k′

k

p′µ pν

Figure B.5: ghost-loop graph

With equations (2.21a) and (2.28), according to the Feynman rules, one
arrives at

Πµν
b (p) = −

∫
d3kd3k′d3p′

(2π)9
2e(2π)3δ3 (k − p′ − k′) kµ sin

(
k × (−k′)

2

)
i

k′2

× 2e(2π)3δ3 (k′ + p− k) k′ν sin

(
k′ × (−k)

2

)
i

k2

= − 4e2

∫
d3kd3k′

(2π)3
kµ

1

k′2
δ3 (k′ + p− k) k′ν sin2

(
k′ × k

2

)
1

k2

= − 4e2

∫
d3k

(2π)3

kµ(k − p)ν

k2(k − p)2
sin2

(
k × p

2

)
, (B.7)

and a variable shift k → k+p/2 leads to the symmetric version of this result.
(Since p× p = 0 the phase does not change.)
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B.6 The photon line with photon loop

p′µ

k′

pν

k

Figure B.6: photon-loop graph

According to the Feynman rules, equations (2.21c) and (2.31) lead to

Πµν
c (p) =

1

2

∫
d3kd3k′d3p′

(2π)9
(−2e)(2π)3δ3 (k − p′ − k′) [(−k′ + p′)ρgµτ

+(k + k′)µgρτ + (−p′ − k)τgρµ] sin

(
k × (−p′)

2

) −igτσ
k′2

(−2e)(2π)3

× δ3 (k′ + p− k) [(−k − p)σgνǫ + (k′ + k)νgσǫ + (p− k′)ǫgσν ]

× sin

(
k′ × p

2

) −igǫρ
k2

= − 2e2

∫
d3kd3k′

(2π)3
[(k − 2k′)ρδµσ + (k + k′)µδρσ + (k′ − 2k)σg

ρµ]
1

k′2

× δ3 (k′ + p− k)
[
−(k + p)σδνρ + (k′ + k)νδσρ + (p− k′)ρg

σν
] 1

k2

× sin

(
k × k′

2

)
sin

(
k′ × p

2

)

= 2e2

∫
d3k

(2π)3
[(2p− k)ρδµσ + (2k − p)µδρσ − (p+ k)σg

ρµ]
1

(k − p)2

×
[
−(k + p)σδνρ + (2k − p)νδσρ + (2p− k)ρg

σν
] 1

k2
sin2

(
k × p

2

)
.

(B.8)

After shifting variables k → k + p/2, performing the multiplication of the
two square brackets and considering δρσδ

σ
ρ = 3 when working in 3 dimensions,

this expression becomes

Πµν
c (p) = 4e2

∫
d3k

(2π)3

(
k2 + 9

4
p2
)
gµν + 3kµkν − 9

4
pµpν

(k + p/2)2 (k − p/2)2 sin2

(
k × p

2

)
. (B.9)
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B.7 The photon line with photon-tadpole loop

p′µ pν

k

Figure B.7: tadpole graph

With equations (2.21c) and (2.33), according to the Feynman rules, one
arrives at

Πµν
d (p) =

1

2

∫
d3kd3p′

(2π)6
(−4i)e2(2π)3δ3 (−p′ − k + k + p)

−igστ
k2

×
[
(gµτgσν − gµνgστ ) sin

(
p′ × k

2

)
sin

(
k × p

2

)

+(gµσgτν − gµνgστ ) sin

(
(−p′) × k

2

)
sin

(
(−k) × p

2

)]
. (B.10)

The square bracket contains only two terms, since the third term coming
from the vertex is proportional to sin(k × k/2) = 0. Using gστg

στ = 3 (in 3
dimensions), and performing the integration over p′ finally leads to

Πµν
d (p) = −8e2

∫
d3k

(2π)3

gµν

k2
sin2

(
k × p

2

)
. (B.11)

B.8 The one-loop ghost self-energy

k
p

k′

p′

Figure B.8: ghost self-energy
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With equations (2.21a), (2.21c) and (2.28), according to the Feynman rules,
one arrives at

Ξ(p) =

∫
d3kd3k′d3p′

(2π)9
2e(2π)3δ3 (−p′ − k′ + k) kµ sin

(
(−p′) × k

2

)

× −igµν
k′2

2e(2π)3δ3 (−k + k′ + p) pν sin

(
(−k) × p

2

)
i

k2

= 4e2

∫
d3kd3k′

(2π)3

pµ
k′2

kµ

k2
δ3 (−k + k′ + p) sin

(
(k′ × k

2

)

× sin

(
(−k) × p

2

)
, (B.12)

and finally

Ξ(p) = −4e2

∫
d3k

(2π)3

pµkµ
k2(k − p)2

sin2

(
k × p

2

)
, (B.13)

where again the shift k → k + p/2 leads to the symmetric version given in
(2.58).
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Appendix C

Calculations for Chapter 4

C.1 The photon line with lambda propagator

p′µ pν

k′

k

Figure C.1: photon line with lambda propagator

With equations (4.17a), (4.17d) and (4.21) one gets according to the Feynman
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rules

Πµν
e (p) =

∫
d3kd3k′d3p′

(2π)9
(−2ie)(2π)3δ3 (k − p′ − k′) θµρ sin

(
k × (−p′)

2

)

× ik′2

k̃′2
(−2ie)(2π)3δ3 (−k + k′ + p) θσν sin

(
p× (−k)

2

)

×
(
−igρσ
k2

− (α− 1)
ikρkσ
k4

+
ik̃ρk̃σ

k2k̃2

)

= 4e2

∫
d3k

(2π)3
sin2

(
k × p

2

)
(k − p)2

k2
(
k̃ − p̃

)2

×
(
θµσθ

σν − (α− 1)
k̃µk̃ν

k2
+
θµρk̃ρθ

νσk̃σ

k̃2

)
. (C.1)

Shifting variables k → k + p/2 finally yields the symmetric version (4.28).

C.2 The photon line with lambda-photon

propagator

p′µ pν

k′

k

a)

p′µ pν

k

k′

b)

Figure C.2: photon line with lambda-photon propagator
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With equations (4.17b) and (4.21) one gets according to the Feynman rules

Πµν
f1(p) =

∫
d3kd3k′d3p′

(2π)9
(−2ie)(2π)3δ3 (k − p′ − k′) θǫµ sin

(
k × (−p′)

2

)

×
−k̃′ρ
k̃′2

(−2e)(2π)3 [(−k − p)ρgντ + (k′ + k)νgρτ + (p− k′)τgρν ]

× δ3 (−k + k′ + p) sin

(
k′ × p

2

)(−igǫτ
k2

− (α− 1)
ikǫkτ
k4

+
ik̃ǫk̃τ

k2k̃2

)

= 4e2

∫
d3k

(2π)3
[(k + p)ρgντ − (2k − p)νgρτ + (k − 2p)τgρν ]

×
θµǫ
(
k̃ − p̃

)
ρ

k2
(
k̃ − p̃

)2

(
gǫτ + (α− 1)

kǫkτ
k2

− k̃ǫk̃τ

k̃2

)
sin2

(
k × p

2

)
, (C.2)

which is the expression for the graph in Figure C.2a. A similar calculation
leads to the expression for the graph including a photon-lambda propagator
(Figure C.2b). One finds almost the same result but with the indices µ, ν
exchanged. Therefore the sum of both graphs, after shifting variables k → k+
p/2 and performing the multiplication of the two brackets in each expression,
becomes

Πµν
f (p) = −4e2

∫
d3k

(2π)3

sin2
(
k×p
2

)
(
k + p/2

)2 (
k̃ − p̃/2

)2

×
{

2kp̃θµν + 2θµǫ
(
k̃ − p̃/2

)
ǫ
kν −

(
k̃ − 3p̃/2

)µ (
k̃ − p̃/2

)ν

+ (α− 1)

(
k̃ + p̃/2

)µ

(k + p/2)2

(
kp̃pν − (k + p/2) (k − 3p/2)

(
k̃ − p̃/2

)ν)

−
θµǫ
(
k̃ + p̃/2

)
ǫ(

k̃ + p̃/2
)2

(
2kp̃p̃ν + 2

(
k̃2 − p̃2/4

)
kν
)}

+ µ↔ ν .

(C.3)
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p′µ pν

k

k′

Figure C.3: photon line with two lambda-photon propagators

C.3 The photon line with two lambda-photon

propagators

With equations (4.17b) and (4.21), according to the Feynman rules, one
arrives at

Πµν
g (p) =

∫
d3kd3k′d3p′

(2π)9
(−2ie)(2π)3δ3 (k − p′ − k′) θρµ sin

(
k × (−p′)

2

)

×
−k̃′ρ
k̃′2

(−2ie)(2π)3δ3 (−k + k′ + p) θσν sin

(
k′ × p

2

) −k̃σ
k̃2

= 4e2

∫
d3k

(2π)3

θµρ
(
k̃ − p̃

)
ρ
θνσk̃σ

k̃2
(
k̃ − p̃

)2 sin2

(
k × p

2

)
. (C.4)

Shifting variables k → k + p/2 finally leads to the symmetric version (4.31).
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Appendix D

Integrals

D.1 Dimensional regularization

We follow the derivation given in reference [32] on pages 382-385: Working
in n-dimensional Minkowski space we start with integrals of the type

In(q) =

∫
dnk

(k2 + 2kq − L2)α
, (D.1)

where k = (k0, r, φ, θ1, θ2, . . . , θn−3) in polar coordinates and the volume ele-
ment is therefore given by

dnk = dk0r
n−2drdφ

n−3∏

i=1

sini θidθi. (D.2)

Shifting variables k′µ = kµ + qµ and using

2π∫

0

dφ

n−3∏

i=1

π∫

0

sini θidθi =
2π

(n−1)
2

Γ
(
n−1

2

) , (D.3)

we arrive at

In(q) =
2π

(n−1)
2

Γ
(
n−1

2

)
∞∫

−∞

dk0

∞∫

0

rn−2dr

(k2
0 − r2 − (q2 + L2)

α , (D.4)

where the primes have been dropped. Since the integrand depends only

quadratically on k0 we can replace
∞∫

−∞

dk0 → 2
∞∫
0

dk0.
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To evaluate the remaining integrals we use the Euler beta function [35]

B(x, y) ≡ Γ(x)Γ(y)

Γ(x+ y)
= 2

∞∫

0

dtt2x−1(1 + t2)−x−y,
ℜ(x) > 0
ℜ(y) > 0

(D.5)

Putting

x = 1+β
2
, y = α− 1+β

2
, t = s

M
, (D.6)

leads to
∞∫

0

ds
sβ

(s2 +M2)α
=

Γ
(

1+β
2

)
Γ
(
α− 1+β

2

)

2 (M2)α−(1+β)/2 Γ(α)
, (D.7)

and if we identify β = 0 and M2 = −r2 − (q2 + L2) we can use this formula
to perform the integration over k0 in (D.4):

In(q) =
2π

(n−1)
2

Γ
(
n−1

2

)
∞∫

0

dr
rn−2Γ

(
1
2

)
Γ
(
α− 1

2

)

(−r2 − (q2 + L2))α−1/2 Γ(α)
. (D.8)

By identifying α′ = α − 1
2
, β = n − 2 and M2 = q2 + L2 we can once again

use formula (D.7) to perform the remaining integral:

In(q) = (−1)
1
2
−α π

n
2

Γ(α)

Γ
(
α− n

2

)

(q2 + L2)α−
n
2

= (−1)
n
2 iπ

n
2
Γ
(
α− n

2

)

Γ(α)
(−q2 − L2)

n
2
−α.

(D.9)
Therefore the result is

In(q) =

∫
dnk

(k2 + 2kq − L2)α
= (−1)

n
2 iπ

n
2
Γ
(
α− n

2

)

Γ(α)
(−q2−L2)

n
2
−α. (D.10a)

Differentiating both sides with respect to qµ and redefining α as well as using
the property of the Gamma-function xΓ(x) = Γ(1 + x) leads to

Iµn (q) =

∫
dnk

kµ

(k2 + 2kq − L2)α
= (−qµ)In(q), (D.10b)

and further differentiation with respect to qν yields

Iµνn (q) =

∫
dnk

kµkν

(k2 + 2kq − L2)α
=

(
qµqν +

gµν (−q2 − L2)

2α− n− 2

)
In(q).

(D.10c)
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D.2 Integrals and Feynman trick

Feynman’s formula1 is given by

1

ab
=

1∫

0

dz

(az + b(1 − z))2 , (D.11)

and is a useful trick in order to bring the following integrals into the form
In(0) or Iµνn (0) as defined in Appendix D.1.

The first integral we want to calculate is
∫

d3k

(2π)3

1
(
k + p

2

)2 (
k − p

2

)2 =
1

8
√
p2
. (D.12)

Applying formula (D.11) leads to

1∫

0

dz

∫
d3k

(2π)3

1
{(
k + p

2

)2
z +

(
k − p

2

)2
(1 − z)

}2

=

1∫

0

dz

∫
d3k

(2π)3

1
{(
k − p

(
1
2
− z
))2

+ p2z(1 − z)
}2 . (D.13)

Now we can shift variables to k′ = k − p
(

1
2
− z
)

and use formula (D.10a)
in order to perform the integration over k′. Identifying (−L2) = p2z(1 − z),
q = 0 and n = 3 leads to

1∫

0

dz

∫
d3k′

(2π)3

1

{k′2 + p2z(1 − z)}2 =

1∫

0

dz
(−1)

3
2 iπ

3
2

(2π)3

Γ
(

1
2

)

Γ(2)

(
p2z(1 − z)

)− 1
2

=
1

8
√
p2
, (D.14)

where formula (D.78a) was used for the remaining z-integral.

In a similar way we can derive

∫
d3k

(2π)3

(
k + p

2

)µ
(
k + p

2

)2 (
k − p

2

)2 =
pµ

16
√
p2
. (D.15)

1The proof of this integral formula is straightforward: simply substitute z′ = (a−b)z−b.
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Applying formula (D.11) and shifting variables k′ = k − p
(

1
2
− z
)

leads to

1∫

0

dz

∫
d3k′

(2π)3

k′µ + pµ(1 − z)

{k′2 + p2z(1 − z)}2 , (D.16)

which can be solved with equations (D.10a) and (D.10b). (Note that the first
term including k′µ does not contribute since Iµn (0) = 0 in (D.10b).) With
(−L2) = p2z(1 − z), q = 0 and n = 3 one gets

1∫

0

dz

∫
d3k′

(2π)3

pµ(1 − z)

{k′2 + p2z(1 − z)}2 =

1∫

0

dz
(−1)

3
2 iπ

3
2

(2π)3

Γ
(

1
2

)

Γ(2)
pµ
√

1 − z

zp2

=
pµ

16
√
p2
. (D.17)

Our next integral is
∫

d3k

(2π)3

(
k + p

2

)µ (
k − p

2

)ν
(
k + p

2

)2 (
k − p

2

)2 = −p
µpν + p2gµν

64
√
p2

. (D.18)

Following the same steps as before one gets
1∫

0

dz

∫
d3k′

(2π)3

(k′µ + pµ(1 − z)) (k′ν − pνz)

{k′2 + p2z(1 − z)}2

=

1∫

0

dz

(2π)3

π2
√
z(1 − z)√
p2

(
−gµνp2 − pµpν

)
= −p

µpν + p2gµν

64
√
p2

, (D.19)

where additionally formulas (D.10c) and (D.78b) were used.
In the same way we find

∫
d3k

(2π)3

kµkν
(
k + p

2

)2 (
k − p

2

)2 =
pµpν − p2gµν

64
√
p2

. (D.20)

The last of these integrals is
∫

dnk

(2π)n
1

k2
= 0. (D.21)

To prove this formula we use the following trick:
∫

dnk

(2π)n
1

k2
=

∫
dnk

(2π)n
1

k2

k2 −M2

k2 −M2

=

∫
dnk

(2π)n


 1

k2 −M2
−

1∫

0

dz
M2

(k2 −M2(1 − z))2


 , (D.22)
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where M is an arbitrary parameter and formula (D.11) has been used for
the second term. The integral over k can be solved with equation (D.10a)
leading to

(−1)
n
2 iπ

n
2

(2π)n


Γ
(
1 − n

2

)

Γ(1)
(−M2)

n
2
−1 −M2

1∫

0

dz
Γ
(
2 − n

2

)

Γ(2)
(−M2(1 − z))

n
2
−2




=
(−1)

n
2 i(−M2)

n
2
−1

(2π2)
n
2

Γ

(
2 − n

2

)[
1 +

2 − n

2

2

n− 2

]
= 0. (D.23)

The next set of integrals will contain masses as appear in Chapter 3.2. The
first one2 is
∫

d3k

(2π)3

1[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

] =
arcsin a+ − arcsin a−

8π
√
p2

, (D.24)

with

a± =
±1 + m̃2

1 − m̃2
2√

(1 − m̃2
1 + m̃2

2)
2 − 4m̃2

2

. (D.25)

To prove this formula we use (D.11) and (D.10a) and get

∫
d3k

(2π)3

1[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=

1∫

0

dz

∫
d3k′

(2π)3

1

{k′2 + p2z(1 − z) −m2
1z −m2

2(1 − z)}2

=
1

8π
√
p2

1∫

0

dz√
z(1 − z) − m̃2

1z − m̃2
2(1 − z)

, (D.26)

where k′ = k−p
(

1
2
− z
)

and m̃2
1,2 = m2

1,2/p
2. Applying formula (D.84) finally

yields the result.

2Note that if one takes the limit m1,2 → 0 the parameters a± become ±1 and the

numerator reduces to π leading to the same expression as in formula (D.12).
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Next we show

∫
d3k

(2π)3

(
k + p

2

)µ
[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=
pµ

8π
√
p2

[√
2A(m̃1, m̃2)

√
1 − z2

∣∣∣
a+

a−
+

1

2
(1 + m̃2

1 − m̃2
2) arcsin z

∣∣∣
a+

a−

]
,

(D.27)

with

A(m̃1, m̃2) =
1

8

[(
1 − m̃2

1 + m̃2
2

)2 − 4m̃2
2

]
. (D.28)

Applying formulas (D.11),(D.10a) and (D.10b) yields

∫
d3k

(2π)3

(
k + p

2

)µ
[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=

1∫

0

dz

∫
d3k′

(2π)3

k′µ + pµ(1 − z)

{k′2 + p2z(1 − z) −m2
1z −m2

2(1 − z)}2

=
pµ

8π
√
p2

1∫

0

dz
(1 − z)√

z(1 − z) − m̃2
1z − m̃2

2(1 − z)
, (D.29)

which can be solved with (D.88).

Our next integral is

∫
d3k

(2π)3

(
k + p

2

)µ (
k − p

2

)ν
[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=
−1

8π
√
p2

{
pµpν(m̃2

2 − m̃2
1)
√

2A(m̃1, m̃2)
√

1 − z2

∣∣∣
a+

a−

+ pµpν
(
m̃2

1 + m̃2
2

2
+ m̃2

1m̃
2
2 −

m̃4
1 + m̃4

2

2

)
arcsin z

∣∣∣
a+

a−

+ A(m̃1, m̃2)
(
pµpν + p2gµν

) [
z
√

1 − z2

∣∣∣
a+

a−
+ arcsin z

∣∣∣
a+

a−

]}
. (D.30)
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From formulas (D.11) and (D.10a) – (D.10c) follows

∫
d3k

(2π)3

(
k + p

2

)µ (
k − p

2

)ν
[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=

1∫

0

dz

∫
d3k′

(2π)3

k′µk′ν − pµpνz(1 − z)

{k′2 + p2z(1 − z) −m2
1z −m2

2(1 − z)}2

=
−1

8π
√
p2

1∫

0

dz

{
pµpνz(1 − z)√

z(1 − z) − m̃2
1z − m̃2

2(1 − z)

+ p2gµν
√
z(1 − z) − m̃2

1z − m̃2
2(1 − z)

}
. (D.31)

This integral can be rewritten to

−1

8π
√
p2

1∫

0

dz

{
pµpν (m̃2

1z + m̃2
2(1 − z))√

z(1 − z) − m̃2
1z − m̃2

2(1 − z)

+ (pµpν + p2gµν)
√
z(1 − z) − m̃2

1z − m̃2
2(1 − z)

}
, (D.32)

which can be solved with equations (D.88), (D.89) and (D.91).
Similarly we evaluate

∫
d3k

(2π)3

kµkν[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=
−1

8π
√
p2

{
pµpν(m̃2

2 − m̃2
1)
√

2A(m̃1, m̃2)
√

1 − z2

∣∣∣
a+

a−

+ pµpν
(
m̃2

1 + m̃2
2

2
+ m̃2

1m̃
2
2 −

m̃4
1 + m̃4

2

2
− 1

4

)
arcsin z′

∣∣∣
a+

a−

+ A(m̃1, m̃2)
(
pµpν + p2gµν

) [
z
√

1 − z2

∣∣∣
a+

a−
+ arcsin z′

∣∣∣
a+

a−

]}
. (D.33)
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Finally we need

∫
d3k

(2π)3

kµkν

k2 (k2 −M2)
=

1∫

0

dz

∫
d3k

(2π)3

kµkν

(k2 −M2(1 − z))2

=
−gµν
8π

1∫

0

dz
√

−M2(1 − z)

=
−gµν

√
−M2

12π
, (D.34)

where formulas (D.11) and (D.10a) have been used.

D.3 Integrals and Schwinger parameterization

In order to solve the following integrals we use Schwinger parameterization3:

1
(
k ± p

2

)2
+ iǫ

= −i
∞∫

0

dαeiα(k±
p
2)

2
−αǫ, (D.35)

where ǫ > 0 is an arbitrary small parameter needed to regularize the integral
on the right hand side.
Furthermore, we have to solve some complex Gauss-integrals in n-dimen-
sional Minkowski space:

∫
dnkeiαk

2

= lim
ǫ→0

∫
dnke−(ǫ−iα)k2

0−(ǫ+iα)~k2

=

√
π

−iα
( π
iα

)n−1
2
, (D.36)

and therefore
∫

dnk

(2π)n
eiαk

2

=
−i

(4iπα)
n
2

. (D.37)

Finally we need the following integral formula [35]:

∞∫

0

dρρ−(1−ν)e−τρ−
σ
ρ = 2

(σ
τ

) ν
2
Kν

(
2
√
στ
)
,

ℜ(τ) > 0
ℜ(σ) > 0

(D.38)

3The same method for solving non-planar graphs was used in e.g. [2].
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where the Kν(z) are the modified Bessel functions. The only ones we need
are [35]

K±1/2(z) =

√
π

2z
e−z and

K−3/2(z) =

√
π

2

(
z−3/2 + z−1/2

)
e−z. (D.39)

The first integral we want to calculate is

∫
d3k

(2π)3

∑
η=±1

eiηkep

(
k + p

2

)2 (
k − p

2

)2 = − lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ

∫
d3k

(2π)3 exp

[
iα
(
k +

p

2

)2

+iβ
(
k − p

2

)2

+ iηkp̃− (α+ β)ǫ

]

= − lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ

∫
d3k′

(2π)3 exp
[
i(α+ β)k′2

+i
αβp2

α+ β
− ip̃2

4(α + β)
− (α+ β)ǫ

]
, (D.40)

where the integral over k has been shifted to k′ = k+ (α−β)p+ηep
2(α+β)

. (Remember

p̃p = θµνp
µpν = 0 and η2 = 1.) Making use of formula (D.37) and taking the

limit ǫ→ 0 afterwards leads to

i

4 (iπ)
3
2

∞∫

0

dα

∞∫

0

dβ(α+ β)−
3
2 exp

[
i
αβp2

α+ β
− ip̃2

4(α+ β)

]
. (D.41)

A factor 2 comes from the sum over η (since the integrand does not depend
on η any longer). Next, we make the following substitutions:

α = ρ
(1−ξ)p2

β = ρ
ξp2

}
−→ dαdβ =

ρ

(ξ(1 − ξ)p2)2dξdρ (D.42)

Therefore we have

αβ =
ρ2

ξ(1 − ξ)p4
,

α+ β =
ρ

ξ(1 − ξ)p2
, (D.43)
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and the integral becomes

i

4 (iπ)
3
2

1∫

0

dξ

∞∫

0

dρ
ρ−1/2

√
ξ(1 − ξ)p2

exp

[
iρ− iξ(1 − ξ)p2p̃2

4ρ

]
. (D.44)

Now we can use formula (D.38) if we identify ν = 1/2, τ = −i + ǫ, σ =
i
4
ξ(1 − ξ)p2p̃2 + ǫ and take the limit ǫ → 0 after performing the integration

over ρ. Setting z(ξ) ≡
√
ξ(1 − ξ)p2p̃2 yields

i

4 (iπ)
3
2

1∫

0

dξ(ξ(1 − ξ)p2)−
1
2 2

(
iz

2

)1/2

K1/2(z), (D.45)

and considering (D.39) the result is

∫
d3k

(2π)3

∑
η=±1

eiηkep

(
k + p

2

)2 (
k − p

2

)2 =
1

4π
√
p2

1∫

0

dξ
e−z(ξ)√
ξ(1 − ξ)

. (D.46)

The next integral we need is

∑

η=±1

∫
d3k

(2π)3

(
k + p

2

)µ
eiηkep

(
k + p

2

)2 (
k − p

2

)2

= i lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ
∂

∂yµ

∫
d3k

(2π)3 exp

[
iα
(
k +

p

2

)2

+iβ
(
k − p

2

)2

+ iηkp̃+ iy
(
k +

p

2

)
− (α+ β)ǫ

] ∣∣∣∣∣
y=0

= i lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ
∂

∂yµ

∫
d3k′

(2π)3 exp

[
i(α+ β)k′2 + i

αβp2

α+ β

− ip̃2

4(α+ β)
+ i

(2βp− ηp̃)y

2(α+ β)
− iy2

4(α+ β)
− (α+ β)ǫ

] ∣∣∣∣∣
y=0

, (D.47)

where k has been shifted according to k′ = k + (α−β)p+ηep+y
2(α+β)

. Now we use

equation (D.37), take the limit ǫ → 0 and perform the differentiation with
respect to yµ and arrive at

i

8 (iπ)
3
2

∑

η=±1

∞∫

0

dα

∞∫

0

dβ
(2βp− ηp̃)µ

2(α+ β)5/2
exp

[
i
αβp2

α+ β
− ip̃2

4(α+ β)

]
. (D.48)
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The term proportional to η cancels out when writing out the sum, and making
the same substitutions (D.42) as before we get

i

4 (iπ)
3
2

1∫

0

dξ

∞∫

0

dρ

√
1 − ξ

ξ

pµ√
p2
ρ−1/2 exp

[
iρ− iξ(1 − ξ)p2p̃2

4ρ

]
. (D.49)

Finally, considering equations (D.38) and (D.39) the result is

∑

η=±1

∫
d3k

(2π)3

(
k + p

2

)µ
eiηkep

(
k + p

2

)2 (
k − p

2

)2 =
pµ

4π
√
p2

1∫

0

dξ

√
(1 − ξ)

ξ
e−z(ξ). (D.50)

Next we calculate

∑

η=±1

∫
d3k

(2π)3

(
k + p

2

)µ (
k − p

2

)ν
eiηkep

(
k + p

2

)2 (
k − p

2

)2

= lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ
∂

∂yµ

∂

∂zν

∫
d3k

(2π)3 exp

[
iα
(
k +

p

2

)2

+iβ
(
k − p

2

)2

+ iηkp̃+ iy
(
k +

p

2

)
+ iz

(
k − p

2

)
− (α+ β)ǫ

] ∣∣∣∣∣
y=z=0

= lim
ǫ→0

∑

η=±1

∞∫

0

dα

∞∫

0

dβ
∂

∂yµ

∂

∂zν

∫
d3k′

(2π)3 exp

[
i(α+ β)k′2 + i

αβp2

α+ β

− ip̃2

4(α+ β)
+ i

(2βp− ηp̃)y − (2αp+ ηp̃)z

2(α+ β)
− i(y + z)2

4(α+ β)
− (α+ β)ǫ

] ∣∣∣∣∣
y=z=0

(D.51)

where k was shifted to k′ = k+ (α−β)p+ηep+y+z
2(α+β)

. We use equation (D.37), take
the limit ǫ → 0 and perform the differentiations with respect to zν and yµ
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and get

−i
8 (iπ)

3
2

∑

η=±1

∞∫

0

dα

∞∫

0

dβ

[
(2βp− ηp̃)µ(2αp+ ηp̃)ν

4(α+ β)7/2
− igµν

2(α+ β)5/2

]

× exp

[
i
αβp2

α+ β
− ip̃2

4(α+ β)

]

=
−i

4 (iπ)
3
2

∞∫

0

dα

∞∫

0

dβ

[
αβpµpν

(α+ β)7/2
− p̃µp̃ν

4(α+ β)7/2
− igµν

2(α+ β)5/2

]

× exp

[
i
αβp2

α+ β
− ip̃2

4(α+ β)

]
, (D.52)

having taken into account in the last step that the terms proportional to η
cancel out when writing out the sum. Making the substitutions (D.42) again
yields

−i
4 (iπ)

3
2

1∫

0

dξ

∞∫

0

dρ
√
ξ(1 − ξ)

[
pµpν√
p2
ρ−1/2 − ip2gµν

2
√
p2
ρ−3/2

−ξ(1 − ξ)
(p2)

3
2 p̃µp̃ν

4ρ5/2

]
exp

[
iρ− iξ(1 − ξ)p2p̃2

4ρ

]
. (D.53)

Using equations (D.38) and (D.39) finally leads to

∑

η=±1

∫
d3k

(2π)3

(
k + p

2

)µ (
k − p

2

)ν
eiηkep

(
k + p

2

)2 (
k − p

2

)2

=
−1

4π

1∫

0

dξ
√
ξ(1 − ξ)

[
pµpν√
p2

− p2gµν√
p2

1

z
+
p̃µp̃ν

p̃2

p2

√
p2

(
1

z
+ 1

)]
e−z(ξ).

(D.54)
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Following the same steps we also find

∑

η=±1

∫
d3k

(2π)3

kµkνeiηkep
(
k + p

2

)2 (
k − p

2

)2

=
−i

4 (iπ)
3
2

∞∫

0

dα

∞∫

0

dβ

[−(α− β)2pµpν

4(α+ β)7/2
− p̃µp̃ν

4(α+ β)7/2
− igµν

2(α+ β)5/2

]

× exp

[
i
αβp2

α+ β
− ip̃2

4(α+ β)

]

=
−1

4π

1∫

0

dξ

[
√
ξ(1 − ξ) − 1

4
√
ξ(1 − ξ)

]
pµpν√
p2
e−z(ξ)

+
√
ξ(1 − ξ)

[
−p2gµν√

p2

1

z
+
p̃µp̃ν

p̃2

p2

√
p2

(
1

z
+ 1

)]
e−z(ξ). (D.55)

Finally, we need to calculate the integral

∑

η=±1

∫
d3k

(2π)3

eiηkep

k2 −M2
= −i

∑

η=±1

∞∫

0

dα

∫
d3k

(2π)3 exp
[
iα
(
k2 −M2

)
+ iηkp̃

]

= −i
∑

η=±1

∞∫

0

dα

∫
d3k′

(2π)3 exp

[
iαk′2 − iM2α− ip̃2

4α

]
,

(D.56)

with k′ = k+ ηep
2α

. Using formula (D.37) and writing out the sum over η yields

−1

4 (iπ)
3
2

∞∫

0

dαα− 3
2 exp

[
−iM2α− ip̃2

4α

]
. (D.57)

Identifying ρ = α, ν = −1
2
, τ = iM2 + ǫ and σ = iep2

4
+ ǫ one can use formulas

(D.38) and (D.39) to solve the remaining integral. Taking the limit ǫ → 0
finally leads to

∑

η=±1

∫
d3k

(2π)3

eiηkep

k2 −M2
=

exp
[
−i
√
M2p̃2

]

2π
√
p̃2

. (D.58)
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Furthermore we need similar integrals including mass parameters for chapter
3.2. We start with

∫
d3k

(2π)3

∑
η=±1

eiηkep

[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

] =
1

4π

1∫

0

dξ

√
p̃2

z(ξ)
e−z(ξ), (D.59)

where now

z(ξ) ≡
√

[ξ(1 − ξ) − ξm̃2
1 − (1 − ξ)m̃2

2] p
2p̃2 and m̃2

1,2 = m2
1,2/p

2. (D.60)

This formula can be derived in the same way as (D.46) except that when
using formula (D.38) one identifies

τ = −i
(

1 − m̃2
1

(1 − ξ)
− m̃2

2

ξ

)
+ ǫ. (D.61)

Following the same steps as in the derivation of (D.50) but with (D.60) and
(D.61) we also find

∑

η=±1

∫
d3k

(2π)3

(
k + p

2

)µ
eiηkep

[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

] =
pµ

4π

1∫

0

dξ
(1 − ξ)

√
p̃2

z(ξ)
e−z(ξ)

(D.62)

Similarly to (D.55) we evaluate

∑

η=±1

∫
d3k

(2π)3

kµkνeiηkep
[(
k + p

2

)2 −m2
1

] [(
k − p

2

)2 −m2
2

]

=
−i

4 (iπ)
3
2

1∫

0

dξ

∞∫

0

dρ
√
ξ(1 − ξ)

[(
1 − 1

4ξ(1 − ξ)

)
pµpν√
p2
ρ−1/2 − ip2gµν

2
√
p2
ρ−3/2

− ξ(1 − ξ)
(p2)

3
2 p̃µp̃ν

4ρ5/2

]
exp

[
i

(
1 − m̃2

1

(1 − ξ)
− m̃2

2

ξ

)
ρ− iξ(1 − ξ)p2p̃2

4ρ

]

=
−1

4π

1∫

0

dξ

[(
ξ(1 − ξ) − 1

4

) √
p̃2

z(ξ)
pµpν − gµν√

p̃2
+

p̃µp̃ν

(p̃2)3/2
(1 + z(ξ))

]
e−z(ξ),

(D.63)

where z(ξ) is once more given by (D.60).
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The last of these integrals we need is

∑

η=±1

∫
d3k

(2π)3

kµkνeiηkep

k2 (k2 −M2)
=

1

4π

1∫

0

dξ

[
gµν√
p̃2

− p̃µp̃ν

(p̃2)3/2
(1 + z(ξ))

]
e−z(ξ),

(D.64)

with z(ξ) =
√

−M2(1 − ξ)p̃2. This result follows immediately from formula
(D.63) when setting m2 = M , m1 = p = 0 but keeping p̃ 6= 0.

Finally we need further integrals for Chapter 4.3, the first of which is

∑

η=±1

∫
d3k

(2π)3

eiηkep

~k2
=
∑

η=±1

∞∫

0

dα

∫
d3k

(2π)3 e
−α~k2+iηkep

=
1

4π2

+∞∫

−∞

dk0

∞∫

0

dα
exp [−p̃2/4α]

α
. (D.65)

Since ~k2 ≡ (k1)2 +(k2)2 includes only spacial components, we could this time
use the parameterization

1

~k2
=

∞∫

0

dαe−α
~k2

, (D.66)

which after completing the square in the exponent led to a 2-dimensional
Gauss-integral (remember p̃0 = 0). The remaining integrals over k0 and the
parameter α do not converge.

The next integral is

∑

η=±1

∫
d3k

(2π)3

k̄µk̄νeiηkep

θ4~k4
=
∑

η=±1

∞∫

0

dαdβ

∫
d3k

(2π)3

∂

∂yµ

∂

∂yν
e−(α+β)~k2+iηkep−~y~k

∣∣∣∣∣
y=0

(D.67)

Completing the square, the exponent becomes

−(α+ β)~k′2 − (p̃i)2

4(α+ β)
− i

ηp̃iyi

2(α+ β)
+

~y2

4(α+ β)
,

where the sum over i = 1, 2 is to be taken. This leads to a 2-dimensional
Gauss-integral. Performing the differentiations and taking the limit y → 0
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produces

−
∞∫

0

dαdβ

+∞∫

−∞

dk0

8π2

(
p̃µp̃ν

2(α+ β)3
+

1̄µν

(α+ β)2

)
exp

[
− p̃2

4(α+ β)

]
. (D.68)

The substitution

α = ξλ
β = (1 − ξ)λ

}
→ dαdβ = λdξdλ , (D.69)

leads to

−
∞∫

0

dλ

+∞∫

−∞

dk0

8π2

(
p̃µp̃ν

2λ2
+

1̄µν

λ

)
exp

[
−p̃2/4λ

]
, (D.70)

and the result is

∑

η=±1

∫
d3k

(2π)3

k̄µk̄νeiηkep

θ4~k4
=

−1

4π2

+∞∫

−∞

dk0


 p̃

µp̃ν

p̃2
+

∞∫

0

dλ
1̄µν

2λ
exp

[
−p̃2/4λ

]

 ,

(D.71)

where the substitution λ′ = ep2
4λ

has been used for integration in the first term.
The remaining integrals diverge once more.
Finally, we evaluate the similar (dimensionally regularized) integral4

∫
dnk

(2π)n
k̄µ
(
k̄ + p̄/2

)ν

θ4
(
~k + ~p/2

)2 (
~k − ~p/2

)2

=

∞∫

0

dαdβ

∫
dnk

(2π)n
∂

∂yµ

∂

∂zν
exp

[
− α

(
~k + ~p/2

)2

− β
(
~k − ~p/2

)2

− ~y~k − ~z
(
~k + ~p/2

)]∣∣∣∣∣
y=z=0

=

∞∫

0

dαdβ

∫
dnk

(2π)n
∂

∂yµ

∂

∂zν
exp

[
− (α+ β)~k′2

− αβ~p2

(α+ β)
+

((α− β)~y − 2β~z) ~p

2(α+ β)
+

(~y + ~z)2

4(α+ β)

]∣∣∣∣∣
y=z=0

, (D.72)

4Remember k̄µ = −θ2

(
0,~k
)

as defined in (4.29b).
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with ~k′ = ~k + (α−β)~p+(~y+~z)
2(α+β)

. Performing the Gauss-integration and the differ-
entiations with respect to y and z yields

∫
dk0

(2π)n

∞∫

0

dαdβ
π

n−1
2

(α+ β)
n−1

2

[
β(β − α)p̄µp̄ν

2(α+ β)2θ4
− 1̄µν

2(α+ β)

]
e−

αβ~p2

(α+β)

= −
∫

dk0

2nπ
n+1

2

∞∫

0

dρ

1∫

0

dξ
(
ξ(1 − ξ)~p2

)n−3
2

[
ξ − 1

2

(1 − ξ)

p̄µp̄ν

p̄2
ρ+

1̄µν

2

]
ρ

1−n
2 e−ρ,

(D.73)

where substitutions (D.42) and the shift ξ → (1 − ξ) have been used. Con-
sidering the definition of the Gamma-function5

Γ(x) =

∞∫

0

tx−1e−tdt, (D.74)

this expression becomes

−
∫
dk0

1∫

0

dξ
(ξ(1 − ξ)~p2)

n−3
2

2n+1π
n+1

2

[
2ξ − 1

(1 − ξ)

p̄µp̄ν

p̄2
Γ

(
5 − n

2

)
+ 1̄µνΓ

(
3 − n

2

)]
,

(D.75)

and evaluating the remaining parameter integral with formula [35]

B(x, y) ≡ Γ (x) Γ (y)

Γ (x+ y)
=

1∫

0

dttx−1(1 − t)y−1,
ℜ(x) > 0
ℜ(y) > 0

(D.76)

yields

∫
dnk

(2π)n
k̄µ
(
k̄ + p̄/2

)ν

θ4
(
~k + ~p/2

)2 (
~k − ~p/2

)2

=
(~p2)

n−3
2

2n+1π
n+1

2

∫
dk0

[
p̄µp̄ν

p̄2
− 1̄µν

]
Γ
(

3−n
2

) (
Γ
(
n−1

2

))2

Γ (n− 1)
, (D.77)

where the property Γ(x + 1) = xΓ(x) has been used in several places to
simplify the resulting expression.

5see e.g. Bronstein [34]
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D.4 Special integrals

1∫

0

dx√
x(1 − x)

= π, (D.78a)

1∫

0

√
x(1 − x)dx =

π

8
, (D.78b)

1∫

0

√
x

1 − x
dx =

1∫

0

√
1 − x′

x′
dx′ =

π

2
(D.78c)

proof:
The first of these three integrals can be easily verified using the substitution
y = (2x− 1) which leads to

1∫

0

dx√
x(1 − x)

=

1∫

−1

dy√
1 − y2

= arcsinx
∣∣∣
+1

−1
= π. (D.79)

The same substitution in equation (D.78b) yields

1∫

0

√
x(1 − x)dx =

1∫

−1

1

4

√
1 − y2dy =

1

4
y
√

1 − y2

∣∣∣
+1

−1
−

1∫

−1

−y2

4
√

1 − y2
,

(D.80)
where partial integration has been used. Obviously, the boundary term is
zero and one finds

1∫

−1

1

4

√
1 − y2dy = −

1∫

−1

1

4

√
1 − y2dy +

1

4

1∫

−1

1√
1 − y2

. (D.81)

The left hand side-integral appears again on the right hand side and therefore
this equation can be rewritten as

1∫

−1

1

4

√
1 − y2dy = +

1

8

1∫

−1

1√
1 − y2

=
π

8
, (D.82)

where the remaining integral has been solved by recalling equation (D.79).
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Finally, formula (D.78c) is again proved by substituting y = (2x− 1):

1∫

0

√
x

1 − x
dx =

1∫

−1

y + 1

2
√

1 − y2
dy =

1∫

−1

1

2
√

1 − y2
dy =

π

2
. (D.83)

The term proportional to y in the numerator of the integrand does not con-
tribute to the result since an uneven function is integrated over a symmetric
interval.

Our next integral is

1∫

0

dz√
z(1 − z) − m̃2

1z − m̃2
2(1 − z)

= arcsin a+ − arcsin a−, (D.84)

with

a± =
±1 + m̃2

1 − m̃2
2√

(1 − m̃2
1 + m̃2

2)
2 − 4m̃2

2

, (D.85)

which follows from making the substitution

z′ =
2z − (1 − m̃2

1 + m̃2
2)√

(1 − m̃2
1 + m̃2

2)
2 − 4m̃2

2

, (D.86)

leading to
a+∫

a−

dz′√
1 − z′2

= arcsin a+ − arcsin a−. (D.87)

In the same way one can show that

1∫

0

dz
1 − z√

z(1 − z) − m̃2
1z − m̃2

2(1 − z)

=
√

2A(m̃1, m̃2)
√

1 − z2

∣∣∣
a+

a−
+

1

2
(1 + m̃2

1 − m̃2
2) arcsin z

∣∣∣
a+

a−
, (D.88)

and

1∫

0

dz
z√

z(1 − z) − m̃2
1z − m̃2

2(1 − z)

= −
√

2A(m̃1, m̃2)
√

1 − z2

∣∣∣
a+

a−
+

1

2
(1 − m̃2

1 + m̃2
2) arcsin z

∣∣∣
a+

a−
, (D.89)
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with

A(m̃1, m̃2) =
1

8

[(
1 − m̃2

1 + m̃2
2

)2 − 4m̃2
2

]
. (D.90)

Finally we need

1∫

0

dz
√
z(1 − z) − m̃2

1z − m̃2
2(1 − z)

= A(m̃1, m̃2)
[
z
√

1 − z2

∣∣∣
a+

a−
+ arcsin z

∣∣∣
a+

a−

]
. (D.91)

Making the same substitution (D.86) as before we get

1∫

0

dz
√
z(1 − z) − m̃2

1z − m̃2
2(1 − z) = 2A(m̃1, m̃2)

a+∫

a−

dz′
√

1 − z′2. (D.92)

Using partial integration we find

a+∫

a−

dz′
√

1 − z′2 = z′
√

1 − z′2
∣∣∣
a+

a−
+

a+∫

a−

dz′
1√

1 − z′2
−

a+∫

a−

dz′
√

1 − z′2, (D.93)

and inserting this equation into (D.92) yields the result (D.91).
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